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Human-caused habitat loss and fragmentation disrupt contiguous natural areas, leading

to low population sizes and isolation of populations. To avoid increased risk of extinc-

tion, conservation networks are created: clusters of connected protected areas, largely

based on expert-opinion. In landscape ecology, models are used to increase ecological

realism in network design in order to avoid misguided management actions. However,

increasing the ecological complexity requires detailed ecological data. In this disserta-

tion, I investigate the challenges and opportunities encountered applying such models

for conservation network design.

With remote-sensing and species detection data, I modelled potential connectivity for

white-lipped peccaries Tayassu pecari in Belize. This species is an endangered forest

ungulate that requires large forest areas and has a short dispersal range. The model

identified alternative corridor routes and areas that were particularly important for

connectivity conservation.

Satellite tracking of an individual in southern Belize showed that animal activity, and

presumably forest cover and terrain ruggedness hampered data collection. Nevertheless,

results showed an average home-range size and slow movement rates compared to other

estimates, and confirmed the species’ preference for forested habitats.

A global evaluation of satellite telemetry in wildlife research, including over 3,000 teleme-

try units, provided insight into the relative influence of the environment, topography,

species, and unit characteristics on unit performance. Fix acquisition and data trans-

fer rates were high, but close to half of the deployments failed prematurely, and half



of these due to technical malfunction. Species and unit characteristics predicted unit

performance better than environmental factors.

Conservation network design based on moderately data-demanding models seems to be

an achievable objective. However, modelling with high levels of ecological detail is still

challenged by technological shortcomings. Ultimately, effective conservation network

design depends on the continued collaboration between the modelling, empirical, and

applied domains of connectivity conservation.
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Chapter 1

Introduction

The current and ongoing level of biodiversity loss is challenging the resilience of global

ecosystems (Ceballos et al., 2015). An important driver of biodiversity loss is the conver-

sion of natural habitat to accommodate the needs of the ever-increasing human popula-

tion (Venter et al., 2016). This conversion has at least two major effects on the natural

landscape. Firstly, due to the overall loss of natural habitat, the remaining habitat

provides less living space for other species forming part of the Earth’s ecosystems. The

effects of habitat loss on species diversity, abundance and persistence are not always

consistent across species. For example, habitat generalists tend to be less affected by

habitat loss than specialists as they are more tolerant to landscape changes. Nonetheless,

a consistent effect of decreasing population size with decreasing habitat availability has

been found after taking into account these species-specific uses of the landscape (Betts

et al., 2014). Secondly, as habitat loss increases, the disruptions in previously contigu-

ous habitat increasingly reduce fragment size, induce edge effects within fragments and

increase isolation of the fragments, a process referred to as habitat fragmentation (Ben-

nett, 2004; DeFries et al., 2005; Fahrig, 2003). Edge effects include the degradation of

previously intact habitat due to impacts originating from neighbouring land uses, lead-

ing to less undisturbed core habitat as compared to fringe habitat (Baskent & Jordan,

1995). Increased isolation of habitat fragments can prevent recolonisation and genetic

exchange between populations. Fragmentation is usually defined as a landscape-scale

process (Fahrig, 2003). Species are expected to be affected most by fragmentation in

landscapes with intermediate levels of habitat available, because the habitat configura-

tion is most variable within such landscapes (Villard & Metzger, 2014).

These effects of habitat fragmentation often lead to population declines and to geo-

graphic, demographic and genetic isolation, rendering populations vulnerable to extinc-

tion (i.e. extinction vortex; Gilpin & Soulé, 1986). The effects are further exacerbated

1
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by the predicted shifts of entire ecosystems due to climate change (Parmesan et al.,

2003): loss of contiguous natural habitat will force species to move large distances

across human-modified landscapes in order to keep track of climatological changes, po-

tentially disrupting dispersal and other ecosystem processes such as nutrient cycles, seed

dispersal, pollination, and predation (Schloss et al., 2012).

1.1 Connectivity

Over the last few decades, the increasing levels of habitat fragmentation and the result-

ing isolation has prompted interest in studying and preserving the connectivity between

remaining patches of natural habitat (Bennett, 2003; Correa Ayram et al., 2015; Crooks

& Sanjayan, 2006b). In applied conservation settings, preserving connectivity is usu-

ally accomplished through the establishment of conservation networks, i.e. “coherent

system[s] of natural and/or semi-natural landscape elements that [are] configured and

managed with the objective of maintaining or restoring ecological functions as a means to

conserve biodiversity while also providing appropriate opportunities for the sustainable

use of natural resources”(Bennett, 2004, p.6). In practice, such conservation networks

are often composed of a combination of protected areas on one hand, and linkages con-

necting them on the other hand (Beier et al., 2008, 2011; Bennett, 2003, 2004). Usually,

these linkages are designed as linear habitat corridors or a series of habitat patches that

act as stepping stones between protected areas. Expert judgement is commonly used to

evaluate the physical landscape characteristics and the extent to which they allow or ob-

struct wildlife movement, such as vegetation type and cover, topography, and intensity

or proximity of human disturbance (Benedict & Drohan, 2004; Brodie et al., 2014; Hoc-

tor et al., 2000; Jones et al., 2007; Wangchuk, 2007; Wikramanayake et al., 2004; Zeller

et al., 2011). Land tenure, agricultural potential or planned infrastructural develop-

ments are sometimes taken into account as well, acknowledging the fact that short-term

socio-economic considerations often supersede ecological factors such as park size, frag-

mentation and connectivity, despite these being fundamentally important in the long

term (UNEP-WCMC & IUCN, 2016). More recently, conservationists have also been

able to take advantage of the progress made in landscape ecological modelling to inform

the design of conservation networks. Simultaneous with the development of applied con-

servation networks, landscape ecologists started to focus on habitat fragmentation and,

and developed models and metrics to represent and measure observed fragmentation

effects on landscape connectivity (Taylor et al., 1993; Tischendorf & Fahrig, 2000).

In a landscape ecological context, connectivity broadly means facilitation of movement

through the landscape, whereby the moving agents can be wind or soil, animals, plants
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or propagules, or even ecological interactions (Crooks & Sanjayan, 2006a). However,

the science behind landscape connectivity is more complex than that, because habitat

conversion and climate change disrupt connectivity at multiple spatial and temporal

scales (Bennett, 2004). Habitat conversion and climate change influence species of all

sizes and characteristics, disrupt ecosystem processes on local (e.g. pollination) to global

(e.g. carbon sequestration) scales, and influence behaviour and evolutionary pathways

over time spans of weeks to millennia (e.g. speciation). It is evident that, in order

to study and understand the consequences of habitat conversion and climate change

on landscape connectivity, this complexity needs simplification by zooming in on a well-

defined area, for a limited number of species and over a limited time span. Hence, within

landscape ecology, representing the reality with simplified models is a preferred way of

gaining insight in the connectivity of a landscape.

1.1.1 Increasing ecological realism

With the inclusion of increasingly detailed biological data, the complexity of these sim-

plified models increases and improves the representation of the biological reality behind

them (Fagan & Calabrese, 2006). For example, in connectivity modelling, a distinction

is made between structural and functional components of landscape connectivity (Taylor

et al., 2006). Early developments in landscape connectivity research focused mostly on

structural connectivity. The structural connectivity of a landscape is determined solely

by the spatial characteristics of landscape elements (nature, size, shape and orientation),

and disregards the way different species perceive and use the landscape. In contrast,

functional connectivity depends not only on the spatial configuration of landscape el-

ements, but also on the extent to which different landscape elements allow movement

through the landscape for a particular species (Taylor et al., 2006). Functional land-

scape connectivity has been defined as “the degree to which the landscape facilitates or

impedes movement among resource patches”(Taylor et al., 1993, p.571). With (1997)

described it as the functional relationship among habitat patches, owing to the spatial

contagion of habitat and the movement responses of organisms to landscape structure.

The distinction between structural and functional connectivity is not a trivial one. For

some species, structural connectivity is a good approximation of functional connectivity

(Fattebert et al., 2015), but a structurally connected landscape is not necessarily func-

tionally connected for a particular species. Conversely, the landscape can be functionally

connected for a particular species through a permeable matrix even though patches of

species’ habitat are not structurally connected. The addition of more detailed, species-

specific, biological data renders the functional connectivity models more complex, as

they take into account more of the intricacies of real-world biological systems. They
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are therefore considered more ecologically representative than structural connectivity

models (Taylor et al., 2006; Tischendorf & Fahrig, 2000).

Increasing the ecological realism of these models is ultimately important because, rather

than relying on crude models or exclusively on expert judgement, designing conservation

networks based on more realistic connectivity models avoids misguided land management

decisions (Abrahms et al., 2016). Indeed, it is one of the driving forces behind the

developments in landscape ecology (Crooks & Sanjayan, 2006b).

1.2 The modelling process

Since functional connectivity is species-specific, estimating it requires the selection of one

or more target species; a delicate process in its own right (Andelman & Fagan, 2000;

Breckheimer et al., 2014). Chosen target species should ideally represent a range of

species with similar habitat requirements and dispersal capabilities, and thus function

as umbrella species (Brodie et al., 2014). Indeed, a set of target species are ideally

considered, representing different priority habitats in the landscape (Sanderson et al.,

2002).

Once target species are selected, the functional connectivity modelling process involves

several steps (see Figure 1.1; Spear et al., 2016; Zeller et al., 2012). First, experts and

literature are consulted, and data on species and landscape characteristics gathered.

The availability and resolution of the movement and landscape data is what eventually

limits the quality and realism of the connectivity model. Second, a resistance model

is created by assigning resistance values to landscape elements reflecting their influence

on successful movement. Resistance values are assigned either based on expert opinion,

or by estimation through resource selection functions that combine the landscape and

species data. Subsequently, one (or more) of many corridor estimation tools is used to

delineate corridors of low resistance in the digital landscape between known populations

of the study species, patches of suitable habitat, or protected areas. This linkage delin-

eation is usually accompanied by a more numerical evaluation of the overall landscape

connectivity by means of one or more of a wide range of connectivity metrics. The

resulting connectivity measurements are then statistically validated either by collecting

additional field data or by comparing them to genetic structure within the area for the

species.
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1.2.1 Incorporating species-specific data

In this process, incorporating species-specific movement parameters (e.g. habitat pref-

erences) is most often done during the habitat characterisation steps leading up to the

resistance model. The particular type of species-specific data used in this step is im-

portant because it eventually determines the type of connectivity measured. Below, I

will touch upon the most common data types used. Zeller et al. (2012) provide a more

in-depth overview of possible data types and approaches to calculate resistance values.

Expert opinion

In many studies, data on the dispersal range of the species and the resistance of land-

scape elements are provided by consulting expert opinion on the species in the area

(Correa Ayram et al., 2015; Sawyer et al., 2011). However, this data type has been criti-

cised for being subjective and reducing the repeatability and defensibility of the research

(Chetkiewicz & Boyce, 2009; Rayfield et al., 2010; Sawyer et al., 2011). Furthermore,

expert opinion based resistance estimates have been found not to improve resistance

estimates obtained using other data types (Seoane et al., 2005). A second data type,

empirically gathered biological data, usually leads to more robust and repeatable resis-

tance value assignments than expert opinion. Depending on the type of empirical data

used, functional connectivity itself can be split up further into ‘potential’ and ‘actual’

connectivity (Fagan & Calabrese, 2006; Rödder et al., 2016).

Detection data: potential connectivity

Potential connectivity estimates are based on species detection data (i.e. static bio-

logical point data originating from museum specimens, monitoring grids, camera trap

observations, etc.). In combination with landscape data, detection data can provide

objective information on the species’ preference for certain landscape elements. Land-

scape data are often obtained from remotely-sensed datasets, and include variables such

as land cover, weather variables (e.g. rainfall, insolation), topographic variables (e.g.

elevation, slope and aspect), and measures of proximity to the nearest landscape feature

of interest (e.g. water source, human settlement, etc.). Species detection data usually

come either as presence-absence data or presence-only data. In presence-absence data,

the absence of a species is confirmed due to repeated site visits that enable the infer-

ence of detectability at different sites. With confirmed presence and absence points, site

occupancy is modelled by comparing the predictor values at presence versus absence

sites yielding an estimate of the probability of occupancy throughout the landscape
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(MacKenzie et al., 2006). Presence-absence models are considered more accurate than

presence-only approaches for a number of reasons, inter alia because they do not assume

constant detection probability across the landscape (Yackulic et al., 2013). However, for

many species of conservation concern and/or in remote areas, the effort and resources

required to obtain such data inhibit the occupancy modelling approach (Guillera-Arroita

et al., 2015). Because presence-only data can be gathered in a variety of ways, they are

often easier to compile from many different sources across larger areas. Presence-only

data are often used to model habitat suitability for a species using regression or machine

learning approaches, whereby the predictor variables at presence sites are compared to a

set of background points randomly sampled throughout the landscape (sometimes called

pseudo-absence points). MaxEnt 3.3.3. (Phillips et al., 2006) is a well-tested species dis-

tribution modelling tool based on machine learning principles that is often used for this

purpose (Franklin, 2010). I applied this tool in Chapter 2 of this dissertation.

The resulting landscape characterisation (i.e. probability of occupancy or habitat suit-

ability) is usually translated into a resistance model of the landscape, whereby a higher

probability of occupancy or habitat suitability indicates lower resistance (Correa Ayram

et al., 2015). This conversion is often accomplished linearly by inverting the habitat suit-

ability, assuming that habitat preferences observed from the detection data represent the

preferences the species exhibits e.g. while dispersing. However, detection data can rep-

resent a range of movements by the species, and habitat preferences may differ among

them. Due to the relative rarity of dispersal or migratory movements, detection data

most likely represent daily forage and home-range movements, rather than seasonal and

migratory movements, dispersal movements or range expansion. However, an important

ecological process in connectivity studies is dispersal; a process that happens outside

the home-range, and for which species’ habitat preferences can be considerably different

from those observed in home-range and foraging movements (Abrahms et al., 2016). For

example, many species are likely to traverse sub-optimal habitat when dispersing to new

areas (Mateo-Sánchez et al., 2015; Trainor et al., 2013). This means that a habitat suit-

ability or probability of occupancy surface based on detection data could underestimate

the suitability (and overestimate resistance) of landscape elements for facilitating dis-

persal movement. Recent studies have found that the conversion between the suitability

and the resistance is instead better represented by a negative exponential relationship

(Keeley et al., 2016; Mateo-Sánchez et al., 2015). The negative exponential conversion

lowers the resistance values of sub-optimal suitability values and reflects the willingness

of many species to cross such landscape elements during dispersal movements (Keeley

et al., 2016). This approach increases the validity of potential connectivity estimates.

However, the approach still uses point-based observations that lack crucial information

on actual movement and its underlying ecological process. Precisely because they do not
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contain explicit information on actual behaviour, detection data have been questioned as

a basis for estimating landscape resistance for movement-based processes (Spear et al.,

2016). Estimating connectivity from such resistance models could result in misguided

conclusions regarding landscape connectivity (Mateo-Sánchez et al., 2015).

Relocation data: actual connectivity

In contrast, ‘actual’ functional connectivity estimates circumvent this problem by bas-

ing the resistance surface on movements observed in individual animals, i.e. relocation

data. Capture-recapture studies (representing e.g. home-range movements), genetic

studies (representing dispersal movement with successful reproduction) or telemetry

studies (continuous movement paths) are sources of such data (Fagan & Calabrese, 2006;

Taylor et al., 2006). Due to their frequent sampling frequency, telemetry data usually

contain highly detailed information on the characteristics of movement paths through

the modelled landscape. A path can be described as a combination of subsequent steps,

each with their properties (e.g. step length, turning angles, boundary behaviour or

travel speed in different landscape elements). Hence, the basic analysis unit becomes

the observed movement steps or paths. Step and path selection functions are the most

commonly used methods to derive habitat preferences that can be translated into resis-

tance models (Benz et al., 2016; Zeller et al., 2016). Step selection functions are a type of

resource selection function that, for each step in the animal’s movement path, estimates

the relative probability of selecting a resource unit versus alternative possible resource

units within the same step length (Manly et al., 2002; Thurfjell et al., 2014; Zeller et al.,

2016). Step selection functions are modelled in a conditional regression framework that

pairs up the landscape variables measured along the observed steps with those along a

number of randomly generated steps from the same start point. The regression models

are then used to predict relative probability of movement through different parts of the

landscape. Path selection functions are analogous to step selection function, but make

use of multiple subsequent steps for a similar ‘used’ vs ‘available’ approach (Zeller et al.,

2016). One advantage of using movement paths is that it reduces the unwanted statis-

tical effects of temporal and spatial autocorrelation that are inherent in step selection

approaches (Cushman, 2010). Another advantage of using movement paths is that they

can be separated into movement associated with different behavioural states (dispersing,

migrating, foraging, resting). These behavioural states are identified using algorithms to

clip paths and cluster path segments with similar characteristics (Edelhoff et al., 2016).

This allows for state-specific resistance surfaces to be constructed, thereby ensuring

that estimated connectivity models represent the correct ecological process considered

in the study (Abrahms et al., 2016; Zeller et al., 2016). Actual functional connectivity
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is the most ecologically relevant modelling approach in landscape ecology to date, as it

contains the highest amount of movement information (Benz et al., 2016; Calabrese &

Fagan, 2004; Spear et al., 2016; Zeller et al., 2012). However, it is also the most novel

and most challenging way of modelling connectivity: data analysis methods are still in

early development (Thurfjell et al., 2014).

1.2.2 Estimating connectivity

Once the resistance model has been developed, connections between populations, suit-

able habitat or protected areas can be estimated, usually using one of two commonly

used approaches: least-cost and electrical circuit theory (Lechner et al., 2015; Rudnick

et al., 2012; Spear et al., 2016). The least-cost method draws a single line or corridor

between a pair of patches that minimises the cumulative resistance between them (also

called the ‘effective distance’ — Adriaensen et al., 2003), whereas electric circuit theory

estimates the pairwise resistance while allowing for the resistance to be split over multi-

ple pathways instead of a single least-cost path or corridor (McRae & Beier, 2007). Both

of these methods will delineate a connection between every pair of patches, regardless of

whether the Euclidean or effective distance between them can be biologically covered by

the study species. The species’ maximum dispersal distance can be used as a threshold

value to cut off modelled connections to a plausible distance. This step incorporates

further species-specific data in the connectivity estimates (see Figure 1.1 on p.5).

1.2.3 Evaluating and optimising connectivity

Landscape ecology has produced a multitude of metrics to quantify, assess, and optimise

modelled connectivity between patches and for the entire landscape (Calabrese & Fagan,

2004). Because patch-based metrics (e.g. patch size, shape and isolation) do not allow for

landscape-level inference (Fahrig, 2003), they have been largely replaced by more recent

connectivity metrics involving calculations of the pairwise distances between network

patches, the amount of habitat in the landscape, and/or the spatial contagion of habitat

patches. In contrast to connectivity measures on the patch level, these metrics have

the advantage that they are not tied to a limited area extent. That is, they allow for

upscaling conservation actions from local, to landscape, regional and even continental

scales (Bennett et al., 2006; Santini et al., 2016). This is advantageous in the context

of the expected effects across spatial scales as a consequence of global changes, but

does require careful consideration of spatial and temporal resolutions of source data (see

sections 1.3 and 1.4). These metrics are based on a diverse array of approaches, and

have been reviewed on several occasions (Calabrese & Fagan, 2004; Kindlmann & Burel,
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2008; Magle et al., 2008; Tischendorf & Fahrig, 2000). Nevertheless, their properties,

behaviour and adequacy for use in conservation network planning have not often been

evaluated and no general consensus on preferred methods has emerged (Saura & Pascual-

Hortal, 2007). Because graph-theoretic approaches provide a good trade-off between a

reasonably detailed picture of landscape connectivity at larger scales and relatively low

data requirements (Calabrese & Fagan, 2004), I briefly describe the use of the Probability

of Connectivity metric (Pascual-Hortal & Saura, 2006; Saura & Pascual-Hortal, 2007).

This metric is an implementation of a graph theoretic connectivity evaluation that I

used in Chapter 2 of this dissertation.

Probability of Connectivity

Graphs in graph theory are a mathematical representation of interlinked entities. The

entities are called ‘nodes’, whereas the links between them are referred to as ‘edges’

(Bunn et al., 2000; Minor & Urban, 2008). In graph-theoretic connectivity assessments,

the conservation network is the graph, whereby the nodes of the graph are represented by

the known populations or suitable habitat patches in the network, and the graph edges

by the estimated connections between them. Nodes can be characterised by habitat

quality, patch size, or a combination of both, while the edges are usually characterised

by a probabilistic model of the least-cost or resistance values of the connections (Dale

& Fortin, 2010; Murphy et al., 2016; Saura & Pascual-Hortal, 2007). The Probability of

Connectivity index considers the connectivity within the network to be determined by

both the edge and node characteristics, and thus the index essentially summarises the

quality and the quantity of reachable available habitat in the entire landscape in a single

value (Saura & Pascual-Hortal, 2007). Additionally, by removing each element of the

corridor network one at a time and recording the relative change in the Probability of

Connectivity, one can evaluate the importance of different patches in the network (see

Chapter 2; Bodin & Saura, 2010). The relative change in Probability of Connectivity

(dPC) is evaluated in three fractions, each of which specifies changes in a different

role of the removed patch in the network: dPCintra represents the removed element’s

contribution in habitat area and quality, dPCflux represents its contribution to the flux

of dispersing organisms, and dPCconnector the extent to which it acts as a connecting

element (Bodin & Saura, 2010). Hence, these metrics allow a quantitative assessment of

the specific role of core patches in the network. These properties, among other strengths,

make the index a prime candidate for use in applied connectivity conservation settings.
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1.2.4 Towards application in connectivity conservation

Several analytical tools have been developed in recent years that aim to streamline the

process of functional connectivity estimation and make the approaches described above

accessible for application in connectivity conservation. For example, Linkage mapper

(McRae & Kavanagh, 2011) is a an open-source tool that maps linkages between core

areas, starting from user-defined core area maps and resistance surfaces. It calculates

least-cost corridors between each pair of core areas and compiles them together in a

single corridor map. It is implemented as a toolbox in the commonly used Geographic

Information System ArcGIS (ESRI, 2015). It also has added modules for detection of

barriers, connectivity bottlenecks, and climate gradient linkages. Chapter 2 uses this

tool for corridor delineation. The Linkage Mapper toolbox is housed under the same

umbrella as Circuitscape (McRae et al., 2008), another open-source tool that uses circuit

theory and random-walk algorithms (Doyle & Snell, 1984) to model landscape connec-

tivity. It is often used in landscape genetic studies and to identify bottlenecks in corridor

designs. A graph-theoretic example is the Conefor2.6 software (Saura & Torné, 2009,

2012), also used in Chapter 2. This stand-alone software package makes several graph-

theoretic connectivity indices available, including the Probability of Connectivity index

that quantifies the importance of habitat areas and links for the maintenance or improve-

ment of landscape connectivity. These packages, and a range of others, are listed on the

website http://conservationcorridor.org, which provides a concise and well-structured

overview of the different tools available to conservationists and land managers for con-

nectivity assessment and corridor design. Some tools include a full overview of the pro-

cess of conservation linkage design, from engaging stakeholders and identifying barriers

to choosing the appropriate modelling tools and incorporating results in decision making

(e.g. http://corridordesign.org or http://www.landscope.org/focus/connectivity/).

Given the more recent developments in satellite telemetry, available software packages

that handle movement data originating from telemetry are not developed to the same

extent, but many R (R Development Core Team, 2015) add-on packages have been

developed as that cover both basic and advanced analysis tools, such as adehabitat

(Calenge, 2006), move (Kranstauber et al., 2012), T-LoCoH (Lyons et al., 2013), crawl

(Johnson et al., 2008), rhr (Signer & Balkenhol, 2015), and moveHMM (Michelot et al.,

2017), among others.

Hence, a broad range of opportunities exist for using more ecologically realistic models in

conservation network design. However, the level of ecological detail and the application

of these tools to address specific connectivity questions for land management purposes

depends on the availability of sufficiently fine-scale resolution data on species-specific

http://conservationcorridor.org
http://corridordesign.org/
http://www.landscope.org/focus/connectivity/
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movement and landscape elements. In the next sections, a brief overview of both data

types is provided.

1.3 Landscape data through remote sensing

The rapid increase of connectivity modelling efforts has been made possible largely due

to the increasing amount of remotely-sensed data becoming available parallel to the

technological developments in satellite telemetry. Since the 1970s, satellite-based re-

mote sensing data has been gathered across a wide range of spatial and temporal scales

(Neumann et al., 2015). As with satellite telemetry, the underlying ecological process

studied determines the scale and type of remotely-sensed data to be used. Currently

available remote sensing technology inherently involves a trade-off between infrequently

gathered data of fine spatial resolutions (e.g. land cover), and more frequently gathered

data on much coarser spatial resolutions (Neumann et al., 2015). It is important for the

landscape information to match fine-scale information originating from satellite teleme-

try used in order to avoid inaccuracies in the resistance surface (Simpkins et al., 2017).

Hence the fine-scale infrequent data is arguably the most useful in connectivity studies,

although a combination of the two types is often used. In aerial applications, remotely-

sensed data that is both fine-scale and high-frequency, e.g. on atmospheric conditions,

can be of crucial importance to understand movement patterns (Bohrer et al., 2012;

Klaassen et al., 2011).

1.3.1 Remote sensing and connectivity assessments

Frequently used fine-scale remote sensing data in connectivity studies include Landsat

imagery or aerial photography (Neumann et al., 2015). These are used to determine the

size, shape and orientation of landscape elements, including anthropogenic infrastruc-

ture. Gathering details on the specific nature of these elements (e.g. level of forest degra-

dation or type of infrastructure) has recently become possible through the development of

Light Detection and Ranging (LiDAR—http://oceanservice.noaa.gov/facts/lidar.html)

and hyperspectral remote sensing (Kays et al., 2015). Digital elevation models derived

from primarily the Advanced Spaceborne Thermal Emission and Reflection Radiome-

ter (ASTER) or the Shuttle Radar Topography Mission (STRM) provide additional

fine-scale information on topographic characteristics of the landscape such as altitude,

aspect and slope. Coarse-scale data are usually gathered much more frequent. For ex-

ample, measures of primary productivity (e.g. Normalised Difference Vegetation Index

[NDVI] or Enhanced Vegetation Index [EVI]) are available on 8–16 day intervals. Data

on fire regimes and climate and weather indices are provided by the Advanced Very High

http://oceanservice.noaa.gov/facts/lidar.html


Chapter 1. Introduction 13

Resolution Radiometer (AVHRR) of the National Oceanic and Atmospheric Adminis-

tration (NOAA), by the Moderate-resolution Imaging Spectroradiometer (MODIS) or

by monthly WorldClim data. Many of these datasets and their derived indices are freely

available and relatively straightforward to obtain at reasonable temporal resolution for

many regions of the globe (Neumann et al., 2015). Additionally, animal movement

databases (e.g. Movebank) have started to make several remote sensing datasets and

indices available as direct annotation to movement paths (Kays et al., 2015).

It is acknowledged that the spatial and temporal resolutions and accuracy of remotely-

sensed datasets vary (Neumann et al., 2015). For example, the minimum mapping unit

(i.e. the smallest observable feature that can be mapped) is around 1–5 m2 for images

from the finest scale data (Quickbird and Worldview, which are only in part freely

available), but goes up to 3,600 m2 for Landsat and 250,000 m2 for MODIS data, which

is much coarser than most movement data gathered using satellite telemetry. Simpkins

et al. (2017) found that the grain (i.e. the area represented by a single grid cell) had

a large overall effect on accuracy of connectivity estimates. In addition, low accuracy

of the remotely-sensed data can impact the validity of animal movement and habitat

use models for connectivity. Both of these issues are ideally taken into account when

using remote sensing for estimating habitat selection in connectivity studies, regardless

of whether static or time-series species-specific data are used.

1.4 Obtaining movement data

Species-specific movement information is often more difficult to obtain in the quality

and quantity needed for fruitful application in connectivity estimates (Gitzen et al.,

2013). Direct observation of movements may be possible for species that generally move

short distances such as insects or breeding birds (Wilson & Thomas, 2002). They tend

to represent behaviour restricted to limited spatial and temporal scales, usually within

the home-range of the animal. However, increasing the biological realism of landscape

connectivity estimates requires identifying the behavioural decisions and habitat prefer-

ences specific to migration or dispersal. These processes tend to occur on large scales

that inhibit direct observation. Moreover, while migration is a recurring event and can

potentially be observed multiple times in a single individual, dispersal events in many

species are relatively rare and difficult to observe. Often capturing individual animals,

sometimes repeatedly, to mark them, obtain genetic samples or fit them with telemetry

units is required to obtain information on these events. Mark-recapture and genetic

samples provide evidence that an individual has moved from one location to the next,

indicating that it was able to cross the landscape in between these points. However,
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obtained locations do not capture information on the actual route taken to cover the

distance between them. Wildlife telemetry provides this possibility by enabling the

tracking of individuals’ movement paths at increasingly detailed resolution.

1.4.1 Satellite telemetry

Wildlife telemetry is a research technique that has been used since the 1960s by equip-

ping a collar with a Very High Frequency (VHF) tag (Cochran & Lord, 1963). These

traditional VHF telemetry tags emit pulses that allow researchers to get bearings of

the direction in which the tag is located in the field using an antenna and receiver.

Triangulation of multiple subsequent bearings from different points in the landscape

provides the approximate location of the tag (Nams, 2006). This technique has pro-

vided significant advances in the study of animal movements and their interaction with

the environment (Thomas et al., 2011). Satellite telemetry is an extension of the tra-

ditional VHF telemetry that incorporates an automated satellite sensor device on the

unit, in addition to the usual VHF tag. The satellite tag uses either Doppler shifts of

Argos satellite radio signals or a combination of signals from satellites in the Global

Positioning System (GPS) to determine the location of the unit on the globe (Rodgers

et al., 1996; Thomas et al., 2011). The unit automatically attempts to obtain a location

according to a programmed schedule and stores the result of each attempt on an in-built

memory device. Subsequently, the data is transferred to the user either through phys-

ically connecting the unit to a computer after recovering the unit from the field or by

using a remote download option. Commonly used remote download options are via Ultra

High Frequency (UHF), the mobile telephone (GSM) network or communication satel-

lites such as Argos, Iridium, or GlobalStar (Tomkiewicz et al., 2010, see also Chapter 4).

Satellite telemetry enables the acquisition of location data at unprecedented spatial and

temporal scales, and has opened up an extensive range of options for remotely tracking

movement (Kays et al., 2015). The frequent transfer of data even enables monitoring

of movements in near real-time, which provides many useful applications in the field.

For example, in Kenya wildlife managers managed to curb crop raiding behaviour in an

elephant as the telemetry collar informed them when the animal was nearing the fields

(Wall et al., 2014). Current sensors can determine the location of a unit as frequent as

every second (Li et al., 2015) and can have a spatial error of typically less than 5–10m

(Kays et al., 2015; Wilmers et al., 2015). Units can be equipped with automated drop-off

mechanisms, removing the need for recapturing the animal. These characteristics allow

researchers to get detailed information about the behaviour and the movement decisions

made by the animal while moving through the landscape. Hence the technique has be-

come very popular for answering many research questions dealing with concepts such
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as dispersal and corridor use, migration, foraging behaviour, physiological performance,

habitat selection, ecosystem services (e.g. seed dispersal) and social interactions (Kays

et al., 2015; Wilmers et al., 2015). The number of publications using satellite telemetry

has increased steadily over the last decades (see Figure 4.1 on page 55).

1.4.2 Spatial and temporal scales

In connectivity assessments, movement data originating from satellite telemetry are

mostly used for the parametrisation of resistance surfaces. As mentioned in the previous

section, dispersal or migration are the relevant ecological processes in most connectivity

assessments, and hence movement data representing these processes are preferable. Gen-

erally, a resource selection function is applied to the movement steps in order to identify

habitat selection probabilities, which are then rescaled as resistance values (Keeley et al.,

2016; Zeller et al., 2012). In these statistical models, the temporal scale of the data (i.e.

the fix acquisition interval of the telemetry unit, or fix frequency) is of paramount im-

portance because it determines at which spatial scale the responses of the study species

to the environment are detected (Zeller et al., 2016). Thurfjell et al. (2014) give an

example where a movement path with a 15 minute resolution showed that the study an-

imal avoids crossing a road, whereas the 60 minute resolution suggested that the animal

crosses the road twice. If the research goal is to identify the barrier effect of roads for

connectivity, the temporal resolution clearly needs to be matched to the scale at which

the response of the animal to landscape elements is expected.

Dispersal or migration usually act over relatively large scales, but are in fact a sequence

of many smaller scale behavioural choices, and thus still require short fix intervals, depen-

dent of the species’ locomotory capacity (Neumann et al., 2015; Richard & Armstrong,

2010). However, the time needed to detect dispersal events can be long and maintaining

a high fix frequency requires large batteries. Hence, a compromise needs to be found

between fix frequency and battery life, i.e. the time the unit is expected to collect and

transmit data. Telemetry units for large animals can be equipped with a sizeable battery

and could potentially handle relatively short fix acquisition intervals for longer periods of

time. In studies on smaller animals this trade-off is more pertinent and researchers tend

to choose battery life over fine-scale resolution data (Matthews et al., 2013). Solutions

to increase battery life have been developed. For example, in studies where insolation

is abundant, units with solar panels have been deployed that can charge the battery

in the field (Patton et al., 1973; Thomas et al., 2011). Energy yield is usually limited

because the size of the unit limits the size and capacity of the solar panels, but the units’

weight can be reduced and its life time extended. Additionally, multiple fix acquisition

schedules can be programmed to save battery. Fix schedules can be programmed such
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that fewer fix attempts are made during the time the animal is expected to be inactive.

Alternatively, fix frequency can be made dependent on the activity sensors attached to

the units. This way, one can apply a higher fix frequency schedule when the animal is

moving and a lower frequency schedule when the animal is resting (Brown et al., 2012).

Similarly, multiple fix schedules can be programmed in order to sample at a different

frequency whenever an animal crosses a ‘virtual fence’. A virtual fence is a line drawn

in the landscape model that separates a specific part of the study area from the rest of

it, e.g. residential areas from forested areas. This technique is also called geofencing

(Wall et al., 2014). The latter feature holds particular promise for dispersal studies. For

example, with 2-way communication being possible in more recent telemetry units, fix

schedules can be adjusted remotely. This opens up the possibility to first identify an

individual’s home-range using a high fix frequency and subsequently use the home-range

boundary as a virtual fence within which the fix frequency can be kept low until the

animal leaves its home-range. Once it crosses the virtual fence, the fix frequency can be

increased to obtain high detail movement patterns during exploratory trips or dispersal

events.

1.4.3 Endless possibilities?

Satellite telemetry opens a broad range of exciting options for studying animals and their

movements. However, the technique does have its own limitations and not everything is

possible. For example, given the potential impact of telemetry units on the behaviour

and survival chances of tracked animals, the size of the units is an important factor in

their design. Thanks to considerable progress in unit size reductions in recent years

(Kays et al., 2015), current units without remote data transfer options (or with a single

remote download at the end of the study period) weight as little as 1–10g. But they only

have the energy budget for a limited amount of fix attempts. In longer studies where a

high number of fix attempts needs to be transferred remotely, the simplest units start

from around 250g. This means that 70% of bird species and 65% of mammal species

cannot be tracked while on the move due to the weight of the units (Kays et al., 2015).

This makes studies of dispersal particularly difficult, because without periodical data

transfer, tracking where dispersing individuals go is challenging.

Furthermore, as shown in Chapters 3 and 4, environmental factors, species behaviour

and characteristics, and unit specifications and orientation often negatively affect the

success with which units manage to obtain locations, as well as the precision of these

locations. Challenges with either the retrieval of the unit from the field or the download

connection between the unit and the receiver can cause data not to be transferred from

the unit to the user. Additionally, the units are frequently used in harsh environmental
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conditions resulting in the electronics or the mechanics of the units to malfunction,

further increasing the risk of data loss or unit loss. Even though methods exist to deal

with missing data (Frair et al., 2010; Laver et al., 2015; Nielson et al., 2009), as little as

10% missing data can distort resource selection estimates (Nielson et al., 2009).

In summary, satellite telemetry provides the most detailed information on the movement

decisions of an individual in the landscape and is arguably the best available method for

the acquisition of data for the purpose of actual connectivity analyses. Nonetheless, it

faces restrictions due to the rare occurrence of dispersal events and the general limita-

tions of satellite communication due to environmental and study species characteristics.

1.5 Structure

In this dissertation, I investigate the possibilities to increase ecological realism in con-

servation network design by including species-specific information under limited data

availabilities, and by evaluating satellite telemetry as a technique to provide detailed

movement information for connectivity models. Specifically, I combine fine-scale land-

scape data with species-specific detection data to delineate a conservation network based

on potential connectivity estimates in Belize, Central America. For this, I use the white-

lipped peccary Tayassu pecari as an umbrella species. White-lipped peccaries are a gre-

garious ungulate that roam in large herds though Neotropical rainforests (Sowls, 1997).

Additionally, I investigate the performance of satellite telemetry as one of the most im-

portant tools for the collection of detailed species-specific movement information (Correa

Ayram et al., 2015).

In Chapter 2, I give background on the existing conservation network in Belize, outline

why T. pecari is a suitable umbrella species, and estimate ‘potential’ functional connec-

tivity corridors using a compiled presence-only data set and an extended version of the

Potential Connectivity Model (Rödder et al., 2016). Potential Connectivity Models use

a habitat suitability model and fragmentation threshold to model connectivity. Chapter

2 extends the model by adding a graph-theoretic evaluation of the identified core areas

and corridors. Furthermore, instead of estimating corridors between protected areas,

the protected areas are incorporated in the habitat suitability model and connectivity

is estimated between areas of suitable habitat instead of protected areas.

In Chapter 3, I explore possibilities of satellite telemetry for obtaining movement data

of white-lipped peccaries in Belize. I obtained two satellite telemetry collars to track

the movement of two pairs of individuals consecutively in different parts of Belize. The
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observed movement information would be used to create a resistance surface for estimat-

ing ‘actual’ functional connectivity for the species in Belize. However, one of the collars

failed before it was deployed due to technical issues, while the trapping success to deploy

the second collar was so low that it could only be deployed once within the time frame

of this dissertation work. The chapter describes the relatively low success rates of the

collar in the field and the resulting low temporal and spatial resolution of the data. It

discusses the challenges of using satellite telemetry for white-lipped peccaries in Belize,

but also shows that the low resolution data was still useful for obtaining preliminary

impressions of home-range and movement patterns.

Motivated by the experiences from Chapter 3, Chapter 4 reports on a worldwide eval-

uation of the success of satellite telemetry units in terrestrial wildlife research. By

modelling the relative importance of some of the limiting factors of satellite telemetry

in wildlife research, the chapter investigates whether certain conditions can be identified

that need to be fulfilled in order successfully obtain fine-scale movement data.

In Chapter 5 I give an overview of my findings and conclude with evaluating the cur-

rent integration of detailed biological information in connectivity modelling used for

conservation network design.
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Abstract

Maintaining connectivity between remaining natural areas has become increasingly im-

portant to ameliorate the effects of habitat loss and fragmentation. Typically, corridor

networks are based on structural connectivity (i.e. habitat structure) and designed to

connect protected areas. Here, we refine a typically designed corridor network in Belize

by estimating potential functional connectivity for white-lipped peccaries Tayassu pecari

between systematically identified core patches. We use a modified habitat suitability

analysis, accounting for protected area effectiveness, as a starting point for least-cost

corridor estimates, and evaluate the network using graph theory. The habitat suitabil-

ity model is used for both delineating highly suitable core areas and predicting the most

suitable movement corridors between them. To evaluate the importance of network

elements, we measure their relative contribution to overall landscape connectivity ac-

cording to graph–theoretical indices. We found that forest productivity and protected

area status were important predictors of habitat suitability for white-lipped peccaries

(contributing 28.6 and 21% to the model prediction, respectively), along with core forest

area (15.8%) and terrain ruggedness (15.4%). Our corridor analyses indicated poten-

tially weak links in the existing network and suggested alternative, ecologically relevant

locations for connectivity–enhancing measures, as well as areas that are particularly

important for overall landscape connectivity. With this study, we provide a framework

to improve the scientific rigour, ecological meaningfulness and conservation relevance of

applied corridor network design.

2.1 Introduction

Landscape connectivity is fundamental to maintaining or improving ecologically re-

silient landscapes undergoing environmental change (Crooks & Sanjayan, 2006a). Con-

sequently, conservation networks are established, consisting of natural core areas that

are connected through conservation corridors.

The design of conservation networks typically identifies corridors between protected areas

(PAs) that are informed by expert opinion. This approach has a number of limitations.

For example, boundaries of PAs are often used as start and end points for delineating

corridors (Belote et al., 2016; Brodie et al., 2014; Zeller et al., 2011), but some PAs

may not hold suitable habitat for the species of conservation concern; and using solely

PAs as nodes could exclude potentially suitable areas that are not protected (Beier

et al., 2011). Moreover, PAs are usually located in sections of the landscape that are

not particularly suitable for human activities and are therefore biased towards certain
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environmental characteristics, e.g. poor soil habitat types or steep topography (Joppa &

Pfaff, 2009). Finally, some PAs provide more protection than others depending on their

level of management and the time they have been under protection (Geldmann et al.,

2013). Thus, a better approach for defining core areas would be to use a combination of

empirically–derived habitat suitability and actual protection status (Beier et al., 2011).

A second limitation is that corridor routes connecting core areas are typically based

on structural connectivity of the landscape, which only takes into account the spatial

configuration of habitat. It is widely agreed in landscape ecology that estimates of func-

tional connectivity are ecologically more meaningful (Crooks & Sanjayan, 2006b; Magle

et al., 2008). Functional connectivity considers species characteristics as well as land-

scape structure and is thus a property of the species–landscape interaction (Calabrese

& Fagan, 2004; Taylor et al., 2006; Tischendorf & Fahrig, 2000). Using functional con-

nectivity could improve the ecological relevance of the corridor network design, but is

rarely used in conservation applications.

Third, regardless of how core areas and corridors are defined, few conservation network

designs provide quantitative assessments of the relative importance of each corridor or

patch for maintaining or improving landscape–wide connectivity, although these are

needed for prioritization in practical planning (Galpern et al., 2011). In landscape

ecology, quantitative methods—e.g. based on graph–theoretic approaches—have been

used for this purpose, where the core areas represent ‘nodes’ and the corridors represent

‘edges’ or ‘links’ (Fall et al., 2007; Urban & Keitt, 2001).

Here, we address the above limitations of corridor network design by incorporating PA

effectiveness in corridor estimates between core habitat patches and quantitatively eval-

uating these estimates using graph–theoretic indices. Specifically, we show how to create

Potential Connectivity Models (PCMs— Rödder et al., 2016) that a) use species–specific

habitat suitability and protected area effectiveness to define nodes (as opposed to using

PA outlines), b) focus on functional connectivity for delineating corridors, and how to

extend the PCMs by c) applying graph–theory to quantify the relative importance of

network elements for overall landscape connectivity. We illustrate the framework by re-

fining an existing corridor network in Belize, Central America, for an umbrella species,

the white-lipped peccary Tayassu pecari. The existing network has largely been designed

based on expert opinion, using PAs as nodes and structural connectivity to delineate

corridors. Our framework combines well–established methods for objectively identifying

nodes and corridors with recent developments in graph–theoretic connectivity indices

to evaluate their relative importance for maintaining or improving connectivity. The

framework aims to improve the repeatability, ecological meaningfulness and conserva-

tion relevance of typical corridor network design.
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2.2 Methods

2.2.1 Study area & species

Belize is a small country south of Mexico with over 60% forest cover and 36% of the

its terrestrial surface area protected to various extent (Meerman & Roger-Wilson, 2005;

Young, 2008, see Figure 2.1). The majority of the forest is contained within two ma-

jor blocks: La Selva Maya and Maya Mountains (Figure 2.1a). La Selva Maya is the

second largest contiguous tropical forest in the Americas after the Amazon and spans

Guatemala, Mexico and Belize (Briggs et al., 2013; Radachowsky et al., 2012). The Maya

Mountains are a mountain range bordering the south-eastern edge of La Selva Maya that

are becoming increasingly isolated due to increasing industrial and small scale develop-

ment (Briggs et al., 2013). Belize also hosts connections between these inland forests

and the forests on the Caribbean coast (Figure 2.1b). All connections are part of the

Mesoamerican Biological Corridor (Sabido & Gutiérrez, 2003; Wildtracks, 2013), but are

negatively affected by habitat destruction and fragmentation (Briggs et al., 2013; Meer-

man & Roger-Wilson, 2005). Within Belize, a current set of corridors has been suggested

between blocks of PAs (Meerman, 2000; Petracca, 2010; Wildtracks, 2013), which are

used as reference throughout the study (Figure 2.1b). The delineation of these corridors

has been based primarily on structural connectivity. In this study we refine the existing

corridor network by predicting functional connectivity, using the white-lipped peccary

as an umbrella species (Breckheimer et al., 2014). The white-lipped peccary (Vulnera-

ble— IUCN, 2012) is a gregarious ungulate that usually travels in herds (sounders) of

up to 300 individuals (Keuroghlian et al., 2013; Sowls, 1997). It is an important forest

ecosystem engineer (Beck et al., 2010; Silman et al., 2003) and is a prey species for puma

Puma concolor and jaguar Panthera onca (Foster et al., 2010; Mayer & Wetzel, 1987).

It inhabits highly productive primary and secondary forest mosaics close to water and

away from human impacted areas (Keuroghlian & Eaton, 2008b; Reyna-Hurtado et al.,

2009a). Home ranges expand and contract seasonally according to food availability (Al-

trichter et al., 2001; de Almeida Jácomo et al., 2013; Keuroghlian & Eaton, 2008a).

We chose this species because it has large space requirements and limited propensity

for actual long-distance dispersal (see section 2.4), making it particularly sensitive to

changes in landscape connectivity. Furthermore, in Bolivia Coppolillo et al. (2004) iden-

tified the species as the most important ‘landscape species’ (i.e. a species out of a suite

whose conservation would benefit the entire landscape, Sanderson et al., 2002) based

on more than 10 objective criteria. Altrichter et al. (2012) likened the species in terms

of conservation importance in Latin America, to bison Bison bison in North America

and elephants Laxodonta africana in Africa.
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Figure 2.1: a) Location of Belize in Central America, showing the Maya Mountains
and La Selva Maya, and the 75 presence-only points used for the habitat suitability
analyses. b) All gazetted and candidate protected areas in Belize (anno 2010) and the

currently suggested corridors between them.

2.2.2 Analytical framework

Our framework is based on the PCM framework by Rödder et al. (2016) and consists

of four interrelated steps. First, we model species-specific habitat suitability using a

range of environmental predictor variables and information on protected area effective-

ness. Second, we objectively delineate nodes for the connectivity network and calculate

a species-specific landscape resistance surface using the habitat suitability model con-

structed in step one. Third, we delineate corridors among the nodes based on the

resistance surface. Finally, once the potential connectivity model is created (steps 1 to

3), we use graph-theory to quantify the relative importance of the network elements for

overall landscape connectivity.
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Step 1: Habitat suitability

We obtained 432 unique peccary observations, which we pruned to avoid issues with

temporal and spatial autocorrelation (see Appendix A, section 2.1). We used the result-

ing 75 presence points (Figure 2.1a) as input for MaxEnt 3.3.3k (Phillips et al., 2006),

a widely used species distribution modelling software. We identified 23 environmental

variables that potentially affect habitat suitability for peccaries (Table 2.1). To avoid

multicollinearity, we excluded any predictor pairs with Spearman’s Rho > 0.7 (Dormann

et al., 2013), and retained only the variable that we expected a priori to have the most

direct relevance to the ecology of the species, based on our knowledge of the species’ bi-

ology. To incorporate protected areas in the habitat suitability estimate, we constructed

a 24th variable reflecting protected area effectiveness, based on the combination of (i)

the IUCN Protected Area Categories (Dudley, 2008) updated for Belize according to

Wildtracks (2013) and (ii) the management effectiveness according to a national study

by (Walker & Walker, 2009, see Appendix A, Table 3). To illustrate the influence of

including PA effectiveness (the paef model), we also constructed a control habitat

suitability model that excluded PA effectiveness (Table 2.2).

Recent research suggests that species-specific tuning of MaxEnt models can improve

their performance (Radosavljevic & Anderson, 2014). We used the package ENMeval

(Muscarella et al., 2014) in R 3.2 (R Development Core Team, 2015) to determine the

optimal settings for the habitat suitability estimates (Warren & Seifert, 2011, see Ap-

pendix A, section 2.3), and ran 100 MaxEnt replicates using the package dismo (Hijmans

et al., 2015). The average predictions were used as the final habitat suitability models

(control and paef). To test model accuracy, we compiled an additional set of 143

independently gathered presence locations for white-lipped peccaries in southern Belize,

originating from satellite collar data and sightings of animals and tracks (Hofman et al.,

2016, B. Arevalo, pers. comm.). We randomly rotated and shifted (up to 3 km) these

points 1000 times, and compared the average habitat suitability of the original points

to the average habitat suitability of the permuted points, following Mueller & Fagan

(2008).

Step 2: Node delineation and landscape resistance

To identify nodes based on the paef habitat suitability surface, we followed the approach

used in Gnarly (Shirk & McRae, 2013), whereby we smoothed the surface by calculating

the mean suitability across a moving window equal in size to the smallest reported annual

white-lipped peccary home-range (21 km2 — Fragoso, 1998, 2004) for each grid cell, and

considered all grid cells with a smoothed suitability higher than 0.5 to be suitable. Cells
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Metric type Description Metric

Environmental Food tree occurrence (sum of food genera) foodGenera
Enhanced vegetation index mEVI
Mean annual rainfall rain wc
Soil soil

Land cover (class-level) Distance to agriculture distAgric
Distance to broadleaf forest distFor
Distance to pine forest distPif
Distance to rivers distRiv
Distance to roads distRoad
Distance to savanna distSav
Distance to shrubland distShrub
Distance to urban area distUrb
Distance to waterbodies distWat

Land cover (landscape-level) Proportion of core forest cfp
Ratio of egde over core forest ecp
Frequency of fires fire
Landscape heterogeneity lanhet
Land cover type weco

Political Protected area effectiveness paef2010
Topographic Aspect aspect

Elevation elev
Slope slope
Topgraphic Position Index tpi
Terrain Ruggedness Index tri

Table 2.1: Predictor variables used for the MaxEnt habitat suitability analyses. Vari-
ables in italics were excluded after correlation analysis.

Current
corridors*

CONTROL model PAEF model

Habitat
suitability
model

Expert
opinion

Environmental vari-
ables & Maximum
Entropy modelling

Environmental vari-
ables + PA effectiveness
& Maximum Entropy
modelling

Nodes Protected
areas

Protected areas High-suitability areas

Connectivity
type

Structural/
Functional

Functional (Potential) Functional (Potential)

Connectivity
model

Expert
opinion/
Least-cost

Least-cost Least-cost +
graph–theory

Table 2.2: Characteristics of the currently suggested biological corridors in Belize and
the set of Potential Connectivity Models developed in this study. *based on (BERDS,

2005; J. Meerman, 2000; Petracca, 2010; Wildtracks, 2013)
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with an original suitability value below 0.5 were removed, as were cells representing

highways and major roads, since they constitute a division in any contiguous group of

high-suitability grid cells. Of the resulting suitable areas, those smaller than 21 km2 were

removed. We added two nodes that were not identified by MaxEnt due to low habitat

quality or small area, but represent areas where peccaries were recently observed and

could potentially play a role in connectivity to neighbouring countries. These nodes

were constructed by buffering one observation in each area with a circle of 21 km2.

To obtain an approximation of landscape resistance to peccary movements, we followed

Mateo-Sánchez et al. (2014) and converted the paef habitat suitability surface from

Step 1 into a resistance surface using a negative exponential function (see Appendix

A, section 3.3). In line with the PCM approach, we included movement barriers at

this stage. Few absolute barriers exist for white-lipped peccaries within our study area

(e.g. Fragoso, 2015), but we assumed a high resistance for highways and major roads

(respectively 95% and 85% of the maximum value in the resistance surface).

Step 3: Corridor estimation using landscape resistance

We used a least-cost approach to identify the most suitable travelling routes between

each pair of nodes (Adriaensen et al., 2003), as provided by the Linkage Mapper toolbox

version 1.0.9 (McRae & Kavanagh, 2011) in ArcGIS Desktop 10.3 (ESRI, 2015). This

toolbox calculates the distance (in cost values) of the least-cost path between each pair

of nodes and quantifies how much more costly the rest of the landscape is in proportion

to the least-cost path. We delineated corridors by selecting all pixels having a cost-

distance of maximum 25% higher than the cost-distance of the respective least-cost path

between the two nodes. Note that, at this point, every pair of nodes was connected by

a corridor because we did not limit the cumulative cost-distance to a relevant maximum

for the species. This approach offers the possibility to locate suitable areas for corridor

enhancement at a later stage in the process. For comparison, we also estimated corridors

between nodes composed of blocks of PAs based on the control model (see Appendix A,

section 4).We visually compared all three sets of corridors and quantitatively compared

the distribution of suitability values inside them.

Step 4: Evaluating the network

To help evaluate the importance of predicted core areas and corridors, we identified

potential stepping-stones in and around the corridors. Stepping-stones are habitat areas

not sufficient in size and/or quality to maintain populations, but that can serve as

stopovers when travelling through the unfavourable matrix between two nodes in the
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network (Saura et al., 2014). To identify stepping-stones, we selected areas that had

a non-smoothed habitat suitability between 0.45 and 1. To exclude overlap between

the stepping-stones and the nodes, we buffered the nodes with 3788 m (i.e. maximum

daily movement distance recorded for T. pecari by Hofman et al., 2016). We removed

these buffered nodes from the potential stepping-stone areas, and excluded any stepping-

stones that were smaller than half of the smallest reported annual white-lipped peccary

home-range size.

We then used Conefor 2.6 (Bodin & Saura, 2010; Saura & Torné, 2009) to evaluate

node, stepping-stone, and corridor importance. Conefor 2.6 can quantify overall land-

scape connectivity using a single graph-theoretic index (Probability of Connectivity),

and estimates active links between patches. To determine the importance of nodes and

stepping-stones in the network, each element of the corridor network is removed one at

a time, and relative changes in three recently developed fractions of the Probability of

Connectivity are recorded: dPCintra represents the removed element’s contribution in

habitat area and quality, dPCflux represents its contribution to the flux of dispersing

organisms, and dPCconnector the extent to which it acts as a connecting element (Bodin

& Saura, 2010). We evaluated the importance of each node and stepping-stone by ex-

amining its dPCconnector and dPCintra values. The use of the Probability of Connectivity

fractions in the optimisation of corridor networks has only recently become possible and,

to our knowledge, has only been applied by Loro et al. (2015). The Conefor 2.6 links

indicate which patches are currently connected (i.e. form a ‘component’ in the network),

and thus provide an evaluation of which corridors are important for connectivity in the

network. Corridors supported by active links suggest importance for maintaining current

connectivity, while corridors with missing links suggest areas for improving connectivity.

The links are drawn based on a user-defined, species-specific dispersal distance that is

converted to a direct dispersal probability among patches based on an exponential dis-

persal kernel (Saura & Torné, 2009, 2012). We attributed a direct dispersal probability

of 0.01 to a dispersal distance of 9495 m, which is the diameter of a circular average

home-range for white-lipped peccaries (see A, section 5).

2.3 Results

The enhanced vegetation index and the protected area effectiveness variables contributed

most to the paef habitat suitability model (28.6 and 21% respectively), while the pro-

portion of core forest (15.8%) and the terrain ruggedness index (15.4%) contributed

considerably as well. Land cover and the topographic position index each contributed

less than 10% to the model (see A, Table 4). Only 50 out of 1000 permuted validation
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sets had a higher average habitat suitability than the original validation set (P = 0.05).

This is exemplified by the geographical fit of the validation points over the habitat suit-

ability model (see A, Figure 5).In the control habitat suitability model, the overall

ranking of the top contributing variables remained the same, but the relative importance

of the enhanced vegetation index and the proportion of core forest increased by 10% and

15%, respectively (see A, Table 5).

Based on the paef habitat suitability surface, eleven nodes were identified (HS1–HS11),

and each pair of nodes connected by least-cost corridor between them (paef corri-

dors—Figure 2.2). The northern corridor between HS2 and HS4 showed an eastward

shift from the existing corridor. The paef corridor between HS3 and HS6 overlapped

to some extent with the current central Belize corridor, while two southwards corridors

were suggested between HS3 and HS5. Node HS9 partially overlapped the southern

corridor, and an alternative route was suggested between HS8 and HS11.

However, Conefor detected only 40 active links connecting 11 nodes and 31 stepping-

stones, grouped in 12 separate components (Figure 2.2). Hence, many suggested paef

corridors had missing Conefor links between their respective nodes. Ninety-five percent

of the overall landscape connectivity was present within the nodes and stepping-stones

(PCintra = 95.18), and less than 5% through direct and indirect links. Nodes HS3, HS6,

HS8 and HS9 contributed considerably to overall landscape connectivity due to their

size and habitat quality (dPCintra —Figure 2.2a). Stepping-stones and nodes of any

size that were centrally located within their respective components played an important

role as connecting patches (dPCconnector ), whereby patches in the biggest components

contributed most to overall landscape connectivity (Figure 2.2b).

2.4 Discussion

In this study, we applied a novel framework that combines habitat suitability models and

least-cost corridor analysis, and adds graph-theory to robustly evaluate network connec-

tivity. Our results extend current PCMs by accounting for PA effectiveness in the habitat

suitability estimate and by estimating a corridor network between high-suitability areas

rather than between PAs. Compared to existing, expert-derived corridors, our analysis

suggests additional ecologically relevant locations for connectivity–enhancing measures

and indicates potentially weak links in the network. Furthermore, our approach identi-

fies areas that are particularly important for overall landscape connectivity. The model

can easily be used to quantify the effect of different landscape planning options on over-

all connectivity (e.g. Mimet et al., 2016), which is fundamental for prioritizing future

conservation actions under logistical and financial constraints.
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Figure 2.2: Hash-marked areas indicate the current corridors and grey shaded areas
the paef corridors. Darker coloured nodes (denoted HS1–11) and stepping-stones (not
denoted) indicate higher importance for connectivity, based on (a) their size and habitat
suitability (dPCintra), and (b) their role as a connecting patch (dPCconnector). Thick

black lines indicate active Conefor links.

2.4.1 Habitat suitability and core areas

Our paef habitat suitability model accurately predicted actual occurrences of peccaries

in Belize, and showed that PA effectiveness itself is an important predictor of habitat

suitability for peccaries in Belize. This corroborates previous reports from Belize (Foster

et al., 2010) where white-lipped peccaries were predated by jaguars and pumas only

inside PAs. Since 95% of the overall landscape connectivity was due to habitat area

and quality inside the nodes and stepping stones, PCintra is by far the most important

measure to evaluate their importance (2.2a). Overall, the model predicted that the

largest and most centrally located patches in the Selva Maya and southeastern Maya
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Mountains components are crucial for maintaining current landscape connectivity. The

outline of identified nodes suggested that large PA blocks can contain substantial areas

of highly suitable habitat or none at all, and anything in between (however, note that we

have used a stringent threshold [see A, section 3.1], meaning that additional, slightly less

suitable habitat outside the nodes might be available). Conversely, some unprotected

areas were identified by the model as highly suitable and formed an important node in

the network (e.g. HS9—2.2). Additionally, the absence of suitable habitat in some PAs

(e.g. the northern node PA3—see A, section 4) caused alternative corridor routes to

show up (e.g. for the northern corridor—2.2). These findings highlight the potential

differences in corridor network design using core habitat areas instead of PAs as nodes.

2.4.2 Corridors

In some areas, the paef corridors suggested alternative routes for existing corridors,

e.g. the more eastern alternative to the current northern corridor, while in other areas,

the existing corridor outlines were supported (e.g. parts of the central and southern

corridors). However, many corridor alternatives did not contain any Conefor links or

stepping-stones, indicating that they are not currently of sufficient quality to potentially

facilitate movement for white-lipped peccaries in Belize. For example, several links are

predicted to be missing in all corridor alternatives between La Selva Maya from the Maya

Mountains, suggesting these populations to be isolated from each other. Similarly, in the

northern corridor between HS1, HS2 and HS4, several links are predicted to be missing

to connect these nodes (2.2). In such cases, one of the main advantages of our framework

is that the suggested paef corridor outlines can guide the search for the most suitable

areas to implement conservation actions to improve connectivity.

2.4.3 Methodological considerations

The inclusion of protected area effectiveness in the PCM model reduces the variability of

suitability values within our predicted corridors compared to the current and control

corridors (see A, Figure 7). This suggests that corridor estimates are improved when

basing node and corridor delineations on a habitat model that includes PA effectiveness,

as compared to corridors estimated among PAs based on a habitat model excluding PA

effectiveness. That said, we note that the corridor model (as opposed to the habitat

suitability model) has not been validated in the field and may contain imprecisions. For

example, contrary to the common assumption that connectivity within PAs is guaran-

teed, the component around node HS5 appeared to be separated from the component

around nodes HS6 to HS10. This could be due to a ridge known as the Main Divide,
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however accounts of anecdotal observations on the ridge may indicate that a lack of

presence points in high terrain caused our model to underestimate suitability in such

terrain. Moreover, we realise that the effect of PAs on habitat suitability is not just in-

fluenced by their effectiveness, but also by the time the area has been under protection.

The longer it has been protected, the higher its naturalness (as in Beier et al., 2011) is

expected to be. However, due to insufficient data, we could not take this into account

in our analysis. Indeed, information on PA effectiveness is probably the least available

information in many conservation situations.

We compared our corridors with the current corridors within Belize rather than with cor-

ridors from a large-scale, functional connectivity assessment for jaguars (Rabinowitz &

Zeller, 2010), because (i) the jaguar–specific corridors have largely confirmed the national

level corridors between PAs, (ii) the limited spatial extent of our study area and (iii) the

increased resolution of our analyses. Additionally, our modelling approach is based on

data from a different umbrella species, the white-lipped peccary. Despite methodologi-

cal and empirical uncertainties, umbrella species have been used in conservation studies

for many years, and will likely continue to be so in the future for practical reasons

(Caro & Girling, 2010). Krosby et al. (2015) questioned the use of umbrella species in

studies at larger scales or in cases where exceptional dispersal distances and/or barrier

sensitivity make them unsuitable for the purpose of studying connectivity. There is no

data suggesting that either of these issues exist with peccaries in Belize. Instead of by

individual or small-group, long-distance dispersers (which to our knowledge have never

been reported for this species), dispersal and genetic exchange seem to occur primarily

when home-ranges expand and overlap, and without bias towards either males or fe-

males (Altrichter et al., 2002; Biondo et al., 2011). Hence, observed movements of 5–10

km likely represent extended home-range movements and may also function as dispersal

movements (de Almeida Jácomo et al., 2013; Fragoso, 1998; Keuroghlian et al., 2004).

To evaluate the effect of our chosen dispersal distance on the identification of important

nodes/stepping-stones in this study, we conducted a sensitivity analysis using a range

of maximum dispersal distances (similar to Loro et al., 2015) and found that the top

10 important nodes or stepping-stones remained remarkably stable (see A, Table 7).

Consequently, we are convinced that the species is an ideal connectivity umbrella and

that the scale of typical peccary movement matches that of our study area.

The applied framework relies on presence-only data for deriving habitat suitability, land-

scape resistance, and functional connectivity estimates. In general, presence-absence

data and associated analysis methods (e.g. occupancy modelling) perform better in

predicting habitat suitability, and prevent some methodological issues known to affect

presence-only techniques such as those implemented in MaxEnt (Yackulic et al., 2013).

However, the available presence-absence data for our study area did not fully cover the
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environmental conditions at known presence locations, preventing us from extrapolating

to the full study area. Therefore we included them in the presence-only data for MaxEnt

and used available techniques to account for MaxEnt’s known methodological issues (see

A, section 2). Nevertheless, the model may estimate habitat suitability conservatively.

Furthermore, corridor delineation should ideally be based on actual data on movement

or gene flow for the study species, i.e. representing ‘actual’ connectivity (Fagan & Cal-

abrese, 2006; LaPoint et al., 2013; Sawyer et al., 2011). However, such data are not

available for the while-lipped peccary and for many other species of conservation rele-

vance. In such cases, the next best option is to consider ‘potential’ connectivity using

indirect information on dispersal (e.g. occurrence data) to derive habitat suitability and

landscape resistances (Fagan & Calabrese, 2006; Zeller et al., 2012). Translating habitat

suitability derived from presence-only data into resistances is not optimal for species that

use different habitats for home-range movements versus dispersal movements, because

the occurrence points may not adequately represent the way a species uses a landscape

during actual dispersal (Abrahms et al., 2016; Mateo-Sánchez et al., 2015). However,

this is unlikely an issue for our study, because peccaries move in sounders, and rather

than showing distinct movement behaviours during foraging versus dispersal, dispersal

likely occurs when home-ranges of different sounders overlap (see above). We used an

exponential function to convert habitat suitability values into resistances, which greatly

increases the usefulness of habitat models for connectivity estimations (Keeley et al.,

2016). Furthermore, basing resistance values on habitat suitability is a common starting

point for connectivity analyses (Correa Ayram et al., 2015) and increases repeatability

as compared to expert opinion (Rayfield et al., 2010; Rödder et al., 2016).

A final methodological consideration is the fact that our PCM analyses were based on

least-cost distances, which implicitly assume that the animal has complete knowledge of

the study landscape and moves across it in an optimal way. We chose Linkage Mapper’s

least-cost approach because it has simple and intuitive algorithms that enable fast and

widespread adoption of the framework by conservation practitioners. However, alter-

native movement models (e.g. including random walks) are available in user-friendly

freeware (e.g. Circuitscape by McRae et al., 2008). In sum, our results are robust to

the methodological assumptions we made, and the framework can readily be adapted to

other circumstances and settings.

2.5 Conclusions

Our study demonstrates the value of combining robust analytical approaches for design-

ing and evaluating corridor networks. Using limited data, we derived a corridor network
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for Belize that highlights alternative corridor routes, identifies potentially missing links

and can be used to prioritize conservation actions in addition to reinforcing the value of

existing corridor network elements.

We note that our corridor estimates only represent the ecologically most likely scenario

for a single umbrella species. We recommend identifying a limited set of coarse habi-

tat types based on species functional traits, and choose one or more suitable umbrella

species for each habitat type (following Brodie et al., 2014). Corridor areas can then be

determined per umbrella species for the range of species that live in the same habitat

types and have similar dispersal propensities. We encourage similar connectivity esti-

mation efforts for other umbrella species representing different functional groups (e.g

wetland species) using the landscape species concept (Sanderson et al., 2002).

Since our corridor model has not been verified in the field yet, the next step in Belize

could be to conduct a field validation of the suggested corridor alternatives, before

integrating them with the current corridors. Moreover, reliable corridor prioritization is

usually achieved by considering the future spread of development and its impact on the

likelihood of completing planned habitat linkage projects (Spring et al., 2010). Thus,

evaluating the threats and opportunities of any planned developments in these corridor

estimates is recommended to further inform prioritization of nodes, stepping-stones, and

linkages.

While our results are specific to Belize, the methodological advances we present have

merit for many other cases where optimal corridors are to be developed in a quantitative,

objective manner. The toolbox for this extended PCM framework is becoming more

accessible for conservation practitioners, and enables a shift from structural connectivity

assessments between PAs towards potential functional connectivity assessments between

high-suitability areas as a standard approach for informing landscape management. The

framework illustrated here is based on rigorous modelling techniques and subsequent

evaluation via graph-theoretic connectivity indices, and thus has the potential to lead

to improved corridor networks that enhance conservation of threatened species.
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Abstract

Introduction. The Maya Mountains are a heavily forested mountain range in Belize and

Guatemala supporting high levels of biodiversity. Due to environmental degradation

around the range, it is in danger of becoming isolated from the largest contiguous forest

in Central America. Forest connectivity in the area is vital for white-lipped peccaries.

These social ungulates roam in herds of up to 300 individuals and need large forested

areas to sustain populations. The species has not previously been studied in Belize and

its distribution, population size, herd dynamics and movement patterns are unknown for

the country. We aimed to estimate home-range size and investigate movement patterns

of the species in southern Belize.

Methods. We present a preliminary 4-month data set from a herd of ca. 60 animals

tracked by an individual fitted with a GPS satellite collar. We evaluated collar perfor-

mance, habitat preference and movement characteristics, and estimated home-range size

using a semi-variogram approach, suited for sparse and irregular data.

Results. Collar performance was poor, with 38% of the data not reaching the satellite,

and a GPS fix success rate of 11.6% for the data that did reach the satellite. The semi-

variogram home-range size was 55.2 km2 . We observed a maximum daily movement

distance of 3.8 km, and a preferential use of forest habitat over shrubland, savannah and

cropland. We calculated a density of 1.09 ind/km2 and make an informed guess of close

to 100 herds in the broad-leaf forests of the Maya Mountains.

Discussion. Our study highlights some of the challenges faced when collaring white-

lipped peccaries, as well as the performance of GPS-collars in tropical forests. It also

provides a first glimpse of the home-range and movement behaviour of white-lipped

peccaries in Belize.

3.1 Introduction

The Maya Mountains are a heavily forested mountain range in Belize and Guatemala,

and form the southernmost part of La Selva Maya, the largest tropical forest block in the

Americas after the Amazon (Briggs et al., 2013; Radachowsky et al., 2012). The diverse

geology accounts for a range of different soil types and a dramatic topography, which

result in a multitude of microhabitats. These characteristics, combined with tropical

rainfall regimes, yield some of the highest levels of biodiversity in the region (Brewer

& Webb, 2002; Dourson, 2012). The Maya Mountains are also part of the Mesoameri-

can Biological Corridor, a regional initiative to conserve connectivity among forests in
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Central America (Herrera, 2003). On a national level, the Maya Mountains cover 22.2%

of Belize’s land mass, forming the largest contiguous forest in the country, and are re-

garded as a Key Biodiversity Area (Meerman, 2007). They are estimated to provide up

to US$1 billion worth of ecosystem services to the people of Belize (Hammond et al.,

2011), and constitute one of biggest resources in the country for local livelihoods, forestry

and eco/agritourism (Briggs et al., 2013). Despite the fact that most of the Belizean

side of the mountain range consists of protected areas of various legal categories (Figure

3.1), increasing industrial and small scale clear-cutting have severed the connections be-

tween the Maya Mountains and the forests to the north in both Guatemala and Belize.

Consequently, the Maya Mountains are becoming increasingly isolated (Briggs et al.,

2013).

Figure 3.1: Location of Belize and the Maya Mountains. The protected areas of
the Maya Mountains (as delineated by Briggs et al. 2013) are shaded grey and the
trapping area is indicated by a red dot. Protected areas that are directly relevant to the
study area are annotated. BFREE: Belize Foundation for Research and Environmental
Education; BNR: Bladen Nature Reserve; CNP: Chiquibul National Park; CBWS:
Cockscomb Basin Wildlife Sanctuary; CRFR: Columbia River Forest Reserve; DRFR;

Deep River Forest Reserve;MMFR: Maya Mountain Forest Reserve.

The white-lipped peccary Tayassu pecari is often one of the first mammals to disappear

with increasing forest fragmentation (Moreno & Meyer, 2014; Sowls, 1997). White-

lipped peccaries are gregarious ungulates travelling in herds of 10 to 300 individuals

(Altrichter et al., 2012; Sowls, 1997), and although they are known to occur in mosaic
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landscapes, they are regarded as typical forest dwellers (Desbiez et al., 2009; Fragoso,

1999; Keuroghlian & Eaton, 2008b; Reyna-Hurtado et al., 2009b; Reyna-Hurtado & Tan-

ner, 2005; Tobler et al., 2009). Due to the large herd size, they need to move frequently

among different feeding spots, and in the process cover large distances through the for-

est. Home-range sizes throughout the species’ range vary substantially, ranging from 20

to 200 km2 (de Almeida Jácomo et al., 2013; Fragoso, 2004; Keuroghlian et al., 2004;

Reyna-Hurtado et al., 2009b). This variation reflects the environmental variability over

the range of the species and illustrates its ability to cope with different conditions. Nev-

ertheless, this flexibility seems to consist mainly of varying herd size (Fragoso, 2004) or

splitting up in sub-herds (e.g. Keuroghlian et al., 2004), rather than of changing habitat

preferences. Thus, despite their ability to deal with different environmental conditions,

white-lipped peccaries always depend on intact forest habitats of sufficient size and con-

nectivity, rendering them highly susceptible to forest conversion and fragmentation. The

Maya Mountains are assumed to offer continuous habitat and are expected to be home

to several herds of white-lipped peccaries. However, no studies have been conducted on

this species in Belize; their distribution, population size, herd dynamics and movement

patterns are unknown for the country. The rugged topography of the Maya Mountains

might render some parts of the forest unsuitable, and species-specific connectivity among

suitable forest areas remains unstudied.

Here, we provide a preliminary report on data gathered from a herd of ca. 60 by tracking

a single white-lipped peccary that was GPS-collared to investigate its home-range and

movement patterns in the Bladen Nature Reserve, southern Belize. We assume that

the location of the GPS-collared individual adequately represents the area used by its

herd at the same point in time, because in many gregarious species the tendency of

individuals to always move with the herd is very strong. In fact, this tendency has

been used for management purposes in conservation. For example, Taylor & Katahira

(1988) used the ‘Judas goat’–approach to help eradicate feral goats Capra hircus on the

Hawaiian Islands, and Campbell et al. (2004) and Cruz et al. (2009) used it for similar

reasons on the Galpagos Islands. That is, goats fitted with a radio-collar (the Judas

goats) were used to get information about the location of an entire herd of feral goats.

All members of the discovered herds were killed, with the exception of the Judas goats,

which would go on to find another herd, where the same scenario was repeated. A

similarly strong herding tendency was described by Byers & Bekoff (1981) for collared

peccaries Pecari tajacu, and we can confirm such cohesiveness for white-lipped peccaries

too based on camera trap footage from within our study area (M. Hofman, unpublished

data) and evidence from several earlier studies on the species elsewhere (Keuroghlian

et al., 2004; Reyna-Hurtado et al., 2009b). For example, in neighbouring Calakmul,

Mexico, collared animals were always seen with their respective herds for more than
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700 observations (Reyna-Hurtado, pers. comm.). Hence, the collaring of additional

individuals from the same herd would not necessarily yield additional information on

home-range and movement patterns of that herd.

3.2 Methods

3.2.1 Study area

The Bladen Nature Reserve (BNR; 16.48, -88.88) is a strictly protected area (IUCN

Cat. Ia) gazetted in 1990, covering about 40.5 km2 of the southern Maya Mountains,

and centred around the watershed of the Bladen branch of the Monkey River. Since

2008, the reserve has been managed by a local conservation NGO, the Ya'axché Con-

servation Trust, under mandate of the Belize Forest Department. Vegetation is almost

exclusively lowland and submontane broad-leaf wet forest with relatively open under-

storey and a canopy height of 20–30 m (Iremonger et al., 1995). Lowland areas are

characterised by abundant Astrocaryum mexicanum and Attalea cohune palms, while

tree diversity is dominated by the Fabaceae, Rubiaceae, Sapotaceae and Lauraceae fam-

ilies (Brewer & Webb, 2002; Iremonger et al., 1995; Stott, 2014). The protected area

also contains a sliver of seasonally inundated lowland savannah in its far eastern tip, and

a pocket of pine forest. Due to its inaccessible terrain with steep slopes and extremely

narrow valleys, the area holds some of the most undisturbed forests of Belize and is very

high in biodiversity (Brewer & Webb, 2002; Briggs et al., 2013; Dourson, 2012), with

ongoing species discoveries (Polhemus & Carrie, 2013; Thompson & Dourson, 2013). Its

elevation spans from 30 to 1050 m, some of the highest areas in Belize. It is one of the

wettest areas in Belize receiving an average annual rainfall between 2,500 and > 3,000

mm, with 85% falling between mid-May and the end of November (Brewer & Webb,

2002), and an annual average temperature of around 26�. The area has a distinct dry

season from March to mid-May. It is bordered by six other protected areas with a lower

protection status, which are equally likely to be used by white-lipped peccaries, given

the contiguous habitat type and expected ranging behaviour of the species (Figures 3.1

and 3.3). The nearest human settlements are Medina Bank (∼300 inhabitants, mostly

Q'eqch'i Maya) and Trio Village (∼3,000 inhabitants, mostly Q'eqch'i Maya and Mes-

tizos from Guatemalan origin), and their agricultural areas border the Maya Mountain

Forest Reserve and Belize Foundation for Research and Environmental Education. BNR

is separated from a two-lane highway to the south-east by a five km wide stretch of sa-

vannah and lowland broadleaf forest, mostly within the Columbia and Deep River Forest

Reserves.

http://www.yaaxche.org
http://www.yaaxche.org
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White-lipped peccaries are occasionally spotted by Ya'axché field staff throughout the

reserve, with estimated herd sizes between 60 and 100 individuals, but it has been unclear

how many herds roam the area and whether or not they interact. Anecdotal reports from

farmers and hunters suggest a declining population over the last 10 years in southern

Belize. There are no reports about crop raiding by white-lipped peccaries in southern

Belize and we assume that the animals in the research area have little or no contact with

humans, with the exception of enforcement personnel and visiting researchers. Hunting

pressure in eastern BNR is expected to be low due to long-term intensive enforcement

activities in the area. In other parts of the reserve and in the surrounding areas, hunting

pressure is expected to be higher (M. Hofman, pers. obs.).

3.2.2 Trapping

White-lipped peccaries have been trapped either by tracking or ambushing free-range

animals (Fragoso, 1998; Fuller et al., 2002; Reyna-Hurtado et al., 2009b), or by using

baited box and/or corral traps (Carrillo et al., 2002; de Almeida Jácomo et al., 2013;

Keuroghlian et al., 2004; Sowls, 1997, C. Richard-Hansen, pers. comm.). We used one

box trap (1 x 1 x 2 m) and one corral trap (∅ ca. 6 m, 1.5 m high, with handling

compartment), spaced about 2.5 km apart, each in the proximity of a creek showing

signs of peccary activity. The traps were deployed in July and August 2014, during the

peak rainy season in southern Belize. Camera traps had indicated previous occasional

presence at the corral trap site during two previous years. The traps were baited with

various fruits; as well as cassava Manihot esculenta and cocoyam Xanthosoma spp. roots.

Because only one collar was available, one adult female of appropriate size (estimated >

25 kg) was selected and isolated from the captured individuals, using recommended pig

handling tools, including a confined restraining compartment, board and snare (Defra,

2003; Grandin, 2013). With the aim of minimizing the duration of the process, we

did not use sedation. All animal trapping and handling followed the guidelines of the

American Society of Mammalogists (Sikes & Gannon, 2011), and was permitted by the

Belize Forest Department [Permit no. CD/60/3/14(37)]. The individual was fitted with

a Telonics TGW-4570-3 GEN4 GPS/Iridium collar (Telonics, Mesa AZ, USA). The collar

was programmed to start a fix attempt every three hours, theoretically yielding eight

locations per day. If no GPS fix was obtained after 180 seconds, the fix attempt was

aborted and classified as unsuccessful. Data were scheduled to transfer to the satellite

every two days. Data remained on the sending list for 10 days, then would remain stored

on-board but would not be sent.
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3.2.3 Home-range size and movements

We used the semi-variance approach developed by Fleming et al. (2014) to detect whether

the herd displayed home ranging behaviour, and to estimate the home-range size. The

approach makes use of the auto-correlated nature of tracking data to investigate pro-

cesses that occur over different time scales (e.g. foraging vs. migration or dispersal).

The semi-variogram measures the distance between two relocations as a function of the

time lag between them, and calculates the variability of distances among all relocation

pairs with the same time lag. When an animal displays home ranging behaviour, in-

creasing the time lag between relocations leads to an asymptote in distance covered,

because animals would not usually travel further than their home-range diameter, even

when given more time. Hence, the approach can be used both to detect home-range be-

haviour and to estimate home-range size. Since movement distances are averaged within

time lags, the approach is robust in the face of irregular and sparse relocation data, i.e.

varying fix intervals and long data gaps (Fleming et al., 2014).

We used the ctmm package (Fleming et al., 2015) for the R statistical environment

(R Development Core Team, 2015) for all semi-variance calculations. Following Flem-

ing et al. (2014), we calculated the empirical variogram, and selected the best fitting

Semi-Variance Function (SVF) from a set comprised of i) a null-model (Brownian mo-

tion, i.e. random, undirected movement), ii) an Ornstein-Uhlenbeck motion model

(OU—Brownian Motion within a home-range), and iii) an Ornstein-Uhlenbeck motion

model with foraging included (OUF), i.e. assuming regular Brownian motion (while

foraging) on a very short time scale, and Ornstein-Uhlenbeck motion on longer time

scales. We used the Akaike Information Criterion corrected for small sample size (AICc)

to select the best model.

Additionally, to allow comparisons with previous home-range estimates for the species,

we used the rhr package (Signer & Balkenhol, 2015) in R to estimate 50, 95, 99 and 100%

Minimum Convex Polygon (MCP) home-ranges, as well as 50, 95, 99 and 100% isopleths

from a kernel density home-range estimate (KDE) with bandwidth set to the reference

bandwidth. From the latter calculations, a core home-range area was estimated using

the method of Seaman & Powell (1990) as provided in the rhr package (Appendix B).

To investigate movement rates, we calculated step characteristics using the rhr package

and summarized step lengths to indicate movement distances over three time spans: 6,

12, and 24 hours.
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3.2.4 Habitat preference

To investigate habitat selection within home-ranges (i.e. third-order habitat selection;

Johnson, 1980), we used the most recent land use/land cover map available in vector

format based on 30m-resolution Landsat data, specifically for Belize from the Belize

Environmental Resource Data System of Belize (BERDS, 2005), representing the 2011

situation with 18 land use/land cover classes. We considered the proportion of each

land use/land cover class within the 100% MCP as available, and the proportion of

relocations in each class as the proportion of habitat used. We tested for differences

between available and used with a χ2-test. Additionally, we calculated the Jacobs index

(Jacobs, 1974) to detect which specific classes were used more often than expected from

their availability in the landscape. The Jacobs index is a modified version of Ivlev's

electivity index (Ivlev, 1961) that takes into account the relative abundance of a resource

when identifying an organism's resource preferences (Jacobs, 1974). It is calculated as

D = (r − p)/(r + p− 2rp) (3.1)

where r is the proportion of habitat used and p is the proportional habitat availability.

D varies from -1 under strong avoidance to +1 under strong habitat preference. Values

close to 0 indicate that the habitat is used in proportion to its availability.

3.3 Results

3.3.1 Trapping success

On April 22nd, 2015, we trapped 12 individuals from a herd of an estimated 60 in the

corral trap. The individual selected for collar deployment was an adult female, estimated

to weigh just over 25 kg. Fitting the collar took ca. five minutes, after which the animal

was released from the handling compartment to join the others in the corral. Camera

trap footage showed the collared female among the rest of the herd less than four hours

after the trapping event, and with its young, both in good health, two weeks later.

GPS fix rate and data transfer. We report here on data collected between 22 April

and 22 August 2015, i.e. 121 days of collar deployment. Data for ca. 47 days did not

transfer to the satellite, meaning that 38.7% of the time we did not know whether a fix

attempt had been successful, and where the animal was located. The average length of

such data gaps was 6.7 (± 3.0 SD) days, with a maximum of 12 days. From all the fix

attempts that were transmitted to the satellite (n = 593), only 11.6% were successful,

thus yielding a total of 69 GPS fixes over the study period.
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3.3.2 Home-range

The empirical semi-variogram was best approximated by the semi-variance function

representing Ornstein-Uhlenbeck motion including foraging (OUF; 2221.51 AICc), and

thus showed evidence for home ranging behaviour over the four-month monitoring period

(Figure 3.2). Only on very short time scales did the animal display random, undirected

movement (2.53 hours, CI 0.92, 6.91) indicative of foraging. The OU and BM models

followed with ∆AICc 8.11 and 1760.48 respectively.The estimated home-range size was

55.2 km2 (CI 34.09, 81.32) which the animals could cover in 3.66 days (CI 1.70, 7.89;

Figure 3.2). The 95% MCP home-range estimate was less than half that of the 95%

KDE isopleth, while the core area estimate based on the KDE was closer to the 95%

MCP (Table 3.1).

Figure 3.2: Semi-variogram of all GPS fixes of a single white-lipped peccary in south-
ern Belize (n = 69). Circles represent the estimated semi-variance for each time-lag,
with 95% confidence intervals estimated from the standard error of the mean semi-
variance shaded light grey. The fitted OUF model (see text) is shown as a red solid
line with its 95% confidence intervals estimated from the standard error of the best fit

shaded light red.
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Figure 3.3: Spatial representation of the home-range estimates for a single white-
lipped peccary herd in southern Belize. a) 95% Kernel Density Estimate home-range
(dark grey line), Core area (80% KDE –black line) and 100% MCP home-range (orange
line) over the relocations (red dots), rivers (blue) and roads (red lines). Black dots
represent villages, the yellow star is the corral trap location. Forest cover is shaded
green, grey shaded areas are non-forest (savannah, shrubs and agricultural lands), and
grey diagonally line-filled areas with straight black boundaries are protected areas. b)
Semi-variogram home-range estimate (black ellipse) with 95% confidence interval (grey

ellipses) and utilisation density (blue shading).
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Level (%) Area (km2)

MCP 50 7.13
95 33.48
99 33.58

100 33.59

KDE 50 17.67
95 69.38
99 96.71

Core area 79.8 41.01

Table 3.1: Minimum Convex Polygon (MPC) estimates, Kernel Density Estimates
(KDE) and Core Area estimate of white-lipped peccary home-range size in southern

Belize across different levels.

Step length (m) n Mean (SD) Median Maximum

∆t < 6hrs 17 190 (± 208) 119 802
6hrs ≥ ∆t < 12hrs 11 910 (± 814) 882 2380

12hrs ≥ ∆t < 24hrs 13 1181 (± 786) 1074 2260
∆t ≥ 24hrs 27 900 (± 806) 792 3788

Table 3.2: White-lipped peccary step length statistics for different time intervals
between GPS fixes.

3.3.3 Movement

Mean distances covered during fix intervals of six, 12 and 24 hours were 190, 910 and

1181 m respectively, while daily distances covered between subsequent fixes with multi-

day fix intervals averaged around 900 m (Table 3.2). The maximum distance covered

during fix intervals of up to one day was 2,380 m. For fix intervals longer than one day,

the maximum observed speed was 3,788 m/day. Over all fix intervals, the maximum

movement speed calculated was 270 m/h.

3.3.4 Habitat preference

Comparing the proportion of land use/land cover types for the relocations with the

proportion of these classes in the 100% MCP area, a χ2-test showed significant difference

between use and availability ( χ2 = 15.133 and P < 0.001 based on 2000 Monte Carlo

replicates).

Jacobs D indicated a preference for broadleaf forest and a slight avoidance of shrubland

(Table 3.3). Since no relocations were recorded in savannah and agricultural lands, the

D index indicates total avoidance (-1.00). Note that we could not calculate significance

levels for preferences of individual land cover classes, because our sample size of one

does not allow us to calculate the relevant test statistics.
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Available Used D

Agriculture 0.69% 0.00% -1
Broad-leaf forest 80.03% 95.65% 0.69
Savannah 12.54% 0.00% -1
Shrubs 6.74% 4.35% -0.23

Table 3.3: Proportion of land use/land cover classes available within the 100% MCP
home-range (Available), the proportion of the relocations in each class (Used) and the

corresponding Jacobs index (D).

3.4 Discussion

3.4.1 Home-range, density and population size

Even though white-lipped peccaries have been considered nomadic or migratory in early

studies (Bodmer, 1990; Kiltie & Terborgh, 1983), the current consensus is that they use

well-defined home-ranges that are large enough to encompass seasonal or multiannual

movements (de Almeida Jácomo et al., 2013; Fragoso, 2004; Keuroghlian et al., 2004;

Reyna-Hurtado et al., 2009b).

All our home-range estimates fall within the range sizes reported for white-lipped pec-

caries from areas under various disturbance and rainfall regimes in Brazil, Costa Rica,

and Mexico (Carrillo et al., 2002; de Almeida Jácomo et al., 2013; Fragoso, 1998, 2004;

Keuroghlian et al., 2004; Reyna-Hurtado et al., 2009b). However, the time span covered

by our estimates is four months for a single herd, whereas the other estimates cover

multiple herds, each of which was tracked for a period of three months to more than

one year. Despite the short time span, our data covers the end of the 2015 dry season

and the beginning and peak of the wet season of the same year, and it remains to be

seen whether our home-range estimates will shift or expand during the transition into

the 2016 dry season, until the collar drops off in May 2016. However, although the

semi-variogram indicated home ranging behaviour, it is impossible to say whether our

location data adequately represent the entire home-range, given the numerous gaps in

the data. For example, we suspect that the dense canopy in rugged terrain may more

severely affect GPS fix success rate and satellite data transfer than relatively flat terrain,

which would cause an underestimate of space-use in the more rugged areas.

Nonetheless, within the home-range estimated thus far, our habitat preference results

agree with the preference for forested areas that is well-known for the species. Given

the low availability of agricultural lands inside the MCP area and the limited number

of relocations, the total avoidance of agricultural lands remains uncertain. With about

12.5% of the home-range covered by savannah, it is remarkable that no relocations were

observed there, while almost 5% of the relocations were located in shrubland, which was
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available at half the rate as savannah. This could be explained by i) shrubland providing

better cover or food and ii) the patchy spatial configuration of shrubland throughout

the forest making movement through these patches more likely than through the one

continuous patch of savannah south of the forested areas. However, we emphasize that

due to a sample size of one herd, significance testing of preference for specific habitats

was not possible.

Due to its robustness with sparse data, we consider the semi-variogram estimate the

most accurate for our data set. Using the home-range size estimate (and confidence

intervals) of this approach and our estimated number of individuals in the herd (n =

60), we would obtain a density of 1.09 (CI 0.74, 1.76) ind/km2 . If we (i) extrapolate

these home-range and density estimates to other herds in the Maya Mountains (as de-

lineated by Briggs et al., 2013), and (ii) assume that all the broad-leaf forest habitats

in the Maya Mountains are suitable for white-lipped peccaries, we estimate 99 (CI 67,

160) herds roaming the area, and a population size of 5,917 individuals (CI 4017, 9582).

Clearly, the two assumptions for these estimates are untested and the estimates are

therefore associated with very high uncertainty; we include them here in the discussion

for indicative purposes only. Our density estimate of 1.09 ind/km2 is in the lower half

of the range of estimates from the Argentinian Gran Chaco (1.02 ind/km2 , Altrichter,

2005), the Brazilian Cerrado (2.99 ind/km2 , Desbiez et al., 2010) and southern Brazil

(4.5 ind/km2 , Keuroghlian et al., 2004), but still considerably higher than in the Calak-

mul Biosphere Reserve in Mexico (0.43 ind/km2 , Reyna-hurtado, 2009) (0.43 ind/km2

Reyna-Hurtado 2009), which is geographically closest to our study area. However, all

of these areas are drier and/or less forested than our study area, which is expected to

influence group size and density. For example, the high density in southern Brazil might

be due to a crowding effect in the fragmented forests. We expect to have overestimated

population size, because not all broad-leaf forests in the Maya Mountains are expected

to be used by the species, and hunting pressure in the herd’s home-range is expected to

be lower than in most other parts of the area. Nevertheless, the estimates suggest that

the Maya Mountains can potentially harbour a large number of while-lipped peccaries,

warranting greater research emphasis and conservation incentives on the species in this

region.

3.4.2 Collar performance

The numerous reports of successfully deployed GPS collars in different environmental

settings convincingly illustrate the potential that this equipment holds for obtaining

large quantities of high quality data in wildlife research (Edenius, 1996; Eriksen et al.,

2011; Harju et al., 2013; Krofel et al., 2013; Martins et al., 2011). However, the use
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of GPS collars often comes with unforeseen technical or data quality issues (Matthews

et al., 2013; Sager-Fradkin et al., 2007). In particular, studies from tropical forests

report imprecise locations or low GPS fix success rate (Barlow, 2009; Blake et al., 2001;

Coelho et al., 2007; Hwang et al., 2010; Lizcano & Cavelier, 2004; Phillips et al., 1998).

While we anticipated that the dense forest and steep terrain in our study area would

pose a challenge for any telemetry-based research, we opted for GPS collars because

(i) we wanted to obtain detailed information on movement patterns to parametrize a

mathematical model for simulating potential movement paths of peccaries in Belize, and

(ii) the cost of obtaining a limited number of GPS collars was estimated less than the

personnel and equipment costs for running a large camera trap grid or transect network

in the inaccessible area. Unfortunately, the fix success rate of 11.6% was much lower

than expected from the literature, even for the given environmental conditions. However,

collar malfunction cannot be excluded as a possible explanation. For logistical reasons,

we could not perform collar tests in the field prior to deployment, but we stress that

this should in fact be standard practice.The poor performance of one collar cannot be

used to draw general conclusions about the viability of GPS collars in rugged tropical

environments, but we suggest that a review on the usefulness of GPS collars specifically

in such environments is needed to help researchers determine a priori the potential in

their area. Nonetheless, we are confident that the data gathered during this study

outperforms data collection using regular VHF collars in our area and for our highly

mobile target species, both in terms of quantity and quality of locations obtained.

3.4.3 Movement

Movement data of high temporal resolution has been, and remains, difficult to obtain

for white-lipped peccaries, and hence movement distances of white-lipped peccaries have

mostly been described qualitatively in terms of home-range behaviour, migration and/or

nomadism (Sowls, 1997). In this study, the herd of the tagged white-lipped peccary

seemed to move about 1 km per day on average, but did at times travel at 270 m/h

and covered up to 3,788 m per day, which enabled the herd to traverse its home-range

in two to eight days. Due to our frequent sampling gaps however, our estimates likely

underestimate the mobility of the species in our study area. For comparison, Fragoso

(1998) reported distances from 1,200 to 2,600 m between VHF relocations of unknown

time intervals, while Reyna-Hurtado et al. (2009b) mentioned a travel speed of up to

3,000 m/h, traversing seasonal home-ranges in one-day time intervals.

Based on observations elsewhere in Central and South America (Carrillo et al., 2002;

Moreira-Ramı́rez et al., 2015; Tobler et al., 2009), we expected white-lipped peccary

activity to peak during mid-morning and mid-afternoon. However, from our movement
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data (i.e. speed and distance measures), we were unable to detect any clear diurnal

activity patterns (see Appendix B). We attribute this to the poor fix success rate of the

collar. The fix success rate is lowest during the most active periods of the day (Figure

3.4), leading to a lack of information on movement distance and speed during these

periods. This suggests that the behaviour of the animal is potentially an important

factor influencing the success of our GPS collar, in line with previous findings (D’Eon

& Delparte, 2005). The downward trend in fix success rate from the onset of the high

activity period also suggests that time since the last successful fix is inversely correlated

to the probability of obtaining a successful subsequent fix. The time lag between fix

attempts has been found to negatively affect fix success rate in previous studies (Cain

et al., 2005; Moen et al., 2001).

Figure 3.4: Fix success rate (%) was very low in general, but especially so during
expected high activity peaks. [*Relative activity was calculated as the mean relative
activity from the datasets presented in Carrillo et al. (2002), Tobler et al. (2009), and

Moreira-Ramı́rez et al. (2015)]

3.4.4 Notes on behaviour

During the first six months, the animals visited the trap sites a total of five times

with an average of 44.4 (± 51.9 SD) days in between. In the next two months, visit

frequency increased, with an average of 11 (± 11.9 SD) days between subsequent visits.

Note that the coefficient of variation in both cases is greater than one, indicating the

unpredictability in time of the trap site visits. This visit frequency was generally lower
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than in Manu National Park in the upper Amazon basin in Peru, where white-lipped

peccaries passed by the same observation site every 4.25 days in the dry season, and

every 14.5 days in the wet season (Kiltie & Terborgh, 1983). It is unclear whether this

difference in visit frequency would be due to differences in food availability, wariness

of human presence, or other factors. Other researchers have found similar time spans

for the animals to increase trap visit frequency (three months to one year; C. Richard-

Hansen, pers. comm.).

White-lipped peccaries have been reported in some cases to engage in aggressive be-

haviour towards a threat (Sowls, 1997), but we observed no direct attacks from the

animals inside or outside the corral. Four of the trapped animals escaped upon our

arrival as they managed to jump the fence using each other’s backs as steps, while the

remaining eight animals stood their ground and displayed a circular defence formation

in the centre of the corral, in agreement with observations by Nietschmann (1972). Once

the selected animal was isolated in the handling compartment out of view of the others,

it was secured in place and let itself be handled without resistance.

3.5 Conclusions and recommendations

To our knowledge, white-lipped peccaries have so far been fitted with VHF-based radio-

telemetry collars only, and no studies using GPS-collared white-lipped peccaries have

been published. However such studies are being conducted in French Guyana, the Brazil-

ian Pantanal and Mexico (C. Richard-Hansen, pers. comm.; A. Keuroghlian and R.

Reyna-Hurtado, pers. comm.).

Our study illustrates some important challenges faced in trapping white-lipped peccaries

and the use of GPS collars in dense tropical forests on rugged terrain. First, the time

between the installation of the traps and the trapping success was considerably longer

than anticipated. Second, collar performance was very poor in our area, presumably

due to animal behaviour, canopy cover and terrain conditions. Recent implementations

of the quick fix pseudo-ranging (QFP) system in terrestrial applications could improve

the performance (Tomkiewicz et al., 2010). Third, even though we found that collaring

without sedation is possible, we have no information on the animal’s stress levels while

being handled other than the observation that the animal let itself be handled easily once

isolated. Nogueira et al. (2015) simulated a hunting situation on captive white-lipped

peccaries using a similar trapping set-up as was used in this study. They found that the

psychological negative effect (i.e. increased wariness) of the trapping event lasted no

longer than eight days. However, the approach also has the disadvantage of not allowing
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for collecting body measurements or blood samples. For these reasons, we recommend

using sedation when possible.

Despite the challenges, the preliminary results provide a much-needed glimpse of the

spatial ecology of white-lipped peccaries in Belize. We present notes on behaviour,

measurements of maximum and mean daily movement distances, habitat preference and

home-range estimates. We cautiously provide density and population size estimates, but

future studies should focus on estimating peccary densities directly (e.g. via camera-

trapping or genetic mark-recapture), assess variability of herd size in Belize, and collar a

greater number of individuals. We note that the relocations of our herd are spread over

BNR and all five surrounding protected areas, highlighting the necessity to coordinate

management of these areas so as to avoid spill-over effects of disturbances from one area

to the other. Improving the management of, and knowledge about, the white-lipped

peccary populations in the Maya Mountains is crucial for their survival in Belize as well

as for monitoring and maintaining the connectivity of the area to neighbouring forests

of La Selva Maya and the Calakmul area (Moreira-Ramı́rez et al., 2015; Reyna-Hurtado

et al., 2009b).
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Abstract

Satellite telemetry is a promising technique for wildlife research. Large volumes of move-

ment data at fine spatial and temporal resolution allow for a broad spectrum of ecological

questions to be addressed. Its current widespread use reflects the technique’s versatility.

However, the performance of satellite telemetry units is influenced by many factors: the

environmental and topographical conditions of the area in which they are deployed, the

characteristics of the species carrying them, unit design and technical specifications, the

constellation of satellites for geolocation, the methods and conditions for data trans-

fer, and even the level of species knowledge and telemetry experience of the researchers

deploying them. To avoid literature bias, we used questionnaires to collect data from

over 3,000 units, deployed on 62 species in 142 study areas worldwide. We collated

information from 167 projects worldwide, aiming to gain insight into the relative influ-

ence of all factors on different aspects of the performance of satellite telemetry units.

We evaluated the success rate in obtaining fixes and transferring fixes to the user, and

evaluated technical failure rates. We used boosted beta regression to model the units’

performance as a function of a set of variables representing species and environment

characteristics, deployment settings, and unit specifications. We found that average fix

success and data transfer rates were high (85 and 94%, respectively), and were gener-

ally better predicted by species characteristics and unit specifications than measures of

environmental characteristics. However, close to half of the unit deployments in an aver-

age project ended prematurely, and about 25% suffered a technical failure. Despite the

challenges involved in satellite telemetry, the detail, amount, and quality of data often

exceeds that of data gathered using traditional VHF telemetry or camera trap grids.

Nevertheless, researchers should thoroughly consider the need for satellite telemetry to

answer their specific research questions, given the sizeable investments involved for a

scientifically sound and statistically robust result. We give a list of recommendations to

consider before initiating a study involving satellite telemetry.

4.1 Introduction

Wildlife telemetry units (e.g. collars, harnesses) equipped with satellite functionality

have opened up a very attractive set of options for remote observation across a large

diversity of species. (Kays et al., 2015). These telemetry devices allow for tracking move-

ment on unprecedented temporal and spatial scales, yielding large amounts of detailed

information. Since the early 1990s, GPS-based satellite tags have been used successfully

in wildlife research (Thomas et al., 2011; Tomkiewicz et al., 2010), for example for study-

ing predator-prey interactions (Eriksen et al., 2011), activity patterns (Gottardi et al.,
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2010), movement characteristics (Johnson et al., 2002b; LaPoint et al., 2013), habitat

preferences (Chetkiewicz & Boyce, 2009), and behavioural modes (Forester et al., 2007;

Gurarie et al., 2009). The scope of applications is still increasing due to improvements

in technology and significant size reductions (Kays et al., 2015). Due to the potential

and wide range of uses of satellite telemetry, its use in research and conservation has

increased considerably in the last decades, and an increasing number of scientific studies

have been published using or evaluating the technique (see Figure 4.1 and Correa Ayram

et al., 2015).

Figure 4.1: Number of publications over the last 16 years found on ISI Web of Knowl-
edge using the search terms ‘satellite wildlife telemetry’, ‘satellite wildlife tracking, ‘GPS
wildlife telemetry’, ‘GPS wildlife tracking’, ‘satellite animal telemetry’, ‘satellite animal

tracking’, ‘GPS animal telemetry’, and ‘GPS animal tracking’.

Nonetheless, it is recognised that challenges related to the actual functioning of the units

often result in lower data volume and quality than expected by the researcher (Johnson

et al., 2002a; Kaczensky et al., 2010; Matthews et al., 2013; Thomas et al., 2011). The

general operation of satellite telemetry units involves two steps (see Figure 4.2 on page

60). The first step is fix acquisition: whereby according to a pre-programmed, usually

cyclic schedule, the satellite tag scans the sky for satellites and attempts to calculate the

coordinates of its exact position on earth (a process often referred to astaking a fix’).

The second step is data transfer: the stored results are transferred to the user either
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via a physical connection to the unit or using one of the many options for remote data

transfer (Thomas et al., 2011; Tomkiewicz et al., 2010). A number of factors affect the

success of satellite telemetry units in both these steps.

First, fix acquisition is influenced to unknown extent by tag orientation (D’Eon & Del-

parte, 2005; Heard et al., 2008), species behaviour (Bowman et al., 2000; Mattisson

et al., 2010; Moen et al., 2001; Sager, 2005), canopy cover/basal area of the habitat

(Agouridis et al., 2004; DeCesare et al., 2005; Di Orio et al., 2003; Hansen & Riggs,

2008), vegetation cover type (Phillips et al., 1998), terrain ruggedness (Cain et al., 2005;

Lewis et al., 2007) and the visibility to the sky to detect satellites (Cain et al., 2005;

Sager-Fradkin et al., 2007). All of these can cause high variation in the volume and

quality (i.e. geographic precision) of fixes stored on the unit.

Second, it is clear that the choice of data transfer method depends on the study species

and environmental characteristics of the study area (Thomas et al., 2011). However, to

decide whether UHF, GSM or satellite based data transfer is more suited for a heavily

forested and inaccessible area is not straightforward. Researchers need to judge whether

the animals can be approached close enough for UHF data transfer and whether enough

resources are available to visit the area frequently. Alternatively, they face difficult

considerations about the effect of the density of the forest on the coverage of the GSM

or satellite network. The chosen method of data transfer from the unit to the user can

considerably impact the amount of data eventually available to the user, especially in

cases where the chances of recovering the unit from the field are small (Gau et al., 2004).

Far fewer studies have addressed the success in transferring data from the unit to the

user as compared to the fix acquisition rates.

Third, failures in the electronics and mechanics of satellite telemetry units are not un-

common. Failures due to production errors, battery malfunction, timed-release failure,

the effects of harsh environments and species behaviour can all shorten a unit’s op-

erational life. The same is true for animal mortality due to natural causes, hunting,

traffic or deployment-related issues (Gau et al., 2004; Kaczensky et al., 2010; Matthews

et al., 2013). Any premature end to the deployment of a telemetry unit undoubtedly

causes further (potentially significant) losses in the expected data volume. Despite the

availability of a number of data screening and processing techniques to deal with biased

and/or missing positions (Frair et al., 2010; Laver et al., 2015; Nielson et al., 2009),

poor data quality and/or quantity can prevent units from providing sufficient data to

answer specific research questions formulated based on the premise that larger amounts

of high-quality data would be available. These limitations have led some authors to

urge for caution when opting for satellite telemetry in wildlife research (Johnson et al.,

2002a).
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One could expect that projects where the quantity and/or quality of information is in-

sufficient to answer the main research question are unlikely to produce any peer-reviewed

publications. Therefore, we expect the literature to be biased towards successful applica-

tions of satellite telemetry (Matthews et al., 2013). For example, Campbell et al. (2015)

report that approximately 50% of studies involving satellite transmitters in Australasia

remained unpublished, either due to the time-lag between field work and publication,

insufficient data quality or quantity, or a lack of time, funding, experience or motivation

to publish in peer-reviewed journals. This means that evaluations of the performance

of satellite telemetry in wildlife research based on literature review alone could lead to

false conclusions. Because to our knowledge large-scale evaluations of fix success rates

of satellite telemetry units relying on both published and unpublished data have not

been conducted, the actual consistency of satellite telemetry units in providing the ex-

pected large amounts of high-quality data could be considered poorly known. Similarly,

we do not know which factors determine the overall success of this promising research

technique.

Here, we use a questionnaire approach to assess the performance of satellite telemetry

units in terrestrial wildlife research across the globe, and evaluate the relative influence

of environmental, technical and species-related characteristics. Our specific objectives

were to investigate the average fix acquisition success, the average data transfer success,

the overall success rate of units, the proportion of units malfunctioning due to technical

or other failures, and how these rates are impacted by environment, species and unit

characteristics.

4.2 Methods

4.2.1 Data collection

We used a standardised questionnaire format to collect information on satellite unit

performance from past and ongoing wildlife research projects across the globe. We

chose a questionnaire to obtain this information because we wanted to avoid a potential

bias in published literature towards successful satellite telemetry studies.

To identify potential participants for the study—researchers who were willing to analyse

and share information about the unit success rates for individual projects—we first used

a short online form explaining the study, in which we invited researchers to submit their

contact details if they were interested in participating. We shared the form on conser-

vation and ecology related mailing lists, online wildlife and technology platforms, and

social networks for scientists. We also mailed the invitation to contribute to personal
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contacts, authors of satellite telemetry studies, and contributors to online animal move-

ment databases. Second, data on satellite telemetry unit performance were collected

from all interested participants in a standardised format using a questionnaire form (see

Appendix C). The form consisted of 27 questions, grouped according to the topic they

addressed: study area and animal characteristics, unit specifications, deployment de-

tails, unit costs, and researcher opinion on data quality and quantity and the usefulness

for their career, for conservation, and for research.

The design of the questionnaire was guided by the general operation of satellite telemetry

(see Section 4.1 and Figure 4.2). In the two-step process of data collection in satellite

telemetry, the first step is fix acquisition. Nearly all recent, commercially available units

for wildlife research use the Global Positioning System (GPS) satellite network for the

purpose of obtaining fixes, although other methods exist (e.g. Argos with Doppler-effect,

Global Navigation Satellite System or GLONASS for short, see Figure 4.2; Thomas et al.,

2011; Tomkiewicz et al., 2010). Each programmed fix attempt by the unit either succeeds

or fails in obtaining a fix, and this result is stored on an inbuilt memory device. The

tag needs an unobstructed line-of-sight to at least four satellites to obtain a reliable 3D

fix, with fewer satellites leading to lower spatial accuracy of the obtained coordinates

(Al-Rabbany, 2002; Moriarty & Epps, 2015). Additionally, factors such as the spatial

distribution of satellites in the sky and the distortion of the satellites’ radio signals due

to atmospheric effects can introduce imprecision in the obtained positions (Al-Rabbany,

2002). This imprecision is measured as the geometric dilution of precision (DOP). The

number of available satellites and the DOP for each fix attempt are usually—but not

always—included in the fix result information provided to the user by the unit or the

manufacturer. Furthermore, the programmed fix attempt frequency itself can influence

the success of the fix attempts. If the time lag between fix attempts is short, the unit

can reuse the satellites’ ephemeris data, reducing the time and battery power needed to

determine the next location (Cain et al., 2005; McGregor et al., 2016; Moriarty & Epps,

2015). The second step in data collection is the transfer of the obtained locations from

the unit to the user. Several options for transferring data are available (Thomas et al.,

2011; Tomkiewicz et al., 2010), including:

(1) The store-on-board unit is retrieved from the field, and the user extracts the data

using a physical connection between the unit and a computer.

(2) An Ultra High Frequency (UHF) tag on the unit enables the user to download the

data, typically using a UHF receiver from a relatively short distance.

(3) The unit is equipped with a GSM sim card and messages containing the fix results

are sent directly to the user’s phone.
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(4) An additional satellite tag on the unit transmits the fix results to a commercial

communication satellite network (e.g. Argos, GlobalStar, Iridium or Inmarsat),

usually providing global or near-global coverage.

Where the additional weight is not of concern, satellite telemetry units can be equipped

with an automated timed-release mechanism to avoid having to recapture the animal

to retrieve the collar. Additionally, the units usually come with traditional Very High

Frequency (VHF) tags for on-the-ground triangulation or homing-in, as well as activity

and environmental sensors that provide supplementary information (Kays et al., 2015).

This supplementary information is not usually included in remote data transfer to reduce

the size of the individual data packages to be transferred.

4.2.2 Standardised questionnaire

In the questionnaire, we used the following general principles and terminology. In line

with Figure 4.2, we considered the number of expected fixes to be the number of sched-

uled fix attempts that were initiated by the unit between the day of deployment and

the moment the unit failed, the animal deceased or until the last data download. A

fix was considered successful when a scheduled fix attempt succeeded in obtaining the

unit’s location and the user subsequently managed to retrieve the time and coordinate

information for this fix from the unit. We considered a fix to be unsuccessful when a

scheduled fix attempt failed in obtaining the unit’s location, but the user still managed

to subsequently retrieve the available info for this attempt from the unit. Note that the

available information for unsuccessful fixes will include variables such as date, time and

number of visible satellites, but will lack coordinates. Fixes with obviously improbable

coordinates were also counted as unsuccessful. Any scheduled fix attempt for which

no information was transferred to the user—hence it is unknown whether the unit suc-

ceeded or failed to obtain its location—was considered a not-retrieved fix. We neglected

the quality of individual fixes (DOP, 2D/3D) for the purposes of this study, because

the diversity of ways to measure the quality would have increased the complexity of

our questionnaire disproportionately. Moreover, the quality of fixes is governed by more

detailed processes than the actual fix success rate (e.g. the position of satellites relative

to one another), and and it has been studied on smaller scales on several occasions (Cain

et al., 2005; D’Eon et al., 2002; Frair et al., 2010; Ganskopp & Johnson, 2007; Gau et al.,

2004; Hansen & Riggs, 2008; Jung & Kuba, 2015; Lewis et al., 2007; Matthews et al.,

2013; Sager-Fradkin et al., 2007). Hence, only the quantity of fixes was considered for

the evaluation of the unit success. Some projects involved flexible fix acquisition sched-

ules whereby fix frequencies varied depending on the activity level of the animal or the
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crossing of a ‘virtual fence’ in the landscape. We included only those projects where the

number of expected fixes could be accurately calculated or estimated.

Figure 4.2: The general two-step operation of terrestrial satellite telemetry units, and
the possible fix outcomes of the process. The number of expected fixes equals the sum

of successful, unsuccessful and not-retrieved fixes.

4.2.3 Unit performance and its co-variates

We compiled a set of co-variates that potentially influence the different measures of

unit success. Several of these co-variates were derived directly from the questionnaire

information, while area-based co-variates were calculated from study area coordinates

(see Table 4.1). We used five measures to evaluate unit success. Three of these covered

different parts of the actual satellite telemetry data gathering process, while the other

two measured the rate of failures in the units.

(1) fix success rate – To evaluate the fix acquisition, we calculated the fix success

rate as successful / (successful + unsuccessful) fixes.

(2) data transfer rate – To evaluate the data transfer success, we calculated the

data transfer rate as (successful + unsuccessful fixes) / expected fixes. We excluded

projects where not-retrieved fixes were downloaded from units with remote data

transfer (GSM, UHF, satellite) after recovering them from the field.

(3) overall success rate – To evaluate how many fixes were eventually available to

the user we calculated an overall success rate as successful / expected fixes. In
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previous research, the overall success rate is often referred to as the fix success

rate (Adams et al., 2013; Gau et al., 2004; Sager-Fradkin et al., 2007), whereby

authors have either assured or assumed complete data transfer.

(4) unit failure rate – The proportion of units that failed for any given reason

(animal-related, technical or unknown) to evaluate the overall unit failure rate

and

(5) technical failure rate – The proportion of units that failed exclusively due to

known technical issues (including failure of timed-release mechanism) to evaluate

the technical failure rate.

4.2.4 Statistical analysis

To evaluate the relative importance of covariates for the fix success and overall success

rates, we used boosted beta regression models (Schmid et al., 2013). The boosted beta

regression approach combines the beta regression framework, as a special case of the

Generalised Additive Models for Location, Scale and Shape (GAMLSS) class of regres-

sion models (Mayr et al., 2012; Rigby et al., 2005), with the gradient boosting framework.

Beta regression is a commonly used technique in natural sciences to model a continuous

response bounded between 0 and 1, with essentially the same interpretation as logistic

regression (Cribari-Neto & Zeileis, 2010; Schmid et al., 2013). The flexibility of the

beta distribution allows for complex responses to be modelled, while the GAMLSS class

allows precise model specification as it enables the fitting of not only the conditional

mean, but also other parameters of the distribution of the response variable (location,

scale, and shape) as a function of explanatory variables and/or random effects (Rigby

et al., 2005). Additionally, where classical beta regression usually uses maximum like-

lihood to optimise regression coefficients and requires the user to select variables based

on model-selection criteria (e.g. AIC), the boosted beta regression approach uses an

algorithm called gamboostLSS (Mayr et al., 2012). The algorithm uses the gradient

boosting framework to optimise the models for all distribution parameters (see Hofner

et al., 2014; Mayr et al., 2014). The family of beta distributions, as implemented in the

R package gamboostLSS (Hofner et al., 2016a,b), has two parameters: mu is the con-

ditional mean, while phi is the precision or overdispersion parameter. The conditional

variance of the outcome is then given as mu (1 − mu) / (1 + phi). Essentially, boosted

beta regression assesses the relative importance of covariates simultaneously on the mean

(mu) and on the variability (in terms of overdispersion phi) by iteratively fitting simple

regression functions of the effects of each covariate to the negative gradient for mu and

phi. Relative variable importance for the models of both parameters is given as the
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Name Description Type Level

Purchase
date

Weighted mean of the year of purchase of
all units in the project

Quantitative Unit

Time-to-fix Weighted mean of the time-to-fix of all
units in the project

Quantitative Unit

Burowing/
Hibernating

Boolean indication of burrowing and/or
hibernating individuals in the project

Qualitative Species

Height Weighted mean of the species shoulder
height across all individuals in the project

Quantitative Species

Forest type Type of forest in the study area as in-
dicated in the questionnaire. Levels:
No forest cover; Temperate evergreen;
Temperate deciduous; Temperate mixed;
(Sub)Tropical evergreen; (Sub)Tropical
deciduous; (Sub)Tropical mixed.

Qualitative Environment

Forest cover
(qualitative)

Percentage of forest cover as indicated in
the questionnaire. Levels: 0-25%; 26-50%;
51-75%; 76-100%

Qualitative Environment

Forest den-
sity

”Density of forest in the study area as
indicated in the questionnaire. Levels:
Dense understory & closed canopy; Open
understory & closed canopy; Dense under-
story & intermediate canopy cover, Open
understory & intermediate canopy cover;
Dense understory & sparse canopy cover;
Open understory & sparse canopy cover;
No forest cover.

Qualitative Environment

Terrain
ruggedness

Terrain ruggedness as indicated in the
questionnaire. Levels: Steep slopes and
narrow valleys, flat areas and gentle slopes
are rare (< 20%); Steep slopes, inter-
spersed with flat areas and/or gentle
slopes; Mostly flat area and/or gentle
slopes, with occasional steep slopes (<
20%); Mostly flat area or gentle slopes (<
5% steep slopes).

Qualitative Topography

Transfer
method

The main data transfer method used in
the project. Levels: GSM; Satellite;
Store-on-board; VHF/UHF.

Quantitative Environment

Forest cover
(quantita-
tive)

Mean forest cover in the study area as de-
rived from the GlobCover dataset using
the coordinates provided in the question-
naire.

Quantitative Environment

Terrain
Ruggedness
Index

Mean Terrain Ruggedness Index across
the study area, as derived from the best
available Digital Elevation Model for the
study area. This variable was used as a
proxy for available view to the sky.

Quantitative Topography

Number of
units

The number of units deployed in the
project

Quantitative Unit

Table 4.1: Co-variates for the boosted beta regression on the fix success rate and
overall success rate of satellite telemetry units.
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percentage of boosting iterations in which a covariate was selected as the best fit to the

respective parameter of the outcome. When the algorithm is appropriately tuned, e.g.

via cross validation, it has the major added advantage of having an in-built mechanism

for variable selection (Hofner et al., 2016b; Schmid et al., 2013). All covariates described

above were entered in the overall success model, while the main data transfer method

variable was excluded for the fix success rate model. We included the main unit brand

used in each project as a random variable, and weighted each project by the number of

telemetry units deployed.

4.3 Results

We collated information from 167 projects in 142 study areas across 42 countries and

6 continents (see Figure 4.3). The geographic distribution was uneven, with just over

half of all study areas located in Europe, 20% in Africa and less than 10% in each

of the other continents. Projects lasted on average 3.5 years, and ranged anywhere

between 60 days and 14.3 years. Across all projects, a total of 3,695 individuals of 62

species were equipped with 3,130 telemetry units of 16 different brands. Most units were

purchased between 2006 and 2015. Reptiles and (ground-dwelling) birds were tagged in

four and two study areas respectively, whereas medium to large mammals were the study

object in all other areas. Moose Alces alces comprised 15.6% of all reported individuals,

10.7% were reindeer Rangifer tarandus tarandus and 8.2% mouflon sheep Ovis gmelini

musimon x Ovis sp.. Cheetah Acinonyx jubatus and roe deer Capreolus capreolus each

represented 5.8% of all reported individuals, and chamois Rupicapra rupicapra 5.0%. All

other species each represented less than 5.0%.

4.3.1 Overall unit performance

In the average project, units performed well in terms of both fix acquisition and trans-

fer. On average 85.2% (7.5–100%) of transferred fix attempts succeeded, and 93.6%

(23.4–100%) of fix information was transferred successfully from the units to the user.

Note that the data transfer rate not only includes data that was transferred remotely

but also data that was downloaded from retrieved units. In 64 out of 125 projects in

which data was transferred remotely, retrieved units provided additional fixes to the

remotely transferred fixes. Eventually, users obtained on average 77.5% (6.7–100%) of

the fixes that they could have expected to obtain during the total time that units were

deployed and functioning properly in the project. However, 25% (0–100%) of all unit

deployments in an average project ended prematurely due to technical failure, irrespec-

tive of the unit’s price or purchase date. Additionally, about as many deployments
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Figure 4.3: The geographic distribution of all projects that provided information the
performance of satellite telemetry units.

ended prematurely due to animal related issues or for unknown reasons, such that 48%

(0–100%) of all unit deployments in an average project ended earlier than was planned.

4.3.2 Exploratory trend analysis

We observed a number of weak trends in the data. Both qualitative forest cover and

density tended to negatively influence overall success rate, with effects visible mostly in

the decline in fix success rate and to a lesser extent data transfer rate. The quantitative

forest cover derived from GlobCover showed similar trends. We noted a slight tendency

of the evergreen forests (both [sub]tropical and temperate) to result in lower fix success

rates than their deciduous or mixed variants, which was again most notable in the fix

success rate rather than in the data transfer rate. The qualitative measure of terrain

ruggedness of the study area did not show a consistent trend in either direction, but an

increasing trend in overall success rate was observed with decreasing quantitative terrain

ruggedness. The overall success rate showed an upward trend with increasing mean year

of purchase of the units (weighted by the number of collars), again mostly affecting

the fix success rate, and a similar trend was observed with increasing mean shoulder

height (weighted by the number of individuals). The overall success rate of units with

GSM or UHF based data transfer tended to be higher than store-on-board units or units
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Variable Selection frequency
mu phi

Height 18.60%
Time-to-fix 13.95% 20.00%
Purchase date 11.63% 10.00%
Forest Density 11.63% 30.00%
Burrowing/Hibernating 9.30%
Forest type 9.30%
Terrain ruggedness (qualitative) 6.98%
Forest cover (qualitative) 2.33%
Terrain Ruggedness Index 2.33% 10.00%

Table 4.2: Selection frequencies of co-variates in the boosted beta regression model
for the fix success rate

with satellite-based data transfer. The price range of the telemetry units did not tend

to influence their success rates. Hence, most trends were more pronounced in the fix

success and overall success rates than in the data transfer rate. However, trends for all

co-variates were weak and showed high variability, calling for a more in-depth analysis

using boosted beta regression.

4.3.3 Fix success rate

The boosted beta regression model for the fix success rate selected the shoulder height

of the study species as the most important variable, followed by the maximum time to

fix, the purchase date of the units and forest density (Table 4.2). The model predicted

fix success rate to increase nearly linear with species shoulder height up until 1 meter,

and then flatten off for taller standing species (Figure 4.4). Generally, allowing a longer

time for the unit to obtain a fix improved fix success rate, and fix success rate was higher

for more recently purchased units (Figure 4.4). Where we observed a reduced fix success

rate with increasing forest density in our data exploration, this was not predicted in

the fix success rate model. Burrowing and/or hibernating behaviour reduced the fix

success rate, and was selected in less than 10% of the boosting iterations, as were the

qualitative environmental variables (forest type, forest cover and terrain ruggedness)

and the mean Terrain Ruggedness Index. The modelled responses for forest type and

qualitative forest cover were roughly in line with the observed data trends, and the

response for qualitative and quantitative terrain ruggedness lacked any consistent trend,

as was the case in the observed trends. Forest density, especially closed canopy, was an

important factor increasing the variability in fix success rate, while an increased time to

fix and more recent purchase date of units decreased its variability. Intermediate and

high values of mean Terrain Ruggedness Index impacted the variability of the fix success

rate slightly.
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Figure 4.4: Mean-centred partial effects of the most important variables predicting
the mean fix success rate of satellite telemetry units (empirical confidence intervals in
grey). Partial effects display the effect of the variable while accounting for all other

variables in the model.

4.3.4 Data transfer rate

In 15% of all projects, the majority of units were store-on-board units, where the data

transfer was entirely dependent on the successful retrieval of the units from the field. All

remaining projects used remote data download methods to transfer the information from

the units to the user. GSM was the main data transfer method in 40.1% of all projects,

while 23.1% mainly used satellite communication and 21.8% mainly VHF/UHF. Of all

the units with satellite data transfer, 86.3% attempted sending data at least once per

day, 11.3% at least once every three days, and the remaining at least once per month.

To isolate the effects of the data retrieval method on the overall success rate, we needed

to exclude those projects where retrieved units provided fixes in addition to those down-

loaded remotely. That is, we selected only projects where either all fixes were transferred

via a physical connection (store-on-board units), or all fixes were obtained through re-

mote data download (remote transfer units). The observed trend in the data indicated

that data transfer success using communication satellite systems was lowest and most

variable, while VHF/UHF was most effective in data transfer (see Figure 4.5). However,
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due to the reduced number of projects, some factor levels had insufficient sample sizes for

a boosted beta regression approach to produce usable results (B. Hofner, pers. comm.).

Hence, we could not determine the relative importance of different factors affecting the

transfer rate for each transfer method.

Figure 4.5: Data transfer rate per primary transfer method used in the projects.
(Projects with remote transfer units where retrieved units yielded additional fixes were

removed from the analysis.)

4.3.5 Overall success rate

The overall success rate model was the same as the fix success rate model, but with the

main data transfer method added as a variable. Here, the maximum time to fix was most

influential, while species shoulder height, transfer method, burrowing or hibernating

behaviour, and forest density were somewhat less important. Forest type and qualitative

forest cover were selected only infrequently (Table 4.3). The maximum time to fix

showed a strong effect on overall success rate, while the effect of species shoulder height

was reduced compared to its effect on fix success rate alone (Figure 4.6). Overall success

rate was higher for GSM and VHF/UHF-based data transfer units, as compared to

satellite and store-on-board units (Figure 4.6). The variability of the overall success

rate was mostly determined by quantitative forest cover. Areas with intermediate levels

of forest cover increased the variability of the overall success rate estimates. To a lesser

extent, a higher mean Terrain Ruggedness Index increased variability, whereas a longer

time to fix decreased it. Variability in overall success rate was also decreased in more

recent units. Forest type and density did not show consistent effects.
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Variable Selection frequency
mu phi

Time-to-fix 15.79% 10.00%
Height 10.53%
Transfer method 10.53%
Burrowing/Hibernating 10.53%
Forest Density 10.53% 10.00%
Forest type 5.26% 10.00%
Forest cover (qualitative) 5.26%
Forest cover (GlobCov) 20.00%
Purchase date 10.00%
Terrain Ruggedness Index 10.00%

Table 4.3: Selection frequencies of co-variates in the boosted beta regression model
for the overall success rate

Figure 4.6: Mean-centred partial effects of the most important variables predicting
the mean overall success rate of satellite telemetry units (empirical confidence intervals
in grey). Partial effects display the effect of the variable while accounting for all other

variables in the model.
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4.3.6 Failure rates

Of all reported unit deployments (n = 2124), 61.2% were either successfully ongoing

or ended as planned, while 18.9% ended due to technical malfunctioning. Technical

malfunctions were due to battery failures (51.4%), electronic (36.2%) or mechanical

problems (12.5%). Approximately 1 out of 10 unit deployments ended for unknown or

non-specified reasons, and a similar amount ended due to either animal mortality (8.6.%)

or unit removal by the animal (0.9%). The price range of the telemetry units did not

tend to influence their technical failure rate.

4.3.7 Scientific output and subjective evaluation by researchers

The scientific output was relatively low. Of all the projects that reported on scien-

tific output, 63.8% declared that no peer-reviewed papers had been published from the

obtained data, while 17.2% published just one paper. However, 79.7% of the studies re-

ported that they were gathering additional data or waiting for external factors to allow

for publication. Almost half of all projects produced at least one publication that was

not peer-reviewed (47.8%). Although 32.1% of the projects did not report whether the

data was uploaded to Movebank, 79.8% of the reporting studies did not upload their

data, and the most important reasons for this were that researchers did not know of this

online data system (35.9%) or were not familiar with its uses (23.08%).

Most researchers considered a fix success rate of around 90% or more to be good, while

anything lower than 80% was regarded poor. However, an overall success rate of more

than 75% was considered good. Whereas researchers’ opinions of their projects’ con-

tribution towards the field of applied conservation, ecological and conservation biology

research or their career development tended to remain stable or even increase with lower

fix success rates, opinions appeared to be negatively affected by higher unit failure rates.

We also found that the data loss resulting from low success rates and high unit failure

rates sometimes led to reduced scientific output of the project: 11.6% of the researchers

indicated the lack of sufficient data quantity/quality as the reason for the low number

of publications arising from the study.

4.3.8 Costs

The purchase costs of units was between US$2,001-2,500 in 39.7% of the projects,

US$2,000 or cheaper in 32.9%, and more expensive than US$2,500 in 27.4%. In over

half of the projects (52.3%), the additional costs for software licences and/or hardware

extensions were US$50 or less, however in 19.6% of the projects these costs exceeded



Chapter 4. The performance of satellite telemetry in wildlife research 70

US$500. Units with GSM or satellite data transfer tended to be more expensive to

purchase and have higher recurring costs. Monthly costs for GSM contracts or satellite

services can accumulate fast. In 57.2% of all projects, these monthly costs remained

below US$10, while in 14.5% these costs were more than US$50.

4.4 Discussion

Our analyses revealed that performance of satellite telemetry in terrestrial wildlife re-

search is more strongly influenced by unit and species characteristics, rather than envi-

ronmental conditions in a study area. Furthermore, imperfect overall success rates were

mostly due to issues with fix acquisition and unit failure, rather than problems with data

transfer. Below, we discuss these findings in detail before deriving recommendations for

the use and future development of satellite telemetry devices in wildlife research.

4.4.1 Fix success rate

The average fix success rate was about 85%, which is on the high end of published fix

success rates. For example, Johnson et al. (2002a) recorded an average fix success rate

of 59% for 26 collars deployed on woodland caribou Rangiferus tarandus caribou, while

fix success rates were 81.4 and 85.6% for 15 collars on wolves Canis lupus and 26 on

deer Cervus elaphus, respectively (Hebblewhite et al., 2007). Both of these studies were

conducted in the Canadian Rocky Mountains.

Our boosted beta regression analysis suggested that fix success rate is best predicted

by the species shoulder height, the allowed time to fix and the year of unit purchase.

Specifically, taller species, longer time to fix and more recently purchased units increase

the fix success rate. An increased fix success rate for taller standing species intuitively

makes sense because the units’ satellite view is generally less obstructed by understory.

Smaller animals are also more likely to seek cover during resting periods. Fix success

rate was higher in more recent telemetry units, probably due to the improved sensor

technology and GPS satellite constellation. For example, in 2011 the GPS network was

expanded from a 24 to a 27-slot constellation, which improved coverage in most parts of

the world (NCO, 2016). Unsurprisingly, burrowing or hibernation decrease fix success

rate. Generally, forest type, density, cover and terrain ruggedness were less important

predictors of fix and overall success, but contributed stronger to the variability of the

success rates. Higher forest density and terrain ruggedness were predicted to increase

the variability of the fix success rate in an area.
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4.4.2 Data transfer rate

The fact that the average overall success rate was lower than the fix success rate implied

that the data transfer process itself involved loss of data. That is, some fix attempt

information that was successfully stored on the unit, did not get transferred to the

user. We could not directly compare data transfer rates between transfer methods,

but the observed trend was that data transfer was most effective in VHF/UHF units.

Store-on-board units and GSM units also performed well, whereas data transfer over

communication satellite systems was lowest and most variable. For the purposes of

this study, we have assumed that the data transfer process did not discriminate between

transferring succeeded or failed fix attempts, i.e. both are equally likely to be transferred.

However, in cases were remote data transfer is accomplished using satellite services, we

would expect that when conditions are good enough for data transfer, the fix success

will have been high just before the data transfer, whereas in periods of failing data

transfer, we expect the fix success rate to be lower. This would imply that, for projects

using units with satellite data transfer (and without additional downloads after unit

retrieval), succeeded fix attempts would have a higher chance of transmission than failed

fix attempts, leading to an inflated fix success rate. Argos1, Iridium2, GlobalStar3 and

Inmarsat4 all claim global or near global coverage (Inmarsat and GlobalStar do not

cover polar regions, and GlobalStar’s coverage in sub-Saharan Africa only began in

2015). Data transfer via satellite faces similar challenges to the fix acquisition step, and

data loss during transfer can be expected.

4.4.3 Overall success rate

Overall success rate was 78% across projects, meaning that studies should account for

receiving at least 22% less fixes than expected under a given fix acquisition frequency.

This excludes data loss due to lost or failing units. Previous studies reporting overall

success rates include Matthews et al. (2013), who compiled data from 280 deployments in

24 studies across Australia and found an average overall success rate of 66%. Gau et al.

(2004) noted overall success rates of between 61 and 87% on average for 71 deployments

on bears Ursus arctos in western Canada.

The time to fix was the most important predictor of overall success rate, reaching about

the same selection frequency than in the fix success rate model. The effect size of species

shoulder height was reduced, but was still equally important as burrowing or hibernating

1http://www.argos-system.org
2http://www.iridium.com
3http://www.globalstar.com
4http://www.inmarsat.com

http://www.argos-system.org/argos/how-argos-works/
http://www.iridium.com
http://www.globalstar.com/en/index.php?cid=106&sidenav=232
http://www.inmarsat.com/about-us/our-satellites/our-coverage/
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behaviour and forest density, both of which kept their level of importance as compared

to the fix success rate model. All variables showed similar effects on the overall success

rate than on the fix success rate. The data transfer method came in at the same level of

importance as species height, and confirmed the trend observed in the data exploration:

VHF/UHF and GSM units have higher overall success rates than satellite and store-on-

board units. The lower overall success rate in satellite transfer units was due to both

lower fix success rate and lower data transfer rate, whereas it was primarily due to lower

fix success rate for store-on-board units. The lower fix success rate in store-on-board

units could be because they were usually older than the satellite transfer units. Similar

to the results of the fix success rate model, an earlier unit purchase date and a higher

mean Terrain Ruggedness Index increased the variability in the overall success rate.

Intermediate levels of mean forest cover and mixed forests also increase its variability.

4.4.4 Failure rates

Importantly, in the average project, close to half of all units stopped working properly

sooner than expected, and about 25% suffered a technical failure. Johnson et al. (2002a)

reported a failure rate of 69.2%, of which all were suspected to be due to technical issues,

while Gau et al. (2004), Hebblewhite et al. (2007), andMatthews et al. (2013) experienced

an overall unit failure rate of 53.3%, 47.0%, and 47.6% respectively, comparable to the

average in this study. Matthews et al. (2013) also found that in 24% of all collars with

timed-release mechanism, the mechanism failed to release the unit on the scheduled

time, or at all. In our study, 10.5% of all unit deployments ended for unknown reasons.

Most of the units with an unknown cause of malfunction were due to the fact that the

unit could not be retrieved from the field, i.e. the ‘lost’ units. This is comparable to the

average of 10% of collars reported as lost by Matthews et al. (2013), and slightly lower

than the 18.3% reported by Gau et al. (2004). Any number of failing or lost units can

result in considerable loss of data and investment (Gau et al., 2004; Kaczensky et al.,

2010; Matthews et al., 2013). Our questionnaire asked for the number and reason of

prematurely terminated deployments, but the loss in expected data volume was not

quantified in this study because not all unit manufacturers provide predictions on the

number of fixes each unit should yield. We did find that, more so than low fix or overall

success rates, the unit failure rate was perceived to reduce the contribution of a project

towards the field of applied conservation, ecological and conservation biology research

or the researcher’s career development, suggesting that researcher reliance upon this

technology has career-long ramifications.

Some studies reported instances where telemetry units performed fix attempts much

more frequently than programmed in the schedule, resulting in a much higher number
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of fixes than expected, and a much shorter battery lifespan. Matthews et al. (2013) also

report this, as well as units failing to log fix results during (part of) the deployment

period, resulting in considerable data loss. It is unclear though whether the reported

underperformance was due to data storage or data transfer issues. In this study, where

fix rates were investigated on a project level, we were not able to quantify the number

of units affected by such unintended shifts in duty cycle.

4.4.5 Study limitations

Our approach of using a questionnaire to obtain information on the performance of

satellite telemetry devices had the clear advantage of avoiding a potential publication

bias towards successful studies. However, there are also some caveats to the approach.

First, geographic distribution of projects in our data set was biased towards European

studies. We attribute this distribution to the willingness to participate, the density of

studies conducted, and communication reach of the study’s primary authors (e.g. lim-

ited information from Asia and Latin-America due to language barriers). We recognise

that the relatively low number of studies reported from North America in this paper is

not an accurate representation of the work that has been conducted in the region, and

we are aware of several papers being published using satellite telemetry for wildlife re-

search by universities and government bodies in North America (Chetkiewicz & Boyce,

2009; Cushman & Lewis, 2010; Hansen & Riggs, 2008; Heard et al., 2008; Hebblewhite

et al., 2007; Joly et al., 2015; Jung & Kuba, 2015; Sawyer et al., 2009)). This geo-

graphically uneven distribution of studies might have influenced the representation of

different brands and our findings on the relatively low publication output of wildlife

satellite telemetry studies.

Second, we acknowledge that the role of the quantitative measures of forest cover and

terrain ruggedness could be imprecise because they represent mean values across study

areas, which could mask more localised effects due to variation across the study area

or habitat preferences of the study species. Thus, even though the qualitative forest

cover and terrain ruggedness measures are inherently subjective, we assume they are

more representative because they were assigned based on the landscape and species

knowledge of the researchers.

Third, the data used for the overall success rate model included all projects, including

those where data was both transferred remotely and downloaded from retrieved units.

The additional fixes downloaded after retrieval can significantly add to the overall success

rate of the project. This means that the overall success rate was determined not just

by the combined effect of the fix success rate and the data transfer success, but also by
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the number of retrieved units. However, separating the fixes transferred remotely from

those downloaded after retrieval was not possible because most researchers were not able

to distinguish between these fixes in their final datasets.

Fourth, we were not able to estimate the cost efficiency of satellite telemetry devices.

Purchase and running costs for units with satellite and GSM data transfer are usually

higher than for VHF/UHF or store on board units. However, the overall running costs

for VHF/UHF transfer and store-on-board systems are difficult to calculate due to the

increased field effort required to retrieve the data and/or units (Thomas et al., 2011).

A better alternative for estimating cost efficiency of wildlife satellite telemetry is to

calculate the cost per fix (Matthews et al., 2013; Thomas et al., 2011). However, because

our data collection and analysis was on the project level, we could not calculate a cost

per fix for the average collar.

Fifth, trapping of wild animals and deploying telemetry devices is a highly invasive

procedure, often plagued by unforeseen circumstances, and carrying risk of injury or

fatality of the animal (Kaczensky et al., 2010; Matthews et al., 2013). We did not take

into account the trapping and collaring experience of the researcher for each project, but

are aware that this can influence the rate of failure due to animal issues (death, collar

removal), and the choice of optimal fix schedule. Although the ethical considerations of

trapping and tagging are important for the welfare of the studied animals, our question-

naire did not contain questions to specifically quantify the number of injuries or animal

mortalities due the impact of the tagging procedure. Animal welfare was not within the

intended scope of our study and we felt that asking these sensitive questions would have

greatly reduced the number of participating scientists.

Finally, even though many researchers would probably appreciate advice on which com-

pany to buy from for a specific study, our study was not designed to evaluate the relative

performance of different brands of satellite devices. For a number of reasons, we cannot

draw reliable conclusions about the performance of individual brands. For example, we

determined the main brand of a project on the basis of simple majority, meaning that

the use of multiple brands in one project (which was the case in 12% of all projects)

could confound the brand-specific effect. Also, the sample size (i.e. number of projects)

for many brands was too low for any statistically valid comparisons. This is especially

important because different brands were also used with varying frequency across years,

and we found a substantial improvement of success rates with increasing year of pur-

chase. Thus, instead of incorrectly treating main brand as an actual co-variate, we chose

to include it as a random variable in our boosted regression model. This was necessary,

because our main goal was not to do a brand comparison, but to identify environmental,

species and technical variables that determine the units’ success rates. As a random
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factor, the main brand had a strong influence on the average fix and overall success

rates (selection frequency of 13.95 and 31.58%, respectively), but also had the strongest

impact on the variability in success rates (30% selection frequency for both fix and

overall success rates). In other words, predictions of mean success rates for each brand

were associated with high uncertainties. This unpredictability could come, for example,

from the rate of uptake of new technological advances throughout the years by different

brands, or the deployment of the same brand on species of different sizes across years.

Overall, we cannot give meaningful recommendations for choosing specific brands. Nev-

ertheless, we can derive several important recommendations from our results, both for

researchers wishing to deploy satellite telemetry devices, and for manufacturers of such

devices.

4.5 Recommendations

The scope of possibilities and the detail of obtained information in satellite telemetry are

major advantages of the technique for answering a range of ecological and conservation

questions. However, given the considerable investment and the variability of the effects

that many aspects of study design have on the success rate, we recommend to carefully

consider project objectives, study design and budget constraints before investing in

satellite telemetry units (Johnson et al., 2002a; Thomas et al., 2011). Below, we list a

number of recommendations that arose from our study. For potential users, we present

important considerations for deciding if and which satellite telemetry units are useful to

deploy in future studies. For manufacturers, we recommend ways to actively contribute

to the improvement of satellite telemetry application in wildlife research.

4.5.1 User recommendations

Evaluate the need for satellite technology – The acquisition of satellite telemetry

units generally involves a considerable financial investment. The relative scarcity of funds

for applied conservation and conservation research may inhibit the investment needed

for a statistically valid study design. Researchers run the risk of resorting to accept low

sample sizes, limiting the potential relevance of their inferences, conclusions, and indeed

their investment (Hebblewhite & Haydon, 2010). Hence, we recommend to carefully

consider whether the research questions really require satellite telemetry to obtain the

necessary data. For studies where infrequent data points over a limited area suffice to

answer the research questions, money might be better spent on VHF telemetry or non-

invasive surveys (e.g. camera trapping, genetic analysis) instead of satellite telemetry

(Thomas et al., 2011). Similarly, where the behaviour of animals is of interest, these
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methods might be optimal as the researcher needs to go to the effort of observing the

animals anyway (i.e. GPS telemetry only provides spatio-temporal information). If

satellite telemetry is the preferred option, ensure sufficient funds are available for the

acquisition of the necessary units to produce statistically robust results (see below).

If available funding is inadequate, consider postponing project implementation until

additional funds are secured, or changing research questions, in order to avoid the risk

of misguided conclusions or loss of investment.

Use more units than necessary – We found that 10% of all units were lost, while

close to 20% suffered technical failures. When planning a project, we suggest to budget

for 10–20% more units than strictly necessary for the study, in accordance with previous

suggestions (Matthews et al., 2013). If the acquisition of extra units is financially not

possible, consider budgeting extra costs for retrieving units and sending them back for

repair. If the acquisition is possible, be aware of the additional logistical challenges that

the deployment of the extra units can involve.

Get recently developed units – The technologies underlying satellite telemetry con-

tinue to improve. Our results showed that the more recently produced units generally

have higher and more consistent fix success rates, suggesting that manufacturers are

making use of the latest technology developments to improve their products. Conse-

quently, especially in challenging conditions, choosing the more recently produced units

is a sensible choice.

Test different brands – Given the high variability in brand performance in our study,

we recommend testing different brands for their suitability in a particular study before

ordering the full amount of units needed. Brands provide different unit designs that

might be affected to various extent by e.g. forest cover and species height or behaviour.

Use a higher-than-necessary fix rate – The average fix success rate was 85%, while

the overall success rate was only 78%. Whenever possible (i.e. when not restricted by

study species size and thus battery size), we recommend to set the fix frequency 15-

25% higher than strictly necessary for the study design. This will not compensate for

data loss due to animal mortality or unit failures, but can counteract data loss that

originates from species behaviour, unit orientation or environmental factors temporarily

obstructing satellite view.

Choose a longer time to fix – If the trade-off between battery life and fix frequency

allows for it, consider choosing a longer rather than a shorter maximum allowed time to

fix. In favourable conditions, the time to get a fix will be short and battery usage low

anyway, while in challenging conditions, any extra seconds search time might make the

difference in obtaining a fix.
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Data transfer method – In cases where remote data transfer is necessary, our study

results suggest that researchers should favour GSM or VHF/UHF data transfer, if study

design and practical circumstances (species, terrain, etc.) allow for it. Especially in

studies with challenging conditions (e.g. closed canopy, rough terrain), it might be

worth investigating the GSM coverage in detail before deciding to choose satellite data

transfer. An added advantage of GSM or VHF/UHF data transfer is that units tend to

weigh less and are cheaper in purchase costs.

Test the units – Besides the common-sense pre-deployment test to verify proper func-

tioning of the device, we believe it should be a prerequisite in all telemetry studies to

specifically test units at known reference sites that are representative for the study area

to get an idea of location error and fix success rate (Gitzen et al., 2013; Hansen & Riggs,

2008). When interpreting the results of these tests, researchers should take into account

that performance of units deployed on animals is reduced by up to 25% as compared

to stationary tests (Blackie, 2010; Cain et al., 2005; Hebblewhite et al., 2007). The test

results can be used later to screen and filter incoming data (Laver et al., 2015).

Report specifications and settings in publications – Satellite telemetry users

should report unit specifications and settings in scientific publications (or their sup-

plementary materials) to facilitate comparison between species, environments and set-

tings for different research questions (e.g. home-range, dispersal, connectivity, etc.).

Important information includes the brand, type and purchase date of the unit, the fix

frequency, the maximum allowed time to fix, and the data transfer method. Also the

weight of the unit and the attachment technique (e.g. collar, harness, glued-on tag,

etc.) are useful information. Ideally, the period of deployment and information on the

number of expected, successful, unsuccessful and not-retrieved fixes should be included,

as well as the datum and coordinate system of the fixes’ coordinates. Furthermore, to

interpret the fix success rates, it is useful to know the number of units that was recovered

from the field and whether or not the recovered units yielded additional fixes to those

downloaded remotely. Also, indicating price ranges for purchase and running costs can

be useful information for other researchers considering the use of the technique.

Upload data and meta-data – Additionally, researchers could use existing collabo-

rative e-infrastructures to store and manage their data (e.g. Movebank, Eurodeer, and

others—see Campbell et al., 2015; Kays et al., 2015). Importantly, meta-data on unit

specifications and settings as described above should be included in the upload, in as far

as the database design allows for it. Online animal movement databases usually have

options to let you decide if, when and how contributed data can be accessed by third

parties.
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Report success rates, technical issues, etc. – We also encourage researchers to

report issues and successes encountered in the field to the manufacturers and bring up

species-specific behaviour that may require custom unit design. Work with manufactur-

ers to improve the technique under a variety of circumstances and for different species

(Matthews et al., 2013).

4.5.2 Manufacturer recommendations

Standardise data transferred to user – We encourage manufacturing companies to

collaborate with scientists and practitioners to develop minimum standards for the data

type and format that is stored on the units and/or transferred to users. For example,

some brands only provide a record of successful fixes to the user, and do not inform

the user about the fate of the remaining fix attempts. However, it is useful for the user

to know whether the remaining fix attempts went wrong during fix acquisition or data

transfer in order to evaluate the suitability of either the collar specifications or the data

transfer method in a given study area (Matthews et al., 2013). Another example is the

variety of ways that the precision of fixes is measured. Many manufacturers provide

data on the number of satellites used for the fix, or the fix dimension (2D/3D). Some

provide data on Positional Dilution of Precision (PDOP), while others only report on the

horizontal component of PDOP (HDOP). Sometimes only horizontal error estimates are

reported based on undisclosed proprietary algorithms. Producing a standard reporting

format for data originating from animal-borne devices would be beneficial for the man-

agement and analysis of such data in collaborative e-infrastructures (e.g. Movebank,

Eurodeer), and would increase the efficacy of satellite telemetry for large-scale studies

(Campbell et al., 2015). Additionally, it would increase the feasibility of reviews such

as this one. This standard reporting should streamline the data types and units, and

variable names and definitions.

Customise devices – Given the importance of species characteristics for fix success

rates in our study, companies should offer ways to customise devices for particular species

(e.g. collar shape, antenna placement).

Reduce technical failure rates – All deployments that last shorter than expected

result in a reduction in envisioned data volume, jeopardising the usefulness of the tech-

nique for wildlife research. We found that 25% of the units in an average project suffered

a technical failure, and about as many failed due to animal-related issues. While animal

mortality or tag removal are hard to eliminate as a cause for premature deployment

end, reducing unit or data loss by avoiding technical failures would potentially present

a considerable increase in the final data volume obtained.
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Unit failure feedback – Both users and manufacturers would benefit from an easy

and standardised feedback mechanism where users can provide details on unit successes

and failures. In cases where the units cannot be sent back for diagnostics, knowing the

circumstances of the failures could help recognising the underlying cause. Manufacturers

should actively work with researchers on a standardized way for reporting success and

failure rates.

Improve fix success rate – While data transfer is less of an issue, the average fix

success rate of 85% in our study leaves scope for improvement. In the last decade,

commercial satellite applications (e.g. hand-held GPS devices and smartphones) have

started to make use of both the GPS and GLONASS satellite networks. The addition

of the GLONASS network nearly doubles the amount of satellites used for geolocation,

which results in faster acquisition of more precise locations (Cai & Gao, 2007). Using

chipsets that provide access to both systems could increase fix success rates in chal-

lenging settings. Another opportunity is the recent development of minute gyroscopes,

accelerometers and digital compasses, which allows for determining the location of a unit

using Inertial Navigation System technology. An Inertial Navigation System determines

the location of an object relative to an initial location without an external reference

frame by using the velocity (measured by the accelerometer) and attitude (measured by

the gyroscope and compass) of the object (Grewal et al., 2007). The combination with

GPS-based locations has opened up the possibility to determine the location of a unit in

between fixes, and periodically update the accumulated location Inert Navigation Sys-

tem error using the coordinates of successful GPS fixes (Hubel et al., 2016; Tomkiewicz

et al., 2010; Wilson et al., 2013). Additionally, it allows for detailed behavioural data

to be gathered. The technique has a lot of potential for further development.

In conclusion, the results of our study are very promising. Technological advances and

product improvements seem to have increased success rates over the years, and reduced

the influence of canopy and terrain characteristics on these success rates. We are starting

to take advantage of the knowledge generated through field experiences and are gaining

insights in how to further improve the technique. With this study, and in all our rec-

ommendations, we want to highlight the exciting opportunity for closer collaboration

between manufacturers and scientists to find creative ways to solve any current and

future problems encountered. Eventually, improved design and performance of satellite

telemetry units will allow researchers to do better science, and will increase the use of

the technique across the broad spectrum of biological questions that can be answered

by it.
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Chapter 5

Conclusions

As natural habitat is incessantly being converted for anthropogenic uses, maintaining

connectivity between the remaining natural areas has become of vital importance. In

fragmented landscapes, only adequate amounts of functional connectivity can prevent

the loss of biodiversity and the inherently linked loss in ecological and evolutionary re-

silience of ecosystems worldwide. Conservation networks have been established across

the globe and landscape ecologists have spent much effort developing models to under-

stand and measure landscape connectivity, making use of the technological advances

being made in wildlife telemetry and remote sensing areas. Land managers and conser-

vationists generally make good use of the existing structures on the ground (such as pro-

tected areas) to design conservation networks based on expert-informed decisions about

optimal linkages. This approach compiles valuable information for kick-starting action

to safeguard connectivity, but includes few of the landscape ecological developments that

aim to optimise the ecological realism of connectivity estimates for conservation network

design. That is, it can lead to misguided management actions because it runs the risk

of not well representing the ecological requirements of certain species that are meant to

use the outlined corridors. Incorporating more biological information is thus desirable.

5.1 An overview

In this dissertation, we have seen that the incorporation of ecological detail on movement

of species is possible, but the data availability, resolution and quality determines how

much detail can be included. This dessertation has highlighted some of the opportunities

and challenges in increasing the use of functional connectivity estimates in connectivity

conservation.

81
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Chapter 2 has shown that including more landscape and species details in connectivity

models can provide potential connectivity estimates that augment the available infor-

mation for effective conservation network design. Specifically, the use of occurrence data

for white-lipped peccaries and a range of remotely-sensed environmental variables en-

abled the calculation of a habitat suitability surface, while the inclusion of protected

area effectiveness in this calculation influenced the precision of the least-cost corridor

estimates based on it. In addition, estimating corridors between highly suitable areas

instead of between protected areas resulted in the identification of alternative corridors

and brought to light highly suitable core areas that currently lack official protection. Fur-

thermore, the use of graph-theoretic connectivity indices helped to evaluate least-cost

corridors and identify priority areas for connectivity conservation. Potential connec-

tivity for white-lipped peccaries in Belize was modelled to be mostly provided within,

rather than among, core habitat patches. This yielded insight in the importance of main-

taining protection of certain areas, and in the value of working on improved corridor

functionality in other areas.

Chapter 3 compiled useful insights into the movement ecology of white-lipped peccaries

for their conservation in Belize. A recently developed method was used for home range

estimates from sparse movement data, and found the home range size of white-lipped

peccaries in Belize to align with average home range sizes across its range. A relatively

low maximum daily movement distance of 3,788 m was recorded, and the species’ prefer-

ence for forest ecosystems confirmed. The chapter also highlighted potential challenges

of using satellite telemetry for obtaining high resolution movement data in Belize. Trap-

ping success was influenced by animal behaviour and unforeseen logistical problems,

which prevented the trapping schedule to be conducted as planned. Furthermore, fix

acquisition success and data transfer rates were very low in the study area, leading to

movement data that was too sparse to be used for the parametrisation of a resistance

surface for actual connectivity purposes. Nonetheless, the gathered information pro-

vided evidence that the species behaviour was a factor influencing the success rate of fix

acquisition attempts.

Chapter 4 provided a more general and large-scale assessment of the functionality of

satellite telemetry in providing the quality and quantity fine-scale movement informa-

tion it has become expected to provide. While the fix success rate of satellite telemetry

units was generally high, the eventual amount of obtained data barely satisfied most

researchers. The success rates were mostly influenced by species characteristics (such as

shoulder height and burrowing behaviour) and unit specifications (such as the brand,

the purchase date and the maximum allowed time to fix), while environmental and topo-

graphical factors contributed stronger to the variation in the success rates. Data transfer
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over communication satellites generally performed worse than GSM or VHF/UHF sys-

tems, which confirms the observed fate of the collar used in Chapter 3. When retrieved

from the field, this unit provided about three times the number of fixes than what

was transferred over satellite connection alone. After application of the Quick-Fix-

Pseudoranging method (a post-hoc data enhancement— Tomkiewicz et al., 2010), the

number of successful fixes increased to an order of magnitude larger than the remotely-

downloaded fixes. Importantly, average failure rates due to both technical malfunctions

and animal-related issues were high, impacting the perceived contribution of projects to

conservation and research due to potentially significant loss of data and investment.

Throughout this dissertation, the issue of data availability and quality has been of

importance. Low data availability is a day-to-day reality in applied conservation, limiting

the extent to which management decisions can be based on robust science. Shortage of

data to parametrise or validate models can provide incomplete or inaccurate information

and hence limit the scientific validity of the conclusions drawn. In each chapter, I have

acknowledged the shortage of available data where appropriate and point towards the

possible shortfalls this may have caused in the obtained results and their interpretation.

5.2 Functional connectivity approaches in connectivity con-

servation

Even though data on landscape characteristics and animal movement is available in in-

creasing detail, and landscape ecology is providing tools and metrics, the integration of

increased biological detail in the multidisciplinary approaches used in landscape man-

agement and applied conservation has generally been considered troublesome (Bennett

et al., 2006; Opdam et al., 2002; Resasco et al., 2016). The application of functional

connectivity models in conservation settings depends many on factors. For example, the

availability of concise, intuitive, and broadly applicable connectivity metrics determine

the uptake of the developed methods in applied conservation network design (Bennett

et al., 2006). As outlined in the introduction, a number of metrics and tools have been

developed to make functional connectivity models accessible for applied connectivity

conservation. Functional connectivity models and some of the developed tools have

already been used in applied situations in certain areas of the world. For example,

McHugh & Thompson (2011) used a set of umbrella species tied to priority habitats and

a set of decision rules to delineate habitat extensions and improve ecological networks

in the UK, while Pouwels et al. (2002a,b) used similar approaches in the Netherlands.

Hofman et al. (2010) used expert-informed resistance surfaces for a set of target species

to calculate least-cost corridors in a port area in Belgium. Mateo-Sánchez et al. (2014)
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used available software for estimating a habitat suitability model, least-cost path density

maps and graph-theoretic metrics to delineate corridors for brown bears Ursus arctos

in Spain. Roever et al. (2013) used telemetry-based movement data and circuit theory

to evaluate corridors for elephants Loxodonta africana across southern Africa. LaPoint

et al. (2013) mapped and evaluated corridors for fisher Martes pennanti using tracking

data, resource selection functions and least-cost approaches in New York, USA, while

Zeller et al. (2016) used step selection function and circuit theory to predict corridors

for pumas Puma concolor in California, USA.

Notably, most of these examples of applications of functional connectivity in conser-

vation so far are limited to industrialised nations. In many other areas in the world,

especially developing nations, conservationists still use much cruder information and

modelling techniques for the delineation of conservation networks. Possible reasons are

that many industrialised nations have a relatively long history of landscape planning and

ecological data collection, and more or less adequate funds for compiling the necessary

information and available capacity to produce functional connectivity estimates neces-

sary to design conservation networks (Bennett, 2004). Even though Belize is listed as a

Small Island Developing State (SIDS) by UN (UNCTAD, 2017), it is unusual in that it

has an active and organised conservation community. The community is supported by

local and international NGOs and academic institutions, which enables the compilation

of environmental and biological data from many sources, some providing data dating

back at least 25 years (BERDS, 2005). This is what enabled the potential connectivity

estimates presented in Chapter 2.

This leads us to a second factor determining the likelihood of functional connectivity

models used in conservation network design: data availability and quality. Chapter 2

and the previous paragraph show that data for the use of functional connectivity models

in applied connectivity conservation is available in certain cases, but the data availabil-

ity for using actual connectivity models faces more challenges. The advent of satellite

telemetry has enabled large amounts of data to be gathered, but detailed data on ecosys-

tem processes underlying connectivity studies (e.g. dispersal) remain hard to obtain.

Furthermore, satellite telemetry performance is highly variable across a range of factors,

and methods for handling and analysing telemetry data for the use in connectivity esti-

mates are still under development. Additionally, the reality of available remotely-sensed

data dictates that a certain discrepancy between fine-scale movement information and

coarser-scale landscape data will be unavoidable in functional connectivity studies. This

makes current applications of actual connectivity models in conservation network design

difficult.
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Moreover, even when tools and data are available, practicalities that are outside the

realm of landscape ecology constrain the implementation of conservation networks based

on functional connectivity models. For example, because functional connectivity implies

a species-specific approach, its implementation in conservation network design requires

the selection of one or more target species. Potential functional connectivity requires a

minimal set of target species’ occurrence records, while actual functional connectivity

often involves recording movement tracks of the species, usually using telemetry. The

challenge of collecting such species-specific movement data for even a single species has

put off conservationists from using more ecologically realistic models to inform network

design (e.g. Crouzeilles et al., 2011). In addition, depending on the degree of overlap

between estimated corridors for the different target species, one or more sets of corridors

might have to be included in the conservation network. This can result in a significant

increase in implementation costs and practical obstacles such as land ownership. Fur-

ther practical limitations include e.g. land managers frequently having to work with

degraded or absent linkages between the remnants of natural habitat that remain af-

ter development (Pulsford et al., 2015). And lastly, socio-political issues, such as land

tenure, support from local communities, management capacity and integration within

other sectors of society can influence the feasibility of ecologically optimised conservation

networks (Bennett, 2004).

In conclusion, understanding and modelling functional connectivity with increasing eco-

logical realism is a prerequisite for effective conservion network design and thus ulti-

mately for conserving biodiversity in fragmented landscapes. However, it is also chal-

lenged by technological shortcomings, by limited availability of adequate movement data,

and by potential mismatches of environmental data and relevant ecological processes.

These challenges jeopardize the ecological realism in current connectivity network design,

especially in developing countries where some species of conservation concern are highly

understudied and logistic and financial constraints often lead to limited data availability.

Here, expert-informed approaches and cruder models will be necessary until sufficient

data can be collected. In other parts of the world, using potential connectivity modelling

seems an achievable objective for current applied connectivity conservation initiatives to

increase ecological realism. Actual connectivity modelling techniques are developing fast

but currently mostly remain testing ground for landscape ecological research. Neverthe-

less, several authors prove to that efforts are being made to achieve a tight integration

between the theoretical domain and the empirical and applied domains of connectivity

conservation (Aben et al., 2014; Benz et al., 2016; Correa Ayram et al., 2015; Lechner

et al., 2015; Loro et al., 2015; Mateo-Sánchez et al., 2014; Roever et al., 2013; Thurfjell

et al., 2014; Zeller et al., 2016; Zetterberg et al., 2010). It is at the cross-road of these

domains that true connectivity conservation happens (Bennett et al., 2006).
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  Introduction
This document provides more details about the methods, results and conclusions outlined in the article 

and presents additional analysis that were too lengthy to be included. Throughout the document, we follow 
the steps of the analysis framework presented in the article, which are included here for ease of reference 
(see below). Information referred to in the article will be presented in the analogous step in this document. R 
code for all of  the analysis steps described in the paper and this document can be requested by contacting the
corresponding author via maarten.hofman@forst.uni-goettingen.de. 

 1 Analysis framework
The framework presented in the paper is based on the Potential Connectivity Model framework from 

Rödder et al. (2016), which involves a two step process. First, a species distribution model is produced, 
which is then used as the basis for a resistance surface in a connectivity analysis, taking into account barrier 
effects. Our framework splits up the workflow into four interrelated steps, to extend and modify the PCM 
framework in several ways (Figure 1). First, we model species-specific habitat suitability using a range of 
environmental predictor variables as well as information on protected area effectiveness. Second, we 
objectively delineate nodes for the connectivity network and calculate a species-specific landscape resistance
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surface using the habitat suitability model constructed in step one. Third, we delineate least-cost corridors 
among the nodes based on the resistance surface. Finally, once the potential connectivity model has been 
created through steps 1 to 3, we identify additional stepping-stones and use graph-theory to quantify the 
relative importance of identified nodes, stepping-stones and corridors for overall landscape connectivity. We 
illustrate the framework using data from the white-lipped peccary Tayassu pecari as an umbrella species 
within Belize, where a currently existing corridor network has previously been suggested based on expert 
opinion (Meerman 2000; Petracca 2010; Wildtracks 2013).

 2 Step 1: Habitat suitability 
We used MaxEnt 3.3.3k (Phillips et al. 2006) for estimating habitat suitability, MaxEnt is open-source 

and freely available, and is a commonly used and well-tested species distribution modelling tool (Franklin, 
2010). It needs presence-only points and environmental variables as inputs, and compares the environmental 
situation at presence locations to that at a large number of background locations. MaxEnt allows for 
customised number and location of background points.

 2.1 Presence and background points selection 
We obtained 432 peccary observations from camera trap surveys, targeted monitoring and 

opportunistic sightings, partially originating from a national database (BERDS 2005), partially from camera 
trapping grids by R. Foster and B. Harmsen (Panthera Belize) and by M. Kelly (Virginia Tech), and partially 
from transect monitoring and camera trapping grids by Ya'axché Conservation Trust. Only points with a 
location error of 1000 m or less were retained for further analysis. The data contained spatial and temporal 
clusters that arose from survey or monitoring grids. To avoid issues with temporal autocorrelation, we 
removed observations recorded at different times at the exact same location (most of these locations 
concerned consecutive records from camera trap surveys). Since this approach essentially results in 
snapshots of presence in different time periods, we reviewed the land use change at the presence localities to 
check for changes that would render older observations invalid at this point in time. Based on our own 
additional field observations and on Cherrington et al. (2010), we concluded that the landscape at the 
occurrence points experienced little change over the time span on either side of the time stamp of the 
landscape data (i.e. 2011). After removing temporal autocorrelation, 149 presence points remained. To 
remove spatial autocorrelation (clustered observations within monitoring or camera trap grids), we used 
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Figure 1: Illustration of analysis framework: the combination of a Potential Connectivity Model, evaluated using a graph-
theoretic approach.
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Ward's cluster analysis method (implemented as ward.D2 in the standard stats::hclust function – R 
Development Core Team 2015) to identify spatial clusters. We set k=75 clusters, which we considered the 
fairest trade-off between a) the best representation of the range of environmental conditions in all known 
presence locations and b) the lowest level of spatial clustering. From each cluster we retained only one 
observation that was chosen at random, and used these as input for MaxEnt. 

We also expected a strong bias in sampling effort (e.g. more areas are sampled closer to roads or 
populated areas). To factor out this bias, we calculated a kernel density estimate of sampling effort across the
country and rescaled this estimate to values between 0 and 1 by dividing each grid cell by the sum of all 
cells. The result was used as a probability surface to select 10,000 background points as input for MaxEnt. 
This approach has been suggested by Fourcade et al. (2014). For the presence data originating from BERDS, 
the sampling effort was determined by all “Target Group” observations in the database (Phillips & Dudík 
2008). Target group observations are presence records of species that are detected using similar methods and 
frequency over the same time period as the focal species data was collected.  We used observations from  
Baird's tapir Tapirus bairdii, jaguar Panthera onca, jaguarundi Puma jagouaroundi, margay Leopardus 
wiedii, ocelot Leopardus pardalis, puma Puma concolor, red brocket deer Mazama americana, tayra Eira 
barbara, and white-tailed deer Odocoileus virginianus. For presence data originating from separate camera 
trap grids, we determined sampling effort as all camera trap locations from the grid. We used the kernel 
density estimate instead of the traditional target group approach, because the combined number of target 
group records and camera trap locations would result in a less than optimal number of background points as 
suggested by Phillips and Dudík (2008). 

 2.2 Predictor variable preparation 
Twenty-three (23) environmental variables were obtained from different source data sets (Table 1 and

2) and resampled to the same 250m resolution base grid. We added a 24th variable reflecting protected area 
effectiveness in the PAEF model to incorporate protected areas in the habitat suitability estimate. This variable
was based on the combination of (i) the IUCN Protected Area Categories (Dudley 2008) updated for Belize 
according to Wildtracks (2013) and (ii) the management effectiveness according to a national study by 
Walker & Walker (2009). The two factors were classified in four categories, and their categories were 
summed to obtain values from 2 to 8. If a protected area was lacking a rating for one or both of these 
variables, it received the value 1, and unprotected land received the value 0. Table 3 summarises the 
construction of the protected area effectiveness variable. After the correlation analysis, our final set of 24 
predictors for our habitat suitability modelling was reduced to 20 variables in the PAEF model, and 19 in the 
CONTROL model (Table 2).

Table 1. Data sources used to produce the predictor variables for the habitat suitability analyses

Data set Type Source Based on
Original 
resolution

DEM Raster Emil Cherrington/CATHALAC SRTM, ASTER
1 arcsecond 
(30m)

Ecosystems Vector
Biodiversity & Environmental Resource
Data System of Belize (BERDS)

Meerman & Sabido 
2001 + updates

222m

Rivers Vector BERDS Unknown NA

Roads Vector BERDS Unknown NA

Fire occurrence Vector
Fire Information for Resource 
Management System (FIRMS) by 
EOSDIS

MODIS NA

Rainfall Raster WorldClim climate data WorldClim
0.0083333 dec 
degrees (1000m)

Rainfall Vector
National Meteorological Service of 
Belize (Hydromet)

field data NA
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Data set Type Source Based on
Original 
resolution

Enhanced 
Vegetation Index

Raster

Institute of Surveying, Remote Sensing 
and Land Information (IVFL) of the 
University of Natural Resources and 
Applied Life Sciences (BOKU), Vienna

MODIS 250m

Protected areas 
2014

Vector
Land Information Center (LIC) of the 
Government of Belize

field data NA

Soils Vector BERDS Wright 1959 NA
Food plant 
occurrence

Vector Global Biodiversity Information Facility Compiled datasets NA

Table 2. Predictor variables used for the MaxEnt habitat suitability analyses. Variables in italics were excluded after 
correlation analysis. (R code for the construction of these variables on request).

Metric type Description Metric

Environmental Food tree occurrence (sum of food plant genera 
potentially occurring in the grid cell)

foodGenera

Enhanced vegetation index mEVI

Mean annual rainfall rain_wc

Soil soil

Land cover 
(class-level)

Distance to agriculture distAgric

Distance to broadleaf forest distFor

Distance to pine forest distPif

Distance to rivers distRiv

Distance to roads distRoad

Distance to savanna distSav

Distance to shrubland distShrub

Distance to urban area distUrb

Distance to waterbodies distWat

Land cover 
(landscape-level)

Proportion of core forest within moving window of 
71km2 (average home range)

cfp

Ratio of egde over core forest within moving window of 
71km2 (average home range)

ecp

Frequency of fires fire

Landscape heterogeneity within moving window of 
71km2 (average home range)

lanhet

Land cover type weco

Political Protected area efficiency paef2010

Topographic Aspect aspect

Elevation elev

Slope slope

Topgraphic Position Index tpi

Terrain Ruggedness Index tri
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Table 3: Conversion table for construction of the protected area effectiveness predictor variable (paef2010) in the PAEF 
habitat suitability analysis.

IUCN PA Cat.1 Mgmt. Effectiveness2 Category value
Final protected area
effectiveness value

Ia, Ib Very good 4
Between 2 and 8 
(sum of category 

values from 1 and 2)

II Moderate 3

III, IV Fair 2

V, VI Poor 1

Either variable unknown 1
Non-protected area 0

1 (Wildtracks 2013); 2 (Walker & Walker 2009)

 2.3 Model complexity 
Recent research has suggested that species-specific tuning of MaxEnt models can improve the models'

performance (Radosavljevic and Anderson, 2014). We used the package ENMeval (Muscarella et al. 
2014)  in R (R Development Core Team 2015) to determine the optimal MaxEnt settings for our PAEF and 
CONTROL models. ENMeval evaluates the performance of a set of models with different feature classes and 
regularisation multipliers by calculating AUC and modified AICc values among other evaluators of model fit
and accuracy (Warren and Seifert, 2011; Muscarella et al., 2014). Feature classes represent transformations 
of the predictor variables (linear, quadratic, hinge, product and threshold) that allow for more complex fits to 
the observed data, while the regularisation multiplier determines the penalty of including predictors that 
provide  little 'gain' to the model, thereby reducing chances of overfitting of the model. 

We tested the full range of feature classes and varied the regularisation multiplier between 1 and 50, 
with increments of 0.5. The PAEF model with the lowest AICc used linear and quadratic features and a 
regularisation multiplier of 6.5. The best CONTROL model used only linear features and a regularisation 
multiplier of 8. We then ran 100 MaxEnt replicates with the identified settings from within R using the 
package dismo (Hijmans et al. 2015), and used the average predictions as the final habitat suitability models 
(CONTROL and PAEF). 

 2.4 Results
PAEF – The protected area effectiveness

variable ranked second  in contribution to the PAEF

model with 21%  (after the Enhanced Vegetation
Index – Table 4). A slightly broader range of
variables contributed more evenly to the model than
in the CONTROL model (see Table 5). The habitat
suitability was influenced by the presence of
protected areas: unprotected areas became less
suitable under the PAEF model as compared to the 
CONTROL, while any level of protection
effectiveness generally increased the habitat
suitability, but only the highest level of
effectiveness did so considerably (Figure 2 &3). 

CONTROL - A set of three variables were the
main contributors to this model: Enhanced
Vegetation Index, the proportion of core forest
within an average sized home range and the terrain ruggedness (Table 5). Land use/land cover class also 
contributes, but much less.

Hofman, M.P.G., M.W. Hayward, B. Harmsen, M.J. Kelly and N. Balkenhol 5 / 18

Figure 2: The median difference in habitat suitability among 
all pixels within each protected area.
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The change in the top variable contributions between the CONTROL and PAEF habitat suitability models 
indicated that PAs mainly contribute undisturbed, high-productive core forests. Nevertheless, our results 
clearly showed that PA effectiveness itself is an important predictor of habitat suitability for peccaries.

Table 4. Variable contribution to the PAEF model

PAEF

Variable Percent contribution

mEVI250 28.6

paef2010250 21.0

cfp250 15.8

tri250 15.4

weco250 7.3

tpi250 4.9

lanhet250 2.3

distWat250 2.1

distAgric250 0.6

distFor250 0.5

foodGenera250 0.4

distSav250 0.3

distShrub250 0.3

distRiv250 0.2

distRoad250 0.1

fire250 0.1

aspect250 0

rain_wc250 0

soils250 0

Table 5. Variable contribution to the CONTROL model

CONTROL

Variable Percent contribution

mEVI250 38.1

paef2010250 ---

cfp250 31.5

tri250 20.4

weco250 4.9

distWat250 1.5

lanhet250 0.9

distShrub250 0.8

distSav250 0.5

distRiv250 0.5

distFor250 0.4

distAgric250 0.2

foodGenera250 0.1

distRoad250 0.1

tpi250 0.1

rain_wc250 0

soils250 0

aspect250 0

fire250 0
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To test model accuracy, we compiled a set of 143 independently gathered presence locations for white-
lipped peccaries in southern Belize, originating from satellite collar data and sightings of animals and tracks 
(Hofman et al., 2016; B. Arevalo, pers. comm.). We visually investigated the fit of the validation points over 
the habitat suitability prediction (Figure 4). To evaluate the fit quantitatively, we rotated and shifted (up to 3 
km) the validation points 1000 times in random directions, and compared the average habitat suitability of 
the original points to the average habitat suitability of the permuted points, similar to Mueller et al. (2008). 
Only 50 out of 1000 permuted validation sets had a higher average habitat suitability than the original 
validation set (p = 0.05).
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Figure 3. Logistic habitat suitability for (a) the PAEF and (b) the CONTROL model. Higher values indicate higher suitability. Panel
c shows the subtraction of the CONTROL from the PAEF model, with positive values indicating higher suitability in the PAEF model and 
negative values indicating higher suitability in the CONTROL model. (PAs = protected areas)
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 3 Step 2: Node delineation and landscape resistance

 3.1 High suitability node delineation
To identify nodes based on the PAEF habitat suitability surface, we followed the approach used in 

Gnarly (Shirk & McRae 2013), whereby we smoothed the surface by calculating the mean suitability across 
a moving window equal in size to the smallest reported annual white-lipped peccary home range (21 km2 – 
Fragoso 1998, 2004) for each grid cell, and considered all grid cells with a smoothed suitability higher than 
0.5 to be suitable. Note that this threshold is much more stringent than the commonly recommended 
threshold for MaxEnt (the maximized sum of specificity and sensitivity – 0.3 in this case) in order to select 
only the highest-quality habitat. Cells with an original suitability value below 0.5 were removed, as were 
cells representing highways and major roads, since they constitute a division in any contiguous group of 
high-suitability grid cells. Of the resulting suitable areas, those smaller than 21 km2 were removed and the 
remaining areas were considered suitable nodes.

 3.2 Protected area node delineation 
In addition to the nodes for the PAEF model, we compiled a set of nodes for the CONTROL model. Since 

our aim was to account for protection status but the protected area effectiveness was not taken into account 
in the CONTROL habitat suitability model, these nodes needed to be based on the actual protected areas in the 
study region. The set of PA nodes was formed by the outlines of all terrestrial protected areas, excluding non-
gazetted and most private reserves, to resemble the set of features used for the delineation of the current set 
of corridors used in the country. Adjacent areas were grouped into a single node, and nodes smaller than the 
average known home range size (i.e. 71 km2, see Fragoso 1998, 2004; Carrillo et al. 2002; Keuroghlian et al. 
2004, 2014; Reyna-Hurtado et al. 2009; de Almeida Jácomo et al. 2013) were removed, yielding 8 PA nodes 
(PA1 – PA8; see Figure 5).
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Figure 4. PAEF habitat suitability model fit with independent relocation data and corridor outlines.
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 3.3 Resistance surface and movement barriers
We calculated the resistance surface by converting the habitat suitability estimates using the negative 

exponential equation outlined in Mateo-Sánchez et al. (2014):

( R '
R ' min )

2

where R′ is (1 – habitat suitability) in a given pixel and R′min is the minimum value of (1 – habitat 
suitability) across all pixels in the study area. 

Few absolute barriers exist for white-lipped peccaries within our study area. The species is known to 
swim across 2 km wide rivers (Fragoso 2015), and according to local residents, herds can occasionally be 
seen crossing roads. Nonetheless, we assumed a reasonably high resistance for highways and major roads 
throughout study area, and set their respective resistance values to 95% and 85% of the maximum value in 
the resistance surface. 

 4 Step 3: Corridor estimation using landscape resistance
The resistance surface resulting from the PAEF habitat suitability was used to calculate the corridors 

between high-suitability nodes, while the resistance surface resulting from the CONTROL habitat suitability 
was used to calculate the corridors between the PA nodes. Corridors were estimated with Linkage Mapper 
toolbox version 1.0.9 (McRae & Kavanagh 2011) in ArcGIS Desktop 10.3 (ESRI 2015), and their 
delineation was determined by including all pixels that had a cost-distance value that was maximum 25% 
higher than the cost-distance value of the respective least-cost path between the nodes. 

The currently proposed corridors were largely contained within the CONTROL corridors between PA 
nodes, which were generally broader and followed similar trajectories (Figure 5a & b). Additional corridor 
routes between PA5 and PA6, PA6 and PA7, and PA6 and PA8 appeared in the CONTROL model. The corridor
configuration in the PAEF model changed as compared to the current and CONTROL scenarios (Figure 5c). The
northern corridor route between HS2 and HS4 was displaced eastwards. Nodes PA3 and PA7 did not show 
up among the habitat suitability-based nodes, and thus the corridors connecting these were not present in the 
PAEF model. Conversely, the western corridors connecting nodes HS3 and HS5 only appeared in the PAEF 
scenario.
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The frequency distribution of suitability values in the PAEF corridors was more centred around mid to 
high suitability than in the current corridors, and as compared to the suitability across the entire study area 
(Figure 6). The portion of the PAEF corridors that falls within the protected area nodes used for the current 
corridors was excluded for the calculation of Figure 6c.
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Figure 5. Comparison of (a) the currently proposed corridors between protected areas (PA1-PA8), (b) the corridors estimated 
between protected areas using a resistance surface based on the CONTROL habitat suitability model  and (c) the corridors estimated 
between high-suitability nodes (HS1-HS11) using a resistance surface based on the PAEF habitat suitability model.
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 5 Step 4: Evaluating the network
To evaluate the importance of predicted core areas and corridors, we additionally identified potential 

stepping-stones in and around the corridors. We then used Conefor 2.6 (Saura & Torné 2009; Bodin & Saura 
2010) to evaluate importance of all nodes, stepping-stones, and corridors. Conefor 2.6 can quantify overall 
landscape connectivity using a single graph-theoretic index (Probability of Connectivity). To determine the 
importance of nodes and stepping-stones in the network, each of them is removed one at a time, and the 
relative changes in three fractions of the Probability of Connectivity are recorded: dPCintra represents the 
removed element's contribution in habitat area and quality, dPCflux represents its contribution in the flux of 
dispersing organisms, and dPCconnector the extent to which it acts as a connecting element (see Bodin and 
Saura, 2010). We evaluated the importance of each node and stepping-stone for overall network connectivity 
by examining at its dPCconnector and dPCintra values. 

To evaluate the importance of each corridor in the network, we examined the Conefor 2.6 links 
between patches. These links indicate which patches are actually connected (i.e. form a 'component' in the 
network) based on a species-specific dispersal distance, set by the user. This distance is converted to a direct 
dispersal probability among patches based on an exponential dispersal kernel (Saura & Torné 2009, 2012). 
The dispersal kernel is a decreasing negative exponential function of distance (e.g. Bunn et al., 2000; Urban 
and Keitt, 2001; Saura and Pascual-Hortal, 2007) that matches with the probability-distance values specified 
by the user, as follows: 

pij=e−k. dij

where dij is the distance between nodes i and j, pij is the probability of direct dispersal between nodes i 
and j (i.e. the probability that an organism is able to disperse a distance equal to or larger than the distance 
between those nodes), and k is a constant set to make the function match to the probability-distance values 
specified by the user. We attributed a direct dispersal probability of 0.01 to a dispersal distance of 9495 m, 
which is the diameter of a circular average home range for white-lipped peccaries (based on 71 km2, see 
Fragoso 1998, 2004; Carrillo et al. 2002; Keuroghlian et al. 2004, 2014; Reyna-Hurtado et al. 2009; de 
Almeida Jácomo et al. 2013), resulting the dispersal kernel in Figure 7. For use within the Conefor 2.6 
software, we converted the Maximum dispersal distance from Euclidean distance to cost-distance by 
calculating the average ratio of cost-based over Euclidean distance for all least-cost paths between each pair 
of nodes and/or stepping-stones.
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Figure 6: Distribution of habitat suitability values in (a) the whole study area, (b) the current corridors and (c)  the corridors 
resulting from the PAEF model. All distributions differ significantly from each other (Kolmogorov-Smirnov; p < 0.001). 
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To evaluate the effect of this chosen dispersal distance on the identification of important 
nodes/stepping-stones in this study, we did a sensitivity analysis by varying the maximum dispersal distance 
and evaluating the effect on dPCconnector. To generate a broad range of distance values, we used each of the 
distance values in Table 6 as a median (p = 0.05) and maximum dispersal distance (at p = 0.05 and p = 0.01) 
in subsequent Conefor runs (each using the corresponding dispersal kernel). Hence we ended up with a total 
of 21 dispersal kernels (three for each distance value). However, because the first two distance values were 
too small to be considered a maximum dispersal distance for our species, we only used them as a median (p  
= 0.5), reducing the number of kernels to 17. 

Table 6. The set of distance values used for the sensitivity analysis of the maximum dispersal distance. With the exception of 
the first two values, each value was used to calculate 3 dispersal kernels. First the value was used as the median (p = 0.5) dispersal 
distance, then as maximum dispersal distance at p = 0.05, and lastly as the maximum dispersal distance at p = 0.01.

Distance (m) Used as median Used as maximum Source

589 Yes No
Median dispersal distance following Bowman et 
al. (2012)

1000 Yes No Low guesstimate

3366 Yes Yes
Maximum dispersal distance following Bowman
et al. (2012)

3788 Yes Yes
Maximum daily movement distance in southern 
Belize (Hofman et al. 2016)

4748 Yes Yes
Radius of average annual home range in the 
literature (see text)

9495 Yes Yes 
Diameter of average annual home range in the 
literature (see text)

10000 Yes Yes High guesstimate
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Figure 7. Dispersal kernel used in the PAEF model
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We estimated the maximum dispersal distance for white-lipped peccaries following Bowman et al. 
(2012) to be 3,366 m, which was lower than the maximum daily movement distance observed in southern 
Belize (Hofman et al. 2016) and has been reported as a distance covered in one hour in Mexico (Reyna-
Hurtado et al. 2009). Hence, we used this estimate as our lowest maximum dispersal distance (see Figure 8). 
To obtain our highest maximum dispersal distance, we calculated the dispersal kernel with 10,000 m as the 
median dispersal distance (which sets the maximum dispersal distance at p = 0.01 to 66,439 m – see Figure 
9). 
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Figure 8. The dispersal kernel corresponding to the lowest maximum dispersal distance used in the sensitivity analysis.

Figure 9. The dispersal kernel corresponding to the highest maximum dispersal distance used in the sensitivity analysis.
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We then examined the effect on the dPCconnector of all nodes and stepping-stones (similar to Loro et al. 
2015).  We found that the top 10 important nodes or stepping-stones remained remarkably stable across 
distances. The top 4 important source patches in our model, also occurred in the top ten of all other dispersal 
distances (Table 7). 
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Table 7. Node and stepping-stone IDs ranked according to decreasing dPCconnector values across the full range of maximum dispersal distances evaluated.

Distance value* 589 589 1000 1000 3366 3788 589 4748 3366 3788 1000 4748 9495 10000 9495 10000 3366 3788 4748 9495 10000

at p = 0.01 0.05 0.01 0.05 0.01 0.01 0.5 0.01 0.05 0.05 0.01 0.05 0.01 0.01 0.05 0.05 0.5 0.5 0.5 0.5 0.5

Maximum 
dispersal 
distance (at p = 
0.01)

589 905 1000 1537 3366 3788 3913 4748 5174 5823 6644 7299 9495 10000 14596 15372 22363 25167 31545 63083 66439

Rank 1 NA NA NA NA 25 35 35 35 35 35 35 35 35 35 4 4 4 4 33 33 33

Rank 2 NA NA NA NA 35 25 25 25 25 33 33 33 4 4 33 33 33 33 4 4 22

Rank 3 NA NA NA NA 17 17 17 33 33 25 4 4 33 33 35 35 35 35 35 22 4

Rank 4 NA NA NA NA 30 30 30 17 4 4 25 25 19 19 19 19 19 19 19 35 35

Rank 5 NA NA NA NA 20 20 20 30 30 30 19 19 25 25 7 7 7 7 32 19 19

Rank 6 NA NA NA NA 19 33 33 20 17 19 30 30 3 3 3 3 8 8 9 32 32

Rank 7 NA NA NA NA 33 19 19 19 20 17 17 17 37 37 37 37 32 32 8 9 9

Rank 8 NA NA NA NA 22 22 22 4 19 20 20 20 7 7 8 8 9 9 7 8 26

Rank 9 NA NA NA NA 3 4 4 22 3 3 3 3 30 30 25 17 3 3 17 26 8

Rank 10 NA NA NA NA 4 3 3 3 22 22 39 37 17 17 17 25 37 17 3 16 16

* From Table 6
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Hourly variation in movement distance of white-lipped pec-

caries

Methods. From studies in Costa Rica, Peru and Guatemala, white-lipped peccaries

known to be diurnal animals with peak activity during mid-morning and mid- afternoon

(Carrillo et al. 2002; Tobler et al. 2009; Moreira-Ramrez et al. 2015). We expected that

white-lipped peccary activity patterns in Belize are similar to those observed elsewhere.

We calculated step characteristics using the rhr package and compared movement rates

(speed and distance) for different time periods during the day, using only time lags

shorter than six hours.

Results. Speed and distance during different time periods during the day did not show

the expected pattern of increased mobility during mid-morning and mid-afternoon ac-

tivity peaks. However, no steps shorter than 6 hrs were available for points with fix

time of 9 am or 15 pm, while between two and seven were available for low-activity

periods (Table B.1). This suggests that during the most active periods no successful

fixes were obtained, and thus no information on speed or distance is available for these

critical times of the day. Therefore, we could not detect any significant signs of increased

mobility during the expected activity peaks.
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Home range analysis with rhr

This is an automatically generated report summarizing from a range analysis with rhr started: [2015-09-28 11:50:40]

Site Fidelity

Method was not requested

Time to Statistical Independence

Method was not requested

Minimum Convex Polygon

Parameter values used

ParameterParameter ValueValue

levels 50, 95, 99, 100

Results for Animal1

Home range estimate

Home Range Area

Home range analysis with rhr file:///windows/Users/Maarten/ownCloud/Docume...

1 of 5 03/07/2017 10:03 PM
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Home range areas

LevelLevel AreaArea

50 7.134122

95 33.476011

99 33.582523

100 33.591851

Kernel Density Estimation

Parameter values used

ParameterParameter ValueValue

levels 50, 95, 99, 100

trast RasterLayer (nrow:100; ncol:157; res:146.363,146.363)

h href

userh

Results for Animal1

Home range estimate

Home range analysis with rhr file:///windows/Users/Maarten/ownCloud/Docume...
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Tuning parameter (bandwidth)

The used value for bandwidth (h) is: 1059.24, 1059.24

Home Range Area

Home range areas

LevelLevel AreaArea

50 17.67451

95 69.38215

99 96.70847

100 183.06389

Home Range Core Area

Home range estimate

Area of home range core area

LevelLevel AreaArea

79.79618 41.00779

Local Convex Hull

Method was not requested

Brownian Bridges

Method was not requested

Home range analysis with rhr file:///windows/Users/Maarten/ownCloud/Docume...
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Unimodal bivariate Normal

Method was not requested

Bimodal bivariate Normal

Method was not requested

Session info

For the sake of reproducibility, you should always include your session info. This shows which version of R and different packages you were
using.

## R version 3.2.2 (2015-08-14)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 14.04.3 LTS
## 
## locale:
##  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_GB.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_GB.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] grid      stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] xtable_1.7-4        markdown_0.7.7      knitr_1.10.5       
##  [4] lubridate_1.3.3     brew_1.0-6          shinyBS_0.61       
##  [7] shiny_0.12.1        rhr_1.2.002         Rcpp_0.12.0        
## [10] dplyr_0.4.2         adehabitatHR_0.4.14 adehabitatLT_0.3.20
## [13] CircStats_0.2-4     boot_1.3-17         MASS_7.3-44        
## [16] adehabitatMA_0.3.10 ade4_1.7-2          deldir_0.1-9       
## [19] rJava_0.9-6         pvclust_1.3-2       SDMTools_1.1-221   
## [22] sparr_0.3-6         spatstat_1.41-1     usdm_1.1-12        
## [25] Hmisc_3.15-0        ggplot2_1.0.1       Formula_1.2-1      
## [28] survival_2.38-3     lattice_0.20-33     maptools_0.8-36    
## [31] rgdal_1.0-4         dismo_1.0-12        trajectories_0.1-3 
## [34] raster_2.4-15       sp_1.1-1            ctmm_0.2.8         
## 
## loaded via a namespace (and not attached):
##  [1] jsonlite_0.9.16     splines_3.2.2       R.utils_2.0.2      
##  [4] assertthat_0.1      highr_0.5           latticeExtra_0.6-26
##  [7] digest_0.6.8        RColorBrewer_1.1-2  polyclip_1.3-0     
## [10] colorspace_1.2-6    htmltools_0.2.6     httpuv_1.3.2       
## [13] Matrix_1.2-2        R.oo_1.19.0         plyr_1.8.3         
## [16] scales_0.2.5        intervals_0.15.0    tensor_1.5         
## [19] mgcv_1.8-7          rstudio_0.98.1087   nnet_7.3-11        
## [22] proto_0.3-10        magrittr_1.5        mime_0.3           
## [25] evaluate_0.7        memoise_0.2.1       R.methodsS3_1.7.0  
## [28] nlme_3.1-120        xts_0.9-7           foreign_0.8-66     
## [31] tools_3.2.2         formatR_1.2         stringr_1.0.0      
## [34] munsell_0.4.2       cluster_2.0.3       spacetime_1.1-4    
## [37] rstudioapi_0.3.1    goftest_1.0-2       labeling_0.3       
## [40] gtable_0.1.2        abind_1.4-3         DBI_0.3.1          
## [43] reshape2_1.4.1      R6_2.0.1            zoo_1.7-12         

Home range analysis with rhr file:///windows/Users/Maarten/ownCloud/Docume...
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## [46] rgeos_0.3-11        KernSmooth_2.23-15  stringi_0.5-5      
## [49] parallel_3.2.2      rpart_4.1-10        acepack_1.3-3.3    
## [52] rgl_0.95.1201

Home range analysis with rhr file:///windows/Users/Maarten/ownCloud/Docume...
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PERFORMANCE OF SATELLITE COLLARS IN WILDLIFE RESEARCH: WHAT DOES THE EVIDENCE SHOW?

A survey by Maarten P.G. Hofman1,2, Matthew W. Hayward2, Julia P.G. Jones2 and Niko Balkenhol1

1 Dept. of Wildlife Sciences, University of Göttingen, Germany
2 School of Environment, Natural Resources and Geography, Bangor University, Wales, UK

Dear colleague, 

Telemetry collars equipped with GPS functionality are a very attractive option in wildlife research, 
because they allow for tracking of movement and activity on a very fine temporal and spatial scale. 
However, one limitation of this technology is that GPS fix success rates and positional errors are highly 
variable, and are affected to unknown extent by collar orientation, canopy cover, terrain ruggedness, etc.
These confounding factors often cause bias in the locations obtained, and in some cases might prevent 
the device from obtaining sufficient data to answer research questions, forcing to change or abandon 
project objectives. This has led some authors to urge for caution when opting for satellite collars. 
Unfortunately, most unsuccessful studies do not get published, their analysis not completed and/or their
results discarded.  The literature therefore is biased towards successful applications of satellite collars, 
giving the general impression that the technique is useful under most circumstances. With this survey, 
we want to give the chance to such unsuccessful studies to still contribute to the field of wildlife 
research. We want to tap into both unsuccessful and successful research projects using satellite collars 
to see if we can find out whether there is an identifiable set of circumstances under which the technique 
should be a safe bet to yield useful data and/or under which circumstances it might be advisable to look 
for alternative methods to answer the questions at hand. 

The survey will likely require you to dig up data and/or publications and perform some calculations, but 
we hope that this will not discourage you from contributing to the assessment of satellite collars as a 
wildlife research technique. Filling out the survey will take anywhere between 20 minutes and half a day,
depending on the size of your dataset and how close you have your data at hand. 

The survey will be closed by May 31th, 2016.

If you wish so, you will receive a summary of the results when the study is finished. In this case, please 
indicate so in the form on the next page.

We thank you for taking this survey, and hope you will bear with us as we guide you through the 
questions. Throughout the form, questions marked with an asterix (*) need to be filled out in order for 
your project to be used in the analyses. 

Let's start!

Page 1 of 2
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First, we would like to get a minimal amount of background data on our respondents. Remember that we
will take into account the preference you have indicated in our online form regarding your personal 
details to be permanently removed at least 5 months after the end of the study.

Please provide your personal information.
(All personal details will be treated strictly confidential and will only be used for this survey. Note that you can choose not to fill out your 
personal details, in which case all your deployment data will be treated as strictly anonymous throughout the study.)

Yes No

Would you like to be informed about the results when the study is finished? 
(If yes, please provide contact details below)

Can we contact you for further information, if necessary?
(If yes, please provide contact details below)

Would you like to remain anonymous in any acknowledgements for this study?

Contact details
(Note that you can choose to leave the fields blank. In this case,  you will not be informed about the results or contacted for further information 
about the data you provide.) 

Thank you! This got us started. 
Please save this document for later submission.  We will now go on to input the deployment data.

We have assumed most studies will have the requested data stored on a project basis. Hence, we have 
chosen the project as the level of data entry. By clicking the “Add project data” button below, you will be 
prompted to download a PDF form from the server at the University of Göttingen. Bear in mind that 
most browsers will not allow you to fill out the form inside the browser. You will need to save it to your 
local computer and open it with the latest version of your PDF viewer. Our Linux server is clean, safe and
well-maintained; you can trust the file for download. The form will allow you to enter all collar 
deployment information pertaining to one project. If you have conducted more than one project, you will
have the opportunity to start adding the data for any additional project(s) at the end of the downloaded 
form.

Please save this form and press the “Add project data” button to start entering your deployment data.  

For more information about this survey:
Maarten Hofman, Department of Wildlife Sciences, University of Göttingen

Büsgenweg 3, 37077 Göttingen, Germany
+49 (0)551 39 33583  -   maarten.hofman@forst.uni-goettingen.de

Page 2 of 2

Last name First name

Affiliation

Add project data

PhoneEmail
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PERFORMANCE OF SATELLITE COLLARS IN WILDLIFE RESEARCH: WHAT DOES THE EVIDENCE SHOW?

A survey by Maarten P.G. Hofman1,2, Matthew W. Hayward2, Julia P.G. Jones2 and Niko Balkenhol1

1 Dept. of Wildlife Sciences, University of Göttingen, Germany
2 School of Environment, Natural Resources and Geography, Bangor University, Wales, UK

PROJECT INFORMATION FORM

Throughout the form, questions marked with an asterix (*) need to be filled out in order for your project to be used in the analyses. 

I. PROJECT AREA

To start off, we would like the location and extent of the project area to be filled out in the table below.
Please, bear in mind the following:

› If your project involves collars deployed in disjunct areas
and/or under clearly distinct environmental circumstances,
please consider filling out separate forms for each of these
areas.

› If your project area(s) cross(es) an international border, you can
list all countries involved.

› The extent is indicated by the geographic (non-projected)
coordinates of the lower left and upper right corner of the
rectangle that best describes your project area.  Coordinates
need to be in the WGS84 coordinate system and in decimal
degrees format (see Figure 1 and the first row of the Project
area table). 

Example area Örebro** Sweden 59.0000 13.1200 60.3500 16.9000

** see Figure 1

Now we would like to get a general impression of the environmental situation in your project area.

Need assistance? More info? Contact maarten.hofman@forst.uni-goettingen.de or +49 551 39 33583 Page 1 of 7

Figure 1: Example map illustrating the 
measurement of the project area 
extent

Assistance 
To convert your project area extent from your local coordinate system to WGS84 (GPS), you can use this online tool.
To find out the coordinates of a point in Google Maps, right click the point and choose “What's here?” from the pop-up context 

menu.

2. Forest cover in the landscape*

3. Dominant forest type*

4. Typical forest density in the area*

5. Terrain ruggedness*

1. Area name* Country* Latitude 1* Longitude 1* Latitude 2* Longitude 2*
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Importantly, we also need to know the time span over which the project was conducted.

II. SPECIES

Please enter the number of individuals of all species for which deployment data is provided. If possible, 
group the counts per sex and age combination. Please contact us if more species have been collared than
fit in the provided fields.

TOTAL
 

III. COLLARS

We are now getting closer to the core information needed, and dive a little deeper into the 
characteristics of the collars. In the table below, please provide the number of collars deployed per 
brand (and type, if possible) and year of purchase. Again, please contact us if more collars have been 
deployed than fit in the provided fields.

TOTAL

Need assistance? More info? Contact maarten.hofman@forst.uni-goettingen.de or +49 551 39 33583 Page 2 of 7

7. Colloquial name Scientific name* Sex Age Number*

8. Brand* Type Year of purchase* Number*

6. Project period from* until*
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Before we go on with some further information on the collars, please have a look at the following 
diagram to clarify the terminology used. What is the fix attempt time and when is a fix successful?

The fix attempt time (the first step in Figure 2) is defined as the time span over which a collar is allowed 
to search for sufficient satellites to obtain a fix before the attempt is classified as failed. A fix attempt is 
considered successful if it (i) succeeded in obtaining the collar's geographical position within the set fix 
attempt time and (ii) was successfully transmitted/retrieved from the collar. A fix attempt is labelled 
unsuccessful if it failed to obtain a position, and it is labelled 'not retrieved' when information on its 
status (succeeded/failed) could not be  obtained from the collar  (Figure 2). There are three general ways
of obtaining data from a collar (the second step in Figure 2 - retrieval/transmission). First, data can be 
obtained directly from the collar upon its recovery from the field. Second, data can be retrieved 
remotely using regular VHF/UHF or GSM systems. And third, data is transmitted through satellite-
based systems, e.g. Argos, Globalstar or Iridium,  and then forwarded to the end user, usually via email.

9. For how many collars was the programmed 
maximum fix attempt time of the following length?

Fix attempt time Number

10. How many collars** used the following  methods
 to retrieve the GPS fixes (see text above)?

Data retrieval method Number

Need assistance? More info? Contact maarten.hofman@forst.uni-goettingen.de or +49 551 39 33583 Page 3 of 7

Figure 2: From fix attempt to usable geographic information. When is a fix successful?

Upon collar retrieval

VHF/UHF

GSM

Argos

Globalstar

Iridium

Unknown

Other

≤ 60sec

61-90sec

91-180sec

> 180sec

Unknown

**Please include all deployed collars, regardless of whether they
    actually yielded fixes or not.
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IV. DEPLOYMENT

Good. So far we are aware of the number and type of collars that were deployed at the project site for 
any duration within the project period. Now,  we need to know some more deployment details. How 
often was data transmitted? How many fix attempts were obtained? How did the deployment end? Etc.

11. For all collars using satellite data transmission, how many sent the obtained positions to the satellite at the 
following frequencies?

12. For how many collars did the deployment period end as follows? (Please include all deployed collars)

13. From all collars with remote data retrieval (VHF/UHF, GSM or satellite),  how many yielded
additional successful fixes after they were retrieved from the field?

We have now arrived to the key number of the questionnaire: the fix success rate. We calculate the fix 
success rate as the proportion of all scheduled fix attempts that was successful, as defined in Figure 2. 
Therefore, we need the number of expected (scheduled) fixes, the number of fixes that could not be 
retrieved, and the number of successful fixes. 

14. Over all deployed collars, what was the total number of expected   fixes over the project period?  
That is, when all scheduled fix attempts over the project period would have been successful, how 
many fixes would there have been?*

15. Over all deployed collars, how many scheduled fix attempts were not   retrieved (e.g . because of 
poor satellite connection, failing GSM network, failing VHF or just data loss)? That is, the status 
(failed/succeeded) of these fixes is unknown.*

16. Over all deployed collars, how many successful   fixes   were eventually obtained over the project 
period, regardless of positional error (e.g. DOP) or number of satellites involved?*  

Need assistance? More info? Contact maarten.hofman@forst.uni-goettingen.de or +49 551 39 33583 Page 4 of 7

more than 1 transmission attempt per day 

1 transmission attempt every 2-3 days

1 transmission attempt every 4-7 days

1 transmission attempt every 2-4 weeks

less than 1 transmission attempt per month

Unknown

Other

It hasn't ended yet

As planned (drop-off, battery dead, collar retrieved, project end)

Unexpected battery failure

Electronic failure (software/sensor/electronics)

Mechanical failure (e.g. collar damaged)

Unknown (e.g. collar lost)

Other

no collars with satellite data transmission were used
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V. PROJECT OPERATION AND EVALUATION

We are now nearing the end of the questionnaire, and would like to know some more details about the 

operation and evaluation of the project. For example,  what are the average costs involved in projects 

using satellite collar techniques. We are only interested in broad cost classes to investigate the 

profitability of the approach under different environmental circumstances and varying  fix success rates. 

17. What was the average purchase price range per collar?
(including  drop-off mechanism, shipping and/or import costs, excluding accessories and software)

18. What were the average additional non-recurring costs per collar?
(e.g. additional hardware, software, etc.)

19. What were the average recurring running costs per collar per month?
(e.g. satellite service, GSM network, battery replacement)

Knowing you have invested these resources into your project hoping for helpful and insightful results, 
we want to gauge to what extent you were satisfied with the amount and quality of the data you 
obtained using the satellite collar technique.

20. How well do the following two statements reflect your impressions about the collars in your project?
Very
poor

Poor Neutral Good
Very
good

I don't
know

The amount of data obtained (i.e. fix success rate and 
transmission success) met my expectation. 

The data quality (position error) met my expectation.

And finally, we are interested whether the results of this project were useful for ecological or 
conservation research? Was the data useful for furthering your career? Was it used in publications?

21. How well do the following statements reflect your impressions on the usefulness of the project results?
Very
poor

Poor Neutral Good
Very
good

I don't
know

The project results were useful for applied 
conservation.

The project results were useful for the field of 
ecological or conservation research I am active in.

The project results were useful for furthering my 
career.

22. How many publication(s) report on the data from these collars? 

Need assistance? More info? Contact maarten.hofman@forst.uni-goettingen.de or +49 551 39 33583 Page 5 of 7

Peer-reviewed journal publications

Other publications
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23. Please provide citations for any peer-reviewed journal publications mentioned in Question 22.

24. If none, why did the project not result in any publications?

25. Have you uploaded any of your data to Movebank?

Movebank is  a  free,  online  database  of  animal  tracking data  hosted  by the  Max
Planck  Institute  for  Ornithology,  helping  researchers  to  manage,  share,  protect,
analyse, and archive their data, including unpublished datasets. 

26. If you have not done so, what was the most important reason?

VI. REMARKS AND FURTHER INFORMATION

27. If you have any further remarks about the project details, specific collar details, etc. please provide them 
here.

Please verify that you have answered all 27 questions, or at least those marked with an asterix (*). 
If so, you have provided all necessary deployment data for your study to be included in our analysis, and 
you will find out how you can submit this form on the next page.

Need assistance? More info? Contact maarten.hofman@forst.uni-goettingen.de or +49 551 39 33583 Page 6 of 7
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THANK YOU! 

If you have conducted any additional projects and you would like to add their deployment data as well, 
you can use the “Add another project” button below to start entering the data for these project(s) using 
a new form. 

If you have no further projects to add, send us the filled out form(s) following these instructions:
– save this project information form under a unique name (e.g. the name of the project area),
– combine this project information form (and those for any additional projects) with your 

previously filled out personal information form in a compressed folder (e.g. .zip), and
– send the compressed folder to maarten.hofman@forst.uni-goettingen.de with in the subject line:

“Satellite collars in wildlife research”

To add another project, please save this form as mentioned above and press the “Add another project” 
button to start entering the deployment data of your next project.

For more information about this survey:
Maarten Hofman, 

Department of Wildlife Sciences, 
University of Göttingen

Büsgenweg 3, 37077 Göttingen, 
Germany

+49 (0)551 39 33583 
maarten.hofman@forst.uni-goettingen.de 

Need assistance? More info? Contact maarten.hofman@forst.uni-goettingen.de or +49 551 39 33583 Page 7 of 7

Add another project
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PERFORMANCE OF SATELLITE COLLARS IN WILDLIFE RESEARCH: WHAT DOES THE EVIDENCE SHOW?

A survey by Maarten P.G. Hofman1,2, Matthew W. Hayward2, Julia P.G. Jones2 and Niko Balkenhol1

1 Dept. of Wildlife Sciences, University of Göttingen, Germany - 2 School of Environment, Natural Resources and Geography, Bangor University, Wales, UK

ADDITIONAL GUIDELINES FOR THE PROJECT INFORMATION FORM

Q1: Ideally, the coordinates should be the bounding box of the observed locations of all collared animals 
in the project, or the bounding box of their compiled home ranges.

Q2-5: Think about the general area within the bounding box that was actually used by the individuals. 

Q6: If some of the collars are still deployed and providing data, the end date of the project should be set 
to the date up until which you have calculated the expected fixes (see Q14).

Q7: Include all animals that were collared at least once during the project.

Q8: Include all collars that were deployed at least once during the project, regardless of whether they 
were refurbished. Include the year of original purchase. 

Q9: We are interested in the maximum time that the collar was programmed to look for a GPS fix during 
a fix attempt. Please include all deployments (collar-animal combinations) that occurred during the 
project. That is, the sum of all numbers in this question should equal the number of deployments during 
the project.

Q10: We are interested in the mode of data transfer that was originally intended to be used. If the collar 
is equipped to transfer data using the GSM network, this would be the intended method of data transfer,
even if you downloaded most fixes directly from the collar after retrieving it from the field. (All collars 
from which you downloaded additional fixes after retrieval should be listed in Q13). Please include all 
deployments (collar-animal combinations) that occurred during the project.

Q11: Please include all deployments (collar-animal combinations) that occurred during the project.

Q12: Please include all deployments (collar-animal combinations) that occurred during the project. 
Animal mortalities can be included in the “Other” section, but indicate the number of mortalities in the 
specification. 

Q13: What we are after here, is the number of retrieved collars from which you downloaded fixes (e.g. 
using cable connection to a laptop) that you weren't able to download remotely using VHF/UHF, GSM or
a satellite network (Argos, Globalstar, Iridium, …) while the collar was deployed.

Q14: In general, 'Expected' in our questionnaire means: how many fixes could all the collars deployed 
during the project period have made during the time they were active and functioning according to 
schedule? That is, every fix attempt scheduled on the collars from the start of deployment till the end of 
deployment or until failure detection is expected to yield a successful fix. As soon as the collars 
malfunctioned, we are not expecting to get any fixes from them any more. 
For any collars that are still deployed, you can choose a date in the recent past up until which you will 
calculate the expected fixes for all collars. This will also be the project end date (Q6) for the purposes of 
our study.

Need assistance? More info? Contact maarten.hofman@forst.uni-goettingen.de or +49 551 39 33583 Page 1 of 2
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Q15-16: 
There are in fact three possible outcomes of a fix attempt  (defined in Fig. 2 in the questionnaire):

• Successful = GPS position obtained during fix attempt by the collar, and this information was 
retrieved from the collar (Q16)

• Unsuccessful = GPS position NOT obtained during fix attempt by the collar, and this information
was retrieved from the collar (calculated from Q14 to Q16)

• Not retrieved = Information on the scheduled fix attempt could not be retrieved from the collar. 
It is unknown whether the collar managed to obtain a GPS position. (Q15)

such that: 
Expected fixes (Q14) = Successful fixes (Q16) + Unsuccessful fixes + Not retrieved fixes (Q15)

Some collar manufacturers only provide the user with the fix attempts that were successful, while not 
specifying the fate of the other scheduled fix attempts. In that case you would not be able to distinguish 
between unsuccessful and not retrieved fixes, and you can leave Q15 blank. Please make note of this in 
the remarks section (Q27). 

Need assistance? More info? Contact maarten.hofman@forst.uni-goettingen.de or +49 551 39 33583 Page 2 of 2

Figure 1: From fix attempt to usable geographic information. When is a fix successful?

An example:

When I get data from my Iridium collars, the files include information on every scheduled fix 
attempt that the Iridium network managed to download from the collars, regardless of 
whether it succeeded or not.

That is, the file includes information such as:
- start time of fix attempt
- end time of fix attempt (time to fix) - this will say '>180sec' if the fix attempt failed
- coordinates - these will be blank for a failed fix attempt
- DOP/coordinate precision - again blank for failed attempts
- No. of satellites
- etc.

The fix attempts with coordinates are the successful fixes.
From the fix attempts with blank coordinates, I can tell that a fix was unsuccessful. 
The fix attempts that were scheduled, but are missing from the Iridium files, could not be 
downloaded from the collar by the Iridium network, and are therefore considered not 
retrieved. 
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Osborne, P.E., Reineking, B., Schröder, B., Skidmore, A.K., Zurell, D. & Lautenbach,

S. (2013) Collinearity: a review of methods to deal with it and a simulation study

evaluating their performance. Ecography, 36, 27–46.

Dourson, D.C. (2012) Biodiversity of the Maya Mountains, a focus on the Bladen Nature

Reserve. Goatslug Publications, Bakersville, NC, USA.



Bibliography 133

Doyle, P.G. & Snell, J.L. (1984) Random walks and electric networks. Mathematical

Association of America, carus mono edition.

Dudley, N. (2008) Guidelines for Applying Protected Area Management Categories.

Technical report, IUCN, Gland, Switzerland.

Edelhoff, H., Signer, J. & Balkenhol, N. (2016) Path segmentation for beginners: an

overview of current methods for detecting changes in animal movement patterns.

Movement Ecology, 4, 21.

Edenius, L. (1996) Field test of a GPS location system for moose Alces alces under

Scandinavian boreal conditions. Wildlife Biology, 3, 39–43.

Eriksen, A., Wabakken, P., Zimmermann, B., Andreassen, H.P., Arnemo, J.M., Gunder-

sen, H., Liberg, O., Linnell, J., Milner, J.M., Pedersen, H.C., Sand, H., Solberg, E.J.

& Storaas, T. (2011) Activity patterns of predator and prey: A simultaneous study

of GPS-collared wolves and moose. Animal Behaviour, 81, 423–431.

ESRI (2015) ArcGIS Desktop: Release 10.3.

Fagan, W.F. & Calabrese, J.M. (2006) Quantifying connectivity: balancing metric per-

formance with data requirements. K.R. Crooks & M. Sanjayan, eds., Connectivity

Conservation, chapter 12, pp. 297–317. Cambridge University Press, Cambridge, UK.

Fahrig, L. (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol

Syst, 34, 487–515.

Fall, A., Fortin, M.J., Manseau, M. & O’Brien, D. (2007) Spatial graphs: Principles and

applications for habitat connectivity. Ecosystems, 10, 448–461.

Fattebert, J., Robinson, H.S., Balme, G., Slotow, R. & Hunter, L. (2015) Structural

habitat predicts functional dispersal habitat of a large carnivore: How leopards change

spots. Ecological Applications, 25, 1911–1921.

Fleming, C.H., Fagan, W.F., Mueller, T., Olson, K.a., Leimgruber, P. & Calabrese, J.M.

(2015) Rigorous home range estimation with movement data: a new autocorrelated

kernel density estimator. Ecology, 96, 1182–1188.

Fleming, C.H., Calabrese, J.M., Mueller, T., Olson, K.a., Leimgruber, P. & Fagan,

W.F. (2014) From fine-scale foraging to home ranges: a semivariance approach to

identifying movement modes across spatiotemporal scales. The American Naturalist,

183, E154–67.



Bibliography 134

Forester, J., Ives, A., Turner, M.G., Anderson, D.P., Fortin, D., Beyer, H.L., Smith,

D.W. & Boyce, M.S. (2007) State-space models link elk movement patterns to land-

scape characteristics in Yellowstone National Park. Ecological Monographs, 77, 285–

299.

Foster, R.J., Harmsen, B.J., Valdes, B., Pomilla, C. & Doncaster, C.P. (2010) Food

habits of sympatric jaguars and pumas across a gradient of human disturbance. Jour-

nal of Zoology, 280, 309–318.

Fragoso, J. (2015) More than 170 white-lipped peccaries (Tayassu pecari) filmed crossing

a 2 km wide river in Roraima, Brazil.

Fragoso, J.M.V. (1998) Home Range and Movement Patterns of White-lipped Peccary

(Tayassu pecari) Herds in the Northern Brazilian Amazon. Biotropica, 30, 458–469.

Fragoso, J.M.V. (2004) A long-term study of white-lipped peccary (Tayassu pecari)

population fluctuations in northern Amazonia - athropogenic versus ”natural” causes.

K. Silvius, R.E. Bodmer & J.M.V. Fragoso, eds., People in Nature: Wildlife Conser-

vation in South and Central America., chapter Chapter 18, pp. 286–296. Columbia

University Press, New York, USA.

Fragoso, J.M.V. (1999) Perception of scale and resource partitioning by peccaries: be-

havioral causes and ecological implications. Journal of Mammalogy, 80, 993–1003.

Frair, J.L., Fieberg, J., Hebblewhite, M., Cagnacci, F., DeCesare, N.J. & Pedrotti, L.

(2010) Resolving issues of imprecise and habitat-biased locations in ecological analyses

using GPS telemetry data. Philosophical transactions of the Royal Society of London

Series B, Biological sciences, 365, 2187–2200.

Franklin, J. (2010) Mapping species distributions: spatial inference and prediction. Cam-

bridge University Press, Cambridge, UK.

Fuller, T., Carrillo, E. & Saenz, J. (2002) Survival of protected white-lipped peccaries

in Costa Rica. Canadian Journal of Zoology, 80, 586–589.

Galpern, P., Manseau, M. & Fall, A. (2011) Patch-based graphs of landscape connec-

tivity: A guide to construction, analysis and application for conservation. Biological

Conservation, 144, 44–55.

Ganskopp, D.C. & Johnson, D.D. (2007) GPS Error in Studies Addressing Animal

Movements and Activities. Rangeland Ecology {&} Management, 60, 350–358.

Gau, R.J., Mulders, R., Ciarniello, L.M., Heard, D.C., Chetkiewicz, C.L.B., Boyce, M.S.,

Munro, R., Stenhouse, G.B., Chruszcz, B., Gibeau, M.L., Milakovic, B. & Parker, K.L.



Bibliography 135

(2004) Uncontrolled field performance of Televilt GPS-Simplex collars on grizzly bears

in western and northern Canada. Wildlife Society Bulletin, 32, 693–701.

Geldmann, J., Barnes, M., Coad, L., Craigie, I.D., Hockings, M. & Burgess, N.D. (2013)

Effectiveness of terrestrial protected areas in reducing habitat loss and population

declines. Biological Conservation, 161, 230–238.
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