
Bangor University

DOCTOR OF PHILOSOPHY

Synthesis of Complex Sugar Mycolates of Mycobacterium Tuberculosis

Ali, Omar

Award date:
2017

Awarding institution:
Bangor University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 01. May. 2024

https://research.bangor.ac.uk/portal/en/theses/synthesis-of-complex-sugar-mycolates-of-mycobacterium-tuberculosis(54716f83-cade-4799-86e2-122319e94d75).html


 

 

 

Synthesis of Complex Sugar Mycolates of 

Mycobacterium Tuberculosis 

 

A thesis submitted to Bangor University 

for the degree of Doctor of Philosophy 

 

By 

 

Omar Thanoon Ali 

 

 

 

 

 

2017 

                                                     



 

I 

 

Declaration and Consent 

Details of the Work: 

I hereby agree to deposit the following item in the digital repository maintained by Bangor 

University and/or in any other repository authorized for use by Bangor University. 

Author Name: Omar Thanoon Ali  

Title: Mr. 

Supervisors/Department: Professor Mark S. Baird & Dr. Juma’a R. Al-Dulayymi /Chemistry. 

Funding body (if any):  

Qualification/Degree obtained: PhD in Chemistry. 

This item is a product of my own research endeavours and is covered by the agreement below 

in which the item is referred to as “the Work”.  It is identical in content to that deposited in 

the Library, subject to point 4 below. 

 

Non-exclusive Rights: 

Rights granted to the digital repository through this agreement are entirely non-exclusive. I 

am free to publish the Work in its present version or future versions elsewhere. I agree that 

Bangor University may electronically store, copy or translate the Work to any approved 

medium or format for the purpose of future preservation and accessibility.  Bangor University 

is not under any obligation to reproduce or display the Work in the same formats or 

resolutions in which it was originally deposited. 

 

Bangor University Digital Repository: 

I understand that work deposited in the digital repository will be accessible to a wide variety 

of people and institutions, including automated agents and search engines via the World Wide 

Web.  

I understand that once the Work is deposited, the item and its metadata may be incorporated 

into public access catalogues or services, national databases of electronic theses and 

dissertations such as the British Library’s EThOS or any service provided by the National 

Library of Wales. 

I understand that the Work may be made available via the National Library of Wales Online 

Electronic Theses Service under the declared terms and conditions of use 

(http://www.llgc.org.uk/index.php?id=4676). I agree that as part of this service the National 

Library of Wales may electronically store, copy or convert the Work to any approved 

medium or format for the purpose of future preservation and accessibility. The National 

http://www.llgc.org.uk/index.php?id=4676


 

II 

 

Library of Wales is not under any obligation to reproduce or display the Work in the same 

formats or resolutions in which it was originally deposited. 
 

Statement 1: 

This work has not previously been accepted in substance for any degree and is not being 

concurrently submitted in candidature for any degree unless as agreed by the University for 

approved dual awards. 
 

Signed ……………………….…. (candidate)     Date …………………….. 

Statement 2: 

This thesis is the result of my own investigations, except where otherwise stated.  Where 

correction services have been used, the extent and nature of the correction is clearly marked 

in a footnote(s). 

All other sources are acknowledged by footnotes and/or a bibliography. 
 

Signed …………………………… (candidate)     Date …………………………… 

Statement 3 (bar): 

I hereby give consent for my thesis, if accepted, to be available for photocopying, for inter-

library loans and for electronic repositories after expiry of a bar on access. 

 
 

Signed……………………………  (candidate)    Date ……………………… 

 

Statement 4: 

Choose one of the following options:  

a) I agree to deposit an electronic copy of my thesis (the Work) in the Bangor 

University (BU) Institutional Digital Repository, the British Library ETHOS 

system, and/or in any other repository authorized for use by Bangor University 

and where necessary have gained the required permissions for the use of third 

party material. 

 

b) I agree to deposit an electronic copy of my thesis (the Work) in the Bangor 

University (BU) Institutional Digital Repository, the British Library ETHOS 

system, and/or in any other repository authorized for use by Bangor University 

when the approved bar on access has been lifted. 

 



 

III 

 

c) I agree to submit my thesis (the Work) electronically via Bangor University’s       

e-submission system, however I opt-out of the electronic deposit to the Bangor 

University (BU) Institutional Digital Repository, the British Library ETHOS 

system, and/or in any other repository authorized for use by Bangor University, 

due to lack of permissions for use of third party material. 

 

Options B should only be used if a bar on access has been approved by the University. 

 

In addition to the above I also agree to the following: 

1. That I am the author or have the authority of the author(s) to make this agreement and 

do hereby give Bangor University the right to make available the Work in the way 

described above. 

2. That the electronic copy of the Work deposited in the digital repository and covered 

by this agreement, is identical in content to the paper copy of the Work deposited in 

the Bangor University Library, subject to point 4 below. 

3. That I have exercised reasonable care to ensure that the Work is original and, to the 

best of my knowledge, does not breach any laws – including those relating to 

defamation, libel and copyright. 

4. That I have, in instances where the intellectual property of other authors or copyright 

holders is included in the Work, and where appropriate, gained explicit permission for 

the inclusion of that material in the Work, and in the electronic form of the Work as 

accessed through the open access digital repository, or that I have identified and 

removed that material for which adequate and appropriate permission has not been 

obtained and which will be inaccessible via the digital repository. 

5. That Bangor University does not hold any obligation to take legal action on behalf of 

the Depositor, or other rights holders, in the event of a breach of intellectual property 

rights, or any other right, in the material deposited. 

6. That I will indemnify and keep indemnified Bangor University and the National 

Library of Wales from and against any loss, liability, claim or damage, including 

without limitation any related legal fees and court costs (on a full indemnity bases), 

related to any breach by myself of any term of this agreement.  

 

Signature: …………………        Date: …………… 

 

 



 

IV 

 

Table of Contents 

Declaration and Consent ......................................................................................................... I 

Table of Contents .................................................................................................................. IV 

Acknowledgments ................................................................................................................ VII 

Abbreviations and acronyms ............................................................................................ VIII 

Abstract ............................................................................................................................... XIII 

Chapter 1 .................................................................................................................................. 1 

Introduction .............................................................................................................................. 1 

1.1 TUBERCULOSIS ........................................................................................................................................... 1 

1.2 MYCOBACTERIA ......................................................................................................................................... 5 

1.2.1 Non-Tuberculosis Mycobacteria .............................................................................................. 5 

1.2.2 Tuberculosis Mycobacteria ....................................................................................................... 6 

1.3 THE MYCOBACTERIAL CELL WALL ......................................................................................................... 7 

1.3.1 MYCOLYL-ARABINOGALACTAN COMPLEX .......................................................................................... 8 

1.4 MYCOLIC ACIDS ....................................................................................................................................... 10 

1.5.1 CARBOHYDRATES ................................................................................................................................. 13 

1.5.2 Carbohydrate Conformations ................................................................................................. 13 

1.6 Preparation of Glycosidic Linkages in furanose system ......................................................... 16 

1.6.1 Type 1,2-trans-Glycosidic Linkages ................................................................... 17 

1.6.2 Type 1,2-cis-Glycosidic Linkages ....................................................................... 19 

1.7 TREHALOSE MYCOLATES (CORD FACTOR): .......................................................................................... 23 

1.8 GLUCOSE MONO-MYCOLATE (GMM) .................................................................................................. 24 

1.9 NATURAL DI-MYCOLYL DI-ARABINO GLYCEROL (DMAG) .............................................................. 25 

1.10 DI-MYCOLYL TRI-ARABINO GLYCEROL (DMTAG) ......................................................................... 27 

1.11 GLYCEROL MONO-MYCOLATE (GROMM) ........................................................................................ 27 

1.12 TB DETECTION ....................................................................................................................................... 30 

1.13 ELISA IN THE SERODIAGNOSIS OF TB ................................................................................................. 31 

1.15 OVERALL AIM OF THIS RESEARCH: ...................................................................................................... 32 

Chapter 2 ................................................................................................................................ 33 

Results and Discussion ........................................................................................................... 33 

Section 1 .................................................................................................................................. 33 

2.1 SYNTHESIS OF A SINGLE ENANTIOMER OF DI-MYCOLYL DI-ARABINOFURANOSYL GLYCEROL 

(DMAG)......................................................................................................................................................... 33 

2.1.1 THE AIMS OF THIS PART......................................................................................................................... 33 

2.1.2 Synthesis of 2',3'-di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-β-D-arabinofuranosyl-

(1→2)-3-O-benzyl-α-D-arabinofuranoside (DAG) ....................................................................... 33 

2.1.3 COUPLING THE DONOR AND THE ACCEPTOR ....................................................................................... 40 

2.1.4 Esterification of the glycan (68) with simple fatty acids using the CsHCO3 method 49 

2.1.5 Comparison of the NMR data for the glycan part of the synthetic and natural DMAG  . 53 

2.1.6 Esterification of the glycan (68) with synthetic methoxy-MA (73) using the CsHCO3 method 56 



 

V 

 

2.1.7 Esterification of the glycan (67) with different synthetic MAs using the EDCI method . 59 

2.1.7.1 Deprotection of TBDMS groups from the MAs core: ..................................................... 62 

2.1.7.2 Esterification of the glycan (67) with -MA (76g) using the EDCI method ................. 66 

2.1.7.3 Esterification of the glycan (67) with keto-MA (76h) using the EDCI method ............ 69 

Section 2 .................................................................................................................................. 73 

2.2 SELECTIVE ESTERIFICATION AT EACH PRIMARY ALCOHOL POSITION .......................................... 73 

2.2.1 Selective esterification of the glycan (66) with behenic acid .............................................. 74 

2.2.2 Selective esterification of the glycan (66) with a protected keto-MA (76f) ...................... 77 

2.2.3 Summary................................................................................................................................... 80 

Section 3 .................................................................................................................................. 83 

2.3.1 SYNTHESIS OF DI-MYCOLYL TRI-ARABINOFURANOSYL GLYCEROL (DMTAG) ....................... 83 

2.3.2 The aims of this part ................................................................................................................ 83 

2.3.3 Synthesis of fully protected tri-arabino-furanosyl glycerol (TAG) .................................... 83 

2.3.3.1 Synthesis of the donor (84) ............................................................................... 84 

2.3.3.2 Synthesis of the acceptor (85) ............................................................................................. 84 

2.3.3.3 Coupling the donor and the acceptor ................................................................ 86 

2.3.4 Esterification of lipids with the glycan tri-arabino-glycerol (90) ........................................ 91 

2.3.4.1 Esterification with a simple fatty acid .............................................................. 91 

2.3.5 Esterification of the glycan (89) with mycolic acids (76f-h) using the EDCI method . 95 

2.3.5.1 Esterification of the glycan (89) with keto-MA (76f) ....................................... 95 

2.3.5.2 Esterification of the glycan (89) with -mycolic acid (76g) ............................ 97 

2.3.5.3 Esterification of (89) with trans-cyclopropane keto-MA (76h) ..................... 101 

2.3.6 Summary: ............................................................................................................................... 103 

Section 4 ................................................................................................................................ 105 

2.4 Synthesis of Glycerol Mono-Mycolate (GroMM) ....................................................... 105 

2.4.1 The aims of this part .............................................................................................................. 105 

2.4.2 Synthesis of 1-O-p-toluenesulfonyl-2,3-di-O-benzyl-S-glycerol (102) ........................... 105 

2.4.3 Esterification of the tosylate (102) with a simple fatty acid .............................................. 106 

2.4.4 Esterification of the tosylate (102) with synthetic mycolic acids (103b-f) ...................... 108 

2.4.4.1 Esterification of the tosylate (102) with the keto-mycolic acid (103b) .......... 108 

2.4.4.2 Esterification of the tosylate (102) with α-MAs (103c,d) .............................. 110 

2.4.4.3 Esterification of the tosylate (102) with the methoxy-MAs (103e,f).............. 113 

2.4.5 Summary................................................................................................................................. 116 

2.5 DMAGs as antigens in the serodignosis of bovine tuberculosis........................... 117 

2.5.1 ELISA assay ........................................................................................................................... 117 

2.5.2 TNF-α cytokine stimulation ................................................................................................. 120 

Chapter 3 .............................................................................................................................. 123 

Conclusion and further work .............................................................................................. 123 

3.1 CONCLUSIONS: ...................................................................................................................................... 123 

3.2 FURTHER WORK: ................................................................................................................................... 130 

 



 

VI 

 

Chapter 4 .............................................................................................................................. 131 

EXPERIMENTAL ......................................................................................................................................... 131 

4.1 GENERAL CONSIDERATIONS: ................................................................................................................ 131 

4.2 EXPERIMENTS: ....................................................................................................................................... 132 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

VII 

 

Acknowledgments 

I would like to thank my supervisors Professor Mark S. Baird and Dr. Juma’a R. Al-Dulayymi 

for giving me the opportunity to carry out a PhD under their supervision and for all their 

excellent advice and support throughout my study. I am extremely grateful to them for their 

guidance, teaching, valuable discussions and assistance. 

I am also grateful to all the staff at the school of chemistry especially my research committee, 

Dr. Martina Lahmann and Dr. Paddy J. Murphy, for their editing and corrections that continue 

to benefit me. Also, special thanks to all the technicians David, Gwynfor, Denis, Glyn and Nick 

and the secretaries Caroline, Tracey, Siobhan and Bryony for always being very helpful.  

I would like to thank Prof. Martin Vordermeier, Animal Health and Veterinary Laboratories 

Agency (AHVLA), Surrey, UK, for making the samples that were known to be infected with 

bovine TB available.   

I am also thankful to Mr. Paul Mason (school of chemistry, Bangor University, UK) for 

running ELISA assays. 

I would like to thank Dr. Andy Chancellor (University of Southampton, UK) for running 

THP-1 cell assays.  

I am also thankful to Dr. Alison Jones for her assistance with the mass spectrometry, and all her 

help throughout the project. 

Many thanks to all my friends on the 10th floor who have helped me throughout this project, 

especially Dr. Mohsin O. Mohammed. 

I would like to thank my country (IRAQ) and the Iraqi Ministry of Higher Education and 

scientific research (MOHESR)-University of Mosul for sponsoring me. 

Finally, I would also like to thank every member of my family in Iraq and Bangor. Special 

thanks go to my wife Intisar, my daughter Maryam and my son Mustafa, for their support, 

encouragement and patience. 

 

 

 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahUKEwi4yKyix_3WAhXJuhoKHWhkAMIQFgg3MAM&url=http%3A%2F%2Fwebarchive.nationalarchives.gov.uk%2F20100512203323%2Fdefra.gov.uk%2Fvla%2F&usg=AOvVaw0OdoSnJIBK0rnqUXmTIkri
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahUKEwi4yKyix_3WAhXJuhoKHWhkAMIQFgg3MAM&url=http%3A%2F%2Fwebarchive.nationalarchives.gov.uk%2F20100512203323%2Fdefra.gov.uk%2Fvla%2F&usg=AOvVaw0OdoSnJIBK0rnqUXmTIkri


 

VIII 

 

Abbreviations and acronyms  

 [α] D  Specific rotation 

Ac Acetyl 

Å Angstrom  

AIDS Acquired immunodeficiency syndrome 

AG Arabinogalactan 

Aq Aqueous 

All Allyl 

br Broad 

Bn Benzyl 

Bu Butyl 

Bz Benzoyl 

CAN Ceric ammonium nitrate 

ºC Degrees Celsius 

cm-1 Wavenumbers(s) 

COSY Correlation spectroscopy 

 Chemical shift 

d Doublet 

dt Doublet of triplet 

dd Double doublet 

DCC N,N′-Dicyclohexylcarbodiimide 

DEPT Distortionless enhancement by polarization transfer 

DCs Dendritic cells 

DMAP 4-(N,N-Dimethylamino)pyridine 



 

IX 

 

DMAG Di-mycolyl-di-araf-glycerol 

DMF  Dimethylformamide 

DMSO Dimethylsulfoxide 

DMTAG Di-mycolyl-tri-araf-glycerol 

ELISA Enzyme-linked immunosorbent assay 

Ether Diethyl ether 

EDCI 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide 

Et Ethyl 

equiv Equivalents 

GAM Glycerol-arabino-mycolates  

GMM Glucose mono-mycolate  

GroMM Glycerol mono-mycolate 

h Hours 

HIV  Human immunodeficiency virus 

HSQC Heteronuclear single quantum coherence  

Hz Hertz 

IMS Industrial methylated spirit 

I.R. Infra-red 

i-Pr Isopropyl 

ISO Isopropyl alcohol 

J Coupling constant 

LAM Lipoarabinomannan 

LiAlH4  Lithium aluminium hydride 

lit. literature value 



 

X 

 

LM Lipomannan 

LPS Lipopolysaccharide 

m Multiplet 

M Molar (moles per liter) 

M+ Parent molecular ion (in MS) 

MA Mycolic acid 

MAC Mycobacterium avium complex 

mAG                            Mycolyl arabino galactan 
 

MALDI Matrix-assisted laser desorption/ionization 

MALDI-TOF Matrix-assisted laser desorption/ionization-time of flight 

MAM Methyl arabino-mycolates 

MDR-TB Multiple drug resistant tuberculosis 

Me Methyl 

MHz Megahertz 

min Minute(s) 

mL Milliters   

mmol Millimol 

m/z Mass to charge ratio 

Mincle Macrophage-inducible C-type lectin 

mol eq. Molar equivalents 

m.p. Melting Point 

MS Mass spectrometry 

MTADM Methyl tri-araf-di-mycolates 



 

XI 

 

M.tb Mycobacterium tuberculosis 

NIS N-Iodosuccinimide 

NMR Nuclear magnetic resonance 

NSI Nano-electrospray Ionization 

Petrol Petroleum spirit (boiling point 40 to 60 oC) 

PG                                Peptidoglycan         

Ph Phenyl 

PIMs Phosphatidylinositol mannosides 

PMB p-Methoxybenzyl 

ppm Parts per million 

Pyr Pyridine 

q Quartet 

Rf Retention factor 

r.t Room temperature 

sat. Saturated 

s Singlet 

SN2 Nucleophilic substitution, bimolecular 

Sensitivity Probability (%) of being test positive when disease present 

Specificity Probability (%) of being test negative when disease absent 

STol 4-Methylbenzenethiol 

t Triplet 

T-cells T Lymphocytes 

TB Tuberculosis 

TBAF Tetrabutylammonium fluoride 



 

XII 

 

TBAI Tetrabutylammonium iodide 

TBDMSCl Tetrabutyldimethylsilyl chloride 

TBDPSCl Tetrabutyldiphenylsilyl chloridc 

TDM Trehalose dimycolate 

TFA Trifluoroacetic acid 

THF Tetrahydrofuran 

THP Tetrahydropyranyl 

TIPDS 1,3-(1,1,3,3)-Tetraisopropyldisiloxanylidene 

TLC Thin layer chromatography 

TMM Trehalose monomycolate 

TMS Tetramethylsilane 

TMSOTf Trimethylsilyl trifluoromethanesulfonate 

TNF-α                          Tumor necrosis factor-α 

Ts p-Toluene sulfonyl 

Trityl Triphenylmethyl 

p-TsCl  p-Toluene sulfonyl chloride 

p-TsOH p-Toluene sulfonic acid 

VLA Veterinary laboratories agency 

WHO World health organisation 

XDR-TB Extensively drug resistant tuberculosis 

 

 

 

 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahUKEwi4yKyix_3WAhXJuhoKHWhkAMIQFgg3MAM&url=http%3A%2F%2Fwebarchive.nationalarchives.gov.uk%2F20100512203323%2Fdefra.gov.uk%2Fvla%2F&usg=AOvVaw0OdoSnJIBK0rnqUXmTIkri


 

XIII 

 

Abstract 

Mycobacteria are present in many environments and complex mixtures of sugar esters and 

mycolic acids are present in their cell wall structure. This complicated mixture is thought to 

be responsible for their high resistance to known antibiotics and chemotherapeutic treatments. 

Mycolic acids are high molecular weight α-alkyl-branched β-hydroxy long-chain fatty acids, 

have 60-90 carbon atoms, and various classes of mycolic acids are made by different species 

of mycobacteria. Sugar esters of mycolic acids associated with the cell wall of mycobacteria 

have very interesting toxic and immunological properties, and thus could be useful for the 

control and treatment of mycobacterial infections. The main objectives of this thesis will be 

discussed in three parts.  

The main target of the first part involved the first synthesis of a single enantiomer of the 

glycolipid di-mycolyl di-arabino glycerol (DMAG) (I), which has interesting toxicological and 

immunological properties. This was achieved by a successful synthesis of the glycan moiety of 

DMAG with the L-stereochemistry of the glycerol component, followed by the successful 

esterification of the glycan di-arabino glycerol with three normal fatty acids, a model mycolic 

acid, and five different mycolic acids. The NMR spectra of the synthetic isomer of the DMAG 

penta-acetate analogue, in the sugar region, matched very well those reported for the peracetate 

formed from the natural mixtures, confirming the stereochemistry of the arabinose units and 

establishing the absolute stereochemistry of the glycerol unit. An efficient route to prepare the 

DMAG glycan with excellent β-selectivity and in excellent yield was achieved. 

 
(I) 
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The second part entailed the first preparation of di-mycolyl tri-arabino glycerol (DMTAG) (II), 

which involved the synthesis of the donor moiety part according to literature methods with 

slight modifications, and the new arabino glycerol acceptor. The coupling of the donor and the 

acceptor to prepare the desired glycan was carried out using known coupling conditions. After 

the success in synthesising this tetra-saccharide, a model glycolipid was prepared through 

esterification with a normal fatty acid. Furthermore, a series of three DMTAG compounds were 

prepared, based on two common classes of mycolic acids. 

 
(II) 

The final part of this project was the synthesis of glycerol mycolates (GroMM) (III), which 

have interesting adjuvant properties in vaccines, by coupling five common classes of 

synthetic mycolic acids with the S-glycerol stereoisomer. One model GroMM was prepared 

from a simple fatty acid. These compounds were prepared to study whether the 

stereochemistry of the glycerol component (R & S) has any effect on their biological 

activities.  

 
(III) 

Initial studies of the biological activity of the synthetic DMAGs showed that some could be 

used to distinguish serum from cattle infected with bovine TB from uninfected cattle, and that 

they selectively activate THP-1 cells. In contrast, initial ELISA results with the synthetic 

GroMM showed little response to serum from patients with active TB. 
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Chapter 1 

Introduction 

Mycolyl-arabinogalactan complex (mAG) is the major component in the cell wall of 

mycobacteria, and acts as a permeability barrier that prevents the passage of known 

antibiotics. Therefore, blocking the biosynthesis of this component is an important strategy 

for developing new anti-tuberculosis (anti-TB) medications. This thesis reports the synthesis 

of three different complex sugar mycolates of the Mycobacterium tuberculosis (M.tb) cell 

wall, which allows their biological activity to be investigated. The following introduction will 

provide some background information on tuberculosis and some related topics. 

1.1 Tuberculosis 

Tuberculosis (TB) is a contagious bacterial disease caused by an infection with a type of 

bacterium and several closely related mycobacterial species belonging to the so-called M.tb 

complex. The origin of this infection is not clearly known but it is believed to have originated 

in cattle and then transferred to human beings. Overcoming the immune system defences by 

the TB bacilli and the start of reproduction changes TB from infection to disease.1,2 The lung is 

the most common place of infection in the body, however, any other organ can be infected, 

such as the lymph nodes, kidneys and central nervous system. The bacteria of TB are spread 

easily in the air by talking, coughing, breathing or exchange of blood fluids, and the 

symptoms, which may not appear immediately, are fever, loss of appetite, weight loss, chest 

pain and prolonged coughing, night sweats, swollen glands and no response to antibiotics.3,4 ,5  

TB has been found in humans from the early dawn of history, and is believed to date back 

more than one hundred and fifty million years.6,7 It is known by several names, for instance: 

‘The king of diseases’ in India, ‘The captain of all these men of death’,8 and ‘phthisis’ by the 

Greek physician Hippocrates.9 The earliest specific discoveries of TB were in the remains of 

a bison from 18000 years ago.10 Studies have demonstrated the presence of TB in Egyptian 

mummies over 5000 years old, and have also shown signs of death as a result of TB.11 There 

is evidence which shows the presence of TB in China 2300 years ago and in India 3300 years 

ago.12,13 It is believed that TB in the North and South America was present before the arrival 

of European explorers, with a similarity to that found in Egypt.14,15 TB was well documented 

in ancient Greece and its treatment was devised by the physician Clarissimus Galen as sea 

voyages, fresh air and milk.16  
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In 1720, Marten first suggested that TB was caused by a microscopic air-bound organism.17 

Regrettably, his findings were ignored until 1865 when surgeon Jean-Antoine Villemin, 

demonstrated the nature of TB transmission from humans to rabbits by injecting a rabbit with 

liquid from the lung of a patient who had died from infection with TB, and so confirmed the 

theory proposed by Marten that TB was a contagious disease.18 In 1882 Robert Koch, who 

was awarded the Nobel Prize in Medicine and Physiology in 1905 for his work on 

tuberculosis, first described the causative agent of TB when he discovered a stain which 

enabled the bacilli of M.tb to be seen.19,20,21 Since Koch’s discovery, and due to the 

complexity of TB disease, a reliable vaccine was not developed until 1921, when Albert 

Calmette and Camelle Guérin developed a vaccine from Mycobacterium Bovis (M.bovis) 

called Bacillus Calmette-Guérin (BCG).22 The BCG vaccine became more widespread in the 

1940’s, being used in Scandinavia, France, Spain, Russia, Germany, Latin America and some Eastern 

European countries.23,24 Currently, more than 115 million units of BCG as a freeze-dried form 

are dispersed annually in 172 countries on average.25 

 In the 18th and 19th centuries, TB spread over Asia, Africa, South America and Europe, and 

approximately one fourth of all deaths in the world was caused by TB.26 In Europe it was 

responsible for 25% of adult deaths in major cities.27 Population intensity, poor living 

standards and a shortage in health services led to an increase in TB infection and led to it 

being considered a public health problem.28 In the 20th century, the disease was slowly 

controlled as living conditions and health care improved, and several medicines were 

discovered, such as streptomycin in 1944, and isoniazid in 1952, which are now used to treat TB.27  

In 1990, a significant rise in the number of deaths of TB patients was reported, in contrast to 

the number of deaths due to other illnesses. In 1993, the World Health Organization (WHO) 

announced TB as a major health problem and declared a global health emergency.29  

According to WHO, TB is among the top ten causes of death and disability globally. Between 

2013-2015, new incidents of TB increased, with around 10.4 million new cases of TB being 

recorded worldwide in 2015 leading to 1.8 million deaths, with most being concentrated in 

six countries, South Africa, China, India, Nigeria, Indonesia and Pakistan.30,31 Figure 1 

shows the estimated number of new cases of TB per 100,000 population in 2016.31 
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Figure 1: Map showing the estimated number of new TB cases in 2016.31 

Infection with TB can be active or latent, depending on the immune system response of the host. 

In the case of a strong immune response, the bacilli are killed after being inhaled into the lung, 

and no symptoms of TB infection will appear. However, when the immune system becomes 

weak for any reason, the bacteria will start to spread through the blood, and then the infection will 

become serious. An individual infected with active TB will produce small droplets containing 

M.tb, which are spread as aerosolised drops when an infected patient sneezes.32,33 

The continuing occurrence of TB remains globally uncontrolled, due to the evolution of strains 

highly resistant to drug treatment and a higher incidence of human immunodeficiency virus (HIV) 

co-infection. TB/HIV together produce a fatal combination, each increasing the progression rate of 

the other disease, with HIV infection being one of the major conditions that make people more 

vulnerable to developing active TB. HIV has contributed to a significant rise in the global rate of 

TB by weakening the individual’s immune system. The risk of developing active TB for 

individuals infected with HIV is up to 30 times greater than for uninfected persons.31 Although HIV 

and TB are both preventable and treatable, they continue to increase in developing countries in 

which TB infection and HIV are prevalent and resources are limited.31,34,35 Similarly, TB may also 

destructively affect the natural progress of HIV infection.36,37 The effect of TB on HIV illness 

development is assumed to be assignable to increased immune system activation.38 The WHO 

estimates that nearly one third of the world’s population is currently infected with M.tb and about 

22% of these are believed to be co-infected with HIV Figure 2.31,39  
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Figure 2: Map showing the estimated number of TB patients co-infected with HIV in 2016.31 

The treatment of TB is difficult and involves long courses of multiple antibiotics.40,41 In 

addition to an increase in the number of people infected with TB since 1980, there has also 

been a large increase in the number of drug-resistant tuberculosis cases. The emergence of 

multi drug resistant tuberculosis (MDR-TB) is another factor which contributes to the failure 

of controlling TB. Strains of M.tb showing resistance to the anti-TB drug streptomycin 

developed during early attempts to treat TB.42 Nowadays, strains of M.tb showing resistance 

to other anti-TB drugs have developed. When a strain of TB is found to be resistant to two or 

more front line drugs like Isoniazid, Rifampicin, Pyrazinamide, Ethambutol and 

Streptomycin, it is considered to be multiply drug resistant MDR.43 The WHO estimated that 

there were about 480,000 new cases of MDR-TB in 2015 and their last report estimated that 

3.5% of new cases and 20% of previously treated cases are multidrug-resistant.31,44,45 More 

recently, extensively drug-resistant tuberculosis (XDR-TB) cases have emerged where the 

M.tb is resistant to Rifampicin, Isoniazid, a Fluoroquinolone and a seconD-line injectable 

drug (Capreomycin, Amikacin). This type of resistance was reported for the first time in 

KwaZulu-Natal in South Africa.46 In 2008, 963 infections of XDR-TB were reported,45 while 

in 2015 around 45600 people with MDR-TB had XDR-TB globally.30 Resistance of M.tb to 

the treatment makes this disease more problematic and an estimated budget of approximately 

$2 billion was promised in 2016 in order to address and control, by diagnosis and 

treatment, the serious problem of TB.30  



Chapter 1                                                                                                                 Introduction 

5 

 

1.2 Mycobacteria 

Mycobacteria are a genus of bacteria which can cause fatal diseases in both humans and 

animals. There are over 150 known species, which can be divided into two classes, 

tuberculosis mycobacteria and non-tuberculosis mycobacteria.47,48 They include both 

pathogenic and non-pathogenic species.49,50 Species of pathogenic mycobacteria causing TB 

in mammals are M.tb, Mycobacterium bovis (which is responsible for causing bovine TB), 

Mycobacterium africanum (a heterogenous group of strains isolated from equatorial African 

inhabitants) and Mycobacterium microti (a rodent pathogen).51 Other mycobacterial species 

causing disease in man are Mycobacterium leprae (which causes leprosy), Mycobacterium 

ulcerans (which is responsible for the dangerous and potentially fatal Buruli ulcer, a skin and 

sometimes bone infection).52,53 Other pathogens include Mycobacterium marinum (which 

causes disease in fish and skin infections in humans) and Mycobacterium avium (an illness of 

poultry first discovered in 1890, also known as Battery bacillus).54,55 M. bovis has the most 

diverse range of hosts, as it is found not just in bovine animals but also in man, dogs, cats, 

pigs, goats and wild animals such as deer.51 Nevertheless, unlike M. tb, M. bovis, M. microti, 

Mycobacterium kansasii and Mycobacterium smegmatis, a large number of other 

mycobacterial strains only affect individuals whose immune system is suppressed, for 

example HIV/AIDS sufferers or transplant patients.54,55 

1.2.1 Non-Tuberculosis Mycobacteria 

Non-tuberculosis mycobacteria, also known as environmental mycobacteria, are small, rod 

shaped bacilli which enter the human body through environmental sources such as natural 

water, soils, foods, and water pipes. The reason for the survival of these bacteria in water 

pipes is due to their resistance to chlorine in water.56 These species do not cause tuberculosis, 

but have the ability to cause other diseases in both humans and animals such as skin diseases, 

disseminated disease (a diffuse disease-process, either infectious or neoplastic, throughout the 

body over a considerable area), and pulmonary disease in HIV negative patients.48 Unlike 

tuberculosis, non-tuberculosis mycobacteria are not transmitted from one person to another, 

the organism being acquired exclusively from environmental sources.57  

 

 

https://en.wikipedia.org/wiki/Infectious_disease
https://en.wikipedia.org/wiki/Neoplastic
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1.2.2 Tuberculosis Mycobacteria 

The tuberculosis mycobacteria constitute a collection that contains more than 70 different 

species, together known as Mycobacterium tuberculosis (M.tb) complex, which can all cause 

tuberculosis disease in both humans and animals.58 Some species cause TB in humans only, 

such as M.tb, while some, such as M. bovis, can cause TB in both humans and animals. 51,59,60 

The most common in the family of tuberculosis mycobacteria is M.tb, which was isolated and 

identified for the first time by the German physician, Robert Koch, in 1882. It is highly 

aerobic (grows most successfully in tissues with oxygen content, such as the lungs), appears 

under the microscope as straight or slightly curved rods approximately 1-4 x 0.3-0.6 µm in 

size (Figure 3), non-encapsulated, non-spore forming, aciD-fast (do not retain the methyl 

violet stain well), weak Gram-positive bacilli.61 However, it was reported recently that they 

have features of both Gram-positive and Gram-negative bacteria (Gram-positive bacteria 

have a greater amount of peptidoglycan, lower lipid content and they retain the gram’s stain, 

while, Gram-negative bacteria have a thin peptidoglycan cell wall and they do not retain the 

gram’s stain), divides aerobically every 16 to 20 hours,8,62,63,64 an extremely slow rate 

compared with other bacteria, such as Escherichia coli that can divide roughly every 20 

minutes.65 M. tuberculosis is very resistant to environmental conditions, and can survive in 

dry conditions for a long time; this is due to its unique cell wall structure compared with the 

cell walls of other bacteria. The cell wall is rich in mycolic acids (MAs) and glycolipids, 

which are crucial for the survival and growth of M. tuberculosis inside the infected 

organism.66  

 
Figure 3: Scanning electron micrograph of M. tuberculosis.67 

 

https://en.wikipedia.org/wiki/Peptidoglycan
https://en.wikipedia.org/wiki/Cell_wall
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1.3 The Mycobacterial Cell Wall 

It is important to have an understanding about the nature, the organisation and the structure of 

the cell envelope in the fight against TB and other related diseases. The cell wall of M.tb has 

an unusual structure. The thick, multi-layered and extremely hydrophobic structure of the cell 

wall, is important for the organism, because it prevents the passage of antibiotics into the cell 

and protects it from the immune system of the host, by allowing it to survive in macrophages, 

acting as a permeability barrier. A high resistance to the majority of antibiotics, therapeutic 

agents and disinfectants is a big problem in the eradication of mycobacterial organisms, and 

this resistance is thought to be related to the unique structure of the mycobacterial cell wall. 

The general structure of the mycobacterial cell wall is now well understood, and it was 

basically proposed by Minnikin with its complex architecture of lipids, glycolipids, 

polysaccharides and proteins.68,69,70 Generally, the M.tb cell wall consists of the significant 

components shown in Figure 4, namely, the plasma membrane (PM) (inner membrane), 

peptidoglycan (PG), mycolyl-arabinogalactan (mAG), and an outer capsule-like layer.71,72,73  

 

Figure 4: General structure of M. tuberculosis cell wall.74,75 

The main components of the capsule outer layer are polysaccharides and proteins with low 

amounts of lipids.76 The plasma membrane is about 5 nm thick, and its composition is similar 

to that in other organisms. The PG is a polymer that forms the backbone of the cell wall 

skeleton, consisting of N-acetylglucosamine (NAG), and N-acetylated muramic acid (NAM) 
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saccharides.77,78 The mAG, is a heteropolysaccharide consisting of D-arabinose in the 

furanose form joined to linear D-galactose units.79,80 Mycolic acids (MAs),  are α-alkyl 

branched -hydroxy long chain fatty acids (60-90 carbon atoms, see section 1.4). Together, 

mycolic acids, arabinogalactan and peptidoglycan produce the tightly packed bilayer of the 

M. tb cell wall and are known as the mycoyl-arabino-galactan-peptido-glycan complex 

(mAPG).79 Moreover, though the main component of the cell wall is mycolic acids, there are 

also large amounts of very complicated lipids amounting to around 40% dry weight of the 

cell wall. These lipids are highly complex and are thought to be responsible for the high 

resistance and low permeability of the cell wall to hydrophilic compounds. In addition, there 

are many glycolipids present in the cell wall of mycobacteria, for example di-mycolyl di-

arabino-glycerol ester (DMAG ester), which is di-arabino-glycerol esterified with mycolic 

acids, has been reported to have interesting toxicological and immunological properties.81,82     

1.3.1 Mycolyl-arabinogalactan complex  

The mycolyl-arabino-galactan complex (mAG) (Figure 5), is the largest component in the 

cell wall of mycobacteria and is located directly outside the PG layer. It is believed that the 

mAG complex acts as a permeability barrier that prevents the passage of antibiotics. It 

forms from cross bonding between both α-D-arabinofuranose (α-D-Araf) and β-D-

galactofuranose (β-D-Galf) esterified with mycolic acid (long chain α-alkyl branched β-

hydroxylated fatty acid). Carbohydrates (Araf) and (Galf), creating about 35% of the cell 

wall mass, are bound to NAG residues of PG through a covalent bond at the non-reducing 

end of the wall by a unique linker disaccharide, α-L-rhamnopyranosyl-(1→3)-2-acetamido-2-

deoxy-α-D-glucopyranosylphosphate. The galactan part is a linear chain of around 30 - 40 

units of (β-D-Galf) with alternating β-(1→5) and β-(1→6) galactofuranose residues. The 

arabinan unit is composed of 60 - 70 units of linear (1→5) (α-D-Araf) residues and 

branches to form a (3,5-α-D-Araf) linked fork.83,84,85,86 Galactan and arabinan are bonded 

from the C-5 position in the galactan core.79,74,87,88,89 The arabinose motif of the cell wall 

contains 1,3-branched Araf-based mycolated hexasaccharides, via ester linkages at each of 

the four primary hydroxyl groups to form the mycolyl-arabinan moiety.72,90  
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Figure 5: Structure of the mAG complex. 

Both galactosyl and arabinosyl units in the mAG complex are in the furanose form which is less 

thermodynamically stable than the pyranose form (the six-membered pyranose ring is 

thermodynamically more stable than the five-membered furanose ring, because the six membered 

ring can be in the chair form in which there is no angle or eclipse strain).91 It is believed that this 

plays an important role in raising the flexibility of the polysaccharide and making the MAs pack 

strongly by van der Waals interactions. Thus, the structure of the cell wall has extremely low 

permeability, which provides the organism with high protection from drugs and from its 

environment. On the other hand, given its importance to the life cycle of the organisms, 

mycobacteria must produce a complete mAG complex.92 As mentioned previously, targeting 

mAG biosynthesis is therefore an important strategy for developing new anti-TB drugs. Indeed, 

isoniazid and ethambutol, two of the standard antibiotics, target the mAG complex biosynthesis; 

ethambutol inhibits arabinosyltransferases which contribute to the biosynthesis of the arabinan 

part of the polysaccharides, while isoniazid inhibits MA biosynthesis.93 
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1.4 Mycolic Acids  

Mycolic acids (MAs) are high molecular weight (60-90 carbon atoms) hydrophobic fatty 

acids alkylated at the α-position and hydroxylated at the β-position and can be isolated from 

the waxy extract of M.tb.94 Mycolic acids are unique to mycobacteria, and are considered as 

one of the main and characteristic components of the cell wall of all the mycobacterial 

species. In 1938, Anderson et al. first reported and isolated mycolic acids as unsaponifable 

ether-soluble hydroxy acids from the human tubercle bacillus. Mycolic acid is very difficult 

to purify and not possible to crystallize.95,96 The first mycolic acid structures were published 

by Minnikin et al in 1967.97,98,99,100 Mycolic acids exist in the mycobacterial cell wall in the 

free form or esterified with other lipids, such as trehalose mono-mycolates (TMM) and 

trehalose di-mycolates (TDM), glucose mono-mycolate (GMM), glycerol mono-mycolate 

(GroMM), and di-mycolyl di-arabino glycerol (DMAG).  

The structure of mycolic acids can be divided in to two parts. The main part is called the 

meromycolate moiety and the second part is called the mycolic motif. The mycolic motif part 

contains the α-alkyl β-hydroxy fatty acid, which is similar in all mycolic acids except for a 

slight variation in the chain length at the -alkyl position. The main part is the meromycolate 

moiety, which normally has two intra-chain functional groups at the distal and proximal 

positions labelled as [X] and [Y] (Figure 6). The proximal position can be a cis or trans 

cyclopropane, or double bonds, while the distal position can be a cis or trans cyclopropane, 

cis or trans double bond, epoxy group, methoxy group, carbonyl group, hydroxyl group or 

ester group. Due to the possible variations in the functional groups that could be present in a 

certain mycolic acid, Watanabe et al. proposed a broad classification method to divide the 

mycolic acids into three types: Types 1, 2 and 3 as shown in (Figure 6). Type 1 MAs have a 

cyclopropane ring at the proximal position (which can be either cis or trans), type 2 MAs 

have a trans double bond at the proximal position, while type 3 MAs contain a cis double 

bond at the proximal position.101,102 
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Figure 6: General structure of mycolic acids and various functional groups.101,102 

 

Asselineau et al. reported the pyrolysis of mycolic acid (MA) (1), and confirmed the 

positions of the hydroxyl group (β) and a long alkyl chain (α) in relation to the carboxylic 

acid (Scheme1).103 

 
Scheme 1: Thermal cleavage of the β-hydroxy group of MA.94 

Mycolic acids (MAs) have a role in the permeability of the outer cell envelope of the 

bacteria, but the stacking and arrangement of the long hydrocarbon chains of the acids within 

the cell wall is complicated.94,101 The cell wall of M.tb is believed to contain a mixture of 

over 500 different mycolic acids with a varying combination of functional group type and 

chain length. These most important components in the cell wall with this large number of 

different structures have significant biological properties.94 The isolation of mycolic acids 

and separation from the mixture of various similar structures in the cell wall was the main 

problem in identifying their individual structures. For this reason, highly developed analytical 

techniques were required in order to determine the correct structures of these series of 

mycolic acids. Over the last fifty years, by using new analytical techniques such as TLC, 
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HPLC, GC, MS, and NMR, it has been less difficult to separate and identify several mycolic 

acids.104,105,106,107,108  

Based on the nature of the functional groups present in the meromycolate chains, mycolic acids 

from M.tb can be divided into three main categories: 

1. Alpha-mycolic acids with no oxygen-containing intra-chain groups.  

2. Methoxy-mycolic acids in which the distal group has a methoxy group. 

3. Keto-mycolic acids in which the distal group has a carbonyl group (with a cis or trans 

cyclopropane).  

Figure 7: Major types of mycolic acids from M. tuberculosis. 

In 2003, Al-Dulayymi et al. reported the synthesis of a single enantiomer of an alpha mycolic 

acid from M. tuberculosis.109 Various types of single enantiomers of mycolic acids have also 

been prepared by the same group such as methoxy,110 keto111,112 and alpha-mycolic acids113 

which are major mycolic acids present in M. tuberculosis.114 

As discussed before MAs are often present in the cell wall esterified to sugars. The different 

types of sugar esters with different glycolipid linkages are described in the following 

sections.  
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1.5 Synthesis and control the stereochemistry of different sugars 

1.5.1 Carbohydrates  

Carbohydrates are the most abundant and diverse bio-molecules in nature. They were named 

as glycans or saccharides (Greek, meaning sugar). Virtually all important biomolecules have 

a glycan in their structures, e.g. secondary metabolites, t-RNA, lipids and proteins.115 

Initially, the function of carbohydrates was known as a source of energy; however, it has 

since been proven that they play an essential role in many biological progressions, for 

instance growth, development and the survival of living organisms.116 Although 

carbohydrates have significant characteristics in biological systems, due to their complex 

forms, their functions and structures are still less understood in comparison with other 

biological molecules like proteins and nucleotides.117 Carbohydrates often contain a 

glycosidic bond in their structures, which is in either an α- or β-configuration, and this bond 

is created when two glycan units are bound to form a disaccharide. In nature, this 

stereochemistry plays a significant role in biological activity. Furthermore, each glycan unit 

contains many hydroxyl groups which can also react with another molecule to produce 

oligosaccharides, which can be linear or branched macromolecules. In addition to that, the 

hydroxyl groups in glycans can be modified through different reactions such as esterification, 

oxidation and methylation.118 Monosaccharides can adopt various forms due to free rotation 

around the glycosidic bond, therefore monosaccharides have a heterogeneous conformation. 

In addition, in oligosaccharides there is an internal rotation around exocyclic bonds, such as 

the primary hydroxyl groups in most glycan forms. The saccharide molecule itself can adopt 

different ring forms such as furanose rings. In conclusion carbohydrates can possess complex 

branched and modified forms, and they are more complicated compared with the two other 

main classes of molecules, nucleotides and proteins.119,120 

1.5.2 Carbohydrate Conformations 

The overall structure of an oligosaccharide is determined by many factors such as, the 

stereochemistry of the glycosidic bond (α or β-anomer); pseudo-rotation of the furanose rings; 

stereoelectronic effects and the conformation of the attached groups in the glycan ring. The 

stereochemistry of the glycosidic bond is important for the biological functionality of the 

oligosaccharide.118 The main conformations of the furanose ring are: envelope (E) (8), in this form, 

four adjacent atoms are all in one plane and only one atom is out of the plane (above or below) and 
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twist (T) (9), in this form, two atoms are outside the plane and the other three atoms are in the 

plane (Figure 8). 

 

Figure 8: Envelope and twist conformations in furanose rings. 

The energy difference between the E and T conformations in the case of the mono-saccharide 

is small, therefore the furanose is present in a dynamic equilibrium through a pseudorotation. 

Consequently, due to the flexibility of the furanose ring, the exocyclic methyl hydroxy link 

and the flexibility of the glycosidic bond, there are twenty different conformations, ten 

different twist conformations and ten different envelope conformations. These conformations 

are represented on the pseudorotational wheel for the D-aldofuranose ring (Figure 9).121 

 

Figure 9: Pseudorotational wheel for a-D-aldofuranose ring.121 
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In solution, furanose rings are present as a mixture of conformers, therefore, analysis of NMR 

data such as measuring the 3JH-H coupling constant or the chemical shifts is more complicated 

because all the data is an average from more than one conformation.122  

Stereoelectronic effects (defined as the kinetic and chemical consequences of molecular 

orbital overlapping in space) are other factors which have an effect on the conformation of 

the oligosaccharide. According to molecular orbital theory, the total energy of any molecule 

is equal to the summation of the occupied molecular orbitals. Different reactivities and 

conformations are obtained due to the overlap between occupied and unoccupied orbitals 

because this overlap causes a change in energy (lower energy). In carbohydrate chemistry, 

this effect is known as the anomeric effect, which was first proved by Jungins in 1905 and 

revived by Edward in 1955 and by Lemieux and Chiu in 1958. They showed the 

predominance of alkyl α-D-glucopyranosides (11) compared to the corresponding β-anomers 

of this compound (Figure 10).123,124 

 
Figure 10: Glycosylation of D-glucose. 

Further studies on the anomeric effect showed that highly electronegative substituents, for 

example aryl derivatives, S- or O-alkyl and halides, at the anomeric carbon (C-1) on the ring 

typically favour the axial α-anomer, which lead to stabilization of the axial substituent 

compared to the equatorial substituent.125,126 

The Gauche effect is another example of a stereoelectronic effect which shows that the two 

vicinal heteroatom groups prefer the synclinal orientation which allows a good interaction 

between the anti-bonding orbital of C-X and the bonding orbital of C-H leading to 

minimizing the energy of the molecule (Figure 11).127 
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Figure 11: Stereoelectronic effects: A. Gauche effect; B. Anomeric effect. 

1.6 Preparation of Glycosidic Linkages in furanose system 

Disaccharides or higher molecules can be formed through glycosidic bonds between two 

mono-saccharides. Chemical or enzymatic methods are the main approaches for their 

synthesis. In nature, the glycosidic linkages originate through a reaction involving an enzyme 

(glycosyltransferase). Enzymatic preparation is a highly stereospecific and regiospecific 

method to synthesise significant carbohydrates.128 However, it is high in cost and requires a 

specific enzyme (sometimes not available) which limits its application, therefore, chemical 

methods are usually applied. Glycosylation is the reaction between the glycosyl acceptor, 

which has a free hydroxyl group (nucleophile), with a glycosyl donor, which has a leaving 

group (electrophile). The coupling between these two glycans is done in the presence of an 

activator to give a disaccharide with a new anomeric centre. The product could be either the 

α- or the β- anomer, depending on many factors. Controlling this is a challenge which has 

been broadly studied (Figure 12).129,130,131,132,133,134,135,136,137 

 
Figure 12: Glycosidic linkage formation. 
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Mostly, glycosidic linkages exist as two types, 1,2-cis and 1,2-trans glycosides (Figure 13). 

Cis and trans refers to the stereochemistry of the substituents at the C-1 and C-2 positions. 

 
Figure 13: Types of the glycosidic linkages (15&16). 

1.6.1 Type 1,2-trans-Glycosidic Linkages 

Type 1,2-trans glycosidic bonds, can be straightforwardly achieved by using a donor 

protected at the C-2 position with an O-acyl which allows for neighbouring group 

participation. As illustrated (Figure 14), losing the leaving group from the anomeric centre 

through Lewis acid activation, leads to the formation of an oxocarbenium ion which is 

attacked directly by the O-acyl protecting group to produce a dioxolenium ion intermediate. 

The desired 1,2-trans glycoside is thus the major product because the dioxolenium ion blocks 

one face of the molecule and hence the acceptor is forced to attack the anomeric centre from 

the less hindered face, through a process that is kinetically favoured. The dioxolenium ion 

intermediate could, however, form several by-products through a series of rearrangements. 
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Figure 14: Proposed formation of stabilized cation.138 

When the O-acyl group bears an electron-withdrawing substituent, the stereoselectivity of the 

glycosylation is reduced because of the reduction of the electron density on the carbonyl 

oxygen atom, and thus its nucleophilicity; therefore, formation of the dioxolenium ion cannot 

proceed effectively. In this case, this compound shows more oxocarbenium ion character, and 

a mixture of both α and β anomers is produced.139 

In some cases, the participating group can be an electronegative atom, for example nitrogen, 

or a chiral auxiliary (Figure 15). However, the application of chiral auxiliaries is limited, due 

to the difficulty of fixing and removal of these groups. In addition there is the possibility of 

forming both glycosidic anomers because the intermediate species can be formed in diverse 

orientations.140,141,142 
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Figure 15: Neighbouring group participating approaches. 

1.6.2 Type 1,2-cis-Glycosidic Linkages 

A general route for the synthesis of β-arabinofuranoside (1,2-cis glycosidic linkage) has not 

been established, thus an understanding of the factors that control this reaction is still limited; 

however, most of these reactions are believed to occur through an SN1-type reaction via an 

oxocarbenium ion intermediate, therefore, the acceptor can attack the donor from both faces 

and the selectivity is difficult to predict.143 Numerous strategies for the preparation of β-

glycosidic linkages have been reported, however most of these focus on pyranose glycan 

classes. Lowary and co-workers,144 reported a study to find the best conditions to use in the 

glycosylation between the donor and the acceptor to improve β-selectivity. They reacted the 

acceptor 17 and the donor 18 in CH2Cl2 (Scheme 2), using the promoter silver 

trifluoromethanesulfonate and N-iodosuccinimide (AgOTf-NIS) as a coupling reagent. 

Firstly, they studied the effect of the temperature of the reaction on the ratio of α/β and the 

yield of the product (entries 1–5) (Table 1). They developed an approach where the reaction was 

initiated at a temperature of -60 ºC and then gradually warmed to -40 ºC over 2 h. The 

reaction gave improved yield and stereoselectivity.144 Studying the effect of the reactant 
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concentration (entries 6-8) was also carried out, and it was established that by using a low 

concentration, a slight increase in the β-selectivity was observed; variation of the 

concentration did not affect the yield. Finally, the effect of the activator (entries 9 and 10) 

was tested, and they proved that the utilisation of different promoters, such as NIS-

trimethylsilyl trifluoromethane sulfonate (TMSOTf) and diphenylsulfoxide, 2,4,6-tri-tert-

butylpyrimidine, and trifluoromethane sulfonic anhydride (Ph2SO-TTBP-Tf2O) (Table 1), 

gave a low yield and β-selectivity.  

 
Scheme 2: Synthesis of di-saccharides.144 

Table 1: Optimization of β-Arabinofuranosylation.144 

Entry Temperature 

ºC 

Time 

(h) 

Acceptor 

c (M) 

Activator Yield % 

(α/β) 

1 - 78 → R.T. 4 0.08 NIS-AgOTf a 81% (3.1:1) 

2 - 78 6 0.08 NIS-AgOTf a 85% (3:1) 

3 - 60 4 0.08 NIS-AgOTf a 91% (3.4:1) 

4 - 40 0.5 0.08 NIS-AgOTf a 74% (4.6:1) 

5 - 60 → - 40 1 0.08 NIS-AgOTf a 89% (4.2:1) 

6 - 60 → - 40 1 1.00 NIS-AgOTf a 84% (4.3:1) 

7 - 60 → - 40 1.5 0.05 NIS-AgOTf a 85% (4:1) 

8 - 60 → - 40 2 0.01 NIS-AgOTf a 93% (3:1) 

9 - 60 → - 40 0.5 0.01 NIS-AgOTf b 78% (5:1) 

10 - 60 → - 40 6 0.01 Ph2SO-TTBP-Tf2O c 63% (4:1) 
 

All reactions were carried out in CH2Cl2: aAcceptor 17 (1 equiv), donor 20 (1.2 equiv), NIS (1.2 equiv), AgOTf 

(0.1 equiv). bAcceptor 17 (1 equiv), donor 20 (1.2 equiv), NIS (1.2 equiv), TMSOTf (0.1 equiv). cAcceptor 17 

(1 equiv), donor 20 (1.2 equiv), Ph2SO (3 equiv), TTBP (6 equiv), Tf2O (1.1 equiv).  
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In the same study, an investigation of the effect of the protecting groups on both the donor 

and the acceptor was undertaken, as illustrated in Scheme 3. The best α/β ratio achieved was 

1:7.7 (entry 4), and the two anomers were inseparable. This ratio was obtained by utilising 

PMB as a protecting group at the C-1 position on both the donor and the acceptor.  

 
Scheme 3: Reaction of different donors and acceptors.187 

Ishiwata and co-workers,145 reported a new strategy for conducting β-selective glycosylation 

using donors protected with 3,5-TIPDS. An enhancement of β-selectivity was achieved by 

utilising a donor with an eight-membered ring (33, 34), which gave the best α/β ratio of 1:20 

(entry 3, Scheme 4).  
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Scheme 4: Effect of protection of the glycosyl donor in Arabinofuranosylation.145 

Using a donor containing an eight-membered ring 3,5-O-protection (34), in comparison to a 

six-membered ring 3,5-O-protection (35), with the same acceptor (37) showed a marked 

difference in β-selectivity (entries 3 and 4). In the case of α-attack of the anomeric carbon 

(Figure 16), there seems to be a large steric repulsion from the α-hydrogen atom at C-2.145 

Figure 16: A reasonable explanation for the β-selective addition to the activated donor.145 

Since this work involved the preparation of different sugar esters, the following section 

describes various sugar mycolates in the mycobacterial cell wall. 
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1.7 Trehalose Mycolates (Cord Factor): 

Cord Factor is a non-reducing disaccharide, in which two glucose units (linked by an α,α-1,1-

glycosidic linkage) has been esterified at both primary alcohol positions with mycolic acids 

(MAs) creating trehalose di-mycolate (TDM) or esterified at one primary alcohol position to 

form trehalose mono-mycolate (TMM).146 It is one of the most interesting and potentially 

valuable glycolipids found in the cell wall of M.tb. The mycobacterial cell wall contains high 

levels of the free trehalose and esterified trehalose TDM (43) and TMM (44) (Figure 17). 

Figure 17: Structures of TDM and TMM. 

 

The name cord factor has been used in the early papers, as far back as 1947.147 The toxicity of 

cord factors in mycobacteria was reported in 1953 by Bloch et al. when they extracted four 

different strains of cord factors and they tested them on mice. It was proven that cord factors 

caused inhibition of respiratory disease and inflammation.148,149  It has also been confirmed 

that cord factors have anti-bacterial, anti-tumour and anti-parasitic characteristics.150 In 1956, 

the structure of M.tb cord factor was identified by Noll et al.151 Mycobacterial cord factors 

are known as very interesting compounds due to their biological activity, which has been the 

subject of many investigations. Studies showed that these components of mycobacteria have 

immunogenic activity. TDM is necessary for the survival of the mycobacteria inside 

macrophages.152 It can also induce a wide range of cytokine and chemokine production in the 

host’s immune system such as (IL-1β, IL-6, and TNF).153 Early studies showed that cord 

factors can be used as an adjuvant (an agent that can enhance the immune response to an 

antigen) against immunological problems. Meyer and Azuma in 1975 discovered that the cell 

wall components of mycobacteria show adjuvant activity.154 A study by Saito confirmed that 

mycobacterial cord factor was a good adjuvant and could enhance the immune system in 

mice and rats through antibody production. Also, it can cause delayed hypersensivity.155 
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Finally, TMM, TDM and mAG complex are responsible for an extremely hydrophobic surface 

in the cell wall of mycobacteria, which plays a significant role in providing the bacterium with 

high protection from antibodies and from their environment. The enantioselective synthesis of 

these compounds is important to understand their biological properties such as their effects on 

the immune system, in diagnosis and controlling several diseases. 

1.8 Glucose Mono-Mycolate (GMM) 

Glucose mono-mycolate (GMM) is a glycolipid consisting of a mycolic acid attached to a 

glucose molecule at the C-6 position. GMM is present in several bacterial species including 

Mycobacterium Nocardia, Mycobacterium Rhodococcus and M. tuberculosis (Figure 18).156,157 

Figure 18: Glucose mono-mycolate (GMM, 6-O-mycoloyl-D-glucose) from M. tb.158  

GMM can induce a memory T cell response by acting as a protein antigen.157 GMM and 

other antigenic mycobacterial glycolipids are presented to T cells by the CD1 family of 

proteins and the antigen–protein complexes mediate the T cells response in the human 

host.159 However, depending on the species, the meromycolate chain carries variable 

functionalities in the proximal and distal positions, which are characteristic of the species.158 

The structure of GMM from M. tuberculosis is shown in Figure 18. 

The structure of human CD1b and CD1a in a complex with specific GMM glycolipids 

illustrates the binding of a natural bacterial lipid to CD1b and shows how its novel structural 

features fit this molecule for its role in the immune response to intracellular bacteria.160 Many 

health problems globally are caused by mycobacterial infections and it has been suggested 

that anti lipid antibodies may contribute to protection against mycobacterial infection.161 

GMMs have the ability to produce T cell reproductive responses in a number of species 

including cattle,162 humans,163 mice 164 and guinea pigs.165 Nguyen et al. have described cell-

mediated and humoral immune responses in cattle upon vaccination with GMM as the only 

antigen; as a result a T cell response was produced but no antibody responses, while the 
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vaccine comprising a pure protein as the only antigen generated both T cell and antibody 

responses. However, in humans and cattle,166,167 Nguyen et al assumed that a conjugate of 

GMM with a protein may provide T cell help for B cells to produce antibodies against surface 

exposed glycolipids on mycobacteria.162 

The synthesis of GMM from Mycobacterium phlei has been described by Branch et al,168,169 

and the synthesis of 6-O-mycolylglucoses (GMMs) from single synthetic mycolic acids 

matching the overall structure of some of the major natural glucose monomycolates of 

Mycobacterium tuberculosis and other mycobacteria, has been reported by Sahb et al.170 

1.9 Di-Mycolyl di-Arabino Glycerol (DMAG) 

The mAG complex is the largest component structure in the mycobacterial cell wall and acts as a 

permeability barrier that prevents the passage of antibiotics. It’s formed from both galactan and 

arabinan in the furanose form.88,89,171 It is believed that this plays an important role in raising the 

flexibility of the polysaccharide, causing the cell wall to have extremely low permeability, which 

provides the organism with high protection from drugs and from its environment.172 Mycolylated 

glycolipids like GMM, TDM, or GroMM (see Section 1.11), play a significant role in the 

variation of the immune system of the host and among them the mAGP serves as an anchoring 

matrix. Therefore, mAGP is seen as a target for several anti-tuberculosis drugs.82,173 Components 

such as triacylglycerols (TAGs), C70–90 mono-mycolyl glycerol (C70–90 GroMM) and 

phenolic glycolipids (PGLs), separated from the subcutaneous immunisation of mice, induced 

extremely high levels of all three cytokines IL-12, TNF-α and IL-6.174 An antigenic glycolipid, 5-

mycoloyl-β-arabinofuranosyl-(1→2)-5-mycoloyl-α-arabinofuranosyl-(1→1`)-glycerol (DMAG) 

(Figure 19), was isolated for the first time by Watanabe and co-workers in all 12 strains of the M. 

avium-M. intracellulare complex (MAI) and reacted immunologically with antisera from 

rabbits.81,82,173 

 
Figure 19: General structure of DMAG.81 
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DMAG also showed applicability for serodiagnosis of MAI infection by ELISA.175,176,177 In 

1997 DMAG was obtained from M. kansasii among glycolipid fractions of the cell wall.178 

Recently, Rombouts and co-workers identified DMAG in large quantities, in slow growing 

pathogenic species, including M.tb, M. bovis, BCG and M. Scrofulaceum, making this 

glycolipid more biologically potent and possibly important in mycobacterial pathogenesis. 

Studies showed that DMAG isolated from M. marinum and M. bovis BCG are very similar to 

each other except for the terminal lipid moiety MA, which consists of a mixture of alpha, 

keto and methoxy-mycolates in M. marinum while only alpha and keto-mycolates are found 

in M. bovis BCG. Furthermore, the cyclopropane ring in M. marinum seems more likely to be 

in the trans stereochemistry.82 Construction of DMAG in the growing mycobacterium requires 

the presence of glycerol. In addition, drugs used for the inhibition of mAG also inhibit DMAG, 

which again indicates the similarity between these two components and raises a possibility of 

metabolic interconnectivity between them. DMAG is formed during infection with M.tb and is 

not synthesized along with other lipids/glycolipids. It is considered a surface-exposed 

immunogenic molecule, suggesting that it is synthesized through TB infection. In addition, the 

existence of the anti-DMAG antibodies in the sera of patients infected with M. avium further 

suggested that DMAG is an immunogenic compound produced during infection.173,175 TNF-α 

has been proven as a significant inflammatory mediator, that can affect different kinds of 

cells.179,180,181 TNF-α, IL-1β, and IL-8 secretions have been widely used to investigate the 

biological activity of mycobacterial glycolipids; for instance DMAG isolated from M. marinum 

induced TNF-α, IL-1β, and IL-8 on separated cells.82,182,183 Depending on the high similarity 

between TDM and DMAG in their location in the mycobacterial cell wall and their analogous 

structures, it is expected that both glycolipids will show the same characteristics which are 

relevant to mycobacterial pathogenesis, for example, formation of granuloma and tissue-

destructive lesions and proinflammatory cytokine production.184  
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1.10 Di-Mycolyl tri-Arabino Glycerol (DMTAG) 

A new glycolipid, di-mycolyl tri-arabinofuranosyl glycerol (DMTAG) (Figure 20), was 

obtained by McNeil and co-workers after studying the effects of Smith degradation on the 

terminal tetra-mycolyl-penta-arabinofuranosyl unit of mAGP of M. tuberculosis.80 

 

 
Figure 20: General structure of DMTAG.80 

Methyl tri-arabinofuranosyl di-mycolate (MTADM) compounds derived from a natural 

mixture of MAs have been reported in the literature and showed a very high response in the 

stimulation of TNF-α cytokines.80,185 The synthesis, biological activity, particularly the 

antigenicity, of DMTAG glycolipids was not investigated. Furthermore, the stereochemistry 

of the glycerol, i.e. whether it is in the D- or L- configuration, has not been proven. 

1.11 Glycerol Mono-Mycolate (GroMM) 

Complex mixtures of mycolic acids are characteristic components of  mycobacterial cells, either 

bound to the wall as arabinose esters or  not bound to the wall, as free acids or esterified to sugars 

such as glucose (GMM), or trehalose (dimycolate, TDM; monomycolate,  TMM).185 As early as 

1956, it was shown that M. tuberculosis contains C-90 mycolylglycerols.146,186,187,188 Later, 

shorter chain glycerols esters were isolated from Nocardia rhodochrous, which contains 40  44 

carbon atoms (nocardomycoloylglycerols),189 from Corynebacterium pseudoytuberculosis,190 

from Nocardia asteroids,191 and from Rhodococcus lentifragmentus.192 Glycerol monomycolate 

(GroMM, also known as MMG) (Figure 21), is also present in the wax C fraction of BCG.193 

GroMM has been extracted from M. bovis by Layre et al. and the identification of this novel 

antigen is supported by 1H-NMR analysis for the structure of M. bovis BCG GroMM and by the 

mass spectrum.194  

Andersen et al. identified GroMM  in vitro as the most immunopotentiating compound among 

several different lipids isolated from the mycobacterial cell wall.195 Hattori et al. identified 
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GroMM as a specific immune target in human individuals with latent, but not active tuberculosis. 

The in vivo response to GroMM and the relevance of it to latent infection remain poorly 

understood.   

 
Figure 21: General structure of GroMM. 

Hattori et al. immunized guinea pigs with bacillus Calmette–Guerin (BCG) expressing high levels 

of GroMM and then monitored skin reactions at the site of inoculation with GroMM-containing 

liposome. The host responses to GroMM produced by inactive mycobacteria contribute to their 

long-term survival in the host.196 Glycerol esters of complex mixtures of natural mycolic acids have 

strong effects in the immune system.197 The identification of GroMM lipid species formed by 

mycobacteria infected hosts, as well as the analysis of the host response directed toward them, will 

provide important new insights into host-microbe interactions in tuberculosis. These latent 

mycobacteria are unlikely to produce cell wall lipids at a level comparable with that for actively 

replicating microbes, as in the case of the former the bacteria can be eradicated by the host’s 

immune system.198 but a recent study has identified GroMM as a mycobacterial lipid species 

potentially associated with latent infection.199 Mycobacteria have been known as modulators of the 

immune system and as a source of adjuvant preparations. The role of the adjuvants is to potentiate 

or prolong the specific action of a vaccine.174 GroMM has been observed to have adjuvant activity 

in murine models,200,201 with the fine structure of the mycolate components being of importance for 

its proinflammatory activity.202 The GroMM lipid, isolated from M. bovis bacillus Calmette- Guérin 

(BCG), has potent immunostimulatory activity on human dendritic cells, which play an essential 

role in directing the immune response upon infection with pathogens, such as M. tuberculosis. This 

activity was shown by a synthetic analogue of GroMM with shorter fatty acids.197 Bhowruth et al. 

separated a lipid extract of M. bovis BCG showing GroMM as one of  four lipid fractions, which 

showed an ability to induce high levels of some pro-inflammatory cytokines (IL-12 and TNF-α).174  

The synthesis of GroMM using single synthetic mycolic acids will result in a rich knowledge 

of the nature of the cell wall of M. tuberculosis, and hence give a better understanding of 

their effects in the immune system.197  
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The development of such a novel class of synthetic lipids would be suitable for presence in 

vaccines to investigate their use in humans. Such synthetic GroMMs with a R-glycerol 

component (Scheme 5) have been reported by M. Sahb.203,204 They were prepared by two 

methods (Scheme 5). In the first, the TBDMS protected MA was coupled with acetonide (B) 

promoted by DCC and DMAP. In the second, the unprotected acid was coupled with tosylate 

(F) in the presence of cesium hydrogen carbonate. 

Scheme 5: Reagents & conditions: (i) DMAP, DCC; (ii) TFA, CH2Cl2; (iii) CsHCO3; (iv) HCl, THF, H2O.203 

In order to determine whether the biological activitiy of the GroMMs is dominated by the 

S-glycerol unit or the mycolic acid unit, a series of GroMMs containing single enantiomers 

of synthetic mycolic acids were prepared. This will allow the biological activity of these 

compounds to be compared to those of the previously synthesised R-glycerol esters. 
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1.12 TB Detection 

TB infection can be detected through several existing methods; these all meet the WHO’s 

standards, but they still have disadvantages such as high cost, being time consuming, 

inaccurate results, interference by BCG vaccination and their inability to distinguish between 

latent and active TB. A brief description of the tests is given below: 

❖ Bacterial Culture: This method is considered as a gold standard for detecting active 

TB,205 and it has one of the highest sensitivities (sensitivity is defined as the 

proportion of actual positive samples correctly detected by the antigen to the total TB-

positive sera) among TB diagnostics. It can also distinguish TB patients with drug 

resistant strains from those with non-drug resistant strains,206 providing valuable 

information for the treatment of the disease. This method does however take around 3 

to 8 weeks to obtain a result.207,208 
 
 

❖ Tuberculin Skin Test: The tuberculin skin test (TST) was one of the earliest diagnostic 

tools developed against the disease, and it requires 2 to 3 days to obtain a result.206 One 

drawback is that it does not distinguish between latent and active TB; moreover, it cannot 

distinguish an active TB patient from one that was previously infected by the disease.209 

False negative samples include patients co-infected with HIV, while false positive 

samples include patients vaccinated with BCG.207,210,211,212,213,214  

❖ Sputum Smear Microscopy: This is a simple, cheap and fast method of diagnosing 

TB, and relies on direct observation of mycobacteria under a light microscope. It 

cannot however distinguish TB from other mycobacterial diseases.206 An advantage of 

this method over bacterial culture is that the time required for the result is much 

shorter, the staining process being performed in less than 1 hour,215 making this 

valuable as a quick screening method for mycobacterial disease.216,217  

❖ Interferon γ-Release Assay: The principle of the IFN-γ assay is the stimulation of T-

cells to produce IFN-γ when they re-encounter the antigen of M.tb.218 This method 

detects both latent and active TB and again cannot distinguish between them.209,219 It 

is also reasonably fast, with results available in 24 h; no false positive samples are 

seen caused by BCG vaccination. One disadvantage however is there is only a limited 

amount of clinical and laboratory experience with this assay. 220,221,222
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❖ Nucleic Acid Amplification Test: Detects the presence of the M.tb complex, but 

cannot distinguish the individual mycobacteria. This method does however have low 

limits of detection, and the results are obtained in 2.5 to 3.5 h.223,224  

There are some newly available tests which are simple, faster, less expensive and give better 

results such as: 

• Biosensor Detection of TB: The principle of this method depends on the binding of 

the host antibody to specific antigens such as mycolic acids, cord factors or their 

corresponding thiolated compounds. The main advantages of this method include high 

levels of detection, it is simple to use and very fast.225,226,227 

• Serodiagnostic assays: ELISA assays for the detection of TB are used to detect 

antibodies produced against M.tb. However, the WHO has strongly recommended that 

the current assays are not to be used for the detection of TB. It does however indicate 

that an assay of this kind which does meet its criteria would be valuable. 225,228 

 

1.13 ELISA in the serodiagnosis of TB 

A number of natural mixtures of cord factors and mycolic acids have been shown to have 

strong effects on the immune system and have been used in ELISA (Enzyme-linked 

immunosorbent assay) to investigate both their biological activity and diagnosis applications 

for the serodiagnosis of TB.229,230,231 ELISA is widely used in clinical medicine to detect 

many infectious diseases such as TB. The principle of the method is based on the detection of 

the antibodies in an infected sample through antibody–antigen reaction which produces a 

detectable signal. The test is a rapid and simple screening method.232 ELISA tests have been 

used for TB detection because M.tb has many different antigens which were widely used for 

detection; however, it suffers from low sensitivity and specificity (specificity is the 

proportion of actual negative samples correctly detected by the antigen to the total TB-

negative sera).233 Schleicher et al., used ELISA to try and detect anti-mycolic acid antibodies 

from M.tb in serum samples from patients infected with TB and HIV, and from patients 

infected with TB alone. They used natural mycolic acids, isolated from M.tb, as antigens and 

they showed that the antibody levels were pointedly higher for TB positive sera than for TB 

negative sera and that antibody levels remained largely unchanged between HIV-positive and 

HIV-negative samples, signifying that antibody responses to mycolic acids are also preserved 

in patients who have tested HIV-positive.234 Beukes et al. used synthetic mycolic acids 
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prepared by Al Dulayymi et al. and natural mycolic acids extracted from M.tb to compare the 

antibody responses, in addition to examining their corresponding methyl esters.235 They 

proved that in the case of free mycolic acids the antibody recognition is much higher than 

their corresponding methyl esters, signifying that the carboxylic acid unit of the mycolic 

acids either has a large contribution to the binding of the mycolic acids to the antibodies, or 

that they stabilise a particular antigen conformation. They also established that oxygenateD-

mycolic acids are more antigenic than alpha-mycolic acids. However, none of the 

synthetically produced mycolic acids could reproducibly distinguish TB positive sera from 

TB negative sera.235 

1.15 Overall Aim of this Research: 

The aim of this study was to synthesise two different glycolipids related to the mAG 

complex, as well as, glycerol mycolates, which are present in the cell wall of mycobacteria. 

In particular, the synthesis of:  

1- Di-Mycolyl-Di-Arabino-L-Glycerol (DMAG). 

2- Di-Mycolyl Tri-Arabino-L-Glycerol (DMTAG). 

3- Glycerol Mono-Mycolates (GroMM) with S-stereochemistry of the glycerol 

component, to compare the biological activity of R-GroMM. 

The object of this work was to ascertain if these fragments (Figure 22) have any capacity for 

the stimulation of the production of co-stimulatory molecules and certain pro-inflammatory 

cytokines (e.g. TNF-α, IL-1β, IL-6), in addition to investigating their antigenicity for the 

detection of TB and other mycobacterial infections. 

Figure 22: Structures of target molecules. 
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Chapter 2 

Results and Discussion 

Section 1 

2.1 Synthesis of a single enantiomer of di-mycolyl di-arabinofuranosyl 

glycerol (DMAG) 

2.1.1 The aims of this part 

• Synthesis of di-arabino-glycerol (DAG), 2',3'-di-O-benzyl-L-glycerol-(1'→1)-2,3-di-

O-benzyl-β-D-arabinofuranosyl-(1→2)-3-O-benzyl-α-D-arabinofuranoside. 

 
Figure 23: Structure of the glycan (DAG). 

• Esterification of the above glycan (DAG) with simple fatty acids as model 

glycolipids.  

• Preparation of a number of di-mycolyl di-arabino glycerol (DMAG) esters through 

esterifying the glycan moiety with common classes of synthetic mycolic acids (MAs). 

• Investigation of the biological activity of the synthetic compounds.  

2.1.2 Synthesis of 2',3'-di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-β-D-arabinofuranosyl-

(1→2)-3-O-benzyl-α-D-arabinofuranoside (DAG)  

In the glycosidation reaction, a new stereogenic centre is created at the C-1 position on the 

ring and as a result two different diasteromeric products can be obtained (Figure 24). Thus, 

control of stereochemistry at the anomeric position has been a challenge to organic chemists. 

In nature, glycosidic linkages are formed through reactions catalysed by enzymes 

(glycosyltransferases). The biosynthesis is a highly stereoselective processes due to the specificity 

of the enzymes.236  
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Figure 24: Glycosylation using a donor with a nonparticipating group at C-2. 

In this part of the study, the preparation of the target glycan molecules was undertaken, which 

contains both α- and β- arabinofuranosyl linkages (Figure 25). Formation of the α-glycosidic 

bond can be directly achieved by using neighbouring group participation of the 2-O-acyl 

functionalities in the donor species. The leaving group at the anomeric centre of the donor 

departs by the activation of the promoter to form an oxocarbenium ion, which is immediately 

attacked by the protecting group 2-O-acyl to generate a dioxolenium ion intermediate. The 

dioxolenium ion blocks one face of the molecule and hence, the acceptor has to attack the 

anomeric centre from the less sterically hindered face, through a process that is kinetically 

favoured. Discrimination between α- and β- isomers was achieved using NMR data, 

particularly the δC-1 and 3JH-1,H-2 values. For the β-isomer, δC-1 = 97 – 103 ppm and 3JH-1,H-2 = 

3 – 5 Hz, whereas for the α-isomer, δC-1= 104 –111 ppm and 3JH-1,H-2 = 0 – 2 Hz.237  

 
Figure 25: Glycosidic linkages in the target molecule. 

The synthesis of the DMAG’s acceptor (60) began with commercially available D-arabinose 

(45) as starting material (Scheme 5A). Fischer glycosylation of (45) in methanol under 

kinetic control provided a mixture of methyl-α,β-arabinofuranoside (46). The crude product 

was suspended in dry pyridine without further purification, before acetic anhydride was 

added, to give triacetate (47) in 80% yield. Methyl glycoside (47) was stereoselectively 
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transformed to the α-thioglycoside (48) as the principal product upon reaction with p-

thiotoluene in the presence of boron trifluoride dietherate in CH2Cl2 in 65% yield. 

Subsequent treatment of (48) with NaOCH3 in methanol afforded thioglycoside triol (49) in 

89% yield, which was converted to silyl-protected arabino-thioglycoside (50) in one step. All 

data was identical to those of the authentic samples reported in the literature.238  

Scheme 5A: Synthesis of compound (50): Reagents & conditions: (i) MeOH, HCl, 78%; (ii) Ac2O, pyridine. 0 0C, 80%; 

(iii) p-CH3C6H4SH, BF3.Et2O, CH2Cl2, 0 ºC/R.T., 8 h, 65%; (iv) NaOCH3, MeOH:CH2Cl2 (1:1), R.T., 3 h, 89%; (v) 

TIPDSCl2, pyridine, 6 h, 0 ºC/R.T., 76%. 

Subsequently, benzoyl chloride was used under standard conditions to protect the hydroxyl 

group of (50) at the C-2 position on the sugar ring affording silyl, benzoyl-protected arabino-

thioglycoside (51) in 89% yield (Scheme 6).239  

 
Scheme 6: Reagents & conditions: (a) BzCl, pyridine, 0 ºC/R.T., 89%. 

The initial step in the synthetic route was to construct the previously prepared L-glycerol 

moiety in DMAG’s acceptor and in order to achieve that the silyl benzoyl-protected arabino- 

thioglycoside (51) was subjected to a glycosidation reaction with 2,3-di-O-benzyl-L-glycerol 

(51G) 247 using N-iodosuccinimide (NIS) and silver triflate (AgOTf) in dichloromethane (CH2Cl2) 

at -36 °C (Scheme 7). 
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Scheme 7: Reagents & conditions: (b)        , NIS/AgOTf, CH2Cl2, -36 ºC, 91%. 

This type of glycosidation is highly efficient and highly stereoselective due to the neighbouring 

group participation (benzoyl group at the C-2 position on the glycan ring), thus, only the α-

isomer (1,2-trans isomer) was obtained in an excellent yield of 91% for the fully-protected 

arabiofuranosyl-glycerol (52). The 1H-NMR spectrum showed the α-anomer glycosidic linkage, 

which appeared as the only product, one downfield signal occurring as a broad doublet at 

4.98 ppm (J 1.0 Hz) for the proton at the anomeric centre, while the 13C-NMR showed a peak 

at  105.6 ppm due to the carbon at the C-1 position on the glycan ring (Figure 26), both 

indicating that only the α-anomer was present.  

 
Figure 26: HSQC-NMR of compound (52). 

Deprotection of the benzoyl ester-protecting group of the glycan (52) under Zemplén 

conditions using methanol and a catalytic amount of sodium methoxide afforded (53) in 89% 

yield (Scheme 8).  
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Scheme 8: Reagents & conditions: (c) NaOCH3, CH3OH: CH2Cl2 (1:1), R.T.,1 h, 89%. 

The next step was the protection of the free hydroxyl group at the C-2 position using an allyl 

(All) group. This was achieved through reaction with allyl bromide (AllBr) and NaH in dry 

DMF at 0 ºC to give (54) in 75% yield (Scheme 9).  

 
Scheme 9: Reagents & conditions: (d) NaH, AllBr, DMF, 0 ºC/R.T., 1 h, 75%. 

Removal of the silyl group (tetra-isopropyldisiloxane) was achieved using fluoride ion 

[tetrabutylammonium fluoride solution 1.0 M (TBAF)] in dry THF. This gave two free 

hydroxyl groups at the C-3 and C-5 positions (55) in 95% yield (Scheme 10). 

 
Scheme 10: Reagents & conditions: (e) TBAF, THF, 0 ºC/R.T., 16 h, 95%. 

Two different protecting groups were required at the C-3 and C-5 positions of the DMAG’s 

acceptor. The presence of a p-methoxybenzyl (PMB) protecting group at the C-5 position on 

the acceptor is found to give good β-selectivity when coupling with the donor to form a 

disaccharide.144 In order to obtain this, the hydroxyl group at the C-5 position in (55) was 
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firstly protected using tert-butyldiphenylsilyl ether (TBDPS) to afford (56) in 65% yield, 

followed by protection of the hydroxyl group at the C-3 position with a benzyl (Bn) group 

using benzyl bromide (BnBr) and sodium hydride in DMF at 0 ºC to give (57) in 72% yield. 

De-silylation using TBAF to give a free hydroxyl group at the C-5 position was then carried out 

affording (58) in 91% yield, which was then treated with sodium hydride and freshly prepared 

p-methoxybenzyl bromide (PMBBr) in dry DMF to give (59) in 76% yield (Scheme 11). The 

formation of all these compounds (50-59) was proved by NMR and I.R spectroscopy and mass 

spectrometry. 

Scheme 11: Reagents & conditions: (f) t-BuPh2SiCl, imidazole, DMF, 0 ºC/R.T., 1/2 h, 65%; (g) NaH, BnBr, 

DMF, 0 ºC/R.T., 2 h, 72%; (h) TBAF, THF, 0 ºC/R.T.,16 h, 91%; (i) NaH, PMBBr, DMF, 0 ºC/R.T., 2 h, 76%.  

The final step to prepare the target acceptor was the removal of the allyl protecting group at 

the C-2 position, which was successfully achieved by stirring 59 in a mixture of 

CH3OH:CH2Cl2 and adding 0.2 equivalents of PdCl2 to give the target molecule, the 

DMAG’s acceptor (60) in 84% yield (Scheme 12).  

 
Scheme 12: Reagents & conditions: (j) PdCl2, CH3OH:CH2Cl2 (1:1), R.T., 16 h, 84%. 

Formation of the target acceptor (60) was confirmed by 1H-NMR, which showed one 

downfield signal as a broad singlet at δ 5.03 corresponding to the proton attached to the C-1 

position on the sugar, while the 13C-NMR spectrum showed a signal at δ 109.3 corresponding 

to the C-1 position on the glycan ring. Figure (27 A) shows the correlation of these signals 

by HSQC-NMR. 
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Figure 27 A: HSQC-NMR of the DMAG’s acceptor compound (60). 

The structure of (60) was also confirmed by mass spectrometry. Nano Electrospray Ionization 

(NSI) mass technique, was used to reduce fragmentation and enhance the abundance of the 

intact molecular ion. The [NSI–Found (M+NH4)
+: 632.3209; C37H46O8N, requires: 632.3218] 

(Figure 27 B), and the specific rotation which was []
22

D +41.7 (c 1.6, CHCl3) for (59) 

changing to []
22

D +60.0 (c 4.6, CHCl3) for the target molecule (60). 

 
Figure 27 B: Mass spectrum of the DMAG’s acceptor compound (60). 
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2.1.3 Coupling the donor and the acceptor 

As mentioned earlier, good β-selectivity can be obtained in the case of glycosylation of active 

acceptors and armed donors.145 Active acceptors are species that are not sterically hindered and 

possess electron-donating protecting groups and thus are more nucleophilic, while armed 

donors are referred to as those protected with electron-rich ethers. The next step was the 

coupling of the newly synthesized active acceptor (60), and the armed donor (61), which was 

prepared as reported in the literature,145 to afford the di-saccharide (62) (Scheme 13).  

 

Scheme 13: Reagents & conditions:(k) NIS/AgOTf, CH2Cl2, -78 ºC, 86%. 

The reaction of the 5-O-p-methoxybenzylated glycosyl acceptor (60) and thioglycoside donor 

(61) was carried out in dry CH2Cl2 by cooling the reaction mixture to -78 ºC. Then NIS and 

AgOTf were added and the reaction was warmed to - 60 ºC over 60 _ 90 min. The reaction was 

quenched with trimethylamine and after work-up afforded the desired disaccharide (62) in 

86% yield with excellent β-selectivity, as confirmed by the 1H, 13C and 2D-NMR spectra.  

It was desirable to carry out the coupling reaction between the acceptor and the donor at low 

temperature (-78 ºC) in order to obtain an oxocarbenium ion pair, instead of the free 

oxocarbenium ion intermediate. It has been suggested that at higher temperatures, it is 

possible that this ion pair would dissociate quickly to give the free oxocarbenium ion, which 

would give mixtures of products. This suggested pathway is consistent with earlier studies on 

the glycosylation of fully protected arabinofuranosyl chlorides (Scheme 14).240 
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Scheme 14: Possible mechanism of the glycosylation from the low temperature activation of thioglycosides. 

The 1H-NMR spectrum (Figure 28A) of the new di-saccharide (62) indicated the presence of two 

different anomeric hydrogens due to the two signals downfield at δ 4.96 (br. s) and at δ 4.79 

(br.d, J 4.3 Hz) corresponding to the protons at the α- and β-anomeric centres respectively. The 

13C-NMR spectrum (Figure 28B) confirmed the presence of glycosidic linkages in the glycan due 

to the signals at δ 106.2 and δ 100.6 ppm belonging to the two carbons at the α- and β-anomeric 

centres respectively.   

 
Figure 28 A: 1H-NMR of the di-saccharide (62). 
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Figure 28 B: 13C-NMR of the di-saccharide compound (62). 

The HSQC-NMR spectrum (Figure 29 A) confirmed the structure of (62), where the acetal 

proton signals were correlated to their carbons. 

 
Figure 29 A: HSQC-NMR of the di-saccharide compound (62). 
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The structure of (62) was also confirmed by mass spectrometry [NSI–Found (M+NH4)
+: 

1162.6495; C63H100O13Si3N, requires: 1162.6497] (Figure 29 B). 

 
Figure 29 B: Mass spectrum of the di-saccharide compound (62). 

Since the di-arabino glycerol (DAG) derivative was planned to be used as precursor for a 

range of mono- and di-substituted glycolipids, two orthogonal protecting groups were 

required for the primary hydroxyl groups in the C-5 positions of the arabinosyl residue. This 

would allow one protecting group to be removed in the presence of the other, later in the 

synthesis, so that symmetrical or unsymmetrical glycolipids could be prepared. This will be 

discussed in more detail later (see page 73).  

Subsequently, the cyclic siloxane-protecting group in the pure β-anomer (62) was removed 

by reacting with TBAF for 6 h in dry THF to give the tri-ol (63) in 95% yield (Scheme 15).  

 
Scheme 15: Reagents & conditions: (l) TBAF, THF, 0 ºC/R.T., 6 h, 95%. 
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The first primary hydroxyl group (in the bottom arabinose molecule) has been successfully 

protected with a PMB group, through the synthesis of the DMAG’s acceptor. The new primary 

hydroxyl group (in the top arabinose molecule) needed to be protected with a different group, 

and in order to achieve that, compound (63) was protected with a TBDPS group, in the 

presence of imidazole in dry pyridine at 0 ºC, to afford (64) in 77% yield (Scheme 16).  

 
Scheme 16: Reagents & conditions: (m) t-BuPh2SiCl, imidazole, DMF, 0 ºC/R.T., 2 h, 77%. 

The structure of this compound was confirmed by NMR spectroscopy and mass spectrometry. 

Figures 30 and 31 show the proton and HSQC-NMR where the key peaks corresponding to the two 

different protecting groups (i.e. TBDPS and PMB) at the primary carbons (C-5 positions) of 

each arabinose molecule are shown.   

 
Figure 30: 1H-NMR of the di-saccharide compound (64). 
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Figure 31: HSQC-NMR of the di-saccharide compound (64). 

The next step was the protection of the free hydroxyl groups at the C-2 and C-3 positions (in 

the top arabinose molecule) of compound (64) by reaction with benzyl bromide (BnBr) and 

NaH in dry DMF at 0 ºC  R.T for 2 h to afford (65) in 90% yield (Scheme 17). This 

compound is a key intermediate for the preparation of the glycolipids selectively as will be 

illustrated later (see page 73). 

 
Scheme 17: Reagents & conditions: (n) NaH, BnBr, DMF, 0 ºC/R.T., 2 h, 90%. 
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Having successfully synthesised (65), the next step was to investigate the coupling of the 

disaccharide with commercially available simple fatty acids. In order to achieve this, de-protection 

of the two hydroxyl groups at the C-5 positions was required. Firstly, the TBDPS group on the 

top arabinose molecule was removed by subjecting compound (65) to TBAF in dry THF at 0 ºC, 

affording (66) in 93% yield (Scheme 18).  

 
Scheme 18: Reagents & conditions: (p) TBAF, THF, 0 ºC/R.T., 6 h, 93%. 

After the first de-protection, the alcohol (66) was treated with cerium ammonium nitrate (CAN) 

in a mixture of CH3CN:H2O (9:1) at 0 ºC to R.T for 1h to remove the PMB group, when TLC 

indicated the conversion had finished. The mixture was diluted with chloroform, washed with 

aq. NaHCO3, dried (MgSO4) and the solvent was evaporated under reduced pressure, the 

product was purified to afford the di-ol (67) in 89% yield (Scheme 19).  

 
Scheme 19: Reagents & conditions: (q) Cerium ammonium nitrate (CAN)/ CH3CN:H2O (9:1), 0 ºC/R.T., 1h, 89%. 

Finally, the benzyl-protected diol (67) was treated with methanesulfonyl chloride (MsCl) in 

dry pyridine and catalytic 4-dimethylaminopyridine (DMAP) at room temperature to activate 
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the free primary hydroxyl groups, affording the mesylate benzyl-protected di-saccharide (68) 

in 85% yield (Scheme 20).  

 
Scheme 20: Reagents & conditions: (r) CH3SO2Cl, DMAP, Pyr. 16 h, 85%. 

Once again, the structure of (68) was confirmed by NMR spectroscopy, which gave the signals 

illustrated in Table 2. These assignments were made based on literature values for the 

arabinoglycerol fragment,241 and a detailed analysis of the HSQC-NMR spectrum for the top 

arabinose (Figure 33). 

       Table 2: 1H and 13C-NMR data analysis of the mesylate compound (68). 

 

 

 

The structure of (68) 

was also confirmed by 

mass spectrometry 

[MALDI–Found 

(M+Na)+: 985.3109; 

C50H58NaO15S2, 

requires: 985.3115].  

 

 

 

 

Proton Shift H's Multiplicity J/Hz Carbon δ/ppm 

H-aromatic 7.27 25 m - C1-alpha 106.4 

Hb 5.01 1 br.d 4.4 C2 81.1 

Ha 4.93 1 br. s - C3 83.5 

H-Bn 4.70 1 d 11.7 C4 85.9 

H-Bn 4.67 1 d 11.7 C5 69.9 

H-Bn 4.63 2 br.s - C6 37.5 

H-Bn 4.58 1 d 11.7 C1’’-beta 101.2 

H-Bn 4.51 1 d 11.7 C2’’ 78.4 

H-Bn 4.46 4 br.s - C3’’ 80.9 

Hh 4.32 1 br. q 4.6 C4’’ 83.5 

Hi, I’, n, n’,f 4.20 5 m - C5’’ 69.8 

Hg,j,k 4.10 3 m - C6’’ 37.4 

Hm 4.00 1 br.dd 4.4, 6.9  C-Bn 72.7 

Hc 3.80 1 dd 5.2, 10.3  C-Bn 72.6 

Hd 3.74 1 br. p 5.1 C-Bn 72.4 

Hc’, e, e’ 3.56 3 br. dd 4.6, 7.2  C-Bn 72.3 

(CH3)p 2.85 3 s - C-Bn 73.4 

(CH3)p’ 2.84 3 s - C1` 69.0 

- - - - - C2` 76.9 

- - - - - C3` 67.3 

Figure 32: Structure of the 

mesylate (68). 
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The specific rotation of (67) was []
21

D - 4.3 and changed to []
22

D +2.8 for the target molecule (68). 

 
Figure 33: HSQC-NMR of the mesylate compound (68). 

For the initial series of analogues, fatty acids that are commercially available were chosen, as 

it was expected that they would be easy to connect to the glycan (hydroxylated or mesylated) 

by esterification. Two different methods were used to achieve the esterification:  

1. An alkylative coupling using cesium hydrogen carbonate (CsHCO3) after mesylation of 

the primary hydroxyl groups in the glycan; this method was employed when using free 

simple fatty acids or unprotected mycolic acids (i.e. those with a free hydroxyl group at 

the -position). 

2. Direct coupling of the glycan alcohol with the fatty acid using 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDCI); this coupling method was used when the 

mycolic acids were protected (i.e. did not have a free hydroxyl group at the -position). 
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2.1.4 Esterification of the glycan (68) with simple fatty acids using the CsHCO3 method  

The di-mesylate (68) was reacted with three different simple fatty acids (69a-c), and a model β-

hydroxy acid (69d) via the alkylative esterification strategy, using caesium hydrogen carbonate 

as a coupling reagent in dry THF:DMF (5:1) at 70 ºC for 4 days, to give the expected fully 

protected di-esters (70a-d) in 92, 89, 87 and 55% yield respectively (Scheme 21). Mass 

spectrometry of the products confirmed the structures (as expected) as did I.R. and NMR 

spectroscopy.  

 
Scheme 21: Synthesis of fully protected DMAG glycolipid analogues (70 a-d): Reagents & conditions: (s) 

CsHCO3, THF: DMF (5:1), 70 ºC 3 days, 92, 89, 87 and 55% respectively. 

As an example, the 1H-NMR spectrum for the fully protected di-stearyl di-arabino-glycerol 

(70b), showed two downfield signals at δ 5.01 (br.d J 4.2 Hz) and δ 4.95 (br.s) corresponding 

to the protons of the glycan at the - and -anomeric centers respectively. Protons 

corresponding to the CH2 of the five-benzyl groups appeared between δ 4.69 – 4.38. The 

remaining 15 protons on the sugar moiety and the glycerol appeared in the range from δ 4.30 – 

3.55. Four protons corresponding to the CH2 adjacent to the carbonyl groups in the acid came 

around δ 2.32 as a triplet (J 7.6 Hz) and δ 2.18 as a double triplet (J 1.9, 7.4 Hz) respectively. 

The CH2 chain ranged from δ 1.69 – 0.95 and the protons of the terminal CH3 of the acid part 

came up-field around δ 0.85 as a triplet (J 6.8 Hz). 
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Figure 34: 1H-NMR of fully protected DMAG analogue compound (70b). 

The 13C-NMR spectrum showed two carbonyl signals at δ 173.5 and δ 173.3. Signals for the 

carbon at the -anomeric centre was at δ 106.1 while that at the -anomeric centre was at δ 

100.4. The remaining sugar and glycerol carbons were in the region of δ 85.5 – 63.7.         

The carbons for the CH2 chain ranged from δ 34 - 22 and the carbons of the CH3 came up-

field around δ 14.1. The specific rotation of (68) was []
22

D +2.8 changing for the protected di-

ester (70b) to []
22

D -14.6. The I.R. spectrum of (70b) gave bands for the two carbonyl groups 

at 1740 and 1731 cm-1.  

 
Figure 35: 13C-NMR of fully protected DMAG analogue compound (70b). 
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The protected esters (70a-d) were then subjected to hydrogenolysis to afford the target 

DMAG glycolipid analogues (71a-d) (Scheme 22). 

 
Scheme 22: Synthesis of DMAG glycolipid analogues (71 a-d): Reagents & conditions: (t) (Pd(OH)2-C/20%), 

H2 atmosphere, CH3OH:CH2Cl2 (1:1), R.T., 36 h, 82, 81, 87 and 74% respectively.  

The debenzylation was achieved by stirring (70a-d) in dry CH2Cl2:MeOH (1:1) in the 

presence of Pd(OH)2 (0.75 eq. fold by weight) under a hydrogen atmosphere (using a 

hydrogen filled balloon). Once again, mass spectrometry, I.R. and NMR spectroscopy proved 

the formation and the structure of the products (71a-d). The 1H-NMR spectrum of (71b) for 

example, showed clearly the disappearance of those signals corresponding to the methylene 

protons of the benzyl groups between δ 4.69 – 4.38, and the aromatic protons between δ 7.32 

– 7.15. Two downfield signals appearing as a broad doublet at δ 5.01 (J 4.3 Hz) and a broad 

singlet at δ 5.00, corresponded to the protons at the - and -anomeric centers respectively. 

The remaining protons on the glycan moiety and the glycerol appeared in the range from δ 

4.35 – 3.51. The CH2 adjacent to the carbonyl groups in the acid came around δ 2.33 as a 

triplet (J 7.5 Hz). The CH2 chain ranged from δ 1.7 – 0.90 and the protons of the terminal 

CH3 of the acid part came up-field around δ 0.86 as a triplet (J 6.3 Hz). The 13C-NMR 

spectrum showed two carbonyl signals at δ 174.3 and δ 174.0, while the -anomeric centre 

appeared at δ 105.8 and that of the -anomeric centre at δ 101.9. The remaining sugar and 

glycerol carbons were in the region of δ 88.5 – 63.3. The carbons of the CH2 chain ranged 

from δ 34.0 – 22.0 and the carbons for the CH3 groups came up-field around δ 14.0.  
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Figure 36: 1H and 13C-NMR of DMAG analogue compound (71b). 

The 2D-NMR spectrum (Figure 37) for (71b) showed the acetal proton signals were 

correlated to their carbons.  
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Figure 37: HSQC-NMR of DMAG analogue compound (71b). 

The specific rotation of (70b) was []
22

D -14.6 changing for the target DMAG glycolipid analogue 

(71b) to []
25

D -3.4. The MS gave the correct mass ion, and the I.R. spectrum of (71b) gave a 

broad absorbance at 3430 cm-1 for the five hydroxyl groups and a band for the carbonyl groups at 

1737 cm-1.  

2.1.5 Comparison of the NMR data for the glycan part of the synthetic and natural DMAG 

After successfully synthesising the DMAG analogues, a comparison of the synthesised DMAG 

glycolipid analogue (particularly the sugar part) with that reported for the natural mixture (as 

DMAG per-acetate) was needed to confirm the structure of the synthetic DMAG. Therefore, the 

five free hydroxyl groups in (71c) were acetylated with acetic anhydride in anhydrous pyridine at 

0 ºC to give the penta-acetate (72) in 83% yield (Figure 38).  
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Figure 38: Structure of synthetic DMAG penta-acetate analogue compound (72). 

The NMR data for (72) gave the signals illustrated in Table 3. 

Table 3: A comparison of di-arabino-glycerol fragment of carbon and proton NMR spectra of synthetic and natural 

DMAG penta-acetates.  

  Natural DMAG peracetate81 Synthetic DMAG penta-acetate 

analogue (72) 

G
ly

ce
ro

l 

13C 

δ/ppm 

1H 

Shift, Class, J/Hz 

1H 

 Shift, Class, J/Hz  

13C 

δ/ppm 

C1’ 65.3 3.60 (dd, J 4.5, 11.0), 

3.80 (dd, J 5.2, 11.0) 

3.60 (dd, J 4.5, 11.0), 

3.80 (dd, J 5.2, 11.0) 

65.3 

C2’ 69.8 5.20 5.21(m) 69.8 

C3’ 62.8 4.25 (dd, J 4.0, 11.7), 

4.17 (dd, J 5.2, 11.7) 

4.37 (dd, J 4.6, 11.6), 

4.20 (m) 

62.6 

A
ra

b
in

o
se

 B
 

C1 99.5 5.39 (d, J 4.7) 5.40 (br.d, J 4.7) 99.4 

C2 77.2 4.98 (dd, J 4.7, 6.6) 4.95 (br.dd, J 4.7, 6.6) 77.5 

C3 75.4 5.34 (dd, J 5.1, 6.6) 5.34 (dd, J 5.3, 6.3) 75.6 

C4 79.0 4.12 (dt, J 4.6, 5.1, 7.8) 4.12 (m) 79.1 

C5 65.2 4.38 (dd, J 4.6, 11.6), 

4.22 (dd, J 7.8, 11.6) 

4.37 (dd, 4.6, 11.6), 

4.20 (m) 

65.2 

A
ra

b
in

o
se

 A
 

C1’’ 105 4.91 (s) 4.91 (br.s) 105 

C2’’ 84.0 4.22 (m) 4.21 (m) 84.0 

C3’’ 77.5 4.98 4.95 (br.dd, J 4.7, 6.6) 77.5 

C4’’ 80.8 4.17 4.17 (m) 80.6 

C5’’ 63.8 4.18, 4.30 

(dd, J 2.7,10.3) 

4.18 (m) 63.6 

 

The 2D-NMR spectrum (Figure 39) for (72) also showed the acetal proton signals were 

correlated to their carbons. 
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Figure 39: HSQC-NMR of DMAG penta-acetate analogue compound (72). 

The comparison of the reported data for the natural mixture (containing a mixture of mycolic acids) 

with that of the synthetic compound, confirmed the structure of the DMAG core and showed a very 

good agreement between the signals for the di-arabino-glycerol fragments of the natural and 

synthetic molecules (Figure 40). 

 
Figure 40: A comparison of 1H-NMR spectra of synthetic DMAG penta-acetate analogue (72) with that 

reported for the natural mixture.81 
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2.1.6 Esterification of the glycan (68) with synthetic methoxy-MA (73) using the CsHCO3 method   

Having secured a successful method for synthesizing model analogues of DMAG containing 

simple fatty acids, an attempt to prepare the desired DMAG containing a mycolic acid by the 

same method as above was undertaken. Firstly, the structurally defined synthetic MA (73) 

provided by Dr. Al Dulayymi,110 a methoxy-cis-cyclopropane with a 22 carbon α-alkyl chain, 

which is present in nature in M. kansasii, was reacted with the mesylate (68), using cesium 

hydrogen carbonate (10 eq.) in dry DMF:THF (1:5) at 70 ºC for 4 days to afford (74) in 54% 

yield (Scheme 23). This yield was lower than those observed when preparing DMAG 

glycolipids with simple fatty acids (70a-c); a possible reason for this may be due to the 

presence of more functional groups in the methoxy-MA chain and also due to there being 

more steric hindrance. 

Scheme 23: Synthesis of fully protected DMAG glycolipid (74). 

The success of the esterification was demonstrated by mass spectrometry, I.R and 1H-NMR 

spectroscopy, where the characteristic signals corresponding to the protons at the - and -

anomeric centres appeared as a broad singlet at δ 4.93 and broad doublet at δ 4.97 (J 4.3 Hz) 

respectively. The region of interest is between δ 0.61 and - 0.36 (cyclopropane reigon), which 

corresponds to the eight protons of the two cis-cyclopropane rings. The proton Ha (Figures 

41 & 42) gave a doublet of triplets, the broadness of this signal shown at δ 0.56 to 0.48 is 

possibly because Hc and Hc` are not magnetically equivalent and the signal observed is 

actually a double doublet of doublets. However, due to the signals being at a nearly identical 

chemical shift it appears as a doublet of triplets. The proton Hb should show a doublet of 

triplets. However, due to the difference of Hc and Hc` the signal at δ - 0.3 to - 0.4 is distorted 

and it appears as a broad quartet. Protons Hc and Hc` again showed a distorted multiplet at δ 

0.67 to 0.57 for the same reason. A singlet at δ 3.31 corresponded to the methoxy group in 
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the MA. The α-proton Hd exhibits a multiplet at δ 2.42 – 2.32, which is not consistent with 

the expected splitting pattern (should be a doublet of triplets), due to the complexity of the 

ring the signal was distorted. Hf is seen as a doublet of triplets at δ 2.95 – 2.90 due to it being 

adjacent to the methoxy group, and the splitting pattern observed is consistent with the 

expected splitting pattern. Signals corresponding to the benzylic protons were seen as three 

doublets at δ 4.41, 4.58, 4.67 (the coupling constant for each signal being 11.6 Hz) and two 

multiplets at δ 4.47 and 4.63.  All the remaining protons on the glycan moiety and the 

glycerol part appeared in the range from δ 4.30 – 3.50.  

 
Figure 41: Structure of fully protected DMAG compound (74). 

 
Figure 42: 1H -NMR of fully protected DMAG compound (74). 
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The 13C-NMR spectrum showed two carbonyls at δ 175.04 and δ 175.03 with a slight 

downfield shift, the carbon of the -anomeric centre appeared at δ 105.9 and that of the -

anomeric centre at δ 100.4. The remaining sugar and glycerol carbons were in the region of δ 

85.5 – 63.7, and the methoxy group at δ 57.7, The carbons of the CH2 chain ranged from δ 

35.0 – 22.0 and the carbons of the CH3 came up-field at around δ 14.0 (Figure 43).  

 
Figure 43: 13C-NMR of fully-protected DMAG compound (74). 

Debenzylation of (74) was achieved by the method described previously to give the target 

DMAG (75) in 73% yield (Scheme 24).  

 
Scheme 24: DMAG glycolipid of methoxy-MA (75). 

Once again, the 1H and 13C-NMR spectra for (75) showed the disappearance of those signals 

corresponding to the methylene group of the benzyl groups, as well as, the aromatic signals. 

All the remaining signals corresponding to the glycan core, the glycerol and the methoxy-MA 

are similar to those of (74) as discussed before. 
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Figure 44: 13C-NMR of DMAG compound (75). 

2.1.7 Esterification of the glycan (67) with different synthetic MAs using the EDCI method  

In order to explore another route for esterification and to produce a series of DMAG 

glycolipids from the most common classes of synthetic mycolic acids, a direct esterification 

method was undertaken using the EDCI method. The advantage of this is that it avoids 

protecting the primary hydroxyl groups of the sugar and gives a good yield. According to the 

literature, direct esterification between the primary hydroxyl group of α-D-Araf and a 

carboxyl group in natural MA was achieved in a low yield (30%) due to the tendency of the 

hydroxy acid to undergo self-condensation; however, by using a MA protected at the -

position (the secondary hydroxyl group) with tert-butyldimethylsilyl (TBDMS), the yield of 

the coupling was raised to 97%. Therefore, the direct condensation of the sugar-diol (67) with 

three different protected synthetic MAs (76f-h) was investigated, using EDCI as an activating 

agent and DMAP as catalyst in dry CH2Cl2 and stirring for five days at room temperature, to 

give the fully protected DMAG’s (77f-h) (Scheme 25).  
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Scheme 25: Synthesis of fully protected DMAG glycolipids (77f-h). 

 

Confirmation of the formation of (77f-h) was achieved by mass spectrometry, I.R and NMR 

spectroscopy. The NMR spectra for (77f) (Figure 45) showed characteristic signals for both 

the glycan and keto-MA illustrated in Table 4. 

 
Figure 45: Structure of compound (77f). 
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Table 4: The 1H and 13C-NMR data analysis of compound (77f). 

Proton Shift H's Class J/Hz Carbon δ/ppm 

H-aromatic 7.30 25 m - C6 215.2 

H () 5.03 1 br.d 4.2 C7 174.3 

H () 4.97 1 br. s - C7’’ 174.1 

H-Bn 4.72 1 d 11.6 C1-alpha 105.9 

H-Bn 4.68 3 d 11.6 C1’’-beta 100.2 

H-Bn 4.62 1 d 11.7 C4 84.9 

H-Bn 4.52 4 m - C4’’ 84.6 

H-Bn 4.43 1 d 11.7 C3 83.6 

H 4 4.37 1 br. q 4.6 C3’’ 83.3 

H (3’’, 4’’, 5’’, 5) 4.20 6  m - C2 80.1 

H 2 4.06 1 t 6.0 C2’’ 79.1 

H 2’’ 4.00 1 br.dd 4.3, 6.5 C2` 77.1 

H Ha, 3’, 1’ 3.88 4 m - C-Bn 73.4 

H 2’ 3.78 1 br.p 4.7, 9.7 C8 73.1 

H 3, 1’, 3’ 3.60 3 br.dd 4.4, 10.4 (C-Bn) x2 72.5 

H 11 2.53 4 sextet 6.8 C-Bn 72.4 

H b, c 2.42 4 dt 1.0, 7.2 C-Bn 72.2 

(CH2-Chain) 1.35 288 m - C1` 70.3 

(CH3)-12 1.06 6 d 6.9 C3` 67.2 

(CH3)-14 0.89 12 t 6.8 C5 66.3 

H (tert-butyl)-16 0.86 9 s - C5’’ 64.3 

H (tert-butyl)-16’ 0.84 9 s - C9 51.5 

H d,d’ 0.67 4 m - C10 51.4 

He’ 0.57 2 dt 4.1, 8.4 C11 46.3 

(CH3)-16 0.04 3 s - C11’’ 41.1 

(CH3)-16 0.03 3 s - C12 16.4 

(CH3)-16’ 0.02 3 s - C13 15.8 

(CH3)-16’ 0.01 3 s - C14 14.1 

H e - 032 2 br.q 5.1 C15 10.9 
 

 
Figure 46: 1H-NMR of compound (77f). 
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Figure 47: HSQC of compound (77f). 

2.1.7.1 Deprotection of TBDMS groups from the MAs core: 

Compounds (77f-h) were then de-protected in two steps. Firstly, removal of the TBDMS 

group from the -position of the MA part by using TBAF in dry THF at 0 °C – R.T under 

nitrogen atmosphere for 16 hr gave (78f-h) in 38, 64 and 31% yield respectively (Scheme 26).  

 

Scheme 26: Removing of TBDMS group from compounds (78f-h). 

For example, the 1H-NMR spectrum for (78f) confirmed the disappearance of the signals for 

the TBDMS groups at  0.86 and  0.84 ppm corresponding to two tert-butyl groups, and 
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between  0.04 – 0.01 ppm corresponding to four methyl groups, which confirmed that the 

deprotection was successful.   

 
Figure 48: Structure of compound (78f). 

 
Figure 49: 1H-NMR of compound (78f). 

Secondly, the removal of the benzyl groups (hydrogenolysis) from (78f-h) was accomplished 

by stirring in dry CH2Cl2:MeOH (1:1) in the presence of Pd(OH)2 under a hydrogen 

atmosphere leading to the target DMAG glycolipids (79f-h) in 71, 70 and 72% yield 

respectively (Scheme 27).  
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Scheme 27: Hydrogenolysis of compounds (79f-h). 

The 1H-NMR spectrum (Figure 51) for (79f) showed the disappearance of the signals for the 

aromatic protons at  7.20 ppm, as well as, the complete loss of the signals for the CH2 of the 

benzyl groups between  4.71 – 4.45 ppm, which confirmed the success of the 

hydrogenolysis.  

The 13C-NMR spectrum showed the anomeric carbon signals at 105.8 and 101.5 ppm for the 

 and  anomers respectively. The remaining NMR data for the sugar and MAs appeared 

approximately similar to that of (78f).  

 
Figure 50: Structure of compound (79f). 
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Figure 51: 1H and 13C-NMR of compound (79f). 

The HSQC-NMR spectrum (Figure 52) for (79f) showed the acetal proton signals were 

correlated to their carbons. 

 
Figure 52: HSQC of compound (79f). 
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2.1.7.2 Esterification of the glycan (67) with -MA (76g) using the EDCI method  

The Synthetic α-MA (76g)109 was esterified with the glycan (67) using EDCI to give (77g) 

(Scheme 25).  

 
Figure 53: Structure of compound (77g). 

The 1H-NMR spectrum of this compound showed 4 singlets at δ 0.04, 0.02, 0.01 and -0.01 

for 12 protons corresponding to the TBDMS group, and the two protons at the β-position to 

the carboxylic group in the two MAs as a multiplet at δ 3.97 – 3.80. The signal for the proton 

at the α-position in the MA appeared as a multiplet at δ 2.63 – 2.46 for two protons. The 

signals of the cyclopropane protons were seen as a broad quartet (4H) at δ - 0.32 (J 5.1 Hz), a 

doublet of triplets (4H) at δ 0.57 (J 4.1, 8.5 Hz) and a multiplet (8H) at δ 0.80 – 0.59. Signals 

corresponding to the glycan moieties were similar to those of the previously prepared 

DMAG’s. Formation of (77g) was proved by the 13C-NMR spectrum, which showed two 

signals for the carbonyls at δ 174.3 and δ 174.1, and the anomeric carbons at the - and β- 

positions which resonated at δ 105.9 and δ 100.2 respectively.  
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Figure 54: 1H and 13C-NMR of compound (77g). 

This compound was then deprotected to remove the TBDMS groups using the same 

conditions as before, to give (78g) in 64% yield (Figure 55).  

 

Figure 55: Structure of compound (78g). 

The 1H-NMR spectrum for (78g) confirmed the complete disappearance of the signals for the 

TBDMS group, which confirmed that the de-silylation had been successful. 
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The hydrogenolysis of this compound by the method described before afforded (79g). 

 
Figure 56: Structure of compound (79g). 

Confirmation of the formation of (79g) was achieved by 1H-NMR spectroscopy. Signals for the 

cyclopropane appeared at approximately the same chemical shift as those in the spectrum of (78g). 

The 13C-NMR spectrum showed two ester carbonyls at δ 175.1 and 175.0. Two signals at δ 

105.9, 100.4 corresponded to the carbons at the positions -and -in the glycan respectively. 

The remaining sugar carbons were in the region of δ 87 – 52. The CH2 chain ranged from δ 

35 – 22 and the CH3 came up-field to around δ 14.0. 2D-NMR was used to provide further 

proof of the structure. Figure 57 shows the HSQC spectrum of (79g) where the acetal proton 

signals were correlated to their carbons. 

 
Figure 57: HSQC of compound (79g). 
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2.1.7.3 Esterification of the glycan (67) with keto-MA (76h) using the EDCI method  

The keto-MA with a trans-cyclopropane (76h)111 has been found in the cell wall of M. tuberculosis. 

The sugar-diol (67) was coupled with this synthetic keto-MA by the method described above to 

prepare (77h) (Figure 58) in 91% yield.  

 
Figure 58: Structure of compound (77h). 

The most interesting signals in the 1H-NMR spectrum (Figure 59) for each MA in this 

compound were in the area between δ 0.50 and δ 0.06 and corresponded to the four protons 

directly bound to the trans-cyclopropane. The region between δ 0.35 – 0.05 contained signals 

for the three different hydrogens. This is because Ha and Ha` are non-equivalent and each has 

three couplings, each signal splitting to give a double doublet of doublets (8 lines), which 

leads to 16 lines. Hb should give a double double doublet of doublets of doublets (32 lines) as 

it is coupled to five non-equivalent protons; however, due to overlap with the signals for Ha 

and Ha`, Hb cannot be resolved fully at δ 0.24 – 0.18. Hc, represented by the broad multiplet at      

δ 0.50 – 0.38, should give a doublet of doublets of doublets of doublets (16 lines). However, 

a complex broad multiplet is observed due to the presence of four similar coupling constants 

leading to the overlapping of peaks. The β-chiral centre proton Hg gave a doublet of triplets at 

δ 2.42 ppm (J 1.0, 7.5 Hz). The -proton He and the CH2 group adjacent to the distal position 

appeared as a multiplet at δ 2.53. The region between δ 0.91 – 0.87 (9H, including a triplet at 

0.89 with J 7.5 Hz) corresponding to the three terminal methyl groups and the doublet at       

δ 1.06 (J 6.9 Hz) corresponds to the other α-methyl groups.  
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Figure 59: 1H-NMR of compound (77h). 

The 13C-NMR of compound (77h) (Figure 60) showed characteristic signals illustrated in Table 5. 

 
Figure 60: 13C-NMR of compound (77h). 

Table 5: The 13C-NMR data analysis of (77h). 

 

This compound then was de-silylated by using the method described previously to give (78h) 

(Figure 61). 

Cn C1 / C1’’ C2 / C2’’ C3 / C3’’ C4 / C4’’ C5 / C5’’ C6 / C6’’ C7 C8 C9 C10 C11 

δ/ 

ppm 
105.9/ 

100.1 

80.1/ 

79.1 

83.6/ 

83.3 

84.9/ 

84.6 

67.2/ 

66.3 

174.3/ 

174.1 

14.1 72.4 18.6 26.1 10.5 

Cn C12 C13 C14 C15 C16 C17 C18 C1’ C2’ C3’  

δ/ 

ppm 
38.1 19.7 215.2 46.3 16.4 14.1 51.5 70.3 77.2 67.2 
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Figure 61: Structure of compound (78h). 

The 1H and 2D-NMR spectrum for this compound showed the success of the de-protection 

through the disappearance of the signals belong to TBDMS group (Figure 62 and 63). 

 
Figure 62: 1H-NMR of compound (78h). 

 

Figure 63: 2D-NMR of compound (78h). 
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Hydrogenolysis of (78h) was achieved as above to afford (79h) (Figure 64). 

 
Figure 64: Structure of compound (79h). 

Once again, compound (79h) showed characteristic NMR signals (Figure 65) between δ 0.51 

to 0.05 for the protons of the trans-cyclopropane. The signals for protons on the - and -

anomeric centres appeared as a broad singlet at δ 5.03 and a broad doublet at δ 5.04 

respectively. The remaining 17 protons on the glycerol and the glycan moieties, as well as the 

proton at the -hydroxy position of the MAs, appeared between δ 4.54 - 3.58. 

 
Figure 65: 1H-NMR of compound (79h). 

 

 

 

 

 

 



Chapter 2                                            Results &Discussion                                           DMAG 

73 

 

Section 2 

Orthogonal protection 

2.2 Selective esterification at each primary alcohol position 

As mentioned earlier, the strategy in the synthesis of the glycan di-arabino glycerol was to 

put two different protecting groups at the primary hydroxyl group (C-5) of each arabinose 

molecule. This was achieved successfully by having a PMB group on the lower arabinose 

molecule through the synthesis of the DMAG’s acceptor, and after coupling the donor and 

acceptor, a TBDPS group was also added to the top arabinose molecule (65). The reason for 

having two different protecting groups, was to allow selective esterification with different 

acids at each primary alcohol position, and control the synthesis of either mono- or di-

(symmetrical or unsymmetrical) glycolipids. Thus, if the esterification process is carried out 

before removal of the PMB group, a mono-mycolyl di-arabino-glycerol can be produced, 

esterifing only on the top arabinose, which could then be selectively acylated on the lower 

arabinose as illustrated in (scheme 28). 

Scheme 28: Selective esterification to make mono and symmetrical di-glycolipid. 

Reagents and conditions: (i) TBAF, THF, 0 ºC/R.T., 6 h, 93%; (ii) EDCI, RCOOH, CH2Cl2, DMAP, R.T., 48 h, 85%.; 

(iii) Cerium ammonium nitrate (CAN), CH3CN:H2O:THF (9:1:0.2), 0 ºC-R.T., 16 h, 83%; (iv) EDCI, R1COOH, 

CH2Cl2, DMAP, R.T., 72 h, 50%.  
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2.2.1 Selective esterification of the glycan (66) with behenic acid  

After removing the TBDPS group from (65) using TBAF to give (66), direct condensation 

with behenic acid was carried out using EDCI as a coupling reagent and DMAP as catalyst in 

dry CH2Cl2 for 2 days to give the expected mono-ester (80a) in 85% yield (Figure 66).  

 
Figure 66: Structure of compound (80a). 

The NMR data confirmed the formation of the mono-ester (80a) and appeared similar to that 

of the DMAG analogue (70c) but with only half of the behenate integration as expected. The 

1H-NMR spectrum included two downfield signals at δ 7.15 (d J 8.6 Hz) and δ 6.77 (d J 8.5 

Hz) corresponding to the protons of the PMB ring, and two downfield signals at δ 5.00 (br.d J 

4.1 Hz) and δ 4.95 (br.s) corresponding to the glycan protons at the - and -anomeric 

centres respectively. The protons of the methoxy group of the PMB in the glycan gave a 

singlet at δ 3.72; the presence of this singlet and the two-doublets mentioned above for the 

PMB ring, is good evidence that the PMB group remains within the glycan structure. Twelve 

protons corresponding to the CH2 of five benzyl groups, and one methylene of the PMB 

appeared between δ 4.61 – 4.25. The remaining 15 protons of the sugar moiety and the 

glycerol part appeared in the range from δ 4.25 – 3.47. Two protons corresponding to the CH2 

adjacent to the carbonyl group in the acid came around δ 2.13 as a double triplet (J 3.6, 7.7 

Hz). The CH2 chain ranged from δ 1.53 – 1.02 and the protons of the terminal CH3 group of 

the acid part came up-field around δ 0.81 as a triplet (J 6.7 Hz).  

The 13C-NMR spectrum showed a characteristic signal at δ 173.4 due to one carbonyl group, 

and the four CH groups of the PMB ring were seen in the region δ 130.2 and δ 113.7 ppm. 

Carbons corresponding to the - and -anomeric centres appeared at δ 106.0 and δ 100.5 

respectively, while the remaining carbons of the sugar and glycerol part were seen in the region 

of δ 85.9 – 66.0. The carbons of the CH2 chain ranged from δ 34.0 – 22.7 and the carbons of the 
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CH3 came up-field around δ 14.1. All the signals described above are shown in the HSQC-NMR 

spectrum (Figure 67), which confirmed the structure of the compound.  

 
Figure 67: 1H, 13C and HSQC-NMR of compound (80a). 

De-protection of (80a), removing the PMB group, was carried out by using ceric ammonium 

nitrate (CAN) in a mixture of CH3CN: H2O (9:1) and stirring at 0 ºC R.T for 1 h. to afford 

(81a) in 62% yield (Figure 68).  

 
Figure 68: Structure of compound (81a). 

 


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Once again, the formation of this compound was proved by mass spectrometry and NMR 

spectroscopy (1H and 13C), which showed approximately similar signals for the glycan and the 

acid to those of (80a), except those signals corresponding to the PMB group (Figure 69). The 

I.R. spectrum of (81a) gave characteristic bands for the hydroxyl group at 3414 and the 

carbonyl group at 1737 cm-1.  

 
Figure 69: 1H-NMR of mono-ester alcohol compound (81a). 

Now, by utilising the same coupling conditions as before, compound (81a) and a second 

molecule of behenic acid were coupled again to make a model glycolipid. This time the 

reaction mixture was stirred for 72 h, and afforded a symmetrical fully protected DMAG 

analogue compound (82a) in 50% yield (Figure 70).  

 
Figure 70: Structure of compound (82a). 

The 1H-NMR spectrum (Figure 71) of this compound showed signals and integration 

corresponding to the glycan and the acid part moieties that were identical to those of the 

previously prepared and discussed compound (70c) (Scheme 21).  
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Figure 71: 1H-NMR of a symmetrical fully protected DMAG analogue compound (82a). 

2.2.2 Selective esterification of the glycan (66) with a protected keto-MA (76f)  

The glycan (66) was coupled with a TBDMS-protected synthetic keto-MA (76f)111 by the 

same method described above to prepare (80b) in 86% yield (Figure 72).  

 
Figure 72: Structure of compound (80b). 

This showed characteristic NMR signals (Figure 73 and 74); all the signals corresponding to 

the glycerol glycan part were approximately similar to those of (80a) and the signals 

belonging to the mycolic acid were identical to those discussed before for the keto-MA.  

 
Figure 73: 1H-NMR of compound (80b). 
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Figure 74: HSQS-NMR of compound (80b). 

Next, ceric ammonium nitrate (4 eq.) was used, this time in a mixture of CH3CN: H2O: THF 

(9:1:0.2) and stirring at room temperature for 16 h, to remove the PMB group. Surprisingly, 

this resulted in the removal of both the PMB group from the lower arabinose molecule, as 

expected, and also the TBDMS group from the -position of the mycolic acid core, to afford 

(81b) in 83% yield (Figure 75).  

 
Figure 75: Structure of compound (81b). 
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The 1H-NMR spectrum showed characteristic signals for the glycan and the acid part similar 

to those of (80b), apart from those signals corresponding to the PMB and TBDMS groups 

(Figure 76). 

 
Figure 76: 1H-NMR of compound (81b). 

To examine the coupling at the free hydroxyl group on the bottom arabinose molecule, and to 

avoid the complexity of the 1H-NMR for the resulting product, a second esterification of 

(81b) with a second protected keto-MA (same MA) was achieved by the method given 

previously, and afforded (82b) in 50% yield (Figure 77). The low yield in comparison to the 

previous method, may be related to the sterically hindred structure of (82b).  

 
Figure 77: Structure of compound (82b). 
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Compound (82b) showed characteristic NMR signals for the glycan and the acid part, again 

similar to those for (81b) with double integration, and new signals for the protected mycolic 

acid. Figure 78 shows the 1H-NMR spectrum of (82b) which confirmed the structure of the 

compound.  

 
Figure 78:1H-NMR of compound (82b). 

The 13C-NMR spectrum of (82b) showed characteristic signals at  215.2 for the keto-MAs and 

at  175.0 and 174.4 for the ester carbonyls.  

It is worth mentioning that by esterifying the DMAG in two separate steps, this will allow 

unsymmetrical DMAG’s, with two different MAs, to be prepared. This may be useful for the 

biological assays, and may lead to compounds with improved biological activity.   

 

2.2.3 Summary 

In this part of the thesis, the following targets have been achieved successfully: 

1. The glycan moiety di-arabino glycerol (DAG) incorporating L-glycerol was 

synthesised with the correct stereochemistry. 

2. Esterification of the above moiety with three different simple fatty acids to make the 

DMAG glycolipid analogues has been carried out.  

3. A model DMAG using a -hydroxy acid coupled to DAG, was prepared. 

4. Esterification with four common classes of synthetic mycolic acids, to make the DMAG 

glycolipids has been achieved. The synthesised glycolipids are shown below (Figure 79).  
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Figure 79: Structures of synthesised DMAG glycolipids. 

5. The penta-acetate analogue of the DMAG of behenic acid was prepared to compare it 

with the natural mixture. This proved and confirmed the structure and stereochemistry 

of this novel sugar of the DMAG glycolipid to be --di-arabino-furanosyl glycerol. 

 
Figure 80: Structure of synthetic DMAG penta-acetate analogue (72). 
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6. Selective esterification with different acids at each primary alcohol position was 

carried out, to produce prepared mono or symmetrical di-glycolipids. The prepared 

mono- and di-glycolipids are shown below (Figure 81). 

Figure 81: Structures of selective mono- and di-symmetrical protected glycolipids. 
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Section 3 

2.3.1 Synthesis of di-mycolyl tri-arabinofuranosyl glycerol (DMTAG) 

2.3.2 The aims of this part 

• To prepare the glycan tri-arabinofuranosyl glycerol (TAG) (Figure 82), which is 2',3'-

di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-α-D-arabinofuranosyl-(1→3)-[2,3-di-O-

benzyl-α-D-arabinofuranosyl-(1→5)]-2-O-benzyl -α-D-arabinofuranoside. 

 
Figure 82: Structure of the glycan (TAG). 

• To prepare a model glycolipid formed by the esterification of TAG with a simple fatty acid. 

• To prepare a series of DMTAG glycolipids, through esterification of the above glycan 

with structurally defined synthetic MAs. 

• To investigate the biological activity of the synthesised compounds, as they are 

important components of the cell wall of mycobacteria. In particular, their 

antigenicity will be studied.   

2.3.3 Synthesis of fully protected tri-arabino-furanosyl glycerol (TAG) 

Although the methyl tri-saccharide of D-arabinofuranoside had been prepared and esterified 

with different fatty acids, such as behenic, palmatic and butyric acids earlier,144 there is no 

report of the synthesis of tri-arabinofuranosyl-L-glycerol.  The target tri-saccharide structure 

(86) has three α-glycosidic linkages, and can be assembled readily from the following 

building blocks, the donor (84)242 and the diol acceptor (85) (Scheme 29).  
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Scheme 29: Synthesis of fully protected glycan tri-arabino glycerol (TAG) (86). 

2.3.3.1 Synthesis of the donor (84) 

The synthetic route to the 2,3-O-benzoyl protected thioglycosyl donor (84) started from 

thioglycoside triol (49). The primary hydroxyl group at the C-5 position was protected by 

treating (49) with TBDPS in dry DMF in the presence of a catalytic amount of imidazole to 

afford (83) in 82% yield. In order to protect the two secondary hydroxyl groups at the C-2 

and C-3 positions, compound (83) was suspended in pyridine before benzoyl chloride was 

added, to give (84) in 85% yield. The NMR data of (84) were identical to the literature 

(Scheme 30).242 

 
Scheme 30: Synthesis of the TAG’s donor (84). 

2.3.3.2 Synthesis of the acceptor (85) 

Having the donor target in hand, the exploration of the synthesis of the acceptor (85) was 

carried out. The initial step in the synthetic route, was preparing the fully protected 

arabinofuranosyl glycerol (52) from D-arabinose as described earlier (Scheme 7), then, removal 

of the silyl group using TBAF in dry THF gave two free hydroxyl groups at the C-3 and C-5 

positions respectively, affording the target acceptor (85) in 95% yield (Scheme 31). 
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Scheme 31: Synthesis of TAG’s acceptor (85). 

The structure of the acceptor (85) was confirmed by mass spectrometry [NSI–Found 

(M+Na)+: 531.2; C29H32NaO8, requires: 531.2]. The 2D-NMR spectrum (Figure 83) showed 

the -anomeric proton was correlated to its carbon.  

 
Figure 83: HSQC-NMR spectrum for TAG’s acceptor (85). 
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2.3.3.3 Coupling the donor and the acceptor 

Lowary et al. have used NIS/AgOTf in dry CH2Cl2 to couple the thioglycoside donor (84) 

with a 2-O-benzylated diol acceptor but not with the acceptor (85) used here. In order to 

investigate the effect of the protecting group at the C-2 position, the 5-silylated thioglycoside 

donor (84) and the new 2-O-benzoylated acceptor (85) were reacted under the reported 

conditions to give the desired glycan (86) as mentioned earlier (Scheme 29). The tri-arabino-

glycerol (86) was obtained in 91% yield, which was similar to that reported by Lowry, when 

using the 2-O-benzylated acceptor with a methoxy group at the anomeric centre rather than a 

glycerol as described here. The 1H-NMR spectrum of (86) showed three signals downfield 

corresponding to the three protons at the anomeric centre of each ring, as broad singlets at 

δ 5.61, 5.31 and 5.22. The 13C-NMR spectrum (Figure 84) established the presence of the 

glycosidic linkages in the tri-arabinofuranosyl glycerol (86), with the signals at δ 106.1 and 

105.2 ppm belonging to the three carbons at the anomeric centers. Those signals together 

confirmed the three α-glycosidic linkages in the glycan.   

 
Figure 84: 13C-NMR spectrum for fully protected tri-arabino glycerol (86). 

 

The HSQC-NMR of (86) confirmed the structure of the compound (Figure 85), the spectrum 

showed three significant peaks corresponding to the acetal protons, at δ 5.61, 5.31 and 5.22, 

correlated to their carbons, which confirmed that the coupling between the donor (84) and the 

acceptor (85) was successful.   
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Figure 85: HSQC-NMR spectrum for tri-arabino glycerol (86). 

The structure of (86) was also confirmed by mass spectrometry (Figure 86). 

 
Figure 86: Mass spectrum of the tri-saccharide compound (86). 
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The tri-saccharide (86) was deprotected with sodium methoxide to give (87) as a thick oil in 

83% yield. Formation of the penta-hydroxy saccharide (87) was confirmed by 1H-NMR, 

where all the signals corresponding to the protons on the carbon adjacent to the benzoyl ester 

were shifted up-field. The 13C-NMR spectrum showed the disappearance of the carbonyl 

signals which indicated the success of the hydrolysis. Compound (87) was benzylated to 

protect the five secondary hydroxyl groups using benzyl bromide and sodium hydride in dry 

DMF to give (88) in 65% yield, followed by de-protection of the two primary hydroxyl groups 

using TBAF to afford (89) in 87% yield (Scheme 32).  

Scheme 32: Synthesis of compounds (87-89). 

The material obtained, (89), was split into two portions, each portion being used in different 

esterification methods as follows (cf. DMAG section): 

1. An alkylative coupling using cesium hydrogen carbonate after mesylation of the 

primary hydroxyl groups in the glycan.  

2. Direct coupling of the sugar alcohol with the fatty acid using 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDCI).  

In order to use the CsHCO3 method, the two primary hydroxyl groups in the first portion of 

(89) were activated, by treating with MsCl in dry pyridine in the presence of catalytic DMAP 

in dry CH2Cl2 at 0 ºC to afford the corresponding mesylate (90) in 87% yield (Scheme 33).  
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Scheme 33: Structure of the tri-arabino-glycerol di-mesylate (90). 

The structure of (90) was confirmed by mass spectrometry and NMR spectroscopy. The 1H-NMR 

spectrum of (90) (Figure 87) showed the expected signals, including two singlets at δ 2.94 and 2.89 

for the CH3 of the mesylate groups.  

 

Figure 87: 1H-NMR spectrum for compound (90). 

The 13C-NMR spectrum Figure 88 showed two signals at δ 37.6 and 37.5 for the carbons of 

the mesylate groups. The assignments of the signals were made by comparison with literature 

values reported for the methoxy tri-arabinose compound, which is identical to (90) except for 

the absence of the glycerol moiety.241 
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Figure 88: 13C-NMR spectrum for compound (90). 

The 2D-NMR Figure 89 confirmed the structure of (90) and showed the signals of the CH3 

groups and the acetal protons correlated to their carbons.  

 
Figure 89: 2D-NMR spectrum for compound (90). 
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2.3.4 Esterification of lipids with the glycan tri-arabino glycerol (90) 

2.3.4.1 Esterification with a simple fatty acid 

Having prepared the mesylate (90), the exploration of coupling with behenic acid to make a 

model analogue, was now undertaken. The fully protected di-behenoyl-tri-arabino-glycerol 

(91) was prepared by coupling the mesylate (90) with behenic acid through the alkylative 

esterification strategy using cesium hydrogen carbonate in dry THF: DMF at 70 ºC for 3 days 

and afforded (91) in 80% yield (Scheme 34).   

 
Scheme 34: Synthesis of a model analogue of fully protected di-behenoyl tri-arabino glycerol (91). 

The formation of (91) was confirmed by NMR spectroscopy. The region of the 1H-NMR 

spectrum which was of most interest was between δ 5.15 – 4.90, which corresponds to the 

three protons at the anomeric centres on the glycan rings. Signals at δ 5.09, 5.06 and 4.97, 

integrating to one proton each, occurred as broad singlets. The CH2 groups adjacent to the 

carbonyls gave a triplet at δ 2.17 (J 7.6 Hz) integrating to 4 protons. The terminal methyl 

group showed a triplet signal at δ 0.81 (J 6.8 Hz) integrating to 6 protons.  

 
Figure 90: 1H-NMR spectrum for compound (91). 
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The 13C-NMR spectrum showed two signals at δ 173.6 and 173.5 for the carbonyl groups. Signals 

corresponding to the carbon at the anomeric centre for the three rings appeared at δ 106.5, 106.2 

and 105.5. The carbon of the CH2 group adjacent to the carbonyl in the acid appeared at δ 34.1. The 

CH2 chain ranged from δ 32 - 22 and the CH3 came up-field at δ 14.1.  

 
Figure 91: 13C-NMR spectrum for compound (91). 

All the signals described above are shown in the HSQC-NMR spectrum, where the anomeric 

protons and the behenic acid (the CH2 adjacent to carbonyl and the terminal CH3) signals 

were correlated to their carbons (Figure 92). 

 

Figure 92: 2D-NMR spectrum for compound (91). 
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Compound (91) was debenzylated by stirring vigorously in a suspension of Pd(OH)2 in dry 

CH2Cl2:MeOH (1:1) under an atmosphere of hydrogen for 36 h to give the target DMTAG 

analogue (92)  in 82% yield (Scheme 35).  

 
Scheme 35: Synthesis of a model analogue of di-behenoyl tri-arabino glycerol (92). 

The 1H-NMR spectrum (Figure 93) of compound (92) confirmed the success of the 

hydrogenolysis, and showed three broad singlets at  5.01, 4.97 and 4.90 ppm for the three -position 

protons respectively, the remaining 20 protons of the sugar and glycerol moieties appeared 

between  4.30 – 3.50 ppm. The four protons next to the two carbonyls gave a triplet at  2.30 

ppm (J 7.6 Hz), while the terminal CH3 appeared at  0.83 ppm as a triplet (J 6.5 Hz). 

 
Figure 93: 1H-NMR spectrum for compound (92). 

The 13C-NMR spectrum obtained for the glycolipid analogue (92) gave signals illustrated in 

(Figure 94), which were essentially identical to those for an analogue in the literature,241 

bearing a methoxy substituent at C-1 rather than the glycerol substituent in compound (92), 

and are assigned on that basis (See Table 6).   
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Figure 94: 13C-NMR spectrum for compound (92). 

Table 6: The 1H and 13C-NMR data analysis of the glycolipid compound (92) 

Proton Shift H's Class J/Hz Carbon δ/ppm 

H11 5.01 1 br. s - C16 174.05 

H6 4.97 1 br. s - C6, 11 108 

H1 4.90 1 br. s - C1 107.7 

H10, 3 4.24 2 br.dd 3.2, 11.7 C3 83.3 

H15, 1’’, 13 4.17 3 br.dd 5.0, 11.8 C14 83.0 

H15` 4.12 1 br.d 4.3 C9 82.4 

H10` 4.09 1 m - C4 81.8 

H4 4.04 1 br.q 5.5 C12 81.3 

H2, 7, 9 3.95 3 br.m - C7 80.7 

H5` 3.94 1 dd 3.6, 11.5 C2 79.0 

H5, 2’, 8  3.79 3 m - C8 77.6 

H1’ 3.73 1 br.dd 4.8, 10.1 C13 75.8 

H3’’ 3.64 1 m - C2’ 69.9 

H3’, 12 3.60 2 br.d 3.1 C1’ 69.1 

H14 3.54   1 m - C3’ 66.4 

CH2-Next to carbonyl 2.30  4 t 7.6 C5 63.9 

CH2-Chain 1.39 83 m - C10 63.7 

CH3-Terminal 0.83  6 t 6.5  C15 63.5 

- - - - - C17 34.0 

- - - - - C18 13.9 
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2.3.5 Esterification of the glycan (89) with mycolic acids (76f-h) using the EDCI method 

2.3.5.1 Esterification of the glycan (89) with keto-MA (76f) 

Having secured a successful method for preparing a model analogue, the tri-arabinosyl glycerol 

di-behenate (92), now, the glycan (89) was used to explore the coupling with three common 

classes of structurally defined synthetic MAs (76f-h).111 First, the glycan (89) was coupled with 

the synthetic keto-MA (76f) using the EDCI method as before (see Scheme 24, Section 1), and 

afforded (93) in 51% yield (Scheme 36). 

Scheme 36: Synthesis of fully protected DMTAG of keto-MA (93). 

This compound showed NMR signals for the keto-MA and the glycan similar to those 

discussed before (Figure 95). 

 
Figure 95: HSQC-NMR spectrum for compound (93). 
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To improve the percentage yield of the de-silylation of (93), an alternative method was used, 

compared to that used with the DMAG glycolipids (see Scheme 25, Section 1). This time, the 

TBDMS group at the β-position in the keto-mycolic acid was removed using hydrogen 

fluoride-pyridine complex (~70% HF) in dry THF, stirring the reaction mixture at 43 ºC for 24 h 

to afford (94) in 76 % yield (Scheme 37), (Figure 96).  

 
Scheme 37: Synthesis of fully protected DMTAG (94). 

 
Figure 96: 1H-NMR spectrum for compound (94). 

Hydrogenolysis of (94) by stirring it in dry CH2Cl2:MeOH (1:1) in the presence of Pd(OH)2 

and under a hydrogen atmosphere gave (95) in 86% yield (Scheme 38).  

 

Scheme 38: Synthesis of DMTAG of keto-MA (95). 
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Compound (95) gave NMR signals (Figure 97) corresponding to the keto-MA and the glycan 

moiety similar to those discussed before.  

 
Figure 97: 1H-NMR spectrum for compound (95). 

2.3.5.2 Esterification of the glycan (89) with -mycolic acid (76g) 

The TBDMS-protected α-MA with a 24 carbon α-alkyl chain (76g),109 was reacted with the 

sugar-diol (89) by the EDCI method, and afforded (96) in 84% yield (Scheme 39). 

Scheme 39: Synthesis of fully protected DMTAG of -MA (96). 
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The 1H-NMR spectrum showed the success of the coupling between the tri-arabino-glycerol 

and the -MA (Figure 98).  

 
Figure 98: 1H-NMR spectrum for compound (96). 

Removal of the silyl group from the -position in the -mycolic acid was achieved by the 

same method described previously (using hydrogen fluoride-pyridine complex), and afforded 

(97) in 51% yield (Scheme 40). 

 

 
Scheme 40: Synthesis of compound (97). 

The 1H-NMR spectrum (Figure 99) of this compound showed the disappearance of signals 

corresponding to the TBDMS groups and gave characteristic NMR signals for the -MA and 

the glycan moiety (Table 7). These were assigned by comparison to values reported for the 

methoxy tri-arabino-dimycolate,241 which is essentially identical to the DMTAG shown here. 
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Figure 99: 1H-NMR spectrum for compound (97). 

Table 7: The 1H and 13C-NMR data analysis of compound (97). 

Proton Shift H's Class J/Hz Carbon δ/ppm 

H1 5.16 1 br. s - C16 175.1 

H6 5.13 1 br. s - C16’ 175.0 

H11 5.05 1 br. s - C1 106.3 

H3, 10, 10`, 15, 15`, 9 4.29 6 m - C6 106.2 

H14 4.17 1 br.dd 3.7, 6.9 C11 105.5 

H4 4.11 1 dd 2.7, 4.4 C2 88.2 

H7 4.07 1 br. d 2.1 C7 88.0 

H12 3.98 1 m - C12 87.9 

H5`,2 3.91 2 m - C8, 13 83.6 

H13, 8 3.86 2 br.dd 4.6, 10.3 C4 80.7 

H2’ 3.79 1 br.p 4.8 C3 80.3 

H5 3.72 1 m - C14 79.3 

H1’,3’,18 3.61 5 br.d 5.3 C9 79.2 

H17 2.41 2 m - C2’ 77.2 

H21 0.89 12 t 8.1 C18 72.2 

H19 0.65 8 m - C1’ 67.1 

H20’ 0.57 4 dt 4.2, 8.5 C5 65.4 

H20 -0.32 4 br.q 4.9 C15, 10 63.1 

PhCH2O 4.67 2 br.s - C3’ 63.0 

PhCH2O 4.55 1 d 11.9 C17 51.9 

PhCH2O 4.50 8 m - C17’ 51.8 

PhCH2O 4.46 2 d 11.8 C19 15.8 

PhCH2O 4.41 1 d 11.9 C21 14.1 

Ph-aromatic × 7 7.29 35 m - C20 10.9 

- - - - - PhCH2 73.4 

- - - - - PhCH2 72.4 

- - - - - PhCH2  × 2 72.0 

- - - - - PhCH2 71.9 

- - - - - PhCH2 71.7 

- - - - - PhCH2 70.3 
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Hydrogenolysis of (97) was achieved by the method given previously, and afforded (98) in 

88% yield (Scheme 41).  

 

Scheme 41: Synthesis of DMTAG of -MA (98). 

Confirmation of the formation of (98) was achieved by 1H-NMR (Figure 100), which 

showed the disappearance of the signals corresponding to the benzyl protons. Signals of the 

glycan moiety and the α-MA appeared similar to those discussed before.  

 
Figure 100: 1H-NMR spectrum for compound (98). 
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2.3.5.3 Esterification of (89) with trans-cyclopropane keto-MA (76h) 

The sugar-diol (89) was esterified with the keto-MA with a trans-cyclopropane (76h)111 by 

the same method as before, and afforded (99) in 46% yield (Scheme 42).  

Scheme 42: Synthesis of fully protected DMTAG of trans-keto-MA (99). 

All the 1H-NMR signals belonging to the MAs appeared in the same area as discussed before, 

as did the signals for the tri-arabino glycerol. The 1H and 13C-NMR spectra for (99) are 

shown in Figure 101.  

 
Figure 101: 1H and 13C-NMR spectra for compound (99). 
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De-silylation of (99) was carried out next to remove the TBDMS group from -position 

in the MAs by the same method mentioned above, and afforded (100) in 66% yield 

(Scheme 43, Figure 102). 

 
Scheme 43: Synthesis of DMTAG of trans-keto-MA (100). 

 
Figure 102: 1H-NMR spectrum for compound (100). 

Compound (100) was hydrogenolysed by a similar method to that discussed before, to give 

(101) in 82% yield (Scheme 44).  

 
Scheme 44: Synthesis of DMTAG of trans-keto-MA (101). 
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Compound (101) showed 1H-NMR signals for the glycan and the keto-MA, similar to those 

obtained before. The disappearance of the signals corresponding to the benzylic protons and 

the protons in the aromatic area, confirmed the successful of hydrogenolysis (debenzylation).  

 
Figure 103: 1H-NMR spectrum for compound (101). 

2.3.6 Summary: 

In this part of the thesis, the preparation of DMTAG glycolipids was described, and the 

following targets have been achieved successfully: 

1. The first synthesis of the glycan moiety tri-arabino glycerol (TAG) incorporating L-

glycerol has been achieved. 

2. Esterification of the above moiety with a simple fatty acid to prepare the DMTAG 

glycolipid analogue has been done.  

3. Esterification with three common classes of synthetic mycolic acids, to make the 

DMTAG glycolipids has been achieved. No literature data are available for DMTAGs, 

so it will be interesting in future work to have authentic samples for comparison.  
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Figure 104: Structures of the target DMTAG glycolipids. 
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Section 4 

2.4 Synthesis of Glycerol Mono-mycolate (GroMM) 

2.4.1 The aims of this part 

• Synthesis of benzyl protected glycerol [(4-methylbenzenesulfonyl)-2,3-di-O-benzyl-S-glycerol]. 

• Synthesis of a model glycolipid through esterification with a simple fatty acid. 

• Synthesis of a series of GroMM esters through esterification of the benzyl protected 

S-glycerol with different synthetic MAs. 

• Investigate the biological activity of the synthetic S-glycerol esters and compare it to 

those of the R-glycerol esters to determine whether the stereochemistry matters. 

2.4.2 Synthesis of 1-O-p-toluenesulfonyl-2,3-di-O-benzyl-S-glycerol (102)  

The overall aim of this part of the work was the preparation of 2,3-di-O-benzyl-S-glycerol 

(51G), which could first be esterified with a simple fatty acid as a model, then with a number 

of different synthetic MAs from common classes. The protected S-glycerol (51G) was 

synthesized from D-mannitol as reported in the literature.243,244,245,246,247. For the synthesis of 

glycerol mono-mycolate (GroMM) (Scheme 45) from benzyl protected S-glycerol (51G) and 

fatty or mycolic acids (103 a-f), it was necessary to convert the free hydroxyl group at the C-

1 position in the benzyl protected S-glycerol into a good leaving group. The free hydroxyl 

group was therefore converted to a tosylate by reaction with p-toluenesulfonyl chloride 

(TsCl) in dry pyridine and catalytic DMAP in dry CH2Cl2 at 0 ºC to afford the tosylate (102) 

in 62% yield. The synthesis of this compound was confirmed and all the data obtained were 

consistent with the literature.248 

Scheme 45: Synthesis of GroMM incorporating S-glycerol. 
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2.4.3 Esterification of the tosylate (102) with a simple fatty acid 

Compound (102) was reacted with behenic acid (103a) via the alkylative esterification 

strategy, using cesium hydrogen carbonate (10 eq.) in dry DMF:THF (1:5) at 70 ºC for 2 days 

to give protected ester (104a) in 83% yield (Scheme 46).  

 

Scheme 46: Synthesis of protecteD-glycerol behenate (104a). 

The 1H-NMR spectrum (Figure 105) confirmed the formation of (104a), which showed six 

signals in region δ 4.61-3.53 belonging to the glycerol. The protons corresponding to the CH2 

group of the two benzyl groups appeared as two broad singlets at δ 4.61 and 4.49 respectively, 

and the two doublets of doublets at δ 4.25 (J 4.2, 11.7 Hz) and 4.12 (J 5.8, 11.7 Hz) respectively 

corresponded to the CH2 protons adjacent to the carboxylic group. The multiplet at δ 4.75 

belonged to the CH group on the glycerol, while the CH2 group on the glycerol appeared as a 

muliplet at δ 3.53. The protons corresponding to the CH2 adjacent to the carbonyl group in 

the acid came around δ 2.2 as a triplet (J 7.6 Hz) and the three protons in the terminal 

position of the acid chain appeared as an up-field triplet at δ 0.83 (J 6.8 Hz).  

 
Figure 105: 1H-NMR spectrum for compound (104a). 
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The 13C-NMR spectrum (Figure 106) of (104a) showed a carbonyl signal at δ 173.6, the 

aromatic carbons at δ 138 – 127, the remaining glycerol ester carbons at δ 75 – 63, the CH2 

chain ranged from δ 34 – 22 and the terminal CH3 came up-field at around δ 14.0.  

 
Figure 106: 13C-NMR spectrum for compound (104a). 

Debenzylation of (104a) was achieved by stirring in dry CH2Cl2:MeOH (1:1) in the presence 

of Pd(OH)2 (0.15 eq. fold by weight) under a hydrogen atmosphere to give (105a) in 70% 

yield (Scheme 47).  

 
Scheme 47: Synthesis of glycerol behenate (105a). 

Once again, the formation of this compound was proven by 1H-NMR spectroscopy, which 

clearly showed the disappearance of those signals corresponding to the benzyl groups 

between δ 4.6 – 4.5. Two doublets of doublets at δ 4.07, (J 3.6, 9.9 Hz) and 4.03 (J 4.4, 9.9 Hz) 

corresponded to the CH2 adjacent to the carboxylic group, a multiplet at δ 3.80 belonged to 

the CH group on the glycerol core, while the CH2 group on the glycerol appeared as two 

doublets of doublets at δ 3.57 (J 4.1, 11.5 Hz) and 3.48 (J 6.1, 11.5 Hz).  

The 13C-NMR spectrum (Figure 107) showed a carbonyl at δ 174.4, the remaining glycerol 

ester carbons appeared at δ 70 – 63, the CH2 chain ranged from δ 34 – 22 and the terminal 

CH3 came up field around δ 14.0.  
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Figure 107: 13C-NMR spectrum for compound (105a). 

2.4.4 Esterification of the tosylate (102) with synthetic mycolic acids (103b-f) 

2.4.4.1 Esterification of the tosylate (102) with the keto-mycolic acid (103b) 

Keto-MAs are the major oxygenated MAs in the cell wall of mycobacteria. Synthetic keto-MA 

(103b) is present in nature in M. kansasii. Keto-MAs encourage the growth of the bacterial cell. 

Their formation in the cell increases during growth in macrophages and at low oxygen 

concentrations.249 The α-chain of the keto-MA in M. tuberculosis has 24 carbons. Having 

secured a successful method for synthesising a model of the S-glycerol behenate (105a), the 

coupling of the tosylate (102) with a synthetic mycolic acid was now undertaken. The synthetic 

material of keto-mycolic acid (103b)111, was provided by Dr. Al Dulayymi. Firstly, this 

compound was esterified with the tosylate (102) to give the corresponding protected glycerol 

mycolate (104b) in 59% yield using the same procedure as above (Scheme 48).  

 

Scheme 48: Synthesis of protecteD-glycerol-keto-mycolates (104b). 

The success of the esterification was demonstrated by the 1H-NMR spectrum (Figure 108). 

The region of most interest is between δ 0.56 and - 0.40, which corresponds to the four 

protons of the cis-cyclopropane ring. The proton Hp gave a doublet of triplets; the broadness 

of this signal shown at δ 0.52 to 0.45 is possibly because Hn and Hn’ are not magnetically 



Chapter 2                                          Results &Discussion                                            GroMM 

109 

 

equivalent and the signal observed is actually a double doublet of doublets, but due to the 

signals being at a nearly identical chemical shift it appears as a doublet of triplets. The proton 

Hq should show a doublet of triplets; however, due to the magnetic inequivalence of Hn and 

Hn’ the signal at δ - 0.35 to - 0.45 is distorted and appears as a broad quartet. Protons Hn and 

Hn’ again showed a distorted multiplet at δ 0.65 to 0.54 for the same reason. The α-proton Hh 

exhibits a multiplet seen at δ 2.45 – 2.38. More proton and 13C-NMR data (Figure 109) of 

protected ester (104b) was analysed as shown in Table 8.  

 
Figure 108: 1H-NMR spectrum for compound (104b). 

 
Figure 109: 13C-NMR spectrum for compound (104b). 

Table 8: The 1H and 13C-NMR data analysis of compound (104b). 

Proton Ha Ha’ Hb Hc Hd He Hf,f’,g Hh,OH Hi,j,k Hl Hm Hn,n

’ 

Hp Hq 

Shift 4.60 4.57 4.47 4.35 4.14 3.75 3.52 2.43 2.35 0.98 0.81 0.56 0.49 -0.40 

H's 1 1 2 1 1 1 3 2 3 3 6 2 1 1 

Class d d br.s dd dd m br.dd m dt d t m dt br.q 

J/Hz 11.8 11.8 - 4.0, 11.7 5.5, 11.7 - 1.4, 5.4 - 5.4, 7.9 6.9 6.7 - 4.0, 8.5 5.1 

Carbon C1 C2 C3 Ca,a’ / Cb C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

δ/ppm 215.1 175.4 75.7 73.4/ 72.2 72.0 69.5 63.4 51.3 46.2 41.0 16.3 15.7 14.0 10.8 
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Hydrogenolysis of (104b) was achieved by the method described previously to give (105b) in 

87% yield (Scheme 49).  

Scheme 49: Synthesis of glycerol-keto-mycolates (105b). 

Compound (105b) showed characteristic NMR signals (Figure 110) corresponding to the 

cyclopropane protons and glycerol moiety approximately similar to those signals of (104b) 

without the benzylic protons, which confirm the success of the debenzylation.  

 
Figure 110: 1H and 13C-NMR spectra for compound (105b). 

2.4.4.2 Esterification of the tosylate (102) with α-MAs (103c,d) 

The α-MA type is the most abundant among MAs in M. tuberculosis, and characterized by 

containing two cis-cyclopropanes. This acid was reported by Minnikin and Polgar to be the 

major mycolic acid of M. tuberculosis var hominis.99 The absolute stereochemistry of the cis-

cyclopropane in the MA has not been proven, i.e. the (S, R) or (R, R) or (S, S) or (R, S) 

configurations respectively, therefore the two of the four possible structures were used in this 

study.  
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Synthesising MA esters may provide valuable information for determining the stereochemistry 

of naturally occurring MAs, which subsequently may provide further understanding of the 

biosynthetic pathway. The structurally defined synthetic MAs (103c,d) reported by                 

Al Dulayymi et al.109, were reacted with tosylate (102), using the conditions mentioned earlier 

to give (104c) in 58% yield, and compound (104d) in 71% yield (Scheme 50). 

 

Scheme 50: Synthesis of protecteD-glycerol--mycolates (104c,d). 

The 1H-NMR spectrum (Figure 111) of (104c) showed a broad doublet of doublets at δ 3.60 

(J 1.6, 5.4 Hz) for the proton at the β-position. The signal corresponding to the proton at the 

α-position in the MA appeared as a broad doublet of doublets at δ 2.43 (J 3.8, 10.5 Hz). Protons 

corresponding to the cyclopropane appeared as a 2H broad quartet at δ - 0.32 (J 5.2 Hz), a 2H 

doublet of triplets at δ 0.57 (J 3.9, 8.4 Hz), and a 4H multiplet at δ 0.73 – 0.60. Signals corresponding 

to the glycerol moiety were approximately similar to those of the previously prepared glycerol-

mycolates. Formation of (104c) was proven by the 13C-NMR spectrum which showed a signals for 

the carbonyl ester at δ 175.4, and the carbon on the β-hydroxy acid position at δ 72.3.  

 
Figure 111: 1H-NMR spectrum for compound (104c). 
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Hydrogenolysis of (104c,d) using the same method mentioned earlier afforded (105c,d) in 74% 

and 92% yield respectively (Scheme 51).  

 

Scheme 51: Synthesis of glycerol--mycolates (105c,d). 

Confirmation of the formation of (105c) was achieved by 1H-NMR. Two doublets of doublets 

at δ 4.21 and δ 4.10 (J 4.3, 11.4 and 6.4, 11.5 Hz respectively) correspond to the 2 protons 

attached to the C-4 of the glycerol core. The remaining protons of the glycerol moiety were 

approximately similar to those of the previously prepared glycerol-mycolates. The α-proton in 

the MA appeared as a doublet of doublet of doublets at δ 2.39. Signals for the cyclopropane 

appeared at approximately the same chemical shift as those in the spectrum of compound 

(104c). The 13C-NMR spectrum showed a carbonyl at δ 175.5, and the remaining glycerol 

carbons in the region of δ 83 – 54. The β-hydroxy carbon appeared at δ 72.6. The CH2 chain 

ranged from δ 37 – 22.5 and the CH3 came up-field to around δ 14.0. The MA α-carbon 

resonated at δ 52.6. 2D-NMR (Figure 112) was used to provide further proof of the structure of 

the glycerol mycolate (105c). 

 
Figure 112: HSQC-NMR spectrum for compound (105c). 
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2.4.4.3 Esterification of the tosylate (102) with the methoxy-MAs (103e,f) 

Methoxy-MAs in M. tuberculosis increase in stationary phase cells and in addition, the 

oxygenated mycolates in M. tuberculosis affect the growth rate of intramacrophages.249 In order 

to probe the biological effects of varying the α-alkyl chain length, methoxy-MAs with 22 and 24 

carbon α-chains, were used to obtain glycerol mycolates (104e,f). Firstly, the structurally defined 

synthetic MA reported by Al Dulayymi et al.110, a methoxy-cis-cyclopropane with 22 carbon α-

alkyl chain (103e), which is present in nature in M. kansasii, was reacted with the tosylate (102), 

using the same procedure as above, giving compound (104e) in 62% yield. The tosylate (102) 

was coupled with (103f) by the same method as above to prepare compound (104f) (Figure 113) 

in 72% yield (Scheme 52); this showed NMR signals as shown in Table 9. These assignments 

were made by comparison to the data reported for the R-GroMM compounds.203 

 

Scheme 52: Synthesis of protecteD-glycerol-methoxy-mycolates (104e,f). 

 

Figure 113: Structure of protecteD-glycerol-methoxy mycolates (104e,f) 

 

 

 

. 
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Table 9: The 1H and 13C-NMR data analysis of compounds (104e). 

Proton Shift H's Class J/Hz Carbon δ/ppm 

Ha-Bn 4.62 1 d 11.8 C1 175.4 

Ha’-Bn 4.58 1 d 11.8 C2 85.3 

Hb-Bn 4.48 2 br.s - C3 75.7 

Hc 4.36 1 dd 4.1, 11.7 Ca-Bn 73.4 

Hc’ 4.15 1 dd 5.5, 11.7 C4 72.2 

Hd 3.76 1 m - Cb-Bn 72.0 

He,e’ 3.53 3 br.dd 1.6, 5.4 C5 69.5 

(OCH3)7 3.28 3 s - C6 63.4 

Hf 2.90 1 m - (OCH3)7 57.6 

Hg,h 2.37 2 m - C8 51.3 

(CH3)11 0.83 6 t 6.8 C9 15.7 

(CH3)10 0.79 3 d 6.9 (CH3)10 14.8 

Hi,i’ 0.60 2 m - (CH3)11 14.0 

Hj 0.50 1 dt 4.0, 8.4 C12 10.8 

Hk -0.39 1 br.q 5.2 - - 

 

 
Figure 114: 1H-NMR spectrum for compounds (104e). 

Hydrogenolysis of (104e,f) by the same method as above afforded (105e,f) in 85 and 92% 

yield respectively (Scheme 53).  

 
Scheme 53: Synthesis of glycerol-methoxy-mycolates (105e,f). 
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Once again, compounds (105e,f) showed characteristic NMR signals (Figure 115) 

corresponding to the cyclopropane protons and the remaining protons in the methoxy-MA 

and glycerol moiety were approximately the same to those previously discussed. 

 
Figure 115: 1H and 13C-NMR spectra for compound (105e). 
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2.4.5 Summary  

In this part of the thesis, five examples of GroMM esters (105b-f) were prepared based on the 

three common classes of synthetic MAs, and one linear alkyl acid as a model (105a). The 

prepared GroMMs are shown below (Figure 116). 

 
Figure 116: Structures of the target glycerol mono-mycolates (GroMMs 105a-f). 
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2.5 DMAGs as antigens in the serodignosis of bovine tuberculosis 

2.5.1 ELISA assay 

The use of ELISA as a tool for diagnosing TB is attractive for a number of reasons, in 

particular it is a relatively simple, cheap and quick technique. However, the results obtained 

from ELISA predominately depend on how well the antibodies in the TB patient’s blood 

sample are detected by the antigens used. MAs and their derivatives are the dominant lipids 

in the mycobacterial cell wall, and are considered to be among the best antigens. Being able 

to use this method of detection for TB would mean patients would not need to spend time in 

quarantine and would be able to receive anti-TB therapy more quickly.229,230,231,232 

 

According to the literature, DMAG showed applicability for serodiagnosis of Mycobacterium 

avium-intracellulare complex (MAI) infection by ELISA.175,176,177 Recently, Rombouts and 

co-workers identified DMAG in large quantities in slow growing pathogenic species, e.g. 

M.tb, M. bovis, BCG and M. Scrofulaceum, identifying this glycolipid as more biologically 

potent and possibly important in mycobacterial pathogenesis. 

 

One purpose of synthesizing the DMAG compounds described in this thesis is that their 

antigenic activity can be studied by ELISA. Investigating the antigenic activity of specific 

synthetic DMAG antigens could lead to the development of improved methods for the 

detection and diagnosis of mycobacterial diseases such as bovine TB. It is possible that single 

synthetic antigens could give a better distinction between TB+ and TB- serum samples, 

compared to a natural mixture, which contains a number of different homologues.  

 

Preliminary ELISA assays, using the synthetic DMAG glycolipids (71a), (71b), (71c), (71d), 

(75), (79f), (79g) and (79h) as antigens, have been carried out by Mr. Paul Mason at the 

School of Chemistry, Bangor University. A synthetic keto TDM (AD132) known to 

distinguish active TB was also used as a control antigen. For these initial assays bovine serum 

samples were used at a 1 in 40 dilution in Casein / PBS buffer and an anti-bovine IgG Fc 

specific HRP secondary antibody was used. This was visualised by adding a colour reagent 

(OPD/H2O2 solution), and the absorbance was measured at 492 nm. A detailed method for the 

assay can be seen in the Appendix. 
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These initial assays were carried out to determine whether any response was observed to 

samples obtained from the Veterinary Laboratories Agency (VLA) that were known to be 

infected with bovine TB. Two samples that were believed to be free from bovine TB were 

also run as negative controls. (Figure 117). 

 

Figure 117: Response of 14 samples - 12 infected with bovine TB (red) and 2 samples free from bovine TB 

(blue) to a range of DMAG antigens. Green – blank / control. 

As can be seen from Figure 1 the model DMAG antigens (simple esters) 71a, 71b, 71c and 71d 

have a very low response to all serum samples, both positive and negative, with the values being 

comparable to those observed for the blank / control wells. The DMAG antigens that have a 

mycolic acid attached to the diarabinoglycerol did however show a response to the serum 

samples, with 3 of the antigens, 79f, 79g and 79h showing a distinction between the positive and 

negative samples. The other antigen 75 also showed a response to some of the serum samples, 

however a number of the positive samples gave responses that were lower than that observed for 

the negative controls. These results therefore suggest that the mycolic acid moiety of the DMAG 

plays a role in the antigenicity of these compounds and that the presence of different types of 

mycolic acid also influences the response observed. In addition a set of Mycobacterium Avium 

subspecies Paratuberculosis (MAP) infected and uninfected samples, obtained from the 

Veterinary and Agrochemical Research Centere, Brussels, were also tested (Figure 118). 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahUKEwi4yKyix_3WAhXJuhoKHWhkAMIQFgg3MAM&url=http%3A%2F%2Fwebarchive.nationalarchives.gov.uk%2F20100512203323%2Fdefra.gov.uk%2Fvla%2F&usg=AOvVaw0OdoSnJIBK0rnqUXmTIkri
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Figure 118: Response of 7 samples - 5 infected with MAP (red) and 2 uninfected (blue) to a range of DMAG 

antigens. Green – blank / control. 

As was the case with the previous assay, apart from 1 sample, a poor response was again 

observed with the model DMAG antigens 71a, 71b, 71c and 71d. The other antigens all gave 

a response, however in this case there was not such a good distinction between the positive 

and negative samples. 

 

These initial results show that the DMAG antigens 75, 79f, 79g and 79h do give a response to 

bovine serum samples infected with bovine TB and MAP, while the model DMAG antigens 

71a, 71b, 71c and 71d give no response, this suggesting that the mycolic acid moiety plays a 

role in the recognition. For the samples obtained from the VLA some of the antigens 79f, 79g 

and 79h show some distinction between the positive and negative samples. Although these 

results are encouraging they are only for a very small set of serum samples, therefore a much 

larger sample set needs to be tested in order to see whether these observations are real. It will 

also be interesting to test these antigens using TB+ and TB- human serum samples to 

determine whether they show a distinction between the two sets and could thus be used for 

the detection of TB. Based on these intial results, the use of DMAGs in serodiagnosis of such 

infections shows promise and is being further studied.  
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2.5.2 TNF-α cytokine stimulation 

Many mycobacterial components have been demonstrated to be strong adjuvants. For 

example, natural TDM is able to stimulate the immune system so it will produce a range of 

chemokines (e.g. IL-8) and cytokines (e.g. TNF-α).250 Another component which induced 

high levels of TNF-α is the lipid extract from Mycobacterium avium-intracellulare complex 

(MAI).175  

 

TNF-α is stimulated from the cells of macrophages or monocytes in response to organisms 

such as M. tuberculosis, M. bovis BCG, and Listeria monocytogenes, in addition, some 

glycolipids can also release TNF-α.  

 

TNF-α has been proven to be a significant inflammatory mediator, that can affect different 

kinds of cells. Studies in mice infected with M. bovis BCG and L. monocytogenes, and 

injected with anti-TNF-α antibody, showed inhibition of granuloma production in the host 

organs, and widespread growth of organisms in vivo.251 It has been widely shown that 

activation of dendritic cells (DCs) is required to initiate immune responses. Presently, one of 

the suggested mechanisms for the route of DCs after activation, is that these cells are 

programmed to respond to certain activators. This process stimulates the production of co-

stimulatory molecules and certain pro-inflammatory cytokines (e.g., TNF-α, IL-12, IL-6).252 

As described in the Introduction (Section 1.9), natural mixtures of DMAG show very strong 

effects on a number of immune system responses. 

 

Biological assay experiments using the synthetic DMAG glycolipids (71a), (71b), (71c), (71d), 

(75), (79f), (79g) and (79h) against the production of certain pro-inflammatory cytokines (e.g TNF-α), 

were carried out by Dr. Andy Chancellor, University of Southampton, UK.   

 

To study the stimulation of the TNF-α different concentrations were used (10, 50 and 100 

µg/mL). The TNF-α signal was measured for these synthetic DMAG glycolipids and compared 

to that of a control sample. (Figure 119). As can be seen, some of the compounds show a good 

stimulation of TNF-α compared to the control sample, with compound (OTA 79g) showing a 

very high level of TNF-α production at all concentrations. These initial results clearly indicate 

that synthetic single glycolipids show a selectivity in the inducing the TNF-α cytokine, and 

show an improved stimulation compared to the control.  
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Figure 119: TNF-α stimulation. 

 

 

Figure 120: Structure of synthetic DMAG models used for TNF-α stimulation. 
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Figure 121: Structure of synthetic DMAGs used for TNF-α stimulation. 
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Chapter 3 

Conclusion and further work 

3.1 Conclusions: 

This work involved the successful synthesis of: eight Di-Mycolyl-Di-Araf-Glycerol (DMAG) 

compounds, which had the L-stereochemistry of the glycerol component; four Di-Mycolyl-

tri-Araf-Glycerol (DMTAG) compounds; and finally, a range of Glycerol-Mono-Mycolates 

(GroMM), with S- stereochemistry of the glycerol component. All the synthetic MAs used in 

this project were provided by researchers within the Prof. M. S. Baird group. 

The first aim of this project was the synthesis for the first time of single enantiomers of 

DMAG from structurally defined synthetic MAs. These compounds will be assayed for their 

capability to stimulate a variety of cytokines in the immune system as well as being tested for 

their antigenicity in the detection of TB disease through ELISA assays. 

The synthesis of DMAG was carried out by firstly preparing the glycan moiety of DMAG 

with L-stereochemistry of the glycerol component. 

 

An efficient route to prepare the DMAG glycan moiety as a single anomer in excellent β-

selectivity and a very good yield was successfully developed. This was achieved by having a 

benzyl protecting group and a PMB protecting group on the C-3 and C-5 positions, 

respectively, in the acceptor. The armed donor was prepared according to the literature.145 

Such coupling reactions have been reported to produce a mixture of α- and β-anomer, 

however, the synthesis of this di-saccharide has not previously been reported. After 

synthesising the di-saccharide unit in a large quantity, it was followed by the preparation of 

three new model analogues of DMAG, and one model using a -hydroxy acid coupled to the 

glycan.  
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Finally, a series of four compounds of DMAG glycolipids was prepared based on the three 

common classes of synthetic MAs. The following compounds were successfully synthesised: 
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The main target of this part was to compare the NMR data for the synthesised compound 

with that reported for the naturally occurring compound. The NMR data for the penta-acetate 

derivative of compound (72) was compared directly with that in the literature for the per-

acetate of the natural mixture. This comparison gave a very good agreement between the 

signals for the di-arabino-glycerol fragments of natural and synthetic molecules, and 

confirmed the structure and stereochemistry of this novel sugar of the DMAG glycolipid to 

be --di-arabino-furanosyl glycerol. 

 

Natural DMAG has been found in the cell wall of M. tuberculosis in a high quantity and has 

been shown to be biologically active. Testing the effects of the synthetic DMAG glycolipids 

on a range of cytokines involved in the immune system, together with ELISA assays for the 

detection of TB, are expected to be carried out, which will give a further insight into the 

initial results discussed above. 
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The second part of this project involved the first synthesis of DMTAG, which is an important 

component in the cell wall of mycobacteria as a potential stimulator of some pro-inflammatory 

cytokines (e.g TNF-α). This glycolipid was reported in the literature;80 however, it has never 

been synthesised. This part started by preparing the tri-Araf-glycerol (86), which involved 

preparing the donor (84) according to the literature methods with slight modifications in some 

of the steps, while the acceptor (85) has been synthesised for the first time by an efficient route 

and in a large quantity. Coupling the donor and the acceptor to prepare the desired glycan was 

carried out using known conditions. One type of tri-Araf-glycerol, which contained three α- 

glyosidic linkages in its form, was prepared in high yield. 

 

Having the glycan core, the preparation of a model through esterifying with commercially 

available behenic acid was carried out. A series of three DMTAG compounds were then 

prepared based on the three common classes of MAs. The following compounds were 

successfully synthesised: 
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Methyl Tri-Araf-Di-Mycolate (MTADM) compounds derived from a natural mixture of MAs 

have been reported in the literature and showed a very high response in the stimulation of 

TNF-α cytokines. The synthesis of the above set of DMTAG glycolipids, from single 

enantiomers of MAs, will therefore allow the effects of the individual components to be 

investigated. The assessment of the ELISA assay for detection of TB employing these 

compounds will also be carried out.  
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The final part of the project entailed the synthesis of GroMM, which required synthesis of 

the glycerol with (S) stereochemistry, prior to it being coupled to different MAs to produce a 

single enantiomer of GroMM compounds. According to the lietrature,197 glycerol esters of 

complex mixtures of natural mycolic acids have strong effects in the immune system. GroMM has 

been observed to have adjuvant activity in murine models, and showed an ability to induce high 

levels of some pro-inflammatory cytokines (e.g IL-12 and TNF-α).174 

In this part, a model of GroMM was synthesised, a series of five compounds was also 

prepared based on the three common classes of synthetic MAs. The following compounds 

were successfully synthesised: 
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The above series of compounds were prepared from single synthetic enantiomers of MAs to 

investigate the differences in their biological activity, in contrast with that of the R-GroMM 

esters.  
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3.2 Further Work: 

Further work which needs to be investigated, or could be undertaken: 

1. Studies on the natural DMAG glycolipid that is obtained from the cell wall of several 

mycobacterial species, including M. tuberculosis, showed that it possesses very high 

biological activity. Preparing a large amount of the DMAG glycan with the L-glycerol 

component, and finding an efficient way of coupling it with synthetic MAs has been 

carried out. Hence it would be interesting to synthesise the DMAG with D-glycerol in 

order to obtain a range of compounds and compare their biological activities. 

 

2. Selective esterification with different acids at each primary alcohol position was 

carried out to produce mono or symmetrical di-glycolipids similar to synthetic TDM 

and TMM which have shown promising results in the ELISA assays for the detection 

of TB. Therefore, synthesising a series of mono and symmetrical or unsymmetrical 

DMAG glycolipids would be valuable to use them in different assays to test their 

biological activity. 

  

3. Natural Arabino-mycolates extracted from the cell wall of mycobacteria contain a 

number of different components with very complex mixtures of MAs, hence 

preparing DMTAG with different MAs within the same compound will be valuable, 

as it is unlikely that the two MAs will be the same, in the same compound, in nature. 

This will then allow the biological activity of these mixed compounds to be studied.  

 

4. Finally, the synthesis of Penta-Araf Tetra-Mycolates (PATM) is another item of 

further work which must be done. Again, penta-Araf coupled with a natural mixture 

of MAs has been reported in the literature and was shown to have a high biological 

activity. Preparing the glycan unit and esterifying it with different synthetic MAs, 

followed by testing their biological activities using the previously discussed assays, 

will be valuable. This will also complete the set of different fragments of the mAGP. 
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Chapter 4 

Experimental 

4.1 General considerations: 

All chemicals were purchased from commercial suppliers. THF was distilled over sodium and 

benzophenone under nitrogen, while dichloromethane was distilled over calcium hydride. Petrol 

refers to the fraction b.p 40–60 °C. Organic solutions were dried over anhydrous magnesium 

sulfate (MgSO4). All glassware used in anhydrous reactions was dried for not less than 6 h in a 

250 °C oven. Reactions carried out under inert conditions were under a slow stream of nitrogen. 

Those carried out at low temperatures were cooled using a bath of methylated spirits and liquid 

nitrogen. Silica gel and silica gel plates used for column chromatography and thin layer 

chromatography (TLC) were obtained from Aldrich. Infra-red (IR) spectra were carried out on a 

Perkin-Elmer 1600 F.T.I.R. spectrometer as liquid films or KBr disc (solid). Optical rotations 

were measured as solutions in chloroform of known concentration using a Polar 2001 automatic 

polarimeter. Nuclear magnetic resonance (NMR) spectra were recorded on Bruker Avance 500 

and 400 spectrometer in CDCl3 or CD3OD if not differently indicated; 1H spectra were normally 

run at 400MHz, and 13C spectra were run at 101 MHz. Chemical shifts are quoted in δ relative to 

the trace resonance of proton chloroform (δH 7.27 ppm, δC 77.0 ppm), and the resonances of 

methanol (δH 4.87 and 3.31 ppm, δC 49.00 ppm). Mass spectrometry data was obtained from the 

EPSRC UK National Mass Spectrometry Facility at Swansea University and Dr Paul Gates 

(Bristol University). A laboratory book was filled in including chemical safety information 

following COSHH regulations. 
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4.2 Experiments: 

p-Cresyl 2-O-benzoyl-3,5-O-(tetraisopropylsiloxane-1,3-diyl)-α-D-arabinofuranoside (51):239 

 

Benzoyl chloride (5.0 g, 4.2 mL, 0.035 mol) was added dropwise to a stirred solution of p-cresyl 

3,5-O-(tetraisopropylsiloxane-1,3-diyl)-α-D-arabinofuranoside (50) (16.2 g, 0.0324 mol) in 

anhydrous pyridine (25 mL) at 0 ºC under nitrogen. The mixture was allowed to reach room 

temperature and stirred for 6 h, when TLC showed no starting material was left. The solvent 

was evaporated under reduced pressure. The residue was diluted with ethyl acetate (100 mL), 

washed with water (2×50 mL), 1 M aqueous HCl (2×50 mL), sat. aq. NaHCO3 (1×50 mL) 

and brine (1×50 mL). The organic layer was dried over (MgSO4), then the solvent was 

evaporated under reduced pressure. The residue was purified by column chromatography on 

silica eluting with hexane/ethyl acetate (10:1) to give the title compound (51) as a colourless 

thick oil (17 g, 89%) [MALDI–Found (M+Na)+: 625.2; C31H46NaO6SSi2, requires: 625.2]; []
22

D +20 

(c 4.2, CHCl3), which showed δH (400 MHz, CDCl3): 8.08 – 8.01 (2H, d, J 7.9 Hz), 7.59 (1H, t, J 

7.4 Hz), 7.52 – 7.42 (4H, m), 7.10 (2H, d, J 7.9 Hz), 5.59 (1H, br.dd, J 3.8, 5.3 Hz), 5.47 (1H, 

br.d, J 3.7 Hz), 4.57 (1H, dd, J 5.3, 7.9 Hz), 4.23 (1H, m), 4.10 (1H, dd, J 3.2, 12.7 Hz), 4.03 

(1H, dd, J 4.4, 12.7 Hz), 2.32 (3H, s), 1.21 – 0.86 (28H, m); δC (101 MHz, CDCl3): 165.4, 

137.5, 133.3, 132.2, 129.7, 129.6, 129.4, 128.4, 89.6, 83.2, 80.9, 75.5, 61.4, 31.6, 22.6, 21.1, 

17.4, 17.3, 17.0, 16.9, 16.85, 13.5, 13.2, 12.8, 12.5; νmax: 3445, 3022, 2947, 2869, 1718,1468, 

1045, 861 cm-1.  
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2-O-Benzoyl-3,5-O-(tetraisopropylsiloxane-1,3-diyl)-α-D-

arabinofuranoside (52): 

 

Molecular sieves 4 Å (5.6 g) were added to a stirred solution of α-D-arabinofuranoside (51) 

(15.4 g, 0.0255 mol) and 2',3'-di-O-benzyl-L-glycerol (51G) (6.9 g, 0.025 mol) in dry CH2Cl2 

(25 mL) at room temperature under nitrogen. The reaction mixture was stirred for 30 min 

then cooled to -35 oC and N-iodosuccinimide (9.38 g, 0.0383 mol) was added, followed by 

the addition of silver trifluoromethanesulfonate (1.17 g, 0.00460 mol). The mixture was 

stirred at the same temperature until the colour turned a red/dark brown colour and TLC 

showed no starting material was left. The reaction mixture was quenched by the addition of 

triethylamine (2 mL) until became yellow. The mixture was diluted with CH2Cl2 (50 mL) and 

filtered through celite and the solvent was evaporated. The residue was purified by column 

chromatography on silica eluting with hexane/ethyl acetate (10:1) affording the title 

compound (52) as a colourless thick oil (17 g, 91%) [MALDI–Found (M+Na)+: 773.3; 

C41H58NaO9Si2, requires: 773.3]; []
22

D +2.6 (c 4.3, CHCl3), which showed δH (400 MHz, 

CDCl3): 8.01 – 7.97 (2H, m), 7.55 (1H, t, J 7.4 Hz), 7.41 (2H, t, J 7.7 Hz), 7.35 – 7.15 (10H, 

m), 5.41 (1H, br.dd, J 1.4, 4.9 Hz), 4.98 (1H, br.d, J 1.0 Hz), 4.67 (2H, br.s), 4.50 (2H, br.s), 

4.45 (1H, dd, J 5.0, 7.4 Hz), 4.04 – 3.95 (2H, including a broad double doublet J 3.0, 9.9 Hz 

at 3.99), 3.92 (1H, dd, J 5.5, 13.2 Hz), 3.86 – 3.76 (2H, m), 3.67 – 3.59 (2H, including a 

broad double doublet J 4.2, 10.0 Hz at 3.63), 3.58 (1H, dd, J 5.0, 10.2 Hz), 1.32 – 0.75 (28H, 

m); δC (101 MHz, CDCl3): 165.5, 138.7, 138.3, 133.2, 129.7, 128.4, 128.3, 128.2, 127.8, 

127.6, 127.5, 127.4, 105.6, 84.4, 81.2, 76.2, 73.4, 72.3, 70.3, 67.7, 61.8, 31.6, 22.6, 17.5, 

17.4, 17.3, 17.0, 16.9, 13.4, 13.2, 12.8, 12.5; νmax: 3065, 3031, 2945, 2868,1717, 1105, 884, 

712 cm-1. 
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-3,5-O-(tetraisopropylsiloxane-1,3-diyl)-α-D-arabinofuranoside (53): 

 

Sodium methoxide in methanol (10 mL, 0.1 M) was added to a stirred solution of compound 

(52) (15.6 g, 0.0207 mol) in dry CH3OH:CH2Cl2 (25 mL, 1:1) at room temperature and the 

mixture was stirred for 0.5 h then TLC showed no starting material was left. The mixture was 

neutralized with Amberlite IR-120 (H+), the resin was filtered off and the solvent was 

removed under reduced pressure to give a residue which was purified by column 

chromatography on silica eluting with petrol/ethyl acetate (5:1) to afford the title compound 

(53) as a thick colourless oil (12 g, 89%) [MALDI–Found (M+Na)+ : 669.3, C34H54NaO8Si2, 

requires 669.3], []
20

D -40 (c 0.10, CHCl3) which showed δH (400 MHz, CDCl3): 7.35 – 7.17 

(10H, m), 4.79 (1H, br.d, J 2.4 Hz), 4.63 (2H, br.s), 4.49 (2H, br.s), 4.14 – 4.04 (2H, m), 3.89 

(1H, dd, J 3.1, 12.7 Hz), 3.86 (1H, br.d, J 3.7 Hz), 3.84 – 3.79 (1H, m), 3.77 (1H, br.dd, J 3.7, 

7.2 Hz), 3.72 (1H, p, J 4.8 Hz), 3.57 (2H, d, J 4.8 Hz), 3.54 (1H, dd, J 4.4, 10.5 Hz), 1.12 – 

0.72 (28H, m); δC (101 MHz, CDCl3): 138.5, 138.4, 128.3, 128.3, 127.8, 127.7, 127.6, 107.5, 

82.6, 80.8, 76.9, 73.4, 72.2, 70.2, 67.9, 61.4, 31.6, 22.6, 17.4, 17.3, 17.1, 17.05, 17.0, 13.5, 

13.1, 12.8, 12.5; νmax: 3402,3062, 2946, 2867, 1467, 1035, 884, 695 cm-1.  

 

2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2-O-allyl-3,5-O-(tetraisopropylsiloxane-1,3-diyl)-α-D-

arabinofuranoside (54): 

 

A solution of 2',3'-di-O-benzyl-L-glycerol-(1'→1)-3,5-O-(tetraisopropylsiloxane-1,3-diyl)-α-

D-arabinofuranoside (53) (11.9 g, 0.0183 mol) in dry DMF (20 mL) was added dropwise to a 

stirred suspension of NaH (0.88 g, 0.036 mol, 60% w/w, dispersion in mineral oil) at 0 ºC 
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under nitrogen. The mixture was stirred for 10 min then allyl bromide (2.66 g, 1.90 mL, 

0.0220 mol) was added. The mixture was stirred at 0 ºC for 2 h then TLC showed no starting 

material was left. The mixture was quenched by slow addition of CH3OH (1 mL) and the 

solvent was evaporated under reduced pressure to give an oily residue which was diluted with 

ethyl acetate (100 mL), and washed with water (50 mL), brine (50 mL), dried over (MgSO4) 

and the solvent was evaporated under reduced pressure. The residue was purified by column 

chromatography on silica eluting with petrol/ethyl acetate (5:1) to give the title compound 

(54) as a colourless thick oil (9.5 g, 75%) [MALDI–Found (M+Na)+: 709.3, C37H58NaO8Si2, 

requires:709.3], []
22

D +72 (c 0.10, CHCl3) which showed δH (400 MHz, CDCl3): 7.44 – 7.05 

(10H, m), 5.81 (1H, ddt, J 5.4, 10.6, 17.3 Hz), 5.20 (1H, dd, J 1.6, 17.3 Hz), 5.09 (1H, dd, J 

1.4, 10.6 Hz), 4.84 (1H, br.d, J 2.4 Hz), 4.63 (2H, br.s), 4.49 (2H, br.s), 4.14 (1H, dd, J 6.0, 

8.3 Hz), 4.05 – 3.93 (2H, m), 3.92 – 3.81 (3H, m), 3.80 – 3.77 (2H, including a broad double 

doublet J 3.5, 8.5 Hz at 3.78), 3.76 – 3.70 (1H, m), 3.64 – 3.55 (2H, including a broad double 

doublet J 4.1, 10.7 Hz at 3.58), 3.54 (1H, dd, J 3.4, 9.3 Hz), 1.11 – 0.83 (28H, m); δC (101 

MHz, CDCl3): 138.6, 138.3, 134.3, 128.3, 128.2, 127.7, 127.6, 127.55, 127.5, 116.8, 106.0, 

89.5, 80.5, 77.1, 76.1, 73.4, 72.1, 71.4, 70.4, 67.5, 61.5, 17.5, 17.3, 17.2, 17.1, 17.05, 17.0, 

13.5, 13.1, 12.8, 12.5; νmax: 3082, 3069, 2927, 2867, 1465, 1036, 885, 696 cm-1. 

 

2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2-O-allyl-α-D-arabinofuranoside (55): 

 

Tetrabutylammonium fluoride (26.2 mL, 0.0904 mol, 1.0 M) was added dropwise to a stirred 

solution of α-D-arabinofuranoside (54) (9.0 g, 0.01 mol) in anhydrous THF (25 mL) at 0 ºC under 

nitrogen. The mixture was allowed to reach room temperature and stirred for 2 h then TLC 

showed no starting material was left, then diluted with ethyl acetate (100 mL), washed with sat. 

aq. NH4Cl (50 mL) and brine (50 mL). The organic layer was dried (MgSO4), and concentrated 

to give a residue which was purified by column chromatography on silica eluting with 

hexane/ethyl acetate (3:1) to give to the title compound (55) as a colourless thick oil (5.5 g, 95%) 

[MALDI–Found (M+Na)+: 467.2, C25H32NaO7, requires: 467.2], []
20

D +80 (c 0.10, CHCl3) 
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which showed δH (400 MHz, CDCl3): 7.33 – 7.19 (10H, m), 5.81 (1H, ddt, J 5.6, 10.8, 17.2 Hz), 

5.22 (1H, dd, J 1.5, 17.2 Hz), 5.14 (1H, dd, J 1.3, 10.8 Hz), 5.00 (1H, br.s), 4.61 (1H, d, J 11.9 

Hz), 4.57 (1H, d, J 11.9 Hz), 4.48 (2H, br.s), 4.04 – 3.92 (4H, m), 3.84 – 3.77 (2H, including a 

broad double doublet J 5.7, 10.3 Hz at 3.81), 3.72 (1H, br.dd, J 4.8, 9.7 Hz), 3.68 (1H, br.d, J 3.1 

Hz), 3.63 (1H, dd, J 3.7, 11.8 Hz), 3.58 – 3.54 (1H, m), 3.53 – 3.49 (2H, including a broad 

doublet J 5.1 Hz at 3.52); δC (101 MHz, CDCl3): 138.1, 137.9, 133.6, 128.4, 128.3, 127.8, 

127.75, 127.7, 117.9, 105.6, 86.9, 86.5, 76.5, 75.3, 73.5, 72.1, 70.6, 69.6, 66.7, 62.4; νmax: 3437, 

3031, 2940, 2867, 1651, 1454, 1055, 668 cm-1. The experiment was repeated on a large scale. 

 

2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2-O-allyl-5-O-tert-butyldiphenylsilyl-α-D-arabinofuranoside (56): 

 

tert-Butylchlorodiphenylsilane (9.2 g, 0. 033 mol) was added to a stirred solution of α-D-

arabinofuranoside (55) (15 g, 0.033 mol) in dry DMF (100 mL), followed by the addition of 

imidazole (5.7 g, 0.084 mol) at 0 ºC under nitrogen. The mixture was allowed to reach room 

temperature and stirred for 25 min, when TLC showed no starting material was left. The 

mixture was diluted with ethyl acetate (100 mL) and water (25 mL). The organic layer was 

separated, the aqueous layer was re-extracted with ethyl acetate (2×100 mL). The combined 

organic layers were washed with water (100 mL), brine (100 mL), dried (MgSO4) and the 

solvent was evaporated under reduced pressure. The residue was purified by column 

chromatography on silica eluting with hexane/ethyl acetate (4:1) affording the title compound 

(56) as a colourless thick oil (15 g, 65%) [NSI–Found (M+NH4)
+: 700.3661; C41H54O7SiN, 

requires: 700.3664]; []
22

D +26.5  (c 1.27, CHCl3), which showed δH (400 MHz, CDCl3): 7.66 

– 7.55 (4H, m), 7.41 – 7.17 (16H, m), 5.77 (1H, ddt, J 5.5, 10.7, 17.2 Hz), 5.18 (1H, dd, J 1.0, 

17.2 Hz), 5.11 (1H, dd, J 0.5, 10.7 Hz), 4.95 (1H, br.s), 4.62 (1H, d, J 12.1 Hz), 4.58 (1H, d, J 

12.1 Hz), 4.48 (2H, br.s), 4.11 – 3.98 (2H, including a broad double doublet J 3.5, 9.6 Hz at 

4.03), 3.97– 3.87 (2H, including a broad doublet J 5.4 Hz at 3.93), 3.83 – 3.75 (3H, including 

a broad double doublet J 5.5, 10.5 Hz  at 3.79), 3.74 – 3.69 (1H, m), 3.66 (1H, dd, J 6.5, 10.2 

Hz), 3.60 – 346 (3H, including a broad quartet J 4.7 Hz at 3.54), 1.02 (9H, s); δC (101 MHz, 
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CDCl3): 138.3, 138.0, 135.6, 135.5, 134.0, 133.3, 133.2, 129.7, 128.4, 128.3, 127.75, 127.7, 

127.65, 127.6, 127.55, 117.3, 106.0, 87.8, 84.9, 76.6, 76.5, 73.4, 72.0, 70.6, 69.9, 66.8, 64.3, 

26.8, 19.2; νmax: 3445, 3069, 3031, 2930, 2859,1590, 1471, 1110, 858, 740 cm-1. 

 

2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2-O-allyl-3-O-benzyl-5-O-tert-butyldiphenylsilyl-α-D-

arabinofuranoside (57): 

 

A solution of α-D-arabinofuranoside (56) (9.7 g, 0.014 mol) in dry DMF (100 mL) was added 

dropwise to a stirred suspension of NaH (0.68 g, 0.028 mol, 60% w/w, dispersion in mineral 

oil) at 0 ºC under nitrogen atmosphere. The mixture was stirred for 30 min. then benzyl 

bromide (2.5 mL, 3.6 g, 0.021 mol) in dry DMF (5 mL) was added. The mixture was stirred at 

room temperature for 10 h then quenched slowly with CH3OH (10 mL) and H2O (15 mL). The 

mixture was diluted with ether (200 mL). The organic layer was separated and the aqueous 

layer was extracted with ether (2×100 mL). The combined extracts were washed with water 

(100 mL), brine (100 mL), dried (MgSO4) and the solvent was evaporated under reduced 

pressure. The residue was purified by column chromatography on silica eluting with 

petrol/ethyl acetate (5:1) to give the title compound (57) as a colourless thick oil (8.1 g, 72%) 

[NSI–Found (M+NH4)
+: 790.4132; C48H60O7SiN, requires: 790.4134]; []

22

D +28 (c 3.9, 

CHCl3), which showed δH (400 MHz, CDCl3): 7.79 – 756 (4H, including a broad double 

doublet J 3.9, 10.8 Hz at 7.66), 7.47 – 7.14 (21H, m), 5.84 (1H, ddt, J 5.5, 10.7, 17.2 Hz), 5.24 

(1H, dd, J 1.3, 17.2 Hz), 5.16 (1H, dd, J 0.9, 10.7 Hz), 5.01 (1H, br.s), 4.70 (1H, d, J 12.0 Hz), 

4.66 (1H, d, J 12.0 Hz), 4.59 (1H, d, J 11.9 Hz), 4.54 – 4.48 (3H, m), 4.13 (1H, br.q, J 4.6 Hz), 

4.03 – 3.89 (4H, m), 3.85 (1H, dd, J 5.1, 10.2 Hz), 3.82 – 3.73 (3H, including a broad double 

doublet J 4.8, 8.1 Hz at 3.79), 3.67 – 3.56 (3H, m), 1.04 (9H, s); δC (101 MHz, CDCl3): 138.6, 

138.3, 138.0, 135.7, 135.6, 134.1, 133.5, 133.4, 129.6, 129.5, 128.3, 128.2, 127.7, 127.65, 

127.6, 127.55, 127.5, 127.45, 127.4, 117.2, 106.4, 88.0, 77.0, 73.3, 72.1, 72.0, 70.6, 70.3, 67.0, 

63.7, 26.8, 19.3; νmax: 3068, 3031, 2929, 2859, 1588, 1454, 1027, 823, 738 cm-1. 
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2-O-allyl-3-O-benzyl-α-D-arabinofuranoside (58): 

 

Tetrabutylammonium fluoride (7.0 mL, 7.0 mmol, 1.0 M) was added dropwise to a stirred solution 

of α-D-arabinofuranoside (57) (5.2 g, 0.0067 mol) in anhydrous THF (50 mL) at 0 ºC under 

nitrogen. The mixture was allowed to reach room temperature and stirred for 16 h then TLC 

showed no starting material was left. The mixture was diluted with ethyl acetate (100 mL) 

and water (50 mL). The organic layer was separated and the aqueous layer was re-extracted 

with ethyl acetate (3×50 mL). The combined organic layers were washed with sat. aq. NH4Cl 

(50 mL), brine (50 mL), dried (MgSO4) and the solvent was concentrated. The residue was 

purified by column chromatography on silica eluting with petrol/ethyl acetate (5:1) to give 

the title compound (58) as a colourless thick oil (3.3 g, 91%) [NSI–Found (M+NH4)
+: 

552.2948; C32H42O7N, requires: 552.2956]; []
22

D +36 (c 3.3, CHCl3), which showed δH (400 

MHz, CDCl3): 7.38 – 7.28 (15H, m), 5.87 (1H, ddt, J 5.6, 10.7, 17.2 Hz), 5.27 (1H, dd, J 1.5, 

17.2 Hz), 5.20 (1H, dd, J 1.1, 10.7 Hz), 5.03 (1H, br.s), 4.70 (2H, br.s), 4.66 (1H, d, J 11.8 

Hz), 4.58 – 4.49 (3H, m), 4.13 (1H, br.p, J 3.4 Hz), 4.01 (1H, br.dd, J 4.4, 11.8 Hz), 3.99 – 

3.95 (2H, including a broad doublet  J 10.6 Hz at 3.98), 3.94 (1H, br.dd, J 2.6, 6.2 Hz), 3.86 

(1H, dd, J 5.2, 10.3 Hz), 3.82 (1H, dd, J 5.3, 9.6 Hz), 3.79 (1H, br.d, J 9.7 Hz), 3.67 – 

3.63(2H, including a broad double doublet J 6.3, 7.4 Hz at 3.64), 3.63 – 3.59 (2H, including a 

broad doublet J 10.5 Hz at 3.62); δC (101 MHz, CDCl3): 138.6, 138.2, 137.8, 133.9, 128.4, 

128.35, 128.3, 127.8, 127.75, 127.7, 127.6, 127.5, 117.6, 106.4, 87.6, 82.8, 82.2, 76.9, 73.4, 

72.3, 72.2, 70.7, 70.1, 67.1, 62.2; νmax: 3453, 3063, 3031, 2923, 2870, 1603, 1453, 1064, 850, 

739 cm-1.  
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2-O-allyl-3-O-benzyl-5-p-methoxybenzyl-α-D-arabinofuranoside (59): 

 

A solution of α-D-arabinofuranoside (58) (3.1 g, 0.0057 mol) in dry DMF (10 mL) was added 

dropwise to a stirred suspension of NaH (0.25 g, 0.010 mol, 60% w/w, dispersion in mineral 

oil) at 0 ºC under nitrogen. The mixture was stirred for 30 min. then, freshly prepared,           

p-methoxybenzyl bromide (1.4 g, 0.0069 mol) was added. The mixture was stirred at 0 ºC for 

2 h then TLC showed no starting material was left. The mixture was quenched with slow 

addition of CH3OH (1 mL) and the solvent was evaporated under reduced pressure to give an 

oily residue which was diluted with ethyl acetate (50 mL). The organic layer was washed 

with water (25 mL), brine (25 mL), dried (MgSO4) and the solvent was evaporated under 

reduced pressure. The residue was purified by column chromatography on silica eluting with 

petrol/ethyl acetate (5:1) to give the title compound (59) as a colourless thick oil (2.9 g, 76%) 

[NSI–Found (M+NH4)
+: 672.3526; C40H50O8N, requires: 672.3531]; []

22

D +41 (c 1.6, 

CHCl3), which showed δH (400 MHz, CDCl3): 7.37 – 7.26 (15H, m), 7.24 (2H, d, J 8.7 Hz), 

6.86 (2H, d, J 8.6 Hz), 5.86 (1H, ddt, J 5.5, 10.7, 17.2 Hz), 5.25 (1H, dd, J 1.6, 17.2 Hz), 5.18 

(1H, dd, J 1.3, 10.7 Hz), 5.03 (1H, br.s), 4.71 (1H, d, J 12.1 Hz), 4.68 (1H, d, J 12.1 Hz), 4.61 

(1H, d, J 11.9 Hz), 4.54 (3H, br.s), 4.51 (1H, d, J 11.7 Hz), 4.47 (1H, d, J 11.7 Hz), 4.22 – 

4.15 (1H, m), 4.03 – 3.91 (3H, m), 3.88 (1H, dd, J 5.2, 10.5 Hz), 3.86 (1H, br.d, J 6.5 Hz), 

3.84 – 3.75 (4H, including a singlet at 3.8 for OCH3), 3.66 – 3.58 (4H, m), 3.55 (1H, dd, J 

5.2, 10.7 Hz); δC (101 MHz, CDCl3): 138.7, 138.3, 138.0, 134.1, 130.2, 129.4, 128.8, 128.4, 

128.3, 127.75, 127.7, 127.6, 127.5, 127.45, 117.4, 113.7, 106.4, 88.1, 83.7, 80.8, 73.4, 73.0, 

72.2, 70.8, 70.4, 69.3, 67.2, 55.3; νmax: 3064, 3030, 2912, 2864, 1612, 1513, 1454, 1106, 820, 

738 cm-1. 
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-3-O-benzyl-5-p-methoxybenzyl-α-D-arabinofuranoside (60): 

  

Palladium (II) chloride (0.30 g, 0.0017 mol) was added to a stirred solution of α-D-

arabinofuranoside (59) (5.7 g, 0.0087 mol) in dry CH2Cl2:MeOH (0.6:5, 5 mL) at room 

temperature. The mixture was stirred for 16 h then TLC showed no starting material was left. 

The mixture was quenched with triethylamine (1 mL) and the solvent was evaporated under 

reduced pressure. The residue was purified by column chromatography on silica eluting with 

petrol/ethyl acetate (4:1) to give the title compound (60) as a pale yellow thick oil (4.5 g, 84%) 

[NSI–Found (M+NH4)
+: 632.3209; C37H46O8N, requires: 632.3218]; []

22

D +60 (c 4.6, 

CHCl3), which showed δH (400 MHz, CDCl3): 7.38 – 7.26 (15H, m), 7.23 (2H, d, J 8.5 Hz), 

6.89 (2H, d, J 8.6 Hz), 5.03 (1H, br.s), 4.74 (1H, d, J 12.1 Hz), 4.68 (1H, d, J 12.1 Hz), 4.66 

(1H, d, J 11.9 Hz), 4.58 (1H, d, J 11.9 Hz), 4.51 (2H, br.s), 4.49 (1H, d, J 11.7 Hz), 4.44 (1H, 

d, J 11.7 Hz), 4.26 (1H, br.d, J 2.4 Hz), 4.18 (1H, d, J 10.8 Hz), 3.89 (1H, dd, J 5.4, 10.4 Hz), 

3.87 (1H, br.d, J 3.1 Hz), 3.85 – 3.79 (4H, including a singlet at 3.82 for OCH3), 3.68 – 3.63 

(3H, m), 3.61 (1H, dd, J 5.5, 10.2 Hz), 3.49 (1H, dd, J 2.1, 10.4 Hz), 3.39 (1H, d, J 10.8 Hz); 

δC (101 MHz, CDCl3): 159.5, 138.8, 138.4, 137.8, 129.5, 129.1, 128.4, 128.3, 128.2, 127.75, 

127.7, 127.65, 127.55, 127.45, 127.4, 113.9, 109.4, 85.4, 83.6, 77.5, 76.9, 73.4, 73.3, 72.2, 

71.9, 70.4, 69.4, 67.4, 55.2; νmax: 3433, 3063, 3031, 2912, 2867, 1611, 1513, 1454, 1248, 1098, 

820, 738, 699 cm-1. 
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2-O-(triisopropylsilyl)-3,5-O-(tetraisopropylsiloxane-1,3-

diyl)-β-D-arabinofuranosyl-(1→2)-3-O-benzyl-5-p-methoxybenzyl-α-D-arabinofuranoside (62): 

 

Molecular sieves 4 Å (5 g) was added to a stirred solution of -D-arabinofuranoside (60) (4.3 

g, 0.0069 mol) and  p-tolyl-3,5-O-(tetraisopropylsiloxane-1,3-diyl)-1-thio-2-O-triisopropylsilyl-α-D-

arabinofuranoside (61)3 (11.4 g, 0.0174 mol) in dry CH2Cl2 (50 mL) at room temperature under 

nitrogen. The mixture was stirred for 30 min then cooled to -78 ºC and N-iodosuccinimide (6.4 g, 

0.026 mol) was added followed by the addition of silver trifluoromethanesulfonate (0.71 g, 0.0028 

mol). The mixture was stirred until the colour turned red/dark brown at -60 ºC, when TLC showed 

no starting material was left. The mixture was quenched with triethylamine (4 mL) until the colour 

turned yellow. The mixture was diluted with CH2Cl2 (100 mL) and filtered through celite and the 

solvent was evaporated. The residue was purified by column chromatography on silica eluting with 

hexane/ethyl acetate (4:1) affording the title compound (62) as a yellow thick oil (6.9 g, 86%) 

[NSI–Found (M+NH4)
+:1162.6495; C63H100O13Si3N, requires: 1162.6497]; []

22

D +4.5 (c 0.97, 

CHCl3), which showed δH (400 MHz, CDCl3): 7.28 – 7.18 (15H, m), 7.15 (2H, d, J 8.5 Hz), 6.78 

(2H, d, J 8.5 Hz), 4.96 (1H, br.s), 4.79 (1H, br.d, J 4.3 Hz), 4.63 (1H, d, J 12.0 Hz), 4.59 (2H, d, J 

12.0 Hz), 4.44 (2H, br.s), 4.43 (1H, d, J 12.0 Hz), 4.39 (2H, br.s), 4.34 (1H, br.dd, J 5.7, 7.3 

Hz), 4.20 – 4.17 (1H, br.m), 4.15 (1H, dd, J 4.7, 9.2 Hz), 4.12 (1H, br.t, J 5.1 Hz), 3.87 (1H, d, J 

5.7 Hz), 3.86 (1H, d, J 6.8 Hz), 3.84 – 3.76 (3H, m), 3.75 – 3.70 (4H, including a singlet at 3.73 for 

OCH3), 3.56 (1H, dd, J 3.9, 9.7 Hz), 3.53 (1H, br.d, J 5.3 Hz), 3.51 – 3.47 (2H, including a broad 

double doublet J 4.6, 10.5 Hz at 3.49), 3.45 (1H, dd, J 5.9, 10.8 Hz), 1.04 – 0.92 (49H, m); δC 

(101 MHz, CDCl3): 159.1, 138.8, 138.4, 138.0, 130.2, 129.3, 128.3, 128.25, 128.2, 127.7, 127.65, 

127.6, 127.5, 127.4, 127.3, 113.7, 106.2, 100.6, 85.9, 84.4, 82.0, 81.5, 79.4, 79.1, 77.05, 73.3, 72.9, 

72.2, 72.15, 70.6, 69.8, 67.4, 66.6, 55.2, 18.0, 17.95, 17.6, 17.5, 17.4, 17.3, 17.2, 17.1, 17.0, 16.9, 

13.4, 13.3, 13.0, 12.7, 12.4; νmax: 3064, 3031, 2943, 2867, 1513,1248, 736, 695 cm-1. 
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-β-D-arabinofuranosyl-(1→2)-3-O-benzyl-5-p-methoxybenzyl-α-D-

arabinofuranoside (63): 

 

Tetrabutylammonium fluoride (17.1 mL, 0.0202 mol, 1.0 M) was added dropwise to a stirred 

solution of α-D-arabinofuranoside (62) (6.5 g, 0.0056 mol) in dry THF (100 mL) at 0 ºC under 

nitrogen. The mixture was allowed to reach room temperature and stirred for 6 h. When TLC 

showed no starting material was left, the mixture was diluted with ethyl acetate (100 mL) and 

water (10 mL). The organic layer was separated and the aqueous layer was re-extracted with 

ethyl acetate (3×25 mL). The combined organic layers were washed with sat. aq. NH4Cl (25 mL), 

brine (25 mL), dried (MgSO4) and the solvent was concentrated to give a residue which was 

purified by column chromatography on silica eluting with dichloromethane /methanol (20:1) 

to give the title compound (63) as a colourless thick oil (4.0 g, 95%) [NSI–Found (M+NH4)
+: 

764.3639; C42H54O12N, requires: 764.3641]; []
24

D +16 (c 0.50, CHCl3), which showed δH 

(400 MHz, CDCl3): 7.28 – 7.17 (15H, m), 7.15 (2H, d, J 8.6 Hz), 6.79 (2H, d, J 8.6 Hz), 4.96 

(1H, br.s), 4.94 (1H, br.d, J 4.7 Hz), 4.60 (2H, br.s), 4.56 (1H, d, J 11.9 Hz), 4.44 (3H, br.s), 

4.40 (1H, d, J 11.6 Hz), 4.33 (1H, d, J 11.6 Hz), 4.23 (1H, m), 4.06 (1H, br.p, J 3.6 Hz), 4.01 

(1H, dd, J 2.7,  6.1 Hz), 3.95 (1H, t, J 7.2 Hz), 3.87 (1H, br.dd, J 5.9, 10.6 Hz), 3.79 (1H, 

br.dd, J 4.8, 10.5 Hz), 3.76 (1H, br.dd, J 3.3, 6.8 Hz), 3.73 – 3.69 (4H, including a singlet at 

3.7 for OCH3), 3.61 – 3.47 (6H, m), 3.39 (1H, dd, J 3.9, 10.9 Hz); δC (101 MHz, CDCl3): 

159.3, 138.5, 138.2, 137.8, 129.8, 129.7, 128.4, 128.35, 128.3, 127.8, 127.7, 127.6, 127.55, 

127.5, 113.8, 106.2, 101.0, 86.5, 82.9, 82.4, 81.2, 78.1, 76.9, 75.0, 73.4, 73.1, 72.3, 72.2, 70.1, 

68.6, 67.3, 62.3, 55.3; νmax: 3430, 3063, 3031, 2923, 2868, 1612, 1514, 1100, 740, 699 cm-1.  
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-5-O-tert-butyldiphenylsilyl-β-D-arabinofuranosyl-(1→2)-3-O-

benzyl-5-p-methoxybenzyl-α-D-arabinofuranoside (64): 

 

tert-Butylchlorodiphenylsilane (1.39 mL, 1.47 g, 0.00535 mol) was added to a stirred 

solution of α-D-arabinofuranoside (63) (4.0 g, 0.005 mol) in dry DMF (5 mL), followed by 

the addition of imidazole (0.73 g, 0.010 mol) at 0 ºC under nitrogen. The mixture was 

allowed to reach room temperature and stirred for 30 min, when TLC showed no starting 

material was left. The mixture was diluted with ethyl acetate (25 mL) and water (5 mL). The 

organic layer was separated, and the aqueous layer was re-extracted with ethyl acetate (2×25 mL). 

The combined organic layers were washed with water (10 mL), brine (10 mL), dried (MgSO4) 

and the solvent was evaporated under reduced pressure. The residue was purified by column 

chromatography on silica eluting chloroform/methanol (20:1) affording the title compound (64) 

as a colourless thick oil (4.1 g, 77%) [NSI–Found (M+NH4)
+: 1002.4816; C58H72O12SiN, 

requires: 1002.4818]; []
22

D -6.3 (c 0.38, CHCl3), which showed δH (400 MHz, CDCl3): 7.69 – 

7.63 (4H, m), 7.46 – 7.16 (21H, m), 7.11 (2H, dd, J 2.9, 6.5 Hz), 6.85 (2H, d, J 8.6 Hz), 5.03 (1H, 

br.d, J 4.5 Hz), 5.02 (1H, br.s), 4.69 (1H, d, J 12.0 Hz), 4.66 (1H, d, J 12.0 Hz), 4.56 – 4.48 (4H, 

m), 4.45 (1H, d, J 11.6 Hz), 4.40 (1H, d, J 11.6 Hz), 4.31 – 4.29 (1H, m), 4.25 (1H, d, J 11.7 Hz), 

4.14 (1H, br.p, J 5.1 Hz), 4.01 – 3.84 (4H, m), 3.82 (1H, br.dd, J 3.8, 9.1 Hz), 3.79 – 3.75 (4H, 

including a singlet at 3.77 for OCH3), 3.71 (1H, dd, J 6.6, 10.0 Hz), 3.65 – 3.60 (3H, including a 

broad double doublet J 4.9, 8.9 Hz at 3.63), 3.54 (1H, dd, J 3.3, 10.8 Hz), 3.46 (1H, dd, J 4.9, 

10.8 Hz), 2.43 (1H, d, J 9.4 Hz), 2.16 (1H, d, J 2.7 Hz), 1.07 (9H, s); δC (101 MHz, CDCl3): 

159.2, 138.6, 138.3, 137.8, 135.8, 135.7, 135.6, 135.5, 133.1, 133.0, 130.0, 129.95, 129.9, 129.6, 

129.5, 128.4, 128.35, 128.3, 128.2, 128.0, 127.9, 127.85, 127.8, 127.7, 127.65, 127.6, 127.55, 

127.5, 113.8, 106.3, 100.8, 85.9, 83.8, 81.6, 81.4, 78.2, 77.4, 77.0, 73.4, 73.0, 72.3, 72.2, 70.2, 

69.1, 67.3, 66.1, 55.3, 26.9, 19.2; νmax: 3438, 3067, 3031, 2930, 2859, 1612, 1513, 1248, 739, 700 

cm-1. 
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-tert-butyldiphenylsilyl-β-D-

arabinofuranosyl-(1→2)-3-O-benzyl-5-p-methoxybenzyl-α-D-arabinofuranoside (65): 

 

A solution of α-D-arabinofuranoside (64) (4.0 g, 0.0040 mol) in dry DMF (5 mL) was added 

dropwise to a stirred suspension of NaH (0.39 g, 0.016 mol, 60% w/w, dispersion in mineral 

oil) at 0 ºC under nitrogen. The mixture was stirred for 0.5 h then benzyl bromide (1.44 mL, 2.08 g, 

0.012 mol) in dry DMF (5 mL) was added. The mixture was stirred at room temperature for 10 h 

and then quenched with CH3OH (1 mL) and H2O (5 mL). The mixture was diluted with ether 

(25 mL). The organic layer was separated and the aqueous layer was extracted with ether 

(2×25 mL). The combined extracts were washed with water (25 mL), brine (25 mL), dried 

(MgSO4) and the solvent was evaporated under reduced pressure. The residue was purified by 

column chromatography on silica eluting with petrol/ethyl acetate (4:1) to give the title compound 

(65) as a colourless thick oil (4.3 g, 90%) [NSI–Found (M+NH4)
+: 1182.5751;  C72H84O12SiN, 

requires: 1182.5757]; []
22

D -11 (c 0.38, CHCl3), which showed δH (400 MHz, CDCl3): 7.68 – 7.64 

(4H, m), 7.42 – 7.16 (31H, m), 7.08 (2H, dd, J 1.6, 7.5 Hz), 6.85 (2H, d, J 8.6 Hz), 5.08 (1H, d, J 

4.4 Hz), 5.04 (1H, br.s), 4.70 (1H, d, J 12.1 Hz), 4.66 (1H, d, J 12.1 Hz), 4.64 (2H, br.s), 4.56 (1H, 

d, J 11.7 Hz), 4.52 (2H, br.s), 4.48 (1H, d, J 11.7 Hz), 4.44 (2H, d, J 11.5 Hz), 4.41 (2H, d, J 11.5 

Hz), 4.29 (1H, br.d, J 1.9 Hz), 4.20 (1H, br.d, J 5.9 Hz), 4.17 (2H, br.dd, J 5.0, 6.1 Hz), 4.11 (1H, 

br.q, J, 6.5 Hz), 4.05 (1H, br.dd, J 4.5, 6.1 Hz), 3.89 (1H, dd, J 5.2, 10.4 Hz), 3.84 – 3.78 (6H, 

including a singlet at 3.79 for OCH3), 3.61 (3H, br.dd, J 4.8, 9.4 Hz), 3.53 (1H, br.dd, J 2.8, 9.5 

Hz), 3.49 (1H, br.dd, J 4.7, 9.5 Hz), 1.05 (9H, s);   δC (101 MHz, CDCl3): 159.1, 138.7, 138.4, 

138.2, 137.9, 137.7, 135.6, 135.5, 133.2, 133.1, 130.3, 129.8, 129.3, 128.4, 128.3, 128.2, 128.1, 

127.9, 127.8, 127.75, 127.7, 127.6, 127.55, 127.5, 127.4, 113.7, 106.0, 100.3, 85.4, 84.6, 84.1, 84.0, 

82.0, 81.6, 77.1, 73.3, 72.8, 72.4, 72.3, 72.25, 72.2, 70.4, 69.9, 67.2, 66.2, 55.2, 26.8, 19.2; νmax: 

3065, 3031, 2930, 2860, 1612, 1513, 1248, 738, 699 cm-1. 
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-β-D-arabinofuranosyl-(1→2)-3-O-benzyl-5-p-

methoxybenzyl-α-D-arabinofuranoside (66): 

 

Tetrabutylammonium fluoride (3.5 mL, 0.0038 mol, 1.0 M) was added dropwise to a stirred 

solution of α-D-arabinofuranoside (65) (4.1 g, 0.0035 mol) in dry THF (25 mL) at 0 ºC 

under nitrogen. The mixture was allowed to reach room temperature and stirred for 6 h. When 

TLC showed no starting material was left, the mixture was diluted with ethyl acetate (15 mL) and 

water (5 mL). The organic layer was separated and the aqueous layer was re-extracted with ethyl 

acetate (3×50 mL). The combined organic layers were washed with sat. aq. NH4Cl (25 mL), brine 

(25 mL), dried (MgSO4) and the solvent was concentrated to give a residue which was purified by 

column chromatography on silica eluting with petrol /ethylacetate (5:2) to give the title 

compound (66) as a colourless thick oil (3.0 g, 93%) [NSI–Found (M+NH4)
+: 944.4574; 

C56H66O12N, requires: 944.4580]; []
22

D -7.1 (c 0.79, CHCl3), which showed δH (400 MHz, 

CDCl3): 7.29 – 7.18 (25H, m), 7.16 (2H, d, J 8.7 Hz), 6.78 (2H, d, J 8.7 Hz), 4.97 (1H, d, J 4.5 

Hz), 4.95 (1H, br.d, J 1.1 Hz), 4.64 (1H, d, J 11.7 Hz), 4.60 (2H, br.s), 4.53 (1H, d, J 11.5 Hz), 

4.51 (1H, d, J 11.5 Hz), 4.47 – 4.43 (4H, m), 4.39 (1H, d, J 11.9 Hz), 4.38 (1H, d, J 11.9 Hz), 

4.35 (1H, d, J 11.7 Hz), 4.21 (1H, br.dd, J 1.4, 3.5 Hz), 4.18 (1H, d, J 6.8 Hz), 4.09 (1H, br.p, J 

4.1 Hz ), 4.02 (1H, br.dd, J 3.5, 6.5 Hz), 3.95 (1H, dd, J 4.5, 7.3 Hz), 3.93 – 3.88 (1H, m), 3.79 

(1H, dd, J 5.2, 10.4 Hz), 3.74 – 3.68 (4H, including a singlet at 3.71 for OCH3), 3.59 – 3.50 (5H, 

m), 3.48 (1H, br.d, J 3.7 Hz), 3.43 (1H, dd, J 4.9, 10.8 Hz), 2.22 (1H, br.dd, J 5.1, 7.8 Hz); δC 

(101 MHz, CDCl3): 159.2, 138.6, 138.3, 138.1, 137.9, 137.6, 130.0, 129.5, 128.5, 128.45, 128.4, 

128.3, 128.2, 128.0, 127.9, 127.8, 127.75, 127.7, 127.65, 127.6, 127.55, 127.5, 113.8, 106.1, 

100.1, 86.3, 84.1, 83.3, 82.0, 81.0, 80.7, 77.0, 73.4, 73.0, 72.6, 72.4, 72.2, 70.3, 69.1, 67.4, 63.4, 

55.2; νmax: 3491, 3063, 3031, 2925, 2869, 1612, 1513, 1454, 1248, 738, 699 cm-1. 
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-β-D-arabinofuranosyl-(1→2)-3-O-benzyl-α-D-

arabinofuranoside (67): 

 

Cerium ammonium nitrate (CAN) (3.5 g, 0.0064 mol) was added to a stirred solution of α-D-

arabinofuranoside (66) (2.0 g, 0.002 mol) in CH3CN:H2O (9:1,15 mL) at 0 ºC. The mixture 

was allowed to reach room temperature and stirred at ambient temperature for 1 h then TLC 

indicated the conversion had finished. The mixture was diluted with chloroform (25 mL), 

washed with aq. NaHCO3 (15 mL), dried (MgSO4) and the solvent was evaporated under 

reduced pressure. The residue was purified by column chromatography on silica eluting with 

petrol/ethyl acetate (5:2) to give the title compound (67) as a colourless thick oil (1.5 g, 89%) 

[NSI–Found (M+Na)+: 829.4; C48H54NaO11, requires: 829.4]; []
21

D -4.3 (c 0.83, CHCl3), which 

showed δH (400 MHz, CDCl3): 7.64 – 6.67 (25H, m), 4.97 (1H, br.d, J 4.6 Hz), 4.95 (1H, br.s), 

4.67 (1H, d, J 11.6 Hz), 4.64 (2H, br.s), 4.62 (1H, d, J 11.6 Hz), 4.55 (1H, d, J 11.6 Hz), 4.50 

– 4.46 (5H, m), 4.2 – 4.17 (2H, broad double doublet J 5.6, 8.1 Hz), 4.16 (1H, br.dd, J 2.2, 

5.6 Hz), 4.09 – 4.04 (1H, m), 4.00 (1H, dd, J 4.6, 7.3 Hz), 3.97 – 3.92 (1H, m), 3.80 (1H, dd, 

J 5.2, 10.2 Hz), 3.76 (1H, br.d, J 6.4 Hz), 3.73 (1H, br.dd, J 3.9, 8.3 Hz), 3.63 (1H, dd, J 2.9, 

10.2 Hz), 3.60 – 3.48  (5H, m); δC (101 MHz, CDCl3): 138.5, 138.2, 137.9, 137.8, 137.4, 

128.5, 128.4, 128.35, 128.3, 128.2, 128.1, 128.0, 127.8, 127.7, 127.65, 127.6, 127.55, 127.5, 

106.3, 100.5, 86.4, 84.0, 83.0, 82.7, 81.9, 80.4, 76.9, 73.3, 72.6, 72.5, 72.3, 72.2, 70.1, 67.2, 

63.2, 62.0; νmax: 3463, 3063, 3031, 2922, 2872, 1454, 1107, 738, 698 cm-1. 
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-methanesulfonyl-β-D-arabinofuranosyl-

(1→2)-3-O-benzyl-5-O-methanesulfonyl-α-D-arabinofuranoside (68): 

 

Methanesulfonyl chloride (1.98 g, 1.36 mL, 0.0171 mol) and DMAP (0.10 g, 0.86 mmol) 

were added to a stirred solution of α-D-arabinofuranoside (67) (1.4 g, 0.0017 mol) in dry 

pyridine (10 mL) under nitrogen at room temperature. The mixture was stirred for 16 h then 

TLC showed no starting material was left. The mixture was quenched by the addition of H2O 

(3 mL), the organic layer was separated by decanting and diluted with CH2Cl2 (10 mL). The 

mixture was washed with 1N aq. HCl (4×10 mL), sat. aq. NaHCO3 (4×10 mL), dried 

(MgSO4), filtered and the solvent was evaporated under reduced pressure to give a thick oil 

residue which was purified by column chromatography on silica eluting with petrol/ethyl 

acetate (4:1) to afford the title compound (68) as a colourless thick oil (1.4 g, 85%) [NSI–Found 

(M+Na)+: 985.3109; C50H58NaO15S2, requires: 985.3115]; []
22

D +2.8 (c 1.3, CHCl3), which showed 

δH (400 MHz, CDCl3): 7.36 – 7.16 (25H, m), 5.01 (1H, br.d, J 4.4 Hz), 4.93 (1H, br.s), 4.70 

(1H, d, J 11.7 Hz), 4.67 (1H, d, J 11.7 Hz), 4.63 (2H, br.s), 4.58 (1H, d, J 11.7 Hz), 4.51 (1H, 

d, J 11.7 Hz), 4.46 (4H, br.s), 4.32 (1H, br.q, J 4.6 Hz), 4.25 – 4.13 (5H, m), 4.13 – 4.07 (3H, 

m), 4.00 (1H, br.dd, J 4.4, 6.9 Hz), 3.80 (1H, dd, J 5.2, 10.3 Hz), 3.74 (1H, br.p, J 5.1 Hz), 

3.60 – 3.50 (3H, including a broad double doublet J 4.6, 7.2 at 3.56), 2.85 (3H, s), 2.84 (3H, 

s); δC (101 MHz, CDCl3): 138.5, 138.2, 137.7, 137.6, 137.2, 128.6, 128.5, 128.4, 128.35, 

128.3, 128.1, 128.0, 127.95, 127.9, 127.8, 127.75, 127.7, 127.6, 127.55, 127.5, 106.4, 101.2, 

85.9, 83.5, 81.1, 80.9, 78.4, 76.9, 73.3, 72.7, 72.6, 72.4, 72.3, 69.9, 69.8, 69.0, 67.3, 37.5, 

37.4; νmax: 3087, 3031, 2929, 2867, 1606, 1454, 1046,738, 697 cm-1.  
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-alkanoate-β-D-arabinofuranosyl-

(1→2)-3-O-benzyl-5-O-alkanoate-α-D-arabinofuranoside (70a-d): 

 

General procedure: 

Cesium hydrogencarbonate was added to a stirred solution of α-D-arabinofuranoside (68) and 

fatty acids (69a-d) in dry THF:DMF (5:1, 1 mL) at room temperature under nitrogen . The mixture 

was stirred at 70 ºC for 4 days then TLC showed no starting material was left. The suspension was 

diluted with ethyl acetate (25 mL) and water (5 mL). The organic layer was separated and the 

aqueous layer was re-extracted with ethyl acetate (2×10 mL). The combined organic layers 

were washed with water (10 mL) and brine (10 mL), dried (MgSO4) and filtered. The filtrate 

was evaporated under reduced pressure to give a thick oil residue which was purified by 

column chromatography on silica eluting with hexane/ethyl acetate (5:1) to afford the title 

compounds (70a-d). 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4                                                                                                              Experimental  

149 

 

2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-palmitate-β-D-arabinofuranosyl-(1→2) -

3-O-benzyl-5-O-palmitate-α-D-arabinofuranoside (70a): 

 

Cesium hydrogencarbonate (66 mg, 0.34 mmol), α-D-arabinofuranoside (68) (33.0 mg, 0.034 

mmol) and plamitic acid (69a) (22 mg, 0.085 mmol); to give (70a) as a colourless thick oil (41 mg, 

92%) [NSI–Found (M+Na)+: 1305.8; C80H114NaO13, requires: 1305.8]; []
22

D -7.6 (c 0.58, CHCl3), 

which showed δH (400 MHz, CDCl3): 7.37 – 7.16 (25H, m), 5.01 (1H, d, J 4.2 Hz), 4.95 (1H, 

br.s), 4.66 (1H, d, J 11.6 Hz), 4.63 (3H, br.s), 4.56 (1H, d, J 11.6 Hz), 4.48 (1H, d, J 11.6 Hz), 

4.47 (2H, br.s), 4.45 (1H, d, J 11.8 Hz), 4.41 (1H, d, J 11.8 Hz), 4.30 (1H, br.d, J 2.0 Hz), 4.25 – 4.15 

(3H, m), 4.11 (1H, br.dd, J 3.1, 6.6 Hz), 4.09 – 4.01 (3H, m), 3.99 (1H, dd, J 4.3, 6.6 Hz), 3.90 

(1H, br.dd, J 2.5, 5.8 Hz), 3.82 (1H, dd, J 5.2, 10.4Hz), 3.74 (1H, br.p, J 5.0 Hz), 3.61 – 3.50 

(3H, including a broad double doublet J 4.7, 8.5 Hz at 3.56), 2.33 – 2.21 (2H, m), 2.18 (2H, 

dt, J 2.1, 7.4 Hz), 1.64 – 1.01 (52H, m), 0.84 (6H, t, J 6.8 Hz); δC (101 MHz, CDCl3): 173.5, 

173.4, 138.6, 138.3, 137.8, 137.7, 137.4, 128.5, 128.4, 128.35, 128.3, 128.0, 127.8, 127.75, 

127.7, 127.65, 127.6, 127.5, 106.1, 100.5, 85.6, 84.3, 83.8, 82.5, 80.1, 78.9, 73.4, 72.6, 72.5, 

72.4, 72.3, 70.2, 67.3, 66.0, 63.7, 34.0, 31.9, 29.7, 29.65, 29.6, 29.5, 29.4, 29.35, 29.3, 29.25, 

29.2, 29.1, 24.9, 24.8, 22.7, 14.1; νmax: 3065, 3031, 2924, 2853, 1741, 1732, 1455, 1114, 737, 

698 cm-1. 
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-stearate-β-D-arabinofuranosyl-(1→2)-3-O-

benzyl-5-O-stearate-α-D-arabinofuranoside (70b): 

 

Cesium hydrogencarbonate (80 mg, 0.41 mmol), α-D-arabinofuranoside (68) (40 mg, 0.041 

mmol) and stearic acid (69b) (30 mg, 0.10 mmol); to give (70b) as a colourless thick oil (49 

mg, 89%) [NSI–Found (M+NH4)
+: 1356.9227; C84H126O13N, requires: 1356.9224]; []

22

D -4.6 (c 

0.44, CHCl3), which showed δH (400 MHz, CDCl3): 7.36 – 7.14 (25H, m), 5.01 (1H, d, J 4.2 Hz), 

4.95 (1H, br.s), 4.66 (2H, d, J 11.5 Hz), 4.63 (2H, br.s), 4.56 (1H, d, J 11.5 Hz), 4.52 – 4.43 

(4H, m), 4.41 (1H, d, J 11.6 Hz), 4.31 (1H, br.d, J 1.8 Hz), 4.25 – 4.16 (3H, m), 4.14 – 4.02 

(4H, m), 3.99 (1H, dd, J 4.3, 6.6 Hz), 3.90 (1H, br.dd, J 2.4, 5.7 Hz), 3.82 (1H, dd, J 5.2, 10.4 

Hz), 3.74 (1H, br.p, J 4.9 Hz), 3.62 – 3.52 (3H, including a broad double doublet J 4.8, 7.6 Hz at 

3.56), 2.23 (2H, t, J 7.6 Hz), 2.18 (2H, dt, J 1.9, 7.4 Hz), 1.31 – 1.14 (60H, m), 0.85 (6H, t, J 

6.8 Hz); δC (101 MHz, CDCl3): 173.5, 173.3, 138.6, 138.3, 137.8, 137.7, 137.4, 128.5, 128.4, 

128.3, 128.2, 128.0, 127.8, 127.75, 127.7, 127.65, 127.6, 127.5, 106.1, 100.4, 85.6, 84.3, 

83.7, 82.5, 80.1, 78.8, 77.0, 73.3, 72.6, 72.5, 72.3, 72.2, 70.2, 67.3, 65.9, 63.7, 34.0, 31.9, 

29.7, 29.65, 29.6, 29.5, 29.4, 29.35, 29.3, 29.25, 29.2, 29.1, 24.9, 24.8, 22.7, 14.1; νmax: 3065, 

3032, 2925, 2854, 1740, 1731, 1454, 1116, 734, 697 cm-1. 
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-behenate-β-D-arabinofuranosyl-(1→2)-

3-O-benzyl-5-O-behenate-α-D-arabinofuranoside (70c): 

 

Cesium hydrogencarbonate (161 mg, 0.830 mmol), α-D-arabinofuranoside (68) (80 mg, 0.083 

mmol) and behenic acid (69c) (71 mg, 0.20 mmol); to give (70c) as a colourless thick oil 

(0.11 g, 87%) [NSI–Found (M+Na)+: 1474.0; C92H138NaO13, requires: 1474.0]; []
22

D -4.2 (c 1.1, 

CHCl3), which showed δH (400 MHz, CDCl3): 7.30 – 7.15 (25H, m), 4.97 (1H, br.d, J 4.2 Hz), 

4.91 (1H, br.s), 4.62 (1H, d, J 11.5 Hz), 4.61 (1H, d, J 11.5 Hz), 4.59 (2H, br.s), 4.52 (1H, d, 

J 11.6 Hz), 4.44 (3H, br.s), 4.41 (1H, d, J 11.6 Hz), 4.37 (1H, d, J 11.6 Hz), 4.27 (1H, br.d, J 

2.0 Hz), 4.20 (1H, J 3.5 Hz), 4.16 (1H, J 4.6 Hz), 4.13 (1H, br.dd, J 3.6, 5.8 Hz), 4.10 – 4.04 

(2H, including a broad double doublet J 4.1, 8.2 Hz at 4.06), 4.03 (1H, dd, J 3.7, 9.7 Hz), 

3.99 (1H, d, J 5.2 Hz), 3.95 (1H, dd, J 4.3, 6.7 Hz), 3.86 (1H, dd, J 2.4, 5.9 Hz), 3.78 (1H, dd, 

J 5.2, 10.4 Hz), 3.70 (1H, br.p J 4.8 Hz), 3.57 – 3.48 (3H, including a broad double doublet J 

4.7, 8.3 Hz at 3.52), 2.19 (2H, t, J 7.6 Hz), 2.14 (2H, dt, J 2.7, 7.5 Hz), 1.53 – 1.03 (76H, m), 

0.80 (6H, t, J 6.8 Hz); δC (101 MHz, CDCl3): 173.5, 173.4, 138.6, 138.3, 137.8, 137.7, 137.4, 

128.5, 128.4, 128.35, 128.3, 128.0, 127.8, 127.75, 127.7, 127.6, 127.55, 127.5, 106.1, 100.4, 

85.6, 84.3, 83.8, 82.5, 80.1, 78.9, 77.2, 73.4, 72.5, 72.4, 72.35, 72.3, 70.2, 67.3, 66.0, 63.7, 

34.0, 31.9, 29.7, 29.65, 29.6, 29.55, 29.5, 29.4, 29.3, 29.25, 29.2, 29.1, 24.9, 24.8, 22.7, 14.1; 

νmax: 3063, 3031, 2917, 2850, 1740, 1732, 1467, 1110, 735, 697 cm-1. 
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-(R)-2-((R)-1-hydroxydocosyl) 

hexacosanoate-β-D-arabinofuranosyl-(1→2)-3-O-benzyl-5-O-(R)-2-((R)-1-hydroxydocosyl) 

hexacosanoate-α-D-arabinofuranoside (70d): 

 

Cesium hydrogencarbonate (134 mg, 0.691 mmol), α-D-arabinofuranoside (68) (33 mg, 0.034 

mmol) and (R)-2-((R)-1-hydroxydocosyl) hexacosanoic acidc (69d) (50 mg, 0.069 mmol); to give 

(70d) as a colourless thick oil (60 mg, 55%) [NSI–Found (M+Na)+: 2178.7; C140H234NaO15, 

requires: 2178.7]; []
24

D -3 (c 0.9, CHCl3), which showed δH (400 MHz, CDCl3): 7.43 – 7.11 

(25H, m), 5.01 (1H, br.d, J 4.2 Hz), 4.97 (1H, br.s), 4.71 (2H, d, J 11.5 Hz), 4.66 (2H, m), 

4.61 (1H, d, J 11.5 Hz), 4.59 – 4.47 (4H, m), 4.45 (1H, d, J 11.6 Hz), 4.32 (1H, br.d, J 1.8 

Hz), 4.30 – 4.21 (4H, m), 4.17 – 4.08 (3H, including a broad pentet J 5.7 Hz at 4.12), 4.04 – 

3.99 (1H, m), 3.98 – 3.95 (1H, m), 3.84 (1H, dd, J 5.3, 10.2 Hz), 3.79 (1H, br.p, J 5.1 Hz), 

3.72 – 3.52 (5H, including a broad double doublet J 4.5, 10.8 Hz  at 3.59), 2.41 (2H, ddt, J 

4.7, 9.4, 12.7 Hz), 1.80 – 1.04 (174H, m), 0.89 (12H, t, J 6.8 Hz); δC (101 MHz, CDCl3): 

175.0, 138.5, 138.2, 137.7, 137.3, 128.5, 128.4, 128.35, 128.3, 128.25, 128.2, 128.1, 127.9, 

127.8, 127.7, 127.6, 127.5, 105.9, 100.4, 85.5, 84.4, 83.7, 82.8, 80.3, 78.9, 73.4, 72.6, 72.5, 

72.4, 72.2, 72.1, 70.2, 67.2, 66.1, 63.7, 51.9, 51.6, 35.4, 35.3, 31.9, 31.6, 29.7, 29.6, 29.55, 

29.5, 29.45, 29.4, 29.35, 29.3, 27.5, 27.4, 25.7, 25.6, 22.7, 22.6, 14.1; νmax: 3491, 3065, 3031, 

2918, 2850, 1732, 1725, 1468, 1115, 735, 697 cm-1. 
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L-Glycerol-(1'→1)-5-O-alkanoate-β-D-arabinofuranosyl-(1→2)-5-O-alkanoate-α-D-

arabinofuranoside (71a-d): 

 

General procedure: 

Palladium hydroxide on activated charcoal was added to a stirred solution of α-D-

arabinofuranoside (70a-d) in CH2Cl2:MeOH (1:1, 1 mL) at room temperature under hydrogen. 

The mixture was stirred for 36 h then TLC showed no starting material was left. The mixture 

was filtered off through celite and the solvent was evaporated under reduced pressure to give a 

residue which was purified by column chromatography on silica eluting with 

chloroform/methanol (10:1) affording L-glycerol-(1'→1)-5-O-alkanoyl-β-D-arabinofuranosyl-

(1→2)-5-O-alkanoyl-α-D-arabinofuranoside (71a-d). 
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L-Glycerol-(1'→1)-5-O-palmitate-β-D-arabinofuranosyl-(1→2)-5-O-palmitate-α-D-

arabinofuranoside (71a):  

 

(Pd(OH)2-C/20%, 25 mg, 0.75 fold by weight) and α-D-arabinofuranoside (70a) (33 mg, 

0.025 mmol); to give (71a) as a colourless thick oil (18 mg, 82%) [NSI–Found (M+Na)+: 

855.5804; C45H84NaO13, requires: 855.5810]; []
21

D +14 (c 0.30, CHCl3), which showed δH 

(400 MHz, CDCl3+few drops CD3OD): 5.06 (1H, br.d, J 4.5 Hz), 5.02 (1H, br.d, J 1.9 Hz), 

4.45 (1H, dd, J 7.2, 11.9 Hz), 4.38 – 3.30 (1H, m), 4.28 (1H, br.dd, J 4.1, 6.8 Hz), 4.26 – 4.21 

(1H, m), 4.20 – 4.15 (2H, including a broad double doublet, J 1.9, 9.6 Hz at 4.18), 4.15 – 4.10 

(2H, m), 4.07 (2H, including a broad double doublet, J 5.4, 8.3 Hz at 4.07), 4.04 (1H, br.d, J 

7.0 Hz), 4.00 (1H, dd, J 4.8, 10.3 Hz), 3.91 – 3.85 (2H, m), 3.77 (2H, dd, J 6.0, 10.7 Hz), 

3.71 (1H, br.d, J 2.9 Hz), 3.67 (2H, br.t, J 6.0 Hz), 2.36 (4H, t, J 7.6 Hz), 1.46 – 1.08 (53H, 

m), 0.89 (6H, t, J 6.8 Hz); δC (101 MHz, CDCl3+few drops CD3OD): 173.5, 173.4, 138.6, 

138.3, 137.8, 137.7, 137.4, 128.5, 128.4, 128.35, 128.3, 128.0, 127.8, 127.75, 127.7, 127.65, 

127.6, 127.5, 106.1, 100.5, 85.6, 84.3, 83.8, 82.5, 80.1, 78.9, 77.0, 73.4, 72.6, 72.5, 72.4, 72.3, 

70.2, 67.3, 66.0, 63.7, 34.0, 31.9, 29.7, 29.65, 29.6, 29.5, 29.45, 29.4, 29.3, 29.25, 29.2, 29.1, 24.9, 

24.8, 22.7, 14.1; νmax: 3436, 2918, 2850, 1738, 1643, 1469, 1219, 1116, 1041, 927 cm-1. 

 

 

 

 

 

 

 

 



Chapter 4                                                                                                              Experimental  

155 

 

L-Glycerol-(1'→1)-5-O-stearate-β-D-arabinofuranosyl-(1→2)-5-O-stearate-α-D-

arabinofuranoside (71b): 

 

(Pd(OH)2-C/20%, 34 mg, 0.75 fold by weight) and α-D-arabinofuranoside (70b) (45 mg, 0.033 

mmol); to give (71b) as a colourless thick oil (24 mg, 81%) [NSI–Found (M+Na)+: 911.6430; 

C49H92NaO13, requires: 911.6436]; []
25

D -3.4 (c 0.71, CHCl3), which showed δH (400 MHz, 

CDCl3+few drops CD3OD): 5.01 (1H, br.d, J 4.3 Hz), 5.00 (1H, br.s), 4.33 – 4.29 (1H, m), 4.27 

(1H, br.d, J 5.7 Hz), 4.20 – 4.15 (2H, m), 4.13 (1H, br.d, J 7.0 Hz), 4.04 (1H, dd, J 5.9, 10.6 

Hz), 4.00 (1H, br.dd, J 2.6, 6.6 Hz), 3.98 – 3.88 (3H, including a broad double doublet J 4.9, 

9.0 Hz at 3.96), 3.86 – 3.78 (1H, m), 3.74 (1H, dd, J 5.8, 10.6 Hz), 3.63 (1H, br.dd, J 3.9, 11.8 

Hz), 3.6 – 3.53 (2H, including a broad double doublet J 3.0, 10.8 Hz at 3.58), 2.33 (4H, t, J 7.5 

Hz), 1.36 – 1.17 (65H, m), 0.86 (6H, t, J 6.3 Hz); δC (101 MHz, CDCl3): 174.3, 174.0, 138.6, 

138.3, 137.8, 137.7, 137.4, 128.5, 128.4, 128.3, 128.2, 128.0, 127.8, 127.7, 127.65, 127.6, 

127.55, 127.5, 106.1, 100.4, 85.6, 84.3, 83.8, 82.5, 80.1, 78.8, 77.0, 73.4, 72.5, 72.4, 72.3, 72.2, 

70.2, 67.3, 65.9, 63.7, 34.0, 31.9, 29.7, 29.65, 29.6, 29.5, 29.4, 29.35, 29.3, 29.2, 29.15, 29.1, 

24.9, 24.8, 22.7, 14.1; νmax: 3430, 2917, 2849, 1737, 1643, 1467, 1214, 1172, 1041, 719 cm-1. 
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L-Glycerol-(1'→1)-5-O-behenate-β-D-arabinofuranosyl-(1→2)-5-O-behenate-α-D-

arabinofuranoside (71c):   

 

(Pd(OH)2-C/20%, 75 mg, 0.75 fold by weight); (100 mg, 0.0688 mmol) of α-D-

arabinofuranoside (70c); to give (71c) as a colourless thick oil (60 mg, 87%) [NSI–Found 

(M+Na)+: 1023.7682; C57H108NaO13, requires: 1023.7688]; []
22

D -2.3 (c 0.44, CHCl3), which 

showed δH (400 MHz, CDCl3+few drops CD3OD): 4.97 (1H, br.d, J 4.7 Hz), 4.96 (1H, br.s), 

4.30 – 4.21 (2H, including a broad double doublet J 8.4, 11.2 Hz at 4.25), 4.16 (1H, dd, J 3.2, 

11.9 Hz), 4.14 – 4.06 (2H, m), 4.03 – 3.97 (2H, m), 3.96 – 3.88    (3H, m), 3.78 (1H, br.p, J 5.1 

Hz), 3.71 (1H, dd, J 6.0, 10.4 Hz), 3.63 – 3.59 (1H, m), 3.57 (1H, dd, J 4.3, 11.5 Hz), 3.53 (1H, 

dd, J 4.8, 11.2 Hz), 2.31 (4H, t, J 7.6 Hz), 1.34 – 1.14 (81H, m), 0.83 (6H, t, J 6.6 Hz); δC (126 

MHz, CDCl3+few drops CD3OD): 174.2, 173.9, 105.9, 101.9, 88.5, 80.3, 80.1, 75.8, 75.5, 70.4, 

69.5, 65.5, 63.6, 63.2, 34.0, 33.9, 31.8, 29.5, 29.45, 29.4, 29.3, 29.2, 29.15, 29.1, 29.0, 24.7, 

22.5, 13.8; νmax: 3419, 2956, 2917, 1738, 1732, 1464, 1215, 1171, 1048, 881, 720 cm-1. 
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L-Glycerol-(1'→1)-5-O-(R)-2-((R)-1-hydroxydocosyl)hexacosanoate-β-D-arabinofuranosyl-

(1→2)-5-O-(R)-2-((R)-1-hydroxydocosyl)hexacosanoate-α-D-arabinofuranoside (71d):  

 

(Pd(OH)2-C/20%, 23 mg, 0.75 fold by weight) and α-D-arabinofuranoside (70d) (30 mg, 

0.013 mmol); to give (71d) as a colourless thick oil (17 mg, 74%) [NSI–Found (M+Na)+: 

1728.5; C105H204NaO15, requires: 1728.5]; []
22

D +8 (c 0.3, CHCl3), which showed δH (400 

MHz, CDCl3+few drops CD3OD): 4.98 (1H, br.d, J 5.7 Hz), 4.97 (1H, br.s), 4.40 (1H, dd, J 

4.7, 11.6 Hz), 4.34 (1H, dd, J 4.8, 11.4 Hz), 4.22 (1H, dd, J 5.6, 11.6 Hz), 4.20 (1H, dd, J  

6.4, 12.0 Hz), 4.13 (1H, dd, J 6.1, 10.7 Hz), 4.10 (1H, br.q, J 6.9 Hz), 4.05 – 3.98 (4H, 

including a broad doublet J 11.2 Hz at 4.02), 3.85 – 3.76 (1H, m), 3.71 (1H, dd, J 6.4, 10.6 

Hz), 3.68 – 3.62 (2H, br.m), 3.61 (1H, d, J 4.1 Hz), 3.57 (1H, dd, J 4.2, 9.6 Hz), 3.54 (1H, 

br.dd, J 3.2, 10.3 Hz), 2.46 – 2.37 (2H, m), 1.64 – 1.01 (179H, m), 0.86 (12H, t, J 6.8 Hz); δC 

(101 MHz, CDCl3+few drops CD3OD): 175.1, 175.0, 105.8, 101.5, 87.6, 80.7, 79.5, 77.2, 

76.4, 76.1, 72.8, 72.5, 70.4, 69.5, 65.4, 63.7, 63.3, 63.2, 53.3, 52.6, 34.8, 34.7, 31.9, 29.7, 

29.6, 29.55, 29.5, 29.45, 29.4, 29.3, 29.2, 29.1, 27.4, 27.3, 25.4, 25.2, 22.6, 14.0; νmax: 3416, 

2927, 2854, 1728, 1719, 1466, 1215, 1121, 1044, 759, 669 cm-1. 
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2',3'-Di-O-acetyl-L-glycerol-(1'→1)-2,3-di-O-acetyl-5-O-behenate-β-D-arabinofuranosyl-

(1→2)-3-O-acetyl-5-O-behenate-α-D-arabinofuranoside (72): 

 

Acetic anhydride (0.02 g, 0.20 mmol, 0.02 mL) was added to a stirred solution of α-D-

arabinofuranoside (71c) (20 mg, 0.019 mmol) in dry pyridine (2 mL) at room temperature and 

the mixture was stirred at room temperature for 18 hours under nitrogen. The solvent was 

evaporated and the crude product was purified by column chromatography eluting with 

petrol/ethyl acetate (2:1) to afford the title compound (72) (20 mg, 83%) [NSI–Found (M+Na)+: 

1233.8210; C67H118NaO18, requires: 1233.8216]; []
23

D -13 (c 0.62, CHCl3), which showed δH 

(400 MHz, CDCl3): 5.40 (1H, br.d, J 4.7 Hz), 5.34 (1H, dd, J 5.3, 6.3 Hz), 5.21 (1H, br.p, J 4.8 

Hz), 4.95 (2H, br.dd, J 4.7, 6.6 Hz), 4.91 (1H, br.s), 4.37 (1H, dd, J 4.6, 11.6 Hz), 4.29 (1H, dd, 

J 4.4, 7.6 Hz), 4.27 – 4.10 (7H, m), 3.82 (1H, dd, J 5.2, 11.0 Hz), 3.60 (1H, dd, J 4.5, 10.9 Hz), 

2.42 – 2.29 (4H, m), 2.11 – 2.09 (12H, m), 2.08 (3H, s), 1.70 – 0.99 (76H, m), 0.89 (6H, t, J 6.7 

Hz); δC (101 MHz, CDCl3): 173.4, 173.3, 170.6, 170.4, 170.2, 170.1, 169.9, 105.0, 99.4, 83.9, 

80.6, 79.1, 77.5, 75.6, 69.8, 65.3, 65.2, 63.6, 62.5, 34.1, 34.0, 31.9, 31.6, 29.7, 29.65, 29.5, 

29.35, 29.3, 29.2, 24.9, 24.8, 22.7, 22.6, 21.0, 20.8, 20.7, 20.6, 20.4, 14.1; νmax: 2918, 2850, 

1742, 1736, 1466, 1224, 1167, 1045, 755, 721 cm-1. 
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-(R)-2-((R)-1-hydroxy-18-

((1R,2S)-2-((17S,18S)-17-methoxy-18-methylhexatriacontyl) cyclopropyl) octadecyl) 

tetracosanoate-β-D-arabinofuranosyl-(1→2)-3-O-benzyl-5-O-(R)-2-((R)-1-hydroxy-18-((1R,2S)-

2-((17S,18S)-17-methoxy-18-methylhexatriacontyl)cyclopropyl)octadecyl)tetracosanoate-α-

D-arabinofuranoside (74): 

 

Cesium hydrogencarbonate (79 mg, 0.40 mmol) was added to a stirred solution of α-D-

arabinofuranoside (68) (20 mg, 0.020 mmol) and (R)-2-((R)-1-hydroxy-18-((1R,2S)-2-

((17S,18S)-17-methoxy-18-methylhexatriacontyl)cyclopropyl) octadecyl)tetracosanoic acid 

(73) (50 mg, 0.040 mmol) in dry THF:DMF (1mL, 5:1) at room temperature under nitrogen. 

The mixture was stirred at 70 ºC for 4 days then TLC showed no starting material was left. 

The suspension was diluted with ethyl acetate (25 mL) and water (5 mL). The organic layer 

was separated and the aqueous layer was re-extracted with ethyl acetate (2×10 mL). The 

combined organic layers were washed with water (10 mL) and brine (10 mL), dried over MgSO4 

and filtered. The filtrate was evaporated under reduced pressure to give a thick oil residue which 

was purified by column chromatography on silica eluting with hexane/ethyl acetate (5:1) to give 

(74) as a colourless thick oil (70 mg, 54%) [NSI–Found (M+Na)+: 3243.9; C214H378NaO17, 

requires: 3243.9]; []
24

D -4.4 (c 0.73, CHCl3), which showed δH (400 MHz, CDCl3): 7.35 – 7.16 

(25H, m), 4.97 (1H, d, J 4.3 Hz), 4.93 (1H, br.s), 4.67 (2H, d, J 11.7 Hz), 4.63 (2H, m), 4.58 (1H, 

d, J 11.7 Hz), 4.52 – 4.44 (4H, m), 4.41 (1H, d, J 11.6 Hz), 4.28 (1H, br.d, J 1.6 Hz), 4.26 – 4.16 

(4H, m), 4.12 – 4.04 (2H, including a broad pentet J 6.5 Hz at 4.08), 4.00 – 3.95 (1H, m), 3.93 

(1H, br.d, J 2.9 Hz), 3.80 (1H, dd, J 5.3, 10.3 Hz), 3.78 – 3.74 – 3.69 (5H, including a broad 

triplet J 6.6 Hz at 3.72), 3.58 – 3.53 (4H, including a broad double doublet J 4.5, 10.7 Hz at 3.55), 

3.31 (6H, s), 2.92 (2H, dt, J 4.1, 7.1 Hz), 2.42 – 2.32 (2H, m), 1.56 – 0.97 (286H, m), 0.85 (12H, 
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t, J 6.8 Hz), 0.82 (6H, d, J 6.9 Hz), 0.65 – 0.58 (4H, m), 0.56 – 0.49 (2H, dt, J 4.0, 8.4 Hz), -0.36 

(2H, br.q, J 5.1 Hz); δC (101 MHz, CDCl3): 175.04, 175.03, 138.5, 138.3, 137.8, 137.3, 128.5, 

128.45, 128.4, 128.35, 128.3, 128.2, 128.1, 127.9, 127.8, 127.75, 127.7, 127.6, 127.5, 105.9, 

100.4, 85.5, 85.4, 84.4, 83.7, 82.8, 80.3, 78.9, 77.1, 73.4, 72.6, 72.5, 72.45, 72.4, 72.2, 72.1, 70.2, 

68.0, 67.2, 66.1, 63.7, 57.7, 51.8, 51.6, 35.3, 32.4, 31.9, 30.5, 30.2, 30.0, 29.9, 29.7, 29.65, 29.6, 

29.5, 29.45, 29.4, 29.3, 28.7, 27.6, 27.4, 26.2, 25.7, 25.6, 22.7, 15.8, 14.9, 14.1, 10.9; νmax: 3522, 

3063, 3031, 2922, 2852, 1744, 1737, 1464, 1101,733, 698  cm-1. 

 

L-Glycerol-(1'→1)-5-O-(R)-2-((R)-1-hydroxy-18-((1R,2S)-2-((17S,18S)-17-methoxy-18-

methylhexatriacontyl)cyclopropyl)octadecyl)tetracosanoate-β-D-arabinofuranosyl-

(1→2)-5-O-(R)-2-((R)-1-hydroxy-18-((1R,2S)-2-((17S,18S)-17-methoxy-18-methylhexatriacontyl) 

cyclopropyl)octadecyl)tetracosanoate-α-D-arabinofuranoside (75): 

 

Palladium hydroxide on activated charcoal (Pd(OH)2-C/20%, 33 mg, 0.75 fold by weight) was 

added to a stirred solution of compound (74) (43 mg, 0.013 mmol) in CH2Cl2:MeOH (1:1, 1 mL) 

at room temperature under hydrogen. The mixture was stirred for 36 h then TLC showed no 

starting material was left. The mixture was filtered off through celite and the solvent was 

evaporated under reduced pressure to give a residue which was purified by column 

chromatography on silica eluting with chloroform/methanol (10:1) to give (75) as a colourless 

thick oil (27 mg, 73%) [NSI–Found (M+Na)+: 2793.6; C179H348NaO17, requires: 2793.6]; 

[]
22

D +13 (c 0.36, CHCl3), which showed δH (400 MHz, CDCl3+few drops CD3OD): 4.98 (1H, 

br.d, J 4.7 Hz), 4.82 (1H, br.s), 4.40 (1H, dd, J 4.4, 12.2 Hz), 4.37 – 4.31 (2H, including a broad 

double doublet J 4.7, 11.6 Hz at 4.34), 4.22 (1H, dd, J 5.6, 11.5 Hz), 4.15 (1H, br.dd, J 5.6, 11.7 

Hz), 4.10 (1H, br.dd, J 4.1, 9.0 Hz), 4.07 – 3.94 (6H, br.m), 3.89 (1H, br.dd, J 2.6, 4.7 Hz), 3.85 – 
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3.77 (1H, m), 3.72 (1H, dd, J 5.5, 11.5 Hz), 3.69 – 3.51 (6H, m), 3.38 (1H, dd, J 4.2, 8.5 Hz), 

3.32 (6H, s), 2.99 – 2.90 (2H, m), 2.47 – 2.37 (2H, m), 1.66 – 0.96 (288H, m), 0.86 (12H, t, J 6.9 

Hz), 0.83 (6H, d, J 6.9 Hz), 0.66 – 0.58 (4H, m), 0.53 (2H, dt, J 4.1, 8.6 Hz), -0.36 (2H, br.q, J 

5.1 Hz); δC (101 MHz, CDCl3+few drops CD3OD): 175.1, 175.0, 105.8, 101.5, 87.7, 85.5, 80.6, 

79.5, 77.2, 76.4, 76.0, 72.6, 72.4, 70.3, 69.3, 65.4, 63.3, 63.1, 57.6, 53.2, 52.6, 35.2, 32.2, 31.8, 

30.4, 30.1, 29.8, 29.7, 29.6, 29.5, 29.3, 29.2, 29.1, 29.0, 28.6, 27.4, 27.35, 27.3, 26.0, 25.3, 25.2, 

22.6, 15.6, 14.7, 13.9, 10.8; νmax: 3397,  2920, 2851, 1730, 1467, 1171, 1099, 1046, 721 cm-1. 

 

2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-mycolate-β-D-arabinofuranosyl-(1→2)-

3-O-benzyl-5-O-mycolate-α-D-arabinofuranoside (77f-h): 

 

General procedure:  

A solution of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI) in dry 

CH2Cl2 (1 mL) was added to a stirred solution of 2',3'-di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-

benzyl-β-D-arabinofuranosyl-(1→2)-3-O-benzyl-α-D-arabinofuranoside (67); molecular sieves 

4 Å, DMAP and mycolic acids (76f-h) in dry CH2Cl2 (1 mL) at room temperature under 

nitrogen. The mixture was stirred for 5 days. When TLC showed no starting material was left. 

The precipitate was filtered off and washed with CH2Cl2 (10 mL), the solvent was evaporated 

and the residue was purified by column chromatography on silica eluting with 

hexane/ethylacetate (5:1) to afford the compounds (77f-h).  
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-(R)-2-((R)-1-((tert-butyldimethylsilyl) 

oxy)-16-((1S,2R)-2-((S)-20-methyl-19-oxooctatriacontyl)cyclopropyl)hexadecyl)hexacosanoate-

β-D-arabinofuranosyl-(1→2)-3-O-benzyl-5-O-(R)-2-((R)-1-((tert-butyldimethylsilyl)oxy)-

16-((1S,2R)-2-((S)-20-methyl-19-oxooctatriacontyl)cyclopropyl)hexadecyl)hexacosanoate-α-

D-arabinofuranoside (77f): 

 

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI) (77 mg; 0.40 mmol), 

molecular sieves 4 Å (50 mg), α-D-arabinofuranoside (67) (33 mg, 0.040 mmol),  DMAP   

(49 mg; 0.40 mmol) and (R)-2-((R)-1-((tert-butyldimethylsilyl)oxy)-16-((1S,2R)-2-((S)-20-

methyl-19-oxooctatriacontyl)cyclopropyl)hexadecyl) hexacosanoic acid (76f) (108 mg, 

0.0790 mmol); to give (77f) as a colourless thick oil (0.13 g, 97%) [NSI–Found (M+Na)+: 

3496.1; C228H406NaO17Si2, requires: 3496.1]; []
21

D +4.2 (c 0.38, CHCl3), which showed δH 

(400 MHz, CDCl3): 7.38 – 7.18 (25H, m), 5.03 (1H, br.d, J 4.2 Hz), 4.97 (1H, br.s), 4.72 (1H, 

d, J 11.6 Hz), 4.68 (3H, d, J 11.6 Hz), 4.62 (1H, d, J 11.7 Hz), 4.56 – 4.48 (4H, m), 4.43 (1H, 

d, J 11.7 Hz), 4.37 (1H, br.d, J 2.0 Hz), 4.29 – 4.11 (6H, m), 4.06 (1H, t, J 6.0 Hz), 4.00 (1H, 

br.dd, J 4.3, 6.5 Hz), 3.96 – 3.81 (4H, m), 3.78 (1H, br.p, J 4.7 Hz), 3.67 – 3.54 (3H, 

including a broad double doublet J 4.4, 10.4 Hz at 3.60), 2.53 (4H, including a sextet J 6.8 Hz 

at 2.53), 2.42 (4H, dt, J 1.0, 7.2 Hz), 1.61 – 1.12 (288H, m), 1.06 (6H, d, J 6.9 Hz), 0.89 

(12H, t, J 6.8 Hz), 0.85 (9H, s), 0.84 (9H, s), 0.71 – 0.62    (4H, m), 0.57 (2H, dt, J 4.1, 8.4 

Hz), 0.04 (3H, s), 0.02 (3H, s), 0.01 (3H, s), -0.01 (3H, s), -0.32 (2H, br.q, J 5.1 Hz);   δC 

(101 MHz, CDCl3): 215.2, 174.3, 174.1, 138.6, 138.3, 137.9, 137.7, 137.5, 128.5, 128.4, 

128.3, 128.2, 128.0, 127.9, 127.8, 127.7, 127.65, 127.6, 127.5, 127.4, 105.9, 100.2, 84.9, 

84.6, 83.6, 83.3, 80.1, 79.1, 77.1, 73.4, 73.2, 73.1, 72.5, 72.4, 72.2, 70.3, 67.2, 66.3, 64.3, 

51.5, 51.4, 46.3, 41.1, 33.7, 33.0, 31.9, 30.2, 29.9, 29.85, 29.8, 29.75, 29.7, 29.65, 29.6, 
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29.55, 29.5, 29.45, 29.4, 29.35, 29.3, 28.7, 27.8, 27.7, 27.4, 27.3, 25.9, 25.8, 24.0, 23.9, 23.7, 

22.7, 16.4, 15.8, 14.1, 10.9, -4.4, -4.5, -4.7, -4.8; νmax: 3088, 3063, 2922, 2852, 1739, 1713, 

1465, 1115, 758, 698 cm-1. 

 

2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-(R)-2-((R)-1-((tert-butyldimethylsilyl) 

oxy)-12-((1S,2R)-2-(14-((1S,2R)-2-icosylcyclopropyl)tetradecyl) cyclopropyl)dodecyl) 

hexacosanoate-β-D-arabinofuranosyl-(1→2)-3-O-benzyl-5-O-(R)-2-((R)-1-((tert-butyldimethylsilyl) 

oxy)-12-((1S,2R)-2-(14-((1S,2R)-2-icosylcyclopropyl) tetradecyl) cyclopropyl)dodecyl) 

hexacosanoate-α-D-arabinofuranoside (77g): 

 

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI) (83 mg; 0.43 mmol), 

molecular sieves 4 Å (50 mg), α-D-arabinofuranoside (67) (35 mg, 0.043 mmol),  DMAP        (52 

mg; 0.42 mmol) and (R)-2-((R)-1-((tert-butyldimethylsilyl)oxy)-12-((1S,2R)-2-(14-((1S,2R)-2-

icosylcyclopropyl) tetradecyl) cyclopropyl)dodecyl)hexacosanoic acid (76g) (113 mg, 0.0900 

mmol); to give (77g) as a colourless thick oil (0.12 g, 84%) [NSI–Found (M+Na)+: 3295.9; 

C216H382NaO15Si2, requires: 3295.9]; []
22

D -10.2 (c 0.47, CHCl3), which showed δH (400 

MHz, CDCl3): 7.40 – 7.20 (25H, m), 5.04 (1H, br.d, J 4.2 Hz), 4.97 (1H, br.s), 4.73 (1H, d, J 

11.6 Hz), 4.69 (3H, d, J 11.6 Hz), 4.62 (1H, d, J 11.7 Hz), 4.56 – 4.48 (4 H, m), 4.43 (1H, d, J 

11.7 Hz), 4.37 (1H, br.d, J 1.9 Hz), 4.30 – 4.11 (6H, m), 4.07 (1H, t, J 6.0 Hz), 4.00 (1H, br.dd, 

J 4.3, 6.5 Hz), 3.89 (4H, m), 3.78 (1H, br.p, J 4.9 Hz), 3.70 – 3.52 (3H, including a broad 

double doublet  J 4.4, 10.3 Hz at 3.61), 2.62 – 2.48 (2H, m), 1.65 – 1.06 (268H, m), 0.89 (12H, t, J 

6.8 Hz), 0.86 (9H, s), 0.85 (9H, s), 0.71 – 0.61 (8H, m), 0.57 (4H, dt, J 4.1, 8.5 Hz), 0.04 (3H, s), 

0.02 (3H, s), 0.01 (3H, s), -0.01 (3H, s), -0.32 (4H, br.q, J 5.1 Hz); δC (101 MHz, CDCl3): 

174.3, 174.1, 138.6, 138.3, 137.9, 137.7, 137.5, 128.5, 128.4, 128.3, 128.2, 128.0, 127.9, 127.8, 
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127.7, 127.65, 127.6, 127.5, 127.4, 105.9, 100.2, 84.9, 84.6, 83.6, 83.3, 80.1, 79.1, 77.1, 73.4, 

73.2, 73.1, 72.5, 72.4, 72.2, 70.3, 67.2, 66.3, 64.3, 51.5, 51.4, 33.7, 31.9, 30.3, 30.2, 29.9, 

29.85, 29.8, 29.75, 29.7, 29.65, 29.6, 29.5, 29.4, 28.7, 27.8, 27.7, 27.4, 27.3, 25.9, 25.8, 24.0, 

23.9, 22.7, 18.0, 17.9, 15.8, 14.1, 11.0, 10.9, -4.4, -4.5, -4.7, -4.8; νmax: 3062, 3032, 2922, 2853, 

1740, 1717, 1465, 1116, 733, 698 cm-1. 

 

2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-(2R)-2-((1R)-1-((tert-butyldimethylsilyl) 

oxy)-17-((1S,2R)-2-((22S)-22-methyl-21-oxotetracontan-2-yl)cyclopropyl)heptadecyl)hexacosanoate-β 

-D-arabinofuranosyl-(1→2)-3-O-benzyl-5-O-(2R)-2-((1R)-1-((tert-butyldimethylsilyl)oxy)-17 

-((1S,2R)-2-((22S)-22-methyl-21-oxotetracontan-2-yl)cyclopropyl)heptadecyl) hexacosanoate-α-

D-arabinofuranoside (77h): 

 

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI) (71 mg; 0.37 mmol), 

molecular sieves 4 Å (50 mg), α-D-arabinofuranoside (67) (30 mg, 0.037 mmol),  DMAP (45 mg; 

0.36 mmol) and (2R)-2-((1R)-1-((tert-butyldimethylsilyl)oxy)-17-((1S,2R)-2-((22S)-22-methyl-

21-oxotetracontan-2-yl)cyclopropyl)heptadecyl)hexacosanoic acid (76h) (103 mg, 0.0730 

mmol); to give (77h) as a colourless thick oil (12 mg, 91%) [NSI–Found (M+Na)+: 3580.2; 

C234H418NaO17Si2, requires: 3580.2]; []
22

D +2.3 (c 1.4, CHCl3), which showed δH (400 MHz, 

CDCl3): 7.37 – 7.22 (25H, m), 5.03 (1H, br.d, J 4.2 Hz), 4.97 (1H, br.s), 4.72 (1H, d, J 11.7 Hz), 

4.68 (3H, d, J 11.7 Hz), 4.62 (1H, d, J 11.6 Hz), 4.56 – 4.47 (4H, m), 4.43 (1H, d, J 11.6 Hz), 

4.37 (1H, br.d, J 1.8 Hz), 4.28 – 4.10 (6H, m), 4.06 (1H, br.t, J 5.6 Hz), 4.00 (1H, br.dd, J 4.3, 6.4 

Hz), 3.96 – 3.81 (4H, m), 3.77 (1H, br.p, J 4.9 Hz), 3.66 – 3.55 (3H, including a broad double 

doublet  J 4.4, 10.4 Hz at 3.60), 2.60 – 2.46 (4H, including a sextet J 6.8 Hz at 2.53), 2.42 (4H, dt, 

J 1.0, 7.5 Hz), 1.67 – 1.12 (300H, m), 1.06 (6H, d, J 6.9 Hz), 0.91 – 0.87 (18H, including a triplet 

J 7.5 Hz at 0.89), 0.85 (9H, s), 0.84 (9H, s), 0.75 – 0.62 (2H, m), 0.51 – 0.40 (2H, m), 0.24 – 0.08 
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(6H, m), 0.04 (3H, s), 0.02 (3H, s), 0.01 (3H, s), -0.01 (3H, s); δC (101 MHz, CDCl3): 215.2, 

174.3, 174.1, 138.6, 138.3, 137.9, 137.7, 137.5, 128.5, 128.4, 128.3, 128.2, 128.0, 127.9, 127.8, 

127.7, 127.65, 127.6, 127.5, 127.4, 105.9, 100.1, 84.9, 84.6, 83.6, 83.3, 80.1, 79.1, 77.2, 73.4, 

73.2, 73.1, 72.5, 72.4, 72.2, 70.3, 67.2, 66.3, 64.3, 51.5, 51.4, 46.3, 41.1, 38.1, 37.4, 34.5, 33.7, 

33.0, 31.9, 31.6, 30.1, 30.0, 29.9, 29.8, 29.75, 29.7, 29.65, 29.6, 29.55, 29.5, 29.45, 29.4, 29.35, 

29.3, 27.8, 27.7, 27.4, 27.3, 26.1, 25.9, 25.8, 24.0, 23.9, 23.7, 22.7, 22.6, 19.7, 18.6, 18.0, 17.9, 

16.4, 14.1, 10.5, -4.4, -4.5, -4.7, -4.8; νmax: 3064, 3032, 2922, 2852, 1740, 1714, 1465, 1117, 733, 

698 cm-1. 

 

De-protection of silyl group in mycolic acid (78f-h): 

 

General procedure: 

Tetrabutylammonium fluoride 1.0 M solution in THF was added dropwise to a stirred solution 

of compounds (77f-h) in dry THF (1 mL) at 0 ºC under nitrogen. The mixture was allowed to 

reach room temperature and stirred for 16 h. When TLC showed no starting material was left, 

the mixture was diluted with ethyl acetate (10 mL) and water (1 mL). The organic layer was 

separated and the aqueous layer was re-extracted with ethyl acetate (3×10 mL). The combined 

organic layers were washed with sat. aq. NH4Cl (5 mL), brine (5 mL), dried (MgSO4) and the 

solvent was concentrated to give the residue which was purified by column chromatography on 

silica eluting with hexane /ethyl acetate (10:1) affording the compounds (78f-h). 
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-(R)-2-((R)-1-hydroxy-16-((1S,2R)-2-

((S)-20-methyl-19-oxooctatriacontyl)cyclopropyl)hexadecyl)hexacosanoate-β-D-arabinofuranosyl-

(1→2)-3-O-benzyl-5-O-(R)-2-((R)-1-hydroxy-16-((1S,2R)-2-((S)-20-methyl-19-oxooctatriacontyl) 

cyclopropyl) hexadecyl)hexacosanoate-α-D-arabinofuranoside (78f): 

 

Tetrabutylammonium fluoride (0.56 mL, 1.9 mmol, 1.0 M) and α-D-arabinofuranoside (77f)   

(98 mg, 0.028 mmol); to give (78f) as a colourless thick oil (45 mg, 38%) [NSI–Found (M+Na)+: 

3267.9; C216H378NaO17, requires: 3267.9]; []
22

D +7.1 (c 0.34, CHCl3), which showed δH (400 MHz, 

CDCl3): 7.39 – 7.22 (25H, m), 5.01 (1H, br.d, J 4.3 Hz), 4.97 (1H, br.s), 4.71 (2H, d, J 11.5 Hz), 4.67 

(2H, m), 4.62 (1H, d, J 11.5 Hz), 4.56 – 4.50 (3H, m), 4.51 (1H, d, J 11.6 Hz), 4.45 (1H, d, J 11.6 

Hz), 4.32 (1H, br.d, J 1.7 Hz), 4.30 – 4.21 (5H, m), 4.17 – 4.08 (2H, including a broad pentet J 6.0 Hz 

at 4.12), 4.02 (1H, br.dd, J 4.4, 6.3 Hz), 3.99 – 3.93 (1H, m), 3.84 (1H, dd, J 5.3, 10.3 Hz), 3.81 – 3.76 

(1H, br.p, J 5.3 Hz), 3.59 (5H, including a broad double doublet  J 4.5, 10.8 Hz at 3.59), 2.56 – 2.46 

(4H, including a sextet J 6.8 Hz at 2.51), 2.42 (4H, dt, J 1.1, 7.6 Hz),  1.65 – 1.11 (290H, m), 1.06 (6H, 

d, J 6.9 Hz), 0.89 (12H, t, J 6.8 Hz), 0.71 – 0.61 (4H, m), 0.60 – 0.53 (2H, dt, J 4.0, 8.5 Hz), -0.32 (2H, 

br.q, J 5.1 Hz); δC (101 MHz, CDCl3): 215.2, 175.0, 138.5, 138.3, 137.7, 137.3, 128.6, 128.5, 128.4, 

128.3, 128.2, 128.1, 128.0, 127.8, 127.75, 127.7, 127.6, 127.5, 105.9, 100.4, 85.5, 84.4, 83.7, 82.8, 

80.3, 78.9, 77.2, 73.4, 72.7, 72.6, 72.5, 72.4, 72.2, 72.1, 70.2, 67.2, 66.1, 63.7, 51.9, 51.6, 46.3, 41.1, 

35.4, 35.3, 33.0, 31.9, 30.3, 30.2, 29.8, 29.75, 29.7, 29.65, 29.6, 29.55, 29.5, 29.45, 29.4, 29.35, 29.3, 

29.2, 28.7, 27.5, 27.4, 27.3, 25.7, 23.7, 22.7, 16.4, 15.8, 14.1, 10.9; νmax: 3501, 3063, 2920, 2852, 

1736, 1714, 1465, 1116, 757, 698 cm-1. 
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-(R)-2-((R)-1-hydroxy-12-((1S,2R)-

2-(14-((1S,2R)-2-icosylcyclopropyl)tetradecyl)cyclopropyl)dodecyl)hexacosanoate-β-

D-arabinofuranosyl-(1→2)-3-O-benzyl-5-O-(R)-2-((R)-1-hydroxy-12-((1S,2R)-2-(14-((1S,2R)-2-

icosylcyclopropyl)tetradecyl)cyclopropyl)dodecyl)hexacosanoate-α-D-arabinofuranoside 

(78g): 

 

Tetrabutylammonium fluoride (0.40 mL, 1.4 mmol, 1.0 M) and  α-D-arabinofuranoside (77g) 

(112 mg, 0.0340 mmol); to give (78g) as a colourless thick oil (66 mg, 64%) [NSI–Found 

(M+Na)+: 3067.7; C204H354NaO15, requires: 3067.7]; []
24

D -18.3 (c 0.24, CHCl3), which showed 

δH (400 MHz, CDCl3): 7.42 – 7.21 (25H, m), 5.02 (1H, br.d, J 4.3 Hz), 4.97 (1H, br.s), 4.71 (2H, 

d, J 11.4 Hz), 4.67 (2H, m), 4.62 (1H, d, J 11.4 Hz), 4.56 – 4.50 (4H, m), 4.45 (1H, d, J 11.6 Hz), 

4.32 (1H, br.d, J 1.6 Hz), 4.31 – 4.21 (5H, m), 4.16 – 4.09 (2H, including a broad pentet J 5.9 Hz 

at 4.13), 4.02 (1H, br.dd, J 4.6, 6.2 Hz), 3.97 (1H, br.d, J 2.8 Hz), 3.85 (1H, dd, J 5.3, 10.3 Hz), 

3.79 (1H, br.p, J 5.0 Hz), 3.66 – 3.54 (5H, including a broad double doublet J 4.5, 10.7 Hz at 3.6), 

2.46 – 2.35 (2H, m), 1.68 – 1.03 (270H, m), 0.89 (12H, t, J 6.7 Hz), 0.71 – 0.61 (8H, m), 0.57 (4H, 

dt, J 4.0, 8.4 Hz), -0.32 (4H, br.q, J 5.1 Hz); δC (101 MHz, CDCl3): 175.1, 175.0, 138.5, 138.3, 

137.8, 137.3, 128.5, 128.4, 128.35, 128.3, 128.25, 128.2, 128.1, 127.8, 127.75, 127.7, 127.65, 

127.60, 127.5, 105.9, 100.4, 85.5, 84.4, 83.7, 82.8, 80.3, 78.9, 77.1, 73.4, 72.6, 72.5, 72.4, 72.3, 

72.2, 72.1, 70.2, 67.2, 66.1, 63.7, 51.9, 51.6, 41.3, 36.1, 35.4, 35.3, 33.7, 31.9, 30.3, 30.2, 29.8, 

29.75, 29.7, 29.65, 29.6, 29.55, 29.5, 29.45, 29.4, 29.35, 29.3, 29.1, 28.9, 28.7, 27.7, 27.5, 27.4, 

25.7, 25.6, 22.7, 22.6, 22.3, 20.4, 19.4, 18.8, 15.8, 14.3, 14.1, 11.4, 11.0, 10.9; νmax: 3516, 3061, 

2920, 2851, 1734, 1728, 1465, 1116, 737, 696 cm-1. 
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-(2R)-2-((1R)-1-hydroxy-17-((1S,2R)-

2-((22S)-22-methyl-21-oxotetracontan-2-yl)cyclopropyl)heptadecyl) hexacosano-ate-β-

D-arabinofuranosyl-(1→2)-3-O-benzyl-5-O-(2R)-2-((1R)-1-hydroxy-17-((1S,2R)-2-((22S)-22-

methyl-21-oxotetracontan-2-yl)cyclopropyl)heptadecyl)hexacosanoate-α-D-arabinofuranoside 

(78h): 

 

Tetrabutylammonium fluoride (0.35 mL, 1.2 mmol, 1.0 M) and α-D-arabinofuranoside (77h) 

(105 mg, 0.0295 mmol); to give (78h) as a colourless thick oil (30 mg, 31%) [NSI–Found 

(M+Na)+: 3352.0; C222H390NaO17, requires: 3352.0]; []
24

D +5.0 (c 0.32, CHCl3), which showed δH 

(400 MHz, CDCl3): 7.39 – 7.22 (25H, m), 5.01 (1H, br.d, J 4.2 Hz), 4.97 (1H, br.s), 4.71 (2H, d, J 

11.7 Hz), 4.68 – 4.65 (2H, m), 4.62 (1H, d, J 11.7 Hz), 4.56 – 4.49 (4H, m), 4.45 (1H, d, J 11.6 Hz), 

4.32 (1H, br.d, J 1.3 Hz), 4.29 – 4.22 (4H, m), 4.17 – 4.08 (3H, including a broad pentet J 5.5 Hz at 

4.13 m), 4.04 – 3.99 (1H, m), 3.97 (1H, br.d, J 2.3 Hz), 3.85 (1H, dd, J 5.3, 10.2 Hz), 3.79 (1H, 

br.p, J 5.3 Hz), 3.60 (5H, including a broad double doublet J 4.4, 10.6 Hz at 3.6), 2.57 – 2.47 (4H, 

m), 2.42 (4H, dt, J 1.0, 7.5 Hz), 1.66 – 1.09 (294H, m), 1.06 (6H, d, J 6.9 Hz), 0.88 – 0.85 (18H, 

including a triplet J 6.8 Hz at 0.87), 0.77 – 0.61 (2H, m), 0.52 – 0.40 (2H, m), 0.26 – 0.07 (6H, m); 

δC (101 MHz, CDCl3): 215.2, 175.1, 175.0, 138.5, 138.3, 137.8, 137.3, 128.5, 128.45, 128.4, 

128.35, 128.3, 128.2, 128.1, 127.9, 127.8, 127.75, 127.7, 127.6, 127.5, 105.9, 100.4, 85.5, 84.4, 

83.7, 82.8, 80.3, 78.9, 77.1, 73.4, 72.6, 72.5, 72.4, 72.3, 72.2, 72.1, 70.2, 67.2, 66.1, 63.8, 60.4, 51.9, 

51.6, 46.3, 41.3, 41.1, 38.1, 37.4, 36.1, 35.4, 35.3, 34.5, 33.7, 33.0, 31.9, 30.1, 29.9, 29.8, 29.75, 

29.7, 29.65, 29.6, 29.55, 29.5, 29.45, 29.4, 29.35, 29.3, 29.1, 28.9, 27.7, 27.5, 27.4, 27.35, 27.3, 

26.1, 25.7, 25.6, 23.8, 22.7, 22.6, 22.3, 21.0, 20.4, 19.7, 19.4, 18.7, 18.6, 16.4, 14.3, 14.1, 11.4, 10.5; 

νmax: 3472, 3063, 2920, 2851, 1735, 1714, 1465, 1116, 757, 698 cm-1. 
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L-Glycerol-(1'→1)-5-O-mycolate-β-D-arabinofuranosyl-(1→2)-5-O-mycolate-α-D-arabinofuranoside 

(79f-h): 

 

General procedure: 

Palladium hydroxide on activated charcoal was added to a stirred solution of α-D-

arabinofuranoside (78f-h) in CH2Cl2:MeOH (1:1, 1 mL) at room temperature under hydrogen. 

The mixture was stirred for 36 h then TLC showed no starting material was left. The mixture 

was filtered off through celite and the solvent was evaporated under reduced pressure to give 

a residue which was purified by column chromatography on silica eluting with 

chloroform/methanol (10:1) affording the title compounds (79f-h). 
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L-Glycerol-(1'→1)-5-O--(R)-2-((R)-1-hydroxy-16-((1S,2R)-2-((S)-20-methyl-19-oxoocta-

triacontyl)cyclopropyl)hexadecyl)hexacosanoate-β-D-arabinofuranosyl -(1→2)-5-O-(R)-2-

((R)-1-hydroxy-16-((1S,2R)-2-((S)-20-methyl-19-oxooctatriacontyl)cyclopropyl)hexadecyl) 

hexacosanoate-α-D-arabinofuranoside (79f): 

 

(Pd(OH)2-C/20%, 26 mg, 0.75 fold by weight) and α-D-rabinofuranoside (78f) (35 mg, 0.010 

mmol); to give (79f) as a colourless thick oil (22 mg, 71%) [NSI–Found (M+Na)+: 2817.6; 

C181H348NaO17, requires: 2817.6]; []
22

D +7.4 (c 0.38, CHCl3), which showed δH (400 MHz, 

CDCl3+few drops CD3OD): 4.97 (1H, br.d, J 4.4 Hz), 4.96 (1H, br.s), 4.38 (1H, dd, J 4.7, 

11.6 Hz), 4.33 (1H, br.dd, J 6.9, 11.4 Hz), 4.20 (1H, dd, J 6.0, 11.5 Hz), 4.18 (1H, dd, J 5.4, 

11.5 Hz), 4.11 (1H, br.q, J 5.5 Hz), 4.08 – 3.92 (5H, m), 3.82 – 3.75 (1H, br.m), 3.69 (1H, 

br.dd, J 6.3, 10.5 Hz), 3.66 – 3.62 (3H, m), 3.57 (1H, br.dd, J 4.5, 11.4 Hz), 3.52 (1H, dd, J 

3.4, 10.4 Hz), 2.60 – 2.40 (4H, including sextet J 6.8 Hz at 2.48), 2.38 (4H, br.t, 7.3 Hz), 1.67 

– 1.05 (295H, m), 1.01 (6H, d, J 6.9 Hz), 0.84 (12H, t, J 6.8 Hz), 0.65 – 0.56 (4H, m), 0.52 

(2H, dt, J 4.1, 8.5 Hz), -0.37 (2H, br.q, J 5.1 Hz); δC (101 MHz, CDCl3+few drops CD3OD): 

215.9, 175.1, 175.0, 105.8, 101.5, 87.6, 80.7, 79.5, 77.2, 76.4, 76.1, 72.7, 72.5, 70.3, 69.4, 

65.4, 63.2, 53.3, 52.6, 46.3, 41.1, 34.8, 34.7, 32.9, 31.8, 30.2, 30.1, 29.7, 29.6, 29.55, 29.5, 

29.45, 29.4, 29.35, 29.3, 29.25, 29.2, 29.1, 29.0, 28.6, 27.4, 27.3, 27.2, 25.3, 25.2, 23.6, 22.6, 

16.2, 15.7, 14.0, 10.8; νmax: 3420,  2919, 2851, 1733, 1714, 1467, 1120, 1046, 721 cm-1. 
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L-Glycerol-(1'→1)-5-O-(R)-2-((R)-1-hydroxy-12-((1S,2R)-2-(14-((1S,2R)-2-icosylcyclopropyl) 

tetradecyl)cyclopropyl)dodecyl)hexacosanoate-β-D-arabinofuranosyl-(1→2)-5-O-(R)-2-

((R)-1-hydroxy-12-((1S,2R)-2-(14-((1S,2R)-2-icosylcyclopropyl)tetradecyl)cyclopropyl) 

dodecyl)hexacosanoate-α-D-arabinofuranoside (79g): 

 

(Pd(OH)2-C/20%, 46 mg, 0.75 fold by weight) and α-D-arabinofuranoside (78g) (62 mg, 

0.020 mmol); to give (79g) as a colourless thick oil (36 mg, 70%) [NSI–Found (M+Na)+: 

2617.5; C169H324NaO15, requires: 2617.5]; []
24

D +2.7 (c 1.9, CHCl3), which showed δH (400 

MHz, CDCl3+few drops CD3OD): 4.99 (1H, br.d, J 6.2 Hz), 4.98 (1H, br.s), 4.42 (1H, dd, J 

4.5, 11.6 Hz), 4.37 (1H, br.dd, J 6.5, 11.1 Hz), 4.23 (1H, dd, J 5.2, 11.2 Hz), 4.20 (1H, br.dd, 

J 4.8, 10.3 Hz), 4.14 (1H, br.q, J 5.3 Hz), 4.10 – 3.97 (5H, m), 3.85 – 3.79 (1H, m), 3.72 (1H, 

br.dd, J 7.0, 11.2 Hz), 3.69 – 3.63 (2H, br.m), 3.62 (1H, br.d, J 3.6 Hz), 3.58 (1H, dd, J 4.2, 

9.7 Hz), 3.55 (1H, dd, J 3.2,  10.4 Hz), 2.47 – 2.39 (2H, m), 1.61 – 1.05 (275H, m), 0.86 

(12H, t, J 6.8 Hz), 0.69 – 0.58 (8H, m), 0.54 (4H, dt, J 4.1, 8.5 Hz), -0.35 (4H, br.q, J 5.0 

Hz); δC (101 MHz, CDCl3+few drops CD3OD): 175.1, 175.0, 105.8, 101.5, 87.6, 80.8, 79.5, 

77.5, 77.2, 76.5, 76.2, 72.8, 72.6, 70.3, 69.6, 65.4, 63.3, 63.2, 53.3, 52.6, 34.8, 34.7, 31.9, 

30.3, 30.2, 29.8, 29.7, 29.65, 29.6, 29.55, 29.5, 29.45, 29.4, 29.3, 29.2, 29.1, 28.7, 27.5, 27.4, 

25.4, 25.3, 22.6, 15.8, 15.7, 14.0, 10.9, 10.8; νmax: 3417,  2920, 2851, 1729, 1723, 1466, 

1215, 1116, 1045, 761, 669 cm-1. 
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L-Glycerol-(1'→1)-5-O-(2R)-2-((1R)-1-hydroxy-17-((1S,2R)-2-((22S)-22-methyl-21 

-oxotetracontan-2-yl)cyclopropyl)heptadecyl)hexacosanoate-β-D-arabinofuranosyl-(1→2)-5-

O-(2R)-2-((1R)-1-hydroxy-17-((1S,2R)-2-((22S)-22-methyl-21-oxotetracontan-2-yl)cyclopropyl) 

heptadecyl)hexacosanoate-α-D-arabinofuranoside (79h): 

 

(Pd(OH)2-C/20%, 25 mg, 0.75 fold by weight) and α-D-arabinofuranoside (78h) (25 mg, 

0.0075 mmol); to give (79h) as a colourless thick oil (16 mg, 72%) [NSI–Found (M+Na)+: 

2901.7; C187H360NaO17, requires: 2901.7]; []
22

D -7.1 (c 0.34, CHCl3), which showed δH (400 

MHz, CDCl3): 5.04 (1H, br.d, J 7.7 Hz), 5.03 (1H, br.s), 4.49 (1H, dd, J 5.6, 12.7 Hz), 4.46 

(1H, br.dd, J 3.8, 11.6 Hz), 4.29 (1H, dd, J 5.1, 11.6 Hz), 4.24 – 4.20 (1H, m), 4.18 (1H, br.q, 

J 6.1 Hz), 4.13 (1H, d, J 7.2 Hz), 4.11– 4.03 (4H, including a broad doublet J 6.8 Hz at 4.09), 

3.90 – 3.81 (1H, m), 3.79 – 3.60 (6H, m), 2.51 (4H, including a sextet J 6.9 Hz at 2.51), 2.42 

(2H, t, J 7.6 Hz), 2.41 (2H, t, J 7.1 Hz), 1.65 – 1.10 (299H, m), 1.05 (6H, d, J 6.9 Hz), 0.93 – 

0.84 (18H, including a broad triplet J 7.4 Hz at 0.89), 0.72 – 0.62 (2H, m), 0.50 – 0.40 (2H, 

m), 0.25 – -0.06 (6H, m); δC (101 MHz, CDCl3+few drops CD3OD): 215.3, 175.0, 174.8, 

105.8, 101.6, 88.2, 80.5, 79.6, 77.7, 77.2, 76.7, 76.6, 73.1, 72.7, 70.4, 70.0, 69.9, 65.2, 63.7, 

63.2, 60.4, 53.4, 52.5, 46.3, 41.1, 38.1, 37.4, 35.0, 34.8, 34.5, 33.0, 31.9, 30.1, 29.8, 29.7, 

29.65, 29.6, 29.55, 29.5, 29.45, 29.4, 29.3, 27.4, 27.3, 27.25, 26.1, 25.5, 25.4, 23.7, 22.7, 19.7, 

18.6, 16.4, 14.1, 10.5; νmax: 3421, 2920, 2852, 1735, 1715, 1466, 1119, 1045, 733 cm-1. 
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-behenate-β-D-arabinofuranosyl-

(1→2)-3-O-benzyl-5-p-methoxybenzyl-α-D-arabinofuranoside (80a): 

 

A solution of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI)       

(13.6 mg, 0.070 mmol) in dry CH2Cl2 (1 mL) was added dropwise to a stirred solution of α-

D-arabinofuranoside (66) (13.2 mg, 0.0142 mmol), DMAP (8.6 mg, 0.070 mmol) and behenic 

acid (69c) (7.1 mg, 0.020 mmol) in dry CH2Cl2 (1 mL) at 0 ºC under nitrogen. The mixture 

was stirred for 48 h. When TLC showed no starting material was left. The precipitate was 

filtered off and washed with CH2Cl2 (10 mL), the solvent was evaporated and the residue was 

purified by column chromatography on silica eluting with hexane/ethyl acetate (5:1) to afford 

the title compound (80a) as a colourless thick oil (15 mg, 85%) [NSI–Found (M+NH4)
+: 

1266.7800; C78H108O13N, requires: 1266.7815]; []
22

D -2.2 (c 0.92, CHCl3), which showed δH 

(400 MHz, CDCl3): 7.30 – 7.17 (25H, m), 7.15 (2H, d, J 8.6 Hz), 6.77 (2H, d, J 8.6 Hz), 5.00 

(1H, br.d, J 4.1 Hz), 4.95 (1H, br.s), 4.61 (1H, d, J 12.1 Hz), 4.60 (2H, br.s), 4.58 (1H, d, J 

12.1 Hz), 4.51 (1H, d, J 11.6 Hz), 4.46 – 4.41 (3H, m), 4.37 (3H, br.d, J 11.7 Hz), 4.36 (1H, 

d, J 11.7 Hz), 4.25 (1H, br.d, J 1.9 Hz), 4.17 – 4.10 (2H, m), 4.07 – 3.98 (3H, m), 3.95 (1H, 

br.q, J 6.6 Hz), 3.89 (1H, br.dd, J 2.4, 6.0 Hz), 3.80 (1H, dd, J 5.1, 10.4 Hz), 3.74 – 3.68 (4H, 

including a singlet at 3.72 for OCH3), 3.57 – 3.50 (3H, including a broad double doublet J 

5.0, 8.5 Hz at 3.53), 3.49 – 3.42 (2H, including a broad double doublet J 4.2, 11.1 Hz at 

3.47), 2.13 (2H, dt, J 3.6, 7.7 Hz), 1.53 – 1.02 (38H, m), 0.81 (3H, t, J 6.7 Hz); δC (101 MHz, 

CDCl3): 173.4, 159.2, 138.7, 138.3, 138.0, 137.8, 137.5, 130.2, 129.4, 128.5, 128.4, 128.3, 

128.2, 128.0, 127.9, 127.8, 127.7, 127.65, 127.6, 127.55, 127.5, 127.4, 113.7, 106.0, 100.5, 

85.9, 84.4, 83.8, 82.6, 81.5, 78.9, 77.0, 73.4, 72.9, 72.5, 72.4, 72.3, 72.2, 70.3, 69.6, 67.2, 

66.0, 55.2, 34.0, 31.9, 29.8, 29.7, 29.65, 29.6, 29.5, 29.4, 29.3, 29.1, 24.8, 22.7, 14.1; νmax: 

3062, 3031, 2924, 2859, 1741, 1612, 1513, 1454, 1248, 1110,738, 699 cm-1. 
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-(2R)-2-(1-((tert-butyldimethylsilyl) 

oxy)-16-((1S,2R)-2-((S)-20-methyl-19-oxooctatriacontyl) cyclopropyl) hexadecyl) 

hexacosanoate)-β-D-arabinofuranosyl-(1→2)-3-O-benzyl-5-p-methoxybenzyl-α-D-

arabinofuranoside (80b): 

 

A solution of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI)       

(17.7 mg, 0.0923 mmol) in dry CH2Cl2 (1 mL) was added dropwise to a stirred solution of α-D-

arabinofuranoside (66) (17.2 mg, 0.0185 mmol), DMAP (11.3 mg, 0.0924 mmol) and (2R)-2-(1-

((tert-butyldimethylsilyl)oxy)-16-((1S,2R)-2-((S)-20-methyl-19-oxooctatriacontyl) cyclopropyl) 

hexadecyl) hexacosanoic acid (76f) (37.5 mg, 0.0277 mmol) in dry CH2Cl2 (1 mL) at 0 ºC 

under nitrogen atmosphere. The reaction mixture was stirred for 48 h. When TLC showed no 

starting material was left. The reaction mixture was worked up and purified as above 

affording the title compound (80b) (36 mg, 86%) [NSI–Found (M+Na)+: 2282.8; 

C146H238NaO15Si, requires: 2282.8]; []
22

D +12 (c 0.22, CHCl3), which showed δH (400 MHz, 

CDCl3): 7.34 – 7.24 (25H, m), 7.22 (2H, d, J 8.6 Hz), 6.84 (2H, d, J 8.6 Hz), 5.06 (1H, br.d, J 

4.2 Hz), 5.02 (1H, br.s), 4.69 (2H, d, J 11.7 Hz), 4.68 (2H, d, J 11.7 Hz), 4.61 (1H, d, J 11.6 

Hz), 4.54 – 4.49 (3H, m), 4.48 – 4.41 (4H, m), 4.32 (1H, br.d, J 2.0 Hz), 4.21 (3H, br.dd, J 

3.8, 8.4 Hz), 4.13 (1H, dd, J 6.1 Hz), 4.07 – 4.03 (1H, m), 4.01 (1H, dd, J 4.3, 6.6 Hz), 3.95 

(1H, dd, J 2.5, 6.0 Hz), 3.87 (2H, br.dd, J 5.3, 10.4 Hz), 3.82 – 3.75 (4H, including a singlet 

at 3.8 for OCH3), 3.61 (3H, br.dd, J 4.8, 9.4 Hz), 3.53 (2H, dd, J 6.8, 12.1 Hz), 2.52 (2H, 

including a sextet J 6.2 Hz at 2.52) 2.42 (2H, dt, J 1.0, 7.0 Hz), 1.45 – 1.11 (144H, m), 1.05 

(3H, d, J 6.9 Hz), 0.89 (6H, t, J 6.7 Hz), 0.84 (9H, br.s), 0.69 – 0.65 (2H, m), 0.57 (1H, dt, J 

4.0, 7.7 Hz), 0.02 (3H, s), -0.01 (3H, s), -0.33 (1H, q, J 5.2 Hz); δC (101 MHz, CDCl3): 215.2, 

174.1, 159.1, 138.7, 138.3, 138.0, 137.9, 137.6, 130.2, 129.4, 128.5, 128.4, 128.3, 128.25, 
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128.2, 127.9, 127.8, 127.75, 127.7, 127.6, 127.55, 127.5, 127.4, 113.7, 106.0, 100.4, 85.6, 

84.4, 83.7, 83.4, 81.6, 79.2, 77.1, 73.3, 73.1, 72.9, 72.5, 72.4, 72.3, 72.2, 70.4, 69.7, 67.2, 

66.3, 60.4, 55.2, 51.5, 46.3, 41.1, 33.7, 33.0, 31.9, 30.2, 29.8, 29.75, 29.70, 29.6, 29.55, 29.5, 

29.4, 29.35, 29.3, 28.7, 27.8, 27.3, 25.8, 24.0, 23.7, 22.7, 22.6, 22.3, 21.0, 18.0, 16.4, 15.8, 

14.2, 14.1, 14.0, 10.9, -4.4, -4.7; νmax: 3088, 3065, 2923, 2856, 1739, 1614, 1456, 1247, 1115, 

739, 698 cm-1. 

 

2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-behenate-β-D-arabinofuranosyl-(1→2)-

3-O-benzyl-α-D-arabinofuranoside (81a): 

 

Cerium ammonium nitrate (13 mg, 0.023 mmol) was added to a stirred solution of compound (80a) 

(15 mg, 0.012 mmol) in CH3CN:H2O:THF (9:1:0.2, 1 mL)at 0 ºC. The mixture was allowed to 

reach room temperature and stirred at ambient temperature for 16 h then TLC showed no starting 

material was left. The reaction mixture was diluted with chloroform (20 mL), washed with aq. 

NaHCO3 (10 mL), dried (MgSO4) and the solvent was evaporated under reduced pressure. The 

residue was purified by column chromatography on silica eluting with petrol/ethyl acetate (4:1) to 

give the title compound (81a) as a colourless thick oil (8.4 mg, 62%) [NSI–Found (M+Na)+: 

1151.7; C70H96NaO12, requires: 1151.7]; []
22

D -11 (c 0.27, CHCl3), which showed δH (400 MHz, 

CDCl3): 7.39 – 7.25 (25H, m), 5.04 (1H, br.d, J 4.1 Hz), 4.98 (1H, br.s), 4.71 (1H, d, J 11.5 Hz), 

4.69 (3H, br.s), 4.62 (1H, d, J 11.5 Hz), 4.54 – 4.49 (5H, m), 4.33 (1H, br.d, J 1.3 Hz), 4.21 (2H, 

including a broad doublet J 6.0 Hz at 4.21), 4.18 – 4.12 (2H, including a broad double doublet J 4.3, 

7.2 Hz at 4.15), 4.11 (1H, br.dd, J 3.6, 7.9 Hz), 4.08 (1H, br.d, J 2.5 Hz), 4.05 (1H, dd, J 4.2, 6.6 

Hz), 3.86 (1H, dd, J 5.2, 10.3 Hz), 3.82 – 3.76 (2H, including a broad double doublet J 4.3, 9.7 Hz 

at 3.8), 3.66 – 3.58 (4H, including a broad double doublet J 4.7, 11.8 Hz at 3.6), 2.25 (2H, dt, J 0.9, 

7.3 Hz), 1.36 – 1.18 (39H, m), 0.90 (3H, t, J 6.8 Hz); δC (101 MHz, CDCl3): 173.5, 138.3, 137.9, 
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137.7, 137.4, 136.9, 128.5, 128.4, 128.3, 128.25, 128.1, 128.0, 127.9, 127.75, 127.7, 127.6, 127.55, 

127.5, 106.0, 100.4, 85.1, 83.8, 83.5, 83.4, 82.5, 78.9, 73.3, 72.6, 72.4, 72.2, 70.1, 67.2, 66.0, 62.3, 

34.0, 31.9, 29.7, 29.65, 29.6, 29.5, 29.4, 29.3, 29.1, 24.8, 22.7, 14.1; νmax: 3414, 3062, 3032, 2915, 

2852, 1737, 1467, 735, 697 cm-1. 

 

2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-(R)-2-((R)-1-hydroxy-16-((1S,2R)-

2-((S)-20-methyl-19-oxooctatriacontyl)cyclopropyl)hexadecyl)hexacosanoate)-β-D-arabinofuranosyl-

(1→2)-3-O-benzyl-α-D-arabinofuranoside (81b): 

 

Cerium ammonium nitrate (31 mg, 0.057 mmol) was added to a stirred solution of compound 

(80b) (32 mg, 0.014 mmol) in CH3CN:H2O:THF (9:1:0.2, 1 mL) at 0 ºC. The mixture was 

allowed to reach room temperature and stirred at ambient temperature for 16 h then TLC 

showed no starting material was left. The mixture was worked up and purified as above giving 

the title compound (81b) as a colourless thick oil (25 mg, 83%) [NSI–Found (M+Na)+: 2048.7; 

C132H216NaO14, requires: 2048.7]; []
23

D -8.5 (c 0.21, CHCl3), which showed δH (400 MHz, 

CDCl3): 7.38 – 7.23 (25H, m), 5.01 (1H, br.d, J 4.3 Hz), 4.97 (1H, br.s), 4.70 (1H, d, J 11.6 Hz) 

4.68 (1H, d, J 11.6 Hz), 4.67 (2H, br.s), 4.61 (1H, d, J 11.6 Hz), 4.56 – 4.46 (5H, m), 4.30 (2H, 

br.dd, J 8.1, 12.0 Hz), 4.22 (1H, dd, J 3.9, 11.4 Hz), 4.15 (1H, br.dd, J 3.3, 6.7 Hz), 4.10 (3H, 

br.dd, J 5.9, 12.1 Hz), 4.02 (1H, dd, J 4.4, 6.5 Hz), 3.85 (1H, dd, J 5.2, 10.3 Hz), 3.79 (1H, 

br.dd, J 5.1, 9.4 Hz), 3.77 (1H, br.dd, J 3.7, 6.1 Hz), 3.66 – 3.55 (5H, including a broad double 

doublet J 4.6, 12.1 Hz at 3.6), 2.51 (1H, sextet, J 6.7 Hz), 2.44 – 2.38 (3H, including a triplet J 

7.2 Hz at 2.42), 2.08 – 1.07 (146H, m), 1.05 (3H, d, J 6.9 Hz), 0.89 (6H, t, J 6.8 Hz), 0.69 – 

0.62 (2H, m), 0.57 (1H, dt J 4.1, 8.6 Hz), -0.33 (1H, br.q, J 5.1 Hz); δC (101 MHz, CDCl3): 

215.3, 175.0, 138.6, 138.1, 138.0, 137.7, 137.4, 128.5, 128.4, 128.35, 128.3, 128.1, 128.0, 
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127.9, 127.8, 127.7, 127.6, 127.5, 106.1, 100.7, 85.7, 83.8, 83.5, 83.4, 82.5, 78.9, 73.4, 72.6, 

72.4, 72.3, 72.2, 70.2, 67.2, 66.0, 62.2, 51.8, 46.3, 41.1, 35.4, 33.0, 31.9, 30.2, 29.7, 29.6, 29.5, 

29.4, 28.7, 27.4, 27.3, 25.7, 23.7, 22.7, 16.4, 15.8, 14.1, 10.9; νmax: 3496, 3062, 2921, 2850, 

1738, 1465, 1116, 758, 699 cm-1. 

 

2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-behenate-β-D-arabinofuranosyl-

(1→2)-3-O-benzyl-5-O-behenate-α-D-arabinofuranoside (82a): 

 

A solution of (EDCI) (5.4 mg, 0.028 mmol) in dry CH2Cl2 (1 mL) was added dropwise to a 

stirred solution of α-D-arabinofuranoside (81a) (6.4 mg, 0.0056 mmol), DMAP (3.4 mg, 0.027 

mmol) and behenic acid (2.9 mg, 0.0085 mmol) in dry CH2Cl2 (1 mL) at 0 ºC under nitrogen. 

The mixture was stirred for 72 h. When TLC showed no starting material was left. The 

precipitate was filtered off and washed with CH2Cl2 (10 mL), the solvent was evaporated and 

the residue was purified by column chromatography on silica eluting with hexane/ethyl acetate 

(5:1) to afford the title compound (82a) as a colourless thick oil (4.2 mg, 50%) [NSI–Found 

(M+Na)+: 1474.0; C92H138NaO13, requires: 1474.0]; []
22

D -4.2 (c 1.1, CHCl3), which showed 

δH (400 MHz, CDCl3): 7.30 – 7.15 (25H, m), 4.97 (1H, br.d, J 4.2 Hz), 4.91 (1H, br.s), 4.62 

(1H, d, J 11.5 Hz), 4.61 (1H, d, J 11.5 Hz), 4.59 (2H, br.s), 4.52 (1H, d, J 11.6 Hz), 4.44 (3H, 

br.s), 4.41 (1H, d, J 11.6 Hz), 4.37 (1H, d, J 11.6 Hz), 4.27 (1H, br.d, J 2.0 Hz), 4.20 (1H, J 3.5 

Hz), 4.16 (1H, J 4.6 Hz), 4.13 (1H, br.dd, J 3.6, 5.8 Hz), 4.10 – 4.04 (2H, including a broad 

double doublet J 4.1, 8.2 Hz at 4.06), 4.03 (1H, dd, J 3.7, 9.7 Hz), 3.99 (1H, d, J 5.2 Hz), 3.95 

(1H, dd, J 4.3, 6.7 Hz), 3.86 (1H, dd, J 2.4, 5.9 Hz), 3.78 (1H, dd, J 5.2, 10.4 Hz), 3.70 (1H, 

br.p J 4.8 Hz), 3.57 – 3.48 (3H, including a broad double doublet J 4.7, 8.3 Hz at 3.52), 2.19 

(2H, t, J 7.6 Hz), 2.14 (2H, dt, J 2.7, 7.5 Hz), 1.53 – 1.03 (76H, m), 0.80 (6H, t, J 6.8 Hz); δC 

(101 MHz, CDCl3): 173.5, 173.4, 138.6, 138.3, 137.8, 137.7, 137.4, 128.5, 128.4, 128.35, 

128.3, 128.0, 127.8, 127.75, 127.7, 127.6, 127.55, 127.5, 106.1, 100.4, 85.6, 84.3, 83.8, 82.5, 
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80.1, 78.9, 77.2, 73.4, 72.5, 72.4, 72.35, 72.3, 70.2, 67.3, 66.0, 63.7, 34.0, 31.9, 29.7, 29.65, 

29.6, 29.55, 29.5, 29.4, 29.3, 29.25, 29.2, 29.1, 24.9, 24.8, 22.7, 14.1; νmax: 3063, 3031, 2917, 

2850, 1740, 1732, 1467, 1110, 735, 697 cm-1. 

 

2',3'-Di-O-benzyl-L-glycerol-(1'→1)- 5-O-(R)-2-((R)-1-hydroxy-16-((1S,2R)-2-((S)-20-methyl-

19-oxooctatriacontyl)cyclopropyl)hexadecyl) hexacosanoate)-β-D-arabinofuranosyl-(1→2)-

5-O-(2R)-2-(1-((tert-butyldimethylsilyl)oxy)-16-((1S,2R)-2-((S)-20-methyl-19-oxooctatriacontyl) 

cyclopropyl)hexadecyl)hexacosanoate)-α-D-arabinofuranoside (82b): 

 

A solution of (EDCI) (6.1 mg, 0.032 mmol) in dry CH2Cl2 (1 mL) was added dropwise to a 

stirred solution of α-D-arabinofuranoside (81b) (13.5 mg, 0.00630 mmol), DMAP (3.8 mg, 

0.032 mmol) and (R)-2-((R)-1-((tert-butyldimethylsilyl)oxy)-16-((1S,2R)-2-((S)-20-methyl-

19-oxooctatriacontyl) cyclopropyl) hexadecyl)hexacosanoic acid (12.8 mg, 0.00945 mmol) in 

dry CH2Cl2 (1 mL) at 0 ºC under nitrogen. The mixture was stirred for 72 h. then worked up 

and purified as above to afford the title compound (82b) (10 mg, 50%) [NSI–Found (M+Na)+: 

3381.9; C222H392NaO17Si, requires: 3381.9]; []
23

D -7 (c 0.1, CHCl3), which showed δH (400 MHz, 

CDCl3): 7.40 – 7.21 (25H, m), 5.02 (1H, br.d, J 4.3 Hz), 4.97 (1H, br.s), 4.70 (2H, d, J 11.8 Hz), 

4.66 (2H, br.s), 4.61 (1H, d, J 11.8 Hz), 4.55 – 4.46 (4H, m), 4.42 (1H, d, J 11.7 Hz), 4.34 (1H, 

br.d, J 1.4 Hz), 4.26 – 4.21 (2H, including a broad double doublet J 5.4, 9.0 Hz at 4.24), 4.20 

(1H, br.d, J 5.6 Hz), 4.17 – 4.09 (4H, including a broad quartet J 7.1 Hz at 4.13), 4.10 – 4.05 

(1H, m), 4.00 (1H, br.dd, J 4.4, 6.8 Hz), 3.96 – 3.88 (2H, m), 3.84 (1H, dd, J 4.8, 10.3 Hz), 3.79 – 

3.75 (1H, m), 3.64 – 3.58 (3H, including a broad double doublet J 4.5, 10.2 Hz at 3.6), 2.55 – 

2.46 (4H, including a sextet J 6.7 Hz at 2.51), 2.41 (4H, dt, J 0.9, 7.1 Hz), 1.73 – 1.10 (289H, m), 

1.05 (6H, d, J 6.9 Hz), 0.89 (12H, t, J 6.8 Hz), 0.85 (9H, s), 0.70 – 0.61 (4H, m), 0.56 (2H, dt, J 
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4.2, 8.3 Hz), 0.04 (3H, s), 0.01 (3H, s), -0.33 (2H, br.q, 5.1 Hz); δC (101 MHz, CDCl3): 215.2, 

175.0, 174.4, 138.6, 138.5, 137.8, 137.75, 137.7, 137.4, 136.1, 128.5, 128.4, 128.35, 128.3, 128.2, 

128.1, 128.0, 127.8, 127.7, 127.65, 127.6, 127.5, 127.4, 125.0, 105.9, 100.2, 85.2, 84.5, 83.7, 

82.9, 80.1, 78.9, 73.4, 73.2, 72.5, 72.45, 72.4, 72.2, 72.1, 70.3, 67.2, 66.2, 64.3, 51.5, 46.3, 41.1, 

35.5, 33.7, 33.0, 32.2, 31.9, 30.2, 28.7, 27.7, 27.4, 27.3, 26.4, 25.8, 23.7, 23.4, 22.7, 16.4, 15.8, 

14.1, 10.9, -4.4, -4.8; νmax: 3415, 3067, 3032, 2957, 2920, 1740, 1731, 1463, 1217, 1171, 1048, 

881, 721 cm-1. 

 

p-Cresyl 2,3-di-O-benzoyl-5-O-tert-butyldiphenylsilyl-1-thio-α-D-arabinofuranoside (84):239 

 

Benzoyl chloride (21.8 g, 18.1 mL, 155 mmol) was added dropwise to a stirred solution of α-D-

arabinofuranoside (83) (22 g, 4.4 mmol) in anhydrous pyridine (50 mL) at 0 ºC under nitrogen. 

The mixture was allowed to reach room temperature and stirred for 6 h, when TLC showed 

no starting material was left. The solvent was evaporated under reduced pressure, to give the 

residue which was diluted with ethyl acetate (250 mL), and washed with water (2×50 mL), 1 

M aq. HCl (2×50 mL), sat. aq. NaHCO3 (1×50 mL) and brine (1×50 mL). The organic layer 

was dried (MgSO4), then the solvent was evaporated under reduced pressure. The residue was 

purified by column chromatography on silica eluting with hexane/ethyl acetate (5:1) to give the 

title compound (84) as a colourless thick oil (22 g, 85%) [MALDI–Found (M+Na)+: 702.1, 

C42H42NaO6SSi, requires: 702.1], [] 20

D
-16 (c 1.0, CHCl3), which showed δH (400 MHz, CDCl3): 

7.76 – 7.25 (24H, m), 5.74 (2H, br. d, J 5.4 Hz), 5.68 (1H, br. s), 4.64 (1H, br. q, J 4.5 Hz), 

4.06 (2H, br. d, J 4.4 Hz), 2.35 (3H, s), 1.08 (9H, s); δC (101 MHz, CDCl3): 165.4, 165.3, 

135.7, 135.65, 135.6, 135.5, 133.4, 133.1, 133.0, 132.8, 132.7, 132.4, 129.9, 129.8, 129.7, 

129.5, 128.4, 128.3, 128.2, 127.6, 91.3, 83.1, 82.3, 77.6, 63.5, 26.7, 21.1; νmax: 3069, 2929, 

2858, 1725, 1493, 1109, 708 cm-1. All data were identical to the authentic sample.  

 

 

 

 

 



Chapter 4                                                                                                              Experimental  

180 

 

2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2-O-benzoyl-α-D-arabinofuranoside (85):  

 

Tetrabutylammonium fluoride (17.8 mL, 0.0616 mol, 1.0 M in THF) was added dropwise to a 

stirred solution of α-D-arabinofuranoside (52) (6.7 g, 0.0089 mol) in anhydrous THF (50 mL) 

at 0 ºC under nitrogen. The mixture was allowed to reach room temperature and stirred for 4 h, 

when TLC showed no starting material was left. The mixture was diluted with ethyl acetate 

(100 mL) and water (50 mL). The organic layer was separated and the aqueous layer was re-

extracted with ethyl acetate (3×50 mL). The combined organic layers were washed with sat. 

aq. NH4Cl (50 mL), brine (50 mL), dried (MgSO4) and the solvent was concentrated. The 

residue was purified by column chromatography on silica eluting with petrol/ethyl acetate 

(1:1) to give the title compound (85) as a colourless thick oil (4.3 g, 95%) [MALDI–Found 

(M+Na)+: 531.2; C29H32NaO8, requires: 531.2]; []
23

D +53 (c 4.0, CHCl3), which showed      

δH (400 MHz, CDCl3): 7.98 – 7.93 (2H, m), 7.53 (1H, t, J 7.4 Hz), 7.39 (2H, t, J 7.7 Hz), 7.33 

– 7.17 (10H, m), 5.20 (1H, br.s), 5.04 (1H, br.s), 4.65 (1H, d, J 12.0 Hz), 4.61 (1H, d, J 12.0 

Hz), 4.51 (1H, d, J 12.2 Hz), 4.48 (1H, d, J 12.2 Hz), 4.10 (2H, br.s), 3.85 (1H, dd, J 5.6, 10.3 

Hz), 3.80 (1H, m), 3.76 (1H, br.p, J 5.2  Hz), 3.72 –  3.66 (1H, m), 3.63 (1H, dd, J 4.3, 10.3 

Hz), 3.60 – 3.52 (2H, including a broad doublet J 4.8 Hz at 3.58), 2.59 – 2.31 (2H, including 

2 x OH groups); δC (101 MHz, CDCl3): 166.6, 138.3, 138.0, 133.6, 129.8, 129.0, 128.5, 

128.4, 128.3, 127.8, 127.6, 105.3, 85.9, 84.2, 76.6, 76.4, 73.4, 72.2, 69.7, 67.1, 61.9; νmax: 

3405, 3065, 3031, 2945, 2868,1715, 1465, 1105, 884, 712 cm-1. 
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzoyl-5-O-tert-butyldiphenylsilyl-α-

D-arabinofuranosyl-(1→3)-[2,3-di-O-benzoyl-5-O-tert-butyldiphenylsilyl-α-D-arabinofuranosyl-

(1→5)]-2-O-benzoyl-α-D-arabinofuranoside (86): 

 

Molecular sieves 4 Å (1.5 g) was added to a stirred solution of the donor p-cresyl 2,3-di-O-

benzoyl-5-O-tert-butyldiphenylsilyl-1-thio-α-D-arabinofuranoside (84) (16.7 g, 28.9 mmol) and the 

acceptor 2',3'-di-O-benzyl-L-glycerol-(1'→1)-2-O-benzoyl-α-D-arabinofuranoside (85) (4.2 g, 8.2 

mmol) in dry CH2Cl2 (50 mL) at room temperature under nitrogen. The mixture was stirred for 30 

min., then cooled to -36 ºC and N-iodosuccinimide (9.1 g, 0.037 mol) was added followed by the 

addition of silvertriflate (2.1 g, 8.2 mmol). The mixture was stirred at the same temperature until the 

colour turned red/dark brown. When TLC showed no starting material was left, the mixture was 

quenched by the addition of triethylamine (2 mL) until the colour turned yellow, then diluted with 

CH2Cl2 (100 mL) and filtered through celite. The filtrate was evaporated under reduced pressure, 

and the residue was purified by column chromatography on silica eluting with hexane/ethyl acetate 

(5:2) to give the title compound (86) as a colourless thick oil (13 g, 91%) [MALDI–Found 

(M+Na)+: 1682.6679, C99H104NO20Si2, requires: 1682.6685], []
17

D -1.4 (c 2.8, CHCl3); which showed 

δH (400 MHz, CDCl3): 8.01 – 7.92 (10H, m), 7.70 – 7.67 (4H, m), 7.65 – 7.61 (4H, m), 7.58 – 7.53 (2H, 

m), 7.50 – 7.44 (3H, m), 7.41 – 7.21 (32H, m), 5.66 – 5.62 (2H, including a broad doublet J 4.8 Hz at 

5.63), 5.61 (1H, br.s), 5.55 (1H, br.d, J 1.3 Hz), 5.51 (1H, br.d, J 0.9 Hz), 5.43 (1H, br.d, J 0.9 Hz), 5.31 

(1H, br.s), 5.22 (1H, br.s), 4.68 (2H, br.s), 4.53 (1H, d, J 12.0 Hz), 4.49 (1H, d, J 12.0 Hz), 4.47 (1H, 

br.s), 4.40 (1H, dd, J 5.2, 9.7 Hz), 4.38 – 4.32 (2H, including a broad double doublet J 5.8, 10.5 Hz at 

4.36), 4.04 (1H, dd, J 4.9, 11.4 Hz), 3.95 – 3.89 (5H, m), 3.85 (1H, dd, J 2.2, 11.6 Hz), 3.81 (1H, dd, J 

5.1, 10.1 Hz), 3.68 (1H, dd, J 4.7, 10.4 Hz), 3.65 – 3.59 (2H, including a broad triplet J 4.7 Hz at 3.63), 

1.00 (9H, s), 0.96 (9H, s); δC (101 MHz, CDCl3): 165.5, 165.4, 165.2, 165.1, 138.6, 138.3, 135.7, 135.6, 

135.5, 133.3, 133.2, 133.15, 133.1, 133.0, 130.0, 129.9, 129.8, 129.75, 129.7, 129.6, 129.35, 129.3, 

129.25, 129.2, 128.4, 128.35, 128.3, 128.25, 128.2, 127.8, 127.7, 127.6, 127.55, 127.5, 127.4, 126.3, 

106.1, 105.2, 83.7, 83.4, 82.3, 82.2, 82.1, 81.8, 80.5, 77.2, 76.6, 73.3, 72.2, 70.1, 67.2, 66.1, 63.3, 26.7, 

26.6, 19.3, 19.2; νmax: 3069, 3010, 2932, 2857, 1723, 1602, 1452, 1072, 706 cm-1. 
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 2',3'-Di-O-benzyl-L-glycerol-(1'→1)-5-O-tert-butyldiphenylsilyl-α-D-arabinofuranosyl-

(1→3)-[5-O-tert-butyldiphenylsilyl-α-D-arabinofuranosyl-(1→5)]-α-D-rabinofuranoside (87):  

 

A solution of sodium methoxide (25 mL, 1M, in methanol) was added to a stirred solution of α-

D-arabinofuranoside (86) (9.1 g, 5.4 mmol) in dry CH2Cl2:MeOH (1:1, 50 mL) at room 

temperature until a PH of 11 was obtained. The mixture was stirred at room temperature for 90 

min. When TLC showed no starting material was left, the mixture was neutralized by the addition 

of acetic acid. The solvent was evaporated under reduced pressure to give an oily residue. The 

residue was purified by column chromatography on silica eluting with chloroform/methanol (1:1) 

to give the title compound (87) as a colourless thick oil (5.1 g, 83%) [MALDI–Found (M+Na)+: 

1167.4913, C64H80NaO15Si2, requires: 1167.4928], [] 17

D +35 (c 6.7, CHCl3) which showed δH 

(400 MHz, CDCl3): 7.69 – 7.62 (7H, m), 7.51 – 7.18 (23H, m), 5.18 (1H, br.s), 5.12 (1H, br.s), 

4.93 (1H, br.s), 4.67 (1H, d, J 12.1 Hz), 4.63 (1H, d, J 12.1 Hz), 4.55 (1H, d, J 12.1 Hz), 4.51 

(1H, d, J 12.1 Hz), 4.18 (1H, br.d, J 3.4 Hz), 4.16 (1H, br.dd, J 3.7, 6.1 Hz), 4.12 (1H, br.d, J 3.8 

Hz), 4.07 (2H, br.s), 4.03 – 3.98 (2H, br.m), 3.98 – 3.93 (2H, including a broad doublet J 2.0 Hz 

at 3.96), 3.80 (1H, dd, J 3.3, 8.8 Hz), 3.78 – 3.68 (4H, m), 3.67 – 3.64 (1H, m), 3.63 – 3.59 (2H, 

including a broad double doublet J 3.0, 8.1 Hz at 3.60), 3.57 (1H, dd, J 5.2, 9.9 Hz), 3.02 – 2.55 

(5H, br.m), 1.05 (9H, s), 1.03 (9H, s); δC (101 MHz, CDCl3): 138.4, 138.2, 135.6, 135.5, 131.9, 

131.8, 131.7, 131.6, 130.2, 130.1, 130.0, 128.4, 128.35, 128.3, 128.0, 127.9, 127.8, 127.7, 127.6, 

127.55, 127.5, 108.6, 108.4, 108.3, 87.8, 87.4, 83.7, 82.3, 79.5, 78.8, 78.5, 77.8, 77.7, 76.7, 76.6, 

73.3, 71.9, 69.7, 67.0, 66.0, 64.0, 63.8, 26.7, 26.6, 19.0, 18.9; νmax: 3418, 3071, 2933, 2858, 1454, 

1053, 822 cm-1. 
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-tert-butyldiphenylsilyl-α-D-

arabinofuranosyl-(1→3)-[2,3-di-O-benzyl-5-O-tert-butyldiphenylsilyl-α-D-arabinofuranosyl-

(1→5)]-2-O-benzyl-α-D-arabinofuranoside (88): 

 

A solution of α-D-rabinofuranoside (87) (5.0 g, 4.0 mmol) in dry DMF was added dropwise to a 

stirred suspension of NaH (1.0 g, 43 mmol) (60% w/w, dispersion in mineral oil) at room 

temperature under nitrogen. The mixture was stirred for 10 min then benzyl bromide (5.2 g, 

3.6 mL, 30 mmol) in dry DMF (2 mL) was added. The mixture was stirred at room temperature 

for 6 h. When TLC showed no starting material was left. The reaction mixture was quenched by 

slow addition of methanol (2 mL), and water (10 mL). The organic layer was separated and the 

aqueous layer was re-extracted with ethyl acetate (2×50 mL). The combined organic layers were 

washed with water (25 mL) and brine (25 mL), dried (MgSO4) and the solvent was evaporated under 

reduced pressure. The residue was purified by column chromatography on silica eluting with 

petrol/ethyl acetate (5:1) to give the title compound (88) as a colourless thick oil (4.5 g, 65%) 

[MALDI–Found (M+Na)+: 1617.7, C99H110NaO15Si2, requires: 1617.7], [] 17

D
 +43 (c 1.9, CHCl3) 

which showed δH (400 MHz, CDCl3): 7.71 – 7.57 (8H, m), 7.48 – 7.13 (47H, m), 5.18 (2H, br.d, 

J 2.2 Hz), 5.07 (1H, br.s), 4.70 (1H, d, J 12.0 Hz), 4.66 (1H, d, J 12.0 Hz), 4.58 – 4.50 (7H, m), 

4.47 (2H, d, J 11.9 Hz), 4.46 (1H, d, J 11.9 Hz), 4.39 (1H, d, J 11.9 Hz), 4.38 (1H, d, J 11.9 Hz), 

4.30 (1H, br.dd, J 2.8, 6.8 Hz), 4.18 (2H, br.m), 4.13 – 4.07 (4H, m), 4.06 – 3.99 (2H, including a 

broad double doublet J 4.2, 10.6 Hz at 4.03), 3.95 (1H, dd, J 4.7, 11.9 Hz), 3.87 (1H, dd, J 5.0, 

10.5 Hz), 3.84 – 3.80 (2H, including a broad double doublet J 4.0, 11.0 Hz at 3.82), 3.79 – 3.74 

(4H, m), 3.68 – 3.58 (3H, m), 1.03 (18H, s); δC (101 MHz, CDCl3): 138.6, 138.3, 138.2, 138.0, 

137.9, 137.6, 137.5, 135.75, 135.67, 135.65, 135.6, 133.55, 133.5, 133.4, 133.3, 129.6, 129.55, 

129.5, 128.4, 128.35, 128.3, 128.25, 128.2, 127.9, 127.85, 127.8, 127.75, 127.7, 127.65, 127.6, 

127.55, 127.5, 127.45, 127.4, 106.6, 106.4, 105.4, 88.6, 88.5, 88.0, 83.0, 82.8, 82.3, 81.8, 81.3, 

80.3, 73.4, 72.2, 72.0, 71.9, 71.8, 71.7, 71.6, 70.4, 67.0, 66.0, 63.4, 63.2, 26.8, 26.7, 19.3, 19.2; 

νmax: 3067, 3031, 2929, 2857, 1495,1455, 1111, 698 cm-1. 
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-α-D-arabinofuranosyl-(1→3)-[2,3-di-

O-benzyl-α-D-arabinofuranosyl-(1→5)]-2-O-benzyl-α-D-arabinofuranoside (89): 

 

Tetrabutylammonium fluoride (14.3 mL, 0.0493 mol, in 1.0 M THF) was added dropwise to a 

stirred solution of α-D-arabinofuranoside (88) (3.8 g, 2.3 mmol) in anhydrous THF (25 mL) at 0 

ºC under nitrogen. The mixture was allowed to reach room temperature and stirred for 8 h 

then TLC showed no starting material was left, the mixture was diluted with ethyl acetate 

(100 mL) washed with sat. aq. NH4Cl (50 mL) and brine (50 mL). The organic layer was 

dried (MgSO4) and concentrated to give the residue which was purified by column 

chromatography on silica eluting with hexane/ethyl acetate (1:1) to give to the title compound 

(89) as a colourless thick oil (2.3 g, 87%) [MALDI–Found (M+Na)+: 1141.5, C67H74NaO15, 

requires: 1141.5], [] 17

D
+53 (c 4.7, CHCl3) which showed   δH (400 MHz, CDCl3): 7.34 – 7.16 

(35H, m), 5.10 (1H, br.s), 5.07 (1H, br.s), 5.04 (1H, br.d, J 0.7 Hz), 4.64 (2H, br.s), 4.55 – 

4.39 (11H, m), 4.31 (1H, d, J 11.7 Hz), 4.27 (1H, dd, J 3.8, 7.4 Hz), 4.23 – 4.17 (1H, m), 4.07 

(1H, br.d, J 2.2 Hz), 4.06 (1H, br.dd, J 4.0, 7.6 Hz), 4.02 (1H, br.dd, J 2.2, 5.9 Hz), 3.98 (1H, 

br.dd, J 1.3, 3.8 Hz), 3.96 (1H, br.dd, J 1.2, 3.6 Hz), 3.88 (1H, br.dd, J 4.1, 12.3 Hz), 3.85 

(1H, br.dd, J 3.2, 6.5 Hz), 3.82 (1H, d, J 5.2 Hz), 3.78 (1H, dd, J 3.7, 7.4 Hz), 3.76 – 3.72 

(2H, m), 3.71 – 3.64 (2H, including a broad double doublet J 12.3, 2.4 Hz at 3.68), 3.61 (1H, 

dd, J 4.8, 7.3 Hz), 3.59 – 3.55 (3H, including a broad doublet J 5.1 Hz at 3.58), 3.53 (1H, dd, 

J 5.9, 12.3 Hz); δC (101 MHz, CDCl3): 138.5, 138.2, 137.7, 137.6, 137.5, 137.4, 137.2, 128.5, 

128.45, 128.4, 128.35, 128.3, 128.0, 127.95, 127.9, 127.85, 127.8, 127.75, 127.7, 127.6, 

127.5, 106.1, 106.0, 105.9, 88.7, 88.3, 87.4, 83.0, 82.9, 82.4, 81.9, 80.8, 79.8, 73.4, 72.3, 

72.25, 72.2, 72.0, 71.9, 71.8, 70.2, 67.2, 64.8, 62.7; νmax: 3459, 3064, 3030, 2921, 2860, 

1605, 1496, 1115, 820 cm-1. 
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-methanesulfonyl-α-D-arabinofuranosyl-

(1→3)-[2,3-di-O-benzyl-5-O-methanesulfonyl-α-D-arabinofuranosyl-(1→5)]-2-O-benzyl-

α-D-arabinofuranoside (90): 

 

Methanesulfonyl chloride (0.57 g, 0.40 mL, 0.0050 mol) and DMAP (0.05g, 0.43 mmol) 

were added to a stirred solution of α-D-arabinofuranoside (89) (0.56 g, 0.50 mmol) in dry 

pyridine (5 mL) under nitrogen at room temperature. The mixture was stirred for 16 h then 

TLC showed no starting material was left. The mixture was quenched by the addition of water 

(1 mL), the organic layer was separated by decanting and diluted with CH2Cl2 (10 mL). The 

mixture was washed with 1N aq. HCl (2×10 mL), sat. aq. NaHCO3 (2×10 mL), dried (MgSO4), 

filtered and the solvent was evaporated under reduced pressure to give a thick oil residue which 

was purified by column chromatography on silica eluting with petrol/ethyl acetate (3:1) to 

afford the title compound (90) as a colourless thick oil (0.55 g, 87%) [MALDI–Found 

(M+Na)+: 1297.4;  C69H78NaO19S2, requires: 1297.4]; [] 17

D
+59 (c 0.60, CHCl3), which showed 

δH (400 MHz, CDCl3): 7.40 – 7.15 (35H, m), 5.16 (1H, br.s), 5.13 (1H, br.s), 5.07 (1H, br.s), 

4.68 (2H, br.s), 4.57 – 4.43 (11H, m), 4.40 (1H, d, J 11.3 Hz), 4.38 – 4.34 (1H, m), 4.33 (1H, 

br.dd, J 3.9, 7.3 Hz), 4.30 – 4.26 (2H, including a broad double doublet J 3.4, 7.3 Hz at 4.29), 

4.24 (1H, d, J 5.4 Hz), 4.22 – 4.12 (2H, m), 4.11 – 4.07 (2H, m), 4.02 – 3.97 (2H, m), 3.91 – 

3.84 (4H, m), 3.80 (1H, br.p, J 4.8 Hz), 3.73 (1H, br.dd, J 1.5, 11.5 Hz), 3.67 – 3.59 (3H, 

including a broad double doublet J 4.8, 8.7 Hz at 3.64), 2.94 (3H, s), 2.89 (3H, s); δC (101 

MHz, CDCl3): 138.5, 138.2, 137.4, 137.3, 137.2, 137.0, 128.6, 128.55, 128.5, 128.45, 128.4, 

128.3, 128.1, 128.05, 128.0, 127.95, 127.9, 127.7, 127.65, 127.6, 127.55, 106.5, 106.1, 105.8, 

88.3, 87.7, 87.5, 82.9, 82.8, 80.3, 80.2, 79.3, 79.2, 77.2, 73.4, 72.35, 72.3, 72.2, 72.1, 72.0, 

71.9, 70.2, 68.8, 68.5, 67.2, 65.2, 37.6, 37.5; νmax: 3088, 3065, 3031, 2933, 2871, 1586, 1454, 

1177, 745 cm-1. 
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-behenate-α-D-arabinofuranosyl-

(1→3)-[2,3-di-O-benzyl-5-O-behenate-α-D-arabinofuranosyl-(1→5)]-2-O-benzyl-α-D-

arabinofuranoside (91):  

 

Cesium hydrogencarbonate (0.076 g, 0.39 mmol) was added to a stirred solution of α-D-

arabinofuranoside (90) (0.05 g, 0.03 mmol) and behenic acid (0.03 g, 0.09 mmol) in dry DMF:THF 

(1:5, 1 mL) at room temperature under nitrogen. The mixture was stirred at 70 ºC for 3 days, then 

TLC showed no starting material was left. The suspension was diluted with ethyl acetate (25 mL) and 

water (5 mL). The organic layer was separated and the aqueous layer was re-extracted with ethyl 

acetate (2×10 mL). The combined organic layers were washed with water (5 mL) and brine (5 

mL), dried (MgSO4) and filtered. The filtrate was evaporated under reduced pressure to give a thick 

oil residue which was purified by column chromatography on silica eluting with petrol/ethyl acetate 

(3:1) to afford the title compound (91) as a colourless thick oil (55 mg, 80%) [MALDI–Found 

(M+Na)+: 1786.1, C111H158NaO17, requires: 1786.1], [] 22

D
+36 (c 1.0, CHCl3), which showed δH (400 

MHz, CDCl3): 7.31 – 7.11 (35H, m), 5.09 (1H, br.s), 5.06 (1H, br.s), 4.97 (1H, br.s), 4.59 (2H, br.s), 

4.51 – 4.35 (10H, m), 4.33 (1H, d, J 11.8 Hz), 4.26 (1H, d, J 11.8 Hz), 4.20 (1H, br.dd, J 3.3, 7.3 Hz), 

4.12 (6H, br.m), 4.04 (1H, br.dd, J 2.8, 6.9 Hz), 4.00 (1H, br.d, J 2.5 Hz), 3.95 – 3.89 (2H, m), 3.84 

(1H, dd, J 4.3, 11.8 Hz), 3.81 – 3.76 (2H, including a broad double doublet J 4.1, 8.5 Hz at 3.78), 3.75 

(1H, br.d, J 3.4 Hz), 3.74 – 3.68 (1H, p, J 5.0 Hz), 3.66 (1H, br.dd, J 2.1, 11.7 Hz), 3.58 – 3.49 (3H, 

including a broad quartet J 4.6 Hz at 3.53), 2.17 (4H, t, J 7.6 Hz), 1.56 – 1.00 (76H, m), 0.81 (6H, t, J 

6.8 Hz); δC (101 MHz, CDCl3): 173.6, 173.5, 138.6, 138.3, 137.7, 137.6, 137.5, 137.4, 137.3, 128.5, 

128.4, 128.35, 128.3, 128.0, 127.95, 127.9, 127.85, 127.8, 127.75, 127.7, 127.65, 127.6, 127.5, 106.5, 

106.2, 105.5, 88.3, 88.2, 88.1, 83.4, 83.3, 80.8, 80.3, 79.2, 78.9, 76.9, 73.4, 72.3, 72.2, 72.1, 72.0, 

71.9, 71.7, 70.3, 67.1, 65.6, 63.3, 63.2, 34.1, 34.0, 31.9, 29.7, 29.6, 29.5, 29.4, 29.35, 29.3, 29.2, 24.8, 

22.7, 14.1; ; νmax: 3064,  3031, 2923, 2853, 1740, 1718, 1455, 1066, 698  cm-1. 
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L-glycerol-(1'→1)-5-O-behenate-α-D-arabinofuranosyl-(1→3)-5-O-behenate-α-D-

arabinofuranosyl-(1→5)-α-D-arabinofuranoside (92): 

 

Palladium hydroxide on activated charcoal (Pd(OH)2-C/20%, 60 mg, 1.1 fold by weight) was 

added to a stirred solution of α-D-arabinofuranoside (91) (55 mg, 31 mmol) in CH2Cl2:MeOH 

(2:1, 2 mL) at room temperature under hydrogen. The mixture was stirred for 36 h. When TLC 

showed no starting material was left, the mixture was filtered off through celite and the solvent 

was evaporated under reduced pressure to give a residue which was purified by column 

chromatography on silica eluting with chloroform/methanol (10:1) to give (92) as a colourless 

thick oil (29 mg, 82%) [MALDI–Found (M+Na)+: 1155.8; C62H1116NaO17, requires: 1155.8]; 

[] 18

D -21 (c 1.1, CHCl3), which showed δH (400 MHz, CDCl3+few drops CD3OD): 5.01 (1H, 

br.s), 4.97 (1H, br.s), 4.90 (1H, br.s), 4.28 – 4.20 (2H, including abroad double doublet J 3.2, 

11.7 Hz at 4.24), 4.19 – 4.13 (3H, including abroad double doublet J 5.0, 11.8 Hz at 4.17), 4.12 

(1H, br.d, J 4.3 Hz), 4.11 – 4.08 (1H, m), 4.04 (1H, br.q, J 5.5 Hz), 4.01 – 3.95 (3H, br.m), 3.94 

(1H, dd, J 3.6, 11.5 Hz), 3.83 – 3.76 (3H, m), 3.73 (1H, br.dd, J 4.8, 10.1 Hz), 3.67 – 3.62 (1H, 

m), 3.62 – 3.57 (2H, including a broad doublet J 3.1 Hz at 3.60), 3.56 – 3.51 (1H, m), 2.30 (4H, 

t, J 7.6 Hz), 1.64 – 1.02 (83H, m), 0.83 (6 H, t, J 6.5 Hz); δC (101 MHz, CDCl3): 174.05, 174.0, 

108.0, 107.7, 83.3, 83.0, 82.4, 81.8, 81.3, 80.7, 79.0, 77.6, 75.8, 69.9, 69.1, 66.4, 63.9, 63.7, 

63.5, 34.0, 33.95, 31.8, 29.6, 29.5, 29.45, 29.4, 29.3, 29.25, 29.2, 29.1, 29.0, 24.8, 24.7, 22.6, 

13.9.; νmax: 3374,  2920, 2852, 1730, 1723, 1180, 757 cm-1. 
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-(2R)-2-(1-((tert-butyldimethyl-

silyl)oxy)-16-((1S,2R)-2-((S)-20-methyl-19-oxooctatriacontyl)cyclopropyl) hexadecyl) 

hexacosanoate-α-D-arabinofuranosyl-(1→3)-[2,3-di-O-benzyl-5-O-(2R)-2-(1-((tert-butyl -

dimethylsilyl)oxy)-16-((1S,2R)-2-((S)-20-methyl-19-oxooctatriacontyl) cyclopropyl) 

hexadecyl)hexacosanoate-α-D-arabinofuranosyl-(1→5)]-2-O-benzyl-α-D-arabinofuranoside 

(93): 

 

A solution of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI) (60 mg, 

0.31 mmol), in dry CH2Cl2 (1 mL) was added to a stirred solution of α-D-arabinofuranoside (89) 

(35 mg, 0.031 mmol),  molecular sieves 4 Å (50 mg), DMAP (38 mg, 0.31) (2R)-2-(1-((tert-

butyldimethylsilyl)oxy)-16-((1S,2R)-2-((S)-20-methyl-19-oxooctatriacontyl)cyclopropyl) hexadecyl) 

hexacosanoic acid (76f) (85 mg, 0.062 mmol) in dry CH2Cl2 (1 mL) at room temperature 

under nitrogen. The mixture was stirred for 4 days. When TLC showed no starting material 

was left. The precipitate was filtered off and washed with CH2Cl2 (10 mL), the solvent was 

evaporated and the residue was purified by column chromatography on silica eluting with 

hexane/ethylacetate (10:1) to afford the title compound (93) as a colourless thick oil (60 mg, 

51%) [MALDI–Found (M+Na)+: 3808.2; C247H426NaO21Si2, requires: 3808.2]; [] 20

D
+18                

(c 5.0, CHCl3), which showed δH (400 MHz, CDCl3): 7.69 – 6.95 (35H, m), 5.16 (1H, br.s), 

5.13 (1H, br.s), 5.04 (1H, br.s), 4.68 (1H, d, J 12.1 Hz), 4.65 (1H, d, J 12.1 Hz), 4.58 – 4.45 

(9H, m), 4.45 (1H, d, J 11.9 Hz), 4.38 (1H, d, J 11.9 Hz), 4.33 (1H, d, J 11.8 Hz), 4.29 – 4.22 

(5H, including a broad double doublet J 4.0, 9.1 Hz at 4.25), 4.21 – 4.16 (2H, m), 4.13 (1H, 

br.dd, J 5.7, 8.2 Hz), 4.06 (1H, br.d, J 2.7 Hz), 4.01 – 3.96 (2H, m), 3.94 – 3.87 (5H, m), 3.85 

(1H, br.dd, J 4.8, 10.7 Hz), 3.78 (1H, br.p, J 5.1 Hz), 3.76 – 3.71 (1H, m), 3.65 – 3.56 (3H, 

including a broad double doublet J 4.8, 8.2 Hz at 3.60), 2.53 (4H, including sextet, J 5.4 Hz), 
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2.42 (4H, t, J 7.6 Hz), 1.68 – 1.11 (288H, m), 1.06 (6H, d, J 6.9 Hz), 0.89 (12H, t, J 6.8 Hz), 

0.85 (9H, s), 0.84 (9H, s), 0.71 – 0.61 (4H, m), 0.57 (2H, dt, J 4.0, 8.5 Hz), 0.03 (6H, s), 0.01 

(6H, s), -0.32 (2H, br.q, J 5.1 Hz); δC (101 MHz, CDCl3): 215.2, 174.3, 174.2, 138.5, 138.2, 

137.8, 137.7, 137.6, 137.4, 137.3, 128.5, 128.45, 128.4, 128.35, 128.3, 128.2, 127.9, 127.85, 

127.8, 127.75, 127.7, 127.65, 127.6, 127.55, 127.5, 106.6, 106.3, 105.2, 88.3, 88.2, 87.8, 

83.7, 83.6, 81.2, 80.2, 79.4, 78.9, 77.2, 73.4, 73.1, 72.3, 72.2, 72.0, 71.9, 71.6, 70.3, 67.0, 

65.9, 63.0, 62.7, 51.6, 46.3, 41.1, 33.6, 33.5, 33.0, 31.9, 30.3, 30.2, 29.9, 29.8, 29.75, 29.7, 

29.65, 29.6, 29.55, 29.5, 29.45, 29.4, 29.3, 28.7, 27.9, 27.8, 27.3, 27.2, 27.1, 25.8, 24.0, 23.7, 

22.7, 22.6, 18.0, 16.4, 15.8, 14.1, 10.9, -4.4, -4.5, -4.7, -4.8; νmax: 3063,3031, 2920, 2851, 

1741, 1714, 1467, 1106, 836, 699 cm-1. 

 

2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-(2R)-2-(1-hydroxy-16-((1S, 2R)-

2-((S)-20-methyl-19-oxooctatriacontyl)cyclopropyl)hexadecyl)hexacosanoate-α-D-

arabinofuranosyl-(1→3)-[2,3-di-O-benzyl-5-O-((2R)-2-(1-hydroxy-16-((1S,2R)-2-((S)-20-

methyl-19-oxooctatriacontyl) cyclopropyl) hexadecyl) hexacosanoate-α-D-arabinofuranosyl-

(1→5)]-2-O-benzyl-α-D-arabinofuranoside (94): 

 

The protected glycolipid α-D-arabinofuranoside (93) (53 mg, 0.014 mmol) was dissolved in 

dry THF (10 mL) in a dry polyethylene vial equipped with an acid proof rubber septum, 

followed by addition of pyridine (0.1 mL) at room temperature under nitrogen. The mixture 

was cooled to 0 oC, and then hydrogen fluoride-pyridine complex as (70% w, 1.5 mL) was 

added dropwise. The mixture was stirred at 43 oC for 24 h. When TLC showed no starting 

material was left, the mixture was neutralized by pouring it slowly into saturated aqueous 

solution of NaHCO3 and stirred until no more CO2 was liberated. The organic layer was 



Chapter 4                                                                                                              Experimental  

190 

 

separated and the aqueous layer was re-extracted with chloroform (3×10 mL). The combined 

organic layers were dried (MgSO4) and the solvent was evaporated to give the residue which 

was purified by column chromatography on silica eluting with hexane/ethyl acetate (10:1) 

affording compound (94) as a colourless thick oil (38 mg, 76%) [MALDI–Found (M+Na)+: 

3579.9; C235H398NaO21, requires: 3579.9]; [] 21

D +19  (c 1.2, CHCl3), which showed δH (400 

MHz, CDCl3): 7.36 – 7.15 (35H, m), 5.16 (1H, br.s), 5.13 (1H, br.s), 5.05 (1H, br.s), 4.67 

(2H, br.s), 4.55 (1H, d, J 11.8 Hz), 4.53 – 4.47 (7H, m), 4.45 (3H, d, J 11.8 Hz), 4.40 (1H, d, 

J 11.8 Hz), 4.36 – 4.22 (7H, m), 4.17 (1H, br.dd, J 3.7, 6.9 Hz), 4.11 (1H, br.dd, J 3.3, 6.3 

Hz), 4.07 (1H, br.d, J 2.1 Hz), 4.00 – 3.96 (2H, m), 3.94 – 3.88 (2H, m), 3.88 – 3.82 (2H, 

including a broad double doublet J 4.5, 9.8Hz at 3.86), 3.81 – 3.75 (2H, m), 3.73 (1H, br.d, J 

11.7 Hz), 3.67 – 3.51 (5H, including a broad doublet J 5.3 Hz at 3.61), 2.51 (2H, sextet, J 6.7 

Hz), 2.42 (6H, including a triplet J 7.2 Hz), 2.05 – 1.10 (288H, m), 1.06 (6H, d, J 6.9 Hz), 

0.89 (12H, t, J 6.7 Hz), 0.69 – 0.61 (4H, m), 0.57 (2H, dt, J 4.1, 8.5 Hz), -0.33 (2H, br.q, J 

5.0 Hz); δC (101 MHz, CDCl3): 215.2, 175.1, 175.0, 138.6, 138.2, 137.6, 137.5, 137.45, 

137.4, 137.2, 128.5, 128.4, 128.35, 128.3, 128.2, 128.1, 128.0, 127.95, 127.9, 127.85, 127.8, 

127.75, 127.7, 127.6, 127.5, 106.3, 106.2, 105.5, 88.2, 88.0, 87.9, 83.6, 80.7, 80.3, 79.3, 79.2, 

77.2, 73.4, 72.4, 72.2, 72.1, 72.0, 71.7, 70.2, 68.0, 67.1, 65.4, 63.0, 62.9, 51.9, 51.7, 46.3, 

41.1, 35.3, 35.2, 33.0, 31.9, 30.3, 30.2, 29.8, 29.7, 29.65, 29.6, 29.55, 29.5, 29.45, 29.4, 29.3, 

29.2, 28.7, 27.5, 27.4, 27.3, 25.7, 25.6, 23.7, 22.7, 16.4, 15.8, 14.1, 10.9; νmax: 3511, 

3063,3030, 2918, 2851, 1737, 1714, 1467, 1105, 754, 698 cm-1. 
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L-glycerol-(1'→1)-5-O-(2R)-2-(1-hydroxy-16-((1S,2R)-2-((S)-20-methyl-19-oxooctatriacontyl) 

cyclopropyl)hexadecyl)hexacosanoate-α-D-arabinofuranosyl-(1→3)-[5-O-((2R)-2-(1-hydroxy-

16-((1S,2R)-2-((S)-20-methyl-19-oxooctatriacontyl)cyclopropyl) hexadecyl) hexacosanoate-α-

D-arabinofuranosyl-(1→5)]-α-D-arabinofuranoside (95): 

 

Palladium hydroxide on activated charcoal (Pd(OH)2-C/20%, 40 mg, 1.1 fold by weight) was 

added to a stirred solution of α-D-arabinofuranoside (94) (36 mg, 0.010 mmol) in CH2Cl2:MeOH 

(2:1, 2 mL) at room temperature under hydrogen. The mixture was stirred for 36 h. When TLC 

showed no starting material was left, the mixture was filtered off through celite and the solvent was 

evaporated under reduced pressure to give a residue which was purified by column chromatography 

on silica eluting with chloroform/methanol (10:1) affording compound (95) as a colourless thick oil 

(25 mg, 86%) [MALDI–Found (M+Na)+: 2949.7; C186H356NaO21, requires: 2949.7]; []18

D +19 (c 

2.2, CHCl3), which showed δH (400 MHz, CDCl3+few drops CD3OD): 5.00 (1H, br.s), 4.96 (1H, 

br.s), 4.90 (1H, br.s), 4.41 (1H, dd, J 4.2, 11.6 Hz), 4.36 (1H, dd, J 5.1, 11.9 Hz), 4.26 (1H, dd, J 

11.9, 5.4 Hz), 4.21 (1H, d, J 4.0 Hz), 4.17 (1H, dd, J 3.8, 10.3 Hz), 4.12 (1H, br.d, J 4.8 Hz), 4.08 

(1H, br.q, J 6.6 Hz), 4.04 (1H, d, J 5.1 Hz), 4.01 – 3.96 (3H, m), 3.92 (1H, dd, J 3.8, 8.0 Hz), 3.90 – 

3.86 (2H, m), 3.77 (1H, dd, J 2.7, 8.4 Hz), 3.72 (1H, d, J 5.1 Hz), 3.62 (5H, br.m), 3.54 (1H, dd, J 

2.6, 10.5 Hz), 2.52 – 2.44 (2H, m), 2.38 (6H, including a triplet, J 7.5 Hz), 1.65 – 1.05 (207 H, m), 

1.01 (6H, d, J 6.9 Hz), 0.84 (12H, t, J 6.8 Hz), 0.66 – 0.57 (4H, m), 0.52 (2H, dt, J 4.2, 8.2 Hz), -

0.37 (2H, br.q, J 4.7 Hz); δC (101 MHz, CDCl3): 216.2, 175.05, 174.9, 109.2, 108.7, 81.95, 81.2, 

79.4, 78.0, 77.6, 77.2, 76.5, 72.5, 71.9, 65.0, 63.5, 63.4, 61.5, 52.6, 35.0, 32.8, 31.8, 30.1, 29.6, 

29.55, 29.5, 29.4, 29.3, 29.25, 29.2, 28.9, 28.6, 27.3, 27.2, 26.1, 25.3, 23.5, 22.6, 16.1, 15.7, 14.0, 

10.8.; νmax: 3511, 3063,3030, 2918, 2851, 1737, 1714, 1467, 1105, 754, 698 cm-1. 
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-(2R)-2-((1R)-1-((tert-butyl dimethyl 

silyl)oxy)-12-((2R)-2-(14-((2R)-2-icosylcyclopropyl)tetradecyl) cyclopropyl) dodecyl) 

hexacosanoate-α-D-arabinofuranosyl-(1→3)-[2,3-di-O-benzyl-5-O-(2R)-2-((1R)-1-((tert-

butyldimethylsilyl)oxy)-12-((2R)-2-(14-((2R)-2-icosylcyclopropyl)tetradecyl) cyclopropyl) 

dodecyl) hexacosanoate-α-D-arabinofuranosyl-(1→5)]-2-O-benzyl-α-D-arabinofuranoside 

(96): 

 

A solution of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI) (48 mg, 0.25 

mmol) in dry CH2Cl2 (1 mL) was added to a stirred solution of α-D-arabinofuranoside (89) (28 

mg, 0.025 mmol), molecular sieves 4 Å (50 mg), DMAP (30 mg, 0.24 mmol) and (2R)-2-

((1R)-1-((tert-butyldimethylsilyl)oxy)-12-((2R)-2-(14-((2R)-2-icosylcyclopropyl) tetradecyl) 

cyclopropyl) dodecyl)hexacosanoic acid (76g) (62 mg,  0.049 mmol) in dry CH2Cl2 (1 mL) at 

room temperature under nitrogen. The mixture was stirred for 4 days. When TLC showed no 

starting material was left. The precipitate was filtered off and washed with CH2Cl2 (10 mL), 

the solvent was evaporated and the residue was purified by column chromatography on silica 

eluting with hexane/ethylacetate (10:1) to afford the title compound (96) as a colourless thick 

oil (75 mg, 84%) [MALDI–Found (M+Na)+: 3607.9; C235H402NaO19Si2, requires: 3607.9]; 

[] 22

D
+20 (c 0.90, CHCl3), which showed δH (400 MHz, CDCl3): 7.94 – 6.85 (35H, m), 5.16 

(1H, br.s), 5.13 (1H, br.s), 5.04 (1H, br.s), 4.68 (1H, d, J 12.1 Hz), 4.65 (1H, d, J 12.1 Hz), 

4.57 – 4.45 (9H, m), 4.45 (1H, d, J 11.8 Hz), 4.38 (1H, d, J 11.8 Hz), 4.32 (1H, d, J 11.8 Hz), 

4.28 – 4.20 (5H, m), 4.18 (1H, br.dd, J 3.6, 7.4 Hz), 4.15 – 4.09 (1H, m), 4.06 (1H, br.d, J 2.9 

Hz), 4.01 – 3.96 (2H, m), 3.90 (3H, br.m), 3.87 – 3.81 (2H, including a broad double doublet 

J 4.8, 10.7 Hz at 3.85), 3.78 (1H, br.p, J 5.1 Hz), 3.76 – 3.71 (1H, m), 3.64 – 3.49 (3H, 

including a broad double doublet J 4.8, 8.3 Hz at 3.60), 2.60 – 2.47 (2H, m), 1.67 – 1.06 



Chapter 4                                                                                                              Experimental  

193 

 

(270H, m), 0.89 (12H, t, J 6.8 Hz), 0.85 (9H, s), 0.84 (9H, s), 0.74 – 0.62 (8H, m), 0.57 (4H, 

td, J 4.1 Hz), 0.02 (6H, s), 0.00 (6H, s), -0.33 (4H, br.q, J 4.9 Hz); δC (101 MHz, CDCl3): 

174.3, 174.2, 138.5, 138.3, 137.8, 137.7, 137.6, 137.4, 137.3, 128.5, 128.45, 128.4, 128.35, 

128.3, 127.9, 127.85, 127.8, 127.75, 127.7, 127.65, 127.6, 127.55, 127.5, 106.6, 106.3, 105.2, 

88.3, 88.2, 87.8, 83.7, 83.6, 81.2, 80.2, 79.4, 78.9, 77.2, 73.4, 73.1, 72.3, 72.2, 71.9, 71.6, 

70.3, 67.0, 65.9, 63.0, 62.7, 51.6, 33.6, 33.5, 31.9, 30.3, 30.2, 29.9, 29.8, 29.7, 29.6, 29.5, 

29.4, 28.7, 27.9, 27.8, 27.2, 27.1, 25.9, 25.8, 24.0, 22.7, 18.0, 15.8, 14.1, 11.0, 10.9, -4.4, -4.5, 

-4.7, -4.8; νmax: 3063, 2925, 2854, 1737, 1456, 1101, 770 cm-1. 

 

 2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-(2R)-2-((1R)-1-hydroxy-12-((2 R)-

2-(14-((2R)-2-icosylcyclopropyl)tetradecyl)cyclopropyl)dodecyl)hexacosanoate-α-

D-arabinofuranosyl-(1→3)-[2,3-di-O-benzyl-5-O-(2R)-2-((1R)-1-hydroxy-12-((2R)-2-

(14-((2R)-2-icosylcyclopropyl)tetradecyl) cyclopropyl) dodecyl)hexacosanoate-α-D-

arabinofuranosyl-(1→5)]-2-O-benzyl-α-D-arabinofuranoside (97): 

 

The protected glycolipid α-D-arabinofuranoside (96) (70 mg, 0.019 mmol) was dissolved in dry 

THF (10 mL) in a dry polyethylene vial equipped with an acid proof rubber septum, followed 

by addition of pyridine (0.1 mL) at room temperature under nitrogen. The mixture was cooled 

to 0 oC, and then hydrogen fluoride-pyridine complex as (70% w, 1.5 mL) was added 

dropwise. The mixture was stirred at 43 oC for 24 h. When TLC showed no starting material 

was left, the mixture was neutralized by pouring it slowly into sat. aq. NaHCO3 and stirred 

until no more CO2 was liberated. The organic layer was separated and the aqueous layer was 

re-extracted with chloroform (3×10 mL). The combined organic layers were dried (MgSO4) 

and the solvent was evaporated to give the residue which was purified by column 
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chromatography on silica eluting with hexane/ethyl acetate (10:1) affording compound (97) as 

a colourless thick oil (33 mg, 51%) [MALDI–Found (M+Na)+: 3379.8; C223H374NaO19, 

requires: 3379.8]; [] 21

D +22 (c 0.90, CHCl3), which showed δH (400 MHz, CDCl3): 7.37 – 7.17 

(35H, m), 5.16 (1H, br.s), 5.13 (1H, br.s), 5.05 (1H, br.s), 4.67 (2H, br.s), 4.55 (1H, d, J 11.9 

Hz), 4.53 – 4.47 (8H, m), 4.46 (2H, d, J 11.8 Hz), 4.41 (1H, d, J 11.9 Hz), 4.35 – 4.23 (6H, 

m), 4.17 (1H, br.dd, J 3.7, 6.9 Hz), 4.15 – 4.08 (3H, including a broad triplet J 7.0 Hz at 4.12), 

4.07 (1H, br.d, J 2.1 Hz), 4.00 – 3.95 (2H, m), 3.94 – 3.87 (2H, m), 3.95 – 3.87 (2H, including 

a broad double doublet J 4.6, 10.3 Hz at 3.86), 3.79 (1H, p, J 4.8 Hz), 3.75 – 3.69 (1H, m), 

3.67 – 3.55 (5H, including a broad doublet J 5.3 Hz at 3.61), 2.44 – 2.37 (2H, m), 1.67 – 1.03 

(271H, m), 0.89 (12H, t, J 7.1 Hz), 0.69 – 0.61 (8H, m), 0.57 (4H, dt, J 4.2, 8.5 Hz), -0.32 

(4H, br.q, J 4.9 Hz); δC (101 MHz, CDCl3): 175.1, 175.0, 138.5, 138.2, 137.6, 137.5, 137.4, 

137.4, 137.2, 128.5, 128.4, 128.35, 128.3, 128.0, 127.95, 127.9, 127.85, 127.8, 127.75, 127.7, 

127.6, 127.5, 106.3, 106.2, 105.5, 88.2, 88.0, 87.9, 83.6, 80.7, 80.3, 79.3, 79.2, 77.2, 73.4, 

72.4, 72.2, 72.0, 71.9, 71.7, 70.3, 67.1, 65.4, 63.1, 63.0, 62.0, 51.9, 51.8, 35.3, 35.2, 34.2, 

31.9, 30.3, 30.2, 29.8, 29.75, 29.7, 29.65, 29.6, 29.5, 29.4, 28.7, 27.5, 27.4, 25.8, 25.7, 24.9, 

22.7, 22.6, 20.4, 15.8, 14.1, 10.9; νmax: 3511, 3062, 2921, 2854, 1733,1725, 1456, 1115, 754 

cm-1. 

 

L-glycerol-(1'→1)-5-O-(2R)-2-((1R)-1-hydroxy-12-((2R)-2-(14-((2R)-2-icosylcyclopropyl) 

tetradecyl) cyclopropyl)dodecyl)hexacosanoate-α-D-arabinofuranosyl-(1→3)-[5-O-(2R)-2-

((1R)-1-hydroxy-12-((2R)-2-(14-((2R)-2-icosylcyclopropyl)tetradecyl) cyclopropyl) dodecyl) 

hexacosanoate-α-D-arabinofuranosyl-(1→5)]-α-D-arabinofuranoside (98): 
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Palladium hydroxide on activated charcoal (Pd(OH)2-C/20%, 33 mg, 1.1 fold by weight) was 

added to a stirred solution of α-D-arabinofuranoside (97) (30 mg, 0.0089 mmol) in 

CH2Cl2:MeOH (2:1, 2 mL) at room temperature under hydrogen. The mixture was stirred for 

36 h. When TLC showed no starting material was left, the mixture was filtered off through 

celite and the solvent was evaporated under reduced pressure to give a residue which was 

purified by column chromatography on silica eluting with chloroform/methanol (10:1) 

affording compound (98) as a colourless thick oil (22 mg, 88%) [MALDI–Found (M+Na)+: 

2749.5; C174H332NaO19, requires: 2749.5]; [] 18

D +18 (c 2.2, CHCl3), which showed δH (400 

MHz, CDCl3+few drops CD3OD): 5.00 (1H, br.s), 4.96 (1H, br.s), 4.90 (1H, br.s), 4.41 (1H, 

dd, J 4.6, 11.7 Hz), 4.37 (1H, br.dd, J 5.1, 11.9 Hz), 4.26 (1H, dd, J 5.0, 11.7 Hz), 4.20 (1H, 

dd, J 4.7, 11.8 Hz), 4.16 (1H, br.q, J 4.8 Hz), 4.12 (1H, br.d, J 6.2 Hz), 4.10 – 4.06 (2H, 

including a broad triplet J 7.4 Hz at 4.08), 4.05 (1H, br.d, J 5.6 Hz), 4.02 – 3.96 (3H, 

including a broad doublet J 8.5 Hz at 3.99), 3.95 – 3.86 (3H, m), 3.77 (1H, dd, J 4.2, 7.4 Hz), 

3.72 (1H, d, J 5.4 Hz), 3.67 – 3.57 (4H, including a broad doublet J 10.5 Hz at 3.63), 3.54 

(1H, dd, J 2.6, 9.7 Hz), 2.42 – 2.35 (2H, m), 1.64 – 1.04 (277H, m), 0.84 (12H, t, J 6.7 Hz), 

0.64 – 0.56 (8H, m), 0.52 (4H, dt, J 4.1, 8.4 Hz), -0.37 (4H, br.q, J 4.9 Hz); δC (101 MHz, 

CDCl3+few drops CD3OD): 175.0, 174.9, 108.7, 108.0, 81.7, 81.3, 79.7, 79.4, 77.9, 77.5, 

77.2, 76.3, 72.4, 71.9, 69.7, 69.15, 68.9, 67.6, 65.1, 63.4, 62.2, 61.4, 57.8, 52.6, 34.9, 31.8, 

30.1, 29.55, 29.5, 29.45, 29.4, 29.3, 29.2, 29.15, 29.1, 28.6, 27.3, 25.3, 22.5, 20.5, 15.6, 13.9, 

10.7.; νmax: 3399, 2920, 2851, 1734, 1467, 1043 cm-1.  
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2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-(2R)-2-((1R)-1-((tert-butyl dimethyl 

silyl)oxy)-17-((1S,2R)-2-((22S)-22-methyl-21-oxotetracontan-2-yl) cyclopropyl) heptadecyl) 

hexacosanoate-α-D-arabinofuranosyl-(1→3)-[2,3-di-O-benzyl-5-O-(2R)-2-((1R)-1-((tert-

butyldimethylsilyl)oxy)-17-((1S,2R)-2-((22S)-22-methyl-21-oxotetracontan-2-yl) cyclopropyl) 

heptadecyl)hexacosanoate-α-D-arabinofuranosyl-(1→5)]-2-O-benzyl-α-D-arabinofuranoside 

(99): 

 

A solution of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI) (35 mg, 

0.18 mmol)  in dry CH2Cl2 (1 mL) was added to a stirred solution of α-D-arabinofuranoside (89) (22 

mg, 0.019 mmol), molecular sieves 4 Å (25 mg), DMAP (23 mg, 0.18 mmol) and (2R)-2-((1R)-1-

((tert-butyldimethylsilyl)oxy)-17-((1S,2R)-2-((22S)-22-methyl-21-oxotetracontan-2yl) cyclopropyl) 

heptadecyl) hexacosanoic acid (76h) (50 mg, 0.035 mmol) in dry CH2Cl2 (1 mL) at room 

temperature under nitrogen atmosphere. The reaction mixture was stirred for 4 days. When 

TLC showed no starting material was left. The precipitate was filtered off and washed with 

CH2Cl2 (10 mL), the solvent was evaporated and the residue was purified by column 

chromatography on silica eluting with hexane/ethylacetate (10:1) to afford the title compound 

(99) as a colourless thick oil (35 mg, 46%) [MALDI–Found (M+Na)+: 3892.2; 

C253H438NaO21Si2, requires: 3892.2]; [] 20

D
+14 (c 3.0, CHCl3), which showed δH (400 MHz, 

CDCl3): 7.54 – 7.00 (35H, m), 5.16 (1H, br.s), 5.13 (1H, br.s), 5.04 (1H, br.s), 4.68 (1H, d, J 

12.1 Hz), 4.65 (1H, d, J 12.1 Hz), 4.58 – 4.47 (9H, m), 4.46 (1H, d, J 11.9 Hz), 4.39 (1H, d, J 

11.8 Hz), 4.33 (1H, d, J 11.9 Hz), 4.30 – 4.22 (5H, including a broad double doublet J 3.9, 

10.4 Hz at 4.26), 4.22 – 4.16 (2H, m), 4.13 (1H, br.dd, J 5.6, 8.4 Hz), 4.06 (1H, br.d, J 2.9 

Hz), 4.01 – 3.97 (2H, m), 3.95 – 3.87 (5H, m), 3.85 (1H, br.dd, J 3.8, 9.4 Hz), 3.78 (1H, br.p, 
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J 4.9 Hz), 3.76 – 3.72 (1H, m), 3.65 – 3.55 (3H, including a broad double doublet J 4.8, 8.3 

Hz at 3.60), 2.53 (4H, including sextet, J 5.6 Hz), 2.42 (4H, t, J 7.5 Hz), 1.62 – 1.14 (295 H, 

m), 1.06 (6H, d, J 6.9 Hz), 0.89 (12H, t, J 6.8 Hz), 0.88 (6H, d, J 6.8 Hz), 0.85 (9H, s), 0.84 

(9H, s), 0.75 – 0.62 (2H, m), 0.51 – 0.40 (2H, m), 0.24 – 0.08 (6H, m), 0.03 (6H, s), 0.01 (6H, 

s); δC (101 MHz, CDCl3): 215.1, 174.2, 174.1, 138.6, 138.3, 137.8, 137.7, 137.6, 137.55, 

137.5, 128.45, 128.4, 128.35, 128.3, 128.25, 128.2, 127.9, 127.85, 127.8, 127.75, 127.7, 

127.65, 127.6, 127.55, 127.5, 106.6, 106.3, 105.2, 88.3, 88.2, 87.8, 83.8, 83.7, 81.2, 80.2, 

79.5, 78.9, 77.2, 73.4, 73.2, 72.3, 72.2, 72.0, 71.9, 71.6, 70.3, 67.0, 65.9, 63.0, 62.7, 51.6, 

46.3, 41.1, 38.1, 37.4, 34.5, 33.7, 33.6, 33.0, 31.9, 30.1, 29.9, 29.8, 29.75, 29.7, 29.65, 29.6, 

29.55, 29.5, 29.45, 29.4, 29.35, 29.3, 27.8, 27.4, 27.3, 27.2, 27.1, 26.1, 25.9, 25.8, 24.1, 23.7, 

22.7, 22.6, 19.7, 18.6, 18.0, 16.4, 14.1, 10.5, -4.4, -4.5, -4.7, -4.8; νmax: 3063,3032, 2919, 

2851, 1739, 1714, 1467, 1105, 836, 698 cm-1. 

 

2',3'-Di-O-benzyl-L-glycerol-(1'→1)-2,3-di-O-benzyl-5-O-(2R)-2-((1R)-1-hydroxy-17-((1S, 

2R)-2-((22S)-22-methyl-21-oxotetracontan-2-yl)cyclopropyl)heptadecyl) hexacosanoate-α-D-

arabinofuranosyl-(1→3)-[2,3-di-O-benzyl-5-O-(2R)-2-((1R)-1-hydroxy-17-((1S, 2R)-2-

((22S) -22-methyl-21-oxotetracontan-2-yl)cyclopropyl) heptadecyl) hexacosanoate-α-D-

arabinofuranosyl-(1→5)]-2-O-benzyl-α-D-arabinofuranoside (100): 

 

The protected glycolipid α-D-arabinofuranoside (99) (31 mg, 0.0080 mmol) was dissolved in 

dry THF (10 mL) in a dry polyethylene vial equipped with an acid proof rubber septum, 

followed by addition of pyridine (0.1 mL) at room temperature under nitrogen. The mixture 

was cooled to 0 oC, and then hydrogen fluoride-pyridine complex as (70% w, 1.5 mL) was 

added dropwise. The mixture was stirred at 43 oC for 24 h. When TLC showed no starting 
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material was left, the mixture was neutralized by pouring it slowly into sat. aq. NaHCO3 and 

stirred until no more CO2 was liberated. The organic layer was separated and the aqueous 

layer was re-extracted with chloroform (3×10 mL). The combined organic layers were dried 

(MgSO4) and the solvent was evaporated to give the residue which was purified by column 

chromatography on silica eluting with hexane/ethyl acetate (10:1) affording compound (100) 

as a colourless thick oil (19 mg, 66%) [MALDI–Found (M+Na)+: 3664.1; C241H410NaO21, 

requires: 3664.1]; [] 18

D +25 (c 1.1, CHCl3), which showed δH (400 MHz, CDCl3): 7.39 – 7.18 

(35H, m), 5.16 (1H, br.s), 5.13 (1H, br.s), 5.04 (1H, br.s), 4.67 (2H, br.s), 4.55 (1H, d, J 11.9 

Hz), 4.53 – 4.47 (8H, m), 4.45 (2H, d, J 11.8 Hz), 4.40 (1H, d, J 11.8 Hz), 4.29 (6H, br.m), 

4.17 (1H, br.dd, J 3.8, 6.9 Hz), 4.11 (1H, br.dd, J 3.4, 6.2 Hz), 4.07 (1H, br.d, J 2.5 Hz), 3.99 

– 3.95 (2H, m), 3.94 – 3.87 (2H, m), 3.87 – 3.82 (2H, including abroad double doublet J 4.6, 

10.3 Hz at 3.85), 3.79 (1H, br.p, J 4.9 Hz), 3.72 (1H, br.dd, J 1.7, 11.6 Hz), 3.64 – 3.57 (5H, 

m), 2.51 (2H, sextet, J 6.8 Hz), 2.42 (6H, including a triplet, J 7.5 Hz), 1.87 – 1.08 (300H, 

m), 1.05 (6H, d, J 6.9 Hz), 0.89 (12H, t, J 7.3 Hz), 0.72 – 0.62 (2H, m), 0.50 – 0.38 (2H, m), 

0.25 – 0.05 (6H, m); δC (101 MHz, CDCl3): 215.2, 175.1, 175.0, 138.6, 138.3, 137.7, 137.5, 

137.45, 137.4, 137.2, 128.5, 128.4, 128.35, 128.3, 128.2, 128.0, 127.95, 127.9, 127.85, 127.8, 

127.75, 127.7, 127.6, 106.3, 106.2, 105.4, 88.2, 88.0, 87.9, 83.6, 80.7, 80.3, 79.3, 79.2, 77.2, 

73.4, 72.4, 72.2, 72.1, 72.0, 71.9, 71.7, 70.3, 67.1, 65.4, 63.0, 62.9, 51.9, 51.7, 46.3, 41.1, 

38.1, 37.4, 35.3, 35.2, 34.5, 33.0, 31.9, 30.1, 29.75, 29.7, 29.65, 29.6, 29.55, 29.5, 29.45, 

29.4, 29.3, 27.5, 27.4, 27.35, 27.3, 26.1, 25.7, 23.7, 22.7, 19.7, 18.6, 16.4, 14.1, 10.5; νmax: 

3457, 3063,3031, 2919, 2852, 1737, 1715, 1464, 1104,734, 698 cm-1. 
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L-glycerol-(1'→1)-5-O-(2R)-2-((1R)-1-hydroxy-17-((1S,2R)-2-((22S)-22-methyl-21-

oxotetracontan-2-yl)cyclopropyl)heptadecyl) hexacosanoate-α-D-arabinofuranosyl-(1→3)   -

[-5-O-(2R)-2-((1R)-1-hydroxy-17-((1S,2R)-2-((22S)-22-methyl-21-oxotetracontan-2-yl) 

cyclopropyl)heptadecyl)hexacosanoate-α-D-arabinofuranosyl-(1→5)]-α-D-arabinofuranoside 

(101): 

 

Palladium hydroxide on activated charcoal (Pd(OH)2-C/20%, 12 mg, 1.1 fold by weight) was 

added to a stirred solution of α-D-arabinofuranoside (100) (11 mg, 0.0030 mmol) in 

CH2Cl2:MeOH (2:1, 2 mL) at room temperature under hydrogen. The mixture was stirred for 

36 h. When TLC showed no starting material was left, the mixture was filtered off through 

celite and the solvent was evaporated under reduced pressure to give a residue which was 

purified by column chromatography on silica eluting with chloroform/methanol (10:1) 

affording compound (101) as a colourless thick oil (9.0 mg, 82%) [MALDI–Found (M+Na)+: 

3033.8; C192H368NaO21, requires: 3033.8]; [] 18

D +26 (c 0.90, CHCl3), which showed δH (400 

MHz, CDCl3+few drops CD3OD): 5.01 (1H, br.s), 4.96 (1H, br.s), 4.91 (1H, br.s), 4.42 (1H, 

dd, J 4.9, 12.1 Hz), 4.37 (1H, dd, J 4.6, 11.8 Hz), 4.27 (1H, dd, J 4.7, 11.1Hz), 4.22 (1H, br.d, J 

4.7 Hz), 4.18 (1H, dd, J 4.2, 9.0 Hz), 4.13 (1H, br.q, J 5.4 Hz), 4.09 (1H, t, J 7.0 Hz), 4.06 (1H, 

d, J 5.1 Hz), 4.02 – 3.97 (3H, br.m), 3.93 (1H, br.dd, J 3.3, 7.3 Hz), 3.89 (2H, br.m), 3.80 – 

3.72 (2H, m), 3.67 – 3.58 (5H, m), 3.55 (1H, dd, J 2.4, 9.6 Hz), 2.53 – 2.44 (2H, sextet, J 6.6 

Hz), 2.39 (6H, including a triplet, J 7.4 Hz), 1.57 – 1.06 (210 H, m), 1.01 (6H, d, J 6.9 Hz), 

0.85 (12H, t, J 7.5 Hz), 0.67 – 0.57 (2H, m), 0.47 – 0.34 (2H, m), 0.21 – 0.02 (6H, m); δC 

(101 MHz, CDCl3): 215.8, 175.0, 174.75, 109.3, 108.7, 87.1, 82.95, 82.9, 80.9, 79.4, 78.8, 

78.2, 77.9, 77.2, 72.6, 71.7, 68.8, 65.0, 64.0, 63.3, 61.8, 52.5, 46.3, 41.1, 38.1, 37.4, 35.1, 
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34.4, 33.0, 32.9, 31.9, 30.0, 29.7, 29.6, 29.55, 29.5, 29.45, 29.4, 29.35, 29.3, 27.4, 27.35, 

27.3, 27.25, 27.2, 26.1, 25.45, 25.4, 23.6, 23.55, 22.6, 19.6, 18.6, 16.3, 16.2, 14.1, 10.4.; νmax: 

3434, 2919, 2852, 1736, 1717, 1467, 1104,735, 699 cm-1. 

 

1-O-p-toluene-sulfonyl-(S)-2,3-di-O-benzyl glycerol (102): 

 

 p-Toluenesulfonyl chloride (4.86 g, 0.0255 mol) was added to a stirred solution of (S)-2,3-di-O-

benzyl propanol (51G) 247 (3.2 g, 0.011 mol), pyridine (5.85 g, 6.20 mL, 73.9 mmol) and DMAP 

(0.71 g, 5.8 mmol) in dry CH2Cl2 (25 mL) at 0 ºC under nitrogen. The mixture was allowed to reach 

room temperature and stirred for 24 h, then TLC showed no starting material was left. The mixture 

was diluted with ethyl acetate (100 mL) and water (40 mL), the organic layer was separated and the 

aqueous layer was re-extracted with ethyl acetate (3×50 mL). The combined organic layers were 

washed with water (25 mL), brine (25 mL) and dried (MgSO4). The solvent was evaporated under 

reduced pressure to give an oily residue which was purified by column chromatography on silica 

eluting with hexane/ethyl acetate (5:1) affording the title compound (102) as a colourless thick oil (3.1 

g, 62%) [MALDI–Found (M+Na)+: 449.1; C24H26O5NaS, requires: 449.1]; []
22

D -5.6 (c 0.71, 

CHCl3), which showed δH (400 MHz, CDCl3): 7.77 (2H, d, J 8.3 Hz), 7.52 – 7.12 (12H, m), 4.58 (2H, 

br.s), 4.47 (2H, br.s), 4.22 (1H, dd, J 4.2, 10.4 Hz), 4.12 (1H, dd, J 5.8, 10.4 Hz), 3.85 – 3.76 (1H, m), 

3.55 – 3.51 (2H, m), 2.43 (3H, s); δC (101 MHz, CDCl3): 129.8, 128.4, 128.3, 128.0, 127.8, 127.75, 

127.7, 127.6, 75.5, 73.4, 72.4, 69.5, 68.8, 21.6; νmax: 3032, 2867, 1598, 1362,  1496, 1177, 1097, 921, 

814 cm-1. All data were identical to the authentic sample248. 
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 (S)-2,3-Bis(benzyloxy)propyl alkanoate (104a-f): 

 

Genera procedure: 

Cesium hydrogencarbonate was added to a stirred solution of 1-O-p-toluene-sulfonyl-(S)-2,3-di-

O-benzyl glycerol (102) and fatty acids (103a-f) in dry DMF:THF (1:5, 2 mL) at room 

temperature. The mixture was stirred at 70 ºC for 2 days. The suspension was diluted with ethyl 

acetate (10 mL) and water (10 mL). The organic layer was separated and the aqueous layer was 

re-extracted with ethyl acetate (3×10 mL). The combined organic layers were washed 

successively with water (15 mL) and brine (15 mL), dried (MgSO4), filtered and evaporated to 

give a thick oil residue. The residue was purified by column chromatography. 

(S)-2,3-Bis(benzyloxy)propyl docosanoate (104a): 

 

Cesium hydrogencarbonate (0.284 g, 1.46 mmol), tosylate (102) (0.137 g, 0.323 mmol) and 

behenic acid (103a) (0.10 g, 0.29 mmol); gave a thick colourless oil residue which was 

purified by column chromatography on silica eluting with hexane/ethyl acetate (5:1) to afford 

the title compound (104a) (59 mg, 83%) [MALDI–Found (M+Na)+: 617.4; C39H62NaO4, 

requires: 617.4]; []
22

D +7 (c 0.6, CHCl3), which showed δH (400 MHz, CDCl3): 7.31 – 7.19 

(10H, m), 4.61 (2H, br.s), 4.49 (2H, br.s), 4.25 (1H, dd, J 4.2, 11.7 Hz), 4.12 (1H, dd, J 5.8, 

11.7 Hz), 3.80 – 3.70 (1H, m), 3.55 – 3.51 (2H, m), 2.23 (2H, t, J 7.6 Hz), 1.66 – 0.97 (38H, 

m), 0.83 (3H, t, J 6.8 Hz); δC (101 MHz, CDCl3): 173.6, 138.2, 138.0, 128.4, 128.3, 127.7, 

127.65, 127.6, 75.8, 73.4, 72.1, 69.6, 63.6, 34.2, 31.9, 29.7, 29.65, 29.6, 29.4, 29.35, 29.3, 

29.1, 24.9, 22.7, 14.1; νmax: 2917, 2850, 1740, 1467 cm-1. 
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(S)-2,3-Bis(benzyloxy)propyl(2R)-2-((1R)-1-hydroxy-16-((1R,2S)-2-(20-methyl-19-

oxooctatriacontyl) cyclopropyl)hexadecyl)hexacosanoate (104b): 

 

Cesium hydrogencarbonate (0.0572 g, 0.295 mmol), tosylate (102) (0.0277 g, 0.0649 mmol) 

and (2R)-2-((1R)-1-hydroxy-16-((1R,2S)-2-(20-methyl-19-oxooctatriacontyl)cyclopropyl) 

hexadecyl) hexacosanoic acid (103b) (0.0731 g, 0.0590 mmol); gave a thick colourless oil 

residue which was purified by column chromatography on silica eluting with hexane/ethyl 

acetate (10:1) to afford the title compound (104b) (52 mg, 59%) [MALDI–Found (M+Na)+: 

1514.3829, C101H182NaO6, requires: 1514.3834]; []
23

D +6.5 (c 0.55, CHCl3); δH (400 MHz, CDCl3): 

7.31 – 7.05 (10H, m), 4.60 (1H, d, J 11.8 Hz), 4.57 (1H, d, J 11.8 Hz), 4.47 (2H, br.s), 4.35 

(1H, dd, J 4.0, 11.7 Hz), 4.14 (1H, dd, J 5.5, 11.7 Hz), 3.80 – 3.71 (1H, m), 3.58 – 3.48 (3H, 

including br dd,  J 1.4, 5.4 Hz at 3.52), 2.48 – 2.38 (2H, including OH proton at 2.43), 2.38 – 

2.29 (3H, including dt,  J 5.4, 7.9 Hz at 2.35), 1.75 – 1.01 (144H, m), 0.98 (3H, d, J 6.9 Hz), 

0.81 (6H, t, J 6.7 Hz), 0.62 – 0.53 (2H, m), 0.49 (1H, dt, J 4.0, 8.5 Hz), -0.40 (1H, br.q, J 5.1 

Hz); δC (101 MHz, CDCl3): 215.0, 175.7, 138.0, 128.4, 128.3, 127.7, 127.6, 127.5, 75.7, 

73.4, 72.2, 72.0, 69.5, 63.4, 51.3, 46.2, 41.0, 35.4, 33.0, 31.8, 30.1, 29.6, 29.55, 29.5, 29.4, 

29.35, 29.3, 29.2, 28.6, 27.4, 27.2, 25.7, 23.7, 23.6, 22.6, 16.3, 15.7, 14.0, 10.8; νmax: 2918, 

2850, 1717, 1467 cm-1. 

 

(S)-2,3-Bis(benzyloxy)propyl(R)-2-((R)-1-hydroxy-12-((1S,2R)-2-(14-((1S,2R)-2-icosyl-

cyclopropyl) tetradecyl)cyclopropyl)dodecyl)hexacosanoate (104c): 

 

Cesium hydrogencarbonate (0.0605 g, 0.312 mmol), tosylate (102) (0.0293 g, 0.0687 mmol) and 

(R)-2-((R)-1-hydroxy-12-((1S,2R)-2-(14-((1S,2R)-2-icosylcyclopropyl)tetradecyl) cyclopropyl) 
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dodecyl) hexacosanoic acid (103c) (0.0711 g, 0.0624 mmol); gave a thick colourless oil 

residue which was purified by column chromatography on silica eluting with hexane/ethyl 

acetate (10:1) to afford the title compound (104c) (51 mg, 58%) [MALDI–Found (M+Na)+: 

1414.2940, C95H170NaO5, requires: 1414.2946]; []
23

D +3.6 (c 0.88, CHCl3); δH (400 MHz, CDCl3): 

7.37 – 7.26 (10H, m), 4.68 (1H, d, J 11.8 Hz), 4.65 (1H, d, J 11.9 Hz), 4.55 (2H, br.s), 4.43 

(1H, dd, J 4.0, 11.7 Hz), 4.22 (1H, dd, J 5.5, 11.7 Hz), 3.86 – 3.80 (1H, m), 3.67 – 3.56 (3H, 

including br.dd J 1.6, 5.4 Hz at 3.60), 2.45 (1H, d, J 7.9 Hz), 2.43 (1H, br.dd, J 3.5, 7.4 Hz) 

1.85 – 0.97 (134H, m), 0.89 (6H, t, J 7.2 Hz), 0.70 – 0.61 (4H, m), 0.60 – 0.57 (2H, dt, J 4.0, 

8.5 Hz), -0.32 (2H, br q, J 5.2 Hz); δC (101 MHz, CDCl3): 175.4, 138.0, 137.8, 128.4, 128.3, 

127.7, 127.6, 127.5, 121.9, 75.7, 73.4, 72.3, 72.0, 69.5, 63.4, 51.3, 35.5, 31.9, 30.1, 29.7, 

29.6, 29.5, 29.45, 29.4, 29.3, 28.6, 27.4, 25.7, 22.6, 15.7, 14.0, 10.8; νmax: 3435, 2917, 2850, 

1732, 1468 cm-1. 

 

(S)-2,3-Bis(benzyloxy)propyl(2R)-2-(1-hydroxy-12-((1R,2S)-2-(14-((2S)-2-icosylcyclo-propyl) 

tetradecyl)cyclopropyl)dodecyl)hexacosanoate (104d): 

 

Cesium hydrogencarbonate (0.0616 g, 0.317 mmol), tosylate (102) (0.0298 g, 0.0698 mmol) 

and (2R)-2-(1-hydroxy-12-((1R,2S)-2-(14-((2S)-2-icosylcyclopropyl) tetradecyl) cyclopropyl) 

dodecyl) hexacosanoic acid (103d) (0.0724 g, 0.0636 mmol); gave a thick colourless oil 

residue which was purified by column chromatography on silica eluting with hexane/ethyl 

acetate (10:1) to afford the title compound (104d) (62 mg, 71%) [MALDI–Found (M+Na)+: 

1414.3; C95H170NaO5, requires: 1414.3]; []
22

D +3.8 (c 0.31, CHCl3); δH (400 MHz, CDCl3): 

7.35 – 7.27 (10H, m), 4.68 (1H, d, J 11.8 Hz), 4.65 (1H, d, J 11.8 Hz), 4.55 (2H, br.s), 4.43 

(1H, dd, J 4.1, 11.7 Hz), 4.22 (1H, dd, J 5.5, 11.7 Hz), 3.86 – 3.80 (1H, m), 3.67 – 3.55 (3H, 

including br dd J 1.6, 5.4 Hz at δ 3.6), 2.45 (1H, d, J 8.0 Hz), 2.43 (1H, br.dd, J 3.8, 10.5 Hz), 

1.80 – 1.00 (134H, m), 0.89 (6H, t, J 6.7 Hz), 0.71 – 0.61 (4H, m), 0.57 (2H, dt, J 3.9, 8.4 

Hz), -0.32 (2H, br.q, J 5.2 Hz); δC (101 MHz, CDCl3): 175.4, 138.0, 137.9, 128.4, 128.3, 

127.8, 127.7, 127.6, 75.8, 73.5, 72.3, 72.1, 69.6, 63.5, 51.4, 35.5, 31.9, 30.2, 29.7, 29.6, 29.5, 

29.4, 29.3, 28.7, 27.5, 25.8, 23.0, 15.8, 14.1, 10.9; νmax: 2991, 2917, 2850, 1732, 1599, 1469 cm-1. 
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(S)-2,3-Bis(benzyloxy)propyl(R)-2-((R)-1-hydroxy-18-((1R,2S)-2-((17S,18S)-17-methoxy-

18-methylhexatriacontyl)cyclopropyl)octadecyl)tetracosanoate (104e): 

 

Cesium hydrogencarbonate (0.0436 g, 0.225 mmol), tosylate (102) (0.0211 g, 0.0495 mmol) and 

(R)-2-((R)-1-hydroxy-18-((1R,2S)-2-((17S,18S)-17-methoxy-18-methylhexatriacontyl) cyclopropyl) 

octadecyl)tetracosanoic acid (103e) (0.0552 g, 0.0450 mmol); gave a thick colourless oil 

residue which was purified by column chromatography on silica eluting with hexane/ethyl 

acetate (10:1) to afford the title compound (104e) (41 mg, 62%) [MALDI–Found (M+Na)+: 

1502.4, C100H182NaO6, requires: 1502.4]; []
22

D +9 (c 0.3, CHCl3), which showed δH (400 MHz, 

CDCl3): 7.32 – 7.19 (10H, m), 4.62 (1H, d, J 11.8 Hz), 4.58 (1H, d, J 11.8 Hz), 4.48 (2H, br s), 

4.36 (1H, dd, J 4.1, 11.7 Hz), 4.15 (1H, dd, J 5.5, 11.7 Hz), 3.81 – 3.72 (1H, m), 3.60 – 3.49 (3H, 

including br dd,  J 1.6, 5.4 Hz, at 3.53), 3.28 (3H, s), 2.90 (1H, br.p, J 4.1 Hz), 2.39 (1H, d, J 7.9 

Hz), 2.36 (1H, br.dd, J 3.5, 7.4 Hz), 1.75 – 0.93 (143H, m), 0.83 (6H, t, J 6.8 Hz), 0.79 (3H, d, J 6.9 

Hz), 0.65 – 0.54 (2H, m), 0.50 (1H, dt, J 4.0, 8.4 Hz), -0.39 (1H, br q, J 5.2 Hz); δC (101MHz, 

CDCl3): 175.3, 137.9, 137.8, 128.3, 128.2, 127.7, 127.6, 127.5, 85.3, 75.7, 73.4, 72.2, 72.0, 

69.5, 63.4, 57.6, 51.3, 38.6, 35.4, 35.2, 32.3, 31.8, 30.4, 30.3, 30.1, 29.9, 29.8, 29.7, 29.6, 29.5, 

29.4, 29.3, 29.2, 28.8, 28.6, 27.5, 27.4, 26.0, 25.7, 23.6, 22.9, 22.6, 15.7, 14.8, 14.0, 13.9, 10.9, 

10.8; νmax: 2923, 2853, 1737, 1465 cm-1. 

 

(S)-2,3-Bis(benzyloxy)propyl(R)-2-((R)-1-hydroxy-18-((1R,2S)-2-((17S,18S)-17-methoxy-

18-methylhexatriacontyl)cyclopropyl)octadecyl)hexacosanoate (104f): 

 

Cesium hydrogencarbonate (0.0351 g, 0.181 mmol), tosylate (102) (0.0170 g, 0.0399 mmol) 

and (R)-2-((R)-1-hydroxy-18-((1R,2S)-2-((17S,18S)-17-methoxy-18-methylhexatriacontyl) 

cyclopropyl) octadecyl) hexacosanoic acid (103f) (0.0455 g, 0.0362 mmol); gave a thick 

colourless oil residue which was purified by column chromatography on silica eluting with 
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hexane/ethyl acetate (10:1) to afford the title compound (104f) (40 mg, 72%) [MALDI–Found 

(M+Na)+: 1530.4142, C102H186NaO6, requires: 1530.4147]; []
23

D +6.4 (c 0.50, CHCl3);         

δH (400 MHz, CDCl3): 7.39 – 7.26 (10H, m), 4.70 (1H, d, J 11.8 Hz), 4.66 (1H, d, J 11.8 Hz), 4.57 

(2H, br.s), 4.44 (1H, dd, J 4.1, 11.6 Hz), 4.23 (1H, dd, J 5.5, 11.7 Hz), 3.85 (1H, m), 3.69 – 3.57 

(3H, including br dd,  J 1.6, 5.4 Hz at 3.62), 3.37 (3H, s), 2.98 (1H, br.p, J 3.8 Hz), 2.47 (1H, d, J 

7.9 Hz), 2.44 (1H, br.dd, J 4.5, 8.5 Hz), 1.88 – 1.03 (147H, m), 0.91 (6H, t, J 7.1 Hz), 0.89 (3H, d, J 

6.8 Hz), 0.71 – 0.63 (2H, m), 0.58 (1H, dt, J 4.0, 8.3 Hz), -0.31 (1H, br.q, J 5.2 Hz); δC (101 MHz, 

CDCl3): 175.4, 128.4, 128.3, 127.7, 127.6, 127.5, 85.3, 75.7, 73.4, 72.2, 72.0, 69.5, 68.0, 63.4, 57.6, 

51.3, 38.6, 35.4, 35.2, 32.3, 31.8, 30.4, 30.3, 30.1, 29.9, 29.8, 29.7, 29.6, 29.5, 29.4, 29.3, 28.8, 28.6, 

27.5, 27.4, 26.0, 22.6, 15.7, 14.8, 14.0, 10.8; νmax: 3030, 2923, 2853, 1733, 1496 cm-1. 

 

(S)-2,3-Dihydroxypropyl alkanoate (105a-f): 

 

Genera procedure: 

Palladium hydroxide on activated charcoal (20% Pd, 0.15 fold by weight) was added to a 

stirred solution of compounds (104a-f) in dry CH2Cl2:MeOH (1:1, 2 mL) at room temperature 

under hydrogen atmosphere. The mixture was stirred for 24 h, when TLC showed no starting 

material was left. The mixture was filtered through celite and the precipitate was washed with 

CH2Cl2 (10 mL), the filtrate was evaporated and the residue was purified by column 

chromatography to give compounds (105a-f).  

 

(S)-2,3-Dihydroxypropyl docosanoate (105a): 

  

Palladium hydroxide on activated charcoal (0.0085 g) and compound (104a) (0.0573 g, 

0.0963 mmol); gave a thick colourless oil residue which was purified by column 

chromatography on silica eluting with chloroform/methanol (5:1) to afford the title compound 
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(105a) (28 mg, 70%) [MALDI–Found (M+Na)+: 437.3601, C25H50NaO4, requires: 437.3607]; 

[]
22

D -24 (c 0.25, CHCl3), which showed δH (400 MHz, CDCl3+few drops of CD3OD): 4.07 

(1H, dd, J 3.6, 9.9 Hz), 4.03 (1H, dd, J 4.4, 10.0 Hz), 3.80 (1H, m), 3.57 (1H, dd, J 4.1, 11.5 

Hz), 3.48 (1H, dd, J 6.1, 11.5 Hz), 2.28 (2H, t, J 7.6 Hz), 1.63 – 0.92 (40H, m), 0.81 (3H, t, J 

6.8 Hz); δC (101 MHz, CDCl3+few drops of CD3OD): 174.4, 69.9, 65.0, 63.1, 34.1, 31.8, 

29.6, 29.55, 29.5, 29.4, 29.3, 29.2, 29.0, 24.8, 22.6, 14.0; νmax: 3342, 2955, 2918, 2849, 1733, 

1472 cm-1. 

 

(S)-2,3-Dihydroxypropyl(2R)-2-((1R)-1-hydroxy-16-((1R,2S)-2-(20-methyl-19-oxooctatriacontyl) 

cyclopropyl)hexadecyl)hexacosanoate (105b): 

 

Palladium hydroxide on activated charcoal (0.0075 g) and compound (104b) (0.0505 g, 0.0338 

mmol); gave a thick colourless oil which was purified by column chromatography on silica eluting 

with (chloroform/methanol, 40:1) to afford the title compound (105b) (38 mg, 87%) [MALDI–

Found (M+Na)+: 1334.2890, C87H170NaO6, requires: 1334.2895]; []
23

D +2.8 (c 3.6, CHCl3), which 

showed δH (400 MHz, CDCl3+few drops of CD3OD): 4.22 (1H, dd, J 4.2, 11.4 Hz), 4.11 (1H, dd, J 

6.5, 11.4 Hz), 3.89 – 3.81 (1H, m), 3.68 – 3.57 (2H, including br dd J 4.3, 11.5 Hz at δ 3.61), 3.54 

(1H, dd, J 5.8, 11.6 Hz), 2.53 – 2.44 (1H, m), 2.38 (3H, including br t, J 2.38), 1.68 – 1.05 (147H, 

m), 1.01 (3H, d, J 6.9 Hz), 0.84 (6H, t, J 6.7 Hz), 0.65 – 0.57 (2H, m), 0.52 (1H, dt, J 4.1, 8.4 Hz), -

0.37 (1H, br.q, J 5.2 Hz); δC (126 MHz, CDCl3+few drops of CD3OD): 216.0, 175.5, 72.6, 69.7, 

65.1, 63.0, 52.5, 46.3, 41.1, 35.0, 32.9, 31.8, 30.1, 29.7, 29.6, 29.55, 29.5, 29.45, 29.4, 29.35, 29.3, 

29.25, 29.2, 29.15, 29.1, 28.6, 27.4, 27.2, 25.3, 23.6, 22.6, 16.2, 15.7, 14.0, 10.8; νmax: 3396, 3017, 

2922, 2853, 1713, 1467 cm-1. 
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(S)-2,3-Dihydroxypropyl(R)-2-((R)-1-hydroxy-12-((1S,2R)-2-(14-((1S,2R)-2-icosylcyclopropyl) 

tetradecyl)cyclopropyl)dodecyl)hexacosanoate (105c): 

 

Palladium hydroxide on activated charcoal (0.0063 g) and compound (104c) (0.0425g, 0.0305 

mmol); gave a thick clourless oil residue which was purified by column chromatography on 

silica eluting with (chloroform/methanol, 20:1) to afford the title compound (105c) (27 mg, 

74%) [MALDI–Found (M+Na)+: 1234.2001, C81H158NaO5, requires: 1234.2007]; []
23

D +2.3   

(c 5.2, CHCl3); δH (400 MHz, CDCl3+few drops of CD3OD): 4.22 (1H, dd, J 4.4, 11.5 Hz), 

4.12 (1H, dd, J 6.4, 11.5 Hz), 3.89 – 3.83 (1H, m), 3.67 – 3.58 (2H, including br dd, J 4.0, 11.1 

Hz at 3.61), 3.55 (1H, dd, J 5.8, 11.6 Hz), (1H, ddd, J 4.4, 7.9, 10.0 Hz), 1.79 – 0.96 (137H, m), 

0.85 (6H, t, J 6.8 Hz), 0.66 – 0.57 (4H, m), 0.53 (2H, dt, J 4.4, 8.4 Hz), -0.36 (2H, br.q, J 5.1 

Hz); δC (126 MHz, CDCl3+few drops of CD3OD): 175.4, 72.4, 69.6, 65.0, 62.8, 52.4, 31.7, 

30.0, 29.4, 29.1, 29.0, 28.5, 27.2, 25.1, 22.4, 15.5, 13.8, 10.6; νmax: 3400, 3017, 2917, 2850, 

1733, 1468 cm-1. 

 

(S)-2,3-Dihydroxypropyl(2R)-2-(1-hydroxy-12-((1R,2S)-2-(14-((2S)-2-icosylcyclopropyl) 

tetradecyl) cyclopropyl)dodecyl)hexacosanoate (105d): 

 

Palladium hydroxide on activated charcoal (0.0077 g) and compound (104d) (0.0515 g, 0.0369 

mmol); gave a thick colourless oil residue which was purified by column chromatography on 

silica eluting with (chloroform/methanol, 10:1) to afford the title compound (105d) (40 mg, 92%) 

[MALDI–Found (M+Na)+: 1234.2001, C81H158NaO5, requires: 1234.2007]; []
22

D +1.8 (c 0.34, 

CHCl3); δH (400 MHz, CDCl3+few drops of CD3OD): 4.21 (1H, dd, J 4.3, 11.4 Hz), 4.10 (1H, 

dd, J 6.4, 11.5 Hz), 3.89 – 3.80 (1H, m), 3.60 (2H, br dd, J 4.1, 11.5 Hz), 3.54 (1H, dd, J 5.8, 

11.6 Hz), 2.39 (1H, ddd, J 4.8, 7.6, 10.0 Hz), 1.86 – 0.94 (137H, m), 0.84 (6H, t, J 6.8 Hz), 
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0.65 – 0.56 (4H, m), 0.52 (2H, dt, J 3.9, 8.5 Hz), -0.37 (2H, br.q, J 4.9 Hz); δC (101 MHz, 

CDCl3+few drops of CD3OD): 175.5, 72.6, 69.8, 65.1, 63.0, 52.5, 37.0, 35.0, 31.8, 30.1, 29.6, 

29.55, 29.5, 29.45, 29.4, 29.3, 29.2, 28.6, 27.4, 25.3, 22.6, 15.7, 14.0, 10.8; νmax: 3585, 2917, 

2849, 1734, 1468 cm-1. 

 

(S)-2,3-Dihydroxypropyl(R)-2-((R)-1-hydroxy-18-((1R,2S)-2-((17S,18S)-17-methoxy-18-

methylhexatriacontyl)cyclopropyl)octadecyl)tetracosanoate (105e): 

 

Palladium hydroxide on activated charcoal (0.0054 g) and compound (104e) (0.0364 g, 

0.0245mmol); gave a thick colourless oil residue which was purified by column chromatography 

on silica eluting with (chloroform/methanol, 20:1) to afford the title compound (105e)        

(27 mg, 85%) [MALDI–Found (M+Na)+: 1322.2890, C86H170NaO6, requires: 1322.2895]; 

[]
23

D +1.6 (c 2.1, CHCl3); δH (400 MHz, CDCl3+few drops of CD3OD): 4.21 (1H, dd, J 4.3, 

11.4 Hz), 4.11 (1H, dd, J 6.4, 11.4 Hz), 3.88 – 3.82 (1H, m), 3.66 – 3.57 (2H, including br dd, J 

4.3, 11.4 Hz at δ 3.6), 3.54 (1H, dd, J 5.8, 11.6 Hz), 3.31 (3H, s), 2.94 (1H, br.p, J 4.4 Hz), 2.40 

(1H, ddd, J 4.8, 7.4, 10.2 Hz), 1.81 – 0.94 (146H, m), 0.84 (6H, t, J 7.0 Hz), 0.81 (3H, d, J 6.9 

Hz), 0.65 – 0.57 (2H, m), 0.52 (1H, dt, J 4.0, 8.5 Hz), -0.37 (1H, br.q, J 5.1 Hz); δC (101 MHz, 

CDCl3+few drops of CD3OD): 175.5, 85.5, 72.6, 69.8, 65.1, 63.0, 57.6, 52.4, 35.3, 35.0, 32.3, 

31.8, 30.4, 30.1, 29.9, 29.8, 29.7, 29.6, 29.55, 29.5, 29.45, 29.4, 29.3, 28.6, 27.5, 27.4, 26.0, 25.3, 

22.6, 15.7, 14.7, 14.0, 10.8; νmax: 3368, 2918, 2850, 1731, 1467 cm-1. 
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(S)-2,3-Dihydroxypropyl(R)-2-((R)-1-hydroxy-18-((1R,2S)-2-((17S,18S)-17-methoxy-18-

methylhexatriacontyl)cyclopropyl)octadecyl)hexacosanoate (105f):  

 

Palladium hydroxide on activated charcoal (0.0032g) and compound (104f) (0.0215g, 0.0142 

mmol); gave a thick colourless oil residue which was purified by column chromatography on 

silica eluting with (chloroform/methanol, 20:1) to afford the title compound (105f)              

(18 mg, 92%) [MALDI–Found (M+Na)+: 1350.3203, C88H174NaO6, requires: 1350.3208]; 

[]
23

D +1.9 (c 0.74, CHCl3); δH (400 MHz, CDCl3+few drops of CD03OD): 4.22 (1H, dd, J 

4.2, 11.5 Hz), 4.12 (1H, dd, J 6.4, 11.5 Hz), 3.89 – 3.83 (1H, m), 3.71 – 3.58 (2H, including 

br dd, J 4.1, 11.5 Hz at δ 3.61), 3.55 (1H, dd, J 5.8, 11.5 Hz), 3.31 (3H, s), 2.94 (1H, br.p, J 

3.7 Hz), 2.40 (1H, ddd, J 4.8, 7.4, 10.4 Hz), 1.68 – 0.94 (150H, m), 0.85 (6H, t, J 6.9 Hz), 

0.82 (3H, d, J 6.9 Hz), 0.65 – 0.58 (2H, m), 0.52 (1H, dt, J 4.0, 8.1 Hz), -0.37 (1H, br.q, J 5.2 

Hz); δC (101 MHz, CDCl3+few drops of CD3OD): 175.5, 85.5, 72.6, 69.7, 65.1, 63.0, 58.0, 

52.5, 35.2, 35.0, 33.0, 31.8, 30.4, 30.1, 29.8, 29.7, 29.6, 29.55, 29.5, 29.4, 29.3, 29.2, 29.1, 

28.6, 27.4, 27.3, 26.0, 25.3, 22.6, 15.7, 14.7, 14.0, 10.8;  νmax: 3389, 3017, 2919, 2850, 1733, 1467 

cm-1.
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ELISA protocol from Mr. Paul Mason 

0.5% casein w/v PBS buffer - KCl (0.4 g), KH2PO4 (0.4 g), anhydrous Na2HPO4 (2.3 g), 

NaCl (16 g) was dissolved in 1800 mL d H2O, stirred and heated to 37 ºC. Casein (10 g) was 

added slowly and the solution was stirred at 37°C and 400 rpm for 2 hours. It was then 

adjusted to pH 7.4 with NaOH (1 M) and made up to 2000 mL.  

Citrate Buffer (0.1 M) - Citric acid monohydrate (2.365 g) and tri-sodium citrate (2.925 g) 

were dissolved in separate beakers with d H2O 112.5 mL. Citric acid monohydrate was added 

to trisodium citrate until pH 4.5 was reached, then was made up to 250 mL with d H2O. OPD 

(5 mg) and H2O2 (4 mg) were weighed out in separate black eppendorfs.  

Dilute antigen (50 μl) was centrally pipetted into each well of the ELISA plate (96 well, flat 

bottomed, polystyrene, sterile, gamma irradiated), to G,H-11,12 only hexane was added. The 

plates were allowed to evaporate before being sealed.  

The plates were unsealed and 0.5% casein PBS (350 μl) was dispensed using a 96 well plate 

washer, then incubated at 25°C for 30 minutes. Blood product (6 μL) were diluted to 1:40 

with 0.5% casein PBS and resuspended by pipette. Casein was aspirated off the plates and 

tapped dry, serum or plasma (50 μl) was added to the wells. Remaining serum or plasma was 

pooled and added (50 μl) to C,D-11,12 and G,H-11,12 for a pooled and negative control 

respectively, 0.5% casein PBS was added to E-F 11-12 for a negative control. The plates 

were then sealed with a self-adhesive plate seal and incubated at 25 ºC for 60 minutes. The 

plates were washed three times using 0.5% casein PBS and tapped dry, before adding 

IgGFcHRP (50 μl, 2.9 μg/mL) using a multichannel pipette and then incubated at 25 ºC for 30 

minutes. The plates were washed three times using 0.5% casein PBS and tapped dry, the OPD 

(5 mg) and H2O2 (4 mg) were dissolved in citrate buffer (25 mL) and added (50 μl) to the 

plates using a multichannel pipette. Plates were incubated at 25 ºC for 30 minutes. H2SO4 (50 

μl, 3.0 M) was added to the plates and the results read on a UV-visible ELISA plate reader at 

450, 492, 620nm. 

 

 

 

 

 

 


