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Abstract 
 
 This thesis reports the results of five novel studies that used eye movement 

patterns to elucidate the role of shape information content of object shape 

representation in human visual perception. In Experiments 1, and 2 eye movements 

were recorded while observers either actively memorised or passively viewed 

different sets of novel objects, and during a subsequent recognition memory task. 

Fixation data were contrasted against different models of shape analyses based on 

surface curvature bounding vs. internal contour and low level image visual saliency.       

The results showed a preference for fixation at regions of internal local features 

(either concave or/and convex) during both active memorisation and passive viewing 

of object shape. This pattern changed during the recognition phase where there was a 

fixation preference towards regions containing concave surface curvature minima. It 

is proposed that the preference of fixation at regions of concavity reflect the 

operation of a depth-sensitive view interpolation process that is constrained by key 

points encoding regions of concave curvature minima.  

 Experiments 3 and 4 examined the extent to which fixation-based local shape 

analysis patterns are influenced by the perceptual expertise of the observer and the 

level of stimulus classification required by the task. These studies were based on the 

paradigm developed by Wong, Palmeri & Gauthier (2009) in which observers are 

extensively trained to categorize sets of novel objects (Ziggerins) at either a basic or 

subordinate level of classification. The effects of training were measured by 

comparing performance between a pre- and post-test sequential shape matching task 

that required either basic- or subordinate-level judgements. In addition, we also 

recorded fixation patterns during the pre- and post-tests.  
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The results showed significant effects of training on shape matching in the post-tests. 

In particular, participants showed evidence of perceptual expertise in making basic 

and subordinate-level shape classification judgements. We also found that the 

acquisition of perceptual expertise did not result in significant changes in the local 

spatial distributions of fixation patterns observed. However, there was a tendency for 

fixations located at areas with concave curvature minima regardless of level of 

classification. This finding provides evidence that the preference for fixating at 

concave regions generalises across levels of stimulus classification in recognition 

tasks.  

 The last study examined how eye movement patterns can be used to elucidate 

shape analyses strategies across tasks of object recognition and planning prehensile 

movement where participants were asked to memorise and later recognise an object 

and to imagine picking up an object by using their thumb and a forefinger. The 

results showed a significantly different fixation pattern between the recognition and 

motor imagery task, thus providing support for differential processing during shape 

perception influenced by task demands. 

  The main empirical findings in this thesis show: 1) How eye movements can 

elucidate properties of internal mental representations of shape; 2) Consistent fixation 

pattern to concave areas that generalises across tasks; and 3) Different fixation 

patterns during recognition and motor imagery task.   
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first to suggest that contour curvature magnitude carries more shape relevant 

information for perception than regions of straight contour segments. Subsequent 

research (Barenholtz, Cohen, Feldman & Singh, 2003; Cohen, Barenholtz, Singh & 

Feldman, 2005; Cohen & Singh, 2007; De Winter & Wagemans, 2006; Feldman & 

Singh, 2005; Hoffman & Richards, 1984; Hoffman & Singh, 1997) has shown that the 

sign of curvature, and not just the magnitude, carries essential informational content 

for shape perception. An Illustration of the sign of curvature see Figure 1 below. 

 
 
Figure 1 An example of positive (concave) and negative (convex) curvature extreme. 
From Cohen and Singh (2007). 
 
 However, the functional significance of these curvature extrema to shape 

perception remains the subject of on-going debate (Bertamini, 2008). Despite a large 

body of empirical research examining curvature in the context of contour-defined 2D 

images such as polygons and line drawings (Cohen, Barenholtz, Singh & Feldman, 

2005; Cohen & Singh, 2007; De Winter & Wagemans, 2006) there is relatively little 

data examining the role of curvature singularities defined by changes in surface (rather 

than contour) curvature polarity. Moreover, such an investigation is further motivated 

by recent evidence that saccadic eye movements during the spontaneous exploration of 

visual images follow surface depth gradients (Wexler & Ouarti, 2008).  
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 A recent study (Lloyd-Jones, Gehrke, & Lauder, 2010) used eye movements to 

examine the contributions of outline contour and salient individual futures in animal- 

non-animal recognition tasks, employing line drawings and silhouette stimuli. The 

authors proposed that animal recognition is mediated by the salient features located in 

the outline contour as the latter facilitates the access to stored visual representations.  

Despite the fact that the significance of local shape curvature in shape perception is 

subject to a lot of attention and under multidisciplinary research investigation (e.g. 

Renninger, Coughlan & Verghese, 2007; Lloyd-Jones, Gehrke, & Lauder, 2010) it is 

rather surprising that no one (to our knowledge) has yet attempted to investigate in 

detail 3D shape representation with eye-tracking methodology.  

1.2. Aim of the thesis  

 The aim of this thesis is to examine the extent to which local shape analyses, as 

shown by fixation patterns, can be predicted by the presence of different types of local 

shape curvature in 3D object recognition. It should be noted that although eye 

movement pattern analyses are employed to investigate object shape representation I 

do not imply that these patterns emulate everyday object recognition. The rationale 

behind this thesis investigation stems from recent studies (e.g. Najemnik & Geisler, 

2005; Renninger, Coughlan & Verghese, 2007) employing eye movement patterns to 

investigate 2D pattern recognition, showing that eye movement patterns can be highly 

informative in shape processing during perception. For example, Najimek and Geisler 

(2005) demonstrated that fixations during simple pattern visual search tasks are 

selected in order to reduce uncertainty, rather than choosing a possible target location. 

Similarly, Renninger et al., (2007) provided evidence that observers tend to fixate 

object areas with high information content, and proposed that reducing local 
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uncertainty can be a very good predictor of human fixations during shape learning 

tasks.   

 In regard to the organisation of this thesis, chapters are written as standalone 

sections and are parts of published papers (Leek, Cristino, Conlan (now Davitt), 

Patterson, Rodrigues & Johnson, 2012; Cristino, Conlan (now Davitt), Leek, 2012); 

hence some repetition of material is possible. 

 Chapter 1 provides a brief overview of the neuropsychology of the human 

visual system and a general overview of dominant theories of object recognition 

alongside approaches using different kinds of shape information (local vs. global) 

across a broad range of spatial scales obtainable from the sensory output. Chapter 2 

comprises a brief overview of the current and historical eye tracking methods used to 

investigate the human visual system, and an overview of studies employing eye 

tracking methods. In Chapter 3, I present Fixation Region Overlap Analyses (FROA) -

the methodology used to analyse the data in this thesis.  

 In Chapter 4, I examine fixation pattern analyses to investigate whether 

fixation patterns can be used to elucidate local shape analyses during object 

perception. Chapter 5 comprises of Experiment 2 that investigates the robustness of 

the results from the first study. Chapter 6 includes a categorisation experiment where I 

investigate fixation patterns during basic and subordinate levels of object 

categorisation in participants trained to be experts, or untrained novices in recognising 

novel objects at either basic or subordinate levels of categorisation. In Chapter 7, I 

present a categorisation experiment with an extended training regime and investigate 

further whether fixation patterns change as a function of training. In Chapter 8, I 

present a study examining how eye movement patterns relate to the perception of 
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There are two types of photoreceptors cells, rods and cones. Rods are more sensitive to 

low intensity light and can function under dim light conditions; therefore, rods cannot 

distinguish colour, but enable us to see at night. Conversely, cones are responsible for 

colour vision and to function correctly require a high level of light. Cones are highly 

concentrated at the fovea, which contributes to high visual acuity. For an illustration of 

foveal vision see the distribution of rods and cones in Figure 2 below. The neural 

signals from the photoreceptors are transmitted to the ganglion cells which then, via 

the optic tract, convey the signals to the lateral geniculate nucleus (LGN) of the 

thalamus (the primary circuit for transmitting visual information). 

 

 

Figure 2 An illustration of the distribution of rods and cones in the retina. From 
Osterberg (1935). 

 
Cortical processing 
 
 The LGN transmits sensory information in the form of neural impulses from 

the retina to the primary visual cortex V1 which is positioned in the occipital lobe, 

around the calcarine fissure and responds mainly to simple features and differently 

oriented lines (Hubel & Wiesel, 1959). V1 in each hemisphere transmits visual 

information through two distinct cortical systems, the ventral and the dorsal pathway. 
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The ventral pathway begins with V1, passes through V2, V4 (areas considered to be 

involved in preferential responding to more complex stimuli, Pasupathy & Connor 

1999) and then to inferior temporal cortex (IT). The dorsal pathway begins with V1, 

passes through V2, followed by dorsomedial area MT (V5) and then to Posterior 

parietal cortex. The ventral pathway is considered to be involved in object recognition 

whereas the dorsal pathway is considered to be essential in spatial vision (Haxby et al., 

1991) and involved in guiding the visual system for reaching and grasping tasks. 

 A large proportion of the human cortex beyond V1 is involved in the visual 

processing of variety of features and stimuli, thus distinct processing areas have been 

identified (Wandell, Dumoulin & Brewer, 2007). For example, inferotemporal cortex 

(IT) and the lateral occipital complex (LOC) areas associated predominantly with 

object recognition are suggested to play a role in encoding complex shapes (Tanaka et 

al., 1991), object parts (Hayworth & Biederman, 2006), non-accidental object features 

(Kayaert et al., 2003), and shape curvature (Kayaert et al., 2005).  Furthermore, object 

selective areas in the ventral stream (LOC) appear to be less sensitive to low-level 

image features such as contrast (Avidan et al., 2002) and recent studies suggest that 

these areas are involved in responding more to object shape than object contours (e.g., 

Andrews et al., 2002;  Kourtzi & Kanwisher, 2000). Another current study (Haushofer 

et al., 2008) has demonstrated that LOC has a preferential encoding of positive shape 

curvature (convex), suggesting that curvature may play an essential role in object 

shape representation1. A single cell recording study (Pasupathy & Connor, 2001) 

found that a subpopulation of neurons in the area of V4 is sensitive to boundary 

curvature (concave and convex). The authors proposed that shape representation in 

area V4 is distributed and a number of single cells encode small parts of larger objects. 
                                                        
1 Representation is a way of encoding visual properties from the outside world which are organised in a useful 
and structured way to assist recognition processes. 
 



Chapter 1  20 

This finding was interpreted as an indication for part-based shape processing in V4, 

which is consistent with theoretical accounts for object shape processing, supporting 

the notion of shape representation as a combination of smaller features and primitives 

in a hierarchical manner (e.g. Biederman, 1987; Marr & Nishihara, 1978; Hoffman & 

Richards, 1984). However, despite recent evidence concerning functional 

specialisation in the cortex, the exact content, organisation and structure still remain 

unknown. Thus, the complexity and the abstractness of the visual representation of 

shape beyond pre-cortical processing should not be underestimated.  

 In the next section I will give a brief overview of several classes of object 

recognition model which are the structural description models (Biederman, 1987; Marr 

& Nishihara, 1978; Leek, Reppa & Arguin, 2005), Image- based models (Bülthoff et 

al., 1995; Bülthoff & Edelman, 1992; Edelman, 1995; Edelman & Weinshall, 1991), 

Feature-based models as a hierarchy of fragments (Lowe, 2004; Mikolajczyk & 

Schmid, 2005; Ullman, 2007; Ullman et al., 2002), and Hybrid models (e.g. Hummel 

& Stankiewitz, 1996, 1998; Thoma, Davidoff & Hummel, 2007; Thoma, Hummel & 

Davidoff, 2004). 

 

1.4. Overview of object recognition models 

 1.4.1. Structural description models  

 
 Structural description models (SDM) share the view that objects are 

represented by decomposing them into simple units, but make dissimilar claims about 

the exact arrangement and components used. For example, one SDM proposes that 

objects are represented as an arrangement of elementary viewpoint invariant 3D parts 

(Biederman, 1987; Biederman & Cooper, 1991; Hummel & Biederman, 1992), which 

are cylinders, bricks, wedges, or cones, with specified interrelations and spatial 





Chapter 1  22 

 

 

Figure 3 Different arrangements of the same components can produce different 
objects. From Biederman (1987). 

 
 This viewpoint invariance is suggested to be reliant on the stable local contour 

configurations (edges or junctions) which remain visible despite different rotations in 

depth. RBC proposed that these sets of non-accidental invariant contour features  

(NAPs) (collinearity, symmetry, parallelism, curvature, and co-termination; see Figure 

4) are necessary to distinguish the existing geons (the building blocks for object 

representation) in an object, therefore the representations distinguished by the geons 

possess the same invariance (up to occlusion). 

 

Figure 4 The non-accidental properties of image features. From Biederman (1987). 
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 This theory suggests that as long as two or more geons are extracted from an 

object, the representations of this object will be nearly always be successful regardless 

of the viewpoint or rotation in depth (but not in picture plan rotations).  

More specifically, RBC proposed that contour description of a given object is 

achieved after the edge extraction stage, and object characteristics such as luminance, 

texture, colour, and stereo information do not play any role in the task (see Figure 5). 

This is followed by detecting the image edges (NAPs collinearity, symmetry) which is 

assumed to be executed alongside with image segmentation, predominantly at regions 

containing deep concavities. The next stage is matching the primitive components 

against representations in memory which is supposed to occur in parallel and is 

assumed to have unlimited capacity (Biederman, 1987). The final stage involves 

object identification.  

 

Figure 5 Biederman (1987) suggested stages of object processing. From Biederman (1987). 
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Figure 6 Example of the objects used in Biederman (1987) experiment. Left column 
depicts the intact objects. Middle column shows the recoverable version of the objects. 
The right column shows the non-recoverable version of the objects. From Biederman 
(1987). 

 

 In another study by Biederman (1987) the participants were presented with 18 

line drawings of objects with varying amounts (25%, 45%, and 65%) of internal and 

external contours deleted for 100, 200, or 750ms. The deleted contours were either at 

the vertices or at mid-segments, but without bridging the components of collinearity or 

curvature which was the case in the non-recoverable condition in the previous 

experiment. The results showed that when the object exposure duration was 100 ms 

coupled with 65% contour deletion, the removal of vertices resulted in higher error 

rates compared to contour removal of the mid segment. When contour deletion was 

less and/or the exposure was longer, the decrease in naming accuracy was reduced. 

Overall, the authors concluded that filling-in of contours at mid segment and vertex 
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1991). Other image based models propose that object classification is based on class-

specific appearance or image-based feature hierarchies which are computed across 

multiple spatial scales (e.g., Ullman, 2006; Ullman & Bart, 2004; Ullman, Vidal-

Naquet, & Sali, 2002).  

 More specifically, these models argue that for interpolation to occur, specific 

object views are expressed as sets of viewpoint dependent features, and each view is 

regarded as a specific point in a high dimensional space, thus capturing the appearance 

of all possible views (Tarr & Bülthoff, 1998). In order to generalise from unknown to 

known views it is necessary to establish the location of the unknown views within this 

high dimensional space and then calculate the similarity of its features relative to the 

features from the nearest known view.  

 Riesenhuber and Poggio (1999) proposed the HMAX model - a biologically 

inspired model of object shape representation, which intended to emulate the 

feedforward architecture of the stages of object recognition in the cortex. The model is 

based on the assumption that hierarchies occur naturally in the brain since specificity 

and invariance of position and scale need to be obtained in a biologically possible 

way. A key characteristic underlying this model concerns the fundamental 

organisation of the visual cortex, with parallel and gradual increase of feature 

complexity and receptive field size, thus initially requiring many cells to cover the 

necessary range of scales and positions representing a small set of simple features. On 

the other hand, in higher layers neurons are tuned to a larger number of complex 

features and neurons show greater invariance, thus requiring fewer cells tuned to the 

same feature at different positions and scales.  

 The original HMAX model is composed of four layers (S1, C1, S2, and C2, see 

Figure 9), consisting of simple (S), and complex (C) units. The model proposes that 
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fourth layer (C2) provides further spatial and scale invariance. The C2 outputs are 
directly fed to a classifier.  From Riesenhuber and Poggio (1999). 
 

 Serre, Oliva and  Poggio (2007) improved the original HMAX model by 

adding a new unsupervised stage of learning with the assumption that visual hierarchy 

in the cortex (from V1 to IT) builds a general dictionary of shape tuned units in order 

to provide task-specific representation for categorisation circuits. An example of a 

learning module can be seen in Figure 10a below. This module assumes that each unit 

measures the similarity between a given stored view and a given input image. The 

outputs of all units are then added and if their sum is above a threshold the output 

given is 1, if not it is 0. Throughout learning, weights and threshold adjustments 

optimise the correct classification of examples. As shown in Figure 10b the 3D model 

of the object is recognised by interpolation between small numbers of stored views 

(Riesenhuber & Poggio, 2000) 

 There are a number of different and more complex schemes developed in an 

attempt to solve the problem of object categorisation, and they tend to focus on 

categorising an image region for a specific viewpoint, followed by merging classifiers 

trained on different viewpoints. Riesenhuber and Poggio (2000) proposed that a key 

difference between these approaches is in the view-specific features with which the 

examples are presented, ranging from raw pixel values (Brunelli & Poggio, 1993) to 

over complete dictionaries of features allowing for more compact representations 

(Mohan, 1999). 
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Figure 10 An example of learning module schematics. (a) A depiction of the general 
learning module. (b) A specific learning module: a classifier, trained to respond in a 
view-invariant manner to a given object. From Riesenhuber and Poggio (1999). 
 

 One of the issues concering image-based models is how an unfamiliar view of 

an object is matched to a familiar view of that same object and there were attempts to 

explain it using mental transformation and alignment methods. However, these 

processes need to establish the rotation direction before carrying out a rotation or an 

alignment and establishing this information implies that some form of recognition has 

already occurred (Tarr & Bultoff, 1999). 

 Moreover, image-based models appear to have difficulties similar to RBC with 

regard to object classification, as they suggest that the object representations are 

definitive to particular exemplars (given the assumption that objects are represented in 

a viewpoint-specific manner) not to object classes. 
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 It should be noted that the two approaches (structural description and image 

based) described above are not mutually exclusive and both of them explain elements 

of human visual recognition; structural description models providing information 

about categorical (basic) level access, and image based for within-class level 

(subordinate) access. Moreover, recently some hybrid models propose that it is 

potentially achievable for both image-based and structural description approaches to 

be accommodated within the same framework (e.g., Foster & Gilson, 2002; Hummel 

& Stankiewitz, 1996; Hayward, 2003).  

 However, a great deal of the empirical debate between image based and 

structural description models is concerned with viewpoint dependency of object 

representations while the nature of 3D shape representation remains poorly understood 

(e.g., Arguin & Leek, 2003; Biederman & Gerhardstein, 1993; Edelman, 1999; Leek, 

1998a, 1998b; Tarr & Bulthoff, 1998). 

 1.4.2. Local image features and shape representations  
 
  Another relevant source of information relating to fundamental elements 

mediating task performance during 3D shape representation are low-level image 

features (e.g., Non Accidental Image Features [NAPs], Biederman, 1985, 1987; Scale 

Invariant Feature Transform [SIFT], Lowe, 1999, 2004; corners, Harris & Stephens, 

1988; codons, Hoffman & Richards, 1984), surface (e.g., Leek et al., 2005; Marr, 

1982) and 3D primitives (e.g., geons, Biederman, 1987; generalised cylinders, Marr & 

Nishihara, 1978). 

 A number of shape representation theories suggest that local image features 

play a key role in object identification, mostly due to their advantages over global 

features, by providing invariance regarding noise, occlusion, and scale. Moreover, 

there is a lot of empirical evidence suggesting an important role of contour curvature 
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 One often used method for investigating low level image features is the change 

detection paradigm. The rationale behind the method is based on the measure of 

change of differential sensitivity between two displays, which is considered to be an 

indication of differential representation. For example, it is assumed that if participants 

are frequently more sensitive to changes in one shape component of the visual display, 

but not to changes in another shape component within that display then it is this 

component that is more clearly represented in the visual system.  

 Barenholtz et al., (2003) used the change detection paradigm to investigate the 

representational differences between convex and concave curvature extrema. The 

authors used computer generated filled polygons consisting of a base shape and two 

modified versions of that shape (see Figure 12).  

 

 

Figure 12 Example of the polygon pairs used in the experiment consisting of (a) Base 
shape and the modified versions of the Base shape either with added convexity or 
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             Finally, a computational theory proffered by Lowe, (1999, 2004) investigated 

local image features in object recognition. Lowe proposed an algorithm for detection 

and extraction of local image features called the Scale Invariant Feature Transform 

(SIFT). This approach, which has been shown to be extremely useful in object 

recognition, transforms image data into scale invariant coordinates relative to local 

features and can be used to perform consistent matching between different views of an 

object or a scene. The SIFT approach also suggests that local image features are highly 

distinctive, relatively easy to extract, and help object identification with a low 

probability of mismatch.  

1.4.3. Hybrid models 
 
 Recent hybrid models (Foster & Gilson, 2002; Hummel & Stankiewitz, 1996) 

provide evidence that image based and structural description theories can be 

accommodated within the same framework (Foster & Gilson, 2002; Hummel & 

Stankiewitz, 1996). One hypothesis (Hummel & Stankiewitz, 1996, 1998; Thoma, 

Davidoff & Hummel, 2007; Thoma, Hummel & Davidoff, 2004) proposes that object 

recognition is mediated by two types of representations, holistic (image-based) and 

analytic (structural descriptions). This model predicts that attended images are 

processed both analytically and holistically, whereas unattended images can only be 

processed holistically. The hybrid model proposed that attention plays an imperative 

role in the dynamic binding of information about object shape and spatial 

configuration during access to analytic structural descriptions (Hummel, 2001; 

Hummel & Biederman, 1992; Hummel & Stankiewicz, 1996, 1998). Conversely, 

during image-based holistic recognition binding is not important since representations 

do not separately encode feature dimensions such as shape and configuration. 
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 One study supporting this proposal (Thoma et al., 2004) investigated the extent 

to which attended and unattended primes facilitate the subsequent identification of 

whole objects. In their study the participants were presented with prime displays 

consisting of either whole object or two split object parts. Participants named one of 

the two primes indicated via a cueing box. A second whole object or probe was 

presented at the end of the trial. This probe item could be related to the attended or 

unattended prime or unrelated to either. The results showed faster responses in probe 

identification for related trials in both attended conditions. In contrast, while 

unattended whole images elicited small but significant positive priming effects, 

unattended split part images showed no priming at all. It was suggested that the 

absence of priming for the unattended split part primes shows that attention is required 

to support analytic processing (alternatively, for conflicting findings see Conlan, 

Phillips & Leek, 2009).  

  Palermo and Rhodes (2002) proposed the opposing view that attention plays 

an important role in the generation of holistic representations in face discrimination. 

The authors demonstrated that participants performed better when recognising an 

isolated feature (e.g. nose, mouth) of a target face when that feature was presented in 

the context of a complete face rather than presented in isolation. This effect however, 

was only evident when the target face was attended. Hummel (2002) rationalised this 

finding as evidence that when image features are not bound to a specific context, such 

as location or relation, they have less structural information than holistic 

representations that have embedded implicit structural information. Hummel (2002) 

interpreted these findings as evidence that attentional demand is greater for analytic 

representations than holistic representations and holistic representations require greater 

attention than free floating features.  
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 The historical background of eye movement studies goes back to the 17th 

century when a detailed object analysis was reported by Porterfield (1737, 1738). 

Moreover, eye sampling rate is easily measurable and can potentially provide us with 

detailed information during object and scene representation and recognition. A large 

body of research provides evidence that measurement and analyses of eye movements 

gives us an opportunity to study the mechanisms of visual information processing in a 

variety of domains such as reading (e.g., Rayner, 1996), scene perception (e.g., 

Yarbus, 1967; Rayner, 2009; Henderson & Hollingworth, 1999, 2003), object shape 

representation (e.g., Renninger et al., 2005, 2007; Leek et al., 2012), movement (e.g., 

Li & Lisberger, 2011), and attention (e.g., Gilford, 1936; Hoffman, 1998).  Several 

studies (Melcher & Kowler, 1999; Vishnwanath & Kowler, 2004; Wexler & Quarti, 

2008) showed that eye movement patterns are influenced by cues of 3D structure, thus 

providing appealing background for employing eye fixation patterns to elucidate the 

representation of 3D shape. 
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Chapter 2 

2.1. History and methods for investigating the human visual system 

(eye gaze tracking) 

 The preceding chapter provides an overview of the main object recognition 

theories and reasons for the decision of employing eye movement pattern analyses to 

investigate the mechanisms of object shape representation. In the current chapter I 

present a brief overview of the eye tracking history and methods used to investigate 

the human visual system. 

 Eye movements have been investigated from 1737 (Porterfield) in a variety of 

domains including reading, scene and face perception, object localisation and visual 

search (Land, Mennie & Rusted, 1999; Liversedge & Findlay, 2000; Henderson, 

Brockmole, Castelhano & Mack, 2007; Rayner, 1998; Renninger et al., 2007; 

Underwood, Foulsham, van Loon, Humphreys & Bloyce, 2006). In general, eye 

tracking methodologies have improved and changed considerably over the last 

centuries; from using a mirror and a telescope (e.g., Javal, 1879), through to more 

intrusive methods such as fitting a plaster cap over the cornea of the cocained eye and 

then connecting it mechanically to a kymograph in order to record the lateral and 

vertical movements of the eye (Delabarre, 1898). Later on, Dodge and Cline (1901) 

used more unobtrusive methods of light reflections from the eye, recording eye 

movements in the horizontal direction only. The first method, however, which 

provides the opportunity to process real time gaze data was designed by Jung (1939) 

and was called electrooculography (EOG). Jung applied electrodes on the skin close to 

the periphery of the eye which allowed him to measure the vertical and horizontal eye 

movements simultaneously.    
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 In the past 70 years eye-tracking technology improved considerably,  

increasing accuracy and precision; moreover,  psychological theories began linking the 

eye tracking data to specific cognitive processes (e.g., Monty & Senders, 1976; 

Senders, Fisher & Monty 1978), and changed the general attitude of looking at eye 

movements predominantly from a sensorimotor and physiology interest.  

 Stratton (1906) was first to highlight the importance of saccades during figure 

observation and he demonstrated that patterns of eye movements did not follow the 

shape of the observed figures. He interpreted this as evidence that the eye is searching 

for the best view of important features that need to be obtained. The lack of 

relationship between eye movement patterns, object shape and symmetry intrigued 

researchers for a long time. Thus, a great deal of research was devoted to studying the 

influence of image characteristics of eye movement patterns (Wade, 2009) and the 

assumed link between eye fixations and information acquisition.  

 The two commonly investigated components of voluntary eye movements are 

saccades and fixation locations.  The main function of saccades is to bring a new area 

of the visual field into the fovea in order to gather high resolution information.  

Although information processing is assumed to be suppressed during saccadic eye 

movements itself (see Cambell & Wurtz, 1979, for report of context where some 

information can be acquired during a saccade), they reveal global aspects of visual 

perception such as scan patterns and areas of fixations while examining a variety of 

stimuli.  During fixations however, the fovea (2 degrees of the centre of the visual 

field) is positioned at the part of the stimulus that needs to be seen clearly as this is the 

point where we extract maximally the visual information we need for further 

processing. The fovea region of the retina has the highest visual acuity, followed by 





http://www.journalofvision.org/content/10/8/20.full#ref-23
http://www.journalofvision.org/content/10/8/20.full#ref-24
http://www.journalofvision.org/content/10/8/20.full#ref-25
http://www.journalofvision.org/content/10/8/20.full#ref-26
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 The saliency model has been empirically tested numerous times using stimuli with 

different complexities and the results provide evidence that this model can predict 

fixation locations better than chance (e.g. Itti & Koch, 2000; 2011; Foulsham & 

Underwood, 2008). Nevertheless, the predictive power of this model has been 

disputed and research suggests that only a relatively small number of human fixations 

can be explained solely by saliency models (see Parkhurst, Law, & Niebur, 2002; 

Tatler & Vincent, 2009; Betz, Kietzmann, Wilming & Konig, 2010; Schutz, Braun & 

Gegenfurtner, 2011). More recently researchers have questioned the changing 

magnitude of the observed correlations between salient features and fixation pattern 

(Tatler, Baddeley, & Gilchrist, 2005; Rothkopf, Ballard, & Hayhoe, 2007) in different 

tasks and concluded that these correlations do not automatically imply causation 

(Henderson, Brockmole, Castelhano, & Mack, 2007). 

A growing body of research (Underwood, Foulsham & Humphrey, 2009; 

Matsukura, Brockmole & Henderson, 2009) has demonstrated that purely bottom up 

saliency models cannot adequately account for eye movement patterns during 

recognition tasks. Other studies investigating fixation patterns during complex 

behaviours found that observers tend to fixate predominantly on task relevant objects 

instead of visually salient objects (Land & Hayhoe, 2001; Land, Mennie, & Rusted, 

1999). In general, the saliency model seems to account reasonably for circumstances 

when there is not a specific task in hand, but performs quite poorly during visual 

search in real world scenes (Henderson, Brockmole, Castelhano & Mack, 2007). 

 

Predicting fixation patterns in 2D shape representation 
 
 Another approach to understanding fixation selection falls under the 

framework of the information theory. Renninger, Verghese, and Coughlan (2007) 

http://www.journalofvision.org/content/11/8/17.full#ref-29
http://www.journalofvision.org/content/11/8/17.full#ref-30
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examined fixation patterns during a 2D shape (see Figure 14) learning and matching 

task, and reported that observers fixated on the most informative object areas in order 

to reduce local uncertainty. In the learning phase of the study participants had to fixate 

on a cross presented either on the left or right side of the screen for 300ms, while a 

novel object shape was displayed at the periphery. Subsequently they were required to 

make an eye movement to the opposite side of the screen to the previously displayed 

shape belonging to a pair of shapes. Each shape was displayed for 1200ms and the 

participants had to memorise it. During the matching task, the learned shape was 

displayed at a new location alongside the highly similar partner shape and the 

participants had to answer (with no time constraints) which shape out of the two they 

have previously learned.  Eye movements were recorded during both tasks. 

 

Figure 14 Depiction of the task. Participants fixate on the fixation cross for 300ms 
while the object shape appears on the opposite side of the screen. When the fixation 
cross is removed, the participants memorise the shape for 1200ms. This is followed by 
a matching phase where a pair of shapes is displayed until response. Taken from 
Renninger et al., (2007). 
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whereas curved or bumpy lines within a neighbourhood result in higher entropy (red). 
Taken from Renninger et al., (2007). 
 

 The model was compared to human observer data in order to investigate how 

information is used in the planning of eye movements to stimuli, and how other 

decision strategies for predicting fixation locations such as, maximising the amount of 

total information (global) and visual saliency may play a role. The findings were that 

the visual saliency model had a poor fit with the observers data. However, there was a 

good fit to the global strategy prediction. Renninger et al (2007) used global strategy 

that predicts the location of the next fixation based on updated knowledge and 

information gained from the previous fixation. The authors suggested that although 

human visual system may plan more than one fixation at any time, predicting the 

fixation sequence for more than one fixation is more computationally intense and have 

potential confounds. Their results showed that areas with local uncertainty dominated 

eye movement decisions, which the authors interpreted as evidence that observers tend 

to fixate at the most informative locations of outline contour, thus reducing local 

uncertainty in order choose where to look next. 

 Throughout the long history of studies of eye movements it is apparent that 

they are a fundamental feature in pattern analysis and provide a valuable method for 

investigating a variety of diverse factors mediating mental representations and 

cognitive processes. 
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sensitive to global object shape (e.g., Denisova, Singh & Kowler, 2006; He & Kowler, 

1989; Melcher & Kowler, 1999). 

 The empirical derivation of the area of interest (AOIs) or AOI region maps, 

and their quantitative comparison to the predicted distributions, was achieved using a 

modified version of FROA (see Johnston & Leek, 2009, for a full description and 

Matlab implementation of the FROA method). The AOI maps for each stimulus were 

created by summing the convolution of each fixation map (summed across subjects) 

with a 2D Gaussian kernel (SD = 4 deg) (see Figure 16). Since fixation frequency 

varies across subjects and conditions, the maps were normalised using z scores. The 

AOI region maps were derived by binary thesholding the fixation frequency 

distributions using a fixed parameter across all conditions. Here, the threshold was set 

to z = 1.2 in order to reduce the chances of obscuring potentially relevant (sub-

threshold) peaks in the fixation frequency distributions. 

 

  a) Z scored Heatmap made with a Gaussian kernel of 4 degrees from the fixation 

frequencies overlaid on the object 

 

(b) Thresholded map (z = 1.2) overlaid on the object 
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  (c) Binary thresholded region map computed by FROA 

 
Figure 16 Illustrative visualisation of the primary steps used to derive the binary 
region maps underlying FROA. 

 These binary AOI region maps formed the basis for the subsequent analysis of 

the pre-test and test phase fixation data. The primary dependent measure in FROA is 

spatial (i.e., area) overlap percentage (e.g., the amount of  area overlap in the binary 

region maps for each stimulus and the predicted distribution of AOI regions for each 

theoretical model of shape information normalised by the size of the binary region 

maps for each stimulus; see Johnston & Leek, 2009). Overlap is determined by 

calculating the number of supra-threshold pixels that occur at the same spatial 

locations in the binary fixation region maps of each contrasted (observed versus 

modelled) image set. The statistical significance of the observed overlap percentage 

between data sets is then determined with reference to bootstrapped probability 

distributions derived from Monte-Carlo simulations. These are used to generate the 

expected random frequency distribution of area overlap percentage for a given 

observed, and modelled, fixation region. This technique provides a method for 

estimating the random distribution of overlap that would be expected for fixation 
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of the observed patterns across subjects. The subject analysis contrasted the mean 

normalised fixation frequency (fm) for thresholded and sub-thresholded object regions 

across subjects: here, thresholded regions corresponded to the AOIs defined by FROA. 

Sub-thresholded regions were defined by subtracting the thresholded AOIs from the 

remaining area of each stimulus image (within the bounding contour). We refer to 

these regions as sub-threshold AOIs. The fixation frequency distributions per subject 

were normalised for mean region area (across items) and converted to units of visual 

angle (30 pixels is equal to 1 degree of visual angle  given a viewing distance of 60cm, 

a screen resolution of 1280 x 1024 pixels and screen size of 34 cm). Thus, this 

measure takes account of differences in pixel area between thresholded and non-

thresholded regions. Subject analyses of mean fixation durations for thresholded 

versus sub-threshold AOIs using the same normalised measures are also reported.  

 Statistical significance is assessed relative to the two-tailed a priori alpha level 

(p = .05), unless otherwise stated. Exact probability values are reported (p = x) except 

where p < .0001.  

 

  



Chapter 4   62 
 

Chapter 4 

4.1. Experiment 1  

 In the preceding Chapter 3, I have outlined and justified the fundamental 

method used to analyse the eye movement data in this thesis. In the present Chapter I 

will clarify the rationale behind Experiment 1, report the results and discuss the 

findings. 

  As outlined in Chapter 2, eye movement patterns have been investigated in a 

variety of domains such as, reading, scene and face perception, object localisation and 

visual search (Land, Mennie & Rusted, 1999; Liversedge & Findlay, 2000; 

Henderson, Brockmole, Castelhano & Mack, 2007; Mannan, Ruddock & Wooding, 

1997; Rayner, 1998; Renninger, Verghese & Coughlan, 2007; Underwood, Foulsham, 

van Loon, Humphreys & Bloyce, 2006). Surprisingly, to my knowledge, there have 

been no detailed analyses of eye movement patterns beyond two-dimensional (2D) 

pattern recognition (e.g., Renninger et al., 2007; Renninger, Coughlan & Verghese, 

2005), that investigate three-dimensional (3D) visual object recognition. Although 

everyday object recognition can be accomplished quickly, and often within a single 

fixation for a distal stimulus, previous studies, using 2D stimuli, have shown that 

fixation patterns can be highly informative about shape processing during perception 

(e.g., Melcher & Kowler, 1999; Renninger et al., 2005; 2007; Vergilino-Perez & 

Findlay, 2004). For example, Melcher and Kowler (1999) have shown that the initial 

landing position during saccadic localisation is driven by a representation of target 

shape that determines Center-of-Gravity (COG) landing sites. Recent evidence also 

suggests that the perception of information about object presence and identity in a 

scene may be restricted to a relatively small region around the current fixation point 
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(Henderson, Williams, Castelhano & Falk, 2003), although the nature of the shape 

information processed during fixations, and the role of this information in object 

recognition, remains unclear.  

 In this context, a variety of different object recognition theories have been 

proposed which make different claims about how shape is represented. For example, 

some accounts suggest that shape classification is based on class-specific appearance 

or image-based feature hierarchies computed across multiple spatial scales (e.g., 

Ullman, 2007; Ullman & Bart, 2004; Ullman, Vidal-Naquet & Sali, 2002). Other 

image-based models have hypothesised the use of 2D views, or aspects, that conjointly 

encode information about shape and the spatial locations of image features (e.g., 

Edelman & Weinshall, 1991; Riesenhuber & Poggio, 2003; Ullman & Basri, 1991). In 

contrast, structural description theories propose that shape perception depends on the 

decomposition of object shape into generic primitives (e.g., generalised cylinders, 

geons or surfaces) and that recognition is mediated by representations that 

independently encode information about these primitives and their spatial 

configuration (Biederman, 1987; Hummel & Stankiewitz, 1996; Leek, Reppa & 

Arguin, 2005; Leek, Reppa, Rodriguez & Arguin, 2009; Marr & Nishihara, 1978). All 

these approaches are not mutually exclusive. For example, recent hybrid models have 

suggested that both image-based and structural description approaches can be 

accommodated within the same framework (Foster & Gilson, 2002; Hummel & 

Stankiewitz, 1996).  

 However, regardless of whether an image-based, structural description or some 

other form of representation is proposed, there remains a debate about the specific 

kinds of shape information, and shape analysis algorithms, that underlie object 

recognition. Theoretically, there are several different kinds of information from low-
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examine object recognition (e.g. Tarr & Bulthoff, 1995; 1998). Third, the Active vs. 

Passive manipulation allowed us to compare explicit vs. implicit shape encoding. 

Fourth, it was important to use a task in which stimulus exposure duration was 

relatively long in order to acquire sufficient eye movement data for analyses. 

  Following pre-test and test phase, the observed fixation patterns were 

compared to the predicted distributions derived from different models of shape 

information content. My interest was to examine whether fixation patterns can be 

driven by higher-level shape features, beyond low-level image statistics alone, and so 

I used visual saliency as a baseline contrast (Itti, Koch & Niebur, 1998; Koch & 

Ullman, 1985; Walther & Koch, 2006). The visual saliency model generates saliency 

maps based on weighted contrasts in luminance, orientation and colour. This model 

has been widely applied to eye movement studies of scene perception although its 

efficiency in predicting fixation patterns remains the subject of on-going debate (e.g., 

Baddeley & Tatler, 2006; Cristino & Baddeley, 2009; Henderson, Brockmole, 

Castelhano & Mack, 2007). The main question in this study was whether specific 

models of shape analysis could account for fixation patterns beyond that explicable by 

visual saliency.  

I have evaluated three different models. Model 1: was based on external global 

shape features defined by bounding contour and was based on the hypothesis from 

recent work showing that outline shape influences object recognition (e.g., Hayward, 

1998; Hayward Tarr, & Corderoy, 1999; Lloyd-Jones & Luckhurst, 2002). Model 2 

and Model 3 were derived from the large body of work highlighting the importance of 

curvature in shape perception (e.g., Attneave, 1954; Barenholtz, Cohen, Feldman & 

Singh, 2003; Bertamini, 2008; Biederman, 1987; Cate & Behrmann, 2010; Cohen, 

Barenholtz, Singh & Feldman, 2005; Cohen & Singh, 2007; De Winter & Wagemans, 
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  The study comprised two phases: pre-test and test phase. All subjects 

completed both phases. There were two versions of the pre-test: Active learning and 

Passive viewing, with participants assigned randomly to one of the two groups. Eye 

movement patterns have been found to differ depending on task requirements (e.g. 

Yarbus, 1967). Hence, employing two tasks (explicit vs. implicit) that potentially 

activate different representational structures, or the same structures, but in different 

ways, provides an opportunity to examine the robustness of data-model 

correspondences associated with local shape analyses during perception across 

different task requirements.   For both pre-test groups the trial structure was the same 

comprising 18 trials (6 targets x 3 viewpoints). On each trial, participants initially 

fixated a square (1° x 1° visual angle) for 2000 ms presented in the centre of the 

display vertically and either 9 degrees to the left or right of the object. In the pre-test 

phase, following a 2000 ms blank ISI a single stimulus was presented in the centre of 

the monitor for 10 seconds.  

 In the active learning group, participants were instructed to study the shape of 

each stimulus and to try to memorise it for a subsequent recognition memory task. 

They were told that they would see six objects presented in a three different 

viewpoints. In the passive viewing group, participants were instructed only to visually 

inspect each stimulus. They were not told to memorise the objects, nor forewarned 

about the subsequent recognition memory task. For each pre-test group, half of the 

participants viewed objects 1-6, and half viewed objects 7-12. The objects viewed in 

the pre-test phase were assigned as targets. Thus, all 12 stimuli were used both as 

targets and distracters across groups. In the test phase (N trials = 72), targets (N = 6, 

depending on the set shown in pre-test) and distracters (N = 6) were presented in 

random order each at six viewpoints (3 familiar and 3 novel). Across groups there 
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Figure 21 An illustration of the predicted thresholded fixation region maps for the 
three tested models (External bounding contour, Internal Convex surface 
discontinuity, and Internal Concave surface discontinuity). All of these predicted 
distributions were generated algorithmically.  
 
Model 1: External (bounding) Contour 

 Model 1 examined the extent to which fixation patterns focus on external 

global shape features defined by bounding contour. This hypothesis derives from 

previous work showing that outline shape influences object recognition (e.g., 

Hayward, 1998; Hayward et al., 1999; Lloyd-Jones & Luckhurst, 2002). The bounding 

contour was computed using an edge detector on the image silhouette of the stimuli. It 

was then re-plotted using lines of 0.66 degrees width (see Figure 21). This value was 

used as it produced models of a similar size as the binarised eye movement data.  
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Model 2: Internal Convex Surface Discontinuity 

 Model 2 generated predicted fixation regions based on the locations of local 

features defined by convex surface curvature maxima. These were generated by 

applying a curvature estimation algorithm derived from Taubin (1995) to the object 

mesh models using the Peyre Matlab toolbox. From this we extracted edges along 

convex curvature maxima (see Figure 20). The convex features were re-plotted using 

lines of 0.66 degrees width. Edges on the exterior bounding contour were deleted. Due 

to the nature of the stimuli, convexities can occur both inside and on the bounding 

contour of an object but concavities are more likely to occur on the internal contour 

(see Figure 21). By keeping internal features only, we are able to compute a bias free 

measure of the preference for convex or concave image features.  

Model 3: Internal Concave Surface Discontinuity 

 Model 3 generated predicted fixation regions based on the locations of local 

features defined by concave surface curvature minima (see Figure 21). The same 

curvature estimation method was used as for Model 2, except that here I extracted 

edges along concave curvature minima. As with Model 2 edges falling on the external 

bounding contour were removed.  

Visual Saliency baseline 

 As outlined before, the visual saliency model generates saliency maps based on 

weighted contrasts in luminance, orientation and colour. Although this model has been 

widely applied to eye movement studies of scene perception its efficiency in 

predicting fixation patterns remains a subject of on-going debate (e.g., Baddeley & 

Tatler, 2006; Henderson, Brockmole, Castelhano & Mack, 2007; Cristino & Baddeley, 

2009).  
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 To create this model I used the Saliency Toolbox implementation in Matlab 

(Walther & Koch, 2006). The model was run on each of the 72 stimulus images (12 

objects x 6 viewpoints) used in the recognition task and generated a saliency map for 

each stimulus. The output of the toolbox is a list of saliency values for each pixel 

which are grouped into a saliency region map using shape estimation function (see 

Walther & Koch, 2006). The number of saliency regions generated was constrained to 

approximate the area and number of thresholded regions generated for the other 

models. The saliency maps were thresholded and binarised using FROA in the same 

way as the empirically derived fixation data from the recognition task. These maps 

represent the thresholded distributions of fixation regions we would expect if eye 

movements were determined solely by low-level image statistics. As I mentioned 

earlier, this model was used as a baseline contrast as the question of interest here was 

whether specific models of shape analyses could account for fixation patterns beyond 

the explicable by visual saliency. 

 
 4.1.3. Behavioural data analyses 
 
Analyses of behavioural data (Test Phase) 

 Analyses were conducted on the mean median test phase RTs and accuracy 

data. Only RTs for correct responses were included. Mean median RTs and accuracy 

rates are shown in Table 1 (targets only) for both the active learning and passive 

viewing pre-test groups.   
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significant difference between accuracy rates for targets (M = 90%; SE = 0.012) versus 

non-targets (M = 90%; SE = 0.013), z =.226, p = .821, ns. For test phase target trials, 

accuracy was significantly higher for trained views (M = 93%; SE = 0.014) than for 

novel views (M = 87%; SE = 0.018), z = -2.93, p = .003. There was no significant 

difference in accuracy for non-targets across viewpoints z = -1.47, p = .141, ns. For the 

Passive viewing pre-test group overall response accuracy was higher for non-targets 

(M = 81.5%; SE = 0.015) than targets (M = 72%; SE = 0.021), z = 3.21, p = .001.  

  In the test phase there was no difference in accuracy for targets between 

familiar (M = 74%; SE = 0.031) and novel viewpoints (M = 69%; SE = 0.029), z = -

1.77, p = 0.77, ns, or for non-targets: Familiar, M = 84%; SE = 0.016; novel, M = 87%; 

SE = 0.014, z = -1.75, p = 0.79, ns. Overall accuracy rates for the Active Learning 

group (M = 90%, SE = 0.01) and Passive Viewing group (M = 82%, SE = 0.01) were 

significantly different Mann Whitney: z = - 4.37, p <.001. 

4.1.4. Analyses of eye movement data 

Pre-Test Phase: Active Learning Group 

 A subject analysis was first performed to test the generality and reliability of 

the thresholded fixation region distributions across participants. This was done by 

contrasting the frequency of fixations between thresholded (fixated) and sub-threshold 

(insufficient number of fixations) AOIs (see Methods). Separate subject analyses were 

performed on the pre-test (targets) and test phase (targets and non-targets) data. Table 

2 shows the mean normalised frequencies for the thresholded and sub-thresholded 

AOIs across participants. These data show that the mean normalised fixation 

frequency for thresholded AOIs is higher than for sub-threshold AOIs in both the 

active learning and test phases for targets, and in the test phase, for targets and non-

targets 
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.423, but no effect of Epoch F = (2, 70) = 1.47, p = .235ns., and no interaction. In the 

absence of any interaction, normalised distance was collapsed across epoch. A one-

way ANOVA on mean MMC values across models (Visual saliency, Internal features 

convex, Internal features concave, External features) was significant, F (3, 140) = 

15.72, p < .0001. Post-hoc analyses showed that the pairwise contrasts between 

models were significantly different for Internal features concave vs. Visual saliency, p 

< .0001; Internal features convex vs. Visual saliency, p < .0001; External features vs. 

Visual saliency, p = .007. In addition, unlike the Active learning group there was also 

a significant difference between Internal features concave vs. External features, p = 

.020. There were no other significant contrasts (see Figure 22). 
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Eye movement data 

- Eye movement analyses showed a higher fixation frequency for thresholded AOIs than 

for sub-thresholded AOIs for active learning, passive viewing phase for targets, and in 

the test phase for targets and non-targets. 

- Analyses of local shape feature patterns for both groups (Active learning, Passive 

viewing) in the pre-test phase showed that data-model correspondences were greater 

for Internal Concave, Internal Convex, and External contour models than the Visual 

saliency model.  

- The Passive viewing pre-test group showed greater data-model correspondence for 

Internal Concave model relative to the External contour model. 

- Analyses of local shape feature patterns in the test phase for both groups showed 

greater data-model correspondences for Internal Concave, Internal Convex, and 

External contour models relative to the Visual saliency model.  

- Data-model correspondence was higher for the Internal Concave than the Internal 

Convex models.  

- Fixation duration for both Active and Passive learning groups in both pre-test and test 

phases of the study were longer for fixations falling within thresholded regions, than 

sub-tresholded regions. This pattern was evident for both targets and non-targets.  

4.1.5. General discussion 

 In this study we examined the fixation patterns during the perception and 

recognition of 3D objects. Observers either actively memorised or passively viewed 

sets of visually similar novel objects prior to performing a recognition memory test. 

The main empirical findings were as follows: First, the analyses of the RT and 

accuracy data showed that while observers performed the recognition memory task 

more accurately following the active learning than passive viewing pre-test, the 
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accounted for by low-level visual saliency. Moreover, the data further showed a 

fixation preference for concave regions over convex regions during recognition. This 

concave preference did not interact with pre-test group. That is, regardless of whether 

observers actively memorized or passively viewed objects in the pre-test, they showed 

a preference for fixation at regions of internal concave minima in the recognition task. 

How can this pattern of results be accounted for? 

 One possibility is that observers specifically fixate those particular internal 

regions because they are the optimal locations for extracting global (e.g., outline) 

shape properties rather than because of their status as regions containing perceptually 

relevant shape curvature. However, such an account would not provide an obvious 

explanation for the apparent preference for fixation at regions of concave surface 

discontinuity in the recognition task but not in the pre-test phase. Additionally, it is 

more likely that the optimum location for extracting global shape attributes (e.g., 

elongation, orientation, or symmetry) would be close to the center of mass but this is 

clearly not the case as early COG fixations were removed from the data. Rather, the 

preference for fixation at regions of concavity during the recognition task is consistent 

with hypotheses that outline a special functional status for concave minima in shape 

recognition (e.g., Feldman & Singh, 2005; Hoffman & Richards, 1984; Lim & Leek, 

2012).  

 One influential hypothesis is that concave regions play an important role as 

segmentation points allowing for the computation of parts-based structural 

descriptions (e.g., Hoffman & Richards, 1984; Marr & Nishihara, 1978). In this 

context, one interesting aspect of the data stems from the concurrent observation of a 

fixation preference for concave surface minima along with viewpoint- dependent 

performance in the recognition task. The former finding is consistent with the claim 
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Chapter 5 

5.1. Experiment 2  

 Experiment 2 builds on the previous experiment and aims to examine the 

robustness of fixational eye movement patterns across different sets of stimuli and 

methods for collecting the comparable model data. Here the generated model data 

were collected from trained observers in order to incorporate the same amount of error 

as in the recognition test task, thus allowing us to compare task acquisition and 

performance while taking into account human visual system characteristics. Similar to 

Experiment 1, observers actively memorised or passively viewed sets of novel 3D 

objects each comprising of four components or volumetric parts varying in local part 

structure and spatial configuration. Participants then performed a recognition memory 

test in which they discriminated the previously viewed targets from visually similar 

distracters at both trained and novel orientations. In both phases, we recorded the eye 

movements, response times (RTs) and accuracy measures. To examine in more detail 

the robustness of Experiment 1 findings we asked four additional questions: First, is 

any specific local image region fixated during initial viewing and subsequent 

recognition? Second, are the same image regions consistently fixated across changes 

in object viewpoint? Third, what kinds of local shape information do these regions 

contain? Fourth, are the patterns of fixations associated with local shape analyses 

robust across task demands (i.e., active learning versus passive viewing). 

 The goal of this study was not only to determine where observers fixate during 

shape perception and recognition, but also to examine what they fixate by undertaking 

detailed analyses of shape information content at fixated image regions. To do this, we 

contrasted the observed fixation patterns against the predicted distributions derived 
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from three theoretical hypotheses about local image information content. Model 1 was 

based on visual saliency which assumes a processing (or attentional) bias determined 

by local low-level image statistics at salient regions defined by contrasts in luminance 

intensity, orientation and colour (Itti, Koch & Niebur, 1998; Koch & Ullman, 1985; 

Walther & Koch, 2006). This model has been widely used in eye movement studies of 

scene perception although its efficiency in predicting fixation patterns remains the 

subject of on-going debate (e.g., Baddeley & Tatler, 2006; Henderson, Brockmole, 

Castelhano & Mack, 2007). Similarly to Experiment visual saliency was used as a 

baseline as I wanted to examine fixation patterns beyond low-level image statistics. 

Model 2 and Model 3 (explained in more detail below) derived from the large body of 

work highlighting the importance of contour curvature magnitude and the sign of 

curvature in visual perception (e.g., Attneave, 1954; Bertamini, 2008; Biederman, 

1987; Cate & Behrmann, 2010; Cohen & Singh, 2007; De Winter & Wagemans, 2006; 

Feldman & Singh, 2005; Hoffman & Richards, 1984; Hoffman & Singh, 1997).  

 In the current study the focus of interest was to examine the extent to which 

local shape analyses, as shown by fixation patterns, can be predicted by the presence 

of local curvature (convex maxima and concave minima) in 3D object recognition.  

Previous empirical work demonstrated that concave and convex curvature plays a key 

role in shape perception, but to my knowledge no one yet have examined these two 

types of curvature with eye movement analyses and/or 3D images. Hence the main 

focus of interest is to investigate concave and convex models rather than visual 

saliency.  
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5.1.1. Method 
 
Participants  

 60 students from Bangor University (51 female, mean age: 22.26 years, SD = 

6.58, 54 right handed) participated in the study for course credit. All participants had 

normal or corrected to normal visual acuity. Informed consent was obtained from each 

participant prior to testing, in line with local ethics committee and BPS guidelines. 

 

Stimuli  

 Each of the ten novel objects (see Figure 24) consisted of a unique spatial 

configuration of four volumetric parts. The parts were uniquely defined by variation 

among non-accidental properties (NAPs) comprising: Edges (Straight vs. Curved), 

symmetry of the cross section, tapering (collinearity) and aspect ratio (Biederman, 

1987). 

 

 

Figure 24 The 10 surface rendered novel object stimuli used in the Experiment. 

 

 These object models were produced using Strata 3D CX software (Strata, 

USA) and rendered using a single light source (top left) model in greyscale at 72 dpi 







Chapter 5  96 
 

image statistics, that is, by the most visually salient image regions defined by colour, 

intensity contrast, and orientation. 

 Similarly to Experiment 1, this model served as a baseline contrast given the 

question of interest here was whether specific models of shape analyses could account 

for fixation patterns beyond the explicable by visual saliency. 

Model 2: Convex Surface Curvature Maxima 

 The second model generated predicted fixation regions based on the locations 

of local features defined by convex surface curvature maxima. In order to generate 

predicted region maps that incorporate the same error measures as the recognition task 

data (that is, variation in fixation patterns due to both within and between-subject 

variability, as well as error arising from eye tracker accuracy, drift and resolution) we 

used a trained observer technique (Johnston & Leek, 2009). Thirteen participants (11 

right handed, M = 22.54 years, SD = 8.00; range = 19-41 years) were trained to fixate 

only at convex areas of the 10 experimental stimuli, each from the same six 

viewpoints used in the recognition task. Stimulus exposure duration was 10 seconds as 

in the learning phase of the recognition task. Fixation region maps were generated 

using FROA by applying the same filtering, Gaussian smoothing and thresholding 

criteria as used for the recognition task data (see above). Mean pixel area across 

thresholded convexity maps per object was 20457.53 (SE = 447.39). 

Model 3: Concave Surface Curvature Minima 

 The third model generated predicted fixation regions based on the locations of 

local features defined by concave surface curvature minima. Thirteen participants (13 

right handed, M = 26.54 years, SD = 9.40; range = 18-40 years) were trained to fixate 

only at convex areas of the 10 experimental stimuli, each from the same six 

viewpoints used in the recognition task. Stimulus exposure duration was 10 seconds as 
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in the learning phase of the recognition task. Fixation region maps were generated 

using FROA by applying the same filtering, Gaussian smoothing and thresholding 

criteria as used for the recognition task data (see above). Mean pixel area across 

thresholded convexity maps per object was 16695.17 (SE = 526.63). 

Independence of predicted fixation patterns 

 It is important to verify that the predicted region distributions of the three 

models are sufficiently different (in order that they may be statistically distinguished 

when compared to the gaze data) (see Figure 26). In order to do this FROA was used 

to compare region overlap across models.  

 Mean pixel region overlap across items for the Visual saliency and Convexity 

models was 12.98% (SD = 9.32%) of the total pixel area for the convexity model. 

Analyses of these data using FROA showed that MMC score for the observed region 

overlap between the two models was -0.298. 

  Mean pixel region overlap across items for the Visual saliency and Concavity 

models was 7.31% (SD = 8.83%) of the total pixel area for the Concavity model. 

Analyses of these data using FROA showed that MMC score for the observed region 

overlap between the two models was -0.940. 

 Mean pixel overlap between the Convexity and Concavity models was 21.90 % 

(SD = 21.07%) of the total pixel area for the Convexity model. Analyses of these data 

using FROA showed that the MMC score for the observed region overlap between the 

two models was 6.99. 

 A one way ANOVA (target vs. between models overlap: Visual saliency vs. 

Concave, Visual saliency vs. Convex, Convex vs. Concave) on the distance measure 

showed a significant main effect of Model, F (2, 179) = 17.90, p < .0001. Post-hoc 

analyses showed that the pairwise contrasts between models were significantly 
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different for Visual saliency vs. Concave, p < .0001; Visual saliency vs. Convex, p < 

.0001, and Concave vs. Convex, p = .018.  

 

Figure 26 The mean frequency of observed overlap (expressed in MMC) between the 
generated model data. Bars show standard error of the men (% overlap). 
 
 
 This shows that the pattern overlap between all of the generated models (Visual 

saliency, Convexity and Concavity) is significantly different; thus, we have 

significantly distinct empirical fixation models distributions to compare with the 

experimental data. 

5.1.3. Behavioural data analyses 
 
 Analyses were conducted on the mean median test phase RTs and accuracy 

data. Only RTs for correct responses were included. 
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5.1.4. Fixation data analyses 
 
Active Learning group 
 
 Using FROA, distributions of fixation regions for each target and non-target 

were empirically derived from the fixation data (see Methods). A subject analysis was 

first performed to test the generality and reliability of the thresholded fixation region 

distributions across participants. This was done by contrasting the frequency of 

fixations between thresholded and sub-thresholded regions (see Methods). The 

frequency statistics for thresholded (fixated) and sub-thresholded regions were 

normalized for mean region size and express frequency in units of visual angle. 

Separate subject analyses were performed on the learning (targets) and test phase 

(targets and non-targets) data. Table 5 shows the mean normalized frequencies for the 

thresholded and sub-thresholded regions across participants. These data show that the 

mean normalized fixation frequency for thresholded regions is higher than for sub-

thresholded regions in both the learning and test phases for targets, and in the test 

phase, for targets and non-targets. 

Table 5. The mean normalized fixation frequencies (mean fixation per degree of visual 
angle) for thresholded and sub-thresholded regions derived using FROA. Standard 
error of the mean is shown in parentheses. 

 
  

Pre-test Phase 
 
Test Phase 

 Targets       Targets Non-targets 

 
Thresholded regions 

 
0.38     (0.02) 

 

   
0.31   (0.03) 

 
 0.30  (0.036) 

Sub-thresholded regions 0.0001 (0.0001) 
 

0.002 (0.002)  0.002 (0.002) 

 

 For the Active learning phase, there was a significant difference between the 

mean normalized fixation frequencies across participants for the thresholded vs. sub-
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Analyses of the local shape feature analysis patterns for Active Learning group 

 In order to elucidate the information content at fixated image regions FROA 

was used to determine the degree of overlap in the observed spatial distributions of 

fixation regions and those predicted by each tested model of local shape analysis. 

Separate analyses are presented for the learning and test phases. Three of the stimuli 

used were excluded from the analyses, as naming errors were found which potentially 

could have confounded the analyses. 

 

Active Learning task 

 For the learning phase, the distributions of fixation regions to targets presented 

at trained viewpoints (N=29) were analysed across 3 epochs following stimulus onset 

(see Figure 27). 

 

 

Figure 27 Mean MMC Mx measure during Active Learning Task: The frequency of 
significant contrasts per epoch for concave and convex models relative to visual 
saliency. Bars show standard error of the mean (% overlap). 
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Figure 30 Mean MMC Mx measure of data-model correspondences for concave and 
convex models (relative to visual saliency) for the recognition memory test phase 
collapsed across targets and non-targets. Bars show standard error of the mean (% 
overlap). 

 

Analyses of the local shape feature analysis patterns for Passive viewing task 

 For the learning phase, the distributions of fixation regions to targets presented 

at trained viewpoints (N=29) were analysed across 3 epochs following stimulus onset 

(see Figure 31). 

 

Figure 31 Mean MMC Mx measure of data-model correspondences for concave and 
convex models (relative to visual saliency) in pre-test Passive viewing phase across 
Epoch. Bars show standard error of the mean (% overlap). 
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Figure 33 Mean MMC Mx measure of data-model correspondences for concave and 
convex models (relative to visual saliency) in pre-test Passive view recognition task 
for targets and non-targets. Bars show standard error of the mean (% overlap). 

 
 

Figure 34 Mean MMC Mx measure of data-model correspondences for concave and 
convex models (relative to visual saliency) for Passive recognition task collapsed over 
targets and non-targets. Bars show standard error of the mean (% overlap). 

 

Pre-test phase: Active Learning and Passive Viewing Groups 

  These analyses were run on the MMC data from the pre-test phase. A 2 (Active 

Learning, Passive viewing, BS) x 3 (Model: Concave, Convex, Visual saliency, WS) 

mixed ANOVA across target mean MMC for the pre-test phase data showed a 
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Figure 35 Mean MMC Mx measure of data-model correspondences for concave 
and convex models (relative to visual saliency) for the recognition memory 
test phase (collapsed across Active and Passive groups and across targets and 
non-targets). Bars show standard error of the mean (% overlap). 

 

          Summary of the Results 

           Behavioural data 

- The overall RTs and Accuracy data in the test phase showed faster and more accurate 

responses for the Active learning group, than the Passive viewing pre-test group. 

-  The Active pre-test group showed faster RTs for targets at familiar than novel 

viewpoints.  

- Both Active learning and Passive viewing pre-test groups showed significantly higher 

accuracy for non-targets than targets. 

Eye movement data 

- Eye movement analyses showed higher fixation frequency for thresholded AOIs than 

for sub-thresholded AOIs for active learning, passive viewing phase for targets and 

non-targets. 
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- Analyses of local shape feature patterns for both groups in the pre-test phase showed 

main effect of model. Post-hoc analyses for Data-model correspondences were greater 

for Concave and Convex models relative to Visual saliency.   

- Analyses of local shape feature patterns for both groups in the test phase showed that 

data-model correspondences were larger for the Concave model, followed by the 

Convex model, and the Visual saliency model.  

5.1.5. Conclusions  

 In this experiment observers memorised a sub-set of 3D novel objects, and then 

performed a recognition memory test phase in which targets were discriminated from 

visually similar distracters across trained and novel viewpoints. Similarly to 

Experiment 1, the analyses of RT and accuracy data showed that observers were more 

accurate following the active learning than the passive viewing pre-test, and in the test 

phase RTs for both groups were faster for targets at familiar (pre-test) viewpoint than 

at novel viewpoint. This finding suggests that the participants in the active learning 

and passive viewing pre-tests performed the recognition memory task in a similar way 

and that the recognition in both groups was viewpoint dependant. This finding 

supports previous research suggesting that recognition is mediated by a viewpoint-

dependent represenatations of shape (e.g., Bulthoff & Edelman, 1992; Reisenhuber & 

Poggio, 1999). The analyses of eye movement data were best accounted for by models 

of shape analysis based on local regions of curvature extrema and there was no 

evidence that fixation distributions are determined by low-level visual saliency.  

Instead, the observers showed a strong preference for fixation at regions of concave 

curvature minima relative to convex curvature maxima, which interacted in the pre-

test phase. More specifically, the observers showed no preference for fixating concave 

over convex regions during the passive viewing task, whereas in the active learning 
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equating the response time to that of basic level access. In their study, dog and bird 

experts participated in a category-verification task, where after hearing a category 

label, their subjects (dog and bird experts) first heard a category label (superordinate, 

basic, or subordinate) and were asked to specify whether the subsequently presented 

picture was one of the previously labelled category. The dog and bird experts were 

equally fast at subordinate and basic categorisation.  

 In one hypothesis; basic level of categorisation and object detection have been 

presumed to be supported by the same perceptual mechanisms as there was no 

significant difference in response time and accuracy between object detection and 

object categorisation processes (e.g., as soon as participants could detect an object, 

they already knew the category of that object) (Grill-Spector & Kanwisher, 2005). 

This suggestion was also supported by a functional magnetic resonance imaging 

(fMRI) study, which showed that the same cortical regions are activated during 

detection and identification of stimuli of a certain category (Grill-Spector, 2003).  

 However, more recent research (Mack & Palmeri, 2010) demonstrated that 

effective object detection is possible without categorising that object at basic-level, as 

well as that object detection is faster than a basic level of categorisation. In contrast to 

basic level categorisation, subordinate level categorisation is suggested to rely on finer 

distinctions in order to discriminate between two individual exemplars of one object 

class (e.g. recognising individual faces) (Bulthoff et al., 1995). Learning to classify 

visually similar objects at a subordinate level typically involves identifying small 

perceptual changes, thus making this task appropriate for exploring the role of local 

features in object shape representation. A wide range of studies (Bukach, Gauthier & 

Tarr, 2006; Gauthier & Tarr, 2002) have presented evidence that subordinate expertise 

with objects influences their perceptual representations from feature-based in novices 
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level of classification involves part segmentation which occurs at point with concave 

local discontinuities.  

 However, both approaches appear to have difficulties with explaining the 

mechanisms of object classification. For example, image based models suggest that 

object representations are definitive to particular exemplars (given the assumption that 

objects are represented in a viewpoint-specific manner) not to object classes, thus 

these models do not provide information about recognising novel views of familiar 

object categories. Conversely, structural description models (e.g., Biederman, 1987) 

present an explanation about typical object recognition tasks regarding general classes 

of objects (e.g., basic level), but do not suggest how we process objects at a 

subordinate level. 

 Nevertheless, it should be noted that the two approaches (structural description 

and image based) are not mutually exclusive and both of them explain elements of 

human visual recognition; structural description providing information about 

categorical (basic) level access, and image based for within class level (subordinate) 

access. Moreover, as previously noted, some hybrid models propose that it is 

potentially achievable for both image based and structural description approaches to 

be accommodated within the same framework (e.g., Foster & Gilson, 2002; Hummel 

& Stankiewitz, 1996).  

 However, Murray (1998) demonstrated that basic level recognition is not 

exclusively mediated by structural description models and that viewpoint dependent 

mechanisms are evident during basic level discrimination involving visually dissimilar 

objects. Moreover, the author also shown that viewpoint invariant mechanisms are 

present during basic level of discrimination amongst visually similar objects. More 

specifically, the author proposed that whether an image based or structural description 
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based approach is employed, depends on the task in hand, the level of familiarity, and 

the similarity amongst the stimuli.  

 In the current study we employed the general design of the Wong et al., (2009) 

paradigm and in addition recorded eye movement patterns in order to  investigate 

whether visual object shape representation changes with experience and if so, how. 

For example, when participants learn to attach semantic/conceptual information (i.e. 

family names vs. individual names) to novel objects, this should improve their 

subsequent recognition in the task they have been trained to do. However, but would 

this put different demands on the visual system and result in a change of the eye 

movement patterns as a function of training?  

 Nevertheless, regardless of whether holistic or analytic object shape 

representations are activated there is still a remaining question as to whether the visual 

system uses the same shape information (e.g., local image features) during object 

shape representation and if this same information is used when categorizing objects in 

to either the basic and/or subordinate level. 

6.1.1. Method 
 
Participants 

 Participants were 36 undergraduate and postgraduate students from Bangor 

University, participating in exchange for course and printer credits. Twelve of the 

participants were assigned to the Subordinate training group (8 females age M = 20.08, 

SD = 2.5), twelve to the Basic group (9 Females age M = 19.75, SD = 1.05) and twelve 

to a No-training control group (9 females, age M =20.33, SD = 3.23). All the 

participants reported normal or corrected to normal vision and seven were left handed.  

 

Stimuli  
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 Thirty-six novel objects called Ziggerins were kindly supplied by Alan Wong 

of The Chinese University of Hong Kong (see Figure 36). There were six different 

classes of Ziggerins, each defined by a distinctive part structure. Each class consisted 

of 6 Ziggerins, each defined by a part variation of size, aspect ratio and cross-sectional 

shape. The same style variations were applied to each of the six classes. This 

combination was suggested to be analogous to 6 different letters shown in 6 different 

fonts (Wong et al., 2009). The models were rendered in yellow at 72 dpi and scaled to 

fit within an 800 x 800 pixel frame. Stimuli subtended 18 degrees of visual angle 

horizontally from the viewing distance of 60 cm. This scale was specifically chosen to 

instigate saccadic movements over the stimuli. 

Apparatus 

 Eye movement data were recorded on a Tobii ET-17 binocular eye-tracker as 

used in Experiment 1. Stimuli were presented on a TFT monitor running at a 

resolution of 1280 x 1024 pixels and 60 Hz refresh rate.  

 

 

Figure 36 An illustration of the stimuli used in the experiment (Ziggerins). 

 

 

  

 

 
























































































































































































































