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Abstract

It is widely accepted that size selective mortality induced by commercial fishing can and does
cause changes in life history traits that include shifts in maturation age, growth rate and body
size. However, whether these changes are the result of fisheries induced evolution (genetic
change) or phenotypic plasticity is still unclear. Moreover, where evolution is rapid, epigenetic

or regulatory change has also been found to drive major shifts in life history change.

To examine the genetic and phenotypic response to size selective harvesting, a previous study
(van Wijk 2011a) subjected guppies to divergent size-specific selection. Following selection, a
significant difference in both body size and age at maturation was identified as well as
signatures of selection at five candidate loci. The project described here utilised these

selection lines to examine the genome wide factors contributing to such life history shifts.

To assess the genome wide response to size selective harvesting, RAD sequencing was
employed to identify and type large numbers of SNPs in individuals from the selection lines, as
well as individuals from the generation prior to selection. Significant and consistent signs of
selection were identified at 37 SNPs, the majority of which were located on the sex
chromosome. The results showed that, in addition to previously observed genetic change,
additional regions of the guppy genome responded to, and were associated with, observed
phenotypic shifts.

Variation in the level of predation in wild populations creates variation in life history traits similar
to those seen after size selective harvesting. We therefore examined the 37 SNPs identified
by the RAD sequencing of the selected lines in 18 populations of wild guppy. No consistent
signs of selection were identified in these wild populations, suggesting that the genetic
architecture underpinning variation in life history traits in the guppy varies in different

populations.

To determine the role of epigenetic change the focus has been on DNA methylation. In order
to assess the levels of DNA methylation a technique known as methylation sensitive AFLP has
been used. Using this technique, comparisons of the level of DNA methylation between both
the selection lines and the before and after selection fish were made as well as comparisons in
the levels of DNA methylation between a range of tissue types from the guppy. Results
showed that patterns of DNA methylation differ significantly between different tissues in the
guppy. Genome wide patterns of genome wide methylation did not differ significantly between

the selection lines, however locus-specific variation in DNA methylation was identified.
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Chapter 1: General Introduction

1.1 Abstract

Anthropogenic pressures, particularly harvesting, have been found to cause phenotypic trait change
in a large number of wild populations. One such pressure which has been widely studied is the
mortality imposed by fisheries. It is widely accepted that size selective mortality, induced by
commercial fishing, causes changes in life history traits that include shifts in maturation age, growth
rate and body size. However, whether these changes are the result of fisheries induced evolution
(genetic change) or phenotypic plasticity has been debated. Although there have been several
attempts to examine the contribution of genetic change and phenotypic plasticity using modeling,
these attempts have been criticised. Recently, a study used the guppy (Poecilia reticulata) as a
model species to undertake a selection experiment and provide evidence of genetic change
associated with harvesting (van Wijk 2011b). Guppies are a model species because they are
amenable to experimental manipulation and have been shown to respond to predation by evolving
differing life history traits. Furthermore, there exists an extensive genomic toolbox for the species,
making them ideal for studying the genomic changes underpinning observed shifts in life history
traits. The following chapter discusses fisheries induced evolution and the van Wik (2011)
selection experiment in more detail. Although it is important to examine the genetic basis for shifts
in life history traits, it is also necessary to consider whether epigenetic changes have a role to play.
DNA methylation is one of the most widely studied epigenetic modifications and its contribution to

complex traits is also discussed in the following chapter.

1.2 Contemporary evolution

The theory of evolution underpins biology. An understanding of how species evolve and adapt to
changing environments, especially those that are rapid, has become increasingly important due to
growing anthropogenic pressures. Evolution has historically been considered a very slow process
(Darwin 1859, Mayr 1963), however it is now widely recognised that adaptive evolution can take
place over contemporary time periods (within tens of generations: Reznick 1987, Khater et al.
2014). Although acceptance that anthropogenic impacts may constitute stronger and more direct
selection pressures than natural selection is relatively recent (Palumbi 2001, Stockwell et al. 2003,
Palkovacs et al. 2012), some early examples of contemporary evolution provide classic instances of
human-induced change (Kettlewell 1958). The escalating impact of anthropogenic pressures such
as global warming, habitat destruction, introductions and overexploitation require a better
understanding of contemporary evolution in order to enable effective detection, prediction and
mitigation of impacts (Carroll et al. 2007, Salamin et al. 2010, Skelly 2010).

One of the earliest documented examples of both contemporary evolution and human-induced trait
change is that of the peppered moth Biston betularia, the pale morph of which increased from

making up only 0.1% of the population to 98% in less than 50 years as a result of increased air
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pollution from industrial revolution (Kettlewell 1958). Although the accuracy of these results has
since been questioned (Rudge 1999), there is now an abundance of anthropogenic impacts, such
as habitat disturbance (Desrochers 2010, Franssen 2011), pest control (McKenzie and Batterham
1994, Raymond et al. 2001), overexploitation (Jachmann et al. 1995, Cooke et al. 2007, Shackell et
al. 2009), climate change (Stiling et al. 2003) and introductions (Peckarsky and Mcintosh 1998,
Cousyn et al. 2001), which have been shown to induce adaptive changes. While the majority of
anthropogenic pressures driving human-induced trait evolution are considered to be negative and
often result in maladaptive changes, there are also documented conservation actions that have led
to trait changes (Rolshausen et al. 2009). Impacts of human-induced trait change are not only
limited to the species that the anthropogenic pressure immediately impacts, but can also can lead to
trait changes in species with which they interact (Blackstone and Joslyn 1984), as well as other

ecological effects (Palkovacs et al. 2012).

The main focus of the investigation into human-induced trait change has been the effects of
harvesting, with studies having shown that harvesting has the ability to induce trait change 300x
faster than natural drivers, and 50x faster than other anthropogenic drivers (Darimont et al. 2009).
Although humans have always hunted animals, whether for food, clothes or tools, the development
of technologies and the growth in industrial-scale mechanised fisheries has resulted in
anthropogenic selection pressures that far outstrip most natural selection pressure. However, it
was not until the late 1970’s (Handford et al. 1977) and early 1980’s (Ricker 1981) that the effects
harvesting can have on phenotypic traits were widely recognised. Today there is a large body of
evidence showing changes in phenotypic traits as a direct result of overexploitation (Ovis
canadensis: Coltman et al. 2003; Festa-Bianchet et al. 2014; Cervus elaphus: Thelen 1991; Rivrud
et al. 2013; Vulpes vulpes: Haldane 1942; Loxodonta africana: Jachmann et al. 1995; Nuzzo &
Traill 2014; Chiyo et al. 2015; Aepyceros melampus: Muposhi et al. 2015; Ovis gmelini musimon:
Garel et al. 2007). Despite its importance there are still many questions surrounding the
mechanisms underlying such changes, and few studies have been able to successfully identify the

genetic basis underpinning the trait in question (Hendry et al. 2008).

1.3 Fisheries induced evolution

Although fishing alone would be enough to drive selection for smaller size and age at maturity
(Heino et al. 2015) the non-random nature of size selective harvesting significantly amplifies such
effects. Due to the higher value of larger fish and regulations which prevent the harvesting of fish
below a certain size (e.g. Council Regulation [EC] 850/98), the selection imposed on fish
populations by fishing is frequently size-specific. Similar selection pressures driven both by size-
selective harvesting and natural predation can be seen in other species, particularly in where a
predator has been introduced (Strauss et al. 2006). However, it has been shown that the number
of aquatic species known to have been subjected to size-selective harvesting was almost four and

half times larger than among terrestrial species (Fenberg and Roy 2008). For some species of fish
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the mortality rate imposed by fisheries can be as high as 400 times their natural mortality (Mertz
and Myers 1998), and it is for these reasons that most work into the effects of size-selective

harvesting has focused on the impact of fisheries.

The trait or traits human-induced change affect is determined by the phenotype primarily harvested.
For example trophy hunting in elephants (Loxodonta africana) involves removal of those individuals
with the largest tusks, thereby driving selection to favour individuals with smaller tusks (Coltman,
O’Donoghue, and Jorgenson 2003). As discussed above, fisheries remove the largest individuals,
and life history theory predicts that increased mortality of larger individuals will drive selection to
favour individuals which reach sexual maturity earlier and at a smaller size (Roff 1992, Heino and
Godg 2002, Olsen et al. 2004, Jorgensen et al. 2007, Marshall and Browman 2007, Heino and
Dieckmann 2008, Conover and Baumann 2009b, Kuparinen et al. 2009).

The two main traits which form the focus of fisheries induced evolution are body size and age at
maturation. Many commercially important fish species, including cod (Heino et al. 2002, Olsen et
al. 2004, Baulier et al. 2006), European and American plaice (Barot et al. 2005, Rijnsdorp et al.
2005, Grift et al. 2007), sole (Mollet et al. 2007), haddock (Wright, Gibb, et al. 2011), herring
(Engelhard and Heino 2004, Enberg and Heino 2007), grayling (Haugen and Vgllestad 2001) and
salmon (Ricker 1981, Hard, Gross, Heino, et al. 2008), have been shown to reach a smaller size
and/or mature at a younger age. One of the difficulties in fully understanding the mechanisms
underpinning these changes is the definition of the traits in question. The specific measurement
used to determine body size often depends on the species being studied. One of the more
commonly used measurements is the standard length however mass has also been used
(Rijnsdorp et al. 2005). Age at maturation has not often been used in direct measurements of wild
fish due to the difficulties in measuring it. It is, however, one of the most commonly studied traits
when modelling approaches are used. In these studies age at maturation is calculated as the age at
which a fish has a 50% chance of maturing (Marshall et al. 2009). It has been argued that the focus
of FIE should be growth rate and that using body size and age at maturation as a proxy for growth
rate does not fully consider the wide range of mechanisms which can affect growth (Enberg et al.
2012). However, until it is possible to directly measure the specific growth rate of wild fish, body

size and age at maturation will continue to be used.

Although it is now widely accepted that changes in life history traits do occur as a result of fishing,
disentangling how much of the change in life history traits is a result of environmental effects and
how much is a result of evolutionary change has proved difficult and controversial (Kuparinen and
Merila 2007, Marshall and Browman 2007, Browman, Law, and Marshall 2008, Enberg et al. 2012).
Several studies have suggested that observed changes in phenotypic traits for some species are a
result of environmental changes and phenotypic plasticity (Morita and Fukuwaka 2006, Kraak 2007,
Marshall and Browman 2007, Salmon et al. 2008, Daufresne et al. 2009). Many fish populations

are now at historically low population sizes and densities that reduce intraspecific competition and
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potentially alter growth rates (Trippel 1995, Stokes and Law 2000, Sinclair 2002, Roos 2006, Kraak
2007, Thorpe 2007). Moreover, change in water temperature also has the potential to alter growth
rates (Stokes and Law 2000, Sinclair et al. 2001, Law 2007, Thresher et al. 2007, Daufresne et al.
2009) and phenotype (Seymour 1959, Hempel and Blaxter 1961). When combined with density
effects, these environmental factors have the potential to induce the observed changes in life
history traits (early maturation and smaller size: Hutchings 2000; Wootton 1999; Roff 2003).

If evolutionary change as a direct response to fishing pressure is responsible for the observed
changes in life history traits, there are four basic conditions which must be met: the trait must (i)
show phenotypic variation (Conover and Baumann 2009b, Enberg et al. 2012); (ii) some of the
phenotypic variation must be heritable (Gjedrem 1983, Kuparinen and Merila 2007, Carlson and
Seamons 2008, Hutchings and Fraser 2008, Conover and Baumann 2009b); (iii) the optimal
phenotype under fisheries selection must be different to the optimal phenotype under natural
selection (Hendry et al. 2011), and finally (iv) the selective force, i.e. fishing, must be sufficiently
strong to outweigh natural selection (Edeline et al. 2007). All changes in life history traits observed
in harvested fish stocks show significant phenotypic variation which has also been found to be
heritable (Stokes and Law 2000, Heino and Godg 2002, Law 2007). For many of these traits, the
direction of selection imposed by fishing is opposite that of natural selection (Conover 2007, Edeline
et al. 2007), and the strength of selection imposed is significantly higher than that of natural
selection (Mertz and Myers 1998, Edeline et al. 2007). However, although there is evidence that
fishing fulfils all of the conditions required to drive evolutionary change, irrefutable evidence that
genetic change occurs has been challenging to obtain (Heino et al. 2015).

There have been several attempts made to disentangle the effects of environmental and genetic
change, most of which can be broadly categorised as either indirect approaches, such as modelling
and analysis of temporal data sets for exploited fish stocks or, direct approaches, such as selection
experiments and use of molecular techniques (Conover and Baumann 2009b). By far the strongest
support for fisheries-induced evolution is currently provided by indirect approaches, specifically
probabilistic maturation reaction norms (PMRN) (Stearns and Koella 1986, Heino et al. 2002, Olsen
et al. 2004, Dieckmann and Heino 2007, Swain et al. 2007, Hard, Gross, and Heino 2008, Heino
and Dieckmann 2008, Hutchings and Fraser 2008, Dunlop et al. 2009, Sharpe and Hendry 2009).
By determining and plotting the probability of an immature fish reaching maturity as a function of
age and size, the PMRN aims to control for environmental plasticity (Heino et al. 2002). However
the reliance the PMRN approach has on maturation being only a function of age and size has led to
criticism of the method (Kinnison and Hendry 2001, Kraak 2007, Kuparinen and Merilda 2007,
Marshall and McAdam 2007, Morita et al. 2009, Uusi-Heikkila et al. 2011), with several studies
providing evidence that traits other than age and size can significantly affect the probability of
reaching maturity (Morita and Fukuwaka 2006, Grift et al. 2007, Kraak 2007, Kuparinen and Merila
2007, Morita et al. 2009). In an attempt to overcome such problems, multidimensional PMRN'’s have
been developed for many species (Baulier et al. 2006, Grift et al. 2007, Kraak 2007, Mollet et al.
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2007) and although it is theoretically possible to include all factors influencing body size when
producing PMRN'’s, obtaining relevant data for all possible covariates is extremely difficult.
Consequently, most multidimensional PMRN’s still only contain a maximum of three dimensions
(Vainikka et al. 2008, Marshall et al. 2009, Pauli and Heino 2013).

In an attempt to overcome the difficulties of fully modelling such complex traits, selection
experiments have also been undertaken to investigate FIE. Although an experimental approach
was used as early as 1975 (Silliman 1975), the use of selection experiments to distinguish between
environmental and genetic effects of harvesting and has only recently begun receiving significant
attention (Fuller et al. 2005, Conover and Baumann 2009b). One of the most recent experiments
into the effect of harvesting on life history traits was undertaken by Conover & Munch (2002), which
supported the theory of fisheries-induced evolution. Despite providing insights, selection
experiments have been criticised for their simplification of natural environments that has the
potential to eradicate or minimise gene X environment interactions (Holloway et al. 1990, Hoffmann
and Merild 1999). Studies such as that by Conover & Munch (2002) have been further been
criticised for the high level of harvesting imposed, which it has been argued, are significantly higher
than most wild harvested populations experience (Hilborn 2006, 2007). Others have argued that
such high experimental harvesting rates enable the speed at which traits will change to be
calculated for species being harvested at lower rates (Brown et al. 2008). Even though selection
experiments have provided support for fisheries-induced evolution, direct empirical evidence
demonstrating genetic change underpinning the phenotypic shifts was needed before a definitive
conclusion could be reached. However, while efforts have being made to apply molecular
techniques to wild populations (Nielsen et al. 2009, Jakobsddttir et al. 2011), unequivocal genetic

evidence is rare.

1.3.1 Combining a selection experiment and with a molecular approach

In 2008 a study aiming to provide the desired empirical genetic evidence was initiated (van Wijk
2011a). This study combined the use of a selection experiment on Trinidadian guppies (Poecilia
reticulata) with molecular genetic techniques in order to examine directly the extent of genetic
change associated with controlled contrasting harvesting regimes. The first three generations were
left to breed freely with generations being kept separate (by removing all juveniles). From the third
generation (F3) 550 males were selected to make the F4 generation. Of those 550, 50 were
randomly selected to create the control line and the smallest 20% used to create the small line and
the largest 20% used to create the large line. For each line two replicates were created (e.g. small
line 1; small line 2; large line 1 and large line 2). In order to create each of the following three
generations once 100-150 (male) fish were mature the 50 smallest and largest fish were selected
for the next generation, i.e. when 100-150 of the male offspring from the F3 generation in the L1 line
(large 1) were mature they were measured and the 50 largest fish became the F4 generation for
that line. Once the F6 generation had been created, 50 males were randomly collected and

measured for size and age and size at maturation. Throughout generations F3-F6 females were
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not subjected to any selection and the females selected to create the next generation were selected
randomly. This was primarily due to the fact that females have indeterminate growth whilst males
stop growing once they reach maturity, meaning that any size selection of females would have been

selecting for age rather than size. (See Figure 1.1 for a schematic representation)

During the course of the study body size, neutral microsatellites and seventeen candidate loci were
monitored at every generation. Additionally, measures of maturation size and age were monitored in
the generations before and after selection. Findings showed a significant difference in both body
size and age and size at maturation following selection (body size showed a change of £7%, whilst
age and size at maturation changed by +4-6% and +8-12% respectively). Importantly, this study
also showed significant signs of selection at five of the seventeen candidate loci being monitored
thereby providing empirical genetic evidence of changes in life history traits as a direct result of

harvesting.

By combining a selection experiment with molecular genetic techniques, van Wijk (2011) provided
empirical evidence of genetic changes in life history traits as a direct result of harvesting. Now that
evidence of genetic change as a direct result of size-selective harvesting is available, it is important
to further consider the broader evolutionary processes involved, and the level of genomic change

taking place.

1.4 Importance of understanding fisheries-induced evolution

In terms of fisheries and their management, the importance of understanding the cause of the
observed changes in life history traits lies in their potential for reversibility (Conover and Baumann
2009b, Enberg et al. 2009). If the process is a result of environmental changes and phenotypic
plasticity, then it is to be expected that the observed changes will be readily reversible, if and when
fishing ceases (Dieckmann and Heino 2007, Jorgensen et al. 2007, Kuparinen and Merila 2007).
As fishing pressure is removed, environmental conditions such as population density would be
expected to return to pre-exploitation levels, indicated by phenotypes reverting to their pre-
exploitation optima. If however, the changes in life history traits are a result of genetic change, it is
likely that they would require much longer to reverse, if at all (Dieckmann and Heino 2007, Enberg
et al. 2009). By removing most of the fish whose genes predispose them to grow larger or for later
maturation, the alleles that code for these traits would also be reduced in frequency, and may
ultimately be lost from populations completely. If such alleles are reduced in frequency, or removed
completely, it will take a long time for an exploited population to recover, even when the fishing

pressure is reduced or
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Figure 1.1: Schematic representation of selection experiments, showing the number of fish reared in the
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2011a).
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removed (Roos 2006, Kuparinen and Merila 2007). Genetic variation underpinning large body size
for example, would either have to evolve again through mutation, or via immigration from other
populations. Studies have considered the reversibility of fisheries-induced evolution and found that
while some traits recovered, others did not (Salinas et al. 2012). More information is, however,
needed before the reversibility of fisheries-induced evolution can be fully assessed (Kuparinen and
Hutchings 2012).

In addition to the importance of understanding whether the causes are primarily genetic or
environmental, the genomic nature of genetic changes will also affect the potential rate of recovery
(Conover et al. 2009). Questions including whether changes are occurring at few small-effect or
several large-effect genes (Roesti et al. 2012), and whether selection acts on new or standing
genetic variation (Akey 2012), will be important in determining rate of recovery. For example if the
observed shifts in life history traits are underlain by changes at few large-effect loci, it could be
argued that following a moratorium on fishing, a small number of loci involved would facilitate
recovery, compared to a scenario where changes had occurred at a large humber of small- effect

loci.

Size-selective harvesting not only has direct impacts on the species being harvested, but also on
wider ecosystem processes, such as primary productivity, decomposition rates and nutrient cycling
(Bassar et al. 2010). Therefore further knowledge of the rate of recovery will also provide an insight
into the likely persistence of such ecosystem-wide effects in exploited communities, as well as
where predation is strongly size-selective (Walsh and Reznick 2011, Furness et al. 2012, Furness
and Reznick 2014, Travis, Reznick, and Bassar 2014, El-Sabaawi, Bassar, et al. 2015, El-Sabaawi,
Marshall, et al. 2015).

In order to answer questions about the genomic architecture underpinning the observed shifts in life
history traits it is necessary to examine genome-wide changes following size-selective harvesting.
Several studies have examined adaptation of guppies to size-selective predation (see Magurran
2005 and references therin), as well as ongoing work examining the ecosystem wide impacts of
changes in life history traits (Travis, Reznick, Bassar, et al. 2014, El-Sabaawi, Bassar, et al. 2015,
El-Sabaawi, Marshall, et al. 2015). Collectively, such studies in addition to the existence of size
selected lines derived from van Wijk (2011) and van Wijk et al. (2013), provide a unique opportunity
to examine genome-wide impacts of size-selective harvesting and attempts to address some of the

guestions outlined above.

1.5 The quppy, Poecilia reticulata

Despite being native to Venezuela, Guyana, Suriname, Trinidad and Tabago (Farr 1975), the small
viviparous guppy, Poecilia reticulata, has been introduced to every continent apart from Antarctica,

both as a method of controlling mosquitoes (Courtenay et al. 1989), and through its huge popularity
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Figure 1.2: Worldwide distribution of Poecilia reticulata showing native range (black) and invasive
distribution (dark grey). Native distributions are taken from Magurran (2005), invasive distributions from:
www.fishbase.org (might be incomplete). Inset shows the island of Trinidad with the three drainages.
Figure from van Wijk (2011).

in the aquarium trade (Figure 1.2). In Trinidad, guppies can be found widely distributed in
freshwaters and can even survive in highly polluted water (Magurran and Phillip 2001). The ability of
P. reticulata to adapt to, and thrive across, a range of conditions is part of the reason that it is now
classed as a model organism in disciplines such as animal behaviour (Magurran et al. 1995,
Swaney et al. 2001, Amundsen 2003, Croft et al. 2009, Agrillo et al. 2012), population genetics
(Carvalho et al. 1991, 1996, Shaw et al. 1991, Barson et al. 2009), evolution (Reznick, Rodd, et al.
1996, Reznick et al. 1997, Reznick and Ghalambor 2001, 2005), conservation biology (Oosterhout
et al. 2007), parasitology (Cable