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Abstract 
 

 This thesis reports the results of three novel studies that used effective 

connectivity and region of interest methods on fMRI data to provide insights into how 

familiarity shapes action observation and execution. 

 

 Experiment 1 examined how observed movement familiarity modulates AON 

activity using dynamic causal modelling, a type of effective connectivity analysis. 

Participants viewed whole-body dance movements during scanning, and after 

scanning rated each movement on a measure of visual familiarity. These ratings were 

then applied as parametric modulators to the fMRI data, which revealed an 

attenuation of effective connectivity bidirectionally between parietal and temporal 

AON nodes when participants observed videos they rated as increasingly familiar. As 

such, the findings provide partial support for a predictive coding model of the AON, 

as well as illuminate how action familiarity manipulations can be used to explore 

simulation-based accounts of action understanding.  

 

 Experiment 2 examined the relationship between AON response amplitude 

and participants’ familiarity with observed or executed actions. Specifically, this 

study examined whether increasing familiarity impacts AON engagement in a linear 

or quadratic manner. Using an elaborate guitar training intervention to probe the 

relationship between familiarity and AON engagement during action execution and 

action observation tasks, participants underwent fMRI scanning while executing one 

set of guitar sequences and observing a second set of sequences. Via region of interest 

analyses, linear, cubic and quadratic regression models were fitted to the data to 

match varying levels of familiarity. The data from the observation and execution 

conditions show mixed evidence for all types of models, suggesting that the response 

profile within key sensorimotor brain regions associated with the AON is not solely 

linear in nature in response to increasing familiarity. Moreover, by probing the 

objective and subjective nature of the prediction error signal, we show results that are 

consistent with a predictive coding account of AON engagement during action 

observation and execution.   
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 The final study of this thesis aimed to test the assumptions of the predictive 

coding account using effective connectivity, when participants observed or executed 

familiar compared to unfamiliar actions. To test these predictions, we re-evaluated the 

same data collected for Study 2 wherein participants took part in an intensive guitar-

training paradigm. Identifying core AON nodes from pre- and post-training scanning 

sessions, we then applied effective connectivity analyses to test whether changes in 

effective connectivity fit those hypothesised under the predictive coding account. We 

demonstrate that hypotheses derived from predictive coding that predict distinct 

patterns of modulation based on perceived or performed actions’ familiarity are 

generally supported by the empirical data. These findings contribute valuable insights 

toward understanding the complex role played by familiarity in modulating action 

cognition. 

 

 The main empirical findings of this thesis show: 1) attenuation in connectivity 

within the AON when an action is perceived as more familiar; 2) the response profile 

of core AON regions to increasing familiarity (either objectively or subjectively 

defined) when performing or observing an action is not solely linear in nature; and 3) 

hypotheses derived from the predictive coding account concerning effective 

connectivity between core AON regions are largely supported when an intensive 

training paradigm is used to create a distinction between familiar and unfamiliar 

actions.  
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1 Chapter Ι  

1.1 Aim of the thesis 

   

 The overarching aim of this thesis was to characterise how changes in 

familiarity shape connectivity within the Action Observation Network (AON). In 

regards to the organization of the chapters within this thesis, the three empirical 

chapters are written as standalone sections and are manuscripts that are either already 

published (Chapter ΙΙΙ: Gardner, Goulden & Cross (2015) Journal of Neuroscience) 

or are currently under review (Chapter ΙV: Gardner, Aglinskas & Cross, under review 

at Neuroimage; Chapter V: Gardner & Cross, under review at Journal of 

Neuroscience). For this reason, some content is repeated between chapters.  

 

 In Chapter Ι, a brief outline of the Action Observation Network is presented, 

and the role played by familiarity in shaping AON engagement is considered. 

Prominent models (the direct matching hypothesis and the predictive coding account) 

are outlined with respect to how they might explain discrepant findings in the AON 

literature concerning the role of familiarity. Chapter ΙΙ comprises a brief overview of 

fMRI, followed by a more extensive review of Dynamic Causal Modelling, the main 

analytical approach used in Chapters ΙΙΙ and V of this thesis.  

 

 In Chapter ΙΙΙ, the impact of subjectively-rated familiarity on the effective 

connectivity within the AON is examined. In Chapter ΙV, an intensive training 

paradigm is combined with region of interest analyses to examine the response profile 

of core AON regions and test predictions of two prominent models within the field: 

direct matching and predictive coding. In Chapter V, the same data from Chapter ΙV 

is reanalyzed using effective connectivity measures to test how varying levels of 

familiarity influence modulation between core AON regions. Finally, in Chapter VΙ, 

the results of the three empirical chapters are considered together, as are general 

limitations and future directions for this line of research.  
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1.2 Background 

1.2.1 Linking Action with Perception 

 

 Humans are a highly social species in near-constant physical or visual contact 

with conspecifics. When we observe others moving around us, we are able to make 

many rich inferences about others’ goals, intentions, and desires. For example, if we 

imagine sitting in a café and observing a friend reach out to grasp her coffee cup, 

from this action, we might infer that our friend is thirsty, or wishes to get warm by 

imbibing a hot beverage, or perhaps is hoping a dose of caffeine helps wake her up 

(Hamilton & Grafton, 2006; Hamilton, 2013; Ramsey & Hamilton, 2010). The goal of 

her reaching action would be to grasp the coffee cup, with the intention of lifting it up 

to take a drink from it. Integral to this concept is that we actively predict the actions 

as they unfold, allowing us to rapidly update predicted subsequent actions in an online 

fashion (Blakemore & Frith, 2005; Falck-Ytter et al., 2006). If, for example, our 

friend in the café appears to reach for her coffee cup but deviates towards the sugar, 

our understanding of her intention must change; no longer is the goal to grasp the 

coffee cup. In evolutionary terms, this rapid identification of goals from actions 

would be beneficial in attributing others’ movements as threatening or friendly, and 

thus preparing us to respond accordingly (see Hauser & Wood (2010) for further 

discussion of this point). Our ability to obtain such rich information from others’ 

actions likely stems from a particular type of neuron found within sensorimotor 

cortical regions of the primate brain: so-called “mirror neurons”. 

 

 In 1992, di Pellegrino and colleagues aimed to investigate motor properties of 

the ventral premotor area F5 of the macaque monkey’s brain (di Pellegrino et al, 

1992). It was previously found that area F5, located rostrally within the inferior 

premotor cortex, responded when a monkey made arm movements (Rizzolatti et al, 

1981; 1988). To test area F5’s responsiveness to stimulus compared to movement 

related activity, single neuron recordings were taken. The task for the macaque 

involved passively observing the food (stimulus condition) or reaching out and 

grabbing the food (movement related condition). Incidentally, the authors noted that 

when the experimenter reached over to move the food back to its starting location, the 
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single neuron recording activity resembled that of when the monkey was performing 

the movement related condition. In subsequent papers by the same group of 

researchers, the incidental finding of di Pellegrino and colleagues (1992) was 

explicitly tested by use of the same methodology (Gallese et al, 1996; Rizzolatti et al, 

1996; see also Umilta et al., 2001) and the finding was reliably replicated. These 

neurons in F5, which were found to respond to both observation and execution of the 

same or similar arm movements, were coined ‘Mirror Neurons’ (Gallese et al, 1996; 

Rizzolatti et al, 1996). Fogassi et al. (2005) further investigated the presence and 

attributes of mirror neurons in the macaque brain by extending focus to the inferior 

parietal lobule (IPL). Monkeys were required to observe grasping actions where the 

experimenter grasped to place or grasped to eat. The findings from the single neuron 

recordings showed different activations for grasping to eat compared to grasping to 

place. The researchers suggested that the action (in this case, grasping), is coded 

differently based on the final action goal. This conclusion can be drawn from the fact 

that the action was similar, however, the final outcome was different. This conclusion 

suggests that activity within IPL helps an observer to ascertain the intention of an 

observed agent (in this case, the experimenter). The finding of differential coding of 

initial action and final intention was later supported by Bonini and colleagues (2010). 

Bonini and colleagues aimed to investigate whether activity within ventral premotor 

area and IPL reflects the final action goal of a movement, which is embedded within 

the actions. The final action goal could be eating or placing, preceded by a grasping 

action (observed and executed by the macaque, allowing of the investigation of mirror 

neuron activity). Therefore, the kinematics of the actions was similar (grasp the object 

or food), yet the intention was only attainable at the latter stages of the action when 

the object or food was placed in the box or mouth, respectively for the conditions. 

Single unit recordings were taken from F5 (ventral premotor area) and area PFG of 

the IPL (an area that is cytoarchitecturally distinct within the IPL; Gregoriou et al., 

2006). These two regions were used, as tight connections between them were 

previously shown (Cavada & Goldman-Rakic, 1989; Rozzi et al. 2006); therefore, 

functional coupling is plausible (Bonini et al., 2010). The results of this experiment 

were that the two regions encode different levels of motor abstraction. It was found 

that the mirror neuron activity found in F5 coded actions according to the final goal. 

However, compared to F5, PFG was preferentially stronger for the coding of 



Chapter I 

	 19	

kinematics of the actions. Together, these findings indicate that this frontal-parietal 

circuit plays an important role in understanding the intentions of others.  
 

1.2.2 From Mirror Neurons to the Action Observation Network 

	

 These seminal mirror neuron findings and others lent support to the notion that 

observed and executed actions could share representations within a similar system 

(Gallese & Goldman, 1998; Rizzolatti et al., 2001). Returning to the example used 

previously, when we observe our friend reaching for her coffee cup, we are able to 

understand the intention and goal of her action by simulating this same action within 

our own motor system, a concept that shall be returned to later in this chapter. 

However, it is important to note the findings described above relating to mirror 

neurons responding in a similar manner to observed and executed actions all came 

from investigations into the macaque brain. The fine-scale precision for measuring 

neural activity afforded by single-unit recordings is difficult to achieve in human 

participants, as single recordings in humans is very rare (but see Mukamel et al., 

2010). However, a number of innovative attempts using human neuroimaging 

approaches, such as functional magnetic resonance imaging (fMRI), offer compelling 

evidence that similar neural mechanisms are at play within the human brain. For 

example, Kilner and colleagues (2009a) used a repetition suppression paradigm 

(where repeated presentation of a particular stimulus or feature results in reduced 

activity in a particular brain region of interest) to demonstrate that activity in the left 

inferior frontal gyrus (IFG) is consistent with what would be expected if this brain 

region contains mirror neurons. In contrast, Lingnau and colleagues (2009) showed 

that this finding did not emerge when the repeated stimuli were first executed and 

then observed. As such, Lingnau and colleagues (2009) suggest that their failure to 

find evidence for cross-modal adaptation for executed and observed motor acts calls 

into question core assumptions made by mirror neuron theories. When considered 

together, these findings suggest that identification of actual mirror neurons in humans 

will require further investigation (see Kilner et al., 2014 for applying adaption 

techniques in macaques). Whether these neurons do indeed exist in the human primate 

brain as they do in the non-human primate brain (c.f., Hickok, 2009; Hickok & 

Hauser, 2010; Dinstein et al, 2007; Molenberghs et al., 2012), will remain a rich area 
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for future work to further explore. However, what this work by Kilner and colleagues 

(2009a), Lingnau and colleagues (2009), and many others suggests is that at least 

some degree of correspondence clearly exist between executed and observed actions 

within sensorimotor circuits of the human brain. While some researchers remain 

committed to resolving the debate as to whether mirror neurons exist in the human 

brain, per se, others have expanded their focus beyond just inferior parietal and 

ventral premotor cortices to focus on the role played by sensorimotor cortical areas 

more broadly when engaging in action-related tasks.  

 

 When we observe others in action, a wealth of human neuroimaging studies 

have demonstrated widespread engagement of frontal, parietal, and occipitotemporal 

cortical regions, which have been collectively termed the Action Observation 

Network (AON) (Cross et al., 2009; Grafton, 2009; Keysers & Gazzola, 2009; 

Caspers et al., 2010). This extensive network includes the inferior frontal gyrus and 

inferior parietal lobe, homologues to area F5 and IPL in the macaque mirror neuron 

literature. In addition to these two regions, the posterior superior (and sometimes 

middle) temporal gyrus (STG/MTG) are also included as part of this network 

(Grafton, 2009; Cross et al., 2009), As these posterior temporal regions do not 

demonstrate motor properties, it is clear that the AON does not require strict 

correspondence between observed and executed actions, but is instead more broadly 

concerned with brain regions engaged when observing others in action (Iacoboni et 

al., 2001; Gallese et al., 2004; Schippers & Keysers, 2011). The main focus of this 

thesis concerns what happens to activity within these core AON regions when an 

observed or executed action is highly familiar vs. unfamiliar. 

 

1.2.3 The Role of familiarity in Shaping the AON 

1.2.3.1 Greater familiarity = Greater AON Engagement 

	

	 Research into how familiarity shapes AON engagement when observing 

others in action has investigated familiarity in several domains, including an observed 

agent’s form and motion (Press, 2011).  Research investigating the role of familiarity 
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with an observed agent’s form has shown greater activity within the AON when an 

observed agent is human compared to non-human (such as a dog or robot; Buccino et 

al., 2004; Tai et al., 2004; Shimada, 2010; Press, 2011). For example, Buccino and 

colleagues (2004) used fMRI to investigate AON activity while human participants 

viewing biting, speech reading, lip smacking and barking actions performed by 

humans, monkeys and dogs. The results showed that, within core AON regions, 

stronger engagement of the AON was elicited when the observed agent and actions 

were more familiar (i.e., more AON engagement when viewing speech reading and 

biting actions made by a human than when viewing barking actions made by a dog). 

As noted by the authors, this finding suggests that correspondence between an 

observer and observed agent’s form and motor repertoire is crucial for engaging the 

AON during action observation. The finding from Buccino and colleagues (2004) was 

corroborated by Tai and colleagues (2004), who scanned participants’ brains as they 

observed grasping actions performed by a human model or a robotic hand. They 

found premotor activity when participants observed grasping actions made by the 

human model, but not the robotic model. This finding was further supported by 

Shimada (2010) who found that compared to a congruent agent-action combinations 

(i.e., a human form performing an action with human kinematics), sensorimotor 

engagement attenuated within when the agent-action pairing was incongruent (human 

form performing a robotic movement). Taken together, these findings suggest that 

AON engagement is greater for when observing familiar compared to unfamiliar 

agents. 

 

 Support for greater AON engagement for familiar compared to less familiar 

kinematics has also been demonstrated by a large number of studies (Knoblich & 

Flach, 2001; Calvo-Merino et al., 2005; Cross et al., 2006; Macuga & Frey, 2011; 

Bischoff et al., 2012; Kirsch & Cross, 2015). For example, Calvo-Merino and 

colleagues (2005) recruited expert dancers from different dance backgrounds 

(classical ballet vs. capoeira) to participate in an fMRI study. When these dancers 

view videos of actions they had trained (e.g. ballet dancer watching ballet), greater 

activity emerged across the AON compared to when they observed actions not in their 

motor repertoire (e.g., ballet dancer watching capoeira). Corroborating and extending 

this finding, Cross and colleagues (2006) took professional dancers and trained them 
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on novel dance movements over a period of 5 weeks. The dancers were scanned once 

a week across the training period while they watched rehearsed movements and 

kinematically similar control movements. The authors showed that activity in the core 

AON regions was modulated as a function of the dancers’ perceived ability to 

perform each dance action in that the better they could perform an observed action, 

the stronger the response was within PMv and IPL. Both these studies (Calvo-Merino 

et al., 2005 and Cross et al., 2006) suggest that even if an observed movement falls 

within an observer’s general movement repertoire, activity within the AON is attuned 

based on the observer’s ability to perform the action.  

 

 In another line of research aiming to explore the impact of observing familiar 

vs. unfamiliar actions on AON engagement, Liew and colleagues (2011) investigated 

perception of non-verbal communication of Caucasian and Chinese symbolic gestures 

by Caucasian and Chinese actors as Chinese participants underwent fMRI. The 

findings of this study were twofold. First, the authors reported greater AON activity 

when the actor was of the same race as the participant, supporting the notion that the 

AON responds more robustly to more familiar agents. However, the second finding of 

this study raises a challenge to the action familiarity findings reported in the 

preceding paragraph, in that Liew and colleagues (2011) found that the unfamiliar 

actions (i.e., Caucasian symbolic gestures observed by Chinese participants) elicited 

greater AON activity than familiar actions (e.g., Chinese symbolic gestures observed 

by Chinese participants). This contradictory finding of the role played by familiarity 

within the AON from the same study brings forth the point that our understanding of 

the role of familiarity remains unresolved.   

	

1.2.3.2 Less familiarity = Greater AON Engagement? 

	

 A growing body of literature has added further fuel to this debate by showing 

that unfamiliar reliably elicit greater AON engagement (Gazzola et al., 2007; Liew et 

al., 2011; Cross et al., 2012). For example, Gazzola and colleagues (2007) found 

evidence for equivalent AON activation when participants observed grasping actions 

performed by a robotic or human hand, at odds with the findings reported by Tai et al. 

(2004). In this study by Gazzola and colleagues (2007), participants observed robotic 
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and human arms carry out goal directed or non-goal directed actions. They found that 

observing actions that were designed to achieve with a specific goal (kinematics 

aside), was sufficient to activate the AON. In addition, they report that regardless of 

agent, the repeated presentation of the identical stimuli in a block caused strong 

habituation of the AON (c.f. notion of repetition suppression presented above in 

section 1.2.2, also Hamilton & Grafton, 2006). These findings suggest that a linear 

relationship between increasing familiarity and increasing AON activity might be 

limited in its explanation of this network.  

 

 In a subsequent study, Cross and colleagues (2012) investigated how 

observing whole body dance movements impacts AON engagement. In this study, 

participants observed either a human dancer or an animated Lego robot perform 

actions that were either smooth and human-like in nature, or adhered to more rigid 

and robotic kinematics.  Across two independent fMRI experiments, these authors 

found greater activity within core AON regions when participants observed the less 

familiar, rigid robotic movements compared to the more familiar human-like 

movements. These authors proposed a model whereby the relationship between AON 

engagement and familiarity was quadratic (U-shaped) rather than the linear 

assumptions of familiar actions and AON engagement. This model was further 

supported by Liew and colleagues (2013), in a study in which they investigated the 

role of familiarity in novices, experienced occupational therapists (OC) who had more 

extensive experience working with individuals with residual limbs, and subject CJ, 

who was born with a below-elbow residual limb. By studying these three groups of 

participants, the authors could investigate how varying levels of visual and physical 

familiarity with different types of intact and residual limb movements might modulate 

AON activity. While undergoing fMRI, subjects viewed both residual limb and hand 

actions. The authors found that for novices, greater AON activity emerged for 

residual limb viewings than hand actions. This was also shown to a lesser degree for 

OC participants, and in both cases, this activity attenuated with time. These findings 

provide further evidence that the observation of unfamiliar actions also elicits AON 

engagement. Additionally, AON engagement for the observation of residual limbs 

was greater than the hand actions for subject CJ, suggesting that extremely familiar 



Chapter I 

	 24	

actions can also elicit robust AON engagement, a finding that is consistent with the 

U-shaped function proposed by Cross and colleagues (2012). 

 

 A fundamental question that remains the literature reviewed in both parts of 

section 1.2.3 is what, precisely, the role of familiarity is in shaping AON engagement. 

It is clear from the literature that AON engagement is not preferential for either 

familiar or unfamiliar actions, with evidence reviewed here to support both sides of 

this debate. However, one lesson we might take away from this debate is that 

continued use of magnitude-based approaches might have limited utility in shedding 

fresh light on this question (see Smith, 2012 for a discussion on the limitations of 

magnitude-based approaches). The model proposed by Cross et al. (2012) and Liew et 

al. (2013) frames the findings of the familiarity literature in a way in which one could 

start to appreciate and further explore the complex role played by familiarity in 

shaping AON responses, not just in terms of how much particular regions might 

respond to particular stimuli, but also how the core regions of the AON might 

exchange information between each other. In the following section, prominent action 

understanding models are considered in light of the debate of the role of familiarity, 

as are these models’, abilities to address the fundamental questions posed by this 

thesis.   

 

1.2.4 Relating Questions About Action Familiarity to Action Understanding 

Models 

	

 This section outlines two prominent models of action understanding: the direct 

matching hypothesis and the predictive coding account. While these are not the only 

two models of action understanding (e.g., see Oztop et al., 2013; Pezzulo et al., 2015; 

Csibra, 2005 for alternatives), these two models are well-developed and extensively 

researched, and both provide strong predictions about how fluctuations in familiarity 

might shape the exchange of information between core nodes of the AON.  
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1.2.4.1 Direct Matching 

	

	 Following the literature that suggests greater AON engagement for familiar 

compared to unfamiliar actions, one could frame this evidence in light of the  “like 

me” hypothesis (Meltzoff, 2007). This hypothesis states that if an action or actor is 

more “like me”, or has been or could be performed by me, we would expect greater 

engagement of sensorimotor mechanisms that support action observation and 

execution (i.e., the AON). Returning to the coffee cup example from above, the fact 

that we can relate to this action because we have likely performed it many times 

ourselves, we should be able to understand the action in terms of the actor’s goals and 

intentions by using our own experience to map on to our friend’s action. This use of 

experience-driven simulation mechanisms (Sinigaglia, 2013) in understanding an 

action forms the foundations of the direct matching hypothesis.  
 
 The direct matching hypothesis of action understanding (Rizzolatti et al., 

2001; Gallese & Goldman, 1998; Wolpert et al., 2003; Umilta et al., 2001; Kohler et 

al., 2002) suggests that an action’s meaning is understood via the AON, supporting 

simulation of an observed action by matching the goal or intention of what that 

movement would be if performed by the observer. By use of forward models 

(Wolpert et al., 2003), the visual information of the observed action first enters the 

network through the higher order visual areas (for example, STS). This information 

then flows anteriorly through the AON, eventually arriving at motor and premotor 

cortices. Engagement of the motor system enables an observer to understand how the 

action should unfold, and thus supports an observer in reading the intentions and 

goals of an observed actor. In our example, as we have experience with reaching for 

coffee cups to drink from, we are able to simulate our friend’s action and thus 

understand the intentions of our friend.  

 

 One criticism of this hypothesis is based on the name itself; direct matching. 

As noted by Csibra (1993), multiple means can be taken in order to obtain a given 

goal. For example, I can take a drink from my mug by either raising it to my face or 

lowering my face to it; the goal to drink remains the same. Thus, the direct matching 

implied by this hypothesis must remain resilient to the action and faithful to the goal. 
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As such, simply observing an action and mapping it onto one’s own motor system, or 

a higher order understanding, must be present. This point was addressed by the 

authors of the original model (Rizzolatti & Sinigaglia, 2010) in an extension that is 

termed the goal-mirroring model (Steinhorst & Funke, 2014). In this variation, the 

authors propose that intention can be gauged by matching the goal of the observed 

action to an internal motor act with the same goal, regardless of whether the 

kinematics precisely match.  

 

 When we observe a familiar action, the direct matching hypothesis has a clear 

explanation for how the AON responds. As familiarity of actions increases, the 

simulation of how an action might unfold over time becomes more accurate and 

resonance between an observer’s motor system and an observed action is maximized 

(c.f., Calvo-Merino et al., 2005; 2006). However, such an account would struggle to 

explain why an unfamiliar action that is not in the observer’s repertoire could elicit 

greater AON activity. Therefore, the direct matching hypothesis provides a partial 

explanation for the role of familiarity within the AON, but stops short of being able to 

explain why some unfamiliar actions drive the AON more strongly than more familiar 

actions. 

	

1.2.4.2 Predictive Coding 

	

 A model that extends the premise of the direct matching hypothesis is the 

predictive coding account. Predictive coding models of AON function (Keysers & 

Perrett, 2004; Kilner et al., 2007a,b; Gazzola & Keysers, 2009; Schippers & Keysers, 

2011) are predicated on the use of perceptuomotor maps to predict and interpret 

observed actions (Lamm et al., 2007; Schubotz, 2007; Urgesi et al., 2010) and may 

potentially help to resolve seemingly discrepant findings concerning the relationship 

between familiarity of an observed movement and engagement of sensorimotor 

cortices.  

 

 This framework proposes a Bayesian comparison of predicted and observed 

actions (via use of forward and inverse models), creating a reciprocally modulated 

network comprising premotor, inferior parietal and posterior temporal cortices. This 
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network aims to minimise the differences between observed and predicted actions. 

When observing a less familiar action, predictions (feedback) are lacking or are under 

informed, and thus do not match the observed actions (feedforward), which equates to 

high prediction error. This should manifest as increased AON engagement for highly 

unfamiliar actions, as the influence of feedforward/perceptual activity is heavily relied 

upon. When viewing an action that is familiar, however, the predictions generated by 

the network are more precise, and thus minimise prediction error. The minimising of 

prediction error can also manifest as increased AON engagement, as predictions 

projected posteriorly are stronger than when prediction error was higher. The 

reciprocal nature of this framework allows for the explanation of higher AON 

engagement for both familiar and unfamiliar actions 

 

 Both direct matching and predictive coding remain two prominent models of 

action understanding. These two accounts both rely on forward models and higher 

order representations of actions, with the predictive coding account’s use of inverse 

models enabling comparisons between observed and predicted actions. When we 

apply the question of familiarity to these models, the direct matching hypothesis 

cannot fully explain the findings in the literature of greater activity for the observation 

of both familiar and unfamiliar actions. On the other hand, predictive coding has 

potential to provide an explanation for these discrepant findings yet requires 

additional examination and empirical support.     

	

1.2.5 Conclusions and Aims of Thesis  

	

 From the action observation literature described above, while it is clear that 

familiarity shapes AON engagement, it remains less clear how variations in an 

observed or executed action’s familiarity are reflected in AON engagement, and why 

contradictory findings have been reported regarding the relationship between AON 

engagement and action familiarity. Models of action understanding postulate a pattern 

of connectivity between core AON nodes that might help resolve why we see greater 

AON engagement for both familiar compared to unfamiliar and unfamiliar compared 

to familiar actions across the literature. Through combining effective connectivity 

measures and ROI-based regression models with objective and subjective measures of 
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action familiarity and an intensive training intervention, this thesis systematically 

evaluates the relationship between familiarity and AON engagement by testing 

hypotheses derived from two prominent action understanding models: direct matching 

and predictive coding.	
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2 Chapter ΙΙ  
 

 This chapter aims to provide a detailed overview of the neural connectivity 

measures currently applied to functional MRI (fMRI) data. Specifically, this chapter 

first focuses on the foundations of fMRI, its development and how it can be used to 

measure metabolic changes in the brain. Next, the concept of neural connectivity is 

introduced, and its relevance to understanding of complex cognitive functions is 

discussed. This leads to an in-depth review of dynamic causal modelling (DCM), in 

which key facets are explained, as are evidence for and limitations of this method.    

 

2.1 Functional Magnetic Resonance Imagining (fMRI) 
 

 Since the end of the 20th century, magnetic resonance imaging has enabled 

clinicians and researchers to look inside the human body in a non-invasive manner 

and without the concurrent administration of harmful radiation or radioactive 

isotopes. Over the past several decades, the increasing sophistication of imaging 

techniques and analytical approaches has enabled researchers to investigate the 

functional operation of the human brain with ever more precision. This powerful tool 

owes its origin to our understanding of quantum physics.  

 

2.1.1 MRI Physics 

	

The foundations of Magnetic Resonance (MR) imaging originate within the 

field of quantum physics, and the spin characteristics of protons (Gerlach & Stern, 

1922; Pauli, 1927; Dirac, 1928). It was shown that atoms possessed an intrinsic 

quantum state, or spin, and magnetic moment. In other words, atoms can be thought 

of as spinning tops with different spinning speeds and orientations (an analogy that 

will be used throughout this chapter). Core to MR imaging is the stimulation of 

nuclei, where they absorb the energy emitted to them from a transmitter, and emit the 

energy back until they reach a level of initial equilibrium. Returning to the spinning 
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top example, this principle would be similar to having a spinning top tethered to a taut 

string, flipping the top, and then measuring how fast it returns to its original state. 

This concept is known as nuclear magnetic resonance (NMR; Rabi et al., 1938). In 

order to perform the “flip” of the nuclei, a Radio Frequency (RF) pulse is used. The 

energy emitted by RF is absorbed by the nuclei, similar to the physics used for X-ray 

or CT scans, but without the need for ionizing radiation.   

 

If one considers a small mass of tissue, the magnetic moment, or spin 

frequency, of the hydrogen atoms (the most abundant substance, which makes up 

around 80% of our bodies) within this mass are oscillating at different frequencies and 

are orientated randomly. In order to acquire an image of this tissue, the tissue has to 

be placed within a strong magnetic field. Purcell (1948) showed that by placing an 

electrical current within a strong magnetic field, the atoms would align with the 

direction of the magnetic field. If one thinks of the spinning tops within a small mass 

of tissue, the orientation of the spinning tops is not uniform in the natural state, and 

this equates to a net magnetisation of zero (which ensures we do not attract other 

ferromagnetic metals). However, by placing this small mass of tissue within a strong 

magnetic field, some of the atoms will align their orientation parallel to the direction 

of the magnetic field (from negative to positive), whilst others will align in the 

opposite direction (anti-parallel). Generally, the atoms will align with the direction of 

the magnetic field, called the low energy state. The amount of atoms that align with 

the magnetic field is directly proportional to the strength of the magnetic field. In a 

pivotal study, Bloch (1946) showed how an image of a solid could be taken using the 

physics described above. Bloch used a transmitter coil to emit electromagnetic energy 

and then record the unabsorbed energy in a detector coil. Another way to consider this 

experiment would be to take a stencil and apply spray paint over it; the stencil itself 

would absorb some of the paint, and the remaining paint would create a picture on the 

canvas. The experiment by Bloch (1946) identified that the quantum mechanical 

properties of atoms can be used in conjunction with a strong magnetic field to locate a 

single object in space. Before exploring the formulation of modern day 3D images, 

the excitation and relaxation principles are further explained.   
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Returning to the spinning tops example, the mass containing the spinning tops 

(atoms) is placed within a strong magnetic field. The frequency of these spins, or 

precess, is known as the Lamor Frequency. This frequency is different for every 

element; therefore, the correct frequency has to be used in order to flip them (in a 1.5 

Tesla scanner, this is ~63MHz for hydrogen). In order to perform the “flip” of these 

atoms, the RF pulse needs to resonate with the hydrogen atoms. When the RF pulse is 

emitted, this causes excitation where the attuned atoms “flip”.  Note that the net 

magnetisation of the mass is aligned with the strong magnetic field (Z direction), thus 

a flip would cause this net magnetization to rotate perpendicular to this into the X-Y 

plane.  

           

The absorbed energy by the atoms from the RF pulse causes a shift from a low 

energy state (aligned with the strong magnetic field – Z plane) to a high-energy state 

(due to the flip, along the X-Y plane). The atoms endeavor to return to the low energy 

state, therefore dissipate the absorbed energy that is recorded, allowing for the 

formation of an image. This relaxation process can be separated into two independent, 

and simultaneous processes which can be recorded: T1 and T2 relaxation. T1 

relaxation, also known as spin-lattice relaxation due to the energy released into the 

surrounding tissue, describes the shift from high to low energy states in the Z plane. 

As the protons emit a RF wave, they return to equilibrium (where they were before 

administration of the RF pulse). T1 is defined as the time taken for the net 

magnetization in the Z plane (aligned with the strong magnetic field) to reach 63% of 

its original magnetization. Simultaneously, yet independently, T2 relaxation occurs on 

the X-Y plane. T2, or spin-spin relaxation time, concerns the spin coherence of the 

protons. To further explain how T2 works, our example of spinning tops in a tissue 

mass is useful. Before the RF pulse, the spinning tops are spinning with no coherence 

to one another. After the RF pulse, they are flipped onto the X-Y plane and in 

addition, their spins become coherent. This phase-coherence is subject to dephasing 

and T2 can be defined as when 37% of the original in-phase value is reached. T2 

occurs faster than T1, and is also known as spin-spin relaxation. The distinction 

between these two relaxation processes is important when we consider that different 

tissues have different relaxation times (Damdian, 1971; Lauterbur, 1986), allowing 

for a high level of contrast between structures within a mass. By setting short RF 
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pulse repetitions (repetition time; TR), and short times in which the re-emitted RF 

waves are recorded (echo time; TE), T1 allows for the differentiation of anatomical 

structures as tissues with a high fat content appear brighter than those filled with 

water. T2 images provide the opposite contrast (with the use of long TR & TEs), and 

can provide value to pathological imaging. 

 

The ability of MRI to generate spatial images was pioneered by Lauterbur 

(1973; 1974). He theorized that by changing the strength of the magnetic field at 

different spatial locations, the protons would have different Lamor frequencies. 

Returning to our spinning tops example, Lauterbur suggested that by changing the 

torque of the spinning tops in different locations, they would therefore only be flipped 

by the resonating radio frequency. By building up a series of these images, a 2D 

image would be able to be constructed.  Lauterbur (1973) used these spatial gradients 

to create the first 2D image of water tubes. However, an early drawback of this 

method was the lengthy acquisition time. Building upon these principles, Mansfield 

(Mansfield & Maudsley, 1976; Mansfield, 1977) proposed and tested a method 

whereby all the spatial information of an object can be gathered at once by 

systemically changing the magnetic field gradients at a rapid speed, known as Echo 

Planar Imaging (EPI), which dramatically reduced acquisition time. By using an 

algorithm known as the Fourier transformation (Kumar, Welti & Ernst, 1975), the 

acquisitions could then be reconstructed into 3D images. For their contributions to 

this field, Lauterbur & Mansfield received the Nobel Prize in 2003, and by dropping 

the negative connotations associated with the word “nuclear”, Magnetic Resonance 

Imaging (MRI) was founded. 

	

2.1.2 Functional MRI (fMRI) and the BOLD Signal 

	

 The fact that MRI can be used to image the inside of the human body without 

exposure to radiation means that it provides many advantages over other widely-used 

non-invasive imaging approaches, such as X-rays and CT scans. Its use in identifying 

metabolic changes within the brain (which is known as functional Magnetic 

Resonance Imaging; fMRI), enables us to infer region-specific functionality. This 

process relies on our understanding of the hemodynamics of the brain (Buxton et al., 
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2004) and how these relate to metabolic changes (Ogawa et al., 1990a, 1990b). Note, 

the hemodynamic model is described in more detail later in this chapter (3.1.5); 

therefore the Balloon model and cerebral blood volume are omitted from the current 

section. 

 

 The human brain comprises millions of neurons, each connected to thousands 

of others via axons (Kandel, Schwartz & Jessell, 2000). Signals are passed between 

neurons via action potentials, which involve a rapid rise and fall of electric membrane 

potential. This transferring of signals was found to relate to an alteration in blood flow 

(Roy & Sherrington; 1890). The hemodynamics of the brain have been subsequently 

described in more depth, and more contemporary research suggests a formation from 

stimulus presentation to metabolic changes (Buxton et al., 2004). This model suggests 

that upon stimulus presentation, a neural response is present in terms of action 

potentials between neurons. This activation requires the use of energy, subsequently 

replenished by oxygen from hemoglobin. The logical next step to be taken is to use 

MRI to identify areas of the brain involved in a task by examining oxygenated 

hemoglobin as it moves to replenish brain regions that were previously engaged. As 

noted by Pauling and Coryell (1936), oxygenated hemoglobin is diamagnetic and 

therefore has no magnetic moment; in other words, it does not absorb any RF pulse. 

On the other hand, deoxygenated hemoglobin is paramagnetic and has a magnetic 

moment, allowing for excitation via an RF pulse. 

 

 Ogawa and colleagues (Ogawa et al., 1990a, 1990b) were one of the first 

groups to investigate whether the principles of MRI could be applied to identifying 

changes in hemoglobin states. They manipulated the amount of oxygen breathed by a 

rodent and removed hemoglobin samples. Using a similar principled approach to 

Purcell (1948), they placed the samples within a strong magnetic field to test whether 

they caused any local field distortions, which would only be present if the substance 

aligned with the strong magnetic field. They found that deoxygenated hemoglobin did 

cause these distortions, thus revealing the possibility for an indirect measure of 

metabolic changes within the brain, which was named the Blood-Oxygenated-Level 

dependent (BOLD) response. Since this discovery, Belliveau and colleagues 

(Belliveau et al., 1991) were among the first to successfully apply this measure using 
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fMRI, and paved the way for the thousands of fMRI studies that have now been 

published to date. 

	

2.1.3 Preprocessing  

	

 Once data are obtained from fMRI scanning, a number of pre-processing steps 

must be applied in order to determine how changes in neural activity are associated 

with a given cognitive, behavioural or motor task. The main pre-processing steps 

include slice time correction, realignment, registration and normalisation. In this 

thesis, all of these steps were performed using the SPM 12 toolbox (Welcome 

Department of Imaging Neuroscience, London, UK) running under MATLAB (2014 

and 2015, The MathWorks, Natick, MA). 

 

 When acquiring an fMRI image, multiple slices are taken (c.f. Mansfield, 

1997; Mansfield & Maudsley, 1976). These slices are taken across the duration of the 

TR, so that they cover the entire desired area before the next excitation pulse (RF). 

These slices of the brain can be altered in terms of thickness (in mm), number taken 

(dependent on thickness) and acquisition order (ascending, descending or 

interleaved). The sum of these slices is a volume, or 3D image of the brain, within the 

given TR (for example, if an experiment were to last 10 minutes and have a TR = 

2000ms, then number of volumes collected would be 600/2 = 300). As different slices 

of a volume are measured at different times, collection of the actual BOLD response 

is staggered across time and space. Slice time correction is a common method that 

accounts for the order in which the slices are taken. By temporally interpolating the 

slices onto a reference slice (ordinarily the first slice taken), this discrepancy can be 

addressed (Schanze, 1995). When performing an fMRI experiment, participants are 

typically in the scanner for between one to two hours. Remaining still for this length 

of time can be difficult and head movement artifacts can occur ranging from muscle 

relaxation (or tension) to artifacts that arise as a result of other actions participants are 

required to do during the experimental task (e.g. button pressing). These movements 

can occur between slices or volumes, therefore, a realignment algorithm (Friston et 

al., 2005) using a 6 parameter (rigid body) spatial transformation and a least squares 

approach can be applied. This algorithm can account for gradual movement (e.g. 
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muscle relaxation). However, if the participant has coughed, for example, then the 

volumes should be removed. Additional steps taken in pre-processing are co-

registering the individual subject’s data to the structural scans and normalising the 

functional scans to a standardised template (MNI; Montreal Neurological Institute).  

 

2.1.4 Strengths and weaknesses 

 

 The primary strength of fMRI is its relatively high spatial resolution. This 

resolution, in the order of mm, is due to the focus on the magnetic resonance of 

protons. Compared to a method such as electroencephalography (EEG), which relies 

on residual currents where the source is relatively unknown (however, see Phillips et 

al., 2002), fMRI is capable of identifying the area of activity. Further strengths of 

fMRI include the fact that it is non-invasive and is highly available to the scientific 

community (Glover, 2011).    

 

 One critical weakness of fMRI centers on its use of the BOLD signal 

(Logothetis & Wandell, 2004). Intersubject and inter-scanning session variability of 

the hemodynamic response and subsequent BOLD signal have been shown 

(McGonigle et al, 2000; Aguirre et al., 1998), implying that it is not a perfect model 

of brain function. Moreover, questions remain concerning whether BOLD activation 

is caused by spiking neurons (Heeger et al., 2000) or whether this activation is due to 

a mixture of synaptic activity and intracortical processing (Attwell & Iadecola, 2002). 

Additional limitations of fMRI include its low temporal resolution (this is a result of 

the BOLD signal peaking 6 seconds after neuronal activation; Buxton et al., 2004), as 

well as a lack of flexibility in tasks being conducted compared to methods such as 

EEG (Glover et al., 2011), due to the restrictions of participants lying supine and 

immobile in the scanner. 

	

2.1.5 Conclusions 

	

 Functional Magnetic Resonance Imaging is a neuroimaging technique that has 

grown considerably in popularity and use over the past two and a half decades, and 
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relies on principled quantum physics and a hemodynamic model to derive task-driven 

metabolic changes in the brain. Although the underlying causes are still debated, the 

BOLD signal allows us to identify areas of the brain associated with performing 

particular tasks, and provides a useful tool for researchers to further develop our 

understanding of the human brain.   

	

2.2 Introduction to Neural Connectivity 

	

In the fields of cognitive neuroscience and neuropsychology, an overarching 

aim is to understand how the brain generates an understanding of the external world. 

Using non-invasive neuroimaging techniques such as fMRI, MEG and EEG, the 

traditional approach has been to identify brain regions that serve specific functions 

(an approach also known as functional segregation). Although functional segregation 

offers insights into the function-to-region relationship, it does not provide an 

understanding of nor enable investigation into the connections within systems. It is 

important to also examine these connections as they allow investigators to consider 

the brain as a connected, dynamic system, rather than a collection of separate, albeit 

functionally specific, nodes. For example, the identification of the primary motor area 

(M1) and supplementary motor area (SMA) as being crucial for action execution does 

not advance our understanding of how information might be exchanged between these 

two regions to subserve action execution. Interest in understanding the dynamic 

exchange of information between brain regions can be characterised as a shift from 

functional segregation to integration. The core aim of functional integration 

approaches is to investigate the interactions or relationships between anatomically 

distinct regions. The reason why this is possible is that functional integration methods 

facilitate exploration of statistical implications of activity (i.e. the BOLD response or 

Event Related Potentials), which consequently enable investigation into connections 

between regions and how these connections change with experimental manipulation 

(Friston, 2009a). For example, in the motor system example above, functional 

integration would be concerned with the presence of a connection between M1 and 

SMA and whether a particular experimental manipulation (e.g. kinematics of an 

action) might modulate or change the nature of this connection. It is important to note 

that functional segregation can be considered obsolete without integration and vice 
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versa (Friston, 2011). This is because identifying functionally specialised regions 

offers little to advance our understanding of a functionally-specific system; however, 

investigation into the modulatory factors that influence a connection can only be 

investigated after the identification of functionally-specialised regions.  

 

In this section of this chapter, the paths of functional integration are discussed 

first. The core facets of the effective connectivity method used in this thesis (Dynamic 

Causal Modelling; Friston et al., 2003) are then described and the validity of this 

method debated. 

 

2.3 Effective connectivity 

	

 There are two paths for investigating functional integration: functional 

connectivity and effective connectivity (see Frackowiak et al. (2003) for a 

comprehensive comparison of these). Functional connectivity is largely concerned 

with observable measures (e.g. BOLD signal in fMRI), which can have statistical 

dependencies and correlations (e.g., Granger Causality Modelling: Goebel et al., 

2003; Valdes-Sosa, 2004). An example for fMRI would be to first observe activity 

(BOLD signal) in V1 and V2 when a participant views a rotating wheel. From the 

resulting BOLD signal, a time series of activity for each region when viewing the 

rotating wheel can be extracted. Functional connectivity can then address the question 

of whether the time series of activity for V1 correlates with the time series of activity 

for V2 under this manipulation. An important point to consider is that correlations can 

occur between many regions and for different reasons. This can make it difficult to be 

certain that a particular correlation has arisen from the manipulation of interest. In 

other words, it is not always clear whether a correlation between two regions is a 

result of the manipulation used or an alternative factor (Friston et al., 2003; 2011). 

 

 A prominent methodology that goes beyond the statistical dependencies 

between brain regions (i.e. correlations) is effective connectivity. This approach 

evaluates the directed (as opposed to correlated) influence one region exerts on 

another region at the neuronal population level (Friston et al., 2003). The key 

difference between functional and effective connectivity is that the latter aims to 
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create models of neural activity and quantifies this connectivity between regions in 

terms of the parameters of the connectivity model (Friston et al., 2009a). Moreover, 

effective connectivity generates feasible models of neural activity and then converts 

these into a time series, which can be compared to the actual time series, whilst also 

giving values to the connection strengths between brain regions of interest.    

 

 Effective connectivity is thought of as both dynamic and causal (Friston et al., 

2009a). It is activity dependent, therefore dynamic, and also relies on a model of 

interactions or connections between brain regions (coupling), which allows the 

establishment of causality. For example, the activity in V2 relies on input from V1 (in 

the sense that it has “caused the activity”), yet this activity is subject to the 

fluctuations in activity of V1 – the relationship is dynamic. As models are generated, 

effective connectivity uses model comparison to test competing hypotheses (e.g. the 

presence or absence of a directed connection). Functional connectivity does not allow 

for this, as there is no generation of theoretical models of how data in one brain region 

‘causes’ activity in another region. As such, functional connectivity is not stringent 

enough to compare two hypotheses in this manner (correlation versus no correlation). 

However, this is not to say functional connectivity approaches are not without their 

advantages, and such approaches are often adept at answering certain experimental 

questions of interest (Friston et al., 2011). For example, the hypothesis that two 

regions should be coupled by an experimental manipulation would be best suited to a 

functional connectivity approach. An effective connectivity method would not be best 

to address this question as it addresses how one region exerts influences on another.   

 

 As effective connectivity in fMRI relies on generating plausible models of 

brain function a priori, which are then used to evaluate the time series of the BOLD 

signal, this means that it is both hypothesis- and data-driven. This is an important 

distinction between functional and effective connectivity as we still do not fully 

understand the BOLD signal in terms of what is translated from the neuronal level 

(Attwell & Iadecola, 2002; Lauritzen, 2004; Logothetis et al., 2001; Logothetis & 

Wandell, 2004). To solely rely on the data-led approach, as functional connectivity 

does, can be risky, as a number of factors remain unknown concerning the link 

between BOLD signal and the neural dynamics that underpin its foundations. This is 
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also a shortcoming of some effective connectivity models that rely predominantly on 

the time series from the BOLD signal for the estimation of their coupling parameters 

(Structural Equation Modelling (SEM): McIntosh et al., 1994; Buchel & Friston, 

1997; Horwitz et al., 1999; Autoregressive Models: Harrison et al., 2003; Roebroeck 

et al., 2005: psychophysiological interactions: Friston et al., 1997). This is because 

models of effective connectivity that ignore the transformation from neural activity to 

BOLD measurements can be difficult to interpret in terms of their validity due to the 

underlying physical premises (Gitelman et al., 2003). One way to overcome this issue 

is by combining models of neurodynamics with biophysical models to describe the 

activity measured. The result of this is a method that creates a model of an expected 

outcome for the signal and can then be compared to the actual signal – allowing for 

comparison of models to ascertain the most plausible model for the data set. One 

method of effective connectivity that takes this approach is Dynamic Causal 

Modelling (DCM) (Friston et al., 2003). 

 

 First proposed by Friston and colleagues (2003), Dynamic Causal Modelling 

is an input-state-output model for evaluating effective connectivity, which models 

how one brain region affects activity in another brain region. The brain is therefore 

treated as a deterministic, non-linear dynamic system that is subject to inputs and 

produces outputs. For example, if we are interested in whether V1 exerts influence on 

V2 (or vice versa) in a given task, we start by modelling the neuronal level 

predictions (or hidden activity as this is not directly observed from fMRI) that the 

activity in V1 exerts activity in V2, or vice versa. These neuronal level predictions 

can then be passed through the state change (a biophysically plausible model). The 

result of this gives us an output of the system, the predicted BOLD signal, which can 

be compared to the observed signal. 

 

  In relation to the other connectivity methods mentioned, DCM was developed 

to overcome a major shortcoming of its predecessors, e.g. biophysical and 

neurodynamic plausibility. Since its introduction, it has been refined and extended 

repeatedly (Friston et al., 2007, Kiebel et al., 2007, Marreiros et al., 2008, Stephan et 

al., 2008, 2007a) and implemented in EEG, MEG and local field potentials (LFPs) 

obtained from invasive recordings of both humans and animals; both in the time 
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domain (Daunizeau et al., 2009a; David et al., 2006; Kiebel et al., 2006) and 

frequency domain (Chen et al., 2008; Moran et al., 2007, 2008, 2009; Penny et al., 

2009). fMRI will be the focus of this chapter, yet it is important to note that DCM can 

be implemented in multiple modalities. This modelling technique is considered causal 

as external inputs (experimental manipulations) cause changes in neuronal activity 

(the neuronal level predictions fed through a biophysically plausible model) that in 

turn cause changes in the predicted BOLD response 

	

2.3.1 Dynamic Causal Modelling 

	

 The equations and illustrations presented in sections 2.3.1.1, 2.3.1.2 and 

2.3.1.6	derive from those reported by Friston et al. (2003). The equations in section 

2.3.1.2.1 derive from Stephan et al. (2008) and the equations and illustrations in 

2.3.1.7 follow those presented by Friston et al. (2003) and Penny et al. (2004).	

	

2.3.1.1 Neural state equation 

	

 A key element of DCM that differentiates it from other forms of connectivity 

analysis is that it employs a plausible neurodynamic model. By passing predictions 

through a biophysically plausible model, a predicted BOLD response can be attained. 

This outcome can then be fitted to the observed time series (in Bayesian terms), and 

posterior calculations of connectivity can be obtained (Friston et al., 2003). This 

process will be described in due course, but it is important to begin with a model of 

how we believe the brain system we are examining will work.  

 

 In this chapter, a four-node system will be considered. The mathematics 

described work for any number of nodes. For the sake of clarity and illustration, here I 

focus on a four-node system. A four-node system could also accommodate a fully 

connected system where each node is interconnected with every other node; however, 

the example illustrated in Figure 2.1 was intentionally kept simple for clarity.  
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Figure 2.1. An example of a four-node system with hypothesised connectivity. xi 
refers to the individual brain regions and the u-shaped arrows illustrate each region’s 
influence on itself; ui represents the experimental (sensory) input into the system. 

 

 In Figure 2.1, we assume that there is reciprocal intrinsic connectivity 

between regions (shown by straight, solid arrows). This system is theoretical, but it 

could represent a system where we are looking at inter-hemispheric connectivity, 

whereby x1	and	x3 are part of one hemisphere and x2 and x4 are part of the other. The 

dotted arrows represent the experimentally manipulated input. This input can, and 

may, enter the system at any point or multiple points and it is key for the success of 

the model. If the input is incorrect then the system is not perturbed. In this situation, 

DCM will simply model a flat line BOLD response (Stephan et al., 2010). The curled 

arrows represent the self-connectivity. This is the influence the node has on itself (e.g. 

excitatory or inhibitory; discussed later in the one and two state sections). 

 

With this theoretical and visual representation of a hypothetical system, DCM 

allows transformation of this into a neural state equation. The differential equation, 

which describes this first step, is: 

  
!"
!"
= F(x, u, θ)     (1) 

x3	 x4	

x1	 x2	

u2	 u1	
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where F is a non-linear function which describes the neurophysiological influences on 

a given region, (x), u is the experimental (or sensory) input, θ are the parameters 

which will be used later to make inference on. An example of how the mean activity 

in a given region can then be summarised as follows: 

	

 ẋ1	=	a11	x1	+	a12	x2	+	a13	x3	+	c12	u2	 	 	            (2) 	

ẋ2	=	a21	x1	+	a22	x2	+	a24	x4	+	c21	u1	 	 	 	 	

ẋ3	=	a31	x1	+	a33	x3	+	a34	x4	 	 	 	 	 	

ẋ4	=	a42	x2	+	a43	x3	+	a44	x4      

 

where ẋ is the derivative in time, equalling the mean population a region (acquired by 

extracting the region of interest from the GLM), a simply denotes that it belongs to 

the a matrix, or the intrinsic connectivity matrix. This non-linear expression shows all 

the regions and connections (including inputs) shown in Figure 2.1. To better 

understand what each element of this expression represents, we shall consider the 

linear expression of this and therefore just one region.    

	

ẋ1  =  a11  x1  +  a12  x2  +  a13  x3  +  c12  u2                  (3)   

	

	

	

	

	

	

 Equation 3 shows the connectivity within and to region x1. Except from the 

time derivative, the other x values correspond to the other regions within the system. 

In the first part of the equation, the influence entered upon it corresponds to the 

curved arrow from Figure 2.1. The reason that the subscript numbers do not start at 

one is that they help us to understand what connection we are concerned with. The 

first number here denotes the connection to which region, and the second from what 

region. For example, a34 will correspond to the connection from x3 from x4. If we 

return to Figure 2.1, we can deduce that we believe connections to span from x2 and x3 

Mean neuronal 
population of a 

given region 

Influence 
exerted on itself Exerted by 

region 2 

Regions 

Exerted by 
stimulus 
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(a12 and a13) as well as that exerted by the stimulus (and therefore the C matrix). What 

is apparent is that the equation does not explain the influence this region exerts on 

others; however, if we expand this equation to include all regions then this is satisfied. 

	

	

	
	

	

	

	 	

 

 

This expansion (Equation 4), can be reduced down to the form: 

	

𝑥 = 𝐴𝑥 + 𝐶𝑢     (5) 

 

Expressed in non-notational format, Equation 5 states that the mean neuronal 

population activity in any given region is the result of all intrinsic connections to this 

region plus the influence of the experimental (sensory) input. This expression is the 

neural state equation for DCM. It describes the connectivity between the hypothesised 

regions, the effect the regions exert upon themselves and then influence exerted by 

the stimulus. The next step in the DCM process is then to identify whether this 

simplified equation should be modified into a bilinear or non-linear term.     

 

 

 

State 
changes 

Effective/endogenous 
activity 

System 
state 

Input parameters 
(how strongly the 
stimuli will effect) 

External 
inputs 
(known as 
defined in 
GLM) 

(4) 
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2.3.1.2 Bilinear state equation 

	

 The bilinear state equation is an expansion of the linear state equation (or 

neural state equation), which investigates the coupling strength changes when the task 

is changed (Stephan et al., 2008). A visualisation of how this would look with our 

working example can be seen in Figure 2.2.	

	

	

Figure 2.2. An expansion of Figure 2.1 to include modulations by u3 (context). 
 

 Figure 2.2 is identical to Figure 2.1 but includes u3, which is usually the 

context or experimental manipulation (task). What this additional parameter means is 

that the system is now allowing for the modulation in the intrinsic strength to be 

investigated when the context changes (or endogenous connectivity). Without this 

modulation, we cannot know how the coupling strengths change when the task 

changes, and instead we only learn how the system flows when only the input is 

considered. Most researchers using DCM are interested in how a system changes 

when the task/context changes. Use of the bilinear state equation allows for this. An 

example of how this could work is as follows: the connection between x2 and x1 may 

be 5 (an arbitrary number for this example), but when the task is changed to, for 

example, attention from non-attention, this coupling strength increases to 9. This 

example would suggest that attention modulates the connection between x2 and x1.   

u3	

x3	 x4	

x1	 x2	

u2	 u1	
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 In order to make the original neural state equation bilinear, an additional 

matrix is added to take into account these modulations. The expansion involves 

including the matrix b(j) and gives:    

	

	
	
 

 This bilinear state equation includes the a and c matrices discussed in the 

previous section as well as the modulation matrix b, located in the center of Equation 

6. It is bilinear because it parameterizes the interactions between inputs and states. 

The external input u3 is the context we wish to examine so is placed before the b 

matrix. If we wished to investigate multiple factors (e.g. attention and hemisphere) 

then we would include multiple b matrices. The a and b matrices are then combined 

to make a Jacobian Matrix of total connectivity.  

 

 If u3 equals zero, then it is the same as the neural state equations and therefore 

no experimental modulation. If, however, u3 equals 1 then the parameters from the b 

matrix are added to the strength of endogenous activity where this additive strength is 

a function of a controlled variable, or in our case, the context or task. We can collapse 

Equation 6 and get the bilinear state equation: 

 

𝑥 = 𝐴 + 𝑢!𝐵(!)
!

!!!

𝑥 + 𝐶𝑢 

 (7) 
 

 In conclusion, DCM allows for the inclusion of modulatory variables that are 

used to show coupling strength changes between two interacting brain regions. This 

aspect of DCM is very important as the inversion and inference about the model relies 

on this stage of the process being precise and accurate.  

	

(6) 
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2.3.1.2.1 Non-linear state equation 

	

 By modelling the modulations of the experimental manipulations via matrix b, 

we are able to investigate the effect that task or context has on the endogenous 

connections between brain regions. However, there are some limitations to this form 

of state equation. The main issues with this approach, as outlined by Stephan et al. 

(2008), are that it may not be the most appropriate, or adept, framework for modelling 

fast changes in effective connectivity, and that the neuronal origin of these 

modulatory effects are not specified.  

 

 Returning to our example illustrated in Figure 2.2, the connection between x3 

and x1 may well be modulated by the context u3. What we are unable to obtain from 

the bilinear approach is where this modulation originated. Of course, this is not 

necessarily a disadvantage, for there are many studies where the origin is unknown. 

However, knowing the origin makes the model better specified and more accurate. By 

using a non-linear approach, whereby the origin of the modulation is modeled, one 

can then investigate the fast changes in connectivity at the single neuron level. The 

reason this is attainable is because it eliminates the abstractness of suggesting there is 

a modulation and instead models that neurons in region x are modulating the 

connection between x3 and x1 (as in our example).  

 

 As highlighted in the original DCM paper, processes such as neuronal gain 

control, referring to the on/off switching of a connection and synaptic plasticity, can 

only be modeled if we were “…to go beyond bilinear approximations to allow for 

interactions among the states. This is important when trying to model modulatory or 

nonlinear connections such as those mediated by backward afferents that terminate 

predominantly in the supragranular layers and possibly on NMDA receptors” (Friston 

et al., 2003; pg. 1299). Such transparency by the original authors of DCM 

demonstrates some of the potential limitations of this method.  

 

In order to obtain the non-linear equation, an additional matrix, d, is added to 

the bilinear form of the equation: 
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𝑥 = 𝐴 + 𝑢!𝐵 ! + 𝑥!𝐷 !
!

!!!

!

!!!

𝑥 + 𝐶𝑢 

     (8)	
	
where matrix d models the input from a node within the system. To summarise, the 

use of a non-linear state equation allows for the modulation of connections by an 

additional node. Although eliminating abstractness of the origin of a modulation, 

strong hypothesis should exist of this origin for the use of this approach.  

	

2.3.1.3 One state vs. two state 

	

 Within the A matrix, the diagonal cells represent the self connection of the 

nodes, for example, how region 1 has an effect on itself when stimulated by u. 

Marrieos and colleagues (2008) advocated an extension to the original DCM 

formulation whereby these self connections represent two states rather than the one 

state from the original formulation. In biological terms, this makes the models more 

plausible as it allows for both excitatory and inhibitory influences on the region. The 

use of two state DCM is more accurate (within reason), but time consuming. 

Moreover, where the nodes are not close in proximity, inhibitory coupling is not 

supported (Marrieos et al., 2008). This suggests that the use of two state DCM is 

preferable for some systems but not necessary.  An additional benefit of using two 

state DCM over one state is that its use makes the overall system more stable when 

the predicted neuronal dynamics are converted into a predicted time series due to its 

increased biological plausibility. 

	

2.3.1.4 Stochastic 

	

 The DCMs described thus far can be classified as deterministic as they are 

input-state-output models of effective connectivity – as characterised by Friston et al. 

(2003). An exciting new extension to DCM analyses allows for the modelling of 

stochastic effects (Li et al., 2011; Daunizeau et al., 2012). This development has taken 

place over many years (Riera et al., 2004; Penny et al., 2005; Daunizeau et al., 2009b) 
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with the end result being a system that allows for random fluctuations in the un-

observed and physiological states – state noise. The reason such a model can exist is 

that the neural activity or hemodynamics of deoxyhemoglobin being modeled by both 

stochastic and deterministic DCM is allowed to be explained by the dynamics of the 

endogenous activity. To return to our example, we can say that x2’s activity is subject 

to x1’s; beyond whether or not the experimental manipulation (exogenous coupling) is 

characterised or not. This is highly applicable to studies modelling resting state data 

(Friston et al., 2014a; 2014b).    

 

 In order to obtain a stochastic neural state equation for DCM, the bilinear form 

of the equation is used with the addition of the parameters hidden causes; 

hemodynamic states and observational noise. This method adds a higher level of 

accuracy than the deterministic approach as it allows for the system to explain itself, 

rather than the user determining what the model will tell it, per se. One shortcoming 

of this approach is its time-consuming nature; deterministic models with four nodes 

would take an order of minutes whereas the same model where stochastic effects 

allowed would account for more variance, yet take an order of hours for each model 

to be estimated.   

	

2.3.1.5 Hemodynamic model 

	

 Once the neural state equation is specified, it needs to be transformed into a 

BOLD signal (or estimated time series). The neural state equation simply specifies the 

priors of the model, in other words, the location and the strength of the connectivity. 

In order to incorporate this with fMRI data, the parameters obtained from this model 

need to be passed through a model that would then produce an expected BOLD 

signal. One model that does this is the hemodynamic model (Friston et al., 2002).  

 

 The hemodynamic model used in DCM is based on the Balloon Model. The 

Balloon Model (Buxton & Frank, 1997; Buxton et al., 1998) was developed to 

provide an input-state-output system model with the state variables volume (v) and 

deoxyhemoglobin content (q) which can explain the output of the system, the BOLD 

signal (y), based on the input of blood flow (fin), which are all subject to time (t). The 
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model works by assuming that the increase in blood flow inflates a venous “Balloon” 

so that deoxygenated blood is diluted and then expelled at a faster rate. This clearance 

of deoxygenated blood then reduces the intravoxel dephasing and produces a greater 

signal (the increase in BOLD signal that fMRI analysis shows). Once the “balloon” is 

nearly filled to capacity, the flow of deoxygenated blood into the region increases into 

the venous compartment and this is expressed as an early dip in signal (this is what 

characterises the difference in explanation of the Balloon Model to the previous 

accounts (e.g. Ogawa et al., 1990b; Menon et al., 1995)). Once the balloon capacity 

has been filled, it then relaxes and the clearance and dilution is reduced, causing the 

undershoot observed post stimulus.  

 

 This model was extended by Friston et al. (2003) to include additional 

parameters to make it more biologically plausible for DCM: making the parameters of 

the Balloon Model signal decay, rate of flow, hemodynamic transit time, Grubb’s 

exponent (see Appendix 1; Glossary) and the resting oxygen extraction fraction.  The 

derivative of the neural state equation then serves as the input (the neuronal activity) 

and when fed through the model for each region, this results in a time series. Support 

for the use of the Balloon Model in DCM has been shown by Stephan and colleagues 

(2007b).	

	

2.3.1.6 Bayesian model inversion 

	

To summarise thus far, the fundamental underpinnings of DCM have been 

explained. The neural dynamics (and their subsequent equations) have been described 

as well as the method whereby the expected area specific BOLD signals are derived 

from a transformation of the neural dynamics by the hemodynamic forward model. In 

this next section, the principles of the Bayesian estimation scheme are described, 

leading to how this informs us how modeled BOLD signals are maximally similar to 

the experimentally measured BOLD signals.  

 

Once the state equation is integrated and passed through the hemodynamic 

model, we can derive an estimated time series. This parameterised BOLD response is 

then inverted in a Bayesian fashion (Bishop, 2006; Gelman et al., 1995) to obtain two 
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estimates of quantities.  The first quantity is the posterior distribution over all model 

parameters, which is used to make inferences about model parameters θ. The second 

quantity is the probability of the data given the model, in other words, a probability 

statistic describing how well the expected and observed fit. This is known as the 

model evidence and will be discussed in more detail later in this section. 

 

The first quantity is the posterior distribution over all model parameters. This 

is an important aspect of DCM methodology as this approach creates parameter 

estimations for the connections within our model to identify the strength /existence of 

connections. The estimation scheme employed by DCM is performed within a 

Bayesian framework. In general Bayesian terms, the aim is to identify a quantity for 

an event, given prior constraints, and applying these to the observed in order to obtain 

the observed quantity. Formally, these terms are referred to as priors (or constraints), 

likelihood (or an observation model) and posterior (the resulting quantity). A 

schematic of the relationship of the variables can be seen in Figure 2.3.   
 

   

Figure 2.3. A schematic of the relationship between prior, likelihood and posterior 
quantities in a Bayesian approach.  

 

For any model being estimated, the first goal is to estimate the parameters (or 

connection occurrence/strengths). The first part of this scheme is already conducted as 
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the model has been specified, both at the neuronal level and hemodynamic level 

which results in: 

 

𝑦 = 𝜆(𝑥)      (9) 

 

We then transform this modeled BOLD response in to an observation model by 

adding measurement error e and confounds X (e.g. drift). The reason we add these is 

comparable to that of general linear modelling, whereby the fitting of a function will 

not fit exactly to the data unless we account for variables that cannot be controlled. 

The resulting equation gives an observational model of: 

 

𝑦 = ℎ 𝑢,𝜃 + 𝑥𝛽 + 𝑒     (10) 

 

In Figure 2.3, the likelihood term, , refers to the observational model 

whereby error and drift are added to our models of neural interactions and region 

specific hemodynamic. We also have a set of priors, , which include constraints 

of connections and hemodynamic parameters. The aim of the inversion scheme is then 

to make these points maximally similar to the point of convergence, resulting in a 

posterior parameter estimate for every parameter: 

 

             𝑝(𝜃 𝑦)  ∝ 𝑝(𝑦 𝜃)𝑝(𝜃)    (11) 

 

 This equation states that the probability of the parameter given the data is 

proportional to the likelihood multiplied by the priors. This resulting posterior 

parameter distribution via the following Bayesian estimation framework is Gaussian 

(normally distributed), given by mean ηθ|y and covariance Cθ|y.  

 

 Bayesian estimation in DCM is carried out using a Variational Bayes 

(Laplace) version of the Expectation-Maximisation algorithm (Dempster et al., 1977; 

Friston et al., 2002, Friston et al., 2003). In short, this algorithm consists of an E step 

(expectation) and an M step (maximisation). The goal of this algorithm is therefore to 

use an iterative scheme so that there is minimal discrepancy between the posterior 

(mean and covariance) and the likelihood quantities. Briefly, the E and M steps work 

p(y |θ )

p(θ )
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iteratively to approximate and then maximise the log-likelihood.  A recent extension 

to this scheme in DCM is to use the free energy principle (Friston et al., 2008; 2009b). 

The free energy is the Kullback-Leibler divergence between the approximate and 

observed minus the log-evidence. The aim of this algorithm is then to minimise free-

energy (Friston et al., 2007; Penny et al., 2004), giving what is known as log 

evidence.  

	

2.3.1.7 Bayesian Model Selection (BMS) 

	

 In order to address competing hypotheses of the mechanistic nature of a 

system, the models created (and inverted by passing through a the hemodynamic 

model) have to be compared to each other in order to identify which is “best”. This 

integral step to DCM has to be applied to both analyses concerned with inference on 

model parameters and structure alike. Once the optimal model has been selected, 

inferences on its parameters can be made (shown by Acs & Greenlee, 2008; Leff et 

al., 2008; Stephan et al., 2007b; Summerfield & Koechlin, 2008). The premise of 

Bayesian Model Selection is to compute an approximation to the model evidence, 

p(y⎜m). Model evidence can be phrased as the probability of the data, y, given the 

model, m.  

 

 Dubbed the “Holy Grail” of model comparison (Stephan et al., 2010), model 

evidence has to satisfy two criteria: accuracy and complexity. These two properties 

define a good model but they also provide a trade-off. Consider the following 

example: one model is very complex (e.g. modulations on all connections by all 

experimental manipulations) and a second model which has the same intrinsic 

connectivity but one modulator by one manipulation on one connection between 

regions A and B. If we were to compare these two models solely on relative fit, we 

may infer that the more complex model best explains the data. However, a more 

complex model may not have high model evidence but is consistent across data sets. 

For example, a full model tested across different data sets may give model evidence 

relatively low, but it will be the same for each. On the other hand, the simple model 

may well be too simple. For example, a simple model might explain the data for one 

data set, but not be generalisable (see Gharamani (2004) for a schematic of this 
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relationship). In order for BMS to identify the best model out of those compared, a 

trade-off between accuracy and complexity must then occur, accounting for factors 

such as the number of free parameters (Pitt & Myung, 2002). It is important to note 

that the relationship between accuracy and complexity is monotonical, therefore the 

model will start to fit noise (otherwise known as “overfitting”) which impacts 

generalisability of the subsequent conclusions. 

 

 In the first paragraph of this section, “best” was used to describe the model 

which ascribes the data, however, this optimal model assumption has to shift to 

address which model best represents the balance between accuracy and complexity. In 

BMS, the winning model is therefore the model that maximises the model evidence, 

mathematically noted as: 

 

𝑝(𝑦 𝑚) = 𝑝(𝑦 𝜃,𝑚)𝑝(𝜃 𝑚)𝑑𝜃 

(12) 

 

 This integral cannot be solved analytically, therefore an approximation of 

model evidence has to be used. Individual models are fitted to the data and then this 

approximation is calculated using variational free-energy bound on the log evidence 

(Beal & Ghahramani, 2003; Friston et al., 2007). To articulate its aim, it provides an 

approximation to model evidence (in the form of logs) whereby the data are explained 

as simply as possible by using a minimal number of parameters that deviate from their 

priors to a minimal degree (Rosa et al., 2012). The use of free-energy in DCM was 

preceded by AIC and BIC yet free-energy has been shown to be a more accurate 

method in this context (Penny et al., 2004)  

 

 The resulting model evidence (or log model evidence) can be viewed as a 

measure of generalisability across data sets, much like cross validation (Pitt & 

Myung, 2002; MacKay, 1992). Moreover, we can comprehend (log) model evidence 

as the likelihood of the data, whilst taking into account the variability of its model 

parameters (Stephan et al., 2010). However, these probabilities do not necessarily 

provide us with a colloquial understanding on which model best describes the data. 

For example, if we take our two models, mi and mj, with posterior probabilities of 0.8 
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and 0.2 respectively. At first glance mi is the optimal model here, however, the 

relationship between these two probabilities has to be quantified. In Bayesian 

statistics, the relative goodness of these two models is transformed into a Bayes 

Factor:  

 

𝐵𝐹!" =
𝑝(𝑦 𝑚!)

𝑝(𝑦 𝑚!
≈ exp (𝐹! − 𝐹!) 

(13) 

 

where BF is the Bayes Factor. This transformation allows one to compare the ratio of 

respective evidences (Kass & Raftery, 1995). These ratios can then be applied to 

guidelines of strength of difference suggested by Raftery (1995), which can be 

likened to that of p values in frequentists statistics (see also Stephan et al., 2008 for a 

comparison of alternative methods). 

 

 In summary, this essential component of DCM allows the comparison of two 

competing models. The method described above explains how models are compared, 

generalised to comparison of all models within the model space. Alternatively, one 

can group models into families (Penny et al., 2004). This approach allows for 

grouping of models that share attributes and then compare at a family level. For 

example, if one had a subset of model all with a modulated connection between two 

regions, and an equal number of models that do not have this attribute, one could use 

BMS and this approach to compare the relative evidences of these groups. This 

method is useful when there is no clear winner. Notably, BMS is a subjective method. 

Model evidence is defined for one particular data set and model space. For example, 

if one wishes to compare 10 models, then decides to add another 5 models to test; 

model space has changed and therefore the model evidence has changed. Moreover, 

adding an additional node changes the data and therefore model comparison. 

Similarly, model goodness is relative to the models being compared.  

	

2.3.1.8 Fixed Effects vs. Random Effects 
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When conducting BMS, one must first identify the underlying cognitive 

mechanism that he or she is trying to evaluate. If we were to test whether an 

anatomical connection exists between two regions or a basic physiological 

mechanism (Stephan et al., 2009; Chen et al., 2009), then the most appropriate 

analysis to use is Fixed Effects (FFX) analysis. FFX analysis adopts the assumption 

that all optimal or winning models across individuals reflect that of the population 

(Stephan et al., 2010). For example, if testing the connections between visual areas 

V1 and V5, we can assume that all subjects will have this connection in order to 

process movement from the primary visual area of V1. FFX is the analysis method of 

choice when testing a hypothesis regarding the model structure (Stephan et al., 2010). 

 

However, an important appeal of DCM is the ability to experimentally 

manipulate the context or task in order to test the effect this has on a system and its 

connections. FFX allows for confident testing of the structure of a system or 

physiological mechanism, but is not appropriate for testing models where the 

parameters (or experimental manipulations) are of interest. The reason for this is that 

cognitive tasks can be conducted in different ways, indicating that there may be 

heterogeneity across models (Stephan et al., 2010). Furthermore, if FFX is used on a 

group where the underlying mechanism is thought to be heterogenetic, outliers can 

easily influence the optimal model selection (Stephan et al., 2009). This can be 

illustrated when considering how each method computes the relative group statistic. 

 

For FFX analysis, a Group Bayes Factor (GBF; Stephan et al., 2007c) or 

group log evidences are computed which rely on the relative evidence of one model to 

another. This relationship means that for FFX, if one subject has a different optimal 

model to the rest of the group then this outlier will give a false positive of which 

model is the winning model for the group. In contrast, the use of Random Effects 

(RFX) analysis accounts for outliers and computes posterior model probabilities and 

exceedance probabilities. This approach computes how likely that a given model 

would be the optimal model for a randomly chosen subject from its expected posterior 

model probability. From this, one can compare between models to gain an exceedance 

probability value to compare against other models within the model space (Stephan et 

al., 2009).    
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2.3.1.8.1 Bayesian Parameter Averaging 

	

 The use of BMS identifies an optimal model within the model space supplied. 

However, BMS alone is not sufficient to make conclusions about the parameter 

estimates or coupling strengths between the regions. Conceptually, this can be 

characterised in terms of identifying a model which best describes a system while not 

knowing the strength or influence (modulation or attenuation) of these connections. 

With DCM, different techniques are applied depending on whether Fixed Effects or 

Random Effects analyses were used.  

 

 For FFX analysis, Bayesian Parameter Averaging (BPA) is used to make 

inferences on parameter estimates. By taking the individual statistics for a given 

parameter, BPA combines these for each subject to obtain a joint posterior density 

where the posterior from one subject is used as the prior for the next (Garrido et al., 

2007; Neuman & Lohmann, 2003). A crucial element of BPA is that the use of FFX is 

justified, i.e. the data will be skewed if this model is not optimal for every subject. 

Moreover, the use of these posterior covariances can also behave in a counter-

intuitive way if there are high levels of signal to noise (Kasses et al., 2010). On the 

other hand, BPA has advantages such as producing a single posterior density that can 

then be easily interpreted with Bayesian Inference (Acs & Greenlee, 2008) and the 

fact that it is mathematically easy to calculate (Stephan et al., 2009; Stephan et al., 

2010). 

	

2.3.1.8.2 Bayesian Model Averaging 

	

 When using RFX analysis, the assumption that different cognitive approaches 

may be used to complete the task and therefore different subjects may have different 

models is accepted. This point can be clearly observed when viewing a BMS result 

where there is no outperforming model; characterised by matched model evidence 

across models. To make inferences on parameter estimates under these conditions, 

Bayesian Model Averaging can be used (BMA: Hoeting et al., 1999; Penny et al., 
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2010). Unlike BPA, BMA refocuses from a particular model to that of the entire 

model space and calculates weighted averages of each model parameter where the 

posterior probability of a model is the weighting. This approach can be best 

conceptualised with using model family comparisons (Penny et al., 2010). Consider 

two families of models where each is grouped by a common connection that is not 

present in the other family. A simple BMS analysis of all models may reveal that 

there is not a clear winner, but the same analysis when the groupings are included 

reveals that one group is considerably more optimal. BMA allows one to remove this 

uncertainty about the structure of the model, as the models within these families may 

be all different in terms of fixed connectivity; BMA pools the information of these 

optimal models and produces parameter estimates (see Penny et al., 2010 for the 

mathematical calculations).   

 

 BMA gives parameter estimate averages for each connection; however, 

inferences concerning modulation strength cannot be made as it does not necessarily 

indicate that there is a significant connection. Using the parameter estimates from 

each subject, significant differences between connections and connection strengths 

can be calculated using frequentist statistical tests (e.g. t-test or ANOVA), making 

sure to correct for multiple comparisons.	

	

2.3.2 Evidence and limitations 

	

 DCM combines realistic biological modelling with statistical techniques; these 

aspects, which separate it from other methods of functional and effective connectivity, 

can be viewed as “two sides of the DCM coin” (Daunizeau et al., 2011). That is, the 

innovations of this methodology can also be viewed as potential limitations when 

compared to regression-based measures of effective connectivity (those that do not 

necessarily rely on neurobiological plausibility or a Bayesian approach to inversion 

and inference, such as SEM (McIntosh et al., 1994; Buchel & Friston, 1997; Horwitz 

et al., 1999) or auto-regressive models (Harrison et al., 2003; Roebroeck et al., 

2005)). 
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 In the next section, the identified limitations of biological plausibility (or 

biomodelling) and statistical techniques are outlined (for an in-depth critical review, 

see Daunizeau et al., 2011). With reference to the biological plausibility of DCM, test, 

face and predictive reliability are also discussed in relation to SEM and GCM. 

General statistical inference concerns regarding the use of a Bayesian framework are 

then discussed, before outlining general design and subjective problems that DCM 

encounters.  

	

2.3.2.1 Bio Modelling 

	

 As first shown in Equation 1 of this chapter, DCM relies on the 

implementation of a neuronal model (which is later combined with a hemodynamic 

model and inverted within a Bayesian framework). This neuronal model is simplified 

so that causality of influence exerted can be examined between regions. However, the 

fact that this model is simplified (potentially too much so) may underestimate the 

importance of biological mechanisms. This concern has been outlined in a series of 

papers in the ‘Comments and Controversies’ special issue of NeuroImage dedicated to 

“The identification of interacting systems in the brain using fMRI: Model selection, 

causality and deconvolution” (Roebroeck et al., 2011a, 2011b; Valdes-Sosa et al., 

2011; David, 2011; Friston, 2011; Bressler & Seth, 2011).  

 

 In addition, some have argued that the neural model of DCM may neglect the 

effects of inhibitory activity on the hemodynamic response (Sotero & Trujillo-

Barreto, 2007; Shmuel et al., 2006). In other words, neurotransmitters with inhibitory 

effects may be involved in the system of question, yet DCM does not fully account 

for the effect of these when modelling the neural dynamics, which is therefore not 

accounted for in the hemodynamic forward model. This argument, as well as that of 

those highlighted in the ‘Comments and Controversies’ special issue of NeuroImage 

point to the fact that DCM requires further development and validation.  

	

2.3.2.1.1 Test reliability 
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 A fundamental aspect of any methodological approach, regardless of the 

discipline, is that it must satisfy test-retest reliability. This form of reliability 

presumes that when a technique is applied to the data on a second occasion, the 

results should be identical. In DCM, this re-test reliability should relate to both the 

model being selected and the parameter estimates of the given model.    

 

 Rowe et al. (2010) tested the reliability of the model selection procedure 

across multiple scanning sessions. The authors collected data from patients suffering 

from Parkinson’s disease over two separate sessions (two separate time points). 

Critically, the authors found that the DCM analysis identified the same model across 

sessions, implying that the model selection was a reliable and robust measure between 

sessions. However, the authors of this paper do point out that the posterior estimates 

(coupling strengths) of these models were less reliable (i.e., similar, but not identical) 

across sessions. This finding contradicts other evidence that demonstrates the 

reliability of parameter estimates across sessions (Schuyler et al., 2010). One 

explanation for this discrepancy is that the models tested in Schuyler et al. (2010) 

were very simplistic and did not include clinical patients. Moreover, the time between 

sessions differed (weeks vs. minutes respectively) which could help explain why the 

parameter estimates differed in the Rowe et al. (2010) paper.  

 

 From these studies, we can see that model selection is reliable across sessions. 

This test-retest approach of validation allows us to be relatively confident in its 

accuracy. However, the conflicting findings concerning posterior estimates across 

sessions require further investigation to establish test-retest reliability. 

	

2.3.2.1.2 Construct validity 

	

 Construct validity can be characterised as the extent to which a measure (Z) 

can explain variable X, where variable Z and an additional method (Y) are related 

(Cronbach & Meehl, 1955; Smith, 2012). In relation to connectivity analyses, this can 

be operationalised by testing two methods on the same data set. This is different to 

predictive validity (discussed in 3.1.3) as X is not fundamentally (physiologically in 

this case) grounded. Penny et al. (2010) aimed to test the construct validity of DCM 
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by comparing it to SEM by applying both connectivity methods approaches to the 

attention to motion data set supplied by Buchel & Friston (1997). This data set 

included three conditions: (1) photic; (2) motion with no attention; and (3) motion 

with attention. 

 

 Structural Equation Modelling (SEM) was developed in the field of 

econometrics and applied to imaging data by Mcintosh and Gozalez-Lima (1991). In 

short, with SEM, causal relationships are inferred from the data a priori (Pearl, 1998) 

where connection strengths relate to correlations. By minimising the discrepancy 

between then observed and assumed correlations, a model fit is calculated. This 

inference method of model fit by using likelihood ratio tests is analogous to Bayes 

factors in DCM (Penny et al., 2004). Penny and colleagues (2010) found that both 

methods led to the same conclusions with the data set investigated; reciprocal 

connectivity between regions and attention modulates connectivity between V1 and 

V5 (also shown in Friston et al., 2003). However, the advantages of DCM over SEM 

here relate to the fact that SEM makes no distinction between the neuronal and 

hemodynamic levels, as well as the fact that it also uses nested models. Firstly, the 

issue of biological plausibility of DCM can be seen as a strength in this study. For 

example, SEM makes assumptions of interactions between brain regions at the 

hemodynamic level (apparent as BOLD signal changes) however, as suggested by 

Gitelman et al. (2003), neuronal interactions do not necessarily lead to a detectable 

hemodynamic change. Penny et al. (2004) proceed to suggest that SEM is more 

applicable to PET where the neuronal-hemodynamic relationship is not so 

confounded. In addition, DCM is advantageous with its inference technique, whereby 

non-nested models can be compared (meaning smaller models do not necessarily 

attribute to a larger models), a feature not available to likelihood ratio tests. Penny et 

al. (2004) convey that the use of a biologically plausible model is an aspect of DCM 

that gives it strong construct validity.  

 

 Additional support for the construct validity of DCM can be seen in a study 

conducted by Lee et al. (2006). In this study, the authors aimed to test the validity of 

DCM using synthetic fMRI data, characterised by a neurobiological informed 

computation model (Horwitz & Tagamets, 1999). In brief, this simulated model 
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included inhibitory and excitatory synaptic activity (and random fluctuations) to best 

ascribe a neuronal system. By integrating the values, a hemodynamic fMRI time 

series for each region can be obtained (akin to the inversion scheme employed to 

DCM). Crucially, this method of spiking neural modelling allowed the authors to 

know the connectivity of the system, thereby validating DCM in its ability to model 

and make inference on which model best describes the system. Lee et al. (2006) 

deduced that with the use of large-scale spiking neuron models, DCM identified a 

well-characterised (in comparison to the known connectivity) and accurate model.    

 

 Considered together, these two studies offer support for the construct validity 

and partial face validity from Lee and colleagues (2006; see also Stephan et al., 

2007b; 2008 for more simulated time series validation of DCM). By applying DCM 

to an informed neural system, DCM accurately identifies the optimal model. The use 

of a biologically plausible model is central to understanding its advantages. However, 

the key test of validity and reliability for any kind of modelling which aims to make 

inference on causality is to test how accurately it can identify this. In the next section, 

DCM shall be discussed in terms of its predictive validity.  

	

2.3.2.1.3 Predictive validity 

	

 Predictive validity is the ability to model, or more specifically predict, future 

events. In connectivity approaches, this would relate to the ability of the methods to 

accurately model or predict the actual neural activity. This is attainable in cognitive 

neuroscience from rodent and primate studies as one can collect electrophysiological 

recording from single neurons, or specific sites that might make up a system. By 

using these data, one can test the predictive validity of models, such as DCM, which 

make assumptions and inferences at this level. In this section, Granger Causality 

Modelling will be briefly recapped and reviewed in relation to DCM (on a theoretical 

level). This leads to a discussion of a pivotal study by David et al. (2008), who 

directly compared the predictive validity of these two approaches of functional 

integration. This is followed by a brief discussion of additional studies demonstrating 

the predictive validity of DCM (more specifically, its bio-modelling element). 
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To recap, Granger Causality Modelling (GCM: Goebel et al., 2003; Valdes-

Sosa, 2004)) is a form of functional connectivity, where connectivity is defined by 

statistical dependencies. In comparison to effective connectivity methods, no 

explanation as to how a connection is caused is modeled/included. Like DCM, GCM 

also aims to model time series data (Friston et al., 2012). The core principle with 

GCM is that X ‘causes’ Y when X can help predict future events in Y (better than 

past events in Y can alone) (Granger, 1969; Seth, 2010). Although both methods 

appeal to notions of causality, GCM cannot draw conclusions that activity in one part 

of the brain causes activity in another. Unlike DCM, GCM does not use a forward 

model (neuronal dynamics). Furthermore, the model comparison technique employed 

in GCM is restricted by the use of statistical dependencies (Friston et al., 2012). 

Unlike DCM where multiple hypotheses can be compared (see BMS; 2.3.1.7), GCM 

tests the dependencies between regions against a null hypothesis.  

 

In terms of biological modelling of the data, GCM is not concerned with what 

causes the pattern of data, and instead focuses on the temporal dependencies between 

regions (Harrison et al., 2003). Furthermore, the parameters of the GCM models have 

no biological meaning, just statistical dependencies (Friston et al., 2011). An 

important issue to arise from GCM is the fact that it relies on temporal statistical 

dependencies, for example, activity in region X is preceded by activity in region Y. 

As highlighted in the fMRI chapter of this thesis, fMRI suffers from temporal issues 

(slow dynamics) in relation to the hemodynamic response of a region (David et al., 

2008). This is confounded for GCM as it relies on temporal statistical dependencies, 

for which it assumes that the signals are stationary (i.e. not necessarily a dynamic 

system; Roebroeck et al., 2005; Londei et al., 2006).  

 

Although the use of GCM for modelling fMRI data can be questioned, this 

method has been shown to be useful in electrophysiological studies (for example, 

Broveli et al., 2004; Bosman et al., 2012). The reason for this is based on the fact that 

electrophysiological data measures the electrical discharge of neuronal activity. As no 

translation between neuronal and a measureable signal is required, GCM can 

accurately rely on the temporal correspondence of the signal in given regions, not 

accessible with fMRI. 
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A key study in the predictive validity of DCM, which also acted as a direct 

comparison to GCM, was conducted by David et al. (2008). In this study, the authors 

measured the brain responses of a rat to epileptic events, at both the source of the 

epileptic events and the connecting regions. This was a particularly empirically rich 

study due to the different sources of information gathered. The authors recorded EEG 

and fMRI activity during the seizure events, followed by intracranial signals in areas 

identified by EEG and fMRI. By combining methodological approaches in this 

manner, the authors were able to identify the true neural connectivity from the 

electrophysiological recordings (this is the benchmark procedure to test the forms of 

connectivity in terms of predictive validity), as well as a hemodynamic level of 

activity from the fMRI recording to apply DCM and GCM to.  Applying connectivity 

measures to the fMRI time series for the seizure allowed for different conclusions can 

be drawn. The electrophysiological data showed that the driving spike, or epicenter of 

the seizures was located in the somatosensory cortex, a conclusion that was reached 

by DCM but not GCM. The authors also found substantial differences between the 

hemodynamic responses in different regions, an aspect that was only taken into 

account when hidden states (or neuronal discharge) were taken into account – as 

DCM does. David et al. (2008) conclude that the use of GCM is appropriate when 

brain states can be observed directly (as is the case with EEG), but is not when the 

data being recorded is a post hoc consequence of these states (BOLD). The results of 

this study potently point to the fact that DCM has predictive validity. It shows that, in 

comparison to GCM, the modelling of hidden states (in the form of separate regions, 

with different hemodynamic responses), can accurately predict the true 

electrophysiological model.  

 

 In addition to this influential study by David et al. (2008), the predictive 

validity of DCM has been investigated in the presence of strong physiological 

confounds (not modeled in the generative neuronal model of DCM; Reyt et al., 2010), 

changes in synaptic responses (Moran et al., 2008; 2009), excitatory and inhibitory 

synaptic processing (Moran et al., 2011; see also Brodersen et al., 2010 and Brodersen 

et al., 2011).  
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2.3.2.2 Statistical Inference Techniques and General Design Matters 

	

The statistical inference techniques used for DCM (i.e. Bayesian comparisons) 

can be questioned by those accustomed to the frequentist approaches (for example T-

tests and ANOVAs). The reason for this disparity is that DCM models cannot be 

formally tested; that is to say, they are not falsifiable. In other words, unlike 

frequentist methods, DCM models are not compared to a null hypothesis. Instead they 

are compared to an equally likely experimental hypothesis (indeed, this model can be 

a reductionist account of the experimental model). This use of relative falsification is 

embedded in the framework of Bayesian statistics, however. As such, one can 

question the generalisability of the subsequent results. Consider the following 

example: we tested the exogenous modulation of a system whereby we tested two 

models, one with a connection flowing anteriorly and one reciprocally. The model 

evidence showed that the anteriorly flowing model was the optimal model for this 

data set.  

 

  As noted by Lohmann and colleagues (2012), the tested models are actually 

tested on their plausibility, given the data. Therefore, when comparing the two models 

in our example, the anteriorly flowing model is more plausible than the alternative 

model. However, the alternative model may be inaccurate and the optimal model 

satisfies the accuracy trade-off referred to earlier in this chapter. Moreover, Lohmann 

et al. (2012) provided simulation data whereby they demonstrated that a winning 

model could not be found as there were other alternative models with greater model 

evidence than the true model (physiologically plausible). In response to this, Friston 

et al., (2012) reiterated the fact that a simpler explanation would have greater model 

explanation (accuracy vs. complexity trade-off). Indeed, Lohmann et al. (2012) 

included much simpler models in their simulations compared to the true model that 

was a fully connected and modulated model. What this debate clarifies is that the 

selection of model space has to be firmly grounded in theory (Stephan et al., 2009). 

This point becomes more apparent as a Bayesian approach is used where models are 

compared in a relative falsification procedure, and therefore, an ill-poised model 

space will lead to inaccurate results.    
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 In addition to the realistically plausible biological model and statistical 

inference methods employed by DCM, there are also more general design issues that 

present potential limitations to its use. These issues are related to the size of model 

space and the specificity of the data set. The use of DCM is usually refined to the 

testing of two competing hypothesis (Friston et al., 2003). By only testing two 

alternative hypotheses, the size of model space is reduced, computational time is 

minimised and the interpretation of results is cleaner. However, Friston et al. (2011) 

presented an algorithm, which allowed one to test a number of models in the order of 

hundreds. This method relies on nested models, whereby connections are “turned off” 

to test the presence or absence of connections. With this approach, one cannot 

investigate the subtleties of a given model as each connection is “turned off” in turn. 

Lohmann et al. (2012) also criticised this approach for this reason, saying that DCM 

cannot be used as an exploratory tool. Indeed, Friston et al., (2012) suggest that 

looking at a large model space may seem appealing but this does not mean that the 

question of the study will be answered; just because it is possible to test many models 

does not mean that one should.  

 

 Finally, the following two limitations correspond to all measures of 

connectivity, functional or effective. The first limitation concerns the need for the 

researcher to select the ROIs upon which to perform the connectivity analysis. This 

approach presents inter-subject variability and care has to be taken into extracting 

consistent regions. Additionally, the extracted data and subsequent connectivity 

analysis is only specific to the given data set. This means that it is difficult to compare 

systems across studies, or where different ROIs or numbers of nodes have been used 

(Stephan et al., 2010).  

	

2.3.3 Summary and conclusions 

	

 The approaches taken to understand neurocognitive function have shifted from 

identification of single areas associated with performing certain tasks to that of 

exploring the dynamics of interactions between a number of brain regions (or between 

systems) (Smith, 2012). DCM aids understanding of these systems by marrying 

biophysical with functional integration. As a method of effective connectivity, DCM 
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is not without its limitations, including those that make it unique, namely the 

biophysical model. This model is used to convert predicted neural connectivity into a 

time series that can be compared to the observed time series. The accuracy of this 

conversion is open to criticism with the use of DCM. A growing literature documents 

its validity for testing systems both in biological accuracy and model selection. Future 

extensions of DCM will take into account further understandings of the relationship 

between BOLD and neural function (Logothetis et al., 2004). Currently, however, it 

offers a powerful tool for systematically testing effective connectivity within the 

brain.  	
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3 Chapter ΙΙΙ  
	

Dynamic modulation of the action observation network by movement familiarity 
 

3.1 Abstract 

When watching another person’s actions, a network of sensorimotor brain regions, 

collectively termed the action observation network (AON), is engaged. Previous 

research suggests that the AON is more responsive when watching familiar compared 

with unfamiliar actions. However, most research into AON function is premised on 

comparisons of AON engagement during different types of task using univariate, 

magnitude-based approaches. To better understand the relationship between action 

familiarity and AON engagement, here we examine how observed movement 

familiarity modulates AON activity in humans using dynamic causal modelling, a 

type of effective connectivity analysis. Twenty-one subjects underwent fMRI 

scanning while viewing whole-body dance movements that varied in terms of their 

familiarity. Participants’ task was to either predict the next posture the dancer’s body 

would assume or to respond to a non– action-related attentional control question. To 

assess individuals’ familiarity with each movement, participants rated each video on a 

measure of visual familiarity after being scanned. Parametric analyses showed more 

activity in left middle temporal gyrus, inferior parietal lobule, and inferior frontal 

gyrus as videos were rated as increasingly familiar. These clusters of activity formed 

the regions of interest for dynamic causal modelling analyses, which revealed 

attenuation of effective connectivity bidirectionally between parietal and temporal 

AON nodes when participants observed videos they rated as increasingly familiar. As 

such, the findings provide partial support for a predictive coding model of the AON, 

as well as illuminate how action familiarity manipulations can be used to explore 

simulation- based accounts of action understanding.  
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3.2 Introduction 

 

 Perceiving and interacting with others form the foundation of human social 

behavior. When watching others in action, we readily extract information about their 

goals and intentions (Hamilton & Grafton, 2006; Hamilton, 2013) and predict their 

subsequent behavior in a rapid, online fashion (Blakemore & Frith, 2005; Falck-Ytter 

et al., 2006). Neuroimaging studies identify frontal, parietal, and occipitotemporal 

regions collectively termed the Action Observation Network (AON) (Cross et al., 

2009; Grafton, 2009; Keysers & Gazzola, 2009; Caspers et al., 2010) as critically 

involved in processing others’ actions. Previous research demonstrates greater AON 

activity when watching visually or physically familiar actions (Buccino et al., 2004; 

Calvo- Merino et al., 2005; Cross et al., 2006; Vogt et al., 2007; Shimada, 2010; 

Press, 2011). These findings support a theory of action understanding that posits the 

AON is tuned to respond most to actions that are “like me” (Meltzoff, 2007) via 

experience-driven simulation mechanisms (Sinigaglia, 2013). However, most studies 

into how observers’ prior action experience or familiarity impacts AON engagement 

have used magnitude-based approaches, investigating which brain regions show 

increased or decreased response amplitudes based on familiarity with an observed 

action. Some have suggested that such analyses might not be sufficient to construct a 

nuanced or complete picture of how sensorimotor brain regions support action 

understanding (Schippers & Keysers, 2011). One promising approach for further 

characterization of the relationship between familiarity and AON engagement is to 

examine functional connectivity between individual AON nodes during action 

observation, and ask how a particular task modulates these connections (Smith, 2012).  

 

 Prior theoretical work on the AON can inform predictions about how 

familiarity might modulate connectivity when observing others in action. Predictive 

coding models of AON function (Keysers & Perrett, 2004; Kilner et al., 2007a,b; 

Gazzola & Keysers, 2009; Schippers & Keysers, 2011) are predicated on the use of 

perceptuomotor maps to predict and interpret observed actions (Lamm et al., 2007; 

Schubotz, 2007; Urgesi et al., 2010). According to this account, forward models 

facilitate processing of familiar actions through use of stored action representations 
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and propagate information in a top-down manner from premotor to parietal to 

occipitotemporal regions. Unfamiliar actions are processed via a bottom-up, data-

driven approach, where information propagates anteriorly from occipitotemporal to 

parietal to premotor cortices. To test whether and how action familiarity modulates 

effective connectivity among the component regions of the AON, we used dynamic 

causal modelling to test hypotheses under a predictive coding model of action 

observation. Our task involved observing whole-body movements followed by a short 

occlusion, after which participants chose which posture should follow in the 

movement sequence (similar to Stadler et al., 2011). By using an offline rating task, 

we examined how this noncategorical measure of familiarity impacts AON 

engagement (compare Cross et al., 2013; Liew et al., 2013). According to a predictive 

coding model, dynamic causal modelling (DCM) should demonstrate that 

increasingly familiar movements are associated with decreased feedforward influence 

from sensory/posterior nodes, as prediction errors are minimized when viewing more 

familiar actions, whereas feedback influence from anterior to posterior nodes should 

increase.  

 

3.3 Materials and Methods 

	

3.3.1 Participants 

	

 Twenty-one adult volunteers (mean age 21.95 years, SD 3.02 years) with 

normal or corrected to normal vision were recruited from the student population at 

Radboud University Nijmegen. Of this sample, 13 were female; 17 right-handed, 2 

left-handed, and 2 ambidextrous based on the Edinburgh Handedness Questionnaire 

(Oldfield, 1971). All participants’ data were used for the GLM analyses, and a 

subsample of 19 participants was used for the DCM analysis (see Definition of ROIs). 

All participants spoke English fluently and had no history of psychiatric or 

neurological disorders. All participants provided written informed consent, and the 

study procedures were approved by local ethics committees at both Bangor University 

and the Donders Centre for Cognitive Neuroimaging at Radboud University 

Nijmegen. Participants were reimbursed for their time with €15.  
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3.3.2 Experimental design and stimuli  

	

 The paradigm included two task manipulations that fell within a 2x2 factorial 

design. The two factors were familiarity (levels: familiar and unfamiliar) and task 

(levels: posture prediction or dot colour tracking). Action stimuli were consistent 

across the two tasks (only the instructions changed).  

 

3.3.2.1 Stimuli construction and selection 

 

 Stimuli were created by filming a professional dancer performing a range of 

improvised and choreographed movement in a contemporary dance style that ranged 

from extremely simple (and thus relatively predictable) to much more complex (and 

much less predictable). To ensure these stimuli encapsulated a broad range of more 

and less familiar actions for dance-naive observers, we first piloted 157 video clips 

(each with a duration of 6 s) with a separate sample of 23 participants. From this pilot 

study, we selected the 30 movement stimuli rated as most familiar, and the 30 

movement stimuli rated most unfamiliar by pilot participants. This split allowed us to 

make a stimuli set that should subjectively differ across the familiarity spectrum.  

 

3.3.2.2 Prediction task 

 

 In the Prediction condition, participants were asked to monitor the movements 

of the agent in preparation for a two-way forced choice question asking them to 

choose which posture should follow on in the video clip after an occlusion of 0.6 s. 

The forced choice consisted of one coherent still frame (chosen from 0.6 s after when 

the video was occluded) and one that was plausible to the video but not chronological 

to the flow based on the occlusion duration (for an example, see Figure 3.1).  
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Figure 3.1. An illustration of the trials. The prompt screen was shown at the 
beginning of each block (10 trials) to orient the attention to the dots or postures. The 
fixation was shown at the start of each trial, followed by the video. This was then 
preceded by a question on the dots or a prediction question dependent on the block 
type. The response screen was displayed for 2 seconds and would display a blank 
black screen even if there was a response, until the 2-second window ceased. 
 

3.3.2.3 Attentional control task 

 

 A control task was built into paradigm so that, for half the trials, participants 

were asked to monitor the colour of a dot that would randomly appear on the screen in 

different locations and in different colouurs (either red or green). The size of the dots 

was 5 mm and appeared at a rate of 1 per second (to clarify, coloured dots appeared 

during all video stimuli in the experiment, but participants were asked to attend to 

them during only half the trials). When participants were performing the attentional 

control task, they were asked to monitor the colour of the dot throughout the duration 

of the video clip. When the video clip ended, a question appeared asking participants 

to specify the colour of the last dot they saw on the screen.  

 

3.3.2.4 Post scanning ratings 

	

 After the fMRI experiment, participants rated the videos on a Likert scale of 

1–9 as to how familiar they found the movements within each video (0 very 

unfamiliar; 5 neutral; 9 very familiar). The dots were removed from these videos, and 
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the response window was not fixed. Still, participants were encouraged to answer as 

quickly and accurately as they could. The concept of familiarity was explained by the 

experimenter as how easily participants would be able to say what move should come 

next in each video, and participants were made explicitly aware that familiarity did 

not mean which videos had been recognized or remembered from the scanning 

experiment. Each video was displayed only once and in a randomized order.  

 

 To ensure that familiarity ratings and number or speed of movements were not 

confounded, we calculated the mean “motion energy” of each video stimulus based on 

a previously developed algorithm (Cross et al., 2012). Once we obtained an objective 

numeric score for how much pixel displacement each video contained, we computed a 

Pearson product- moment correlation coefficient to assess the relationship between 

the motion energy of each video and the average familiarity rating given by 

participants. The results revealed no correlation between the two variables (r 0.06, n 

60, p 0.646). This suggests that the participants did not rate the stimuli based on how 

much movement each stimulus contained; instead, they were rating them on a more 

holistic, subjective view of familiarity.  

 

3.3.3 fMRI design and procedure 

	

 Each participant completed one fMRI session that followed an event- related 

design. Participants completed two runs, lasting 13 min and containing 60 trials each. 

Trials were blocked into more familiar and less familiar stimuli (based on pilot data), 

and both kinds of stimuli were presented for both task conditions. At the beginning of 

the first run and the end of the second run, a 15 s rest period occurred. At the start of 

each block, a prompt (1 s) indicated which task participants were to perform for the 

upcoming block of trials (predicting postures or reporting on the dot colour). The 

ensuing blocks, consisting of 10 trials, were all from the same condition. At the start 

of each trial, a white fixation cross appeared on the center of the screen for 1.8 s, 

followed by a video clip (6 s). Based on the prompt at the start of the block, 

participants had 2 s to respond to the task and identify which still frame they thought 
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would follow or identify the colour of the last dot on the screen. This response period 

lasted for 2 s. If a button was pressed before 2 s had elapsed, the screen changed to a 

blank black screen until the 2 s time limit was reached. The order of the blocks and 

the video shown in each trial were pseudo-randomized so that each video was shown 

once in each of the conditions.  

 

 Stimulus presentation and response collection were performed using 

Psychophysics Toolbox (version 3) via MATLAB R2010a (MathWorks). The stimuli 

were projected onto a mirror above the head coil from a projector outside of the 

scanner. Participants made their responses with the forefinger and middle finger of the 

right hand, and responses were recorded from a custom-made MR-compatible button 

box.  

 

 Data acquisition was conducted at the Donders Centre for Cognitive 

Neuroimaging at Radboud University Nijmegen. Functional images were acquired on 

a 3.0T Siemens MRI scanner using a 32-channel head coil. Functional images were 

acquired covering the whole brain using an echo-planar imaging (EPI) sequence (35 

axial slices, ascending slice acquisition, repetition time 2000 ms, echo time 30 ms, 

90° flip angle, matrix 64x64, slice thickness: 3x3x3 mm, field of view (FOV): 224 

mm). Before the functional run, 196 two-dimensional anatomical images (256x256 

pixel matrix, T1-weighted) were obtained for normalization purposes.  

 

3.3.4 fMRI data preprocessing and statistical analysis 

 

 A total of 338 volumes per participant per run were used in the analysis. 

Because of a technical error, two participants’ data were not collected correctly at the 

start of the first functional run, resulting in a reduced number of volumes for these 

participants (615 volumes in total compared with 676 for all other participants). Data 

were analyzed using Statistical Parametric Mapping (SPM8: Wellcome Trust Centre 

for Neuroimaging, London) (Friston, 2007) implemented using MATLAB R2010a 
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(MathWorks). The data were first realigned and then slice-time corrected and 

preliminarily preorientated within standard stereotaxic space as defined by the MNI 

(Friston, 2007). This preorientation allowed for a better spatial normalization to the 

MNI template. Participants’ EPI images were then coregistered to their T1 anatomical 

scans, which were then spatially normalized to standard stereotaxic space. The 

spatially normalized EPI images were filtered using a Gaussian kernel of 8 mm full-

width at half maximum in the x, y, and z axes. A design matrix was fitted for each 

subject with a single regressor for all trials from the prediction task and a single 

regressor for all trials from the coloured dot-tracking task. A parametric regressor 

column was added to the design that included participants’ individual ratings of each 

video from the posture prediction task (assigned outside the fMRI session). In 

modelling a single parametric effect of familiarity, we are effectively modelling the 

main effects of action observation and familiarity but not their interaction. The 

fixation, prompt, and response were fitted as noise regressors for each individual and 

combined into a single regressor of noninterest. Each trial was then modeled as a 

boxcar function for the duration of the video. For the GLM analyses, a cluster 

threshold of k 10 and a p value of 0.005 (uncorrected) was set to best observe the 

sensitive effects of the parametric analysis.  

 

 Although participants were encouraged to use the entire scale when rating the 

videos, many participants used a reduced range of the 9 point scale (for example, 2– 

8). Because we were interested in using each individual’s ratings as a parametric 

regressor in the group fMRI model, it was important to equalize the relative rating 

scales across participants. To achieve this, participants’ ratings were standardized via 

a z transformation.  

  

3.3.4.1 Objectives of GLM neuroimaging analyses 

 

 Neural processes engaged during action prediction. The first analysis 

identified brain regions that responded to the task demands to predict movements by 

evaluating the task-based contrast of posture prediction attentional control task. This 
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contrast allowed us to explore the effects of online monitoring of an action while 

controlling for familiarity of the movements.  

 Parametric effects of increasing familiarity of an observed action. The second 

analysis allowed us to explore the sensitive measure of subject- specific 

(standardized) ratings of observed movements on AON activity. This parametric 

contrast was used to test the hypothesis that AON regions should show greater 

activity as a function of increasing familiarity. Unlike contrasts that would use 

segmentation of the stimuli into familiarity categories, our measure allows us to 

capitalize upon individual differences in familiarity ratings to identify brain regions 

that become increasingly or decreasingly active the more familiar a movement is rated 

by an observer.  

 

3.3.5 DCM 

 

 Evaluation. DCM is a method of analyzing effective connectivity that uses a 

bilinear model of neural population dynamics, combined with a hemodynamic model, 

which aims to describe the neural activity in the measured BOLD response (Friston et 

al., 2003). By modelling feasible neuronal parameters, DCM aims to make a modeled 

BOLD response that is similar to the actual experimentally manipulated BOLD 

signal. The neural dynamics model created using DCM is then combined with a 

hemodynamic forward model that incorporates a balloon model (Buxton et al., 1998). 

The hemodynamic model provides a transformation of how the neural dynamics 

would propagate as a BOLD response, estimated via a standard Bayesian approach 

(variational Laplace). The fit of the combined neural model and hemodynamic 

forward model is estimated via a Bayesian approach, which uses conservative 

shrinkage priors for the coupling parameters.  

 

 A model is specified to have the fit to the data estimated by the previously 

mentioned routine. The input into the estimation procedure is three matrices (for 

bilinear DCMs, but see also Nonlinear DCMs) (Stephan et al., 2008). The first is the 

endogenous connection strengths (the A matrix), which represents the connectivity 
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between the regions of the model, sometimes called the fixed connectivity. The B and 

C matrices represent the experimentally manipulated conditions. Matrix B represents 

the modulation of an external input on a fixed connection, which describes the change 

in the value of the effective connectivity for a connection under a particular condition. 

The C matrix represents the input into the system, which describes the activity that is 

perturbing, or creating activity, in the system. This equation models the state changes 

by known inputs. By user-created variations of combinations of fixed connectivity, 

modulatory influences, and inputs, multiple DCMs can be created for the same set of 

regions and then compared with which fits the data best (while controlling for 

complexity).  

 

 Hypothesis. The experimental hypothesis tested in the current study is that 

differential connectivity will exist between the three core AON regions based on 

subjective familiarity ratings made by the participants. Moreover, we expected that 

more familiar actions would increase the influence of top-down connections (IFG-

IPL-MTG) while decreasing the corresponding influence of bottom-up connections 

(MTG-IPL-IFG). Mechanistically, this corresponds to increasingly precise or 

confident top-down predictions afforded by familiar actions that, in our model, would 

be encoded by the modulatory effects of familiarity on the B parameters.  

 

 Preprocessing for DCM. To evaluate the effective connectivity of this network 

using DCM, volumes from the two separate runs were concatenated to form one 

single time series per participant. We repeated the GLM analysis in SPM12b to 

exploit recent developments in dynamic causal modelling (see below). The GLM was 

effectively the same as described above. However, in this case, we adjusted the data 

for the main effect of action observation. We then used the effect of stimulus 

movement as a driving input to the action observation network, whereas familiarity 

was used to modulate extrinsic (between node) connectivity. Effectively, this models 

the effect of familiarity in terms of context sensitive changes in coupling induced 

under action observation. Notice that we effectively removed responses to movement 

videos during the attend dots conditions, enabling us to focus on the effect of 
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familiarity during action observation. These will be subsequently referred to as the 

movement effect. The remaining conditions were modeled as a nuisance variable to 

ease DCM model specification (Stephan et al., 2010). These preprocessing steps 

allowed us to examine the effects of familiarity of actions on the effective 

connectivity of the system.  

 

 We allowed for stochastic effects within the model to more accurately model 

noise (Li et al., 2011). We also centered the input into the node. This gives the input a 

mean of zero and means that modulating parameters can increase and decrease the 

fixed connectivity, as opposed to simply increasing it as when the input is always 

positive. To allow for biological plausibility, we opted for two-state models that allow 

for both excitatory and inhibitory connectivity (Marreiros et al., 2008). Because we 

used a two-state DCM, we were able to enforce positivity constraints on the 

connection strengths and lend our interpretation a greater biological plausibility or 

validity. This is because all connection strengths and two-state DCMs are excitatory, 

where intrinsic (within node) excitatory connections activate inhibitory neurons to 

ensure stability of the modeled network. Crucially, the coupling strengths are log 

scale parameters. In other words, they represent the log of the scaling of an effective 

connection, such that a log of zero corresponds to a 100% scaling. This means that a 

negative log scaling parameter corresponds to a weaker connection and a positive 

parameter corresponds to a stronger connection. We will report the parameter 

estimates in log space (and perform t-tests on the log scaling parameters). This 

additional step allowed us to further examine the proposal by Keysers and Perrett 

(2004) that the MTG would exhibit inhibitory responses to familiar stimuli as well as 

help us understand how it relates to the predictive coding model proposed by Kilner et 

al. (2007b).  

 

 To identify the winning model (in this case, the model that best explains the 

system of interest), we used random-effects Bayesian model selection (BMS) to 

account for outliers (Stephan et al., 2009). This Bayesian approach used for DCM 

gives each model an exceedance probability, the probability that a model is more 
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likely than any other model tested (subject to a trade-off between model fit and 

complexity). The family comparison technique pools model evidence by the user-

defined groups, where all models within a given group share a common feature 

(Penny et al., 2010).  

  

3.3.6 System of interest 

 

 Definition of ROIs. The coordinates for the ROIs were identified from the 

parametric contrast of increasing familiarity (for coordinates, see Table 3.1). The time 

series for the ROIs were taken from the subject level F-contrast of movement implicit 

baseline as this was the most revealing contrast. This contrast revealed all regions that 

were active (two- tailed) when viewing movement, including the defined coordinates 

for MTG, IPL, and IFG in the left hemisphere.  

 

Table 3.1. The coordinates used for the ROIs  
 

X Y Z Region BA Cluster Size 

-48 -31 34 Inferior Parietal Lobule 40 141 

-51 -58 -2 Middle Temporal Gyrus 39 60 

-45 8 25 Inferior Frontal Gyrus 44 12 

 

 All ROIs were extracted by locating the nearest local maximum voxel to the 

coordinates of the group contrast of increasing familiarity. 19 of the 21 participants 

showed significant activity within the search radius of 16 mm. The 2 remaining 

participants were excluded from the connectivity analysis. The ROI time series for 

each region, for each participant, was extracted by using the eigenvariate (threshold of 

p 0.05), with sphere radius 8 mm and adjusted for effects of no interest.  
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Figure 3.2. The model space. A, The endogenous (fixed) connectivity between the 
three regions. B, The three families of inputs (movement) tested: MTG, IFG and 
MTG, and IFG. For each of these three families, 15 models, shown in C, were tested 
to identify the modulation of increasing familiarity, resulting in 45 models for each 
participant. Solid lines indicate fixed connectivity. Dashed arrows indicate input into 
the system by movement. Dotted arrows indicate modulations on the given 
connection by increasing familiarity.  

 

 Definition of network models. To test our hypothesis, all models were 
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manipulated with regard to their modulation and direct inputs but not endogenous 

connectivity. To counter the problem of expanding model space, the endogenous 

connectivity of all models was anatomically in- formed by the theoretical models 

from which our hypothesis was based (Keysers & Perrett, 2004; Kilner et al., 2007b). 

The connections between the nodes were reciprocal between MTG and IPL and 

reciprocal between IPL and IFG (Figure 3.2). This limiting of model space allowed us 

to examine the modulatory effects of increasing familiarity within a refined selection 

of models. These modulatory effects (B parameters) were tested on all extrinsic 

(between-node) excitatory connections and all combinations. For the direct inputs to 

the system, we modeled the movement effect. We tested the hypothesis of direct input 

into the system through MTG as well as direct input into IFG for all variants as well 

as direct input into both of these regions, resulting in 45 models per person, with a 

total of 855 models overall (Figure 3.2).  

 

3.4 Results 

	

3.4.1 Whole-brain GLM analyses 

	

3.4.1.1 Neural processes engaged during action prediction 

	

 To address how action familiarity impacts AON activity using random-effects 

analyses, we report two contrasts. The first contrast identified brain regions more 

engaged when participants watched whole-body movements with the intention to 

predict which posture should follow after an occlusion, compared with watching the 

same videos but attending to the colour of a dot that was superimposed on top of the 

dancer (Figure 3.3). 
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 Figure 3.3. The GLM results of the main effect of performing the posture prediction 
task compared with the dot colour identification task. All p values 0.005; k 10 voxels.  
 

 This analysis revealed significant activity in M1 and the anterior regions of 

STG (for all peak coordinates from this contrast, see Table 3.2). This contrast shows 

the effects of the online updating of observed movements in anticipation of the 

decision-making period. The activity seen in the motor regions could perhaps 

represent the fact that, even though dance movements were observed in both 

conditions, the posture prediction task elicits more extensive engagement of motor 

cortical activity. Specifically, maintaining representations of actions so that they may 

be simulated during a period of occlusion may require more activity within primary 

motor regions (Kilner et al., 2009b; Stadler et al., 2011; Cross et al., 2013; Hari et al., 

2014; compare mu suppression in this region during action observation). 

Interestingly, activity within higher-level occipital cortices (V4v and V3v) also 

emerged from this contrast. This pattern of activity could reflect increased visual 

attention demands of biological motion tracking, as opposed to what was required for 

the dot-tracking task.  
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Table 3.2. Localization of averaged BOLD response for the posture prediction versus 

dot tracking tasks  
 

MNI coordinates of peaks of relative activation within regions responding to the main effects 
of task: postures vs. dots. Results were calculated at puncorrected < 0.005, k = 10 voxels.  Up to 3 
local maxima are listed when a cluster has multiple peaks more than 8mm apart. 
Abbreviations for brain regions: V4v = ventral visual area 4; S2 = sensorimotor area; PAC = 
primary auditory cortex; STG = superior temporal gyrus; M1 = primary motor cortex; MPFC 
= medial prefrontal cortex; ACC = anterior cingulate cortex; MPFCv = ventral medial 
prefrontal cortex; PCC  = posterior cingulate cortex; PMd = dorsal premotor cortex; SMAd = 
dorsal supplemental motor area; MOG = middle occipital gyrus; MTG = middle temporal 
gyrus; STS = superior temporal sulcus; pSTG = posterior superior temporal gyrus; AMYG = 

Anatomical region BA MNI coordinates Putative 
functional 
name 

t 
val
ue 

Cluste
r size 

Pcorrected 
value 

 x y z     
Postures vs. Dots         
R post central gyrus 1 27 -43 70 M1 7.25 326 0.032 
    R post central gyrus 2 27 -37 55 M1 5.13  0.140 
R superior occipital gyrus 17 21 -100 7 V3v 6.77 90 0.032 
    R lingual gyrus 18 24 -88 -11 V4v 3.25  0.744 
R rolandic operculum 41 48 -25 22 S2 6.70 345 0.032 
    R heschls gyrus 41/42 45 -22 10 PAC/STG 5.30  0.135 
    R postcentral gyrus 1 63 -13 34 M1 4.34  0.284 
R mid orbital gyrus 10 6 50 -14 MPFC 5.72 415 0.129 
    R mid orbital gyrus 32/10 15 50 -2 ACC 5.40  0.129 
    R superior medial gyrus 10 9 59 10 MPFCv 4.34  0.284 
L postcentral gyrus 2 -27 -40 58 M1 5.50 158 0.129 
    L postcentral gyrus 2 -21 -43 70 M1 5.10  0.140 
L superior parietal lobule 31 -15 -25 43 PCC 5.46 32 0.129 
R superior frontal gyrus 6 18 -10 67 PMd 5.16 382 0.140 
    R middle cingulate cortex 6 15 -22 46 PMd 5.01  0.145 
    R supplemental motor area 6 3 -16 67 SMAd 4.71  0.214 
R parahippocampal gyrus 19/30 24 -46 16  4.98 102 0.145 
L middle occipital gyrus 18 -24 -88 1 MOG 4.66 76 0.219 
L middle temporal gyrus 22 -51 -40 -2 MTG 4.48 42 0.268 
    L medial temporal gyrus 22/37 -42 -46 1 MTG/STS 3.00  0.285 
L inferior parietal lobule 19 -30 -55 13 IPL 4.47 91 0.915 
L superior temporal gyrus 42 -45 -31 19 pSTG 4.30 45 0.285 
    L superior temporal gyrus 42/43 -60 -28 16 STG 2.96  0.344 
R caudate nucleus 23 24 2 28  4.24 96 0.720 
L caudate nucleus 23 -18 -1 28  4.02 82 0.344 
    L caudate nucleus 23 -18 14 22  3.29  0.462 
L inferior parietal cortex 40/7 -42 -67 49 IPC 4.02 51 0.462 
    L amygdala 25 -48 -73 34 AMYG 3.77  0.529 
R amygdala 25 -21 -1 -14 AMYG 3.75 34 0.529 
R amygdala 25 21 -1 -11 AMYG 3.61 28 0.627 
L superior frontal gyrus 9 -12 53 31 SFG 3.49 25 0.285 
L posterior cingulate cortex 31 -6 -52 25 PCC 3.46 43 0.915 
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amygdala; IPL = inferior parietal lobule; SFG = superior frontal gyrus; IPC = inferior parietal 
cortex. 

	

Figure 3.4. A The GLM results of the parametric rating contrast for the posture 
prediction task. All p values 0.005; k 10 voxels. B Parameter estimates for core AON 
regions plotted against familiarity rating. These show a linear relationship between 
famialirty rating and parameter estimate, error bars represent SEM. 
	
	

Table 3.3. Localization of averaged BOLD response for observation of actions rated 
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Anatomical region BA MNI coordinates Putative 
functional 

name 

t 
value 

Cluster 
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Pcorrected 
value 

 x y z     
Increasing familiarity 
Left SupraMarginal Gyrus 

 
40 

 
-48 

 
-31 

 
34 

 
SmG 

 
4.02 

 
141 

 
0.837 

   Left Inferior Parietal 
Lobule 

7/40 -33 -37 40 IPL 3.99  0.837 

   Left Inferior Parietal 7/40 -48 -37 52 IPL 3.80  0.837 
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MNI coordinates of peaks of relative activation within regions responding to the parametric 
effects of increasing familiarity. Results were calculated at puncorrected < 0.005, k = 10 voxels.  
Up to 3 local maxima are listed when a cluster has multiple peaks more than 8mm apart. 

Lobule 
Left Middle Temporal Gyrus 39 -51 -58 -2 MTG 3.96 60 0.837 
Left Superior Frontal Gyrus 6 -18 11 61 SFG 3.74 10 0.837 
Left Superior Parietal Lobule 7 -21 -67 46 SPL 3.74 83 0.837 
   Left Superior Parietal 
Lobule 

7 -15 -67 52 SPL 3.63  0.837 

Right Superior Parietal 
Lobule 

7 18 -67 61 SPL 3.68 96 0.837 

   Right Angular Gyrus 7/19 30 -70 37 AG 3.49  0.881 
   Right Angular Gyrus 7 27 -61 43 AG 3.27  0.897 
Right Inferior Frontal Gyrus 
(p. Opercularis)) 

44 33 11 28 IFG 3.63 13 0.837 

Right Postcentral Gyrus 2 48 -28 52 M1 3.41 25 0.881 
   Right Inferior Parietal 
Lobule 

40 36 -43 55 IPL 3.02  0.993 

Left Inferior Frontal Gyrus 
(p. Opercularis) 
 

44 -45 8 25 IFG 3.24   

Decreasing familiarity         
Right Superior Occipital 
Gyrus 

19 36 -76 4 SOG 4.88 105 0.157 

   Right Superior Occipital 
Gyrus 

19 24 -82 16 SOG 3.76   

Right Superior Temporal 
Gyrus 

22 48 -34 22 STG 4.68 16 0.556 

Left Anterior Cingulate 
Gyrus 

24 -3 20 28 AC 4.30 36 0.513 

Cerebellum  0 -61 -2 CERR 4.26 106 0.157 
Right Middle Cingulate 
Gyrus 

32 9 -22 43 SPL 4.15 62 0.340 

   Right Middle Cingulate 
Gyrus 

32 12 -31 46 SPL 3.53   

   Right Middle Cingulate 
Gyrus 

32 3 -10 40 MCG 3.43   

Right Cuneus 17 18 -73 34 CU 4.07 25 0.513 
Left Insula 46 -39 -13 -2 INS 3.87 25 0.513 
Left Lingual Gyrus 18 -12 -91 -11 V3 3.83 123 0.157 
   Left Lingual Gyrus 18 -21 -85 -2 V3 3.76   
   Left Middle Occipital 
Gyrus 

19 -36 -76 4 V5 3.59   

Left Cuneus 17 -15 -82 34  3.53 23 0.513 
Left Middle Occipital Gyrus 18 -21 -94 10 V3v 3.37 14 0.556 
Right Lingual Gyrus 18 12 -37 -8 CERR/ 

HIPP 
3.06 14 0.556 
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Abbreviations for brain regions: SmG = SupraMarginal Gyrus; IPL = inferior parietal lobule; 
MTG = middle temporal gyrus; SFG = superior frontal gyrus; SPL = superior parietal lobule; 
AG = angular gyrus; IFG = inferior frontal gyrus; M1 = primary motor cortex; SOG = 
Superior Occipital Gyrus; STG = Superior Temporal Gyrus; AC = Anterior Cingulate; CERR 
= Cerebellum; HIPP = Hippocampus; MCG = Middle Cingulate Gyrus; CU = Cuneus; INS = 
Insula. 

 

3.4.1.2 Evaluated regional activations sensitive to increasing familiarity 

 

 The second random-effects analysis evaluated brain regions sensitive to the 

increasing familiarity of a complex whole-body movement (for all peak coordinates 

from this contrast, see Table 3.3). This contrast allows us to locate the regions of 

interest for the DCM analysis as well as assess general effects of perceived action 

familiarity based on participants’ individual subjective ratings of each action stimulus. 

As can be seen in Figure 3.4A, the parametric contrast of increasing familiarity 

reveals activity within bilateral premotor, parietal cortices, and left temporal cortices. 

The reverse of this contrast, brain regions sensitive to decreasing familiarity, is also 

reported in Table 3.3. This did not reveal any regions of the core AON, with the main 

sensitivity seen in visual regions. The increasing familiarity contrast suggests that, as 

the movements are rated as increasingly familiar, the stronger the response becomes 

within core AON regions. This relationship is also shown in Figure 3.4B, whereby the 

relationship between parameter estimates and rating is linear. These results add 

support to the view that the more familiar an observed action is, the stronger activity 

is within the AON (Buccino et al., 2004; Calvo-Merino et al., 2005; Cross et al., 

2006). The three nodes in the left hemisphere form the ROIs for the DCM analysis, 

which evaluates their effective connectivity during action observation and how 

increasing familiarity modulates connections within this triad of brain regions.  

 

3.4.2 Effective connectivity analyses 

	

 The DCMs were created using the three ROIs listed in Table 3.1: MTG, IPL, 

and IFG (all in the left hemisphere). The input(s) into the system was movement, and 

the modulations were increasing familiarity. First, we identify where there is input 

into the system using a family comparison analysis. Next, we report the BMS analysis 
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of the models within the winning family. Finally, we used Bayesian model averaging 

(BMA) to present the parameter estimates of the winning family of models.  

 

3.4.2.1 Family level inference  

 

 As described in Materials and Methods, we classified our 45 models into three 

families based on input into the system. To recap, the families were MTG input, IFG 

input, and input into both MTG and IFG. The results of the family comparison of 

inputs showed that there is unequivocally strong evidence for the family with input 

into both regions of the system. The exceedance probability of this family was 

(almost) 1, implying that there is a near certainty that this class of input explains the 

network. This identification of the inputs into the system allowed us to concentrate 

our model comparison on the 15 models with MTG and IFG input into the system.  

 

3.4.2.2 BMS and BMA within optimal family  

 

 After assessing the existence of input parameters with family comparisons, we 

were then able to perform a BMS analysis on the 15 models within the MTG and IFG 

input family. As shown in Figure 3.5A, there is a clear optimal model, model 15.  
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Figure 3.5. BMS on the 15 models in the MTG and IFG input family. A, Log 
Evidence and Exceedance probabilities for all models. There is one clear winner, 
model 15, which had the posterior probability of 0.72. B, Model 15, the winning 
model, had modulation of increasing familiarity on all fixed connections.  
 

 The optimal model was the model that had modulation by increasing 

familiarity on all fixed connections. The probability of this model was 0.72 (Figure. 

3.5B), which is a high probability. The next best model, model 6, had an exceedance 

probability of 0.11. In relation to our hypothesis that there would be greater top- down 

modulation for increasing familiarity, a winning model that had fully modulated 

connections would neither confirm nor refute this hypothesis. Although the posterior 

probability of the winning model was 0.72, this does not provide definitive evidence 

for this and only this model. Therefore, we used BMA to obtain estimates of effective 
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connectivity (and their modulation) that accommodate uncertainty about models 

(Stephan et al., 2010). It is not always possible to find sufficient evidence for one 

model being the optimal model. Depending on which model is declared the best 

fitting, different inferences will be made regarding the behavior of a system. BMA 

helps to resolve this ambiguity by averaging over the models, accounting for the 

model evidence in the averaging; therefore, models with a low probability will not 

contribute very much to the BMA. This BMA also incorporates Bayesian parameter 

averaging over subjects to provide robust estimates of quantitative changes in 

coupling that are weighted by our relative confidence in the 15 models considered. 

The results of the BMA for the IFG and MTG input family are shown in Figure 3.6.  

 



Chapter III 

	 89	

 

Figure 3.6. The resulting BMA of the winning model in Figure 3.5. A, The input and 
fixed connectivity of the model, subject to the input of movement. The dashed 
semicircled arrows indicate self-connections. Solid arrows indicate the endogenous 
connectivity. Straight dashed lines indicate the input into the system. B, The 
modulatory effects of increasing familiarity on the fixed connections. In all cases, the 
numerical value represents the connection strength/modulation in log scaling 
parameters.  
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Table 3.4. Results of a one sample t test for coupling parameters of endogenous 

activity of movement: endogenous connectivity  

From  

 IFG IPL MTG 

To 

IFG -0.3941 (0.0267)* 
(p<0.0001) 

0.6991 (0.0107)* 
(p<0.0001) 

_ 

IPL 0.6069 (0.0108)* 
(p<0.0001) 

-0.3510(0.0285)* 
(p<0.0001) 

0.2119 (0.0141)* 
(p<0.0001) 

MTG _ 0.2574(0.0100)* 
(p<0.0001) 

-0.3008(0.0220)* 
(p<0.0001) 

Data are the mean (SEM) for each connection. —, Not investigated. The threshold was set at 
p 0.007 (corresponding to an FDR-corrected threshold of p 0.05 for multiple 
comparisons). �*Significant connection.  

 

Table 3.5. Results of a one sample t test for coupling parameters of modulatory 

activity of movement: modulatory  

From  

 IFG IPL MTG 

To 

IFG _ -0.013 (0.005) 
(p=0.017) 

_ 

IPL -0.608 (0.0520) 
(p=0.207) 

_ -0.012 (0.003)* 
(p=0.001) 

MTG _ -0.011(0.004)* 
(p=0.005) 

_ 

Data are the mean (SEM) for each connection. —, Not investigated. The threshold was set at 
p 0.0125 (corresponding to an FDR-corrected threshold of p 0.05 for multiple 
comparisons). �*Significant connection.  

 

 Upon examination of the effects of movement on the network, the BMA 

results demonstrate that all the connections are significantly 0, supported by a one-

sample t test, shown in Table 3.4 (the use of t tests provides a way of scoring the 

standardized effects sizes in relation to intersubject variability). Beginning with the 

inputs into the network, the coupling strengths are relatively weak and inhibitory. The 
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reason for this may be that we allowed for stochastic effects, which means that the 

endogenous connectivity within the system is not reliant on a deterministic input into 

the network (Li et al., 2011). The inclusion of stochastic effects accounts for an 

unmodeled node modulating the input, meaning that the endogenous connectivity is 

not affected by weak inputs.  

 

 The endogenous connections between the nodes show us that the anatomical 

basis of our models was correct; movement reveals connections. The reciprocal 

connections between IPL and IFG appear stronger than the connections between 

MTG and IPL. It should be noted that the movement input contained videos that were 

rated as both familiar and unfamiliar, so these coupling parameters can be considered 

the average of the two polarities. Therefore, to understand these coupling strengths, 

we next investigated the modulatory effects of increasing familiarity.  

 

 The impact on the network’s modulatory connectivity from increasing 

familiarity can be seen in Figure 3.6B. These modulatory connections were then 

placed into a one-sample t test that revealed that not all significantly differed from 

zero (Table 3.5). Only the modulatory influences between MTG-IPL and between 

IPL-MTG were significantly different from zero across individuals.  

 

 The modulatory effect of increasing familiarity on the fixed connection 

reveals several noteworthy findings described here and reconciled in the Discussion. 

The first is that, when a video is rated as increasingly familiar, the connection from 

MTG to IPL is attenuated. The sign change indicates that the bottom-up connection is 

attenuated by more familiar movements, thus supporting our hypothesis and 

assumptions made by a predictive coding model. The second finding is an attenuation 

of the connection from IPL to MTG. This finding was not predicted and, as such, does 

not clearly support our hypothesis, as we would have predicted significantly 

augmented modulation in this top-down direction. However, as discussed below, this 

finding nonetheless informs our understanding of a predictive coding account of 
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action perception.  

 

3.5 Discussion  

 

 Our aim was to characterize how subjective familiarity of an observed action 

impacts AON engagement through complementary use of parametric GLM and 

effective connectivity analyses. We found that, as observed movements were rated as 

more familiar, BOLD signal in left MTG, IPL, and IFG increased. We then used 

DCM to explore effective connectivity between these regions to evaluate the 

hypothesis that, as movements are rated as increasingly familiar, the anterior 

influence (MTG è IPL è IFG), representing bottom-up, feedforward action coding, 

attenuates, whereas connectivity for posterior influence (IFG è IPL è MTG), 

representing top-down, feedback action coding, is up-regulated. DCM provided 

partial support of this hypothesis by demonstrating attenuated influence from 

connections leading to and originating from MTG. In the following, we consider these 

findings in terms of a predictive coding model of AON function and how they 

advance our understanding of the impact of familiarity on action perception.  

 

3.5.1 The impact of familiarity on the AON and the “like� me” hypothesis � 

	

 The main GLM findings show that primary motor and AON regions are 

recruited during perception and prediction of movements and that increasingly 

familiar movements are associated with concomitant increases in activity. The first 

result corroborates research demonstrating sensorimotor engagement during tasks that 

explicitly tap into prediction processes (Blakemore & Frith, 2005; Falck-Ytter et al., 

2006; Stadler et al., 2011; Cross et al., 2013). The parametric analyses reveal that 

increasingly familiar movements preferentially engage core AON regions, supporting 

the general premise of a “like me” hypothesis of AON function (Buccino et al., 2004; 

Calvo-Merino et al., 2005; Cross et al., 2006; Meltzoff, 2007; Liew et al., 2011; Press, 

2011). The parametric contrast allowed us to examine the relationship between AON 

activity and familiarity in a nonbinary fashion, thus advancing knowledge from 
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previous studies. This approach subsequently enabled examination of causal 

connectivity between core AON regions to further characterize AON contributions to 

action understanding.  

 

3.5.2 Effective connectivity  

	

 Our first effective connectivity aim was to create a feasible model space based 

on AON regions proposed previously (Keysers and Perrett, 2004). By tailoring this 

model space, we could address where movement inputted to the system and examine 

the models within this family (Penny et al., 2010). We showed inputs to both IFG and 

MTG in a reciprocally connected network. Next, we sought to identify the optimal 

model of modulation/modulatory activity (B matrix) based on these fixed 

connections. The BMS results revealed the optimal model as one where increasing 

familiarity modulates all fixed connections. By use of BMA, we found that increasing 

movement familiarity attenuates anterior influence between MTG and IPL while also 

attenuating posterior influence between IPL and MTG.  

 

 The parameter estimates (from the BMA) suggest that increasing familiarity 

causes diffuse and small reductions in effective connectivity among the three areas 

studied. The small effect sizes deserve some comment; in this analysis, we used 

stochastic DCM. In stochastic DCM, one estimates both the neuronal activity and 

effective connectivity that best explain observed responses. Generally, this provides 

smaller estimates of changes in coupling because condition-specific effects can also 

be modeled by differences in neuronal activity. Although small, our Bayesian model 

comparison suggests that familiarity-related changes in effective connectivity are 

evident in the data. The effect sizes are expressed in terms of log-scale parameters and 

can be interpreted (approximately) as proportional changes. In other words, 

familiarity induces a change of 1% of the underlying connectivity strengths. 

Furthermore, as predicted, ascending connections to IPL show a familiarity-related 

decrease greater in magnitude than the decrease in descending connections from IPL.  
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3.5.3 Predictive coding models revisited  

	

 Our findings support several assumptions made by models of action 

perception that rely on notions of predictive coding (Keysers & Perrett, 2004; Kilner 

et al., 2007a,b). These models suggest greater influence from visual to motor regions 

when an observed movement is unfamiliar. Such activity is hypothesized to be 

indicative of action representations being built in a perceptually driven, bottom-up 

manner. When an observed movement is familiar, top-down predictions should have a 

greater influence on perceptual processing at lower levels. These predictions are 

formally identical to corollary discharge (i.e., the expected consequences of an 

intended movement). This connects predictive coding accounts of action perception to 

machine learning accounts of motor control (Wolpert et al., 2003) that appeal to 

notions of corollary discharge. In the predictive coding account of action observation 

(Kilner et al., 2007a,b), the more familiar a movement, the more precise top down 

predictions become. Effectively, increasing familiarity should increase influence of 

top down predictions relative to bottom up information (which, in this model, 

originates in MTG). We therefore anticipated that more familiar actions should be 

associated with increasing influence from connections spanning posteriorly from IFG 

to IPL and IPL to MTG, and decreasing influence from connections spanning 

anteriorly from MTG to IPL and IPL to IFG.  

 

 DCM analyses partially support these hypotheses. We show that, with 

increasing familiarity, MTG exerts an attenuated influence on IPL in an anterior 

direction, as hypothesized. A similar dampening of influence from IPL to IFG with 

increasing familiarity is also observed, although this finding did not survive 

corrections for multiple comparisons. Our hypotheses concerning the influence of 

familiarity on posterior-projecting connections were not supported. Increasing action 

familiarity did not significantly up-regulate influence from IFG to IPL, as was 

expected. One possible explanation for this could be that the influence IFG exerts on 

IPL is impervious to variations in familiarity examined in the present study. Most 

crucially, and contrary to our original hypothesis, a significant attenuation of 

influence was observed in posterior connections from IPL to MTG.  
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 At first glance, this finding might appear to contradict a predictive coding 

account of action observation. However, our initial hypotheses might have been 

overly simplistic, as they did not take into account the range of excitatory and 

inhibitory influences between nodes within a predictive coding framework (Keysers 

& Gazzola, 2014). In keeping with our original hypotheses, the reason why effective 

connectivity between MTG and IPL in both directions attenuates with increasing 

familiarity could be that increasingly accurate predictions decrease demand on in- 

coming or ongoing perceptual processing. As such, the present findings illustrate a 

version of predictive coding in which outputs from, and inputs to, MTG attenuate 

with increasing familiarity, whereas reciprocal influence between parietal and 

premotor areas is less impacted by increasing action familiarity. To an extent, these 

findings support a predictive coding framework of the AON in a nuanced and subtle 

manner. The general idea that increased familiarity is associated with decreased 

prediction error, and a dampening of sensory inputs is supported by our data. 

However, the present findings do not yield clear support for more specific predictions 

concerning the concurrent upregulation of posterior-projecting connections (IFG to 

IPL and IPL to MTG) and downregulation of anterior-projecting connections (MTG 

to IPL and IPL to MTG).  

 

 An alternative framing of these DCM results is that, with increasing 

familiarity, localized representations become sufficient to perform the task at hand, 

resulting in decreased cross-node coordination within the AON (as this coordination 

becomes less necessary). Such an interpretation would be consistent with the 

univariate findings reported in the present study and others (Buccino et al., 2004; 

Calvo-Merino et al., 2005; Cross et al., 2006; Vogt et al., 2007; Shimada, 2010; Liew 

et al., 2011), which show increased activity within the individual AON nodes during 

familiar action observation. This interpretation remains speculative at this stage. To 

test this possible explanation, follow-up research could investigate observation of 

actions that cover a broader range of familiarity to determine whether the degree of 

familiarity drives the connection strengths between AON nodes, such that observation 

of highly unfamiliar actions is associated with stronger AON connections, whereas 
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observation of actions rated as highly familiar is associated with attenuated 

connections. Were this alternative theoretical framing to be supported by follow-up 

work, it would call for an updating and reconsideration of a predictive coding account 

of action perception.  

 

3.6 Conclusions 

	

 In conclusion, the present findings provide partial support for a predictive 

coding account of action observation, as well as offer novel insights into how 

familiarity modulates effective connectivity within the AON. By using participants’ 

individual, subjective ratings of familiarity, we show greater AON activity when 

movements were perceived as increasingly familiar. Through the use of effective 

connectivity analyses, we demonstrate attenuation of reciprocal connections between 

IPL and MTG with increasing familiarity and presumed decreasing prediction error. 

Although this finding is broadly in line with a predictive coding account of action 

perception (Kilner et al., 2007b), the data does not provide clear or complete support 

for this theoretical model for how familiarity should impact influence between AON 

nodes. An alternative possibility is that increased familiarity of an observed action 

results in a shift away from coordinated activity between AON nodes and toward 

more individuated processing within individual nodes. A challenge for future work is 

to further explore how familiarity modulates influence between AON regions. Of 

particular importance for future investigation is how different levels of familiarity 

impact parietal and premotor regions, as our findings less clearly demonstrate marked 

changes in effective connectivity between these two regions with increasing 

familiarity. As a whole, the present study demonstrates the utility of effective 

connectivity analyses to explore simulationist accounts of social information 

processing. 
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4 Chapter ΙV 
 

Probing the Action Observation Network response to varying levels of 

familiarity 
 

 

4.1 Abstract 
 

Watching other people move elicits engagement of a collection of sensorimotor brain 

regions collectively termed the Action Observation Network (AON). A large body of 

previous literature suggests that the AON responds more robustly when observing 

familiar compared to unfamiliar actions, and that the amplitude of AON response 

positively correlates with an observer’s familiarity with an observed movement. On 

the other hand, a growing number of studies document patterns of AON activity 

counter to these findings, whereby in some circumstances, unfamiliar actions lead to 

more AON engagement than familiar actions. In an attempt to reconcile these 

conflicting findings, some have proposed that the relationship between AON response 

amplitude and observed action familiarity is nonlinear, or quadratic, in nature. In the 

present study, we used an elaborate training intervention to probe the relationship 

between movement familiarity and AON engagement during action execution and 

action observation tasks. Participants underwent fMRI scanning while executing one 

set of guitar sequences and observing a second set of sequences. Participants then 

acquired further physical practice or observational experience with half these stimuli 

outside the scanner across 3 days. Participants then returned for a second scanning 

session identical to the first, wherein they executed and observed an equal number of 

familiar (trained) and unfamiliar (untrained) guitar sequences. Via region of interest 

analyses, we extracted activity within AON regions engaged during both scanning 

sessions, and then fit linear, quadratic and cubic regression models to these data. The 

data show evidence for linear and quadratic models, suggesting that the response 

profile within key sensorimotor brain regions associated with the AON is not solely 

linear in nature in response to familiarity. Moreover, by probing the subjective nature 
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of the prediction error signal, we show results that are consistent with a predictive 

coding account of AON engagement during action observation and execution.     

4.2 Introduction  
 

 Watching others in action provides important information about other people’s 

goals, intentions and desires. When we observe others moving around us, we can 

predict how their current and future actions might unfold, thus enabling us to respond 

appropriately to people we encounter in a social world (Blakemore & Frith, 2005). 

The observation of actions elicits activity in a network of sensorimotor brain regions 

collectively termed the Action Observation Network (AON; Cross et al., 

2009; Grafton, 2009; Keysers & Gazzola, 2009; Caspers et al., 2010). The core brain 

regions that compose the AON include occipitotemporal cortical regions associated 

with observing bodies in motion, as well as the premotor cortex and inferior parietal 

lobule. These latter two brain regions have been shown to contain so-called mirror 

neurons in the non-human primate brain (Di Pellegrino et al., 1992; Gallese et al., 

1996; Rizzolatti et al., 2001; Umilta et al., 2001), and demonstrate a similar response 

profile of engagement to observed and executed actions in the human brain (Gazzola 

& Keysers, 2009; for a review see Molenberghs, 2012). Previous literature 

demonstrates that the more familiar an observed action is, the stronger the response is 

within these core AON regions (Buccino et al., 2004; Calvo-Merino et al., 

2005; Cross et al., 2006; Vogt et al., 2007; Shimada, 2010). Moreover, we recently 

demonstrated that complex whole body movements that participants rated as more 

familiar were associated with greater AON activity compared to those movements 

rated as less familiar (Gardner et al., 2015). These magnitude-based approaches 

support experience-driven simulation accounts of action perception (Sinigaglia, 

2013), which form the foundation of the direct matching hypothesis of action 

understanding (Rizzolatti et al., 2001; Gallese & Goldman, 1998; Wolpert et al., 

2003; see Csibra, 2005 for a debate on this account). This account of action 

understanding suggests that an action’s meaning is understood via the AON 

supporting simulation of an observed action, by matching the goal or intention of 

what that movement would be if performed by the observer. In terms of familiarity, a 

linear relationship between magnitude of AON activity and familiarity would be 

consistent with this hypothesis: as familiarity increases, the simulation of how an 
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action might unfold over time becomes more accurate and resonance between an 

observer’s motor system and an observed action is maximised. This relationship can 

be seen in Figure 4.1A. 

 

 

Figure 4.1. The hypothesised relationship between familiarity and % signal change 
(BOLD signal) for both A direct matching and B predictive coding. 

 

 On the other hand, an increasing number of studies are reporting findings 

demonstrating that AON activity does not necessarily follow this linear trend of 

increasing engagement with increasing familiarity (Gazzola et al., 2007; Liew et al., 

2013; Cross et al., 2012). These studies demonstrate greater AON activity when 

participants observe actions that are unfamiliar (compared to more familiar actions), a 
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finding that appears to be at odds with a simulation-based account of AON function at 

first glance. The findings from these studies suggest that a linear relationship between 

AON activity and familiarity is likely too simplistic. In terms of the direct matching 

hypothesis, this theory would struggle to explain why an unfamiliar action that is not 

in the observer’s repertoire would elicit greater AON activity (Figure 4.1A). 

Predictive coding models of AON function (Keysers & Perrett, 2004; Kilner et al., 

2007a,b; Gazzola & Keysers, 2009; Schippers & Keysers, 2011), predicated on the 

use of perceptuomotor maps to predict and interpret observed actions (Lamm et al., 

2007; Schubotz, 2007; Urgesi et al., 2010) may potentially help to resolve these 

seemingly discrepant findings concerning the relationship between familiarity of an 

observed movement and engagement of sensorimotor cortices. This framework 

proposes a Bayesian comparison of predicted and observed actions, creating a 

reciprocally modulated network comprising premotor, inferior parietal and posterior 

temporal cortices. This network aims to minimise the differences between observed 

and predicted actions. When observing a less familiar action, predictions (feedback) 

are lacking or are under informed, and thus do not match the observed actions 

(feedforward), which equates to high prediction error. This should manifest as 

increased AON engagement for highly unfamiliar actions, as the influence of 

feedforward/perceptual activity is heavily relied upon. When viewing an action that is 

familiar, however, the predictions generated by the network are more precise, and 

thus minimises prediction error. The minimising of prediction error can also manifest 

as increased AON engagement, as predictions projected posteriorly are stronger than 

when prediction error is higher. The reciprocal nature of this framework allows for 

the explanation of higher AON engagement for both familiar and unfamiliar actions 

(illustrated in Figure 4.1B). One possibility that arises from this explanation is that 

this predictive framework is adaptive and dynamic. During the trough of the quadratic 

function (moderate familiarity), the AON would be both successfully and 

unsuccessfully attempting to minimise prediction error while it attempts to understand 

and predict the action, thus a smooth curve would not best explain this relationship. A 

cubic function would better fit this potential explanation, while still supporting the 

predictive coding account. To our knowledge, these two theoretical framings of how 

the AON is modulated by familiarity have not yet been directly compared with 

empirical evidence.    
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 In the current study, we aimed to address two distinct questions relating to the 

relationship between familiarity and AON engagement. First, we aimed to compare 

the direct matching hypothesis (linear model) with the predictive coding account (non 

linear or quadratic model), in terms of which model of AON engagement best 

explains the impact of varying levels of familiarity.  To test whether the response of 

the AON to varying levels of familiarity is either linear or quadratic, we combined an 

intensive training intervention, pre- and post-training fMRI scans, and a region of 

interest-led analytical approach (similar in methodology to that of Mattavelli et al., 

2012). Our task involved two types of action-related task: action observation and 

action execution. In the observation condition, participants observed an expert 

musician playing short musical sequences on a bass guitar, after which participants 

responded to an attentional control question. In the execution condition, the 

participants played a different set of short musical sequences in the scanner on a 

scanner-safe bass guitar. The use of a training paradigm enabled us to establish a clear 

distinction between familiar and unfamiliar stimuli, and the use of execution and 

observation conditions facilitates closer comparison and scrutiny of how two kinds of 

experience shape AON responses. The regions of interest were identified from an 

action observation and action execution vs. implicit baseline contrast. For both 

conditions, these regions were taken from both days of scanning, for all blocks, to 

which a linear regression model, a quadratic regression model and a cubic regression 

model were fitted for each region, for each run and for every participant. According to 

the direct matching hypothesis (Rizzolatti et al., 2001; Gallese & Goldman, 1998; 

Wolpert et al., 2003), we should see that when the blocks were ordered by familiarity, 

the response in these regions should increase linearly in magnitude (Figure 4.1A). 

Alternatively, a quadratic or cubic relationship between familiarity and BOLD signal 

would provide support for the predictive coding account (Figure 4.1B).  

 

 

 Our second aim was to evaluate the internal consistency of our findings. We 

recently demonstrated that ratings of familiarity provide a sensitive measure of 

familiarity (Gardner et al., 2015). Therefore, we took ratings of familiarity by each 

participant and used these as the independent variable in the regression models, as an 
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alternative to simply the number of times participants were exposed to each musical 

sequence. This approach enabled us to establish the extent to which findings from our 

first approach (using objective measures of exposure/familiarity) are replicated via 

subjective ratings of familiarity reported by each participant for each musical 

sequence.  

 

 

4.3 Materials and methods 

	

4.3.1 Participants 

 

Twenty-two healthy young adult volunteers recruited from the local University 

community took part in the experiment and received £20 in exchange for their time. 

Two volunteers were excluded from the final sample due to excessive head motion 

during scanning. The final sample comprised of 20 volunteers (9 males, M_age = 

20.60 years, SD = 1.73). All participants had normal or corrected to normal vision 

with no history of neurological illness. All participants were right-handed and 

required to play a right-handed guitar in the scanner. Participants were brought to the 

lab prior to scanning to ensure that they could play the instrument in the manner 

required inside the scanner bore, also to ensure that all were guitar novices. The study 

was approved and conducted following the guidelines of the Ethics Committee of the 

School of Psychology at Bangor University and the Bangor Imaging Unit. All 

participants provided written informed consent prior to their participation. 

  

4.3.2 Stimuli & Apparatus 

	

4.3.2.1 Sequences 

 

We chose 16 sequences from the computer game Rocksmith® (Ubisoft, 

2014), lasting an average of 15.8s (SD = 2.37s). These sequences were excerpts taken 

from songs initially chosen due to their lack of lyrical content. This restriction was 

selected so participants would not associate any particular action sequence with lyrics. 



Chapter IV 

	 103	

The sequences were also matched on the difficulty level assigned by Rocksmith®. 

Rocksmith® assigns difficulty level via an algorithm that assesses song speed and the 

number of notes to be played within the time window (the difficulty level is visible at 

the top of Figure 4.2). To ensure that difficulty levels were matched as closely as 

possible across all stimuli, the number of notes to be played and the length of the 

sequences were matched, as were beats per minute for the individual song excerpts. In 

addition, the inclusion criteria for these sequences required that notes fell within a fret 

range of 1-7 and string range of 1-3. This restriction ensured that participants would 

not have to move their heads to identify frets during scanning, while at the same time 

maintaining a level of difficulty that would challenge participants throughout the 

training period. Furthermore, we also excluded technical guitar playing movements 

such as “hammering” and “sliding” so that the actions required would be accessible to 

novices. Finally, we matched the sequences on mean amount of motion energy 

displayed in each video (see Bobick, 1997; Schippers et al., 2010; Cross et al., 2012), 

to ensure gross differences in the amount of motion displayed in individual sequence 

videos did not contribute to basic visual differences between stimuli or training 

conditions.  

 

4.3.2.2 Rocksmith® Guitar Task 

 

Shown in Figure 4.2 is a screenshot of the gameplay from Rocksmith® for the 

sequences that were physically executed (Panel A) and those that were observed 

(Panel B). The horizontal coloured lines at the foot of the screen correspond to the 

strings of the guitar being played. We used a bass guitar for this study as it has fewer 

strings than a standard electrical guitar (4 vs. 6) and at a basic level is generally 

considered easier to learn to play. These coloured strings are illustrated from a first 

person view, as if one is looking through the back of the fretboard of the guitar (i.e., 

when holding the guitar, the red string corresponds to the top string, green the second 

string from the top, and so on).  
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 Figure 4.2. A still video frame example of the stimuli used in the observation 
condition A and execution condition B. The hand and fretboard of the musician 
playing the guitar in the centre of A is superimposed on the actual game play. 
 

The second aspect of the gameplay to be explained is the translucent blue 

“conveyor belt” of notes seen in the centre of the screen. The numbers on this 

conveyor correspond to the fret number on the guitar itself. The coloured rectangles 

are critical for the participant to attend to in order to make the correct movement. The 

colour of the rectangle corresponds to the string to be played with the right hand, and 

the number fret it appears on corresponds to which fret should be pressed down with 

the left hand. As the rectangles and numbers on the conveyor move towards the fore 

of the screen, the rectangles on the conveyor rotate 90 degrees from vertical to 

horizontal. When they reach the horizontal position, they contact the strings at the 

A 

B 
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bottom of the screen, and this is when the participant must play the appropriate note. 

If correctly executed, the rectangle illuminates slightly but if missed, the word “miss” 

appears on the string and fret that should have been played and the counter located at 

the upper right corner of the screen is adjusted accordingly. To obtain a perfect score, 

the correct fret on the correct string had to be plucked within a ± 250ms window of 

the onset of the note.    

 

4.3.2.3 Observation Task 

 

Figure 4.3 shows a schematic of the observation task. Participants first viewed 

a brief fixation cross, followed by a video of an expert musician playing one song 

excerpt. The musician performs all of the songs without fault, thus providing a precise 

template for participants to observe.  
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Figure 4.3. A schematic of one observation trial. The task was to attend to the hand 
and respond to whether there was a palming of the strings. 
 

In order to ensure that participants paid close attention to the actions 

performed by the expert musician in the observation condition, an attentional control 

task was implemented whereby participants had to identify whether the musician 

palmed the strings during each stimulus video. A palming of the strings occurs when 

the musician removes her fingers from the fretboard, extends them vertically, and 

places the palm of her hand over the frets. This action was performed quickly as the 

musician then immediately continued to play the correct notes without stopping and 

without error. At the end of each trial, participants were asked whether a palming 

action was seen in the last sequence, and were required to make their response by 

plucking one of two strings with the right index finger. To ensure there was no 

confusion about what was required of participants during the observation task, the 

concept of palming the strings was explained and demonstrated before the experiment 

began.  
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4.3.2.4 Execution Task 

 

In the execution condition, Figure 4.2 (Panel B), participants were instructed to 

play along with the song to the best of their ability. The instruction was also given for 

participants to simply move on to the next note if they missed one note, to ensure 

participants did not move excessively when trying to compensate for an error. After 

each sequence was played, the gameplay presented a count of how many notes were 

missed, providing feedback on performance.  

 

4.3.3 Training procedure 

	
The study began with all participants taking part in an fMRI scanning session 

(the first column of Figure 4.4), wherein they observed eight sequences and executed 

eight different sequences.  Participants played or watched each of the eight sequences 

from the different training conditions twice per run, and completed two runs of both 

kinds of training on each day of scanning. All the stimuli on the first day are labelled 

unfamiliar, as they were all novel to the participants. The order of the stimuli, which 

set was observed and executed, and the order of conditions were counterbalanced 

across participants.   
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Figure 4.4. The timeline of both training and test days for both conditions. The 
gradient of colour illustrates the change in familiarity due to training. The Retest (far 
right column) always occurred after Scan Session 2, although not the day immediately 
after (between 14 and 21 days post Scan Session 2).  
 

Days 2 through 4 of testing were the training phase (green boxes in Figure 

4.4). During these days, participants were invited to the lab and asked to perform the 

same tasks as those they completed in the scanner, on precisely half of the execution 

sequences and half of the observation sequences. The four execution sequences and 

four observation sequences were performed or observed four times per training day, 

and the order of practice was counterbalanced across condition and sequences. The 

training set up in the laboratory was designed to match that of the scanner as closely 

as possible. Due to the fragile nature of the scanner safe guitar, a standard 4-stringed 

bass guitar was used in the training sessions to eliminate risk of damage to the 

equipment. Participants were required to lay on a table with the guitar placed over 

their midriff – similar to how the guitar was positioned in the scanner, and 

participants viewed the 24-inch iMac screen through prism glasses (this can be seen in 

Figure 4.5). Stimulus presentation and response collection were performed using 

Psychophysics Toolbox (v3) via MATLAB R2015a (MathWorks). The instruction 

was also given to keep movement to a minimum (for example, no tapping the guitar 

to the beat of the song), and the researchers monitored this. During the observation 

condition, participants were asked to rest their left hand over the frets so that there 

was no possibility that they could move their hand along with the musician’s, 
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ensuring that any learning was due to observation alone. During the execution 

condition, participants were asked to play the songs as accurately as they could.  
 

 

Figure 4.5. The setup for the training period. This setup was designed so that it 
matched the fMRI setup as accurately as possible. N.B. The guitar was held like a 
double bass, with the neck of the guitar at 30 degrees, the guitar is held at 90 degrees 
above for illustrative purposes only. 
 

On the fifth day of testing, participants returned to the scanner where they 

completed an identical scanning protocol to Day 1, performing or observing both 
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trained and untrained sequences. Following the second scanning session, participants 

were invited back to the laboratory for a sixth and final day of testing, wherein they 

were asked to perform all the songs from the observation condition (including the four 

observationally trained and the four untrained songs; Retest, Figure 4.4).  Due to 

scheduling complications, not all participants were able to attend this final testing 

session, and we thus report data from this final day of testing for the 15 participants 

who were able to return for this final session.   

 

4.3.4 Familiarity rating 

	
After the second scanning session, participants came out of the scanner and 

performed a rating task on the stimuli. Participants were asked to observe videos of 

the expert guitarist playing each sequence and to rate on a Likert scale of 1-9 on how 

familiar they were with each sequence (with anchors 1 = highly unfamiliar and 9 = 

highly familiar; the identical scale to that used by Gardner et al., 2015). Participants 

were asked to use the whole scale and to respond as quickly as they could.    

 

4.3.5 Neuroimaging procedure & parameters 

	

Each participant completed two identical fMRI sessions on days 1 and 5 of the 

experiment that followed an event related design. Each scanning session featured two 

action execution runs and two action observation runs, presented in a counterbalanced 

order across participants and across scanning sessions. All eight excerpts were 

experienced twice per run. Each observation run lasted an average of 5 minutes (range 

= 5.07 - 5.70 minutes), and each action execution run lasted 11 minutes (range = 

10.97 - 11.80 minutes). This difference occurred due to the buffering varying lengths 

of the different sequences and loading times, two factors that were not modelled 

within a trial nor used in matching sequence length. For the observation trials (shown 

in Figure 4.3), at the start a fixation cross was shown for 1.8s. This was followed by 

the video clip of the agent playing along with the excerpt (audio was included here 

and during the training period). After each clip, a black screen was presented with the 

question “did the musician seen in the video make a palming action over the strings?” 

The question screen was displayed for 2s before moving on to the next trial. 
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Participants were required to respond to the question within that 2s window by 

plucking the appropriate string to denote their answer. During the action execution 

runs, participants first saw a brief interval where the song was being loaded. This 

aspect was unavoidable as we wanted to gain actual response accuracy via the game, 

so had to load each song as if it were selected by the user (the transition between 

menu and sequence to play was automated via a MATLAB script, and the entire load 

time before each sequence ranged between 19.02 and 41.45 seconds). Once the 

appropriate sequence was selected, there was a buffer supplied via the game so that 

there was an adequate amount of time before the participant began performing the 

sequence, allowing for finger position adjustment before each execution sequence 

began. After playing along with each sequence, participants’ accuracy scores were 

displayed for participants to see before returning to the menu screen to begin the next 

trial.   

 

Stimulus presentation and response collection were performed using 

Psychophysics Toolbox (version 3) using MATLAB R2015a (MathWorks) run via a 

MacBook Pro laptop computer. The stimuli were presented on a 24-inch LCD 

BOLDScreen (Cambridge Research Systems), which was visible to the participant via 

a mirror mounted on the head coil. Participants listened to the song excerpts through 

Phillips MR-compatible headphones.  

 

Participants were given a MR-compatible bass guitar to make their responses 

during the execution and observation runs. The guitar was a full-length bass guitar, 

which presented some challenges for participants to manage whilst in the scanner. 

Participants were positioned into the scanner bore slowly and shown the best way to 

hold the bass guitar so as not to damage the guitar or the head coil. The guitar worked 

via a piezo-pickup embedded in the head of the guitar, under the strings (which were 

made of nylon). The guitar’s tuning pegs were manufactured via 3D printing using a 

glass/plastic alloy. The output of the guitar was passed along a fibre optic cable from 

the scanner room to the control room where it was amplified and fed into the 

MacBook Pro running MATLAB. Offline, the responses for the observation condition 
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were filtered to remove any RF interference created by the scanner. The gameplay 

applied filtering for the execution condition so that the note being played could be 

heard by the participant. 

 

Data acquisition was conducted at the Bangor Imaging Unit at Bangor 

University, Wales. Functional images were acquired on a 3.0T Phillips MRI scanner 

using a SENSE phased-array 32-channel head coil. Functional images were acquired 

covering the whole brain using an echo-planar imaging (EPI) sequence (35 axial 

slices, ascending slice acquisition, repetition time = 2000 ms, echo time = 30ms, 90° 

flip angle, matrix = 64 × 64, slice thickness: 3 × 3 × 3 mm, field of view (FOV): 224 

mm). Before the functional run, 196 two-dimensional anatomical images (256 × 256 

pixel matrix, T1-weighted) were obtained for normalization ROI selection and 

manipulation 

 

4.3.6 fMRI data analysis 

 

The total number of functional scans collected for the observation runs ranged 

between 156 and 178, and between 316 and 340 scans for each execution run. The 

number of scans for each subject was identical across scanning days. The data was 

analyzed using Statistical Parametric Mapping (SPM12: Wellcome Trust Centre for 

Neuroimaging, London; Friston, 2007) and implemented using MATLAB R2015a 

(MathWorks). The data was first realigned and then slice-time corrected and 

preliminarily preorientated within standard stereotaxic space as defined by the MNI 

(Friston, 2007). This preorientation allowed for better spatial normalization to the 

MNI template. Participants' EPI images were then coregistered to their T1 anatomical 

scans, which were then spatially normalized to standard stereotaxic space. The 

spatially normalized EPI images were filtered using a Gaussian kernel of 8 mm full-

width at half maximum in the x, y, and z axes. For the observational runs, the design 

matrix was fitted for each subject with a single regressor for the familiar stimuli, a 

single regressor for the unfamiliar stimuli and a single regressor for the fixation and 

responses. For the execution runs, this setup was the same with the inclusion of a 
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loading period rather than the fixation and response regressor. The 4 runs (2 

observation, 2 execution) were placed into the same design matrix, enabling us to 

create a total of two design matrices per participant; one pre- and one post-training. A 

whole brain analysis was performed for all analyses, p < 0.001, k = 10. Only clusters 

that survived FWE correction were considered for further ROI analysis. All brain 

regions that emerged from analyses were identified via the Anatomy Toolbox 

(Eickhoff et al., 2007).  

 

The main neuroimaging analyses were designed to achieve two distinct 

objectives: 

 

4.3.7 Imaging Objective 1: Evaluate shape of regression function within ROIs 

based on objective measure of familiarity 

	

The first imaging objective was designed to compare the direct matching 

hypothesis with the predictive coding account, in terms of which model of AON 

engagement encapsulates varying levels of familiarity best for our task. The steps in 

this process involved first identifying ROIs and then fitting the regression models.  

 

4.3.7.1  Identification of ROIs 

	

 ROIs were identified and extracted from the final observation and execution 

runs from the post-training scan session. The contrast used to identify these ROIs was 

observed and executed sequences > implicit baseline. This enabled us to identify 

regions that were active when viewing both familiar and unfamiliar actions (as the 

final run contained trained and untrained sequences for both the observation and 

execution conditions), as well as active for both action observation and execution. 

The clusters were identified with a threshold of p < 0.001 (uncorrected) and k = 10 

voxels at the group level. The same threshold was then used to identify regions for 

each participant for each condition and for each run of the remaining three runs (two 

runs from the pre-training session and the first run from the post-training session; split 

by familiarity, creating six runs). The MARSBAR toolbox (Brett et al., 2002) was 
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then used to extract the time series for each region and for each subject, which was 

then transformed into percent signal change. ROI analyses for the observation 

condition and execution condition were performed independently. The resulting 

percent signal change values for each run and condition were then used to address the 

main hypotheses in the study.   

 

4.3.7.2 Fitting regression models across varying levels of familiarity 

	

 The first aim of this study was to address whether the AON’s response to 

varying levels of familiarity is best captured by a linear (direct matching) or 

quadratic/cubic (predictive coding) regression model. To address this, we fitted linear, 

quadratic and cubic regression models to the percent signal change within each ROI, 

following the procedures reported by Mattavelli et al. (2012).  

 

 The runs were first ordered in terms of familiarity. At the pre-training scan 

session, all stimuli were unfamiliar, yet for clarity, we label them here as stimuli that 

will or will not be practiced. The 6 blocks were therefore ordered as follows, moving 

from least familiar to most: Session1_Un_Run1 (first scan session, sequences to 

remain untrained, first run), Session1_Fam_Run1 (first scan session, sequences to be 

trained, first run), Session1_Un_Run2 (first scan session, sequences to remain 

untrained, second run), Session1_Fam_Run2 (first scan session, sequences to be 

trained, second run), Session2_Un_Run1, Session2_Fam_Run1. Appropriate 

weighting was applied to the stimuli so that the differences between them were 

comparable to that of the amount of training (to be) undertaken. For example, the 

difference between Session2_Un_Run1 and Session2_Fam_Run1 was 12 as the 

former was only viewed three times over the course of the experiment, whereas the 

latter was viewed 12. This weighting allowed for a better approximation of the level 

of familiarity of the runs, thus facilitating a more accurate fit of the regression 

equations. For each participant, for each training condition, a linear regression and a 

quadratic regression curve were fitted to each region. For each region, and each 

training condition, three R-squared values were taken: one indicating the fit of the 

linear regression model, the second indicating the fit of the quadratic regression 

model and the third the fit of the cubic regression model. 
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 One potential limitation of this approach is that the complex models would 

explain more variance.  To address this, the model comparison technique of Akaike 

Information Criteria (AIC: Akaike, 1987) was adopted. This method penalizes the 

more complex models, therefore controlling for overfitting. To calculate AIC with R-

squared values, the following formula was used (Kaps & Lamberson, 2004); 

 

AIC = n log( SS RES / n) + 2 p 
 

where SS RES is 1- R-squared, n is the number of observations (6), and p is the 

number of parameters (linear = 1, quadratic = 2, cubic = 3). As a small sample was 

used, AICc was calculated whereby; 

 

AICc = AIC + ((2p(p+1)/n-p-1)) 

 

From this, a Akaike weights (wi; Burnham & Anderson, 2002) were calculated, 

showing the probability that a given model is the best model given the data set; 

 

Δi AICc = AICi – min AIC 

 

Wi = (exp(0.5Δi AICc)/ (Σm
m=1(exp(0.5Δi AICc) 

 

where m is a given model. With this statistics, we are able to see the probability that 

each model is the best model, for each region and for each subject. We then 

implemented paired t-tests to compare the probability of each model being the best 

model in a stepwise manner, for each region (correcting for multiple comparisons). 

Therefore, the differences between linear and quadratic and quadratic and cubic were 

investigated. The difference between linear and cubic models was not compared as we 

wished to see the cumulative influence of each parameter. As these models were 

nested, we assume that the null hypothesis is that the relationship is linear if no 

significance difference between the models is found.  
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4.3.8 Imaging Objective 2: Evaluate shape of regression function within ROIs 

based on subjective measure of familiarity 

	

 The aim of the second set of imaging analyses was to evaluate the internal 

consistency of our findings concerning objective and subjective measures of 

familiarity. These analyses were performed on the first run of the second scan session 

only. The rationale behind this approach was that the subjective ratings should only 

be meaningful from the second scanning session, once participants have undergone 

the training period. The ROIs were extracted as stated above and participants’ 

individual subjective ratings for each sequence were used as the independent variable 

in the regression models, rather than exposure. Sequences were then pooled across 

ratings. One participant was excluded from the execution condition due to only 

having used three rating values (out of the 1 – 9 rating scale, see section 4.3.4).  

 

4.4 Results 

	

4.4.1 Behavioural results 

	

For the observation condition, the accuracy score related to percent correct in 

terms of whether there was a palming of the strings or not (coded by the 

experimenter). For the execution condition, Rocksmith® provided a count of how 

many notes were missed. This was then transformed into a percentage of notes 

correctly played and used for analysis. The same protocol was used for the training 

and scanning sessions.  

 

4.4.1.1 Observation Condition 

 

 The observation responses for the training sessions (see Figure 4.7A) showed 

that for all training days, the responses were significantly greater than chance (50%): 

training day 1 (M = 82.29, SE = 3.20); t(19) = 10.07, p < 0.001; training day 2 (M = 

81.77, SE = 2.31); t(19) = 13.75, p < 0.001; and training day 3 (M = 85.21, SE = 

2.29); t(19) = 15.36, p < 0.001). These results suggest that on each day of training, 
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participants could accurately identify whether there was palming of the strings, 

confirming close attention was paid to the hand actions performed in the stimuli 

during the observation condition.   

 

To assess the responses made to the observation task (n.b. df reflects the fact 

that not all data was recoverable) during the scanning sessions (see Figure 4.7B), a 

2x2 ANOVA was run with factors Scan Session (Session 1/pre-training vs. Session 

2/post-training) and Familiarity (familiar vs. unfamiliar). A main effect of familiarity 

emerged, F(1, 16) = 114.79, p < 0.001, such that the average accuracy of the familiar 

stimuli (M = 80.94, SE = 3.03) was greater than the unfamiliar stimuli (M = 63.06, SE 

= 3.98). No main effect of scanning session was found, however, there was an 

interaction between scanning session and familiarity, F(1, 16) = 114.79, p = 0.044. 

Post hoc tests revealed that this interaction arises due to the significant differences 

between the scanning sessions, with a greater difference on accuracy for the 

observation task between familiar and unfamiliar sequences at scanning session 2 (p = 

0.047); suggesting that the time spent observationally training on a subset of 

sequences resulted in superior performance for recognising the palming action for the 

trained stimuli only during the post-training scan session.  
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Figure 4.7. Accuracy scores (%) for the observation condition for A, the training 
period and B, the scanning sessions. The dotted line denotes chance (50%). *** p < 
0.001. Bonferroni correction for multiple comparisons applied; error bars represent 
the standard error of the mean.   
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A subsample of 15 participants returned to the laboratory after completing both 

fMRI sessions and the training sessions to perform those stimuli which were only 

observed, never executed, in order to get an objective measure of how much 

participants actually learned via observation (results illustrated in Figure 4.8). This 

follow-up test indicated that participants could play the observed sequences 

significantly better than those that remained untrained; t(14) = 5.782, p < 0.001. This 

result suggests that participants did indeed learn to some degree how to perform those 

sequences that were only observed during the training period.  

 

Figure 4.8. Retest results of the guitar sequences that were observed throughout the 
training process and untrained sequences from the observation condition. Accuracy is 
the % of notes hit. **p < 0.001; error bars represent the standard error of the mean.   
 

4.4.1.2 Execution Condition 

	

For the execution condition, a repeated measures ANOVA revealed a 

significant difference in participants’ ability to play the guitar riffs across training 

days; F (2,42) = 40.00, p < 0.001 (Figure 4.9A). Further analysis revealed that a 
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0.022). These differences indicate that accuracy significantly improved across training 

days, thus demonstrating clear learning induced by the RockSmith® guitar playing 

task. 

 

The execution scores achieved during scanning are illustrated in Figure 4.9B. 

These scores were subjected to a 2x2x2 ANOVA with factors Scan Session (Session 

1/pre-training vs. Session 2/post-training), Run (Run 1 vs. Run 2), and Familiarity 

(familiar vs. unfamiliar). A main effect of scan session emerged, F(1, 21) = 68.78, p < 

0.001, such that the average performance accuracy at scan session 2 (M = 55.96, SE = 

2.81) was greater than that at scan session 1 (M = 33.12, SE = 2.27). There was also a 

main effect of run, F(1, 21)= 20.02, p < 0.001, indicating that accuracy in the second 

run of each scan session (M = 47.37, SE = 2.33) was better than the first run (M = 

41.70, SE = 2.14). A main effect of familiarity also emerged, F(1, 21) = 30.41, p < 

0.001, indicating that accuracy was better for familiar (to-be-trained/trained; M = 

48.25, SE = 1.99) compared to unfamiliar excerpts (to remain untrained/untrained; M 

= 40.82, SE = 2.49).  
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Figure 4.9. Accuracy scores (%) for the execution condition for A, the training period 
and B, the scanning sessions. Gradient bars indicate parentheses in legend. *** p < 
0.001, ** p <  0.01. Bonferroni correction for multiple comparisons applied; error 
bars represent the standard errors of the mean.     
 

In terms of interactions, a significant interaction emerged between familiarity 

and scan session, F(1, 21) = 22.79, p < 0.001, indicating that differences in 

performance accuracy for unfamiliar compared to familiar excerpts increased as a 

function of training. A significant interaction between familiarity and run was also 

present, F(1, 21) = 5.02, p = 0.036, suggesting that some learning occurred across the 

runs (regardless of scanning session), driven by the unfamiliar excerpts showing more 

marked improvements in performance in the second run compared to the first run of 

each scanning session. No significant interaction between session and run was found, 

nor was a 3-way interaction between session, run, and familiarity; all p values > 0.05. 

 

4.4.2 fMRI Results  

	

4.4.2.1 ROI Identification 

	

In order to identify regions of interest with the action observation network, we 

report a single random effects contrast from the second run of the post-training scan 

session: familiar and unfamiliar execution and observation vs. implicit baseline. 
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Figure 4.10. Whole brain group analysis Session 2 Run 2 familiar and unfamiliar 
execution and observation vs. implicit baseline. All p values < 0.0001 (uncorrected), 
K = 10 voxels. 
 

The ROI contrast of execution and observation vs. implicit baseline revealed 

widespread engagement of AON regions (See Table 4.1 for a full list of regions). 

Only cluster corrected regions (denoted in bold in the table) were used for later 

analysis.  The threshold of p < 0.001 (uncorrected) revealed two cluster-corrected 

regions, R IFG & R MOG (see supplementary materials). Further examination 

revealed that the R MOG cluster extended over 8000 voxels, therefore the threshold 

was elevated to p < 0.05 (FWE-corrected) to enable investigation of cluster corrected 

regions within this larger cluster. From the p < 0.05 (FWE-corrected) threshold, 

Bilateral MOG, Left SmG, R STG, L PMd and R AG were identified. In addition to 

these six regions, R IFG was also considered for all subsequent ROI analyses.  
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Table 4.1. Regions associated with observation & execution activity. 

Anatomical 
region BA 

MNI 
Coordinates 

 
X         Y          

Z 

Putative 
functional 

name 

T 
value 

Cluster 
size 

PFWE 
corrected 

P 
p < 0.05 FWE corrected         

R Middle Occipital Gyrus 18 36 -85 1 MOG 10.91 468 0.000 
   R Middle temporal Gyrus 37 48 -70 1 MTG 10.04   
   R Middle Occipital Gyrus 19 33 -85 10 pFG 9.69   

L Middle Occipital Gyrus 18 -
30 -85 7 MOG 10.71 237 0.000 

   L Middle Occipital Gyrus 19 
-

27 -88 16 pFG 9.01   

   L Middle Occipital Gyrus 19 
-

39 -73 4 EBA 8.85   

L SupraMarginal Gyrus 40 -
51 -34 34 SmG 8.65 33 0.000 

   L Inferior Parietal Cortex 40/1 -
54 -22 25 IPC 7.44   

R Superior Temporal 
Gyrus 22 63 -34 16 STG 8.41 50 0.000 

L Precentral Gyrus 6 -
24 -10 64 PMd 7.89 10 0.001 

R Angular Gyrus 39/7 30 -49 37 AG 7.17 14 0.000 
   R Angular Gyrus 39 33 -58 40 AG 7.02   
Bold indicates cluster corrected regions. MOG = Middle Occipital Gyrus, MTG = Middle 
Temporal Gyrus, pFG = Posterior Fusiform Gyrus, EBA = Extrastriate Body Area, SmG = 
SupraMarginal Gyrus, IPC = Inferior Parietal Cortex, STG = Superior Temporal Gyrus, PMd 
= Dorsal Premotor Cortex, AG = Angular Gyrus. 
 

4.4.2.2 AON response profile to varying levels of familiarity: Testing the linear 

(direct matching) vs. quadratic/cubic (predictive coding) accounts 

	

Figure 4.11 shows the mean percent signal change for each region of interest. 

At the group level, quadratic and cubic patterns of response amplitude in response to 

familiarity generally emerge across the regions. To assess which pattern is present in 

all participants, a linear regression, quadratic regression and cubic regression were 

fitted to each region for each participant. The average R-squared values are shown in 

Figure 4.12. 
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Figure 4.11. Response profiles within each ROI, expressed as percent signal change 
over familiarity. A illustrates the results of the observation condition and B the 
execution; error bars represent the standard errors of the mean. MOG = Middle 
Occipital Gyrus, PMd = Dorsal Premotor Cortex, SmG = SupraMarginal Gyrus, AG = 
Angular Gyrus, STG = Superior Temporal Gyrus, IFG = Inferior Frontal Gyrus. 
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Figure 4.12. R-squared values for the linear, quadratic and cubic regressions for each 
ROI, for both observation A, and execution B. Error bars represent the standard error 
of the mean. MOG = Middle Occipital Gyrus, PMd = Dorsal Premotor Cortex, SmG 
= SupraMarginal Gyrus, AG = Angular Gyrus, STG = Superior Temporal Gyrus, IFG 
= Inferior Frontal Gyrus. 
	
	
 As shown in Figure 4.12 A, quadratic and cubic regression models appear to 

fit the data better than a linear model, for all seven ROI’s for the observation 

condition. This finding is also confirmed in the execution condition, shown in Figure 

4.12 B. The limitation of more complex models overfitting the data can be seen in 

both conditions with the R STG. We see here that the linear model has an R-squared 

value of .057, which is objectively large. However, we see that the quadratic and 

cubic models both better fit the data, yet this could be that the additional parameters 

fit the data slightly better. This finding supports the use of a model comparison 

technique, which penalizes more complex models.	

	

Individual R-squared values were then taken and a weighted AIC value (Wi) 

was calculated for each model, for each ROI. The resulting Wi (shown in Figure 4.13) 

for each model was compared via paired t-tests. These paired t-tests were evaluated 

with a Bonferroni adjusted alpha level of p < 0.025.  
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Figure 4.13. Wi values for the linear, quadratic and cubic regressions for each ROI, 
for both observation A, and execution B. * p<0.05, ** p<0.01, *** p<0.001. Error 
bars represent the standard error of the mean. MOG = Middle Occipital Gyrus, PMd = 
Dorsal Premotor Cortex, SmG = SupraMarginal Gyrus, AG = Angular Gyrus, STG = 
Superior Temporal Gyrus, IFG = Inferior Frontal Gyrus. 
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   As shown in Figure 4.13 A, a clear trend exists when observing actions: the 

more complex the model, the greater Wi. In L SmG, there is not significant difference 

between linear and quadratic models; t(19) = -1.957, p=0.065, nor between quadratic 

and cubic models, t(19) = -0.921, p=0.369. In R AG, there is not significant difference 

between linear and quadratic models; t(19) = -0.569, p=0.576, nor between quadratic 

and cubic models, t(19) = -1.804, p=0.087. In R STG, there is not significant 

difference between linear and quadratic models; t(19) = -0.427, p=0.674, nor between 

quadratic and cubic models, t(19) = -1.455, p=0.162. These results suggest that there 

is no difference between the models for these regions, suggesting that in L SmG, R 

AG and R STG, the relationship between familiarity and AON engagement is linear. 

In L MOG, there is not significant difference between linear and quadratic models; 

t(19) = -1.931, p=0.069, there is a difference between quadratic and cubic models, 

t(19) = -3.109, p=0.006. In R MOG, there is not significant difference between linear 

and quadratic models; t(19) = -0.846, p=0.408, there is a difference between quadratic 

and cubic models, t(19) = -3.203, p=0.005. These results suggest that there is no 

difference linear and quadratic models, however, there is a difference between 

quadratic and cubic terms. This suggests that for L & R MOG, the relationship 

between familiarity and AON engagement is cubic. In L PMd, there is a difference 

between linear and quadratic models; t(19) = -3.118, p=0.006, yet there is not a 

significant difference between quadratic and cubic models; t(19) = -1.088, p=0.290. 

In R IFG, there is a difference between linear and quadratic models; t(19) = -2.898, 

p=0.009, yet there is not a significant difference between quadratic and cubic models; 

t(19) = -2.117, p=0.048. These results suggest that there is a difference between linear 

and quadratic models, yet no difference between quadratic and cubic models. This 

suggests that the cubic function does not significantly explain than the quadratic 

model, which is significantly more accurate than the linear model; indicating that for 

L PMd & R IFG, there is a quadratic relationship between familiarity and AON 

engagement for the observation of actions.  

 

 As shown in Figure 4.13 B, a clear trend exists when executing actions: the 

quadratic model has greater Wi than linear and cubic models. In R AG, there is not 

significant difference between linear and quadratic models; t(19) = -1.021, p=0.320, 

nor between quadratic and cubic models, t(19) = 1.432, p=0.168. In R IFG, there is 
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not a difference between linear and quadratic models; t(19) = -1.621, p=0.121, yet 

there is not a significant difference between quadratic and cubic models; t(19) = 

1.862, p=0.078. In R STG, there is not significant difference between linear and 

quadratic models; t(19) = -0.730, p=0.474, nor between quadratic and cubic models, 

t(19) = 0.177, p=0.861. These results suggest that there is no difference between the 

models for these regions, suggesting that in R AG, R IFG and R STG, the relationship 

between familiarity and AON engagement for the execution of actions is linear. 

Interestingly, in L MOG, there is not significant difference between linear and 

quadratic models; t(19) = -2.383, p=0.028, there is a difference between quadratic and 

cubic models, t(19) = 1.098, p<0.001. In L SmG, there is not significant difference 

between linear and quadratic models; t(19) = -1.234, p=0.232, there is a difference 

between quadratic and cubic models, t(19) = 3.625, p=0.002. For both these regions, 

the cubic model is significantly less probable than then quadratic model, which is not 

significantly greater than the linear model. This suggests that in L SmG and L MOG, 

this relationship is linear. In R MOG, there is significant difference between linear 

and quadratic models; t(19) = -2.792, p=0.012, also between quadratic and cubic 

models, t(19) = 2.800, p=0.011. This shows that this region is therefore cubic with 

each parameter significantly explaining more variance, thus more probable. In L 

PMd, there is a difference between linear and quadratic models; t(19) = -3.068, 

p=0.006, yet there is not a significant difference between quadratic and cubic models; 

t(19) = 1.184, p=0.251. This suggests that for PMd, there is a quadratic relationship 

between familiarity and execution of actions.  

 

4.4.2.3 Internal Consistency 

	

 Thus far, we have shown that for the observation condition, there is a linear 

relationship between familiarity and engagement in temporal and parietal ROIs, 

quadratic and frontal AON regions and cubic in occipital ROIs; when using exposure 

as the independent variable. In the execution condition, similar findings exist for L 

PMd, L SmG, R AG, R MOG & R STG. The differences arise in L MOG, which is 

linear in the execution condition (cubic in the observation) and in R IFG, which is 

linear in the execution condition (quadratic in observation). To test the extent to 

which an objective measure of action familiarity (i.e., number of times any given 
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sequence has been practiced or observed) is consistent with subjective measure of 

familiarity, we extended the same analytical approach described above and this time 

used participants’ own subjective ratings as the independent variable for setting up the 

regression models. With this approach, we could evaluate whether comparable 

findings emerge when using this more sensitive/subject-specific measure of 

familiarity. The subject ratings were taken from the 1 – 9 Likert scale collected post 

scanning. For each of the stimuli, the subject’s individual rating was assigned to it, 

becoming the independent variable in the regression model (no weighting was applied 

as there was equal distances between the rating points, e.g. the differences between a 

rating of 1 and was equal to 2 - 3). Visualization cannot be provided for this data as 

not all rating points were used across the participants. Linear, quadratic and cubic 

regression models were fitted to the data and the average R-squared values for each 

model, for each ROI is shown in Figure 4.14 

 



Chapter IV 

	 132	

 

Figure 4.14. R-squared values for the linear, quadratic and cubic regressions for each 
ROI, for both observation A, and execution B. Error bars represent the standard error 
of the mean. MOG = Middle Occipital Gyrus, PMd = Dorsal Premotor Cortex, SmG 
= SupraMarginal Gyrus, AG = Angular Gyrus, STG = Superior Temporal Gyrus, IFG 
= Inferior Frontal Gyrus. 
 

 As shown in Figure 4.14, the R-squared values are very similar to those when 

using exposure as the independent variable, with the quadratic and cubic models 

explaining more variance. Following the procedure used above, the R-squared values 

for each subject, for each model, for each region were used to calculate a Wi value.  
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Figure 4.14. Wi values for the linear, quadratic and cubic regressions for each ROI, 
for both observation A, and execution B. * p<0.05, ** p<0.01, *** p<0.001. Error 
bars represent the standard error of the mean. MOG = Middle Occipital Gyrus, PMd = 
Dorsal Premotor Cortex, SmG = SupraMarginal Gyrus, AG = Angular Gyrus, STG = 
Superior Temporal Gyrus, IFG = Inferior Frontal Gyrus. 
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 As shown in Figure 4.14 A, when observing actions the more complex the 

model, the greater Wi. In R AG, there is not significant difference between linear and 

quadratic models; t(19) = -1.315, p=0.204, nor between quadratic and cubic models, 

t(19) = -0.571, p=0.575. In R MOG, there is not significant difference between linear 

and quadratic models; t(19) = -2.080, p=0.051, nor between quadratic and cubic 

models, t(19) = 0.371, p=0.715. In R STG, there is not significant difference between 

linear and quadratic models; t(19) = -2.162, p=0.044, nor between quadratic and 

cubic models, t(19) = 0.128, p=0.900.These results suggest that there is no difference 

between the models for these regions, suggesting that in R MOG, R AG and R STG, 

the relationship between familiarity and AON engagement is linear. In L SmG, there 

is significant difference between linear and quadratic models; t(19) = -2.526, p=0.021, 

yet there is not a difference between quadratic and cubic models, t(19) = 0.924, 

p=0.367. In L MOG, there is a significant difference between linear and quadratic 

models; t(19) = -4.693, p<0.001, there is not a difference between quadratic and cubic 

models, t(19) = 1.098, p=0.286. In L PMd, there is a difference between linear and 

quadratic models; t(19) = -3.118, p=0.009, yet there is not a significant difference 

between quadratic and cubic models; t(19) = -1.088, p=0.274. In R IFG, there is a 

difference between linear and quadratic models; t(19) = -2.939, p=0.008, yet there is 

not a significant difference between quadratic and cubic models; t(19) = 0.548, 

p=0.590. These results suggest that there is a difference between linear and quadratic 

models, yet no difference between quadratic and cubic models. This suggests that the 

cubic function does not significantly explain than the quadratic model, which is 

significantly more accurate than the linear model; indicating that for LPMd, RIFGL 

MOG and L SmG, there is a quadratic relationship between familiarity and AON 

engagement for the observation of actions.  

 

 As shown in Figure 4.14 B, when executing actions that the more complex the 

model, the greater Wi. In R AG, there is no significant difference between linear and 

quadratic models; t(19) = -1.308, p=0.207, nor between quadratic and cubic models, 

t(19) = -0.522, p=0.608. In R IFG, there is not difference between linear and 

quadratic models; t(19) = -1.750, p=0.096, nor between quadratic and cubic models; 

t(19) =	0.345, p=0.734. In R MOG, there is no significant difference between linear 

and quadratic models; t(19) = -2.114, p=0.048, nor between quadratic and cubic 
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models, t(19) = 0.373, p=0.713. In R STG, there is not a significant difference 

between linear and quadratic models; t(19) = -1.948, p=0.066, nor between quadratic 

and cubic models, t(19) = 0.160, p=0.875. In L SmG, there is not a significant 

difference between linear and quadratic models; t(19) = -1.911, p=0.071, nor 

between quadratic and cubic models, t(19) = 0.481, p=0.636.These results suggest 

that there is no difference between the models for these regions, suggesting that in L 

SmG, R MOG, R IFG, R AG and R STG, the relationship between familiarity ratings 

and AON engagement is linear. In L PMd, there is a significant difference between 

linear and quadratic models; t(19) = -3.060, p=0.006, there is not a difference 

between quadratic and cubic models, t(19) = 0.482, p=0.635. In L MOG, there is a 

difference between linear and quadratic models; t(19) = -3.600, p=0.006, yet there is 

not a significant difference between quadratic and cubic models; t(19) = 1.146, 

p=0.266. These results suggest that there is a difference between linear and quadratic 

models, yet no difference between quadratic and cubic models. This suggests that the 

cubic function does not significantly explain than the quadratic model, which is 

significantly more accurate than the linear model; indicating that for L PMd and L 

MOG, there is a quadratic relationship between familiarity rating and AON 

engagement for the execution of actions.  

 
 

4.5 Discussion 
 

The aim of the present study was to investigate how varying levels of 

familiarity modulate engagement of the action observation network (AON) during the 

observation or execution of guitar playing sequences. Specifically, we were interested 

in testing whether a direct matching account (Rizzolatti et al., 2001; Gallese & 

Goldman, 1998; Wolpert et al., 2003) or predictive coding account (Keysers & 

Perrett, 2004; Kilner et al., 2007a,b; Gazzola & Keysers, 2009; Schippers and 

Keysers, 2011) better explained the impact of increasing familiarity on AON 

engagement. To address this, we asked participants to take part in identical fMRI 

sessions where they observed and executed different guitar playing sequences, and in 

between the sessions, trained (via observational or physical practice) on half the 

sequences. By performing a region of interest analysis on areas that exhibited activity 
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during both observation and execution of actions, were able to address two distinct 

questions: (1) does the shape of response within core AON regions correspond more 

to a direct matching or predictive coding profile?: and (2) how do subjective measures 

of familiarity relate to the response profile within core AON regions? 

 

4.5.1 AON response to varying levels of familiarity – Evaluating the direct 

matching and predictive coding accounts 

 

 The first question we addressed was whether the relationship between 

increasing familiarity and AON response was better captured by a linear response 

profile (more in keeping with a direct matching account; Rizzolatti et al., 2001; 

Gallese & Goldman, 1998; Wolpert et al., 2003) or a quadratic/cubic response profile 

(which would be more consistent with a predictive coding account; Keysers & Perrett, 

2004; Kilner et al., 2007a,b; Gazzola & Keysers, 2009; Schippers & Keysers, 2011). 

Through use of pre- and post-training scanning sessions on either side of an intensive 

training intervention, we were able to manipulate the degree of familiarity participants 

had with specific guitar riffs. After identifying regions of interest within the AON that 

respond to executing or observing guitar playing actions, we fitted linear, quadratic 

and regression models to each region for each subject. 

 

 We found that for the observation condition, the ROIs in the parietal and 

temporal lobes were best captured with a linear regression model. In the execution 

condition, all ROIs except R MOG and L PMd are also best captured by a linear 

regression model. These findings are in keeping with a direct matching account 

(Rizzolatti et al., 2001; Gallese & Goldman, 1998; Wolpert et al., 2003), which 

suggests that as familiarity increases, the engagement of the AON increases. For the 

observation condition, the occipital and frontal AON regions exhibited cubic and 

quadratic responses respectively. For the execution condition, R MOG and L PMd 

exhibit cubic and quadratic responses respectively. These findings suggest that at each 

end of the familiarity spectrum, the response of the AON is similar, and is overall 

stronger than the response observed at intermediate levels. This finding falls in line 

with theoretical framings that suggest a quadratic function of AON engagement based 

on increasing familiarity (Cross et al., 2012; Liew et al., 2013; Diersch et al., 2013). 
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Generation of linear and quadratic regression models enables us to directly compare 

two dominant models of AON function: the direct matching framework (Rizzolatti et 

al., 2001; Gallese & Goldman, 1998; Wolpert et al., 2003) and the predictive coding 

framework (Keysers & Perrett, 2004; Kilner et al., 2007a,b; Gazzola & Keysers, 

2009; Schippers & Keysers, 2011). Briefly, the predictive coding framework suggests 

reciprocal modulation between the nodes of the AON, which provides feedback 

predictions, and feedforward updates with the aim to minimise error. A quadratic 

function of familiarity would therefore fit this assumption, as at the highly familiar 

end of this scale, greater familiarity with an observed or executed action should result 

in greater/more accurate prediction; while at the highly unfamiliar end of the scale, 

less familiar actions should be associated with more on-going updating. In contrast, 

according to a direct matching framework (Rizzolatti et al., 2001; Gallese & 

Goldman, 1998; Wolpert et al., 2003) as familiarity increases, greater AON activity 

should emerge in a linear fashion. The present study is the first to directly test these 

two accounts by examining the shape of the response profile within key AON ROIs, 

based on varying levels of familiarity. Our data suggest that, opposed to the direct 

matching hypothesis, the response profile of all the core AON regions is not linear. 

These findings provide partial support for the predictive coding account as consensus 

across regions is not present, however, this suggests that the relationship between 

familiarity and AON engagement is complex, and in certain regions, nonlinear.  

 

In addition, it is of interest that the results of L PMd are remarkably similar 

between the observation and execution conditions (as well as using familiarity 

ratings), whereby the response is quadratic. This result corroborates one of the main 

findings reported by neurophysiological investigations of mirror neurons in non-

human primates: namely, that the response profile of some cells within parietal and 

premotor cortices during observation is comparable to those same cells’ response 

profile during action execution (Di Pellegrino et al., 1992; Gallese et al., 1996; 

Rizzolatti et al., 2001; Umilta et al., 2001). Naturally, we cannot conclude that the 

ROIs examined in the present study are actually coding information in the same way 

during observation and execution. Nonetheless, the fact that quadratic functions best 

capture the response profiles of the PMd during both execution and observation 

support the notion that LPMd (or F5 in the macaque), play a critical role in action 
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observation and execution, but that they respond to changes in action familiarity in a 

similar manner as well.  

 

4.5.2 Consistency between objective and subjective familiarity ratings 

 

By evaluating a separate analysis wherein we used subjective ratings of 

familiarity as an independent variable within our regression model, we could 

investigate whether objective and subjective measures of familiarity align or differ 

within core AON regions. Participants’ subjective familiarity ratings were obtained 

after the last scanning session and were assigned to the corresponding sequence 

within the GLM. Both of the approaches reliably show that 4/7 regions for both 

conditions replicate indicate that subjective ratings offer a sensitive and subject-

specific measure of experience. Such individual ratings can add value when used in 

conjunction with time-consuming training interventions (Cross, Hamilton & Grafton, 

2006; Kirsch, Dawson & Cross, 2015; Casile & Giese, 2006; Läppchen et al., 2015), 

or when used in isolation when taking physical measures of performance are not 

feasible or possible (e.g., Gardner et al., 2015; Cross et al., 2011; Press & Kilner, 

2013; Kawabata & Zeki, 2004).  

 

4.5.3 Limitations and Future Directions 

 

One potential limitation of the current study concerns the use of a weighted 

regression model. By using the number of times exposed to the stimuli as the 

objective familiarity parameter, the independent variable in the regression model was 

consequently not evenly distributed, potentially skewing the regression model. 

However, this limitation is less of a concern due to the fact that we were able to by 

and large replicate our findings when using subjective ratings of familiarity as the 

independent variable in the regression models. This suggests that any potential skew 

introduced to the regression model by the not even distribution of the independent 

variable is ungrounded. An extension of current work would then be to improve the 

regression model whereby more time points (and more evenly distributed time points) 
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are examined, thus providing a better representation of the curve (c.f. Braams et al., 

2015).  

 

An additional potential limitation of this study that warrants consideration is the 

use of different training scenarios for the observation and execution conditions. 

Specifically, in the execution condition, participants received online real-time 

feedback about their performance, whereas no such feedback is possible when 

observing. This limitation would be of greater concern if we were interested in 

drawing direct comparisons about the effects of both kinds of training on 

performance.  However, our aims in the current study focused on how physical and 

observational experience impact AON engagement independently, but within the 

same group of participants. As such, the differences in training experience are both 

necessary and warranted in this case. A recent study sheds further light on using rich 

training interventions with multisensory training experience (Kirsch & Cross, 2015). 

In this study, the authors showed that by use of a multisensory training paradigm that 

layering auditory, visual and physical experience has a cumulative effect in shaping 

engagement of the premotor cortex during action observation (Kirsch & Cross, 2015). 

In the current study, we used visual plus auditory stimuli in the observation condition, 

and multimodal stimuli that involved motor, visual and auditory systems in the 

physical training condition. As such, one could argue that we have effectively 

“stacked the deck” in our favour (in terms of maximally engaging the AON) by using 

rich, multisensory stimuli to investigate ROI responses. This was a deliberate 

decision, as past research also shows that auditory experience in addition to visual 

cues enables participants to reconcile the timing of the movements in accordance with 

the auditory feedback (see Lotze, 2013 for insights on the importance of motor, 

somatosensory, auditory and visual aspects in musician imagery; with particular focus 

on the audiomotor loop). It would be valuable for future work, however, to investigate 

in finer detail the impact of unimodal vs. multimodal experience as it relates to 

theoretical models of AON engagement and familiarity.   
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4.6 Conclusions 

 

 In conclusion, the present findings address core questions concerning how 

familiarity shapes action observation and execution-related processing within the 

AON. Via a region of interest analysis, we directly tested which of two key 

theoretical models of the AON better accounted for the impact of varying levels of 

familiarity: the direct matching and predictive coding accounts. The findings indicate, 

both for objective and subjective familiarity, that the nature of the AON is complex 

and not exclusively linear, providing support for the predictive coding account. 

	



Chapter V 

	 141	

 

5 Chapter V 
	

Complex Action Learning Shapes Dynamic Modulation of the Action 
Observation Network 

	

	

5.1 Abstract 

	

 Humans spend considerable time observing and executing actions. Many of 

these actions are highly familiar and well-practiced, such as tying one’s shoes, while 

others that are much less familiar, such as watching a somersaulting gymnast. In the 

human action cognition literature, debate exists on the role of familiarity and 

subsequent engagement of a network of temporal, parietal, and frontal regions; 

collectively termed the Action Observation Network (AON). The predictive coding 

model, a prominent theoretical model of AON function, holds potential for 

reconciling this debate. This model features reciprocal connections spanning the core 

AON nodes, which perform Bayesian comparisons of expected and observed actions. 

According to this model, familiar and unfamiliar actions might activate core AON 

nodes to a similar degree, but how information is exchanged between the nodes 

should differ based on an individual’s familiarity with an observed or executed action. 

To test these predictions, we used an intensive guitar-training paradigm, enabling 

rigorous manipulation of familiarity in visual and motor domains. Identifying core 

AON nodes from pre- and post-training scanning sessions, we then applied effective 

connectivity analyses to test the hypothesised modulations of the predictive coding 

account. We demonstrate that predictive coding hypotheses of distinct patterns of 

modulation based on perceived or performed actions’ familiarity are generally 

supported by the empirical data, and contribute valuable insights toward 

understanding the complex role played by familiarity in modulating action cognition. 
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5.2 Introduction 

	

 Observing others in action elicits activity across a network of 

occipitotemporal, premotor and parietal cortices, which are collectively termed the 

Action Observation Network (AON; Cross et al., 2009; Grafton, 2009; Keysers & 

Gazzola, 2009; Caspers et al., 2010). While broad consensus exists that action 

perception and execution likely share common neural underpinnings (Gazzola & 

Keysers, 2009; Kilner et al., 2009a; Hommel et al., 2001; Rizzolatti & Craighero 

2004; Rizzolatti et al., 2014), many questions remain concerning how experience 

shapes responses within these regions, including the role played by familiarity in the 

visual or motor domains. Some literature demonstrates that the more physically 

familiar an observed action is, the stronger the response is within core AON regions 

(Buccino et al., 2004; Calvo-Merino et al., 2005; Cross et al., 2006; Vogt et al., 

2007; Shimada, 2010). However, other evidence shows that the AON’s response 

profile does not necessarily follow this linear trend of increasing engagement with 

increasing familiarity (Gazzola et al., 2007; Liew et al., 2013; Cross et al., 2012), and 

instead responds more robustly when observing unfamiliar compared to familiar 

actions. In order to reconcile this debate and to better understand how experience 

shapes AON engagement, it is imperative to move from magnitude-based 

neuroimaging analyses to more sophisticated multivariate approaches that enable 

closer examination of how familiarity dynamically modulates sensorimotor brain 

regions (Smith, 2012; Gardner et al., 2015). Crucially, such multivariate approaches 

also enable sensitive testing of a theoretical model that holds significant promise for 

advancing understanding of the role played by experience in shaping AON 

engagement: predictive coding  

 

Predictive coding accounts of AON function (Keysers & Perrett, 2004; Kilner 

et al., 2007a,b; Gazzola & Keysers, 2009) propose a Bayesian comparison between 

predicted and observed actions, across reciprocally connected nodes of the AON. This 

Bayesian comparison aims to minimise differences between actual and predicted 

actions. This should manifest as increased AON engagement for highly unfamiliar 

actions, as the influence of feedforward connections from posterior perceptual regions 

is heavily relied upon. When viewing or performing an action that is familiar, 
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however, the network’s predictions for how a movement should unfold in real time 

are more precise, thus minimising prediction error. This minimised prediction error is 

manifest as robust AON engagement, driven by an upregulation of posterior 

projections originating from the anterior premotor node feeding back through the 

network. When evaluating past studies that demonstrate more AON engagement for 

familiar vs. unfamiliar actions (e.g., Buccino et al., 2004; Cross et al., 2006), and 

those showing more AON engagement for unfamiliar vs. familiar actions (e.g., Liew 

et al. 2013; Cross et al., 2012), predictive coding accounts begin to add some clarity 

as to why such conflicting findings might emerge when using univariate analytical 

approaches. 

  

 Here, we systematically test the impact of instilling physical and visual 

familiarity with novel actions on AON engagement by combining intensive training 

procedures, pre- and post-training fMRI sessions, and measures of effective 

connectivity. This approach enables us to evaluate how changes in familiarity induced 

by practice modulate the exchange of influence between core nodes of the AON. By 

questioning how effective connectivity changes with increasing experience, we can 

build upon recent partial support for a predictive coding account of AON engagement 

provided by effective connectivity (Gardner et al., 2015; Thioux & Keyser, 2015). 

Using a guitar-playing videogame paradigm, we studied guitar-naïve participants as 

they learned to play simple riffs via physical or visual experience. To test how well a 

predictive coding account of AON function explains variations in familiarity, we used 

Dynamic Causal Modelling (Friston et al., 2003), a form of effective connectivity that 

allows investigation of experimentally manipulated modulators. Based on the 

predictive coding account, we expect to see anterior-projecting modulation of the 

AON when observed or executed actions are unfamiliar. In contrast, as these actions 

become familiar, predictive coding hypothesizes increased precision of predictions for 

executed or observed movements, which should manifest as the presence of posterior 

modulation.     
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5.3 Materials and methods 

	

5.3.1 Participants 

	

 Twenty-two young adult volunteers recruited from the Bangor University 

community took part in the experiment. Two volunteers were excluded from the final 

sample due to excessive head motion during scanning (> 6 mm). The final sample 

comprised 20 volunteers (9 males, M_age = 20.60 years, SD=1.73). All participants 

had normal or corrected to normal vision with no history of neurological illness. All 

participants were right-handed and required to play a right-handed bass guitar in the 

scanner. Participants were brought to the lab prior to scanning to ensure they could 

play the instrument in the manner required inside the scanner bore, and also to ensure 

that all were guitar novices. The study was approved and conducted following the 

guidelines of the Ethics Committee of the School of Psychology at Bangor University 

and the Bangor Imaging Unit. All participants provided written informed consent 

prior to participation.  

 

5.3.2 Stimuli & Apparatus 

	

5.3.2.1 Sequences 

	

We chose 16 sequences from the computer game Rocksmith® (Ubisoft, 

2014), lasting an average of 15.8s (SD = 2.37s). These sequences were excerpts taken 

from songs initially chosen due to their lack of lyrical content. This restriction was 

selected so participants would not associate any particular action sequence with lyrics. 

The sequences were also matched on the difficulty level assigned by Rocksmith®. 

Rocksmith® assigns difficulty level via an algorithm that assesses song speed and the 

number of notes to be played within the time window (the difficulty level is visible at 

the top of Figure 5.1). To ensure that difficulty levels were matched as closely as 

possible across all stimuli, the number of notes to be played and the length of the 

sequences were matched, as were beats per minute for the individual song excerpts. In 

addition, the inclusion criteria for these sequences required that notes fell within a fret 
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range of 1-7 and string range of 1-3. This restriction ensured that participants would 

not have to move their heads to identify frets during scanning, while at the same time 

maintaining a level of difficulty that would challenge participants throughout the 

training period. Furthermore, we also excluded technical guitar playing movements 

such as “hammering” and “sliding” so that the actions required would be accessible to 

novices. Finally, we matched the sequences on mean amount of motion energy 

displayed in each video (see Bobick, 1997; Schippers et al., 2010; Cross et al., 2012), 

to ensure gross differences in the amount of motion displayed in individual sequence 

videos did not contribute to basic visual differences between stimuli or training 

conditions.  

 

5.3.2.2 Rocksmith® Guitar Task 

	

Shown in Figure 5.1 is a screenshot of the gameplay from Rocksmith® for the 

sequences that were physically executed (Panel A) and those that were observed 

(Panel B). The horizontal coloured lines at the foot of the screen correspond to the 

strings of the guitar being played. We used a bass guitar for this study as it has fewer 

strings than a standard electrical guitar (4 vs. 6) and at a basic level is generally 

considered easier to learn to play than a traditional guitar. These coloured strings are 

illustrated from a first person view, as if one is looking through the back of the 

fretboard of the guitar (i.e., when holding the guitar, the red string corresponds to the 

top string, green the second string from the top, and so on).  
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Figure 5.1. A still video frame example of the stimuli used in the observation 
condition A and execution condition B. The hand and fretboard of the musician 
playing the guitar in the centre of (A) is superimposed on the actual game play. 
 

The second aspect of the gameplay to be explained is the translucent blue 

“conveyor belt” of notes seen in the centre of the screen. The numbers on this 

conveyor correspond to the fret number on the guitar itself. The coloured rectangles 

are critical for the participant to attend to in order to make the correct movement. The 

colour of the rectangle corresponds to the string to be played with the right hand, and 

the number fret it appears on corresponds to which fret should be pressed down with 

the left hand. As the rectangles and numbers on the conveyor move towards the fore 

of the screen, the rectangles on the conveyor rotate 90 degrees from vertical to 

horizontal. When they reach the horizontal position, they contact the strings at the 

A 

B 
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bottom of the screen, and this is when the participant must play the appropriate note. 

If correctly executed, the rectangle illuminates slightly, but if missed the word “miss” 

appears on the string and fret that should have been played and the counter located at 

the upper right corner of the screen is adjusted accordingly. To obtain a perfect score, 

the correct fret on the correct string had to be plucked within a ±250ms window of the 

onset of the note.    

 

5.3.2.3 Observation Task 

	

Figure 5.2 shows a schematic of the observation task. Participants first viewed 

a brief fixation cross, followed by a video of an expert musician playing one song 

excerpt. The musician performs all of the songs without fault, thus providing a precise 

template for participants to observe.  
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Figure 5.2. A schematic of one observation trial. Participants’ task was to attend to 
the hand and respond to whether the musician performed a palming action of the 
strings. 
 

In order to ensure participants paid close attention to the actions performed by 

the expert musician in the observation condition, an attentional control task was 

implemented whereby participants were required to identify whether the musician 

palmed the strings during each stimulus video. A palming of the strings occurs when 

the musician removes her fingers from the fretboard, extends them vertically, and 

places the palm of her hand over the frets. This action was performed quickly as the 

musician then immediately continued to play the correct notes without stopping and 

without error. At the end of each trial, participants were asked whether a palming 

action was seen in the last sequence, and were required to make their response by 

plucking one of two strings with the right index finger. To ensure no confusion about 

what was required of participants during the observation task, the concept of palming 

the strings was explained and demonstrated before the experiment began.  
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5.3.2.4 Execution Task 

 

In the execution condition, Figure 5.1 (Panel B), participants were instructed to 

play along with the song to the best of their ability. The instruction was also given for 

participants to simply move on to the next note if they missed one note, to ensure 

participants did not move excessively when trying to compensate for an error. After 

each sequence was played, the gameplay presented a count of how many notes were 

missed, providing feedback on performance.  

 

5.3.3 Training procedure 

 

The study began with all participants taking part in an fMRI scanning session 

(far left column of Figure 5.3), wherein they observed eight sequences and executed 

eight different sequences.  Participants played or watched each of the eight sequences 

from the different training conditions twice per run, and completed two runs of both 

kinds of training on each day of scanning. All the stimuli on the first day are labeled 

unfamiliar, as they were all novel to the participants. The order of the stimuli, which 

set was observed and executed, and the order of conditions were counterbalanced 

across participants.   

 

 

Figure 5.3. The timeline of both training and test days for both conditions. The 
gradient of colour illustrates the change in familiarity due to training. The Retest 
occurred after scan session 2, not necessarily the day immediately after. 
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Days 2 through 4 of testing were the training phase (yellow to green and 

orange to pink boxes in Figure 5.3). During these days, participants were invited to 

the lab and asked to perform the same tasks as those they completed in the scanner, on 

precisely half of the execution sequences and half of the observation sequences. The 

four execution sequences and four observation sequences were performed or observed 

four times per training day, and the order of practice was counterbalanced across 

condition and sequences. The training set up in the laboratory was designed to match 

that of the scanner as closely as possible. Due to the fragile nature of the scanner-safe 

guitar, a standard 4-stringed bass guitar was used in the training sessions to eliminate 

risk of damage to the equipment. Participants were required to lay on a table with the 

guitar placed over their midriff – similar to how the guitar was positioned in the 

scanner, and participants viewed the 24-inch iMac screen through prism glasses (this 

can be seen in Figure 5.4). Stimulus presentation and response collection were 

performed using Psychophysics Toolbox (v3) via MATLAB R2015a (MathWorks). 

The instruction was also given to keep movement to a minimum (for example, no 

tapping the guitar to the beat of the song), and the researchers monitored this. During 

the observation condition, participants were asked to rest their left hand over the frets 

so that there was no possibility that they could move their hand along with the 

musician’s, ensuring that any learning was due to observation alone. During the 

execution condition, participants were asked to play the songs as accurately as they 

could.  
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Figure 5.4. The setup for the training period. This setup was designed so that it 
matched the fMRI setup as accurately as possible. N.B. The guitar was held like a 
double bass, with the neck of the guitar at 30 degrees, the guitar is held at 90 degrees 
above for illustrative purposes only. 
 

On the fifth day of testing, participants returned to the scanner where they 

completed an identical scanning protocol to Day 1, performing or observing both 

trained and untrained sequences. Following the second scanning session, participants 

were invited back to the laboratory for a sixth and final day of testing, wherein they 

were asked to perform all the songs from the observation condition (including the four 
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observationally trained and the four untrained songs; Retest, Figure 5.3).  Due to 

scheduling complications, only 14 participants were able to attend this final testing 

session.   

 

5.3.4 Neuroimaging procedure & parameters 

	

Each participant completed two identical fMRI sessions on days 1 and 5 of the 

experiment that followed an event related design. Each scanning session featured two 

action execution runs and two action observation runs, presented in a counterbalanced 

order across participants and across scanning sessions. All eight excerpts were 

experienced twice per run. Each observation run lasted an average of 5 minutes (range 

= 5.07-5.70 minutes), and each action execution run lasted 11 minutes (range = 10.97-

11.80 minutes). This difference occurred due to varying lengths of buffering between 

the different sequences and loading times, two factors that were not modelled within a 

trial nor used in matching sequence length. For the observation trials (shown in 

Figure 5.2), at the start a fixation cross was shown for 1.8s. This was followed by the 

video clip of the agent playing along with the excerpt (audio was included here and 

during the training period). After each clip, a black screen was presented with the 

question “did the musician seen in the video make a palming action over the strings?” 

The question screen was displayed for 2s before moving on to the next trial. 

Participants were required to respond to the question within that 2s window by 

plucking the appropriate string to denote their answer. During the action execution 

runs, participants first saw a brief interval where the song was being loaded. This 

aspect was unavoidable as we wanted to gain actual response accuracy via the game, 

so had to load each song as if it were selected by the user (the transition between 

menu and sequence to play was automated via a MATLAB script, and the entire load 

time before each sequence ranged between 19.02 and 41.45 seconds). Once the 

appropriate sequence was selected, there was a buffer supplied via the game so that 

there was an adequate amount of time before the participant began performing the 

sequence, allowing for finger position adjustment before each execution sequence 

began. After playing along with each sequence, participants’ accuracy scores were 
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displayed for participants to see before returning to the menu screen to begin the next 

trial.   

 

Stimulus presentation and response collection were performed using 

Psychophysics Toolbox (version 3) through MATLAB R2015a (MathWorks) run via 

a MacBook Pro laptop computer. The stimuli were presented on a 24-inch LCD 

BOLDScreen (Cambridge Research Systems), which was visible to the participant via 

a mirror mounted on the head coil. Participants listened to the song excerpts through 

Phillips MR-compatible headphones.  

 

Participants were given a MR-compatible bass guitar to make their responses 

during the execution and observation runs. The guitar was a full-length bass guitar. 

Participants were positioned into the scanner bore slowly and shown the best way to 

hold the bass guitar so as not to damage the guitar or the head coil. The guitar worked 

via a piezo-pickup embedded in the head of the guitar, under the strings (which were 

made of nylon). The guitar’s tuning pegs were manufactured via 3D printing using a 

glass/plastic alloy. The output of the guitar was passed along a fibre optic cable from 

the scanner room to the control room where it was amplified and fed into the 

MacBook Pro running MATLAB. Offline, the responses for the observation condition 

were filtered to remove any RF interference created by the scanner. The gameplay 

applied filtering for the execution condition so that the note being played could be 

heard by the participant.  

 

Data acquisition was conducted at the Bangor Imaging Unit at Bangor 

University, Wales. Functional images were acquired on a 3.0T Phillips MRI scanner 

using a SENSE phased-array 32-channel head coil. Functional images were acquired 

covering the whole brain using an echo-planar imaging (EPI) sequence (35 axial 

slices, ascending slice acquisition, repetition time = 2000 ms, echo time = 30ms, 90° 

flip angle, matrix = 64 × 64, slice thickness: 3 × 3 × 3 mm, field of view (FOV): 224 

mm). Before the functional run, 196 two-dimensional anatomical images (256 × 256 
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pixel matrix, T1-weighted) were obtained for normalization ROI selection and 

manipulation 

 

5.3.5 fMRI data analysis 

	

The total number of functional scans collected for the observation runs ranged 

between 156 and 178, and between 316 and 340 scans for each execution run. This 

variation arose due to varying loading times of the stimuli between the 

counterbalanced groups that were beyond experimental control. The number of scans 

collected for each subject was identical across scanning days. Data were analyzed 

using Statistical Parametric Mapping (SPM12: Wellcome Trust Centre for 

Neuroimaging, London; Friston, 2007), implemented using MATLAB R2015a 

(MathWorks). The data were first realigned and then slice-time corrected and 

preliminarily preorientated within standard stereotaxic space as defined by the MNI 

(Friston, 2007). This preorientation allowed for better spatial normalization to the 

MNI template. Participants' EPI images were then coregistered to their T1 anatomical 

scans, which were then spatially normalized to standard stereotaxic space. The 

spatially normalized EPI images were filtered using a Gaussian kernel of 8 mm full-

width at half maximum in the x, y, and z axes. For the observational runs, the design 

matrix was fitted for each subject with a single regressor for the familiar stimuli, a 

single regressor for the unfamiliar stimuli and a single regressor for the fixation and 

responses. For the execution runs, this setup was the same with the inclusion of a 

loading period rather than the fixation and response regressor. The 4 runs (2 

observation, 2 execution) were placed into the same design matrix, enabling us to 

create a total of two design matrices per participant; one pre- and one post-training. 

All brain regions that emerged from analyses were identified via the Anatomy 

Toolbox (Eickhoff et al., 2007).  

 

5.3.5.1 Dynamic Causal Modelling 

	

Evaluation. Dynamic causal modelling (DCM) is a method of analyzing 

effective connectivity that uses a bilinear model of neural population dynamics, 
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combined with a hemodynamic model, which aims to describe the neural activity in 

the measured BOLD response (Friston et al., 2003). By modelling feasible neuronal 

parameters, DCM aims to make a modeled BOLD response that is similar to the 

actual experimentally manipulated BOLD signal. The neural dynamics model created 

using DCM is then combined with a hemodynamic forward model that incorporates a 

balloon model (Buxton et al., 1998). The hemodynamic model provides a 

transformation of how the neural dynamics would propagate as a BOLD response, 

estimated via a standard Bayesian approach (variational Laplace). The fit of the 

combined neural model and hemodynamic forward model is estimated via a Bayesian 

approach, which uses conservative shrinkage priors for the coupling parameters 

(Friston et al., 2003). 

 

A model is specified to fit the data estimated by the previously mentioned 

routine. The input into the estimation procedure is three matrices (for bilinear DCMs, 

but see also Nonlinear DCMs; Stephan et al., 2008). The first is the endogenous 

connection strengths (the A matrix), which represents the connectivity between the 

regions of the model, and is sometimes referred to as the fixed connectivity. The B 

and C matrices represent the experimentally manipulated conditions. Matrix B 

represents the modulation of an external input on a fixed connection, which describes 

the change in the value of the effective connectivity for a connection under a 

particular condition. The C matrix represents the input into the system, which 

describes the activity that is perturbing, or creating activity in, the system. This 

equation models the state changes by known inputs. 

 

Hypothesis: The experimental hypothesis tested in the current study is that 

connectivity will change between the core regions of the AON as a function of 

familiarity over time, in directions predicted by the predictive coding model of AON 

function (Keysers & Perrett, 2004; Kilner et al., 2007a,b). Specifically, when the 

actions are unfamiliar, we expect to see the presence of modulation in an anterior 

direction (TemporalèParietalè Premotor; a pattern of connectivity that would 

reflect a high level of prediction error or imprecise/underspecified predictions about 

how an action should unfold in real time). As sequences become familiar through 

physical or observational experience, we expect modulations to become more precise 
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(reflecting more accurate predictions for the observed or executed actions), as 

demonstrated by increased modulation in the posterior direction (PremotorèParietal 

èTemporal).  

 

5.3.5.1.1 Definition of Regions of Interest (ROIs) 

	

The ROIs were identified from data collected during the first run of the second 

scanning session using the contrast (familiar and unfamiliar execution AND familiar 

and unfamiliar observation) > (implicit baseline). The rationale behind this was that 

this contrast would encapsulate the activity for both familiar and unfamiliar sequences 

as this run followed the training period. The use of the second run within this 

scanning session would be less of a true test of brain activity when observing or 

executing unfamiliar guitar sequences, as the unfamiliar sequences would have been 

practiced during the first run, and would thus be (slightly) more familiar. Therefore, 

drawing ROIs from the first run of the post-training scan session should best reflect 

the polarities of familiarity within our design.  
 

 

Figure 5.5. Whole brain group analysis Scan Session 2, Run 1, familiar and 
unfamiliar execution and observation trials vs. implicit baseline. All p values <0.0001 
(uncorrected), K=10 voxels. 
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Table 5.1. Regions associated with ROI contrast. 

Anatomical 
Region 

MNI 
Coordinates 

 
X         Y          Z 

Putative 
Functional 

Name 

T 
Value 

Cluster 
Size 

PFWE 
Corrected 

L Middle Occipital 
Gyrus 

-30 -82 10 MOG 11.28 1732 < 0.001 

L Middle Occipital 
Gyrus 

-42 -70 4 MOG 9.91   

L Middle Occipital 
Gyrus 

-27 -70 -14 MOG 8.74   

L Inferior Parietal 
Lobule 

-36 -52 46 IPL 6.46   

R Middle Occipital 
Gyrus 

33 -85 10 MOG 9.93 1712 < 0.001 

R Superior Parietal 
Lobule 

33 -67 34 SPL 8.99   

R Middle Occipital 
Gyrus 

39 -73 1 V5 8.78   

L Superior 
Temporal Gyrus 

-48 -28 7 STG 7.65 109 < 0.001 

L Superior Temporal 
Gyrus 

-54 -22 10 STG 7.03   

L Inferior Parietal 
Cortex 

-30 -31 7 IPC 5.54   

R Superior 
Temporal Gyrus 

57 -40 13 STG 7.06 158 < 0.001 

R Superior Temporal 
Gyrus 

66 -25 4 STG 6.36   

R SupraMarginal 
Gyrus 

57 -40 22 SmG 5.82   

R Supplementary 
Motor Area 

15 -4 61 SMA 6.43 34 0.005 

L Hippocampus 42 -25 -11 HIPP 6.05 19 0.032 
L Middle Frontal 

Gyrus 
-36 35 22 MFG 6.01 12 0.083 

R Superior 
Temporal Gyrus 

57 -7 -5 STG 5.88 20 0.028 

R Superior Temporal 
Gyrus 

57 8 -8 STG 5.19   

R Inferior Parietal 
Lobule 

54 -40 34 IPL 5.82 56 0.001 

R SupraMarginal 
Gyrus 

45 -40 43 SmG 5.79   

L Inferior Frontal 
Gyrus 

-57 8 19 IFG 5.53 25 0.015 

L Inferior Frontal -45 2 25 IFG 5.01   
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Gyrus 
R Insula 45 17 -8 INS 5.51 23 0.019 
R Cerebellum 9 -31 -11 CERR 5.23 11 0.096 
R Fusiform Gyrus 48 -34 -14 FG 5.23 12 0.083 
R Inferior Frontal 
Gyrus 

51 14 16 IFG 4.94 11 0.096 

Bold indicates cluster corrected regions at the threshold of pFWE-corrected < 0.05. 
 

This contrast (illustrated in Figure 5.5) revealed widespread, bilateral 

engagement of the AON (see Table 5.1 for a full list of regions). Initially, our search 

was focused on the left hemisphere (as reported by Gardner et al., 2015), however 

upon examination of the results from this whole-brain analysis, we found bilateral 

AON engagement in the core nodes of this network. Specifically, we found bilateral 

activity within IFG, IPL, and STG1. Therefore, these 6 regions served as the ROIs for 

subsequent DCM analyses (see Table 5.2 for coordinates of ROIs). The time series 

were taken from the subject level t-contrasts from all experimental runs vs. implicit 

baseline. This contrast revealed all regions active across the runs (within the scanning 

session), including the 6 ROIs noted above. 

 

Table 5.2. Coordinates of all 6 ROIs. Mean Size of ROI (in voxels) is reported for 

both days. 

    Mean ROI size (SEM) 

X Y Z Region       Day 1       Day 2 

-48 -28 7 L STG 21 (4) 33 (5) 

57 -40 13 R STG 30 (5) 49 (5) 

-36 -52 46 L IPL 35 (5) 62 (4) 

54 -40 34 R IPL 33 (6) 57 (6) 

-57 8 19 L IFG 28 (4) 31 (5) 

51 14 16 R IFG 37 (5) 49 (6) 

  

																																																								
1 In a previous study examining the impact of self-reported familiarity on the exchange of 
information within core AON nodes, we focused on MTG rather than STG (Gardner et al., 
2015). However, in the current study, MTG emerged within the left hemisphere only, while 
activity within STG, a brain region originally proposed to be involved in the predictive 
coding account of the AON (Kilner et al., 2007b), emerged bilaterally. For this reason, we 
focus subsequent connectivity analyses on STG as the temporal node of the AON in the 
present study. 
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 All ROIs were extracted by locating the nearest local maximum voxel to the 

group contrast of Session 2 Run 1 familiar and unfamiliar, execution and observation 

vs. implicit baseline. As we aimed to identify the ROIs across scanning sessions, 

special steps were taken. First, a 20mm search radius was used to identify each ROI. 

Of the 20 subjects, 3 were removed from the analysis, as they did not exhibit 

significant activity within the stated search radius. The next step was to ensure that 

the coordinates across scanning sessions fell within the same functional and 

anatomical regions. When looking across scanning sessions, all but 3 of the remaining 

17 participants had ROIs that emerged within the specified search radius of the given 

coordinates, and whose coordinates remained consistent (functionally and 

anatomically) over time. The ROI time series for each region, for each run, for each 

day and for each of the 14 participants, was extracted using the eigenvariate 

(threshold of p < 0.05) with a sphere radius of 8mm and adjusted for effects of no 

interest (the average size of the ROIs can be found in Table 5.2).  

 

5.3.5.1.2 Definition of network models 

	

 First, we set the endogenous connectivity to follow the proposed flow of 

information suggested in the action observation literature (Keyser & Perrett, 2004; 

Kilner et al., 2007a,b), so that reciprocal connectivity was established between STG-

IPL and IPL-IFG (for both hemispheres). Next, we defined the parameters of the 

models. We allowed for stochastic effects within the model to more accurately model 

noise (Li et al., 2011). We also centered the input into the node giving the input a 

mean of zero, which means that modulating parameters can increase and decrease the 

fixed connectivity, as opposed to simply increasing it as when the input is always 

positive. To allow for biological plausibility, we opted for two- state models that 

allow for both excitatory and inhibitory connectivity (Marreiros et al., 2008). Because 

we used a two-state DCM, we were able to enforce positivity constraints on the 

connection strengths to lend our interpretation greater validity and biological 

plausibility.  

 

 Finally, we created the models of interest for Scanning Session 1 (pre-training 

scan) and Scanning Session 2 (post-training scan). For Scanning Session 1, the to-be-
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trained and to- remain-untrained stimuli were collapsed into one modulator as all the 

stimuli were unfamiliar/untrained at this stage. The input into the system was 

modelled so that unfamiliar stimuli would have a direct effect on the neuronal activity 

in STG (bilaterally). In accordance with the predictive coding account, we modelled 

modulations by the unfamiliar stimuli on the anterior flow between STG è IPL and 

IPL èIFG. For Scanning Session 2, we modelled the unfamiliar (untrained stimuli) 

modulator to the same connections as Scanning Session 1 (STG è IPL and IPL 

èIFG; input into bilateral STG). Furthermore, we allowed for the modulation of the 

connections in the posterior direction (IPL èSTG and IFG èIPL) by the familiar 

(trained) stimuli. The direct effect of this modulator was modelled to assess its 

influence on IFG (bilaterally). These models were created for both the left and right 

hemisphere networks, for both observation and execution. Separate models were 

created for each Run, averaged across within each scanning session for the analysis. 

Posterior estimates (in Hz) were extracted for each participant for intrinsic, 

modulatory (familiar and unfamiliar) and direct input (C matrix). To test the presence 

of connections/modulations, one sample t-tests were performed on the posterior 

estimates. Bonferonni correction for multiple comparisons was applied to the p  

values (p = .05/4 for the intrinsic connections and context dependent modulations; p = 

.05/2 and p = .05/4 for the direct influence on Scanning Sessions 1 and 2 

respectively).   

 

5.4 Results 

	

The DCMs were created using the six regions of interest identified in Table 

5.2: bilateral STG, IPL and IFG. The models tested the influence of unfamiliar stimuli 

on the anterior flow between STG è IPL and IPL è IFG, and familiar stimuli in the 

posterior direction (IPL è STG and IFG è IPL). Here, we report the observation 

condition followed by the execution condition. Tables reporting the exogenous effects 

and direct influence (modulatory input) are included in the main text. 

 

5.4.1 Action Observation 
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	 Dynamic causal modelling (DCM) was conducted to explore changes in 

effective connectivity within the AON when visual familiarity is systemically varied. 

The 3-node model (within each hemisphere) is illustrated in Figure 5.6. The posterior 

estimates (in Hz) for the intrinsic connections were significant for both scanning 

sessions, showing significant reciprocal connectivity between STG & IPL and IPL & 

IFG for the observation of actions. Table 5.3 gives the posterior estimates for the 

direct and context dependent modulations by the different levels of familiarity.    

	

Table 5.3. Input and connection modulations for the observation condition 

 Modulator Connection/ 
Input node 

Mean 
(SEM) 

T-
value 

p - value 

Scanning Session 1 
Left Hemisphere 

Un STG -0.0079 
(0.0027) 

-3.07 .009 

 Un STG è  IPL 0.0182 
(0.0072) 

2.54 .025 

 Un IPL è  IFG 0.0111 
(0.0086) 

1.28 .222 

Scanning Session 1 
Right Hemisphere 

Un STG -0.0042 
(0.0024) 

-1.75 .104 

 Un STG è  IPL 0.0192 
(0.0070) 

2.88 .013 

 Un IPL è  IFG 0.0239 
(0.0104) 

2.30 .039 

Scanning Session 2 
Left Hemisphere 

Fam IFG -0.0104 
(0.0032) 

-3.24 .006 

 Un STG -0.0023 
(0.0048) 

-.48 .637 

 Fam IPL è  STG 0.0450 
(0.0177) 

2.54 .025 

 Fam IFG è  IPL 0.0492 
(0.0167) 

2.95 .011 

 Un STG è  IPL 0.0396 
(0.0105) 

 

3.78 .002 

 Un IPL è  IFG 0.0569 
(0.0171) 

3.33 .005 

Scanning Session 2 
Right Hemisphere 

Fam IFG -0.0112 
(0.0034) 

-3.26 .006 

 Un STG -0.0018 
(0.0041) 

-.44 .665 

 Fam IPL è  STG 0.0555 
(0.0149) 

3.73 .003 
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 Fam IFG  è IPL 0.0382 
(0.0143) 

2.66 .020 

 Un STGèIPL 0.0518 
(0.0136) 

3.80 .002 

 Un IPL è  IFG 0.0646 
(0.0179) 

3.62 .003 

Modulations which survive corrections for multiple comparisons are highlighted in bold. 
 

 For Scanning Session 1, we modelled the modulation by the observation of 

unfamiliar actions on anterior connections (STG è IPL & IPL è  IFG), which 

corresponds to the predictions of the predictive coding account (Keysers & Perrett, 

2004; Kilner et al., 2007a,b; Schippers & Keysers, 2011). In the left hemisphere, the 

direct input into the system through STG is present. Of the tested connections, we see 

that there is modulation on the STG è  IPL connection. In the right hemisphere, the 

same connection is modulated by unfamiliar actions. The direct input into STG is not 

consistent across participants in the right hemisphere. 
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Figure 5.6. The DCM results for the observation condition; Scan Sessions 1 & 2, for 
both hemispheres. Arrows indicate direct input/ intrinsic modulations. Dotted lines 
indicate connections which are not significant. Statistics shown are for the significant 
modulations in mean posterior estimates (in Hz). Superior Temporal Gyrus, STG; 
Inferior Parietal Lobule, IPL; Inferior Frontal Gyrus, IFG.   
	

	 Between the scanning sessions, an intensive training period occurred where a 

subset of stimuli were observed over three days (overall, each trained stimulus was 

viewed a total of 12 times). As such, when participants returned for the second 
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scanning session, we had systematically created a distinction between stimuli that 

remained untrained (familiar) and those that were only seen in the first scanning 

session and not trained (unfamiliar).  The unfamiliar stimuli were modelled to 

modulate the anterior connections, identical to the first scanning session. Both 

bilateral anterior connections (STG è  IPL & IPL è  IFG) were modulated by the 

observation of unfamiliar actions, showing full support for the predictive coding 

account. It is of note that the direct input into STG was not present in either 

hemisphere. The familiar actions showed direct input into bilateral IFG. In the left 

hemisphere, we find modulation by familiar stimuli within the parietal-premotor loop 

between IFG è  IPL. The connection between IPL è  STG is not significant in the 

left hemisphere, suggesting inconsistency across participants. In the right hemisphere, 

the IPL è  STG connection is significantly modulated, whereas the IFG è  IPL 

connection does not survive correction for multiple comparisons. To summarise, the 

observation of unfamiliar actions modulates some anterior connections within the 

AON, as predicted. When an observed action is most unfamiliar (scanning session 1), 

anterior connections from STG è  IPL are present. As the task become more familiar 

in the second scanning session, all anterior connections are modulated when 

observing the less familiar/untrained sequences, providing clear support for the 

predictive coding account. After training, when participants watch familiar actions 

they observed 12 times across three days of training, evidence emerges for 

modulation in the posterior direction within the premotor-parietal loop in the left 

hemisphere and within the parietal – temporal loop in the right hemisphere. Together, 

these findings provide positive (albeit not full) support for a predictive coding account 

of the role played by familiarity in shaping AON responses.    

 

5.4.2 Action Execution 

	

 The execution condition required participants to actively play the Rocksmith 

™ game whilst in the scanner. The Dynamic Causal Modelling (DCM) procedures 

conducted on imaging data collected during the execution condition were identical to 

those run on the observation condition data, in terms of examining connections within 

the 3-node model (within each hemisphere). The posterior estimates (in Hz) for the 

intrinsic connections were all significant for both scanning sessions, showing 
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significant reciprocal connectivity between STG & IPL and IPL & IFG for the 

execution of actions. Table 5.4 gives the posterior estimates for the direct and context 

dependent modulations by the different levels of familiarity.    

	

Table 5.4. Input and connection modulations for the execution condition 

 Modulator Connection/ 
Input node 

Mean 
(SEM) 

T-
value 

p - value 

Scanning Session 1 
Left Hemisphere 

Un STG -0.0086 
(0.0019) 

-4.57 .001 

 Un STGèIPL 0.0379 
(0.0239) 

5.93 <.001 

 Un IPL è  IFG 0.0626 
(0.0154) 

4.05 .001 

Scanning Session 1 
Right Hemisphere 

Un STG -0.0073 
(0.0065) 

-4.21 .001 

 Un STG è  IPL 0.0460 
(0.0078) 

5.87 .001 

 Un IPL è  IFG 0.0606 
(0.0138) 

4.39 <.001 

Scanning Session 2 
Left Hemisphere 

Fam IFG -0.0064 
(0.0032) 

-2.00 .067 

 Un STG -0.0039 
(0.0027) 

-1.45 .171 

 Fam IPL è  STG 0.0936 
(0.0155) 

6.05  <.001 

 Fam IFG è  IPL 0.0910 
(0.0128) 

7.10 <.001 

 Un STG è  IPL 0.0455 
(0.0094) 

 

4.82 <.001 

 Un IPL è  IFG 0.0982 
(0.0100) 

9.83 <.001 

Scanning Session 2 
Right Hemisphere 

Fam IFG -0.0085 
(0.0020) 

-4.29 .001 

 Un STG -0.0045 
(0.0022) 

-2.05 .061 

 Fam IPL è  STG 0.1006 
(0.0204) 

4.94 <.001 

 Fam IFG è  IPL 0.0694 
(0.0129) 

5.39 <.001 

 Un STG è  IPL 0.0539 
(0.0103) 

5.24 <.001 

 Un IPL è  IFG 0.0949 6.43 <.001 
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(0.0148) 
Modulations which survive corrections for multiple comparisons are highlighted in bold. 
 
	

 During the first scanning session, the execution of unfamiliar actions 

modulates anterior connections (STG è  IPL & IPL è  IFG), a finding that 

corresponds to the predictions made by the predictive coding account (see also active 

inference; Friston et al., 2005). Unlike the observation conditions, all the tested 

modulations and direct inputs are consistent across participants, indicating that a full 

anterior modulation of this network is recruited when executing actions that are 

unfamiliar.   
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Figure 5.7. The DCM results for the execution condition; Scan Sessions 1 & 2, for 
both hemispheres. Arrows indicate direct input/ intrinsic modulations. Dotted lines 
indicate connections that are not significant. Statistics shown are for the significant 
modulations in mean posterior estimates (in Hz). Superior Temporal Gyrus, STG; 
Inferior Parietal Lobule, IPL; Inferior Frontal Gyrus, IFG.   
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(shown in Figure 5.7). The direct input into the network by unfamiliar actions no 

longer modulates bilateral STG. Both bilateral posterior connections (IPLèSTG & 

IFGèIPL) were modulated by the familiar actions, showing full support for the 

predictive coding account. The direct input by the familiar actions to IFG is only 

present in the right hemisphere. To summarise, the execution of unfamiliar actions 

modulates the anterior connections within this network. When an action becomes 

familiar after intensive practice, modulation of the posterior connections (IPLèSTG 

and IFGèIPL) within the network emerges. These findings provide strong evidence 

in support of the predictive coding account of how familiarity shapes AON 

engagement during action execution.  

 

5.5 Discussion 

	

 By systemically controlling familiarity via a guitar-training paradigm, we 

tested predictions generated from the predictive coding account regarding how 

changes in familiarity shape AON engagement during action observation and 

execution. We hypothesised that when observed or executed actions were unfamiliar, 

anterior modulation would be present between AON nodes (shown by reliable 

modulation from STGèIPL and from IPLèIFG). As actions became familiar, we 

expected an anterior to posterior shift in modulation within the AON, manifested as 

increased posterior modulation between IPLèSTG and IFGèIPL. The overall 

pattern of findings provides compelling, although not complete, support for the 

predictive coding account for how changes in familiarity modulate AON engagement. 

 

5.5.1 Synthesis with the Predictive Coding Account: Action Observation 

	

	 Analyses of effective connectivity between core AON nodes when observing 

unfamiliar actions revealed significant modulation from STGèIPL. According to the 

predictive coding account (Keysers & Perrett, 2004; Kilner et al., 2007a,b; Gazzola & 

Keysers, 2009; Schippers & Keysers, 2011), upregulation of this connection relates to 

increased prediction error (i.e., the observed action does not precisely match the 

predicted action), creating a need for more information to be fed into the network 
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from the posterior (visual) node (Kilner et al., 2007a,b). This modulation was also 

present when participants observed unfamiliar sequences during the post-training scan 

session, suggesting untrained stimuli remained unfamiliar. At odds with the predictive 

coding account is the absence of modulation from IPLèIFG when observing 

unfamiliar actions during the first scanning session (however, this modulation does 

emerge by the second scanning session). This discrepancy might be explained by a 

Hebbian learning principle (Keyser & Perrett, 2004; Keyser & Gazzola, 2014), which 

suggests that when learning, consistency and causality of firing between neurons 

increases the efficiency of their connection (Hebb, 1949; Keyser & Gazzola, 2014). 

The predictive coding account, on a basic level, has foundations within this 

framework and when applied to our data, we see anterior modulation of AON nodes 

becoming more complete as the task becomes more familiar (across scanning 

sessions), and as differences between familiar and unfamiliar sequences become 

established. When observing others in action, STG provides visual input to IPL, 

which in turn modulates IFG, an area proposed to play a role in higher-order 

representations of others’ actions (Press et al., 2012; Kilner et al., 2009a). Although 

the data from the present study are collected across two separate scanning sessions, 

when considered as a whole, the finding of increased anterior modulation within the 

AON when observing unfamiliar action sequences is broadly consistent with the 

predictive coding account. 

 

 While rarely the focus of AON studies (c.f., Caspers et al., 2010), hemispheric 

differences that emerge in the present study warrant closer consideration. Greater 

familiarity increased modulation between IFGèIPL in the left hemisphere, and from 

IPLèSTG in the right hemisphere during action observation. According to the 

predictive coding account, both modulations should be present (ostensibly in both 

hemispheres, though the primary predictive coding literature does not specify this). 

As such, our findings provide only partial support for a predictive coding account 

predicated on similar functioning of the AON across both hemispheres. Previous 

findings offer some insight as to why increased modulation from IPLèSTG in the 

left hemisphere might be absent. Although predictive coding hypothesises 

upregulation of this connection with increasing familiarity, we recently showed this 

connection to attenuate with increasing familiarity in the left hemisphere during 
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action observation (Gardner et al., 2015). Considering the current findings together 

with that of Gardner et al. (2015), effective connectivity analyses reveal mixed 

support for the observation of increasingly familiar actions to lead to increased 

influence in a posterior/feedback direction within the AON. A challenging task for 

future work will be to further characterise the nature of the prediction error signal (see 

Rao & Ballard, 1999; Friston, 2005; Brodski et al., 2015), and to more closely 

scrutinise hemispheric similarities and differences in predictive coding. 

 

5.5.2 Synthesis with the Predictive Coding Account – Action Execution 

	

 It is of note that the predictions derived from the predictive coding account for 

action execution (formally the active inference principle; Friston et al., 2005) are by 

and large supported during pre- and post-training scanning sessions, and across both 

hemispheres. In other words, we find evidence for anterior modulation by unfamiliar 

actions throughout the AON and posterior modulation for familiar actions. According 

to active inference, the execution of a goal-directed action should be reflected in a 

minimising of free energy (Friston et al., 2010). This concept is echoed by 

minimisation of prediction error within the predictive coding framework (Keysers and 

Perrett, 2004; Kilner et al., 2007a,b). Within this framework, forward models 

(Wolpert et al., 1995, 2003; Wolpert & Miall, 1996) predict the sensory consequences 

of actions, which leads to fine-tuning of movements (Blakemore et al., 2003). This 

notion is reflected in our results by modulation in an anterior direction by unfamiliar 

actions. Once the motor codes required to execute an action become familiar (after 

three days of intensive training within our design), the network should maintain a 

homeostatic state (Pezzulo et al., 2015). This state is created by minimising free 

energy, which results in accurate motor commands to carry out the desired action 

(through inverse models). Thus, once an action is familiar, the posterior modulation 

by familiarity seen in our results reflects (more) accurate comparison between 

predicted and actual sensory consequences, resulting in minimised free energy 

(Friston et al., 2010).       
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5.5.3 Limitations and future directions 

	

 One potential limitation concerns our focus on a single model for evaluating 

our hypotheses particularly when a strength of DCM is its ability to compare 

competing models (Friston et al., 2003, Stephan et al., 2010). Here we focus on a 

single model because of strong predictions about how connectivity (anterior and 

posterior modulations) should be shaped by changes in familiarity, based on prior 

theoretical and empirical accounts of predictive coding (Keysers & Perrett, 

2004; Kilner et al., 2007a,b; Gazzola & Keysers, 2009; Schippers & Keysers, 2011; 

Gardner et al., 2015). This method of examining one model with DCM, also used by 

others to examine AON function (c.f. Thioux & Keyser, 2015), respects the 

recommendation within the DCM literature to keep models simple (Stephan et al., 

2010). This is also reflected in our use of a 3-node model that closely adheres to the 

AON’s neurophysiology (Kilner et al., 2007a,b). While meta-analyses reveal 

additional regions active during action observation and execution (Caspers et al., 2010 

& Rizzolatti et al., 2001, 2014), by focusing on the three core AON nodes, and 

evaluating specific predictions about modulation by familiarity, we are able to 

constrain the exponential expansion of model space (see Stephan et al., 2010), and 

thus perform more targeted, hypothesis-driven investigations of our theoretical model.  

 

 The present findings raise several important questions for the AON literature 

more broadly. While we found strong support for the predictive coding framework 

during action execution, support was more mixed during action observation. Further 

work could directly examine how changes in familiarity shape AON engagement 

during action observation compared to execution, as well as more clearly define how 

prediction error occurs (see Rao & Ballard, 1999; Friston, 2005; Brodski et al., 2015 

for debates on the nature of this signal). While the present study underscores the 

importance of exploring how the core nodes of the AON influence each other when 

observing or executing familiar compared to unfamiliar actions, our data provide only 

a snapshot of how this connectivity unfolds. We report partial confirmation for 

predictions derived from a predictive coding model, but the lack of full support 

indicates that more work is required to either update the theoretical models or, more 

precisely, specify how experience-driven plasticity influences reciprocal 
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communication between core AON nodes. A further challenge remains to more 

precisely delineate the active role played by each node within this network, perhaps 

by combining effective connectivity analyses with other multivariate, data-driven 

approaches, such as MVPA (Abrams et al., 2013; Coutanche & Thompson-Schill, 

2013). A final question worth exploring in terms of understanding the relationship 

between experience and AON engagement concerns what happens if familiar stimuli 

become unfamiliar again (through lack of practice and/or across time). It would be 

illuminating to determine whether anterior modulation across the network re-emerges 

as lack of practice causes posterior modulations to fade.  

 

5.6 Conclusions 

	

	 The present findings generally support a predictive coding account of AON 

function, as well as offer insights into how systemically controlled familiarity 

modulates effective connectivity within this network. By using an intensive training 

paradigm, enabling tight control of visual and physical familiarity, we found distinct 

patterns of posterior and anterior modulation of the AON to emerge when observed or 

executed actions were more or less familiar, respectively. Our findings highlight 

many avenues for future work, including examining how familiarity modulates 

activity within individual AON regions, as well as how dynamic fluctuations in 

familiarity shape effective connectivity over longer time periods. As a whole, the 

present study demonstrates the empirical utility of combining a training paradigm 

with effective connectivity analyses to explore the complexities of how we perceive 

and perform actions in a social world. 
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6 Chapter VΙ  
   

General Discussion 

 
 The empirical chapters presented in this thesis aimed to examine the role of 

familiarity on action observation network (AON) engagement during action 

observation and action execution. The work generated as part of this thesis explored 

how varying levels of familiarity modulate connectivity between the core nodes of 

this network using functional neuroimaging approaches. In the first empirical chapter 

(Chapter ΙΙΙ), we found attenuation of influence between posterior nodes of the AON 

with increasing familiarity of observed actions (Gardner, Goulden & Cross, 2015). In 

the second empirical chapter (Chapter ΙV), we used regression analyses to explore 

AON regions of interest and found that both linear and nonlinear functions capture 

these regions’ response profiles to increasing familiarity during action observation 

and execution (Gardner, Aglinskas & Cross, under review). In the final empirical 

chapter (Chapter V), we coupled an intensive training paradigm and multiple 

scanning sessions with effective connectivity to test a predictive coding account of 

how the AON is shaped by familiarity, and found compelling (though incomplete) 

support for this account (Gardner and Cross, under review). Below, the main findings 

from each chapter are briefly summarised. This is followed by consideration of the 

broader implications of these findings on the action observation literature, with a 

special focus on the relationship between familiarity and AON engagement, 

particularly how the present findings inform action understanding models, and the 

utility of rich, ecologically-valid action stimuli and training paradigms in this line of 

research. Methodological implications arising from the empirical work of this thesis 

are then discussed, and the thesis concludes with suggestions for future work.  
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6.1 Summary of findings 

 

 The study reported in Chapter ΙΙΙ examined how participants’ familiarity with 

observed movements modulates effective connectivity (measured by dynamic causal 

modelling; DCM) between core nodes of the AON. During scanning, participants 

viewed whole-body dance movements, and then rated each dance movement on a 

measure of visual familiarity after scanning. The main GLM result of this study was 

that videos rated as increasingly familiar were associated with more robust 

engagement within core regions of the AON. Participants’ ratings were also used as 

parametric modulators in the DCM models, which revealed an attenuation of effective 

connectivity bidirectionally between parietal and temporal AON nodes when 

participants observed videos they rated as increasingly familiar. As such, the findings 

provide partial support for a predictive coding model of the AON, as well as 

illuminate how action familiarity manipulations might be used to explore simulation- 

based accounts of action understanding.  

 

 In Chapter ΙV, a study was conducted to examine the relationship between 

AON response amplitude and objective and subjective measures of familiarity with 

observed and executed actions. The region of interest (ROI)-based approach featured 

in Chapter IV enabled direct testing of prominent models of action understanding, 

whereby a linear relationship between familiarity and AON amplitude would support 

the direct matching hypothesis and a quadratic/cubic relationship between familiarity 

and AON amplitude would be more consistent with the predictive coding account. 

Using an elaborate guitar training intervention and pre- and post-training scanning 

sessions, participants executed one set of guitar sequences and observed a second set 

of sequences during scanning. Via ROI analyses, linear, quadratic & cubic regression 

models were fitted to varying levels of familiarity (determined by the number of 

exposures participants had for each sequence). From both observation and execution 

conditions, the data show evidence for linear and quadratic models, suggesting that 

the response profile within key sensorimotor brain regions associated with the AON is 

not solely linear in nature in response to familiarity. Moreover, by probing the 

subjective nature of the prediction error signal, we show results that are consistent 
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with a predictive coding account of AON engagement during action observation and 

execution.     

 

 Finally, Chapter V used effective connectivity analyses to test predictions 

derived from the predictive coding account of AON function when participants 

observed or executed familiar and unfamiliar actions. To test these predictions, we 

used a targeted DCM approach to the same data collected for Chapter IV, which used 

an intensive guitar-training paradigm to enable rigorous manipulation of familiarity in 

visual and motor domains. After identifying core AON nodes from pre- and post-

training scanning sessions, we then analysed effective connectivity to test the 

hypothesised modulations between AON nodes made by the predictive coding 

account. We demonstrated that predictive coding hypotheses of distinct patterns of 

modulation based on perceived or performed actions’ familiarity are generally 

supported by the empirical data, and contribute valuable insights toward 

understanding the complex role played by familiarity in modulating action cognition. 

 

 In sum, the results from all three empirical chapters suggest the relationship 

between familiarity and AON engagement is, primarily, nonlinear in nature. 

Furthermore, how varying levels of familiarity impact connectivity between core 

regions of the AON generally fits with the predictive coding account of action 

understanding.  

 

6.2 Implications for the role of familiarity plays within the AON 

 

6.2.1 Mapping the shape of increases in familiarity and AON engagement 

 

 In Chapter ΙΙΙ, the main GLM result was that when using participants’ offline 

ratings of familiarity, dance movements that are rated as increasingly familiar were 

associated with greater AON engagement. In relation to the AON literature, this 

finding relates to the action being within the physical repertoire of the observer 

(Calvo- Merino et al., 2005; Cross et al., 2006; Cross et al., 2009), and is therefore 

consistent with the notion that greater AON engagement occurs when observing an 
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action that is more “like me” (Meltzoff, 2007). However, this finding appears to 

contradict what we report in the ROI analyses of Chapter ΙV. By using an objective 

measure of familiarity (in this case, the number of exposures), in this subsequent 

training study, we found the relationship between familiarity and AON response was 

not solely linear. Specifically, watching or performing actions that were highly 

unfamiliar or highly familiar resulted in more robust AON engagement than actions 

that were an intermediate level of familiarity in certain regions, most notably PMd. 

Moreover, and more directly comparable to the result of Chapter ΙΙΙ, when using 

participants’ subjective ratings as the predictor within the regression model, the 

quadratic relationship between familiarity and AON engagement remained. Taken 

together, these findings represent a microcosm of the complex debate concerning 

familiarity and AON engagement when using univariate approaches.  

 

 A key focus of the action understanding literature concerns shared 

representations between observed and executed actions (Gallese & Goldman, 1998; 

Rizzolatti et al., 2001). In Chapter ΙV, we were able to use a complex task that could 

be performed in the fMRI scanner, allowing us to identify regions that were engaged 

during action observation or action execution. The response profile within these 

regions (which spanned bilateral sensorimotor regions of the AON) for both 

conditions was both linear and nonlinear across regions, partially showing greater 

engagement for familiar and unfamiliar actions, and less engagement for actions that 

were somewhere in between. Returning to the mirror neuron literature, this pattern of 

findings has high face validity, in that if particular neurons fire both during action 

observation and execution in a similar manner, then it seems logical that these same 

neurons might be shaped by variations in familiarity with executed or observed 

actions in a similar fashion. Comparable models of observation and execution, for 

example predictive coding and active inference, also support this conclusion (Kilner 

et al., 2007a;b; Friston et al., 2005) 

 

 The GLM findings reported in Chapter ΙΙΙ do not fit the proposed U-shaped 

(or quadratic) function of AON engagement and familiarity (Cross et al., 2012; Liew 

et al., 2013), whereby the highest AON activity emerges when observing a highly 

familiar or highly unfamiliar action. The direct comparison between linear and 
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nonlinear response profiles reported from the training study in Chapter ΙV revealed 

mixed evidence across ROIs, suggesting that both linear and nonlinear relationships 

are present. If we were to reconcile the data from this thesis with these proposed 

models, it could be that some mix between linear and quadratic models best defines 

the data (for example, a skewed or “J-shaped” quadratic model or cubic model, with 

greater BOLD engagement for highly familiar actions than for unfamiliar actions). 

Such a modified model should capture the positive quadratic function as a function of 

familiarity, yet the profile of this function would not be fully symmetrical. Rather, the 

finding of Chapter ΙΙΙ would suggest that the “curve” on the more familiar side of the 

function would be steeper than the less familiar side (similar to an inverted version of 

the model proposed by Diersch et al. (2013)).  

 

 Further investigation into the complex nature of the relationship between 

AON engagement and familiarity is required, specifically, how best to characterise or 

capture the response profile to increasing familiarity. The extant data from the 

literature combined with the new data generated by this does not yet enable us to 

achieve this goal, due to the fact that not all points on the curve are represented. To 

this end, future work would be advised to examine more levels of familiarity (thus 

filling in more points on the curve/line), to generate a more accurate and complete 

picture of this profile when moving from unfamiliar to familiar actions (c.f., Kirsch & 

Cross, 2015). Furthermore, the complexity of the relationship between familiarity and 

AON engagement also supports the use of multivariate, connectivity measures to 

further investigate the interplay between regions, as magnitude-based approaches 

(such as those reviewed in this section) might only get us so far.   

 

6.2.2 Synthesis with models of action understanding 

 

 To briefly recap, the prominent models of action understanding investigated 

within this thesis were the direct matching hypothesis and the predictive coding 

account. The direct matching hypothesis (Rizzolatti et al., 2001; Gallese & Goldman, 

1998; Wolpert et al., 2003; Umilta et al., 2001; Kohler et al., 2002) suggests that an 

action’s meaning is understood via the AON, which supports simulation of an 

observed action by matching the goal or intention of an observed movement with 
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what the goal or intention of that same movement would be if performed by the 

observer. Predictive coding models of AON function (Keysers & Perrett, 2004; Kilner 

et al., 2007a, b; Gazzola & Keysers, 2009; Schippers & Keysers, 2011), predicated on 

the use of perceptuomotor maps to predict and interpret observed actions (Lamm et 

al., 2007; Schubotz, 2007; Urgesi et al., 2010), suggest a Bayesian comparison of 

observed (or executed) and expected actions; manifested as exchange of information 

in an anterior direction for unfamiliar actions and in a posterior direction for familiar 

actions. In the following, the findings of this thesis are discussed in relation to these 

models of action understanding. 

 

 The findings of Chapters ΙΙΙ and V provide partial support for the predictive 

coding account of action understanding. In Chapter ΙΙΙ, the connectivity analysis 

results showed that when an action was rated as more familiar, MTG exerts an 

attenuated influence on IPL in an anterior direction (precisely as would be predicted 

under predictive coding), and an attenuation of influence was also observed in the 

posterior connection from IPL to MTG (not explicitly predicted under predictive 

coding). Together, these findings illustrate a version of the predictive coding account 

in which outputs from, and inputs to, MTG attenuate with increasing familiarity, 

whereas reciprocal influence between parietal and premotor areas is less impacted by 

increasing action familiarity. An alternative explanation for this finding of attenuation 

of the influence of the posterior node of the AON is that as observed actions become 

more familiar, the intentions are more easily understood, allowing for more precise 

predictions and less error. This would also support the view of Hamilton and Grafton 

(2006) and other studies using repetition suppression paradigms to study AON 

function (Dinstein et al., 2007; Hamilton & Grafton, 2008; Kilner et al., 2009a; 

Ramsey & Hamilton 2010), whereby repeated presentation of action-relevant stimuli 

causes habituation of the BOLD response within the AON. In addition, this finding 

could be explained by considering the range of excitatory and inhibitory influences 

between nodes within a predictive coding framework (Keysers and Gazzola, 2014). 

The hypothesis of the predictive coding framework suggests that there is anterior 

modulation for unfamiliar actions and a posterior modulation for familiar within the 

core regions of the AON (Kilner et al., 2007b). However, the nature of the signals is 
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not described, for example, it is not clear that a high prediction error necessarily 

equates to a greater influence between nodes. 

 

 According to the predictive coding theory (Rao & Ballard, 1999), a mismatch 

between actual and expected action outcomes, which results in high prediction error, 

should equate to increased neural activity. The findings of Chapter ΙΙΙ generally 

support this claim (between MTG and IPL), as more familiar actions should create 

less prediction error, demonstrated by attenuation of connections (c.f., Mumford, 

1992; Rao & Ballard, 1999; Friston, 2005). However, the ROI’s which show a 

quadratic or cubic relationship between familiarity and AON engagement reported in 

Chapter ΙV challenges this point, as robust AON engagement was seen for both 

highly unfamiliar and familiar actions. These findings from Chapter IV support the 

view of signal suppression due to increased prediction error (Grossberg, 

2007, 2013; Carpenter & Grossberg, 2010). A question remains, however, concerning 

how there can be increased activity for both high and low prediction error.  

 

Based on the data presented in this thesis, we might speculate that a familiar 

action should generate less prediction error (as shown in Chapter ΙΙΙ), but as an action 

reaches a high level of familiarity, this dynamic system is able to evaluate predicted 

and actual actions at an even finer level of detail, in an online fashion (Blakemore & 

Frith, 2005; Falck-Ytter et al., 2006; Cross et al., 2012). This possibility requires 

further investigation to validate. If validated, it would support the quadratic 

framework proposed by Cross et al. (2012) and Liew et al. (2013), and would also fit 

well with broader considerations of the brain as a dynamic, predictive organ (Bubic, 

2010). This idea can be further explored by considering the coffee cup example 

introduced at the start of this thesis. If we observe our friend reach out to grasp the 

coffee cup, an action we are familiar with, our predictions of this action, which we 

have performed countless times ourselves, should be strong and accurate, thus 

creating little prediction error. However, as the AON is effectively simulating our 

friend’s action in an online manner, and comparing this to the actual observed action, 

the simulations must have some flexibility built into their predictions, allowing for the 

intention of the action to change. If our friend reached toward the cup and then 

continued her reach towards the sugar, the mechanisms responsible for predicting this 
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action must remain agile enough to reconfigure the predictions, otherwise, our 

“predictive” brains would be running a finite number of simulations to gain the 

intention, not adaptive to what is actually being observed. Furthermore, as reaching 

for a coffee cup is a highly familiar action, any deviation in the act, for example a 

small hesitation or tremor, this would create differences between the observed and 

expected, equating to more robust activity. Therefore, these assumptions could 

explain why there is a quadratic function between familiarity and AON activity; yet, 

this presumption would need further investigation. 

 

 In Chapter ΙV, we set out to directly compare the direct matching hypothesis 

with the predictive coding account of action understanding, in terms of how both 

theories could account for variations in action familiarity. As described above, we 

found positive evidence for the predictive coding account over the direct matching 

hypothesis as there was not consensus linear activity across ROIs. The findings of this 

study have two critical implications. First, we showed via a simple regression 

analyses on the ROIs both linear and nonlinear relationships between familiarity (in 

terms of number of times participants were exposed to an executed or observed action 

sequence) and amplitude of AON response. Second, and importantly for internal 

consistency, we showed that when using a subjective rating scale (identical to that 

used in Chapter ΙΙΙ), this pattern remained. This second point validates the 

methodological approach (and, consequently, findings) from Chapter ΙΙΙ. 

 

 To precisely test the predictions about familiarity derived from the predictive 

coding account, we used a highly theoretically-motivated DCM model in Chapter V. 

Within this model, familiar actions were set to modulate posterior connections and 

unfamiliar actions were set to modulate anterior connections. On the first scanning 

session (pre-training), when all actions were novel and highly unfamiliar, the anterior 

connection between STG and IPL was modulated by unfamiliar actions, yet the IPL to 

IFG modulation did not reliably emerge across participants. After training, the STG to 

IPL connection remained modulated by unfamiliar actions, and now the IPL to IFG 

modulation emerged when watching unfamiliar actions (supporting predictions from 

the predictive coding account). For the familiar (trained) stimuli, the posterior 

connection between IFG and IPL was also significantly modulated, whereas the IPL 
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to STG connection was not, providing partial support for the predictive coding 

account. From our findings, the main question to arise here is why we fail to find full 

support for the predictive coding account. Moreover, we might ask whether the 

predictive coding account is able to provide a complete (and accurate) framework for 

understanding the role of familiarity with the AON.  

  

 To begin to address this question, we can revisit particular findings from 

Chapter V.  First, we can consider unfamiliar actions when they are most unfamiliar 

(i.e., the pre-training scanning session). As outlined in the discussion of Chapter V, 

the absence of an IPL to IFG modulation could be explained by a Hebbian learning 

principle (Hebb, 1949; Keyser & Perrett, 2004; Keyser & Gazzola, 2014). As an 

observed action is extremely novel, a generative model is required in order to create a 

high order representation of the action (Kilner et al., 2007b). By the second scanning 

session, this representation is beginning to be formed, and even as the action remains 

relatively unfamiliar (compared to the trained actions), the IPL to IFG connection 

emerges. After training, the familiar stimuli modulate the IFG to IPL connection, as 

predicted by predictive coding. In Chapter ΙΙΙ, it was shown that this connection was 

not subject to modulation by increasing familiarity, while the findings from Chapter V 

show this connection to be modulated when an action becomes highly familiar. 

Therefore, the predictions of the network, once formed through experience, appear to 

be projected posteriorly from IFG. In terms of the absence of a modulation between 

IPL to STG, again we can reference the findings of Chapter ΙΙΙ, where this connection 

was modulated by increasing familiarity (attenuated). When an action reaches a level 

where the prediction of the network successfully matches the observed, the 

modulatory influence from IPL to IFG attenuates, and in Chapter V, this is indirectly 

shown as an absence of a significantly positive connection across participants. 

 

 

 To summarise, the evidence presented in this thesis provides general, if not 

complete, support for the predictive coding account. Although the evidence does not 

perfectly support the account as proposed in the literature (Kilner et al., 2007b; 

Friston et al., 2005), it provides a valuable insights into how this framework might be 

applied to empirical data and using complex stimuli and training manipulations, as 
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well as an elaborated understanding of how the prediction error signal is shaped by 

modulations in familiarity.  

 

6.3 Methodological considerations: complex actions, training paradigms and 
objective and subjective ratings of familiarity 

 

 Throughout this thesis, a number of complex actions and experimental 

manipulations were used to explore AON functionality. The reason we used whole 

body movements in the observation task featured in Chapter III is that such 

movements provide rich form and motion information (Cross et al., 2009; 2012). 

Moreover, the actions we observe others perform in our daily lives are rarely limited 

to single body parts (i.e., just hands or just feet); therefore the use of whole body 

movements provides ecological validity and social relevance. Clearly, a challenge of 

using such a rich source of action information is that it draws into question where 

participants are fixating when observing the action. Laβberg and colleagues (2014) 

investigated the role of gaze when viewing whole body movements. Using eye 

tracking while participants observed gymnasts somersault, they found tight coupling 

between participants’ eye gaze and the gymnast’s eye, head and spine in anticipation 

of actions. Thus, when observing a complex action, participants were aiming to 

understand the kinematics and goal of the actor via spinal orientation and the 

gymnast’s gaze. Moreover, Green and colleagues (2014) also showed that adults (but 

not infants) used anticipatory gaze when observing goal directed actions. Applied to 

the use of whole body movements in this thesis, we might assume that participants 

were predicting the actions of the dancer to anticipate how he might next arrange his 

limbs. Furthermore, the use of complex, whole-body movements performed by a 

professional dancer allowed for a wide range of movement familiarity and complexity 

(controlled for by motion energy). This variety in complexity helped create a robust 

measure of familiarity to investigate.  

 

 The reason we shifted to studying hand movements instead of whole body 

movements in Chapters ΙV and V was that we were interested in both action 

observation and execution in these chapters, and thus an action that could be 

performed in the scanner was required. Rather than simple reaching actions, which 



Chapter VI 

	 183	

are often used in the action observation field (c.f. Tai et al., 2004; Gazzola et al., 

2007; Liew et al., 2013) we opted for a more complex category of hand action: guitar 

playing. The use of a guitar playing actions has been used in AON studies previously 

(Buccino et al., 2004; Vogt et al., 2007) and, like dance, it also offers a rich form of 

action information. Playing the guitar requires participants to perform a sequence of 

simple finger actions, coupled with appropriate timing and forward planning. Such 

complex actions composed of simple sub-actions have been shown in other domains, 

for example, tennis playing (Basler et al., 2014) or golf (Beilock & Gonso, 2008; Kim 

& Cruz, 2011). Crucial to these types of complex actions is that a novice can learn to 

perform aspects of the action in isolation, even if he or she cannot necessarily perform 

a unified version or sequence of the full action in a coherent manner. This was 

important for the use of guitar playing in this thesis as we wished to use complete 

guitar-playing novices, for whom the skill we wished them to master was attainable 

(not to a professional level but an adequate level of familiarity) within a short training 

window.   

 

 In the wider picture of the thesis and its findings, one could ask: if the tasks 

were switched between chapters, would we expect to find the same results? The short 

answer to this question is yes. Kirsch and Cross (2015) used a training paradigm 

(discussed in more detail below) where participants learned to dance to specific 

sequences, showing that with increased experience, there was greater AON 

engagement. In relation to the connectivity findings, the predictive coding account 

would suggest that regardless of action being observed, a Bayesian comparison 

between observed and expected should occur, manifesting as differential anterior and 

posterior modulation.  

 

 Returning to the point of training paradigms, in Chapters ΙV and V an 

intensive training paradigm was employed to establish systemic variation in 

familiarity in the visual and motor domains. During the training period, participants 

observed one set of actions and spent an equivalent amount of time executing another 

set of actions. One question that could be raised with this approach is the extent to 

which mere action observation induces any training benefits in participants. As shown 

by Kirsch and Cross (2015), the layering of different levels of experience (visual, 
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auditory and physical) has an additive value in terms of AON engagement. In other 

words, the more layers to the training experience, the more value it provides to the 

trainee in terms of both behavioural performance and AON engagement during action 

observation. Based on the behavioural findings reported in Chapter ΙV (from both the 

training period and retest), this same pattern of findings also emerges within the 

present study. For those guitar sequences that were observed throughout the training 

week, participants’ ability to play these sequences at the retest stage was lower than 

their ability to play the physically practiced sequences after training (however, the 

retest results do show that participants could play the observed sequences 

significantly better than the untrained sequences). The considerable differences that 

emerge in participants’ ability to play sequences experienced during physical practice 

compared to visual experience is a valid criticism of the use of this kind of training 

paradigm (see also Kirsch & Cross, 2015; Cross et al., 2009). However, to counter 

this point, our aim was not to directly compare physical and visual experience in this 

study per se. By keeping these two elements separate throughout the design (and 

analysis), this allowed us to systematically vary familiarity separately for action 

observation and execution, which fits with our original aim.  

 

 Finally, the use of familiarity ratings within this thesis merits consideration. If 

objective, physical measures of performance ability are not feasible or possible (Cross 

et al., 2011; Press & Kilner, 2013; Kawabata & Zeki, 2004), alternative measures that 

rely on participants’ self-report can enable further investigation of familiarity or 

perceived physical ability. By asking subjects to rate how familiar the actions 

observed during scanning were to them in an offline task in Chapter III, this allowed 

us to tap into a subjective reflection of the familiarity variable. One positive 

consequence of this approach is that it allows participants to express a subjective, 

overall feeling about each stimulus, which is not strictly related to how many times 

they have performed or seen the action before. For example, if we consider the guitar 

actions of Chapters ΙV and V, it could be the case that even though certain sequences 

were trained, participants may felt very familiar and competent with some of the 

trained actions, and less familiar or competent with other trained actions (and their 

ability to successfully execute these sequences may reflect this). To address this 

potential issue, we also took subjective ratings of familiarity in Chapter IV (as we did 
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in Chapter III), to enable closer comparison between the two approaches.  When 

instructions were given to participants to rate the stimuli on familiarity, for the studies 

in both Chapter III and Chapter IV, participants were asked to use the entire scale. In 

Chapter ΙV, this instruction appeared to work and the whole scale of 1-9 was used 

across participants. For Chapter ΙΙΙ, this instruction was not as effective, so a z 

standardization of the ratings was used instead of absolute ratings. This 

transformation allowed for the range of ratings used by each subject represented of 

the entire scale, allowing for further GLM and connectivity analysis to be more 

representative of the data.   

 

 To conclude this section, we used different types of actions within this thesis 

in order to address complementary questions about the role of familiarity in shaping 

AON responses. Familiarity was manipulated in Chapters IV and V through use of an 

intensive training paradigm, and all empirical chapters of the thesis also used a 

sensitive self-report rating measure of familiarity. Together, these methods enable us 

to manipulate and measure action familiarity to further understand experience-

dependent plasticity within the AON.  

 

6.4 Methodological implications: Effective connectivity and ROIs  
 

 In concert with training manipulations and measures of familiarity, this thesis 

also featured the use of effective connectivity measures to probe the exchange of 

influence between core nodes of the AON. We used the effective connectivity 

technique of dynamic causal modelling (Friston et al., 2003; see Chapter ΙΙ for a 

discussion on its use), as it provides a measure of the causal relationship between the 

nodes of a given network. Compared to other methods such as Granger causality 

modelling (GCM; Goebel et al., 2003; Valdes-Sosa, 2004), DCM allows us to look 

beyond correlations within the observed data. By using a method such as GCM, the 

understanding of causal modulation between nodes of the network is not attainable, 

and the principles of the predictive coding account of action understanding would not 

be as clearly testable. For example, if a correlation between IPL and IFG is found, this 

would not illuminate whether familiarity drives the exchange of influence from IPL to 

IFG; rather, we would conclude that the activity between the regions is coupled when 
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familiarity varies. Therefore, the use of DCM to investigate the questions of this 

thesis is justified.  

 

 In addition, the use of different DCM approaches in this thesis warrants 

discussion. In Chapter ΙΙΙ, we used a classical approach to DCM analysis, whereby all 

models containing permutations of connections were created and then compared in 

relation to model fit on both accuracy and complexity (Friston et al., 2003; Stephan et 

al., 2010). In Chapter V, a single model was constructed for each condition at each 

scanning session, which was then tested for consistency of connections across 

participants. A question that might arise here is why was the same method not used 

for both studies? The reason for using an alternative approach in Chapter V, as 

supported by the DCM literature, is that it is key to this kind of analysis to keep the 

model space as simple and hypothesis-driven as possible (Stephan et al., 2010). In 

Chapter ΙΙΙ, we used the hypothesis of the presence of increasing familiarity on all 

connections between the core regions of the AON. This allowed for a more 

exploratory method and therefore we examined multiple models. However, in Chapter 

V, we tested strong predictions of the predictive coding account. Here, we also have 

multiple time points making the potential amount of models to evaluate very large. 

However, by using a strong hypothesis, we could define a more targeted set of models 

to directly test a hypothesis derived from the literature. Therefore, the use of different 

model spaces between the chapters was necessary and allowed us to explore the core 

questions of this thesis in the most targeted and appropriate way possible.  

 

 The use of ROIs, both in the DCM analysis of Chapter V and regression 

analysis of Chapter ΙV provide a strong position for this thesis. When investigating 

the profile of response amplitude within AON regions, a regression model was fitted 

to changes in amplitude as a function of familiarity (both number of exposures and 

participants’ subjective ratings). This method, as described by Mattavelli et al. (2012), 

highlights certain limitations within our design. When number of exposures was used 

as a measure of familiarity, the increments between the points were not uniformly 

distributed. We adjusted these values to represent the exposure to the stimuli, but in 

future work more even increments (and indeed, more increments in general) should be 

used. However, within the same study, we aimed to complement the analysis of 
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objective measures of familiarity with the complementary use of subjective 

familiarity ratings as predictors in the regression model. These results provide support 

for the findings of a quadratic function with the objective exposure data, and more 

generally provide a clean measure of internal consistency between objective and 

subjective familiarity measures within the thesis. 

 

 Furthermore, the ROI approach used in Chapter V provided a powerful tool 

for testing familiarity over time. Here, we used identical regions for both pre- and 

post-training scanning sessions, allowing us to investigate how connectivity between 

these core regions changes as actions transition from novel and unfamiliar to trained 

and familiar. However, one issue with using this powerful approach is that a 

considerable number of participants were excluded from the final analysis (sample 

dropped from 21 to 14 participants for final analysis). These participants were 

required to be excluded, as they did not show activity in all the regions over both time 

points. This exclusion could have potentially limited the power of the subsequent 

analysis on the connection strengths (as N = 14 is a far from ideal sample size). Here, 

however, we trade power within the tests for a complete and robust within-subjects 

approach, which we argue ultimately allows for better understanding of how the 

system processes different levels of familiarity across a rigorously controlled training 

paradigm.     

 

6.5 Future research 
 

 Many opportunities exist for future work to build upon the findings of this 

thesis. Here, we showed support for the predictive coding account using fMRI and 

DCM. An extension of this would be to investigate this connectivity with other 

neuroimaging techniques. Although fMRI provides evidence for connections between 

the core nodes of the AON, a matter that remains outstanding is how these 

reciprocally-connected regions process familiarity within the time domain. For 

example, we can conclude that increasing familiarity feeds posteriorly through the 

network. However, an unanswered question concerns whether the IFG first sends a 

prediction or whether the anterior connections first relay a signal about the observed 

action (c.f. Lewis et al., 2016 for an example of how the predictive coding accounts 
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dynamics can be applied to language). For example, using simultaneous fMRI and 

EEG, one could investigate the connectivity within this network as well as exploring 

the temporal aspects of this processing. EEG is often used to investigate the AON (c.f. 

Cochin et al., 1999; Grafton & Tipper, 2012; Hari et al., 2014; Kilner et al., 2004; 

Lepage & Theoret, 2006; Southgate et al., 2009; Press et al., 2011), and coupled with 

a powerful tool of connectivity analysis such as DCM (c.f. Kiebel et al., 2008 for the 

use of DCM in EEG), would provide a richer understanding of this network.  

 

 In order to further test the role of familiarity within the AON and, more 

specifically, test the predictions of the predictive coding account, another aim for 

future research could be to design a training experiment whereby familiarity first 

increases, and then over time, familiar actions revert or fade back to unfamiliar. For 

example, an action could be observed over the period of the experiment (increasing its 

familiarity), after which the action is then altered slightly (perhaps the intention 

changes) so that it becomes novel again. The test of action understanding models 

would then be to test their adaptability, and coupled with a method of connectivity, 

such change would further explore how the AON dynamically responds to changes in 

familiarity.   

 

6.6 Conclusions 
 

 In summary, this thesis provides novel insight into the impact of familiarity on 

effective connectivity within the action observation network. Overall, results suggest 

that the predictive coding account of action understanding provides a useful and 

mostly validated framework for how core regions of this network process actions with 

varying familiarity. Specifically, this dynamic system appears to provide predictions 

that flow from anterior to posterior regions about how an action should unfold (which 

become stronger when an observed action is familiar), whereas modulations that 

originate in posterior regions and project anteriorly update the network’s predictions 

with information about the action that is actually observed or executed (and is 

stronger for unfamiliar actions). However, the full story of how familiarity modulates 

the AON is far from concluded, and many interesting questions remain and have 

arisen from the work reported in this thesis. The use of methodologies such as DCM, 



Chapter VI 

	 189	

rating scales, training paradigms and ROI regression analyses has provided valuable 

insights into this field and offer evidence that targeted combinations of 

methodological and analytical approaches will be required to further advance our 

understanding of experience-dependent plasticity in the human brain.   
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7 Appendices 
 

7.1 Appendix 1- Glossary of terms 

 

Activity dependent plasticity – continuously modified activity-dependent efficacy of 

synaptic transmission.  

Akaike Information Criteria (AIC) – A method to compare model evidence which is 

maximised when the approximating likelihood is closest to the true likelihood (Akaike, 1973). 

It approximates the model evidence and is asymptotically equivalent to those based on 

Bayesian factors.  

Anatomical/structural connectivity – examines the presence of axonal connections. e.g. 

Diffusion Tensor Imaging (DTI) and Diffusion Spectrum Imaging (DSI). 

Autoregulation – the perfusion of blood, thereby oxygen, to regions of the brain that require 

it – due to neuronal activity (a term that applies to all major organs; in this case, the brain). 

Balloon Model – a series of differential equations that describe the coupling among 

hemodynamic state variables; relates to increasing blood flow, blood volume and 

deoxyhemoglobin content.  

Balloon Model (Extended) – as above but extended by Friston (2000) and Stephan et al 

(2007c) to include non-linear functions and free parameters to provide a more plausible 

hemodynamic model.  

Bayes factor – the result of comparing the likelihood of two models. It can be thought of as a 

likelihood-ratio test of the models to the given data, however, it integrates over-all 

parameters. A Bayes factor below 3 is not worth mentioning (Kass & Raftery, 1995).   

Bayes Theorem (or Bayes rule) – Bayesian probability is a mathematical technique that 

allows us to reason about beliefs under conditions of uncertainty, by calculating conditional 

probabilities, e.g. probability of A given B. 

Bayesian hypothesis testing – By using Bayes Theorem, can test the likelihood of models 

which have uncertainty to explain competing system hypotheses.  

Bayesian Information Criterion (BIC) – a special case of the Laplace approximation (to the 

log-evidence) which drops all terms that do not scale with the number of data points 

(Schwarz, 1978). 
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Bayesian inversion – Combining measured data and a priori information (assumptions) to 

gain the posterior distribution (Prior distribution times the likelihood distribution or 

measurement). 

Bayesian Model Averaging (BMA) - Averages across models, which in turn, incorporates 

the uncertainty about models into conclusions about parameters and predictions. It uses the 

entire model space chosen and computes weighted averages of each model parameter, where 

the weighting is given by the posterior probability of each model.  

Bayesian Model Selection (BMS) – the probability of data given a model is integrated over 

unknown parameter values in that model. The resulting model evidence is then compared to 

identify the best model fit.  

Bayesian Parameter Averaging (BPA) – Used in FFX, this computes a joint posterior 

density by combining individual posterior densities, treating the posterior from one 

participant as the prior for the next.   

Bilinear (DCM) – the most common form of DCM; an input-state-output model of 

deterministic neuronal systems which has a known input and modulatory activity is restricted 

to direct modulations (as opposed to node modulations; see Nonlinear DCM).   

Conditional Probability – the probability that one proposition is true provided that another 

proposition is true. 

Conduction delays – the time required for an action potential to travel from the soma to the 

axon terminals (from origin to where synapses are formed). 

Construct Validity – the question of whether the measurement used is truly addressing the 

hypothesis.  

Control theory  - a branch of mathematics and engineering whereby a reference is 

manipulated by a controller, entered into a system and an system output is measured. If the 

output is not desired effect then it can be reentered into the system to control the dynamic 

behaviour of the system. 

Coupling parameter – the effective connectivity between two nodes. 

Dendric Backpropagation – the Backpropagation of action potentials from the axon hillock 

back to the end of the dendric tree. 

Effective connectivity – causal (directed) influences between neurons and neuronal 

populations; regional effects in terms of interregional connectivity, e.g. DCM, Granger 

causality, PPI. 

Eigenvariate – the first eigenvariate is the weighted mean of the region of interest data that 

result in the time series with maximum possible variance (the mean of the voxels in the ROI). 

Empirical priors – these are made of the hemodynamic parameters. 
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Endogenous activity – the activity between nodes where there is no modulation and just a 

stimulus input. 

Exceedance probability – Our belief that a particular model is more likely than another. 

These probabilities all sum to one and can be used to rank models at the group level.  

Exogenous activity – activity within the system that is affected by the modulatory input of a 

contextual variable. 

Expectation Maximization (EM) Algorithm – an iterative method to find the maximum 

likelihood or maximum a posteriori (MAP) estimates. The expectation step creates a function 

for the log-likelihood for the parameters, and the maximisation step computes parameters 

maximising the expected log-likelihood found in the E step until convergence. 

Face Validity – whether the measurement looks like it would attend to the hypothesis in 

question. 

Field DCMs – could account for macro-scale propagation effects by incorporating elements 

of neural field theory. 

Fixed effects analysis (FFX) – a method of group level inference where the optimal model is 

assumed to be the same for each subject in the population. 

Forward model – a model of how neuronal activity causes the signals you observe (BOLD 

signal): a combination of neural and hemodynamic states. 

Free Energy (also known as variational, negative or Gibbs) – places a lower bound on the 

model log-evidence and can be estimated using the Laplace approximation.  

Free parameters – If a term is non-linear, as with DCM, a Bayesian framework can be used 

to estimate parameters based on constraints; making them more biologically plausible.    

Frequentist statistics – inference is based on the frequency or proportion of data; it assumes 

that parameters are not random (e.g. ANOVA and t-tests). 

Functional Connectivity – investigates statistical dependencies (temporal correlations) 

between regions, e.g. ICA. 

Functional Integration – asks how brain regions influence each other, e.g. connectivity 

analysis. 

Functional Segregation – asks which brain regions respond to a particular experimental 

input, e.g. conventional GLM analysis. 

Gauss-Newton algorithm – when non-linear expressions are used (e.g. with DCM), this 

method can solve the ‘least squares problem’ as to fit a model to the data by minimising the 

sum of squares errors between the data and model’s prediction. 

Gaussian approximation – using standard units to estimate the area under the bell curve.  

Gaussian distribution – an alternative term for normal distribution (a bell curve). 
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Generalized Filtering (GF) – a Bayesian filtering scheme that dispenses of the mean-field 

approximation and treat all unknown parameters and precisions as very small. This constraint 

is implemented by representing all unknown variables in generalised coordinates of motion - 

allowing one to optimise the moments of the joint posterior as data arrive. The resulting 

scheme enables an efficient assimilation of data and the possibility of online and real-time 

deconvolution. 

Generative models – a model with hidden parameters that is usually then compared to its fit 

to real data (in relation to other models) by giving a conditional distribution (based on Bayes’ 

Rule). 

Granger Causality Modelling – tests for the signature of experimental influences by looking 

for correlations in the activity of two or more regions. 

Group Bayes Factor (GBF) - the result of comparing the likelihood of two models at a 

group level. 

Grubbs exponent – the relationship between cerebral blood volume and flow.  

Hemodynamic Forward Model – a deterministic model of hemodynamic state equations 

which describe the coupling between these variables (see the Balloon Model). 

Hidden States Variables - give rise to noisy observations through forward mapping (e.g., 

neurovascular coupling in fMRI) and this cannot be observed. 

Hyperparameters – the parameters of the prior distribution. 

Independent Component Analysis (ICA) – assumes that the components are non-Gaussian 

and independent, allowing for identification of their additive contribution to the signal. 

Jacobian Matrix – a matrix of first order partial derivatives. 

Knoecker product -  an operation performed on to matrices that results in a block matrix (not 

to be confused with multiplication) – giving the matrix of the tensor product. 

Kullback – Liebler Divergence – a measure in difference between two probability 

distributions. In DCM, it measures the information lost when x (the data) is used to 

approximate q (the model).   

Laplace approximation - a method for using a Gaussian approximation to represent a given 

posterior density function. 

Levenberg–Marquardt algorithm – a method for minimising a function over a space of 

parameters of the function. It can be thought of as Gauss-Newton but uses an approach where 

a subset of objective function is found, it is then expanded around it. 

Log Likelihood ratio – the ratio of support for one model over another at a group level. 

Log Model Evidence – model evidence of models from a group of participants. 
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Long-Term Synaptic Plasticity (LTP) - the ability to change strength in connections 

between two neurons in response to either use or disuse transmission over pathways; long 

term as last minutes or hours and only occurs at excitatory synapses. 

Lyapunov exponent - determines a notion of predictability for a dynamical system. 

Marginal likelihood ratio – an alternative term for the Bayes factor (20 to 1) is considered 

strong evidence.  

Markov-chain – a random memoryless mathematical system where the next state depends 

only on the current state and not on the preceding.  

Maximum a Posteriori Probability (MAP) – used to obtain the best guess of the 

unobserved (e.g. posterior). It is the most frequent of the posterior distribution and is obtained 

by EM. 

Mean Field Model – the neuronal state equation contains random fluctuations on the 

neuronal states that can be modeled in terms of dynamics of the ensuing probability 

distribution over states if a population (Marrerios et al, 2009). This based on the mean-field 

theory, which is based on the assumption that the fluctuations around the average value of the 

order parameter are so small that they can be neglected.   

Model evidence - the probability of the data given the model. 

Model space – the arbitrary and subjective space that contains all models used for 

comparison. 

Model Space Partitioning – by systematically separating model space into families, one can 

compare uncertainties of model structure systematically.   

Monte Carlo Method of Sampling – a method of optimisation where repeated random 

sampling is conducted to obtain the same probabilities heuristically. 

Nested Models – each node is visited twice, in DCM, this would be a connection to and from 

the node. 

Neuronal dynamics – a model of the neuronal activity (indirectly inferred for DCM) that 

encumbers neurophysiological processes, e.g. synaptic transmission 

Neuronal efficacy – the increase in perfusion signal elicited by neuronal activity.  

Neurovascular Coupling – the relationship between neural activity and the changes in rCBF. 

Neyman-Pearson Lemma - if no unknown parameters, N-PL is a justification of the 

likelihood ratio test which the test has the highest power. 

Non-Nested Models - each node is only visited once, in DCM, this would be a connection to 

or from the node. 

Nonlinear (DCM) – comparable to bilinear DCM but with the additional matrix d which 

states a nodes modulatory influence on a connection. 

Occam’s razor – the simplest explanation used, usually the correct one.  
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Optimal Model - This is the model which given alternative in model space, best explains the 

data. 

Overfitting  - where the model favours complexity and therefore begins to fit observational 

noise.  

Partial Least Squares Regression (PLS) – a regression methods that aims to find a linear 

regression model that projects predicted and observed data. 

Plastic DCM’s – aim to represent different neurobiological mechanisms of synaptic plasticity 

more explicitly (could help with neuropsychiatric markers). 

Positive Evidence Ratio (PER) – a complementary index to the GBF: the ratio of subjects 

with support for the model against no support. 

Posterior family probabilities – as below but when families of models are compared 

Posterior Probabilities (or revised probability) – the conditional probability assigned to a 

parameter (which is unknown) after the data is taken into account  

Posterior Variance weighted averaging - a FFX method of group analysis whereby each 

MAP estimate is weighted by its posterior variance, while covariance between parameters are 

ignored.  

Predictive Validity – the extent to which a measurement predicts results. In DCM, this can 

be done via simulations and then compare this to real world data to obtain face validity.  

Principle Components Analysis (PCA) - a way of identifying patterns in data, and 

expressing the data in such a way as to highlight their similarities and differences. 

Principled priors – consists of temporal scaling (important to consider slice timing). 

Prior (probability) distribution or prior – the uncertainty about X (e.g. a parameter) before 

the data is considered. This is uncertainty and not randomness, a fact that is important when 

using DCM. 

Prior constraints – the restriction of where inputs can elicit extrinsic responses . 

Probability density function (which Posterior and prior densities are calculated from) - a 

continuous distribution that describes the likelihood of events. One can compute the area 

under the curve (which is equal to one) to determine the probability of your event by taking 

the difference between two events. 

Random Effects Analysis (RFX) – treats the model as a random variable and estimating the 

parameters of a Dirichlet distribution describing the probabilities of all models considered;an 

then compute how likely it is that a specific model generated the data of a randomly chosen 

subject (and the exceedance probability of one model being more likely than any other). 

Regional Cerebral Blood Flow (rCBF) – the blood supply to a specific region in the brain at 

a given point in time. 
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Resting oxygen extraction – needs to be considered for DCM as it may be sensitive to the 

nature of the baseline measure. 

Restricted maximum likelihood (REML) - a form of maximum likelihood estimation 

(estimates of the model’s parameters) which is not based on estimates on a maximum 

likelihood fir of all the data but uses a probability function from a transformed data set 

(restricted) so nuisance parameters have no effect.   

Savage-Dickey Density Ratio – provides a representation of the Bayes factor for testing an 

embodied model (which contains a nuisance factor) under the assumption that the conditional 

prior density under the alternative is equal to the prior under the null hypothesis. 

Short-Term Synaptic Plasticity (STP) – the ability to change strength in connections 

between two neurons in response to either use or disuse transmission over pathways; short 

term as acts within tens of milliseconds to minutes. 

Shrinkage priors – enable stability of the system by stating that the coupling parameters are 

zero unless otherwise stated. 

Signal decay – a dampening of the rCBF (mediated by Nitric Oxide (NO)) signal which also 

suppresses the undershoot.  

Single state per region (DCM) – each region has one state variable; a simple summary of the 

neuronal (i.e. synaptic) activity in a region. 

Stiffness parameter (Grubbs vessel) – Volume and flow are always in a state of flux when 

an evoked event occurs. DCM tries to account for the nonlinearities in the flow-volume of the 

venous balloon that underpins the nonlinear behaviours trying to be explained   

Stochastic (DCM) – alternatively to deterministic, stochastic DCM accounts for stochastic 

fluctuations in neuronal activity and their interaction with task-specific processes, e.g. can be 

applied to resting state data with no direct external input into a region. 

Structural Equation Modelling (SEM) – Given a set of regions, directed connections are 

stated (causal relationship assumed a priori) and can set connections strengths so that so to 

minimise the discrepancy between the observed and implied correlations and thereby fit the 

model to the data. 

Taylor series - a mathematical function that provides the exact value of a function for all 

values of x where that series converges.  

Temporal averaging – averaging across time series. This is dependent on the events and 

trials being temporal aligned exactly.  

Transit time – determines the dynamics of the signal and can be thought of as the resting 

venous volume divided by resting volume. If the mean transit time increases then the 

dynamics of the BOLD signal slow down with respect to the flow changes.  
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True Model – the true model cannot be obtained by DCM alone. The true model is only 

acquired via invasive techniques, e.g. local field potentials (LFP) – see optimal model.    

True Posterior – as with the true model, the true posterior values can only be obtained via 

methods such as DTI.  

Two State per region (DCM) – incorporates two state variables within a region to model the 

activity of inhibitory and excitatory population.  

Variational Bayes – an extension of the EM algorithm which computes an approximation to 

the entire posterior distribution of the parameters.  

Variational Laplace - used for Bayesian estimation of any non-linear model and assumes 

that the prior means and covariances are known (they are not estimated from data). 

Volterra series – a model of non-linear behaviour; similar to the Taylor series but differs as it 

is able to capture memory effects (not dependent on a specific time of an input). 
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7.2 Appendix 2- Pilot data for Chapter III 

 

 Of the 157 videos piloted, mean ratings of these were taken from each 

participant and the 30 most familiar and 30 most unfamiliar were extracted. This 

allowed for differences of familiarity within the stimuli, confirmed by a t test, t(20) = 

2.802, p<0.01 (two tailed). 

 

 
Appendix	2.	The	mean	rating	of	the	reduced	stimuli	set.		
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7.3 Appendix 3- Pilot data for Chapters IV & V 

 

 

 
Appendix 3. In	 order	 to	 determine	 whether	 there	 was	 a	 difference	 between	

average	accuracy	(%	of	notes	hit)	across	the	three	days	of	training,	a	repeated	measures	

ANOVA	was	used.	The	results	of	this	analysis	showed	that	was	an	effect	of	training	day,	

F(2,36)=27.95,	 p<0.001,	 ηp2=0.61.	 Post-hoc	 analyses	 using	 Bonferroni	 correction	

indicated	 that	accuracy	on	 training	Day	2	(M=63.10,	SD=13.24)	was	higher	 than	Day	1	

(M=50.14,	 SD=13.72),	 (p<0.01).	 Accuracy	 on	 Day	 3	 (M=71.24,	 SD=12.87)	 was	 greater	

than	Day	2	(p<0.05)	and	Day	1	(p<0.001).	This	relationship	is	characterised	by	a	linear	

within-subjects	contrast,	F(1,18)=49.93,	p<0.001,	ηp2=0.74.	
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7.4 Appendix 4 - Endogenous connections for observed DCMs (Chapters V) 
 
Appendix 4A. Results of a one-sample t test for coupling parameters of endogenous activity 
of movement: Observation Day 1 

 From 

 L STG R STG L IPL R IPL L IFG R IFG 

To       

L STG - - 0.3962 

(0.0535) 

(p<0.0001)* 

- - - 

R STG - - - 0.5118  

(0.0860) 

 (p<0.0001)* 

- - 

L IPL 0.2953  

(0.0416) 

(p<0.0001)* 

- - - 0.3919 

 (0.0510)  

(p<0.0001)* 

- 

R IPL - 0.3339  

(0.0712)  

(p<0.0001)* 

- - - 0.4164 

 (0.0625)  

(p<0.0001)* 

L IFG - - 0.4687  

(0.0713) 

(p<0.0001)* 

- - - 

R IFG - - - 0.5889 

 (0.0922)  

(p<0.0001)* 

- - 

Data are mean (SEM) for each connection. -, Not investigated. The threshold was set at 
p<0.002 (corresponding to a FDR-corrected threshold of p<0.05 for multiple comparisons. * 
Significant connection. 
 
Appendix 4B. Results of a one-sample t test for coupling parameters of endogenous activity 
of movement: Observation Day 2 

 From 

 L STG R STG L IPL R IPL L IFG R IFG 

To       

L STG - - 0.5003 

(0.0688) 

(p<0.0001)* 

- - - 

R STG - - - 0.4955  

(0.0653) 

(p<0.0001)* 

- - 



Appendices 

	 222	

L IPL 0.3211 

(0.0410) 

(p<0.0001)* 

- - - 0.4114 

 (0.0941)  

(p=0.001)* 

- 

R IPL - 0.3633  

(0.0535)  

(p<0.0001)* 

- - - - 

L IFG - - 0.5863 

(0.1173) 

(p<0.0001)* 

- - - 

R IFG - - - 0.4604 

 (0.0808)  

(p<0.0001)* 

- - 

Data are mean (SEM) for each connection. -, Not investigated. The threshold was set at 
p<0.002 (corresponding to a FDR-corrected threshold of p<0.05 for multiple comparisons. * 
Significant connection. 
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7.5 Appendix 5 - Endogenous connections for executed DCMs (Chapters V) 
 
Appendix 5A. Results of a one-sample t test for coupling parameters of endogenous activity 
of movement: Execution Day 1 

 From 

 L STG R STG L IPL R IPL L IFG R IFG 

To       

L STG - - 0.1222  

(0.0145)  

(p<0.0001)* 

- - - 

R STG - - - 0.1241 

(0.0114)  

(p<0.0001)* 

- - 

L IPL 0.0936 

 (0.0106) 

(p<0.0001)* 

- - - 0.1376 

 (0.0159)  

(p<0.0001)* 

- 

R IPL - 0.0982  

(0.0048) 

(p<0.0001)* 

- - - 0.1217 

 (0.0111)  

(p<0.0001)* 

L IFG - - 0.2044 

(0.0203)  

(p<0.0001)* 

- - - 

R IFG - - - 0.1979 

 (0.0195) 

(p<0.0001)* 

- - 

Data are mean (SEM) for each connection. -, Not investigated. The threshold was set at 
p<0.002 (corresponding to a FDR-corrected threshold of p<0.05 for multiple comparisons. * 
Significant connection. 
 

 
Appendix 5B. Results of a one-sample t test for coupling parameters of endogenous activity 
of movement: Execution Day 2 

 From 

 L STG R STG L IPL R IPL L IFG R IFG 

To       

L STG - - 0.1516 

(0.0322) 

(p<0.0001)* 

- - - 

R STG - - - 0.1495  

(0.0344) 

- - 



Appendices 

	 224	

 (p=0.001)* 

L IPL 0.1098  

(0.0207) 

(p<0.0001)* 

- - - 0.1538 

 (0.0254)  

(p<0.0001)* 

- 

R IPL - 0.1234 

(0.0254)  

(p<0.0001)* 

- - - 0.1475 

 (0.0257)  

(p<0.0001)* 

L IFG - - 0.2272  

(0.0363) 

(p<0.0001)* 

- - - 

R IFG - - - 0.2314 

 (0.0359)  

(p<0.0001)* 

- - 

Data are mean (SEM) for each connection. -, Not investigated. The threshold was set at 
p<0.002 (corresponding to a FDR-corrected threshold of p<0.05 for multiple comparisons. * 
Significant connection. 
 


