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This thesis offers an explanation of the statistical
modelling of corporate financial indicators in the context where
the life of a company is terminated. Whilst it is natural for
companies to fail or close down, an excess of fallure causes a
reduction in the activity of the economy as a whole. Therefore,
studies on business failure identification leading to models which
may provide early warnings of impending financial crisis may make
some contribution to improving economic welfare. This study
considers a number of bankruptcy prediction models such as
multiple discriminant analysis and 1logit, and then introduces
survival analysis as a means of modelling corporate failure. Then,
with a data set of UK companies which failed, or were taken over,
or were still operating when the information was collected, we
provide estimates of failure probabilities as a function of
survival time, and we specify the significance of financial
characteristics which are covariates of survival. Three innovative
statistical methods are introduced. First, a likelihood solution
is provided to the problem of takeovers and mergers in order to
incorporate such events into the dichotomous outcome of failure
and survival. Second, we move away from the more conventional
matched pairs sampling framework to one that reflects the prior
probabilities of failure and construct a sample of observations
which are randomly censored, using stratified sampling to reflect
the structure of the group of failed companies. The third
innovation concerns the specification of survival models, which
relate the hazard function to the length of survival time and to a
set of financial ratios as predictors. These models also provide
estimates of the rate of failure and of the parameters of the
survival function. The overall adequacy of these models has been
assessed using residual analysis and it has been found that the
Weibull regression model fitted the data better than other
parametric models. The proportional hazard model also fitted the
data adequately and appears to provide a promising approach to the
prediction of financial distress. Finally, the empirical analysis
reported in this thesis suggests that survival models have lower

classification error than discriminant and logit models.
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CHAPTER ONE

INTRODUCTION

This thesis is concerned with the statistical modelling of
corporate financial indicators in the context where the life of a
company is terminated. Whilst it is natural for companies to fail
or close down, as they do for various reasons ( see Section 2.3 ),
an excess of fallures cause a reduction in the economic activity
of the economy as a whole. These failures not only reduce
government income by both 1lost revenue from taxation and a
negative flow of funds through social security payments, they also
affect the economic well-being of other businesses which lose
sales and of Iinvestors who lose income and capital. There are
occasions when, for either political or economic reasons, the
government will decide to prevent the failure of a large company
important to the state of the nation (for example the British
government support of the failing motor industries in the 1970’s).
Perhaps, if these problems had been identified at an earlier stage
then government financial support may not have been so costly.
Therefore, studies on business failure identification leading to
models which may provide early warnings of impending financial
crisis may make some contribution to improving economic welfare.
Rather than waiting until the event of failure to diagnose the
problem, the emphasis should be on identifying failing companies
during the early stages of their decline. Hopefully, some
corrective action could be taken to stem the decline. For the past

20 vyears, various business administration specialists have



presented articles in financial Jjournals that have employed
multivariate statistical techniques on corporate financial data in
order to develop statistical models which would identify failing
companies. These models predicted failure with a high degree of
accuracy when companies were near collapse. As failure becomes
more remote in time, however, the forecasting accuracy of these
models declined. Some of these models also contained statistical
weaknesses that cast doubt on their results. This thesis considers
a number of bankruptcy prediction models, and then introduces
survival analysis as a means of modelling corporate failure. In
this context, we 1look upon company development over time as a
process in which companies are created and, eventually, are taken
over or fail. At any given point in time, the survivors are those
companieé which have not yet been taken over or have not yet
failed. Essentially, the approach taken in this thesis 1is to
introduce company financial characteristics into a probability
model as covariates of survival, treating surviving companies as
censored observations whose eventual fate is unknown.

One can view the development in certain financial ratios as
indicators of the company’s state of health, although failure may
be caused by different circumstances. Beaver (1966), Altman (1968)
and, subsequently, many other authors have carried out research in
this field. Their evidence indicates clearly that with a few
financial measures (e.g. financial ratios) corporate failure can
be predicted for a period of at least five years before failure.
Naturally, it is possible that failure prediction models might
benefit from the inclusion of other financial and non-financial

variables. However, the data used here is restricted to a broad



set of financial ratios as used conventionally in many studies and
the focus of this thesis is on the statistical methodology and its
applicability to the phenomenon under investigation, i.e. company

failure in a broad sense.

1.1 Objectives of the Study

The preceding discussion Jjustifies the development of a
warning system for financial distress in a business company. The
objectives of this thesis are to construct statistical models that
can 1identify 1in advance those companies that will become
financially distressed and an attempt to understand the structure
of large cross-sectional accounting information sets. For this
thesis a data set relating to financial statement information of
large U.K. industrial companies was gathered from EXSTAT. This is
an extensive data base that has also been analyzed by others in
building failure prediction models, and in understanding the
structure of large cross-sectional accounting information sets.
Then, with the specific data set compiled for this study of U.K.
companies which failed, or which were taken over, or which were
still operating when the information was collected, we provide
estimates of failure probabilities as a function of survival time,
and we specify the significance of financial characteristics which
are covariates of survival. There is some evidence of survival
bias in the time series of certain financial ratios, after
treating financial disclosures as non-synchronous, irregular

repeated measures when estimating mean effects. However, survival



bias is not the central issue. The core of this thesis is
concerned with three innovative statistical methods. First, a
likelihood solution is provided to the problem of takeovers and
mergers in order to incorporate such events into the dichotomous
outcome of failure and survival. Second is the specification of a
parametric and non-parametric model of company survival, where we
evaluate the assumptions of the model on the basis of an analysis
of residuals, and select between Weibull, Exponential and
Log-logistic regression models for best fit and accuracy of
prediction. Third, a ‘"randomly-censored stratified sampling"
solution 1is provided to the problem raised by moving from a
matched sampling basis to one where the structure of the survivor

group no longer reflects that of non-survivors.

1.2 Chapter survey

This thesis 1is divided 1into seven Chapters each one

presenting a different phase of the study :

Chapter one introduction

Chapter two is a brief survey of the literature of business
failure prediction. Included are definitions of business failure
and contrasting authors’ views on the causes of failure. This
chapter concludes with a survey of the major models that have been
used in published studies. Of particular importance are the

statistical techniques used, and the overall forecast accuracy of



each, and some consideration is given to the variables in the

models.

Chapter three contains an extensive discussion of the

construction of the new data set used for this study. Accounting
data on 463 companies was collected from the EXSTAT source,
restricted to industrial companies. The 463 companies consisted of
companies which went into 1liquidation ("bankrupt"), companies
which combined with others or were acquired by others ("merged")
some which closed down for other reasons or moved from the U.K.
("other") and surviving industrial companies. The methods used to
identify non-surviving companies and to collect data are
explained. Also presented in this chapter is some exploratory
analysis of the general time series behavior of financial ratios
of these companies, a discussion of the computer data analysis
used to study the distributional properties of the data, and is
concerned with the application of principal component analysis,
which is used for structural simplification so that the large

number of variables may be reduced to fewer components.

Chapter four is concerned with the application of stepwise

discriminant analysis and quadratic discriminant analysis, which
are used to determine the most important financial ratios that are
associated with the failure of a company and to predict the
probabilities of failure, first, before reclassifying "merged" and
"other" companies and, second, after reclassifying "merged" and
"other" companies. Also presented are methods used to reclassify

“merged" and "other" companies into either the "bankrupt" category



or the "live" category, including stepwise discriminant analysis
and survival analysis based on the Weibull model. Each of the two
methods are carefully explained and the results of the two methods

are contrasted.

Chapter five is concerned with the application of the logistic

model, which is used to predict failure and to determine for the
data under investigation the most important financial ratios
affecting the outcome. The explanatory variables used in the

prediction models are identified by stepwise regression.

Chapter six considers the covariates of survival which are
modelled in an attempt to understand the structure of the large
cross-sectional accounting information set under investigation.
The models used are based on the hazard function. Two classes of
such models are considered: parametric models which contain
Weibull, Exponential and Log-logistic regression models, and the
non-parametric proportional hazard model. Parameter estimation is

based on maximum likelihood estimation.

Chapter seven contains the general conclusions of the study, and

identifies the potential contributions of the statistical

modelling approach to applications in financial analysis.



CHAPTER TWO

BUSINESS FAILURE PREDICTION MODELS

2.1 Business Failure

Necessary to any statistical model of corporate failure are
certain basic inputs. First, a definition is needed as to what exactly
is a "business failure". Second, financial writers (e.g. Lev, 1974,
and Dewing, 1941) have suggested the causes and warning signs of
failure- how could a model be built which would associate failure with
these signs? Other items that must be considered are: existing failure
prediction models, the success and limitations of these models, and
new theoretical techniques that offer a solution to the weaknesses of

existing models.

2.2 Business Failure Definition

There are many institutional aspects of corporate failure that
figure indirectly in model building. These have been studied by many
experts in various fields. Economists study the effects of national
policy decisions on business and the costs of failure on the economy.
Financial experts are concerned with the loss of investment in failed
firms. Legal experts argue over the payment of creditors’ claims.
These professionals are all concerned with determining the costs of
business failure and who pays these costs.

Various definitions of business failure have been presented by
different authors.

Beaver (1966), defines failure as the inability of a firm to pay
its financial obligations as they mature. Operationally, a firm is
said to have failed when any of the following events have occurred

bankruptcy , bond default , an overdrawn bank account, or nonpayment



of a preferred stock dividend.

Altman (1971), defines economic failure by economic criteria,
where the realized rate of return on invested capital, after allowing
for risk, is significantly and continually lower than prevailing rates
on similar investments. 3‘)L>J

Deakin (1972), defines failure to include only those firms which
experienced bankruptcy, insolvency, or were otherwise liquidated for
the benefit of creditors.

Taffler (1982), defined the failure as receivership, voluntary
liquidation (creditors),or winding up by court order.

Thus, in the context of failure prediction, the concept of
failure varies from (i) the broad definition of a company which is
unable to settle its financial obligations (which may be a temporary
state of affairs resolved by a reorganization of financial structure)
to (ii) the narrower definition where the company is liquidated.

The first can be considered as "technical insolvency" which
refers to the inability of a firm to meet its currently maturing
obligations (Walter, 1957). It may be only a temporary condition for
the firm. For instance, the firm may have a positive equity position
and a sufficiently good outlook to get short run financial help over
its present cash crisis. On, the other hand, when a firm is in such a
bad position that it cannot pay its debts and secure new financing,
then it can voluntarily or involuntarily enter into bankruptcy. This
leads to an alternative conception of the "life" and "death" of
companies. At any one point in time t, we may observe companies which
are Iin existence. To that stock of companies will be added
newly-created companies, and there will also be companies which close
down in the intervening period and, therefore, do not survive until

t+1. However, it 1s not necessarily the case that a firm which closes



down does so because it has failed. For instance, one company may be
acquired by another, although there exists the possibility that the
takeover target was heading for failure and its restructuring is
effected by absorption into another company. Therefore, in the same
way as other researchers have attempted in the past to broaden the
definition of failure to encompass temporarily bankrupt firms (i.e.
technically insolvent), so in this thesis the partition is between
“survivors" and "non-survivors", with the latter group comprising (i)
failures and (ii) companies which closed down for other reasons and

which we may wish to partition between failed non-survivors and other

non-survivors.

2.3 Causes of Failure

The ability to predict corporate failure is important for all
parties involved in the corporation, in particular for management and
investors. An early warning signal of probable failure may enable them
to take preventative measures: changes in operating policy or
reorganization of financial structure, but also voluntary liquidation
could shorten the period over which 1losses are incurred. The
possibility of predicting failure 1is important also from a social
point of view, because such an event may be an indication of
misallocation of resources; prediction provides opportunities to take
corrective measures.

4

No Theory Of Corporate Failure

Since the objective of this study is to develop a quantitative
model to predict corporate failure, a generally accepted theory of
corporate failure is the place to start in formulating a model. A

survey of the finance 1literature reveals that there is no

a
N\



well-formulated theory of corporate failure, and Lev (1974), gives the
following reasons for this:

1. the complexity and diversity of business operations

2. the lack of a well-defined economic theory of the firm under

uncertainty, and

3. the reluctance of theorists to study failure and include it in

*~

their models.

Because of this lack of theory, model builders have considered the
reasons that financial experts have suggested as ©being the
explanations for the financial decline of firms.

The idea of bad management is perhaps the most mentioned cause of
business failure. Dewing (1941), the author of a classic text in
corporate finance, wrote: "The usual causes assigned for failure are,
in truth, not causes but excuses; the real cause is the lack of those
human qualities which, for want of a better understanding of the human
mind, we epitomize by the expression management. Unfortunately, bad
management 1is not a readily identifiable and quantifiable item.
Further, corporations are not required to disclose decisions made by
their top managers. As an observer of corporations, we can only note
the later effects of management decisions".

Dewing (1941) also lists four fundamental economic causes of
failure:

1. excessive competition

2. unprofitable expansion

3. change in public demand for the commodity

4. the distribution of capital as ostensible profit.

Dewing considers the second reason, unprofitable expansion, as the
prime reason for failure. Dewing makes this point as a result of

observing business failures in the 1920’s and 1930’s.
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Financial writers have always considered the state of the economy
as an important element in the financial health of firms. For
instance, Altman (1971) developed a regression model showing that
change in corporate failure rate is inversely associated with changes
in GNP, stock prices, and money supply. Gordon (1971), in an article
on financial distress of corporations, notes that when corporate debt
and interest payments are at record levels, and the government
committed to an anti-inflation policy, the likelihood of failure is
increased. For a firm with operating losses plus high leverage, cash
runs out, new credit is not available and The firm fails. In periods

of economic slowdown, the number of business failures increases.

2.4 Survey of Failure Prediction Models

2.4.1 Corporate Failure Prediction Model

Failure prediction models can be of help to investors in debt
securities when assessing the likelihood of a company experiencing
problems in paying interest or principal repayments. Also, the failure
of a business firm is an event which can produce significant losses to
creditors and stockholders. Therefore a model which predicts potential
business fallure as early as possible would help to reduce such losses
by providing sufficient warning. The predictive value of financial
ratios and related financial data has received considerable attention
in recent years.

This was a sufficient motivation for Beaver (1966) and Altman
(1968) to develop models for predicting failure based on the financial
information disclosed by firms. Research conducted more recently on
the use of financial ratios to predict failure can be divided into two
groups, the univariate and the multivariate studies. The first group

is concerned with the predictive ability of individual financial
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ratios; whereas the second group in more concerned with performance of

several ratios combined together to predict failure.

2.4.1.1 Univariate Models
A univariate model to predict financial failure involves the
use of a single variable in a prediction model. There are two
assumptions in this approach (Foster, 1986):
1. the distribution of a variable for the distressed firms

differs systematically from the distribution of the variable

for the non-distressed firms
2. this systematic distribution difference can be utilized for

prediction purposes.

Beaver’'s model

In his seminal paper, Beaver (1966) developed and tested a univariate
prediction model of corporate failure based on observations of 79
failed firms which were each matched for industry classification and
asset size with another firm that continued in operation over the
period 1954-1964. The effect of this pairing was to stratify for size
and industry factors. Although the study’s results were therefore only
applicable to that stratum of firms, failures amongst the groups in
question were more serious than elsewhere, and data was more available
for these firms. Financial statement data for five years prior to
failure was examined. Some thirty different ratios were selected among
ratio groups, that were believed to be important (profitability,
leverage, activity, cash flow, etc.) . Mean values for each variable
over five years for failed and non-falled firms were examined. The
mean ratios of the falled firms show distinct trend. Whereas the mean

ratios of the non-failed firms remained relatively constant. Figure

12



2.1 shows that The trend in the mean ratios was very pronounced for

the falled firms over the five year period prior to fallure.

Figure 2.1 Profile analysis, comparison of mean values from

Beaver (1966).
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Differences were said to offer proof of the ability of financial
ratios to predict failure. Then one ratio was selected, cash flow to
total debt, as the single best predictor of failure, because it had
the smallest classification error (i.e., 13%) in discriminating failed
from non-failed firms.

Although these findings suggested that ratio analysis could be
useful for as early as five years before failure, Beaver cautioned
that ratios have to be used selectively. He found that not all ratios
predict equally well. Further more, different ratios do not predict
failed and non-failed firms with the same degree of success.

Since the univariate methodology places emphasis on only
individual signals, it 1is possible that different financial ratios
might provide conflicting signals of firm’s financial condition. Thus,

Altman (1968) commented that Beaver’s approach to ratio analysis is
susceptible to faulty interpretation and is potentially confusing ",

and suggested wusing multivariate analysis to 1investigate the

predictive ability of financial ratios.

2.4.1.2 Multivariate Models

A multivariate model for predicting financial failure involves
the use of several variables in a prediction equation. Multivariate
models of financial distress have been developed in various countries
including the United States, Japan, Germany, Switzerland, Brazil,
Australia, England, Canada, the Netherlands and France as described in

Altman (1984), An International Survey.
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Altman’s model

The first multiple discriminant analysis (MDA) model was published in
September 1968 by Edward Altman. He developed a model for the
prediction of corporate bankruptcy on a sample of 33 bankrupt and 33
non-bankrupt firms over the period 1946-1965. The 33 bankrupt
manufacturing firms had filed a bankruptcy partition under Chapter X
of the Bankruptcy Act. For each of the bankrupt firms a comparable
match was chosen from the same industry with similar assets size
measured over the same chronological period. The asset size of
bankrupt firms was from 0.7 to 25.9 million dollars one year prior to
bankruptcy. 22 ratios were selected based on their popularity in the
literature and their potential relevance to the study. These ratios
were classified into S) standard categories -- liquidity,
profitability, leverage, solvency and activity. He used many computer

runs to select the best five variables out of 22 financial ratios. His

model is:

Z = 0.012X, + 0.014X, + 0.033X, + 0.006X,+ 0.999X

1 2 3 4 S
where:
X1 = Working capital to total assets
X2 = Retained earnings to total assets
X3 = Earnings before interest and taxes to total assets
X4 = Market value of equity to book value of total debt
X5 = Sales to total assets
2 = Represents the discriminant score of the firm.

Altman classifies firms with Z scores as follows:
greater than 2.99 - non-bankrupt
less than 1.81 - bankrupt

between 1.81 and 2.99 - "zone of ignorance" or '"gray area".
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At the beginning of his paper Altman states that he wants to
examine the usefulness of financial ratios in a model to corporate
bankruptcy. After presenting his model, he tested his model on various
data sets. His conclusions are that his model correctly classifies
firms in years before bankruptcy as follows:

95% one year before

72% two years before

48% three years before

29% four years before

36% five years before.

Thus, the model proved to be an accurate forecaster of failure when
failure 1is imminent. As fallure becomes more remote, predictive
accuracy drops. This decline 1in predictive accuracy 1is another
important aspect of the failure prediction problem.

Thus, by developing a linear discriminant function which combined
five financial ratios, Altman obtained an approach that out performed
Beaver’s "“cash flow to total debt" method in predicting firm’s
failure. Altman’'s study is considered as the pioneering research in
applying multivariate techniques to develop a predictive procedure

using flnancial ratios.

Limitation of Altman’'s (1968) model include the following:

1. One limitation is that of the ex-post nature of the analysis, 1i.e.
the estimation and validation samples both include firms that are
known to have failed on a set date. Thus, it is possible in the
research to compare the financial ratios of failed and non-failed
firms one year, two years, etc., prior to failure. However, in
decision-making contexts, one knows neither which firms will fail

nor the date on which they fail. To demonstrate that the results of
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this research have direct applicability to decision contexts, it
would be necessary to make ex-ante predictions about the failure

(and its timing) of firms currently non failed.

Little effort was directed towards the construction of a testable
theory that would specify the variables to be included in the
discriminant function. The approach of choosing 22 variables and
then using a stepwise discriminant model to select the variables in
the final discriminant function may be limited in its ability to
provide generalizable results as to what financial variables are
likely to be consistent predictors of financial distress.

The sample of firms used by Altman consisted of matched samples of
bankrupt and non-bankrupt firms, selected on a non-random basis.
However, no additional procedures were used to overcome the
limitations of having a non-random selection of the original
sample. The result is that the parameters estimated would be
subject to bias; some characteristics may be over-represented in
the samples. Thus, the resulting discriminant function may be
sample specific.

The use of a paired-sample design where firms are matched on size
and industry criteria effectively precludes these variables as
indicators of financial distress in the study. There is
considerable evidence that both size and industry groups contain
information on distress likelihood.

The use of equal-sized samples of bankrupt and non-bankrupt firms
also distorts the actual prior probabilities of firm’s belonging to
elther group. Deakins (1977) analysis of this type of bias
indicates that under such circumstances, the stated error rates may

not reflect the extent of each type of error. The most serious
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effect would be a tendency to understate the misclassification of
non-failing companies into the failing group.
6. Altman’s method does not depend% on the additional assumption that

the variables distributed as the multivariate normal distribution.

The use of linear discriminant analysis assumes that the data for
the failed and non-failed firms have the same dispersion matrix. In a
later study, Altman, et al (1977) tested this assumption and found
that the dispersion matrices of the failed and non-failed firms could
not be considered identical. No test of multivariate normality was
conducted. It was determined that a quadratic discriminant analysis
was required. Stepwise exclusion was used to 1limit the twenty-seven
variable set to seven discriminatory variables. The results indicate
that even though the quadratic classifier is statistically more
appropriate, the linear classifier gives a lower classification error
rate. The holdout sample used was not an independent sample, since
data from the original sample’s financial statements 2-5 years prior
to failure are applied to the parameters established from one-year

prior data, suggesting that a comparison of these results with other

studies is not appropriate.

Altman (1984), reviewed and compared a relatively large number of
empirical failure classification models from 10 countries. Much of the
material is derived from little known or unknown sources. Indeed as
financial institutions and government agencies in various countries,
e.g., Canada, U.S., Brazil, France, and England, wrestle with the
problem of large firm failures in the future, the knowledge that prior
work has been done with respect to early warning models may help avoid

the consequences or reduce the number of these failures. In
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concluding, Altman notes that he expects the quality and reliability
of models constructed in many of the reviewed countries to improve as:
1. the quality of information on companies is expanded and

refined

2. the number of business failures increase thereby providing
more data points for empirical analysis, and
3. as researchers and practitioners become more aware of the
problems and potential of such models.
Where sufficient data does not exist for specific sector models, e.g,
manufacturing, retailing, and service firms, the application of
industry relative measures can perhaps provide a satisfactory

framework for meaningful analysis.

Deakin’'s model

Deakin (1972) applied multivaiate discriminant analysis (MDA) to 14
financial ratios initially used by Beaver (1966). His estimation set
consisted of 32 pairs of firm - bankrupt matched with non-bankrupt
over the period 1964-1970. He obtained a liner discriminant function
in which all the 14 variables were found to contribute significantly
to the discriminating ability of the function. In general, his
discriminant function was able to predict business failure as far as
three years in a advance with an accuracy of around 947%. Rather than
using a critical value for classifying the cases, Deakin used a
modification of discriminant analysis that assigns probabilities for
membership to the classes. Each firm was reclassified each year in a
manner that weighted the probability of group membership with its
deviation scores from prior periods. This technique improved the
classification error rate significantly over those found by either

Beaver or Altman. Using such probability estimates for group
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membership, Deakin’s model provided error levels of 3 percent, 4.5
percent, and 4.5 percent respectively for the first three years prior
to failure. The error rates for the fourth and fifth years increased
to 21 percent and 17 percent respectively. These results appear to be
an improvement over Altman's, which could only predict accurately in
the first year prior to bankruptcy. Comparison with other studies is
difficult because the choice of a critical probability for assignment
to a group is a subjective choice even though the technique will
generate probability of group membership. Ideally such a choice should
be based on an analysis of cost of errors. No such analysis was
reported in Deakin’s study. Also the method of group membership
assignment according to probabilities was not discussed. The
limitation of Altman’s model cited apply to Deakin’s model as well.
Deakin’s method depends on the additional assumption that the
variables were distributed as the multivariate normal distribution,

but no multivariate normality test was provided.

A later study by Deakin (1976) also found that financial ratios
were non-normal. Since univariate normality is a necessary but not
sufficient condition for the normality of these variable’s joint
distribution, the adherence to the assumption of multivariate
normality is doubtful. Lack of adherence to these assumption could

affect the predictive results.

Blum's model

Blum (1974) developed a model for predicting failure using a sample of
115 non-failed firms over the period 1954-1968. For each of the failed
firms, a similar non-failed firm was chosen from the same industry,

size and fiscal year. In Blum’s model the accuracy of the failing
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company model in distinguishing failing from non-failing firms was

tested by using discriminant analysis for computing an index and a

cutoff point on the index. The index is derived from the financial

model by computing the values of each of its variables for each
company studied. When the variables for one company are standardized

and added together, their sum is that company’s index score. A

critical score exists which results in a minimum of misclassification.

If all companies with index scores above the critical score are

predicted to succeed and all companies with scores below are predicted

to fail, erroneous predictions will be minimized. When a firm with an

unknown group identity (falled-nonfailed) 1is classified by a

discriminant function as similar to firms which failed in the next

year, the firm's classification will be treated as a prediction that
the firm will fail one year from the date of prediction. However, his
model contained three new features:

1. The financial ratios included in the discriminant function of the
earlier studies were selected on the basis of either their
popularity, subjective judgments by the research, or the result of
an elimination process using stepwise regression (as in Edmister’s,
1972). In contrast Blum constructed a "cash flow framework" to
theoretically identify the factors that will affect the probability
of fallure. Ratios associated with these factors were used as
explanatory variables in the discriminant function.

2. Blum identified three groups of relevant factors through his "“cash
flow framework". The first group consisted of 1liquidity-related
ratios. The second group had only one factor: the rate of return to
common stockholders. The third group consisted of measures of
variability of income and the net quick assets to inventory ratio

over a time period. None of the third group of factors had been

21



used as an explanatory variable in previous studies.

3. Earlier studies 1investigated +the <change 1in accuracy when
multivariate discriminant analysis is used to predict failure for
different lengths of time ahead of failure. They all reached the
intuitively obvious conclusion that predictions become more
accurate the closer one gets to the actual date of failure.
Besides studying this effect, Blum also studied the effect of
using different numbers of years of prior data to predict failure
for a given time period ahead. His primary purpose was to
investigate the number of years of prior data required to improve
predictive accuracy. His findings suggested that for predicting
one year ahead using more than six years of data would actually
reduce instead of increase the predictive accuracy of the
resuitant discriminant function.

Blum's empirical results indicated that the discriminant
functions from his "failing company model" could achieve 93-95%
accuracy for predictions one year before actual failure, 80% accuracy
at second year before failure, and 70% accuracy at third, fourth and
fifth years before failure. Blum’s model was used for legal decisions
in the U.S.A., the so called ’'failing company doctrine’ is used as one
defence against an antitrust law in the U.S.A.. This doctrine can
apply where one of two merging companies is likely to fail and where
the failing company has received no offer to merge from a company with
which a merger would have been legal. Predicting failure using Blum's
model provides the court with some evidence as to which firms may lay
within the failing company doctrine defence against antitrust laws.
His model’s performance compared favourably with the results obtained

by Deakin (1972), Altman (1968) and Beaver (1966).
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Mason and Harris model

Mason and Harris (1979) developed a model specifically for the
jdentification of construction companies in danger of failure. The
study was carried out because of the concern that in the U.K., at
least, contracts often tend to be awarded on the basis of price
without adequate consideration of contractor’s solvency and thus his
ability to complete the work. 20 construction companies failure
between 1969 and 1978 constituted the failed set and the continuing
sample consisted of 20 particularly sound concerns on a traditional
financial ratio analysis basis with 1976-1977 accounts used. A list of
28 discriminant variables was developed using a stepwise linear
discriminant analysis by finding the variable that discriminates most

between the groups of known "failed" and "solvent"” companies. It then
combines this variable with each of the other variables in turn until
it finds the variable which contributes most to any further
discrimination of groups and then continues in a similar manner until

very little discrimination is gained by inclusion of a further

variable. The following model was derived:

Z =25.4 - 51.2X, + 87.8X2 - 4.8X, - 14.5X, - 9.1X_ - 4.5X

1 3 4 S 6
where:
Xl = profit before interest and tax to opening net assets
XZ = profit before interest and tax to opening net capital

X3 = debtors to creditors
X4 = current liabilities to current assets
X5 = loglo(days debtors)

X = creditors trend measurement.

None of the 40 firms was misclassified but there were 4 type I errors
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in a validation sample of 11 failed enterprises (36.3%). Also 58% of
the total 31 failed enterprises had failing characteristics 4 years
before failure. Mason and Harris also used the Bayesian statistical
approach to find an indication of how many "at risk" companies will

fail each year considering the following Bayesian formula:

P(CP/F)

P(F/C ) =
r P(CP/F) + P(Cr/NF)

where

P(F/Cr) is the probability of a company, classified by the model as
"failed", actually failing
P(CP/F) is the probability of a company being insolvent and also
being classified as "failed"
P(Cr/NF) is the probability of a company being classified as
"failed", but being actually solvent.
Therefore, 18% of the companies classified by the model as "failed"
should actually fail each year. However, their model is not only able
to distinguish between known failed and solvent companies on a
historic basis, but that it has "true" predictive ability in a
statistical sense. It has been shown that the model 1is able to
identify a short list of companies that are "at risk" of failure, and
that it is also able to give an indication of the proportion of these
firms that are likely to fail in the near future. Mason and Harris did
not try to investigate the distribution of the variables before using

the discriminant analysis.
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Ohlson’s model

Due to the restrictive assumption of discriminant analysis, Ohlson
(1980) wused the <conditional 1logit analysis to construct his
probabilistic bankruptcy prediction model. This statistical method
avoids most of the disadvantages of discriminant analysis; the
requirement concerning the distributional properties of the ratios,
the output from the model which is a score not a probability of
failure and the problems arising from the use of matched samples.
Ohlson’s model assumes that P(XI,B) is the probability of bankruptcy
for any given X1 and B (where Xl is the predictor variable and B is
unknown parameters). P is some probability function, 0 < P < 1. The

logistic function is

1

P=1(1+ exp(—Yi)_ )

where Yl = ; BJle.

The use of logit means that no assumptions have to be made regarding
prior probabilities of Dbankruptcy and/or the distribution of
predictors. Ohlson also abandoned the use of a matched sample. Nine
independent variables were selected. Firm size was included as a
variable, calculated as log(total assets/GNP price-level index). Total
asset size was also used to standardize three of the other variables,
and current assets were used to standardize a fourth variable. Ohlson
adjusted the firm size variable for price level changes in order to
allow "real time implementation of the model", but it was the only
variable adjusted in the set of nine. The sample of failed firms was
selected from the Wall Street Journal Index. The firms included had
failed between 1970 and 1976, they were industrials and had to have

been traded on the stock exchange for at least three years prior to
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failure. Firms that did not report funds statements for the entire
sample period were eliminated, leaving a sample of 105 bankrupt firms.
In the non-failed sample, each of 2058 non-failed industrial firms was
allowed to contribute one year of data to the data used in estimating
the models. This means that no matching procedure was used, allowing
the non-failed set to be a random sample. Three models were estimated,
the first to predict failure within one year, the second to predict
failure within two years if the firm did not fail in the first year,
and the third to predict failure in one to two years. The coefficients
of seven variables were found to be significant at at least the 0.10
significance level. The size variable was found significant at the
0.01 significance 1level in all three models. Other significant
variables were total liabilities/total assets, working capital/total
assets, net income/ total assets, funds from operations/total assets,
and a dummy variable representing negative owner’'s equity.
Classification errors were evaluated using the same set of data from
which the model were estimated. Ohlson used this procedure for four
reasons. First, he did not see his objective as "getting a precise
evaluation of a predictive model". Second no "data dredging" was used
to find a superior model. Third, unlike discriminant analysis, the
logit technique is not an optimizing model. Fourth, the sample size is
large, which would reduce the bias stemming from the lack of using a
holdout sample. Assuming that the effects of Type I and Type II error
rates are additive and that the best model minimizes the total error
rate, a critical probability for classification was selected as 0.038.
Thus if a firm’s predicted probability of non-failure was below 0.038
the firm was classified as failing . Using this classification
procedure for the first model, the misclassification rates were 17.4

percent for the non-bankrupt firms and 12.4 percent for the bankrupt
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firms in the first year prior to the failure date, which is
significantly higher than those achieved by discriminant analysis
studies. Error rates for the second and third year models were not
reported. Since there are statistical reasons for believing that the
logit technique can improve on the results from discriminant analysis,
Ohlson found the results from his study disappointing.

The restrictive assumptions of discriminant analysis were not
required, and interpretation of individual coefficients is appropriate
in the logit model. This model lends itself, therefore, to broader
research applications than discriminant analysis models.

The failure of Ohlson’s model to achieve accurate predictions

indicates that further refinements are necessary.

Taffler’s model

Taffler’s study (1982) wused industrial enterprises quoted on the
London Stock Exchange. The failed set of 23 firms consisted of all
those companies failing between 1968 and 1973 and meeting certain
criteria to ensure data completeness, consistency and reliability.
Failure (bankruptcy) was defined as receivership, voluntary
liquidation (creditors), winding up by court order or equivalent. The
sample of non-failed firms was constructed differently to previous
studies in that no matching with failed firms by industry, size or
financial year was attempted nor was the number of firms made equal.
Taffler argued that restricting the size of the non-failed sample to
that of the failed sample only serves to restrict the total sample
size and degrees of freedom, because the degree of freedom depends on
the sample size. There is no point in restricting the sample size to

match that of the failed companies, this simply reduces the size of
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the non-failed companies with consequent reduction in degrees of
freedom. He also argued that in order to make valid inferences it is
necessary for the sample groups employed in the analysis to be
representative of their wunderlying populations, and he therefore
suggested that the matching of continuing firms with failed firms by
industry is incorrect since this does not provide for the non-failed
set to be a random selection of all presently continuing industrial
firms, particularly as some industries are more failure-prone than
others. The same goes for attempted matching both by company size and
financial year. Taffler’s data for the non-failed firms were drawn
from financial statements where financial year ends were 1in the
calendar years 1972-1973.

The set of 45 non-failed firms was finally obtained meeting the
initial industry, data availability and consistency requirements and
most importantly that the firms must be financially sound. This is the
most important departure from other studies in the selection of
non-failed firms. Taffler explicitly recognized that a continuing firm
is not necessarily financially healthy and that many companies
presently in existence closely resemble previous bankrupts in terms of
their financial characteristics. Three classes of discriminant
variable were developed: conventional ratios, 4-year trend measures
and fund statement variables. He found that the 1latter were too
volatile for meaningful analysis and the trend measures added very
little to the power of the discriminant model. Taffler therefore
focused his analysis on a set of 50 financial ratios. The distribution
of the straight ratio and trend measures were transformed (logarithmic
or reciprocal) where appropriate to improve normality. They were then
winsorized with any outliers beyond four standard deviations (s), from

the mean of the remaining observations replaced by the mean and those
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between 2.5s and 4s by the appropriate 2.5s limit. Those variables
which remained highly non-normal with many extreme values were omitted
from further analysis. using a stepwise liner discriminant analysis, a

model consisting of the following five variables was produced:

X1 = Earnings before interest and tax to opening total assets
X2 = Total liabilities to net capital employed

X3 = Quick assets to total assets

X4 = Working capital to net worth

X5 = Stockturn.

Application of the z-model to the failed sample for prior years showed
that nine of the 23 firms appeared sound on the basis of their
penultimate accounts and only eight having failure characteristics 4
years before failure. Taffler has tested his model for Iits
predictability by applying the model to 33 quoted manufacturing firms
identified as going bankrupt between 1974 and 1976. He carried on to
argue that a conservative estimate of the annual failure rate for the
period 1974-1976 would be at least 2.5 percent. Taffler used the
Bayes’' theorem by letting F denote the event failure in the next year,
AR a current at risk z-score and ;E a current solvent z-score by

considering the following Bayesian formula:

P(AR/F) P(F)
P(F/AR) = P(AR)
and —
— P(AR/F) P(F)
P(F/AR) = —
P(AR)

Using Bayes’ theorem taking his type I error of 12.1 percent and the
10.7 percent of companies with at risk scores, he suggested that the
probability of failure given an at risk profile in the next year was

20.5% and the equivalent figure gives a financially healthy z-score
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was 0.34%. Taffler redeveloped his model and tested it on an ex-ante
(i.e. forecast the future state of a firm given present data) basis.
However, the results proved disappointing with 40.4% of the 52 failed

firms being misclassified by the model.

Betts and Belhoul model

Betts and Belhoul (1982) develop a z-model consisting of the following

variables, in terms of importance

X1 = profit before interest and tax to total assets
X2 = quick assets to current assets

X4 = current assets to net capital employed

X3 = working capital to net worth

Xs = days creditors

The two samples were 26 quoted companies failing mainly between
1974-1977 and 131 ’'going concerns’ sampled randomly from the EXSTAT
tape. A set of 26 potentially discriminating financial ratios were
derived for the two groups and a conventional stepwise 1linear
discriminant approach adopted to derive the model. No type I errors

were registered and only S type II. Applying the model to an end 1979
EXSTAT tape led to only 6.1% of the 1230 enterprises registering a
failing profile which the authors considered to be on the low side.
There were S5 type I errors in a validation sample of 22 recent

failures.

Zmi jewski’s model

Zmi jewski (1984) examined the problems with non-random sample
selection in models of financial distress. He points out that

"Researchers typically estimate financial distress prediction models
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on non-random samples. Estimating models on such samples can result in
biased parameter and probability estimates if appropriate estimation
techniques are not used". He discusses two processes by which the
random selection criterion may be violated, namely the choice based
sample bias and the sample selection bias. The choice based sample
selection bias arises because of the raw frequency rate of firms
exhibiting financial distress characteristic.

Zmi jewskl points to many studies which have used the paired sample
design (e.g. Altman, 1968) and concludes that "these studies estimated
models on non-random samples which have compositions considerably from
the population’s composition". This violates the random selection
assumption and he feels that the "dependent variable group having a
sample probability larger than the population probability is over
sampled, with the over sampled group having understated classification
and prediction error rates". The population frequency has not exceeded
0.75% in the United States since 1934 according to statistics provided
by Dun and Bradstreet (1982). As a consequence of this argument
Zmi jewski expects the following 1if the sample bias is included:
"higher distressed firm sample frequency rates cause lower distressed
firm error rates". From this we would expect samples reflecting the
failure frequency rate to have higher rates in their prediction
models. Table 2.1 shows results from 2Zmijewski (1984) for a probit
model on different samples.

The results imply that if adjustments in the analytical techniques are
made then a paired design may be appropriate. This involves assigning
prior probabilities to group membership. The models developed on
unbiased data samples will have higher misclassification rates but the
should be more representative of the true classification accuracy of

the model.

31



Table 2.1 Results of a study by Zmijewski (1984).
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Lau’s model
Lau (1987) has presented a model which extends previous corporate
failure prediction models in two ways:
1. instead of the conventional failure/ non-failure dichotomy,
five financial states are used to approximate the continuum
of corporate financial health, and
2. instead of classifying a firm into a certain financial state,
the new model will estimate the probabilities that a firm will
enter each of the five financial states.
The ranked probability scoring rule was used to evaluate the quality
of such probabilistic predictions. The first extension enables the
prediction of prefailure distress in addition to ultimate failure. The
second extension conforms with more recent advances in prediction

methodologies. The five financial states are:

state 0 = financial stability

state 1 = omitting or reducing dividend payments

state 2 = technical default and default on loan payments

state 3 = protection under Chapter X or XI of the Bankruptcy Act
state 4 = bankruptcy and liquidation.

States 1 to 4 were states of increasing severity of financial
distress. The prediction models were constructed with an original
sample and then tested with a holdout sample. Each sample contained
350 firms in the financially healthy state 0, and 20, 15, 10, and 5
firms in states 1, 2, 3, and 4 respectively. These firms were selected
as follows.

1. State O firms. From the Compustal tapes, 350 firms which were
financially healthy in 1976 (1977) were selected for the original
(holdout) sample. Every firm met the following conditions: (i) its

assets-size fell in the same range ($1.6 million to $120 million) as
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that of the financially distress firms; (ii) its 1971-1977 financial
reports were available; and (iii) it experienced no financial distress
or financial loss between 1972 and 1977.

2. State 1 firms. The Compustat tapes were used to generate a list of
firms that reduced their annual dividend rate per share in 1976 (for
the original sample) or 1977 (for the holdout sample) by more than 40%
below that of the previous year. From this 1list, 20 firms were
selected for each sample.

3. State 2 firms. The Wall Street Journal Index (WSJI) and the
Standard and Poor Stock Reports were used to compile a list of firms
that had either filed for protection under Chapter X/XI during 1977 to
1980 or had C-rated bonds. The 10-K reports of each of these firms
were examined to identify those that defaulted loan interest and/or
principal payments during 1976 and 1977. Fifteen loan-defaulting firms
were so obtained for each of the two sample.

4, State 3 and 4 firms. From the WSJI list of bankrupt and Chapter-
X/XI firms, for each sample, 10 Chapter-X/XI and S bankrupt firms that
had publicly available 10-K reports were selected. Lau used three
groups of variable: financial flexibility variables (contained 7
variables), two trend variables and indicator of current financial
state. These variables are summarized in Table 2.2 and explained
below. Lau’s financial distress prediction models were constructed
using multinomial logit analysis . Considered the problem in which all
firms will enter one of J = S states. Each firm’s destiny is predicted
by K = 10 explanatory variables, designated x1, Xypeooon X 0 Defining
PJ as the probability that a given firm will eventually enter state j,

the logit model postulates that the Pj's of the firm can be estimated

as follows:
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(1) compute 2 =b_ x 4
j 17 bjzx2 o + bj,10x1o

for each state j =~ g o 4,

J
ii) then P =
(i1) then P, = exp(2 ) /leexp(zj).

The coefficient bjk can be considered as the effect of the kth
explanatory variable on a firm’s probability of entering state j.
Predictive models with three different predictive horizons were
constructed. A "year 1" prediction model was constructed with
1974/1975 financial information to predict financial distress in 1976,
and similar "year 2" and "year 3" models were constructed with
197371974 and 1972/1973 financial information respectively to predict
financial distress in 1976. The holdout sample was used to test the
ability of these models to predict 1977 distress. Lau used the QUAIL
program by Berkman et al (1979) to construct three logit prediction

models, one for each prediction horizon. Each model has five logit
functions, one for predicting each of the five states. The expected
sign of each coefficient in each logit function depends on the effect
that a variable has on a firm’s final state. Lau points out that
applying a probabilistic prediction model to a group of n firms gives
n probabilistic prediction scores, and the prediction performance is
represented by the sum of these n scores (SSn) as well as the ratio
SSn/n (since n is the maximum possible sum of scores). Lau’s results
are presented in Table 2.3, which gives the SSn for each of the five
groups of firms and for the entire set of 400 firms. For example, it
indicates that the probabilistic predictions produced for 1S5 state-2
firms in the original sample by the year-1 multinomial logit analysis

prediction model earned a total of 14.38 out of a maximum possible
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score of 15. Except for the state-4 firms in the holdout sample, Table
2.3 indicates that the score earned by each group of firms is close to
the maximum possible score. For comparison, multiple discriminant
analysis was applied to the same data set, and the SSn’s for the
entire set of 400 firms are given in the last column of Table 2.3. It
can be seen that multinomial logit analysis outperforms multiple
discriminant analysis in every case, with larger differences in the
holdout sample.

The results of a multinomial 1logit analysis were poor in
comparison with those reported in earlier two-state models, but this
is partly due to the overstatement of predictive accuracy of the
earlier work, and also because a five state model demands more from

the data and could itself be a reason for the poorer results.
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Table 2.2 Summary of explanatory variables used in Lau’s (1987)

five-state financial distress prediction.

Vanabie Abbre- Neture of
N Bref Definiion of Vanasbie the V

Group I: Financial Flexibdity Variables
X, = 1 if one of the [irm’'s lcan agreements containe 3 LRT dichotomous
or more restnctive larms and the ioan’s interest is

above the prnime rate.
a () otherwise.
X; (Firm's Detn-Equity Ratio) + (Industry Debt-Equity DER ratio
Rauo).
X, Working Capital Flow/Total Debt. WFTD nrmato
X. Stock Price Trend = TCSP  rauwo

(H = H.\) + (L= L)
H."Ho-."'[."lhl

where H, and L. are, respectvely, the high and low
vaives of the range of stock pnces in year L
X, (Firm’'s Operaung Expense 0 Sales Ratio) + (Indus- OPES nmauo
try's Opersting Expense to Saies Ravo0).
Xe = 1 no dividend 1s being paid currently, DCSD  dichotomous
= ( otherwse.
X: = 1 i the firm liqudates its operating naaets in the LOPA  dichotomous
pencd and there 18 no decreasung trend of earn-
ings flow,
= () otherwase.

Group 2 Two Trend Varables
Xe Trend of Capital Expenditures = TCEP rmauo

(K- K_.)
(K» Koy v Ker = KL)/4

where X, = capital expenditure in year &
X, Working-Capitai Flow Trend = TWF ratio

(w,'.. - wFr-l)
(WF, + WF_, + WF_, » WF,..)/4

where WF, = working capital in year &
Group J: [ndicator of Current Financial State
Xie= 1 if dividend payments are omitled or reduced DVD dichotomous
more than 40% in the penod,
= 0 otherwse.
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Table 2.3 Aggregate probabilistic prediction scores earned for

different groups of firms for Lau’s model (1987).

Muitinooual Logit Modeis Multipie
Predicuoa Firme 1n State’ All Discriminant
Horooa Firms Mocets
] 1 2 3 ¢ (ne All Firms

(n=350) n=20) (ne15) (m=10) (m=S) - 400) (n = 400)

Orginal Sampie®

Year-1 Model 3492 18.67 14.38 9.45 4.64 3963 3913
Year-2 Model  347.7 1712 13.21 7.47 .00 390.5 3858
Year-3 Model 347.1 16.48 1253 169 44 38s.1 379.6

Holdout Sampic®

Year-1 Model 336.0 1733 13.25 780 1.74 byl -9 321
Year-2 Model ns.2 16.87 11.30 782 252 hyn i) 369.1
Year-3 Model 3349 16.52 1238 752 2134 J742 365.7

' State defimueas— (rve-atate financisl distress modeis
Stae 0 financisl stateliity:
State |: omtting or reoucing dividend pavments
Swe = techascal defauit and defsuit on losn peyments
State J: protecton unaer Chaoter X or X! of the Bankruptey Actc
Stae ¢: bankruptey and liquidation.
' Ongnal sampir: {inancal informatson (rom 1972-75 s used o predct (irms in financial distress 1n
1976
* Holdowt sampie finsncial informstion (rom 197378 1 used W predict firms in fisancial distress 8

195
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Keasey and Watson model

Keasey and Watson (1987) , used logit function to determined whether a
model utilising a number of nonfinancial variables, either alone, or
in conjunction with financial ratios, was able to predict small
company failure more accurately than models based upon financial
ratios only. For the 1logit functions the dependent variable was

failure/non-failure and the set of indepent variables were as follows:

model 1 = financial ratios only
model 2 = nonfinancial information only
model 3 = financial ratios and nonfinancial information.

The financial ratios used in models 1 and 3 consist of 28 ratios,
covering various aspects of company performance such as profitability,
liquidity and gearing. The non-financial variables included are number
of directors, time lag in submitting accounts to Companies House,
audit qualifications and the presence of a secured loan. The sample of
146 companies (73 failures and 73 non-failures) used to obtain the
univariate results was utilised in their study to obtain the initial
logit functions. Information on a further 20 companies (10 failures
and 10 non-failures) was obtained for use in holdout tests. No attempt
to incorporate the relative costs of misclassification of failed and
non-failed companies was undertaken. The financial and non-financial
information for failed companies has been taken from the last three
years of published accounts available before failure, therefore not
restricted to a common period prior to failure. From a practical
decision-making viewpoint this procedure of basing the logit functions
upon the most recent information that is available for each company
seems sensible for two reasons. First, the practical decision-maker
cannot exclude companies merely because they have not submitted their

latest set of accounts to Companies House. Second, it recognizes that
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a practical decision model can only utilize information which is
available prior to failure.

The correct classification results were 76.7% for model 1, 7S5.3%
for model 2 and 82.2% for model 3. So comparing the results of model 1
and 2 it is apparent that the non-financial information contained in
model 2 does not succeed in correctly classifying a greater number of
cases than the benchmark model 1. However, its poorer performance in
terms of classificatory success for the original sample 1s marginal.
The overall correct classification rates for the holdout sample shows
that, the non-financial data-model 2, provides a better overall
prediction rate (65%). Furthermore, the more extensive model 3 does
not appear to provide a better overall prediction rate (65%) than
model 2. They conclude that marginally better predictions concerning
small company failure can be achieved by the wuse of these

non-financial variables.

Barnes’s model

Barnes (1990), used multivariate discriminant analysis to predict
takeovers. Barnes points to three factors effecting predictive
ability. These are: (i) the strict statistical assumptions on which
the estimating procedures are based, (ii) further statistical
implications arising from the way in which the sample is chosen, and
(iii) the predictive application of the model which includes,
particularly, its stability over time. Data concerning 92 takeover
bids of UK quoted companies during the years 1986-1987 were obtained
(mergers announced prior to the October 1987 crash). Each company was
matched with a non-acquired listed company within the same industrial

sector whose market capitalisation immediately prior to the merger was
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the nearest. Nine basic financial ratios for each company two years
prior to the merger were obtained. However, the ratios themselves were
not used in the discriminant model. Instead, the ratio between it and
the relevant sector average, the industry-relative ratio (which is
defined as the ratio of a firm’s financial ratio relative to the mean
value for that ratio in the firm's industry at a point in time) was
used. Barnes also used factor analysis, in order to eliminate the
effects of statistical multicolinearity and the overlapping nature of
some of the nine ratios. Five factors were found to explain 91.48
percent of the variance in the original data matrix. His model
predicted 68.48 percent correctly. The predictive accuracy of Barnes’
model was tested on a further group of 37 acquired companies and 37
matched non-acquired companies. Here the model predicted 74.3 percent
correctly. On UK data using multivariate discriminant analysis, he
achieves good predictive ability but does not test his model on a

subsequent period due to the stock market crash in October 1987.

2.5 Summary and Implications

In this chapter the concept of failure was introduced and a
number of failure prediction studies have been discussed, including
the seminal studies of wunivariate analysis (Beaver, 1966) and
multivariate analysis (Altman, 1968). An overview of subsequent
research has also been given, predominantly using multivariate
discriminant models (MDA).

An examination of the methodology used in the earlier bankruptcy
prediction studies shows that there are three principal methodological

flaws which make the reported prediction accuracies unreliable.
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pitfalls in MDA With the exception of Ohlson (1980), Zmijewski
(1984), Lau (1987) and Keasey and Watson (1987), the multivariate
financial prediction studies reviewed here have used MDA for model
construction. Eisenbeis (1977) provided a detailed discussion of
several flaws in the way MDA has been used, and of the limitations
which result. These are as follows :

(i) Distribution assumption of the variables : The MDA technique

assumes that the explanatory variables are multivariate normally
distributed, and Lachenbruch (1975) has shown that both linear
and quadratic discriminant analysis are quite sensitive to this
assumption. However, most of the MDA prediction studies ignored
the need to test for the multivariate normality of their
explanatory variables.

(ii) Choice of a priori probabilities : The importance of assigning

correct a priori probabilities to the various discriminant
groups was overlooked 1in earlier studies. Most researchers
simply assumed that group membership is equally likely among
possible groups, even though in the actual population the
number of surviving companies is usually much higher than the
number of non-surviving companies.
(iii) Interpretation of the significance of explanatory variables

The earlier financial prediction models using MDA either
overlooked the interpretation of the significance of the

individual wvariables or have interpreted it incorrectly.

Consider a discriminant function of the form
k

2 = a, + z alxl, where the Xi’s are the explanatory variables.
1=1

An extension from multiple regression suggests that the

importance of an X1 is 1indicated by 1its standardised

coefficient aIXI. However, Eisenbeis (1977) pointed out that,
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unlike the <coefficients in multiple regression, “the
discriminant function coefficients are not unique; only their
ratios are. Therefore, it is not possible, nor does it make
any sense to test, as in the case with regression analysis,
whether a particular discriminant function coefficient is
equal to zero or any other value". Eisenbeis then reviewed and
evaluated several methods that have been proposed 1in the
literature to determine the relative importance of the
individual explanatory variables.

(iv) Assessment of classification errors : In most of the early

studies, the hold-out sample used for cross validation was
drawn from the same period as the analysis sample used to
derive the discriminant function, and the cross validation test
was then presented as a prediction test. In fact, a validation
test using a hold-out sample from the same test period merely
validates ex-post discrimination. It does not validate the
model’s ability to predict for future periods. Therefore, those
studies that presented the cross validation tests as prediction
test may have over-estimated the predictive ability of their

models.

Ohlson (1980) and Keasey and Watson (1987) applied a new
technique to multivariate bankruptcy modelling by estimating logistic
models. Lau (1987) uses multinomial 1logit. Each expected that a
logistic and multinomial logit models would improve the results since
the data provide a better fit for the assumptions of the technique.
The results of neither study bear this out. However, the strong
significance of the estimates for these models, the pattern of

significance of the financial attributes and the information content
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transformed logit probabilities as a financial risk measure appear to
be the main contributions of these techniques.

Sampling The use of matched samples in the majority of previous
studies will have resulted in sample selection bias in the absence of
a suitable estimation procedure. Therefore, earlier studies may be
said to suffer in this respect from inconsistent and biased estimates

of model predictions.

Definition of 'failure’ Many previous prediction models have defined

failure narrowly as bankruptcy. This narrow definition of failure

leads to the restricted population sizes used in many previous

studies.

Implications

The methodological critiques of Eisenbeis (1977) and Palepu
(1986) have identified a number of shortcomings in failure prediction
models and particularly with regard to the use of discriminant
techniques, sampling and the definition of failure. In this thesis,
particular attention 1is paid to the improvements of statistical
method, especially with respect to the three aspects mentioned above
that is :

- the extension of MDA and logit analysis to survival modelling

in the context of censored observations,

- the use of unbalanced groups of survivors and non-survivors,

leading to a randomly stratified sampling technique,

- the introduction of a 1likelihood solution to sample
construction when there are companies which cease trading for
reasons other than technical bankruptcy, such as companies
which are taken over.

These three issues are discussed in the remainder of this thesis.
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CHAPTER THREE

THE DATA SET AND EXPLORATORY ANALYSIS OF THE FINANCIAL RATIOS

3.1 The Sample

The analysis reported in this thesis is based on the
available set of non-surviving and surviving companies covered by
EXSTAT - i.e. all UK companies of interest to the investing
institutions (see appendix 1 for more information about EXSTAT).
Previous studies of corporate failure have used smaller size data
bases of companies that were often a mix of manufacturing,
merchandising, and various other industries (Beaver, 1966 studied
158 companies, thirty being nonmanfacturing companies, e.g. twelve
merchandising companies and various other types of company ). In
constructing the sample for this study, two general guidelines
were followed. First, a paired-sample technique is not employed -
each non-surviving company is not matched in the analysis with a
surviving company. Second, only industrial companies are
considered in this study.

The information covers the period 1971 to 1984. As mentioned
above, the companies were selected from EXSTAT's industrial
sectors (codes 19 to 34). Table 3.1 shows the sectors in which the

surviving and non-surviving group of companies were operating.
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Table 3.1 Industrial classification.

Name of sector Sector group
No.
Electricals (excluding radio and T.V.) 19
Cold formed fastenings 20
Founders and stampers 21
Industrial plant, Engines and compressors 22
Mechanical Handling 23
Pumps and values 24
Steel and chemical plant 25
Wires and Ropes 26
Misc. Mechanical Engineering 27
Machine and other Tools 28
Misc. Engineering contractors 29
Heating and Ventilating 30
Instruments 31
Metallurgy 32
Special steels 33
Misc. metal forming 34
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The Non-surviving Companies

Depending on one’s definition of failure, various
interpretations are possible. Reference to Table 3.2 (below) shows
that if failure is taken solely as bankruptcy, then only 21
companies (plus one which did not survive for one year and,
therefore, did not publish more than one set of financial
statements) did not survive. However if a broader definition is
used, then various other categories might be included (Martin,
1975) which means that up to 104 companies could be considered as

non-survivors.

Table 3.2 Classification of 104 non-surviving companies

Number
Classification of sample
Bankruptcy 22
Other liquidations 19
Mergers or takeovers 63
82
104

An analysis of the data for non-survivors is given in Table
3.3. This shows for each of the subclasses - "bankrupt"”, "merged"
and "others" - (i) the number of companies failing in each of the
years from 1971 to 1984, and (ii) the number of companies for
which data was avallable in each year.

In addition, Table 3.4 shows the length of the time series
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available for analysis. It can be seen that a number of companies
do not survive for five years. Previous researchers have tended to
eliminate such companies from their analysis. That approach has
not been followed here, although companies which did not survive
for even one year were excluded as there would have been no data
on which to base prediction. This is an important point in the
context of survival analysis (see Chapter 6) and also affects
sample selection in the application of discriminant analysis and
logit analysis (see Chapters 4 and 5). Consequently, the analysis
reported in the thesis omits 1 bankrupt company and 8 merged

companies. The sample sizes used in analysis were as follows :

Bankruptcy 21

| Other liquidations 19
Mergers or takeovers 55
95

Appendix 2 gives a listing by name of non-surviving companies.
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Table 3.3 Number of non-surviving companies for which data

was available.

Bankrupt Merged Other

Year

i ii i ii i ii
1971 0 1 0 7 0 2
1972 0 4 0 15 0 6
1973 0 3 0 13 0 S
1974 0 4 0 16 0 6
1975 0 5 0 23 0 10
1976 1 8 6 30 0 14
1977 1 15 10 45 1 16
1978 5 21 5 39 0 16
1979 1 16 4 35 0 18
1980 1 14 11 31 1 18
1981 2 13 9 24 S 17
1982 4 11 4 14 4 12
1983 4 7 9 14 2 8
1984 3 3 5 S 6 6
Total 22 —_— 63 _ 19  —

Key

(i) the number of companies failing in each of the years.
(ii) the number of companies for which data was available

in each year.
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Table 3.4 Length of time series for non-surviving companies

No. of
reporting Bankrupt| Merged Other Total
periods

1 1 8 0 9

2 3 7 6] 10

3 1 8 0 9

4 0 6 0 6

S 3 8 1 12

6 6 10 S 21

7 3 S S 13

8 3 3 3 9

9 1 1 1 3

10 1 S 0 6

11 1 0 1

12 1 2 3

13 1 1

14 1 1

Total 22 63 19 104
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The Surviving Companies

The sample of <continuing or surviving companies was
constructed in a way whereby there was no matching with
non-survivors by size or financial year, nor was the number of
companies equal in the two groups. Taffler (1982) argued that
restricting the size of the surviving sample to that of the
non-surviving set only served to restrict the total sample size
and degrees of freedom. He argued that the statistical methods
only require separate multivariate normality in the constituent
groups together with equality of their variance-covariance
matrices. Therefore there is no need for the surviving sample to
be exactly the same size as the non-surviving set.

There were 359 surviving companies in the sectors previously
indicated at the date when the EXSTAT tape was compiled. Earlier,
in Section 2.4.1.2, we mentioned that Taffler (1982) also
explicitly recognized that a continuing company is not necessarily
financially healthy and so, in his study, the surviving sample was
made up of healthy solvent companies. Taffler used a group of
investment analysts of a leading company of London stockbrokers to
judge whether a continuing company 1is fully solvent or not.
in our study, this step of selecting only healthy solvent

However,

companies was ignored as it would necessitate external assistance
not available during the selection process.

However, amongst the surviving companies were some which

either had been existence for only one year, or which had not

reported in 1984, the last year of data on the EXSTAT tape used.
Table 3.5 shows the availability of data for such companies in
each year, and the length of the time series available for

analysis. As with the non-survivors, a number of survivors had
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been in existence at the date of censoring for less than 5 years,

As mentioned before, the companies with short 1lives were not

excluded, except for nine which reported only in the last year.
For these, it was not possible to include even one lagged
observation in the analysis. In addition, thirteen companies which

were coded as survivors had not reported in either 1983 or 1984.
These were excluded from the analysis under stratified sampling

(see Chapter 4). Consequently the differing samples used in this

thesis are based on the following :

Survivors 337
Survivors not reporting in 1983/1984 13
350
Survivors reporting in 1984 only 9
359

An issue which has been considered by others (Barron, 1986)
concerns the heterogeneity of reporting dates. That is, companies
for the

may change their reporting date and reporting period, i.e.

year ended 30 / 6 / 81, for example, to a subsequent period of 9

months to 31 / 3 / 8 or, perhaps, 15 months to 30 / 9 / 82.

Although this was taken in to account in computing financial

ratios by annualising the ratio, this affects the structure of the

data which is assumed for the majority of companies to be one of
yearly reporting. In this thesis, it 1is assumed that the time

series follows annual intervals in spite of the above. This is
Justified by the following analysis : The number of reporting

periods was compared to the length of the time series in years.

There was a variation in only 19 out of 359 cases. In 8 cases,
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there was one more set of reported accounts than years of
existence. In 11 cases, there was one less. In other words, there
were no substantial timing effects in the longer-term. In view of
the fact that one company, for example, reported twice in 1972,
not in 1975, twice in 1977, not in 1981, and twice in 1984, the
support for the assumption of regular reporting in the longer-term
allows us to deal effectively with a problem that, nevertheless,
has shorter-term implications.

Appendix 3 gives a listing by name of surviving companies.
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Table 3.5 Number of surviving companies for which data was

available and the length of time series.

No. of surviving
Length of time series
companies in each
year
No. of
Number of Number of
Year reporting
companies companies
periods
1971 20 1 9
1972 49 2 13
1973 S8 3 10
1974 64 4 4
1975 83 5 3
1976 153 6 6
1977 275 7 50
1978 317 8 119
1979 320 9 60
1980 309 10 22
1981 319 11 10
1982 333 12 14
1983 350 13 18
1984 346 14 21
Total 359
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3.2 Collection of Financial Ratio Data

In this study as in many previous studies the independent
variables are various financial ratios which are calculated from
financial data disclosed by the companies under study. No attempt
was made here to develop any new ratios. The financial ratios used
here are ones that were regarded as notable by a collection of
current accounting and finance texts. The emphasis was not on
trying to develop new financial concepts but to evaluate carefully
the existing concepts. The variables included in the study were
chosen on the basis of their

(1) popularity in the literature,

(2) potential relevancy to the study (Altman, 1968).

The 23 financial ratios which were decided on for this study

are listed in Table 3.6.

It should be noted that financial ratios are constructed from
accounting information disclosed by companies, and wused as
indicators of financial structure or performance. Generally, the
underlying accounting information relates to residual balances at
a particular point in time (such as the amount of liquid funds
held by a company at the close of business on, say, 31st December)
or to transactions accumulated over a period of time (e.g. the
salaries and wages paid by the company, or the profits calculated
by the company, for the year from 1st January to 31st December).
Companies disclose such information from one year to the next,
generally for the same period and at the same closing date. Hence,
financial ratios can be viewed as repeated measures. However,

there are a number of issues to be considered in this respect:

55



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Table 3.6 List of financial ratios

Financial Ratio

Net income to sales

Funds flow to net worth

Funds flow to total assets

Net income to total assets

Net income to net worth

EBIT (earnings before interest & tax) to sales
EBIT (earnings before interest & tax) to total assets
Quick assets to total assets

Funds flow to sales

Current assets to total assets

Net worth to sales

Sales to total assets

Total assets to net worth

Funds flow to current liabilities
Retained earnings to total assets
Current assets to current liabilities
Quick assets to current liabilities
Current liabilities to net worth
Current liabilities to total assets
Cash to sales

Cash to total assets

Current assets to sales

Quick assets to sales

S6

(NI/S)
(FF/NW)
(FF/TA)
(NI/TA)
(NI/NW)
(EBIT/S)
(EBIT/TA)
(QA/TA)
(FF/S)
(CA/TA)
(NW/S)
(S/TA)
(TA/NW)
(FF/C.LIB)
(RE/TA)
(CA/C.LIB)
(QA/C.LIB)
(C.LIB/NW)
(C.LIB/TA)
(CASH/S)
(CASH/TA)
(CA/s)

(QAsS)



(1) As mentioned in the Section 3.1, occasionally, a company will
alter its reporting date and disclose information for 9 months
or 15 months, rather than the usual calendar year; thus, these

repeated measures are characterized by some irregularity.

(ii) Although, the greater proportion of companies report for the
calendar year to 31st December, there is heterogeneity in
reporting dates in countries such as the U.K.. In a sense,
the sample revolves through a one year cycle, with all
"current" observations being updated during that period. In
the context of time series analysis, this is an important
issue as "mean" effects may be estimated on each occasion
that a single company releases new information whilst, at any
one point in time, the latest information relating to the
sample Wwill cover periods beginning up to two years

beforehand.

3.3 Mean Effects and the Influence of Censoring

In this Section, we provide some exploratory analysis of the
general time series behavior of ratios, in the 1light of the
features discussed in Section 3.2. Generally, we might consider an
observation for the ith company at time t to be a linear

combination of past terms

Allowing for an effect that is attributable to conditions

influencing all companies, we rewrite this as
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Y, - v+ ¥, v B(Y " ?t_l) .........

where

?t-i is a mean effect ( the mean of observation for all companies
at t-1)

Bl(Yl’t_1 - ?t-l) is a company effect relating to company i at t-1
and

Yt is a mean effect for the current period which, for example,
could be estimated from observations on other companies for the

current period.

This is a generalised representation of the view that current
outcomes are explained by events influencing all companies during
the current period and past periods, modelled by some kind of
transfer.function, plus an effect attributable to the company’'s
own past (in this case, we assume a systematic company effect, but
this could well be simplified to a random term).

However, our preliminary analysis showed that such mean
effect tend to be far less influential than expected, particularly
in comparison with the influence of censoring. We estimated mean
effect for each month, in order to start to overcome problems of
non-synchronous reporting and changes in reporting date. Then, we
generated monthly estimates for each company of the ratio
Y = XI/X2 by assuming that X1 and X2 are each described by
straight lines between reporting dates (not a very adventurous
approach, but a straightforward starting point) by using the
following straight line equation

Y. - Y Y-Y
1
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The mean was estimated as the median monthly observation for the
sample. As inferred above, the kind of perfect foresight assumed
here is relatively simple, and more interesting approaches could
be adopted to take account of information in past time series, the
incremental evolution of the sample data set, and so on.
Nevertheless, it is interesting that the median follows a path in
the longer term that 1is well-described by the effects of
censoring. For example, for the median Current Assets/Current
Liabilities (CA/C.LIB) ratio for <censored companies (i.e.
survivors), we note a relatively stable median seemingly
uninfluenced by temporal conditions in the economy for most of the
period, but declining towards the end (see Figure 3.1 below). This
decline in characteristic of censored data, due to the inclusion
of failing (but not yet failed) companies in the censored sample.
This can also be seen by plotting CA/C.LIB against termination
time (i.e. the number of periods before failure). The ratio
declines as failure approaches (see Figure 3.2 below). When we
consider the mean effect for failed (and some taken-over
companies), the proportion of observations relating to companies
which are close to failure increases as the date of censoring
approaches and, accordingly, the mean falls. For the median Net
Income / Sales (NI/S) and Net Income / Total Assets (NI/TA) ratios
for censored companies the results shown in Figures 3.3 and 3.4
for the NI/S ratio, 3.5 and 3.6 for the NI/TA ratio indicated
properties similar to the CA/C.LIB ratio. Therefore it is

reasonable to arrive at the same conclusion for these ratios as

for the CA/C.LIB ratio.
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RATIO & MEDIAN

Flgure 3.1 The Current Assets / Current Llabilities ratios

for surviving companies and the median ratio
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Figure 3.2 The Current Assets / Current Liabilities ratio vs.

Termination time for surviving companies
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RATIO & MEDIAN

Figure 3.3 The Net Income/Sales ratios for surviving

companies and the median ratio.
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Figure 3.4 The Net Income/Sales ratio vs. Termination time

for surviving companies
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Figure 3.5 The Net Income/Total Assets ratios for surviving

companies and the median ratio
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Figure 3.6 The Net Income/Total Assets ratio vs. Termination

time for surviving companies
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3.4 Distribution of Financial Ratios

Much research using corporate financial indicators assumes
that the data are normally distributed. There has been some
empirical refutation of this assumption. In this Section, the
normality assumption is subjected to extensive testing, and the
statistical characteristics of the 23 financial ratios are
investigated.

This Section reports an empirical examination of the
underlying distribution of selected U.K. industrial company
financial ratios. Industrial data are usually assumed to have a
normal distribution in industrial company research and financial
analysis. Most studies involving the analysis of financial ratios
either implicitly or explicitly assume that results from the
sample are statistically related to the corresponding population
ratios on the basis of the central 1limit theorem. This theorem
states, in brief, that sampling distributions approach normality
as sample slize 1increases. This property 1is the basis for
researchers’ normality assumption. Populations that are normally
distributed have sampling distributions that follow the normal
distribution. As a population diverges from normality, for this
population, how large must n be so that the normal approximation
is accurate enough? This Section examines a more basic threshold
question: are the population distributions of the ratios used for
analysis in this thesis normal?

Deakin (1976) tested for normality (and for transformation to
normality) wusing the financial ratios of U.S. manufacturing
companies for the 19 years from 1955 to 1973. He concludes that an
assumption of normality cannot be supported from his research on

industrial companies. Bougen and Drury (1980) investigated
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financial ratio distributions, using the financial ratios of U.K.
companies from 45 different industries, for 1975, again concluding
that an assumption of normality was found untenable for each
ratio. Bedingfield et al (1985) observed that many financial
ratios are skewed and non-normally distributed. Barnes (1982)
recommended that when the basic assumption of ratio analysis ,
i.e. proportionality, is violated, non-normality will be found.
precisely, he demonstrated that when the intercept of ratio Y/X is
not equal to zero, the distribution of this ratio will be skewed.
For each ratio, annual measures are employed for central
tendency, dispersion, skewness and kurtosis. Each measure is a
partial description of the underlying distribution and provides an
indication of 1its shape and form. An effective means of
determining whether an empirical distribution follows an
hypothesized and theoretical distribution is to compare their
characteristics. The appropriate analytical technique is to apply
the Kolmogorov-Smirnov or chi-square goodness of fit test or
Shapiro-Wilk test. To test the normality assumption, a
Kolmogorov-Smirnov (K-S) statistic (Conover, 1971) 1is employed
here. Table 3.7 presents the analysis of the financial ratios for
U.K. industrial companies for survivors and non-survivors
combined. The standard deviation is presented as one measure of
dispersion and is supplemented by the dimensionless coefficient of
variation. The third moment about the mean measures skewness, or
the symmetry of a distribution about its mean. If the mean and
median of an empirical distribution diverge, the distribution is
skewed. The sign of the skewness statistic indicates whether the
distribution 1is positively or negatively skewed. Kurtosis is

measured by the fourth moment about the mean to describe the
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peakedness or flatness of the distribution. The larger the index,
the greater is the peakedness; the smaller the index, the flatter

is the distribution’s shape.

Table 3.7 Descriptive of distribution of financial

ratios for survivors and non-survivors combined.

Financial Standard Coefficient

ratio Mean deivation of variation Skewness Kurtosis sta }s—
NI/S 0.03 0.14 4.41 -43. 48 2308. 38 16. 40
FF/NW 0.23 0.18 0.82 -2.65 55.78 5.70
FF/TA 0.11 0.09 0.79 -4.43 64. 37 5.22
NI/TA 0.04 0.07 1.60 -6.91 118.38 8.56
NI/NW 0.08 0.16 1.89 -6.47 143.26 10.44
EBIT/S 0.06 0.16 2.67 -33.36 1652.90 13.27
EBIT/TA 0.08 0.09 1.22 -3.76 55.14 5.11
QA/TA 0.37 0.12 0.32 1.09 3.20 3.62
FF/S 0.08 0.15 1.80 -38.55 1942.80 13.86
CA/TA 0.69 0.12 0.18 -0.53 0.95 2.63
NW/S 0.44 0.31 0.71 1.82 51.51 8.58
S/TA 1.38 0.70 0.50 11.10 210.71 10.09
TA/NW 2.16 1.02 0.47 3.20 24.30 10.69
FF/CL 0.32 0.29 0.92 -5.17 140.50 5.17
RE/TA 0.28 0.21 0.74 -5.40 81.42 5.02
CA/CL 1.91 0.78 0.41 3.25 23.62 7.54
QA/CL 1.02 0.54 0.53 4.01 31.07 9.52
CL/NW 0.95 0.83 0.87 3.45 20.63 10.66
CL/TA 0.40 0.15 0.38 4.11 72.48 3.44
CASH/S 0.05 0.12 2.40 11.23 225.42  20.14
CASH/TA 0.06 0.09 1.56 3.05 13.05 15.51
CA/S 0.55 0.25 0.45 10.45 229.16 8.99
QA/S 0.30 0.20 0.67 15.62 457.48 13.24
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The results in Table 3.7 show that the skewness estimates for all
ratios are significant and also indicate that there is a decided
and rather extreme skew to the distribution of financial ratios.
The kurtosis shows profound peakness of all ratios which have
kurtosis significantly larger than the value for the normal
distribution. There is a peakedness that in some cases reaches
exaggerated proportions. Note that the approximate sample variance
for skewness and kurtosis statistics are given by 6/N and 24/N
respectively for a normal distribution (Snedecor and Cochran,
1980). Based on the skewness and kurtosis statistic the normal
distribution seems to be a poor distribution for describing
financial ratios. The Kolmogorov-Smirnov (K-S) statistics in
column 7 of Table 3.7 supports this argument. The
Kolmogorov-Smirnov (K-S) statistics indicated that the ratios are
not normally distributed.

Deakin (1976) reports that, at times the square root and
natural log of ratios are normally distributed even though the raw
data may not be. These same two transformations are made on the
financial ratios used in this study and separate
Kolmogorov-Smirnov tests are repeated as we can see in Table 3.8.
An examination of these additional data indicates that neither the

square root nor the log transformation assures normality.

The sample moments in Tables 3.9 and 3.10 provide some
information about the distribution of the financial ratios for
non-survivors and survivors respectively. The results in Tables
3.9 and 3.10 indicates that there is an extreme skew to the
distribution of financial ratios in both cases. The financial

ratios examined have a nonsymmetric distribution. Given the
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extreme skewness and kurtosis measures, the null hypothesis of
normality is rejected. The Kolmogorov-Smirnov (K-S) statistics in
Tables 3.9 and 3.10 supports this argument. This is an issue which
has been investigated for the first time in a recent article by
Hopwood, Mckeown and Mutchler (1988) and, although the analysis in
this thesis does not attempt to use innovative models allowing for
non-normality as the major focus 1is with other methodological

issues.
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Table 3.8 K-S statistic test for the natural log and the

square

root of

non-survivors.

the

ratios for survivors

Financial K-S statistic K-S statistic
ratio for log for square
root
NI/S 23.17 19. 45
FF/NW 8.20 6.59
FF/TA 7.57 6.19
NI/TA 10.75 9.54
NI/NW 15.98 12.15
EBIT/S 21.43 16.87
EBIT/TA 7.59 6.12
QA/TA 2.96 2.39
FF/S 22.18 17.83
CA/TA 5.42 3.95
NW/S 12.55 8.79
S/TA 4.51 5.66
TA/NW 9.35 9.79
FF/CL 11.02 6.98
RE/TA 9.98 6.83
CA/CL 2.68 4.91
QA/CL 3.65 6.14
CL/NW 8.57 9.52
CL/TA 2.97 2.14
CASH/S 17.37 8.82
CASH/TA 14.30 7.10
CA/S 3.11 5.11
QA/S 5.29 8.32
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Table 3.9 Descriptive of distribution of financial

ratios for non-survivors.

Financial Standard Coefficient K-S
ratio Mean deivation of variation Skewness Kurtosis stat-
istic
NI/s 0.04 0.08 2.20 3.82 30. 41 4.58
FF/NW 0.19 0.25 1.31 -7.10 100. 44 4.00
FF/TA 0.01 0.08 0.78 -0.98 4.31 1.98
NI/TA 0.04 0.06 1.54 -0.96 3.37 2.64
NI/NW 0.05 0.07 1.45 -10.44 157.53 5.82
EBIT/S 0.07 0.13 2.02 5.78 47.99 5.28
EBIT/TA 0.07 0.08 1.22 -0.13 1.73 1.29
QA/TA 0.34 0.11 0.32 0.77 2.48 1.54
FF/S 0.08 0.08 0.95 -2.68 17.52 2.80
CA/TA 0.68 0.13 0.19 -0.88 1.35 1.62
NW/S 0.50 0.42 0.85 4.70 27.49 5.71
S/TA 1.24 0.37 0.30 0.26 1.35 1.23
TA/NW 2.16 1.03 0.47 5.92 59.29 4.54
FF/CL 0.27 0.25 0.93 -0.17 6.09 2.08
RE/TA 0.26 0.17 0.67 0.23 1.54 1.94
CA/CL 1.83 0.94 0.52 5.82 52.15 3.97
QA/CL 0.92 0.57 0.62 6.91 76.97 4.34
CL/NW 0.98 0.83 0.85 4.24 26.37 4.46
CL/TA 0.41 0.13 0.32 0.38 0.53 1.13
CASH/S 0.0S 0.13 2.75 6.62 57.31 8.34
CASH/TA 0.04 0.08 1.86 3.77 17.56 6.86
CA/S 0.59 0.22 0.38 3.70 23.56 3.50
QA/S 0.30 0.18 0.58 4.75 32.19 5.14
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Table 3.10 Descriptive of distribution of financial

ratios for survivors.

Financial Standard Coefficient K-S
ratio Mean deivation of variation Skewness Kurtosis stat-
istic
NI/S 0.03 0.15 4,78 -42.84 2135.03 15.86
FF/NW 0.23 0.17 0.73 0. 47 8.15 4.34
FF/TA 0.11 0.09 0.80 -4.86 70.80 4.94
NI/TA 0.04 0.07 1.61 ~7.46 125.79 8.26
NI/NW 0.09 0.14 1.53 -1.35 20.84 8.18
EBIT/S 0.06 0.16 2.78 -37.09 1759.38 12.91
EBIT/TA 0.08 0.09 1.22 ~-4.22 61.04 5.08
QA/TA 0.38 0.12 0.32 1.13 3.26 3.43
FF/S 0.09 0.16 1.89 -37.62 1782.28 13.55
CA/TA 0.69 0.12 0.18 -0.46 0.83 2.22
NW/S 0.43 0.29 0.67 -0.58 59.32 6.39
S/TA 1.41 0.74 0.52 10.96 196.23 9.84
TA/NW 2.15 1.01 0.47 2.70 17.70 9.71
FF/CL 0.33 0.30 0.92 -5.72 151.95 4.80
RE/TA 0.28 0.21 0.75 -5.94 87.34 4.92
CA/CL 1.92 0.75 0.39 2.31 10.02 6.59
QA/CL 1.04 0.53 0.51 3.44 21.69 8.55
CL/NW 0.95 0.83 0.87 3.31 19.55 9.74
CL/TA 0. 40 0.16 0.39 4.52 78.88 3.44
CASH/S 0.0S5 0.12 2.36 12.35 270.46 18.31
CASH/TA 0.06 0.09 1.51 2.95 12.51 13.95
CA/S 0.55 0.25 0.46 11.38 254.23 8.45
QA/S 0.30 0.20 0.69 16.84 496.93 12.22
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3.5 Principal Component Analysis

Many of the ratios included in the studies are highly
correlated with one other. This overlapping occurs because the
ratios are derived source accounting data. Such overlapping can
still be found in most recent studies (Chen and Shimerda, 1981).
For example the 56 items used in the computation of the 28 ratios
included in the Elam (1975) study are derived from only 18
different pieces of financial data, and the 28 items for Deakin’s
(1972) ratios consist of only 10 separate pieces of data. The
elimination of such overlapping would aid in the development of a
useful set of financial ratios. Not all overlapping ratios,
however, can be eliminated by visual inspection. Analysis of
empirical relationships among financial ratios could be performed
through correlation analysis ( Gombola and Ketz, 1983). If two
ratios are highly correlated, then the user could consider one of
the pair to be redundant, discarding it with 1little loss of
information. If two ratios are not highly correlated, then the
user could consider each to measure a different aspect of company
performance. Highly correlated ratios could be brought together
into groups, where the groups would measure some different aspect
of company performance. In this way the user could understand the
relationships and patterns among the financial ratios in a
variable set. Instead of grouping on the basis of the correlation
coefficient, the grouping procedure could be performed via a
statistical method designed to summarize such interrelationship,
i.e., by using principal component analysis.'?rincipal component
analysis was developed by Harold Hotelling in the 1930’s and has
found extensive application in psychometrics and econometrics. One

of the functions performed by principal component analysis is to
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group variables into a few components that retain a maximum of
information contained in the original variable set. Its general
objectives are (1) data reduction, and (2) interpretation. In this
section principal component analysis 1is employed to isolate
independent patterns of financial ratios. Principal component
analysis, which -employs financial ratios as variables and
industrial companies as the cases, produces components of the
financial ratios 1in terms of the industrial companies. The
similarity of each variable in the reduced space with the
components is measured by its component loadings. The reasons for
choosing principal component analysis over other methods e.g.
factor analysis which perform a similar function, is that it is a
technique which may be applied to various types of data such as
quantitative data and qualitative attributes either scored or
scaled ( Jeffers, 1978). In principal component analysis no
assumptions are made about the form of the covariance or
correlational structure of the variables. Factor analysis supposes
that the data comes from a well-defined model where a set of
underlying factors exist which account for the interrelationship
of the wvariables, but not for their full variance. If the
assumptions are not met, then factor analysis may give spurious
results ( Mardia et al 1979). In principal component analysis, the
emphasis is on transformation from the observed variables to the
principal components, whereas in factor analysis the emphasis is
on the transformation from the underlying factor to the observed

variables.
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3.5.1 Procedure for A Principal Component Analysis

Our objective in this section is to construct uncorrelated
linear combinations of the measured characteristics that account
for much of the variation in the sample. The uncorrelated
combinations with the 1largest variances will be called the
principal components. Principal components are particular linear
combinations of the p random variables X1’ X2,...,Xp.
Geometrically these linear combinations represent the selection of

a new coordinate system obtained by rotating the original system

with X1. X

2,...,X as the coordinate axes. The new axes represent
P

the directions with maximum variability and provide a simpler and
more parsimonious description of the covariance structure (
Johnson and Wichern, 1982). Principal components depend on the

covariance matrix S (or the correlation matrix r ) of X1

X,...,X .
2 P
Let the random vector X = [Xl, XZ' ...,XP] have the
covariance matrix S with eigenvalues Alzkzz ...ZAPZO.
Consider the linear combinations
’
2, =a XK= a, Xt a21x2 oo 2 P
’
22 = a 2X = a12X1 + a22X2 + ...+ apaxp
... (3.1)
PA =al X =
p p alpxl +asz2+-. +a X
PP p
Then,
’
Var(Z ) = a sa i=
L2 ...,p ...(32)
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’

Cov(Zi,ZJ) = a lSaJ i, J=1, 2,..., p ... (3.3)

The principal components are those uncorrelated linear

combinations 21’ Zz ,...,2p whose variances in (3.2) are as large

2

as possible.

The first principal component is the linear combination with

I

maximum variance. That is, it maximizes Var(Zl) = a 1Sal. It is
clear that Var(Zl) = aIISa1 can be increased by multiplying any a
by some constant. To eliminate this indeterminacy it is convenient
to restrict attention to coefficient vector of unit length. We

therefore define

4

First principal component = linear combination a 1X that

maximizes Var(a 1X) subject to

’

Second principal component = linear combination a 2X that

maximizes Var(a 2X) subject to

7

a 2a2 = 1 and Cov(a 1X,a 2X)=()

At the ith step

’

ith principal component = linear combination a 1X that

’
maximizes Var(a iX) subject to

’

a a =1 and
11

Cov(a 1X’ a jX) =0 for j<i

Principal component Zp’s are uncorrelated random variables which

are linear functions of a correlated set of random variables X1'

XZ,...,X , with the coefficients alj’s being the elements of the
p

normalised eigenvectors of the correlation (or covariance) matrix
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of Xi’s. The variances of the principal components are the
eigenvalues of the matrix S. Assuming that the eigenvalues are

ordered as Aizxzz...zxpzo, then Ai corresponds to the ith

principal component

Var(Zl) = Al.
An important property of the eigenvalues is that they add up to

the sum of the diagonal elements (the trace) of S. that is

Since Sll is the variance of Xl and Ai is the variance of 21, this
means that the sum of the variances of principal components is
equal to the sum of the variances of the original variables.
Therefore in a sense the principal components account for all of
the variation in the original data. The eigenvalues of the matrix
S give the proportion of the total variability in the data
explained by the 1individual components (the components are
obtained from Xl’s by an orthogonal transformation ) and the
largest eigenvalue gives the variance of the component which
explains the largest variability in the data, the second largest
eigenvalue gives the variance of the component which accounts for
the maximum possible remaining variability etc. The coefficient
alj’s are often refered to as component loadings. They indicate
weighting of each variable and may be interpreted as the
correlations between the principal components and the variables
X 's, provided the eigenvectors of the correlation matrix are

i
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scaled by the square root of corresponding eigenvalues (Morrison,

1976).

Principal component analysis is variable-sensitive: different
components may be obtained if different sets of variables are fed

into the principal component analysis.

The data were organised into a matrix consisting of rows
(companies) and columns (financial ratios). The matrix was
subjected to principal component analysis and the components were
rotated using the varimax method in order to obtained subsets of
specially related variables. Only the most important components
having an eigenvalue greater than the average value of one
(Kaiser’'s criteria) were retained. The components were interpreted
in practice via the size and sign of the coefficients (loadings)
of a component. The sizes indicate the correlations of variables
with the respective component 1i.e. 1large component loading
indicates that the component has highly significant correlation
with respective variable, and furnish the basis for describing and
naming these components. In this section the principal component
analysis is used to reduce the dimensions of a data set from the
number of variables (23) to a much smaller set of components.

The computer package SPSSX was used to carry out the
analysis. Varimax rotated principal component analysis of the 23
ratio set used in the main analysis of the study was undertaken,
and the rotated component loadings matrix for the analysis is
shown in Table 3.11. Only the highly significant loadings
(loadings > 0.50) are given in the Table, which also shows the

eigenvalue, the percentage and cumulative percentage of variation
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accounted for by each component. The communalities also show that
the proportion of variance of each variable accounted for by the
six components is quite high, ranging from 64% to 95%. The number
of components satisfying the criteria were six out of 23
variables, and when combined explained 83.3% of the original
variance in the data.

Interpretion of the components may be described as follows:

Component one.

This component is an index which has high positive loadings
on NI/S, FF/TA, NI/TA, EBIT/S, EBIT/TA, FF/S and FF/C.LIB. It
explains 28.8% of the original variability in the data.

Component two.

Component two explains an additional 20.6% of the original
variance. It 1is an index which has high positive loadings on
FF/NW, FF/TA, NI/TA, NI/NW and EBIT/TA.

Component three.

This component is an index which has high positive loadings
on QA/TA, QA/C.LIB, CASH/S, CASH/TA and QA/S. It explains a
further 14.3% of the original variance.

Component four.

This component is a contrast of RE/TA, CA/C.LIB and QA/C.LIB
against C.LIB/TA. It explains an additional 8.5% of the original

variability.

Component five.

It explains an additional 6.8% of the original variance. This
component is a contrast S/TA against NW/S and CA/S.

Component six.

This component is an index which has highly positive loadings
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on CA/TA, TA/NW and C.LIB/NW. It explains further 4.4% of the

original variance.

The analysis of the groups (non-survivors and survivors)

separately provided similar dimensions.
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Table 3.11 Financial ratios and component loadings defining
six financial ratio patterns for 445

non-surviving and surviving companies.

Components Communa-
Variable lity
1 2 3 4 5 6

NI/S 0.97 0.95
FF/NW 0.90 0.86
FF/TA 0.51 | 0.75 0.90
NI/TA 0.57 | 0.67 0.89
NI/NW 0.86 0.84
EBIT/S 0.96 0.95
EBIT/TA 0.54 | 0.72 0.92
QA/TA 0.74 0.80
FF/S 0.94 0.93
CA/TA 0.51 | 0.66
NW/S -0.64 0.82
S/TA 0.78 0.64
TA/NW 0.87 | 0.87
FF/C.LIB | 0.65 0.81
RE/TA 0.64 0.67
CA/C.LIB 0.86 0.83
QA/C.LIB 0.58 | 0.68 0.84
C. LIB/NW 0.87 | 0.92
C.LIB/TA ~0.71 0.83
CASH/S 0.80 0.84
CASH/TA 0.88 0.80
CA/S -0.66 0.82
QA/S 0.65 0.90
Eigenvalue | 6.63 | 4.74 | 3.28 | 1.96 | 1.56 | 1.02 | ---
vzrggnce 28.8 | 20.6 | 14.3 |85 |6.8 | 4.4 ——-
oum ol 288 | 49.4 | 636 | 721 | 78.9 | 833 | -—
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Conclusion

In this chapter, the structure of the data set has been
discussed, and the small size of the sub-sample of bankrupt
companies compared to other types of non-survival has been shown.
This point 1s taken wup again in Chapter 4, where a
reclassification method is introduced. In addition, some of the
properties of the financial ratio data have been described and,
for both distributional properties and principal component, it has
been found that assumptions of a single parent population for the

survivors and non-survivors are appropriate.
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CHAPTER FOUR

DISCRIMINANT ANALYSIS AND CLASSIFICATION OF THE "MERGED" AND

"OTHER" COMPANIES

4.1 Introduction

Discriminant analysis is a multivariate technique concerned
with separating distinct sets of objects (or observations) and
with allocating new objects (or observations) to previously
defined groups. The discriminant function may be accepted as the
explicitly devised method of classification research.The procedure
was developed in 1936 by Fisher to answer perhaps one of the most
fundamental of all systematic problems of the taxonomic variety;
it stands as both the first clear statement of the problem of
discrimination and the first proposed solution (Al-Moswie, 1982).

In this chapter we shall introduce linear and quadratic
discriminant functions and their applications to forecasting
company failure. We shall also introduce methods to reclassify the
“merged" and ‘“"other" companies into either surviving or
non-surviving companies using two procedures: stepwise

discriminant analysis and survival models.

4.2 Linear Discriminant Analysis

Various authors have used discriminant analysis to classify
companies as either surviving or non-surviving on the basis of
financial ratios (e.g. Altman, 1968 and Barnes, 1990). Detailed
reviews of the applications were discussed in Chapter 2.

The first task of a linear discriminant analysis is to select a

set of variables X1' Xz, ..... 'Xx that best discriminate between,

84



or separate, groups e.g. non-surviving or surviving companies. The
variables measure attributes on which the groups differ to some
extent, otherwise the groups cannot be distinguished by means of
the X's alone. Also the groups should be partly overlaping,
otherwise discrimination is not necessary. The object of linear
discriminant analysis is then to find a linear function in the X’s
so that as many cases as possible belonging to the first group lie
on one side of the function and as many cases as possible
belonging to the second group lie on the other side. The
allocation criteria is based on the likelihood of a case belonging
to a group with a boundary where the likelihoods are equal

(Kendall, 1980). We therefore seek a new variable Z such that

where a, a, ... ,a  are the coefficients of the discriminant
function 2.

In the case of 2 groups the mean values are

where ilr is the mean of the r"h measurement of the ith group,

And the difference between the means of the two groups is

= (7 = ad +ad + ......... d ... (4.2
D=(z2, -2) ad +agd, + +ad (4.2)

where
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Now the coefficient of the optimum linear discriminant

function should be chosen to maximize the following function

(Johnson and Wichern, 1982):

where Zl denotes the Z value of the jth individual in the 1"

group where i =1 or 2.

Let S be
Pa
n
l — -
S = (X, - X )& -X)
PA 2 431 Pi} P i) q
where
P 9=1, 2, ......... , k
Then
n
i - i
(2 -2 )" = asS
i=1 j=1 H ! p,q=1 P 4 P4
and
_ _ 2 K
(z -2) = aadd
1 2 _ PaQPQq
P,q=1

Now G defined in (4.3) may be written as :
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aadd
PqQFP g

G=-P29z! (4.4)

~1=

plq=y P d pd
Cq=

Since the a’s are to be determined such that G is a maximum,

it is necessary that aG/3a = O,
r

forr=1, 2, ...... , k at the maximizing point.
Then
ald1 + azd2 + + a dk
a s + a_sS + ..., +asS =
ri 2 r2 rk
G
........ (4.5)
Now (ad +ad +.... +ad )/ G 1is independent of r, and it
11 2 2 kK k
could be considered as a constant C.
Hence (4.5) may be written as :
aS _ +as _+...... +as =Cd = ....... (4.6)
ril r2 k rk r
Let C = 1, then (4.6) may be written as :
a_sS + a_S + ..., +asS =d ... (4.7)

This formula gives the values of a's. Then we substitute in (4.1)

to find the discriminant function Z.
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Let us consider the special case of K =2 in (4.1). This
means, for example, that the function consists of two financial
ratios as classification variables. Here X1 may be a measure for
liquidity and X2 a measure for the profitability of the company.
Now suppose that the coefficients a, and a, are known and that
their signs are positive. If we now have the disposaf/ggﬁzge
values of X1 and X2 of a company then we can calculate from the
function the Z-score of that company. If that score is high then
the company 1is classified as a surviving one and as a
non-surviving if that score is low, since the liquidity and the
profitability of surviving companies on average will be high and
those of the non-surviving will be 1low. The classification

procedure makes a comparison of the Z-score of a company with a

*
critical score, say 2 , such that :

»
if 2 > 2, then company — in the surviving group

»
while if 2 < 2, then company — in the non-surviving group.

Of course the classification will not proceed without error. There
are two possible types of error:
(a) incorrectly classifying a company into the non-surviving
group (type II error)
(b) incorrectly classifying a company into the surviving
group (type I error).
Although it is desirable to minimise both type I and type II
errors, the former may be considered to be the more important one.

If an investor were to buy stock with the guidance of a
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discrimination model, he would presumably prefer his investment to
be on the safe side. The misclassification of a surviving company
as non-surviving has less serious consequences than the
classification of a non-surviving as healthy. This point should be
considered in the development of a satisfactory model for
predictive classification.

Note that the Jjustification for the technique is based on
likelihood that the data <come from multivariate normal
distributions with the same variance-covariance matrix in both
populations. If this is not the case, then it may still be an
intuitively reasonable technique to use (Manly 1986 , Srivastava
and Carter 1983, Betts and Belhoul 1982). Fisher’s procedure, for
example, did not depend on the form of the parent populations,
apart from the requirement of identical covariance structures.
Studies by Krzarowski (1977) and Lachenbruch (1975) have shown,
however, that there are non-normal cases where Fisher’s linear
classification function performs poorly even though the population
variance-covariance matrices are the same.

As indicated above, the linear discriminant function depends,
for ensuring minimization of the probability of misclassification,
on the assumptions of separate multivariate normality for the
populations in the analysis and equality of dispersion matrices.
If however normality holds, but as in the case of Lachenbruch
(1975), the variance-covariance matrices are heterogeneous, then
the theory suggests fitting a quadratic discriminant functions. It
should be remembered that equality of dispersion matrices is
conventionally tested prior to the fitting of a quadratic
function, and that the appropriate Bartlett-Box criterion is

sensitive to departures from the assumption of multivaiate
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normality. Therefore the effects of departure from normality in
the two-group discriminant case and fitting a quadratic model in
the case of unequal variance-covariance matrices may, depending on
the type of non-normality, well make matters worse than the use of
a linear approach (Taffler, 1982). This point is illustrated in
the next sections. Some fairly well known problems associated with
multivariate discriminant analysis may be avoided by wusing
conditional logit analysis which is discussed in detail in Chapter

S.

4.3 Stepwise Discriminant Analysis

Stepwise discriminant analysis is used to select a relatively
small subset of variables that would contain almost as much
information as the original collection. In this procedure some
variables are selected as being best for classification and the
remaining ones are discarded. This procedure is usually available
as a computer program in the form of a forward selection technique
that adds variables one by one depending on the discriminating
ability of each and may be regarded as the most efficient
procedure in that the most important variables are selected first.
Stepwise discriminant analysis has the advantage of being readily
available in all major statistical packages and the procedure can
sift through a large number of variables and indicates those most
promising for classification.

The particular program used in this study is the one in the
SPSSX statistical package. This program at each step in the

forward process calculates the Wilk’s lambda statistic and F-ratio
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for all the variables under consideration. This statistic measures
the discriminating power gained (or lost) by adding (or dropping)
a variable. Then the variable that has the smallest lambda
statistic, i.e. adds the most to the discriminating ability, is

added.

4.4 Quadratic Discriminant Function

The assumption of equal variance-covariance matrices in
linear discriminant analysis 1is rarely satisfied in practice,
although in some cases the matrices are close enough that it makes
little or no difference to the results to assume their equality
(Lachenbruch, 1975). If the dispersion matrices are different
then a quadratic discriminant function would be more appropriate.

For example in Figure 4. 1a, S1 = Sz’ where

_ 1 _ 7,2
S1 B n1—1 Z (le Xl)

2

1 -
Sz - nz-l Z (ij Xa)

so that the two sets of points, which are similar in shape, can be
adequately separated by a straight line. However, in Figure 4.1b,
S1 does not equal S2 so that one set of points is long and thin
vertically while the other is circular. Here a curved discriminant

function gives adequate separation.
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Figure 4.1 Use of (a) linear discrimination D(x) and (b)
quadratic discrimination Q(x) to separate two

sets of points.

- Ny
»

kr‘ — T,

(m) th)

Conslider the following multlvariate normal densities with unequal

covarlance matrices (S1 a Sz):

1
/2 172
s, |

a -l x-%)'s 'x - %
f‘(X) exp | 5 (X Xl) Si (X Xl)l

(2m)
for L =1, 2.

Then the quadratic discriminant functlon Q(X) is

f.(X)

QUX) = log[——] ... (4.8)
fz(X)
S, |
1 | 1 1 3ve "ty _
= = log( 5| ) - = (X Xl) s, (X Xl)
2
1 'e =iy _
+ —E-(X - Xz) S, (X - X,)
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In this case, the quadratic classification rule applied is
follows (Johnson and Wichern 1982, Seber 1984): allocate to

population 1 if

1 ’ -1 -1 ' -1 e -1
—2—X(S1 82 )X«»(XIS1 st ) X2K
where
S, |
- 1 | 1 1 4 -1= -/ -1=
K = > log(IS |) * = (X1S X1 X2 ) Xz)
2

and allocate to population 2 otherwise.
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4.5 Application of Discriminant Analysis

This section contains the results of applying the
discriminant analysis technique to the financial data base that
was used in this study. There are problems associated with
discriminant analysis which are dealt with here. If the data has a
sample bias, as in this case where there are approximately 3000
observations for the surviving group of companies and only
approximately 600 observations for the non-surviving group for the
entire period under consideration, an unacceptable conclusion may
be drawn from the analysis. The discriminant model may have an
apparently good classification percentage but this may stem from
the sample bias (Zmijewski, 1984). For example if most of the
surviving companies are correctly classified but most of the
non-survivors are not, the classification percentage will still be
high. A method of resolving this may be to pair the non-survivors
with survivors by using equal prior probabilities and then perform

the analysis. This process will be investigated.

Discriminant analysis is used to carry out the analysis for

23 financial ratios before reclassification of the "merged" and

"other" companies. In this respect, two cases of discriminant
analysis are investigated:

a(1)- The bankrupt companies alone were taken as a first

group (non-surviving group) and surviving companies as

a second group. The reporting period was from

1971-1984 and all the data for this period was

included. The sample sizes were nl=162 and n2=2997

respectively.
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a(2)- The bankrupt, "merged" and "other" companies were formed
into a single group (non-surviving group) and surviving
companies as a second group. The reporting period was
taken to be the same, from 1971-1984 and again the data
for the entire period was included. The sample sizes

were n1=640 and n2=2997 respectively.

For the above two cases (i.e. a(l and 2)), the discriminant
method 1s investigated for each of the five years prior to

failure.

The computer packages SPSSX and SAS were used to carry out
the following discriminant runs before reclassification of
“merged” and "other" companies:

(1) Two groups (non-surviving and surviving), wusing a

stepwise method and setting prior probability to
'sample size’ during classification, 1i.e. wusing a
population based sample where the number of survivors

far exceeded the number of non-survivors.

(11) Same as (i) except for using a paired sample 1i.e.

setting prior probability of 1:1.

Here the groups were assigned the value 1 for non-surviving

companies and the value 2 for the surviving companies.
The results of the analyses of each of the two runs are given
in Tables 4.1 and 4.2, before reclassification of "merged" and

"other" companies. It can be seen from Table 4.1(i) that equal
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prior probabilities gives the best discriminant function in the
sense that its accuracy is the best among the two runs. Note that
for (ii) the type I error is as high as 88.1% while type II error
is as low as 1.2% but the classification accuracy (95.3%) appear
to be good overall, so with respect to type I error the model is
extremely poor. A possible reason for this is that there were many
surviving companies, and the non-surviving company data appeared
as noise when compared to the survivors . These results were to be
expected and concur with the comments made by Zmijewski (1984).
For (i), type I error is 15.5% and type II error 18%. We may
therefore assume that the function obtained from (i) is the best
function and the percentage of cases correctly classified was
82.3%. This indicates that the model developed misclassifies only
17.7% of the total number of observations. But, in the case of a
quadratic discriminant function, we found that the percent of
cases correctly classified was lower at 74.1% and at the same time
the 2 types of error were higher at 38.1% and 25.1% respectively.
Stepwise discriminat analysis shows that 12 variables out of 23
contributed significantly to the discriminant function. These are,
in descending order of importance: Net worth/sales (NW/S), Funds
flow/current 1liabilities (FF/C.LIB), Current liabilities/total
assets (C.LIB/TA), Current assets/ total assets (CA/TA), Current
assets/current 1liabilities (CA/C.LIB), Net income/net worth
(NI/NW), Quick assets/current liabilities (QA/C.LIB), Retained
earnings/total assets (RE/TA), EBIT(earning before interest
& tax)/sales (EBIT/S), Funds flow/sales (FF/S), Funds flow/total

assets (FF/TA), and Current assets/ sales (CA/S).

The model developed in Table 4.2 with the bankrupt, "merged"
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and "other" companies, treated as non-surviving group of companies
and surviving companies as a second group (i.e. case a(2)). It can
be seen that case (i) with equal prior probabilities gives the
best linear discriminant function in the sense that its accuracy
is the best among the two cases, with type I error being 19.5% and
type II error 22.3% and the percent of cases correctly classified
was 78.2%. This indicates that the model developed shows that the
misclassified comprise only 21.9% of the total number of
observations. Again, for ~case (ii), where nearly all the
observations on surviving companies are correctly classified,
whilst there are few correct classifications for the
non-survivors, confirms the problem of sample bias (Zmijewski,
1984). But, in the case of a quadratic discriminant function, we
found that the percent of cases correctly classified was lower at
64.9% and type I and type II errors were higher of 33.7% and 34.1%
respectively .

Stepwise discriminant analysis showed only 13 variables out of 23
to be significant. These were in descending order of discriminatry
power: Quick assets/total assets (QA/TA), Current 1liabilities/
total assets (C.LIB/TA), Funds flow/current liabilities
(FF/C.LIB), EBIT/sales (EBIT/S), Retained earnings/total assets
(RE/TA), Current assets/ current liabilities (CA/C.LIB),
Sales/total assets (S/TA), Net worth/sales (NW/S), Funds
flow/total assets (FF/TA), Funds flow/sales (FF/S), Total
assets/net worth (TA/NW), Quick assets/current 1liabilities

(QA/C.LIB) and Net income/net worth (NI/NW).
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Table 4.1 Results of linear discriminant analysis before
reclassification of "merged" and "other" companies for
case a(l) (the bankrupt companies, treated as a

non-surviving group and surviving companies as a second

group).
Predicted group|percentage
Actual group Method prior |membership correctly
prob. classified
1 2
non-survivor (1) 84.5% 15.5%
(1) stepwise|equal 82.3%
. (Wilks) (1:1)
survivor (2) 18% 82%
non-survivor (1) 11.9% 88.1%
(11) stepwise|sample 95. 3%
(Wilks) size
survivor (2) 1.2% 98.8%
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Table 4.2

Results of linear discriminant analysis before

reclassification of "merged" and “others" companies

for case a(2)

companies,

surviving companies as a second group).

(the bankrupt,

"merged"

and

"other"

treated as a non-surviving group and

Actual group

Method

prior
prob.

Predicted group

membership

percentage
correctly
classified

1 2
non-survivor (1) 80.5% 19. 5%
(1) stepwise| equal 78.2%
(Wilks) (1:1)
survivor (2) 22.3% 77.7%
non-survivor (1) 3.3% 96.7%
(11) stepwise|sample 84.9%
(Wilks) | size
survivor (2) 0. 4% 99, 6%
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Analysis for 5 vears prior to failure

As indicated above, the main issue raised by moving from a
matched sampling basis is that the structure of the survivor group
no longer reflects that of the non-survivors. The survivor group
now contains all companies which have not yet failed (i.e. in this
data set, 359 survivors and 95 non-survivors, of which 21 were
bankrupts). Also, given the small number of listed companies
failing each year, the need to generate sufficiently large samples
of non-survivors by including companies which failed at different
points in time produces further problems of sample structure.

For, the first analysis (see Table 4.3a and 4.4a), the survivor
group was censored at the date of the last entry in the data set.
In this case, given that most survivors reported financial results
in 1984, the ’'one year before’ vector was consequently the 1983
data, and so on.

However, a preferable approach would be to apply stratified
sampling in order to select randomly the survivors such that the
failures in any given year when expressed as a proportion of the
total number of non-survivors is reflected in the censored group.
For instance, the number of companies failing in 1978, for
example, (5 companies) as a proportion of the total (21) was
applied to the number of survivors (337) resulting in a stratified
sample (80 companies selected randomly from those survivors which
were in existence in 1978 and had reported in 1977) whereby the
'one year before’ data was the 1977 results, the °’two years
before’ data was the 1976 results, and so on. Then, the procedure
was repeated for companies failing in 1979, where the ’'n years
before’ data was the 1979-n reported results. This was repeated

for all years in which there had been failures. With this
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procedure,

which had not been selected randomly for the other strata.

approach is referred to here (and,

technique

stratified sampling". The stratified samples were as follows:

the sample for the final year comprises those survivors

is

not

known

elsewhere)

Number of
bankruptcies

as

as far as can be seen,

This

the

"randomly-censored

113
64
32
16

Randomly-censored
stratified sample

Although the number of companies with data n years before random

censoring varies (as newly listed companies with 2 years or more

data were included), the
illustrated as follows:
Example of sample

stratified sampling"

structure

using

structure for the 5 years

may be

"randomly-censored

Number of companies

Years before failure or censoring
1 2 3 4 S
bankrupt 21 18 17 17 14
»
survivor 337 305 262 229 206

»

average of 32 runs
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It should be noted that the data set was reduced to 337 companies
by removing (a) all companies reporting for 1984 only (i.e. 9 new
listing in 1984) and (b) those which were survivors but had not
reported in 1984 (13 companies). It can be seen that the survivor
group now reflects the proportions and the structure of the
bankrupt group.

The procedure was repeated 32 times, and applied to the case of
bankrupt companies (a(1)), of all non-survivors (a(2)) (see Table
4.3b and 4.4b), and of the reclassified grouping where companies
taken over but which had a high likelihood of failure were
reassigned to the bankrupt group (see Section 4.6.2 and Table

4.8b).

The results of applying a linear discriminant analysis by
using randomly-censored stratified sampling technique reduced type
I error in all cases in Table 4.3b compared with Table 4.3a, but
in Table 4.4b increased the type I error in some cases (e.g. 1 and
3 years prior to failure) compared with Table 4.4a.

It can be seen from Tables 4.3(a) and (b) and 4.4(a) and (b)
that applying a linear discriminant analysis to years prior to
failure increased the type I error substantially and type II
error, compared to the results in Tables 4.1 and 4.2 for the

entire set of data.

Compared to published studies where in most cases the sample sizes
for the two groups were similar, the linear discriminant model
classification results are not good. The high misclassification
errors may be due largely to the fact that the sample sizes for

the two groups of companies are quite different. Nevertheless,
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note that Shailer’s (1990) model, using 33 non-surviving to 39
surviving companies gives type I error (39.4%) and type II error
(28.2%), and, in spite of using equal sample size for both
surviving and non-surviving companies, the results were poor.
Taffler’'s (1982) model, using 23 non-surviving to 45 surviving
companies gives only the type I error (4.3%) and no type II error
on one year prior to failure data. Also, Tisshaw’s (1976) model
using 31 non-surviving to 62 surviving companies gives type I
error (3.2%) and type II error (1.6%). However, both of these used
"solvent" companies as survivors, and it 1is therefore to be
expected that their models performed better. However, a model by
Luk (1984) using 27 non-surviving to 170 surviving companies gives
type I error (16%) and type II error (19.6) on one year prior to

failure data.

Nevertheless, it should be noted that the interest in developing a
discriminant analysis model here 1is in order to compare the
results obtained with those from 1logit analysis and survival

analysis.

The issue to be emphasised here is that the poor results are a
reflection of the application of the linear discriminant model
using a realistic (i.e. unbalanced) sample. This is a major
shortcoming of conventional modelling procedures, where sample
bias is a feature of the data, and this issue is taken up later in

the thesis when alternative modelling approaches are introduced.
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reclassification of "merged" and "other"

Table 4.3 Results of linear discriminant analysis before

companies

for case a(1) (the bankrupt companies, treated as a

non-surviving group and surviving companies as a

second group) for five years prior to failure by

using equal prior probabilities.

5
(a) - survivor data: one year prior to censoring
Type of model No. of years prior to failure
1 2 3 4 S
Type 1 error 33.9 61.1 52.9 64.7 S0
(%)
Type II error 17.1 20.2 26.7 6.5 35
(%)
Correctly 81.9 77.7 72 90.6 64.4
classified (%)
No. of cases
non-survivor 21 18 17 17 14
survivor 350 336 326 320 320

(b) -survivor data:

randomly-censored stratified samples

Type of model No. of years prior to faflure
1 2 3 4 S
Type I error'’| 24.5 | 50.9 | 42.3 | 63.9 | 49.1
(%) (13.4) [(11.4) (11) (3.6) (6.7)
Type IT errort’| 25.4 | 19.8 | 18.2 9.3 | 25.9
(%) (2.6) (3.2) (2.6) (3.5) (8.8)
correct1y’’ | 74.9 | 78.5 | s0.2 87 72.6
classified (%)| (2.3) (2.5) (2.1) (2.9) (8.1)
No. of cases
non-survivor 21 18 17 17 14
survivort'| 337 305 262 229 206

(1)

Figures in parenthesis are standard deviations.
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reclassification of merged and

for case a(2) (the bankrupt,

"merged"

"other"

and

Table 4.4 Results of linear discriminant analysis before

companies

"other"

companies, treated as a non-surviving group and
surviving companies as a second group) for five
years prior to failure by wusing equal prior
probabilities.

(a) - survivor data:

one year prior to censoring

Type of model No. of years prior to faillure
1 2 3 4 S
Type I error 35.8 38.5 31.9 51.6 49
(%)
Type 11 error 30.9 31.5 27.6 22.7 29.1
(%)
Correctly 68.1 67.2 71.7 72.5 68.2
classified (%)
No. of cases
non-survivor 95 78 69 64 51
survivor 350 336 326 320 320

(b) -survivor data:

randomly-censored stratified samples

Type of model No. of years prior to faillure
1 2 3 4 S
Type I error’’| 41.8 | 36.8 | 37.5 | 45.8 46
(%) (6.3) [(4.8) |[( 4) (5.2) (5.4)
Type I1 erro;I) 34.7 39.3 40.9 28.3 38.5
(%) (7.5) (3.5) (2.8) (2.9) (6.8)
correctiy’’ | 63.8 | 61.2 | 59.7 | 68.2 | 60.2
classified (%X)| (5.6) (2.5) (2) (2.1) (4.7)
No. of cases
non-survivor 95 78 69 64 51
survivor | 337 314 283 255 220

(1)

All the values are averages based on 32 runs.

Figures in parenthesis are standard deviations.
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4.6 Reclassification of the "Merged" and "Other" Companies

As noted earlier, previous prediction models have defined
failure narrowly, mainly as bankruptcy. Altman (1968) and Ohlson
(1980) restricted their definition of failure to companies which
have filed bankruptcy petitions under Chapter X or X| of the U.S.
Federal Bankruptcy Act. On the other hand, Beaver (1966) defined
failure as the 1inability of a company to pay its financial
obligations as they mature, but even in his case 75% of his sample
companies were in the bankruptcy category. Likewise, in the case
of Blum (1974), who defined failure as events signifying an
inability to pay debts as they fall due, filing for bankruptcy or
making an agreement with creditors to reduce debts, 90% of his

cases were bankrupt.

This narrow definition of failure led to the restricted
sample sizes used in the above studies. In turn their reliability
and potential contribution are restricted. On the other hand,
there would be three advantages in defining failure broadly to
include an expanded set of events on the continuum (Lau, 1982).
First, many companies recover after getting into the earlier
stages of financial distress and avoid eventual failure, but it is
still desirable to identify such companies in advance. Second, a
broader definition of failure enables more companies to be
included in the analysis sample used for constructing the
prediction models, and the resultant models should benefit from
this additional information on companies in the different stages
of the failing continuum. Third, predicting a wider range of
failing events would broaden the applicability of the prediction
model for analysts and decision makers.

Furthermore, as mentioned earlier, companies are created and
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they may fail, either through liquidation or bankruptcy or through
merger or acquisition or for some other reasons. Some survive, and
an alternative perspective is that at any given point in time, the
survivors are those companies which have not yet been taken over
or have not yet failed. It can be argued that bankruptcy is not
the only yarqififk of failure. Various companies at various times
go through a period of financial instability which, if remedial
steps are not taken, may lead to bankruptcy. Companies which merge
to avoid bankruptcy may also be considered as failures, as
mentioned in Chapter 3 Section 3.1. Most of the previous studies
do not mention the acquisition of companies and some of them do
not define "fallure" (Dambolena and Khoury 1980, Keasey and Watson
1987), but Jjust use the term "failed companies”. In our case we
have 74 (merged, taken over and other) such companies in comparing
with only 21 bankrupt companies. We intend in this section to
utilize the information and increase the sample size particularly
the bankrupt companies by using two procedures: stepwise
discriminant model and survival model methods. Even though the
survival model is given in detail in a later chapter, it is used
here in order to describe a method for reclassifying "merged" and

"other" companies.
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4.6.1 Stepwise Discriminant Method of Reclassification

A stepwise discriminant model which we discussed in Sections
4.2 and 4.3 may be used to reclassify the "merged" and "other"
companies with 23 variables (financial ratios) by using bankrupt
companies as a single group, treated as non-surviving, and using
surviving companies as a second group (i.e. case a(l) in Section
4.5). The results of this analysis were given in Table 4.1 of
Section 4.5. By using the final linear discriminant model to
classify the "merged" and "other" companies, of which there are
74, we found that only five companies (those numbered 27, 39, 54,
56 and 65) were classified as bankrupt and the rest, 69 companies,
were classified as live. The analysis was then re-run with two new
groups: pankrupt plus 5 others (treated as the non-surviving
group) and surviving plus 69 others (treated as the surviving
group). The results of the analysis are given in Table 4.5. These
show that the percentage correctly classified was 80.4% and type I
error was 45% and type II error 14.3%. But, in the case of a
quadratic discriminant analysis, we found that the percent of
cases correctly classified was 66.3%4 and type I error was 63.1%
and type II error 27.5%. Stepwise discriminant analysis showed
that only 8 variables out of the 23 were significant. These, were
in descending order of importance, Net worth/sales (NW/S), Current
liabilities/total assets (C.LIB/TA), Funds flow/sales (FF/S),
Currents assets/current liabilities (CA/C.LIB), Current
assets/total assets (CA/TA), Quick assets/ current liabilities

(QA/C.LIB), Current assets/ sales (CA/S) and EBIT/total assets

(EBIT/TA).

Basically, the stepwise discriminant method for

108



reclassification in this

case

gives a

lower percentage

of

correctly classified cases and the type I error is larger than

when these companies were left out,

as we have seen in Section

4.5. These results indicate that using stepwise discriminant

method for reclassification is not powerful enough.

Table 4.5 Results linear discriminnt analysis after
reclassification of "merged" and "other"
companies by using bankrupt and 5 others
companies as a non-surviving group and the

surviving and 69 others companies as surviving

group.

Actual group

Kethod

prior

Predicted
membership

group

percentage
correctly
classified

prob.
1 2
non-survivor (1) 55% 45%
stepwise| equal 80. 4%
(Wilks) (1:1)
survivor (2) 14.3%| 85.7%
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4.6.2 An Alternative Method of Reclassification

The stepwise discriminant method is compared here with an
alternative based on survival analysis. As discussed later in
Chapter 6, survival analysis is concerned with a population of
companies where for some companies we may also observe their time
to "loss" from the study, or censoring. For a company which is
censored, we know only that the time to failure is greater than
the censoring time (see Chapter 6 for more details). For such a
company, the time to failure is a random variable, lifetime is
denoted by T and the probability of a company surviving to time t
defines a survival function as

S(t) =pr (T 2 t)
which 1is a nonincreasing function of t. The underling idea in
survival analysis is that of hazard function which gives the
conditional failure rate. It is defined as the probability of
failure during a small time interval [t, t+At], assuming that the
individual has survived to the beginning of the interval, or as
the limit of the probability that an individual fails in a small
interval, given that the individual has survived to time t.
Survival model is used here to classify the "merged" and "others"
companies according to the maximum likelihood (M.L.E) principle
for Weibull regression model with 12 variables (selected from
stepwise regression by using bankrupt companies as a non-surviving
group and surviving companies as a surviving group, we obtain 12
variables which were the same 12 variables obtained from stepwise
discriminant analysis above). The procedure 1is that for each
individual in the sample we observe the vector of explanatory
variables X1 and a pair of variables (tl, 81). The censoring
indicator 8l takes the value 1 if the survival time t1 for the ith

observation is uncensored, and zero if it is censored.
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The likelihood function is (Altkin, et al 1989)

n
1-81

_ 81
LB7)=1 [f(ta)] [S(ta)]

1

n 51
- (het 1% s(E) (4.9)

where

f(t’)

h(tx) = , S(ta) and f(ta) are the hazard,

S(ti)

survival and density functions respectively.

Assuming a constant shape parameter, we have for the the Weibull

regression model,

het:X) = a7a)? 1 e® L (o A 0 . (4.10)
s(t;x) =exp [-A)Y &1 L. (4.11)
where

A = scale parameter
¥ = shape parameter
X = regression vector

B = coefficient of regression vector
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writing
o= )7 X - H(t)

(where H is the integrated hazard function.)

We obtain
n )

L@ =qphestl e (4.12)
i=1

The probability density function of the log failure time Y

for Weibull regression model is (Kalbfleisch and Prentice 1980)

o ! exp [—X—g—KE - exp(—z—a;—)—(E )] , <Y <o ....(4.13)
where
-1
o=z
Model (4.13), may be written as
Y=X8B+cW ..., (4.14)

where W has a standard extreme value distribution with p.d.f.

exp (W - e”) , -0 < W<ow,

and the likelihood function may then be written as

L B,0) = Lol )1% s (4.15)
i

where

=
]

( Yl - XIB ) /o
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dlog L
3B

by the Newton-Rapson method to obtain the M.L.E. B

The maximum likelihood equations = 0 are readily solved

In order to estimate the likelihood that an unclassified
company that has been acquired or wound-up, for reasons other than
bankruptcy possesses characteristics similar to those of bankrupt
companies or, alternatively, surviving companies, we used the
Weibull survival likelihood function to estimate the
log-likelihood for the known bankrupt companies and for the known
survivors (i.e case a(l) in Section 4.5). We do this by adding
each wunclassified company first to the bankrupt group and then to
the surviving group, and recompute the separate log-likelihoods
and observe the difference. The results are shown in Table 4.6 and
plotted in Figure 4.2. An increase in the log-likelihood indicates
a better fit of the model to the data. Only in a few cases is
there an observable change in the log-likelihood for the surviving
companies. This is mainly due to the large sample size of this
group. But, when added to the smaller sample of bankrupt companies
34 unclassified companies cause a significant decrease 1in the
log~likelihood, leaving 40 companies which we may be deemed to
have characteristics similar to the known bankrupt companies.
These results are infered from the fact that a decrease in the
deviance ( = -2(log-likelihood), which has x2 distribution ) of
greater than 4 —causes a significant reduction 1in the
goodness-of-fit of the model at the 5% level. Figure 4.3 gives a
plot of the difference between the deviances when all 74 unknown

companies are reclassified.
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Table 4.6 The results of changes in the log-likelihood when
the 74 unclassified companies are added
individually to the bankrupt and surviving groups

for the purpose of reclassification.

Log-likelihood Log-likelihood Difference
Company whén unclassified when unclassifled n
gcompany added to |company 2ddeg,p° [lc9Tlikelinood
1 -63.2652 -61.4044 1.8608
2 -63.3236 -61.3816 1.9420
3 -65. 7885 -61.3715 4.4170
4 -66.5678 -61.3681 5.1997
S -67.3547 -61.3673 S5.9874
6 -63. 3108 -61.3739 1.9369
7 -66. 6307 -61. 3687 S5.2620
8 ~63. 1955 -61.3767 1.8188
9 -63. 2899 -61. 3889 1.9010
10 -62.0117 -61.7141 0.2976
11 -62.8826 -61.4869 1.3957
12 ~63. 0057 ~61.4678 1.5379
13 -63.0199 -61. 4649 1.5550
14 -67.5485 -61.1813 6.3672
15 -63.1802 -61.3939 1.7863
16 -65.5911 -61.3735 4.2176
17 -65.6185 -61.3724 4.2461
18 -63.2023 -61.3799 1.8224
19 -63. 3100 -61.3865 1.9235
20 -69. 6008 -61.3667 8.2341
21 -67.1846 ~61.3677 5.8169
22 =70. 4302 ~-61. 3666 9.0636
23 -63. 3282 -61.3784 1.9498
24 -63.1513 -61.4396 1.7117
25 -61.8594 -61.8461 0.0133
26 -63. 0282 -61. 4245 1.6037
27 ~-61.7555 -61.1752 -0.4197
28 -68.1707 -61.3670 6.8037
29 -67.6412 -61.3668 6.2744
30 -68. 4578 -61. 3668 7.0910
31 -63.0991 -61.3777 1.7214
32 -66. 6806 -61.3688 5.3118
33 -63.1383 -61. 3831 1.7552
34 -62.9450 -61.4230 1.5220
35 -67.1975 -61.3671 5.8304
36 -65.7149 -61.3692 4. 3457
37 -66. 4691 -61.3691 5.1000
38 -63.1573 -61.3772 1.7801
39 ~62. 3260 -62.7117 -0.3857
40 ~67.4822 -61.3674 6.1148
41 -63. 3008 -61.3790 1.9218
42 -67.7658 -61.3672 6.3986
43 =-65.7591 -61.3711 4.3880
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45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

-63.

-63.
-67.
-66.
-63.
-66.
-63.
-68.
=-71.
-65.
-62.
-63.
-61.
-63.
-68.
-69.
. 4381
-66.
-63.
-63.
-63.
-62.
-69.
-63.
-62.
-66.
-68.
-63.
-63.
-62.
-72.

-66

2930

0095
3932
0469
3068
2224
0093
4832
6304
4528
1213
0961
8944
1708
2079
6237

3068
0953
1586
3115
5499
0272
2662
1784
8158
2889
0209
1896
4734
0s09

. 4386

.4633
. 3676
. 3707
.4108
. 3691
. 3778
. 3668
. 3666
.3741
. 4033
.3836
. 8501
.3774
.3670
. 3667
. 3687
. 3692
.3762
. 4088
. 3688
. 5485
. 3666
.3733
. 5883
. 3685
. 3669
. 3781
. 4501
. 5525
. 3666

—
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. 8544

. 5462
. 0256
.6762
. 8960
. 8533
. 6315
.1164
. 2638
. 0787
. 7180
L7125
. 9557
. 7934
. 8409
. 2570
. 0694
. 9376
.7191
. 7498
. 9427
. 9986
. 6606
. 8929
. 5901
. 4473
. 9220
. 6428
. 7395
. 9209
. 6843
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LOG-LIKEL THOOD

Figure 4.2 A comparison of log-likelihood when samples of
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Figure 4.3 The differences between the deviance when the 74
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A run of discriminant analysis was made after reclassifing
the "merged" and "other" companies, where the sample of bankrupt
companies was increased by 40, and the sample of surviving
companies was increased by 34 (which we will name case b). The
results in Table 4.7 show that the percentage correctly classified
was 87.2% and type I error was 13.5% and type II error 12.8%. But,
in the case of a quadratic discriminant function, we found that
the percent of cases correctly classified was 67.6% and type I
error was 29.5% and type II error 32.9%. Stepwise discriminant
analysis showed that only 13 variables out of the 23 were
significant. There were in descending order, Funds flow/current
liabilities (FF/C.LIB), Current liabilities/total assets
(C.LIB/TA), Sales/total assets (S/TA), Net 1income/net worth
(NI/NW), Total assets/net worth (TA/NW), Retained earnings/total
assets (RE/TA), Current assets/current 1liabilities (CA/C.LIB),
EBIT/sales (EBIT/S), Funds flow/sales (FF/S), Funds flow/total
assets (FF/TA), Current assets/total assets (CA/TA), Quick
assets/current 1liabilities (QA/C.LIB) and Current assets/sales

(CAss).

Basically, the Survival Model method for reclassification in
this case gave a higher percentage of correctly classified than
when the unknown companies were left out from the analysis or when
included with the bankrupts. Also, there was a lower type I error,
as we have seen in Section 4.5. Therefore the Survival Model
method is found with this data to be a more powerful method for
reclassifying the unknown cases of "merged" and "other" companies
into failures and non-failures.

We may conclude that the discriminant model, after
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reclassification of the "merged" and "other" companies using
Survival Model method (case b), provides a useful discriminant
function, because it gives a higher percentage correctly
classified (87.2%) and lower type I error (13.5%) and type 1II
error (12.8%) than obtained previously (see earlier sections of

this chapter).

The results of applying a linear discriminant analysis after
reclassification using the Survival Model method for 1, 2, 3, 4
and 5 years prior to failure are given in Table 4.8(a) and(b). It
can be seen from Table 4.8(a) and (b) that, applying linear
discriminant analysis to prior years, increased the type I error
and type II error. But a randomly-censored stratified sampling
technique (see pages 100ff62) decreased the type I error in all

cases -see Table 4.8(a) and (b).
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Table 4.7 Results

of linear

reclassification

companies by wusing bankrupt

companies as a

discriminnt analysis after
of “"merged" and "other"
and 40 others

non-surviving group and the

surviving and 34 others companies as surviving

group.

Predicted group

percentage

Actual group Method prior |membership correctly
prob. 1 2 classified
non-survivor (1) 86.5% 13.5%
stepwise| equal 87.2%
(Wilks) (1:1)
survivor (2) 12.8% 87.2%
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Table 4.8 Results of 1linear discriminant analysis after

reclassification of merged and "other" companies
(bankrupt and 40 others companies as a
non-surviving group and the surviving and 34 others
companies as surviving group) for five
years prior to failure by using equal prior

probabilities.

(a) - survivor data: one year prior to censoring

Type of model No. of years prior to failure

1 2 3 4 S

classiflied (%)

Type I error 33.3 62.3 51.9 62.5 70.7

(%)

Type II error 27.5 30.5 32.4 26 31.2
(%)

Correctly 71.7 65.5 65.1 69.2 64.4

No.
non-survivor 61 57 52 51 41

of cases

survivor 384 363 343 335 330

(b) -survivor data: randomly-censored stratified samples

Type of model No. of years prior to failure

1 2 3 4 )

Type 1 error )| 28.4 | 41.6 | 38.9 | 45.5 | 49.2

(%) (3.5) (9) (6.5) (6.7) (5.1)

Type I1 error’’| 30.6 | 29.6 | 31.4 | 24 32.3
(%) (3.4) (2.5) (3.7) (3.6) (5.9)
Correctly’’ 68.8 | 68.8 | 67.5 | 72.1 | 65.3

classified (%) (2.6) (1.6) (3) (2.4) (4.5)

No. of cases
non-survivor 61 57 52 51 41
survivor ' | 354 321 291 263 229

(1)

All the values are averages based on 32 runs.

Figures in parenthesis are standard deviations.
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Conclusion

In addition to providing benchmark results for comparison
with applications of logit and survival models (see Chapter 5 and
6), it has been demonstrated in this chapter how (i) the use of a
stratified sampling procedure to generate unequal samples of
surviving companies which reflect the proportion of non-survivors
to survivors but which nevertheless are matched to the lifetimes
of the non-survivors and (ii) the use of a Survival Model
likelihood method to reclassify those non-survivors which ceased
trading without going into bankruptcy each has had the effect of
decreasing type I and type Il errors using the standard approach

to failure prediction, i.e. discriminant analysis.
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CHAPTER FIVE

A PROBABILISTIC MODEL OF FAILURE

(LOGISTIC DISCRIMINATION)

5.1 Introduction

In this chapter the econometric methodology of conditional

logit analysis 1s used to avoid some fairly well known problems

associated with multivariate discriminant analysis (MDA). This

approach has been the most popular technique for failure studies

using vectors of predictors. Some of the problems associated with

MDA are :

(1) Certain statistical assumptions regarding the distributional

(2)

properties of the predictors need to be satisfied for the
validity of MDA. These assumptions are that predictors should
have multivariate normal distribution and that their
variance-covariance matrices should be the same for all groups

e.g. two groups of non-surviving and surviving companies.

The output of the application of an MDA model is a score which
has little intuitive interpretation, since it is basically an
ordinal ranking (discriminatory) device. For decision problems
such that a misclassification structure is an inadequate
description of the payoff partition, the score is not directly
relevant, i.e. the payoff partition will be inadequate if it
1s not feasible to define a utility function over the two
types of classification errors. Any economic decision problem
would typically require a richer state partition. If however,

prior probabilistics of the two groups are specified, then it
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is possible to derive posterior probabilities of failure. But,
this Bayesian revision process will be invalid or lead to poor
approximations unless the assumption of normality is

satisfied.

(3) There are also certain problems related to the matching
procedures which have typically been used in MDA. For example,
non-surviving and surviving companies are matched according to
criteria such as size and type of industry. It is by no means
obvious what is really gained or lost by different matching
procedures, including no matching at all. At the very least,
it would seem to be more beneficial actually to include
variables as predictors rather than to use them for matching

purposes (Ohlson, 1980).

The use of conditional logit analysis, on the other hand,
essentially avoids the above difficulties. The fundamental
estimation problem involved here can be reduced simply to the
following statement: given that a company belongs to some
pre-specified population, what is the probability that the company
fails within some pre-specified time period? No assumptions need
to be made regarding prior probabilities of failure and the
analysis does not restrict the explanatory variables to any

specific distributional form.
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5.2 Choice of Predictor Variables

Given K variables X1' Xz’ ..... ,Xk observed on n individual
companies where each belongs to one of two populations such as
non-surviving or surviving groups of companies, if for each
company there is also a Y variable which we wish to predict using
a linear combination of X values, then we seek constants ao,
a ,..... ,ak which minimise the residual sum of squares Z (Y-Y)2
where Y = a, + a1X1 + a2X2 + ..., + aka is the linear predictor
of Y. The most important question in multiple regression is to
decide which of the predictor variables provide useful information
about Y, and which may be safely omitted. The aim is to obtain a
predictor using a small number of variables because this is
simpler to interpret and often leads to more reliable prediction.
The decision to include or exclude a particular variable Xi is
equivalent to testing the hypothesis that the corresponding
coefficient a, is zero. This may be done in one of two equivalent

ways: -

(1) let R be the residual sum of squares when k regressor
variables are used and let R(a) be the residual sum of
squares when X1 is excluded, but the other (k-1)
variables remain. Clearly R(i 2 R , since the latter

)

makes use of more information. Let

F = (R(l) - R) /7 { R/(n-k-1)}.
Then we conclude that X1 does provide significantly
useful information about Y, in addition to that provided

by the other X's, if F is large.
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(ii) one may calculate the standard error, Si of gl , the

estimate of ai. This will indicate that a‘ is

significantly different from =zero if the t-value
| t | = |31+ Sl| is large compared to the critical value
of the t-distribution with n-k-1 degrees of freedom

(Morrison, 1976).

5.2.1 Stepwise Regression

The problem with the above approach is that the significance,
or otherwise, of a particular variable depends critically on which
other variables are also being considered at the same time. This
often leads to some complexity and confusion when there are more
than three or more variables. A useful automatic technique is
stepwise regression which involves entering variables into the
regression one at a time, then considering whether any of the
other variables currently in the equation should be dropped. At
each stage one selects the variable to enter which reduces the
residual sum of squares the most, and the variable to drop is the
one whose omission increases the residual sum squares the least,
i.e. has the smallest t-value. This process continues iteratively
until the situation stabilises with the F-values being less (or
greater) than specified critical values F-to-enter (or
F-to-remove). In this way a large number of predictor variables
may be reduced automatically to a smaller set. Larger critical
values lead to a smaller set of regressors remaining. Details of

this technique is discussed in Draper and Smith (1981).
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5.3 Generalised Linear Models

Classical multiple regression analysis as described above is
based on the assumptions that
(a) the expected value of Y, u say, can be represented as a

linear combination of the regressors.
u=a_ + ; alXi , and

(b) that Y is distributed normally about the mean with a

constant variance.

Generalised linear models (Mccullagh and Nelder 1983) allow for

’

(a) some function §, called the 1link function which
represents the relationship between the mean of the ith
observation and its linear predictor, such that

flp) = a  + Z a!Xl , and

’

(b) the response Y may be distributed according to one of

several kinds of probability distributions, including

the normal.

Once these have been specified the parameters are estimated by the
method of maximum likelihood. In the case of the identity 1link,
f(u) = p, and a normal response these assumptions correspond

exactly to (i) and (ii) of multiple regression.
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5.3.1 Prediction of Binary Variables - lLogistic and Logit Models

If the response variable is binary, i.e. Y takes the values O
(surviving companies) or 1 (non-surviving companies), this

corresponds to a Bernoulli random variable with

E(Y) = p, say, and
Pr(Y =1) =p,
Pr(Y =0)=1-0p

which may be written as

Y 1-Y

Pr(Y) =p (1 - p) , Y=0, 1.

This may be thought of as a Binomial distribution Bin(n, p) with
n=1.

For given values of regressor variables, X1' Xz’ ""’Xx we
aim to predict p, the probability of failure for a company within
a specified period of time. Because p is constrained to the range
[0, 1] and for easy interpretation it is usually transformed and
the most commonly wused are the probit and the logit
transformations. As they generally give similar results we use the
logit as our link function since it is simpler.

In logit analysis, the outcome or response variable is a
binary variable which records the event of surviving ("success")
or non-surviving ("failure"). The predicted proportion of
successes, s/n where s 1s the number of successes and n is the

total number of cases (successes plus failures), follows the

logistic model
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e -1
p=—— = [ 1 + exp(-e)] s e eereeas (5.1)

Kk
where 6 = a0 + Z alxl, is a linear function of the predictors.
1=1

This model is non-linear in 6 and the probability p approaches O
or 1. The linear predictor 6 represents the incremental effects of
the X's and as © increases, there 1is an 1increase in the
probability of failure.

When =0, p=1/2 . Thus, the probability of failure is
greater than 1/2 when the sign of 8 is positive and less than 1/2
when the sign is negative (see Figure 5.1).

The logit link or transformation defined by

maps the range [0, 1] of p to (-wo, o) for the logit
function, becomes linear in the predictors and represents the log

odds of a company failing. The odds of failure

is an appealing interpretation of this model.
a
Thus e ' is the change in odds of a company failing per unit
a
increase in the predictor Xl. If a, is positive then e b 1 which

implies that the failure odds are increased, while the odds are
a
decreased if a, is negative since e ' < 1 and the odds will be
a
unchanged if a = O since e Y=,
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The parameters, a’s, of the logistic model (5.1) are
estimated by the maximum likelihood method and the procedure is
iterative since the model 1is non-linear. The log likelihood

function is given by (Ohlson, 1980)

log L(ao, a, ...,ak) = lZE;Tg [1 + exp(-6)] "' +

log [1 - {1 + exp(-8)}17L...(5.3)
1 € s2

which reflects the binary sample space consisting of non-surviving

(31) and surviving (Sz) companies.

In model (5.1) the value of p, may be interpreted as the
conditional probability of failure for a company with a given set
of financial characteristics. Companies are predicted to fail if
this probability exceeds the critical of 1/2, (Gentry et al 1985,
Hamer 1983); they are predicted not to fail if P < 1/2. Two types
of error are possible. Type I error is defined as predicting that
a non-surviving company will survive and type II error is defined

as predicting a surviving company will fail (Meryer and Pifer,

1970).

Here for a gliven set of regressor values, we estimate the
probability that an individual company belongs to one of two
population and in the context of company diagnosis, this seems a
natural and useful procedure to employ. The technique will be used
to classify companies as to whether they suffer failure or not,

and to determine the extent to which the predictor variables
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affect the risk of company failure.

Figure S.1 The logit cumulative distribution function

————————— e b ——
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S.4 Applications

This section reports our empirical results for the stepwise
reduction of variables and the probabilistic model techniques
applied to the financial data base that was collected for this
study.

The analysis 1is carried out on the same data sets; cases afl
and 2) and b (Chapter 4); before and after reclassifying "merged"
and "other" companies. The computer packages SAS and MINITAB are

used for analysing the data.

5.4.1 Stepwise Reduction of Variables

Because 23 predictor variables is too large a set to study
intelligently, an automatic procedure was used to reduce the
number of predictors to the most significant or "best" subset and
this achieved through stepwise regression of failure on the
predictors. The following table shows the significant variables
identified by the analyses for both cases a(l and 2) and b, given
in their order of importance for each case. The three, groups of
variables are basically the same except for the differences in
their order of selection . However, the ratio QA/TA appears in
case a(2) as the most significant variable but does not feature in
either case a(l) or case b. Also the ratio NW/S is selected for

case a(l1) and a(2) but not for case b.
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Table 5.1 Stepwise selection of

cases

a(l and 2) and

"best"

b before

and

reclassifying "merged" and "other" companies.

subset results for

after

before reclassifylng

"merged" and "other"

1
non-survivor
(bankrupt) and

survivor groups

(2)
non-survivor

(bankrupt,"merged”
and "other")and

survivor groups

b

after reclassifylng
and "other"

(non-survivor (bankrupt,

“merged”

and 40 others) and

survivor (surviving and

34 others)groups)

variable

variable

varjiable

NW/S
FF/C.LIB
C.LIB/TA
CA/TA
CA/C.LIB
NI/NW
QA/C.LIB
RE/TA
EBIT/S
FF/S
FF/TA
CA/S

QA/TA
C.LIB/TA
FF/C.LIB
EBIT/S
RE/TA
CA/C.LIB
S/TA
NW/S
FF/TA
FF/S
TA/NW
QA/C.LIB
NI/NW

FF/C.LIB
C.LIB/TA
S/TA
NI/NW
TA/NW
RE/TA
CA/C.LIB
EBIT/S
FF/S
FF/TA
CA/TA
QA/C.LIB
CA/S
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5.4.2 Application of the Generalised Linear Model

The procedure of generalised linear model with logit 1link
(Section 5.3) is used here to predict company failure with the
predictors being those significant variables which were identified
by stepwise regression analysis (Table 5.1) for cases a(l and 2)
and b before and after reclassifying "merged" and "other"
companies. The results are summarised in Tables 5.2 and 5.3

respectively.

The tables show regression coefficients of the stated

predictor variables with the probability of failure p related

P Kk
linearly to the predictors in the form log [_T—:_B] = z aiXI,
1=0

where the constant a0 standing for the grand mean. A positive
coefficient 1indicates 1increased probability of failure with

increasing values of the variable concerned.

We infer from Table 5.2 for case a(l) that there are nine
significant indicators of failure. High values of NI/NW, FF/S,
CA/TA, FF/C.LIB and QA/C.LIB decrease the probability of failure
while high values of FF/TA, EBIT/S, CA/C.LIB and C.LIB/TA
increase that probability. In case a(2) that there are eleven
financial ratios that significantly indicate company failure. High
values of NI/NW, FF/S, S/TA, TA/NW, FF/C.LIB, RE/TA and QA/C.LIB
lead to low incidence of failure, while high values of FF/TA,

EBIT/S, CA/C.LIB and C.LIB/TA 1increase the incidence.

From Table 5.3 (case b) we note that there are eleven
significant indicators of failure with probability of failure

increasing as the values of FF/TA, EBIT/S, CA/C.LIB and C.LIB/TA
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increase, while this probability decreases as the values of NI/NW,

FF/S, CA/TA, S/TA, TA/NW, FF/C.LIB and QA/C.LIB increase.

Table 5.2 Results of logit analysis for case a(l and 2)

before reclassifying ‘"merged" and "other"
companies.
a(l) a(2)
non-survivor (bankrupt) and non-survivor (bankrupt, "merged"
and "other" companies) and
survivor groups
survivor groups
variable coeff - chi- prob. varfable coeff- chi- prob.
icient sq. jcient sq.
NW/S 0.57 1.66 0.1981[|QA/TA -1.12 1.44 0.2302
FF/C.LIB -5.07 23.61 0.0001(C.LIB/TA 3.21 16.41 0.0001
C.LIB/TA 4.10 23.7S 0.0001|FF/C.LIB -2.73 20.77 0.0001
CA/TA -6.93 34.85 0.0001|EBIT/S 8.99 29.82 0.0001
CA/C.LIB 1.33 28.74 0.0001|RE/TA -0.99 9.10 0.0026
NI/NW -2.81 14.59 0.0001(CA/C.LIB 0.68 19.77 0.0001
QA/C.LIB -1.23 12.09 0.0005|S/TA -1.08 31.74 0.0001
RE/TA -0. 67 1.34 0.2479|NW/S 0.03 0.01 0.9245
EBIT/S 13.13 24.51 0.0001|FF/TA 11.54 36.28 0.0001
FF/S -7.72 7.11 0.0077|FF/S -8.45 21.70 0.0001
FF/TA 11.22 10.91 0.0010|TA/NW -0.36 91.40 0.0001
CA/S 0.71 2.57 0.1091|QA/C.LIB -0.91 7.73 0.0054
ao -2.04 7.16 0.0074|NI/NW -3.44 34.90 0.0001
a, -0.53 0.98 0.3215
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Table 5.3 Results of 1logit analysis for case b after

reclassifying "merged" and "other"

companies.
variable coefficient chi-sq. prob.
FF/C.LIB -4.34 42.65 0.0001
C.LIB/TA 4.61 26.79 0.0001
S/TA -1.85 28.33 0.0001
NI/NW =2.19 16. 38 0. 0001
TA/NW -0.34 13. 49 0.0002
RE/TA -0. 49 1.80 0.1794
CA/C.LIB 1.05 31.41 0.0001
EBIT/S 6.54 20. 65 0. 0001
FF/S -5.00 8.77 0. 0031
FF/TA 11.87 36.02 0.0001
CA/TA -1.91 5.73 0.0166
QA/C.LIB -1.23 26.41 0.0001
CA/S -0.81 2.72 0.0993

a, 0.48 0.80 0. 3697
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S5.4.3 Prediction of Failure

From the fitted model

)s) K
log [————:j = z alX1
1 - 1=0

the estimated probability of failure for a given set of values of

the predictors is

Za X
i

(1 + ezalxl)

Table 5.4 shows overall correct classification, type I and
type Il errors for cases a(l and 2) and b by using p = 0.5 as a
critical value to classify the data. We conclude from the table
that the logit model for case b is the best model which gives the
highest percentage correctly classified (88.7%) cases and the

lowest type I and type II errors (11.5 and 11.2 respectively).
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Table 5.4 Overall correct classification, type I and type 11
errors for cases a(l and 2) and b before and after

reclassifying "merged" and "other" companies.

case a

Type of model
case b
(1) (2)

Type I error 14.8% 16.2% 11.5%
Type II error 16. 8% 17.9% 11.2%
percentage 83. 4% 82.6% 88.7%
correctly
classified

Table 5.5 shows overall correct classification, type I and
type II1 errors for cases a(l and 2) and b for the linear
discriminant analysis , quadratic discriminant analysis and logit

analysis.

We infer from this table that the logit model provides a
modest increase in the overall correct classification rate and a
decrease in type I and type II errors for cases a(l and 2) and b
over the linear discriminant model but a substantial improvement
over the quadratic discrimination. Since the purpose of a model
is to identify companies that are 1likely to fail with
reasonable accuracy, the improvement provided by the logistic

model after reclassification using survival analysis are of some

138



value.

Table 5.5 A comparison of linear discriminant analysis,
quadratic discriminant analysis and logit analysis
for cases a(l and 2) and b before and after
reclassifying "merged" and "other" companies.

linear quadratic logit
discriminant|discriminant analysis
analysis analysis

Type I error 15.5% 38.1% 14.8%

a(1) Type II error 18% 25.1% 16. 8%
percentage 82.3% 74.1% 83. 4%
correctly
classiflied
Type I error 19.5% 33.7%4 16.2%

a(2) Type Il error 22.3% 34.1% 17.9%
percentage 78.2% 64.9% 82.6%
correctly
classified
Type I error 13. 5% 29.5% 11.5%

Type II error 12.8% 32.9% 11.2%

b
percentage 87.2% 67.6% 88.7%
correctly
classified

139



CHAPTER SIX

SURVIVAL MODELS

6.1 Introduction

Much of the empirical analysis in the issue of time series
financial analysis, with particular respect to corporate failure
has been concerned with discriminating between non-surviving and
surviving companies, more recently with a view to obtaining
parsimonious models of the characteristics of non-surviving
companies from extensive data sets. Logit analysis has also been
used to assess the likelihood of failure, and recursive
partitioning has been used to model the stepwise procedures
inherent in financial analysis when screening out the potential
type one errors.

In this chapter we have taken a different approach, that of
survival analysis, and we have attempted to model the covariates
of survival, in an attempt to understand the structure of large
cross-sectional accounting information sets. The analysis of
survival data has received considerable attention in the last
decade and comprehensive accounts are now available (Burridge,
1982). The principal ones being Mann, Schafter and Singpurwalla
(1974), Barlow and Proscham (1975), Gross and Clark (1975) and
Kalbfleisch and Prentice (1980). The last of these contains
several recent developments including some of the material
considered in this chapter.

Survival analysis 1is concerned with the analysis of a
population where, for each individual or company, we observe

either the time to failure or the time to censoring. For censored
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individuals, the time to failure is a random variable. Lifetime is
denoted by T, and the probability of a company surviving to time t

is given by

S(t) = Pr(T 2 t)

where S(t) is a survival function.
Most companies have staggered entry, so that they enter over a
substantial time period. Each company’s failure time is usually
measured from its own date of entry. Figure 6.1 illustrates the
calculation.

Within the companies area a typical question which arises
relating to a failure, is: how is the progress of failure affected
by the characteristics of a company such as its financial ratios?
To answer such a question as this a study is often carried out
which involves looking at the length of time companies survive
from the beginning of the study until some event of interest
(failure). This time is called the survival time, and survival
analysis is the area of statistics used to model it.

Although most of the applications in the literature to which
the methods of survival analysis have been applied are medical,
the possible applications range from the industrial, such as the
accelerated testing of rubber tyres under factory conditions
(Davis 1985), to the social/economic of determining which factors
are likely to affect a person’s return to full time employment

following a period of unemployment (Lancaster and Nickell 1980).
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Flgure 6.1 Eight companies with staggered entry, failed (x)

or censored (o).
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6.2 Survival Function and Hazard Function

We consider a population of individuals where for each
individual we observe either the time to failure or the time to
censoring. That is for the censored individuals we known only that
the time to fallure is greater than the censoring time. Let T be a
non-negative random variable representing the 1lifetime of an
individual from a homogeneous population. The probability of an

individual surviving till time t is given by

s(t) =pr(T2¢) L (6.1)

called the survivor function (Lawless, 1982). From the definition

of the cumulative distribution function F(t) of T,

sty =1-F(t) L (6.2)

survivor function S(t) is a nonincreasing function of time t with

the properties (Cox and Oakes, 1984),

1 , for t

L}
(@)

S(t) =

]
8

0 , for t

that is, the probability of surviving at least at the time 0 is
one and that of surviving an infinite time is zero.

The graph of S(t) is called the survival curve. A steep
survival curve, such as the one in Figure 6.2(a), represents low
survival rate or short survival time. A gradual or flat survival
curve such as in Figure 6.2(b) represents high survival rate or

longer survival.
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Figure 6.2 Two examples of survival curves.
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A fundamental concept In survival analysis {s that of the
hazard function h(t), which ls defined as the conditicnal density

function at time t given survival up to time t (Aitkin et al,

1989), 1i.e.
pr(t<Tect+At | T2¢t)
At)=Lidl — ... (6.3)
At-0 At
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The hazard function can also be defined in terms of the cumulative
distribution function F(t) and the probability density function
f(t)

f(t) f(t)

h(t) = = — e (6.4)
1 - F(t) S(t)

The hazard function specifies the instantaneous rate of death or
failure at time t, given that the individual survives up to time
t. In particular h(t)At is the approximate probability of death in
[t, t + At), given survival up to t.

The hazard function may increase, decrease, remain constant,
or indicate a more complicated process (Nelson, 1972). Figure 6.3
plots several kinds of hazard functions. For examples, h1(t) is an
increasing hazard function where the rate of failure increases
with time, hz(t) decreases with time, ha(t) is where the rate of
failure is constant, h4(t) is called bathtub curve, it reflects
the process of human life where the death rate declines, remains
constant and then increases with age, and hs(t) describes a
process such as corporate bankruptcy where the failure rate
increases sharply after incorporation but then declines with

survival time.

The density and survivor function can be obtained from hazard

function as,

S(t)

exp [ ~-H(L))Y ... (6.5)

f(t) h(t) exp ([ -HQt) 1T ..., (6.6)
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where, H(t) is the cumulative hazard function given by

t t
H(t) = J' h(X) dX =I—dX = - log S(t).
0 0

Flgure 6.3 Examples of the hazard function
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6.3 Estimation of the Survival Function

The product-limit developed by Kaplan-Meier (1958) is used
for estimating the survivor function. This method is applicable
for any sample size, small, moderate, or large. However when the
sample size is very large it may be convenient to group the
survival times into intervals and perform a life-table analysis.
The product-limit and 1life-table estimates of the survivor
function are essentially the same. Many authors use the term
life-table estimates for the product-limit estimates.The only
difference 1is that the product-limit estimate is based on
individual survival times while in the life-table method survival
times are grouped into intervals (Lee, 1980). If there are no
censored observations in a sample of size n the empirical survivor
function is defined as

A number of observations 2 t

S(t) = , t20  ....(6.7)
n

This 1s a step function the decreases by 1/n just after each
observed lifetime if all observation are distinct. More generally
if there are d lifetimes equal to t the empirical survival
function drops by d/n just past t. When dealing with censored data
some modification of (6.7) 1is necessary since the number of
lifetimes greater than or equal to t will not generally be known
exactly. The modification of (6.7) described is called the
Kaplan-Meier product-1limit estimate of the survivor function. The
estimate 1is defined as follows : suppose that there are
observations on n individuals and that there are k (k < n)

distinct times t1 < tz S < tkat which deaths may occur.
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There is no real loss of generality in assuming that these times
are discrete, because the finite precision of measurement means
that the values of survival time actually recorded can take only a
finite (though possibly large) number of values (Aitkin et al,
1989). The possibility of there being more than one death at tj is
allowed, and we let dJ represent the number of deaths at tj. In
addition to the lifetime t1’ ..... ,tk, there are also censoring
times I..l for individuals whose lifetimes are not observed. The

product-limit estimate of S(t) is defined as

s() =y —24—3~L- . (6.8)
t

where nJ is the number of individual at risk at tj, that is the
number of individuals alive and uncensored Jjust prior to tJ
(Lawless, 1983). The function (6.8) is a nonparametric maximum
likelihood estimate in the family of all possible distribution

(Kaplan and Meier, 1958).
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6.4 Parametric Models

Usually there are many causes that lead to the failure of an
individual company at a particular time. It is often difficult to
isolate these causes and mathematically account for all of them.
Therefore choosing a theoretical distribution to approximate
survival data is as much an art as a science. Even though our
interest in this section concerns the relationship between failure
time and explanatory variables it is necessary to consider briefly
failure time distribution for homogeneous populations. We will
look at three theoretical distributions that have been widely used

to describe failure time.

(1) Exponential model

The simplest and most important distribution in survival
studies is the exponential distribution. In the late 1940’s and
early 1950’s, researches chose the exponential distribution to
describe the life pattern of electronic systems (Lee, 1980). The
one parameter exponential distribution is obtained by taking the
hazard function to be a constant, h(t) = A > 0, over the range of
lifetime T. This means that the exponential model has a constant
hazard function which implies that the probability of death at
time t is not dependent on the length of previous lifetime, i.e.,
the instantaneous probability of failure is the same no matter how
long the item has already survived. A large A 1indicates high risk
and short survival while a small A indicates low risk and long
survival. When the survival time T follows the exponential
distribution with a parameter A, the probability density function

f(t) is defined as (This is well known distribution before 1966)
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A e , t20, A>0

0] , t<o

The cumulative distribution function is

F(t) =1 - e M . tx0 (6.10)

and the survivor function is then

S(t) = e Mt o t20 (6.11)

so that, the hazard function is
h(t) = A ) t>o0 L., (6.12)

The probability density function of Y = log T is then,

v—ac)

Exp (Y -« - e , 0 <Y<o ..(6.13)

where

a=- log A
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(2) Weibull model

The Weibull distribution 1is a @generalization of the
exponential distribution. However, unlike the exponential
distribution, it does not assume a constant hazard rate therefore
has broader application. The Welbull distribution is characterized
by two parameters, ¥ and A that determine the shape of the
distribution curve and its scale. The relationship between the
value of 7 and survival time can be seen as follows : when 7y = 1,
the hazard rate remains constant as time increases; this is the
exponential case. The hazard rate increases when ¥ > 1 and
decreases when ¥ € 1 as £ increases. Thus the Weibull distribution
may be used to model the survival distribution of a population
with increasing, decreasing or constant risk (Aitkin et al, 1983).

The probability density function is

Ft) = arat)? " lexp [ - (A)Y ] t 20, 7, A>0

?

The survivor function is, therefore

S(t) =exp [ - )Y 1 ... (6.15)

and the hazard function, the ratio of equation (6.14) to (6.15) is
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ht) =a)¥ - (6.16)

The probability density function of the 1log failure time Y

(Y=1log T ) is (Lawless, 1982)

, - 0w <Y< ow .. (6.17)

where ¢ = y ! and o« = - log A

More simply we can write Y = a + ow, where w has the extreme value

density functiam.

(3) Log-logistic model

The log-logistic has slightly heavier density in the tails,
and 1s often used for survival data that is left- and
right-censored. Here the probability density function and survivor

function are given by

-1

o) = ap(a)? 1+ e)¥ 172 L (6.18)

and
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1
S(t) = — (6.19)
[1+ (At)¥ ]

and the hazard function is

Aay(at)? ~
hit) = —— (6.20)
[ 1+ (at)? ]

Again, the model for Y = log T is of the form

Y=a+0Ww (6.21)

w
e

where w has logistic density —— | A =e % and ¥y =0
(1 +e"

The <three distributions were introduced above for modeling
the survival time of a homogeneous population. Usually however
there are explanatory variables upon which failure time may
depend. It therefore becomes of interest to consider
generalizations of these models to take account of concomitant
information on the individual sample. An important method of
handling heterogeneity in a population is through the inclusion of
regressor variables in the model (Kalbfleisch and Prentice, 1980).
It is common for data to involve regressor variables related to
lifetime. For example lifetimes of industrial U.K. companies may
depend on factors such as FF/TA, NI/NW, EBIT/S, QA/TA, FF/S, NW/S,
S/TA, TA/NW, FF/C.LIB, RE/TA, CA/C.LIB and C.LIB/TA financial

ratios. Suppose now that on each individual one or more further
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measurements are available, say on variables Xl, Xz’ ...... ,XK.
The main problem considered in this chapter is that of assessing
the relation between the distribution of failure time and the X's.
For example the exponential distribution can be generalized to
obtain a regression model by allowing the failure rate to be a

function of the covariates X (Turnbull et al, 1974). The hazard at

time t for an individual with covariates X may be written as

h(t;X) = A(X)
Thus the hazard for a given X is a constant characterizing an
exponential failure time distribution, but the failure rate
depends on X. The A(X) function may be parameterized in many ways.
If the effect of the components of X is only through a linear
function, X8 we have

h(t;X) = A c(XB)

’

where B = (B, B.,.-..... ,B.) is a vector of Tregression
parameters, A is a constant and c is a specified functional form.
The specific forms that have been used is c(X) = exp(X), which is
the most natural form since it takes only positive values
(Kalbfliesch and Prentice, 1980). Consider then the model with

hazard function

’

h(t:X) = A eB (6.22)

The conditional density function of T given X is then

flt;X) = A eXB exp (- At R )

X8y,

exp ( XB - te
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The model (6.22) specifies that the log failure rate is a linear
function of the covariates X. In terms of the log survival tinme,

Y = log T, the model (6.22) may be written as

Y=a-xB+W ... (6.23)

where a = - log A and W has the extreme value distribution with

the probability density function

exp ((W-e ) , -~ < W<ow

6.4.1 Maximum Likelihood Estimation

y e e ,t, t b o e e ean , t be the survival times
2 n n+1l n+m
of n + m individuals the last m of which are censored. Let Xi ,
for 1=1,....... ,h + m, and j =0, 1, ...... , k be the
corresponding values of explanatory variables with X10 = 1. The
survival time has density function f(t), distribution function
F(t) and hazard function

f(t)
h(t) = ——m8— , where S(t) =1 - F(t).

S(t)

The hazard function 1is assumed to involve the explanatory

variables through a log-linear model (Aitkin and Clayto, 1980) as
h(tx) = A(tl) exp (B Xl).

Thus the density function f(t) is assumed to be of the form
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F(t) = A(t) exp (B X - H(t) f Xy,

’

and hence S(t) = exp ( - H(t) eB X ), where

t
H(t) = I A(w) d(u).

0

Let & be an indicator variable taking the value 1 for uncensored,
and O for censored observations. Under the usual assumption that
the censoring mechanism is independent of the explanatory

variables, the 1likelihood function (also see Chapter 4 Section

4.6.2) is
n+m ) 1—8‘
L=q [ft) 1" [st)]
1=1 !
’ 81 BIX
=1 | Alt ) exp (B X)) ] " exp ( - H(t) e ) ...(6.24)

i

The unknown parameters involved are estimated by using maximum
likelihood and the resulting equations are solved by the
Newton-Raphson method to obtain the maximum likelihood (M.L.E)
estimates ;. If there is little or no censoring, initial estimates

can be obtained using the 1least squares 1ignoring censoring

(Lawless, 1982).

6.4.2 Residual Analysis
The examination of residuals from a fitted model is an

important tool for checking the assumption of the model (Nelson,
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1973). Suppose Yl is a response variable and Xi is an associated
vector of regressor variables. The distribution of Yi given Xl, is
specified except for a vector B of wunknown parameters and we

assume that the model can be represented in terms of quantities

e =g (Y. B X ) (6.25)

that are independently identically distribution (i.i.d.) and whose
A
distribution is known. If B is the M.L.E. of B, determined from

data (Yi. Xi), then the residuals 31 are defined by (Lawless,

1982).

These residuals are ofte