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SUMMARY

This thesis offers an explanation of the statistical

modelling of corporate financial indicators in the context where

the life of a company is terminated. Whilst it is natural for

companies to fail or close down, an excess of failure causes a

reduction in the activity of the economy as a whole. Therefore,

studies on business failure identification leading to models which

may provide early warnings of impending financial crisis may make

some contribution to improving economic welfare. This study

considers a number of bankruptcy prediction models such as

multiple discriminant analysis and logit, and then introduces

survival analysis as a means of modelling corporate failure. Then,

with a data set of UK companies which failed, or were taken over,

or were still operating when the information was collected, we

provide estimates of failure probabilities as a function of

survival time, and we specify the significance of financial

characteristics which are covariates of survival. Three innovative

statistical methods are introduced. First, a likelihood solution

is provided to the problem of takeovers and mergers in order to

incorporate such events into the dichotomous outcome of failure

and survival. Second, we move away from the more conventional

matched pairs sampling framework to one that reflects the prior

probabilities of failure and construct a sample of observations

which are randomly censored, using stratified sampling to reflect

the structure of the group of failed companies. The third

innovation concerns the specification of survival models, which

relate the hazard function to the length of survival time and to a

set of financial ratios as predictors. These models also provide

estimates of the rate of failure and of the parameters of the

survival function. The overall adequacy of these models has been

assessed using residual analysis and it has been found that the

Weibull regression model fitted the data better than other

parametric models. The proportional hazard model also fitted the

data adequately and appears to provide a promising approach to the

prediction of financial distress. Finally, the empirical analysis

reported in this thesis suggests that survival models have lower

classification error than discriminant and logit models.
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CHAPTER ONE

INTRODUCTION

This thesis is concerned with the statistical modelling of

corporate financial indicators in the context where the life of a

company is terminated. Whilst it is natural for companies to fail

or close down, as they do for various reasons ( see Section 2.3 ),

an excess of failures cause a reduction in the economic activity

of the economy as a whole. These failures not only reduce

government income by both lost revenue from taxation and a

negative flow of funds through social security payments, they also

affect the economic well-being of other businesses which lose

sales and of investors who lose income and capital. There are

occasions when, for either political or economic reasons, the

government will decide to prevent the failure of a large company

important to the state of the nation (for example the British

government support of the failing motor industries in the 1970's).

Perhaps, if these problems had been identified at an earlier stage

then government financial support may not have been so costly.

Therefore, studies on business failure identification leading to

models which may provide early warnings of impending financial

crisis may make some contribution to improving economic welfare.

Rather than waiting until the event of failure to diagnose the

problem, the emphasis should be on identifying failing companies

during the early stages of their decline. Hopefully, some

corrective action could be taken to stem the decline. For the past

20 years, various business administration specialists 	 have

1



presented articles in financial journals that have employed

multivariate statistical techniques on corporate financial data in

order to develop statistical models which would identify failing

companies. These models predicted failure with a high degree of

accuracy when companies were near collapse. As failure becomes

more remote in time, however, the forecasting accuracy of these

models declined. Some of these models also contained statistical

weaknesses that cast doubt on their results. This thesis considers

a number of bankruptcy prediction models, and then introduces

survival analysis as a means of modelling corporate failure. In

this context, we look upon company development over time as a

process in which companies are created and, eventually, are taken

over or fail. At any given point in time, the survivors are those

companies which have not yet been taken over or have not yet

failed. Essentially, the approach taken in this thesis is to

introduce company financial characteristics into a probability

model as covariates of survival, treating surviving companies as

censored observations whose eventual fate is unknown.

One can view the development in certain financial ratios as

indicators of the company's state of health, although failure may

be caused by different circumstances. Beaver (1966), Altman (1968)

and, subsequently, many other authors have carried out research in

this field. Their evidence indicates clearly that with a few

financial measures (e.g. financial ratios) corporate failure can

be predicted for a period of at least five years before failure.

Naturally, it is possible that failure prediction models might

benefit from the inclusion of other financial and non-financial

variables. However, the data used here is restricted to a broad

2



set of financial ratios as used conventionally in many studies and

the focus of this thesis is on the statistical methodology and its

applicability to the phenomenon under investigation, i.e. company

failure in a broad sense.

1.1 Objectives of the Study

The preceding discussion justifies the development of a

warning system for financial distress in a business company. The

objectives of this thesis are to construct statistical models that

can identify in advance those companies that will become

financially distressed and an attempt to understand the structure

of large cross-sectional accounting information sets. For this

thesis a data set relating to financial statement information of

large U.K. industrial companies was gathered from EXSTAT. This is

an extensive data base that has also been analyzed by others in

building failure prediction models, and in understanding the

structure of large cross-sectional accounting information sets.

Then, with the specific data set compiled for this study of U.K.

companies which failed, or which were taken over, or which were

still operating when the information was collected, we provide

estimates of failure probabilities as a function of survival time,

and we specify the significance of financial characteristics which

are covariates of survival. There is some evidence of survival

bias in the time series of certain financial ratios, after

treating financial disclosures as non-synchronous, irregular

repeated measures when estimating mean effects. However, survival
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bias is not the central issue. The core of this thesis is

concerned with three innovative statistical methods. First, a

likelihood solution is provided to the problem of takeovers and

mergers in order to incorporate such events into the dichotomous

outcome of failure and survival. Second is the specification of a

parametric and non-parametric model of company survival, where we

evaluate the assumptions of the model on the basis of an analysis

of residuals, and select between Weibull, Exponential and

Log-logistic regression models for best fit and accuracy of

prediction. Third, a "randomly-censored stratified sampling"

solution is provided to the problem raised by moving from a

matched sampling basis to one where the structure of the survivor

group no longer reflects that of non-survivors.

1.2 Chapter survey

This thesis is divided into seven Chapters each one

presenting a different phase of the study

Chapter one introduction

Chapter two	 is a brief survey of the literature of business

failure prediction. Included are definitions of business failure

and contrasting authors' views on the causes of failure. This

chapter concludes with a survey of the major models that have been

used in published studies. Of particular importance are the

statistical techniques used, and the overall forecast accuracy of
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each, and some consideration is given to the variables in the

models.

Chapter three	 contains an extensive discussion of the

construction of the new data set used for this study. Accounting

data on 463 companies was collected from the EXSTAT source,

restricted to industrial companies. The 463 companies consisted of

companies which went into liquidation ("bankrupt"), companies

which combined with others or were acquired by others ("merged")

some which closed down for other reasons or moved from the U.K.

("other") and surviving industrial companies. The methods used to

identify non-surviving companies and to collect data are

explained. Also presented in this chapter is some exploratory

analysis of the general time series behavior of financial ratios

of these companies, a discussion of the computer data analysis

used to study the distributional properties of the data, and is

concerned with the application of principal component analysis,

which is used for structural simplification so that the large

number of variables may be reduced to fewer components.

Chapter four	 is concerned with the application of stepwise

discriminant analysis and quadratic discriminant analysis, which

are used to determine the most important financial ratios that are

associated with the failure of a company and to predict the

probabilities of failure, first, before reclassifying "merged" and

"other" companies and, second, after reclassifying "merged" and

"other" companies. Also presented are methods used to reclassify

"merged" and "other" companies into either the "bankrupt" category
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or the "live" category, including stepwise discriminant analysis

and survival analysis based on the Weibull model. Each of the two

methods are carefully explained and the results of the two methods

are contrasted.

Chapter five is concerned with the application of the logistic

model, which is used to predict failure and to determine for the

data under investigation the most important financial ratios

affecting the outcome. The explanatory variables used in the

prediction models are identified by stepwise regression.

Chapter six	 considers the covariates of survival which are

modelled in an attempt to understand the structure of the large

cross-sectional accounting information set under investigation.

The models used are based on the hazard function. Two classes of

such models are considered: parametric models which contain

Weibull, Exponential and Log-logistic regression models, and the

non-parametric proportional hazard model. Parameter estimation is

based on maximum likelihood estimation.

Chapter seven contains the general conclusions of the study, and

identifies the potential contributions of the statistical

modelling approach to applications in financial analysis.
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CHAPTER TWO

BUSINESS FAILURE PREDICTION MODELS

2.1 Business Failure 

Necessary to any statistical model of corporate failure are

certain basic inputs. First, a definition is needed as to what exactly

is a "business failure". Second, financial writers (e.g. Lev, 1974,

and Dewing, 1941) have suggested the causes and warning signs of

failure- how could a model be built which would associate failure with

these signs? Other items that must be considered are: existing failure

prediction models, the success and limitations of these models, and

new theoretical techniques that offer a solution to the weaknesses of

existing models.

2.2 Business Failure Definition

There are many institutional aspects of corporate failure that

figure indirectly in model building. These have been studied by many

experts in various fields. Economists study the effects of national

policy decisions on business and the costs of failure on the economy.

Financial experts are concerned with the loss of investment in failed

firms. Legal experts argue over the payment of creditors' claims.

These professionals are all concerned with determining the costs of

business failure and who pays these costs.

Various definitions of business failure have been presented by

different authors.

Beaver (1966), defines failure as the inability of a firm to pay

its financial obligations as they mature. Operationally, a firm is

said to have failed when any of the following events have occurred

bankruptcy , bond default , an overdrawn bank account, or nonpayment
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of a preferred stock dividend.

Altman (1971), defines economic failure by economic criteria,

where the realized rate of return on invested capital, after allowing

for risk, is significantly and continually lower than prevailing rates

‹-,)c.---
on similar investments. 	 P

Deakin (1972), defines failure to include only those firms which

experienced bankruptcy, insolvency, or were otherwise liquidated for

the benefit of creditors.

Taffler (1982), defined the failure as receivership, voluntary

liquidation (creditors),or winding up by court order.

Thus, in the context of failure prediction, the concept of

failure varies from (1) the broad definition of a company which is

unable to settle its financial obligations (which may be a temporary

state of affairs resolved by a reorganization of financial structure)

to (ii) the narrower definition where the company is liquidated.

The first can be considered as "technical insolvency" which

refers to the inability of a firm to meet its currently maturing

obligations (Walter, 1957). It may be only a temporary condition for

the firm. For instance, the firm may have a positive equity position

and a sufficiently good outlook to get short run financial help over

its present cash crisis. On, the other hand, when a firm is in such a

bad position that it cannot pay its debts and secure new financing,

then it can voluntarily or involuntarily enter into bankruptcy. This

leads to an alternative conception of the "life" and "death" of

companies. At any one point in time t, we may observe companies which

are in existence. To that stock of companies will be added

newly-created companies, and there will also be companies which close

down in the intervening period and, therefore, do not survive until

t+1. However, it is not necessarily the case that a firm which closes
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down does so because it has failed. For instance, one company may be

acquired by another, although there exists the possibility that the

takeover target was heading for failure and its restructuring is

effected by absorption into another company. Therefore, in the same

way as other researchers have attempted in the past to broaden the

definition of failure to encompass temporarily bankrupt firms (i.e.

technically insolvent), so in this thesis the partition is between

"survivors" and "non-survivors", with the latter group comprising (i)

failures and (ii) companies which closed down for other reasons and

which we may wish to partition between failed non-survivors and other

non-survivors.

2.3 Causes of Failure 

The ability to predict corporate failure is important for all

parties involved in the corporation, in particular for management and

investors. An early warning signal of probable failure may enable them

to take preventative measures: changes in operating policy or

reorganization of financial structure, but also voluntary liquidation

could shorten the period over which losses are incurred. The

possibility of predicting failure is important also from a social

point of view, because such an event may be an indication of

misallocation of resources; prediction provides opportunities to take

corrective measures.

No Theory Of Corporate Failure

Since the objective of this study is to develop a quantitative

model to predict corporate failure, a generally accepted theory of

corporate failure is the place to start in formulating a model. A

survey of the finance literature reveals	 that	 there	 is no

/..
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well-formulated theory of corporate failure, and Lev (1974), gives the

following reasons for this:

1. the complexity and diversity of business operations

2. the lack of a well-defined economic theory of the firm under

uncertainty, and

3. the reluctance of theorists to study failure and include it in

their models.

Because of this lack of theory, model builders have considered the

reasons that financial experts have suggested as being the

explanations for the financial decline of firms.

The idea of bad management is perhaps the most mentioned cause of

business failure. Dewing (1941), the author of a classic text in

corporate finance, wrote: "The usual causes assigned for failure are,

in truth, not causes but excuses; the real cause is the lack of those

human qualities which, for want of a better understanding of the human

mind, we epitomize by the expression management. Unfortunately, bad

management is not a readily identifiable and quantifiable item.

Further, corporations are not required to disclose decisions made by

their top managers. As an observer of corporations, we can only note

the later effects of management decisions".

Dewing (1941) also lists four fundamental economic causes of

failure:

1. excessive competition

2. unprofitable expansion

3. change in public demand for the commodity

4. the distribution of capital as ostensible profit.

Dewing considers the second reason, unprofitable expansion, as the

prime reason for failure. Dewing makes this point as a result of

observing business failures in the 1920's and 1930's.

10



Financial writers have always considered the state of the economy

as an important element in the financial health of firms. For

instance, Altman (1971) developed a regression model showing that

change in corporate failure rate is inversely associated with changes

in GNP, stock prices, and money supply. Gordon (1971), in an article

on financial distress of corporations, notes that when corporate debt

and interest payments are at record levels, and the government

committed to an anti-inflation policy, the likelihood of failure is

increased. For a firm with operating losses plus high leverage, cash

runs out, new credit is not available and The firm fails. In periods

of economic slowdown, the number of business failures increases.

2.4 Survey of Failure Prediction Models

2.4.1 Corporate Failure Prediction Model 

Failure prediction models can be of help to investors in debt

securities when assessing the likelihood of a company experiencing

problems in paying interest or principal repayments. Also, the failure

of a business firm is an event which can produce significant losses to

creditors and stockholders. Therefore a model which predicts potential

business failure as early as possible would help to reduce such losses

by providing sufficient warning. The predictive value of financial

ratios and related financial data has received considerable attention

in recent years.

This was a sufficient motivation for Beaver (1966) and Altman

(1968) to develop models for predicting failure based on the financial

information disclosed by firms. Research conducted more recently on

the use of financial ratios to predict failure can be divided into two

groups, the univariate and the multivariate studies. The first group

is concerned with the predictive ability of individual financial
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ratios; whereas the second group in more concerned with performance of

several ratios combined together to predict failure.

2.4.1.1 Univariate Models 

A univariate model to predict financial failure involves the

use of a single variable in a prediction model. There are two

assumptions in this approach (Foster, 1986):

1. the distribution of a variable for the distressed firms

differs systematically from the distribution of the variable

for the non-distressed firms

2. this systematic distribution difference can be utilized for

prediction purposes.

Beaver's model 

In his seminal paper, Beaver (1966) developed and tested a univariate

prediction model of corporate failure based on observations of 79

failed firms which were each matched for industry classification and

asset size with another firm that continued in operation over the

period 1954-1964. The effect of this pairing was to stratify for size

and industry factors. Although the study's results were therefore only

applicable to that stratum of firms, failures amongst the groups in

question were more serious than elsewhere, and data was more available

for these firms. Financial statement data for five years prior to

failure was examined. Some thirty different ratios were selected among

ratio groups, that were believed to be important (profitability,

leverage, activity, cash flow, etc.) . Mean values for each variable

over five years for failed and non-failed firms were examined. The

mean ratios of the failed firms show distinct trend. Whereas the mean

ratios of the non-failed firms remained relatively constant. Figure
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Differences were said to offer proof of the ability of financial

ratios to predict failure. Then one ratio was selected, cash flow to

total debt, as the single best predictor of failure, because it had

the smallest classification error (i.e., 13%) in discriminating failed

from non-failed firms.

Although these findings suggested that ratio analysis could be

useful for as early as five years before failure, Beaver cautioned

that ratios have to be used selectively. He found that not all ratios

predict equally well. Further more, different ratios do not predict

failed and non-failed firms with the same degree of success.

Since the univariate methodology places emphasis on only

individual signals, it is possible that different financial ratios

might provide conflicting signals of firm's financial condition. Thus,

Altman (1968) commented that Beaver's approach to ratio analysis " is

susceptible to faulty interpretation and is potentially confusing ",

and suggested using multivariate analysis to investigate the

predictive ability of financial ratios.

2.4.1.2 Multivariate Models

A multivariate model for predicting financial failure involves

the use of several variables in a prediction equation. Multivariate

models of financial distress have been developed in various countries

including the United States, Japan, Germany, Switzerland, Brazil,

Australia, England, Canada, the Netherlands and France as described in

Altman (1984), An International Survey.
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Altman's model 

The first multiple discriminant analysis (MDA) model was published in

September 1968 by Edward Altman. He developed a model for the

prediction of corporate bankruptcy on a sample of 33 bankrupt and 33

non-bankrupt firms over the period 1946-1965. The 33 bankrupt

manufacturing firms had filed a bankruptcy partition under Chapter X

of the Bankruptcy Act. For each of the bankrupt firms a comparable

match was chosen from the same industry with similar assets size

measured over the same chronological period. The asset size of

bankrupt firms was from 0.7 to 25.9 million dollars one year prior to

bankruptcy. 22 ratios were selected based on their popularity in the

literature and their potential relevance to the study. These ratios

were	 classified	 into	 5	 standard	 categories	 liquidity,

profitability, leverage, solvency and activity. He used many computer

runs to select the best five variables out of 22 financial ratios. His

model is:

Z = 0.012X
1
 + 0.014X

2
 + 0.033X

3
 + 0.006X

4
+ 0.999X

5

where:

X
1
 = Working capital to total assets

X
2
 = Retained earnings to total assets

X
3
 = Earnings before interest and taxes to total assets

X
4
 = Market value of equity to book value of total debt

X
5
 = Sales to total assets

Z = Represents the discriminant score of the firm.

Altman classifies firms with Z scores as follows:

greater than 2.99 - non-bankrupt

less than 1.81 - bankrupt

between 1.81 and 2.99 - "zone of ignorance" or "gray area".
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At the beginning of his paper Altman states that he wants to

examine the usefulness of financial ratios in a model to corporate

bankruptcy. After presenting his model, he tested his model on various

data sets. His conclusions are that his model correctly classifies

firms in years before bankruptcy as follows:

95% one year before

72% two years before

48% three years before

29% four years before

36% five years before.

Thus, the model proved to be an accurate forecaster of failure when

failure is imminent. As failure becomes more remote, predictive

accuracy drops. This decline in predictive accuracy is another

important aspect of the failure prediction problem.

Thus, by developing a linear discriminant function which combined

five financial ratios, Altman obtained an approach that out performed

Beaver's "cash flow to total debt" method in predicting firm's

failure. Altman's study is considered as the pioneering research in

applying multivariate techniques to develop a predictive procedure

using financial ratios.

Limitation of Altman's (1968) model include the following:

1. One limitation is that of the ex-post nature of the analysis, i.e.

the estimation and validation samples both include firms that are

known to have failed on a set date. Thus, it is possible in the

research to compare the financial ratios of failed and non-failed

firms one year, two years, etc., prior to failure. However, in

decision-making contexts, one knows neither which firms will fail

nor the date on which they fail. To demonstrate that the results of
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this research have direct applicability to decision contexts, it

would be necessary to make ex-ante predictions about the failure

(and its timing) of firms currently non failed.

2. Little effort was directed towards the construction of a testable

theory that would specify the variables to be included in the

discriminant function. The approach of choosing 22 variables and

then using a stepwise discriminant model to select the variables in

the final discriminant function may be limited in its ability to

provide generalizable results as to what financial variables are

likely to be consistent predictors of financial distress.

3. The sample of firms used by Altman consisted of matched samples of

bankrupt and non-bankrupt firms, selected on a non-random basis.

However, no additional procedures were used to overcome the

limitations of having a non-random selection of the original

sample. The result is that the parameters estimated would be

subject to bias; some characteristics may be over-represented in

the samples. Thus, the resulting discriminant function may be

sample specific.

4. The use of a paired-sample design where firms are matched on size

and industry criteria effectively precludes these variables as

indicators of financial distress in the study. There is

considerable evidence that both size and industry groups contain

information on distress likelihood.

5. The use of equal-sized samples of bankrupt and non-bankrupt firms

also distorts the actual prior probabilities of firm's belonging to

either group. Deakins (1977) analysis of this type of bias

indicates that under such circumstances, the stated error rates may

not reflect the extent of each type of error. The most serious
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effect would be a tendency to understate the misclassification of

non-failing companies into the failing group.

6. Altman's method does not dependd on the additional assumption that 1
the variables distributed as the multivariate normal distribution.

The use of linear discriminant analysis assumes that the data for

the failed and non-failed firms have the same dispersion matrix. In a

later study, Altman, et al (1977) tested this assumption and found

that the dispersion matrices of the failed and non-failed firms could

not be considered identical. No test of multivariate normality was

conducted. It was determined that a quadratic discriminant analysis

was required. Stepwise exclusion was used to limit the twenty-seven

variable set to seven discriminatory variables. The results indicate

that even though the quadratic classifier is statistically more

appropriate, the linear classifier gives a lower classification error

rate. The holdout sample used was not an independent sample, since

data from the original sample's financial statements 2-5 years prior

to failure are applied to the parameters established from one-year

prior data, suggesting that a comparison of these results with other

studies is not appropriate.

Altman (1984), reviewed and compared a relatively large number of

empirical failure classification models from 10 countries. Much of the

material is derived from little known or unknown sources. Indeed as

financial institutions and government agencies in various countries,

e.g., Canada, U.S., Brazil, France, and England, wrestle with the

problem of large firm failures in the future, the knowledge that prior

work has been done with respect to early warning models may help avoid

the consequences or reduce the number of these failures.	 In
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concluding, Altman notes that he expects the quality and reliability

of models constructed in many of the reviewed countries to improve as:

1. the quality of information on companies is expanded and

refined

2. the number of business failures increase thereby providing

more data points for empirical analysis, and

3. as researchers and practitioners become more aware of the

problems and potential of such models.

Where sufficient data does not exist for specific sector models, e.g,

manufacturing, retailing, and service firms, the application of

industry relative measures can perhaps provide a satisfactory

framework for meaningful analysis.

Deakin's model 

Deakin (1972) applied multivaiate discriminant analysis (MDA) to 14

financial ratios initially used by Beaver (1966). His estimation set

consisted of 32 pairs of firm - bankrupt matched with non-bankrupt

over the period 1964-1970. He obtained a liner discriminant function

in which all the 14 variables were found to contribute significantly

to the discriminating ability of the function. In general, his

discriminant function was able to predict business failure as far as

three years in a advance with an accuracy of around 94%. Rather than

using a critical value for classifying the cases, Deakin used a

modification of discriminant analysis that assigns probabilities for

membership to the classes. Each firm was reclassified each year in a

manner that weighted the probability of group membership with its

deviation scores from prior periods. This technique improved the

classification error rate significantly over those found by either

Beaver or Altman. Using such probability estimates for group
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membership, Deakin's model provided error levels of 3 percent, 4.5

percent, and 4.5 percent respectively for the first three years prior

to failure. The error rates for the fourth and fifth years increased

to 21 percent and 17 percent respectively. These results appear to be

an improvement over Altman's, which could only predict accurately in

the first year prior to bankruptcy. Comparison with other studies is

difficult because the choice of a critical probability for assignment

to a group is a subjective choice even though the technique will

generate probability of group membership. Ideally such a choice should

be based on an analysis of cost of errors. No such analysis was

reported in Deakin's study. Also the method of group membership

assignment according to probabilities was not discussed. The

limitation of Altman's model cited apply to Deakin's model as well.

Deakin's method depends on the additional assumption that the

variables were distributed as the multivariate normal distribution,

but no multivariate normality test was provided.

A later study by Deakin (1976) also found that financial ratios

were non-normal. Since univariate normality is a necessary but not

sufficient condition for the normality of these variable's joint

distribution, the adherence to the assumption of multivariate

normality is doubtful. Lack of adherence to these assumption could

affect the predictive results.

Blum's model 

Blum (1974) developed a model for predicting failure using a sample of

115 non-failed firms over the period 1954-1968. For each of the failed

firms, a similar non-failed firm was chosen from the same industry,

size and fiscal year. In Blum's model the accuracy of the failing
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company model in distinguishing failing from non-failing firms was

tested by using discriminant analysis for computing an index and a

cutoff point on the index. The index is derived from the financial

model by computing the values of each of its variables for each

company studied. When the variables for one company are standardized

and added together, their sum is that company's index score. A

critical score exists which results in a minimum of misclassification.

If all companies with index scores above the critical score are

predicted to succeed and all companies with scores below are predicted

to fail, erroneous predictions will be minimized. When a firm with an

unknown group identity (failed-nonfailed) is classified by a

discriminant function as similar to firms which failed in the next

year, the firm's classification will be treated as a prediction that

the firm will fail one year from the date of prediction. However, his

model contained three new features:

1. The financial ratios included in the discriminant function of the

earlier studies were selected on the basis of either their

popularity, subjective judgments by the research, or the result of

an elimination process using stepwise regression (as in Edmister's,

1972). In contrast Blum constructed a "cash flow framework" to

theoretically identify the factors that will affect the probability

of failure. Ratios associated with these factors were used as

explanatory variables in the discriminant function.

2. Blum identified three groups of relevant factors through his "cash

flow framework". The first group consisted of liquidity-related

ratios. The second group had only one factor: the rate of return to

common stockholders. The third group consisted of measures of

variability of income and the net quick assets to inventory ratio

over a time period. None of the third group of factors had been
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used as an explanatory variable in previous studies.

3. Earlier studies investigated the change in accuracy when

multivariate discriminant analysis is used to predict failure for

different lengths of time ahead of failure. They all reached the

intuitively obvious conclusion that predictions become more

accurate the closer one gets to the actual date of failure.

Besides studying this effect, Blum also studied the effect of

using different numbers of years of prior data to predict failure

for a given time period ahead. His primary purpose was to

investigate the number of years of prior data required to improve

predictive accuracy. His findings suggested that for predicting

one year ahead using more than six years of data would actually

reduce instead of increase the predictive accuracy of the

resultant discriminant function.

Slum's empirical results indicated that the discriminant

functions from his "failing company model" could achieve 93-95%

accuracy for predictions one year before actual failure, 80% accuracy

at second year before failure, and 70% accuracy at third, fourth and

fifth years before failure. Slum's model was used for legal decisions

in the U.S.A., the so called 'failing company doctrine' is used as one

defence against an antitrust law in the U.S.A.. This doctrine can

apply where one of two merging companies is likely to fail and where

the failing company has received no offer to merge from a company with

which a merger would have been legal. Predicting failure using Blum's

model provides the court with some evidence as to which firms may lay

within the failing company doctrine defence against antitrust laws.

His model's performance compared favourably with the results obtained

by Deakin (1972), Altman (1968) and Beaver (1966).
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Mason and Harris model 

Mason and Harris (1979) developed a model specifically for the

identification of construction companies in danger of failure. The

study was carried out because of the concern that in the U.K., at

least, contracts often tend to be awarded on the basis of price

without adequate consideration of contractor's solvency and thus his

ability to complete the work. 20 construction companies failure

between 1969 and 1978 constituted the failed set and the continuing

sample consisted of 20 particularly sound concerns on a traditional

financial ratio analysis basis with 1976-1977 accounts used. A list of

28 discriminant variables was developed using a stepwise linear

discriminant analysis by finding the variable that discriminates most

between the groups of known "failed" and "solvent" companies. It then

combines this variable with each of the other variables in turn until

it finds the variable which contributes most to any further

discrimination of groups and then continues in a similar manner until

very little discrimination is gained by inclusion of a further

variable. The following model was derived:

Z = 25.4 - 51.2X
1
 + 87.8X

2
 - 4.8X

3
 - 14.5X

4
 - 9.1X

5
 - 4.5X

6

where:

X
1
 = profit before interest and tax to opening net assets

X2 = profit before interest and tax to opening net capital

X
3 = debtors to creditors

X
4
 = current liabilities to current assets

X
5
 = 1og

10
(days debtors)

X
6
 = creditors trend measurement.

None of the 40 firms was misclassified but there were 4 type I errors
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in a validation sample of 11 failed enterprises (36.3%). Also 58% of

the total 31 failed enterprises had failing characteristics 4 years

before failure. Mason and Harris also used the Bayesian statistical

approach to find an indication of how many "at risk" companies will

fail each year considering the following Bayesian formula:

P(F/C ) -r

P(C
r
/F)

P(C
r
/F) + P(C

r
/NF)

where

P(F/C 
r

) is the probability of a company, classified by the model as

"failed", actually failing

P(C /F) is the probability of a company being insolvent and also
r

being classified as "failed"

P(C /NF) is the probability of a company being classified as
r

"failed", but being actually solvent.

Therefore, 18% of the companies classified by the model as "failed"

should actually fail each year. However, their model is not only able

to distinguish between known failed and solvent companies on a

historic basis, but that it has "true" predictive ability in a

statistical sense. It has been shown that the model is able to

identify a short list of companies that are "at risk" of failure, and

that it is also able to give an indication of the proportion of these

firms that are likely to fail in the near future. Mason and Harris did

not try to investigate the distribution of the variables before using

the discriminant analysis.
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Ohlson's model 

Due to the restrictive assumption of discriminant analysis, Ohlson

(1980) used the conditional logit analysis to construct his

probabilistic bankruptcy prediction model. This statistical method

avoids most of the disadvantages of discriminant analysis; the

requirement concerning the distributional properties of the ratios,

the output from the model which is a score not a probability of

failure and the problems arising from the use of matched samples.

Ohlson's model assumes that P(X
i
,g) is the probability of bankruptcy

for any given X i and g (where Xi is the predictor variable and g is

unknown parameters). P is some probability function, 0 K P K 1. The

logistic function is

P = ( 1 + exp(-Y) -1 )

where Y = E g x .i 
J

The use of logit means that no assumptions have to be made regarding

prior probabilities of bankruptcy and/or the distribution of

predictors. Ohlson also abandoned the use of a matched sample. Nine

independent variables were selected. Firm size was included as a

variable, calculated as log(total assets/GNP price-level index). Total

asset size was also used to standardize three of the other variables,

and current assets were used to standardize a fourth variable. Ohlson

adjusted the firm size variable for price level changes in order to

allow "real time implementation of the model", but it was the only

variable adjusted in the set of nine. The sample of failed firms was

selected from the Wall Street Journal Index. The firms included had

failed between 1970 and 1976, they were industrials and had to have

been traded on the stock exchange for at least three years prior to
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failure. Firms that did not report funds statements for the entire

sample period were eliminated, leaving a sample of 105 bankrupt firms.

In the non-failed sample, each of 2058 non-failed industrial firms was

allowed to contribute one year of data to the data used in estimating

the models. This means that no matching procedure was used, allowing

the non-failed set to be a random sample. Three models were estimated,

the first to predict failure within one year, the second to predict

failure within two years if the firm did not fail in the first year,

and the third to predict failure in one to two years. The coefficients

of seven variables were found to be significant at at least the 0.10

significance level. The size variable was found significant at the

0.01 significance level in all three models. Other significant

variables were total liabilities/total assets, working capital/total

assets, net income/ total assets, funds from operations/total assets,

and a dummy variable representing negative owner's equity.

Classification errors were evaluated using the same set of data from

which the model were estimated. Ohlson used this procedure for four

reasons. First, he did not see his objective as "getting a precise

evaluation of a predictive model". Second no "data dredging" was used

to find a superior model. Third, unlike discriminant analysis, the

logit technique is not an optimizing model. Fourth, the sample size is

large, which would reduce the bias stemming from the lack of using a

holdout sample. Assuming that the effects of Type I and Type II error

rates are additive and that the best model minimizes the total error

rate, a critical probability for classification was selected as 0.038.

Thus if a firm's predicted probability of non-failure was below 0.038

the firm was classified as failing . Using this classification

procedure for the first model, the misclassification rates were 17.4

percent for the non-bankrupt firms and 12.4 percent for the bankrupt
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firms in the first year prior to the failure date, which is

significantly higher than those achieved by discriminant analysis

studies. Error rates for the second and third year models were not

reported. Since there are statistical reasons for believing that the

logit technique can improve on the results from discriminant analysis,

Ohlson found the results from his study disappointing.

The restrictive assumptions of discriminant analysis were not

required, and interpretation of individual coefficients is appropriate

in the logit model. This model lends itself, therefore, to broader

research applications than discriminant analysis models.

The failure of Ohlson's model to achieve accurate predictions

indicates that further refinements are necessary.

Taffler's model 

Taffler's study (1982) used industrial enterprises quoted on the

London Stock Exchange. The failed set of 23 firms consisted of all

those companies failing between 1968 and 1973 and meeting certain

criteria to ensure data completeness, consistency and reliability.

Failure	 (bankruptcy) was defined as receivership,	 voluntary

liquidation (creditors), winding up by court order or equivalent. The

sample of non-failed firms was constructed differently to previous

studies in that no matching with failed firms by industry, size or

financial year was attempted nor was the number of firms made equal.

Taffler argued that restricting the size of the non-failed sample to

that of the failed sample only serves to restrict the total sample

size and degrees of freedom, because the degree of freedom depends on

the sample size. There is no point in restricting the sample size to

match that of the failed companies, this simply reduces the size of
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the non-failed companies with consequent reduction in degrees of

freedom. He also argued that in order to make valid inferences it is

necessary for the sample groups employed in the analysis to be

representative of their underlying populations, and he therefore

suggested that the matching of continuing firms with failed firms by

industry is incorrect since this does not provide for the non-failed

set to be a random selection of all presently continuing industrial

firms, particularly as some industries are more failure-prone than

others. The same goes for attempted matching both by company size and

financial year. Taffler's data for the non-failed firms were drawn

from financial statements where financial year ends were in the

calendar years 1972-1973.

The set of 45 non-failed firms was finally obtained meeting the

initial industry, data availability and consistency requirements and

most importantly that the firms must be financially sound. This is the

most important departure from other studies in the selection of

non-failed firms. Taffler explicitly recognized that a continuing firm

is not necessarily financially healthy and that many companies

presently in existence closely resemble previous bankrupts in terms of

their financial characteristics. Three classes of discriminant

variable were developed: conventional ratios, 4-year trend measures

and fund statement variables. He found that the latter were too

volatile for meaningful analysis and the trend measures added very

little to the power of the discriminant model. Taffler therefore

focused his analysis on a set of 50 financial ratios. The distribution

of the straight ratio and trend measures were transformed (logarithmic

or reciprocal) where appropriate to improve normality. They were then

winsorized with any outliers beyond four standard deviations (s), from

the mean of the remaining observations replaced by the mean and those
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P(F/AR) =
P(AR)

between 2.5s and 4s by the appropriate 2.5s limit. Those variables

which remained highly non-normal with many extreme values were omitted

from further analysis. using a stepwise liner discriminant analysis, a

model consisting of the following five variables was produced:

X
1
 = Earnings before interest and tax to opening total assets

X
2
 = Total liabilities to net capital employed

X
3
 = Quick assets to total assets

X
4
 = Working capital to net worth

X
5
 = Stockturn.

Application of the z-model to the failed sample for prior years showed

that nine of the 23 firms appeared sound on the basis of their

penultimate accounts and only eight having failure characteristics 4

years before failure. Taffler has tested his model for its

predictability by applying the model to 33 quoted manufacturing firms

identified as going bankrupt between 1974 and 1976. He carried on to

argue that a conservative estimate of the annual failure rate for the

period 1974-1976 would be at least 2.5 percent. Taffler used the

Bayes' theorem by letting F denote the event failure in the next year,

AR a current at risk z-score and AR a current solvent z-score by

considering the following Bayesian formula:

P(AR/F) P(F)

and
P(AR/F) P(F)

P(F/AR) -
P(AR)

Using Bayes' theorem taking his type I error of 12.1 percent and the

10.7 percent of companies with at risk scores, he suggested that the

probability of failure given an at risk profile in the next year was

20.5% and the equivalent figure gives a financially healthy z-score
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was 0.34%. Taffler redeveloped his model and tested it on an ex-ante

(i.e. forecast the future state of a firm given present data) basis.

However, the results proved disappointing with 40.4% of the 52 failed

firms being misclassified by the model.

Betts and Belhoul model 

Betts and Belhoul (1982) develop a z-model consisting of the following

variables, in terms of importance

X
1
 = profit before interest and tax to total assets

X
2
 = quick assets to current assets

X
4
 = current assets to net capital employed

X
3
 = working capital to net worth

X5 = days creditors

The two samples were 26 quoted companies failing mainly between

1974-1977 and 131 'going concerns' sampled randomly from the EXSTAT

tape. A set of 26 potentially discriminating financial ratios were

derived for the two groups and a conventional stepwise linear

discriminant approach adopted to derive the model. No type I errors

were registered and only 5 type II. Applying the model to an end 1979

EXSTAT tape led to only 6.1% of the 1230 enterprises registering a

failing profile which the authors considered to be on the low side.

There were 5 type I errors in a validation sample of 22 recent

failures.

Zmiiewski's model 

Zmijewski (1984) examined the problems with non-random sample

selection in models of financial distress. He points out that

"Researchers typically estimate financial distress prediction models

30



on non-random samples. Estimating models on such samples can result in

biased parameter and probability estimates if appropriate estimation

techniques are not used". He discusses two processes by which the

random selection criterion may be violated, namely the choice based

sample bias and the sample selection bias. The choice based sample

selection bias arises because of the raw frequency rate of firms

exhibiting financial distress characteristic.

Zmijewski points to many studies which have used the paired sample

design (e.g. Altman, 1968) and concludes that "these studies estimated

models on non-random samples which have compositions considerably from

the population's composition". This violates the random selection

assumption and he feels that the "dependent variable group having a

sample probability larger than the population probability is over

sampled, with the over sampled group having understated classification

and prediction error rates". The population frequency has not exceeded

0.75% in the United States since 1934 according to statistics provided

by Dun and Bradstreet (1982). As a consequence of this argument

Zmijewski expects the following if the sample bias is included:

"higher distressed firm sample frequency rates cause lower distressed

firm error rates". From this we would expect samples reflecting the

failure frequency rate to have higher rates in their prediction

models. Table 2.1 shows results from Zmijewski (1984) for a probit

model on different samples.

The results imply that if adjustments in the analytical techniques are

made then a paired design may be appropriate. This involves assigning

prior probabilities to group membership. The models developed on

unbiased data samples will have higher misclassification rates but the

should be more representative of the true classification accuracy of

the model.
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Table 2.1 Results of a study by Zmijewski (1984).
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Lau's model 

Lau (1987) has presented a model which extends previous corporate

failure prediction models in two ways:

1. instead of the conventional failure/ non-failure dichotomy,

five financial states are used to approximate the continuum

of corporate financial health, and

2. instead of classifying a firm into a certain financial state,

the new model will estimate the probabilities that a firm will

enter each of the five financial states.

The ranked probability scoring rule was used to evaluate the quality

of such probabilistic predictions. The first extension enables the

prediction of prefailure distress in addition to ultimate failure. The

second extension conforms with more recent advances in prediction

methodologies. The five financial states are:

state 0 = financial stability

state 1 = omitting or reducing dividend payments

state 2 = technical default and default on loan payments

state 3 = protection under Chapter X or XI of the Bankruptcy Act

state 4 = bankruptcy and liquidation.

States 1 to 4 were states of increasing severity of financial

distress. The prediction models were constructed with an original

sample and then tested with a holdout sample. Each sample contained

350 firms in the financially healthy state 0, and 20, 15, 10, and 5

firms in states 1, 2, 3, and 4 respectively. These firms were selected

as follows.

1. State 0 firms. From the Compustal tapes, 350 firms which were

financially healthy in 1976 (1977) were selected for the original

(holdout) sample. Every firm met the following conditions: (i) its

assets-size fell in the same range ($1.6 million to $120 million) as
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that of the financially distress firms; (ii) its 1971-1977 financial

reports were available; and (iii) it experienced no financial distress

or financial loss between 1972 and 1977.

2. State 1 firms. The Compustat tapes were used to generate a list of

firms that reduced their annual dividend rate per share in 1976 (for

the original sample) or 1977 (for the holdout sample) by more than 40%

below that of the previous year. From this list, 20 firms were

selected for each sample.

3. State 2 firms. The Wall Street Journal Index (WSJI) and the

Standard and Poor Stock Reports were used to compile a list of firms

that had either filed for protection under Chapter X/XI during 1977 to

1980 or had C-rated bonds. The 10-K reports of each of these firms

were examined to identify those that defaulted loan interest and/or

principal payments during 1976 and 1977. Fifteen loan-defaulting firms

were so obtained for each of the two sample.

4. State 3 and 4 firms. From the WSJI list of bankrupt and Chapter-

X/XI firms, for each sample, 10 Chapter-X/XI and 5 bankrupt firms that

had publicly available 10-K reports were selected. Lau used three

groups of variable: financial flexibility variables (contained 7

variables), two trend variables and indicator of current financial

state. These variables are summarized in Table 2.2 and explained

below. Lau's financial distress prediction models were constructed

using multinomial logit analysis . Considered the problem in which all

firms will enter one of J = 5 states. Each firm's destiny is predicted

by K = 10 explanatory variables, designated x 	 Defining1 , x2""" x1o.

P as the probability that a given firm will eventually enter state j,i
the logit model postulates that the P's of the firm can be estimated

.1

as follows:

34



(i) compute Z = b 1 X 1 + b x + 	  + bjJ	 j2 2	 j,10
x

 10

for each state j -"=: 0 to 4,

J
(ii) then P = exp(Z ) / E exp(Z ).

J	 J	 J
J=1

The coefficient b 	 can be considered as the effect of the kthjk

explanatory variable on a firm's probability of entering state j.

Predictive models with three different predictive horizons were

constructed. A "year 1" prediction model was constructed with

1974/1975 financial information to predict financial distress in 1976,

and similar "year 2" and "year 3" models were constructed with

1973/1974 and 1972/1973 financial information respectively to predict

financial distress in 1976. The holdout sample was used to test the

ability of these models to predict 1977 distress. Lau used the QUAIL

program by Berkman et al (1979) to construct three logit prediction

models, one for each prediction horizon. Each model has five logit

functions, one for predicting each of the five states. The expected

sign of each coefficient in each logit function depends on the effect

that a variable has on a firm's final state. Lau points out that

applying a probabilistic prediction model to a group of n firms gives

n probabilistic prediction scores, and the prediction performance is

represented by the sum of these n scores (SS ) as well as the ratio
n

SS In (since n is the maximum possible sum of scores). Lau t s results
n

are presented in Table 2.3, which gives the SS for each of the five
n

groups of firms and for the entire set of 400 firms. For example, it

indicates that the probabilistic predictions produced for 15 state-2

firms in the original sample by the year-1 multinomial logit analysis

prediction model earned a total of 14.38 out of a maximum possible
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score of 15. Except for the state-4 firms in the holdout sample, Table

2.3 indicates that the score earned by each group of firms is close to

the maximum possible score. For comparison, multiple discriminant

analysis was applied to the same data set, and the SS's for the
n

entire set of 400 firms are given in the last column of Table 2.3. It

can be seen that multinomial logit analysis outperforms multiple

discriminant analysis in every case, with larger differences in the

holdout sample.

The results of a multinomial logit analysis were poor in

comparison with those reported in earlier two-state models, but this

is partly due to the overstatement of predictive accuracy of the

earlier work, and also because a five state model demands more from

the data and could itself be a reason for the poorer results.
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Group 1: Financial Flexibility Variabies
• ,N I if one of the firm's loan agreeinenu contains 3

or more restnctive terms and the loan's interest is
above the prime rate.

.• 0 otherwise.
X, (Firm's Debt-Equity Rete3) • (loduzu7 Debt-Equity

Ratio.
X, Working Capital Flow/Total Debt.
X. Stock Pm* Trend

ET	 dichotomous

DER	 ratio

WFTD ratio
TCSP ratio

Vartabet
Netator Brief Definition of Variable Abiwe.	 Natured

velum	 the Variably

Table 2.2 Summary of explanatory variables used in Lau's (1987)

five-state financial distress prediction.

(H, -	 ( L. - 

H. • H.-, • L. • L.-1

where H. and 1.. are. respocuvely, the high and low
values of the rerige of stock prices in year t.

X. (Firm's Operating Expense to Sales Ratio) • (Indus- OPES	 ratio
try's Operaung Expense to Sales Raw).

X. .• 1 if no dividend is being paid currently. 	 DCSD	 dichotomous
• 0 otherwise.

• •• 1 if the firm liquidates its operating saaeta in the LOPA	 dichotomous
period and there is no decreeing trend of earn-
in flow.

0 otherwise.

Group Z- Two Trend Variables
X. Trend of Capital Expenditures e	 TCEP ratio

fie - K.-,)
(X. • Kam	 K.-1 .0 K.-J/4

where K. • capital expenditure in year L
Working-Capttal Flow Trend e	 TWF	 ratio

(WF,— %T_,)
(WI, •	 •	 • WF,-3 )/ 4

where WI, working capital in year c

Group 3: Indicator of Current Financial State
Xi... 1 if dividend payments are omitted or reduced DVD	 dichotomous

more than 40% in the period.
0 otherwise.
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Table 2.3 Aggregate probabilistic prediction scores earned for

different groups of firms for Lau's model (1987).

Multinosnial Lopo Models

Predicuoo	 Firms in Suns'	 AU

Hors=	 	  Firma
0	 I	 2	 3	 4	 In a

(n n 350) In n 30) In = 15) I.. 10) In -5) • 403)

Muluplo
Diacnnunant

Moons
All Firms
In 400)

anginal Sample:
Year-1 Model 3492 18.67 1428 9.45 4.64 396.3 391.3
Year-2 Model 347.7 17.12 1321 7.47 5.00 390.5 385.8
Year-3 Model 347.1 16.48 12.53 7.193 4.34 388.1 379.6

Holdout Sanwiel
Year-1 Model 336.0 1733 13.25 7.80 1.74 376.1 332.1
Year•2 Model 335.2 16.87 11.30 7.82 2.52 373.7 369.1
Year-3 Model 334.9 16.52 12_35 7.52 2.84 374.2 365.7

' UNA eirfuulasoo-frw•aaso financial Potreo. modal=
Stamp CP financial Nabiliir
Stags I: mount or rrouctrit dividend parenitok=
SUAI tochnical Maui' and default on loan moment=
Stair 3: protection unary Chapter X or X1 of Int Bankruptcy Act:
SUMO 4: boakrioncr anct I.auidat ion.

Onginal moony financial information front 1972-75 is word to predict rims in financial dialer in

1976.
Holdout smoke financial information Irons 1973-75 ts wird to cordict firma in financial domes in

1977.
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Keasev and Watson model 

Keasey and Watson (1987) , used logit function to determined whether a

model utilising a number of nonfinancial variables, either alone, or

in conjunction with financial ratios, was able to predict small

company failure more accurately than models based upon financial

ratios only. For the logit functions the dependent variable was

failure/non-failure and the set of indepent variables were as follows:

model 1 = financial ratios only

model 2 = nonfinancial information only

model 3 = financial ratios and nonfinancial information.

The financial ratios used in models 1 and 3 consist of 28 ratios,

covering various aspects of company performance such as profitability,

liquidity and gearing. The non-financial variables included are number

of directors, time lag in submitting accounts to Companies House,

audit qualifications and the presence of a secured loan. The sample of

146 companies (73 failures and 73 non-failures) used to obtain the

univariate results was utilised in their study to obtain the initial

logit functions. Information on a further 20 companies (10 failures

and 10 non-failures) was obtained for use in holdout tests. No attempt

to incorporate the relative costs of misclassification of failed and

non-failed companies was undertaken. The financial and non-financial

information for failed companies has been taken from the last three

years of published accounts available before failure, therefore not

restricted to a common period prior to failure. From a practical

decision-making viewpoint this procedure of basing the logit functions

upon the most recent information that is available for each company

seems sensible for two reasons. First, the practical decision-maker

cannot exclude companies merely because they have not submitted their

latest set of accounts to Companies House. Second, it recognizes that
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a practical decision model can only utilize information which is

available prior to failure.

The correct classification results were 76.7% for model 1, 75.3%

for model 2 and 82.2% for model 3. So comparing the results of model 1

and 2 it is apparent that the non-financial information contained in

model 2 does not succeed in correctly classifying a greater number of

cases than the benchmark model . 1. However, its poorer performance in

terms of classificatory success for the original sample is marginal.

The overall correct classification rates for the holdout sample shows

that, the non-financial data-model 2, provides a better overall

prediction rate (65%). Furthermore, the more extensive model 3 does

not appear to provide a better overall prediction rate (65%) than

model 2. They conclude that marginally better predictions concerning

small company failure can be achieved by the use of these

non-financial variables.

Barnes's model 

Barnes (1990), used multivariate discriminant analysis to predict

takeovers. Barnes points to three factors effecting predictive

ability. These are: (i) the strict statistical assumptions on which

the estimating procedures are based,	 (ii) further statistical

implications arising from the way in which the sample is chosen, and

(iii) the predictive application of the model which includes,

particularly, its stability over time. Data concerning 92 takeover

bids of UK quoted companies during the years 1986-1987 were obtained

(mergers announced prior to the October 1987 crash). Each company was

matched with a non-acquired listed company within the same industrial

sector whose market capitalisation immediately prior to the merger was
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the nearest. Nine basic financial ratios for each company two years

prior to the merger were obtained. However, the ratios themselves were

not used in the discriminant model. Instead, the ratio between it and

the relevant sector average, the industry-relative ratio (which is

defined as the ratio of a firm's financial ratio relative to the mean

value for that ratio in the firm's industry at a point in time) was

used. Barnes also used factor analysis, in order to eliminate the

effects of statistical multicolinearity and the overlapping nature of

some of the nine ratios. Five factors were found to explain 91.48

percent of the variance in the original data matrix. His model

predicted 68.48 percent correctly. The predictive accuracy of Barnes'

model was tested on a further group of 37 acquired companies and 37

matched non-acquired companies. Here the model predicted 74.3 percent

correctly. On UK data using multivariate discriminant analysis, he

achieves good predictive ability but does not test his model on a

subsequent period due to the stock market crash in October 1987.

2.5 Summary and Implications 

In this chapter the concept of failure was introduced and a

number of failure prediction studies have been discussed, including

the seminal studies of univariate analysis (Beaver, 1966) and

multivariate analysis (Altman, 1968). An overview of subsequent

research has also been given, predominantly using multivariate

discriminant models (MDA).

An examination of the methodology used in the earlier bankruptcy

prediction studies shows that there are three principal methodological

flaws which make the reported prediction accuracies unreliable.
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pitfalls in MDA	 With the exception of Ohlson (1980), Zmijewski

(1984), Lau (1987) and Keasey and Watson (1987), the multivariate

financial prediction studies reviewed here have used MDA for model

construction. Eisenbeis (1977) provided a detailed discussion of

several flaws in the way MDA has been used, and of the limitations

which result. These are as follows

(i) Distribution assumption of the variables : The MDA technique

assumes that the explanatory variables are multivariate normally

distributed, and Lachenbruch (1975) has shown that both linear

and quadratic discriminant analysis are quite sensitive to this

assumption. However, most of the MDA prediction studies ignored

the need to test for the multivariate normality of their

explanatory variables.

(ii) Choice of a priori probabilities : The importance of assigning

correct a priori probabilities to the various discriminant

groups was overlooked in earlier studies. Most researchers

simply assumed that group membership is equally likely among

possible groups, even though in the actual population the

number of surviving companies is usually much higher than the

number of non-surviving companies.

(iii) Interpretation of the significance of explanatory variables 

The earlier financial prediction models using MDA either

overlooked the interpretation of the significance of the

individual variables or have interpreted it incorrectly.

Consider	 a	 discriminant	 function	 of	 the	 form
k

Z =a
0
 +EaX, where the X

i
's are the explanatory variables.

1=1

An extension from multiple regression suggests that	 the

importance of an X
i
 is indicated by its standardised

coefficient a X . However, Eisenbeis (1977) pointed out that,
1	 1
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unlike the coefficients in multiple regression, 	 "the

discriminant function coefficients are not unique; only their

ratios are. Therefore, it is not possible, nor does it make

any sense to test, as in the case with regression analysis,

whether a particular discriminant function coefficient is

equal to zero or any other value". Eisenbeis then reviewed and

evaluated several methods that have been proposed in the

literature to determine the relative importance of the

individual explanatory variables.

(iv) Assessment of classification errors : In most of the early

studies, the hold-out sample used for cross validation was

drawn from the same period as the analysis sample used to

derive the discriminant function, and the cross validation test

was then presented as a prediction test. In fact, a validation

test using a hold-out sample from the same test period merely

validates ex-post discrimination. It does not validate the

model's ability to predict for future periods. Therefore, those

studies that presented the cross validation tests as prediction

test may have over-estimated the predictive ability of their

models.

Ohlson (1980) and Keasey and Watson (1987) applied a new

technique to multivariate bankruptcy modelling by estimating logistic

models. Lau (1987) uses multinomial logit. Each expected that a

logistic and multinomial logit models would improve the results since

the data provide a better fit for the assumptions of the technique.

The results of neither study bear this out. However, the strong

significance of the estimates for these models, the pattern of

significance of the financial attributes and the information content
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transformed logit probabilities as a financial risk measure appear to

be the main contributions of these techniques.

Sampling The use of matched samples in the majority of previous

studies will have resulted in sample selection bias in the absence of

a suitable estimation procedure. Therefore, earlier studies may be

said to suffer in this respect from inconsistent and biased estimates

of model predictions.

Definition of 'failure' Many previous prediction models have defined

failure narrowly as bankruptcy. This narrow definition of failure

leads to the restricted population sizes used in many previous

studies.

Implications 

The methodological critiques of Eisenbeis (1977) and Palepu

(1986) have identified a number of shortcomings in failure prediction

models and particularly with regard to the use of discriminant

techniques, sampling and the definition of failure. In this thesis,

particular attention is paid to the improvements of statistical

method, especially with respect to the three aspects mentioned above

that is

- the extension of MDA and logit analysis to survival modelling

in the context of censored observations,

- the use of unbalanced groups of survivors and non-survivors,

leading to a randomly stratified sampling technique,

- the introduction of a likelihood solution to sample

construction when there are companies which cease trading for

reasons other than technical bankruptcy, such as companies

which are taken over.

These three issues are discussed in the remainder of this thesis.
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CHAPTER THREE

THE DATA SET AND EXPLORATORY ANALYSIS OF THE FINANCIAL RATIOS

3.1 The Sample 

The analysis reported in this thesis is based on the

available set of non-surviving and surviving companies covered by

EXSTAT - i.e. all UK companies of interest to the investing

institutions (see appendix 1 for more information about EXSTAT).

Previous studies of corporate failure have used smaller size data

bases of companies that were often a mix of manufacturing,

merchandising, and various other industries (Beaver, 1966 studied

158 companies, thirty being nonmanfacturing companies, e.g. twelve

merchandising companies and various other types of company ). In

constructing the sample for this study, two general guidelines

were followed. First, a paired-sample technique is not employed -

each non-surviving company is not matched in the analysis with a

surviving company. Second, only industrial companies are

considered in this study.

The information covers the period 1971 to 1984. As mentioned

above, the companies were selected from EXSTAT's industrial

sectors (codes 19 to 34). Table 3.1 shows the sectors in which the

surviving and non-surviving group of companies were operating.

45



Table 3.1 Industrial classification.

Name of sector Sector group

No.

Electricals (excluding radio and T.V.) 19

Cold formed fastenings 20

Founders and stampers 21

Industrial plant, Engines and compressors 22

Mechanical Handling 23

Pumps and values 24

Steel and chemical plant 25

Wires and Ropes 26

Misc. Mechanical Engineering 27

Machine and other Tools 28

Misc. Engineering contractors 29

Heating and Ventilating 30

Instruments 31

Metallurgy 32

Special steels 33

Misc.	 metal forming 34



Number
Classification	 of sample

Bankruptcy
	

22

Other liquidations	 19

Mergers or takeovers 	 63
82

104

The Non-surviving Companies 

Depending	 on	 one's	 definition	 of	 failure,	 various

interpretations are possible. Reference to Table 3.2 (below) shows

that if failure is taken solely as bankruptcy, then only 21

companies (plus one which did not survive for one year and,

therefore, did not publish more than one set of financial

statements) did not survive. However if a broader definition is

used, then various other categories might be included (Martin,

1975) which means that up to 104 companies could be considered as

non-survivors.

Table 3.2 Classification of 104 non-surviving companies

An analysis of the data for non-survivors is given in Table

3.3. This shows for each of the subclasses - "bankrupt", "merged"

and "others" - (i) the number of companies failing in each of the

years from 1971 to 1984, and (ii) the number of companies for

which data was available in each year.

In addition, Table 3.4 shows the length of the time series
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available for analysis. It can be seen that a number of companies

do not survive for five years. Previous researchers have tended to

eliminate such companies from their analysis. That approach has

not been followed here, although companies which did not survive

for even one year were excluded as there would have been no data

on which to base prediction. This is an important point in the

context of survival analysis (see Chapter 6) and also affects

sample selection in the application of discriminant analysis and

logit analysis (see Chapters 4 and 5). Consequently, the analysis

reported in the thesis omits 1 bankrupt company and 8 merged

companies. The sample sizes used in analysis were as follows

Bankruptcy	 21

Other liquidations	 19

Mergers or takeovers	 55

95

Appendix 2 gives a listing by name of non-surviving companies.
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Table 3.3 Number of non-surviving companies for which data

was available.

Year

Bankrupt Merged Other

i ii I ii i ii

1971 0 1 0 7 0 2

1972 0 4 0 15 0 6

1973 0 3 0 13 0 5

1974 0 4 0 16 0 6

1975 0 5 0 23 0 10

1976 1 8 6 30 0 14

1977 1 15 10 45 1 16

1978 5 21 5 39 0 16

1979 1 16 4 35 0 18

1980 1 14 11 31 1 18

1981 2 13 9 24 5 17

1982 4 11 4 14 4 12

1983 4 7 9 14 2 8

1984 3 3 5 5 6 6

Total 22 63 19

Key

(i) the number of companies failing in each of the years.

(ii) the number of companies for which data was available

in each year.
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Table 3.4 Length of time series for non-surviving companies

No.	 of

reporting

periods

Bankrupt Merged Other
Total

1 1 8 0 9

2 3 7 0 10

3 1 8 0 9

4 0 6 0 6

5 3 8 1 12

6 6 10 5 21

7 3 5 5 13

8 3 3 3 9

9 1 1 1 3

10 1 5 0 6

11 1 0 1

12 1 2 3

13 1 1

14 1 1

Total 22 63 19 104
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The Surviving Companies 

The sample of continuing or surviving companies was

constructed in a way whereby there was no matching with

non-survivors by size or financial year, nor was the number of

companies equal in the two groups. Taffler (1982) argued that

restricting the size of the surviving sample to that of the

non-surviving set only served to restrict the total sample size

and degrees of freedom. He argued that the statistical methods

only require separate multivariate normality in the constituent

groups together with equality of their variance-covariance

matrices. Therefore there is no need for the surviving sample to

be exactly the same size as the non-surviving set.

There were 359 surviving companies in the sectors previously

indicated at the date when the EXSTAT tape was compiled. Earlier,

in Section 2.4.1.2, we mentioned that Taffler (1982) also

explicitly recognized that a continuing company is not necessarily

financially healthy and so, in his study, the surviving sample was

made up of healthy solvent companies. Taffler used a group of

investment analysts of a leading company of London stockbrokers to

judge whether a continuing company is fully solvent or not.

However, in our study, this step of selecting only healthy solvent

companies was ignored as it would necessitate external assistance

not available during the selection process.

However, amongst the surviving companies were some which

either had been existence for only one year, or which had not

reported in 1984, the last year of data on the EXSTAT tape used.

Table 3.5 shows the availability of data for such companies in

each year, and the length of the time series available for

analysis. As with the non-survivors, a number of survivors had
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been in existence at the date of censoring for less than 5 years.

As mentioned before, the companies with short lives were not

excluded, except for nine which reported only in the last year.

For these, it was not possible to include even one lagged

observation in the analysis. In addition, thirteen companies which

were coded as survivors had not reported in either 1983 or 1984.

These were excluded from the analysis under stratified sampling

(see Chapter 4). Consequently the differing samples used in this

thesis are based on the following

Survivors	 337

Survivors not reporting in 1983/1984 	 13

350

Survivors reporting in 1984 only 	 9

359

An issue which has been considered by others (Barron, 1986)

concerns the heterogeneity of reporting dates. That is, companies

may change their reporting date and reporting period, i.e. for the

year ended 30 / 6 / 81, for example, to a subsequent period of 9

months to 31 / 3 / 82 or, perhaps, 15 months to 30 / 9 / 82.

Although this was taken in to account in computing financial

ratios by annualising the ratio, this affects the structure of the

data which is assumed for the majority of companies to be one of

yearly reporting. In this thesis, it is assumed that the time

series follows annual intervals in spite of the above. This is

justified by the following analysis : The number of reporting

periods was compared to the length of the time series in years.

There was a variation in only 19 out of 359 cases. In 8 cases,
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there was one more set of reported accounts than years of

existence. In 11 cases, there was one less. In other words, there

were no substantial timing effects in the longer-term. In view of

the fact that one company, for example, reported twice in 1972,

not in 1975, twice in 1977, not in 1981, and twice in 1984, the

support for the assumption of regular reporting in the longer-term

allows us to deal effectively with a problem that, nevertheless,

has shorter-term implications.

Appendix 3 gives a listing by name of surviving companies.
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Table 3.5 Number of surviving companies for which data was

available and the length of time series.

No.	 of	 surviving

companies	 in	 each

year

Number of
Year

companies

1971 20

1972 49

1973 58

1974 64

1975 83

1976 153

1977 275

1978 317

1979 320

1980 309

1981 319

1982 333

1983 350

1984 346

Length	 of	 time	 series

No.	 of

reporting

periods

Number of

companies

1

2

3

4

5

6

7

8

9

10

11

12

13

14

9

13

10

4

3

6

50

119

60

22

10

14

18

21

Total 359
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3.2 Collection of Financial Ratio Data

In this study as in many previous studies the independent

variables are various financial ratios which are calculated from

financial data disclosed by the companies under study. No attempt

was made here to develop any new ratios. The financial ratios used

here are ones that were regarded as notable by a collection of

current accounting and finance texts. The emphasis was not on

trying to develop new financial concepts but to evaluate carefully

the existing concepts. The variables included in the study were

chosen on the basis of their

(1) popularity in the literature,

(2) potential relevancy to the study (Altman, 1968).

The 23 financial ratios which were decided on for this study

are listed in Table 3.6.

It should be noted that financial ratios are constructed from

accounting information disclosed by companies, and used as

indicators of financial structure or performance. Generally, the

underlying accounting information relates to residual balances at

a particular point in time (such as the amount of liquid funds

held by a company at the close of business on, say, 31st December)

or to transactions accumulated over a period of time (e.g. the

salaries and wages paid by the company, or the profits calculated

by the company, for the year from 1st January to 31st December).

Companies disclose such information from one year to the next,

generally for the same period and at the same closing date. Hence,

financial ratios can be viewed as repeated measures. However,

there are a number of issues to be considered in this respect:
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Table 3.6 List of financial ratios

Financial Ratio 

1. Net income to sales	 (NI/S)

2. Funds flow to net worth 	 (FF/NW)

3. Funds flow to total assets	 (FF/TA)

4. Net income to total assets	 (NI/TA)

5. Net income to net worth 	 (NI/NW)

6. EBIT (earnings before interest & tax) to sales 	 (EBIT/S)

7. EBIT (earnings before interest & tax) to total assets (EBIT/TA)

8. Quick assets to total assets 	 (QA/TA)

9. Funds flow to sales	 (FF/S)

10.Current assets to total assets	 (CA/TA)

11.Net worth to sales	 (NW/S)

12.Sales to total assets 	 (S/TA)

13. Total assets to net worth 	 (TA/NW)

14.Funds flow to current liabilities 	 (FF/C.LIB)

15.Retained earnings to total assets 	 (RE/TA)

16.Current assets to current liabilities 	 (CA/C.LIB)

17.Quick assets to current liabilities 	 (QA/C.LIB)

18.Current liabilities to net worth	 (C.LIB/NW)

19.Current liabilities to total assets 	 (C.LIB/TA)

20.Cash to sales	 (CASH/S)

21.Cash to total assets	 (CASH/TA)

22.Current assets to sales	 (CA/S)

23.Quick assets to sales	 (QA/S)
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(1) As mentioned in the Section 3.1, occasionally, a company will

alter its reporting date and disclose information for 9 months

or 15 months, rather than the usual calendar year; thus, these

repeated measures are characterized by some irregularity.

(ii) Although, the greater proportion of companies report for the

calendar year to 31st December, there is heterogeneity in

reporting dates in countries such as the U.K.. In a sense,

the sample revolves through a one year cycle, with all

"current" observations being updated during that period. In

the context of time series analysis, this is an important

issue as "mean" effects may be estimated on each occasion

that a single company releases new information whilst, at any

one point in time, the latest information relating to the

sample will cover periods beginning up to two years

beforehand.

3.3 Mean Effects and the Influence of Censoring

In this Section, we provide some exploratory analysis of the

general time series behavior of ratios, in the light of the

features discussed in Section 3.2. Generally, we might consider an

observation for the ith company at time t to be a linear

combination of past terms

Y	 = g y	 + g y
i,t	 1 1,t-1	 2 i,t-2

Allowing for an effect that is attributable to conditions

influencing all companies, we rewrite this as
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_
Y
i,t
 =Y

t 
+ '7

t-1 
+ g (y	 - Y ) 	

1	 i,t-1	 t-1

where

,7
t-1 

is a mean effect ( the mean of observation for all companies

at t-1)

	

g (Y	
1-t,

	

1	
- q	 ) is a company effect relating to company i at t-1

1	 t-1

and

q
t 

is a mean effect for the current period which, for example,

could be estimated from observations on other companies for the

current period.

This is a generalised representation of the view that current

outcomes are explained by events influencing all companies during

the current period and past periods, modelled by some kind of

transfer function, plus an effect attributable to the company's

own past (in this case, we assume a systematic company effect, but

this could well be simplified to a random term).

However, our preliminary analysis showed that such mean

effect tend to be far less influential than expected, particularly

in comparison with the influence of censoring. We estimated mean

effect for each month, in order to start to overcome problems of

non-synchronous reporting and changes in reporting date. Then, we

generated monthly estimates for each company of the ratio

Y = X /X
2
 by assuming that X

1
 and X

2
 are each described by1 

straight lines between reporting dates (not a very adventurous

approach, but a straightforward starting point) by using the

following straight line equation

Y - y	Y - Y
2	 1	 1_

	

X -x	 X - X
2	 1	 1
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The mean was estimated as the median monthly observation for the

sample. As inferred above, the kind of perfect foresight assumed

here is relatively simple, and more interesting approaches could

be adopted to take account of information in past time series, the

incremental evolution of the sample data set, and so on.

Nevertheless, it is interesting that the median follows a path in

the longer term that is well-described by the effects of

censoring. For example, for the median Current Assets/Current

Liabilities (CA/C.LIB) ratio for censored companies 	 (i.e.

survivors), we note a relatively stable median seemingly

uninfluenced by temporal conditions in the economy for most of the

period, but declining towards the end (see Figure 3.1 below). This

decline in characteristic of censored data, due to the inclusion

of failing (but not yet failed) companies in the censored sample.

This can also be seen by plotting CA/C.LIB against termination

time (i.e. the number of periods before failure). The ratio

declines as failure approaches (see Figure 3.2 below). When we

consider the mean effect for failed (and some taken-over

companies), the proportion of observations relating to companies

which are close to failure increases as the date of censoring

approaches and, accordingly, the mean falls. For the median Net

Income / Sales (NI/S) and Net Income / Total Assets (NI/TA) ratios

for censored companies the results shown in Figures 3.3 and 3.4

for the NI/S ratio, 3.5 and 3.6 for the NI/TA ratio indicated

properties similar to the CA/C.LIB ratio. Therefore it is

reasonable to arrive at the same conclusion for these ratios as

for the CA/C.LIB ratio.

59



3.5-
	 . .

•

• • • a.	 •• •
• •	 • • •	 •.

.	 4110 •	 *.`	 .1.	 • ••
t .••

•• •

• •.	 t .	 .•• .	 •
:g . •	 g	 •	 . •.'•

• g
•.•	 %-t. • t	 •	 t • aki. 00P	• .•	 •

•••• • j. • a •	
%.	 •	 :	 ;0:6

t
• .

• 4

•

	_ t . 6. 11 .g . •	 • .1, • /
• • • • g • •	 • i	 %. g ..1	 1.V. .• • 2 • :.	 • i . •	 .	 f . 2

. •	 • .	 •••• • 1 •• a• •	 •	 •	 a •• •	 •	 *a	 • .
.	 •	 •	 •

• ••0.5-

•

Figure 3.1 The Current Assets / Current Liabilities ratios

for surviving companies and the median ratio

4.5-

4.0

0.0

1	 1	
1

O 20	 40	 GO	 BO	 100	 120	 1140	 160

TIME (MONTHS)

• RATIO
MEDIAN

tao

60



Figure 3.2 The Current Assets / Current Liabilities ratio vs.

Termination time for surviving companies
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3.4 Distribution of Financial Ratios 

Much research using corporate financial indicators assumes

that the data are normally distributed. There has been some

empirical refutation of this assumption. In this Section, the

normality assumption is subjected to extensive testing, and the

statistical characteristics of the 23 financial ratios are

investigated.

This Section reports an empirical examination of the

underlying distribution of selected U.K. industrial company

financial ratios. Industrial data are usually assumed to have a

normal distribution in industrial company research and financial

analysis. Most studies involving the analysis of financial ratios

either implicitly or explicitly assume that results from the

sample are statistically related to the corresponding population

ratios on the basis of the central limit theorem. This theorem

states, in brief, that sampling distributions approach normality

as sample size increases. This property is the basis for

researchers' normality assumption. Populations that are normally

distributed have sampling distributions that follow the normal

distribution. As a population diverges from normality, for this

population, how large must n be so that the normal approximation

is accurate enough? This Section examines a more basic threshold

question: are the population distributions of the ratios used for

analysis in this thesis normal?

Deakin (1976) tested for normality (and for transformation to

normality) using the financial ratios of U.S. manufacturing

companies for the 19 years from 1955 to 1973. He concludes that an

assumption of normality cannot be supported from his research on

industrial companies. Bougen and Drury	 (1980)	 investigated
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financial ratio distributions, using the financial ratios of U.K.

companies from 45 different industries, for 1975, again concluding

that an assumption of normality was found untenable for each

ratio. Bedingfield et al (1985) observed that many financial

ratios are skewed and non-normally distributed. Barnes (1982)

recommended that when the basic assumption of ratio analysis

i.e. proportionality, is violated, non-normality will be found.

precisely, he demonstrated that when the intercept of ratio Y/X is

not equal to zero, the distribution of this ratio will be skewed.

For each ratio, annual measures are employed for central

tendency, dispersion, skewness and kurtosis. Each measure is a

partial description of the underlying distribution and provides an

indication of its shape and form. An effective means of

determining whether an empirical distribution follows an

hypothesized and theoretical distribution is to compare their

characteristics. The appropriate analytical technique is to apply

the Kolmogorov-Smirnov or chi-square goodness of fit test or

Shapiro-Wilk test.	 To test the normality assumption, 	 a

Kolmogorov-Smirnov (K-S) statistic (Conover, 1971) is employed

here. Table 3.7 presents the analysis of the financial ratios for

U.K. industrial companies for survivors and non-survivors

combined. The standard deviation is presented as one measure of

dispersion and is supplemented by the dimensionless coefficient of

variation. The third moment about the mean measures skewness, or

the symmetry of a distribution about its mean. If the mean and

median of an empirical distribution diverge, the distribution is

skewed. The sign of the skewness statistic indicates whether the

distribution is positively or negatively skewed. Kurtosis is

measured by the fourth moment about the mean to describe the
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peakedness or flatness of the distribution. The larger the index,

the greater is the peakedness; the smaller the index, the flatter

is the distribution's shape.

Table 3.7 Descriptive of distribution of financial

ratios for survivors and non-survivors combined.

Financial
ratio Mean

Standard
deivation

Coefficient
of variation Skewness Kurtosis

K-S
statis-

tic

NI/S 0.03 0.14 4.41 -43.48 2308.38 16.40

FF/NW 0.23 0.18 0.82 -2.65 55.78 5.70

FF/TA 0.11 0.09 0.79 -4.43 64.37 5.22

NI/TA 0.04 0.07 1.60 -6.91 118.38 8.56

NI/NW	 ' 0.08 0.16 1.89 -6.47 143.26 10.44

EBIT/S 0.06 0.16 2.67 -33.36 1652.90 13.27

EDIT/TA 0.08 0.09 1.22 -3.76 55.14 5.11

QA/TA 0.37 0.12 0.32 1.09 3.20 3.62

FF/S 0.08 0.15 1.80 -38.55 1942.80 13.86

CA/TA 0.69 0.12 0.18 -0.53 0.95 2.63

NW/S 0.44 0.31 0.71 1.82 51.51 8.58

S/TA 1.38 0.70 0.50 11.10 210.71 10.09

TA/NW 2.16 1.02 0.47 3.20 24.30 10.69

FF/CL 0.32 0.29 0.92 -5.17 140.50 5.17

RE/TA 0.28 0.21 0.74 -5.40 81.42 5.02

CA/CL 1.91 0.78 0.41 3.25 23.62 7.54

QA/CL 1.02 0.54 0.53 4.01 31.07 9.52

CL/NW 0.95 0.83 0.87 3.45 20.63 10.66

CL/TA 0.40 0.15 0.38 4.11 72.48 3.44

CASH/S 0.05 0.12 2.40 11.23 225.42 20.14

CASH/TA 0.06 0.09 1.56 3.05 13.05 15.51

CA/S 0.55 0.25 0.45 10.45 229.16 8.99

QA/S 0.30 0.20 0.67 15.62 457.48 13.24

68



The results in Table 3.7 show that the skewness estimates for all

ratios are significant and also indicate that there is a decided

and rather extreme skew to the distribution of financial ratios.

The kurtosis shows profound peakness of all ratios which have

kurtosis significantly larger than the value for the normal

distribution. There is a peakedness that in some cases reaches

exaggerated proportions. Note that the approximate sample variance

for skewness and kurtosis statistics are given by 6/N and 24/N

respectively for a normal distribution (Snedecor and Cochran,

1980). Based on the skewness and kurtosis statistic the normal

distribution seems to be a poor distribution for describing

financial ratios. The Kolmogorov-Smirnov (K-S) statistics in

column	 7	 of	 Table	 3.7	 supports	 this	 argument.	 The

Kolmogorov-Smirnov (K-S) statistics indicated that the ratios are

not normally distributed.

Deakin (1976) reports that, at times the square root and

natural log of ratios are normally distributed even though the raw

data may not be. These same two transformations are made on the

financial	 ratios	 used	 in	 this	 study	 and	 separate

Kolmogorov-Smirnov tests are repeated as we can see in Table 3.8.

An examination of these additional data indicates that neither the

square root nor the log transformation assures normality.

The sample moments in Tables 3.9 and 3.10 provide some

information about the distribution of the financial ratios for

non-survivors and survivors respectively. The results in Tables

3.9 and 3.10 indicates that there is an extreme skew to the

distribution of financial ratios in both cases. The financial

ratios examined have a nonsymmetric distribution. Given the
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extreme skewness and kurtosis measures, the null hypothesis of

normality is rejected. The Kolmogorov-Smirnov (K-S) statistics in

Tables 3.9 and 3.10 supports this argument. This is an issue which

has been investigated for the first time in a recent article by

Hopwood, Mckeown and Mutchler (1988) and, although the analysis in

this thesis does not attempt to use innovative models allowing for

non-normality as the major focus is with other methodological

issues.



Table 3.8 K-S statistic test for the natural log and the

square root of the ratios for survivors and

non-survivors.

Financial
ratio

K-S statistic
for log

K-S statistic
for square

root

NI/S 23.17 19.45

FF/NW 8.20 6.59

FF/TA 7.57 6.19

NI/TA 10.75 9.54

NI/NW 15.98 12.15

EBIT/S 21.43 16.87

EBIT/TA 7.59 6.12

QA/TA 2.96 2.39

FF/S 22.18 17.83

CA/TA 5.42 3.95

NW/S 12.55 8.79

S/TA 4.51 5.66

TA/NW 9.35 9.79

FF/CL 11.02 6.98

RE/TA 9.98 6.83

CA/CL 2.68 4.91

QA/CL 3.65 6.14

CL/NW 8.57 9.52

CL/TA 2.97 2.14

CASH/S 17.37 8.82

CASH/TA 14.30 7.10

CA/S 3.11 5.11

QA/S 5.29 8.32

71



Table	 3.9	 Descriptive	 of	 distribution of financial

ratios for non-survivors.

Financial
ratio Mean

Standard
deivation

Coefficient
of variation Skewness Kurtosis

K-S
stat-
istic

NI/S 0.04 0.08 2.20 3.82 30.41 4.58

FF/NW 0.19 0.25 1.31 -7.10 100.44 4.00

FF/TA 0.01 0.08 0.78 -0.98 4.31 1.98

NI/TA 0.04 0.06 1.54 -0.96 3.37 2.64

NI/NW 0.05 0.07 1.45 -10.44 157.53 5.82

EBIT/S 0.07 0.13 2.02 5.78 47.99 5.28

EDIT/TA 0.07 0.08 1.22 -0.13 1.73 1.29

QA/TA 0.34 0.11 0.32 0.77 2.48 1.54

FF/5 0.08 0.08 0.95 -2.68 17.52 2.80

CA/TA 0.68 0.13 0.19 -0.88 1.35 1.62

NW/S 0.50 0.42 0.85 4.70 27.49 5.71

S/TA 1.24 0.37 0.30 0.26 1.35 1.23

TA/NW 2.16 1.03 0.47 5.92 59.29 4.54

FF/CL 0.27 0.25 0.93 -0.17 6.09 2.08

RE/TA 0.26 0.17 0.67 0.23 1.54 1.94

CA/CL 1.83 0.94 0.52 5.82 52.15 3.97

QA/CL 0.92 0.57 0.62 6.91 76.97 4.34

CL/NW 0.98 0.83 0.85 4.24 26.37 4.46

CL/TA 0.41 0.13 0.32 0.38 0.53 1.13

CASH/S 0.05 0.13 2.75 6.62 57.31 8.34

CASH/TA 0.04 0.08 1.86 3.77 17.56 6.86

CA/S 0.59 0.22 0.38 3.70 23.56 3.50

QA/S 0.30 0.18 0.58 4.75 32.19 5.14
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Table	 3.10	 Descriptive	 of	 distribution	 of financial

ratios for survivors.

Financial
ratio Mean

Standard
deivation

Coefficient
of variation Skewness Kurtosis

K-S
stat-
istic

NI/S 0.03 0.15 4.78 -42.84 2135.03 15.86

FF/NW 0.23 0.17 0.73 0.47 8.15 4.34

FF/TA 0.11 0.09 0.80 -4.86 70.80 4.94

NI/TA 0.04 0.07 1.61 -7.46 125.79 8.26

NI/NW 0.09 0.14 1.53 -1.35 20.84 8.18

EBIT/S 0.06 0.16 2.78 -37.09 1759.38 12.91

EBIT/TA 0.08 0.09 1.22 -4.22 61.04 5.08

QA/TA 0.38 0.12 0.32 1.13 3.26 3.43

FF/S 0.09 0.16 1.89 -37.62 1782.28 13.55

CA/TA 0.69 0.12 0.18 -0.46 0.83 2.22.

NW/S 0.43 0.29 0.67 -0.58 59.32 6.39

S/TA 1.41 0.74 0.52 10.96 196.23 9.84

TA/NW 2.15 1.01 0.47 2.70 17.70 9.71

FF/CL 0.33 0.30 0.92 -5.72 151.95 4.80

RE/TA 0.28 0.21 0.75 -5.94 87.34 4.92

CA/CL 1.92 0.75 0.39 2.31 10.02 6.59

QA/CL 1.04 0.53 0.51 3.44 21.69 8.55

CL/NW 0.95 0.83 0.87 3.31 19.55 9.74

CL/TA 0.40 0.16 0.39 4.52 78.88 3.44

CASH/S 0.05 0.12 2.36 12.35 270.46 18.31

CASH/TA 0.06 0.09 1.51 2.95 12.51 13.95

CA/S 0.55 0.25 0.46 11.38 254.23 8.45

QA/S 0.30 0.20 0.69 16.84 496.93 12.22
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3.5 Principal Component Analysis 

Many of the ratios included in the studies are highly

correlated with one other. This overlapping occurs because the

ratios are derived source accounting data. Such overlapping can

still be found in most recent studies (Chen and Shimerda, 1981).

For example the 56 items used in the computation of the 28 ratios

included in the Elam (1975) study are derived from only 18

different pieces of financial data, and the 28 items for Deakin's

(1972) ratios consist of only 10 separate pieces of data. The

elimination of such overlapping would aid in the development of a

useful set of financial ratios. Not all overlapping ratios,

however, can be eliminated by visual inspection. Analysis of

empirical relationships among financial ratios could be performed

through correlation analysis ( Gombola and Ketz, 1983). If two

ratios are highly correlated, then the user could consider one of

the pair to be redundant, discarding it with little loss of

information. If two ratios are not highly correlated, then the

user could consider each to measure a different aspect of company

performance. Highly correlated ratios could be brought together

into groups, where the groups would measure some different aspect

of company performance. In this way the user could understand the

relationships and patterns among the financial ratios in a

variable set. Instead of grouping on the basis of the correlation

coefficient, the grouping procedure could be performed via a

statistical method designed to summarize such interrelationship,

i.e., by using principal component analysis. Principal component
_

analysis was developed by Harold Hotelling in the 1930's and has

found extensive application in psychometrics and econometrics. One

of the functions performed by principal component analysis is to
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group variables into a few components that retain a maximum of

information contained in the original variable set. Its general

objectives are (1) data reduction, and (2) interpretation. In this

section principal component analysis is employed to isolate

independent patterns of financial ratios. Principal component

analysis, which employs financial ratios as variables and

industrial companies as the cases, produces components of the

financial ratios in terms of the industrial companies. The

similarity of each variable in the reduced space with the

components is measured by its component loadings. The reasons for

choosing principal component analysis over other methods e.g.

factor analysis which perform a similar function, is that it is a

technique which may be applied to various types of data such as

quantitative data and qualitative attributes either scored or

scaled ( Jeffers, 1978). In principal component analysis no

assumptions are made about the form of the covariance or

correlational structure of the variables. Factor analysis supposes

that the data comes from a well-defined model where a set of

underlying factors exist which account for the interrelationship

of the variables, but not for their full variance. If the

assumptions are not met, then factor analysis may give spurious

results ( Mardia et al 1979). In principal component analysis, the

emphasis is on transformation from the observed variables to the

principal components, whereas in factor analysis the emphasis is

on the transformation from the underlying factor to the observed

variables.
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3.5.1 Procedure for A Principal Component Analysis 

Our objective in this section is to construct uncorrelated

linear combinations of the measured characteristics that account

for much of the variation in the sample. The uncorrelated

combinations with the largest variances will be called the

principal components. Principal components are particular linear

combinations	 of	 the	 p	 random variables	 X ,	 X ,...,X .
1	 2	 P

Geometrically these linear combinations represent the selection of

a new coordinate system obtained by rotating the original system

with X , X ,...,X as the coordinate axes. The new axes represent
1	 2	 P

the directions with maximum variability and provide a simpler and

more parsimonious description of the covariance structure (

Johnson and Wichern, 1982). Principal components depend on the

covariance matrix S (or the correlation matrix r ) of X,1

X,...,X .
2	 P

Let the random vector X = [X, X
'
 ...,X ] have the

1	 2 	 P

covariance matrix S with eigenvalues A � A 2 ...2A 20.1 2	 P

Consider the linear combinations

Z =a X=a X +a X + ... +aX1	 1	 11 1	 21 2	 pl p

Z =a X=a X +a X.I.
2	 2	 121	 222	 " . + a _X

p4 p

...(3.1)

.
Z = a X=a X +a X.f.P	 P	 lp 1	 2p 2 	*. . + a X

PP p

Then,

Var(Z ) = a ' Sa	
1, 2, . . . , p	

...(3.2)



.
Cov(2 ,Z ) = a Sa

i i 	 Ii
i, j =1, 2,..., p	 ... (3.3)

The principal	 components are	 those uncorrelated	 linear

combinations Z , Z ,...,Z whose variances in (3.2) are as large
1	 2	 P

as possible.

The first principal component is the linear combination with

maximum variance. That is, it maximizes Var(Z ) = a Sa . It is
1	 1	 1

clear that Var(Z ) = a Sa can be increased by multiplying any al
1	 1	 1

by some constant. To eliminate this indeterminacy it is convenient

to restrict attention to coefficient vector of unit length. We

therefore define

First principal component = linear combination a

• i

X that

maximizes Var(a 
1

• 

X) subject to

a a =1

Second principal component = linear combination a 
2

• 

X that

maximizes Var(a

• 

X) subject to
2

.	 .	 .
a a = 1 and Cov(a X,a X)= 0

22	 1	 2

At the ith step

ith principal component = linear combination a i X that

maximizes Var(a 
i
X) subject to

a a = 1 and
1	 1

.	 .
Cov(a X, a .1 X) = 0	 for j<ii 

Principal component Z's are uncorrelated random variables which
P

are linear functions of a correlated set of random variables X 1

X ,...,X , with the coefficients a 's being the elements of the
2	 P	 li

normalised eigenvectors of the correlation (or covariance) matrix
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of X
i
's. The variances of the principal components are the

eigenvalues of the matrix S. Assuming that the eigenvalues are

ordered as A 2A 2...2A 20	 then A
i
 corresponds to the ith

1 2	 P

principal component

Z =a 
1 1
X + a X + 	  +a X

11	 12 2	 ip P

Var(Z ) = A.

An important property of the eigenvalues is that they add up to

the sum of the diagonal elements (the trace) of S. that is

A + A + 	  +A =S +S + 	  + S .
1	 2	 P	 11	 22	 PP

Since S	 is the variance of X and A is the variance of Zthis
11	 1	 1	 1'

means that the sum of the variances of principal components is

equal to the sum of the variances of the original variables.

Therefore in a sense the principal components account for all of

the variation in the original data. The eigenvalues of the matrix

S give the proportion of the total variability in the data

explained by the individual components (the components are

obtained from X's by an orthogonal transformation ) and thei

largest eigenvalue gives the variance of the component which

explains the largest variability in the data, the second largest

eigenvalue gives the variance of the component which accounts for

the maximum possible remaining variability etc. The coefficient

a
ij
's are often refered to as component loadings. They indicate

weighting of each variable and may be interpreted as the

correlations between the principal components and the variables

X 
i 's, provided the eigenvectors of the correlation matrix are
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scaled by the square root of corresponding eigenvalues (Morrison,

1976).

Principal component analysis is variable-sensitive: different

components may be obtained if different sets of variables are fed

into the principal component analysis.

The data were organised into a matrix consisting of rows

(companies) and columns (financial ratios). The matrix was

subjected to principal component analysis and the components were

rotated using the varimax method in order to obtained subsets of

specially related variables. Only the most important components

having an eigenvalue greater than the average value of one

(Kaiser's criteria) were retained. The components were interpreted

in practice via the size and sign of the coefficients (loadings)

of a component. The sizes indicate the correlations of variables

with the respective component i.e. large component loading

indicates that the component has highly significant correlation

with respective variable, and furnish the basis for describing and

naming these components. In this section the principal component

analysis is used to reduce the dimensions of a data set from the

number of variables (23) to a much smaller set of components.

The computer package SPSSX was used to carry out the

analysis. Varimax rotated principal component analysis of the 23

ratio set used in the main analysis of the study was undertaken,

and the rotated component loadings matrix for the analysis is

shown in Table 3.11. Only the highly significant loadings

(loadings > 0.50) are given in the Table, which also shows the

eigenvalue, the percentage and cumulative percentage of variation
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accounted for by each component. The communalities also show that

the proportion of variance of each variable accounted for by the

six components is quite high, ranging from 64% to 95%. The number

of components satisfying the criteria were six out of 23

variables, and when combined explained 83.3% of the original

variance in the data.

Interpretion of the components may be described as follows:

Component one. 

This component is an index which has high positive loadings

on NI/S, FF/TA, NI/TA, EBIT/S, EBIT/TA, FF/S and FF/C.LIB. It

explains 28.8% of the original variability in the data.

Component two. 

Component two explains an additional 20.6% of the original

variance. It is an index which has high positive loadings on

FF/NW, FF/TA, NI/TA, NI/NW and EBIT/TA.

Component three. 

This component is an index which has high positive loadings

on QA/TA, QA/C.LIB, CASH/S, CASH/TA and QA/S. It explains a

further 14.3% of the original variance.

Component four. 

This component is a contrast of RE/TA, CA/C.LIB and QA/C.LIB

against C.LIB/TA. It explains an additional 8.5% of the original

variability.

Component five. 

It explains an additional 6.8% of the original variance. This

component is a contrast S/TA against NW/S and CA/S.

Component six. 

This component is an index which has highly positive loadings
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on CA/TA, TA/NW and C.LIB/NW. It explains further 4.4% of the

original variance.

The analysis of the groups (non-survivors and survivors)

separately provided similar dimensions.
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Table 3.11 Financial ratios and component loadings defining

six financial ratio patterns for 445

non-surviving and surviving companies.

Variable
Components Communa-

lity
1 2 3 4 5 6

NI/S 0.97 0.95

FF/NW 0.90 0.86

FF/TA 0.51 0.75 0.90

NI/TA 0.57 0.67 0.89

NI/NW 0.86 0.84

EBIT/S 0.96 0.95

EBIT/TA 0.54 0.72 0.92

QA/TA 0.74 0.80

FF/S 0.94 0.93

CA/TA 0.51 0.66

NW/S -0.64 0.82

S/TA 0.78 0.64

TA/NW 0.87 0.87

FF/C.LIB 0.65 0.81

RE/TA 0.64 0.67

CA/C.LIB 0.86 0.83

QA/C.LIB 0.58 0.68 0.84

C.LIB/NW 0.87 0.92

C.LIB/TA -0.71 0.83

CASH/S 0.80 0.84

CASH/TA 0.88 0.80

CA/S -0.66 0.82

QA/S 0.65 0.90

Eigenvalue 6.63 4.74 3.28 1.96 1.56 1.02 ---

% of
variance 28.8 20.6 14.3 8.5 6.8 4.4 ---

Cum.	 % of
variance

28.8 49.4 63.6 72.1 78.9 83.3 ---
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Conclusion

In this chapter, the structure of the data set has been

discussed, and the small size of the sub-sample of bankrupt

companies compared to other types of non-survival has been shown.

This point is taken up again in Chapter 4, where a

reclassification method is introduced. In addition, some of the

properties of the financial ratio data have been described and,

for both distributional properties and principal component, it has

been found that assumptions of a single parent population for the

survivors and non-survivors are appropriate.
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CHAPTER FOUR

DISCRIMINANT ANALYSIS AND CLASSIFICATION OF THE "MERGED" AND

"OTHER" COMPANIES

4.1 Introduction

Discriminant analysis is a multivariate technique concerned

with separating distinct sets of objects (or observations) and

with allocating new objects (or observations) to previously

defined groups. The discriminant function may be accepted as the

explicitly devised method of classification research. The procedure

was developed in 1936 by Fisher to answer perhaps one of the most

fundamental of all systematic problems of the taxonomic variety;

it stands as both the first clear statement of the problem of

discrimination and the first proposed solution (Al-Moswie, 1982).

In this chapter we shall introduce linear and quadratic

discriminant functions and their applications to forecasting

company failure. We shall also introduce methods to reclassify the

"merged" and "other" companies into either surviving or

non-surviving	 companies	 using	 two	 procedures:	 stepwise

discriminant analysis and survival models.

4.2 Linear Discriminant Analysis 

Various authors have used discriminant analysis to classify

companies as either surviving or non-surviving on the basis of

financial ratios (e.g. Altman, 1968 and Barnes, 1990). Detailed

reviews of the applications were discussed in Chapter 2.

The first task of a linear discriminant analysis is to select a

set of variables X , X , 	  ,X that best discriminate between,
1	 2	 K
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or separate, groups e.g. non-surviving or surviving companies. The

variables measure attributes on which the groups differ to some

extent, otherwise the groups cannot be distinguished by means of

the X's alone. Also the groups should be partly overlaping,

otherwise discrimination is not necessary. The object of linear

discriminant analysis is then to find a linear function in the X's

so that as many cases as possible belonging to the first group lie

on one side of the function and as many cases as possible

belonging to the second group lie on the	 other side. The

allocation criteria is based on the likelihood of a case belonging

to a group with a boundary where the likelihoods are equal

(Kendall, 1980). We therefore seek a new variable Z such that

Z =aX +aX+ 	  + a X
11	 22	 k K

	 (4.1)

where a , a 	  ,a are the coefficients of the discriminant
1	 2,	 k

function Z.

In the case of 2 groups the mean values are

Z- =aX-	 +a)-( + 	 	 -+ a x
i	 1 11	 2 12	 k 1K

where Ris the mean of the r
th 

measurement of the i
th 

group,1 r

i = 1, 2	 r =1, 2, 	  , k.

And the difference between the means of the two groups is

D = ( 2 1 - 2 2 	 1) =	 ad
1
 +a 

2
d
2 

+ 	 + a d	 ....(4.2)
k k

where
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d = X - Rr	 1r	 2r
r = 1, 2, 	  ,k.

G -

(2 _ 2 )2
1	 2
	  (4.3)

Then

and

Now the coefficient of the optimum linear discriminant

function should be chosen to maximize the following function

(Johnson and Wichern, 1982):

n
21
Z	 E cz i,

where Z	 denotes the Z value of the j
th 

individual in the i
th

lj

group where i = 1 or 2.

Let S be
Pq

n
2	 1

S = E E ((	 — X 	 —XP q	Pii	 i	 i	 i

where

p , q = 1, 2, 	  , k

n
21	 k
E E (z i, — 2 

i 
)2 = E	 aaS

P q Pq1=1 j=1	 p,q=1

2	 k

	

(2 - 2) = Z	 aadd
21	 PqPqp , q1

Now G defined in (4.3) may be written as

1=1 j=1

1 = 1 j=1
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G=

k

E	 aaddPqPqp , q=1
k

E	 a a SP q Pqp , q1

	  (4.4)

G

Since the a's are to be determined such that G is a maximum,

it is necessary that 8G/8a r = 0,

for r = 1, 2, 	  , k at the maximizing point.

Then

ad +ad +	 . +ad11	 22	 k k
a5 + a S + 	  + a S
1 rl

-
2 r2	 k rk

	  (4.5)

Now (a d + a d +	 . + a d )/ G is independent of r, and it11	 22	 k k

could be considered as a constant C.

Hence (4.5) may be written as

aS +aS + 	  + a S = Cd
1 rl	 2 r2	 k rk	 r

	 (4.6)

Let C = 1, then (4.6) may be written as

aS	 +aS	 + 	  +aS	 =d	 	  (4.7)
1 rl	 2 r2	 k rk	 r

This formula gives the values of a's. Then we substitute in (4.1)

to find the discriminant function Z.
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Let us consider the special case of K = 2 in (4.1). This

means, for example, that the function consists of two financial

ratios as classification variables. Here X may be a measure for1

liquidity and X2 a measure for the profitability of the company.

Now suppose that the coefficients a
1
 and a

2
 are known and that

..........--.-n-nn.-

their signs are positive. If we now have the disposal of the

values of X and X of a company then we can calculate from the
1	 2

function the Z-score of that company. If that score is high then

the company is classified as a surviving one and as a

non-surviving if that score is low, since the liquidity and the

profitability of surviving companies on average will be high and

those of the non-surviving will be low. The classification

procedure makes a comparison of the Z-score of a company with a

*
critical score, say Z , such that

*
if Z > Z , then company --) in the surviving group

•
while if Z < Z , then company -4 in the non-surviving group.

Of course the classification will not proceed without error. There

are two possible types of error:

(a) incorrectly classifying a company into the non-surviving

group (type II error)

(b) incorrectly classifying a company into the surviving

group (type I error).

Although it is desirable to minimise both type I and type II

errors, the former may be considered to be the more important one.

If an investor were to buy stock with the guidance of a
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discrimination model, he would presumably prefer his investment to

be on the safe side. The misclassification of a surviving company

as non-surviving has less serious consequences than the

classification of a non-surviving as healthy. This point should be

considered in the development of a satisfactory model for

predictive classification.

Note that the justification for the technique is based on

likelihood that the data come from multivariate normal

distributions with the same variance-covariance matrix in both

populations. If this is not the case, then it may still be an

intuitively reasonable technique to use (Manly 1986 , Srivastava

and Carter 1983, Betts and Belhoul 1982). Fisher's procedure, for

example, did not depend on the form of the parent populations,

apart from the requirement of identical covariance structures.

Studies by Krzarowski (1977) and Lachenbruch (1975) have shown,

however, that there are non-normal cases where Fisher's linear

classification function performs poorly even though the population

variance-covariance matrices are the same.

As indicated above, the linear discriminant function depends,

for ensuring minimization of the probability of misclassification,

on the assumptions of separate multivariate normality for the

populations in the analysis and equality of dispersion matrices.

If however normality holds, but as in the case of Lachenbruch

(1975), the variance-covariance matrices are heterogeneous, then

the theory suggests fitting a quadratic discriminant functions. It

should be remembered that equality of dispersion matrices is

conventionally tested prior to the fitting of a quadratic

function, and that the appropriate Bartlett-Box criterion is

sensitive to departures from the assumption of multivaiate
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normality. Therefore the effects of departure from normality in

the two-group discriminant case and fitting a quadratic model in

the case of unequal variance-covariance matrices may, depending on

the type of non-normality, well make matters worse than the use of

a linear approach (Taffler, 1982). This point is illustrated in

the next sections. Some fairly well known problems associated with

multivariate discriminant analysis may be avoided by using

conditional logit analysis which is discussed in detail in Chapter

5.

4.3 Stepwise Discriminant Analysis

Stepwise discriminant analysis is used to select a relatively

small subset of variables that would contain almost as much

information as the original collection. In this procedure some

variables are selected as being best for classification and the

remaining ones are discarded. This procedure is usually available

as a computer program in the form of a forward selection technique

that adds variables one by one depending on the discriminating

ability of each and may be regarded as the most efficient

procedure in that the most important variables are selected first.

Stepwise discriminant analysis has the advantage of being readily

available in all major statistical packages and the procedure can

sift through a large number of variables and indicates those most

promising for classification.

The particular program used in this study is the one in the

SPSSX statistical package. This program at each step in the

forward process calculates the Wilk's lambda statistic and F-ratio
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for all the variables under consideration. This statistic measures

the discriminating power gained (or lost) by adding (or dropping)

a variable. Then the variable that has the smallest lambda

statistic, i.e. adds the most to the discriminating ability, is

added.

4.4 Quadratic Discriminant Function

The assumption of equal variance-covariance matrices in

linear discriminant analysis is rarely satisfied in practice,

although in some cases the matrices are close enough that it makes

little or no difference to the results to assume their equality

(Lachenbruch, 1975). If the dispersion matrices are different

then a quadratic discriminant function would be more appropriate.

For example in Figure 4.1a, S i = S2 , where

S - 	 1	 - 2
- X )

1	 n -1 E
(X

1,	 ,,

1	 - 2S -	 (X	 - X )
2	 n -1 E	 2.)	 2

2

so that the two sets of points, which are similar in shape, can be

adequately separated by a straight line. However, in Figure 4.1b,

S does not equal S
2
 so that one set of points is long and thin

1 

vertically while the other is circular. Here a curved discriminant

function gives adequate separation.
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I.,

Figure 4.1 Use of (a) linear discrimination 13(x) and (b)

quadratic discrimination Q(x) to separate two

sets of points.

Consider the following multivariate normal densities with unequal

covariance matrices (S
t
	S ):

2

f( X ) 	  exp (-	 _I (x 	'N;	 -1

(27T) p/2 1s 11 1/2	 7	 ,N) -
	 (X —	 ))

for 1 = 1, 2.

Then the quadratic discriminant function Q(X) is

fl(X)
Q(X) = log(

f2(X)

1	 ,	 IS /1 ,	 1	 -	 -•=	 Log(	 cx — x 1 ) s1 i (x — 1 )
2	 2

I S 21

—	 — x2 ) 9 2 1 (X — )12 )

...(4.9)



In this case, the quadratic classification rule applied is as

follows (Johnson and Wichern 1982, Seber 1984): allocate to

population 1 if

1	 '	 -1-1	 -'	 1_	 X (S	 -S	 )X+ (XS	 -	
-

XS	 )X � K
2	 1	 2	 11	 22

where

1	
IS I

K =	 log( ----) +	 (XS X -XS X)
2	 2	 1	 1	 22	 2

I s21

and allocate to population 2 otherwise.
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4.5 Application of Discriminant Analysis 

This section contains the results of applying the

discriminant analysis technique to the financial data base that

was used in this study. There are problems associated with

discriminant analysis which are dealt with here. If the data has a

sample bias, as in this case where there are approximately 3000

observations for the surviving group of companies and only

approximately 600 observations for the non-surviving group for the

entire period under consideration, an unacceptable conclusion may

be drawn from the analysis. The discriminant model may have an

apparently good classification percentage but this may stem from

the sample bias (Zmijewski, 1984). For example if most of the

surviving companies are correctly classified but most of the

non-survivors are not, the classification percentage will still be

high. A method of resolving this may be to pair the non-survivors

with survivors by using equal prior probabilities and then perform

the analysis. This process will be investigated.

Discriminant analysis is used to carry out the analysis for

23 financial ratios before reclassification of the "merged" and

"other" companies. In this respect, two cases of discriminant

analysis are investigated:

a(1)- The bankrupt companies alone were taken as a first

group (non-surviving group) and surviving companies as

a second group. The reporting period was from

1971-1984 and all the data for this period was

included. The sample sizes were n 1 =162 and n=2997 2

respectively.
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a(2)- The bankrupt,"merged" and "other" companies were formed

into a single group (non-surviving group) and surviving

companies as a second group. The reporting period was

taken to be the same, from 1971-1984 and again the data

for the entire period was included. The sample sizes

were n=640 and n
2
=2997 respectively.i

For the above two cases (i.e. a(1 and 2)), the discriminant

method is investigated for each of the five years prior to

failure.

The computer packages SPSSX and SAS were used to carry out

the following discriminant runs before reclassification of

"merged" and "other" companies:

(i) Two groups (non-surviving and surviving), using a

stepwise method and setting prior probability to

'sample size' during classification, i.e. using a

population based sample where the number of survivors

far exceeded the number of non-survivors.

(ii) Same as (i) except for using a paired sample i.e.

setting prior probability of 1:1.

Here the groups were assigned the value 1 for non-surviving

companies and the value 2 for the surviving companies.

The results of the analyses of each of the two runs are given

in Tables 4.1 and 4.2, before reclassification of "merged" and

"other" companies. It can be seen from Table 4.1(i) that equal
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prior probabilities gives the best discriminant function in the

sense that its accuracy is the best among the two runs. Note that

for (ii) the type I error is as high as 88.1% while type II error

is as low as 1.2% but the classification accuracy (95.3%) appear

to be good overall, so with respect to type I error the model is

extremely poor. A possible reason for this is that there were many

surviving companies, and the non-surviving company data appeared

as noise when compared to the survivors . These results were to be

expected and concur with the comments made by Zmijewski (1984).

For (i), type I error is 15.5% and type II error 18%. We may

therefore assume that the function obtained from (i) is the best

function and the percentage of cases correctly classified was

82.3%. This indicates that the model developed misclassifies only

17.7% of the total number of observations. But, in the case of a

quadratic discriminant function, we found that the percent of

cases correctly classified was lower at 74.1% and at the same time

the 2 types of error were higher at 38.1% and 25.1% respectively.

Stepwise discriminat analysis shows that 12 variables out of 23

contributed significantly to the discriminant function. These are,

in descending order of importance: Net worth/sales (NW/S), Funds

flow/current liabilities (FF/C.LIB), Current liabilities/total

assets (C.LIB/TA), Current assets/ total assets (CA/TA), Current

assets/current liabilities (CA/C.LIB), Net income/net worth

(NI/NW), Quick assets/current liabilities (QA/C.LIB), Retained

earnings/total assets (RE/TA), 	 EBIT(earning before interest

& tax)/sales (EBIT/S), Funds flow/sales (FF/S), Funds flow/total

assets (FF/TA), and Current assets/ sales (CA/S).

The model developed in Table 4.2 with the bankrupt, "merged"
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and "other" companies, treated as non-surviving group of companies

and surviving companies as a second group (i.e. case a(2)). It can

be seen that case (i) with equal prior probabilities gives the

best linear discriminant function in the sense that its accuracy

is the best among the two cases, with type I error being 19.5% and

type II error 22.3% and the percent of cases correctly classified

was 78.2%. This indicates that the model developed shows that the

misclassified comprise only 21.9% of the total number of

observations. Again, for case (ii), where nearly all the

observations on surviving companies are correctly classified,

whilst	 there	 are	 few	 correct	 classifications for 	 the

non-survivors, confirms the problem of sample bias (Zmijewski,

1984). But, in the case of a quadratic discriminant function, we

found that the percent of cases correctly classified was lower at

64.9% and type I and type II errors were higher of 33.7% and 34.1%

respectively .

Stepwise discriminant analysis showed only 13 variables out of 23

to be significant. These were in descending order of discriminatry

power: Quick assets/total assets (QA/TA), Current liabilities/

total	 assets	 (C.LIB/TA),	 Funds	 flow/current	 liabilities

(FF/C.LIB), EBIT/sales (EBIT/S), Retained earnings/total assets

(RE/TA),	 Current	 assets/	 current	 liabilities	 (CA/C.LIB),

Sales/total assets	 (S/TA),	 Net worth/sales	 (NW/S),	 Funds

flow/total assets (FF/TA), Funds flow/sales (FF/S), 	 Total

assets/net worth (TA/NW),	 Quick assets/current liabilities

(QA/C.LIB) and Net income/net worth (NI/NW).



Table 4.1 Results of linear discriminant analysis before

reclassification of "merged" and "other" companies for

case a(1) (the bankrupt companies, treated as a

non-surviving group and surviving companies as a second

group).

Predicted group percentage

Actual	 group Method prior

prob.

membership correctly

classified
1 2

non-survivor	 (1) 84.57. 15.50/.

(i) stepwise equal 82.3%
(Milks) (1:1)

survivor	 (2) 18% 82%

non-survivor	 (1) 11.9% 88.1%

(ii) stepwise

(Milks)

sample

size

95.3%

survivor	 (2) 1.2% 98.8%
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Table 4.2 Results of linear discriminant analysis before

reclassification of "merged" and "others" companies

for case a(2) (the bankrupt, "merged" and "other"

companies, treated as a non-surviving group and

surviving companies as a second group).

Predicted group percentage

Actual	 group Method prior

prob.

membership correctly

classified
1 2

non-survivor	 (1) 80.5% 19.5%

(i) stepwise equal 78.2%
(Milks) (1:1)

survivor	 (2) 22.3% 77.7%

non-survivor	 (1) 3.3% 96.7%

(ii) stepwise

(Milks)

sample

size

84.9%

survivor	 (2) 0.4% 99.6%
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Analysis for 5 years prior to failure 

As indicated above, the main issue raised by moving from a

matched sampling basis is that the structure of the survivor group

no longer reflects that of the non-survivors. The survivor group

now contains all companies which have not yet failed (i.e. in this

data set, 359 survivors and 95 non-survivors, of which 21 were

bankrupts). Also, given the small number of listed companies

failing each year, the need to generate sufficiently large samples

of non-survivors by including companies which failed at different

points in time produces further problems of sample structure.

For, the first analysis (see Table 4.3a and 4.4a), the survivor

group was censored at the date of the last entry in the data set.

In this case, given that most survivors reported financial results

in 1984, the 'one year before' vector was consequently the 1983

data, and so on.

However, a preferable approach would be to apply stratified

sampling in order to select randomly the survivors such that the

failures in any given year when expressed as a proportion of the

total number of non-survivors is reflected in the censored group.

For instance, the number of companies failing in 1978, for

example, (5 companies) as a proportion of the total (21) was

applied to the number of survivors (337) resulting in a stratified

sample (80 companies selected randomly from those survivors which

were in existence in 1978 and had reported in 1977) whereby the

'one year before' data was the 1977 results, the 'two years

before' data was the 1976 results, and so on. Then, the procedure

was repeated for companies failing in 1979, where the 'n years

before' data was the 1979-n reported results. This was repeated

for all years in which there had been failures. With this
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procedure, the sample for the final year comprises those survivors

which had not been selected randomly for the other strata. This

approach is referred to here (and, as far as can be seen, the

technique is not known elsewhere) as "randomly-censored

stratified sampling". The stratified samples were as follows:

Years

1983

1982

1981

1980

1979

1978

Number of
bankruptcies

7

4

2

1

2

5

Randomly-censored
stratified sample

113

64

32

16

32

80

Total
	

21	 337

Although the number of companies with data n years before random

censoring varies (as newly listed companies with 2 years or more

data were included), the structure for the 5 years may be

illustrated as follows:

Example of sample structure using "randomly-censored

stratified sampling"

Number of companies
Years before failure or censoring

1 2 3 4 5

bankrupt 21 18 17 17 14

*
survivor 337 305 262 229 206

• average of 32 runs



It should be noted that the data set was reduced to 337 companies

by removing (a) all companies reporting for 1984 only (i.e. 9 new

listing in 1984) and (b) those which were survivors but had not

reported in 1984 (13 companies). It can be seen that the survivor

group now reflects the proportions and the structure of the

bankrupt group.

The procedure was repeated 32 times, and applied to the case of

bankrupt companies (a(1)), of all non-survivors (a(2)) (see Table

4.3b and 4.4b), and of the reclassified grouping where companies

taken over but which had a high likelihood of failure were

reassigned to the bankrupt group (see Section 4.6.2 and Table

4.8b).

The results of applying a linear discriminant analysis by

using randomly-censored stratified sampling technique reduced type

I error in all cases in Table 4.3b compared with Table 4.3a, but

in Table 4.4b increased the type I error in some cases (e.g. 1 and

3 years prior to failure) compared with Table 4.4a.

It can be seen from Tables 4.3(a) and (b) and 4.4(a) and (b)

that applying a linear discriminant analysis to years prior to

failure increased the type I error substantially and type II

error, compared to the results in Tables 4.1 and 4.2 for the

entire set of data.

Compared to published studies where in most cases the sample sizes

for the two groups were similar, the linear discriminant model

classification results are not good. The high misclassification

errors may be due largely to the fact that the sample sizes for

the two groups of companies are quite different. Nevertheless,
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note that Shailer's (1990) model, using 33 non-surviving to 39

surviving companies gives type I error (39.4%) and type II error

(28.2%), and, in spite of using equal sample size for both

surviving and non-surviving companies, the results were poor.

Taffler's (1982) model, using 23 non-surviving to 45 surviving

companies gives only the type I error (4.3%) and no type II error

on one year prior to failure data. Also, Tisshaw's (1976) model

using 31 non-surviving to 62 surviving companies gives type I

error (3.2%) and type II error (1.6%). However, both of these used

"solvent" companies as survivors, and it is therefore to be

expected that their models performed better. However, a model by

Luk (1984) using 27 non-surviving to 170 surviving companies gives

type I error (16%) and type II error (19.6) on one year prior to

failure data.

Nevertheless, it should be noted that the interest in developing a

discriminant analysis model here is in order to compare the

results obtained with those from logit analysis and survival

analysis.

The issue to be emphasised here is that the poor results are a

reflection of the application of the linear discriminant model

using a realistic (i.e. unbalanced) sample. This is a major

shortcoming of conventional modelling procedures, where sample

bias is a feature of the data, and this issue is taken up later in

the thesis when alternative modelling approaches are introduced.



Table 4.3 Results of linear discriminant analysis before

reclassification of "merged" and "other" companies

for case a(1) (the bankrupt companies, treated as a

non-surviving group and surviving companies as a

second group) for five years prior to failure by

using equal prior probabilities.

(a) - survivor data: one year prior to censoring

Type	 of model No.	 of	 years	 prior	 to	 failure

1 2 3 4 5

Type	 I	 error

(x)
33.9 61.1 52.9 64.7 50

Type	 II	 error 17.1 20.2 26.7 6.5 35
(%)

Correctly

classified	 (X)

81.9 77.7 72 90.6 64.4

No.	 of	 cases
non-survivor 21 18 17 17 14

survivor 350 336 326 320 320

(b) -survivor data: randomly-censored stratified samples

Type	 of model No.	 of	 years	 prior	 to	 failure

1 2 3 4 5

( 1)
Type	 I	 error 24.5 50.9 42.3 63.9 49.1

04) (13.4) (11.4) (11) (3.6) (6.7)

( 1)
Type	 II	 error 25.4 19.8 18.4 9.3 25.9

(x) (2.6) (3.2) (2.6) (3.5) (8.8)

()
Correctl

1
y

classified	 (%)

74.9
(2.3)

78.5
(2.5)

80.2
(2.1)

87
(2.9)

72.6
(8.1)

No.	 of	 cases

non-survivor 21 18 17 17 14
(1)

survivor 337 305 262 229 206

(1) All the values are averages based on 32 runs.

Figures in parenthesis are standard deviations.
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Table 4.4 Results of linear discriminant analysis before

reclassification of merged and "other" companies

for case a(2) (the bankrupt, "merged" and "other"

companies, treated as a non-surviving group and

surviving companies as a second group) for five

years prior to failure by using equal prior

probabilities.

(a) - survivor data: one year prior to censoring

Type	 of model No.	 of	 years	 prior	 to	 failure

1 2 3 4 5

Type	 I	 error

(x)
35.8 38.5 31.9 51.6 49

Type	 II	 error

(x)
30.9 31.5 27.6 22.7 29.1

Correctly

classified	 (X)

68.1 67.2 71.7 72.5 68.2

No.	 of	 cases
non-survivor 95 78 69 64 51

survivor 350 336 326 320 320

(b) -survivor data: randomly-censored stratified samples

Type of model No.	 of	 years	 prior	 to	 failure

1 2 3 4 5

(
Type	 I	 error

1)

(x)
41.8

(	 6.3)
36.8

(	 4.8)
37.5

(	 4	 )
45.8
(5.2)

46
(5.4)

(
Type	 II	 error

1)

(x)
34.7
(7.5)

39.3
(3.5)

40.9
(2.8)

28.3
(2.9)

38.5
(6.8)

()
Correctl

1
y

classified	 (x)
63.8
(5.6)

61.2
(2.5)

59.7
(	 2	 )

68.2
(2.1)

60.2
(4.7)

No.	 of	 cases
non-survivor 95 78 69 64 51

(1)
survivor 337 314 283 255 220

(1) All the values are averages based on 32 runs.

Figures in parenthesis are standard deviations.
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4.6 Reclassification of the "Merged" and "Other" Companies 

As noted earlier, previous prediction models have defined

failure narrowly, mainly as bankruptcy. Altman (1968) and Ohlson

(1980) restricted their definition of failure to companies which

have filed bankruptcy petitions under Chapter X or XI of the U.S.

Federal Bankruptcy Act. On the other hand, Beaver (1966) defined

failure as the inability of a company to pay its financial

obligations as they mature, but even in his case 75% of his sample

companies were in the bankruptcy category. Likewise, in the case

of Blum (1974), who defined failure as events signifying an

inability to pay debts as they fall due, filing for bankruptcy or

making an agreement with creditors to reduce debts, 90% of his

cases were bankrupt.

This narrow definition of failure led to the restricted

sample sizes used in the above studies. In turn their reliability

and potential contribution are restricted. On the other hand,

there would be three advantages in defining failure broadly to

include an expanded set of events on the continuum (Lau, 1982).

First, many companies recover after getting into the earlier

stages of financial distress and avoid eventual failure, but it is

still desirable to identify such companies in advance. Second, a

broader definition of failure enables more companies to be

included in the analysis sample used for constructing the

prediction models, and the resultant models should benefit from

this additional information on companies in the different stages

of the failing continuum. Third, predicting a wider range of

failing events would broaden the applicability of the prediction

model for analysts and decision makers.

Furthermore, as mentioned earlier, companies are created and
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they may fail, either through liquidation or bankruptcy or through

merger or acquisition or for some other reasons. Some survive, and

an alternative perspective is that at any given point in time, the

survivors are those companies which have not yet been taken over

or have not yet failed. It can be argued that bankruptcy is not

/the only yardstick of failure. Various companies at various times
,r`s•

go through a period of financial instability which, if remedial

steps are not taken, may lead to bankruptcy. Companies which merge

to avoid bankruptcy may also be considered as failures, as

mentioned in Chapter 3 Section 3.1. Most of the previous studies

do not mention the acquisition of companies and some of them do

not define "failure" (Dambolena and Khoury 1980, Keasey and Watson

1987), but just use the term "failed companies". In our case we

have 74 (merged, taken over and other) such companies in comparing

with only 21 bankrupt companies. We intend in this section to

utilize the information and increase the sample size particularly

the bankrupt companies by using two procedures: stepwise

discriminant model and survival model methods. Even though the

survival model is given in detail in a later chapter, it is used

here in order to describe a method for reclassifying "merged" and

"other" companies.
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4.6.1 Stepwise Discriminant Method of Reclassification

A stepwise discriminant model which we discussed in Sections

4.2 and 4.3 may be used to reclassify the "merged" and "other"

companies with 23 variables (financial ratios) by using bankrupt

companies as a single group, treated as non-surviving, and using

surviving companies as a second group (i.e. case a(1) in Section

4.5). The results of this analysis were given in Table 4.1 of

Section 4.5. By using the final linear discriminant model to

classify the "merged" and "other" companies, of which there are

74, we found that only five companies (those numbered 27, 39, 54,

56 and 65) were classified as bankrupt and the rest, 69 companies,

were classified as live. The analysis was then re-run with two new

groups: bankrupt plus 5 others (treated as the non-surviving

group) and surviving plus 69 others (treated as the surviving

group). The results of the analysis are given in Table 4.5. These

show that the percentage correctly classified was 80.4% and type I

error was 45% and type II error 14.3%. But, in the case of a

quadratic discriminant analysis, we found that the percent of

cases correctly classified was 66.3% and type I error was 63.1%

and type II error 27.5%. Stepwise discriminant analysis showed

that only 8 variables out of the 23 were significant. These, were

in descending order of importance, Net worth/sales (NW/S), Current

liabilities/total assets (C.LIB/TA), Funds flow/sales (FF/S),

Currents	 assets/current	 liabilities	 (CA/C. LIB),	 Current

assets/total assets (CA/TA), Quick assets/ current liabilities

(QA/C.LIB), Current assets/ sales (CA/S) and EBIT/total assets

(EBIT/TA).

Basically,	 the	 stepwise	 discriminant	 method	 for
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reclassification in this case gives a lower percentage of

correctly classified cases and the type I error is larger than

when these companies were left out, as we have seen in Section

4.5. These results indicate that using stepwise discriminant

method for reclassification is not powerful enough.

Table 4.5 Results of linear discriminnt analysis after

reclassification	 of	 "merged"	 and	 "other"

companies by using bankrupt and 5 others

companies as a non-surviving group and the

surviving and 69 others companies as surviving

group.

Actual	 group
Method

prior

prob.

Predicted group

membership

percentage

correctly

classified

1 2

non-survivor	 (1) 55% 45%

stepwise equal 80.4%
(Milks) (1:1)

survivor	 (2) 14.3% 85.7%
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4.6.2 An Alternative Method of Reclassification

The stepwise discriminant method is compared here with an

alternative based on survival analysis. As discussed later in

Chapter 6, survival analysis is concerned with a population of

companies where for some companies we may also observe their time

to "loss" from the study, or censoring. For a company which is

censored, we know only that the time to failure is greater than

the censoring time (see Chapter 6 for more details). For such a

company, the time to failure is a random variable, lifetime is

denoted by T and the probability of a company surviving to time t

defines a survival function as

S(t) = pr (T 2 t)

which is a nonincreasing function of t. The underling idea in

survival analysis is that of hazard function which gives the

conditional failure rate. It is defined as the probability of

failure during a small time interval [t., t+At], assuming that the

individual has survived to the beginning of the interval, or as

the limit of the probability that an individual fails in a small

interval, given that the individual has survived to time t.

Survival model is used here to classify the "merged" and "others"

companies according to the maximum likelihood (M.L.E) principle

for Weibull regression model with 12 variables (selected from

stepwise regression by using bankrupt companies as a non-surviving

group and surviving companies as a surviving group, we obtain 12

variables which were the same 12 variables obtained from stepwise

discriminant analysis above). The procedure is that 	 for each

individual in the sample we observe the vector of explanatory

variables X and a pair of variables (t, S). The censoring

indicator 5 takes the value 1 if the survival time t for the ith

observation is uncensored, and zero if it is censored.
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The likelihood function is (Altkin, et al 1989)

n
-8

L ( g ,T) = n	 [f(t t ) ]
81
 [S(t1)]1	

t

I

n
= g	 [h(t i )] 61 S(ti)

t

	 (49)

where

fad
h(t ) - 	 , S(t ) and f(t ) are the hazard,

1	 1	 t

S(t )
t

survival and density functions respectively.

Assuming a constant shape parameter, we have for the the Weibull

regression model,

h(t;X) = Al(At) 7-1 eXI8	 ,	 ( t20 ; A, y>0)	 	  (4.10)

S(t;X) = exp [-(At) ' e	 	  (4.11)

where

A = scale parameter

y = shape parameter

X = regression vector

g = coefficient of regression vector
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writing

0 = (At) e 	 H(t)

(where H is the integrated hazard function.)

We obtain

L cg, T ) =	 [ze /t ]
si 

e
-9

i
= 1	 i

	 (4 12)

The probability density function of the log failure time Y

for Weibull regression model is (Kalbfleisch and Prentice 1980)

cr
-1
 exp [  

Y - xg	
exp(  

Y - Xg )]
- , -co < Y <	 ....(4.13)

where
-1

o-=

Model (4.13), may be written as

Y = Xj3 + TW
	

	 (4 14)

where W has a standard extreme value distribution with p.d.f.

exp (W - ew )
	

—oo < W < co ,

and the likelihood function may then be written as

-
L (g,T) =	 [ T 15(W 1 )]

51
 [S(W1)]1-81 	  (4.15)

where

W = (Y -Xg) / Ti

112



alog	 L 
The maximum likelihood equations 	 - 0 are readily solved

ag
...

by the Newton-Rapson method to obtain the M.L.E. g

In order to estimate the likelihood that an unclassified

company that has been acquired or wound-up, for reasons other than

bankruptcy possesses characteristics similar to those of bankrupt

companies or, alternatively, surviving companies, we used the

Weibull	 survival	 likelihood	 function	 to	 estimate	 the

log-likelihood for the known bankrupt companies and for the known

survivors (i.e case a(1) in Section 4.5). We do this by adding

each unclassified company first to the bankrupt group and then to

the surviving group, and recompute the separate log-likelihoods

and observe the difference. The results are shown in Table 4.6 and

plotted in Figure 4.2. An increase in the log-likelihood indicates

a better fit of the model to the data. Only in a few cases is

there an observable change in the log-likelihood for the surviving

companies. This is mainly due to the large sample size of this

group. But, when added to the smaller sample of bankrupt companies

34 unclassified companies cause a significant decrease in the

log-likelihood, leaving 40 companies which we may be deemed to

have characteristics similar to the known bankrupt companies.

These results are infered from the fact that a decrease in the

deviance ( = -2(log-likelihood), which has x2 distribution ) of

greater than 4 causes a significant reduction in the

goodness-of-fit of the model at the 5% level. Figure 4.3 gives a

plot of the difference between the deviances when all 74 unknown

companies are reclassified.
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Table 4.6 The results of changes in the log-likelihood when

the
	 74	 unclassified
	

companies	 are	 added

individually to the bankrupt and surviving groups

for the purpose of reclassification.

Company
Difference

in
log-likeilhood

Log-likelihood
when unclassified
company added to
bankrupt group

Log-likelihood
when unclassified
compan y added to
surviving group

1 -63.2652 -61.4044 1.8608
2 -63.3236 -61.3816 1.9420
3 -65.7885 -61.3715 4.4170
4 -66.5678 -61.3681 5.1997
5 -67.3547 -61.3673 5.9874
6 -63.3108 -61.3739 1.9369
7 -66.6307 -61.3687 5.2620
8 -63.1955 -61.3767 1.8188
9 -63.2899 -61.3889 1.9010
10 -62.0117 -61.7141 0.2976
11 -62.8826 -61.4869 1.3957
/2 -63.0057 -61.4678 1.5379
13 -63.0199 -61.4649 1.5550
14 -67.5485 -61.1813 6.3672
15 -63.1802 -61.3939 1.7863
16 -65.5911 -61.3735 4.2176
17 -65.6185 -61.3724 4.2461
18 -63.2023 -61.3799 1.8224
19 -63.3100 -61.3865 1.9235
20 -69.6008 -61.3667 8.2341
21 -67.1846 -61.3677 5.8169
22 -70.4302 -61.3666 9.0636
23 -63.3282 -61.3784 1.9498
24 -63.1513 -61.4396 1.7117
25 -61.8594 -61.8461 0.0133
26 -63.0282 -61.4245 1.6037
27 -61.7555 -61.1752 -0.4197
28 -68.1707 -61.3670 6.8037
29 -67.6412 -61.3668 6.2744
30 -68.4578 -61.3668 7.0910
31 -63.0991 -61.3777 1.7214
32 -66.6806 -61.3688 5.3118
33 -63.1383 -61.3831 1.7552
34 -62.9450 -61.4230 1.5220
35 -67.1975 -61.3671 5.8304
36 -65.7149 -61.3692 4.3457
37 -66.4691 -61.3691 5.1000
38 -63.1573 -61.3772 1.7801
39 -62.3260 -62.7117 -0.3857
40 -67.4822 -61.3674 6.1148
41 -63.3008 -61.3790 1.9218
42 -67.7658 -61.3672 6.3986
43 -65.7591 -61.3711 4.3880



44 -63.2930 -61.4386 1.8544

45 -63.0095 -61.4633 1.5462
46 -67.3932 -61.3676 6.0256
47 -66.0469 -61.3707 4.6762
48 -63.3068 -61.4108 1.8960
49 -66.2224 -61.3691 4.8533
50 -63.0093 -61.3778 1.6315
51 -68.4832 -61.3668 7.1164
52 -71.6304 -61.3666 10.2638
53 -65.4528 -61.3741 4.0787
54 -62.1213 -61.4033 0.7180
55 -63.0961 -61.3836 1.7125
56 -61.8944 -62.8501 -0.9557
57 -63.1708 -61.3774 1.7934
58 -68.2079 -61.3670 6.8409
59 -69.6237 -61.3667 8.2570
60 -66.4381 -61.3687 5.0694
61 -66.3068 -61.3692 4.9376
62 -63.0953 -61.3762 1.7191
63 -63.1586 -61.4088 1.7498
64 -63.3115 -61.3688 1.9427
65 -62.5499 -63.5485 -0.9986
66 -69.0272 -61.3666 7.6606
67 -63.2662 -61.3733 1.8929
68 -62.1784 -61.5883 0.5901
69 -66.8158 -61.3685 5.4473
70 -68.2889 -61.3669 6.9220
71 -63.0209 -61.3781 1.6428
72 -63.1896 -61.4501 1.7395
73 -62.4734 -61.5525 0.9209
74 -72.0509 -61.3666 10.6843
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A run of discriminant analysis was made after reclassifing

the "merged" and "other" companies, where the sample of bankrupt

companies was increased by 40, and the sample of surviving

companies was increased by 34 (which we will name case b). The

results in Table 4.7 show that the percentage correctly classified

was 87.2% and type I error was 13.5% and type II error 12.8%. But,

in the case of a quadratic discriminant function, we found that

the percent of cases correctly classified was 67.6% and type I

error was 29.5% and type II error 32.9%. Stepwise discriminant

analysis showed that only 13 variables out of the 23 were

significant. There were in descending order, Funds flow/current

liabilities	 (FF/C.LIB),	 Current	 liabilities/total	 assets

(C.LIB/TA), Sales/total assets (S/TA), Net income/net worth

(NI/NW), Total assets/net worth (TA/NW), Retained earnings/total

assets (RE/TA), Current assets/current liabilities (CA/C.LIB),

EBIT/sales (EBIT/S), Funds flow/sales (FF/S), Funds flow/total

assets (FF/TA), Current assets/total assets (CA/TA), Quick

assets/current liabilities (QA/C.LIB) and Current assets/sales

(CA/S).

Basically, the Survival Model method for reclassification in

this case gave a higher percentage of correctly classified than

when the unknown companies were left out from the analysis or when

included with the bankrupts. Also, there was a lower type I error,

as we have seen in Section 4.5. Therefore the Survival Model

method is found with this data to be a more powerful method for

reclassifying the unknown cases of "merged" and "other" companies

into failures and non-failures.

We may conclude that	 the discriminant model, 	 after
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reclassification of the "merged" and "other" companies using

Survival Model method (case b), provides a useful discriminant

function, because it gives a higher percentage correctly

classified (87.2%) and lower type I error (13.5%) and type II

error (12.8%) than obtained previously (see earlier sections of

this chapter).

The results of applying a linear discriminant analysis after

reclassification using the Survival Model method for 1, 2, 3, 4

and 5 years prior to failure are given in Table 4.8(a) and(b). It

can be seen from Table 4.8(a) and (b) that, applying linear

discriminant analysis to prior years, increased the type I error

and type II error. But a randomly-censored stratified sampling

c,
technique (see pages 100-102) decreased the type I error in all

cases -see Table 4.8(a) and (b).
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Table 4.7 Results of linear discriminnt analysis after

reclassification	 of	 "merged"	 and	 "other"

companies by using bankrupt and 40 others

companies as a non-surviving group and the

surviving and 34 others companies as surviving

group.

Actual	 group Method prior

prob.

Predicted group

membership

percentage

correctly

classified1 2

non-survivor	 (1)

survivor	 (2)

stepwise

(Wilks)

equal

(1:1)

86.5%

12.8%

13.5%

87.2%

87.2%
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Table 4.8 Results of linear discriminant analysis 	 after

reclassification of merged and "other" companies

(bankrupt	 and 40 others companies	 as	 a

non-surviving group and the surviving and 34 others

companies	 as	 surviving	 group)	 for	 five

years prior to failure by using equal prior

probabilities.

(a) - survivor data: one year prior to censoring

Type	 of model No.	 of	 years	 prior	 to	 failure

1 2 3 4 5

Type	 I	 error

(x)

33.3 62.3 51.9 62.5 70.7

Type	 II	 error

(x)

27.5 30.5 32.4 26 31.2

Correctly

classified	 (X)

71.7 65.5 65.1 69.2 64.4

No.	 of	 cases
non-survivor 61 57 52 51 41

survivor 384 363 343 335 330

(b) -survivor data: randomly-censored stratified samples

Type of model No.	 of	 years	 prior	 to	 failure

1 2 3 4 5

(
Type	 I	 error

1)

(x)
28.4
(3.5)

41.6
(	 9	 )

38.9
(6.5)

45.5
(6.7)

49.2
(5.1)

(
Type	 II	 error

1)

(x)
30.6
(3.4)

29.6
(2.5)

31.4
(3.7)

24
(3.6)

32.3
(5.9)

()
Correctl

1
y

classified	 (X)

68.8
(2.6)

68.8
(1.6)

67.5
(	 3	 )

72.1
(2.4)

65.3
(4.5)

No.	 of	 cases
non-survivor 61 57 52 51 41

(
survivor

1)
354 _ 321 291 263 229

(1) All the values are averages based on 32 runs.

Figures in parenthesis are standard deviations.
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Conclusion

In addition to providing benchmark results for comparison

with applications of logit and survival models (see Chapter 5 and

6), it has been demonstrated in this chapter how (i) the use of a

stratified sampling procedure to generate unequal samples of

surviving companies which reflect the proportion of non-survivors

to survivors but which nevertheless are matched to the lifetimes

of the non-survivors and (ii) the use of a Survival Model

likelihood method to reclassify those non-survivors which ceased

trading without going into bankruptcy each has had the effect of

decreasing type I and type II errors using the standard approach

to failure prediction, i.e. discriminant analysis.
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CHAPTER FIVE

A PROBABILISTIC MODEL OF FAILURE

(LOGISTIC DISCRIMINATION)

5.1 Introduction

In this chapter the econometric methodology of conditional

logit analysis is used to avoid some fairly well known problems

associated with multivariate discriminant analysis (MDA). This

approach has been the most popular technique for failure studies

using vectors of predictors. Some of the problems associated with

MDA are

(1) Certain statistical assumptions regarding the distributional

properties of the predictors need to be satisfied for the

validity of MDA. These assumptions are that predictors should

have multivariate normal distribution and that their

variance-covariance matrices should be the same for all groups

e.g. two groups of non-surviving and surviving companies.

(2) The output of the application of an MDA model is a score which

has little intuitive interpretation, since it is basically an

ordinal ranking (discriminatory) device. For decision problems

such that a misclassification structure is an inadequate

description of the payoff partition, the score is not directly

relevant, i.e. the payoff partition will be inadequate if it

is not feasible to define a utility function over the two

types of classification errors. Any economic decision problem

would typically require a richer state partition. If however,

prior probabilistics of the two groups are specified, then it
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is possible to derive posterior probabilities of failure. But,

this Bayesian revision process will be invalid or lead to poor

approximations unless the assumption of normality is

satisfied.

(3) There are also certain problems related to the matching

procedures which have typically been used in MDA. For example,

non-surviving and surviving companies are matched according to

criteria such as size and type of industry. It is by no means

obvious what is really gained or lost by different matching

procedures, including no matching at all. At the very least,

it would seem to be more beneficial actually to include

variables as predictors rather than to use them for matching

purposes (Ohlson, 1980).

The use of conditional logit analysis, on the other hand,

essentially avoids the above difficulties. The fundamental

estimation problem involved here can be reduced simply to the

following statement: given that a company belongs to some

pre-specified population, what is the probability that the company

fails within some pre-specified time period? No assumptions need

to be made regarding prior probabilities of failure and the

analysis does not restrict the explanatory variables to any

specific distributional form.
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5.2 Choice of Predictor Variables 

Given K variables X , X , 	  ,X observed on n individual
1	 2	 k

companies where each belongs to one of two populations such as

non-surviving or surviving groups of companies, if for each

company there is also a Y variable which we wish to predict using

a linear combination of X values, then we seek constants a
o

,
A

a l , 	  ,a
A	

which minimise the residual sum of squares E (Y-Y) 2
k

where Y= a
o
 +aX +aX+	 • + a X is the linear predictor

11	 22	 k k

of Y. The most important question in multiple regression is to

decide which of the predictor variables provide useful information

about Y, and which may be safely omitted. The aim is to obtain a

predictor using a small number of variables because this is

simpler to interpret and often leads to more reliable prediction.

The decision to include or exclude a particular variable X i is

equivalent to testing the hypothesis that the corresponding

coefficient a
i
 is zero. This may be done in one of two equivalent

ways:-

(i) let R be the residual sum of squares when k regressor

variables are used and let R
(1) 

be the residual sum of

squares when X i is excluded, but the other (k-1)

variables remain. Clearly R (i) � R , since the latter

makes use of more information. Let

F = (R	 - R) / { R/(n-k-1)}.
(i)

Then we conclude that X does provide significantly
1

useful information about Y, in addition to that provided

by the other X's, if F is large.
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A
(ii) one may calculate the standard error, S i of a , the

i

	estimate of a . This will indicate that a 	 isi	 i

significantly different from zero if 	 the	 t-value

I t I = l a
i

+ s i1 is large compared to the critical value

of the t-distribution with n-k-1 degrees of freedom

(Morrison, 1976).

5.2.1 Stepwise Regression

The problem with the above approach is that the significance,

or otherwise, of a particular variable depends critically on which

other variables are also being considered at the same time. This

often leads to some complexity and confusion when there are more

than three or more variables. A useful automatic technique is

stepwise regression which involves entering variables into the

regression one at a time, then considering whether any of the

other variables currently in the equation should be dropped. At

each stage one selects the variable to enter which reduces the

residual sum of squares the most, and the variable to drop is the

one whose omission increases the residual sum squares the least,

i.e. has the smallest t-value. This process continues iteratively

until the situation stabilises with the F-values being less (or

greater)	 than	 specified	 critical	 values	 F-to-enter	 (or

F-to-remove). In this way a large number of predictor variables

may be reduced automatically to a smaller set. Larger critical

values lead to a smaller set of regressors remaining. Details of

this technique is discussed in Draper and Smith (1981).
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5.3 Generalised Linear Models

Classical multiple regression analysis as described above is

based on the assumptions that

(a) the expected value of Y, p say, can be represented as a

linear combination of the regressors.

	

A = a +EaX	 , and
0	 ii

i

(b) that Y is distributed normally about the mean with a

constant variance.

Generalised linear models (Mccullagh and Nelder 1983) allow for

some function f, called the link function which

represents the relationship between the mean of the ith

observation and its linear predictor, such that

f(p) = ao + E a iXi	 , and

(b) the response Y may be distributed according to one of

several kinds of probability distributions, including

the normal.

Once these have been specified the parameters are estimated by the

method of maximum likelihood. In the case of the identity link,

f(p) = A, and a normal response these assumptions correspond

exactly to (i) and (ii) of multiple regression.
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5.3.1 Prediction of Binary Variables - Logistic and Logit Models 

If the response variable is binary, i.e. Y takes the values 0

(surviving companies) or 1 (non-surviving companies), this

corresponds to a Bernoulli random variable with

E(Y) = p, say, and

Pr(Y = 1) = p

Pr(Y = 0) = 1 - p

which may be written as

1-Y
Pr(Y) = p Y (1 - p) Y = 0, 1.

This may be thought of as a Binomial distribution Bin(n, p) with

n = 1.

For given values of regressor variables, X, X , ....,X we1	 2	 K

aim to predict p, the probability of failure for a company within

a specified period of time. Because p is constrained to the range

[0, 11 and for easy interpretation it is usually transformed and

the most commonly used are the probit and the logit

transformations. As they generally give similar results we use the

logit as our link function since it is simpler.

In logit analysis, the outcome or response variable is a

binary variable which records the event of surviving ("success")

or non-surviving ("failure"). The predicted proportion of

successes, s/n where s is the number of successes and n is the

total number of cases (successes plus failures), follows the

logistic model
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P

e
0	

-1

p=
	

	 - [ 1 + exp(-0)1	 ,	 	  (5.1)

1 + e
0

k

where 0=a +EaX, isalinear function of the predictors.
o	 I I

1=1

This model is non-linear in 0 and the probability p approaches 0

or 1. The linear predictor 0 represents the incremental effects of

the X's and as 0 increases, there is an increase in the

probability of failure.

When	 0 = 0 , p = 1/2 . Thus, the probability of failure is

greater than 1/2 when the sign of 0 is positive and less than 1/2

when the sign is negative (see Figure 5.1).

The logit link or transformation defined by

log [
P	 	

k

]1 - p
-6= a

o
 +EaX

1=1 1 1
	
	  (5.2)

maps the range [ 0, 1 1 of p to ( - co , co ) for the logit

function, becomes linear in the predictors and represents the log

odds of a company failing. The odds of failure

k

a +EaX
-e

0 
=e	 1=1

11
1=1

1 - p

is an appealing interpretation of this model.
a

i
Thus e

	

	 is the change in odds of a company failing per unit
ai

increase in the predictor X. If a l is positive then e	 > 1 which

implies that the failure odds are increased, while the odds are
a

i
decreased if a is negative since e 	 < 1 and the odds will be

i
ai

unchanged if a i = 0 since e = 1.
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The parameters, a's, of the logistic model (5.1) are

estimated by the maximum likelihood method and the procedure is

iterative since the model is non-linear. The log likelihood

function is given by (Ohlson, 1980)

log L(aa	 ...,a )
o'	 1'	 k

. E log [1 + exp(-0)] -1 +
1 E Si

E log [1 - {1 + exp(-e)}]-1...(5.3)
1 E 92

which reflects the binary sample space consisting of non-surviving

(S 1 ) and surviving (S) companies.
 2

In model (5.1) the value of p, may be interpreted as the

conditional probability of failure for a company with a given set

of financial characteristics. Companies are predicted to fail if

this probability exceeds the critical of 1/2, (Gentry et al 1985,

Hamer 1983); they are predicted not to fail if P < 1/2. Two types

of error are possible. Type I error is defined as predicting that

a non-surviving company will survive and type II error is defined

as predicting a surviving company will fail (Meryer and Pifer,

1970).

Here for a given set of regressor values, we estimate the

probability that an individual company belongs to one of two

population and in the context of company diagnosis, this seems a

natural and useful procedure to employ. The technique will be used

to classify companies as to whether they suffer failure or not,

and to determine the extent to which the predictor variables
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affect the risk of company failure.

Figure 5.1 The logit cumulative distribution function

T



5.4 Applications 

This section reports our empirical results for the stepwise

reduction of variables and the probabilistic model techniques

applied to the financial data base that was collected for this

study.

The analysis is carried out on the same data sets; cases a(1

and 2) and b (Chapter 4); before and after reclassifying "merged"

and "other" companies. The computer packages SAS and MINITAB are

used for analysing the data.

5.4.1 Stepwise Reduction of Variables

Because 23 predictor variables is too large a set to study

intelligently, an automatic procedure was used to reduce the

number of predictors to the most significant or "best" subset and

this achieved through stepwise regression of failure on the

predictors. The following table shows the significant variables

identified by the analyses for both cases a(1 and 2) and b, given

in their order of importance for each case. The three, groups of

variables are basically the same except for the differences in

their order of selection . However, the ratio QA/TA appears in

case a(2) as the most significant variable but does not feature in

either case a(1) or case b. Also the ratio NW/S is selected for

case a(1) and a(2) but not for case b.
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Table 5.1 Stepwise selection of "best" subset results for

cases a(1 and 2) and b before and after

reclassifying "merged" and "other" companies.

a

before	 reclassifying	 "merged"	 and	 "other"

b

after	 reclassifying

"merged"	 and	 "other"

(non-survivor(bankrupt,

and	 40 others)	 and

survivor(surviving	 and

34	 others)groups)

(1)
non-survivor

(bankrupt)	 and

survivor	 groups

(2)
non-survivor

(bankrupt,"merged"

and	 "other")and

survivor	 groups

variable variable variable

NW/S

FF/C.LIB

C.LIB/TA

CA/TA

CA/C.LIB

NI/NW

QA/C.LIB

RE/TA

EBIT/S

FF/S

FF/TA

CA/S

QA/TA

C.LIB/TA

FF/C.LIB

EBIT/S

RE/TA

CA/C.LIB

S/TA

NW/S

FF/TA

FF/S

TA/NW

QA/C.LIB

NI/NW

FF/C.LIB

C.LIB/TA

S/TA

NI/NW

TA/NW

RE/TA

CA/C.LIB

EBIT/S

FF/S

FT/TA

CA/TA

QA/C.LIB

CA/S
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5.4.2 Application of the Generalised Linear Model 

The procedure of generalised linear model with logit link

(Section 5.3) is used here to predict company failure with the

predictors being those significant variables which were identified

by stepwise regression analysis (Table 5.1) for cases a(1 and 2)

and b before and after reclassifying "merged" and "other"

companies. The results are summarised in Tables 5.2 and 5.3

respectively.

The tables show regression coefficients of the stated

predictor variables with the probability of failure p related

P	 k

linearly to the predictors in the form log 	
[ 1 - p]

- E a
i
X

i'
i=o

where the constant a
o
 standing for the grand mean. A positive

coefficient indicates increased probability of failure with

increasing values of the variable concerned.

We infer from Table 5.2 for case a(1) that there are nine

significant indicators of failure. High values of NI/NW, FF/S,

CA/TA, FF/C.LIB and QA/C.LIB decrease the probability of failure

while high values of FF/TA, EBIT/S, CA/C.LIB and C.LIB/TA

increase that probability. In case a(2) that there are eleven

financial ratios that significantly indicate company failure. High

values of NI/NW, FF/S, S/TA, TA/NW, FF/C.LIB, RE/TA and QA/C.LIB

lead to low incidence of failure, while high values of FF/TA,

EBIT/S, CA/C.LIB and C.LIB/TA increase the incidence.

From Table 5.3 (case b) we note that there are eleven

significant indicators of failure with probability of failure

increasing as the values of FF/TA, EBIT/S, CA/C.LIB and C.LIB/TA
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increase, while this probability decreases as the values of NI/NW,

FF/S, CA/TA, S/TA, TA/NW, FF/C.LIB and QA/C.LIB increase.

Table 5.2	 Results of logit analysis for case a(1 and 2)

before	 reclassifying	 "merged"	 and	 "other"

companies.

a(1)

non-survivor(bankrupt)	 and

survivor	 groups

a(2)

non-survivor(bankrupt,

and	 "other"	 companies)

"merged"

and

survivor	 groups

variable coeff- chi- prob. variable coeff- chi- prob.
icient sq. icient sq.

UW/S 0.57 1.66 0.1981 QA/TA -1.12 1.44 0.2302

FF/C.LIB -5.07 23.61 0.0001 C.LIB/TA 3.21 16.41 0.0001

C.LIB/TA 4.10 23.75 0.0001 FF/C.LIB -2.73 20.77 0.0001

CA/TA -6.93 34.85 0.0001 EBIT/S 8.99 29.82 0.0001

CA/C.LIB 1.33 28.74 0.0001 RE/TA -0.99 9.10 0.0026

NI/NW -2.81 14.59 0.0001 CA/C.LIB 0.68 19.77 0.0001

QA/C.LIB -1.23 12.09 0.0005 S/TA -1.08 31.74 0.0001

RE/TA -0.67 1.34 0.2479 NW/S 0.03 0.01 0.9245

EBIT/S 13.13 24.51 0.0001 FF/TA 11.54 36.28 0.0001

FF/5 -7.72 7.11 0.0077 FF/S -8.45 21.70 0.0001

FF/TA 11.22 10.91 0.0010 TA/NW -0.36 91.40 0.0001

CA/S 0.71 2.57 0.1091 QA/C.LIB -0.91 7.73 0.0054

a
o

-2.04 7.16 0.0074 NI/NW -3.44 34.90 0.0001

a
o

-0.53 0.98 0.3215
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Table 5.3	 Results of logit analysis for case b after

reclassifying	 "merged"	 and	 "other"

companies.

variable coefficient chi-sq. prob.

FF/C.LIB -4.34 42.65 0.0001

C.LIB/TA 4.61 26.79 0.0001

S/TA -1.85 28.33 0.0001

NI/NW -2.19 16.38 0.0001

TA/NW -0.34 13.49 0.0002

RE/TA -0.49 1.80 0.1794

CA/C.LIB 1.05 31.41 0.0001

EBIT/S 6.54 20.65 0.0001

FF/S -5.00 8.77 0.0031

FF/TA 11.87 36.02 0.0001

CA/TA -1.91 5.73 0.0166

QA/C.LIB -1.23 26.41 0.0001

CA/S -0.81 2.72 0.0993

a
o 0.48 0.80 0.3697
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5.4.3 Prediction of Failure

From the fitted model

P,	 k
log 	  - a X

[ 1 - j 1=0 i 1

the estimated probability of failure for a given set of values of

the predictors is

EaX
e	 ii

( 1 + e
Ea

i
X
I)

Table 5.4 shows overall correct classification, type I and

type II errors for cases a(1 and 2) and b by using p = 0.5 as a

critical value to classify the data. We conclude from the table

that the logit model for case b is the best model which gives the

highest percentage correctly classified (88.7%) cases and the

lowest type I and type II errors (11.5 and 11.2 respectively).
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Table 5.4 Overall correct classification, type I and type II

errors for cases a(1 and 2) and b before and after

reclassifying "merged" and "other" companies.

Type	 of	 model
case a

case b

(1) (2)

Type	 I	 error 14.8% 16.2% 11.5%

Type	 II	 error 16.8% 17.9% 11.2%

percentage

correctly

classified

83.4% 82.6% 88.7%

Table 5.5 shows overall correct classification, type I and

type II errors for cases a(1 and 2) and b for the linear

discriminant analysis , quadratic discriminant analysis and logit

analysis.

We infer from this table that the logit model provides a

modest increase in the overall correct classification rate and a

decrease in type I and type II errors for cases a(1 and 2) and b

over the linear discriminant model but a substantial improvement

over the quadratic discrimination. Since the purpose of a model

is to identify companies that are likely to fail with

reasonable accuracy, the improvement provided by the logistic

model after reclassification using survival analysis are of some
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value.

Table 5.5 A comparison of linear discriminant analysis,

quadratic discriminant analysis and logit analysis

for cases a(1 and 2) and b before and after

reclassifying "merged" and "other" companies.

linear

discriminant

analysis

quadratic

discriminant

analysis

logit

analysis

Type	 I	 error 15.5% 38.17. 14.8%

Type	 II	 error
a(1)

18% 25.1% 16.8%

percentage

correctly

classified

82.3% 74.1% 83.4%

Type	 I	 error 19.5% 33.7% 16.2%

a(2)	
Type	 II	 error 22.3% 34.1% 17.9%

percentage

correctly

classified

78.2% 64.9% 82.6%

Type	 I	 error 13.5% 29.5% 11.5%

Type	 II	 error

b
percentage

correctly

classified

12.8%

87.2%

32.9%

67.6%

11.2%

88.7%



CHAPTER SIX

SURVIVAL MODELS

6.1 Introduction

Much of the empirical analysis in the issue of time series

financial analysis, with particular respect to corporate failure

has been concerned with discriminating between non-surviving and

surviving companies, more recently with a view to obtaining

parsimonious models of the characteristics of non-surviving

companies from extensive data sets. Logit analysis has also been

used to assess the likelihood of failure, and recursive

partitioning has been used to model the stepwise procedures

inherent in financial analysis when screening out the potential

type one errors.

In this chapter we have taken a different approach, that of

survival analysis, and we have attempted to model the covariates

of survival, in an attempt to understand the structure of large

cross-sectional accounting information sets. The analysis of

survival data has received considerable attention in the last

decade and comprehensive accounts are now available (Burridge,

1982). The principal ones being Mann, Schafter and Singpurwalla

(1974), Barlow and Proscham (1975), Gross and Clark (1975) and

Kalbfleisch and Prentice (1980). The last of these contains

several recent developments including some of the material

considered in this chapter.

Survival analysis is concerned with the analysis of a

population where, for each individual or company, we observe

either the time to failure or the time to censoring. For censored
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individuals, the time to failure is a random variable. Lifetime is

denoted by T, and the probability of a company surviving to time t

is given by

S(t) = Pr(T 2 t)

where S(t) is a survival function.

Most companies have staggered entry, so that they enter over a

substantial time period. Each company's failure time is usually

measured from its own date of entry. Figure 6.1 illustrates the

calculation.

Within the companies area a typical question which arises

relating to a failure, is: how is the progress of failure affected

by the characteristics of a company such as its financial ratios?

To answer such a question as this a study is often carried out

which involves looking at the length of time companies survive

from the beginning of the study until some event of interest

(failure). This time is called the survival time, and survival

analysis is the area of statistics used to model it.

Although most of the applications in the literature to which

the methods of survival analysis have been applied are medical,

the possible applications range from the industrial, such as the

accelerated testing of rubber tyres under factory conditions

(Davis 1985), to the social/economic of determining which factors

are likely to affect a person's return to full time employment

following a period of unemployment (Lancaster and Nickell 1980).
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Figure 6.1	 Eight companies with staggered entry, failed (x)

or censored (o).

	 n•n11
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6.2 Survival Function and Hazard Function

We consider a population of individuals where for each

individual we observe either the time to failure or the time to

censoring. That is for the censored individuals we known only that

the time to failure is greater than the censoring time. Let T be a

non-negative random variable representing the lifetime of an

individual from a homogeneous population. The probability of an

individual surviving till time t is given by

S(t) = Pr(T 2 t)	 	  (6.1)

called the survivor function (Lawless, 1982). From the definition

of the cumulative distribution function F(t) of T,

S(t) = 1 - F(t)	 	  (6.2)

survivor function S(t) is a nonincreasing function of time t with

the properties (Cox and Oakes, 1984),

	

1i	 , for t = 0
S(t) =

	

0	 , fort= co

that is, the probability of surviving at least at the time 0 is

one and that of surviving an infinite time is zero.

The graph of S(t) is called the survival curve. A steep

survival curve, such as the one in Figure 6.2(a), represents low

survival rate or short survival time. A gradual or flat survival

curve such as in Figure 6.2(b) represents high survival rate or

longer survival.
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Figure 6.2 Two examples of survival curves.

A fundamental concept in survival analysis is that of the

hazard function h(t), which is defined as the conditional density

function at time t given survival up to time t (Aitkin et al,

1989), i.e.

pr(tST<t+ AtIT2t)
h(t) = Lim

At40 ht
	 (6.3)



f(t)
	 (6.4)h(t) -

The hazard function can also be defined in terms of the cumulative

distribution function F(t) and the probability density function

f(t)

1 - F(t)	 S(t)

The hazard function specifies the instantaneous rate of death or

failure at time t, given that the individual survives up to time

t. In particular h(t)At is the approximate probability of death in

[t, t + At), given survival up to t.

The hazard function may increase, decrease, remain constant,

or indicate a more complicated process (Nelson, 1972). Figure 6.3

plots several kinds of hazard functions. For examples, h (t) is an1

increasing hazard function where the rate of failure increases

with time, h (t) decreases with time, h (t) is where the rate of
2	 3

failure is constant, h (t) is called bathtub curve, it reflects
4

the process of human life where the death rate declines, remains

constant and then increases with age, and h 5 (t) describes a

process such as corporate bankruptcy where the failure rate

increases sharply after incorporation but then declines with

survival time.

The density and survivor function can be obtained from hazard

function as,

S(t) = exp [ - H(t) ] 	 	  (6.5)

f( t ) = h(t) exp [ - H(t) ]	 	  (6.6)
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Figure 6.3 Examples of the hazard function

hin

rJ
	

r



6.3 Estimation of the Survival Function

The product-limit developed by Kaplan-Meier (1958) is used

for estimating the survivor function. This method is applicable

for any sample size, small, moderate, or large. However when the

sample size is very large it may be convenient to group the

survival times into intervals and perform a life-table analysis.

The product-limit and life-table estimates of the survivor

function are essentially the same. Many authors use the term

life-table estimates for the product-limit estimates.The only

difference is that the product-limit estimate is based on

individual survival times while in the life-table method survival

times are grouped into intervals (Lee, 1980). If there are no

censored observations in a sample of size n the empirical survivor

function is defined as

A	 number of observations 2 t
S(t) - 

	

	 	 ,	 t20	 ....(6.7)
n

This is a step function the decreases by 1/n just after each

observed lifetime if all observation are distinct. More generally

if there are d lifetimes equal to t the empirical survival

function drops by d/n just past t. When dealing with censored data

some modification of (6.7) is necessary since the number of

lifetimes greater than or equal to t will not generally be known

exactly. The modification of (6.7) described is called the

Kaplan-Meier product-limit estimate of the survivor function. The

estimate is defined as follows : suppose that there are

observations on n individuals and that there are k (k S n)

	distinct times t < t	 < 	  < t at which deaths may occur.
1	 2	 k
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n
j:t <t	 .1i

A	 n -d
.1S(t) =	 .1 n 	 (6.8)

There is no real loss of generality in assuming that these times

are discrete, because the finite precision of measurement means

that the values of survival time actually recorded can take only a

finite (though possibly large) number of values (Aitkin et al,

1989). The possibility of there being more than one death at t is
.1

allowed, and we let d represent the number of deaths at t . In
.1	 .1

addition to the lifetime t 1 , 	 , t, there are also censoring
 k

times L
i for individuals whose lifetimes are not observed. The

product-limit estimate of S(t) is defined as

where n is the number of individual at risk at t , that is the
.1	 .1

I

(Lawless, 1983). The function (6.8) is a nonparametric maximum

likelihood estimate in the family of all possible distribution

(Kaplan and Meier, 1958).

number of individuals alive and uncensored just prior to t
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6.4 Parametric Models 

Usually there are many causes that lead to the failure of an

individual company at a particular time. It is often difficult to

isolate these causes and mathematically account for all of them.

Therefore choosing a theoretical distribution to approximate

survival data is as much an art as a science. Even though our

interest in this section concerns the relationship between failure

time and explanatory variables it is necessary to consider briefly

failure time distribution for homogeneous populations. We will

look at three theoretical distributions that have been widely used

to describe failure time.

(1) Exponential model 

The simplest and most important distribution in survival

studies is the exponential distribution. In the late 1940's and

early 1950's, researches chose the exponential distribution to

describe the life pattern of electronic systems (Lee, 1980). The

one parameter exponential distribution is obtained by taking the

hazard function to be a constant, h(t) = A > 0, over the range of

lifetime T. This means that the exponential model has a constant

hazard function which implies that the probability of death at

time t is not dependent on the length of previous lifetime, i.e.,

the instantaneous probability of failure is the same no matter how

long the item has already survived. A large A indicates high risk

and short survival while a small A indicates low risk and long

survival. When the survival time T follows the exponential

distribution with a parameter A, the probability density function

f(t) is defined as (This is well known distribution before 1966)
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f(t) = 
{	 A e

-At
,	 t 2 0, A > 0

o	 ,	 t < 0

	  (6.9)

The cumulative distribution function is

F(t) = 1 - e
-At	

t 2 0	 	  (6.10)

and the survivor function is then

S(t) = e
-At	

t 2 0	 	  (6.11)

so that, the hazard function is

h(t) = A
	

t > 0	 	  (6.12)

The probability density function of Y = log T is then,

Exp (Y - a - e v -cc )
	 _co < y < co ..(6.13)

where

a = - log A



(2) Weibull model 

The Weibull distribution is a generalization of the

exponential distribution. 	 However,	 unlike the exponential

distribution, it does not assume a constant hazard rate therefore

has broader application. The Weibull distribution is characterized

by two parameters, 7 and A that determine the shape of the

distribution curve and its scale. The relationship between the

value of 7 and survival time can be seen as follows : when 7 = 1,

the hazard rate remains constant as time increases; this is the

exponential case. The hazard rate increases when 7 > 1 and

decreases rihen 7 < 1 as t increases. Thus the Weibull distribution

may be used to model the survival distribution of a population

vith increasing, decreasing or constant risk (Aitkin et al, 1983).

The probability density function is

f(t) = A(At) 7 - l exp [ - (At) 7 [	 t 2 0, T, A >0

	  (6.14)

The survivor function is, therefore

S(t) = exp [ - (At) 7 l	 	  (6.15)

and the hazard function, the ratio of equation (6.14) to (6.15) is



h(t) = A7(At) 7 - 1	 	  (6.16)

The probability density function of the log failure time Y

( Y = log T ) is (Lawless, 1982)

Y - a
c
-1
exp [ 	  - e

(Y - a)/T - co < Y < co	 ..(6.17)

-1
where T = 7	 and	 a = - log A

More simply we can write Y = a + cw, where w has the extreme value

d!ex\st.t4 Cacticla.

(3) Log-logistic model 

The log-logistic has slightly heavier density in the tails,

and is often used for survival data that is left- and

right-censored. Here the probability density function and survivor

function are given by

f(t) = A7(At) T - 1	 1 + (At) 7 ] -2	 	  (6.18)

and



1
S(t) - 	 	 	  (6.19)

[ 1 + (At) 7 ]

and the hazard function is

7t7 (xt) 7 - 1
h(t) - 

	

	 	 	  (6.20)
[ 1 + (At) 7 ]

Again, the model for Y = log T is of the form

Y = a + aw	 	  (6.21)

e
w

-
where w has logistic density 	  , A = e

-a 
and 7 = c1

( 1 + ew )2

The three distributions were introduced above for modeling

the survival time of a homogeneous population. Usually however

there are explanatory variables upon which failure time may

depend.	 It	 therefore becomes of	 interest	 to consider

generalizations of these models to take account of concomitant

information on the individual sample. An important method of

handling heterogeneity in a population is through the inclusion of

regressor variables in the model (Kalbfleisch and Prentice, 1980).

It is common for data to involve regressor variables related to

lifetime. For example lifetimes of industrial U.K. companies may

depend on factors such as FF/TA, NI/NW, EBIT/S, QA/TA, FF/S, NW/S,

S/TA, TA/NW, FF/C.LIB, RE/TA, CA/C.LIB and C.LIB/TA financial

ratios. Suppose now that on each individual one or more further



measurements are available, say on variables X i , X, 	  ,XK.2

The main problem considered in this chapter is that of assessing

the relation between the distribution of failure time and the X's.

For example the exponential distribution can be generalized to

obtain a regression model by allowing the failure rate to be a

function of the covariates X (Turnbull et al, 1974). The hazard at

time t for an individual with covariates X may be written as

h(t;X) = A(X)

Thus the hazard for a given X is a constant characterizing an

exponential failure time distribution, but the failure rate

depends on X. The A(X) function may be parameterized in many ways.

If the effect of the components of X is only through a linear

function, xg we have

h(t;X) = A c(X)

where g = ( g i , g2, 	 ,g ) is a vector of regression

parameters, A is a constant and c is a specified functional form.

The specific forms that have been used is c(X) = exp(X), which is

the most natural form since it takes only positive values

(Kalbfliesch and Prentice, 1980). Consider then the model with

hazard function

h(t;X) = A eXI8
	
	  (6.22)

The conditional density function of T given X is then

f(t;X) = A e 	 ( - At eXI3 )

= exp ( Xg - teXg ).



The model (6.22) specifies that the log failure rate is a linear

function of the covariates X. In terms of the log survival time,

Y = log T, the model (6.22) may be written as

Y = m - xg + W	 	  (6.23)

where a = - log A and W has the extreme value distribution with

the probability density function

exp ( W - ew )
	

— co < W < co

6.4.1 Maximum Likelihood Estimation

Let t • t , 	  ,t , t	 , 	  ,t	 be the survival times
1	 2	 n	 n+1	 n+m

of n + m individuals the last m of which are censored. Let X,
1J

for i = 1, 	  ,n + m,	 and j = 0,	 1,	 	  ,	 k be the

corresponding values of explanatory variables with X 	 1. The

survival time has density function f(t), distribution function

F(t) and hazard function

f(t)
h(t) - 	 where S(t) = 1 - F(t).

S(t)

The hazard function is assumed to involve the explanatory

variables through a log-linear model (Aitkin and Clayto, 1980) as

h(t i ) = A(t i ) exp (ft X1).

Thus the density function f(t) is assumed to be of the form
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f( t ) = A(t) exp ( x - H(t) e° X ),

and hence S(t) = exp ( - H(t) eg X ), where

t

H( t) = f MU) d(u).

0

Let 8 be an indicator variable taking the value 1 for uncensored,

and 0 for censored observations. Under the usual assumption that

the censoring mechanism is independent of the explanatory

variables, the likelihood function (also see Chapter 4 Section

4.6.2) is

	

n+m	 8	 1 - 8
i

	

L = II	 [ f(t i ) 1 i [ S(t) [
1=1

6.	 X
= II [ A(t ) exp 03 x	

i
t) ] 	 exp ( - H(t) eg	)	 ...(6.24)

ti

The unknown parameters involved are estimated by using maximum

likelihood and the resulting equations are solved by the

Newton-Raphson method to obtain the maximum likelihood (M.L.E)
A

estimates O. If there is little or no censoring, initial estimates

can be obtained using the least squares ignoring censoring

(Lawless, 1982).

6.4.2 Residual Analysis 

The examination of residuals from a fitted model is an

important tool for checking the assumption of the model (Nelson,



1982).

A
A
e

t
 = g i ( Y i , g , x ) 	 (6.26)

1973). Suppose Y i is a response variable and X i is an associated

vector of regressor variables. The distribution of Y i given X i , is

specified except for a vector g of unknown parameters and we

assume that the model can be represented in terms of quantities

e= g ( Y , g , x )	 	  ( 6.25)
1	 1	 i	 1

that are independently identically distribution (i.i.d.) and whose
A

distribution is known. If g is the M.L.E. of g, determined from

A
data (Y, X), then the residuals e are defined by (Lawless,

These residuals are often considered as behaving approximately

like a random sample of size n from the distribution of e i . For

example suppose that the distribution of T i given X were

exponential and has survivor function

S(tIX) = exp ( - te-X48 ).

-Xg
Since the quantities 	 e = ( t e	 ) are i.i.d. with standard

exponential distribution, residuals could be defined by

A

-x g
A
e = ( t e	 i = 1, 	  , n	 	  (6.27)

When the data are censored, modifications are necessary :if

one observes a censoring time rather than a lifetime the

corresponding residual is censored as well. One approach in this

situation is to treat the observed residuals, both censored and

uncensored as a censored sample from the distribution of e i . The

product-limit estimator or empirical hazard function can then be
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A
e = H(t IX )

I	 I
	 (6.28)

calculated from the residuals for an estimate of the underlying

survivor function of the e 's. Plots of this estimate can be used

to assess the underlying distribution (Lawless, 1982).

Suppose that the cumulative hazard function of T i given X i is

H(t
i

IX ), since S(t
i

IX ) = eXp [ -
1
IX)	 9

	 i = 1,	 k

are i.i.d. random variables uniformly distribution on (0, 1) the

H(t IX )'s are i.i.d. standard exponential random variables. If

residuals for uncensored observations t, 	  ,t are defined by
1

A

A

where H(t IX 

1
) involves the M.L.E.'s of unknown parameters, then

I 

	

A	 A
	as first approximatione	 	  , e can be treated as a random

sample from the standard exponential distribution (Lagakos, 1980).

Residuals for censored observation if defined as in (6.28) can be

treated as censored standard exponential observations. One can

then form a product-limit survivor function estimate from the set

of censored and uncensored residuals. If the residual is based on
A

(6.28), a plot of -log[S(e i )] versus. e i should give roughly a

straight line with slope 1, when the model is adequate.



6.5 Nonparametric Model (Proportional Hazards Model) 

The multiple regression method is a conventional technique

for investigating the relationship between survival time and

possible predictor variables (Prentice and Gloeckler, 1978). Let

X, 	  , X
P
 be p possible predictor variables. For the ith

1 

company the observed values of the p variables are denoted by

X , 	  , X . In the multiple regression approach the survival
11	 pi

time of the ith company ti is the dependent variable, depending on

the values of the p independent variables. We are interested in

identifying a relationship of ti or a function of t i , say g(ti)

and (X, 	  , X 1 ) that may be expressed in a regression
11	 P

form as

t =f (X , 	  , X )1	 1	 11	 P1

or

g(t l ) = f 2 (X ii , ...., X1)
Pi

RR5i,V2SS	 models proposed for survival distributions generally

involve the assumption of proportional hazard function. One such

model introduced by Cox (1972) is a general nonparametric model

appropriate for the analysis of survival data with and without

censoring.	 The	 proportional	 hazards	 model,	 however	 is

nonparametric in the sense that it involves an unspecified

function in the form of an arbitrary base-line hazard function

(Miller et al, 1981).

In estimating the hazard rate for a company it is also

Important to recognise the role played by financial ratios as well

as the history of company failure (as was stated in Section 6.4).

These predictor variables, often called covariates, represent
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inherent differences among the companies in a study. Regression

models allow us to incorporate this additional structure into the

estimation of the hazard rate. These models may defined via the

equation (Lawless, 1983)

h(t,X) = g(g, X) A(t)	 	  (6.29)

where h(t,X) is the hazard function for a company with regressor

variables X, g(g,X) expresses the relationship between X and the

regression parameters g and A 0 (t) is an unknown function giving

the hazard function for the standard set of conditions, X = O.

This section is based upon the Cox (1972) proportional

hazards regression model. The model is formulated in terms of the

effects of the covarlates upon failure (hazard) rates rather than

upon times to failures (i.e. the effect of the covariates is to

act multiplicatively on the hazard function) (Anderson et al,

1985). Cox (1972) suggested a regression model for the failure

time t of an company, where one or more further measurements are

available on variables X , 	 ...,X . For t continuous, 	 the
1	 K

proportional hazards model is specified by the hazard function

(Ingram and Kleinman, 1989),

h(t,X) = X(t) exp(g X) 	 	  (6.30)

or written in log-linear forms

h(t,X)	 .
Log [ 	  ] - g X
	
	  (6.31)

A(t)

where X is a vector of covariates (financial ratios), g is a set

of parameters to be determined and X 0 (t) is an unspecified

function of t often known as the underlying hazard. One of the
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major advantages of this model is that an estimate of g can be

obtained using the method of likelihood function (Cox, 1972) or

the method of partial likelihood (Cox, 1975) which does not depend

on the particular form of the underlying hazard. There will be a

loss of efficiency in estimating R by not specifying A(t) if

known, however it has been shown that this is often small (Cox and

Oakes, 1984). The loss of efficiency can be offset by a gain in

robustness for the estimator of ft due to not having to specify the

underlying hazard. This model is now widely used.

Cox (1975) suggested that the properties of the partial
A

likelihood estimator g would be similar to those of a maximum

likelihood estimator, i.e. would be asymptotically normal,

unbiased and have variance given by the inverse of the information

matrix. His heuristic arguments have been strengthened by the work

of Andersen and Gill (1982) who derived the properties of the

partial likelihood estimate, having reformulated the problem

within the theory of counting processes.

6.5.1 Model Assumptions 

Although the underlying hazard function is unspecified, the

basic model, in which the covariates do not depend on time, does

make the following assumptions (see Schoenfeld, 1980 and Moreau

and et al, 1985)

(1) Proportional Hazards Assumption.

The first assumption is the multiplicative relationship
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between the underlying hazard function and the log-linear function

of covariates. Thus the ratio of the hazard functions for two

individuals with time independent covariate X 1 and X2 given by

h(t,X )1 
h(t,X

2
)

- exp [g (X1 - X2 ) l

does not depend upon time. The assumption can be relaxed by

specifying a particular parametric time dependency for some of

the covariates. For example ( Cox, 1972)

/

h(t.,X) = Ao(t) e
(g x + 7x t)1

For a covariate X .
1

(2) Log Linear Assumption.

The second assumption of the model is the log-linear effect

of the covariates upon the hazard function. Rewriting equation

6.30 we see that the log hazard function is proportional to the

,
linear term g x

log h( t, X ) = log A0 (t) + g x

6.5.2 Maximum Likelihood Estimates

For all companies in our study, one or more measurements are

	

available on the p explanatory variables X , X , 	 	  ,X . For1	 2	 P

continuously distributed failure times T may be discrete or
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continuous (Cox, 1972). In our study, T is assumed to be

continuous, the possibility of tied failure times can be ignored,

and the hazard function is given by

h(t,X) = A(t) exp (g )0,

where g is a row vector of p unknown parameters. For the ith

company the values of the covariate

	

X = (X , X ,	 	  , X ) are X	 = (X ,X ,	
'

....	 X )1	 2	 1J	 11	 21	 pi

where p is the number of explanatory variables. The parameters g

are then estimated by maximising the likelihood function. No

information can contributed about g by time intervals in which no

failures occur, because the component X(t) might conceivably be

identically equal to zero in such intervals.

Suppose that t (1) < t
(2) 

< 	  < t
(k) 

represent k distinct

times to failure among n observed survival times. For a particular

failure at time t	 , the risk set, R(t) is the subset of all
(1)	 (1)

those at risk when the ith failure occurs i.e. R(t) consists(1)

of all companies whose survival times are at least t
()i

. Then for

the particular failure at time t
(1) 

conditional on the risk set

R(t	 ) the probability that the failure of each company is as
(1)

observed is given by (Crapp and Stevenson, 1987)

exp (g x(1))

	 (6.32)

exp (g x(t))

tE02(t	 )
(1)
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k

L(R) = II
1=1

exp (g X(0)

E
	

exp(g X(t))

	  (6 33)

Multiplying these probabilities together for each of the k failure

times gives the likelihood function

tEIR(t	 )
(1)

The likelihood is a conditional likelihood function since each of

the	 probabilities	 in	 equation	 (6.32)	 are	 conditional

probabilities, conditional on the risk set at a particular failure

time t
(1)

. Doubts have been raised as to whether equation (6.33)

is indeed a likelihood function (see Kalbfleisch and Prentic,

1973). These doubts were refuted by Cox (1975) who showed that

equation (6.33) produces inferences similar to ordinary likelihood

procedures. The equation (6.33) does not depend on A(t). When all

probabilities for each failure item are considered the conditional

log-likelihood function is given by

k,	 k	 .

Log L() = E g x (,) - E log [ E	 exp(g 
x(t)) 

1.	 ..(6.34)
t=i	 1=1

tER(t
(i)

)

A

We now obtain maximum likelihood estimate g of g from

equation (6.34), using the Newton-Raphson method of iteration.

When there are ties among the failure times, Breslow (1974)

suggests an approach to the estimation of g and A
o (t), which is

different from those of Kalbfleisch and Prentice's (1973) and Cox

(1972). The	 underlying	 survival	 distribution	 is	 assumed
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continuous, having constant hazard h i = exp(m i ) between each pair

(t	 ,	 t	 )	 of distinct	 failure	 times.	 All	 censored(1)	 (1+1)

observations that occur in the interval (tt 	 ) are assumed
(1)'	 (1+1)

to have occurred at t )
1( . 

Then the likelihood proposed by Breslow

(1974) is

k	 .	 .
L(g) = il [ exp(g z i ) / ( E	 exp(g x ( , ) ) 1

d
i ]	 ...(6.35)

1=1	 LERR
(1)

)

or the log-likelihood is

k	 /
Log 1..(g) = E [ gz i - d i log E	 exp(g X

(t)
) ]	 ....(6.36)

1=1
tEIR(t	 )

(1)

where k is the number of distinct failure times ,d is the number
i

of deaths at t and Z is the vector sum of covariates of the d
i	 i	 i

individuals. When there are no ties d
i
 = 1 for i = 1, ....,k.

Maximization of the likelihood function yields estimators of g.

6.5.3 A Stepwise Regression Procedure for the Selection of Variables

Our main interest here is to identify important prognostic

factors. In other words we wish to identify from the p independent

variables a subset of variables that relate significantly to the

hazard and consequently the length of survival of the company.

Recall that in a standard multiple regression problem (as we
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mentioned in Chapter 5) this can be achieved by using a stepwise

regression method that ranks the variables in order of relative

importance. From the ranking and the significance test for each

variable we can select the most significant variables related to

the dependent variables. Because of the close analogy between the

standard multiple regression and the following equations (Lee,

1980)

h(t,X)	 .
log 

	

	  - g x i

h(t,X)
if we let Y = log [ 	  ], then the above equation is simplyi

A 0 (t)

Y = f3 X	 + /3 X	 + 	  + g X	 	  (6.37)1	 1 11	 2 21	 P Pi

a stepwise regression can also be applied to equation (6.37).

In estimating g i , 	  , g in Section 6.5.2 a stepwise
P

procedure may be used to rank the variables. In a forward stepwise

(or step-up) procedure, the independent variables are entered in

the regression equation one at a time until the regression is

satisfactory (Krall et al., 1975). The order of insertion is

determined by using for example the maximum log-likelihood value,
A

Log ug) as a measure of the importance of variables not yet in

the regression equation. Using the maximum log-likelihood value as

a measure it selects as the first variable to enter the regression

equation, the variable say X (1) , whose maximum log-likelihood is
A

the largest. Let log ug i ),	 i = 1,...,p	 be	 the	 maximum

X(t)
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[1J( ) )] 2
2

X- 	 	 (6.38)

I (ft	 )(1)

log-likelihood value obtained from fitting only the ith prognostic

variable. Then X	 is the first variable to enter the regression
(1)

if

A	 A

Log L(R (1) ) = Max [Log L(g1)]

Now there are (P - 1) prognostic variables not yet fitted. The
A
	

A

maximum log-likelihood value log ug(i), g
(i)

) is computed for

each of the (p- 1) independent variables and the one that gives

the largest Log L value is the next variable to enter the

regression equation. The procedure continues to fit one additional

independent variable at a time until the regression is

satisfactory. At every step a likelihood ratio test (Johson and

Johnson, 1980) is performed to determine if the last variable

entered adds significantly to the variables already selected. At

the first step there is only one variable in the regression

equation i.e.

Log
A

o
(t)

where X
(11) 

the most important single variable related to hazard

could be any one X 1 , 	 ) X. To test the significance of X
() 

we
P	 1

test the hypothesis Ho43 (1) = 0. For this we treat

h (t,X)	 A
i	

- g	 x(1)	 (11)

where U is the vector of first derivatives of the log-likelihood

(equation 6.34 from Section 6.5.2) evaluated at 	 regression
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parameters equal to zero and I is the corresponding matrix of

second derivatives as chi-square distribution with one degree of

freedom.

In this procedure the first variable selected is the most

important single variable in predicting survival time, the second

variable entered is the second most important etc. the process

thus provides a successive selection and ranking of the

independent variables according to their relative importance.

6.5.4 Residual Analysis

One of the most useful methods of assessing models that have

been fitted to the data is by examining residuals (Aalen, 1989).

The use of residuals in parametric models was discussed in Section

6.4.2 and similar procedures can be followed here. The simplest

way to define residuals for the model (6.30) is to use (6.28). The

residual corresponding to an uncensored lifetime is then

(Lawless, 1982)

	

A	 A

A	 A	 xig	 A	 XigA
e = H (t 

1 
IX ) = H 

0
(t ) e	 = [ - log S o (t i ) 1 ei	 1 	 1

	  (6.39)

where H
o (t) is the baseline cumulative hazard function and

A
	

A	 A

H
o
 = - log S

o
(t) is an estimate of it. The estimate g is the

M.L.E. since quantities H(t i lX i ) are independent and have standard

exponential distributions, the e's if there is no censoring should
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= exp ( - eg X %a) )	 = S
o
(t) e 	 (6.40)

look roughly like a random sample from the standard exponential

distribution. When there are censored observations the approach

discussed in Section 6.4.2 can be used. For example residual el

for censoring times t i if defined as in (6.39) can be treated as

censored standard-exponential observations. One can then form a

product-limit survivor function estimate from set of censored and
A

uncensored residuals. The resulting estimate S(e) should be

consonant with an underlying standard exponential distribution,
A

for example a plot of log S(e) versus e should be roughly linear

with slope -1.

6.5.5 Estimation of the Survivor Function S(t;X) 

Under the Cox proportional hazards model (Miller et al,

1981),

.	 t
X

S(t;X) = exp ( - eg	 f A 0 (u) du )
o

-H
o
(t)where S

o
(t) = e	 = an arbitrary survivor function .

A

To estimate S(t;X), we substitute g for g but how do we estimate

H
o
(t) or S

o (t) ? suppose now that data are available from the

extended model (6.40) and consider the calculation of the

non-parametric maximum likelihood estimate of S o (t). In doing this

an argument analogous to that used in obtaining the Kaplan-Meier
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S (t	
)exp(gX) _

0	 (1)	
S
0
(t	

4.
(1) 
	 0)exp(gX)

estimate	 (Section	 6.3)	 is	 employed.	 As	 before	 let

t
(1

, 	 , t
)
 be the distinct failure times let D be the set

)	 (k i

of labels associated with individual failing at t o

	

	and C
i
 be the

1)

set of labels associated with individuals censored in [t
(1)

t	 )	 (i = 0,....,k) where t	 = 0 and t	 = co	 The(1+1)	 (0)	 (k+1)

censoring times in the interval [t)
1(	

,	 t 
11)(

	

	
) are t

1
 where 1

+ 

ranges over C
i
. The contribution to the likelihood of an

individual with covariate X who fails at t
(1) is, under independent

censorship,

and the contribution of a censored observation at time t is

	

S	
w

(t 
I.	 exp(OX)

	

0 
	 .

The likelihood function can then be written (Kalbfleisch and

Prentice, 1980)

k	 exp(gX )
1	 exp(gX )

L = n f n [ s o ct (1) )	 - s
0

( t
(1) +0)
	

11

1=0	 lED
1

exp(OX )

ri S o (t 1 +0)	 1	 } ... ( 6.41)
lEC

1

where D
o
 is empty.

As with Kaplan-Meier estimate that L is maximized by taking

S
o
(t) = S (t	 +0) for t	 < t S t	 and allowing probability

0	 (1)	 (1)	 (1+1)

mass to fall only at the observed failure time t ) , 	  ,t	 .
(1	 (k)

These observations lead to the consideration of a discrete model
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with hazard contribution 1 - a at t o
	

(j = 1, 	  ,k) thus we
.1	 J)

take

1-1

S (t	 ) = S(t
(11)

+0) = n a	 , 1= 1, .	 . ,k
0	 -o	 (1)	 II	 j

j=o

where a
o 

= 1 .

On substitution in (6.40) and rearranging terms we obtain

k	 exp(gX )	 exp(gX1)

TT [ n	 (1 - a	 .1 )	 1./	 a

	

1	 1
1=1 JED

	

	 1ER(t
(1)

)-D
11

]	 ....(6.42)

A

as the likelihood function to be maximized . We might take g = R

as estimated from the likelihood function and then maximize (6.42)

with respect to al , 	  ,a 
k

. Differentiating the logarithm of

(6.42) with respect to a l gives the maximum likelihood estimate of

a as a solution to
i

A

EXp(gy	 A

E 	 A	 - E	 exp(gy	 	  (6.43)

JED	
1 - 

A
a exp(i	

X)	 1E(t 0 )
1)

)
.1

i

if only a single failure occurs at t (1) , (6.43) can be solved

directly for te l to give
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A
A

Aexp(gX)
S(t0() = n	 al

lit
(i)

<t

	 (6.45)

A
A

A	 exp(gX
(i)

)
)exp( — gx(i))

a = ( 1 -
1	 A

E exp(gy
leRft	 )

(LI

otherwise an iterative solution is required, a suitable initial

value for the iteration is a where
10

log a
0
 -

-d i

E
A

eXp(gX1)

'ER(t
(i)

)

which is obtained by substituting

A	 A

	

exp(x )	 gx	 A
A	 .1	 .1a	 = exp(e	 log a

i )1

the maximum likelihood estimate of the baseline survivor function

is then

A	 A

S
o
(t) = n	 al 
	

	 (6.44)

ilt
(i)

<t.

which is a step function like the Kaplan-Meier estimate with

discontinuities at each observed failure 
t(i). 

When the covariate

X = 0 for all individuals sampled (6.44) reduces to Kaplan-Meier

estimate. The estimated survivor function for covariate value X is
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6.6 Application of Methodology

In this section we shall apply the methodology of survival

models to U.K. industrial companies. Failure is defined ( as in

Chapter 2, Section 2.2 ) as the phenomenon where the company exits

from the industrial list due to implied pressures of financial

distress. In other words, a failed company changes its current

organisational form. The probability of failure, therefore is the

probability that a company will leave the industrial register.

Most empirical studies that have examined the use of

financial ratios as a means of predicting corporate failure assume

that an organisation's financial ratios capture the influences of

managerial policy, industrial and economic factors which are

specific to an organisation's financial condition. In our study we

ensure that all the variables which are thought to be potentially

relevant as predictors of financial distress have been included in

the initial set. The main objectives in this section is to assess

which regressor variables are significantly related to survival

time and to find the best fitted model for the data.

The computer packages SAS and MINITAB were used to carry out

survival analysis by using the same cases a(1 and 2) and b in

Chapter 4, Sections 4.5 and 4.6.2 (i.e. a(1 and 2) before

reclassification of the "merged" and "other" companies and b after

reclassification the "merged" and "other" companies ).



6.6.1 The Parametric Models 

Weibull, exponential and log-logistic regression models were

fitted to the data. In these cases the regression variables

(covariates) X act additively on Y (Y = log T) or multiplicatively

on T. We use the 12 variables NW/S, FF/C.LIB, C.LIB/TA, CA/TA,

CA/C.LIB, NI/NW, QA/C.LIB, RE/TA, EBIT/S, FF/S, FF/TA and CA/S

obtained from stepwise regression discussed in Chapter 5, Section

5.2.1 for case a(1) (before reclassifying "merged" and "other" )

and the 13 variables QA/TA, C.LIB/TA, FF/C.LIB, EBIT/S, RE/TA,

CA/C.LIB, S/TA, NW/S, FF/TA, FF/S, TA/NW, QA/C.LIB, and NI/NW for

case a(2) ( where the "merged and "other" are added to the

bankrupt group). And the 13 variables FF/C.LIB, C.LIB/TA, S/TA,

NI/NW, TA/NW, RE/TA, CA/C.LIB, EBIT/S, FF/S, FF/TA, CA/TA,

QA/C.LIB and CA/S we used for case b ( after reclassifying

"merged" and "other" companies ).

The results for case a(1) analysis are summarised in Table

6.1.



Table 6.1 Asymptotic likelihood inference for case a(1) (the

bankrupt companies, treated as a non-surviving

group and surviving companies as a second group)

using Weibull,	 exponential and log-logistic

regression models .

Model	 Loglike-
lihood

vari-
ables

D.F.	 Coeff-
icient

S.E. Chi-
Sq.

P-value

intercept 1 4.06 0.93 20.22 0.000
FF/TA 1 -18.66 8.20 5.18 0.023
NI/NW 1 2.37 0.90 6.98 0.008

EBIT/S 1 -3.47 2.59 1.79 0.181
FF/S 1 -2.33 4.84 0.23 0.629
CA/TA 1 4.47 2.18 4.22 0.040

Weibull	 -60.37 NW/S 1 0.93 0.54 2.98 0.084
FF/C.LIB 1 10.00 3.22 9.63 0.002
RE/TA 1 -0.67 0.72 0.87 0.350
CA/C.LIB 1 -0.55 0.74 0.55 0.458
QA/C.LIB 1 1.28 0.65 3.92 0.048
C.LIB/TA 1 -0.32 1.60 0.04 0.844
CA/S 1 -2.33 0.74 9.90 0.002
scale 1 0.52 0.10

intercept 1 3.97 1.68 5.56 0.018
FF/TA 1 -33.02 14.05 5.52 0.019
NI/NW 1 4.16 1.49 7.76 0.005

EBIT/S 1 -5.91 5.15 1.32 0.251
FF/S 1 -2.31 9.70 0.06 0.812
CA/TA 1 8.17 3.72 4.82 0.028

Exponential -65.60 NW/S 1 1.84 1.04 3.15 0.076
FF/C.LIB 1 17.02 5.19 10.76 0.001
RE/TA 1 -1.23 1.36 0.82 0.364
CA/C.LIB 1 -1.16 1.37 0.71 0.399
QA/C.LIB 1 2.36 1.19 3.90 0.048
C.LIB/TA 1 -0.72 2.96 0.06 0.809

CA/S 1 -4.19 1.21 12.03 0.001
scale 0 1 0

intercept 1 3.82 1.03 13.77 0.0001
FF/TA 1 -19.06 8.89 4.60 0.032
NI/NW 1 2.70 1.01 7.13 0.008
EBIT/S 1 -2.96 3.11 0.90 0.343
FF/S 1 -3.90 5.29 0.54 0.461
CA/TA 1 4.68 2.19 4.56 0.033

Log-	 -61.73 NW/S 1 1.15 0.62 3.41 0.065
logistic FF/C.LIB 1 10.45 3.43 9.27 0.002

RE/TA 1 -0.65 0.77 0.70 0.402
CA/C.LIB 1 -0.55 0.78 0.49 0.482
QA/C.LIB 1 1.25 0.67 3.46 0.063
C.LIB/TA 1 -0.05 1.86 0.00 0.978
CA/S 1 -2.64 0.87 9.10 0.003
scale 1 0.48 0.10



c‘
-- \

From Table 6.1, it is clear that the Weibull regression model

is to some extent preferable to the exponential and log-logistic

regression models on account of	 the larger maximised

log-likelihood (-60.37). There is as well a strong (significant)

prognostic effect of the variables FF/TA, NI/NW, CA/TA, FF/C.LIB,

QA/C.LIB and CA/S on survival time. The regression coefficients

indicate the relationship between the covariates and survival

time. A positive coefficient increases the value of survival time

while a negative coefficient has the reverse interpretation. Also,

this analysis indicates that there is no apparent dependence of

survival time of U.K. industrial companies on the financial ratios

EBIT/S, FF/S, RE/TA, CA/C.LIB and C.LIB/TA with NW/S being of

marginal significance. The asymptotic x2 (1) statistics given in

Table 6.1 are formed for the ith component as

	

A	 A

0 / (estimated standard error of g ) 1
2 •

	

1	 i

A

The survival function S(t) is estimated (S(0) from the data

by using the Kaplan-Meier method (see Section 6.3) and is plotted

In Figure 6.4. It represents a very high survival rate or longer

survival times. Also, the hazard function h(t) is useful in

modeling survival time data. In many instances information is

available as to how the failure rate will change with the amount

of time on test, as can be seen from Figure 6.5. The Figure shows

that h(t) increases, after an initial drop, it reaches its peak at

approximately 70 months then decreases. In other words, the peak

of company deaths occurs at 70 months.
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Figure 6.4	 Kaplan-Meier survival distribution function

estimate for case a(1) (the bankrupt companies,

treated as a non-surviving group and surviving

companies as a second group)
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Figure 6.5 The hazard function estimate for case a(1) (the

bankrupt companies, treated as a non-surviving

group and surviving companies as a second group)
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Residual plots are used here to help assess the goodness of
A

fit of the models. We plot the -log(S(e)) against ordered
A

residuals , where S(e) is the product-limit estimate of the

survivor function for the residuals e 's, for all the three modelsi

assessed in Table 6.1. Figure 6.6 shows the plot of the points
A

( e () , -log(S(e))). The points lie roughly along straight line

with approximately unit slope. It will be convenient to plot
A

(log(e i ), log ( -log(S(e)))	 ), shown in Figure 6.7, on the log

scale or iterated log scale as this may give improvement to

indicate the form of departure from the distribution assumption if

this is incorrect. Again the points lie approximately on a

straight line, a disadvantage of both the above plots is that for
A

large e, when the number of observations on which S(e) is based
A

becomes small, the variability of S(e) becomes very great and it

is difficult to decide whether a real failure of the probability
A

model is occurring. Similarly the variability of log(S(e)) becomes
A

very great when e is small. Since S(e) is essentially an estimated

binomial probability for each e, it can be "variance stabilized"

using the arc sine transformation (Aitkin et al, 1989). Thus we,

plot sin -I i exp(-e 1 )	 against sin	

f.„_____

-1	 S(e)	 , as shown in

Figure 6.8, in addition to the plots in Figures 6.6 and 6.7. The

plot conforms closely to the straight line Y = X. Therefore the

Weibull regression model appears to fit adequately. Figures 6.9,

6.10 and 6.11 show some evidence of curvature and these plots do

not appear to suggest that the exponential model is appropriate.

Figures 6.12, 6.13 and 6.14, show the residual plots for

log-logistics regression model. Again the plots are not close to

straight lines. Therefore the log-logistic regression model also

does not appear adequate.
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Figure 6.6 Residual plot for Weibull regression model for

case a(1) (the bankrupt companies, treated as a
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second group)
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Figure 6.7 Plot of log(e 1 )	 against log (-log(S(e))) for

case a(1) (the bankrupt companies, treated as a

non-surviving group and surviving companies as a

second group) using Weibull regression model.
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for case a(1) (the bankrupt companies, treated as

a non-surviving group and surviving companies as a

second group) using Weibull regression model.
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Figure 6.9 Residual plot for exponential regression model

for case a(1) (the bankrupt companies, treated as

a non-surviving group and surviving companies as

a second group).
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Figure 6.10 Plot of lo(e) against log (-log(S(e))) for

case a(1) (the bankrupt companies, treated as a

non-surviving group and surviving companies as a

second group) using exponential regression

model.
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Figure 6.11 Plot of sin

t
 1::171:5 against sin-h/(e)

for case a(1) (the bankrupt companies, treated as

a non-surviving group and surviving companies as a

second group) using exponential regression model.
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Figure 6.12 Residual plot for log-logistic regression model

for case a(1) (the bankrupt companies, treated as

a non-surviving group and surviving companies as

a second group).
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Figure 6.13 Plot of log(e l ) against log (-log(S(e))) for

case a(1) (the bankrupt companies, treated as a

non-surviving group and surviving companies as a

second group) using log-logistic regression

model.
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Figure 6.14 Plot of sin -
1
 against sin-1VT:;----

for case*a(1) (the bankrupt companies, treated as

a non-surviving group and surviving companies as a

second group) using log-logistic regression model.
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The results for case a(2) analysis are summarised in Table

6.2.

From Table 6.2, it is clear that the Weibull regression model

gives a better fit than the other models on account of larger

maximised log-likelihood (-256.37). There is as well a significant

prognostic effect of the variables FF/C.LIB, CA/C.LIB and C.LIB/TA

on survival time with NI/NW and NW/S being of marginal

significance. However, this analysis indicates that there is no

apparent dependence of survival time of U.K. industrial companies

on the variables FF/TA, EBIT/S, QA/TA, FF/S, S/TA, TA/NW, RE/TA

and QA/C.LIB.

A

The survival function estimate S(t) in this case, estimated
A

using the Kaplan-Meier method, is plotted in Figure 6.15. S(t)

indicates a high survival rate but not as high as case a(1). Also

the hazard function, useful in modeling survival time data,

provides information on how the failure rate will change with the

amount of time on test. Figure 6.16 shows that the hazard function

has an increasing trend which reaches its peak at approximately 70

months then fluctuates. The peak value is higher than that for

case a(1) but it occurs after the same period of time.
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Table 6.2 Asymptotic likelihood inference for case a(2) (the

bankrupt , "merged" and "other" companies, treated

as a non-surviving group and surviving companies as

a second group) using Weibull, exponential and

Model

log-logistic regression models

Loglike-	 van-	 D.F. Coeff-
lihood	 ables	 icient

.

S.E. Chi-

Sq.
P-value

intercept 1 6.21 0.55 128.42 0.000
FF/TA	 ,
NI/NW	 '

1
1

-4.65
0.81

3.30
0.44

1.98
3.38

0.159
0.066

EBIT/S 1 -0.15 1.21 0.02 0.902
QA/TA 1 1.49 1.11 1.81 0.179
FF/S	 nn, 1 -2.71 2.90 0.88 0.349
NW/S- 1 -0.35 0.20 2.98 0.084

Weibull -256.37 S/TA 1 0.14 0.13 1.19 0.276
TA/NW 1 -0.04 0.03 1.76 0.185

FF/C.LIB/ 1 3.08 1.04 8.70 0.003
RE/TA 1 -0.52 0.43 1.45 0.228

CA/C.LIBv/ 1 -0.47 0.24 4.02 0.045
QA/C.LIB 1 0.31 0.41 0.55 0.457
C.LIB/TA./ 1 -1.62 0.79 4.21 0.040

scale 1 0.63 0.06

intercept 1 6.93 0.85 67.31 0.0001
FF/TA 1 -7.42 5.22 2.02 0.155
NI/NW 1 1.26 0.67 3.56 0.059

EBIT/S 1 -0.73 1.94 0.14 0.707
QA/TA 1 2.13 1.72 1.54 0.215
FF/S 1 -3.12 4.68 0.44 0.506
NW/S 1 -0.44 0.34 1.73 0.189

Exponen- -266.62 S/TA 1 0.21 0.20 1.05 0.305
tial TA/NW 1 -0.06 0.05 1.42 0.233

FF/C.LIB 1 4.60 1.56 8.65 0.003
RE/TA 1 -0.69 0.68 1.04 0.308

CA/C.LIB 1 -0.74 0.37 4.11 0.043
QA/C.LIB 1 0.55 0.65 0.73 0.392
C.LIB/TA 1 -2.17 1.26 2.96 0.085

scale 0 1 0

intercept 1 6.15 0.60 104.36 0.0001
FF/TA 1 -4.38 3.51 1.56 0.211
NI/NW 1 0.77 0.47 2.64 0.104

EBIT/S 1 -0.11 1.49 0.01 0.942
QA/TA 1 1.21 1.16 1.09 0.297
FF/S 1 -3.35 3.35 0.10 0.317
NW/S 1 -0.36 0.25 2.05 0.152

Log- -258.44 S/TA 1 0.12 0.12 0.98 0.323
logistic TA/NW 1 -0.04 0.04 1.02 0.313

FF/C.LIB 1 3.12 1.09 8.18 0.004
RE/TA 1 -0.41 0.47 0.78 0.377

CA/C.LIB 1 -0.55 0.26 4.53 0.033
QA/C.LIB 1 0.42 0.44 0.90 0.342
C.LIB/TA 1 -1.55 0.85 3.32 0.069

scale 1 0.58 0.05
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Figure 6.16 The hazard function estimate for case a(2) (the

bankrupt , "merged" and "other" companies,

treated as a non-surviving group and surviving

companies as a second group).
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The residual plots for Weibull regression model are given in

Figures 6.17, 6.18 and 6.19. The residual plot of e i against
A

- log S(e), shown in Figure 6.17, suggests the existence of three

outliers out of 95 points and this would be expected in the basis

of chance alone. However, on the variance stabilized transformed

plot in Figure 6.19, these three points (nearest the origin) do

not look aberrant. The slopes of the lines based on regression

analysis, fitted to the three scatter plots are 1.14, 0.95 and

1.01 respectively, which are close to one, and this implies that

the three plots are close to straight lines with unit slope.

Therefore the Weibull regression model appears well supported.

Figures 6.20, 6.21 and 6.22, show the residual plots for

exponential regression model. The plots exhibit curvature and the

fitted straight lines have slopes 1.70, 1.32 and 1.30, which are

different from one. Thus the exponential regression model does not

appear to be satisfactory.

Also we can see from Figures 6.23, 6.24 and 6.25, that the

assumption for the log-logistic regression model are reasonably

satisfied with slopes for the fitted lines being 1.21, 0.90 and

1.01. However, these results are not as good as those for Weibull

regression model and also the latter is preferable on accounts of

its larger maximised likelihood.
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Figure 6.17 Residual plot for Weibull regression model for

case a(2) (the bankrupt , "merged" and 'other"

companies, treated as a non-surviving group and

surviving companies as a second group).
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A

Figure 6.18 Plot of log(e l ) against log (-log(S(e))) for

case a(2) (the bankrupt , "merged" and "other"

companies, treated as a non-surviving group and

surviving companies as a second group) using

Weibull regression model.
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Figure 6.19 Plot of s1n
-1 1::;7::) against sin-117;-(:)----

for case a(2) (the bankrupt , "merged" and

"other' companies, treated as a non-surviving

group and surviving companies as a second group)

using Weibull regression model.
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Figure 6.20 Residual plot for exponential regression model

for case a(2) (the bankrupt , "merged" and

"other" companies, treated as a non-surviving

group and surviving companies as a second

group).
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Figure 6.21 Plot of log(e t ) against log (-log(S(e))) for

case a(2) (the bankrupt , "merged" and 'other'

companies, treated as a non-surviving group and

surviving companies as a second group) using

exponential regression model.
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S(e)

for case a(2) (the bankrupt , "merged" and

"other" companies, treated as a non-surviving

group and surviving companies as a second group)

using exponential regression model.
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Figure 6.23 Residual plot for log-logistic regression model

for case a(2) (the bankrupt , "merged" and

"other" companies, treated as a non-surviving

group and surviving companies as a second

group).
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Figure 6.24 Plot of log(e 1 )	 against log (-log(S(e))) for

case a(2) (the bankrupt , "merged" and "other'

companies, treated as a non-surviving group and

surviving companies as a second group) using

log-logistic regression model.
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Figure 6.25 Plot of sin T::7--e-17 against sin-117------S(e)

for case a(2) (the bankrupt "merged" and

"other" companies, treated as a non-surviving

group and surviving companies as a second group)

using log-logistic regression model.
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The results of analysis for case b where among the "merged"

and "other" group of companies 40 were reclassified as

non-survivor and so added to the bankrupt group and the other 34

were reclassified as survivor and hence added to the surviving

group are summarised in Table 6.3.

It is clear from the Table that the Weibull regression model

gives a better fit than the other models on account of the larger

maximised log-likelihood (-131.03). There is as well a significant

prognostic effect of the variables CA/TA, TA/NW, FF/C.LIB, RE/TA

CA/C.LIB, QA/C.LIB and C.LIB/TA on survival time with FF/TA being

of marginal significance. There is no apparent dependence of

survival time on the other variables NI/NW, EBIT/S, FF/S, S/TA and

CA/S at the 5% significance level. Essentially the same set of

variables are significant in all three cases.

The survival function S(t) for the survival time is

estimated as before and is plotted in Figure 6.26. It represents a

high survival rate, similar to case a(2), but not as high as case

a(1). The hazard function in Figure 6.27 shows an increasing trend

with some fluctuates.

The residual plots for the Weibull, exponential and

log-logistic regression models are represented in Figures 6.28, to

6.36. The plots are very close to straight lines with

slopes approximately equal to one (1.13, 0.94, 1.03) for the

Weibull regression model so its assumption seems to be well

supported and so the model provides a good fit to the data.

However, the other two models seem to be less satisfactory

(slopes = 1.61, 1.53 , 1.39; and 1.22, 0.90, 1.09 for exponential

and log-logistic respectively).
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Table 6.3 Asymptotic likelihood inference for case b (bankrupt

and 40 others companies as a non-surviving group and

the surviving and 34 others companies as surviving

group) using Weibull, exponential and log-logistic

regression models.

Model	 Loglike-

lihood

Van-

ables
D.F. Coeff-

icient

S.E. Chi-	 p-value

Sq.

intercept 1 4.99 0.43 136.07 0.0001
FF/TA 1 -5.65 3.14 3.23 0.073
NI/NW 1 0.54 0.36 2.24 0.135

EBIT/S 1 -0.53 0.92 0.34 0.562
FF/S 1 -2.06 2.35 0.77 0.379
CA/TA- 1 1.67 0.78 4.54 0.033

Weibull	 -131.03 S/TA 1 0.35 0.22 2.67 0.102
TAINW L- - 1 -0.05 0.02 4.63 0.032

FF/C.LIB,/ 1 4.12 1.00 16.81 0.0001
RE/TA./ 1 -0.78 0.36 4.76 0.029

CA/C.LIB-' 1 -0.60 0.26 5.45 0.020
QA/C.LIB 1 0.85 0.28 9.12 0.003
C.LIB/TA-/ 1 -1.60 0.61 6.76 0.009
CA/S 1 -0.33 0.25 1.78 0.183
scale 1 0.40 0.042

intercept 1 5.42 1.00 29.13 0.0001
FF/TA 1 -14.81 7.35 4.06 0.044
NI/NW 1 1.41 0.78 3.28 0.070

EBIT/S 1 -2.44 2.20 1.22 0.269
FF/S 1 -0.71 5.56 0.02 0.898
CA/TA 1 3.47 1.81 3.65 0.056

Expone- -158.45 S/TA 1 0.98 0.54 3.32 0.069
ntial TA/NW 1 -0.10 0.05 4.30 0.038

FF/C.LIB 1 8.88 2.18 16.58 0.0001
RE/TA 1 -1.55 0.85 3.35 0.067
CA/C.LIB 1 -1.46 0.59 6.24 0.013
QA/C.LIB 1 2.06 0.65 10.18 0.001
C.LIB/TA 1 -3.43 1.42 5.84 0.016
CA/S 1 -0.43 0.62 0.48 0.490
scale 0 1 0

intercept 1 4.94 0.44 125.34 0.0001
FF/TA 1 -5.92 3.01 3.87 0.049
NI/NW 1 0.52 0.33 2.50 0.114
EBIT/S 1 -0.78 0.10 0.62 0.433
FF/S 1 -1.67 2.50 0.45 0.505
CA/TA 1 1.73 0.79 4.74 0.030

Log-	 - 133.13 S/TA 1 0.43 0.22 3.78 0.052
logistic TA/NW 1 -0.04 0.02 3.15 0.076

FF/C.LIB 1 4.21 1.01 17.29 0.0001
RE/TA 1 -0.77 0.37 4.34 0.037
CA/C.LIB 1 -0.72 0.27 6.94 0.008
QA/C.LIB 1 0.95 0.30 9.96 0.002
C.LIB/TA 1 -1.96 0.68 8.34 0.004
CA/S 1 -0.28 0.26 1.24 0.265
scale 1 0.35 0.04
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Figure 6.26 Kaplan-Meier survival distribution function

estimate for case b (bankrupt and 40 others

companies as a non-surviving group and the

surviving and 34 others companies as surviving

group).
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Figure 6.27 The hazard function estimate for case b

(bankrupt and 40 others companies as a

non-surviving group and the surviving and 34

others companies as surviving group).
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Figure 6.28 Residual plot for Weibull regression model for

case b (bankrupt and 40 others companies as a

non-surviving group and the surviving and 34

others companies as surviving group).
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Figure 6.29 Plot of log(e 1 ) against log (-log(S(e))) for

case b (bankrupt and 40 others companies as a

non-surviving group and the surviving and 34

others companies as surviving group) using

Weibull regression model.
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Figure 6.30 Plot of sin	 exp( -et) against sin i S(e)

for case b (bankrupt and 40 others companies as

a non-surviving group and the surviving and 34

others companies as surviving group) using

Weibull regression model.
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Figure 6.31 Residual plot for exponential regression model

for case b (bankrupt and 40 others companies as

a non-surviving group and the surviving and 34

others companies as surviving group).
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Figure 6.32 Plot of log(e t ) against log (-log(S(e))) for

case b (bankrupt and 40 others companies as a

non-surviving group and the surviving and 34

others companies as surviving group) using

exponential regression model.
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Figure 6.33 Plot of sin 	 sin-i 17:7
for case b (bankrupt and 40 others companies as

a non-surviving group and the surviving and 34

others companies as surviving group) using

exponential regression model.
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Figure 6.34 Residual plot for log-logistic regression model

for case b (bankrupt and 40 others companies as

a non-surviving group and the surviving and 34

others companies as surviving group).
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Figure 6.35 Plot of log(e 1 ) against log (-log(S(e))) for

case b (bankrupt and 40 others companies as a

non-surviving group and the surviving and 34

others companies as surviving group) using

log-logistic regression model.
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log-logistic regression model.
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6.6.2 Nonparametric Models

The proportional hazard model which has an underlying

distribution function was fitted to the data. The results for case

a(1) analysis are summarised in Table 6.4. The Table also shows

the order of importance for the explanatory variables selected by

the stepwise regression procedure of Section 6.5.3.

Table 6.4 Summary results for a proportional hazard model

for case a(1) (the bankrupt companies, treated as

a non-surviving group and surviving companies as a

second group).

Variable

order

Cofficient S.E. Chi-sq. P - value

NI/NW -2.44 0.68 12.99 0.0003

CA/S 1.21 0.58 4.37 0.037

FF/C.LIB -7.73 2.00 14.89 0.0001

FF/S 15.59 5.36 8.46 0.004

It indicates that NI/NW is the most significant financial

ratio in explaining failure, followed by CA/S, FF/C.LIB and FF/S.

Eight other explanatory variables FF/TA, EBIT/S, CA/TA, NW/S,

RE/TA, CA/C.LIB, QA/C.LIB and C.LIB/TA were not selected by the

stepwise procedure and so have been omitted from the Table.



The regression coefficients indicate the relationship between

the covariates (explanatory variables) and the hazard function. A

positive coefficient increases the value of the hazard function

and therefore indicates a negative relationship with survival time

and this is true in the case of CA/S and FF/S ratios. A negative

coefficient has the reverse interpretation where the value of

hazard function is decreased so increasing the value of survival

time, which is true in the case of the ratios NI/NW and FF/C.LIB.

The residual plot of the proportional hazard model is

represented in Figure 6.37. This plot is approximately straight

line with slope = 1.03.

The hazard function in Figure 6.38, shows the hazard

estimated from the model for the four significant variables

NI/NW, CA/S, FF/C.LIB and FF/S at 0.5. It shows a mild fluctuating

trend which reaches its peak at 5 years and with some evidence

that the hazard increases again after about 8 years.
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Figure 6.37 Residual plot for proportional hazard model for

case a(1) (the bankrupt companies, treated as a

non-surviving group and surviving companies as a

second group).
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Figure 6.38 The hazard function estimate for case a(1) (the

bankrupt companies, treated as a non-surviving

group and surviving companies as a second group).
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Table 6.5 summarises the results from the proportional hazard

model for case a(2) where the "merged" and "other" companies are

grouped with the bankrupt ones.

Table 6.5	 Summary results for a proportional hazard

model for case a(2) (the bankrupt, "merged" and

"other" companies, treated as a non-surviving

group and surviving companies as a second group).

Variable
order

Coefficient S.E. Chi-sq. P -value

FF/C.LIB

NW/S

-1.57

0.50

0.43

0.16

13.45

9.19

0.0002

0.002

The results from Table 6.5 shows the order of fit where the

variable FF/C.LIB is the most significant ratio in explaining

failure, followed by NW/S. Eleven other explanatory variables

FF/TA, NI/NW, EBIT/S, QA/TA, FF/S, S/TA, TA/NW, RE/TA, CA/C.LIB,

QA/C.LIB and C.LIB/TA were not selected by the stepwise procedure

and so have been omitted from the Table. Increases in the value of

the variable FF/C.LIB decreases the value of hazard function and

so increases the value of survival time, while survival time

decreases as NW/S increases.

The residual plot in this case is represented in Figure 6.39.
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This plot is approximately a straight line and thus the assumption

of the model seem well supported, indicating the adequacy of the

fit.

The hazard function given in Figure 6.40 shows the hazard

estimated from the model which includes FF/C.LIB and NW/S only at

0.5. The Figure shows there is an increase in risk between 3 and 5

years, peaking at 5 years but with some evidence that the hazard

increases again after about 8 years.
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Figure 6.39 Residual plot for proportional hazard model for

case a(2) (the bankrupt, "merged" and "other"

companies, treated as a non-surviving group and

surviving companies as a second group).
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Figure 6.40 The hazard function estimate for case a(2) (the

bankrupt, "merged" and "other" companies,

treated as a non-surviving group and surviving

companies as a second group).

J. 029

0. 026

C. 024

a. :22

0. 023

0. Old

0. 016

0. 31.

0. 312

0.010

J. .s,ca

o.

cm, C. 1:4
,-•

< J. JLZ
NJ
.c
= O. C1.0

2	 3	 3	 'IC	 1

Years from stock exchange flotation

223



Table 6.6 summarises the results from the proportional hazard

model for case b by using a similar modelling procedure as

before for the companies after reclassifying the "merged" and

"other" companies into bankrupt and survivor.

Table 6.6	 Summary results for a proportional hazard

model for case b (bankrupt and 40 others

as a non-surviving group of companies and the

surviving and 34 others as a surviving group).

Variable
order

Coefficient S.E. Chi-sq. P-value

FF/C.LIB -9.82 2.17 20.45 0.0000

QA/C.LIB -1.17 0.38 9.30 0.0023

FF/TA 16.64 5.96 7.80 0.0052

S/TA -1.48 0.37 16.12 0.0001

EBIT/S 4.23 1.29 10.85 0.0010

NI/NW -1.51 0.71 4.54 0.0331

It indicates that FF/C.LIB is the most significant ratio in

explaining failure, followed by QA/C.LIB, FF/TA, S/TA, EBIT/S and

NI/NW. Seven other explanatory variables FF/S, CA/TA, TA/NW,

RE/TA, CA/C.LIB, C.LIB/TA and CA/S were not selected by the

stepwise procedure and so have been omitted from the Table.
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Increases in the value of the variables FF/C.LIB, QA/C.LIB, S/TA

and NI/NW decreases the value of hazard function and so increases

the value of survival time while survival time decreases as FF/TA

and EBIT/S increases.

The residual plot in this case is represented in Figure 6.41.

This plot is approximately a straight line and thus the assumption

of the model seem well supported.

The hazard function given in Figure 6.42 shows the hazard

estimated from the model which includes FF/C.LIB, QA/C.LIB, FF/TA,

S/TA, EBIT/S and NI/NW at 0.5, 0.5, 0.5, 0.9, 0.5 and 0.5

respectively. The Figure shows there is an increase in risk

between 3 and 6 years, peaking at 6 years but with some evidence

that the hazard increases again after about 9 years.
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Figure 6.41 Residual plot for proportional hazard model for

case b (bankrupt and 40 others as a

non-surviving group of companies and the

surviving and 34 others as a surviving group).
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Figure 6.42 The hazard function estimate for case b (bankrupt

and 40 others as a non-surviving group of

companies and the surviving and 34 others as a

surviving group).
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6.6.3 Estimation the Probability of Company Failure

Our second task in this chapter is to estimate failure

probabilities for each company over its duration in the study,

based on parametric (Weibull regression model) and nonparametric

(proportional hazard model) models. The method of estimating the

probability of company failure is based on the survival function

S(t) and the cumulative distribution function F(t) of the survival

time T. The probability density function f(t) of T is defined as

the limit of the probability that an individual company fails in

the short interval t to t + At per unit width At, or simply the

probability of failure in a small interval per unit time. It can

be expressed as

P { an individual dying in the interval (t,t+At)).
f(t) = lim

At40
	

At

The proportion of companies that fail in any time interval and the

peak of frequency of failure can be found from the density

function. For example, density curve in Figure 6.43(a) gives a

pattern of high failure rate at the beginning of the study which

decreases as time increases. While in Figure 6.43(h) the peak

occurs at approximately 1.7 units of time. The proportion of

companies that fail between 1 and 2 units of time is equal to the

shaded area under the density curve.



la)

Figure 6.43 Two examples of the density curve of survival

time

Therefore the cumulative distribution function is

F(t) = f f(u) du.

The survival function (Section 6.2) Is defined as the probability

that an individual survives at least time t (t>0) i.e.

S(t) = Pr (an individual survives at least time t)

=	 f(u) du = pr(T 1 t)

Then

S(t) =I - Pr(an individual fails before time t)

= 1 - F(t)



Therefore the probability of failure before time t equals

1 - S(t).

We estimated S(t;X) for the Weibull regression model as

A
A	 5
S(t;X) = exp[ - (te -M ) )

and for proportional hazard model as

A

A	 A	
eXt3

S(t;X) = [ S o (t) 1-

A

After we calculated S(t;X) for both models, then we can

calculate the probability of failure for each company during
A	 A

specific time t from 1 - S(t;X) = F. If F = 0.5 is used as a
c

cutoff probability value for classification ( Collins and Green,

1982 and Ko, 1982), then companies are predicted to fail if this

(	 c
probability exceeds the critical level F and they are predicted

c
A

not to fail if F < F . Two types of errors are possible. Type I
C

error is defined as predicting that a non-surviving company will

survive and Type II error is defined as predicting a surviving

company will fail.

The result of testing both models (parametric and

nonparametric) in the two cases a(1 and 2) and b for F = 0.5 are
C

shown in Table 6.7 below.

It can seen from the Table that the nonparametric model

(proportional hazard model) for case (b) gives slightly better

correctly classified percentage as well as smaller Type I and Type

II errors than the results for the corresponding case b of the
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parametric model (Weibull regression model) and both models give

better results for case b than case a. Therefore, 	 the

nonparametric model seems to produce the best fit for prediction

purposes. Also, this model should be used in conjunction with the

likelihood procedure for the classification of unknown companies

given in Chapter 4.

Table 6.7 Test results of forecasting from parametric (Weibull

regression model) and nonparametric (proportional

hazard model) models of company failures for case

a(1 and 2) (before reclassifying "merged" and

"other" companies) and case b (after reclassifying

"merged" and "other" companies).

Type of

Parametric(Neibull	 regre-

ssion)	 model

Nonparametric(proportional

hazard)	 model

model case	 a
case	 b

case	 a
case	 b

(1) (2) (1) (2)

Type	 1
error

13.1% 14.7% 8.2% 9.5% 14.3% 5.3%

Type	 11
error

correctly

classified

percentage

15.6%

84.4%

17%

83.4%

11.2%

89.2%

14.8%

85.5%

16.5%

83.9%

10.7%

90.1%
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CHAPTER SEVEN

SUMMARY AND CONCLUSIONS

This study consists of a statistical analysis of accounting

data of British industrial companies in order to assess the

forecasting ability of existing and new techniques, using

financial ratios of large UK companies obtained from the EXSTAT

source. Some methodological issues have been investigated and

classification methods to discriminate between non-surviving and

surviving companies have been revised accordingly.

Methodological issues 

The methodological issues investigated are

1- Imbalance between non-survivor and survivor groups.

As has been stated in Chapters 3 and 4, many existing failure

studies were carried out using two groups of companies that

have been matched on the basis of similarity in size,

, industrial classification and year of data. The sample size of

the two groups ( one non-surviving, one surviving) has usually

been equal. However, the matching technique may not be correct

because it does not give a fair representation of reality.

Matched samples constructed with equal numbers of non-surviving

and surviving companies cause both parameter and probability

estimates to be asymptotically biased. This use of non-random,

choice-based, equal-share samples in model estimation is a

major criticism of many existing failure prediction models.



2- Company failure and other forms of termination of company life.

As a measure of financial distress, bankruptcy seems to be

relatively objective if not comprehensive. However, the limited

number of bankruptcies amongst companies with a record of

adequate financial disclosure has led to a situation where

sample sizes are small. For example , Altman (1968), Deakin

(1972) and Taffler (1982) relied on samples of bankrupt

companies numbering only 33, 32 and 23 respectively.

In his study of the failure of industrial enterprises quoted on

the London Stock Exchange, Taffler defines company failure as

"receivership, voluntary liquidation (creditors), winding up by

court order or equivalent". However, the definition of failure

has varied from study to study, and has been broadened to

Include various states of financial distress. For example,

Altman (1968) and Ohlson (1980) restricted their sample to

companies filing for bankruptcy, whereas Beaver (1966) and Blum

(1974) included companies unable to pay their financial

obligations within the "failed" group.

On the other hand, with regard to companies which cease

trading, the company's life does not necessarily end with the

liquidation of its remaining assets in order to pay off

creditors in the context of receivership. There are various

other ways of leaving a given population, such as delisting or

transfer of residence, and a considerable number of companies

which cease trading are taken over by, or merge with, other

going concerns.

Companies which are taken over present a particular problem.

For instance, rather than going into voluntary liquidation and

selling its assets to an interested acquirer, the ownership of
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the entire firm may be transferred from the original

shareholders to the acquiring company. Thus, a company which

merges or is taken over may possibly have been heading for

technical bankruptcy. On the other hand, the potential of a

company which is bought out may well be reflected in a sound

financial situation. A weakness of many previous studies has

been the failure to incorporate such events into the

probabilistic framework that underlies the outcomes of

financial distress and survival.

3- Time dependent rate of failure.

Until recently (see Lau, 1987, for example), failure prediction

research has been concerned primarily with single state models,

e.g. discriminant and logit analyses, rather than with the

probability of failure over a series of financial states. This

does not show the probability of failure in a given time period

or to allow us to estimate the conditional probability of a

company failing between t and t+1, given that it had survived

up to t (i.e. the hazard rate).

Solutions 

1- The first issue i.e. the imbalance between non-survivor and

survivor groups, is resolved through the use of

Randomly-censored stratified samples.

The approach adopted here is to apply stratified sampling in

order to select randomly the survivors such that the failures

in any given year when expressed as a proportion of the total

number of non-survivors are reflected in the censored group but

which nevertheless are matched to the lifetimes of	 the
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non-survivors. This solution is adopted because further

problems arise in moving from a matched sampling basis, as the

structure of the survivor group no longer reflects that of the

non-survivors. For instance, in our study, the survivor group

contains all companies which have not yet failed (i.e. in this

data set, 337 usable survivors) and there are 95 non-survivors,

of which 21 were bankrupts. Given the small number of listed

companies failing each year, the need to generate a

sufficiently large sample of non-survivors by including

companies which failed at different points in time produces a

problem in structuring the survivor group which is not met in

the previous "matched sample" based studies as discussed in

Chapter 4. The randomly-censored stratified samples procedure

is therefore used to overcome this problem.

2- We resolved the second issue i.e. company failure and other

forms of termination of company life, using a

Likelihood estimation of failure for takeover targets.

In order to estimate the likelihood that a company that has

been acquired (or wound-up for reasons other than bankruptcy)

posseses characteristics similar to those of failed companies

or, alternatively, non-failed companies, we used the Weibull

survival likelihood function to estimate the log-likelihood for

the known bankrupts and for the survivors. Next, we add one

observation first to the failed group and then to the survivor

group, and recompute the log-likelihoods. A decrease in the

log-likelihood indicates a worse fit of the model to the data,

and we use this as our criteria for classifying takeover

targets and others to the "non-survivor" and "survivor" groups.
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3- The third issue i.e. time dependent rate of failure, is

resolved using

Survival models.

Applying a new approach based on survival analysis, the

following parametric models were used: exponential, Weibull and

log-logistic regression models. The nonparametric proportional

hazard model was also investigated. These models relate the

hazard function to the length of survival time and the

financial variables i.e. they take into account the length of

company life. At the same time, these models give the estimate

for the rate of failure and survival functions for the company.

The overall adequacy of the models has been checked using

residual analysis and we found that the Weibull regression

model fitted the data better than the exponential and

log-logistic regression models, and therefore classification

tests for parametric models were restricted to the Weibull. The

proportional hazard model also fitted the data adequately.

Conclusions and implications 

(1) The results of multiple discriminant analysis using

randomly-censored stratified sampling are given in Chapter 4,

Tables 4.3b, 4.4b and 4.8b. Whilst the results confirm that

the application of discriminant analysis to unbalanced samples

provides weak results, it is noticeable that there is

discriminatory power one year prior to failure, in spite of

the severe imbalance between survivors and non-survivors. The

procedure was repeated 32 times, and applied to (i) all

non-survivors, (ii) bankrupt companies only, and (iii) the

reclassified grouping where companies which were taken over
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but which had a high likelihood of failure were reassigned

along with the bankrupt companies to the "failures" group. The

type I error falls from (i) 41.8% to (ii) 24.5% and (in)
28.4% respectively, on average over the 32 runs.

This weak result may be largely due to the fact that the

sample sizes for the two groups of companies are quite

different as this is a major shortcoming of conventional

modelling procedures, where sample bias is a feature of the

data. Nevertheless, as is demonstrated in Chapter 4, Tables

4.3(a and b), 4.4(a and b) and 4.8(a and b), the application

of randomly-censored stratified samples allows us to observe a

substantial decrease in type I error one year before failure.

2- The use of the Weibull survival function resulted in 40

companies which had been acquired or wound-up for reasons

other than bankruptcy being reclassified as "failures" and 34

non-failures which could be grouped with the surviving

companies. This use of the Weibull survival procedure to

reclassify those non-survivors which ceased trading without

going into bankruptcy has the effect of decreasing type I and

type II errors when using discriminant , logit and survival

analyses as demonstrated in Chapters 4, 5, and 6.

3- These first results from the application of survival analysis

provide a reasonable interpretation of the financial events

leading to bankruptcy and indicate success in model

estimation. For example, they infer that high Funds Flow to

Current Liabilities and high Liquid Assets to Current

liabilities are consistent with survival. Furthermore they
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provide a probabilistic estimate of the rate of failure and,

for each of the parametric models and the proportional hazards

model, there is a gradual increase in hazard with survival

time followed by a decrease, which is consistent with existing

assumptions about the bankruptcy process in the real world (as

discussed in Chapter 6). The results shown in the following

table, particularly with respect to the reduction in type I

error, indicate the considerable potential of survival

modelling of financial distress.

A comparison of linear discriminant analysis (LD), quadratic
discriminant analysis (QD), logit, proportional hazards (PH)
and the Weibull survival model

L..--

Cases
Type of LD QD Logit PH Weibull

model model model model model model

Before reclassifying
takeovers, mergers and
other terminations

failed	 = bankrupt
Type	 I	 error 15.5% 38.1% 14.8% 9.5% 13.1%

non-failed = survivors
Type	 II	 error 18.0% 25.1% 16.8% 14.8% 15.6%
Percentage
correctly
classified 82.3% 74.17. 83.4% 85.5% 84.4%

failed = bankrupt+others
Type	 I	 error 19.5% 33.7% 16.2% 14.3% 14.7%

non-failed = survivors
Type	 II	 error 22.3% 34.1% 17.97. 16.5% 17.0%
Percentage
correctly
classified 78.2% 64.9% 82.67. 83.9% 83.4%

After reclassification

failed = bankrupt	 +
Type	 I	 error 13.5% 29.5% 11.5% 5.3% 8.2%

40 others
Type	 II	 error 12.8% 32.9% 11.2% 10.7% 11.2%

non-failed =survivors	 +

34	 others

Percentage
correctly
classified 87.2% 67.6% 88.7% 90.1% 89.2%
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As shown in the above table these results seem to suggest that

analysis using survival models will produce a more accurate

solution than linear discriminant analysis, 	 quadratic

discriminant analysis or logit model. Furthermore the

proportional hazards model is a more promising approach for

developing practical models for predicting financial distress.

In conclusion, this thesis has demonstrated the statistical

power of survival modelling when applied to bankruptcy

prediction, and has set down solutions to some of the

methodological issues which are met when moving from the

conventional techniques which have dominated the field to

date.
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APPENDIX 1	 EXSTAT

EXSTAT is a service of company data in computer readable form. It

covers over two thousand British, other European, Australian and

Japanese quoted and unquoted concerns. The record for each company

is comprised of four sections:

(a) section A - contains EXTEL control data and is available on

card forms.

(b) section B, C (and data appendices CA, CB, CC, CD, CE for

U.K.! Eire companies) and D, appear on customer tapes - and is

where this study obtained its data.section B contains standing

information such as country of registration and industrial

classification. This section is also known as the company data

section.

(c) section C contains accounts data.

(d) section D contains security data relevant to the accounts.

Therefore, for each company, there is always only one section

B representing the standing information. For each year that data

is held, there is a section C (and data appendices CA, CB, CC, CD,

CE for U.K.! Eiro companies) containing balance sheets and profit

and loss account items for the year. Also, a section D appears for

any equity and preference shares in issue at the end of each year,

giving the security data relevant to the accounts.
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APPENDIX 2 

List of non-surviving companies

NO.	 Name of company

1- ACROW PLC

2- AERO NEEDLES GROUP PLC

3- ALLEN(W.G.)& SONS(TIPTON)PLC

4- AMALGAMATED INDUSTRIALS

5- AMALGAMATED POWER ENGINEERING

6- AVERYS

7- BADGER LTD

8- BAILEY(N.G.)& CO LTD

9- BAMFORDS

10- BEYER PEACOCK & CO

11- BLAKEY'S(MALLEABLE CASTINGS)

12- BRITISH ALUMINIUM CO PLC

13- BRITISH ROLLMAKERS CORPN LTD

14- BROCKHOUSE PLC

15- BROTHERHOOD(PETER) PLC

16- BROWN(DAVID)GEAR INDUSTRIES LTD

17- BUCYRUS(U.K.)LTD

18- CAPPER NEILL PLC

19- CARBORUNDUM CO LTD

20- CENTRAL MFG & TRADING GROUP LTD

21- CENTRAL WAGON CO

22- CLARKE CHAPMAN

23- CLIFFORD(CHARLES)INDUSTRIES

24- COLTNESS GROUP

25- CORNERCROFT

26- CRANE'S SCREW(HLDGS)

27- DANKS GOWERTON PLC

28- DERRITRON PLC

29- DORMAN SMITH HLDGS

30- DRAKE & SCULL HOLDINGS PLC

31- DUCTILE STEELS

32- DUNFORD & ELLIOTT

33- ELKEM LTD
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34- ELSWICK-HOPPER PLC

35- EMMS(THEODORE)

36- ENGLISH CARD CLOTHING CO

37- FAIRBAIRN LAWSON

38- FAIREY CO

39- FLUIDRIVE ENGINEERING CO

40- GALLENKAMP(A.)& CO

41- GENERAL ENGINEERING CO(RADCLIFFE)

42- GOSFORTH INDUSTRIAL HOLDINGS

43- GRAHAM WOOD STEEL GROUP

44- HALL-THERMOTANK LTD

45- HARTLE MACHINERY INTERNATIONAL

46- HAWKINS & TIPSON PLC

47- HAYTERS PLC

48- HEAD WRIGHTSON & CO

49- HUNT & MOSCROP GROUP PLC

50- INTERNATIONAL COMBUSTION(HLDGS)

51- JEAVONS ENGINEERING PLC

52- KLEEMAN INDUSTRIAL HLDGS

53- LE BAS(EDWARD)

54- LEADENHALL STERLING

55- LIGHTING & LEISURE INDUSTRIES

56- LINER CONCRETE MACHINERY CO

57- MARTIN(TOM)METALS GROUP

58- MOSS ENGINEERING GROUP

59- MUNFORD & WHITE PLC

60- NEGRETTI & ZAMBRA

61- NEWALL MACHINE TOOL CO

62- NEWMANS TUBES

63- NORMAND ELECTRICAL HOLDINGS

64- PALIHOL ELECTRONICS PLC

65- PROTIMETER PLC

66- RCF HLDGS

67- RANK PRECISION INDUSTRIES(HLDGS)PLC

68- RECORD RIDGWAY

69- REDMAN HEENAN INTERNATIONAL PLC

70- REYROLLE PARSONS

71- ROBB CALEDON SHIPBUILDERS
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72- SANDERSON KAYSER

73- SANGAMO WESTON LTD

74- SCOTT(JAMES)ENGINEERING GROUP

75- SERCK PLC

76- SHAW(FRANCIS)PLC

77- SHEFFIELD TWIST DRILL & STEEL CO.

78- SIG DAVALL PLC

79- SILVERTHORNE GROUP PLC

80- SIMPLEX (POWER CENTRE) LTD

81- SOLUS GROUP

82- SPOONER INDUSTRIES

83- STAR ALUMINIUM PLC

84- STONE-PLATT INDUSTRIES PLC

85- SWAN HUNTER GROUP

86- ULTRA ELECTRONIC HLDGS

87- UNITED ELECTRONIC HOLDINGS PLC

88- VOSPER PLC

89- WESTFORTH ELECTRICAL & AUTOMATION

90- WESTINGHOUSE BRAKE & SIGNAL CO

91- WILJAY PLC

92- WILSHAW SECURITIES PLC

93- WOLF ELECTRIC TOOLS(HLDGS)

94- WOLVERHAMPTON DIE CASTING GROUP

95- YOUNG, AUSTEN & YOUNG
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APPENDIX 3

List of surviving companies

NO.	 Name of company

1- AEG(UK)LTD

2- AIM GROUP PLC

3- APV HOLDINGS PLC

4- ASD PLC

5- ADWEST GROUP PLC

6- AEROSPACE ENGINEERING PLC

7- ALCOA OF GREAT BRITAIN LTD

8- ALFA-LAVAL CO LTD

9- ALLIED HOLDINGS(U.K.)LTD

10- ALUSUISSE(U.K.)LTD

11- AMALGAMATED METAL CORP PLC

12- AMARI PLC

13- ANDERSON STRATHCLYDE PLC

14- ANGLESEY ALUMINIUM LTD

15- ANGLO NORDIC HOLDINGS PLC

16- ARCOLECTRIC(HOLDINGS)PLC

17- ARIEL INDUSTRIES PLC

18- ARLEN PLC

19- ASH & LACY PLC

20- ASSOCIATED ELECTRICAL INDS LTD

21- ASSOCIATED ENERGY SERVICES PLC

22- ASTRA INDUSTRIAL GROUP PLC

23- AURORA PLC

24- AYRSHIRE METAL PRODUCTS PLC

25- BICC PLC

26- BM GROUP PLC

27- BUSH CO LTD

28- BABCOCK INDUSTRIAL ELEC. PRODS LTD

29- BABCOCK INTERNATIONAL PLC

30- BAILEY(C.H.)PLC

31- BAILEY(N.G.)ORGANISATION LTD(THE)

32- BAKER PERKINS PLC
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33- BAMFORD(J.C.)EXCAVATORS LTD

34- BANRO INDUSTRIES PLC

35- BARDSEY PLC

36- BARR & STROUD LTD

37- BARTELLA LTD

38- BARTON GROUP PLC

39- BAXI PARTNERSHIP LTD

40- BEAUFORD GROUP PLC(THE)

41- BENFORD CONCRETE MACHINERY PLC

42- BESTOBELL PLC

43- BETEC PLC

44- BEVAN(D.F.)(HOLDINGS)PLC

45- BILLAM(J.)PLC

46- BIRMID QUALCAST PLC

47- BIRMINGHAM MINT GROUP PLC

48- BLACK & DECKER

49- BLACKETT HUTTON HOLDINGS LTD

50- BODYCOTE INTERNATIONAL PLC

51- BOGOD-PELEPAH PLC

52- BOOTHAM ENGINEERS PLC

53- BOSCH(ROBERT)LTD

54- BOULTON(WILLIAM)GROUP PLC

55- BOVING & CO LTD

56- BRAIME(T.F.& J.H.)(HOLDINGS)PLC

57- BRAMMER PLC

58- BRASWAY PLC

59- BRICKHOUSE DUDLEY PLC

60- BRIDON PLC

61- BRIDPORT-GUNDRY PLC

62- BRITANNIA REFINED METALS LTD

63- BRITISH AEROSPACE PLC

64- BRITISH ALCAN ALUMINIUM LTD

65- BRIT. MANUFACTURE & RESEARCH CO LTD

66- BRITISH SHIPBUILDERS

67- BRITISH STEAM SPECIALTIES GROUP PLC

68- BRITISH STEEL CORPORATION
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69- BROMSGROVE INDUSTRIES PLC

70- BRONX ENGINEERING HOLDINGS PLC

71- BROOKE TOOL ENGINEERING(HLDGS)PLC

72- BROWN(DAVID)HOLDINGS LTD

73- BROWN(JOHN)PLC

74- BRUNTONS(MUSSELBURGH)PLC

75- BULGIN(A.F.)& CO PLC

76- BULLERS PLC

77- BULLOUGH PLC

78- BURGESS PRODUCTS(HOLDINGS)PLC

79- CEF HOLDINGS LTD

80- CI GROUP PLC

81- CAMBRIDGE INSTRUMENT CO PLC(THE)

82- CAMERON IRON WORKS LTD

83- CARCLO ENGINEERING GROUP PLC

84- CASTINGS PLC

85- CATERPILLAR TRACTOR CO LTD

86- CELTIC HAVEN PLC

87- CHAMBERLIN & HILL PLC

88- CHEMRING GROUP PLC

89- CHICAGO PNEUMATIC HOLDINGS LTD

90- CHLORIDE GROUP PLC

91- CHRISTY HUNT PLC

92- CINCINNATI MILACRON LTD

93- CIRCAPRINT HOLDINGS PLC

94- CLARKE(T.)PLC

95- CLAYTON, SON & CO(HOLDINGS)PLC

96- CLYDE BLOWERS PLC

97- COGHLANS PLC

98- COHEN(A.)& CO PLC

99- COMBINED ELECTRICAL MFRS LTD

100- COMPAIR LTD

101- CONCENTRIC PLC

102- COOK(WILLIAM)& SONS(SHEFFIELD)PLC

103- COOPER(FREDERICK)PLC

104- CRANE LTD
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105- CRONITE GROUP PLC(THE)

106- CROWN HOUSE PLC

107- CUMMINS U.K.LTD

108- DALE ELECTRIC INTERNATIONAL PLC

109- DAVIES & METCALFE PLC

110- DAVY CORPORATION PLC

111- DELTA GROUP PLC

112- DENMANS ELECTRICAL PLC

113- DERITEND STAMPING PLC

114- DESOUTTER BROTHERS(HOLDINGS)PLC

115- DEWHURST PLC

116- DEXION-COMINO INTERNATIONAL LTD

117- DICKIE(JAMES)& CO(DROP FORGINGS)PLC

118- DOBSON PARK INDUSTRIES PLC

119- DOM HOLDINGS PLC

120- DOWDING & MILLS PLC

121- DOWNIEBRAE HOLDINGS PLC

122- DOWTY GROUP PLC

123- DURACELL BATTERIES LTD

124- DYSON(J.& J. )PLC

125- EIS GROUP PLC

126- ECOBRIC HOLDINGS PLC

127- EDMUNDSON ELECTRICAL LTD

128- ELBAR INDUSTRIAL PLC

129- ELBIEF PLC

130- ELLIOTT(B.)PLC

131- ELSWICK PLC

132- ENGELHARD LTD

133- EVA INDUSTRIES PLC

134- EVERED HOLDINGS PLC

135- FKI ELECTRICALS PLC

136- FR GROUP PLC

137- FARMER(S.W.)GROUP PLC

138- FARREL BRIDGE LTD

139- FENNER(J.H.)(HOLDINGS)PLC

140- FIFE INDMAR PLC



141-	 FIRTH(G.M.)(HOLDINGS)PLC

142- FLEXELLO CASTORS & WHEELS PLC

143- FLUOR(GREAT BRITAIN)LTD

144- FOLKES GROUP PLC

145- FOSTER WHEELER LTD

146- G.E.I.INTERNATIONAL PLC

147- GARTON ENGINEERING PLC

148- GLYNWED INTERNATIONAL PLC

149- GODWIN WARREN CONTROL SYSTEMS PLC

150- GOODWIN PLC

151- GORING KERR PLC

152- GOTAVERKEN ARENDAL INVESTMENTS LTD

153- GREENBANK GROUP PLC

154- GROSVENOR GROUP PLC

155- HABIT PRECISION ENGINEERING PLC

156- HADEN LTD

157- HALL ENGINEERING(HOLDINGS)PLC

158- HALL(MATTHEW)PLC

159- HALLIBURTON MFG & SERVICES LTD

160- HALMA PLC

161- HAMPSON INDUSTRIES PLC

162- HARRIS(PHILIP)(HOLDINGS)PLC

163- HAWKER SIDDELEY GROUP PLC

164- HAY(NORMAN)PLC

165- HEATH(SAMUEL)& SONS PLC

166- HEWITT(J.)& SON(FENTON)PLC

167- HILL & SMITH HOLDINGS PLC

168- HOPKINSONS HOLDINGS PLC

169- HOWDEN GROUP PLC

170- HUMBERSIDE ELECTRONIC CONTROLS PLC

171- HUMPHREYS & GLASGOW LTD

172- HUNSLET(HOLDINGS)PLC

173- HUNTING ASSOCIATED INDUSTRIES PLC

174- HYSTER LTD

175- IMI PLC
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176- INCO EUROPE LTD

177- INCO ENGINEERED PRODUCTS LTD

178- INGERSOLL-RAND CO LTD

179- INGERSOLL-RAND HOLDINGS LTD

180- INTERNATIONAL MILITARY SERVICES LTD

181- JACKSON(J.& H.B.)PLC

182- JOHNSON & FIRTH BROWN PLC

183- JOHNSON MATTHEY PLC

184- JONES & SHIPMAN PLC

185- JONES STROUD(HOLDINGS)PLC

186- KAISER INTERNATIONAL(U.K.)LTD

187- KAYE ORGANISATION LTD(THE)

188- LPA INDUSTRIES PLC

189- LAIRD GROUP PLC

190- LANCERBOSS GROUP LTD

191- LAURENCE SCOTT LTD

192- LEE(ARTHUR)& SONS PLC

193- LEE(ARTHUR)& SONS(HOT ROL.MILLS)PLC

194- LEXA LTD

195- LEY'S FOUNDRIES & ENGINEERING PLC

196- LILLESHALL COMPANY PLC(THE)

197- LINREAD PLC

198- LLOYD(F.H.)HOLDINGS PLC

199- LOCKER(THOMAS)(HOLDINGS)PLC

200- LONDON & SCAND. METALLURGICAL CO LTD

201- M.K.ELECTRIC GROUP PLC

202- M.L.HOLDINGS PLC

203- MS INTERNATIONAL PLC

204- MCARTHUR GROUP LTD

205- MCKECHNIE BROTHERS PLC

206- MACLELLAN(P.& W. )PLC

207- MANGANESE BRONZE HOLDINGS PLC

208- MARSHALL(THOMAS)(LOXLEY)PLC

209- MARTIN-BAKER AIRCRAFT CO LTD

210- MARTIN-BAKER(ENGINEERING)LTD

211- MARTONAIR INTERNATIONAL PLC

212- MASSEY-FERGUSON HOLDINGS LTD



213- MATHER & PLATT LTD

214- MEGGITT HOLDINGS PLC

215- METALRAX GROUP PLC

216- MITCHELL COTTS PLC

217- MITCHELL SOMERS PLC

218- MOLINS PLC

219- MOLYNX HOLDINGS PLC

220- MOTHERCAT LTD

221- MYSON GROUP PLC

222- NATIONAL SUPPLY CO(U.K.)LTD

223- NEEPSEND PLC

224- NEIL & SPENCER HOLDINGS PLC

225- NEILL(JAMES)HOLDINGS PLC

226- NEWEY GROUP LTD

227- NEWMARK(LOUIS)PLC

228- NEWTON, CHAMBERS & COMPANY PLC

229- NOBLE & LUND PLC

230- NORANDA SALES CORPN OF CANADA LTD

231- NORTH BRITISH STEEL GROUP(HLDGS)PLC

232- NORTHERN ENGINEERING INDUSTRIES PLC

233- NORTON ABRASIVES LTD

234- OLDHAM BATTERIES LTD

235- OTIS ELEVATOR PLC

236- OXFORD INSTRUMENTS GROUP PLC(THE)

237- PCT GROUP PLC

238- PALSA HOLDINGS LTD

239- PARKER(FREDERICK)GROUP PLC

240- PARKFIELD GROUP PLC

241- PARSONS(RALPH M. )CO LTD(THE)

242- PEGLER-HATTERSLEY PLC

243- PENNWALT HOLDINGS LTD

244- PERKIN-ELMER LTD

245- PETBOW HOLDINGS PLC

246- PLASTIC CONSTRUCTIONS PLC

247- PLESSEY CONNECTORS LTD

248- POLYMARK INTERNATIONAL PLC
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249- PORTALS HOLDINGS PLC

250- PORTER CHADBURN PLC

251- PRATT(F.)ENGINEERING CORPN PLC

252- PRESS TOOLS PLC

253- PRIEST(BENJAMIN)GROUP PLC

254- PROCON(GREAT BRITAIN)LTD

255- RHP GROUP PLC

256- RTD GROUP PLC

257- RADIANT METAL FINISHING PLC

258- RAMCO OIL SERVICES PLC

259- RANSOMES SIMS & JEFFERIES PLC

260- RATCLIFFE(F.S.)INDUSTRIES PLC

261- RATCLIFFS(GREAT BRIDGE)PLC

262- RENISHAW PLC

263- RENOLD PLC

264- RESTMOR GROUP PLC

265- RICARDO CONSULTING ENGINEERS PLC

266- RICHARDS(LEICESTER)PLC

267- RICHARDSONS,WESTGARTH PLC

268- ROBINSON(THOMAS)GROUP PLC

269- ROCKWELL INTERNATIONAL LTD

270- ROLLS-ROYCE PLC

271- ROSSER & RUSSELL LTD

272- ROTAFLEX PLC

273- ROTORK PLC

274- RUSTON & HORNSBY LTD

275- S.I.GROUP PLC

276- SKF(UK)LTD

277- STC DISTRIBUTORS LTD

278- SANDVIK LTD

279- SAVILLE GORDON(J.)GROUP PLC

280- SCHLUMBERGER MEASUREMT&CONTL(UK)LTD

281- SCHOLES(GEORGE H. )PLC

282- SENIOR ENGINEERING GROUP PLC

283- SEVALCO LTD

284- SHEERNESS STEEL CO PLC
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285-	 SHEFFIELD INSULATING CO LTD(THE)

286- SHEFFIELD SMELTING CO LTD

287- SIEMENS LTD

288- SIMON ENGINEERING PLC

289- SIMPLEX ELECTRICAL HOLDINGS LTD

290- 600 GROUP PLC

291- SLINGSBY(H.C.)PLC

292- SMITH WHITWORTH PLC

293- SMITHS INDUSTRIES PLC

294- SOUND DIFFUSION PLC

295- SPEAR & JACKSON INTERNATIONAL PLC

296- SPENCER CLARK METAL INDUSTRIES PLC

297- SPIRAX-SARCO ENGINEERING PLC

298- STAINLESS METALCRAFT PLC

299- STANELCO PLC

300- STANLEY WORKS LTD(THE)

301- STERLING INDUSTRIES PLC

302- STONE INTERNATIONAL PLC

303- STOTHERT & PITT PLC

304- SULZER BROS(UK)LTD

305- SUMNER PRODUCTS PLC

306- SYCAMORE HOLDINGS PLC

307- SYKES(HENRY)PLC

308- SYLTONE PLC

309- SYMONDS ENGINEERING PLC

310- T.I.GROUP PLC

311- TSL THERMAL SYNDICATE PLC

312- TACE PLC

313- TECHNOLOGY INCORPORATED(UK)LTD

314- TEKTRONIX U.K.LTD

315- TELFOS HOLDINGS PLC

316- TEX HOLDINGS PLC

317- TEXTRON LTD

318- THORPE(F.W.)PLC

319- TRIEFUS PLC

320- TRIPLEX PLC
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321- TWIL LTD

322- TYZACK(W.A.)PLC

323- TYZACK TURNER PLC

324- UNITED SCIENTIFIC HOLDINGS PLC

325- UNITED SPRING & STEEL GROUP PLC

326- UNITED WIRE GROUP PLC

327- VICKERS PLC

328- VICTOR PRODUCTS PLC

329- VINTEN GROUP PLC

330- VOLEX GROUP PLC

331- WA HOLDINGS PLC

332- WPP GROUP PLC

333- WADKIN PLC

334- WAGON INDUSTRIAL HOLDINGS PLC

335- WALKER(C.)& SONS LTD

336- WALKER(C.& W. )HOLDINGS PLC

337- WALKER, CROSWELLER & CO LTD

338- WALKER(THOMAS)PLC

339- WATSHAM'S PLC

340- WATSON(R.KELVIN)PLC

341- WEIR GROUP PLC

342- WELLMAN PLC

343- WEST BROMWICH SPRING PLC(THE)

344- WESTERN SELECTION PLC

345- WESTLAND PLC

346- WESTWOOD DAWES PLC

347- WHESSOE PLC

348- WHEWAY PLC

349- WHITTINGTON ENGINEERING COMPANY P

350- WHITWORTH ELECTRIC(HOLDINGS)PLC
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