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Abstract 

 
 This thesis reports the results of five novel studies that used eye movement 

patterns to elucidate the role of shape information content of object shape 

representation in human visual perception. In Experiments 1, and 2 eye movements 

were recorded while observers either actively memorised or passively viewed 

different sets of novel objects, and during a subsequent recognition memory task. 

Fixation data were contrasted against different models of shape analyses based on 

surface curvature bounding vs. internal contour and low level image visual saliency.       

The results showed a preference for fixation at regions of internal local features 

(either concave or/and convex) during both active memorisation and passive viewing 

of object shape. This pattern changed during the recognition phase where there was a 

fixation preference towards regions containing concave surface curvature minima. It 

is proposed that the preference of fixation at regions of concavity reflect the 

operation of a depth-sensitive view interpolation process that is constrained by key 

points encoding regions of concave curvature minima.  

 Experiments 3 and 4 examined the extent to which fixation-based local shape 

analysis patterns are influenced by the perceptual expertise of the observer and the 

level of stimulus classification required by the task. These studies were based on the 

paradigm developed by Wong, Palmeri & Gauthier (2009) in which observers are 

extensively trained to categorize sets of novel objects (Ziggerins) at either a basic or 

subordinate level of classification. The effects of training were measured by 

comparing performance between a pre- and post-test sequential shape matching task 

that required either basic- or subordinate-level judgements. In addition, we also 

recorded fixation patterns during the pre- and post-tests.  
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The results showed significant effects of training on shape matching in the post-tests. 

In particular, participants showed evidence of perceptual expertise in making basic 

and subordinate-level shape classification judgements. We also found that the 

acquisition of perceptual expertise did not result in significant changes in the local 

spatial distributions of fixation patterns observed. However, there was a tendency for 

fixations located at areas with concave curvature minima regardless of level of 

classification. This finding provides evidence that the preference for fixating at 

concave regions generalises across levels of stimulus classification in recognition 

tasks.  

 The last study examined how eye movement patterns can be used to elucidate 

shape analyses strategies across tasks of object recognition and planning prehensile 

movement where participants were asked to memorise and later recognise an object 

and to imagine picking up an object by using their thumb and a forefinger. The 

results showed a significantly different fixation pattern between the recognition and 

motor imagery task, thus providing support for differential processing during shape 

perception influenced by task demands. 

  The main empirical findings in this thesis show: 1) How eye movements can 

elucidate properties of internal mental representations of shape; 2) Consistent fixation 

pattern to concave areas that generalises across tasks; and 3) Different fixation 

patterns during recognition and motor imagery task.   
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Chapter 1 

1.1. Introduction  

 

‘The eye sees only what the mind is prepared to comprehend’ 

               Henri-Louis Bergson, 1859-1941 

  

 Our ability to detect, classify and recognise objects despite their high 

variability and changes in scale, size, position, illumination, and configuration seems 

effortless and yet, no computer system has been devised to emulate the robustness of 

object recognition in human visual system. A vast body of research has attempted to 

answer the question how are we able to perceive the three-dimensional (3D) world 

around us -so quickly and effortlessly- from the two-dimensional (2D) pattern of 

retinal images. This fundamental question has provided the focal point for 

investigations from a variety of disciplines such as psychology, physiology, biology, 

neuropsychology and computer science, and has opened the way for many more 

questions in the course of the investigation. Such as how do we perceive and represent 

object shape, one of the most informative properties for object recognition.  

 The general aim of this thesis is to investigate the nature of object shape 

representation. It is generally accepted  that amongst all the information required to 

recognise object shape, edges and contours have the primary shape defining 

properties; the first stage of visual processing (V1) seems to respond to object edges 

(e.g., Hubel & Wiesel, 1968; Lee, 2003) followed by other informative properties (e.g. 

surfaces). A great deal of interest from a variety of disciplines has been given to the 

information located along object edges and contour curvature (e.g., Attneave, 1954; 

Feldman & Singh, 2005; Hoffman & Richards, 1984). Attneave (1954) was one of the 
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first to suggest that contour curvature magnitude carries more shape relevant 

information for perception than regions of straight contour segments. Subsequent 

research (Barenholtz, Cohen, Feldman & Singh, 2003; Cohen, Barenholtz, Singh & 

Feldman, 2005; Cohen & Singh, 2007; De Winter & Wagemans, 2006; Feldman & 

Singh, 2005; Hoffman & Richards, 1984; Hoffman & Singh, 1997) has shown that the 

sign of curvature, and not just the magnitude, carries essential informational content 

for shape perception. An Illustration of the sign of curvature see Figure 1 below. 

 
 

Figure 1 An example of positive (concave) and negative (convex) curvature extreme. 

From Cohen and Singh (2007). 
 
 However, the functional significance of these curvature extrema to shape 

perception remains the subject of on-going debate (Bertamini, 2008). Despite a large 

body of empirical research examining curvature in the context of contour-defined 2D 

images such as polygons and line drawings (Cohen, Barenholtz, Singh & Feldman, 

2005; Cohen & Singh, 2007; De Winter & Wagemans, 2006) there is relatively little 

data examining the role of curvature singularities defined by changes in surface (rather 

than contour) curvature polarity. Moreover, such an investigation is further motivated 

by recent evidence that saccadic eye movements during the spontaneous exploration of 

visual images follow surface depth gradients (Wexler & Ouarti, 2008).  
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 A recent study (Lloyd-Jones, Gehrke, & Lauder, 2010) used eye movements to 

examine the contributions of outline contour and salient individual futures in animal- 

non-animal recognition tasks, employing line drawings and silhouette stimuli. The 

authors proposed that animal recognition is mediated by the salient features located in 

the outline contour as the latter facilitates the access to stored visual representations.  

Despite the fact that the significance of local shape curvature in shape perception is 

subject to a lot of attention and under multidisciplinary research investigation (e.g. 

Renninger, Coughlan & Verghese, 2007; Lloyd-Jones, Gehrke, & Lauder, 2010) it is 

rather surprising that no one (to our knowledge) has yet attempted to investigate in 

detail 3D shape representation with eye-tracking methodology.  

1.2. Aim of the thesis  

 The aim of this thesis is to examine the extent to which local shape analyses, as 

shown by fixation patterns, can be predicted by the presence of different types of local 

shape curvature in 3D object recognition. It should be noted that although eye 

movement pattern analyses are employed to investigate object shape representation I 

do not imply that these patterns emulate everyday object recognition. The rationale 

behind this thesis investigation stems from recent studies (e.g. Najemnik & Geisler, 

2005; Renninger, Coughlan & Verghese, 2007) employing eye movement patterns to 

investigate 2D pattern recognition, showing that eye movement patterns can be highly 

informative in shape processing during perception. For example, Najimek and Geisler 

(2005) demonstrated that fixations during simple pattern visual search tasks are 

selected in order to reduce uncertainty, rather than choosing a possible target location. 

Similarly, Renninger et al., (2007) provided evidence that observers tend to fixate 

object areas with high information content, and proposed that reducing local 
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uncertainty can be a very good predictor of human fixations during shape learning 

tasks.   

 In regard to the organisation of this thesis, chapters are written as standalone 

sections and are parts of published papers (Leek, Cristino, Conlan (now Davitt), 

Patterson, Rodrigues & Johnson, 2012; Cristino, Conlan (now Davitt), Leek, 2012); 

hence some repetition of material is possible. 

 Chapter 1 provides a brief overview of the neuropsychology of the human 

visual system and a general overview of dominant theories of object recognition 

alongside approaches using different kinds of shape information (local vs. global) 

across a broad range of spatial scales obtainable from the sensory output. Chapter 2 

comprises a brief overview of the current and historical eye tracking methods used to 

investigate the human visual system, and an overview of studies employing eye 

tracking methods. In Chapter 3, I present Fixation Region Overlap Analyses (FROA) -

the methodology used to analyse the data in this thesis.  

 In Chapter 4, I examine fixation pattern analyses to investigate whether 

fixation patterns can be used to elucidate local shape analyses during object 

perception. Chapter 5 comprises of Experiment 2 that investigates the robustness of 

the results from the first study. Chapter 6 includes a categorisation experiment where I 

investigate fixation patterns during basic and subordinate levels of object 

categorisation in participants trained to be experts, or untrained novices in recognising 

novel objects at either basic or subordinate levels of categorisation. In Chapter 7, I 

present a categorisation experiment with an extended training regime and investigate 

further whether fixation patterns change as a function of training. In Chapter 8, I 

present a study examining how eye movement patterns relate to the perception of 
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shape during object recognition and motor-imagery. Finally, in Chapter 9 I discuss all 

the results in a more general context.  

1.3. Background 

Overview of the visual system 

 The eyes were referred to as a „windowes of the mind‟ by the French anatomist 

and medical scientist Du Laurens (1596, p.19). This view provides a simple and true 

description of a very sophisticated and extremely complicated mechanism which 

enables us to see and interpret the world around us. Perhaps the true significance of the 

visual system can be demonstrated by the fact that about half of the cerebral cortex is 

involved in analysing the visual input of the world. Moreover, no computer visual 

system has yet been able to reproduce precisely the processes in the human visual 

system (Bear, Connors & Paradiso, 2007). 

Pre-cortical processing 

 The fundamental requirement that allows us to see the world is the 

electromagnetic radiation around us, also known as light. The characteristics of this 

electromagnetic radiation (also described as a „wave of energy‟, Bear et al., 2007, 

p.279) are: wavelength (the distance between peaks), frequency (the number of waves 

per second), and amplitude (the difference between a trough and a peak). The human 

eye has a very specific design which enables us to detect, capture and analyse a small 

part of the electromagnetic wave spectrum 400-700 nanometers. Before entering the 

eye, visible light travels in a straight line until it interacts with obstacles in the 

environment, such as objects, water, or atoms and molecules in the atmosphere. 

Consequently the light refracted by the cornea and the lens projects a picture from the 

environment on the retina. Following light absorption, the photoreceptors exhibit a 

complex chemical mechanism thus converting the retinal image into neural signals. 
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There are two types of photoreceptors cells, rods and cones. Rods are more sensitive to 

low intensity light and can function under dim light conditions; therefore, rods cannot 

distinguish colour, but enable us to see at night. Conversely, cones are responsible for 

colour vision and to function correctly require a high level of light. Cones are highly 

concentrated at the fovea, which contributes to high visual acuity. For an illustration of 

foveal vision see the distribution of rods and cones in Figure 2 below. The neural 

signals from the photoreceptors are transmitted to the ganglion cells which then, via 

the optic tract, convey the signals to the lateral geniculate nucleus (LGN) of the 

thalamus (the primary circuit for transmitting visual information). 

 

 

Figure 2 An illustration of the distribution of rods and cones in the retina. From 

Osterberg (1935). 

 
Cortical processing 

 

 The LGN transmits sensory information in the form of neural impulses from 

the retina to the primary visual cortex V1 which is positioned in the occipital lobe, 

around the calcarine fissure and responds mainly to simple features and differently 

oriented lines (Hubel & Wiesel, 1959). V1 in each hemisphere transmits visual 

information through two distinct cortical systems, the ventral and the dorsal pathway. 



Chapter 1  19 

The ventral pathway begins with V1, passes through V2, V4 (areas considered to be 

involved in preferential responding to more complex stimuli, Pasupathy & Connor 

1999) and then to inferior temporal cortex (IT). The dorsal pathway begins with V1, 

passes through V2, followed by dorsomedial area MT (V5) and then to Posterior 

parietal cortex. The ventral pathway is considered to be involved in object recognition 

whereas the dorsal pathway is considered to be essential in spatial vision (Haxby et al., 

1991) and involved in guiding the visual system for reaching and grasping tasks. 

 A large proportion of the human cortex beyond V1 is involved in the visual 

processing of variety of features and stimuli, thus distinct processing areas have been 

identified (Wandell, Dumoulin & Brewer, 2007). For example, inferotemporal cortex 

(IT) and the lateral occipital complex (LOC) areas associated predominantly with 

object recognition are suggested to play a role in encoding complex shapes (Tanaka et 

al., 1991), object parts (Hayworth & Biederman, 2006), non-accidental object features 

(Kayaert et al., 2003), and shape curvature (Kayaert et al., 2005).  Furthermore, object 

selective areas in the ventral stream (LOC) appear to be less sensitive to low-level 

image features such as contrast (Avidan et al., 2002) and recent studies suggest that 

these areas are involved in responding more to object shape than object contours (e.g., 

Andrews et al., 2002;  Kourtzi & Kanwisher, 2000). Another current study (Haushofer 

et al., 2008) has demonstrated that LOC has a preferential encoding of positive shape 

curvature (convex), suggesting that curvature may play an essential role in object 

shape representation
1
. A single cell recording study (Pasupathy & Connor, 2001) 

found that a subpopulation of neurons in the area of V4 is sensitive to boundary 

curvature (concave and convex). The authors proposed that shape representation in 

area V4 is distributed and a number of single cells encode small parts of larger objects. 

                                                        
1 Representation is a way of encoding visual properties from the outside world which are organised in a useful 

and structured way to assist recognition processes. 
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This finding was interpreted as an indication for part-based shape processing in V4, 

which is consistent with theoretical accounts for object shape processing, supporting 

the notion of shape representation as a combination of smaller features and primitives 

in a hierarchical manner (e.g. Biederman, 1987; Marr & Nishihara, 1978; Hoffman & 

Richards, 1984). However, despite recent evidence concerning functional 

specialisation in the cortex, the exact content, organisation and structure still remain 

unknown. Thus, the complexity and the abstractness of the visual representation of 

shape beyond pre-cortical processing should not be underestimated.  

 In the next section I will give a brief overview of several classes of object 

recognition model which are the structural description models (Biederman, 1987; Marr 

& Nishihara, 1978; Leek, Reppa & Arguin, 2005), Image- based models (Bülthoff et 

al., 1995; Bülthoff & Edelman, 1992; Edelman, 1995; Edelman & Weinshall, 1991), 

Feature-based models as a hierarchy of fragments (Lowe, 2004; Mikolajczyk & 

Schmid, 2005; Ullman, 2007; Ullman et al., 2002), and Hybrid models (e.g. Hummel 

& Stankiewitz, 1996, 1998; Thoma, Davidoff & Hummel, 2007; Thoma, Hummel & 

Davidoff, 2004). 

 

1.4. Overview of object recognition models 

 1.4.1. Structural description models  

 
 Structural description models (SDM) share the view that objects are 

represented by decomposing them into simple units, but make dissimilar claims about 

the exact arrangement and components used. For example, one SDM proposes that 

objects are represented as an arrangement of elementary viewpoint invariant 3D parts 

(Biederman, 1987; Biederman & Cooper, 1991; Hummel & Biederman, 1992), which 

are cylinders, bricks, wedges, or cones, with specified interrelations and spatial 
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configurations. Another structural description model (Leek et al. 2005) proposed that 

surfaces (bounded 2D polygons) and their spatial configuration mediate 3D object 

shape representation. The final structural description approach (Marr & Nishihara, 

1978) suggests that object parts are mentally represented as 3D generalised cylinders 

and that objects can be hierarchically reconstructed of local image features into more 

complex descriptions relating the spatial position from one part to another. The 

fundamental difference between the claims of these accounts is the type of 

components used to build the volumetric object parts. For example, Biederman (1987) 

proposed sets of non- accidental invariant contour features (NAPs, collinearity, 

symmetry, parallelism, curvature, and co-termination) as the necessary building blocks 

of volumetric parts. Marr and Nishihara (1978) added the implication of depth, as they 

suggested that lines are grouped into contours, which are grouped into surfaces and the 

surfaces are grouped into volumetric parts. Finally, Leek et al., (2005) proposed that 

the units mediating 3D shape representation consist of object surfaces and their spatial 

configuration. 

 

1.4.1.1. Recognition by components 

 
 One influential SDM proposed by Biederman (Biederman, 1985; Biederman & 

Cooper, 1991, 1992) is the „recognition by components‟ model (RBC). RBC claims 

that humans have mental representations of a restricted set of 36 3D volumetric parts 

(e.g., blocks and cylinders) called geons with specified interrelations and spatial 

configurations which are viewpoint invariant under certain conditions (see Figure 3). 
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Figure 3 Different arrangements of the same components can produce different 

objects. From Biederman (1987). 

 
 This viewpoint invariance is suggested to be reliant on the stable local contour 

configurations (edges or junctions) which remain visible despite different rotations in 

depth. RBC proposed that these sets of non-accidental invariant contour features  

(NAPs) (collinearity, symmetry, parallelism, curvature, and co-termination; see Figure 

4) are necessary to distinguish the existing geons (the building blocks for object 

representation) in an object, therefore the representations distinguished by the geons 

possess the same invariance (up to occlusion). 

 

Figure 4 The non-accidental properties of image features. From Biederman (1987). 
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 This theory suggests that as long as two or more geons are extracted from an 

object, the representations of this object will be nearly always be successful regardless 

of the viewpoint or rotation in depth (but not in picture plan rotations).  

More specifically, RBC proposed that contour description of a given object is 

achieved after the edge extraction stage, and object characteristics such as luminance, 

texture, colour, and stereo information do not play any role in the task (see Figure 5). 

This is followed by detecting the image edges (NAPs collinearity, symmetry) which is 

assumed to be executed alongside with image segmentation, predominantly at regions 

containing deep concavities. The next stage is matching the primitive components 

against representations in memory which is supposed to occur in parallel and is 

assumed to have unlimited capacity (Biederman, 1987). The final stage involves 

object identification.  

 

Figure 5 Biederman (1987) suggested stages of object processing. From Biederman (1987). 
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 There are number of studies providing experimental support for RBC 

hypotheses although they have not been left unchallenged. For example, Biederman, 

Ju, and Clapper (1985) tested the prediction that two or three geons would be 

sufficient for quick identification of an object. In this experiment the participants had 

to name briefly presented complete objects, and objects lacking some of their 

components, with the restriction of presenting a minimum of two components per 

object. The authors found that participant‟s accuracy and RT performance increased as 

a function of the numbers of components present in the objects, which supported their 

initial hypothesis. 

 In several other experiments Biederman and Blickle, (1985, as cited in 

Biederman, 1987) provided evidence for the prediction that some of the contours 

present in an image play a vital role for identifying an object. They hypothesised that 

if object contours were deleted at vertices of edges (termed non-recoverable 

degradation) this will disrupt the recovery of object components and result in difficulty 

recognising it, compared to when the same amount of contour is deleted from a 

midsection of a curve (termed recoverable degradation) (see Figure 6 below). The 

objects were also modified in vertex areas along with altering the clarity of symmetry 

and parallelism. The results confirmed that non-recoverable versions of the objects 

were practically non-identifiable and the mean error rate was very high. The non-

recoverable objects were identified only in instances when some of the components 

were not deleted and the object exposure was 200 ms in duration. Conversely, the 

recoverable objects were named with a high degree of accuracy at the 200 ms 

exposure duration.   
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Figure 6 Example of the objects used in Biederman (1987) experiment. Left column 

depicts the intact objects. Middle column shows the recoverable version of the objects. 

The right column shows the non-recoverable version of the objects. From Biederman 

(1987). 

 

 In another study by Biederman (1987) the participants were presented with 18 

line drawings of objects with varying amounts (25%, 45%, and 65%) of internal and 

external contours deleted for 100, 200, or 750ms. The deleted contours were either at 

the vertices or at mid-segments, but without bridging the components of collinearity or 

curvature which was the case in the non-recoverable condition in the previous 

experiment. The results showed that when the object exposure duration was 100 ms 

coupled with 65% contour deletion, the removal of vertices resulted in higher error 

rates compared to contour removal of the mid segment. When contour deletion was 

less and/or the exposure was longer, the decrease in naming accuracy was reduced. 

Overall, the authors concluded that filling-in of contours at mid segment and vertex 
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can be completed within one second. However, when there is a misleading component 

breaking the concavity, the image produced cannot index the components of the 

original object, regardless of the length of time given to view the image.  

 According to Biederman, the final stage of the aforementioned processes is 

object recognition, which is suggested to occur at the basic level category level (e.g., 

bird), but does not account for the process by which we may compute or determine 

either the superordinate (e.g., animal) or subordinate level (e.g. eagle) of recognition 

(Peissig & Tarr, 2007).   

1.4.1.2. Surface -based structural description model 

 
 Although experimental evidence seems to support the role of volumetric parts 

in object shape representation, this theory is not indisputable. Leek et al., (2005) used 

a whole-part matching paradigm (Palmer, 1977) to test the „special‟ status assigned to 

the volumetric components. The authors hypothesised that if volumetric parts play an 

imperative role in 3D shape representation, then whole-part matching should be better 

for part stimuli with volumetric components, rather than for part stimuli with non- 

volumetric configurations of contours on surfaces. In a number of experiments the 

authors examined performance when matching shapes of whole objects to subsets of 

shapes containing (a) volumetric components, (b) regions containing open or closed 

non-volumetric edge contour, and (c) regions of edge contour corresponding to object 

surfaces. The results showed an advantage for matching edge contour of volumetric 

components and surfaces over open or closed non-volumetric regions of edge contour. 

These findings were used to motivate a surface-based model of object representation 

where the generation of the surface boundaries was obtained from surface object 

discontinuities grouped in to 2D closed regions, thus not using volumetric primitives 

or volumetric image decomposition.  In another study, Leek, Reppa, Rodrigues and 
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Arguin (2009) examined the assumption held by volumetric models that object 

recognition involves volumetric completion for the non-visible elements due to 

viewpoint or occlusion. The authors used a masked repetition priming paradigm to 

examine the extent to which occluded surfaces of volumetric parts, or visible surfaces 

yield greater priming effects. The rationale behind the design was that magnitude of 

the priming effects should be a function of the overlap between the shape information 

in the prime and the object information encoded in test performance. Participants 

initially memorized shapes of novel objects and later distinguished them from 

previously unseen objects. The two main prime conditions included (1) occluded 

volumetric primes vs. visible surface primes, and (2) occluded surface primes vs. 

visible surface primes. The results showed priming effects which did not support the 

volumetric theories, but are consistent with Leek et al., (2005) surface based model of 

3D shape representation, as priming effects were greater for visible surface part 

primes, compared with occluded image properties. 

1.4.1.3. Marr’s stage model 

 Following Binford‟s (1971) pioneering work, Marr and Nishihara (1978) 

proposed a sequence of representations that could facilitate a progressive recovery of 

3D geometric information from 2D images. Their framework comprised three 

representational stages: „Primal sketch‟, „2½-D sketch‟, and „3D model 

representation‟.  

 The proposed purpose of the primal sketch was to encode information about 

representations of significant gradients of light intensity from a relatively noisy image. 

This primal sketch itself consisted of three main stages (see Figure 7). The first stage 

was called „the detection of zero-crossings‟ and was a process involved in the 

detection of significant intensity changes in a given image. The authors (Marr & 



Chapter 1  28 

Hildreth, 1980) proposed that the best way for locating these features is by detecting 

areas of zero-crossings, created by the Laplacian of Gaussian second derivative 

gradient operator, which is considered to be an orientation independent operator.  

During the second stage termed as „formation of the raw primal sketch‟ information 

such as edges, bars, blobs, alongside attributes of orientation, contrast, length, and 

position are obtained from the zero crossings. The last stage of the primal sketch is the 

grouping and formation of a higher level construct with clearer description of spatial 

organisation of the intensity changes, and is formed from the aforementioned primitive 

points obtained. 

 Marr proposed that the second representational stage is the formation of the  

„2½-D sketch‟. This is described as a rather complicated matter as the information 

needed is collected from different processes such as stereopsis, optical flow, texture 

and shading, occluding contours, surface contours and motion parallax. Marr proposed 

that the 2 ½-D sketch intends to represent the orientation and the depth of the visible 

surfaces, and discontinuities from a specified in a viewer-centred coordinate system.  

 The third and final stage of processing required for object recognition is the 

conversion of the viewer-centred 2 ½-D sketch‟ to an object-centred „3D model 

representation‟ to enable the recognition from different viewpoints. Marr suggested 

that the necessary criteria for suitable 3D shape representations are accessibility, scope 

and uniqueness, and stability and sensitivity. 
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Figure 7 Marr's flow chart of visual processing, explained in hierarchical manner. 

Local edges and tokens are computed and grouped to infer surface orientations of 

objects. The 2.5D sketch is then parsed and matched against stored 3D prototypes. 

From Lee (2003). 

 The organisation of „3D model representation‟ (see Figure 8) is based on 

arranging object parts as generalised cones in a hierarchical manner in order to encode 

increasing complexity of object structure. Marr suggested that observers use the 

information from the object‟s bounding contour (concavities and convexities) to 

identify main component parts and locate the major axis of elongation.  
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Figure 8 Marr's proposed hierarchical arrangement of the 3D model representation. 

From  Marr (1982). 

 
 In summary, Marr‟s great contribution was in describing how different levels 

of computation/representation could help to „break down‟ object recognition in to 

component processes. However, despite the huge theoretical influence of this model to 

the study of vision, there was only marginal empirical support in its favour.  

1.4.1.4. Image based models 

 Another theoretical approach of shape representation comes from image-based 

models (Bülthoff et al., 1995; Bülthoff & Edelman, 1992; Edelman, 1995; Edelman & 

Weinshall, 1991; Poggio & Edelman, 1990). Some Image based accounts hypothesise 

that object representation is supported by multiple 2D views and transformed object 

images can be recognised by methods of interpolation or extrapolation between those 

known views. These accounts also support the notion of conjoint encoding of shape 

features and their spatial location (e.g., Edelman & Weinshall, 1991; Ullman & Basri, 
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1991). Other image based models propose that object classification is based on class-

specific appearance or image-based feature hierarchies which are computed across 

multiple spatial scales (e.g., Ullman, 2006; Ullman & Bart, 2004; Ullman, Vidal-

Naquet, & Sali, 2002).  

 More specifically, these models argue that for interpolation to occur, specific 

object views are expressed as sets of viewpoint dependent features, and each view is 

regarded as a specific point in a high dimensional space, thus capturing the appearance 

of all possible views (Tarr & Bülthoff, 1998). In order to generalise from unknown to 

known views it is necessary to establish the location of the unknown views within this 

high dimensional space and then calculate the similarity of its features relative to the 

features from the nearest known view.  

 Riesenhuber and Poggio (1999) proposed the HMAX model - a biologically 

inspired model of object shape representation, which intended to emulate the 

feedforward architecture of the stages of object recognition in the cortex. The model is 

based on the assumption that hierarchies occur naturally in the brain since specificity 

and invariance of position and scale need to be obtained in a biologically possible 

way. A key characteristic underlying this model concerns the fundamental 

organisation of the visual cortex, with parallel and gradual increase of feature 

complexity and receptive field size, thus initially requiring many cells to cover the 

necessary range of scales and positions representing a small set of simple features. On 

the other hand, in higher layers neurons are tuned to a larger number of complex 

features and neurons show greater invariance, thus requiring fewer cells tuned to the 

same feature at different positions and scales.  

 The original HMAX model is composed of four layers (S1, C1, S2, and C2, see 

Figure 9), consisting of simple (S), and complex (C) units. The model proposes that 
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the first input layer (S1) includes filters tuned to different orientations and areas of the 

visual field, which are similar to the cells found in the V1 receptive area of the brain. 

The C1 units accumulate responses by „MAX‟ pooling operations over the S1 filters 

which are tuned to the same orientation but at different scales and positions. The 

complexity of the S input and the scale invariance in the C units increases going up the 

hierarchical layers. The S2 units combine the 4 bar orientations from the C1 units into 

2 by 2 arrangements in order to create 256 intermediate feature detectors. C2 units 

spatially pool together the maximum output from the S2 units along with providing 

spatial invariance. The alternating architecture of S and C, combining simpler low 

level features into more complex features, gives an increased feature detector 

specificity and enhanced invariance of the model (Riesenhuber & Poggio, 1999). 

 

 

 

Figure 9 A diagram of the HMAX model. The first layer (S1) shows four different 

orientations (0
0
, 45

 0
, 90

 0
, and 135

 0
) and consists of simple Gabor filters at several 

spatial scales. The second layer (C1) pools the filter outputs spatially and across 

nearby scales. The third layer (S2) is tuned to a combination of orientations, and the 
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fourth layer (C2) provides further spatial and scale invariance. The C2 outputs are 

directly fed to a classifier.  From Riesenhuber and Poggio (1999). 

 

 Serre, Oliva and  Poggio (2007) improved the original HMAX model by 

adding a new unsupervised stage of learning with the assumption that visual hierarchy 

in the cortex (from V1 to IT) builds a general dictionary of shape tuned units in order 

to provide task-specific representation for categorisation circuits. An example of a 

learning module can be seen in Figure 10a below. This module assumes that each unit 

measures the similarity between a given stored view and a given input image. The 

outputs of all units are then added and if their sum is above a threshold the output 

given is 1, if not it is 0. Throughout learning, weights and threshold adjustments 

optimise the correct classification of examples. As shown in Figure 10b the 3D model 

of the object is recognised by interpolation between small numbers of stored views 

(Riesenhuber & Poggio, 2000) 

 There are a number of different and more complex schemes developed in an 

attempt to solve the problem of object categorisation, and they tend to focus on 

categorising an image region for a specific viewpoint, followed by merging classifiers 

trained on different viewpoints. Riesenhuber and Poggio (2000) proposed that a key 

difference between these approaches is in the view-specific features with which the 

examples are presented, ranging from raw pixel values (Brunelli & Poggio, 1993) to 

over complete dictionaries of features allowing for more compact representations 

(Mohan, 1999). 
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Figure 10 An example of learning module schematics. (a) A depiction of the general 

learning module. (b) A specific learning module: a classifier, trained to respond in a 

view-invariant manner to a given object. From Riesenhuber and Poggio (1999). 

 

 One of the issues concering image-based models is how an unfamiliar view of 

an object is matched to a familiar view of that same object and there were attempts to 

explain it using mental transformation and alignment methods. However, these 

processes need to establish the rotation direction before carrying out a rotation or an 

alignment and establishing this information implies that some form of recognition has 

already occurred (Tarr & Bultoff, 1999). 

 Moreover, image-based models appear to have difficulties similar to RBC with 

regard to object classification, as they suggest that the object representations are 

definitive to particular exemplars (given the assumption that objects are represented in 

a viewpoint-specific manner) not to object classes. 
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 It should be noted that the two approaches (structural description and image 

based) described above are not mutually exclusive and both of them explain elements 

of human visual recognition; structural description models providing information 

about categorical (basic) level access, and image based for within-class level 

(subordinate) access. Moreover, recently some hybrid models propose that it is 

potentially achievable for both image-based and structural description approaches to 

be accommodated within the same framework (e.g., Foster & Gilson, 2002; Hummel 

& Stankiewitz, 1996; Hayward, 2003).  

 However, a great deal of the empirical debate between image based and 

structural description models is concerned with viewpoint dependency of object 

representations while the nature of 3D shape representation remains poorly understood 

(e.g., Arguin & Leek, 2003; Biederman & Gerhardstein, 1993; Edelman, 1999; Leek, 

1998a, 1998b; Tarr & Bulthoff, 1998). 

 1.4.2. Local image features and shape representations  

 
  Another relevant source of information relating to fundamental elements 

mediating task performance during 3D shape representation are low-level image 

features (e.g., Non Accidental Image Features [NAPs], Biederman, 1985, 1987; Scale 

Invariant Feature Transform [SIFT], Lowe, 1999, 2004; corners, Harris & Stephens, 

1988; codons, Hoffman & Richards, 1984), surface (e.g., Leek et al., 2005; Marr, 

1982) and 3D primitives (e.g., geons, Biederman, 1987; generalised cylinders, Marr & 

Nishihara, 1978). 

 A number of shape representation theories suggest that local image features 

play a key role in object identification, mostly due to their advantages over global 

features, by providing invariance regarding noise, occlusion, and scale. Moreover, 

there is a lot of empirical evidence suggesting an important role of contour curvature 
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in the perception of part structure (e.g., Hoffman & Richards, 1984; Hoffman & 

Singh, 1997; Koenderink, 1984; Singh & Hoffman, 2001). More specifically, a 

psychologically relevant distinction has been found between negative and positive 

sign curvature (most commonly known as concave and convex curvature 

respectively), which suggests that concave minima curvature plays a vital role in part 

segmentation (e.g., Barenholtz et al., 2003; Hoffman & Richards, 1984; Marr, 1982). 

For illustration of concave and convex curvature see Figure 11 below. Although this 

seems to be a rather intuitive suggestion based on the fact that concave regions 

naturally appear when two parts of objects intersect (e.g., chair legs intersecting with 

chair seat), we must note that there is substantial amount of empirical evidence 

supporting this view.  

  Attneave (1954) was one of the first to propose that information along an 

objects‟ visual contour is not distributed evenly but is localised into regions of high 

magnitude of curvature. He also suggested that identifying the distribution of 

information along contours would provide key knowledge in understanding the 

properties of human mental shape representation. However, Attneave did not account 

for the fact that curvature (along with other shape descriptors) is scale dependent. 

Moreover, his main focus was on the curvatures‟ magnitude rather than the sign 

(positive or negative; Feldman & Singh, 2005). Feldman and Singh‟s (2005) 

theoretical account further specified that the total edge curvature must be larger than 

zero considering the object edges (principally convex) typically consist of closed 

curves (see Figure 11). Consequently, for any given contour region, the prior 

expectation would be that it is (slightly) convex, thus assigning more “surprising” 

properties to a given concave region, than to a convex one, suggesting that in turn 

means that its information content should be larger. 
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 Hoffman and Richards (1984) proposed the minima rule, according to which, 

the human visual system facilitates visual recognition by segmenting shapes into parts 

at areas containing negative minima curvature (concave). Indeed, several experimental 

studies have demonstrated that the minima rule can be used to explain visual 

phenomena within shape perception, such as figure and ground assignment (Hoffman 

& Singh, 1997), perception of shape similarity (Hoffman, 1983), and visual search 

(Wolfe & Bennett, 1997). For example, Wolfe and Bennett (1997) found that a target 

with a shape containing sharp concavity „pops out‟ amongst sets of distracter shapes 

that do not contain concavities, but not vice versa. The authors interpreted this finding 

as indication that negative minima curvature is computed early in the visual system. 

This finding was further investigated by Xu and Singh (2001), who confirmed that 

negative minima of curvature plays a role in segmenting object shapes into parts and 

that this happens in the early stages of the visual processing.  

 However, Singh and Hoffman (1999) argued that part boundaries defined by 

the minima rule alone are not sufficient to identify parts. They suggested that the 

minima rule needs to be coupled with other geometric factors, such as cut length, 

(Singh, Seyranian, & Hoffman, 1999), good continuation, and local symmetry (Singh, 

Seyranian, & Hoffman, 1996), and part-boundary strength (Hoffman & Singh, 1997), 

in order to establish correctly the part cuts.  

 Briefly, the above geometrical factors were named, the short-cut rule, and the 

significance of this approach is that it considers the distances between all pairs of 

points of a given silhouette outline. The authors suggested that the visual system 

prefers to divide shapes into parts by using the shortest part cuts and the minima 

curvature is the ideal cue for these cut locations. 
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Figure 11 Depiction of the concentrated shape boundary information in regions of 

positive and negative curvature. The same shape used in Attneave (1954) in (b and d). 

Taken from Feldman and Singh (2005). 

 

 

 Although Singh and Hoffman‟s (1999) proposal has played an influential role 

in the vision research literature, there are opposing views that other curvature 

properties such as convex areas are more important for shape parsing. For example, 

Rosin (2000) argued that the short-cut rule incorporated only limited global shape 

information as it does not cross the local symmetry axis, thus potentially producing 

very different axes from the same shape, and consequently affecting the cuts. Rosin 

(2000) also suggested that using the length of cut as a sole determinant of salience is 

another weak point for the short cut rule, as it does not incorporate all the essential 

factors involved in shape perception such as the principles of symmetry and good 

continuation.  
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 One often used method for investigating low level image features is the change 

detection paradigm. The rationale behind the method is based on the measure of 

change of differential sensitivity between two displays, which is considered to be an 

indication of differential representation. For example, it is assumed that if participants 

are frequently more sensitive to changes in one shape component of the visual display, 

but not to changes in another shape component within that display then it is this 

component that is more clearly represented in the visual system.  

 Barenholtz et al., (2003) used the change detection paradigm to investigate the 

representational differences between convex and concave curvature extrema. The 

authors used computer generated filled polygons consisting of a base shape and two 

modified versions of that shape (see Figure 12).  

 

 

Figure 12 Example of the polygon pairs used in the experiment consisting of (a) Base 

shape and the modified versions of the Base shape either with added convexity or 
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concavity. (b) Example of the changes presented in the experiment with arrow 

directions showing the sequence of order. From Barenholtz et al., (2003). 

 

 The modified version of the shape was either with an additional concavity or 

convexity. The participants were presented with a two-way forced choice task: Change 

or No-Change. The Change trials included two independent variables, Change type 

(concave/convex) and Change direction (Introduce/Remove). In the No-Change trials, 

the base shape was displayed two times (see Figure 13). The results of this experiment 

showed a strong advantage for detecting concavities, regardless of change of direction 

(Introduced, or Removed) and the advantage was stable across all levels of magnitude 

change. The authors proposed that the apparent concave/convex asymmetry may 

account for „local‟ vs. „global‟ processing.  

 

Figure 13 Example of the experimental sequence: (A) fixation point; (B) first shape 

stimulus; (C) mask; (D) second shape stimulus; (E) mask. From Barenholtz  et al., 

(2003). 

 
 The localist hypothesis is that concave contours are intrinsically more salient 

and carry more information (Feldman & Singh, 2005); regardless of eventual role they 

may play in shape segmentation. The alternative explanation from the globalist 
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account (Palmer, 1977) is that concave regions are more detectable because they play 

a role in the global shape decomposition, in such a way that adding or removing a 

concavity could change the number of parts perceived in a given object. Conversely, 

adding or removing a convexity influences the shape of the existing part but does not 

change the number of parts perceived. It follows that observers may only be sensitive 

to global changes and not to changes in the local contour (Bertamini, 2001). 

 A rather different account (Barenholtz et. al., 2003) is that observers may 

instantly recognise the number of parts preattentively (van Oeffelen & Vos, 1982), 

hence they are more sensitive to changes in the number of parts. Barenholtz et al., 

(2003) concluded that despite the similar geometry, concave and convex contour 

regions have different perceptual representations, which in the current context indicate 

that concavities play an important role in visual shape representation. Furthermore, the 

authors pointed out that the methodology used could be a potentially powerful tool for 

separating representational differences and for testing a number of aspects in visual 

shape representation. 

 A different study by Bertamini and Farrant (2005) argued that the concave 

sensitivity found in a number of shape detection and visual search studies (e.g., 

Barenholtz, Chohen, Feldamn & Singh, 2003) is context dependent and thus based on 

how positive and negative curvature follow each other along the image contour with 

either type of curvature potentially showing greater sensitivity. 

 Another approach by Harris and Stephens (1988) suggested that information 

from local features, such as corners and edges, is necessary for connecting feature 

points which are essential for obtaining high-level descriptions such as surfaces or 

objects. However, their „corner detector‟ was very sensitive to image scale changes so 

it did not provide a good framework for matching different size images. 
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             Finally, a computational theory proffered by Lowe, (1999, 2004) investigated 

local image features in object recognition. Lowe proposed an algorithm for detection 

and extraction of local image features called the Scale Invariant Feature Transform 

(SIFT). This approach, which has been shown to be extremely useful in object 

recognition, transforms image data into scale invariant coordinates relative to local 

features and can be used to perform consistent matching between different views of an 

object or a scene. The SIFT approach also suggests that local image features are highly 

distinctive, relatively easy to extract, and help object identification with a low 

probability of mismatch.  

1.4.3. Hybrid models 

 
 Recent hybrid models (Foster & Gilson, 2002; Hummel & Stankiewitz, 1996) 

provide evidence that image based and structural description theories can be 

accommodated within the same framework (Foster & Gilson, 2002; Hummel & 

Stankiewitz, 1996). One hypothesis (Hummel & Stankiewitz, 1996, 1998; Thoma, 

Davidoff & Hummel, 2007; Thoma, Hummel & Davidoff, 2004) proposes that object 

recognition is mediated by two types of representations, holistic (image-based) and 

analytic (structural descriptions). This model predicts that attended images are 

processed both analytically and holistically, whereas unattended images can only be 

processed holistically. The hybrid model proposed that attention plays an imperative 

role in the dynamic binding of information about object shape and spatial 

configuration during access to analytic structural descriptions (Hummel, 2001; 

Hummel & Biederman, 1992; Hummel & Stankiewicz, 1996, 1998). Conversely, 

during image-based holistic recognition binding is not important since representations 

do not separately encode feature dimensions such as shape and configuration. 
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 One study supporting this proposal (Thoma et al., 2004) investigated the extent 

to which attended and unattended primes facilitate the subsequent identification of 

whole objects. In their study the participants were presented with prime displays 

consisting of either whole object or two split object parts. Participants named one of 

the two primes indicated via a cueing box. A second whole object or probe was 

presented at the end of the trial. This probe item could be related to the attended or 

unattended prime or unrelated to either. The results showed faster responses in probe 

identification for related trials in both attended conditions. In contrast, while 

unattended whole images elicited small but significant positive priming effects, 

unattended split part images showed no priming at all. It was suggested that the 

absence of priming for the unattended split part primes shows that attention is required 

to support analytic processing (alternatively, for conflicting findings see Conlan, 

Phillips & Leek, 2009).  

  Palermo and Rhodes (2002) proposed the opposing view that attention plays 

an important role in the generation of holistic representations in face discrimination. 

The authors demonstrated that participants performed better when recognising an 

isolated feature (e.g. nose, mouth) of a target face when that feature was presented in 

the context of a complete face rather than presented in isolation. This effect however, 

was only evident when the target face was attended. Hummel (2002) rationalised this 

finding as evidence that when image features are not bound to a specific context, such 

as location or relation, they have less structural information than holistic 

representations that have embedded implicit structural information. Hummel (2002) 

interpreted these findings as evidence that attentional demand is greater for analytic 

representations than holistic representations and holistic representations require greater 

attention than free floating features.  
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 Another study supporting a hybrid form of representation (Foster & Gilson, 

2002) proposed that visual object recognition benefits from two independent processes 

deriving both structural and image based information in an additive manner. In their 

study, participants were required to discriminate novel 3D objects (incorporating 

structural and image based information) in a simultaneous matching task. The objects 

differed from each other on the number of parts, part curvature, part length, and angle 

of join between parts. The authors suggested that the first property (number of parts) 

of the object provide information about object structure, whereas the rest of the parts‟ 

properties provide image based information which will change considerably across 

views. The results showed that detecting differences in objects parts was easier than 

detecting differences in their metric properties. Interestingly, these two types of 

discriminations showed the same view point dependence decline when the viewpoint 

orientation increased to 45°, and no interaction between the manipulation of structure 

and orientation. The authors interpreted these findings as an evidence for an additive 

relationship between parts based and image based processes in object recognition 

(Hayward, 2003). 

 Eye movements play a vital role in the human visual system allowing us to 

acquire visual sensory information. As such, the considerable interest from a 

substantial body of multidisciplinary research is not surprising. Due to the anatomical 

structure of the eyes the highest acuity of visual information acquired from the 

environment is restricted to a small region corresponding to the fovea, hence fixational 

eye movements are assumed to play an important role in extracting and the consequent 

processing of the perceptual input (e.g., Yarbus, 1967; Rayner, 2009; Henderson & 

Hollingworth, 1999, 2003).  
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 The historical background of eye movement studies goes back to the 17
th

 

century when a detailed object analysis was reported by Porterfield (1737, 1738). 

Moreover, eye sampling rate is easily measurable and can potentially provide us with 

detailed information during object and scene representation and recognition. A large 

body of research provides evidence that measurement and analyses of eye movements 

gives us an opportunity to study the mechanisms of visual information processing in a 

variety of domains such as reading (e.g., Rayner, 1996), scene perception (e.g., 

Yarbus, 1967; Rayner, 2009; Henderson & Hollingworth, 1999, 2003), object shape 

representation (e.g., Renninger et al., 2005, 2007; Leek et al., 2012), movement (e.g., 

Li & Lisberger, 2011), and attention (e.g., Gilford, 1936; Hoffman, 1998).  Several 

studies (Melcher & Kowler, 1999; Vishnwanath & Kowler, 2004; Wexler & Quarti, 

2008) showed that eye movement patterns are influenced by cues of 3D structure, thus 

providing appealing background for employing eye fixation patterns to elucidate the 

representation of 3D shape. 
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Chapter 2 

2.1. History and methods for investigating the human visual system 

(eye gaze tracking) 

 The preceding chapter provides an overview of the main object recognition 

theories and reasons for the decision of employing eye movement pattern analyses to 

investigate the mechanisms of object shape representation. In the current chapter I 

present a brief overview of the eye tracking history and methods used to investigate 

the human visual system. 

 Eye movements have been investigated from 1737 (Porterfield) in a variety of 

domains including reading, scene and face perception, object localisation and visual 

search (Land, Mennie & Rusted, 1999; Liversedge & Findlay, 2000; Henderson, 

Brockmole, Castelhano & Mack, 2007; Rayner, 1998; Renninger et al., 2007; 

Underwood, Foulsham, van Loon, Humphreys & Bloyce, 2006). In general, eye 

tracking methodologies have improved and changed considerably over the last 

centuries; from using a mirror and a telescope (e.g., Javal, 1879), through to more 

intrusive methods such as fitting a plaster cap over the cornea of the cocained eye and 

then connecting it mechanically to a kymograph in order to record the lateral and 

vertical movements of the eye (Delabarre, 1898). Later on, Dodge and Cline (1901) 

used more unobtrusive methods of light reflections from the eye, recording eye 

movements in the horizontal direction only. The first method, however, which 

provides the opportunity to process real time gaze data was designed by Jung (1939) 

and was called electrooculography (EOG). Jung applied electrodes on the skin close to 

the periphery of the eye which allowed him to measure the vertical and horizontal eye 

movements simultaneously.    
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 In the past 70 years eye-tracking technology improved considerably,  

increasing accuracy and precision; moreover,  psychological theories began linking the 

eye tracking data to specific cognitive processes (e.g., Monty & Senders, 1976; 

Senders, Fisher & Monty 1978), and changed the general attitude of looking at eye 

movements predominantly from a sensorimotor and physiology interest.  

 Stratton (1906) was first to highlight the importance of saccades during figure 

observation and he demonstrated that patterns of eye movements did not follow the 

shape of the observed figures. He interpreted this as evidence that the eye is searching 

for the best view of important features that need to be obtained. The lack of 

relationship between eye movement patterns, object shape and symmetry intrigued 

researchers for a long time. Thus, a great deal of research was devoted to studying the 

influence of image characteristics of eye movement patterns (Wade, 2009) and the 

assumed link between eye fixations and information acquisition.  

 The two commonly investigated components of voluntary eye movements are 

saccades and fixation locations.  The main function of saccades is to bring a new area 

of the visual field into the fovea in order to gather high resolution information.  

Although information processing is assumed to be suppressed during saccadic eye 

movements itself (see Cambell & Wurtz, 1979, for report of context where some 

information can be acquired during a saccade), they reveal global aspects of visual 

perception such as scan patterns and areas of fixations while examining a variety of 

stimuli.  During fixations however, the fovea (2 degrees of the centre of the visual 

field) is positioned at the part of the stimulus that needs to be seen clearly as this is the 

point where we extract maximally the visual information we need for further 

processing. The fovea region of the retina has the highest visual acuity, followed by 
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the parafoveal region (from 2 to 5 degrees) were acuity diminishes, followed by the 

peripheral region (beyond 5 degrees) were the acuity is poorer.  

 The length and duration of saccade and fixation patterns are found to differ as a 

function of the task in hand. For example, fixations during scene perception are found 

to be longer and saccade length to be larger than during reading (Rayner, 2009). Also, 

the scan path during scene analysis typically shows that not every part of the scene is 

covered, rather, a large number of the fixations tend to fall on the informative areas
2
 of 

the scene. Empirical and computational research have suggested that some of the main 

factors influencing the eye movement patterns during scene perception are saliency 

and cognitive influences (e.g. conceptual knowledge) linked to the task  in hand (e.g., 

Itti & Koch, 2000; Yarbus, 1967).  

 One interesting and robust phenomenon in eye movement research is the centre 

of gravity effect (COG), which refers to the tendency of initial eye fixations to fall at 

the centre of the target.  This phenomenon seems to be present in scene and object 

perception, as well as in reading. For example, in reading research the first fixation to 

a given word falls at the optimal viewing position and this location tend to be at one 

character from the centre of the word (O‟Regan & Levi-Schoen, 1987). Similarly, in 

object and scene perception viewers initially tend to fixate near the centre of the 

object, or the scene (Henderson, 1993). 

 A number of similarities can be found in eye movement behaviours that can be 

generalised across tasks such as reading, scene analyses, object recognition, and visual 

search. First, the difficulty of the stimulus seems to influence eye movement patterns. 

For example, in reading, eye fixations get longer and saccades shorter when the text 

becomes more difficult. Similarly, in scene analyses and visual search, fixations get 

                                                        
2 A broad description of „informative areas‟ involves two different kinds of information depending on the 

context and the task in hand. One includes local physical factors such as object curvature and discontinuities, 

and the other includes cognitive factors such as top down influences linked to the task in hand. 
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longer and saccades shorter when the observed stimulus is more complicated. The 

difficulty of the task is another variable that influences eye movement patterns (e.g. 

searching for an object in a scene vs. looking at a scene for a memory test: Rayner, 

2009). 

Predicting fixation patterns and saliency 

 
  Different theoretical and biological models have been proposed to account for 

eye fixations and information acquisition (e.g. Morrison, 1984; Henderson, 1993; 

Findlay & Walker, 1999). One influential computational model of saliency developed 

by Itti and Koch (2000, 2001; see also Itti, Koch & Niebur, 1998) was originally based 

on ideas suggested by Koch and Ullman (1985). The basic concept behind this model 

is that individual feature maps (e.g. based upon contrast, intensity and orientation) are 

combined into a salience map in a „winner-take-it-all‟ fashion to direct visual 

attention, which is subsequently suppressed (inhibition of return, IOR) to allow 

attention processes to shift to the next salient point.  

  Itti and Koch (2000) justified their model from a neurobiological perspective 

by using centre surround computations to merge different spatial scales into a single 

feature map. This reflects the knowledge that visual receptive fields are organised in a 

centre surround fashion where preattentive processing for discontinuities begins. The 

saliency model also incorporates convolution of Gabor filtering resembling visual 

system functions such as the parallel fashion of early feature extraction which is 

assumed to be modulated locally, alongside more long range connections in primary 

visual cortex (V1). When these distant connections are extended outside the receptive 

field, this facilitates the response of orientation selective cells (Gilbert, Ito, Kapadia, & 

Westheimer, 2000) and stimulates the within feature competition which has been 

applied in the saliency model algorithm. 

http://www.journalofvision.org/content/10/8/20.full#ref-23
http://www.journalofvision.org/content/10/8/20.full#ref-24
http://www.journalofvision.org/content/10/8/20.full#ref-25
http://www.journalofvision.org/content/10/8/20.full#ref-26


Chapter 2  50 

 

 The saliency model has been empirically tested numerous times using stimuli with 

different complexities and the results provide evidence that this model can predict 

fixation locations better than chance (e.g. Itti & Koch, 2000; 2011; Foulsham & 

Underwood, 2008). Nevertheless, the predictive power of this model has been 

disputed and research suggests that only a relatively small number of human fixations 

can be explained solely by saliency models (see Parkhurst, Law, & Niebur, 2002; 

Tatler & Vincent, 2009; Betz, Kietzmann, Wilming & Konig, 2010; Schutz, Braun & 

Gegenfurtner, 2011). More recently researchers have questioned the changing 

magnitude of the observed correlations between salient features and fixation pattern 

(Tatler, Baddeley, & Gilchrist, 2005; Rothkopf, Ballard, & Hayhoe, 2007) in different 

tasks and concluded that these correlations do not automatically imply causation 

(Henderson, Brockmole, Castelhano, & Mack, 2007). 

A growing body of research (Underwood, Foulsham & Humphrey, 2009; 

Matsukura, Brockmole & Henderson, 2009) has demonstrated that purely bottom up 

saliency models cannot adequately account for eye movement patterns during 

recognition tasks. Other studies investigating fixation patterns during complex 

behaviours found that observers tend to fixate predominantly on task relevant objects 

instead of visually salient objects (Land & Hayhoe, 2001; Land, Mennie, & Rusted, 

1999). In general, the saliency model seems to account reasonably for circumstances 

when there is not a specific task in hand, but performs quite poorly during visual 

search in real world scenes (Henderson, Brockmole, Castelhano & Mack, 2007). 

 

Predicting fixation patterns in 2D shape representation 

 
 Another approach to understanding fixation selection falls under the 

framework of the information theory. Renninger, Verghese, and Coughlan (2007) 

http://www.journalofvision.org/content/11/8/17.full#ref-29
http://www.journalofvision.org/content/11/8/17.full#ref-30
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examined fixation patterns during a 2D shape (see Figure 14) learning and matching 

task, and reported that observers fixated on the most informative object areas in order 

to reduce local uncertainty. In the learning phase of the study participants had to fixate 

on a cross presented either on the left or right side of the screen for 300ms, while a 

novel object shape was displayed at the periphery. Subsequently they were required to 

make an eye movement to the opposite side of the screen to the previously displayed 

shape belonging to a pair of shapes. Each shape was displayed for 1200ms and the 

participants had to memorise it. During the matching task, the learned shape was 

displayed at a new location alongside the highly similar partner shape and the 

participants had to answer (with no time constraints) which shape out of the two they 

have previously learned.  Eye movements were recorded during both tasks. 

 

Figure 14 Depiction of the task. Participants fixate on the fixation cross for 300ms 

while the object shape appears on the opposite side of the screen. When the fixation 

cross is removed, the participants memorise the shape for 1200ms. This is followed by 

a matching phase where a pair of shapes is displayed until response. Taken from 

Renninger et al., (2007). 
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 The authors‟ rationale was that the learning phase assists in building a correct 

representation of each shape in order for it to be distinguished from a very similar 

shape during the matching task. The authors‟ assumed that the information necessary 

for the task was edge orientations which derive from shape contour and constructed a 

probabilistic model of shape contour from the human visual data, demonstrating the 

steps needed for gathering the orientation information (see Figure 15).  

 

Figure 15 An illustration of the probabilistic model of shape contour information. 

(A) Prior eye movements‟ exploration there is no knowledge or information about the 

orientation at every location in the stimulus space. Thus the probability distributions 

over orientation are flat at each location, and uncertainty is prominent everywhere.  

(B) The sample fixation (+) position smaller pooling neighbourhoods near the top of 

the shape whereas larger neighbourhoods are places near the bottom. An appropriate 

pooling area (dashed circle) is used to compute the orientation distributions.  

(C) In order for updated knowledge to be produced, the measurement distribution is 

multiplied with the prior distribution at that location and the updated knowledge turns 

into prior knowledge for the next fixation. Each time the eyes move, another 

measurement is taken.  

(D) Schematic. The uncertainty (or information) at any point in space and time is 

computed from the updated knowledge and can be represented with a resolution 

dependent entropy (RDE) map. For example, during the first fixation, straight lines 

within a pooling neighbourhood result in lower entropy (blue) at a given location, 
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whereas curved or bumpy lines within a neighbourhood result in higher entropy (red). 

Taken from Renninger et al., (2007). 

 

 The model was compared to human observer data in order to investigate how 

information is used in the planning of eye movements to stimuli, and how other 

decision strategies for predicting fixation locations such as, maximising the amount of 

total information (global) and visual saliency may play a role. The findings were that 

the visual saliency model had a poor fit with the observers data. However, there was a 

good fit to the global strategy prediction. Renninger et al (2007) used global strategy 

that predicts the location of the next fixation based on updated knowledge and 

information gained from the previous fixation. The authors suggested that although 

human visual system may plan more than one fixation at any time, predicting the 

fixation sequence for more than one fixation is more computationally intense and have 

potential confounds. Their results showed that areas with local uncertainty dominated 

eye movement decisions, which the authors interpreted as evidence that observers tend 

to fixate at the most informative locations of outline contour, thus reducing local 

uncertainty in order choose where to look next. 

 Throughout the long history of studies of eye movements it is apparent that 

they are a fundamental feature in pattern analysis and provide a valuable method for 

investigating a variety of diverse factors mediating mental representations and 

cognitive processes. 
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Chapter 3 

3.1. FROA Methodology  

 In the current chapter I outline step-by-step the methodology used to analyse 

the eye movement data in this thesis. There are relatively few ways of comparing the 

spatial distributions of fixation patterns to model data. Indeed, at the beginning of this 

thesis, there was no quantitative and statistically rigorous method for exploring image 

information content using empirically defined ROIs. A key advantage of FROA is that 

it provides a way to generate empirically defined ROIs and compare their spatial 

distributions to theoretical models. The FROA method does this using thresholding to 

generate ROIs and Monte Carlo‟s for determining statistical significance. Although 

there are other methods for comparing two data sets (e.g. Mannan, Ruddock & 

Wooding, 1995; Privitera & Stark, 2000; Fujita, Privitera & Stark, 2007), these 

methods do not take into account the distribution of fixation regions of interest (ROIs). 

 FROA was originally created by Johnston and Leek (2008), and later modified 

by Leek et al., (2012). This method has been applied in a number of experimental 

studies (e.g. Johnston & Leek, 2008, Leek et al., 2012) and has proven to be a reliable 

measure of fixation pattern performance.   

 FROA method defines fixations as eye movements that remain within the same 

circular region of diameter 60 pixels (2° visual angle given a viewing distance of 60 

cm, a screen resolution of 1280 x 1024 pixels and a horizontal screen size of 34 cm) 

for at least 100 ms (e.g., Manor & Gordon, 2003). In addition, for each trial the first 

fixation following stimulus onset was discarded in order to eliminate early object 

localization fixations associated with COG effects which have been shown to be 
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sensitive to global object shape (e.g., Denisova, Singh & Kowler, 2006; He & Kowler, 

1989; Melcher & Kowler, 1999). 

 The empirical derivation of the area of interest (AOIs) or AOI region maps, 

and their quantitative comparison to the predicted distributions, was achieved using a 

modified version of FROA (see Johnston & Leek, 2009, for a full description and 

Matlab implementation of the FROA method). The AOI maps for each stimulus were 

created by summing the convolution of each fixation map (summed across subjects) 

with a 2D Gaussian kernel (SD = 4 deg) (see Figure 16). Since fixation frequency 

varies across subjects and conditions, the maps were normalised using z scores. The 

AOI region maps were derived by binary thesholding the fixation frequency 

distributions using a fixed parameter across all conditions. Here, the threshold was set 

to z = 1.2 in order to reduce the chances of obscuring potentially relevant (sub-

threshold) peaks in the fixation frequency distributions. 

 

  a) Z scored Heatmap made with a Gaussian kernel of 4 degrees from the fixation 

frequencies overlaid on the object 

 

(b) Thresholded map (z = 1.2) overlaid on the object 
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  (c) Binary thresholded region map computed by FROA 

 
Figure 16 Illustrative visualisation of the primary steps used to derive the binary 

region maps underlying FROA. 

 These binary AOI region maps formed the basis for the subsequent analysis of 

the pre-test and test phase fixation data. The primary dependent measure in FROA is 

spatial (i.e., area) overlap percentage (e.g., the amount of  area overlap in the binary 

region maps for each stimulus and the predicted distribution of AOI regions for each 

theoretical model of shape information normalised by the size of the binary region 

maps for each stimulus; see Johnston & Leek, 2009). Overlap is determined by 

calculating the number of supra-threshold pixels that occur at the same spatial 

locations in the binary fixation region maps of each contrasted (observed versus 

modelled) image set. The statistical significance of the observed overlap percentage 

between data sets is then determined with reference to bootstrapped probability 

distributions derived from Monte-Carlo simulations. These are used to generate the 

expected random frequency distribution of area overlap percentage for a given 

observed, and modelled, fixation region. This technique provides a method for 

estimating the random distribution of overlap that would be expected for fixation 
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regions of the observed shape and size (area), and which is constrained to fall within 

locations bounded by the perimeter (occluding contour) of the original stimulus. It is 

important to note that this method thus controls for differences in the area of the 

respective region maps (and specific threshold parameters) in any set of contrasted 

images. Statistical analyses were conducted across objects (items) and across subjects. 

The statistical significance of the fit between the observed fixation data and each 

model prediction was calculated as follows: 

 Step 1: The „Actual Overlap Percentage’ (AOP) between the binary images of 

the observed thresholded region maps and a given model is calculated for each 

stimulus (see Figure 17). This is computed as a percentage of the total region area in 

the observed thresholded region map (i.e. 0% if the model did not overlap at all with 

the observed fixation map or 100% if the model overlaps completely with the 

observed fixation map).  
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Figure 17„Actual Overlap Percentage’ (AOP) between the binary images of the 

observed thresholded region maps and a given model. 

 
 Step 2: For each stimulus we calculate the „Chance Overlap Percentage’ 

(COP) which corresponds to the percentage overlap we would expect at the 95% C.I. 

of the random distribution of observed fixation data-model overlap derived from a 

Monte Carlo procedure. In order to compute the random Monte Carlo distribution, the 

observed fixation data-model overlap (per item and model) is recomputed over 1000 

iterations. During each iteration the thresholded region map is randomly relocated 

within the bounding contour of the stimulus, and data-model overlap recomputed. This 

allows us to compute a distribution of random region overlap for each stimulus, and a 

data-model contrast that takes into account region size and region threshold level (see 

Figure 18). 
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Figure 18 Visual description of Step 2 (calculation of the „Chance Overlap 

Percentage’ [COP] and Step 3 (computing the measure called „Model Matching 

Correspondence‟ [MMC] of FROA analyses. 

 

 Step 3: In order to then compare the degree of observed fixation data – model 

correspondence we compute a measure called „Model Matching Correspondence‟ 

(MMC) where: MMC Mx = Actual Overlap Percentage (AOP) – Chance Overlap 

Percentage (COP) (where Mx is a given model). As COP and AOP are expressed in 

percentages of the total region area per item, the distance measure is normalised for 

variation in thresholded region size across items. Higher values of MMC Mx indicate 

better correspondence between the respective model and the observed fixation data 

(see Figure 17).  

 In order to factor out fixations potentially driven solely by low level statistics I 

computed a model based on a visual saliency paradigm which was employed as a 
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baseline contrast. This baseline model was computed from the visual saliency 

algorithm (Itti et. al., 1998), by using the Matlab Salency Toolbox implementation 

(Walter & Koch, 2006) with default model parameters. The default parameters were 

chosen as this gave optimal chance to account for the data, rather than modify it. The 

model generated saliency maps for each of the stimuli, giving a list of saliency values 

for each pixel, grouped into a saliency region map using a shape estimation function. 

The number of saliency regions generated was constrained to approximate the area and 

number of thresholded regions generated for other models (e.g., Convex, Concave, 

External contour). The saliency maps were thresholded and binarized using FROA (for 

detailed illustration see section 4.1.2), and represent the distributions of the fixation 

regions expected if eye movements were solely detetermined by low level image 

statistics such as intensity contrast, orientation, and colour. 

 Step 4: These saliency maps were used to compute the baseline measure 

MMCVS where VS = visual saliency) for each item as follows: MMCVS = AOPVS - 

COPVS. COPVS is estimated using the same Monte Carlo procedure described above. 

This shows the extent to which observed overlap is greater or less than the 95% CI of 

the random distribution of the saliency algorithm. 

 

 Step 5: The final step was subtracting out the visual saliency baseline for each 

model as follows: MMCMx - MMCVS. This shows the difference in overlap between 

the fixation data and a given model relative to the visual saliency baseline. A positive 

value here indicates a higher fixation data–model correspondence than that accounted 

for by visual saliency. In contrast, a negative value would indicate a lower fixation 

data–model correspondence than that accounted for by visual saliency. 

 The resulting MMC statistics were then subjected to analyses of variance 

(ANOVA) across models. In addition we also examined the generality and robustness 
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of the observed patterns across subjects. The subject analysis contrasted the mean 

normalised fixation frequency (fm) for thresholded and sub-thresholded object regions 

across subjects: here, thresholded regions corresponded to the AOIs defined by FROA. 

Sub-thresholded regions were defined by subtracting the thresholded AOIs from the 

remaining area of each stimulus image (within the bounding contour). We refer to 

these regions as sub-threshold AOIs. The fixation frequency distributions per subject 

were normalised for mean region area (across items) and converted to units of visual 

angle (30 pixels is equal to 1 degree of visual angle  given a viewing distance of 60cm, 

a screen resolution of 1280 x 1024 pixels and screen size of 34 cm). Thus, this 

measure takes account of differences in pixel area between thresholded and non-

thresholded regions. Subject analyses of mean fixation durations for thresholded 

versus sub-threshold AOIs using the same normalised measures are also reported.  

 Statistical significance is assessed relative to the two-tailed a priori alpha level 

(p = .05), unless otherwise stated. Exact probability values are reported (p = x) except 

where p < .0001.  
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Chapter 4 

4.1. Experiment 1  

 In the preceding Chapter 3, I have outlined and justified the fundamental 

method used to analyse the eye movement data in this thesis. In the present Chapter I 

will clarify the rationale behind Experiment 1, report the results and discuss the 

findings. 

  As outlined in Chapter 2, eye movement patterns have been investigated in a 

variety of domains such as, reading, scene and face perception, object localisation and 

visual search (Land, Mennie & Rusted, 1999; Liversedge & Findlay, 2000; 

Henderson, Brockmole, Castelhano & Mack, 2007; Mannan, Ruddock & Wooding, 

1997; Rayner, 1998; Renninger, Verghese & Coughlan, 2007; Underwood, Foulsham, 

van Loon, Humphreys & Bloyce, 2006). Surprisingly, to my knowledge, there have 

been no detailed analyses of eye movement patterns beyond two-dimensional (2D) 

pattern recognition (e.g., Renninger et al., 2007; Renninger, Coughlan & Verghese, 

2005), that investigate three-dimensional (3D) visual object recognition. Although 

everyday object recognition can be accomplished quickly, and often within a single 

fixation for a distal stimulus, previous studies, using 2D stimuli, have shown that 

fixation patterns can be highly informative about shape processing during perception 

(e.g., Melcher & Kowler, 1999; Renninger et al., 2005; 2007; Vergilino-Perez & 

Findlay, 2004). For example, Melcher and Kowler (1999) have shown that the initial 

landing position during saccadic localisation is driven by a representation of target 

shape that determines Center-of-Gravity (COG) landing sites. Recent evidence also 

suggests that the perception of information about object presence and identity in a 

scene may be restricted to a relatively small region around the current fixation point 
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(Henderson, Williams, Castelhano & Falk, 2003), although the nature of the shape 

information processed during fixations, and the role of this information in object 

recognition, remains unclear.  

 In this context, a variety of different object recognition theories have been 

proposed which make different claims about how shape is represented. For example, 

some accounts suggest that shape classification is based on class-specific appearance 

or image-based feature hierarchies computed across multiple spatial scales (e.g., 

Ullman, 2007; Ullman & Bart, 2004; Ullman, Vidal-Naquet & Sali, 2002). Other 

image-based models have hypothesised the use of 2D views, or aspects, that conjointly 

encode information about shape and the spatial locations of image features (e.g., 

Edelman & Weinshall, 1991; Riesenhuber & Poggio, 2003; Ullman & Basri, 1991). In 

contrast, structural description theories propose that shape perception depends on the 

decomposition of object shape into generic primitives (e.g., generalised cylinders, 

geons or surfaces) and that recognition is mediated by representations that 

independently encode information about these primitives and their spatial 

configuration (Biederman, 1987; Hummel & Stankiewitz, 1996; Leek, Reppa & 

Arguin, 2005; Leek, Reppa, Rodriguez & Arguin, 2009; Marr & Nishihara, 1978). All 

these approaches are not mutually exclusive. For example, recent hybrid models have 

suggested that both image-based and structural description approaches can be 

accommodated within the same framework (Foster & Gilson, 2002; Hummel & 

Stankiewitz, 1996).  

 However, regardless of whether an image-based, structural description or some 

other form of representation is proposed, there remains a debate about the specific 

kinds of shape information, and shape analysis algorithms, that underlie object 

recognition. Theoretically, there are several different kinds of information from low-
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level image contrasts (e.g., simple edges derived from luminance boundaries) to 

intermediate or higher-level features derived from combinations of lower-level image 

properties (e.g., vertices, curvature discontinuities, and volumetric parts) that could be 

used during shape perception. Moreover, the availability of specific kinds of shape 

information is dependent on the spatial scale of perceptual analysis. For example, 

some kinds of image features that may be useful in recognition are likely to be 

detected only at a relatively coarse spatial scale. These include edge co-linearity 

(parallelism), elongation, symmetry, aspect ratio and global outline (e.g., Biederman, 

1987; Hayward, 1998; Hayward, Tarr & Corderoy, 1999). Determining elongation 

requires access to a relatively complete perceptual representation of object shape but it 

can be computed from relatively low spatial frequency information. Conversely, other 

potentially useful shape features may (and in some cases, must) be computed locally at 

a relatively finer spatial scale. These include the presence of edge boundaries, corners, 

vertices, surface depth and curvature. Other object properties including, for example, 

colour and texture, can also be computed locally. In some situations, relatively coarse 

global image features may be sufficient for shape classification in specific contexts – 

such as distinguishing between a banana (curved axis) and a cucumber (straight axis) 

on a kitchen table. However, real-world scenes are often cluttered, containing objects 

that partially occlude each other, making it difficult to reliably recover global shape 

descriptions all of the time. This is one reason why many current approaches to pattern 

classification in computer vision use algorithms based on the detection and matching 

(or indexing) of local image features, appearance-based feature hierarchies or interest 

point operators (e.g., Lowe, 2004; Mikolajczyk & Schmid, 2005; Ullman, 2007; 

Ullman et al., 2002).  
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 The aim of Experiment 1 was use fixation patterns as an index of information 

processing during shape perception – where the assumption is that observers fixate 

locations of high information content (e.g., Renninger et al., 2005). In particular, our 

goal was to examine whether fixation patterns can be used to elucidate local shape 

analysis processes beyond those driven by low-level image statistics such as, simple 

contrasts in luminance, orientation and colour, in order to provide insights into the 

kinds of higher-level shape information that support shape perception. Some previous 

evidence using other tasks suggests that eye movement patterns are sensitive to 3D 

shape. For example, in one study, initial localisation saccades were compared when 

viewing 3D targets rendered with lighting and shadows or simple flat unicolor 

silhouettes (Vishwanath & Kowler, 2004). The results showed that saccades are 

sensitive to the 3D structure of an object: although the 2D projection of the target to 

the retina in both conditions was the same, participants showed a bias towards the 2D 

COG when viewing silhouettes, and the 3D COG when perceiving the target as a 

volume. In another study, Wexler and Ouarti (2008) have shown that saccadic eye 

movements during the spontaneous exploration of visual images follow surface depth 

gradients. A key finding was that surface orientation alone had a large effect on eye 

movements independent of the task when looking at stimuli in 3D.   

  In the present, study eye movement patterns were recorded whilst observers 

either actively memorised 3D novel objects or passively viewed them in a pre-test 

phase, and then performed a recognition memory task. An explicit memory task was 

employed to investigate visual object encoding and representation for a number of 

reasons: First, the task requires that a perceptual representation of shape is matched to 

long term memory allowing us to investigate local image features used during 

computations of shape representations. Second, it is widely used in the literature to 
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examine object recognition (e.g. Tarr & Bulthoff, 1995; 1998). Third, the Active vs. 

Passive manipulation allowed us to compare explicit vs. implicit shape encoding. 

Fourth, it was important to use a task in which stimulus exposure duration was 

relatively long in order to acquire sufficient eye movement data for analyses. 

  Following pre-test and test phase, the observed fixation patterns were 

compared to the predicted distributions derived from different models of shape 

information content. My interest was to examine whether fixation patterns can be 

driven by higher-level shape features, beyond low-level image statistics alone, and so 

I used visual saliency as a baseline contrast (Itti, Koch & Niebur, 1998; Koch & 

Ullman, 1985; Walther & Koch, 2006). The visual saliency model generates saliency 

maps based on weighted contrasts in luminance, orientation and colour. This model 

has been widely applied to eye movement studies of scene perception although its 

efficiency in predicting fixation patterns remains the subject of on-going debate (e.g., 

Baddeley & Tatler, 2006; Cristino & Baddeley, 2009; Henderson, Brockmole, 

Castelhano & Mack, 2007). The main question in this study was whether specific 

models of shape analysis could account for fixation patterns beyond that explicable by 

visual saliency.  

I have evaluated three different models. Model 1: was based on external global 

shape features defined by bounding contour and was based on the hypothesis from 

recent work showing that outline shape influences object recognition (e.g., Hayward, 

1998; Hayward Tarr, & Corderoy, 1999; Lloyd-Jones & Luckhurst, 2002). Model 2 

and Model 3 were derived from the large body of work highlighting the importance of 

curvature in shape perception (e.g., Attneave, 1954; Barenholtz, Cohen, Feldman & 

Singh, 2003; Bertamini, 2008; Biederman, 1987; Cate & Behrmann, 2010; Cohen, 

Barenholtz, Singh & Feldman, 2005; Cohen & Singh, 2007; De Winter & Wagemans, 
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2006; Feldman & Singh, 2005; Hoffman & Richards, 1984; Hoffman & Singh, 1997; 

Lim & Leek, in press). This work has shown robust perceptual sensitivity to curvature 

extrema, where negative minima define concave image regions (relative to the figure), 

and positive maxima define convexities – a phenomenon that has also recently been 

demonstrated in infants as young as five months old (Bhatt, Hayden, Reed, Bertin & 

Joseph, 2006). Previous studies have examined curvature in the context of contour-

defined 2D images such as polygons and line drawings (Cohen & Singh, 2007; Cohen, 

Barenholtz, Singh & Feldman, 2005; De Winter & Wagemans, 2006) in which 

curvature minima and maxima are defined along the occluding contour boundary. In 

comparison, there is relatively little data examining the role of curvature 

discontinuities defined by changes in the surface (rather than contour) curvature 

polarity of 3D objects. I examined two models of internal surface curvature defined by 

local internal convex curvature maxima (Model 2) and local internal concave minima 

(Model 3).  

4.1.1. Method 

Participants 

 60 students from Bangor University (36 female, mean age 20.83 years, SD = 

4.33, 53 right handed) participated in the study for course credit. All participants had 

normal or corrected to normal visual acuity. Informed consent was obtained from each 

participant prior testing in line with local ethics committee and BPS guidelines. 

Stimuli  

 There were 12 novel objects (see Figure 19) each consisting of a unique spatial 

configuration of four volumetric parts. The parts were uniquely defined by variation 

among non-accidental properties (NAPs) comprising: Edges (Straight vs. Curved), 
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symmetry of the cross section, tapering (co-linearity) and aspect ratio (Biederman, 

1987). 

 

 

Figure 19 The 12 novel objects used in the current study.   

 

 The object models were produced using Strata 3D CX software (Strata, USA) 

and rendered in Matlab using a single light source (top left) with anti-aliasing and 

scaled to fit within an 800 x 800 pixel frame (normalised in size across objects). All 

stimuli were uniformly coloured in mustard yellow: R = 227, G = 190, B = 43. Stimuli 

subtended 18 degrees of visual angle horizontally with participants seated 60 cm from 

the display. This scale was chosen to induce saccadic exploration over the stimuli. 

Each stimulus was rendered depicting the object from six different viewpoints at 

successive 60 degree rotations in depth around a vertical axis perpendicular to the line 

of sight. The zero degree viewpoint was a „canonical‟ three-quarter view (see Figure 

20). The 0, 120 and 240 degree versions served as familiar (pre-test) viewpoints, and 

the 60, 180 and 300 degree versions as novel viewpoints. 
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Figure 20 An illustration of the three trained and three novel viewpoints used in the 

experiment. 

 
 Apparatus 

 Eye movement data were recorded on a Tobii 1750 (Tobii Technology, AB, 

Sweden) binocular corneal reflection (CR)-based remote eye tracking system (< 0.5 

degrees accuracy, 0.25 degrees spatial resolution, and drift < 1 degree). Stimuli were 

presented on a TFT monitor running at a resolution of 1280 x 1024 pixels and 60 Hz 

refresh rate. Mean surround luminance was 114.7 cd/m2
 (SD = 0.25 cd/m2) measured 

with a Minolta CS-100 photometer. A chin rest was used to stabilise the participant‟s 

head at a 60 cm viewing distance and a standard USB keyboard was used for response 

collection.  

Design and Procedure  

 Each participant initially completed a nine point eye tracking calibration 

procedure. This required the participants to view a static blue dot that appeared, 

randomly, in each of 9 possible screen locations. Noisy calibration points were 

resampled algorithmically to ensure accuracy and validity.    
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  The study comprised two phases: pre-test and test phase. All subjects 

completed both phases. There were two versions of the pre-test: Active learning and 

Passive viewing, with participants assigned randomly to one of the two groups. Eye 

movement patterns have been found to differ depending on task requirements (e.g. 

Yarbus, 1967). Hence, employing two tasks (explicit vs. implicit) that potentially 

activate different representational structures, or the same structures, but in different 

ways, provides an opportunity to examine the robustness of data-model 

correspondences associated with local shape analyses during perception across 

different task requirements.   For both pre-test groups the trial structure was the same 

comprising 18 trials (6 targets x 3 viewpoints). On each trial, participants initially 

fixated a square (1° x 1° visual angle) for 2000 ms presented in the centre of the 

display vertically and either 9 degrees to the left or right of the object. In the pre-test 

phase, following a 2000 ms blank ISI a single stimulus was presented in the centre of 

the monitor for 10 seconds.  

 In the active learning group, participants were instructed to study the shape of 

each stimulus and to try to memorise it for a subsequent recognition memory task. 

They were told that they would see six objects presented in a three different 

viewpoints. In the passive viewing group, participants were instructed only to visually 

inspect each stimulus. They were not told to memorise the objects, nor forewarned 

about the subsequent recognition memory task. For each pre-test group, half of the 

participants viewed objects 1-6, and half viewed objects 7-12. The objects viewed in 

the pre-test phase were assigned as targets. Thus, all 12 stimuli were used both as 

targets and distracters across groups. In the test phase (N trials = 72), targets (N = 6, 

depending on the set shown in pre-test) and distracters (N = 6) were presented in 

random order each at six viewpoints (3 familiar and 3 novel). Across groups there 
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were 12 targets and 12 distracters (each shown from six viewpoints). The trial 

structure was the same as in the pre-test phases, except that the stimuli were presented 

until the participants made a keyboard response. Both pre-test groups were given the 

same instructions in the test phase. They were asked to determine and respond via a 

key-press (k – „yes‟/ d – „no‟) whether the presented stimulus was one of the objects 

viewed during the pre-test phase regardless of the viewpoint shown. Eye movement 

data, response time (RT) and accuracy were recorded as dependent measures. The 

experiment lasted approximately 30 minutes. 

           4.1.2. Algorithmically generated model predictions 

  Generating Model Predictions 

 The predicted distributions for each model of image information content were 

algorithmically computed from the 3D object models using Matlab. An illustration of 

the predicted thresholded fixation region maps for the tested models can be seen in 

Figure 21 below. All of these predicted distributions were generated algorithmically.  
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Figure 21 An illustration of the predicted thresholded fixation region maps for the 

three tested models (External bounding contour, Internal Convex surface 

discontinuity, and Internal Concave surface discontinuity). All of these predicted 

distributions were generated algorithmically.  

 
Model 1: External (bounding) Contour 

 Model 1 examined the extent to which fixation patterns focus on external 

global shape features defined by bounding contour. This hypothesis derives from 

previous work showing that outline shape influences object recognition (e.g., 

Hayward, 1998; Hayward et al., 1999; Lloyd-Jones & Luckhurst, 2002). The bounding 

contour was computed using an edge detector on the image silhouette of the stimuli. It 

was then re-plotted using lines of 0.66 degrees width (see Figure 21). This value was 

used as it produced models of a similar size as the binarised eye movement data.  



Chapter 4   73 

 

Model 2: Internal Convex Surface Discontinuity 

 Model 2 generated predicted fixation regions based on the locations of local 

features defined by convex surface curvature maxima. These were generated by 

applying a curvature estimation algorithm derived from Taubin (1995) to the object 

mesh models using the Peyre Matlab toolbox. From this we extracted edges along 

convex curvature maxima (see Figure 20). The convex features were re-plotted using 

lines of 0.66 degrees width. Edges on the exterior bounding contour were deleted. Due 

to the nature of the stimuli, convexities can occur both inside and on the bounding 

contour of an object but concavities are more likely to occur on the internal contour 

(see Figure 21). By keeping internal features only, we are able to compute a bias free 

measure of the preference for convex or concave image features.  

Model 3: Internal Concave Surface Discontinuity 

 Model 3 generated predicted fixation regions based on the locations of local 

features defined by concave surface curvature minima (see Figure 21). The same 

curvature estimation method was used as for Model 2, except that here I extracted 

edges along concave curvature minima. As with Model 2 edges falling on the external 

bounding contour were removed.  

Visual Saliency baseline 

 As outlined before, the visual saliency model generates saliency maps based on 

weighted contrasts in luminance, orientation and colour. Although this model has been 

widely applied to eye movement studies of scene perception its efficiency in 

predicting fixation patterns remains a subject of on-going debate (e.g., Baddeley & 

Tatler, 2006; Henderson, Brockmole, Castelhano & Mack, 2007; Cristino & Baddeley, 

2009).  
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 To create this model I used the Saliency Toolbox implementation in Matlab 

(Walther & Koch, 2006). The model was run on each of the 72 stimulus images (12 

objects x 6 viewpoints) used in the recognition task and generated a saliency map for 

each stimulus. The output of the toolbox is a list of saliency values for each pixel 

which are grouped into a saliency region map using shape estimation function (see 

Walther & Koch, 2006). The number of saliency regions generated was constrained to 

approximate the area and number of thresholded regions generated for the other 

models. The saliency maps were thresholded and binarised using FROA in the same 

way as the empirically derived fixation data from the recognition task. These maps 

represent the thresholded distributions of fixation regions we would expect if eye 

movements were determined solely by low-level image statistics. As I mentioned 

earlier, this model was used as a baseline contrast as the question of interest here was 

whether specific models of shape analyses could account for fixation patterns beyond 

the explicable by visual saliency. 

 

 4.1.3. Behavioural data analyses 

 
Analyses of behavioural data (Test Phase) 

 Analyses were conducted on the mean median test phase RTs and accuracy 

data. Only RTs for correct responses were included. Mean median RTs and accuracy 

rates are shown in Table 1 (targets only) for both the active learning and passive 

viewing pre-test groups.   
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Table 1  The mean median RTs and accuracy rates (targets) for familiar and novel 

viewpoints in the Test phase. Standard error of the mean is shown in parentheses. 

______________________________________________________________ 

                                                                              

                                                           Pre-Test Group 

 

                                  Active Learning                      Passive Viewing 

                             RTs (ms)        % Correct          RTs (ms)            % Correct 

_______________________________________________________________ 

  

Familiar Views       1323.76  (51.34)  93 (1.40)       1499.08  (63.66)   74 (0.30) 

Novel Views           1501.22 (102.78)  87 (1.80)      1695.28 (112.98)   69 (0.30) 

______________________________________________________________ 

Reaction time data  

 A 2 (Pre-test task: Active learning vs. Passive view) x 2 (Viewpoint: Familiar 

vs. Novel) x 2 (Stimulus type: Target vs. non-target) mixed factor ANOVA showed a 

significant main effect of pre-test task, F (1, 35) = 13.65, p = .001, ηp² = .281, and a 

significant interaction between viewpoint and stimulus type, F (1, 35) = 6.86, p = .013, 

ηp² = .164. There were no interactions involving the factor of pre-test group. As seen 

in Table 1, these results indicate that RTs were faster overall in the test phase for the 

Active learning than the Passive viewing pre-test group. Post-hoc planned 

comparisons showed that target RTs were faster for familiar than novel viewpoints in 

both the Active learning, t (71) = -2.48, p = .018, R
2 

= 0.28, and Passive viewing pre-

test groups, t (71) = -3.12, p = .003, R
2 

= 0.35. In contrast, there was no difference in 

mean median RTs between familiar M = 1653.56 ms; SE = 66.47 ms and novel views 

M = 1570.56 ms; SE = 60.15 ms for non-targets t (71) = -1.37, p = .17, ns. 

Accuracy rates 

 Accuracy data were analysed using non-parametric significance test for related 

groups unless otherwise stated. For the Active learning pre-test group there was no 
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significant difference between accuracy rates for targets (M = 90%; SE = 0.012) versus 

non-targets (M = 90%; SE = 0.013), z =.226, p = .821, ns. For test phase target trials, 

accuracy was significantly higher for trained views (M = 93%; SE = 0.014) than for 

novel views (M = 87%; SE = 0.018), z = -2.93, p = .003. There was no significant 

difference in accuracy for non-targets across viewpoints z = -1.47, p = .141, ns. For the 

Passive viewing pre-test group overall response accuracy was higher for non-targets 

(M = 81.5%; SE = 0.015) than targets (M = 72%; SE = 0.021), z = 3.21, p = .001.  

  In the test phase there was no difference in accuracy for targets between 

familiar (M = 74%; SE = 0.031) and novel viewpoints (M = 69%; SE = 0.029), z = -

1.77, p = 0.77, ns, or for non-targets: Familiar, M = 84%; SE = 0.016; novel, M = 87%; 

SE = 0.014, z = -1.75, p = 0.79, ns. Overall accuracy rates for the Active Learning 

group (M = 90%, SE = 0.01) and Passive Viewing group (M = 82%, SE = 0.01) were 

significantly different Mann Whitney: z = - 4.37, p <.001. 

4.1.4. Analyses of eye movement data 

Pre-Test Phase: Active Learning Group 

 A subject analysis was first performed to test the generality and reliability of 

the thresholded fixation region distributions across participants. This was done by 

contrasting the frequency of fixations between thresholded (fixated) and sub-threshold 

(insufficient number of fixations) AOIs (see Methods). Separate subject analyses were 

performed on the pre-test (targets) and test phase (targets and non-targets) data. Table 

2 shows the mean normalised frequencies for the thresholded and sub-thresholded 

AOIs across participants. These data show that the mean normalised fixation 

frequency for thresholded AOIs is higher than for sub-threshold AOIs in both the 

active learning and test phases for targets, and in the test phase, for targets and non-

targets 
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Table 2. The mean normalized fixation frequencies (mean fixation per degree of visual 

angle) for thresholded and sub-threshold AOIs for the Active Learning group in both 

the pre-test and test phases. Standard error of the mean is shown in parentheses. 

 

                                                Pre-test phase                              Test phase  

  

                                                Targets                              Targets      Non-targets 

                                                               

     

Thresholded AOIs                  0.52      (0.03)               0.38 (0.04)        0.39  (0.03)         

Sub-threshold AOIs               0.001  (0.0001)              0.03 (0.002)      0.03  (0.003) 

 

 For the active learning phase, there was a significant difference between the 

mean normalized fixation frequencies across participants for the thresholded vs. sub-

threshold AOIs, t (29) = 16.95, p < .001, R
2 

= 0.95. For the test phase, a 2 (AOI: 

Thresholded vs. Sub-threshold) x 2 (Stimulus: Target vs. non-target) repeated 

measures ANOVA showed a significant main effect of AOI, F (1, 29) = 109.22, p < 

.001, ηp² = .790, but no other main effects or interactions. These analyses show that the 

fixation regions identified using FROA were robust across subjects for the active 

learning group. 

 

Analyses of the local shape feature analysis patterns  

(Active learning task: Pre-test Phase) 

 The remaining analyses of the fixation data for the active learning group were 

computed across items. For the pre-test phase, the distributions of fixation regions to 

targets presented at trained viewpoints (N=36) were initially analysed across 3 epochs 

allowing us to compare the spatial distributions of fixations occurring at different time 

periods following stimulus onset. To do this, fixations were divided subject-by-subject 
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and trial-by-trial into bins containing the first third, middle third and final third (e.g., 

for a particular subject making 9 fixations on a given item, fixations 1-3 would be 

allocated to the first bin, 4-6 to the second bin and 7-9 to the third bin). The respective 

bins were then pooled across subjects for each stimulus. A 3 (Epoch) x 4 (Models 1-3, 

plus the Baseline saliency model) repeated measures ANOVA on the MMC distance 

measure across targets showed a significant main effect of Model, F (3, 105) = 13.33, 

p < .0001, ηp² = .276, but no main effect of Epoch F = (6, 210) = .737, p = .621, and 

no significant interaction. In the absence of an interaction, the MMC distance statistics 

were collapsed across epoch.  

 A one-way ANOVA across models on the MMC measure was significant, F (3, 

140) = 10.08, p < .001.  Subsequent post-hoc analyses using the Bonferroni test 

showed that the pairwise contrasts between models were significantly different for 

Internal features Concave vs. Visual saliency, p < .0001; Internal features convex vs. 

Visual saliency, p < .0001; External features vs. Visual saliency, p = .029. There were 

no other significant differences. These analyses show that the fixation data-model 

correspondence is greater for all three models of shape analysis than the baseline 

saliency model. However, there were no differences in the degree of the data-model 

correspondence between the models of shape analysis in the pre-test phase. 

 

Passive Viewing Group: Pre-Test Phase 

 An initial analysis by subjects was undertaken contrasting the frequency of 

fixations between thresholded and sub-threshold AOIs using normalized frequency 

statistics. Table 3 shows the mean normalised frequencies for the thresholded and sub-

threshold AOIs across participants. These data show that the mean normalised fixation 

frequency for thresholded AOIs is higher than for sub-threshold AOIs in both the 
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passive viewing and test phases for targets, and for targets and non-targets in the test 

phase. 

Table 3. The mean normalized fixation frequencies (mean fixation per degree of visual 

angle) for thresholded and sub-threshold AOIs for the Passive Viewing group in both 

the pre-test and test phases. Standard error of the mean is shown in parentheses. 

 
_____________________________________________________________________ 

                                                  Pre-test phase                      Test phase   

                                                               

                                        Targets                          Targets        Non-targets 

                                                                             

 

Thresholded AOIs                         0.49 (0.03)                     0.42 (0.05)        0.43   (0.04)         

Sub-threshold AOIs                      0.014 (0.01)                   0.003 (0.02)      0.003 (0.02) 

____________________________________________________________________ 

 There was a significant difference between the mean normalised fixation 

frequencies across participants for the thresholded versus sub-threshold AOIs, t (29) = 

15.63, p < .0001, R
2 

= 0.94. For the test phase, a 2 (AOI: Thresholded vs. Sub-

threshold) x 2 (Stimulus: Target vs. non-target) repeated measures ANOVA showed a 

significant main effect of AOI, F (1, 29) = 103.89, p < .001, ηp² = .782, but no other 

main effects or interactions.  

Analyses of the local shape feature patterns (Pre-test, Passive viewing task) 

 As previously, the distributions of fixation regions to targets presented at 

trained viewpoints (N=36) were analysed across 3 epochs following stimulus onset. At 

each epoch, Fixation Region Overlap Analyses (FROA) was used to compute the 

observed overlap between the gaze data and each model prediction relative to the 

random Monte Carlo distribution. A 3 (Epoch) x 4 (Models 1-3, plus the Baseline 

saliency model) repeated measures ANOVA on the MMC distance measure across 

targets showed a significant main effect of Model, F (3, 105) = 25.66, p < .0001, ηp² = 
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.423, but no effect of Epoch F = (2, 70) = 1.47, p = .235ns., and no interaction. In the 

absence of any interaction, normalised distance was collapsed across epoch. A one-

way ANOVA on mean MMC values across models (Visual saliency, Internal features 

convex, Internal features concave, External features) was significant, F (3, 140) = 

15.72, p < .0001. Post-hoc analyses showed that the pairwise contrasts between 

models were significantly different for Internal features concave vs. Visual saliency, p 

< .0001; Internal features convex vs. Visual saliency, p < .0001; External features vs. 

Visual saliency, p = .007. In addition, unlike the Active learning group there was also 

a significant difference between Internal features concave vs. External features, p = 

.020. There were no other significant contrasts (see Figure 22). 
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  (b) 

 
Figure 22 Mean MMC Mx – MMC vs measure of data-model correspondences between 

models (relative to visual saliency) for (a) pre-test Active Learning group (b) pre-test 

Passive Viewing group. Bars show standard error of the mean (% overlap). 

        

  Pre-test phase: Active Learning and Passive Viewing Groups 

  These analyses were run on the MMC data from the pre-test phase. A 2 (Active 

Learning, Passive viewing, BS) x 3 (Model: Internal features concave, Internal features 

convex, External features, Visual saliency, WS) mixed ANOVA across target mean 

MMC for the pre-test phase data showed a significant main effect of Model, F (3, 210) 

= 22.95, p < .0001, ηp² = .247, but no effect of Group, F (1, 70) = 1.11, p = .294 ns, 

and no interaction. Given the lack of interaction I have collapsed the pre-test phase 

data across group and run post hoc analyses across model means. Post-hoc comparison 

(t-test) was significantly different for Internal concave vs. Visual saliency, p <.0001, 

R
2
= 0.63, Internal convex vs. Visual saliency, p <.0001, R

2
= 0.60, External features 

vs. Visual saliency, p =.0001, R
2
= 0.42, External features vs. Internal concave, p 

=.003, R
2
= 0.34, External features vs. Internal convex, p =.006, R

2
= 0.32, but not 

Internal Concave vs. Internal Convex, p =.232ns. 
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Test Phase: Active Learning and Passive Viewing Groups 

 These analyses were run on the MMC data from the test phase. Figure 23 

shows the mean MMCMx – MMCVs vs. contrasts across models. A 2 (Group: Active 

learning vs. Passive viewing) x 2 (Stimulus type: Target vs. Non target) x 4 (Model: 

Models 1-3, plus the Baseline saliency model) mixed design ANOVA showed a 

significant main effect of Model, F (3, 138) = 39.08, p <.001, ηp² = .459. There were 

no other significant main effects or interactions. Post-hoc analyses showed that the 

pairwise contrasts (Bonferroni) between models were significantly different for all 

model-visual saliency baseline contrasts: External features vs. Visual saliency, p < 

.0001; Internal features concave vs. Visual saliency, p < .001; Internal features convex 

vs. Visual saliency, p < .001. In addition, mean fixation data-model correspondence 

was higher for the Internal Concave vs. Internal convex contrast, p = .024; Internal 

features concave vs. External features, p = .001; and Internal features convex vs. 

External features, p = .030.  

 

Figure 23 Mean MMCMx – MMCVs measure of data-model correspondences between 

models (relative to visual saliency) for the recognition memory test phase (collapsed 

across pre-test groups). Bars show standard error of the mean (% overlap). 
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Analysis of fixation duration 

 We also conducted analyses of fixation duration, contrasting mean durations 

for fixations falling within the FROA-defined thresholded regions versus duration for 

fixations falling outside of the thresholded regions (sub-threshold AOI). Separate 

analyses were conducted for the Active Learning and Passive Viewing groups, and for 

the pre-test and test phases. 

Active Learning Group 

 For the pre-test, mean fixation durations were longer for fixations within 

thresholded AOIs (M = 295.59 ms, SE = 19.76 ms) than for those within sub-threshold 

AOIs (M = 266.58 ms, SE = 16.16 ms). This difference was significant, t (29) = 3.35, 

p = .002. R
2 
= 0.53. For the test phase target mean fixation duration was also longer for 

thresholded (M = 259.19 ms, SE = 15.88 ms) than sub-threshold AOI fixations (M = 

223.25 ms, SE = 10.77ms. The same pattern was found for non-targets: thresholded 

AOI fixations (M = 252.95 ms, SE = 14.30 ms), sub-threshold AOI fixations (M = 

226.26 ms, SE = 10.86 ms). A 2 (AOI: Threshold vs. Sub-threshold) x 2 (Stimulus: 

Target vs. non-target) repeated measures ANOVA on the test phase mean fixation 

duration data showed a significant main effect of AOI, F (1, 29) = 22.52, p < .001, ηp² 

= .437, but no other main effects or interactions.   

Passive Viewing Group 

 Analyses of the pre-test phase fixation duration data showed longer mean 

durations for the thresholded AOI fixations (M = 313.76 ms, SE = 31.67 ms) than for 

sub-threshold AOI fixations (M = 275.87 ms, SE = 23.03 ms). This difference was 

significant, t (29) = 3.17, p = .004, R
2 

= 0.51. For the test phase target mean fixation 

duration was also longer for thresholded AOI fixations (M = 266.39 ms, SE = 23.30 

ms) than for sub-threshold AOI fixations (M = 239.75 ms, SE = 16.48 ms). The same 
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pattern was found for non-targets: thresholded (M = 265.01 ms, SE = 22.97 ms), sub-

threshold fixations (M = 236.03 ms, SE = 16.54 ms). A 2 (AOI: Threshold vs. Sub-

threshold) x 2 (Stimulus: Target vs. non-target) repeated measures ANOVA on the test 

phase duration data showed a significant main effect of AOI, F (1, 29) = 10.77, p = 

.003, ηp² = .271, but no other main effects or interactions. These analyses show that for 

both the Active Learning and Passive Viewing groups mean fixation durations were 

longer for fixations falling within thresholded regions than for those outside of those 

regions in both the pre-test and test phases of the study. 

Active Viewing vs. Passive Learning 

 Finally, we also contrasted mean fixation durations for thresholded and sub-

threshold fixations across task groups on the pre-test phase data. A 2 (Task: Active vs. 

Passive) x 2 (AOI: Threshold vs. sub-threshold) mixed ANOVA showed a significant 

main effect of AOI, F (1, 58) = 20.54, p < .0001, ηp² = .262, but no other main effects 

or interactions. This suggests that mean durations were not significantly different 

between pre-test task groups. 

         Summary of the Results 

            Behavioural data 

- The overall RTs and accuracy data in the test phase showed faster and more accurate 

responses for the Active learning pre-test group than the Passive viewing pre-test 

group.  

- Both Active and Passive pre-test groups showed significantly faster RTs for targets at 

familiar than novel viewpoints and no differences in RTs for non-targets.  
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Eye movement data 

- Eye movement analyses showed a higher fixation frequency for thresholded AOIs than 

for sub-thresholded AOIs for active learning, passive viewing phase for targets, and in 

the test phase for targets and non-targets. 

- Analyses of local shape feature patterns for both groups (Active learning, Passive 

viewing) in the pre-test phase showed that data-model correspondences were greater 

for Internal Concave, Internal Convex, and External contour models than the Visual 

saliency model.  

- The Passive viewing pre-test group showed greater data-model correspondence for 

Internal Concave model relative to the External contour model. 

- Analyses of local shape feature patterns in the test phase for both groups showed 

greater data-model correspondences for Internal Concave, Internal Convex, and 

External contour models relative to the Visual saliency model.  

- Data-model correspondence was higher for the Internal Concave than the Internal 

Convex models.  

- Fixation duration for both Active and Passive learning groups in both pre-test and test 

phases of the study were longer for fixations falling within thresholded regions, than 

sub-tresholded regions. This pattern was evident for both targets and non-targets.  

4.1.5. General discussion 

 In this study we examined the fixation patterns during the perception and 

recognition of 3D objects. Observers either actively memorised or passively viewed 

sets of visually similar novel objects prior to performing a recognition memory test. 

The main empirical findings were as follows: First, the analyses of the RT and 

accuracy data showed that while observers performed the recognition memory task 

more accurately following the active learning than passive viewing pre-test, the 
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patterns of test phase RTs for both groups showed faster responses for targets 

presented at familiar (pre-test) viewpoints than at novel viewpoints. This finding 

suggests that the participants in the active learning and passive viewing pre-test groups 

performed the recognition memory task in a similar way, and that recognition in both 

groups was viewpoint-dependent. This finding is consistent with other reports in the 

literature that recognition is mediated by viewpoint-dependent representations of 

object shape (e.g., Bülthoff & Edelman, 1992; Edelman & Weinshall, 1991; 

Reisenhuber & Poggio, 1999; Tarr & Bülthoff, 1998). The Active learning pre-test 

group showed no differences between targets and non-target accuracy rates, whereas 

the Passive viewing pre-test group showed significantly higher accuracy for non-

targets than targets. One possible explanation of these results could be speed-accuracy 

trade off as Passive viewing pre-test group had faster RTs for targets than non-targets. 

Moreover, the results are consistent with previous theories of perceptual matching 

(Krueger, 1978; Ratcliff, 1981) proposing that accuracy and speed are influenced by 

the number of features „matches‟ or „non-matches‟ necessary to match perceptual 

representations to memory. Under the current context the participants were more 

accurate responding to non-targets which could be a result of having more feature non-

matches between study and test phase, than feature matches.  Given that the Passive 

view pre-test group were not memorising the objects during pre-test phase, the so 

called targets had less matches between study and test phase than non-targets. 

The analyses of the fixation data showed a consistent pattern of data-model 

correspondences across tasks. More specifically, during both active learning and 

passive viewing pre-test phases, and during the recognition memory task, we found 

evidence that fixation patterns are driven by regions containing higher-level shape 

information defined either by the external bounding contour or by internal regions of 
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convex or concave surface discontinuity. Moreover, despite the similarity of the 

patterns of data-model correspondences between the active learning and passive 

viewing groups, the distributions of fixations across object shape features differed 

between the study and test phases: notably, during the recognition task we found a 

preference for fixation at internal regions of surface concavity.  

 These findings are consistent with previous studies demonstrating the 

importance of curvature singularities in the visual perception of shape (e.g., Attneave, 

1954; Barenholtz et al., 2003; De Winter & Wagemans, 2006; Feldman & Singh, 

2005; Hoffman & Richards, 1984; Hoffman & Singh, 1997) – moreover this is, to our 

knowledge, the first empirical confirmation from 3D object perception and recognition 

showing a preference for fixation at these regions in both active and passive viewing 

tasks. In addition, the finding of a preference for fixation at regions of concave surface 

discontinuity during the recognition task provides evidence for a direct link between 

the encoding of information about surface concavity and object recognition. The 

current results raise two essential issues; (1) the apparent preference for fixation at 

regions of surface concavity during recognition and (2) the observation of similar 

fixation distributions, and similar perceptual strategies for the acquisition of shape 

information, across active and passive viewing tasks.  I discuss both of these issues in 

turn. 

Eye movements, surface curvature and recognition 

  In other domains, such as scene perception, there is ongoing debate about the 

relative influence of bottom-up, stimulus-driven factors and top-down, conceptually 

driven factors in determining eye movement behavior (e.g., Foulsham & Underwood, 

2007; Henderson et al., 2007; Itti et al., 1998). The data here show that fixation 

patterns during the perception and recognition of object shapes cannot be solely 
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accounted for by low-level visual saliency. Moreover, the data further showed a 

fixation preference for concave regions over convex regions during recognition. This 

concave preference did not interact with pre-test group. That is, regardless of whether 

observers actively memorized or passively viewed objects in the pre-test, they showed 

a preference for fixation at regions of internal concave minima in the recognition task. 

How can this pattern of results be accounted for? 

 One possibility is that observers specifically fixate those particular internal 

regions because they are the optimal locations for extracting global (e.g., outline) 

shape properties rather than because of their status as regions containing perceptually 

relevant shape curvature. However, such an account would not provide an obvious 

explanation for the apparent preference for fixation at regions of concave surface 

discontinuity in the recognition task but not in the pre-test phase. Additionally, it is 

more likely that the optimum location for extracting global shape attributes (e.g., 

elongation, orientation, or symmetry) would be close to the center of mass but this is 

clearly not the case as early COG fixations were removed from the data. Rather, the 

preference for fixation at regions of concavity during the recognition task is consistent 

with hypotheses that outline a special functional status for concave minima in shape 

recognition (e.g., Feldman & Singh, 2005; Hoffman & Richards, 1984; Lim & Leek, 

2012).  

 One influential hypothesis is that concave regions play an important role as 

segmentation points allowing for the computation of parts-based structural 

descriptions (e.g., Hoffman & Richards, 1984; Marr & Nishihara, 1978). In this 

context, one interesting aspect of the data stems from the concurrent observation of a 

fixation preference for concave surface minima along with viewpoint- dependent 

performance in the recognition task. The former finding is consistent with the claim 
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that negative curvature minima play a functional role in part segmentation during the 

derivation of a structural description representation (e.g., Biederman, 1987; Hoffman 

& Richards, 1984; Marr & Nishihara, 1978), while the latter finding, according to 

some interpretations of viewpoint-dependent effects, is consistent with image-based 

view interpolation models (e.g., Bulthoff & Edelman, 1992; Edelman & Weinshall, 

1991; Riesenhuber & Poggio, 1999; Tarr & Bulthoff, 1998; Ullman, 1998).  How 

might these two findings be reconciled? One possibility is that they reflect different 

stages of object processing within the context of more recent hybrid models of object 

recognition, which propose the use of both structural description and image-based 

representations (e.g., Foster & Gilson, 2002; Hummel & Stankiewicz, 1996).  

 Alternatively, within an exclusively image-based approach, one could suppose 

that the apparent preference for fixation at regions of surface curvature concavity 

reflects the encoding of local depth information in image based object representations. 

Some supporting evidence comes from the recent demonstration by Wexler and 

Ouarti (2008) showing that saccadic eye movements during the spontaneous 

exploration of visual images follow surface depth gradients. Thus, these findings 

present a challenge to image-based models that are based solely on the use of 2D 

image properties (e.g., Bulthoff & Edelman, 1992) and appear to necessitate, within 

this theoretical framework, the encoding and use of image features that specify local 

surface depth information. 

Task generality of shape analysis patterns 

 A further aspect of the results that is of theoretical interest is the consistency of 

the patterns of data–model correspondences across the active learning and passive 

viewing tasks. This is perhaps surprising given that one might expect task 

requirements to affect the perceptual analysis of shape. Here, despite the fact that one 
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group of observers were explicitly told to memorize shape for a subsequent 

recognition task, the perceptual analysis strategies of the two groups, as evidenced by 

the patterns of data–model correspondences, were similar. One implication of this 

finding is that local shape analysis strategies during perception are “hard-wired” in the 

sense of being invariant to task requirements at least across the range of tasks tested 

here. This hypothesis is intuitively appealing in that during everyday recognition 

observers cannot entirely predict when unfamiliar objects might become relevant to 

their immediate or future goals and intentions. However, it remains to be determined 

whether the observed patterns of shape analyses found here will generalize across 

other tasks, including, for example, those related to the computation of shape 

representations for reaching and grasping (e.g., Land et al., 1999). 
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Chapter 5 

5.1. Experiment 2  

 Experiment 2 builds on the previous experiment and aims to examine the 

robustness of fixational eye movement patterns across different sets of stimuli and 

methods for collecting the comparable model data. Here the generated model data 

were collected from trained observers in order to incorporate the same amount of error 

as in the recognition test task, thus allowing us to compare task acquisition and 

performance while taking into account human visual system characteristics. Similar to 

Experiment 1, observers actively memorised or passively viewed sets of novel 3D 

objects each comprising of four components or volumetric parts varying in local part 

structure and spatial configuration. Participants then performed a recognition memory 

test in which they discriminated the previously viewed targets from visually similar 

distracters at both trained and novel orientations. In both phases, we recorded the eye 

movements, response times (RTs) and accuracy measures. To examine in more detail 

the robustness of Experiment 1 findings we asked four additional questions: First, is 

any specific local image region fixated during initial viewing and subsequent 

recognition? Second, are the same image regions consistently fixated across changes 

in object viewpoint? Third, what kinds of local shape information do these regions 

contain? Fourth, are the patterns of fixations associated with local shape analyses 

robust across task demands (i.e., active learning versus passive viewing). 

 The goal of this study was not only to determine where observers fixate during 

shape perception and recognition, but also to examine what they fixate by undertaking 

detailed analyses of shape information content at fixated image regions. To do this, we 

contrasted the observed fixation patterns against the predicted distributions derived 
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from three theoretical hypotheses about local image information content. Model 1 was 

based on visual saliency which assumes a processing (or attentional) bias determined 

by local low-level image statistics at salient regions defined by contrasts in luminance 

intensity, orientation and colour (Itti, Koch & Niebur, 1998; Koch & Ullman, 1985; 

Walther & Koch, 2006). This model has been widely used in eye movement studies of 

scene perception although its efficiency in predicting fixation patterns remains the 

subject of on-going debate (e.g., Baddeley & Tatler, 2006; Henderson, Brockmole, 

Castelhano & Mack, 2007). Similarly to Experiment visual saliency was used as a 

baseline as I wanted to examine fixation patterns beyond low-level image statistics. 

Model 2 and Model 3 (explained in more detail below) derived from the large body of 

work highlighting the importance of contour curvature magnitude and the sign of 

curvature in visual perception (e.g., Attneave, 1954; Bertamini, 2008; Biederman, 

1987; Cate & Behrmann, 2010; Cohen & Singh, 2007; De Winter & Wagemans, 2006; 

Feldman & Singh, 2005; Hoffman & Richards, 1984; Hoffman & Singh, 1997).  

 In the current study the focus of interest was to examine the extent to which 

local shape analyses, as shown by fixation patterns, can be predicted by the presence 

of local curvature (convex maxima and concave minima) in 3D object recognition.  

Previous empirical work demonstrated that concave and convex curvature plays a key 

role in shape perception, but to my knowledge no one yet have examined these two 

types of curvature with eye movement analyses and/or 3D images. Hence the main 

focus of interest is to investigate concave and convex models rather than visual 

saliency.  
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5.1.1. Method 

 
Participants  

 60 students from Bangor University (51 female, mean age: 22.26 years, SD = 

6.58, 54 right handed) participated in the study for course credit. All participants had 

normal or corrected to normal visual acuity. Informed consent was obtained from each 

participant prior to testing, in line with local ethics committee and BPS guidelines. 

 

Stimuli  

 Each of the ten novel objects (see Figure 24) consisted of a unique spatial 

configuration of four volumetric parts. The parts were uniquely defined by variation 

among non-accidental properties (NAPs) comprising: Edges (Straight vs. Curved), 

symmetry of the cross section, tapering (collinearity) and aspect ratio (Biederman, 

1987). 

 

 

Figure 24 The 10 surface rendered novel object stimuli used in the Experiment. 

 

 These object models were produced using Strata 3D CX software (Strata, 

USA) and rendered using a single light source (top left) model in greyscale at 72 dpi 
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with anti-aliasing and scaled to fit within an 800 x 800 pixel frame. Ground shadow 

was removed from the images. Stimuli subtended 18 degrees of visual angle 

horizontally from a viewing distance of 60 cm. This scale was chosen to induce 

saccadic exploration over the stimuli. Versions of each model were created depicting 

the object from each of six different viewpoints at successive 60 degree rotations in 

depth around a vertical axis perpendicular to the line of sight. The zero degree 

viewpoint was a „canonical‟ three-quarter view (see Figure 25). The 0, 120 and 240 

degree versions served as training viewpoints, and the 60, 180 and 300 degree versions 

as novel test viewpoints. 

 

 

Figure 25 An illustration of the three trained and three novel viewpoints used. In the 

learning phase each stimulus was shown at each of the three trained viewpoints. In the 

test phase, targets and non-targets were each shown at all six viewpoints. 

 

Apparatus 

 A Tobii 1750 eye tracking system was used to record eye-movement data. This 

apparatus allows for high precision binocular tracking with 0.5 degrees accuracy, 0.25 

degrees spatial resolution, and drift < 1 degree. Stimuli were presented on a TFT 
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monitor running at a resolution of 1280 x 1024 pixels and 60 Hz refresh rate. A chin 

rest was used to stabilize the participant‟s head at a 60cm viewing distance and a 

standard USB keyboard was used for response collection.  

 

Design and Procedure  

 The design and the procedure were exactly the same as in Experiment 1. 

 

5.1.2. Generated model predictions  

 
 Empirically-defined AOIs generated using FROA were compared to predicted 

distributions of fixation regions. The predicted distributions were computed as 

follows: 

Model 1: Visual Saliency baseline 

 The first model tested the visual saliency hypothesis (Itti, Koch & Niebur, 

1998) using the Saliency Toolbox implementation in Matlab (Walther & Koch, 2006). 

The model was run on each of the 60 stimulus images (10 objects x 6 viewpoints) used 

in the recognition task to generate a saliency map for each stimulus. The output of the 

toolbox is a list of saliency values for each pixel which are grouped into a saliency 

region map using shape estimation function (see Walther & Koch, 2006). The number 

of saliency regions generated was constrained to approximate the area and number of 

thresholded regions generated for the other models: Mean pixel area across saliency 

maps per object was 21090 (SE = 622.70). The saliency maps were thresholded and 

binarised using FROA in the same way as the empirically derived fixation data from 

the recognition task. These maps represent the thresholded distributions of fixation 

regions we would expect if eye movements were determined solely by low-level 
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image statistics, that is, by the most visually salient image regions defined by colour, 

intensity contrast, and orientation. 

 Similarly to Experiment 1, this model served as a baseline contrast given the 

question of interest here was whether specific models of shape analyses could account 

for fixation patterns beyond the explicable by visual saliency. 

Model 2: Convex Surface Curvature Maxima 

 The second model generated predicted fixation regions based on the locations 

of local features defined by convex surface curvature maxima. In order to generate 

predicted region maps that incorporate the same error measures as the recognition task 

data (that is, variation in fixation patterns due to both within and between-subject 

variability, as well as error arising from eye tracker accuracy, drift and resolution) we 

used a trained observer technique (Johnston & Leek, 2009). Thirteen participants (11 

right handed, M = 22.54 years, SD = 8.00; range = 19-41 years) were trained to fixate 

only at convex areas of the 10 experimental stimuli, each from the same six 

viewpoints used in the recognition task. Stimulus exposure duration was 10 seconds as 

in the learning phase of the recognition task. Fixation region maps were generated 

using FROA by applying the same filtering, Gaussian smoothing and thresholding 

criteria as used for the recognition task data (see above). Mean pixel area across 

thresholded convexity maps per object was 20457.53 (SE = 447.39). 

Model 3: Concave Surface Curvature Minima 

 The third model generated predicted fixation regions based on the locations of 

local features defined by concave surface curvature minima. Thirteen participants (13 

right handed, M = 26.54 years, SD = 9.40; range = 18-40 years) were trained to fixate 

only at convex areas of the 10 experimental stimuli, each from the same six 

viewpoints used in the recognition task. Stimulus exposure duration was 10 seconds as 
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in the learning phase of the recognition task. Fixation region maps were generated 

using FROA by applying the same filtering, Gaussian smoothing and thresholding 

criteria as used for the recognition task data (see above). Mean pixel area across 

thresholded convexity maps per object was 16695.17 (SE = 526.63). 

Independence of predicted fixation patterns 

 It is important to verify that the predicted region distributions of the three 

models are sufficiently different (in order that they may be statistically distinguished 

when compared to the gaze data) (see Figure 26). In order to do this FROA was used 

to compare region overlap across models.  

 Mean pixel region overlap across items for the Visual saliency and Convexity 

models was 12.98% (SD = 9.32%) of the total pixel area for the convexity model. 

Analyses of these data using FROA showed that MMC score for the observed region 

overlap between the two models was -0.298. 

  Mean pixel region overlap across items for the Visual saliency and Concavity 

models was 7.31% (SD = 8.83%) of the total pixel area for the Concavity model. 

Analyses of these data using FROA showed that MMC score for the observed region 

overlap between the two models was -0.940. 

 Mean pixel overlap between the Convexity and Concavity models was 21.90 % 

(SD = 21.07%) of the total pixel area for the Convexity model. Analyses of these data 

using FROA showed that the MMC score for the observed region overlap between the 

two models was 6.99. 

 A one way ANOVA (target vs. between models overlap: Visual saliency vs. 

Concave, Visual saliency vs. Convex, Convex vs. Concave) on the distance measure 

showed a significant main effect of Model, F (2, 179) = 17.90, p < .0001. Post-hoc 

analyses showed that the pairwise contrasts between models were significantly 
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different for Visual saliency vs. Concave, p < .0001; Visual saliency vs. Convex, p < 

.0001, and Concave vs. Convex, p = .018.  

 

Figure 26 The mean frequency of observed overlap (expressed in MMC) between the 

generated model data. Bars show standard error of the men (% overlap). 
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5.1.3. Behavioural data analyses 
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Table 4. The mean median RTs and accuracy rates (targets) for familiar and novel 

viewpoints in the Test phase. Standard error of the mean is shown in parentheses. 

___________________________________________________________________ 

                                                                           

                                                                  Pre-Test Group 

                                           Active Learning                 Passive Viewing 

                                RTs (ms)           % Correct       RTs (ms)      % Correct 

 

  

Familiar Views             1538.29 (66.29)   83 (2.4)    1589.60 (76.83)     74 (2.7) 

Novel Views       1847.34 (128.54) 74 (3.2)    1623.34 (86.00)     67 (4.2) 

_____________________________________________________________________ 

Reaction time and Accuracy data 

 A 2 (Pre-test task: Active learning vs. Passive viewing) x 2 (Viewpoint: 

Familiar vs. Novel) x 2 (Stimulus type: Target vs. non-target) mixed factor ANOVA 

for the reaction time data showed no significant main effects or interactions. Overall 

accuracy rates for the Active Learning group (M = 78.5%, SE = 2.80) and Passive 

Viewing group (M = 70.5%, SE = 3.40) were significantly different Mann Whitney: z 

= - 4.20, p <.0001. Given the lack of significant main effects or interaction for the RT 

data, between both groups, the rest of the analyses are reported per group. 

 
Analyses of behavioural data for Active learning group 

 Overall response accuracy in the test phase was high for both targets (M = 

78%; SE = 2%) and non-targets (M = 91%; SE = 1.10%). This difference was 

statistically significant, (Wilcoxon), z = .422, p <.0001.  For test phase target trials, 

accuracy was higher for trained views (M = 83%, SE = 2.4%) than for novel views (M 

= 74%; SE = 3.2%), but not significantly different (Wilcoxon), z = -1.877, p =.060, ns.  

There was no significant difference in accuracy for non-targets across the two groups 

of viewpoints. Mean Median RTs (correct responses only) were calculated per 

condition for targets and non-targets in the test phase. A 2 (Trained view: 0˚, 120˚, 
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240˚ vs. Novel view 60˚, 180˚, 300˚) x 2 (Stimulus: Target vs. Non-target) repeated 

measures ANOVA showed a significant interaction between View and Stimulus, F (1, 

27) = 6.190, p = .019, ηp² = .186. Mean Median RTs were significantly faster for 

targets at familiar (trained) viewpoints (M = 1538.29 ms; SE = 66.29 ms) than at novel 

viewpoints (M = 1847.34 ms; SE = 128.54 ms), t (27) = -2.05, p = .050, R
2 

= 0.37.   

For non-targets there was no significant difference between mean RTs for the 0˚, 120˚ 

and 240˚ views (M = 1774.55 ms; SE = 154.20 ms) and the 60˚, 180˚ and 300˚ views 

(M = 1621.52 ms; SE = 108.44 ms); t (27) = 1.22, p = .230, ns.  

 
Analyses of behavioural data for Passive viewing group 

 Overall response accuracy in the test phase was high for both targets (M = 

70%; SE = 2.5%) and non-targets (M = 81%; SE = 2%). This difference was 

statistically significant Wilcoxon, z = 3.021, p = .003. For test phase target trials, 

accuracy was higher for familiar views (M = 74%, SE = 2.7%) than for novel views (M 

= 67%; SE = 4.2%), but not significantly different (Wilcoxon) z = -1.463, p = .144, ns. 

There was no significant difference in accuracy for non-targets across the two groups 

of viewpoints. Mean median RTs (correct responses only) were calculated per 

condition for targets and non-targets in the test phase. A 2 (Familiar view: 0˚, 120˚, 

240˚ vs. Novel view 60˚, 180˚, 300˚) x 2 (Stimulus: Target vs. Non-target) repeated 

measures ANOVA showed no significant main effects or interaction. Mean median 

RTs were faster for targets at familiar viewpoints (M = 1589.60 ms; SE = 76.83 ms) 

than at novel viewpoints (M = 1623.34 ms; SE = 86.00 ms), but not significantly 

different, t (27) = -.304, p = .763ns. For non-targets there was no significant difference 

between mean RTs for the 0˚, 120˚ and 240˚ views (M = 1650.40 ms; SE = 78.59 ms) 

and the 60˚, 180˚ and 300˚ views (M = 1570.10 ms; SE = 81.96 ms); t (9) = 1.327, p = 

.196, ns. 
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5.1.4. Fixation data analyses 

 
Active Learning group 

 

 Using FROA, distributions of fixation regions for each target and non-target 

were empirically derived from the fixation data (see Methods). A subject analysis was 

first performed to test the generality and reliability of the thresholded fixation region 

distributions across participants. This was done by contrasting the frequency of 

fixations between thresholded and sub-thresholded regions (see Methods). The 

frequency statistics for thresholded (fixated) and sub-thresholded regions were 

normalized for mean region size and express frequency in units of visual angle. 

Separate subject analyses were performed on the learning (targets) and test phase 

(targets and non-targets) data. Table 5 shows the mean normalized frequencies for the 

thresholded and sub-thresholded regions across participants. These data show that the 

mean normalized fixation frequency for thresholded regions is higher than for sub-

thresholded regions in both the learning and test phases for targets, and in the test 

phase, for targets and non-targets. 

Table 5. The mean normalized fixation frequencies (mean fixation per degree of visual 

angle) for thresholded and sub-thresholded regions derived using FROA. Standard 

error of the mean is shown in parentheses. 

 

  

Pre-test Phase 
 

Test Phase 

 Targets       Targets Non-targets 

 

Thresholded regions 
 

0.38     (0.02) 
 

   

0.31   (0.03) 
 

 0.30  (0.036) 

Sub-thresholded regions 0.0001 (0.0001) 
 

0.002 (0.002)  0.002 (0.002) 

 

 For the Active learning phase, there was a significant difference between the 

mean normalized fixation frequencies across participants for the thresholded vs. sub-
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thresholded regions, t (29) = 12.94, p < .0001, R
2 

= 0.92.  For the test phase, a 2 

(Region: Thresholded vs. sub-thresholded) x 2 (Stimulus: Target vs. non-target) 

repeated measures ANOVA showed a significant main effect of Region, F (1, 29) = 

85.45, p < .0001, ηp² = .747, but no other effects or an interaction. 

 

Passive viewing group 

Table 6. The mean normalized fixation frequencies (mean fixation per degree of visual 

angle) for thresholded and sub-thresholded regions derived using FROA. Standard 

error of the mean is shown in parentheses. 

 Pre-test Phase Test Phase 

 Targets Targets Non-targets 

Thresholded regions 0.30     (0.02) 
 

0.25   (0.03) 0.25   (0.029) 

Sub-thresholded regions 0.0001 (0.0001) 
 

0.002 (0.002) 0.002 (0.001) 

 

 For the pre-test task, there was a significant difference between the mean 

normalized fixation frequencies across participants for the thresholded vs. sub-

thresholded regions, t (29) = 12.32, p < .0001, R
2 

= 0.92 (see Table 6).  For the test 

phase, a 2 (Region: Thresholded vs. sub-thresholded) x 2 (Stimulus: Target vs. non-

target) repeated measures ANOVA showed a significant main effect of Region, F (1, 

29) = 60.05, p < .0001, ηp² = .674, but no other effects or an interaction. 

 The subject analyses show that the distribution of fixation regions identified 

using FROA is robust across participants in both pre-test and test phases of the study, 

and across targets and non-targets. All remaining analyses of the fixation frequency 

data were computed by items. 
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Analyses of the local shape feature analysis patterns for Active Learning group 

 In order to elucidate the information content at fixated image regions FROA 

was used to determine the degree of overlap in the observed spatial distributions of 

fixation regions and those predicted by each tested model of local shape analysis. 

Separate analyses are presented for the learning and test phases. Three of the stimuli 

used were excluded from the analyses, as naming errors were found which potentially 

could have confounded the analyses. 

 

Active Learning task 

 For the learning phase, the distributions of fixation regions to targets presented 

at trained viewpoints (N=29) were analysed across 3 epochs following stimulus onset 

(see Figure 27). 

 

 

Figure 27 Mean MMC Mx measure during Active Learning Task: The frequency of 

significant contrasts per epoch for concave and convex models relative to visual 

saliency. Bars show standard error of the mean (% overlap). 
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 A 3 (Epoch) x 3 (Model) repeated measures ANOVA on the MMC distance 

measure across targets showed a significant main effect of Model, F (2, 56) = 18.73, p 

< .0001, ηp² = .401, but no main effect of Epoch, F = (2, 56) = 2.07, p = .136ns, and no 

significant interaction. In the absence of an interaction, the MMC distance statistics 

were collapsed across epoch (see Figure 28). A one-way ANOVA across models on 

the MMC measure was significant, F (2, 86) = 15.44, p < .0001. Post-hoc analyses 

showed that the pairwise contrasts between models were significantly different for 

Concave vs. Visual saliency, p < .0001; Convex vs. Visual saliency, p < .0001; but not 

for Concave vs. Convex, p = .295ns. 

 

 

Figure 28 Mean MMC Mx measure of data-model correspondences for pre-test Active 

learning task collapsed across epoch for concave and convex models relative to visual 

saliency. Bars show standard error of the mean (% overlap). 
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 A 2 (Stimulus: Target, Non-target) x 3 (Model) repeated measures ANOVA on 

the distance measure showed a significant main effect of Model, F (2, 112) = 47.50, p 

< .0001, ηp² = .459, but no other significant main effect or interaction (see Figure 29). 

In the absence of an interaction, the MMC distance statistics were collapsed across 

targets and non-targets (see Figure 30). A one-way ANOVA across models on the 

MMC measure was significant, F (2, 341) = 36.13, p < .0001. Post-hoc analyses 

showed that all of the pairwise contrasts between models were significantly different,  

Concave vs. Visual saliency, p < .0001; Convex vs. Visual saliency, p < .0001; 

Concave vs. Convex, p = .044. R
2
 = 0.88. 

 

 

Figure 29 Mean MMC Mx measure of data-model correspondences for concave and 

convex models (relative to visual saliency) for the recognition memory test phase Bars 

show standard error of the mean (% overlap). 
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Figure 30 Mean MMC Mx measure of data-model correspondences for concave and 

convex models (relative to visual saliency) for the recognition memory test phase 

collapsed across targets and non-targets. Bars show standard error of the mean (% 

overlap). 

 

Analyses of the local shape feature analysis patterns for Passive viewing task 

 For the learning phase, the distributions of fixation regions to targets presented 

at trained viewpoints (N=29) were analysed across 3 epochs following stimulus onset 

(see Figure 31). 

 

Figure 31 Mean MMC Mx measure of data-model correspondences for concave and 

convex models (relative to visual saliency) in pre-test Passive viewing phase across 

Epoch. Bars show standard error of the mean (% overlap). 
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 A 3 (Epoch) x 3 (Model) repeated measures ANOVA on MMC distance 

measure across targets showed a significant main effect of Model, F (2, 56) = 18.42, p 

< .0001, ηp²  = .397, and an interaction between Epoch and Model , F (4, 112) = 3.19, 

p = .016, ηp²   = .102, but no main effect of Epoch, F = (2, 56) = .037, p = .963ns. Post-

hoc analyses, of pairwise contrasts between models (within Epoch) were all 

significantly different for Epoch 1: Visual saliency vs. Convex, p = .002; Visual 

saliency vs. Concave, p < .0001; Convex vs. Concave, p =.007. For Epoch 2 and 3 the 

pairwise contrasts between models were significantly different for Visual saliency vs. 

Convex, p <.0001, and Visual saliency vs. Concave, p < .0001, but not for Convex vs. 

Concave, p =.343ns, and, p = .158ns, respectively.  

 

Analyses of the local shape feature patterns (Passive view group vs. Generated 

models) 

  In a further analysis using FROA we contrasted passive view phase with the 

model region overlap (see Figure 32). A one way ANOVA (Target vs. Models: Visual 

saliency, Convex, Concave) on the distance measure showed a significant main effect 

of Model, F (2, 86) = 18.71, p < .0001. Post-hoc analyses showed that the pairwise 

contrasts between models were significantly different for Concave vs. Visual saliency, 

p < .0001; Convex vs. Visual saliency, p < .0001; but not for Concave vs. Convex, p = 

.123ns. 
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Figure 32 Mean MMC Mx measure of data-model correspondences for concave and 

concave (relative to visual saliency) models in pre-test Passive viewing phase 

collapsed across target and non-target. Bars show standard error of the mean (% 

overlap). 

 

 

Test phase 

Analyses of the local shape feature patterns (Test vs. Generated models) 

 A 2 (Stimulus: Target, Non-target) x 3 (Model) repeated measures ANOVA on 

the distance measure showed a significant main effect of Model, F (2, 112) = 27.54, p 

< .0001, ηp² = .330, but no other significant main effect or interaction (see Figure 33). 

 In the absence of an interaction, the MMC distance statistics were collapsed 

across targets and non-targets (see Figure 34). A one-way ANOVA across models on 

the MMC measure was significant, F (2, 341) = 20.60, p < .0001. Post-hoc analyses 

showed that pairwise contrasts between models were significantly different for, 

Concave vs. Visual saliency, p < .0001; Convex vs. Visual saliency, p < .0001; but not 

for Concave vs. Convex, p = .131ns. 

0 

5 

10 

15 

20 

25 

30 

35 

40 

Concave Convex 

M
o

d
e

l M
at

ch
in

g 
C

o
rr

e
sp

o
n

d
e

n
ce

 
(M

M
C

, %
 O

ve
rl

ap
) 

Models 

Passive view task 



Chapter 5  109 

 

 

Figure 33 Mean MMC Mx measure of data-model correspondences for concave and 

convex models (relative to visual saliency) in pre-test Passive view recognition task 

for targets and non-targets. Bars show standard error of the mean (% overlap). 

 
 

Figure 34 Mean MMC Mx measure of data-model correspondences for concave and 

convex models (relative to visual saliency) for Passive recognition task collapsed over 

targets and non-targets. Bars show standard error of the mean (% overlap). 

 

Pre-test phase: Active Learning and Passive Viewing Groups 

  These analyses were run on the MMC data from the pre-test phase. A 2 (Active 

Learning, Passive viewing, BS) x 3 (Model: Concave, Convex, Visual saliency, WS) 

mixed ANOVA across target mean MMC for the pre-test phase data showed a 

0 

5 

10 

15 

20 

25 

30 

35 

40 

Concave Convex 

M
o

d
e

l M
at

ch
in

g 
C

o
rr

e
sp

o
n

d
e

n
ce

 
(M

M
C

, %
O

ve
rl

ap
) 

Models 

Passive view recognition task 

Targets Non-targets 

0 

5 

10 

15 

20 

25 

30 

35 

40 

Concave Convex 

M
o

d
el

 M
at

ch
in

g 
C

o
rr

es
p

o
n

d
en

ce
 

(M
M

C
, %

o
ve

rl
ap

) 

Models 

Passive group recognition task data collapsed across targets 
and non targets 



Chapter 5  110 

 

significant main effect of Model, F (2, 112) = 36.42, p < .0001, ηp² = .394, but no 

effect of Group, F (1, 56) = 1.10, p = .297 ns, and no interaction. Given the lack of 

interaction I have collapsed the pre-test phase data across group and run post hoc 

analyses across model means. Post-hoc comparison (t-test) was significantly different 

for Concave vs. Visual saliency, p <.0001, R
2 

= 0.72 Convex vs. Visual saliency, p 

<.0001, R
2 
= 0.68, but not Concave vs. Convex, p =.075ns. 

 

Test phase: Active Learning and Passive Viewing Groups  

 These analyses were run on the MMC data from the test phase. A 2 (Active 

Learning, Passive viewing, BS) x 2 (Phase: Trained vs. Novel, WS) x 3 (Model: 

Concave, Convex, Visual saliency, WS) mixed ANOVA across target mean RTs for 

the test phase data. This showed a significant main effect of Model, F (2, 112) = 

36.43, p < .0001, ηp² = .394, but no effect of Task, F (1, 56) = 1.20, p = .277 ns, and 

no interaction. Given the lack of interaction I have collapsed the test phase data across 

targets and non-targets and run a one way ANOVA across target mean RTs (see 

Figure 35).  A one way ANOVA (Target vs. Model: Visual saliency, Convex, 

Concave) on the distance measure showed a significant main effect of Model, F 

(2,170) = 35.05, p <.0001. Post-hoc comparison (t-test) was significantly different 

Convex vs. Concave, p =.033, R
2
 = 0.72, Concave vs. Visual Saliency, p <.0001, 

Convex vs. Visual Saliency, p <.0001. 
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Figure 35 Mean MMC Mx measure of data-model correspondences for concave 

and convex models (relative to visual saliency) for the recognition memory 

test phase (collapsed across Active and Passive groups and across targets and 

non-targets). Bars show standard error of the mean (% overlap). 
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- Analyses of local shape feature patterns for both groups in the pre-test phase showed 

main effect of model. Post-hoc analyses for Data-model correspondences were greater 

for Concave and Convex models relative to Visual saliency.   

- Analyses of local shape feature patterns for both groups in the test phase showed that 

data-model correspondences were larger for the Concave model, followed by the 

Convex model, and the Visual saliency model.  

5.1.5. Conclusions  

 In this experiment observers memorised a sub-set of 3D novel objects, and then 

performed a recognition memory test phase in which targets were discriminated from 

visually similar distracters across trained and novel viewpoints. Similarly to 

Experiment 1, the analyses of RT and accuracy data showed that observers were more 

accurate following the active learning than the passive viewing pre-test, and in the test 

phase RTs for both groups were faster for targets at familiar (pre-test) viewpoint than 

at novel viewpoint. This finding suggests that the participants in the active learning 

and passive viewing pre-tests performed the recognition memory task in a similar way 

and that the recognition in both groups was viewpoint dependant. This finding 

supports previous research suggesting that recognition is mediated by a viewpoint-

dependent represenatations of shape (e.g., Bulthoff & Edelman, 1992; Reisenhuber & 

Poggio, 1999). The analyses of eye movement data were best accounted for by models 

of shape analysis based on local regions of curvature extrema and there was no 

evidence that fixation distributions are determined by low-level visual saliency.  

Instead, the observers showed a strong preference for fixation at regions of concave 

curvature minima relative to convex curvature maxima, which interacted in the pre-

test phase. More specifically, the observers showed no preference for fixating concave 

over convex regions during the passive viewing task, whereas in the active learning 
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task the observers predominantly fixated concave regions. Although this pattern of 

results seems to be somehow intuitive in respect to the imposed task differences, it 

provides a dissimilar pattern of results with Experiment 1 where concave regions were 

preferentially fixated during both pre-tasks, which we interpreted as evidence for 

„hard-wired‟ mechanisms of 3D object shape representation. In this context, there may 

be a number of possible interpretations of these results. For example, local convex and 

concave curvature may both be processed to some extent during passive viewing (e.g. 

no task in hand), whereas concave curvature regions are processed more during an 

active learning phase when an object shape representation is computed and stored in 

memory. The apparent difference to the Experiment 1 results could very likely be a 

product of the models we have used for data-model comparison (e.g. algorithmically 

based, vs. trained observer data incorporating the same error measures as the 

recognition task). 

 The main empirical findings were as follows: (1) In the recognition memory 

task we found  a strong viewpoint-dependent pattern of identification latencies 

consistent with other previously reported studies supporting the use of viewpoint-

dependent object representations (e.g., Bülthoff & Edelman, 1992; Edelman & 

Weinshall, 1991; Tarr & Bülthoff, 1998). (2) The fixation patterns in both pre-test and 

test phases of the study were not well accounted for by low-level visual saliency as 

implemented in the Itti, Koch and Neibur (1998) model. As a matter of fact, visual 

saliency performed no better than a random model of fixation region distribution.  (3) 

The fixation distributions were best modelled in terms of local shape analyses at 

regions of curvature extrema corresponding to concave or convex surface 

discontinuities. (4) While in the passive view phase there was no significant difference 

in the spatial distributions of data-model correspondences between the convex and 
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concave surface discontinuity models, observers in the active learning phase and 

recognition memory test phase showed a fixation bias for regions of concave surface 

discontinuity. 

 These findings support a large body of work in the psychophysics literature 

concerning the importance of surface curvature extrema in visual object recognition 

(e.g., Cohen & Singh, 2007; Cohen et al., 2005; De Winter & Wagemans, 2006; 

Feldman & Singh, 2005; Hoffman & Richards, 1984). Of particular interest here is 

that, unlike many previous studies that have reported perceptual biases for convex 

and/or concave contour curvature in 2D outline forms, we report a processing bias 

revealed through fixation patterns determined by surface curvature extrema in 3D 

forms. However, the data did reveal a statistically reliable fixation bias for concave 

surface discontinuities in the active learning phase and the test phase of the study. This 

supports the hypothesis that local regions of surface concavity play an important role 

in the indexing, encoding and /or matching of perceptual input to stored object shape 

representations.  

 Furthermore, our analyses showed that similar local image regions were fixated 

during the active learning and test phases, and that observers tend to fixate regions of 

concave surface discontinuities across changes in stimulus viewpoint – which both 

support the hypothesis that these local image regions are inherently linked to object 

recognition.
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Chapter 6 

6.1. Experiment 3 

 One fundamental question in human vision is how expertise with objects 

influences shape representation. Previous studies have shown that experience with 

objects can result in qualitative behavioural changes (e.g., Wong, Palmery & Gauthier, 

2009) as well as potential changes in cortical representations (e.g., Gauthier & Tarr, 

1997; Downing, Jiang, Shuman & Kanwisher, 2001; Wong, Palmeri, Rogers, Gore & 

Gauthier, 2009).  

 A number of studies suggest that object categorisation is a hierarchically 

organised process (e.g., Rosch, Mervis, Gray, Johnson & Boyes-Braem, 1976;  

Bulthoff, Edelman & Tarr, 1995) with links between  the superordinate level (e.g., 

Animal), with basic level (e.g., Cat), to the subordinate level (e.g., Siamese). However, 

these levels of categorisation are seen as distinct processes relying on different 

perceptual information. For example, the superordinate level of object categorisation is 

suggested to incorporate more functional and abstract information (Tversky & 

Hemenway, 1984; Tversky, 1989), whereas basic and subordinate levels rely more on 

perceptual information.  

 More specifically, basic level categorisation is suggested to rely more on 

configurable information between objects parts and their components (Biederman, 

1987; Tversky & Hemenway, 1984), and is referred to as the preferred „entry access‟ 

of object classification. For example, various behavioural studies have shown that 

naming performance is fastest at a basic level of categorisation (e.g., Rosch et al., 

1976; Jolicoeur, Gluck, & Kosslyn, 1984), although Tanaka and Taylor (1991) provide 

evidence that category expertise improves the speed of access at subordinate level, 
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equating the response time to that of basic level access. In their study, dog and bird 

experts participated in a category-verification task, where after hearing a category 

label, their subjects (dog and bird experts) first heard a category label (superordinate, 

basic, or subordinate) and were asked to specify whether the subsequently presented 

picture was one of the previously labelled category. The dog and bird experts were 

equally fast at subordinate and basic categorisation.  

 In one hypothesis; basic level of categorisation and object detection have been 

presumed to be supported by the same perceptual mechanisms as there was no 

significant difference in response time and accuracy between object detection and 

object categorisation processes (e.g., as soon as participants could detect an object, 

they already knew the category of that object) (Grill-Spector & Kanwisher, 2005). 

This suggestion was also supported by a functional magnetic resonance imaging 

(fMRI) study, which showed that the same cortical regions are activated during 

detection and identification of stimuli of a certain category (Grill-Spector, 2003).  

 However, more recent research (Mack & Palmeri, 2010) demonstrated that 

effective object detection is possible without categorising that object at basic-level, as 

well as that object detection is faster than a basic level of categorisation. In contrast to 

basic level categorisation, subordinate level categorisation is suggested to rely on finer 

distinctions in order to discriminate between two individual exemplars of one object 

class (e.g. recognising individual faces) (Bulthoff et al., 1995). Learning to classify 

visually similar objects at a subordinate level typically involves identifying small 

perceptual changes, thus making this task appropriate for exploring the role of local 

features in object shape representation. A wide range of studies (Bukach, Gauthier & 

Tarr, 2006; Gauthier & Tarr, 2002) have presented evidence that subordinate expertise 

with objects influences their perceptual representations from feature-based in novices 
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to holistic (i.e., integral, attending to all parts of an object) in experts. Moreover, 

expertise with objects seems to change processing strategies by redirecting attention 

from feature analyses to more configurable processing and computation of spatial 

relations between features.  

 Commonly, studies investigating object shape categorisation have compared 

different stimulus classes such as faces and non-face objects (e.g., Kanwisher, Chun, 

McDermott & Ledden, 1996; Kanwisher, McDermott & Chun, 1997). The rationale 

behind using these stimuli is that faces evoke automatic subordinate processing, 

whereas objects are typically processed at the basic level. However, faces and non-

face objects are qualitative different in a number of dimensions including shared part 

configuration, social importance, number of parts, number of familiar exemplars, 

along with the participants‟ expertise.  Therefore, comparing these sets of stimuli on 

any single dimension cannot verify that the sets do not differ on some other dimension 

(Gautier, Anderson, Tarr, Skudlarski & Gore, 1997). 

 Downing et al. (2001) have provided evidence that specific object categories 

activate different areas of the cortex. For example, the authors highlighted a region in 

human lateral occipitotemporal cortex that responds predominantly to images of 

human bodies and body parts, but not faces, or object parts, and this was interpreted as 

evidence that there is an expert system for processing the visual appearance of 

different object classes such as the human body. However, these differences could be 

the result of a number of confounding factors, such as shape dissimilarity, name, and 

history of experience with the object. 

 A more recent neuroimaging study (Wong, Palmeri, Rogers, Gore & Gauthier, 

2009) found category selective patterns of activation in the cortex while using shape 

controlled novel object stimuli. More specifically, the authors demonstrated that 
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learning to individuate novel objects at a subordinate level increased activity for these 

objects in the right fusiform region. In contrast, learning to categorise the same objects 

at the basic level resulted in increased activation in the medial ventral occipito 

temporal cortex (VOT) relative to lateral parts. In another behavioural study Wong, 

Palmeri and Gautier (2009) showed that expertise in both basic and subordinate level 

of novel objects resulted in a selective improvement as a function of training. The 

authors examined whether manipulating learning history for the objects, whilst 

holding the object shape constant, would result in qualitatively different behavioural 

changes. For example, the „expertise hypothesis‟ (Gauthier & Tarr, 1997) suggests that 

expertise at subordinate level of classification within a visually similar category is the 

main cause of participants relying more on configural information and developing an 

additional holistic processing strategy. Moreover, according to this theory object 

expertise that does not involve a subordinate level of classification should not produce 

holistic processing. 

 In experiment by Wong et al. (2009), all of the participants completed a 

sequential matching task in pre-test and post-test where they had to judge if two 

sequentially presented novel objects called „Ziggerins‟ were the same or different 

individuals or whether they belong to the same or different family. In addition, in post-

test the participants completed a composite task which is traditionally used to measure 

holistic processing and its dependence on configuration (For more details, see Cheung, 

Richler, Palmeri & Gauthier, 2008; Gauthier, Curran, Curby & Collins 2003) and 

triplet recognition task in order to maximize the difference between the training 

groups. The control group took part in the composite task in order to obtain a base -

line measure. The participants were randomly assigned to three groups, two of the 

groups were trained with the same set of novel objects in two different ways, and a 
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third (control) group received no training. One of the training groups learned to 

categorise the objects at the subordinate level, whereas the other training group 

learned to categorise the same set of objects at basic level. More specifically, one of 

the groups learned the individual names of 18 (out of 36) objects called „Ziggerins‟, 

while the other 18 objects were used as distracters. The other group learned to 

categorise the set of 36 „Ziggerins‟ into six families. The family and individual names 

assigned for objects were two-syllable nonsense words (e.g., xedo, kimo). The 

„Ziggerins‟ were introduced progressively from session 1 through session 3; and all 

the 36 „Ziggerins‟ were present from session 4 to session 10. The results showed a 

selective increase in holistic processing (defined by the level of sensitivity to part 

configuration and the congruency effect to an aligned configuration of parts) for the 

subordinate level training group with speeded the response times as a function of 

training.  In contrast, the basic level training group was faster than the subordinate 

training group in basic level recognition after training. The results of the above two 

studies provide evidence that learning to categorise objects not only affects perceptual 

strategies and leads to behavioural changes (Wong et al., 2009) but also results in 

qualitative differences in neural activity of the visual cortex (Wong, Palmeri, Rogers, 

Gore, & Gauthier, 2009). 

 Although a good deal of research has investigated the object shape 

representations during basic and subordinate level of categorisation, none to our 

knowledge have yet employed eye movement pattern analysis to explore the 

perceptual basis of these two types of classification. Latest research findings showed 

that analyses of eye movement patterns can elucidate shape perception in human 

vision (Leek et al., 2012). In this study two groups of participants either actively 

memorised or passively viewed sets of visually similar novel objects prior to 
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performing a recognition memory test. The results showed that the distribution of eye 

movement patterns across object shape features was different between the study and 

test phases. More specifically, both groups demonstrated a preference for fixation at 

regions of surface concavities during the test phase (recognition task). The striking 

consistency of this preference raises a further theoretical question of whether local 

shape analysis strategies during perception are „hard-wired‟ in the sense of being 

invariant to task requirements, and how robust this preference is across different levels 

of object classification, and level of training/expertise. 

 In this context, traditional theories in visual object recognition often posit 

controversial views about the organisation and structure of shape representations 

mediating object recognition such as those stemming from „structural description‟ and 

those of „image based models‟. In general, the structural description models approach 

suggest that objects are represented as an arrangement of elementary viewpoint 

invariant 3D parts, called geons (Biederman, 1987; Biederman & Cooper, 1991; 

Hummel & Biederman, 1992), which are cylinders, bricks, wedges, or  cones, with 

specified interrelations and spatial configurations which are viewpoint invariant. In 

contrast, image based models propose that object representation is supported by 

multiple 2D views and conjointly encode information about shape and the spatial 

locations of image features (Bülthoff et al., 1995; Bülthoff & Edelman, 1992; Edelman 

& Weinshall, 1991; Riesenhuber & Poggio, 2006). In this case one should expect to 

observe different shape analysis strategies in eye movement patterns depending on the 

level of classification. More specifically, we would expect a concave preference for 

part based classification at the basic level but not at the subordinate level. This 

suggestion is based on the premise that the structural description mediating the basic 
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level of classification involves part segmentation which occurs at point with concave 

local discontinuities.  

 However, both approaches appear to have difficulties with explaining the 

mechanisms of object classification. For example, image based models suggest that 

object representations are definitive to particular exemplars (given the assumption that 

objects are represented in a viewpoint-specific manner) not to object classes, thus 

these models do not provide information about recognising novel views of familiar 

object categories. Conversely, structural description models (e.g., Biederman, 1987) 

present an explanation about typical object recognition tasks regarding general classes 

of objects (e.g., basic level), but do not suggest how we process objects at a 

subordinate level. 

 Nevertheless, it should be noted that the two approaches (structural description 

and image based) are not mutually exclusive and both of them explain elements of 

human visual recognition; structural description providing information about 

categorical (basic) level access, and image based for within class level (subordinate) 

access. Moreover, as previously noted, some hybrid models propose that it is 

potentially achievable for both image based and structural description approaches to 

be accommodated within the same framework (e.g., Foster & Gilson, 2002; Hummel 

& Stankiewitz, 1996).  

 However, Murray (1998) demonstrated that basic level recognition is not 

exclusively mediated by structural description models and that viewpoint dependent 

mechanisms are evident during basic level discrimination involving visually dissimilar 

objects. Moreover, the author also shown that viewpoint invariant mechanisms are 

present during basic level of discrimination amongst visually similar objects. More 

specifically, the author proposed that whether an image based or structural description 
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based approach is employed, depends on the task in hand, the level of familiarity, and 

the similarity amongst the stimuli.  

 In the current study we employed the general design of the Wong et al., (2009) 

paradigm and in addition recorded eye movement patterns in order to  investigate 

whether visual object shape representation changes with experience and if so, how. 

For example, when participants learn to attach semantic/conceptual information (i.e. 

family names vs. individual names) to novel objects, this should improve their 

subsequent recognition in the task they have been trained to do. However, but would 

this put different demands on the visual system and result in a change of the eye 

movement patterns as a function of training?  

 Nevertheless, regardless of whether holistic or analytic object shape 

representations are activated there is still a remaining question as to whether the visual 

system uses the same shape information (e.g., local image features) during object 

shape representation and if this same information is used when categorizing objects in 

to either the basic and/or subordinate level. 

6.1.1. Method 

 
Participants 

 Participants were 36 undergraduate and postgraduate students from Bangor 

University, participating in exchange for course and printer credits. Twelve of the 

participants were assigned to the Subordinate training group (8 females age M = 20.08, 

SD = 2.5), twelve to the Basic group (9 Females age M = 19.75, SD = 1.05) and twelve 

to a No-training control group (9 females, age M =20.33, SD = 3.23). All the 

participants reported normal or corrected to normal vision and seven were left handed.  

 

Stimuli  
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 Thirty-six novel objects called Ziggerins were kindly supplied by Alan Wong 

of The Chinese University of Hong Kong (see Figure 36). There were six different 

classes of Ziggerins, each defined by a distinctive part structure. Each class consisted 

of 6 Ziggerins, each defined by a part variation of size, aspect ratio and cross-sectional 

shape. The same style variations were applied to each of the six classes. This 

combination was suggested to be analogous to 6 different letters shown in 6 different 

fonts (Wong et al., 2009). The models were rendered in yellow at 72 dpi and scaled to 

fit within an 800 x 800 pixel frame. Stimuli subtended 18 degrees of visual angle 

horizontally from the viewing distance of 60 cm. This scale was specifically chosen to 

instigate saccadic movements over the stimuli. 

Apparatus 

 Eye movement data were recorded on a Tobii ET-17 binocular eye-tracker as 

used in Experiment 1. Stimuli were presented on a TFT monitor running at a 

resolution of 1280 x 1024 pixels and 60 Hz refresh rate.  

 

 

Figure 36 An illustration of the stimuli used in the experiment (Ziggerins). 
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Design 

  The design involved a pre-test, treatment, post-test configuration, with both 

pre- and post-tests requiring the participant to complete two sequential matching tasks 

(216 trials each) whilst eye movement fixation patterns were recorded. The „treatment‟ 

(936 trials) in this case was the type of training group that each participant was 

assigned to, Basic training, or Subordinate training or a no-training (Control) group. 

The experiment used a between-subject design with three levels (Group: subordinate, 

basic, and control), and within-subjects design with the following factors: phase, with 

two levels (Pre-test; post-test), test-type, with two levels (subordinate; basic), and 

model, with two levels (Concave, Convex). The pre- and post-training tests were 

counterbalanced across participants. Half of the participants did the basic test first; the 

other half did the subordinate test first.  

 

Procedure  

 Initially each participant completed calibration on the eye-tracker, where a 

static blue dot appeared randomly in each of 9 possible screen locations. Eye position 

and known screen position was recorded which allowed a transformation matrix to be 

constructed (via a linear interpolation method, which was used to determine gaze 

position from eye position). Prior to continuing beyond the calibration stage, the 

calibration results were visually inspected to ensure that a sufficiently good calibration 

have been performed.  

 Post-calibration, the participants were trained with 18 of the 36 Ziggerins while 

the remaining 18 Ziggerins were used for the pre-post tests. Following the sequential 

matching pre-test, the Subordinate training was completed in three one-hour sessions 

(on different days), after which the post-test was administered. The Subordinate group 
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learned the individual names of 12 Ziggerins, with 6 other Ziggerins left unnamed to 

be used as distracters. The Basic group learned to categorise 12 Ziggerins into 4 

different classes, with 2 unnamed classes of Ziggerins used as distracters. The 

Ziggerin names (two-syllable nonsense words, e.g., Kimo, Vico) were randomly 

assigned and represented either names of classes or individual objects. All of the „to-

be-learned‟ Ziggerins were introduced at the first training session, which made the 

training sessions more intensive than those of the Wong et al. (2009) study, where the 

introduction was gradual. The participants received instructions stressing the 

importance of speed and accuracy in their performance.  

 

Training 

  The participants were trained with 18 of the 36 Ziggerins while the remaining 

18 Ziggerins were used for the pre-and post-training tests. Following the sequential 

matching pre-test, the Subordinate training was completed in three one-hour sessions 

(different days), after which, the post-test was administered. The Subordinate group 

learned the individual names of 12 Ziggerins, with 6 other Ziggerins left unnamed to 

be used as distracters. The Basic group learned to categorise 12 Ziggerins into 4 

different classes, with 2 unnamed classes of Ziggerins used as distracters. The 

Ziggerin names (two-syllable none words, e.g., Malo, Divo) were randomly assigned 

and represented either names of classes or individual objects. All of the „to-be-

learned‟ Ziggerins were introduced at the first training session which made the 

training sessions more intensive than those of the Wong et al. (2009) study, where 

the introduction was gradual. The participants received instructions stressing the 

importance of speed and accuracy in their performance.  
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Each session of Basic and Subordinate-level training included a sequence of 

five tasks: inspection, feedback, naming, verification, and matching (See Table 7). 

The inspection task began with a 500 ms fixation cross; (fixation visual angel 

subtended 23.9º x 17.3º) followed by presentation of a Ziggerin alongside with a 

name for 1000ms, followed by blank screen for 200ms, and so on, until all of the 12 

objects with names were presented. At this point no responce was required from the 

participants. During the feedback task, participants saw 500ms fixation cross, 

followed by a single Ziggerin and were required to press the correct key that denoted 

the first letter of the Ziggerin‟s name, and correct/incorrect feedback was given. The 

correct response for the distracters was pressing the space bar. In the naming task, 

following a 500ms fixation cross, a single Ziggerin was presented and participants 

were required to press the correct key associated with the first letter of the Ziggerin 

name. The correct response for distracters was pressing the space bar. No feedback 

was provided.  

 During the verification task a single name (either individual or family 

depending on the type of training) was shown for 1000ms, followed by a blank ISI of 

200ms, followed by a Ziggerin which remained on the screen until a response (match 

or non-match) was made. Finally in the matching task a single name was presented 

for 1000ms, followed by a blank ISI of 200ms, and two Ziggerins simultaneously 

presented side by side. The participants has to respond by pressing the key L (left) or 

R (right) to indicate whether the name belonged to the Ziggering  shown on the left 

or the right part of the screen. The participant had to decide whether the two objects 

either came from the same family (Basic-level training group) or had the same 

individual name (Subordinate-level training group).  On 25% of the trials the 

Ziggerins came from the unused stimulus set.  
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Table 7 The five tasks in sequence, and a number of trials for Subordinate and Basic 

group training procedure.  

 

 

 

Task  

 

 

 

   Block 

Subordinate Training 

 

Number of trials 

Basic Training 

 

Number of trials 

Inspection    Block 1           24          24 

Feedback    Block 2           24          24 

Naming    Block 3         300        300 

Verification    Block 4         300        300 

Matching    Block 5         287        287 

 
 

 Pre- and post-tests  

 The pre- and post-training tests were sequential matching tasks randomly 

counterbalanced across participants. Half of the participants did the basic test first; the 

other half did the subordinate test first. An initial fixation was shown for 800ms in one 

of four randomly selected corner locations (fixation visual angel subtended 20.0º x 

19.2º) and followed by a Ziggerin for 800ms (S1), a mask for 800ms and a second 

Ziggerin stimulus (S2). S2 was displayed until response. There was a blank inter-trial 

interval of 1000ms between each trial. In half of the trials (216) the participants had to 

judge whether the two Ziggerins were the same or different individual; on the 

remaining trials (216), participants had to judge whether the two Ziggerins were from 

the same or different family. Prior to this task, in order to demonstrate the meaning of 

a family, a sheet with images of all Ziggerins was shown and participants told that 

objects within a particular row formed a family. The participants had to respond by 

pressing key ‟z‟ for same and „m‟ for different (see Figure 37). 
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Figure 37 Example of the sequential matching task for pre and post tests, depicting a 

no match trial. 

 

Analyses of Eye Movement Data 

 We have analysed the eye movement data using FROA (see Chapter 3). 

6.1.2. Generating model predictions 

 
 In order to elucidate the shape information content at fixated image regions in 

recognition memory, predicted fixation region maps for three contrasting theoretical 

hypotheses were generated and compared with the recognition data from the pre-and 

post-tests. As described earlier, previous empirical work demonstrated that concave 

and convex curvature plays a key role in shape perception, but to my knowledge no 

one has yet specifically investigated these two types of curvature with eye movement 

analyses in the context of 3D object recognition. Hence the main focus of interest here 

was to investigate concave and convex curvature models as predictors of fixation 

patterns during recognition. 
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Model 1: Concave Surface Curvature Minima 

 The first model generated predicted fixation region locations based on the 

locations of local features defined by concave surface curvature maxima (e.g., Cohen 

& Singh, 2007; Hoffman & Richards, 1984; Hoffman & Singh, 1997). In order to 

generate predicted region maps that incorporate the same error measures as the 

recognition task data we used a trained observer technique. Twelve observers (9 

females, mean age 28.00 SD = 10.18; 10 = right handed) were trained to fixate only 

locations containing an intersection between two surfaces that forms a concave 

(negative) minima of curvature. These observers had not taken part in the recognition 

task. Participants were first given extensive training in locating concavities in six 

novel objects otherwise not used in the recognition task. Following this, participants 

were shown the 18 stimuli for exposure duration of 10 seconds. A key advantage of 

this trained observer method is that it necessarily includes measurement error into the 

calculation of predicted fixation regions; that is, noise due to within and between-

subject variation, as well as tracking accuracy and resolution.  

Model 2 Convex Surface Curvature Maxima 

 The second model generated predicted fixation locations based on the locations 

of local features defined by convex surface curvature maxima (De Winter & 

Wagemans, 2006; Feldman & Singh, 2005). Twelve observers (11 females, mean age 

29.75 SD = 9.55; 12 = right handed) were trained to fixate only image regions 

containing an intersection between two surfaces forming a convex (positive) curvature 

maxima. The observers had not taken part in the recognition or concavity detection 

tasks. The training, the stimuli and test phase procedures were identical to those used 

to generate the concave fixation data. Using identical FROA criteria as those used for 

the recognition task data we computed the fixation region maps. Data from this 
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condition also provided a control measure for the reliability of the trained observer 

patterns derived for Model 1 by demonstrating that observers can be trained to fixate 

only specific image features (that is, that their fixation patterns are not solely stimulus 

driven).  

Visual saliency baseline 

 Similarly to the previous two studies, the visual saliency model was created 

using Saliency Toolbox implementation in Matlab (Walther & Koch, 2006). The 

model was run on each of the 18 stimulus images used in the recognition task to 

generate a saliency map for each stimulus. The output of the toolbox in terms of  

saliency values for each pixel which was grouped into a saliency region map using 

shape estimation function (see Walther & Koch, 2006). The number of saliency 

regions generated was constrained to approximate the area and number of thresholded 

regions generated for the other models: The saliency maps were thresholded and 

binarised using FROA in the same way as the empirically derived fixation data from 

the recognition task. These maps represent the thresholded distributions of fixation 

regions we would expect if eye movements were determined solely by low-level 

image statistics, that is, by the most visually salient image regions defined by colour, 

intensity contrast, and orientation. 

 This model was used as a baseline contrast as the question of interest here was 

whether specific models of shape analyses could account for fixation patterns beyond 

the explicable by visual saliency. 

 

Independence of predicted fixation patterns 

 It is important to verify that the predicted region distributions of the two 

models are sufficiently different in order that they may be statistically distinguished 
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when compared to the gaze data. In order to do this FROA was used to compare 

region overlap across models. 

 Mean pixel region overlap across items for the Visual saliency and Convexity 

models was 23.84% (SD = 21.98%) of the total pixel area for the convexity model. 

Analyses of these data using FROA showed that the MMC distance for the observed 

region overlap between the two models was -3.13. 

  Mean pixel region overlap across items for the Visual saliency and Concavity 

models was 3.71% (SD = 6.92%) of total pixel area for the Concavity model. Analyses 

of these data using FROA showed that the MMC distance for the observed region 

overlap between the two models was -25.59. 

 Mean pixel overlap between the Convexity and Concavity models was 4.50 % 

(SD = 5.83%) of the total pixel area for the Convexity model. Analyses of these data 

using FROA showed that the MMC distance for the observed region overlap between 

the two models was -22.43. 

 A one way ANOVA (target vs. between models overlap: Visual saliency vs. 

Concavity, Visual saliency vs. Convex, Convex vs. Concave) on the MMC distance 

showed a significant main effect of Model, F (2, 53) = 14.08, p < .0001. Post-hoc 

analyses showed that the pairwise contrasts between models were significantly 

different for Visual Saliency_Concave vs. Visual Saliency_Convex, p = .002; Visual 

Saliency_Concave vs. Concave_Convex, p = .004, but not for   Concave_Convex  vs. 

Visual Saliency_Concave, p = .145ns.  

6.1.3. Behavioural data analyses 

Reaction time and accuracy analysis 

Training data - Both Subordinate and Basic groups demonstrated learning and 

improved performance over the three training sessions. For the Subordinate group (see 
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Figure 38), Session 2 produced a mean improvement of 123.5 ms (SD = 153.12), this 

performance gain increased less sharply to 114.8 ms (SD = 46.48) by Session 3; a total 

improvement of 238.3 ms (SD = 199.59) between Session 1 and Session 3. Paired t-

tests showed this trend of improved performance to be significant between Sessions 1 

and 2, p = .034, and Sessions 1 and 3, p =.004. Response accuracy also improved 

commensurately from 84%, to 98%, for sessions 1 to 3 respectively. Wilcoxon tests 

showed this trend of improved response performance to be significant between 

Sessions 1 and 2, Z = -2.118, p =.034, Sessions 2 and 3, Z = -2.121, p = .034, and 

between Sessions 1 and 3, Z =-3.059, p = .004.  

 A similar pattern of results was obtained for the Basic group (see Figure 38) 

with mean response performance gain increasing from 675.4 ms (SD = 567.59), to 

588.4 (SD = 401.62), and 567.9 ms (SD = 357.45) over the three respective Sessions 

showing an improvement of 107.6 ms between first and last sessions. Paired t-tests 

showed this trend of improved performance to be significant between Sessions 1 and 

2, p < .0001, and Sessions 1 and 3, p <.0001. 

  Response accuracy improved from 97% to 98% for sessions 1 and 3 

respectively. Wilcoxon tests showed this trend of improved response performance to 

be non-significant between all of the Sessions.  

 The above data patterns of significantly faster RT and accuracy well over 90 % 

post training demonstrates that both groups (basic and subordinate) considerably 

improved their performance as a function of training.  
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Figure 38 Mean RTs across sessions for the Basic and Subordinate training groups. 

Bars show standard error of the mean. 

 

Sequential matching task: pre and post tests  

Accuracy 

 The data from one participant in the Subordinate group was excluded because 

of a low accuracy rate (< 50%). The overall accuracy for the Subordinate, Basic and 

Control groups can be seen in Table 8 below. All three groups performed more 

accurately in the Subordinate test (94.6 %; SE =.009) than in the Basic test (91.0%; SE 

= .031) for both pre- and post-tests.  
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Table 8 The accuracy rates for Subordinate, Basic, and Control group for each phase 

(pre and post tests), and Test-type (subordinate and basic).  Standard error of the mean 

is shown in parentheses. 

 
____________________________________________________________________  
                                                         Pre-test phase                     Post-test phase   

                                          Subordinate    Basic              Subordinate    Basic 

 
                                                     Mean accuracy (%)                 Mean accuracy (%) 

 
  
Subordinate group               .93 (.011)   .90 (.028)             .96 (.007)     .91 (.028) 

       

Basic group                        .94 (.014)   .93 (.026)             .96 (.012)     .95 (.018) 

 

Control group                     .94 (.010)   .89 (.040)             .95 (.007)     .88 (.049) 

 

Reaction times  

 The data from four participants from the Subordinate group was excluded from 

the analyses. The reason for this was low accuracy in one of the cases (< 50%), and 

lack of training effects for the other three cases. Since the aim of the study was to 

examine changes in eye movement patterns resulting from training, the subjects who 

did not show reliable training effects were excluded from the analyses. The training 

effect was calculated as follows: we computed the difference between mean RT scores 

for pre and post tests for each Test-type (subordinate vs. basic), which gave us a single 

value for each Test-type. Then we computed the difference between these two values 

(subordinate – basic) for each participant and if the final value was negative, this was 

taken as evidence that the participant did not improve RT performance as a function of 

training, thus was excluded from further analyses. The overall Mean RT for the 

Subordinate, Basic and Control groups can be seen in Table 9 below.    
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Table 9 The Mean RT for Subordinate, Basic, and Control group for each phase (pre and 

post    tests), and Test-type (subordinate and basic).  Standard error of the mean is shown in 

parentheses. 

____________________________________________________________________  
                                             Pre-test phase                                Post-test phase   

                                 Subordinate      Basic                    Subordinate    Basic 

 
                                          Mean RT (SE)    Mean RT (SE)       Mean RT (SE)   Mean RT (SE)                                                              

 

  

Subordinate group       731.02 (24.63)  766.74 (30.70)     624.03(27.68) 754.10 (33.85) 

       

Basic group                711.43 (21.96)  866.41(53.39)      646.52(29.31) 730.00 (55.47) 

                         

Control group             636.99 (20.20)  799.23(25.93)      598.03(17.94) 626.95 (13.91) 

 

 Each group showed improvement as a function of training; Subordinate group 

difference for pre-post subordinate tests was 107.00 ms, and 12.64 ms difference for 

basic tests. The Basic group difference for pre-post subordinate tests was 64.91 ms, 

and 136.41 ms for basic tests (see Figure 39). 
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(b) 

 

  

 
 

 

(c)  

 

Figure 39 Response performance (mean RT) for Subordinate, Basic, and Control 

groups. Each figure shows mean RT for each phase (pre-test and post-test) and each 

Test-type (subordinate and basic). Bars show standard error of the mean. 
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  A within group 2 (Phase) x 2 (Test-type) ANOVA for the Subordinate Group 

showed no significant main effects of Phase, F (1, 7) = 3.48, p =.104, ηp² = .332ns, and 

Test-type, F (1, 7) = 4.19, p =.080, ηp² = .375ns. There was a two way interaction 

between Phase and Test-type, F (1, 7) = 5.73, p =.048, ηp² = .450. A paired t- test 

showed a significant difference between the subordinate level pre-test and post-test, p 

=.025, but not between the basic level pre-test and post-tests, providing evidence that 

the Subordinate group improved their performance selectively as a function of 

training. 

 A within group 2 (Phase) x 2 (Test-type) ANOVA for the Basic Group showed 

a significant main effect of Phase, F (1, 11) = 7.94, p =.017, ηp² = .419, and Test-type, 

F (1, 11) = 4.85, p =.050, ηp² = .306. There were no other main effects and 

interactions.  

 A within group 2 (Phase) x 2 (Test-type) ANOVA for the Control Group 

showed a significant main effect of Phase, F (1, 11) = 38.61, p <.0001, ηp² = .778, and 

Test-type, F (1, 11) = 19.54, p =.001, ηp² = .640. There was a two way interaction 

between Phase and Test-type, F (1, 11) = 14.79, p =.003, ηp² = .573. A paired t-test 

showed a significant difference between the basic level pre-test and post-test, p 

<.0001, but not between the subordinate level pre-test and post-test. 

 A mixed 3 x 2 x 2 analysis of variance (ANOVA) with a Between Subject 

factor of treatment Group (Subordinate, Basic, Control) and Within Subject of  Phase 

(pre-test or  post-test) x Test-type (Basic or  Subordinate)  showed a significant main 

effect of Group, F (2, 29) = 7.21, p =.003, ηp² = .33, Phase, F (1, 29) = 26.66, p 

<.0001, ηp² = .479, and Test-type,  F (1, 29) = 106.32, p <.0001, ηp² = .360. A three 

way interaction failed to reveal significance, F (2, 29) = 3.23, p =.054, ηp² = .182ns. 
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 These results show that both training groups (Subordinate and Basic) improved 

their post-test mean RT performance, as a function of training, but only the 

Subordinate group showed a specific training effect on the subordinate task. The Basic 

group showed a large but not significant improvement in the basic post-tests and a 

small and not significant improvement in the subordinate post-test. Two potential 

interpretations for the latter improvement could be, first this may be result of a greater 

basic level experience that proceeds and translates in to the next level of subordinate 

processing (e.g. Jolicoeur et al., 1984) and second, this could be interpreted as a 

priming effect in (pre-vs.-post test) subordinate level of categorisation.  

  The Control group showed a significant improvement in the basic post-tests 

and a small but not significant improvement in the subordinate post-test. Some 

possible explanations for this pattern are: First, the Control group showed a basic level 

priming effect which was not evident in the Subordinate group performance as it was 

interrupted by training. Second, the improvement in the basic post-test may be due to 

the fact that there were 6 stimulus-response mappings in the basic sequential matching 

test, compared to 18 stimulus-response mappings in the subordinate sequential 

matching test. Third, this result appears to be consistent with previous findings (e.g., 

Rosch et al., 1976) showing that basic level categorisation is the preferred entry access 

of object classification in novices. 

6.1.4. Analyses of eye movement data 

  
Analyses between groups 

 
  A 3 (Group: Basic, Subordinate, Control) x 2 (Phase: pre, post) x 2 (Test-type: 

basic, subordinate) x 3 (Model: Concave, Convex, Visual saliency) ANOVA showed a 

significant main effect of Model, F (2, 102) = 36.99, p < .0001, ηp²  = .420, and Phase, 
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F (1, 51) = 15.28, p < .0001, ηp²  = .230, along with a two way interaction between 

Phase and Group, F (2, 51) = 4.69, p = .013, ηp² = .155, and a three way interaction 

between Model, Phase, and Test-type, F (2, 102) = 4.00, p = .021, ηp² = .073. There 

were no other main effects or interactions. Post -hoc pairwise comparisons 

(Bonferroni) between each model were all significant for Concave vs. Convex, p < 

.0001, Concave vs. Visual saliency, p <.0001, and Convex vs. Visual saliency, p 

=.001. Further pairwise comparisons between Concave and Convex models were 

significantly different for each phase and test-type; pre-subordinate, p =.004, pre-basic 

p < .0001, post-subordinate p <.0001, post-basic = .007. These analyses show that the 

fixation pattern differences can be attributed to the differential group treatment; hence, 

further within group analyses were performed. 

 

Analyses within group 

Basic group 

 A 2 (Model: Concave, Convex) x 2 (Phase: pre, post) x 2 (Test-type: 

Subordinate, Basic) within subjects ANOVA showed a significant main effect of 

Model, F (1, 17) = 7.34, p = .015, ηp² = .301, along with two-way interaction between 

Model and Test-type, F (1, 17) = 4.67, p = .045, ηp² = .216. There were no other main 

effects or interactions (see Figure 40). Post-hoc pairwise comparison between model 

and Test-type was significant for pre-basic test (Concave vs. Convex), p = .004, as 

well as both post-tests basic and subordinate (Concave vs. Convex), p =.009, p = .048 

respectively. Post-hoc pairwise comparison (Bonferroni) between both Models was 

significant for Concave vs. Convex, p = .015.  
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Figure 40 Mean MMC Mx – MMC vs measure of data-model correspondences 

between models (relative to visual saliency) for for Basic group for each phase (pre-

test and post-test) and each Test-type (subordinate and basic). Bars show standard 

error of the mean (% overlap). 

 
 

 

Subordinate Group  

 A 2 (Model: Concave, Convex) x 2 (Phase: pre, post) x 2 (Test-type: 

subordinate, basic) within subjects ANOVA showed a significant main effect of 

Model, F (1, 17) = 9.02, p = .008, ηp² = .347. There were no other main effects or 

interactions (see Figure 41). Post-hoc pairwise comparison (Bonferroni) between both 

Models was significant for Concave vs. Convex, p = .008.  
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Figure 41 Mean MMC Mx – MMC vs measure of data-model correspondences between 

models (relative to visual saliency) for Subordinate group for each phase (pre-test and 

post-test) and each Test-type (subordinate and basic). Bars show standard error of the 

mean (% overlap). 

 

Control Group  

 A 2 (Model: Concave, Convex) x 2 (Phase: pre, post) x 2 (Test-type: 

subordinate, basic) within subjects ANOVA showed a significant main effect of 

Model, F (1, 17) = 7.42, p = .014, ηp² = .304. There was a significant two-way 

interaction between Phase and Test-type, F (1, 17) = 6.23, p = .023, ηp² = .268, along 

with a three-way interaction between Model, Phase, and Test-type F (1, 17) = 8.63, p 

= .009, ηp² = .337. Post-hoc pairwise comparison (Bonferroni) between both Models 

was significant for Concave vs. Convex, p = .014 (see Figure 42). 
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Figure 42 Mean MMC Mx – MMC vs measure of data-model correspondences between 

models (relative to visual saliency) for Control group for each phase (pre-test and 

post-test) and each Test-type (subordinate and basic). Bars show standard error of the 

mean (% overlap). 

 

 In order to test whether there is a difference in the data-model correspondence 

regardless of training, the data was collapsed across training group for each test 

(Subordinate, Basic) and phase (pre-test, post-test; see Figure 43). A 2 (Phase: pre, 

post) x 2 (Test-type: basic, subordinate) x 3 (Model: Concave, Convex, Visual 

saliency) ANOVA showed a significant main effect of Phase, F (1, 17) = 14.81, p = 

.001, ηp² = .466, and Model, F (2, 34) = 16.57, p < .0001, ηp²  = .494, along with a 

three way interaction (Phase, Test-type, Model), F (2, 34) = 3.64, p = .037, ηp² = .176. 

Post-hoc paired comparisons between pre-tests and post-tests were significant for the 

basic (Concave), and basic (Visual saliency) tests, p = .003 and p = .033, respectively. 

 Post-hoc paired comparisons (Bonferroni) between each Test-type 

(Subordinate vs. Basic) were significant for pre-test (Convex), p = .024. Post-hoc 

pairwise comparisons (Bonferroni) between each model were significant for Concave 

vs. Convex, p =.015, Concave vs. Visual saliency, p <.0001, but not for Convex vs. 

Visual saliency, p =.063ns.   
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Figure 43 Mean MMC Mx – MMC vs measure of data-model correspondences between 

models (relative to visual saliency) collapsed across groups for each phase (pre-test 

and post-test) and for each Test-type (subordinate and basic). Bars show standard 

error of the mean (% overlap). 

 

6.1.5. Saccade amplitude and dwell analyses 

 
   The data was further analysed in terms of saccade amplitude and dwell time 

for each group, test phase and Test-type. Saccade amplitude is the distance in visual 

angle/degrees between two fixations in a Euclidean plane, whereas the dwell time is 

the duration between saccades. Previous research (e.g. Tatler & Vincent, 2008) has 

shown that saccade amplitude and dwell time can be systematically related, thus 

analysing them here could provide additional information about perceptual processing 

during basic and subordinate categorisation tasks. More generally, it has been found 

that in scene viewing (e.g. Unema et al.,2005; Velichkovsky, Joos, Helmert, & 

Pannasch, 2005) large saccade amplitudes and short dwell times are associated with a 

global scanning approach, whereas small saccade amplitudes and longer dwell times 

are attributed to a local scanning approach. Two points of interest to examine here are 

the potential changes in viewing strategies between encoding (Image 1) and 
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recognition (Image 2) as well as saccade amplitude and dwell time changes before and 

after training.  

Saccade amplitude analyses 

 The overall mean saccade amplitude for pre-mask (the first image presented in 

the sequential matching task) Image 1 for the Subordinate, Basic and Control groups 

can be seen in Table 10 below.    

 

Table 10 The mean saccade amplitude (SA) for pre-mask Image 1 for the Subordinate, 

Basic, and Control group for each phase (pre-test and post-test), and Test-type 

(subordinate and basic).  Standard error of the mean is shown in parentheses. 

 

____________________________________________________________________  
                                        Pre-test phase                                Post-test phase   

                                    Subordinate   Basic                       Subordinate    Basic 

 
                                        Mean SA (SE)   Mean SA (SE)           Mean SA (SE)   Mean SA (SE)                                                              

  

  

Subordinate group       2.60 (0.23)       2.46 (0.21)           3.00 (0.28)      2.47 (0.27) 

 

Basic group                2.93 (0.26)       2.85 (0.17)           3.11 (0.27)      3.04 (0.29)   

                         

Control group             2.96 (0.28)       2.96 (0.36)             3.52 (0.41)      3.16 (0.44)  

 

 The overall mean saccade amplitude for post-mask Image 2 (the image 

presented after the mask during the sequential matching task) for the Subordinate, 

Basic and Control groups can be seen in Table 11 below.  
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Table 11 The mean saccade amplitude (SA) for post-mask Image 2 for the 

Subordinate, Basic, and Control group for each phase (pre-test and post-test), and 

Test-type (subordinate and basic).  Standard error of the mean is shown in 

parentheses. 

____________________________________________________________________  
                                     Pre-test phase                              Post-test phase   

                                 Subordinate    Basic                    Subordinate    Basic 

 
                                    Mean SA (SE)    Mean SA (SE)        Mean SA (SE)     Mean SA (SE)                                                              

   

  

Subordinate group      2.18 (0.30)     1.74 (0.22)      1.99 (0.30)       1.96 (0.30)  

 

Basic group               2.32 (0.38)     1.96 (0.23)            2.07 (0.31)       1.86 (0.24)   

                         

Control group            2.17 (0.25)     2.18 (0.50)       2.54 (0.50)        2.13 (0.52) 

 

 A mixed 3 x 2 x 2 x 2 analysis of variance (ANOVA) with a Between Subject 

factor of experimental Group and Within Subject of  Phase (pre-test or post-test) x 

Test-type (Basic or Subordinate) x Image (pre-mask image 1 or post-mask image 2) 

showed a significant main effect of Phase, F (1, 29) = 39.43, p <.0001 ηp² = .576, and 

Image, F (1, 29) = 7.76, p =.009, ηp² = .211. The data also showed a two way 

interaction, between Phase and Test-type, F (1, 29) = 6.98, p =.013, ηp² = .194. (see 

Figure 43). To explain this further we have conducted within group analyses. 

 A within group 2 x 2 x 2 ANOVA for the Basic Group showed a significant 

main effect of Phase, F (1, 11) = 13.30, p =.004, ηp² = .547, but no other main effects 

or interactions. Paired t-tests between image 1 and image 2 showed a significant 

difference for the subordinate pre test, p =.018, basic pre test, p <.0001, subordinate 

post test, p =.026, and the basic post test, p =.007.  

 A within group 2 x 2 x 2 ANOVA for the Subordinate Group showed a 

significant main effects of Phase, F (1, 7) = 7.32, p =.030, ηp² = .511, and Image, F (1, 

7) = 16.91, p =.005, ηp² = .707, but no other main effects or interactions. Paired t-tests 
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between image 1 and image 2 showed a significant difference for the basic pre test, p 

=.014, and subordinate post test, p =.029.  

 A within group 2 x 2 x 2 ANOVA for the Control Group showed a significant 

main effect of Phase, F (1, 11) = 27.25, p <.0001, ηp² = .712, but no other main effects 

or interactions. Paired t-tests between Image1 and Image 2 showed a significant 

difference for the basic pre test, p =.013, subordinate pre test, p =.001, basic post test, 

p <.0001, and subordinate post test, p <.0001.  

 All three groups showed significant differences between Image 1 and Image 2 

in the sequential matching task, indicating that the participants changed their viewing 

strategies between the initial encoding of the image and subsequent recognition; 

however we cannot attribute these changes to the level of expertise, as there were no 

significant changes in fixation amplitude before and after training (see figure 44)  

 

Figure 44 Mean fixation amplitude (degrees) for Basic, Subordinate, and Control 

group for each phase (pre-test and post-test) and Test-type (subordinate and basic) for 

Image 1 and Image 2 collapsed. Bars show standard error of the mean.  
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 Given the lack of main effects or interactions between test-types, I have 

conducted additional analyses involving collapsing the data across test-type and phase 

for Image 1 and Image 2. The results showed a consistent pattern of longer saccade 

amplitudes for Image 1 and shorter saccade amplitudes in Image 2 for each group. The 

Basic group showed significantly longer saccade amplitude for Image 1 (M = 2.98; SE 

=.12) than for Image 2 (M = 2.05; SE =.14), p <.0001, R
2 

=.067. Similarly, the 

Subordinate group saccade amplitude was significantly longer for Image 1 (M = 2.63; 

SE =.12) than Image 2 (M = 1.96; SE =.13), p <.0001, R
2 

=.060. The Control group 

also showed significantly longer saccade amplitude for Image 1 (M = 3.15; SE =.18) 

than Image 2 (M = 2.25; SE =.22), p <.0001, R
2 

=.079.  

 

Dwell time analyses 

 The overall mean dwell time for pre-mask Image 1 for the Subordinate, Basic 

and Control groups can be seen in Table 12 below.  

Table 12 The mean dwell times (DT) for pre-mask Image 1 for the Subordinate, 

Basic, and Control group for each phase (pre-test and post-test), and Test-type 

(subordinate and basic).  Standard error of the mean is shown in parentheses. 

____________________________________________________________________  
                                          Pre-test phase                              Post-test phase   

                                  Subordinate     Basic                     Subordinate    Basic 

 
                                      Mean DT (SE)     Mean DT (SE)         Mean DT (SE)     Mean DT (SE)                                                              

 

  

Subordinate group      187.86(6.45)      188.12 (7.10)        184.24 (6.96)    192.45 (8.24) 

 

Basic group               164.87(8.38)      161.30 (8.05)      168.61 (9.42)   165.54 (9.25) 

                         

Control group            184.33 (8.71)     184.80 (8.06)      192.70 (9.15)   192.19 (9.49) 

 

 The overall mean saccade amplitude for post-mask Image 2 for the 

Subordinate, Basic and Control groups can be seen in Table 13 below. 
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Table 13 The mean dwell times (DT) for post-mask Image 2 for the Subordinate, 

Basic, and Control group for each phase (pre-test and post-test), and Test-type 

(subordinate and basic).  Standard error of the mean is shown in parentheses. 

____________________________________________________________________  
                                                        
                          Pre-test phase                               Post-test phase   

                                           

                       Subordinate    Basic                      Subordinate   Basic 

 
                                     Mean DT (SE)      Mean DT (SE)       Mean DT (SE)    Mean DT (SE)                                                              

 

  

Subordinate group     224.30 (19.50)  231.62 (21.26)     200.62 (10.70) 213.22 (14.74)  

 

Basic group              193.72 (14.98)  194.05 (15.78)     174.99  (9.88)  184.09 (10.46) 

                         

Control group            210.98 (19.16)  206.08 (15.95)      206.53 (13.04)  212.72 (21.28) 

 

 A mixed 3 x 2 x 2 x 2 analysis of variance (ANOVA) with a Between Subject 

factor of experimental Group and Within Subject of Phase (pre-test or  post-test) x 

Test-type (Basic or Subordinate) x Image (pre-mask Image 1 or post-mask Image 2) 

showed a significant main effect of Phase, F (1, 29) = 23.58, p <.0001 ηp² = .448. The 

data also showed a two way interaction, between Test-type and Group, F (1, 29) = 

3.59, p =.041, ηp² = .198, Phase and Test-type, F (1, 29) = 10.61, p =.003, ηp² = .268, 

and Phase and Image, F (1, 29) = 4.28, p =.048, ηp² = .129. 

 A within group 2 x 2 x 2 ANOVA for the Basic Group showed a significant 

main effect of Phase, F (1, 11) = 19.14, p =.001, ηp² = .635. The data also showed a 

two way interaction, between Phase and Image F (1, 11) = 5.46, p =.039, ηp² = .332, 

and Test-type and Image, F (1, 11) = 5.29, p =.042, ηp² = .325. Paired t- tests between 

Image 1 and Image 2 showed a significant difference for the subordinate pre-test, p 

=.007, basic pre-test, p =.003, and the basic post-test, p =.002 

 A within group 2 x 2 x 2 ANOVA for the Subordinate Group showed a 

significant main effect of Phase, F (1, 7) = 6.87, p =.034, ηp² = .495, but no other main 
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effects or interactions. Paired t-tests between Image 1 (see Figure 45 a) and Image 2 

(see Figure 45b) showed a significant difference for the basic pre-test, p =.043, 

subordinate post-test, p =.032. There was also a significant difference between 

subordinate pre-and-post-tests for Image 1, p =.026. These results indicate that the 

participants changed their viewing strategies between the initial encoding of the image 

and subsequent recognition in the post subordinate sequential matching task as well as 

between pre and post subordinate test for Image 1. This pattern of results suggests that 

the subordinate group changed their viewing strategies as a function of training. 

 A within group 2 x 2 x 2 ANOVA for the Control Group showed no significant 

main effects or interactions. Paired t-tests between Image 1 and Image 2 showed a 

significant difference for the subordinate pre-test, p =.043, and subordinate post-test, p 

=.023. There were no other significant differences between pre-and-post-tests.  

(a) 
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  (b) 

 

Figure 45(a) Mean dwell time (ms) for Basic, Subordinate, and Control group for 

each phase (pre-test and post-test) and Test-type (subordinate and basic) for Image 1. 

Bars show standard error of the mean. (b) Mean dwell time (ms) for Basic, 

Subordinate, and Control group for each phase (pre-test and post-test) and Test-type 

(subordinate and basic) for Image 2. Bars show standard error of the mean. 

 
 In further analyses I have collapsed the data across test-type and phase for 

Image 1 and Image 2. The results showed consistent pattern of shorter dwell time for 

Image 1 and longer dwell time for Image 2 for each group. The Basic group dwell 

time was significantly shorter for Image 1 (M =165.07; SE = 4.27) and Image 2 (M = 

186.71; SE = 6.41), p <.0001, R
2 

=.066. Similarly, the Subordinate group dwell time 

was significantly shorter for Image 1 (M = 188.17; SE = 3.52) and Image 2 (M = 

217.43; SE = 8.43), p <.0001, R
2 

=.056. The Control group also showed significantly 

shorter dwell time for Image 1 (M = 188.51; SE = 4.33) and Image 2 (M = 209.08; SE 

= 8.54), p <.0001, R
2 
=.051.  
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Summary of results 

Training data 

- Both training groups significantly improved their RTs between Session 1 and Session 

3, and demonstrated over 90% accuracy post training. 

Behavioural data 

- The RTs showed that each training group improved their post-test mean performance 

as a function of training, but only the Subordinate group showed a significant specific 

effect in the subordinate task. 

Eye movement data 

- The Basic training group showed a main effect of Model. There was also a two-way 

interaction between Model and Test-type. The data-model correspondence was 

significantly higher for the Concave model than the Convex model. 

- The Subordinate training group showed a significant main effect of Model. The data-

model correspondence was significantly higher for the Concave model than the 

Convex model.  

- The Control group showed a significant main effect of Model. There was also a two-

way interaction between Phase and Test-type and a three-way interaction between 

Model, Phase and Test-type. The data-model correspondence was significantly higher 

for the Concave model than the Convex model.  

- Analysis of data-model correspondences across training groups showed a main effect 

of Phase and Model. There was also a three-way interaction between Phase, Test-type 

and Model. Post-hoc paired comparisons between models were higher for the Concave 

model than the Convex model. The Visual saliency model had the lowest data-model 

correspondence pattern. 
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Saccade amplitude analyses 

- Within group analyses for the sequential matching tests for all three groups (Basic, 

Subordinate, and Control) showed that each group had a significantly longer saccade 

amplitude difference for Image 1 than for Image 2, suggesting that the participants 

changed their viewing strategies between initial encoding and subsequent recognition. 

Dwell time analyses 

- The Basic group showed a main effect of Phase, as well as a two-way interaction 

between Phase and Image as well as Test-type and Image. There was also significantly 

shorter dwell times for Image 1 than for Image 2, suggesting that the participants 

changed their viewing strategies between initial encoding and subsequent recognition.  

- The Subordinate group analyses for the sequential matching task showed a main effect 

of Phase along with significantly shorter dwell times for Image 1 than for Image 2.  

- The Control group analyses for the sequential matching task showed significantly 

shorter dwell times for Image 1 than for Image 2 for pre-and post subordinate tests. 

- Overall, the saccade amplitude and dwell time analyses showed longer saccades and 

shorter dwell times during the encoding phase, (Image 1), which is typically 

characteristic of a more global scanning approach. During the recognition phase 

(Image 2) the results showed shorter saccades and longer dwell times, which is more 

characteristic of a local scanning approach. 

6.1.6. Conclusions 

 
 In Experiment 3 we used fixational eye movement patterns to examine local 

shape analysis processes during object shape categorisation in experts and novices. In 

pre-test phases, observers sequentially matched visually similar novel objects to a 

basic and subordinate level of classification. Post-training, the basic and subordinate 

experts, performed the same tasks as in the pre-test. These results show that both 
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training groups (Subordinate and Basic) improved their post-test mean RT 

performance, as a function of training, but only the Subordinate group showed a 

specific training effect on the subordinate task. The Basic group showed a large but 

not significant improvement in the basic post-tests and a small and not significant 

improvement in the subordinate post-test. Two potential interpretations for the latter 

improvement could be, first this may be result of a greater basic level experience that 

proceeds and translates in to the next level of subordinate processing (e.g. Jolicoeur et 

al., 1984) and second, this could be interpreted as a priming effect in (pre-vs.-post test) 

subordinate level of categorisation.  

 The Control group showed a significant improvement in the basic post-tests 

and a small but not significant improvement in the subordinate post-test. Some 

possible explanations for this pattern are: First, the Control group showed a basic level 

priming effect which was not evident in the Subordinate group performance as was 

interrupted by training. Second, the improvement in the basic post-test may be due to 

the fact there were 6 stimulus-responses mapping in the basic sequential matching test, 

compared to 18 stimulus-response mappings in the subordinate sequential matching 

test. Third, this results appear to be consistent with previous findings (e.g., Rosch et 

al., 1976) showing that basic level of categorisation is indeed the preferred entry 

access of object classification in novices. 

  The analyses of the spatial distributions of fixations revealed a consistent 

pattern of data-model correspondences across tasks. During both basic and subordinate 

matching tasks in pre and post-test phases we found evidence that fixation patterns are 

predominantly driven by shape information defined by internal regions of concave 

surface discontinuity regardless of expertise or level of categorisation (basic or 

subordinate).  
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 These findings are consistent with previous studies demonstrating the 

importance of curvature singularities in the visual perception of shape (e.g., Attneave, 

1954; Barenholtz Cohen & Singh, 2003; De Winter & Wagemans, 2006; Feldman & 

Singh, 2005; Hoffman & Richards, 1984; Hoffman & Singh, 1997; Leek et al, 2012). 

Further, the finding of a preference for fixation at regions of concave surface 

discontinuity regardless of task (basic vs. subordinate) or phase (pre vs. post) provides 

information for a direct link between the encoding of information about surface 

concavity and object categorisation. Thus the central issues raised here concern our 

observation of similar fixation distributions, similar perceptual strategies for the 

acquisition of shape information, and later categorisation across pre and post tasks.  

Furthermore, our finding of a preference for fixation at regions of concavity is 

consistent with an influential hypothesis where concave regions are suggested to play 

a functional role in part segmentation, during the derivation of a structural description 

representation (e.g., Biederman, 1987; Hoffman & Richards, 1984; Marr & Nishihara, 

1978).  

 A further aspect of the results that is of theoretical interest is the consistency of 

the patterns of data-model correspondences during pre and post-tests. This is perhaps 

surprising given that one might expect task requirements to affect the perceptual 

analysis of shape. Here, despite the fact that the participants were trained to classify 

objects into two different categories (basic vs. subordinate), along with a control group 

that received no training, the perceptual analysis strategies of the three groups, as 

evidenced by the patterns of data-model correspondences, were similar.   

 These results are consistent with models of object recognition which 

hypothesise a special functional status to concave regions in object shape 

representation (e.g. Biederman, 1987; Hummel & Stankiewitz, 1996; Leek, Reppa, 
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Rodriguez & Arguin, 2009; Leek, Reppa & Arguin, 2005; Marr & Nishihara, 1978), 

and they present a challenge to models which do not. Among the latter models are 

some recent Image-based models of recognition (e.g., Edelman & Weinshall, 1991; 

Riesenhuber & Poggio, 2006; Ullman & Basri, 1991), including HMAX (Serre, Oliva 

& Poggio, 2007; Serre, Wolf, Bileschi, Riesenhuber & Poggio, 2007). In order to 

account for these data, these models would require modification to include a level of 

feature representation which makes explicit the sign of curvature – for example, in the 

C2 layer of HMAX.  

This raises the further issue of why regions of concave curvature should carry 

such functional significance. Perhaps the most influential hypothesis, following the 

seminal work of Hoffman and Richards (1984), is that concavities play a key role as 

local part boundaries supporting volumetric image segmentation. But this does not 

exclude the possibility that concave regions play other roles in shape recognition and 

image classification. One important implication of the current results (and those 

reported by Leek et al., 2012) is that object recognition makes use of local depth 

information at least to the level of the 2
1
/2D sketch (Marr & Nishihara, 1978), and 

does not rely solely on 2D image features computed from the retinal input. In this 

respect also, these findings present a challenge to object recognition models that are 

based solely on 2D image-based representations.  

 One implication of this finding is that local shape analysis strategies during 

perception are „hard-wired‟ in the sense of being invariant to task requirements - at 

least across the range of tasks tested here. Under the current context, the suggestion of 

„hard-wired‟ mechanism is consistent with recent (Amir, Biederman & Hayworth, 

2011) findings that adults and infants as young as 5 month-old, looked first and adults 

looked longer at simple volumetric shapes containing curved contours, as opposed to 
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straight contours, thus shapes containing high curve value produced larger blood 

oxygenated level dependent (BOLD) activity in the adult‟s shape selective cortex 

(Lateral Occipital Cortex). This finding implies that perceptual mechanisms directing 

attention to informative object segments exist from early infancy and are not affected 

by language, geometry training or cultural values.  

 This hypothesis is intuitively appealing in that during everyday recognition 

observers cannot entirely predict when unfamiliar objects might become relevant to 

their immediate or future goals and intentions.    

 The current pattern of results raises the question whether shape recognition is 

invariant to classification level, or whether the same kind of perceptual shape analyses 

processes/information underlies the classification of basic and subordinate levels. On 

the other hand, perceptual strategies could be different for basic and subordinate level 

of classification, but basic level of classification takes part before the subordinate 

level, which reflects in our findings.  

 However, it remains to be determined whether the observed patterns of shape-

analyses found here will generalise across other tasks, including, for example, those 

related to the computation of shape representations for reaching and grasping (e.g., 

Land et al., 1999.
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Chapter 7 

7.1. Experiment 4 

 This experiment builds upon and extends the preceding study in order to 

determine whether extending the training time from three to four hours would result in 

a greater level of training effect, as measured by the Response time and Accuracy 

performance. In addition we modified the number of exposures for each object at pre-

and post-test, thus each object was presented only once. This modification was made 

in order to allow us to measure the participant‟s performance by avoiding potential 

priming effects (increased sensitivity to previously presented stimuli). Also, we wanted 

to analyse the first exposure to each novel object in pre and post tests, which would 

give us a clearer picture of actual changes in performance (reaction time, accuracy and 

fixation locations) between pre and post tests.  

 
Participants 

 Participants were 36 undergraduate and postgraduate students from Bangor 

University, participating in exchange for course and printer credits. Twelve of the 

participants were assigned to the Subordinate training group (11 females age M = 

22.33, SD = 5.43), twelve to the Basic group (7 females age M = 20.92, SD = 3.91) and 

twelve to a No-training Control group (6 females, age M = 26.17, SD = 5.75). All the 

participants reported normal or corrected to normal vision and two were left handed.  

 The Stimuli, Apparatus, Design, and Procedure were similar to Experiment 3 

with the difference being that the training phase was extended from three to four hours, 

and in the pre-test phase we presented each stimulus only once, equalling the total of 

18 trials. 
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Training 

 The training procedure was extended by one hour and the total amont of 

individual training was four hours. 

 Pre- and post-tests  

 The pre-and post-tests were similar to the previous experiment (Classification 

2), with the difference that each object was presented only once (18 trials). 

7.1. Behavioural data analyses  

 Training data – The Basic and Subordinate group demonstrated learning and 

improved performance over the four training sessions. For the Subordinate group (see 

Figure 47), Session 2 produced a mean improvement of 19.96 ms (SD = 37.49), this 

performance gain increasing gradually to 135.01 ms (SD = 32.02) by Session 3; a total 

improvement of 221.45 ms (SD = 46.73) overall. Response accuracy also improved 

commensurately from 68%, to 91%, 96%, and 97% for Sessions 1, 2, 3 and 4 

respectively. Wilcoxon tests showed this trend of improved response performance to 

be significant between Sessions 1 and 2, Z = -3.074, p = .002, Sessions 2 and 3, Z = -

2.299, p = .021, and Sessions 1 and 4, Z = -3.063, p = .002. Paired sample t-tests 

showed a trend of faster RT performance to be significant between Sessions 1 and 3, t 

(11) = 3.24, p = .008; Session 3 and 4, t (11) = 2.47, p = .031; and overall between 

Session 1 and 4, t (11) = 3.50, p = .005. 

 A similar pattern of results was obtained for the Basic group (see Figure 46), 

with mean response time decreasing from 832.85 ms (SD = 170.70), to 700.93 (SD = 

187.99), and over the four sessions showing an improvement of 131.91 ms between 

first and last sessions. Response accuracy also improved commensurately from 96%, 

in session 1 to 98% in sessions 2, 3, and 4. Wilcoxon tests showed this trend of 
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improved response performance to be significant between Sessions 1 and 2, Z = -

2.986, p = .003. Paired sample t-tests of the mean reaction time showed a trend of 

improved response performance to be significant between Sessions 1 and 2, t (11) = 

7.13, p < .0001, and overall between Sessions 1 and 4, t (11) = 4.92, p < .0001. 

  

Figure 46 Mean RTs for Basic and Subordinate group across four training sessions. 

Bars show standard error of the mean. 

 

 A mixed 2 x 4 ANOVA with Between Subject factor of experimental Group 

and Within Subjects of Session  showed a significant main effect of Group F (1, 11) = 

21.91, p =.001, ηp² = .666, and Session, F (3, 33) = 14.88, p < .0001, ηp² = .575. There 

was also a significant interaction between Group and Session, F (3, 33) = 8.03, p 

<.0001, ηp² = .422. Post-hoc analyses of mean RTs between both groups were 

significant for session 1, 2, 3, and 4, p = .005, p < .0001, p = .001, p =. 003 

respectively. These results show a significant improvement in RTs within and between 

the two groups. The group trained to categorise objects to a basic level was 

significantly faster than the group trained to subordinate categorisation in all the 

training sessions, in line with previous findings proposing that the basic level of 

categorisation is the entry level in object categorisation (e.g. Tanaka & Taylor, 1991). 
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Sequential matching task: pre and post tests  

Accuracy 

 The data from four participants in the Subordinate group and one participant 

from Control group were excluded because of low accuracy rates (< 60%). The overall 

accuracy for Subordinate, Basic and Control group can be seen in Table 14 below.  All 

three groups performed more accurately in the Basic test (82.8 %; SE =.036) than in 

the Subordinate test (89.7%; SE = .033) for both pre- and post-tests.  

 

Table 14 The accuracy rates for Subordinate, Basic, and Control group for each phase 

(pre-test and post-test), and Test-type (subordinate and basic).  Standard error of the 

mean is shown in parentheses. 

 

_____________________________________________________________________  
                                                  Pre-test phase                           Post-test phase   

                                             Subordinate     Basic                Subordiante       Basic                      
             Mean accuracy (%)                    Mean accuracy (%) 

 
  
Subordinate group              .76 (.043)           .83 (.030)            .88 (.035)        .92 (.061) 

       

Basic group                         .75 (.041)           .91 (.023)            .91 (.037)        .99 (.007) 

 

Control group                      .80 (.033)           .85 (.038)            .87 (.026)        .88 (.039) 

 

Reaction times  

 The data from five participants from the Subordinate group was excluded from 

the analyses. The reason for this was low accuracy performance in four of the cases (< 

60%), and lack of training effects in the remaining one case. Similarly, one participant 

with less than 60% correct performance from the Control group was also excluded 

from the analyses. For the remaining data only correct trials were analysed. 

The response performance on pre-test and post test scores for Subordinate Basic, and 

Control groups can be seen in Table 15 below: 
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Table 15 The mean reaction time for Subordinate, Basic, and Control group for each 

phase (pre-test and post-test), and Test-type (subordinate and basic).  Standard error of 

the mean is shown in parentheses. 

_____________________________________________________________________  

                                    Pre-test phase                                 Post-test phase   

                                 Subordinate    Basic                       Subordinate      Basic                      
                             Mean RT (SE)     Mean RT (SE)          Mean RT (SE)     Mean RT (SE)                                                                   

 

  

Subordinate group    873.93 (26.93)  880.68 (37.47)       793.50(43.58)   813.82 (26.15) 

       

Basic group               896.10 (28.83)  939.76 (23.46)       934.19(42.34)  793.08 (20.77) 

      

Control group            851.86 (61.59)  850.83 (31.49)      902.55(42.88)   869.83 (38.96) 

 

 

 The Subordinate group difference in performance for pre-post subordinate tests 

was 80.43 ms, and 66.86 ms difference for basic tests. The Basic group difference in 

performance for pre-post subordinate tests was -38.09 ms, and 146.68 ms for basic 

tests (see Figure 47). 

 This shows that both Basic and Subordinate groups had an effect of training as 

each group responded quicker and more accurately on the test-type relevant to their 

training. The Control group did not show improved performance in any of the post 

tests.  
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Figure 47 Mean RTs per group, for each phase (pre-test and post-test) for each Test-

type (subordinate and basic). Bars show standard error of the mean (%). 

 

  A within group 2 x 2 ANOVA for the Subordinate Group showed a significant 

main effect of Phase, F (1, 6) = 11.31, p =.015, ηp² = .653. There were no other main 

effects or interactions. Paired t- tests showed no significant difference between the 

subordinate pre and post test, p = 0.190ns, and between the basic pre-and post-test, p 

=0.149ns. 

 A within group 2 x 2 ANOVA for the Basic Group showed a significant main 

effect of Phase, F (1, 11) = 5.02, p =.047, ηp² = .313, and an interaction between Phase 

and Test-type, F (1, 11) = 9.37, p =.011, ηp² = .460. There were no other main effects 

and interactions. Paired t-tests showed a significant difference between the basic pre 

and post test, p <.0001, which was not evident between the subordinate pre and post 

tests, providing evidence that the Basic group improved their performance selectively 

as a function of training. 

 A within group 2 x 2 ANOVA for the Control Group showed no significant 

main effect of Phase, F (1, 10) = .569, p =.469ns, ηp² = .054, Test-type, F (1, 10) = 

.161, p =.696ns, ηp² = .016, and no interactions.   
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 A mixed 3 x 2 x 2 analysis of variance (ANOVA) with a Between Subject 

factor of experimental Group and a Within Subject factor of  Phase (pre-test or  post-

test) x Test-type (Subordinate or Basic)  showed  no significant main effects or 

interactions.   

 These results provide evidence that both training groups changed their 

performance following training, whereas the Control group did not show any 

significant changes between the pre-test and post-test. The latter finding is different 

compared to the results in Experiment 3 where the Control group showed a significant 

change between pre and post tests despite the lack of training. One possible 

explanation is that the number of object presentations (218) for each pre and post test 

could have resulted in priming effects which are not evident in the current study due to 

reduction of the number of the objects presented  (18) in both tests.   

7.1.2. Analyses of eye movement data 

Analyses between groups 

  A 3 (Group: Subordinate, Basic, Control) x 2 (Phase: pre, post) x 2 (Test-type: 

Subordinate, Basic) x 3 (Model: Concave, Convex, Visual saliency) ANOVA showed 

a significant main effect of Model, F (2, 102) = 68.41, p < .0001, ηp² = .573, and Test-

type, F (1, 51) = 15.00, p < .0001, ηp² = .227, along with a two way interaction 

between Model and Phase, F (2, 102) = 10.94, p < .0001, ηp² = .177. There were no 

other main effects or interactions. Post-hoc pairwise comparisons (Bonferroni) 

between each model were all significant for Concave vs. Convex, p < .0001, Concave 

vs. Visual saliency, p <.0001, and Convex vs. Visual saliency, p =.001. 

 The above Model vs. Phase interaction implies that some of the three groups 

have an effect of training while the other did not. To investigate this further, we 

performed within group analyses.  
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Analyses within group 

Basic group 

 A 2 (Model: Concave, Convex) x 2 (Phase: pre, post) x 2 (Test-type: 

Subordinate, Basic) within subjects ANOVA showed a significant main effect of 

Model, F (1, 17) = 19.81, p < .0001, ηp² = .538, along with a two-way interaction 

between Model and Phase, F (1, 17) = 7.84, p = .012, ηp² = .316. There were no other 

main effects or interactions (see Figure 48). Post-hoc pairwise comparison of pre-test 

phase (Bonferroni) between both models was significant for basic, p < .0001, and 

subordinate, p < .0001 tests respectively. This indicates that the concave preference 

was less at post-training. 

 

 

Figure 48 MMC for Basic group for each phase (pre-test and post- test) and each Test-

type (subordinate and basic) for concave and convex models relative to visual 

saliency. Bars show standard error of the mean (%). 
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Subordinate Group 

 A 2 (Model: Concave, Convex) x 2 (Phase: pre, post) x 2 (Test-type: 

Subordinate, Basic) within subjects ANOVA showed a significant main effect of 

Model, F (1, 17) = 10.54, p = .005, ηp² = .383, along with two-way interaction between 

Model and Phase, F (1, 17) = 6.44, p = .021, ηp² = .275. There were no other main 

effects or interactions (see Figure 49). Post-hoc pairwise comparison for pre-test 

(Bonferroni) between both models was significant for the basic, p = .002, and 

subordinate, p = .006 tests respectively. This indicates that the concave preference was 

less at post-training. 

 

Figure 49 MMC for Subordinate group for each phase (pre-test and post-test) and 

each Test-type (subordinate and basic) for concave and convex models relative to 

visual saliency. Bars show standard error of the mean (%). 

 

Control Group 

 A 2 (Model: Concave, Convex, Visual saliency) x 2 (Phase: pre, post) x 2 

(Test-type: subordinate, basic) within subjects ANOVA showed a significant main 

effect of Model, F (1, 17) = 17.40, p < .0001, ηp² = .506. There were no other main 

effects or interactions (see Figure 50). Post-hoc pairwise comparison for pre-test 

(Bonferroni) between both models was significant for basic, p =.027, and subordinate, 
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p =.002 tests. There was also a significant pairwise comparison for the post-

subordinate test, p =.002. 

 

Figure 50 MMC for Control group for each phase (pre-test and post-test) and each 

Test-type (subordinate and basic) for concave and convex models relative to visual 

saliency. Bars show standard error of the mean (%). 

 

 In order to test whether there is a difference in the fixation data across models 

regardless of training, we collapsed the data across group for each test (Subordinate, 

Basic) and phase (pre-test, post-test), (see Figure 51). A 2 (Phase: pre, post) x 2 (Test-

type: Subordinate, Basic) x 3 (Model: Concave, Convex, Visual saliency) ANOVA 

showed a significant main effect of Model, F (2, 34) = 37.07, p < .0001, ηp² = .686, 

and Test-type, F (1, 17) = 13.95, p = .002, ηp² = .451, along with a two way interaction 

(Model and Phase), F (2, 34) = 8.90, p = .001, ηp² = .344. Post-hoc pairwise 

comparisons (Bonferroni) between each model were significant for Concave vs. 

Convex, p <.0001, Concave vs. Visual saliency, p <.0001, and for Convex vs. Visual 

saliency, p =.009. 
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Figure 51 MMC collapsed across groups for each phase (pre-test and post-test) and 

for each Test-type (subordinate and basic) for concave and convex models relative to 

visual saliency. Bars show standard error of the mean (%). 

7.1.3. Saccade amplitude and dwell time analyses 

 
 Saccade amplitude  

 

 The overall mean saccade amplitude for pre-mask Image 1 for the Subordinate 

and Basic groups can be seen in Table 16 below.  

Table 16 The mean saccade amplitude (SA) for pre-mask Image 1 for the Subordinate, 

Basic, and Control group for each phase (pre-test and post-test), and Test-type 

(subordinate and basic).  Standard error of the mean is shown in parentheses. 

____________________________________________________________________  
                                           Pre-test phase                                Post-test phase   

                                      Subordinate    Basic                      Subordinate    Basic 

 
                                      Mean SA (SE)   Mean SA (SE)          Mean SA (SE)   Mean SA (SE)                                                              

 

  

Subordinate group         3.83 (0.47)     3.51 (0.45)            3.50 (0.41)      3.17 (0.50) 

  

Basic group                  4.11 (0.39)     3.40 (0.28)               3.70 (0.41)      2.99 (0.29) 
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 The overall Mean saccade amplitude for post-mask Image 2 for the Subordinate 

and Basic groups can be seen in Table 17 below.  

 

Table 17 The mean saccade amplitude (SA) for post-mask Image 2 for the 

Subordinate, Basic, and Control group for each phase (pre-test and post-test), and 

Test-type (subordinate and basic).  Standard error of the mean is shown in 

parentheses. 

____________________________________________________________________  
                                          Pre-test phase                               Post-test phase   

                                      Subordinate     Basic                   Subordinate    Basic 

 
                                     Mean SA (SE)     Mean SA (SE)         Mean SA (SE)      Mean SA (SE)                                                              
 

  

Subordinate group       3.94 (0.72)          1.97 (0.40)           3.40 (0.57)       1.78 (0.38) 

  

Basic group                 4.11 (0.56)          2.56 (0.53)          3.85 (0.53)        2.37 (0.38) 

  

                   

 

 

 
 A mixed 2 x 2 x 2 x 2 analysis of variance (ANOVA) with a Between Subject 

factor of experimental Group and Within Subject of  Phase (pre-test or  post-test) x 

Test-type (Basic or  Subordinate) x Image (pre-mask Image 1 or post-mask Image 2)  

showed a significant main effect of Phase, F (1, 17) = 6.66, p =.029 ηp² = .250, and 

Image, F (1, 17) = 17.63, p =.001, ηp² = .509.The data also showed a two way 

interaction, between Phase and Image, F (1, 17) = 16.85, p =.001, ηp² = .498. 

 A within group 2 x 2 x 2 ANOVA for the Basic Group showed a significant 

main effect of Image, F (1, 11) = 11.97, p =.005, ηp² = .521. The data also showed a 

two way interaction, between Phase and Image, F (1, 11) = 6.91, p =.023, ηp² = .386. 

Paired t-tests between Image 1 (see Figure 52 a) and Image 2 (see Figure 52 b) showed 

a significant difference for the basic post-test, (Image 1, M = 2.99, SD = 1.01, Image 2, 
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M = 2.37, SD = 1.29), p =.027. There were no other significant differences between 

pre-and post tests. 

 A within group 2 x 2 x 2 ANOVA for the Subordinate Group showed a 

significant main effect of Image, F (1, 7) = 7.31, p =.035, ηp² = .547.  The data also 

showed a two way interaction, between Phase and Image F (1, 7) = 8.49, p =.027, ηp² = 

.586. Paired t- tests between Image1 and Image 2 showed a significant difference for 

the basic pre-test Image 1, (M = 3.51, SD = 1.55), and basic pre-test Image 2, (M = 

1.78, SD = 1.37), p =.021. There were no other significant differences between Image 

1 and Image 2 for pre-and post tests.  
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(b) 

 

 
Figure 52 a) Mean saccade amplitude (degrees) for Basic and Subordinate group for 

each phase (pre-test and post-test) and Test-type (subordinate and basic) for Image 1. 

Bars show standard error of the mean (%). (b) Mean fixation amplitude (degrees) for 

Basic and Subordinate group for each phase (pre-test and post-test) and Test-type 

(subordinate and basic) for Image 2. Bars show standard error of the mean (%). 

Dwell time analyses 

 The overall mean dwell times for pre-mask Image 1 for the Subordinate and 

Basic groups can be seen in Table 18 below.  

Table 18 The mean dwell times (DT) for pre-mask Image 1 for the Subordinate and  

Basic for each phase (pre-test and post-test), and Test-type (subordinate and basic).  

Standard error of the mean is shown in parentheses. 

____________________________________________________________________  
                                         Pre-test phase                            Post-test phase   

                                     Subordinate    Basic                  Subordinate    Basic 

   
                                     Mean DT (SE)   Mean DT (SE)      Mean DT (SE)    Mean DT (SE)                                                              
 

  

Subordinate group       179.25 (8.02)   182.63 (9.81)      188.95 (10.88)   209.63 (15.64) 

  

Basic group                 168.31 (5.71)   180.48 (8.67)      166.70  (6.90)   165.85   (7.61) 
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 The overall Mean dwell times for pre-mask Image 2 for the Subordinate and 

Basic groups can be seen in Table 19 below.  

Table 19 The mean dwell times (DT) for post-mask Image 2 for the Subordinate and 

Basic group for each phase (pre-test and post-test), and Test-type (subordinate and 

basic).  Standard error of the mean is shown in parentheses. 

____________________________________________________________________  
                                       Pre-test phase                             Post-test phase   

                                   Subordinate    Basic                   Subordinate    Basic 

 
                                   Mean DT (SE)     Mean DT (SE)          Mean DT (SE)      Mean DT (SE)                                                              

 
  
Subordinate group     218.31  (8.90)  207.98 (12.25)      213.41 (14.92)  199.41 (16.72) 

  

Basic group               195.69 (10.50)  237.64 (34.66)     193.46 (13.55)   207.02 (12.25) 

  

                   

 

 A mixed 2 x 2 x 2 x 2 analysis of variance (ANOVA) with a Between Subject 

factor of experimental Group and Within Subject of  Phase (pre-test or  post-test) x 

Test-type (Basic or  Subordinate) x Image (pre-mask Image 1 or post-mask Image 2)  

showed a significant main effect of Phase, F (1, 17) = 11.77, p =.003,ηp² = .409. The 

data also showed a two way interaction, between Phase and Test-type, F (1, 17) = 

4.89, p =.041, ηp² = .223. 

 A within group 2 x 2 x 2 ANOVA for the Basic Group showed a significant 

main effect of Image, F (1, 11) = 9.34, p =.011, ηp² = .459. There were no other main 

effects or interactions. Paired t- tests between Image 1 and Image 2 showed a 

significant difference for the subordinate pre test (Image 1, M = 168.31, SD = 19.79, 

Image 2, M = 195.68, SD = 36.35), p =.004, and the basic post test Image 1, M = 

165.84, SD = 26.36, Image 2, M = 207.02, SD = 42.42), p =.001. There were no other 

significant differences between pre-and post tests. 
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 A within group 2 x 2 x 2 ANOVA for the Subordinate Group showed a 

significant main effect of Image, F (1, 7) = 20.50, p =.004, ηp² = .774.  The data also 

showed a two way interaction, between Phase and Image, F (1, 7) = 6.82, p =.040, ηp² 

= .532. Paired t- tests between Image 1 (see Figure 53 a) and Image 2 (see Figure 53 b) 

showed a significant difference for the subordinate pre test, (Image 1, M = 179.25, SD 

= 27.76, Image 2, M = 218.31, SD = 30.84), p <.0001. There were no other significant 

differences between pre-and post tests. 
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Figure 53 a) Mean dwell time (ms) for Basic and Subordinate group for each phase 

(pre-test and post-test) and Test-type (subordinate and basic) for Image 1. Bars show 

standard error of the mean (%). (b) Mean dwell time (ms)) for Basic and Subordinate 

group for each phase (pre-test and post-test) and Test-type (subordinate and basic) for 

Image 2. Bars show standard error of the mean (%). 

           Summary of the Results 

Training data 

- Both training groups significantly improved their RTs between Session 1 and Session 

4, and demonstrated over 91% accuracy post training. 

Behavioural data  

- The RTs showed that each training group improved their post-test mean performance 

as a function of training, but only the Basic group showed a significant specific effect 

in the basic task. The Control group did not improve their performance in the post-

basic test. 

Eye movement data 

- The Basic training group showed a main effect of Model. There was also a two-way 

interaction between Model and Phase. The data-model correspondence was higher for 

the Concave model than for the Convex model, but was only significant in pre-tests 

indicating less post-test concave preference.  

- The Subordinate training group eye movement results showed a significant main effect 

of Model. There was also a two-way interaction between Model and Phase. The data-

model correspondence was higher for the Concave model than for the Convex model, 

but was only significant in pre-tests indicating less post-test Concave preference.  

- The Control group showed a significant main effect of Model. The data-model 

correspondence was significantly higher for the Concave model compared to the 

Convex model, in both pre-tests, as well as in the post-subordinate test. 



Chapter 7  175 

 

- Across groups analyses for each test-type and phase showed main effects of Model 

and Test-type along with a two way interaction between Phase and Model.  

- Data-model correspondences between each model were significantly higher for the 

Concave model, than the Convex and the Visual saliency models.  

- Saccade amplitude analyses  

- Within group analyses for the sequential matching tests for the two training groups 

(Basic and Subordinate) showed that each group had a significantly higher saccade 

amplitude for  Image 1 than for Image 2, suggesting that the participants changed their 

viewing strategies between the initial encoding and the subsequent recognition. 

Dwell time analyses 

- Within group analyses for the sequential matching tests for the Basic group and 

Subordinate groups showed a main effect of Image as well as significantly shorter 

dwell times for Image 1 than for Image 2, showing different viewing strategies 

between the initial encoding and the subsequent recognition.  

 

7.1.4. Conclusions 

 In the current study, similarly to Experiment 3, we used fixational eye 

movement patterns to examine local shape analysis processes during object shape 

categorisation in experts and novices.  In pre-test phases, observers sequentially 

matched visually similar novel objects to a basic and subordinate level of 

classification. Post-training, the basic and subordinate experts performed the same 

tasks as in the pre-test. In this experiment the training was extended from three hours 

(in Experiment 3), to four hours. Observers at the basic-training group were faster and 

more accurate at making basic judgment following training. Observers at the 

subordinate-training group were faster and more accurate at making subordinate 
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judgment following training. The analyses of RT and accuracy data showed that both 

groups improved their performance as a function of training, although only the basic 

training group showed specific training effects. The Control group showed no 

improved performance in both post-tests.  

 The main finding revealed a consistent pattern of data-model correspondences 

across tasks. During both basic and subordinate matching tasks in pre-test we found 

evidence that fixation patterns are predominantly driven by shape information defined 

by internal regions of concave surface discontinuity regardless of expertise or level of 

categorisation (basic or subordinate). The data are consistent with models of object 

recognition which posit a special functional status to concave image regions in object 

representation (e.g., Biederman, 1987; Hummel & Stankiewitz, 1996; Leek, Reppa, 

Rodriguez & Arguin, 2009; Leek, Reppa & Arguin, 2005; Marr & Nishihara, 1978), 

and they present a challenge to models which do not. Among the latter models are 

some recent Image-based models of recognition (e.g., Edelman & Weinshall, 1991; 

Riesenhuber & Poggio, 2006; Ullman & Basri, 1991), including HMAX (Serre, Oliva 

& Poggio, 2007; Serre, Wolf, Bileschi, Riesenhuber & Poggio, 2007). In order to 

account for these data, these models would require modification to include a level of 

feature representation which makes explicit the sign of curvature – for example, in the 

C2 layer of HMAX.  

 Interestingly, a contradictory to Experiment 3 finding is that the concave 

preference was not evident at post-test where no significant difference was found 

between concave and convex models. One possible explanation of this finding is the 

suggested two-stage model of perceptual category learning (Ashby & Spiering, 2004; 

Nosofsky, 1986; Riesenhuber & Poggio, 2000; Sigala, 2004; Thomas et al., 2001). In 

this model, high level shape representation can be activated for different tasks using 

http://www.ncbi.nlm.nih.gov/pubmed/15537987
http://www.ncbi.nlm.nih.gov/pubmed/2937873
http://www.ncbi.nlm.nih.gov/pubmed/11127838
http://www.ncbi.nlm.nih.gov/pubmed/14739004
http://www.ncbi.nlm.nih.gov/pubmed/11244545
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the same stimuli in order to improve discrimination of these stimuli relative to 

untrained participants (Jiang et. al., 2007). In Experiment 4 it appears that both types 

of local image curvature information (concave and convex) have been employed 

during the post sequential matching task.  

  Although a large body of research supports the special status of curvature 

discontinuities in object representation, and a privileged role has been proposed for 

concave curvature discontinuities (e.g. Attneave, 1954; Barenholtz, Cohen, Feldman 

& Singh, 2003; Bertamini, 2008; Biederman, 1987; Cate & Behrmann, 2010; Cohen, 

Barenholtz, Singh & Feldman, 2005; Cohen & Singh, 2007; De Winter & Wagemans, 

2006; Feldman & Singh, 2005; Hoffman & Richards, 1984; Hoffman & Singh, 1997; 

Lim & Leek, 2012) there is a number of studies proposing that convex curvature 

discontinues also have an important role. For example, resent psychophysical study 

demonstrated that high level visual cortex areas (LOC) are more sensitive to changes 

in convex than in concave shapes (Houshofer, Baker, Livingstone & Kanwisher, 

2008). Moreover, previous research found that recognition performance (e.g. Driver & 

Baylis 1995), perceptual judgment of location (e.g. Bertamini, 2001), and shape 

similarity (Subirana-Vilanova & Richards 1996) are more accurate for convex, rather 

than concave image features. 

 However, possible factors for the apparent concave/convex post-test preference  

which was not evident in Experiment 3, could be attributed to the changes made in the 

current study in terms of extended training time and reduced number of image 

exposures in pre-and post-test. Nevertheless, investigating the exact magnitude and 

reasons for changes in preference between concave and convex curvature during 

different task requirements (e.g. number of trials, training trials) is out of the scope of 

this thesis, although it would be addressed in more detail in further studies. 
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 These findings are to some extent consistent with the results from Experiment 3 

and add to the importance of curvature singularities in the visual perception of shape 

(e.g., Attneave, 1954; Barenholtz Cohen & Singh, 2003; De Winter & Wagemans, 

2006; Feldman & Singh, 2005; Hoffman & Richards, 1984; Hoffman & Singh, 1997). 

The previously found preference for fixation at regions of concave surface 

discontinuity regardless of task (basic vs. subordinate) or phase (pre vs. post) was not 

entirely replicated in this study, and this provides further information of the 

complexity during object shape representation. 

 The analyses of the saccade amplitude and dwell time showed no significant 

differences post-training. However, saccade amplitude was shorter and dwell time 

longer in Image 2, showing the expected pattern associated with recognition tasks. 

Moreover, the lack of significant change between pre and post tests was consistent in 

both types of analyses (e.g. saccade amplitude/dwell times and data-model 

correspondence), showing the systematic nature of the findings. 
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 Chapter 8 

 8.1. Experiment 5  

 In the previous four experiments we have found how eye movement patterns 

can be used to elucidate shape analysis strategies during a variety of visual perception 

tasks (active learning, passive viewing, and basic or subordinate level of 

categorisation). However these tasks did not involve any form of motor interaction, 

such as imaginary reaching or grasping the objects. The goal of the current short study 

was to extend the analyses of the concavity effect across tasks and to examine how eye 

movements could be used to elucidate differences in shape analysis strategies in tasks 

of object recognition and the planning of imaginary grasping actions.  

 One dominant, but still controversial hypothesis attempting to explain how we 

transform the information from the visual input into motor acts is the two-stem 

hypothesis (Ungerleider & Mishkin, 1982; Goodale &Milner, 1992). This hypothesis 

was originally proposed by Ungerleider and Mishkin (1982) who suggested that the 

two visual pathways arising from V1 (ventral stream and dorsal stream) are involved 

in different aspects of the visual perception. The authors proposed that the ventral 

stream (also called the „what‟ pathway) was involved in processing of visual features 

for object identification, whereas the dorsal stream (also called the „where‟ pathway) 

was involved in processing the objects spatial location. Underleider and Mishkin 

(1982) proposed the theoretical possibility of objects identification and spatial location 

to be initially processed together followed by separate analyses in the two different 

pathways, and ultimately reintegrated. There is some neuropsychological evidence 

suggesting the possibility of two pathways for processing visual information. For 
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example, Levine, Warach and Farh (1985) reported dissociations between images for 

visual and spatial information in ventral and dorsal lesion patients. 

 Goodale and Milner (1992) proposed a somewhat different hypothesis, 

suggesting that the ventral stream is primarily involved in perceptual object 

representation, whereas the dorsal stream mediates the visual control for directing 

actions towards objects. The authors suggested that visual object information (i.e., 

object features) is processed by both streams, but used for different purposes; hence 

the input is the same but the output is different. Moreover, this suggests differential 

operations and transformations on the input. Hence, it can be assumed that in the 

ventral stream the object features are transformed to create a representation of an 

object, whereas in the dorsal stream the same object features are transformed in a 

different way in order to direct action to that object (James & Kim, 2010). A number 

of neuropsychological studies (Jennerod, 1988; Perenin & Vighetto, 1988) provided 

support for the dorsal stream function proposed by Goodale and Milner (1992). For 

example, patients with parietal lesions were reported to have difficulties in forming an 

appropriate grasp size, or orientation of objects, although they were able to correctly 

describe the object spatial location. 

 However, although both Ungerleider and Mishkin (1982) and Goodale and 

Milner (1992) disagree on the dorsal stream‟s function, they agree that the ventral 

stream is involved in object representation.  

 Relatively few studies have investigated gaze patterns of participants 

performing both perception and action tasks to the same objects. Brouwer, Franz, and 

Gegenfurtener (2009) investigated fixation locations during either grasping or viewing 

tasks to novel shapes. The authors reported that first saccades were directed towards 

the Centre of Gravity (COG) in both tasks whereas during the grasping task, they 
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focused on the upper part of the object associated with an index finger location 

(Desanghere & Marotta, 2008; de Grave, Hesse, Browler & Franz, 2008). 

 Similar findings were demonstrated in a recent study (Desanghere & Marotta, 

2011) examining the fixation patterns for computer generated and real objects, in a 

reaching/grasping and object perception task. The authors‟ reported similar fixation 

patterns for both tasks. In the grasping task the participant‟s initial fixations were 

directed towards the top edge of the object, which is considered to be a part associated 

with index finger location.  Subsequently the fixations were directed towards the COG.  

This fixation pattern was reversed during the perceptual task, thus the initial fixations 

were directed towards COG, followed by fixation to the top edge of the object. 

Although the sequence of the observed fixation patterns was different, the object areas 

covered occurred between COG and the top edge of the objects during all the tasks. 

The Desanghere and Marott (2011) study provides evidence for consistent fixation 

locations during object perception and action; however, it is not clear what local image 

properties were located in the areas fixated.  

Gaze control is a considered to be an active process where relevant information is 

extracted from the environments in order to complete the task in hand (Henderson, 

2003) and previous research has shown that eye movement in general precede hand 

movements in a variety of tasks such as pointing (van Donkelaar et al., 2004), or 

manipulation of objects (Hayhoe & Ballard, 2005).  

 Although it is to some extend an over-simplification of the true functional 

significance of the visual cortex, one interesting theoretical question is whether there 

is a single object representation and its information is used in a different way to fit 

with task demands (e.g. recognition or reaching), or whether there are separate object 

representations for different tasks.  
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Thus, the question we ask is whether fixation patterns will vary across the different 

tasks (e.g. motor-imagery, recognition) and what local image properties are 

predominantly observed in the motor-imagery task.  

8.1.1. Method 

 
Participants  

 30 students from Bangor University (21 female, mean age 22.00 years, SD = 

7.07 (3 right handed) participated in the study for course credit. All participants had 

normal or corrected to normal visual acuity. Informed consent was obtained from each 

participant prior to testing in line with local ethics committee and BPS guidelines. 

Stimuli  

 Each of the twenty four novel objects (for example see Figures 54 and 55) 

consisted of a unique spatial configuration of four volumetric parts. The parts were 

uniquely defined by variation among non-accidental properties (NAPs) comprising: 

Edges (Straight vs. Curved), symmetry of the cross section, tapering (collinearity) and 

aspect ratio (Biederman, 1987). 

 

Figure 54 The 12 novel object stimuli used as targets in the current study. 
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Figure 55 The 12 novel object stimuli used as distracters in the current study. 

 

 These object models were produced using Strata 3D CX software (Strata, USA) 

and rendered using a single light source (top left) and scaled to fit within an 800 x 800 

pixel frame. All stimuli were uniformly coloured in mustard yellow: R = 227, G = 190, 

B = 43; Hue = 32, Saturation = 184, Luminance = 127. A ground shadow was removed 

from the images. Stimuli subtended 18 degrees of visual angle horizontally from a 

viewing distance of 60 cm. This scale was chosen to induce saccadic exploration over 

the stimuli. Versions of each model were created depicting the object from each of six 

different viewpoints at successive 60 degree rotations in depth around a vertical axis 

perpendicular to the line of sight. The zero degree viewpoint was a „canonical‟ three-

quarter view (see Figure 56). The 0, 120 and 240 degree versions served as training 

viewpoints, and the 60, 180 and 300 degree versions as novel test viewpoints. 
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Figure 56An illustration of the three trained (0, 120, 240) and three novel viewpoints 

(60, 180, 300) used. 

 

Apparatus 

 A Tobii 1750 eye tracking system was used to record eye-movement data. This 

apparatus allows for high precision binocular tracking with 0.5 degrees accuracy, 0.25 

degrees spatial resolution, and drift < 1 degree. Stimuli were presented on a TFT 

monitor running at a resolution of 1280 x 1024 pixels and 60 Hz refresh rate. Mean 

surround luminance was 114.7cd/m2 (SD = 0.25cd/m2) – averaged over two 

independent runs using a Minolta CS-100 photometer. A chin rest was used to stabilize 

the participant‟s head at a 60cm viewing distance and a standard USB keyboard was 

used for response collection.  

Design and Procedure  

 Initially each participant completed a calibration on the eye-tracker, where a 

static blue dot appeared randomly in each of 9 possible screen locations. Eye position 

and known screen position was recorded which allowed a transformation matrix to be 

constructed (via a linear interpolation method, which was used to determine gaze 
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position from eye position). Prior to continuing beyond the calibration stage, the 

calibration results were visually inspected to ensure that a sufficiently good calibration 

was performed.  

 The study comprised two phases: Planning and executing an imagined 

movement to novel objects (Task 1), and Memorisation and recognition of novel 

objects (Task 2). The Recognition Memory task was divided further into a 

Memorisation task and Test phase.  All subjects completed both phases, and their eye 

movements were recorded during each task.  For counterbalancing, targets were split 

into two groups. The participants in Group 1 (n = 8) used six of the stimuli (1 to 6) as 

targets in Task 1, and six stimuli (7 to12) as targets in Task 2. The remaining twelve 

stimuli were split between the two groups and served as distracters in the Test phase. 

For Group 2 (n = 8) this assignment was reversed. Participants were randomly 

assigned to each group. 

 In the Planning movement phase (36 trials each) participants viewed six objects 

each at six different viewpoints (0, 60, 120, 180, and 240 degrees). Following fixation 

at either left or right side of the screen, stimuli were presented centrally for 5 seconds 

and the participants were asked to plan and imagine picking up the object on the screen 

by „using‟ their thumb and forefinger.  Subsequently the participants were required to 

indicate (by two mouse clicks) where they have placed, first their thumb, and second 

forefinger (see Figure 57). The participants were told that accuracy is more important 

than speed.  
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Figure 57a) Stimuli as seen by the participants (b) Eye movements (red dots) and 

mouse clicks (yellow stars) mapped onto the colour coded mesh (single colour per 

part). 

 

 The Recognition Memory phase consisted of two tasks, Active Learning phase 

and Test Phase. In the Active Learning phase (18 trials each) participants viewed six 

(target) objects each at three different viewpoints (0, 120 and 240 degrees). The stimuli 

were presented sequentially for 5 seconds each at the centre of the screen, following a 

two second fixation at a peripheral location randomly selected either on the left or the 

right side of the screen.  

 In the Test Phase (54 trials each) participants were presented with previously 

seen target objects, plus  an additional set of six visually similar, but novel distracters 

were presented at the trained viewing angles of  0, 120 and 240 degrees  and also 

untrained (60, 180 and 300 degree) viewpoints. Following fixation at either left or 

right side of the screen, stimuli were presented centrally and were displayed until a 

response was given. The participants were asked to determine whether the presented 

3D object was one of the previously seen objects or not and respond using a key-press 

(k for „yes‟/ d for „no‟). The participants were told that accuracy is more important 
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than speed. Fixation, RT, and accuracy data were recorded as dependent measures. The 

experiment lasted about 30 minutes (including calibration). 

8.1.2. Algorithmically generated model predictions 

Generating Model Predictions 

 The predicted distributions for each model of image information content were 

algorithmically computed from the 3D object models using Matlab as in Experiment 1. 

An illustration of the predicted thresholded fixation region maps for the tested models 

can be seen in Figure 21.  

Model 1: External (bounding) Contour 

 Model 1 examined the extent to which fixation patterns focus on external 

global shape features defined by bounding contour. This hypothesis derives from 

previous work showing that outline shape influences object recognition (e.g., 

Hayward, 1998; Hayward et al., 1999; Lloyd-Jones & Luckhurst, 2002). The bounding 

contour was computed using an edge detector on the image silhouette of the stimuli. It 

was then re-plotted using lines of 0.66 degrees width (see Figure 21). This value was 

used as it produced models of a similar size as the binarised eye movement data.  

Model 2: Internal Convex Surface Discontinuity 

 Model 2 generated predicted fixation regions based on the locations of local 

features defined by convex surface curvature maxima. These were generated by 

applying a curvature estimation algorithm derived from Taubin (1995) to the object 

mesh models using the Peyre Matlab toolbox. From this we extracted edges along 

convex curvature maxima (see Figure 21). The convex features were re-plotted using 

lines of 0.66 degrees width. Edges on the exterior bounding contour were deleted. Due 

to the nature of our stimuli, convexities can be present both inside and on the bounding 

contour of an object but concavities are more likely to occur on the internal contour 
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(see Figure 21). By keeping internal features only, we are able to compute a bias free 

measure of the preference for convex or concave image features.  

Model 3: Internal Concave Surface Discontinuity 

 Model 3 generated predicted fixation regions based on the locations of local 

features defined by concave surface curvature minima (see Figure 21). The same 

curvature estimation method was used as for Model 2, except that here we extracted 

edges along concave curvature minima. As with Model 2 edges falling on external 

bounding contour were removed.  

Visual Saliency baseline 

 This model proposed that a separate map is computed for each visual feature 

(intensity, colour, and orientation) based on changes in these regions, thus increasing 

the saliency value for that particular region of the image. These separate maps are used 

to create a single saliency map where winner-take-all processes and inhibition of return 

are combined to produce a scan sequence of predicted fixations in order of decreasing 

saliency. However, since, the question of interest was whether specific models of 

shape analysis could account for fixation patterns beyond that explicable by visual 

saliency, I have used this model as a baseline contrast.  

8.1.3. Analyses of eye movement data 

 In this study we extracted mean dwell time, fixation frequency (See Table 20) 

and saccade amplitude from the eye tracker and examined low level parameters of the 

eye movement data across the two tasks (memory vs. motor -imagery). Initial 

inspection of the data showed no significant differences between both participant 

groups and the data was collapsed across groups.  
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Table 20 The mean dwell time (DT) and fixation frequency (FF) for the three 

experimental phases (reaching task, memory task and test) collapsed across groups. 

Standard deviation (SD) of the mean is shown in parentheses. 

____________________________________________________________________  

                                                        Dwell time                        Fixation frequency  

                                            

                                                           Mean DT (SD)                            Mean FF (SD)                                                        

  

 

Reaching task                           366.00 (105.00)                     6.66  (1.37) 

Memory task       289.00   (57.00)               13.10  (3.25) 

Recognition Test                       336.00   (90.00)                5.59   (1.42) 

                   

 

 A one way ANOVA on dwell times, F (2, 87) = 5.89, p = .004 revealed a 

significant main effect of task. Tukey Post-hoc tests showed a significant difference 

between the reaching task and the memorizing phase of the recognition task, p < .001 

but not with the test phase, p > 0.5.  

 A one way ANOVA on fixation frequency revealed a significant main effect of 

task, F (2, 87) = 102.42, p <. 0001. Tukey Post-hoc analyses showed a significant 

difference in the number of fixations made during the reaching task and the 

memorizing phase of the recognition, p < .001 but no significant difference with the 

test phase, p > 0.5.  

 Further analyses of the saccade amplitude showed no significant main effect of 

task, but a Tukey Post-hoc test found a significant amplitude effect between the 

reaching task (M = 4.47, SD=1.08) and the memorizing phase of the recognition task 

(M = 4.98, SD = 0.78), p = .048.  

 In addition to the previous analysis methods, here I used a novel technique 

which enabled me to map fixations from a two dimensional rendered stimulus into the 

3D mesh of the object itself (Figure 57). With this method, I computed the object parts 

on which fixations were made, and mapped the locations of the mouse clicks made by 
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the participants during the reaching task, which enabled us to relate the mouse clicks to 

a given object part. Interestingly, in 92% of the trials, participants clicked twice on a 

single part. From these 92% of trials, we identified an obvious preference for 

participants to fixate on the part of the object they planned to grasp, where 56% of the 

fixations were made within the part clicked (M = 56% SD = 17.8). During the 

memorising phase (M = 23.26, SD = 14.40) and test phase (M = 23.83%, SD = 11.33) 

of the recognition task, fixations to the clicked part decreased to a chance level (one in 

four – 25%).  

 I have also performed time bin analysis, where I re-computed the fixations 

mapped to object parts, but this time by using the first, second, third, fourth and so 

forth fixations (see Figure 58). The results showed that the first fixation was not 

predictive of the task. However, from the second fixation onwards, the strategies 

clearly changed and participants performing the motor imaginary task were much more 

likely to fixate on the single part with which they planned to interact. In contrast, 

during the recognition task the participants were equally likely to fixate any of the four 

parts. 

 In addition I have also examined the data-model correspondence for the Motor-

imagery task (see Figure 58). 
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Figure 58 Time bin analysis of the % of fixations to clicked part. Bars show standard 

error of the mean (%). 

 
Data-model correspondence for the motor-imagery task  

 A one-way ANOVA on mean MMC values across models (Convex, Concave, 

and External features) was significant, F (2, 215) = 21.10, p < .0001. Subsequent post-

hoc analyses using the Bonferroni test showed that the pairwise contrasts between 

models were significantly different for External features vs. Concave, p < .0001, and 

External features vs. Convex, p < .0001 (see Figure 59). There were no other 

significant differences. These analyses show fixation data-model correspondence 

preference for both Concave and Convex models of shape analysis, but not for the 

External features model.  
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Figure 59 Mean MMC Mx – MMC vs measure of data-model correspondences between 

models (relative to visual saliency) for the reaching task phase. Bars show standard 

error of the mean (% overlap). 

 
Summary of the Results 

 

-  Eye movement analyses revealed significantly more fixations, shorter dwell times and 

higher mean saccade amplitudes during the memory task than during the reaching task.  

-  The first fixation was not predictive of the task in hand. However, subsequent fixations 

showed that the participants in the motor imagery task preferentially fixated on a 

single part that they were planning to interact with, whereas during the recognition and 

memory tasks the participants were equally likely to fixate on any part of the object.  

-   Data-model correspondences for the motor imagery task were higher for Concave and     

  Convex models, relative to the External features model. 

8.1.4. Conclusions 

 In this study we recorded eye-movement patters during object recognition and a 

motor-imagery task. The results showed differences in eye movement patterns between 

the object recognition and motor-imagery task; for example, more saccades, with 

shorter dwell times and larger amplitudes, in the learning phase of the object 
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recognition task. During the object recognition task, the fixations were dispersed 

across all parts of the object, whereas during the motor-imagery task, the eye 

movements were predominantly localized to the object part where contact between the 

finger and the object was expected. This pattern of results was evident from the second 

fixation onwards, thus providing evidence that first fixation does not seem to be 

indicative of the task ahead, and can possibly only accounted for the object‟s centre of 

gravity (Vishwanath & Kowler, 2003). These findings show how eye movement 

patterns can be used to elucidate the perceptual analysis underlying our perception of 

shape appearance, and how this analysis differs between tasks. Additionally, the results 

show the importance of task differences in eye movement studies. Our current results 

suggest that even when planning an imagery movement to a 2D image observers tend 

to focus on specific local parts that contain potential grasp locations. In contrast, 

during the encoding of object shape for recognition, fixation patterns are more spread, 

indicative of a more global analysis of object configuration. 

 The analysis of data-model correspondence for the motor-imagery task showed 

that the eye movement data were best accounted for by models of shape analysis based 

on local regions of curvature extrema – there was no evidence that fixation 

distributions were determined by the external features model, despite the potential grip 

locations of the exterior. Interestingly, these results differ from the findings in 

Experiment 1 where we used the same algorithmically derived models data and the 

same stimuli. More specifically, the observers in the motor- imagery task showed no 

preference for fixating concave over convex regions, whereas the participants in the 

memory task (Experiment1) predominantly fixated concave regions. This dissimilar 

pattern of results provides information of how task demand influences local shape 

analyses during object representations. 
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Chapter 9 

 9.1. General discussion  

 The studies in this thesis examined eye fixation patterns during different visual 

perceptual tasks in order to investigate what kind of information is mediating the 

perception of 3D object shape. The main empirical finding revealed that the 

distribution of fixation patterns (1) varies between object perception and object 

recognition tasks (e.g. study, test), and (2) are generally consistent across object 

categorisation tasks. More specifically, in recognition tasks I found a reliable 

preference for fixation at internal regions of surface concavity. This finding is in line 

with previous studies demonstrating the importance of curvature singularities in the 

visual perception of shape (e.g., Attneave, 1954; Barenholtz et al., 2003; De Winter & 

Wagemans, 2006; Feldman & Singh, 2005; Hoffman & Richards, 1984; Hoffman & 

Singh, 1997), and also provides evidence for a direct link between the encoding of 

information about surface concavity and object recognition. One interpretation of this 

preference is consistent with the influential hypothesis suggesting that concave regions 

play an important role as segmentation points, allowing for the computation of parts-

based structural descriptions (e.g., Hoffman & Richards, 1984; Marr & Nishihara, 

1978). In this context, we should focus on an interesting aspect of the data which 

shows (1) fixation preference for concave surface minima along with (2) viewpoint-

dependent performance in the recognition task. While the first finding is consistent 

with the claim that negative curvature minima play a functional role in part 

segmentation during the derivation of a structural description representation (e.g., 

Biederman, 1987; Hoffman & Richards, 1984; Marr & Nishihara, 1978), the second 

finding is in line with image-based view interpolation models (e.g., Bülthoff & 
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Edelman, 1992; Edelman & Weinshall, 1991; Reisenhuber & Poggio, 1999; Tarr & 

Bülthoff, 1998).  

Fixation patterns and local object structure in shape representation 

 One particularly interesting finding here is the link shown between fixation 

patterns and curvature polarity in 3D objects. While the spatial distributions of fixation 

regions were constrained by curvature extrema, the data also showed a fixation 

preference for concave curvature minima – a finding that was robust across study 

phases, viewpoint change, targets and non-targets and tasks. It could be argued that 

observers specifically fixate those regions because they are the optimal locations for 

extracting global shape information, rather than because of their status as regions 

containing negative curvature minima. In fact, this possibility cannot be absolutely 

discounted. Nevertheless, this seems unlikely unless there happens to be a high 

correlation between those optimum locations and the presence of negative curvature 

minima. It is more likely, that the optimum location for extracting global shape 

attributes would be close to the centre of mass – which is not the case here (e.g., initial 

COG fixations were removed from the data prior to analyses). This is consistent with 

recent attempts to derive a formal derivation of information content along contour in 

which it has been demonstrated that segments of negative curvature minima are more 

informative about shape than regions of convex curvature maxima (Feldman & Singh, 

2005). Although, it remains unclear whether this derivation can be equally applied to 

3D curvature, our data provides support for the hypothesis that negative minima of 

curvature are more perceptually relevant for analyses of object shape information in 

the 3D domain. 

 An additional relevant finding came from the analysis of fixation duration. The 

mean durations of fixations falling within thresholded fixation regions were 
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significantly longer than those for non-thresholded regions within the bounding 

contour of the stimuli. This could be a sign of the differential processing of 

information content: where longer fixation times are taken as evidence for processing 

complexity. It is interesting to note that fixation durations were significantly longer in 

the learning and passive viewing phases of Experiment 1 than in the test phases. One 

interpretation of this is that fixation duration is at least partly determined by 

processing associated with the formulation of new long-term memory representations 

of object shapes, and the computation of local image features, during the initial 

viewing phase together with a reduction in the time taken to match local shape 

information between perceptual input and stored representations during the 

recognition phase. Shape perception during the test phase, and the speed of processing 

of local regions of curvature extrema, may be facilitated by „top-down‟ activation of 

object-specific knowledge. This is consistent with results from other eye movement 

studies, for example, in the scene perception and visual search literatures, which show 

an influence of both stimulus-driven and top-down constraints on task performance 

(e.g., Foulsham & Underwood, 2007; Malcolm & Henderson, 2009). 

Object recognition, view interpolation and concave surface minima 

 The findings are also consistent with another influential approach based on 

image based view interpolation studies. On some accounts shape classification is 

assumed to be based on class-specific appearance or image-based feature hierarchies 

computed across multiple spatial scales (e.g., Ullman, 2006; Ullman & Bart, 2004; 

Ullman, Vidal-Naquet & Sali, 2002). The current findings could be interpreted within 

the context of these models by assuming, for example, that curvature extrema, and in 

particular, negative curvature minima, form a class of local image features that might 

be used to constrain shape classification. Other image-based models have 
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hypothesized the use of 2D views, or aspects, that conjointly encode information about 

shape and the spatial locations of image features (e.g., Edelman & Weinshall, 1991; 

Riesenhuber & Poggio, 2006; Ullman & Basri, 1991). In contrast, structural 

description theories propose that shape perception depends on the decomposition of 

object shape into generic (rather than appearance-based) primitives (e.g., generalized 

cylinders, geons or surfaces) and that recognition is mediated by representations that 

independently encode information about these primitives and their spatial 

configuration (Biederman, 1987; Hummel & Stankiewitz, 1996; Leek et al., 2009; 

Leek et al., 2005; Marr & Nishihara, 1978). In these accounts, it has been suggested 

that negative curvature minima play a key role in the segmentation of complex objects 

into constituent generic parts (e.g., Cohen & Singh, 2007; De Winter & Wagemans, 

2006; Hoffman & Richards, 1984; Hoffman & Singh, 1997). In this context, one 

interesting aspect of the data stems from the concurrent observations of a fixation 

preference for local shape regions containing concave surface minima, and viewpoint-

dependent performance in the recognition task.  

 The present findings raise the possibility of an alternative hypothesis about the 

functional significance of negative curvature minima. In the first place, this fixation 

sensitivity to curvature polarity suggests that shape perception processes make use of 

local depth information at least to the level of the 2
1
/2D sketch (Marr & Nishihara, 

1978), and that they do not rely solely on 2D image features computed from the retinal 

input. Some supporting evidence comes from the recent demonstration by Wexler and 

Ouarti (2008) showing that saccadic eye movements during the spontaneous 

exploration of visual images follow surface depth gradients. These findings present a 

challenge to models of recognition that are based solely on 2D shape representations 

and view interpolation (e.g., Bulthoff & Edelman, 1992). At the same time, our 
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behavioural data support the use of viewpoint-dependent object representations. These 

two empirical observations raise the possibility that view interpolation is constrained 

by depth specified local features which include surface curvature extrema – and, in 

particular, regions of concave surface discontinuity. This shows two viewpoint-

dependent stored representations of the same object. Recognition of an object from a 

novel viewpoint is accomplished by an interpolation process that indexes, or matches, 

local shape information – here, critically, at regions of concave surface discontinuity. 

On this hypothesis concavities do not derive their functional significance from being 

cues to volumetric part segmentation, but rather as salient local image features used to 

constrain interpolation across views.  

 This proposal is consistent, also, with our finding that the fixation preference 

for concave regions generalizes from trained to novel viewpoints – and would be 

expected if these features are used to interpolate stored viewpoint-dependent object 

representations. I do not claim that surface curvature extrema are the only local 

features or keypoints that are used in view interpolation. One might also speculate 

about the use of a large range of other potentially informative local image features 

including, for example, non-accidental properties (e.g., Biederman, 1987), fragments 

(Ullman, 2006) and other interest point operators (e.g., Mikolajczyk & Schmid, 2005). 

Finally, it should be noted that this hypothesis does not exclude the possibility that 

other forms of representation may also mediate recognition, as suggested by recent 

hybrid models (Foster & Gilson, 2002; Hummel & Stankiewitz, 1996), or that local 

regions of curvature minima may also be used in other ways by the visual system, 

notably, as image segmentation points (e.g., Cohen & Singh, 2007; De Winter & 

Wagemans, 2006; Hoffman & Richards, 1984; Hoffman & Singh, 1997).  



Chapter 9  199 

 

 A further aspect of the results that is theoretically interesting is the consistent 

pattern of data-model correspondences across the active learning and passive viewing 

tasks in Experiment 1. This is somewhat surprising given that one might expect task 

requirements to affect the perceptual analysis of shape. Here, despite the fact that only 

one group of observers were explicitly being told to memorise shape for a subsequent 

recognition task, the perceptual analysis strategies of the two groups, as evidenced by 

the patterns of data-model correspondences, were similar. One implication of this 

finding is that local shape analysis strategies during perception are perhaps „hard-

wired‟ in the sense of being invariant to task requirements –or at least across the range 

of tasks tested here. This hypothesis is intuitively appealing in that during everyday 

recognition observers cannot entirely predict when unfamiliar objects might become 

relevant to their immediate or future goals and intentions. However, it remains to be 

determined whether the observed patterns of shape-analyses found in Experiment 1 

will generalise across other tasks and stimulus sets, including, for example, those 

related to the computation of shape representations for object categorisation.  

 The data in Experiment 2 revealed a statistically reliable fixation bias for 

concave surface discontinuities in the active learning phase and the test phase of the 

study. More specifically, the observers showed no preference for fixating concave 

over convex regions during passive viewing task, whereas in the active learning task 

the observers predominantly fixated concave regions. Although this pattern of results 

seems to be somehow intuitive in respect to the imposed task differences, it provides a 

dissimilar pattern of result to Experiment 1 where concave regions were preferentially 

fixated during both pre-tasks. There are a number of possible interpretations of these 

results. For example, local convex and concave curvature may both be processed to 

some extent during passive viewing (e.g. no task in hand), whereas concave curvature 
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regions are processed more during the active learning phase when an object shape 

representation is computed and stored in memory. Moreover, the models used in 

Experiment 2 were not algorithmically created but collected from a trained observer 

data incorporating the same amount of error measures as in the recognition task.  

  From more theoretical point of view, concave curvature discontinuities  has 

been assigned a privileged role in object representation (e.g. Attneave, 1954; 

Barenholtz, Cohen, Feldman & Singh, 2003; Bertamini, 2008; Biederman, 1987; Cate 

& Behrmann, 2010; Cohen, Barenholtz, Singh & Feldman, 2005; Cohen & Singh, 

2007; De Winter & Wagemans, 2006; Feldman & Singh, 2005; Hoffman & Richards, 

1984; Hoffman & Singh, 1997; Lim & Leek, 2012) but there are number of studies 

proposing that convex curvature discontinues also play an important role in object 

recognition. For example, resent psychophysical study demonstrated that high level 

visual cortex areas (LOC) are more sensitive to changes in convex than in concave 

shapes (Houshofer, Baker, Livingstone & Kanwisher, 2008). Moreover, previous 

research found that recognition performance (e.g. Driver & Baylis 1995), perceptual 

judgment of location (e.g. Bertamini, 2001), and shape similarity (Subirana-Vilanova 

& Richards 1996) are more accurate for convex, rather than concave image features. 

Nevertheless, investigating the exact magnitude and reasons for changes in 

contributions between concave and convex curvature during changes in task 

requirements is out of the scope of this thesis, although it would be addressed in more 

detail in further studies. 

 The main empirical findings in Experiment 2 were: (1) Strong viewpoint-

dependent pattern of identification latencies in the recognition memory task consistent 

with other previously reported studies supporting the use of viewpoint-dependent 

object representations (e.g., Bülthoff & Edelman, 1992; Edelman & Weinshall, 1991; 
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Tarr & Bülthoff, 1998). (2) Low level visual saliency as implemented by the Itti, Koch 

and Neibur (1998) model did not perform better than the random model of fixation 

region distribution in both pre-test and test phases of the study. (3) The fixation 

distributions were best modelled in terms of local shape analyses at regions of 

curvature extrema corresponding to concave or convex surface discontinuities. (4) 

While in the passive view phase there was no significant difference in the spatial 

distributions of data-model correspondences between the convex and concave surface 

discontinuity models, observers in the active learning phase and recognition memory 

test phase showed a fixation bias for regions of concave surface discontinuity. These 

findings support a large body of work in the psychophysics literature concerning the 

importance of surface curvature extrema in visual object recognition (e.g., Cohen & 

Singh, 2007; Cohen et al., 2005; De Winter & Wagemans, 2006; Feldman & Singh, 

2005; Hoffman & Richards, 1984). Of particular interest here is that, unlike many 

previous studies that have reported perceptual biases for convex and/or concave 

contour curvature in 2D outline forms, here I report a processing bias revealed through 

fixation patterns determined by surface curvature extrema in 3D forms. The data did 

reveal a statistically reliable fixation bias for concave surface discontinuities in the 

active learning phase and the test phase of the study which supports the hypothesis that 

local regions of surface concavity play an important role in the indexing, encoding and 

/or matching of perceptual input to stored object shape representations. Furthermore, 

the analyses showed that similar local image regions were fixated during the active 

learning and test phases, and that observers tend to fixate regions of concave surface 

discontinuities across changes in stimulus viewpoint which both support the 

hypothesis that these local image regions are inherently linked to object recognition.
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 In Experiment 3 I have examined eye movement patterns during object shape 

categorisation tasks in experts and novices. The analyses of RT and accuracy data 

showed that both groups improved their performance as a function of training, 

although only the subordinate training group showed specific training effects. 

 The main finding revealed a consistent pattern of data-model correspondences 

across tasks. During both basic and subordinate matching tasks in pre and post-test 

phases we found evidence that fixation patterns are predominantly driven by shape 

information defined by internal regions of concave surface discontinuity regardless of 

expertise of level of categorisation (basic or subordinate). Thus, the central issues 

raised here concerns our observation of similar fixation distributions, and similar 

perceptual strategies for the acquisition of shape information, and later categorisation 

across pre and post tasks. This is perhaps surprising given that one might expect task 

requirements to affect the perceptual analysis of shape. Here, despite the fact that the 

participants were trained to classify objects into two different categories (Basic vs. 

Subordinate), along with a control group that received no training, the perceptual 

analysis strategies of the three groups, as evidenced by the patterns of data-model 

correspondences, were similar.   

 One implication of this finding is that local shape analysis strategies during 

perception are „hard-wired‟ in the sense of being invariant to task requirements - at 

least across the range of tasks tested here. The suggestion of „hard-wired‟ mechanism 

is consistent with recent (Amir, Biederman & Hayworth, 2011) findings that adults 

and infants as young as 5 month-old, looked first, and adults looked longer at simple 

volumetric shapes containing curved contours, as opposed to straight contours, thus 

shapes containg high curve value produced larger BOLD activity in the adult‟s shape 

selective cortex (Lateral Occipital Cortex). This finding implies that perceptual 
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mechanisms directing attention to informative object segments exist from early 

infancy and are not affected by language, geometry training or cultural values. This 

hypothesis is intuitively appealing in that during everyday recognition observers 

cannot entirely predict when unfamiliar objects might become relevant to their 

immediate or future goals and intentions. The current pattern of results raises the 

questions to whether shape recognition is invariant to classification levels, or whether 

the same kind of perceptual shape analyses processes underlie the classification of 

basic and subordinate levels. 

 As mentioned earlier, these results are consistent with models of object 

recognition which posit a special functional status to concave image regions in object 

representation (e.g., Biederman, 1987; Hummel & Stankiewitz, 1996; Leek, Reppa, 

Rodriguez & Arguin, 2009; Marr & Nishihara, 1978), and they present a challenge to 

models which do not. Among the latter models are some recent image-based models of 

recognition (e.g., Edelman & Weinshall, 1991; Riesenhuber & Poggio, 2006; Ullman 

& Basri, 1991), including HMAX (Serre, Oliva & Poggio, 2007; Serre, Wolf, Bileschi, 

Riesenhuber & Poggio, 2007). In order to account for these data, these models would 

require modification to include a level of feature representation which makes explicit 

the sign of curvature – for example, in the C2 layer of HMAX.  

 This raises the further issue of why regions of concave curvature should carry 

such functional significance. Perhaps the most influential hypothesis, following the 

seminal work of Hoffman and Richards (1984), is that concavities play a key role as 

local part boundaries supporting volumetric image segmentation. But this does not 

exclude the possibility that concave regions play other roles in shape recognition and 

image classification. One important implication of the current results (and those 

reported by Leek et al., 2012) is that object recognition makes use of local depth 
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information at least to the level of the 2
1
/2D sketch (Marr & Nishihara, 1978), and 

does not rely solely on 2D image features computed from the retinal input. In this 

respect also, these findings present a challenge to object recognition models that are 

based solely on 2D image-based representations. However, this does not mean that 

evidence supporting the functional significance of concave regions during perception 

is theoretically incompatible with image-based models – such as HMAX. Within the 

context of viewpoint-dependent, image-based models, concavities may derive 

functional significance, not as cues to volumetric part segmentation, but rather as 

salient, local image features, keypoints or interest point operators that constrain 

generalization across views. In this sense, concave curvature singularities may support 

operations related to part segmentation on structural-description representations, as 

well as local keypoint matching, and view generalization, on image-based 

representations. This proposal is consistent with the use of both kinds of 

representational codes in human vision – as suggested by some recent hybrid 

approaches (e.g., (Foster & Gilson, 2002; Hummel & Stankiewitz, 1996).  

 More broadly, in the context of this hypothesis, it is also tempting to speculate 

about the interactions between these two representational codes and their roles at 

different levels of shape classification during object recognition. It has been assumed 

that entry-level object recognition occurs at an analytic, parts-based, basic-level of 

object classification potentially supported by a structural description representation in 

which parts, and their spatial configuration, are independently coded (e.g., Biederman, 

1987). Elsewhere, recent work by Gauthier and colleagues (Gauthier & Tarr, 1997; 

Wong, Palmeri, Rogers, Gore, & Gauthier, 2009) has provided evidence that 

perceptual expertise in subordinate-level classification is supported by holistic 

representations which make explicit, amongst other properties, precise metric variation 
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in image features that permit the individuation of within category exemplars at this 

level of shape description (e.g., a Ford Kuga from a BMW X3). Thus, while the 

present results show a preference for fixation at concave regions in both subordinate 

and basic-level classification, it is possible that the same concave regions support 

different types of image analysis dependent on the classification level: that is, they 

serve as image segmentation points during basic-level classification, and as local 

keypoints to assist functions such as in view generalization during subordinate-level 

classification.  

  In Experiment 4 the extended training regime from three hours (in Experiment 

3), to four hours revealed less consistent pattern of data-model correspondence across 

tasks. The RTs showed that each training group improved their post-test mean 

performance as a function of training, but only the basic group showed a significant 

specific effect in the basic task. Although the results showed that in pre-tests (basic 

and subordinate) fixation patterns are driven by shape information defined by internal 

regions of concave surface discontinuity, regardless of expertise or level of 

categorisation (basic or subordinate), this preference was not evident at post-tests. In 

both post sequential matching tasks, fixation patterns were driven by both types of 

local image curvature information (concave and convex). As mentioned  previously, 

one likely explanation of this finding is the suggested two-stage model of perceptual 

category learning (Ashby and Spiering, 2004; Nosofsky, 1986; Riesenhuber and 

Poggio, 2000; Sigala, 2004; Thomas et al., 2001) where high level shape 

representation can be activated for different tasks using the same stimuli in order to 

improve discrimination of these stimuli relative to untrained participants (Jiang et. al., 

2007). A possible reason for this different performance compared to the preceding 

Experiment 3 is that in the current Experiment 4 I have presented each stimulus image 

http://www.ncbi.nlm.nih.gov/pubmed/15537987
http://www.ncbi.nlm.nih.gov/pubmed/2937873
http://www.ncbi.nlm.nih.gov/pubmed/11127838
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only once in pre and post tests. This potentially allowed me to investigate the 

processes behind the initial perceptual stimulus encoding, and avoid potentially 

confounding variables such priming.  

 These findings are to some extent consistent with Experiment 3 results and add 

to the importance of curvature singularities in the visual perception of shape (e.g., 

Attneave, 1954; Barenholtz Cohen & Singh, 2003; De Winter & Wagemans, 2006; 

Feldman & Singh, 2005; Hoffman & Richards, 1984; Hoffman & Singh, 1997). The 

previously found preference for fixation at regions of concave surface discontinuity 

regardless of task (basic vs. subordinate) or phase (pre vs. post) was not entirely 

replicated in this study, and this provides further information of the complexity of 

object shape representation.  

 The analyses of the saccade amplitude and dwell time showed no significant 

differences post-training. However, saccade amplitude was shorter and dwell time 

longer in image 2, showing the expected pattern associated with recognition tasks. 

Moreover, the lack of significant change between pre and post tests was consistent in 

both types of analyses (e.g. saccade amplitude/dwell times and data-model 

correspondence), showing the systematic nature of the findings. 

 In my last study I recorded eye-movement patterns during object recognition 

and a motor-imagery task. The results showed differences in eye movement patterns 

between the object recognition and motor-imagery task; for example, more saccades, 

with shorter dwell times and larger amplitudes, for the learning phase of the object 

recognition task. One important finding is the fact that we found there characteristics 

despite not using real life objects but presenting 2D images. During object recognition 

task, the fixations were dispersed across all parts of the object, whereas during motor-

imagery task, the eye movements were predominantly localized to the object part 
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where contact between the finger and the object was expected. This pattern of results 

was evident from the second fixation onwards, thus providing evidence that first 

fixation does not seem to be indicative of the task ahead, and can possibly only 

account for the object‟s center of gravity (Vishwanath & Kowler, 2003).These 

findings show how eye movement patterns can be used to elucidate the perceptual 

analysis underlying our perception of shape appearance, and how this analysis differs 

between tasks. Additionally, the results show the importance of task differences in eye 

movement studies.  

 The current results suggest that when planning prehensile grasping actions 

observers tend to focus on specific local parts that contain potential grasp locations. In 

contrast, during the encoding of object shape for recognition, fixation patterns are 

more spread, indicative of a more global analysis of object configuration. 

There are a few additional aspects of the results that are worth discussing. One of these 

is the poor performance of the visual saliency algorithm of Itti, Koch and Niebur 

(1998) in predicting the spatial distributions of fixations.  The visual saliency model 

performed no better than chance in accounting for fixation patterns in either of the 

tasks. These data contrast with results from some other studies that have provided 

support for the role of low-level image statistics in stimulus-driven eye movements 

and attentional capture in scene perception (Baddeley & Tatler, 2006; Foulsham & 

Underwood, 2007; Malcolm & Henderson, 2009; Rajashekar, van der Linde, Bovik & 

Cormack, 2007). For example, Baddeley and Tatler (2006) have shown that fixation 

patterns in natural scene viewing can be predicted from high spatial frequency edge 

information but not contrast. Although the analyses did not provide empirical support 

for visual saliency (as implemented by Walther and Koch, 2006) as a predictor of 

fixation patterns in object recognition, I cannot rule out that some other version of the 
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hypothesis, or some other combination of model parameters would fare better. 

However, in the context of shape perception, the conceptual notion of visual saliency 

may need to be broadened in light of the current findings, to include geometric 

features of objects in the visual scene, such as the magnitude and sign of surface 

curvature, in addition to purely low-level image properties. 

  The main empirical findings in this thesis provide evidence that: 1) eye 

movements can elucidate properties of internal mental representations of shape; 2) 

consistent fixation pattern to concave areas that generalises across tasks; and 3) 

different fixation patterns during recognition and motor imagery task.   

9.2. Conclusions 

 The studies in this thesis provide some of the first evidence from measures of 

fixation patterns regarding the acquisition of higher level shape information during the 

perception and recognition of 3D objects. These studies demonstrate the considerable 

potential for quantitative analyses of fixation patterns to elucidate local shape feature 

processing during object perception and recognition. It is important to note that the 

results are preliminary in a number of ways as the experiments in this thesis were not 

designed to investigate the role of eye movements during object processing in daily 

environments (e.g., Land et al., 1999; Tatler, Gilchrist & Rusted, 2003), hence I do 

not claim that these fixation patterns necessarily characterize the role of eye 

movements in day to day object processing. Rather, my goal was to examine how 

fixation patterns may be used to inform hypotheses about shape analyses in vision 

under appropriately controlled experimental conditions. There also remains 

considerable on-going debate about the relative contributions of foveal and para-

foveal processing in perception (e.g., Henderson et al., 1997), and about the extent, 

and conditions under which, fixation patterns are influenced by further variations in 
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task, display and stimulus properties. These issues, in relation to fixation patterns 

during object recognition, require systematic examination in future studies. 
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