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Abstract 

This study uses a multidisciplinary approach to elucidate the formation and evolution of a large 

coastal sand barrier complex in South Wales during the Holocene. Foraminifera, pollen, and 
geophysical evidence is used to interpret the geometry, lithology and stratigraphical relationships 
between deposits within the back-barrier area. Heavy mineral analysis and XRDA provide 
information on potential sediment sources. 

Geophysical surveys show that the western portion of the barrier at Pendine Sands rests on a 
ridge of Pleistocene glacigenic sediment. This study shows that the barrier formed during the 

early Holocene (ca. 8,000 to 7,000 years BP) in response to the drowning of the antecedent 
topography by rapidly rising relative sea-levels; lithostratigraphic and biostratigraphic evidence 
from cores recovered within the back-barrier area show that the high energy surf zone did not 
overstep the gravel ridge and rework the fossil cliffline behind the western portion of the barrier. 
Sediment reworked from glaci-fluvio deposits in Carmarthen Bay was supplied to the prograding 
dune system by strong westerly and southwesterly winds and longshore drift. Between ca. 6,200 

and 5,700 years BP and between ca. 4,500 and 3,500 years BP the barrier underwent two phases 
of long-term stability. These periods of barrier progradation and stabilisation were punctuated 
by relatively short phases of erosion, instability and barrier breakdown. Periods of barrier 

stability were probably triggered by regressive phases in relative sea-level change, which 
promoted spit development, whereas the intervening instability and breakdown was probably 
caused by an increase in storm frequency. 

The response of this system to increased storm activity was primarily controlled by local 
topographic and sedimentological factors. The ridge beneath the western portion of the barrier 

prevented the total breakdown and or landward migration of the barrier dunes. Consequently, 
the back-barrier sediments deposited behind the barrier were preserved whereas the tidal inlet 

sequences east of the gravel ridge were reworked by wave action and tidal scour. Reclamation 

of the back-barrier area during the 17th and 19th centuries has had a significant effect on the 
configuration of the coastline at Pendine Sands. The construction of seawall defences stabilised 
the barrier dunes and promoted rapid accretion along the seaward side of the barrier dunes and 
at the distal end of the spit. The large expanse of sandflats which are exposed in Carmarthen Bay 

at low tide, and the frequency of strong westerly and southwesterly winds, were critical factors 
in the formation and development of the barrier dunes at Pendine Sands. 

The significance of antecedent topography indicates that the formation and evolution of this 

particular barrier should not be considered as typical of regional barrier development. 
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Chapter 1 Introduction 

Chapter 1 

Introduction 

Diverse and complex natural processes continually modify the world's coastlines which are 

consequently in a permanent state of flux. The scale of coastal change may range from 

microscopic biological, chemical or physical processes affecting individual grains of sand to 

global changes in relative sea-level. During the Late Devensian the mass wastage of the terrestrial 

ice sheets caused the world's oceans to transgress the continental shelves, inundating former 

glacial and river valleys. The rate of relative sea-level rise and the response of certain areas of 

coastline to the removal of terrestrial ice sheets depended upon their proximity to the former ice 

masses and the availability of sediment to supply and maintain coastal systems. Human activity 

during the last few hundred years has added a further dimension to coastal change by modifying 

and disturbing coastal environments and the natural processes of change. 

Studies into the long-term behaviour and response of coastal systems to these natural processes 

are the key to predicting future coastal changes and providing the understanding necessary to 

resolve the coastal crisis. Models describing long- (103 years) and short-term (100 years) coastal 

evolution should be used to devise and construct management policies which aim to the control 

the increasing demands exerted on the coastal resource; the latter requires an understanding of 

contemporary processes and analysis of the Holocene stratigraphic record. 

1.1 Aims and objectives 

The Pendine and Laugharne Burrows, situated on the north coast of Carmarthen Bay in SW 

Wales (Figure 1.1), form an extensive barrier complex which covers an area of approximately 20 

km2. The aim of this multidisciplinary study is to investigate the formation and evolution of this 

large coastal sand barrier complex in response to relative sea-level rise and differential sediment 

supply during the Holocene. This feature is one of the largest barrier complexes in western 

Britain, and unlike the majority of the barriers in the Gulf of Mexico and on the eastern seaboard 
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Chapter 1 Introduction 

of the USA, it formed and developed in a macro- rather than micro-tidal environment. Previously 

established hypotheses of barrier genesis, evolution and development will be tested against the 

hypotheses produced in this study; the latter will be used to establish whether or not this feature 

formed and developed in response to regional processes or was controlled primarily by local 

phenomena. To achieve these aims biostratigraphic and lithostratigraphic evidence, obtained 

from boreholes drilled into the back-barrier area, will be used to establish facies changes within 

the system which will be constrained by radiocarbon dating of organic levels and correlated by 

using laboratory induced magnetic measurements. Heavy and clay mineral analysis will be used 

to determine sediment provenance, and geophysical data will be used to establish the antecedent 

topography upon which this feature rests. Knowledge of pre-transgressive surfaces are necessary 

as coastal barrier evolution is often intimately tied to the surfaces upon which these systems form 

and subsequently migrate. 

1.2 Site description and recent history 

Carmarthen Bay is a shallow embayment bound by rocky clifflines which is believed to have 

formed by the erosion of relatively soft shales within the Millstone Grit and Coal Measure series 

(Strahan, 1909). The area contains considerable quantities of glacigenic material which has been 

reworked to form abundant sandwaves offshore and numerous near-shore bars and intertidal 

sandbanks (Jago, 1974,1980). 

1.2.1 The barrier complex 

The barrier complex extends a distance of 10 km from Gilman Point near Pendine to the 

confluence of the rivers Taf, Towy and Gwendraeth (Figure 1.2). This feature extends across the 

lower reaches of the Taf Estuary and the barrier dunes form the landward portion of extensive 

sandflat deposits which are exposed within Carmarthen Bay at low tide. The barrier is attached 

to a steep cliffline at Gilman Point which runs behind the barrier system from Pendine to Sir 

John's Hill (Figure 1.3a). This fossil cliffline, cut into Devonian Old Red Sandstone and the 

Carboniferous Limestone promontory at Coygan, is though to represent the coastline prior to the 

formation of the barrier. Savigear (1953) indicate that, as the slope of the cliffs increases 
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Figure 1.3a Fossil cliff line from Pendine to Coygan. 

-, ..... 

Figure 1.3b Steep eroded fossil cliff line between Coygan and Laugharne. 
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Figure 1.4a Low irregular dune at the back of the Laugharne Burrows. 

Figure 1.4b Shore-parallel beach/dune ridges along the front of the burrows. 
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Chapter 1 Introduction 

progressively from Pendine to Laugharne, the barrier probably formed through the longshore 

development of the dunes and foreshore. 

Pathways and roads cut into the fossil cliffline west of Coygan show that brick red Pleistocene 

till has been pushed up and smeared against this portion of the fossil cliffline; these deposits are 

similar to the ridge of moraine within the Taf Estuary known as Blackscar (Figure 1.2). The latter 

is believed to represent a slight readvance during the retreat of Central Welsh, ice during the Late 

Devensian (Griffiths, 1939). In contrast the cliffs to the east of Coygan are far steeper and 

contain numerous caves infilled with coarse gravel and sand (Figure 1.3b). The absence of 

similar features west of Coygan suggests that this portion of the fossil cliffline was not subject 

to significant erosion prior to the formation of the coastal barrier. 

The Wytchet brook dissects the barrier forming the boundary between West and East Marshes 

and the Pendine and Laugharne Burrows (Figure 1.2). The dunes at the back of the burrows are 

relatively low and exhibit no clear orientation, suggesting that this portion of the barrier was 

periodically breached and therefore experienced washover and blowout events (Figure 1.4a). In 

contrast the fore- dunes are composed of a series of low shore-parallel beach ridges which 

prograde seawards (Figure 1.4b). During barrier development the back-barrier area would have 

been dominated by an expansive saltmarsh-tidal creek complex. Tidal inlets similar to Wytchet 

inlet generally exhibit little or no down drift migration, in response to sediment accretion and 

sediment by-passing, and are more stable than inlets in wave dominated environments. 

Documentary references indicates that West Marsh was under pasture prior to the construction 

of any sea walls and that the evolution of the marsh for agricultural purposes was an eastward 

moving phenomenon (James, 1991). The back-barrier marshes now form a relatively flat area 

which was first reclaimed during the 17th century by the construction of embankments across the 
Wytchet inlet and from the fossil cliffline at the foot of Sir John's Hill to the Laugharne Burrows 

(Curtis, 1880; James, 1991). A second embankment referred to as ̀ The Freathing' sea-wall, was 
constructed between 1800 and 1810 to reclaim Upper and Lower Marsh (Figure 1.2). Prior to the 

construction of the dam across Wytchet in the late 19th century this inlet was still open to the sea 
and West Marsh and East Marsh were periodically inundated by the tide (James, 1991). 
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The marine chart for 1800 AD shows no dunes east of Wytchet but name the Laugharne Burrows. 

Cantrill (1909) records the findings of early Iron Age or late Stone Age shell mounds in the 

Laugharne Burrows. The preservation of these findings suggest that the dunes have not been 

completely broken down and reworked since that period and that the barrier was sufficiently 

developed and stable over 2,000 years ago to protect the inhabitants from strong westerly- 

southwesterly storms. Although, marine charts may be better tools for reconstructing the position 

of former coastlines, schematic representations of coastal features are often misleading. Care 

should be taken when using different types of cartographic evidence to reconstruct the 

configuration of former coastlines. Cartographic evidence shows that the reclamation of the 

back-barrier area stabilised the barrier system and has promoted the futher development of this 

feature (James, 1991). 

The Pendine and Laugharne Burrows were taken over by the Ministry of Defence during the 

Second World War and have since been used as an experimental and test establishment. During 

the early 1970s the MOD stabilised the dunes at Ginst Point in order to prevent the rapid erosion 

and possible breaching of the barrier. This has subsequently promoted the longshore 

development of the distal end of the spit which now extends further across the mouth the Taf 

Estuary towards Wharley Point. Ordnance survey maps for 1907 (Figure 1.5a) indicate that the 

saltmarsh adjacent to the sea wall which encloses Upper and Lower Marsh developed within the 

last eighty or so years (Figure 1.5b) 

1.2.2 The Taf Estuary 

The River Taf drains into a macro-tidal estuary which is currently being infilled with well sorted 

sand transported up-estuary as a result of tidal asymmetry (Jago, 1980). Although the inner 

estuary and barrier complex form part of the same sedimentary dispersal system they may be 

divided on the basis of their physiography and hydrodynamics. The estuary is 8 km in length and 
less than 1.5 km wide at its mouth; although the cross-sectional area increases towards the mouth 
Jago (1980) suggests that an equilibrium between erosion and accretion has not yet been attained. 

The estuary contains a number of physiographic sub-environments which may be differentiated 
by sediment type, vegetation cover, surface and sub-surface fauna and currents (Jago, 1980). At 
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low tide the estuary appears like an intertidal flat with saltmarshes and mudflats fringing low 

lying sandbanks which are dissected by a complex pattern of shallow drainage channels. 

Although the position of the main channels remain relatively stable the orientation and position 

of the smaller channels depends upon the magnitude of river discharge. These channels migrate 

across the sandflats often causing the erosion of mudflats and saltmarshes which extend into the 

main channel. 

Spartina townsendii, allegedly introduced into the area by an East Marsh farmer during the 1920s 

(Jago, 1974), dominates the more recent low lying saltmarshes and upper mudflats within the 

estuary. The more established high marshes are inhabited by well developed floras which may 

include Glyceria maritima, Armeria marctima, Festuca rubra, Aster tripolium, Atriplex and 

Halomione portulacoides. The saltmarshes are dissected by a hierarchy of self perpetuating 

creeks which drain sinuously onto the sandflats in the centre of the estuary. Changes in marsh 

elevation and vegetational composition indicate progressive stages of saltmarsh accretion and 

development which may relate to the position of the main channel. 

The morphology and development of the contemporary saltmarshes within the Taf Estuary 

highlight the complex patterns of sedimentation within this system. It is likely that the position 

and size of the tidal inlets, the back-barrier drainage channels and marsh creeks significantly 

influenced back-barrier sedimentary facies development. Knowing the distribution and inter- 

relationships between physiographic sub-environments within the contemporary estuary will 

prove critical when developing models which aim to describe back-barrier facies development. 

1.3 Relative sea-level rise and contemporary dynamics 

The British Isles have experienced a complex pattern of relative sea-level rise during the 

Holocene. Variations in glacial-isostasy, glacial-eustasy and tectono-eustasy have resulted in 

different areas experiencing differing rates and patterns of relative sea-level rise. South Wales 

is an area located within close proximity to the maximum limit of ice advance during the Late 

Devensian. Sea-level studies indicate that reconstructions of relative sea-level rise within the 
Bristol Channel during the Holocene are further complicated by the wide continental shelf, the 

crenulate coastline, by convoluted changes in the position and strength of amphidromes and by 
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Chapter 1 Introduction 

models are not exclusive and that the mutually evasive sediment transport mechanism may 

operate mainly in sand choked estuaries. 

1.3.2 Pendine Sands 

Carmarthen Bay is open to southwesterly storms and oceanic swell which may have travelled 

over 5,000 miles across the Atlantic. Jago and Hardisty (1984) suggest that the energy loss as 

waves sweep across the shallow bay prevents the majority of large waves from reaching the 

shoreline. They predicted that for the waves that approach from 203°, 4s waves will be reduced 

by 50% and 10s waves will be reduced by 70% as they shoal from the 40m to 5m isobaths off the 

eastern end of the barrier. During extreme spring tides the tidal range on the Pendine sands 

approaches 10.0 metres and surface currents reach 1.0 m/s in the middle of the bay. Jago and 

Hardisty (1984) suggest that the beach profile is self-stabilising in the short term, and periodic 

levelling shows that the beach is in long-term equilibrium with the prevailing conditions. The 

barrier shoreface does however exhibit significant dynamic response to changing tides and waves. 

As the tide ebbs, wave generated stresses on the shoreface decrease. Consequently there is an 

overall seaward-fining of the intertidal sand texture. Jago and Hardisty (1984) conclude that tide- 

and storm-induced modification of the near-shore flow regimes produces a distinctive array of 

shore-normal sedimentary facies, which are more laterally extensive than comparable micro-tidal 

sequences. 

1.3.3 The Taf Estuary 

The Taf Estuary is characterised by a well established tidal asymmetry so that maximum currents 
during spring tides are 3-4 times greater in the estuary than in Carmarthen Bay (Jago, 1980). The 

accumulation of sand within the estuary has generated an elevated profile which delays the tide 

from entering the estuary. By the time the sea enters the estuary the tide is well advanced in the 
bay causing maximum currents to occur as the sea enters the estuary and just prior to its 

withdrawal (Jago, 1974,1980). The tidal asymmetry within the Taf is exaggerated because the 

tide is forced to rise two metres when entering the estuary. 
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The Taf is presently being infilled and levelled transects within the estuary indicate that between 

1968 and 1978 there was a net rise in the volume of sand within the estuary (Jago, 1980). The 

texture mineralogy and composition of these sands is almost identical to those in Carmarthen 

Bay. Jago suggests that southwesterly storms push material from the bay to the mouth of the 

estuary reinforcing the tidal asymmetry which in turn pumps sediment into the estuary. 

The predominant sedimentological trend is depositional in the north western portion of 

Carmarthen Bay with the progressive movement of sediment into the estuaries (Jago, 1980; Jago 

and Hardisty, 1984). Comparison of foreshore and estuarine sands indicates that sands stripped 

from the foreshore are not simply deposited within the Taf Estuary; the selection of sand for 

deposition within the estuary occurs offshore in Carmarthen Bay and is probably controlled by 

both tidal and wave action. 
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Chapter 2 

Sea-level change and barrier formation/development 

2.1 Sea-level change 

2.1.1 Historical development of sea-level studies 

Early observations of land/sea-level change were not exclusively confined to Europe in the late 

17th century. For instance, the phenomenon of raised shorelines and changing sea-levels have 

been investigated by the Chinese for some 2200 years and non-literate societies have noted 

changing land levels and associated shorelines. As these societies were dependent upon harmony 

with nature for their survival, they must have been aware of the affect of shoreline changes upon 

the location of food resources (Devoy, 1987). The implications of continued sea-level rise are 

no less important today. The anthropogenic input of greenhouse gases such as carbon dioxide, 

methane, nitrous oxide and chloroflurocarbons, are expected to cause a substantial global 

warming, which may result in the global mean sea-level rising due to the thermal expansion of 

the oceans and the melting of terrestrial ice. Accurate prediction of future sea-level change is 

paramount in developing coastal management strategies to predict changes in low lying regions 

which may be inundated by a small rise in eustatic sea-level. 

However, to predict future sea-level variations one must first be able to understand past sea-level 

changes and estimate future variations in climate, which would ultimately control future sea-level 

changes. Furthermore, the nature of the rise in sea-level during the Holocene is of significant 

importance since this controls sedimentation and therefore influences the manner in which coastal 

environments such as estuaries and barrier complexes evolve. 

During the last thirty years or so there has been an increase in the number of detailed studies 
investigating sea-level change during the Holocene, and with these a number of different schools 

of thought have emerged, resulting in often fierce debates. 
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2.1.2 The sea-level debate and approaches to sea-level studies 

In western scientific literature the fundamental concepts of sea-level studies covering glacio- 

eustasy and glacio-isostasy were developed in the nineteenth century. McLaren is regarded 

widely as a founder of ideas regarding the exchange of water masses between the land and ocean, 

through the build up and decay of ice sheets, indicating that this is the controlling factor in sea- 
level fall and rise. In 1842, McLaren, noting the publication Agassiz's new and controversial 
book on the glacial theory two years earlier, wrote "if we suppose the region from the 35 parallel 

to the North Pole to be invested with a coat of ice thick enough to reach the summit of Jura... it 

is evident that the abstraction of such a quantity of water from the ocean would immediately 

affect its depth". 

In 1888 Suess introduced the term eustasy; however, he interpreted the origin of eustatic changes 
in the formation of ocean basins and in the infill of sediments and referred to them as tectono- 

eustasy and sediment-eustasy respectively, rather than glacio-eustasy (Mömer, 1987). By the end 
of the 19th century the main models for explaining absolute sea-level changes included glacial- 

eustasy, tectono-eustasy and the mass attraction of water masses. Not until the work carried out 
by Daly in 1910 and 1925, on the glacial control on coral reef development, did the glacio- 

eustatic concept gain wider acknowledgement (Mörner, 1987). 

In 1934 Daly published a book entitled The Changing World of the Ice Ages', in which he stated 
that surficial redistribution of both ice and water loads involved immediate crustal elastic 

responses, as well as deep seated plastic deformation and mass transfer. His work formalised 

many of the concepts of earth rheology, ice marginal crustal forebulge, geoidal changes and ice- 

water surface gravitational attraction, that have become influential in sea-level/shoreline thinking 

since 1970 (Devoy, 1987). 

The advent of the radiocarbon method, of age determination, by Libby in the early 1950s 
facilitated greater detail in the study of Late Quaternary sea-levels (post 20,000 BP). The 

application of such techniques led to an intensified search for the Holy Grail, the identification 

of a single universally valid sea-level curve, a eustatic curve (Devoy, 1987). Attention focused 

on establishing the form and pattern of Holocene eustatic sea-level recovery. During the late 
1950s and early 1960s a number of significant papers were published, highlighting both the 
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worldwide interest in the phenomenon of sea-level change and the assumption that since the 

oceans are interconnected, the change in ocean-level would follow a universal pattern (Kidson, 

1986). 

Three contrasting schools of thought emerged during the search for a single global eustatic sea- 
level curve for the Holocene period. The first group supported an oscillatory pattern of global 

sea-level recovery, showing sea-level rising rapidly to a high point above present levels during 

the expected thermal maximum, the Hypsithermal, reaching some +3 meters above the present- 

sea-level (PSL) by 5000 BP (Fairbridge, 1961). Fairbridge argued that the post-glacial rise of the 

sea was spasmodic and included regressive as well as transgressive phases. He further suggested 

that since approximately 5000 years BP sea-level has experienced a number of stands at heights 

up to 3.7 meters above PSL, and that sea-level has therefore oscillated in the later Holocene with 

an amplitude of 6 meters around its present position (Kidson, 1986; Devoy, 1987). This concept 

of higher than present sea-level grew from Daly's work in the 1920's and 1930's, where coral 

terraces in the Indian and Pacific, interpreted as Mid-Holocene in age, are apparently elevated 

some six meters above PSL. Daly postulated that these terraces formed during the Hypsithermal, 

where through increased ice melt and thermal expansion of the ocean water, global sea-levels 

were higher, and the subsequent fall in sea-level occurred as a result of cooling (Devoy, 1987). 

The second group favoured the concept of a standing sea-level after 3600 BP, with the global sea- 
level shown as rising to its present position between 5000 and 3600 years BP (McFarlan, 1961; 

Coleman and Smith, 1964). Data in support of this view came predominately from the Gulf coast 

of the USA which has been subject to long-term subsidence during the Holocene. 

The third group found no evidence of past sea-levels rising above present levels. Shepard (1963) 

indicated that there was general agreement on the nature of sea-level change in the late glacial, 
but that in the later post-glacial this agreement broke down. Shepard argued that in this later 

period the rise in sea-level was a continuous one, at a rate diminishing in time but going onto the 

present day. However, he did not entirely rule out the possibility of a slightly higher than present 
late Holocene level, but considered it to be unproven and drew attention to the fact that all 
Fairbridge's evidence for such higher levels came from Australia, in his own words an enigma 
(Kidson, 1986). Initial data supporting a smooth exponential decay curve came predominately 
from low lying, long term depositional coastlines, based largely on biostratigraphic data. 
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There followed a sequence of papers from around the world which showed a broad division into 

either the Fairbridge or Shepard schools of thought, and the resulting curves are summarised by 

Kidson (1986), and can be seen in figure 2.1. The large number of time depth diagrams or sea- 

level curves were constructed during the 1970s reflect the wide differences in approach to sea- 
level studies. 

This period of growth and debate in studying sea-level surface movements culminated in the 

International Geological Correlation Programme (IGCP) Project 61, Sea-level movements during 

the Last Deglacial Hemicycle (15,000 years), which ran from 1974 to 1982. Project 61 initially 

set about producing an Atlas of Sea-level Curves (Bloom, 1977); attempts to compare curves 
from different parts of the world emphasised their differences, rather than their similarities which 

might have been expected from a world wide eustatic event (Kidson, 1986). This served to 

underline the growing awareness of many researchers during the project that sea-level variations 

are modified by many local, regional and global factors (Mörner, 1987). Furthermore, spatially 

uniform changes in sea-level, as characterised by a single global eustatic curve, represent an 

unrealistic response of the earths crust to water-mass transfers, and no point on the earth surface 

can be regarded as having provided a stable datum for recording eustatic sea-level (Devoy, 1987). 

Bloom (1977) gave a critical assessment of five published eastern US submergence curves and, 
in proposing the use of sea-level records to test the theory of isostasy, emphasized the 

significance of mass transfer between oceans and glaciated regions during the glacial-interglacial 
cycles. Bloom (1977) found that "the postglacial submergence histories of five eastern United 

States coastal sites support the hypothesis that the load of water added to the continental margins 
by post-glacial rise of sea-level has been sufficient to isostatically deform coastal areas in 

proportion to the average depth of water in the vicinity. It is therefore reasonable to hypothesize 

that the entire ocean floor could deform in response to changes of sea-level of the magnitude of 
the glacial-interglacial cycle". 

Clark et al. (1978) proposed a number of numerical models based on a spherical viscoelastic earth 
with varying layered structures, and on different assumptions regarding the rate of northern 
hemisphere ice melt. These models indicated that the relationship between eustatic change and 
isostatic adjustment is far more complex than generally assumed. They also confirmed the 
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Chapter 2 Sea-level change and barrier formation/development 

demise of the concept of a world wide eustatic response, and underlined the belief that no part 

of the earth's crust can be considered as being stable. 

Tooley (1987) suggests that the lack of concurrence in data results partly from the failure to 

employ a unified methodology and an homogenous data base, making correlation of events at best 

elusive, and at worst erroneous and misleading. This lack of agreement is not solely due to 

methodology, and fundamental problems remain with understanding the nature of the sea-level 

itself (Devoy, 1987). 

Opinions regarding the nature of sea-level change during the Holocene deglacial have proliferated 

with studies generating greater volumes of reliable data which can be used to support each of the 

schools of thought. The debate between the smooth or oscillatory patterns of sea-level recovery 
is today less pronounced due the recognition of various local factors that are only really of local 

significance. 

The aims of IGCP Project 200, which marked the end of Project 61, were to identify and quantify 
the process of sea level change by producing detailed local histories that can be analysed and 

correlated for tectonic, climatic, tidal and oceanographic fluctuations. The ultimate purpose was 
to provide a basis for predicting near future changes in sea-level, for applications to a variety of 

coastal problems, with particular reference to densely populated low lying coastal areas (Shennan, 

1989a). To achieve these aims three main lines of approach were adopted. First, the collection, 
analysis and correlation of new and existing sea-level data, both from areas deficient in data and 
from key areas, to provide diagnostic evidence, for the evaluation of assumptions underlying any 

models developed. Second, to acquire data from coastal and shelf deposits to provide valuable 
information on resource exploitation, coastal land use planning, subsidence, reclamation, 
aquaculture and ecological studies. Third, to analyse tide-gauge records and model other short 
term sea-level fluctuations, such as changes in tidal range, storm surges and tsunami, using 
computer simulation techniques controlled by reliable and accurate sea-level data (Shennan, 
1989a). 

Over the last thirty or so years the attitudes towards sea-level change, methodology and 
approaches employed in such studies have changed, reflecting intensive strategic research. The 

progression of IGCP Project 61 saw . the abolition of the global sea-level curve, recognising that 
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Chapter 2 Sea-level change and barrier formation/development 

local factors play an important role in altering the recorded nature of sea-level change, producing 

relative sea-level as opposed to absolute responses. Regional variations in response to 

deglaciation due to variable factors such as glacio-isostasy, hydro-isostasy, glacio-eustasy, 

geoidal-eustasy result in recent sea-level studies concentrating on the generation of detailed local 

histories which can be correlated with other local studies to asses and infer regional sea-level 

changes. 

2.1.2 Sea-level methodology and inaccuracy 

In the correlation of sea-level data from numerous detailed sea-level studies it would be desirable 

to have a generally accepted methodology of applied sea-level work in order to generate a 

rigorously tested and refined sea-level data base, upon which subsequent analysis can be based 

(Tooley, 1992). Tooley suggests that three criteria should be used to select sea-level index points 

used in the construction of age-altitude graphs. 

First, index points should come from a small homogenous area, so that the effects of tidal 

inequalities, earth movements and variations in the geoid configuration are minimised. Second, 

sea-level index points should come from similar palaeoenvironments and have the same 
indicative meaning i. e. each index point should be obtained from material, deposited in situ over 

a very narrow vertical range, which can be related to palaeo-water depth. For instance, in 

temperate coastal lowlands samples of monocotyledonous turfa or limus with pollen or seeds of 

salt marsh taxa and epiphytic diatoms of marine or brackish water preference provide ideal 

material for sea-level index points (Tooley, 1992). Second, sea-level variates should be assigned 

an altitudinal error band which includes, for instance, levelling errors and errors due to 

consolidation. Third, radiocarbon dates should be capable of independent corroboration, achieved 

where standard regional pollen diagrams are available. All samples should be dated at the same 
laboratory, several dates should be obtained from the same core, and all radiocarbon dates should 
be displayed with two standard deviations. 

In figure 2.2 taken from Shennan (1983), one can see three possible routes to take in the analysis 

of past sea-levels. Route 1, local sea-level analysis is the simplest option, which is no more than 
the development of a local sea-level curve or chronology and an estimate of data collection and 

14 



Chapter 2 Sea-level change and barrier formation/development 

interpretation errors. This route may represent how existing sea-level studies may be developed 

if relevant information is available for each sea-level index point. Sherman et al. (1983) have 

shown that when the tendency of each sea-level index point can be evaluated, a chronology of 

periods of positive and negative tendencies in sea-level can be developed for each area. Route 

2 proposed by Shennan (1983) allows the analysis of regional sea-level tendency, identifying data 

which may disagree with proposed models of regional sea-level change. Route 3, analysis of 

crustal movements is designed to estimate isostactic rates for the whole region and isolate the 

eustatic component within relative sea-level rise. 

Shennan et al. (1983) suggest that the use of the terms transgression and regression have been a 

major cause of misinterpretation in the correlation of sea-level index points used to produce a 

global eustatic sea-level curve, as attempted by IGCP Project 61. Shennan (1983) explains that 

the terms transgressive overlap and regressive overlap should be used as lithostratigraphic 

descriptive terms in which no process, such as sea-level rise or fall, is implied. These terms 

would only describe a change in sediment type and should not be used in interpreting the cause 

of such changes (Van der Plassche, 1986). The processes involved in the development of coastal 

stratigraphic sequences are dependent on the position and rate of sea-level change, and these 

sequences contain evidence of tendencies in sea-level. Shennan defines a positive and negative 

tendency in sea-level movement as an apparent increase or decrease of marine influence. 

Shennan et al. (1983) concluded that tendencies in sea-level and their application permit 
meaningful correlations between rising and subsiding areas, and introduce objectivity in 

correlation schemes showing transgressive sequences. Positive and negative tendencies of sea- 
level movement can be established, and although the sea-level index points are site specific, 
indicators from many sites within an area show a general tendency of sea-level movement, and 
this is the basis for wider geographical correlations (Tooley, 1992). Whether a positive or 
negative tendency in sea-level movement can be shown to actually indicate a rise or fall in sea 
level is a further step in the analytical process (Van der Plassche, 1986). 

As previously indicated it is quite clear from the literature that smooth and spasmodic schools of 
thought (Fairbridge, 1961; Shepard, 1963) still remain; however, researchers now agree that the 
limitations of present techniques and the possibility of in-built errors mean that the construction 
of sea-level curves, whether smooth or irregular, has been attempted in the past with too much 
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confidence (Kidson, 1986). The standard methodologies has facilitated the generation of a sea- 
level data base which contain some 915 dated sea-level index points from sites around the UK 

(Shennan, 1987,1989b). This data base has enabled researchers to construct regional sea-level 

curves and evaluate Holocene crustal movements within the UK (Shennan, 1989b). 

However, sea-level researches have realised that lines joining sea-level index points gives a false 

sense of accuracy (Kidson, 1982; Heyworth and Kidson, 1982; Kidson, 1986). Error terms built 

into many sea-level curves have been inadequate, and many sea-level indicators used in the 

construction of such curves have only a crude, tenuous relationship to sea-level. Heyworth and 
Kidson (1982) have argued that the wide range of potential sources of error and the possible 

cumulative significance of these would reduce the value of a good deal of published data. Kidson 

(1986) suggested that even before attempts are made to derive eustatic changes from a relative 

sea-level curve, by correcting for isostatic and tectonic deformation, a wide range of other 

potential errors must be accounted for. Such errors may arise from the choice of datum, altitude 

of sample correction points, age determinations and so on, all of which vary and may be critically 
important. 

Careful levelling of a sample point at or near to the surface, from a bench mark on solid rock, 

should introduce an error of no more than ±1 cm (Heyworth and Kidson, 1982). However, many 

coastal sites are a considerable distance from such bench marks, and bench marks resting on 
substantial thicknesses of estuarine clays are not always at their original height, due to the varying 
affects of compaction and consolidation. Greater errors are generated in deep bore-holes, where 

errors introduced by drilling, sampling and measuring procedures make it difficult to ascertain 
the exact depth from which a sample has come. In general offshore boreholes have the greatest 

source of levelling error and, since many of the oldest sea-level dates come from such sites, this 

may explain the large discrepancies in altitudes of some of these samples (Heyworth and Kidson, 
1982). 

As Holocene sea-level studies require an accuracy of a few decimeters it is essential to begin with 
precision in the Datum to which sea-level data is related. Although this is particularly important 

when, for instance, sea-level data within a region is to be compared, many authors ignore the 
problem simply referring to present sea-level (Kidson, 1986). Kidson further highlights the fact 
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that most researchers do not determine the local sea-level, however defined, but refer their height 

to the national Geodetic Datum. 

The Geodetic Datum must not be confused with local mean sea-level, since the first is obtained 
by holding sea-level fixed, as observed at a number of tide stations, whereas the second is made 

at the local tide station. Often before a sea-level study begins an error of unknown dimensions 

may be introduced by the choice of datum used to define the present sea-level (Kidson, 1986). 

Fairbridge (1961) used Mean-Low-Water-Spring-Tides (MLWST) as his datum; however, other 

authors have adopted different sea-levels, such as Mean-Sea-Level. Prior to the comparison of 

sea-level data from different sites/areas one must first reconcile discrepancies between the datums 

used (Kidson, 1986). 

Where tidal ranges are significant, the vertical spread over which marine processes operate 
becomes very wide and the potential errors may multiply, where in extreme situations the vertical 

spread may be several orders of magnitude greater than postulated sea-level changes over time 

spans of millennia. For instance, the Bristol Channel has a predicted spring tidal range of some 

14 meters, and when wave heights of 7 metres are superimposed on such a variation, together 

with heights of high water being regularly exceeded by some 2 metres, then dependent on its 

definition sea-level could fall anywhere within a 23 metre band. 

Many studies of sea-level change are conducted in estuaries and embayments where frictional 
forces generated by shallowing and narrowing arms of the sea result in the enhancement of tidal 

prism causing the height of high water above geodetic mean to increase. Kidson (1986) suggests 
that the height of HWST (High-Water-Spring-Tides) above ordnance datum in the Bristol 
Channel increases by some 3 metres from the mouth of the Channel to the head of the estuary 
(Kidson, 1986). 

When comparing the altitude of samples from different sites correction has to be made for 
differences in tidal range, usually done using published figures in tide tables. For sites some 
distance from a Tide Table port, considerable errors can be introduced using figures of HWST 
for that port, and in estuaries with large tidal gradients the problem is particularly serious. 
Heyworth and Kidson (1982) suggested that this source of error can be largely eliminated by 
levelling the height of MHWST (Mean-High-Water-Spring-Tides) at the site when weather and 
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wave conditions are such that predicted MHWST is reached at the Tide Table port. The 

occurrence of tidal bores in estuaries, which in the past may have been responsible for wide 

spread flooding at levels greater than expected, may further complicate the construction of sea- 
level curves. 

As previously suggested, the tidal range in a particular area may have experienced significant 

changes during the last deglaciation (Austin, 1991), and although these variations have reduced 

in scale they probably continued throughout the Holocene. Whilst tidal range may have changed 

at some sites, while remaining unaltered at others, considerable changes may have occurred in 

the pattern of variation at any one locality. In such circumstances the possible sources of error 

are large, and the comparison of two or more sea-level curves by simply allowing for present 

differences in MHWST levels is inadequate to account for such sources of error (Heyworth and 

Kidson, 1982). 

Rare events, where tides inundate areas normally free of salt water introducing further 

uncertainties in the reconstruction of past sea-levels. The effects of high tidal or storm levels tend 

to remain in the sedimentary record until eliminated by even higher ones. Although it is unlikely 

that permanent changes would be produced, there is little doubt that the impression left could be 

of an apparent sea-level which would be higher than the actual sea-level at that time. This source 

of error would only operate in one direction, the true sea-level would always be lower than 
indicated by index points (Heyworth and Kidson, 1982). The difficulty of separating the effects 

of rare events from normal sea-levels introduces a source of error, which is ill-defined but may 
be considerable. 

Tidal problems are therefore so complex that not to take them into account can only lead to 
inaccuracies in palaeoenvironmental reconstruction, but since many cannot be assessed it suggests 
that real precision is probably unattainable in such reconstructions. One facet of the problem 

which has not so far received significant attention is the change in tidal regimes/climates through 

time. As palaeo-tidal models generally omit subtle changes in bathymetry and coastal 
configuration their application in sea-level studies is to some extent limited. 

In a review of the diagnostic criteria reflecting the waxing and waning bidirectional tidal flow, 
in tidal deposits and sub inter- and supra-tidal sub-environments, Terwindt (1988) suggested that 
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shifts in the position of major tidal channels and intertidal drainage channels produce local micro- 

transgressive and regressive sequences, superimposed on the general trends. Terwindt (1988) 

concluded that although it is possible to infer a tidal origin for a particular sediment complex, 

establishing convincing distinctions between sub- and inter-tidal environments remains difficult. 

Furthermore, it is even more difficult to determine the position of the low-water zone in the 

section, therefore making the assessment of the palaeo-tidal range extremely difficult. From his 

review of the literature, Terwindt indicated that the number of spatial reconstructions of palaeo- 

tidal basins are limited, and that careful investigations of the lower inter-tidal and upper sub-tidal 

environments are a clue to better palaeo-tidal reconstructions. 

The use of ambiguous indicators of former sea-levels can lead to artificial multiplication of 

oscillations on already published sea-level curves (Kidson, 1986). Erosional features such as 

shore platforms can rarely be used by themselves as precise indicators of past sea-levels. Even 

marine deposits covering a wide range, from the seaward margin of the near shore sand wedge 

to the crests of storm beaches, must be interpreted with care. Kidson (1986) suggested that the 

only wholly reliable indicators of former sea-levels are organic remains in growth positions, 

where their relationship to sea-level or the water table can be determined within acceptable limits. 

Heyworth and Kidson (1982) have suggested that the interface between saline and fresh water 

representing the lower limit of freshwater conditions, occurs at present between MHWST and 
HAT (Highest-Altitudinal-Tide), and horizons (peats) representing this interface give the best 

starting point for determining past sea-levels. They conclude that this could be done to an 

accuracy varying from ±15 to ±35 cm depending on tidal range i. e small and large tidal ranges 

respectively. However, their estimates apply to present day sites and no allowance has been made 
for the possibility of local change, such as the formation or destruction of coastal barriers, which 
would increase uncertainties and errors associated with particular sea-level indicators. 

It is now widely recognised that even where biogenic material giving precise relationships to sea- 
levels is not available, then more ambiguous evidence such as erosional contacts/features must 
be used but only with full recognition of its limitations. The present trend is therefore to use only 
those indicators expressly related to sea-level, and where not possible more equivocal evidence 
is treated with much more caution than has sometimes been assigned in the past (Kidson, 1986). 
Much attention has been given in the literature to errors associated with Radiocarbon Dating; 
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many authors still appear to believe that the age of a sample probably lies within one standard 

deviation given by the laboratory. Although the limitations associated with this method are 

covered elsewhere, it must be stated that the precision attributed to radiocarbon ages in some 

particularly earlier sea-level studies, is not justified, and relatively recent sea-level studies have 

adopted two standard deviations as the error term used to plot sea-level radiocarbon dates on 

age/altitude graphs (Kidson, 1982; Heyworth and Kidson, 1982; Kidson, 1986). Most 

radiocarbon samples used in sea-level studies are from buried peats, which have been 

waterlogged in an anaerobic environment since they were formed. Contamination by recent 

carbon is less likely than for other materials, but penetration by younger roots and other 

stratigraphical disturbances are well known sources of error. Many other sources of error may 

falsify the resulting age determination, but in most cases there is no way to detect their individual 

influence (Heyworth and Kidson, 1982). 

When radiocarbon dates are being used to construct a sea-level curve, it matters little whether the 

wide spread of results for a single sample are due to differences in the original radiocarbon 

content or to difficulties in measurement. The main consequence of this, as previously stated 
(Kidson, 1982; Heyworth and Kidson, 1982; Kidson, 1986), is that one standard deviation is not 

great enough an allowance to account for the majority of errors associated with the age 
determination of a particular sea-level index point using the radiocarbon technique. 

Consolidation of clays is much less than that of peats, but in a normal estuarine stratigraphy 

where thin peats occur within thick clay layers, consolidation is roughly equal between the two 

(Heyworth and Kidson, 1982). Mixed successions of strata with a wide range of physical 

attributes are more frequent in coastal marine areas, and their variability ensure that a high degree 

of accuracy in assessing the effects of compaction and consolidation is unlikely to be obtained 
(Greensmith and Tucker, 1986). The greatest effect of compaction/consolidation on the altitude 

of a peat layer occurs where the underlying and overlying clays are approximately equal, and in 

the view of uncertainties in correction calculations it is often more desirable to sample from areas 

not significantly affected by consolidation. If no other samples are available then the correction 
for compaction and consolidation must be made and since it is often clear that samples must have 

originally been higher, then only the magnitude of the correction is in doubt. Due to their 

unpredictability, compaction and consolidation have largely been ignored by the Holocene sea- 
level worker; however researchers must try to assess and quantify compaction and consolidation 
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using all the available evidence from geological, geotechnical, geomorphological, biological and 

archaeological fields (Greensmith and Tucker, 1986). Problems attendant on compaction and 

consolidation cannot be divorced from tectonic effects. For instance, the subsidence due to 

tectonic down warping is an additive to that caused by the compaction and consolidation of 

sedimentary sequences. 

2.1.3 Sea-level change and crustal movements during the Holocene in 

Southwest England and Wales 

Most of the problems associated with recent palaeoenvironmental reconstructions are 

encountered, some in extreme form, along the southwestern coasts of Britain. Heyworth and 

Kidson (1982) in a compilation of available sea-level radiocarbon dates for Wales, SW England 

and the Channel Islands suggest that the reconstruction of eustatic changes along this coast is 

complicated by its location. The region is located on one of the widest continental shelves in the 

world, has a complex pattern of amphidromes and is in one of the world's great westerly storm 

belts. 

Sea-level may be thought of as the interface between saline and fresh water, as indicated by living 

organisms, rather than some abstract term such as mean-sea-level, and such an interface is 

considerably higher and more variable from place to place than mean-sea-level (Kidson and 

Heyworth, 1979). The crenulate nature of the southwest coast of Britain results in significant 

differences in exposure and fetch, so that different portions of the coast experience different wave 

energies/climates. The tidal variations are often more variable than the wave energy, since the 

forecast height of MHWST (astronomical component without meterological forcing) ranges from 

some 1.17 to 6.70 meters above Ordnance Datum, with mean spring tidal variations range 
between 1.9 and 12.3 meters at Portland and Bristol respectively (Heyworth and Kidson, 1982). 

Therefore as already discussed, prior to the interpretation of former sea-levels, large variations 
in wave climate and tidal range need to be assessed, otherwise additional errors are introduced. 

Heyworth and Kidson (1982) indicated that sea-level studies have not allowed for changes in tidal 

regimes as coastal configuration and ocean water depth have changed in response to the Holocene 

transgression. The exclusion of palaeo-tidal variations, in the reconstructing of former sea-levels, 

was due to the lack of an adequate technique to assess such changes (Heyworth and Kidson, 
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1982; Greensmith and Tucker, 1988). Although Heyworth and Kidson (1982) suggested that for 

much of the coast the consequence of such changes are relatively minor, they indicate that for the 

coast for the English Channel and the Bristol Channel, there must have been significant 

differences in the tidal regimes at the start and end of the Holocene transgression. 

Austin (1991) argued that tides on the N. W. European continental shelf must have undergone 

considerable changes during the Holocene, in response to rising sea-levels and associated 

coastline movement. Sea-level researchers commonly use indicators related to past tidal levels 

(Greensmith and Tucker, 1988; Austin, 1991), and accurate estimates of palaeo-tidal variations 

are needed if the tectonic component of change is to be isolated. Austin (1991) used a numerical 

model of the M2 tide on the NW European continental shelf to estimate the effect of uniform 

depth changes (of the order of the Holocene eustatic variation), on tidal elevation amplitudes 

(amphidromes), sand transport paths and the position of tide generated fronts. Austin concluded 

that shifts in the position and strength of amphidromes are shown to cause strong spatial gradients 

in the rate of change of tidal amplitudes in the Irish Sea and English Channel. However, Austin 

calculated that the tidal contribution to absolute changes in mean high water levels, is everywhere 

less than 5% of the eustatic contribution, and also states that a more realistic description of 

bathymetric variation is required to further develop this modelling approach, thus limiting its 

present application to palaeo-tidal modelling. 

In investigating the low sea-level origin of Celtic Sea sand ridges, Belderson et al. (1986) using 

a numerical model of M2 tidal steams, found that the tidal currents at the time of the lowered sea 

level were approximately twice the strength of present day levels. The major axes of the great 

majority of the tidal ellipses were rotated in a clock-wise sense with respect to those of the 

present day. The actual age of the sand banks is likely to be Late Devensian/early Holocene 

(Bouysse et al., 1976; Pantin and Evans, 1984), corresponding to the early stages of sea-level rise 

where sea-level was estimated as -110 to -120 meters (Bouysse et al., 1976) and -135 metres 

(Pantin and Evans, 1984) below present. 

Holocene and late Devensian sea-level and crustal movements in England and Wales have been 

studied generally by small groups or individual workers specialising in relatively short sections 

of coastline (Shennan, 1983). Numerous researchers have shown that no part of the earth's 

surface can be regarded as geologically stable over time scales of a few thousand years or more 
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(Clarke et al., 1978; Walcott, 1980; Flemming, 1982). Platetectonics has provided an explanatory 

mechanism for long-term tectonic and isostatic movements of continental margins, while the 

glacio-isostatic and hydro-isostatic theories have been combined to show that all coastal parts of 

the earth are subject to a greater or lesser degree of isostatic reaction to the glacial-deglacial cycle 

(Flemming, 1982). 

The British Isles are in a zone of glacial isostatic readjustment caused by the removal of the 

Scottish and Scandinavian ice sheets. In assessing the geological factors causing vertical 

movements, one could in principle derive a correction so as to arrive at the most probable 

absolute sea-level curve for the area. Flemming suggests that such an analysis would produce 

a different curve for each area due to both inevitable approximations made locally, and 

unquantified regional responses to hydro-isostasy, glacio-isostasy and so on. Flemming (1982) 

used a partial data set of the total data available in 1978, consisting of some 143 data points, in 

a numerical analysis of crustal movements. Although the results provide a model for deformation 

of the British Isles, Flemming (1982) stresses that the results must be regarded as provisional and 

that they are intended to demonstrate the potential of a method, rather than to prove a particular 

result. 

The method is based on the assumption that the observed present distribution of sea-level 

indicators of various ages is the summed effect of a eustatic sea-level change which is coherent 

through time, but independent of geographical location and local geological vertical displacement 

which has taken place at a constant rate at each locality, with that constant varying from place to 

place (Flemming, 1982): 

Z=f (T) + g(x, y) xT 2.1 

Z is the relative vertical displacement, T is the age in 103 years, x and y are geographical co- 

ordinates, f and g are unknown polynomial functions. 

Walcott (1980) notes that the rheology of the lithosphere and the mantle of the earth is such that 

the stresses involved in post-glacial rebound are near the boundary between linear and non-linear 

behaviour. At low values of stress rates of strain should be linear, whereas at high values rates 

of strain are proportional to the cube of the stress. For the purpose of his model, Flemming 
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(1982) assumes that the vertical displacement during the period 9000 years BP to present was 

small in relation to the total displacement between the maximum glacial depression and the final 

deglacial isostatic equilibrium. On the basis of this assumption, Flemming proposes that it is 

reasonable to assume that the stress is constant, and that the stress strain relationship is linear. 

It is difficult to model the period of ice melting, and Flemming overcame this by assuming an 

equilibrium state of isostasy at the maximum glaciation, followed by a disequilibrium as the ice 

thinned. If ice melted at such a rate that isostatic forces increase, then the imbalance of isostatic 

forces would simultaneously increase causing the crust to accelerate vertically. Flemming made 

no attempt to model this first stage of isostatic rebound since his data referred to the past 9000 

years, and all ice is presumed to have melted in Scotland by 10,000 BP. 

Even so, rapid wasting of terrestrial ice sheets during the Late Devensian (Hughes, 1987) may 

have caused accelerations in isostatic response to deglaciation, and surely these would still 

influence crustal movements during the period Flemming describes. Flemming (1982) therefore 

introduced a simple polynomial or exponential expression based on the assumption that the 

direction of isostatic recovery has been constant at each location, but has varied between sites. 

He explicitly did not refine the analysis to account for regional or oceanographic factors which 

may have influenced the analysis, but his summary of crustal movement is well known, showing 

a range from + 2.5 mm/yr over the highlands of west Scotland to - 0.5 mm/yr over the extreme 

south west of England. 

During the IGCP Project 61 the international data bank of radiocarbon dated sea-level index 

points was established and the UK working group started to collect the relevant information. 

Whilst undertaking a compilation of the radiocarbon data bank for the UK, Shennan (1987, 

1989b) experimented with an alternative approach to differential crustal movements, using 

published sea-level curves. Although such an approach may have a number of advantages over 

using individual sea-level points, curves include limitations such as interpretational differences 

made by the original authors. 

By the end of Project 200, some 915 radiocarbon dates were held; however, due to the problems 

of acquiring all the relevant information Shennan (1989b) restricted his analysis to dates on peats. 
Various conditional filters, such as contamination, eroded contact, stratigraphic context, and age 

context were applied to the remaining peat dates, leaving 429, which Shennan believed to be 
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related to past sea-levels. In noticing that the relevant tidal information was being submitted in 

different ways Shennan, in order to standardise the procedure, produced a separate data base 

containing 14 tidal variables for some 400 coastal locations obtained from Admiralty Tide Tables. 

The approach Shennan (1989b) adopted to calculate Holocene crustal movements in Great Britain 

required a eustatic correction to be applied to each radiocarbon date used. Flemming (1982) 

calculated the eustatic factor, which was in fact a geographically independent factor combining 

a eustatic sea-level factor and a linear factor assumed to be of tectonic origin. Shennan (1989b) 

used the regional eustatic curve proposed by Mörner (1984), and subtracted this from a relative 

sea-level value to give an estimate of uplift/subsidence. This value includes glacio-isostatic, 

hydro-isostatic and tectonic components, as well as local-scale factors, such as sediment 

compaction and oceanographic/hydrological effects, including palaeo-tidal changes (Shennan, 

1989b). For each area with an adequate number of reliable sea-level index points Shennan 

attempted to identify and quantify, where possible, the general form of crustal movements and 

the magnitude and pattern of residuals. 

Heyworth and Kidson (1982) compared three sea-level curves from detailed studies in Cardigan 

Bay, Bridgwater Bay and the Bay of Mont Saint-Michel (Figure 2.3). They found that the curves 

from the first two sites are almost identical, suggesting that over the last 8000 years the rate and 

timing of sea-level rise is comparable between Mid-Wales and SW England. 

In reconstructing eustatic changes in sea-level, Heyworth and Kidson used three main sites, 
Cardigan Bay (Borth, Ynylas and Clarach), Bridgwater Bay (Salford) and the Somerset Levels 

since detailed studies had been carried out, and large numbers of radiocarbon dates had been 

obtained at these sites. They also produced sea-level curves for North Wales and the English 

Channel but these were not based on large numbers of radiocarbon dates. Dated sea-level index 

points from Cardigan Bay and Bridgwater Bay were taken from submerged forests, peats and so 

on; in contrast the radiocarbon dates from the Somerset Levels were obtained from the prehistoric 
trackways. Although these index points were not directly controlled by changing sea-levels, 
Heyworth and Kidson (1982) believe that the trackways were built in response to higher water 
levels (reflected in the surrounding peats), and that since they were constructed of small timber, 

used almost immediately, the measured radiocarbon dates should represent dates of construction. 
It may be that the trackway sites in such a position cushioned from the extreme events which may 
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influence coastal sediments, yet controlled by water-table movements, provide the most reliable 

indication of long-term sea-level change (Heyworth and Kidson, 1982). 

Instead of using bars or rectangles, Heyworth and Kidson (1982) represent age and altitude error 

estimates as either ellipses or circles. Estimates of uncertainty in the sea-level figures are used 

to construct these error ellipses, an error range of ± two standard deviations being assumed for 

both axes; the standard deviations used by Heyworth and Kidson for the altitudinal measurements 

have no statistical basis. For each sea-level index point values of age and altitude were plotted 

in a way which attempts to show the probability distribution of a particular radiocarbon date 

representing a particular sea-level (Figure 2.4). The four concentric ellipses given to each date 

represent the probability distribution of the true point lying within each of the four zones, and 

therefore a date with small associated uncertainties will appear as a dense circle or ellipse, 

whereas one with large uncertainties will appear large and faint. 

Heyworth and Kidson (1982) used such a method to overcome the problem of imprecise results 

appearing more important than precise ones, giving a more accurate graphical representation 

which displays overlapping results. In not displaying uncertainties in the relative altitudes of 

samples from different sites the sea-level curves from those sites may appear significantly 

different, when in fact their differences may be only slight. In figure 2.5 Heyworth and Kidson 

(1982) give a general indication of curves which can be drawn for various parts of the coastline. 

Radiocarbon dates are plotted relative to the MHWST level, with no correction being made for 

the uncertainty in the height of the present MHWST level. 

Heyworth and Kidson (1982) argued that this diagram does not imply that these curves are 

significantly different. If MHWOT had been used to bring points to a common datum rather than 

MHWST, then curves 1(Bristol Channel) and 3 (Cardigan Bay) would be almost identical. Only 

curve 5 for North Wales displays a difference which seems to be outside the expected range of 

error for a single curve, and this curve is plotted for only two dates, so that too much should not 

be deduced from the divergence (Heyworth and Kidson, 1982). These curves suggest that no sea- 

level stand higher than present occurred in SW England or Wales during the Holocene, and that 

any oscillations are smaller than the sum of uncertainties (Heyworth and Kidson, 1982). 
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In investigating sea-level changes on the coasts of Ireland, Mitchell and Stephens (1979) reported 

a eustatic transgression up to 3.5 metres above present sea-level some 5000 years BP in Dublin 

Bay, at the same latitude but on the opposite side of the Irish Sea to Cardigan Bay. These 

opposing views which can be explained in the context of regional eustasy and changes in the 

geoid, may also arise from different interpretations of the eustatic component of relative sea-level 
data or from different compensation of errors (Kidson, 1986). 

Inevitably, due to the incompatibility of definitions the simple comparison of sea-level curves 

cannot be used to accurately reconstruct regional changes in sea-level or crustal movement but 

they may serve as a working hypothesis (Shennan, 1983). That complex discrepancies in sea- 
level studies around the Bristol Channel are largely due to the presence of a wide continental shelf 

and an amphidromically complex situation with the largest tidal range in the UK Furthermore, 

this coastline consists of numerous narrow valleys, the entrances to which are restricted by 

shingle spits or barriers. These factors would combine with the problems associated with the 

drainage of important and variable amounts of freshwater and sediments from drainage basins, 

to confound the interpretation of Holocene sea-level data, making it extremely difficult to observe 

any regional effect due to local noise. 

Shennan (1983) suggests that whereas there appears a clear subsidence of the Bristol Channel 

relative to North Wales, movement relative to Cardigan Bay is unclear. All the data for Cardigan 
Bay indicates a slight subsidence, and a rate of -0.11 ± 0.08 mm/yr may be the best summary of 
that subsidence, but due to the almost invariant nature of the altitudinal data (errors from an 
offshore vibro-core) this rate is poorly established (Shennan, 1989b). 

The data used by Sherman (1989b) for the Bristol Channel was poorly resolved, coming from a 
wide range of sites, with different palaeo- environmental conditions, and perhaps most 
significantly comes from the estuary with the largest tidal range in Great Britain, the Severn 
Estuary. As already discussed the tidal regime is unlikely to have remained constant during the 
Holocene transgression (Belderson et al., 1986; Austin, 1991; Scourse and Austin, 1995), 

contributing to scatter and poor numerical solutions. Shennan (1989b) concluded that the only 
clear signal is that subsidence is apparent, in the order of -0.24 t 0.19 mm/yr. Furthermore, it is 

not possible to specify the cause of subsidence, making it almost impossible to determine to what 
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extent crustal movements are a manifestation of forebulge collapse, reactivation of tectonic 

structures or sediment loading and/or hydro-isostasy (Shennan, 1989b). 

Shennan (1989b) summarised rates of relative subsidence in Great Britain as a series of isolines, 

estimating current rates of crustal movement (Figure 2.6). For England and Wales Shennan 

interpolated between a few fixed points, and therefore concludes that these isolines should not 

be interpreted as precise lines, but used as point estimates which provide a regional pattern of 

crustal movements. 

Whatever the thought about the idea that the position of relative sea-level may have oscillated 

with height on the scale of hundreds of years, it is clear that in general there is an upward trend 

in sea-level during the Holocene in Southwest England and Wales (Heyworth and Kidson, 1982; 

Shennan, 1983; Allen and Rae, 1988; Allen, 1990). Referring elevations to MHWST, Shennan 

(1983) indicated that the relative sea-level some 2500 years ago was roughly 2.5 metres lower 

than today. There is no evidence of sea-levels higher than present which supports the hypothesis 

that sea-level has risen in England and Wales continuously at a decreasing rate up to the present 

time. 

Within the Severn Estuary, Allen and Rae (1988) used levellings across dated sea-banks and the 

dated history of the salt marsh chemical pollution to construct a generalised sea-level curve for 

approximately the last 2000 years. The origin of their curve is some 0.5 to 0.6 metres above the 

local level of MHWST, but is reduced to this level to achieve maximum compatibility with the 

curve drawn by Shennan (1983) using Heyworth and Kidson's (1982) data from the Bristol 

Channel (Figure 2.7). Allen and Rae concluded that depending on the extent to which the Severn 

Estuary is regarded in retreat, that since the first reclamations made during the Roman Period (AD 

43-410 in Britain) the spatially averaged rise in relative sea-level has been no less than 1.22 

metres and no more than 1.6-1.7 metres. 

Allen (1990) concluded that a discrepancy of 0.8-0.9 metres between the start of Allen and Rae's 

curve and the end of that drawn by Shennan (1983), as displayed in figure 2.7, may be due to 

different methodologies applied to areas which merely adjoin. However, the two curves serve 
to define an early phase of rapid rise in relative sea-level, which gave place some 6000 

radiocarbon years ago to a more gradual upward trend followed by a further acceleration over the 
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last few centuries (Allen, 1990). The current rate of rise averaged over the Severn Estuary is a 
few mm/yr (Allen and Rae, 1988), which is much greater than the rate of eustatic movement in 

recent decades. 

2.1.4 Future direction of sea-level research 

The quest to obtain a record of a global eustatic response to the transfer of mass between 

terrestrial ice-sheets and the oceans has been judged to be too simplistic since such studies omit 

the effects of regional variations introduced by glacio- and hydro-isostasy. In fact the most recent 

sea-level studies have concentrated on the construction of local sea-level curves in an attempt to 

infer a regional response to sea-level change. 

Due to the dynamic nature of the earth's crust it seems useless to construct a global eustatic sea- 
level curve, as different localities have distinct Late Quaternary tectonic histories. Glacio- 

isostasy, ice loading or unloading results in regional terrestrial depression or rebound which may 

amount to tens of metres. Hydro-isostasy, or crustal response to the shifting of water loads on 

continental margins takes place at similar rates to glacio-isostasy, but typically of magnitudes of 

only a few metres. Finally, long term continental margin subsidence, due to the thermal 

contraction of adjacent oceanic lithosphere, may also significantly contribute to rising sea-levels. 
To understand Late Quaternary changes in climate, driven by the dissipation of internal energy 
and by changes in solar radiation received by the earth, one must first understand changes on a 

much longer time scale (Boulton, 1992). This concept can also be applied to regional tectonic 

responses in that although an area may be rebounding in response to the removal of terrestrial ice 

sheets during the present interglacial that same area may also be subject to a sustained long term 

subsidence. For instance, the southern coast of England is presently subsiding in response to the 

removal of ice from the Scottish Highlands (Shennan, 1989b); however, Preece et al. (1990), in 

studying the Pleistocene sea-level and neotectonic history of eastern Solent, southern England, 

inferred that regional tectonic uplift has been active in the eastern Hampshire Basin at some stage 
during and or since the middle Pleistocene. Crustal movements, in response to the growth and 
decay of terrestrial ice masses, may simply be superimposed upon long-term regional tectonic 

patterns suggesting that in the construction of accurate sea-level curves one should try to assess 
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the long term tectonic patterns which ultimately effect the altitude of particular sea-level index 

points. 

IGCP Project 274 has been formulated to establish models of coastal processes and Quaternary 

evolution of the coastline and shelf areas; to examine coastal evolution in critical earth 

environment zones; to assess the impacts of past and future sea-level change on coastal 

environments; and to promote education of matters concerning coastal evolution and impacts of 

sea-level change (Shennan et al., 1992). The United Kingdom Working Group hope to combine 

present shoreline evolution and sea-level data in the British Isles producing a framework for 

exploring and predicting coastal changes to examine the sensitivity of coastal response to sea- 

level change, sediment supply, wave power, basement geometry and basement material, in 

environments such as gravel beaches, sand beaches, saltmarshes and so on (Shennan et al, 1992). 

It appears therefore that a number of recent research papers presented in response to IGCP Project 

274 are concerned with the evolutionary sensitivity of coastal environments to Holocene sea-level 

rise. Shennan et al. (1992) suggests that although Holocene sea-level change is well documented 

for most parts of the British Isles, the causes for the spatial response of coastal environments to 

changing sea-levels is poorly understood. They further indicate that sea-level variation may not 

be the principal agent of coastal differentiation but they suggest that sediment availability is more 

likely to prescribe patterns of coastal deposition. 

Hinton (1992) described a new approach to the study of Holocene sea-level change suggesting 
that palaeotidal changes are one of the least known factors recorded in local sea-level changes. 
By integrating numerical tidal models with stratigraphic data recording former tidal heights one 

can extend the knowledge of tidal alterations with sea-level change, and such knowledge will 

permit a higher degree of accuracy in the construction of regional and local sea-level variations 
during the Holocene (Hinton, 1992). Modelling approaches of this kind, such as the study by 

Austin on the NW European continental shelf, are used to fine tune palaeoenvironmental data 

(Scourse, 1992); however, due to the resolution permitted by many of the tidal models employed 

such assessments have not provided detailed information on a local scale. The refined tidal model 

of the Wash developed by Hinton (1992) may simulate greater research into detailed assessments 

of tidal variations at any one locality which may subsequently be used to construct more accurate 

sea-level curves. 
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The general public are becoming increasingly aware of the effect of global warming on sea-levels 

and how such a phenomenon may affect their everyday lives. However, predictions of postulated 

sea-level rises vary considerably confusing the public making them more suspicious such 

predictions. Informed predictions of future coastal changes, on which strategies for management 

and engineering may be based (Scourse, 1992), require detailed studies on shoreline response to 

rising sea-levels. Recent studies (IGCP Project 274) hope to provide such information and seem 

to concentrate on obtaining more accurate sea-level curves, from which more informative 

predictions of future coastal response to sea-level changes can be made. 
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2.2 Barrier formation and evolution 

2.2.1 Historical development of theories regarding barrier island genesis 

The coastal plain and continental shelf of the west coast of mainland Mexico were investigated 

as a part of the Scripps Institution of Oceanography's project on the geology and oceanography 

of the Gulf of California. One of the areas of greatest interest was the area south of Mazatlan, 

Sinaloa, and the north of San Blas, Nayarit on the mainland side of the Gulf of California (Curray 

and Moore, 1963). 

The coastal plain here consists of a low-lying marsh roughly at sea-level which exists, mainly in 

depressions, between scores of parallel abandoned beach-dune ridges. This strand plain of 

abandoned beach ridges averages some 5 km in width, for the 225 km distance from Mazatlan 

to San Blas, and is uniformly furrowed by the parallel ridges which are typically 30-200 metres 

apart. The sand body is continuous between the ridges and across the strand plain, being found 

beneath elongate surface lenses of modern alluvium deposited between the ridges (Curray and 
Moore, 1963). This continuous sand sheet rests upon the pre-transgressive or Pleistocene flood 

plain deposits of the coalescing river system. Curray and Moore (1963) suggest that each ridge 

was formed individually as a shoreline deposit, with the oldest lying furthest from the present 

shoreline, and that the present shoreline is analogous to each of the ridges at the time of their 
formation. They postulate that each ridge initially formed as a longshore bar in front of the 

existing beach and that given a sufficiently high rate of sediment supply and conditions of low 

wave action the bar can accrete up to the water surface. If this were to occur during a high tide, 

with the persistence of low wave conditions through several successive tidal cycles, the long- 

shore bar would in effect become the new shoreface isolating the former beach (Curray and 
Moore, 1963). 

Curray and Moore suggest that this process has apparently repeated itself cyclically since the time 

sea-level approached its present position. Furthermore, throughout the formation of the strand 

plain sediment supply and hydrodynamical conditions have remained approximately uniform. 
After the formation of each successive new beach ridge the process is repeated after a sufficient 
supply of sediment was introduced into the area either by long-shore transport or by the 
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reworking of relict sediments offshore. Curray and Moore proposed that barrier islands originate 

from bars, built to sea-level by the rapid supply of sediment during periods of low wave intensity 

isolating the former beach surface, creating a lagoon which is subsequently infilled by both sand 

and alluvium. However, at the time of their study there was only one available 14C date, and in 

recognising this, Curray and Moore indicated that both the rate at which the strand plain formed 

and the position of the late Holocene sea-level could not be accurately assessed. 

Price (1963) suggested that small barriers form a short distance from the shore during periods of 
high water associated with storm setup. A bar develops in front of the beach and builds vertically 

almost to the height of the temporarily raised sea-level and with a subsequent fall in sea-level 

remains as a low barrier. 

Hoyt (1967) suggested that several difficulties arise in applying the theory of barrier formation 

from the building of offshore bars. First, although offshore bars may develop under certain wave 

conditions, their vertical progression is arrested as the water level is approached due to the 

washing of waves over the top of the bar. Second, if barriers develop directly from bars then 

evidence of this process should be observable somewhere. Hoyt (1967) indicated that the lack 

of examples at various stages of barrier development suggests that barriers do not in fact form 

from the build up of offshore bars. Furthermore, he highlighted the absence of beach and shallow 

neritic deposits landward of barriers arguing that if barriers did form from offshore bars then 

open-ocean conditions should have prevailed landward of that bar during the early stages of 
barrier formation. 

Hoyt (1967) examined the contact between Holocene salt-marsh deposits and Pleistocene 

sediments at many locations along the Georgia coast and found no beach deposits landward of 
the saltmarsh (Figure 2.8). He supported this evidence by reappraising numerous other studies, 

all of which indicated the absence of beach and shallow neritic deposits landward of barrier 

islands, but was careful to point out that although there may be minor exceptions most major 
barrier features formed by some other mechanism. 

Gilbert (1885) suggested that barriers form by the accretion of sediments transported along the 

shore by littoral and longshore currents. Although this theory was dismissed at the time there can 
be little doubt that barrier islands form by the breaching of spits during storms (Figure 2.9). 
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However, Hoyt (1967) suggests that this mechanism does not adequately account for major 

barrier systems and is probably limited to small sections of the coast. 

Swift (1975) suggests that barriers developed at a low sea-level stand, and have transgressed the 

continental shelf during the Holocene transgression, but this does not solve the problem of 
formation. Hoyt (1967) presented a hypothesis which considered the rapid submergence which 
began some 18,000 years BP, the absence of a world-wide sea-levels higher than present during 

the Holocene, the slow submergence during the past 3,000-4,000 years (Shepard, 1963), the 

absence of marine deposits and faunas landward of barriers, and the ability of barriers to reform 

after being destroyed by an emergence. 

Along some shorelines aeolian deposits build dunes over 100 feet high and waves can form beach 

ridges some 20 feet above high water level. Hoyt (1967) suggested that the combination of both 

wind and wave action may produce a topographic ridge along the upper edge of the shoreline. 

Suppose that during their formation there was a relative rise in sea-level, then the area landward 

of the ridge would flood to form a lagoon and the topographic ridge would become a barrier to 

marine influence (Figure 2.10). The actual width of the barrier would depend upon the amount 

of progradation prior to submergence which is dependent on the rate of sediment supply and 

hydrodynamics (Hoyt, 1967). Once formed, barriers can be maintained as long as there is a 

balance between the sediment supply, the rate of submergence, and the local hydrodynamic 

factors (Figure 2.11). Although submergence may result in the landward retreat of the shoreline, 

too fast or too slow a submergence rate may be detrimental to continued barrier development 

(Hoyt, 1967). Submergence is the pillar stone in the theory proposed by Hoyt and such a rise 
in relative sea-level has occurred during the Holocene epoch by the transfer of water from 

continental glaciers to the oceans. 

Pierce (1969) examined the physiographic changes, along the North Carolina coast, where he 

found that the barrier system has accreted sediment at an annual rate of some 796,000 m3. He 

postulated that the continental shelf acts as a reservoir of sediment which is at present 

contributing to the accretion of the nearshore zone. This would suggest that if sufficient sediment 
is not supplied by longshore/littoral processes, a barrier system may be maintained by relict 

sediments. 
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Otvos (1970a) stated that barrier formation by beach-ridge engulfment would probably occur 

when a stable shoreline with well developed ridges is engulfed by a relatively sudden marine 

transgression which ultimately does not erode or displace the ridges landward. This would be 

followed by a slower sea-level rise during which the islands maintain their upward growth. Otvos 

(1970a) argued that although such a transgression may have existed at the onset of the Holocene, 

in the Gulf of Mexico, most of the barriers started to form some 5,000 to 3,500 years BP when 

the transgression had slowed or stopped altogether. 

The failure to recognise beach and shallow marine sediments landward of the barrier islands, as 
highlighted by Hoyt (1967), can be attributed to several factors other than barrier formation 

through the engulfment of beach ridges. Otvos (1970a) argued that the presence or absence of 
beach sediments is not sufficient proof to eliminate barrier formation from spits or bars. For 

instance, when a transgression reaches a lagoon the first sediments to be reworked into the 

sedimentary column would be beach and shallow neritic deposits, and Otvos argues that this 

would make them indistinguishable from earlier Pleistocene sediments. However, if shallow 

marine sediments existing landward of barriers were reworked into the sedimentary column then 

they would form a distinctive sedimentary unit distinguishable from earlier Pleistocene 

sediments. Otvos (1970a) suggested that the rapid development of bay-mouth bars or spits do 

not allow the accumulation of noticeable volumes of open marine sediments before sedimentation 
becomes lagoonal. He stated that it must also be proven that the total section, between the pre- 

transgressive and island surfaces, was formed in the supra-tidal environment before one can 

conclude that barriers did in fact form through beach and dune ridge engulfment. 

Hoyt (1967) maintained that only a few small short lived barrier islands located close to the 

shoreline formed from off-shore bars. Otvos (1970a) indicated that records from the Louisiana 

and Mississippi coastal areas do not support this hypothesis because several major and minor 

examples of barrier development from underwater shoals took place in the Chandeleur, 

Mississippi Sound, and Timbalier Island groups. For instance, in the southern Chandeleur Island 

group the 7.5 km long Grand Grosier Island has developed since 1869 through numerous stages 

of the development and merger of small islands from the shallow sea-floor. Otvos (1970a) 

concluded that beach ridge progradation of coastal plain, barrier spit, and barrier island shores is 

essentially an identical process. Furthermore, new ridges added to the land form not only by 

seaward beach expansion but also by beach formation and by the development of near-shore bars. 
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Hoyt responded in 1970 in an attempt to answer many of the points raised by Otvos. Hoyt (1970) 

pointed out that Otvos principally argued that barrier islands form from offshore bars or shoal 

areas. In order to substantiate his theory Otvos (1970a) gave a number of examples. Careful 

reading reveals that only one of the examples used by Otvos, which comes from the southern 

Chandeleur Island group, developed from the shallow sea-floor and Hoyt argues that even this 

example is not valid since the development of Grand Grosier from a number of small islands does 

not establish its origin. 

Hoyt (1970) suggested that the question of barrier island formation was left unanswered by Otvos 

in his discussion. Furthermore, there is no evidence given by Otvos to show that the Chandeleur 

Islands, or any other, formed through the vertical accretion of offshore bars and the absence of 

open marine deposits landward of the barriers seems to contradict their postulated mode of 

formation. Hoyt (1970) preferred an alternative hypothesis indicating that such barrier islands 

appear to be outstanding examples of beach/dune ridge engulfment. 

In summary, Hoyt (1970) concluded that much of the evidence mentioned by Otvos (1970a) has 

no bearing on the original formation of barrier islands but simply reiterates information regarding 

their erosion, progradation, and migration. Otvos ignores criteria (Hoyt, 1967) which would be 

useful in rejecting some of the possible ways in which barriers have been considered to form, and 
his lack of examples has some significant implications (Hoyt, 1970). 

Otvos (1970b) indicated that one of the main aims of his previously published paper was the 

illustration of processes which may obscure or destroy sedimentary proofs of barrier island 

genesis. Otvos argued that clear-cut examples should have been stated in defence of the barrier 

through engulfment theory. Although, Otvos (1970b) did not totally reject the hypothesis 

proposed by Hoyt, he reiterated that the absence of marine deposits landward of barrier islands 

can be accepted only as supplementary evidence in support of that theory. No marine deposits 

can be expected landward of barrier islands which have formed adjoining or within lower salinity 
basin areas such as estuaries, bays, or sounds. Assuming that fully saline conditions prevailed 
landward of future barriers, following the transgression, low sedimentation rates might have 

produced only a thin veneer of open marine sediments which may, as already indicated, be 

reworked into the sedimentary column making them indistinguishable from succeeding brackish 

deposits (Otvos, 1970b). 
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Swift (1975) stated that a barrier island is a littoral sand body consisting of a shoreface 

maintained by the prevailing hydraulic regime and attached wash-over fans whose surfaces are 

modified by aeolian and biological (including human) activity (Figure 2.12). The beach and 

shoreface response surfaces are clearly the critical zones suggesting that the existence and 
behaviour of other parts of the barrier are dependent on the behaviour of the shoreface. Swift 

(1975) postulated that if barriers have transgressed the continental shelf in response to a post- 
Pleistocene sea-level rise, the problem of barrier genesis is transferred "out there" to some late 

Holocene still stand position on the continental shelf. 

Otvos (1970a, b) made it clear that migrating barriers are in a constant state of morphologic flux 

with individual barriers continually undergoing expansion, contraction, fragmentation and 
integration. The long-term behaviour of the shore-face during a marine transgression, whether 

retrogradation or progradation, depends on the balance between fair weather accumulation and 

storm erosion over the observational interval. 

Swift (1975) detailed two time mechanisms for barrier formation by considering such shore-face 
dynamics, coastwise spit progradation and mainland beach detachment. He considered a third 

mode of formation, as proposed by Otvos (1970a, b), but suggested that there are two basic 

problems associated with this hypothesis. First, it is necessary that the previous withdrawal of 

the sea is such that at time zero a metastable condition prevails where the sea-floor slope is 

gentler than that required by the equilibrium profile; the equilibrium profile is a surface that when 

stressed will respond in such a way as to relieve that stress. However, the response time of the 

shoreface is instantaneous with respect to glacio-eustatic sea-level fluctuations. Second, 

associated with the up-building bar hypothesis is the inadequacy of known mechanisms of swash 
bar formation for building barriers of appropriate scale and distance from the shore. Swift further 

argued that break-point bars are small scale features which tend to migrate on-shore as swash 
bars, welding themselves to the shoreface. On prograding coasts break-point bars become 

stabilized by accretion on their seaward faces and they may accrete high enough to become 

shoreline initiated dunes, not barrier islands (Swift, 1975). Although Otvos (1970a) advocated 
the emergence of off-shore bars as a mechanism for barrier formation, Swift claims that his 

subsurface evidence is ambiguous and does not show the bore-hole spacing or the criteria used 
to distinguish barrier sub-environments, a notion echoed earlier by Hoyt (1970). Swift suggests 
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that the earlier conclusion of Hoyt (1967) that minor barriers may form from bars is valid, but that 

these features are short lived. 

Spits are characteristic of coasts of high relief undergoing a rapid transgression, because barrier 

formation through mainland beach detachment is severely inhibited by this type of coastal 

configuration (Swift, 1975). The submarine valley floor adjacent to retreating headlands would 

be in increasingly deeper water after the onset of the transgression, and as the submarine surface 

area of the barrier requiring nourishment increases the capacity of littoral drift to nourish the 

shore-face may eventually be exceeded (Figure 2.13a). As this point is reached storm wash-over 

will cause the barrier to retreat until equilibrium is restored (Swift, 1975) at a point possibly 

inland from the tips of the headland. 

Conversely, Swift (1975) theorised that the submergence of a coast of very subdued relief, as in 

the case of most coastal plains, would tend to promote mainland beach detachment at the expense 

of spit progradation (Figure 2.13b). Therefore on an initially low straight coast, barrier spits and 

islands would form preferentially by mainland beach detachment rather than by coastwise spit 

progradation. Swift concluded that the lagoonal carpet of the Central Atlantic Shelf indicates that 

modern barriers have retreated to their present positions from the shelf edge during the Holocene 

transgression. Barrier genesis in the classical sense of mainland beach detachment (Hoyt, 1967) 

or coastwise spit progradation can only occur when a regression passes through stillstand into 

transgression (Swift, 1975). 

Ultimately, the roles of these two mechanisms of barrier formation depend upon the configuration 

of the substrate, with spit building favoured by greater relief, and mainland beach detachment 

favoured by low flat coasts. 

2.2.2 Barrier complex response to relative sea-level rise 

The southeastern coast of Australia is an embayed bedrock margin with drowned river valleys 

infilled to varying degrees with Quaternary sediments. Studies of a number of Holocene barriers 

and estuaries in New South Wales have documented three primary types of embayment fill, 

characterised by different morphologies, lithofacies associations, and hydrodynamic regimes 

38 



Chapter 2 Sea-level change and barrier formation/development 

(Roy et A, 1980; Figure 2.14). These primary types show varying degrees of modification which 

suggests a general evolutionary model for sedimentation on an embayed high energy coast at the 

culmination of a marine transgression. 

Radiocarbon dates used to construct an envelope of sea-level change in the Holocene indicates 

that along this apparently stable coastline, sea-level rose rapidly until some 6000 years BP after 

which it is unlikely that sea-level has oscillated more than ± Im (Thom and Chappell, 1975). 

This would suggest that for the last 6000 years this area has been subject to a stillstand in sea- 

level which contrasts with other workers such as Fairbridge (1961) who show sea-level rising 

some 2-5 m above its present level in the mid-Holocene (section 2.1). Roy et al. (1980) 

summarised the lithofacies of Holocene age identified along this coast (Table 2.1. ). 

Environments of deposition within embayments include: dune, barrier beach and near-shore; 

flood tide delta, and back barrier; estuarine mud basin, channel and tidal flats; and river delta 

including channel, flood plain and fresh water swamp (Roy et al. 1980). 

The first type are open ocean embayments dominated by ocean swell and wind waves, where 

estuarine and fluvial processes have negligible influence (Figure 2.15). Roy et al. indicate that 

these embayments are characterised by marine depositional environments containing bay barriers 

which consist of both shelly beach/near shore sands extending to depths of -30 m at the 

shoreline, and transgressive dunes which may reach elevations of +35 m. Prograded barriers 

reach widths of 2 km and disconformably onlap onto either bedrock or Pleistocene substrate, 
behind which limited swamp or estuarine deposits may occur (Roy et al., 1980). 

The second type, barrier estuaries, are embayments in which lagoons or estuaries occupy drowned 

valleys impounded by coastal sand barriers. They may follow the irregular outline of the 

drowned bedrock valley they occupy, or be coast-parallel and more oval, similar to barrier 

lagoons on the Texas coast (Roy et al., 1980). Barrier estuaries are characterised by estuarine and 
fluvial depositional environments where muds form extensive subaqueous mud basin deposits, 

and where tidal flats with the occasional occurrence of biohermal shell reefs are found in estuaries 

which are permanently open to the sea. Roy et al. states that barriers of all types are associated 

with these embayments (dependent on the regressive-stillstand-transgressive sequence), where 

process regimes, and the associated near-surface geometries of lithofacies are complex and 
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dependent upon the degree of infill which is in turn dependent upon the estuary size and the rate 

of sediment input. 

The final type of embayment Roy et al. (1980) describes are classical ria estuaries or drowned 

river valleys with wide exposed deep water entrances. They postulate that in such estuaries ocean 

waves influence the morphology and sediment distribution, both around the entrance and, for 

distances of up to 5 km in land, with tidal and fluvial processes being dominant upstream. 

Roy et al. proposes an evolutionary model for the development of these three embayment types, 

based on different estuaries which show varying degrees of evolution (Figure 2.16), suggesting 

that variations between embayments identified on the New South Wales coast depend on the 

configuration of the pre-Holocene coastal margin, and the nature of the marine sand bodies that 

accreted on it at the end of the Holocene marine transgression. The model describes two modes 

of shoreline displacement as sea-level reached its present level some 6,000 years BP. First, there 

is abundant 14C evidence to support the view that most bay barriers, particularly the prograded 

type, accumulated at a declining rate between 6,000-3,000 years BP. The second mode of 

displacement is erosional and appears to have predominated along the New South Wales coastline 

over the last 3,000-4,000 years. 

Roy et al. (1980) conclude that the severity and duration of these modes varies from locality to 

locality, and that it is not known whether erosion is episodic, involving changing energy 

conditions, or is basically a long term trend reflecting the progressively declining sediment supply 

within embayments. 

Development of barriers and other sediment bodies in embayments along the New South Wales 

coast represents a depositional response to environmental conditions which differs somewhat 

from the well studies barrier complexes of the USA (Hoyt, 1967; Otvos, 1970a, b; Swift, 1975). 

In contrast with the US Gulf coast, in NSW it can be shown that because of the compartmented 

nature of the embayments the bulk of the sand forming the barriers was derived from offshore 

sources by onshore rather than by along shore processes (Roy et al., 1980). 

As has been suggested a complex set of parameters control shoreface translation and the 

generation of coastal facies during sea-level regressions and transgressions. In understanding 

40 



P \OL FOULS 
EX(; LL DLD 

LNDFR 
INSTD(C ON 

ROM 
UN B 



Chapter 2 Sea-level change and barrier formation/development 

coastal sedimentation it is necessary'to identify the dominant factors which control the vertical 

and horizontal translation of the depositional shoreface (Boyd and Penland, 1984). Once 

identified, relationships between these parameters may be established which are possibly capable 

of predicting quantitatively the geometry and distribution of coastal stratigraphic sequences in 

modem and ancient environments. 

Initial contributions by Sloss (1962) and Allen (1964) identified the concepts of facies generation 
during sea-level regressions and transgressions. Swift et al. (1972) grouped the variables used 
by Sloss in a quantitative manner to produce an empirical relationship. For the coastline position 
to remain constant the ratio of sediment input to the energy available for its dispersal must be 

balanced by an equivalent change in relative sea-level: 

(E) -R=K 2.2 

where Q is the material supplied to the depositional site, E is the energy input, K is a constant 

coastline position, g is a variable, and R is the rate of subsidence at the site. Swift (1975) restated 
the problem in the form of the sediment continuity equation: 

bC 
+ VC bh 2.3 6td bt 

where C is the sediment concentration, V is a velocity vector, p is the sediment density and d is 

the water depth. Swift indicates that the rate of change of the coastal sediment-water-interface, 
8h/8t is proportional to the time rate of change of sediment advected into and out of the unit 

volume. 

Belknap and Kraft (1981) indicate that the migration of coastal lithosomes (barrier systems) 

across the US Atlantic Shelf is a response to rising sea-levels during the Holocene. A relative 

sea-level curve for Delaware (Figure 2.17) constructed from 14C dates on basal peats, rises 
smoothly from 25 m below present sea-level some 10.000 years BP. The rate of relative sea-level 
rise decreases with time and caused in rates of coastal retreat of up to 20 m/yr at 10,000 years BP, 

which subsequently slowed to some 5 rn/yr around 5,000 BP (Belknap and Kraft, 1981). In 

examining the preservation potential of transgressive coastal lithosomes and extending the 
controlling factors to include pre-existing topography, erosion resistance and tidal range, Belknap 
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and Kraft (1981) concluded that the depth of shore-face erosion was related to the rate of sea-level 

rise with faster rates of sea-level rise being capable of greater preservation (Figure 2.18). 

Boyd and Penland (1984) presented three regional examples from the central coast of New South 

Wales, Louisiana and Nova Scotia to provide a spectrum of contrasting case studies, where for 

each example variables controlling sedimentation were identified. For instance, in New South 

Wales rising sea-levels are followed by stillstand under a moderate to high energy wave climate; 

in Louisiana very rapid rates of relative sea-level rise and low wave energy are punctuated by 

storm events on a low gradient coast; whereas in Nova Scotia drumlin point sources supply 

sediment to topographically controlled estuaries by under relative sea-level rise and moderate 

levels of wave energy. Boyd and Penland presented the stratigraphic records for each example 

in order to illustrate the contrasting process interactions can produce an array of barrier 

sedimentary sequences. They infer that coastal sedimentation during transgressive and regressive 

cycles is determined by the parameters which control the shape of the shoreline profile and factors 

which result from profile translation. 

In Nova Scotia a continuing rise in relative sea-level causes initial barrier progradation which 

is followed by destruction and breakdown. During the erosive phase, Boyd and Penland postulate 

that estuarine headlands act as effective barriers to longshore transport where sediment is moved 

landward by aeolian, wash-over, and tidal inlet processes. Sediment remaining on the shoreface 

is transported onshore by wave action leaving a thin veneer on the shelf (Figure 2.19a). They 

conclude that transgressive sedimentation on the eastern shore of Nova Scotia supports the 

shoreface retreat concept devised by Swift (1975). 

As previously illustrated (Roy et al., 1980), on the central coast of NSW a rapid relative sea-level 

rise occurred prior to the stillstand reached some 6,000 years BP (Thom and Chappel, 1975), after 

which sediment supplied from the adjacent disequilibrium shelf formed regressive barrier 

deposits (Figure 2.19b). Boyd and Penland suggest that barrier progradation slowed or ceased 

as sediment supply diminished (Roy et al., 1980) and that the resulting barrier sequence consists 

of a thin basal transgressive sand sheet overlain by regressive beach ridge and dune complexes. 

Although the barriers retreat in response to relative sea-level rise, barrier sediments are retained 

on the inner shelf as postulated by Belknap and Kraft (1981); during the stillstand sediment is 
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Chapter 2 Sea-level change and barrier formation/development 

moved landward to produce a form of punctuated stepwise shoreface retreat (Boyd and Penland, 

1984). 

Finally in Louisiana rapid rates of relative sea-level rise generate barriers during the reworking 

of the underlying deltaic sand sources. As the transgression continues over a low regional 

gradient the sandy barrier systems are transformed into subaqueous shoals. Boyd and Penland 

suggest that the resulting stratigraphy is a dispersed sand lens overlying lagoonal muds, and that 

coastal processes therefore incorporate reworked barrier sand bodies into the stratigraphic record 

(Figure 2.19c). Boyd and Penland (1984) indicate that sufficient variability exists within the 

three studies to suggest that existing coastal models and concepts of barrier genesis and evolution 

cannot fully describe the formation and subsequent response of barrier island systems 

(lithosomes) to relative sea-level changes. 

In investigating coastal dune building episodes and their relationship to Quaternary sea-level 

changes, Pye (1984) inferred that during the Holocene marine transgression, rising sea-level 

caused the reworking of regressive marine deposits laid down during the preceding glacial period. 

A rising sea-level would have also led to sustained shoreline erosion as the near shore profile 

sought to achieve a new profile of equilibrium. Strong winds would have transferred a substantial 

proportion of the shoreface sands landwards feeding the transgressive sand sheets and dunes. 

Pye proposes that transgressive dune activity may have been self-maintaining, in that winds 

supplying transgressing dunes with sediment would effectively promote the erosion of the 

shoreface, and that only after sea-level had ceased to rise would a new profile of equilibrium be 

attained, terminating shoreline retreat. Pye (1984) suggests that as dunes were locally and 

intermittently active within the last 6000 years in Australia, when sea-level is thought not to have 

fluctuated more than ±1m (Thom and Chappell, 1975), transgressions are not the only factor 

capable of initiating dune instability phases. 

Shoreline erosion and degradation of vegetation may be caused by variations in wind wave 

climate or by changes in the pattern of near shore sediment supply and the profile of equilibrium 

(Pye, 1984). He noted that the marine transgression model of coastal dune instability is unlikely 

to have worldwide applicability due to variations in the balance between sand supply, wind 

energy and sand binding vegetation under differing environmental conditions, and because areas 
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have experienced contrasting sea-level histories during the Holocene. Nevertheless, this model 

highlights the complexity of dune and barrier system retreat in response to rising sea-levels. 

Carter et al. (1989) attempted to explore barrier and lagoon coast evolution under differing 

relative sea-level regimes using examples from Ireland and Nova Scotia. They propose that it is 

the rate rather than the magnitude of relative sea-level change which determines the evolution of 

coarse barrier and lagoon coasts. 

Heron et al. (1984) suggested that while the hydrographic regime is an important control on 

sedimentation pattern other natural controls are equally important. They suggest that perhaps the 

most important process has been the Holocene rise in sea-level, a process resulting in a shoreline 

transgression. 

Rampino and Saunders (1981) used evidence from the transgressive sediments beneath and 

behind modem barriers, the remnant depositional record on the shelf, and the nature of the surface 

being transgressed by the sea to reconstruct the long term history of the barrier Islands of 

Southern Long Island during the past 9,000 years. 

At approximately 9,000 years BP sea-level stood 24 m below the present mean sea-level, and a 

chain of barrier islands existed on the present shelf roughly 7 km offshore. These barriers are 

thought to have continued their build up until some 7,000 years before present at which time the 

sea stood 15 m below its present level. Rampino and Saunders (1981) went on to suggest that 

these barriers were then overstepped by the rapidly rising sea and that the surf-zone shifted 

rapidly landwards to a position some 2 km offshore. Due to the rapid rate of relative sea-level 

rise back-barrier deposits were extensively preserved on the continental shelf. They conclude that 

a rapid relative sea-level rise and low sediment supply has the potential to overstep and preserve 
barrier deposits, whereas slow rates of submergence and a greater supply of sediment favours 

continuous shoreface retreat. 

Although the coasts of southern Ireland and eastern Nova Scotia possess many basic similarities, 

especially in terms of geology, glacial history, sediment character, resistance to erosion and 
hydrodynamic regimes, there is a fundamental difference in their Holocene sea-level histories 

(Carter et al., 1989). During the last 4,000 years Ireland has experienced a slow sea-level rise of 
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less than 1 mm/yr, whereas the Atlantic coast of Nova Scotia has been experiencing sea-level 

rises up to three times greater over the same period. On the basis of their studies Carter et al. 

(1989) proposed a hierarchy of intrinsic controls resulting in the evolution of coarse clastic barrier 

lagoon coasts (Figure 2.20). 

Facies associated with slow sea-level rise in Ireland tend to show a gradual encroachment of 

marine conditions from terrestrial through fresh and then saltwater wetlands, to intertidal flats and 

eventually, into open sea-conditions. Carter et al. (1989) inferred that over a short time period, 

the coastal sedimentary facies associated with slow relative sea-level rise are largely reworked 

in situ while, the lagoonal areas show a slow transition from fresh to saltwater conditions. The 

general scarcity of sediment, typical of many Irish sites, would lead to the preservation of very 

thin representative units as the shoreface migrates (Carter et al., 1989). 

As relative sea-level rises against an intricate coast, like that of eastern Nova Scotia, there is a 

need to redistribute sediment across and along the leading edge of a barrier. Carter et al. 

indicated that when and where sediment is scarce barriers must respond through morphological 

change in order to survive the impact of rising sea-level. This may involve changes in barrier 

geometry and the cannibalization or reworking of existing forms to supplement some of the 

deficits in the sediment budget. These processes, driven by rising sea-level, may cause barrier 

stretching, segmentation into sub-cells, breaching and sediment dispersal away from the 

shoreline. 

Carter et al. (1989) argued that the stress imposed on barriers by a rapid relative sea-level rise 

may either lead to the destruction, the overstepping, or drowning of that barrier and examples of 

drowned barriers are evident in the literature (Oldale, 1985). Although the rate of sea-level rise 

is a primary control, basement expression (i. e. the pre-existing morphology of the transgression 

surface) plays an important role in shoreface evolution. For instance, in Ireland barrier-lagoon 

form is controlled by local basement expression, particularly through the emergence of headlands, 

creating largely closed sediment systems. The Nova Scotian examples are associated with rapidly 

moving erosional fronts where local basement control is regulated to a subordinate role at the 

expense of rapid changes in sediment supply (Carter et al., 1989). 
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Chapter 2 Sea-level change and barrier formation/development 

2.2.4 Summary 

The actual origin of coastal barriers is still a matter of debate (section 2.2). Although, intense 

discussion during the 1960s and 1970s did not resolve the problem of barrier genesis per se, four 

theories have been persistently used in the literature to explain the origin of these features. First, 

barriers may form through the build up of offshore point-break bars i. e. via coastal emergence 

(DeBeaumont, 1845; Price, 1963; Otvos, 1970a, b). Second, barriers and barrier islands may form 

in response to longshore transport, spit elongation and inlet breaching (Hoyt, 1967). Third, 

barriers may be initiated through in-place drowning of coast parallel antecedent topography i. e 

mainland detachment in response to relative sea-level rise (Hoyt, 1967). The final theory 

suggests that barriers located offshore on the continental shelf may have migrated landward and 

become detached from their point of origin (Swift, 1975). 

As modern barrier systems have been used to support each of these theories it is likely that the 

mechanisms responsible for the formation of these features are site specific. However, the 

utilitarian approach to barrier genesis suggests that more than one of these mechanisms may have 

operated during the formation and subsequent evolution of the barrier system; this view of 

'multiple causality' has prevailed following the debate in the mid-1970s (Carter, 1988). 

Although the mechanisms described above are controlled primarily by changes in relative sea- 

level, sediment supply and local hydrodynamics, barriers evolution is intimately tied to the 

antecedent topography and the geologic systems upon which they form and migrate (Belknap and 

Kraft, 1985). The pre-existing topography has been shown 'to be of critical importance in 

determining the evolution and preservation of barrier systems in Delaware, Florida and Carolina 

(Belknap and Kraft, 1985; Davis and Kuhn, 1985; Riggs et al., 1995). 

It is known that barriers did exist on what is now the continental shelf (Swift, 1975; Roy et al., 

1980; Belknap and Kraft, 1981; Rampino and Saunders, 1981; Oldale, 1985) indicating that 

modem barriers may have been derived from landward retreating barriers which originated on 

what is now the submerged continental shelf. A complex set of parameters control shoreface 

translation and the generation of coastal facies during sea-level regressions and transgressions. 
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It has been widely suggested that the rate of sea-level rise and the nature of sediment supply arc 

controlling factors in determining the nature of barrier migration under rising sea-levels. Rapid 

rates of relative sea-level rise and low sediment supply seem to favour the overstepping of 

barriers, preserving them on the continental shelf, whereas slow rates of submergence and a 

greater supply of sediment seem to favour continuous shore-face retreat (Roy et al., 1980; 

Belknap and Kraft, 1981; Rampino and Saunders, 1981; Heron et al., 1984; Boyd and Penland, 

1984; Carter et al., 1989). It is therefore the rate rather than the magnitude of sea-level rise which 

ultimately controls the evolution of barrier systems retreating under rising relative sea-levels 

(Carter et al., 1989). 

Although rapidly rising sea-levels at the onset of the Holocene may have preserved barriers on 

the continental shelf of New South Wales, reworking by waves and the subsequent onshore 

transport of those sediments to maintain contemporary barriers has effectively erased evidence 

of barriers existing on submerged portions of the continental shelf (Roy et al., 1980; Boyd and 

Penland, 1984). This would indicate that although the rate of sea-level rise initially plays an 

important role in the preservation of barriers, their subsequent maintenance is dependent upon 

the contemporary hydraulic regime which acts to redistribute those sediments. 

Hoyt (1967) maintained that the key to discovering the mechanism of barrier genesis was study 

of the sediments beneath modern barrier island sands and associated back barrier lagoonal 

sediments. One of the fundamental concepts of sedimentary geology is that major breaks in the 

stratigraphic record result from important marine regressions due to eustatic and/or tectonic 

phenomena. By studying the stratigraphic record and using certain sea-level indicators, one can 

infer the relative sea-level rise for a particular location from which theories regarding the 

evolution of coastal sedimentary facies can be formulated. 

Sea-level change is no doubt fundamental to the generation of coastal sedimentary sequences; 

however, the evolution of barrier systems is dependent upon complex interrelationships between 

numerous factors which may operate locally if not regionally. If as in the case of Story Head, 

Nova Scotia, an inherently poor sediment supply was to cease then the hydrodynamic regime 

would lead to both the cannibalization and destruction of the barrier (Carter et al., 1990). 

Therefore, although the rate of sea-level rise may determine the nature of barrier retreat (Carter 
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et al., 1989), numerous other factors as well as sea-level dictate the evolution of coastal 

sedimentary environments. 
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Chapter 3 
Methods 

3.1 Fieldwork/ Site investigation 

The seismic refraction surveys were conducted in order to identify and model sub-surface 

refractors beneath West Marsh, East Marsh and the Pendine Burrows. The velocity data obtained 

from refraction lines within the survey area would provide a basis for establishing the range of 

velocities exhibited by each of the seismic facies. The aim of conducting high-resolution 

reflection profiles was two fold. First, to locate and identify the pre-Holocene and bedrock 

surface beneath the Pendine Sands and the back-barrier deposits. Second, to determine whether 

back-barrier deposits lie beneath the contemporary foreshore. Marine reflection data were 

acquired within the Taf Estuary in order to determine the depth to bedrock basement and model 

the shape of the pre-Holocene surface within this area. 

The aim of conducting Schlumberger depth probes was two-fold. First, to provide information 

regarding the depth to bedrock and the composition of the overlying sediments. Second, to use 

this information to corroborate the data obtained from the seismic surveys. 

3.1.1 Coring methods 

Two coring methods were applied in this study. Initially short cores were obtained from the 

saltmarshes within the Taf Estuary, using a hand held Dutch auger (Eijkelkamp steel gouge auger, 

model 04.03). The method was well suited to coring through fine cohesive sediment, but became 

ineffective when sandy sediments were encountered. 

Relatively longer cores (3-13 metres) were recovered from the back-barrier deposits using an 
Eijkelkamp percussion drilling set (Model 04.18). The sampler body consists of a reinforced 

gouge auger (diameters 50 and 100) with a hardened steel cutting head. The auger is driven into 

the ground by a two stroke wrecking hammer without the use of drilling fluid (Figure 3.1a). The 

sampler is recovered using an extraction system consisting of a mechanical rod puller and a ball 
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Chapter 3 Methods 

clamp with hand grips which when placed over the extension rods can pull the assembly out of 

the sediment (Figure 3.1b). Sub-samples were taken from the auger and the sediment was 

described in the field (Section 3.1.2). The borehole depth was extended by adding metre long 

extension rods to the sampler; the time taken to drill and extend the assembly increased 

significantly for depth greater than eight metres. A closed sampler, containing a perspex liner, 

was used to recover whole cores for subsequent analysis in the laboratory (Figure 3.1c). As for 

the auger, the closed sampler was driven into the ground using the wrecking hammer and 

recovered using the extraction system. 

The percussion drilling set proved extremely effective when coring through fine cohesive 

sediment, but became less useful when clean sands were encountered. The technique caused 

relatively little compression of the sediment (5-15%) and preserved the majority of depositional 

features. 

3.1.2 Sediment description 

The Troels-Smith (1955) descriptive method was used to describe and log sediments within the 

field and subsequently in the laboratory. This system describes the basic components of the 

sediments and is used to make a qualitative estimate of the relative abundance of gravel, sand, 

silt, clay, turfa, humus, organic detritus and calcareous material. Each of these components has 

an abbreviation and the Troel-Smith system estimates the quantity of each material using a five 

point scale. For instance, if a particular deposit contained no clay and was composed entirely of 

sand then the values for these two components would be 0 and 4 respectively. Sediments 

described in the laboratory were also characterised using the Munsell Colour Chart (1975) and 

photographs were taken to provide a visual record. The descriptive scheme utilises lithology, 

texture, colour and structures within the sediment, as well as variation within units and the 

contacts between units as criteria for characterising the sediment. 
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3.1.3 Sampling 

Samples obtained in the field for later analysis were stored in sealed plastic bag. When taken 
from the augers care was taken to ensure that there was no risk of contamination by cleaning the 

sample surfaces and avoiding any clearly remoulded material. 

Continuous cores were obtained from appropriate sites using the method previously described. 

The perspex liners (1 by 0.05 metres) were sealed and stored in a refrigerator at the School of 
Ocean Sciences. Rather than extrude the sediment a Miller saw was used to split the liner, the 

material was then halved using a cheese wire and the cores were described then resealed in 

plastic film and aluminium foil. One half was used for analysis and the other was archived, with 

the materials preserved for radiocarbon dating. 

3.1.4 Levelling 

Borehole surfaces were accurately levelled using a Nikon Automatic Leveller to provide heights 

above Ordnance Datum (Newlyn). Temporary bench marks were levelled into the estuary and 
back-barrier area from OS bench marks, located in Laugharne, Llanmiloe and at Bannister Farm 

(Figure 3.2). In all cases the transects were closed to assess the borehole levelling accuracy. 

3.1.5 Seismic methods 

Fundamental theory 

In applied seismology the interpretation of the majority of seismic information is based upon 
recordings of the sub-surface response to a compressional disturbance generated by a seismic 
source at or below the ground surface. Energy travels outwards from the point of firing, as a 
spherical pulse, by vibrating particles within the propagating medium; the radius of the seismic 
pulse increases until the wavefronts approximate plane surfaces. In seismic techniques the 
transmitting medium is assumed to behave in an 'elastic' manner as the passage of seismic energy 
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through the propagating media leaves the material undeformed. The type of seismic source used 

and media of propagation determine the basic shape of the seismic record, which contains 

wavelets of differing amplitude, frequency and velocity. 

Two types of wave are propagated within an homogenous medium. The first referred to as 

compressional or P-waves, propagated by alternatively compressing and dilating the elastic 

media. The second type are known as shear or S-waves, propagated by displacing the media in 

a direction perpendicular to the propagation axis. Equations 3.1 and 3.2 describe compressional 

(Vp) and shear wave (Vs) velocities in terms of the elastic moduli and bulk density of the 

transmitting medium: 

1k+4u 
Vp= 

A 
(3.1) 

where k is the bulk modulus, µ is the rigidity modulus and p is the bulk density of the 

propagating media: 

Vs= 11 (3.2) 
P 

where µ is the rigidity modulus and p is the density of the propagating media. Because rigidity 

is zero in fluids, S-waves cannot propagate through liquids. 

The path along which a seismic pulse travels is known as the raypath (drawn perpendicular to 

the wave front), and for any source-receiver pair on or below the ground surface there are a 

multitude of time travel paths, each related to a specific seismic event. For instance, air waves, 

surface waves, multiples, refracted waves, reflected waves, side swipes, diffracted waves and 

converted waves (Telford et al., 1990). Although the earth often consists of a complex series of 

stratified materials, seismologists use simplified models to approximate reality. The simplest 

model consists of two horizontal homogenous layers with different seismic velocities. Consider 

one horizontal interface at a depth h separating two media which exhibit an increase in 

compressional velocity with depth (Figure 3.3). The first raypath is that between the source and 

the receiver (g) which travels along the same axis as the surface or Rayleigh wave, but at a much 
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greater velocity (V1). The second raypath travels from the source and strikes the interface at 

depth h (Figure 3.3). Any wave meeting this interface is partly reflected, partly transmitted and 

partly refracted; the change in raypath direction is described by Snell's Law: 

sin 8j sin 6t 
(3.3) 

Vi V2 

where O and 6, are the angles of incidence and transmission respectively, and V, and V2 are the 

seismic velocities of the two media. The refractive index (Equation 3.4) at that interface 

determines the change in the transmitted wave raypath direction; for V2>Vl the refraction is away 

from the normal (Figure 3.3): 

sin 6 V j_ l (3.4) 
sin 6t v2 

Although the amplitudes of the reflected and transmitted waves vary with the angle of incidence 

the actual proportion of energy reflected depends upon the properties of the media, namely the 

acoustic impedance contrast across the interface; the acoustic impedance is the product of 

seismic velocity and density of the layer medium. For instance, an interface between layers with 

a large velocity contrast and similar density will produce a strong reflection; if the velocity of 

the lower layer is less than that of the upper then the reflection coefficient will be negative and 

the refraction will be towards the normal. 

Accurate determinations of velocity values are essential to calculate the depth, dip, and 

horizontal location of sub-surface reflectors and refractors and to ascertain the nature of the 

rocks, sediments and interstitial fluids from velocity measurements (Sheriff and Geldart, 1995). 

As shown by equation 3.1 P-wave velocity in an homogenous elastic solid is a function of the 

elastic constants and density. Although lithology is the most obvious factor, porosity is the 

single most important component determining velocity; density, age, depth of burial, 

cementation and the composition of the interstitial fluid also influence velocity (Sheriff and 
Geldart, 1995). The large velocity ranges exhibited by most rocks and sediments consequently 
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mean that seismic velocity alone does not provide an adequate basis for distinguishing lithology. 

However, in the case of sedimentary rocks a general rule can be applied; high velocities 

generally indicate carbonates, low-velocities are characteristic of sandstones and shales whereas 

intermediate velocities can indicate either (Sheriff and Geldart, 1995). As unconsolidated 

materials generally exhibit distinctly lower seismic velocities than lithified rocks. Although, 

some sediments and rocks have similar seismic velocities, this property can still be used to 

distinguish between lithified and non-lithified materials (Telford et al., 1990). For instance, till 

and shale have similar compressional wave velocities but exhibit very different shear wave 

velocities (Davis and Bennell, 1988). Where compressional wave velocities do not distinguish 

between rocks and sediments, shear waves can be used to resolve the problem and establish the 

near surface velocity structure. 

Seismic Refraction surveying 

Background 

Refraction surveying utilises waves which have been refracted at the critical angle (6, ) of 

incidence (Figure 3.4). When a P-wave strikes an interface between two layers at 6, it is 

critically refracted along the boundary and travels parallel to the refractor in the lower medium. 

In doing so the refracted wave generates oscillatory motion immediately below the refracting 

horizon which causes the upper media of velocity V1 to move in phase with the lower media of 

velocity VZ; this disturbance travels along the interface at the velocity of the lower media (Figure 

3.4). Huygens principle suggests that oscillatory motion along the interface generates a 

headwave (plane wave) within the upper media which propagates back to the surface at ©, 

(relative to the normal) and is transmitted at the upper layer velocity (V1). 

Critical refraction at an interface only occurs where there is a layer increase in velocity with 
depth and is governed by Snell's Law: 

sin 8, = 
VV 

(3.5) 
2 
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where Oc is the critical angle of incidence, Vl is the seismic velocity within the upper media and 

V2 is the seismic velocity within the lower media. 

At and beyond a critical distance away from the source it is quicker for the seismic energy to 

travel down to the first acoustic impedance interface, along the refracted raypath and back to the 

surface via the headwave, than it is to travel directly through the upper media at lower V1 

velocity (Figure 3.4). Refractors are thus observed only at offsets greater than twice the depth 

to the refractor (Telford et al., 1990). 

The interpretation of seismic refraction data is based upon 'first arrivals' picked from a 

seismograph - the latter permitting an accurate evaluation of travel-times. These data are plotted 

on a time-distance graph which can be used to determine the number of layers, their apparent 

velocities, shot terms and geophone terms. To establish the sub-surface geometry refraction lines 

are generally reversed and the principle of reciprocity is utilised i. e. the travel time from a source 

at point A to a receiver at point B (tr) is the same as that from a source at point B to a receiver 

at point A (Figure 3.5). If the reciprocal times do not match then the seismic pulses, generated 

in the normal and reversed directions, must have travelled along different raypaths. 

Because of the distinct contrast in velocity between unconsolidated sediment and lithified rock 

mentioned above, seismic refraction techniques are particularly suited to evaluating the depth 

of overburden above bedrock. However, one chief control on the quality of the interpretation of 

refraction data in general is the definition of the near surface velocity (V). Errors in establishing 

an accurate value for V1 directly transfer to errors in depth estimates. In unconsolidated 

sediments the near surface layer maybe unsaturated and can consequently exhibit seismic 

velocities lower than the velocity through water (1500 m/sec) since the bulk modulus may reduce 

drastically under such circumstances (refer to equation 3.1). This aerated low velocity layer 

(LVL) can absorb a large proportion of the seismic energy and has a disproportionally large 

affect on, travel-times. Over-estimating the LVL velocity can introduce errors in the subsequent 

determination of refractor depths. It is therefore important to use a geophone spacing which can 

accurately define the near surface velocity and any subsequent increase in velocity with depth 

through the saturated overburden. Because this technique depends upon critical refraction it 

should only be used at sites which exhibit an increase in seismic velocity with depth. Layers 

which exhibit decreases in velocity with depth are not accommodated in the critical refraction 
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models and their existence cannot be established from analysis of the first arrival data. As such, 

any LVL in the vertical sequence may give rise to substantial errors in depth to bedrock 

calculations. A further complication arises where refracted energy from 'thin' layers which 

exhibit a small velocity contrast to the underlying strata within a vertical sequence may become 

'hidden' amongst refractors from lower layers. Although, hidden layers can introduce additional 

errors in the analysis of refraction data, they can often be identified in seismic reflection surveys. 

Seismic refraction techniques were applied in this study to investigate the sub-surface velocity 

structure and to map the distribution of horizons beneath West Marsh, East Marsh and the 

Pendine Burrows. 

Refraction surveying data acquisition and position fixing 

12 & 24 multi-channel Atlas Copco ABEM Teraloc Seismic System (Mark 3) were used in this 

study to record and view seismic refraction data. A 13 take-out (120 metre long) geophone cable 

and an external trigger were connected to the seismograph. The trigger geophone was placed at 

the shot point and the first geophone was connected to the second take-out, whose offset 

depended on the total spread length. A 14 lb sledge hammer and a metal plate were used as the 

seismic source, and the data were recorded into 12 channels. The line was reversed by placing 

the source and trigger at the opposite end of the spread, disconnecting the geophone from that 

end and then reconnecting it to the first take-out, which was positioned at the previous shot point. 

Although the strategy did vary, generally at any one site data were collected from a 120 metre 

spread, and then from a 24 metre line. This was done to calculate the thickness and velocity of 

any near surface low velocity layer, which is accounted for when interpreting the longer spread. 

Due to constraints imposed by the availability of suitable seismic sources and the near surface 

velocity structure the maximum refraction spread length was limited to 120 metres, because 

when greater offsets were attempted seismic signals could not be resolved from the ambient 

'noise' due to severe energy attenuation. Therefore, depending upon the sub-surface geometry 

and velocity structure, the maximum penetration was approximately 50 metres. 
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The line positions were obtained by taking bearings from prominent landmarks and by measuring 

from the shot points to field boundaries. The refraction lines could then be accurately marked 

onto a base map with an error of less than two metres. 

Geophysical and geological interpretation 

Multiple dipping layers were encountered at the majority of sites, with 3 or 4 layers of differing 

velocity. This, coupled with insufficient overlap of corresponding refractors, on the reversed 

time-distance graphs, limited the type of analysis which could be applied to the data i. e. the data 

could not be processed using the Generalised Reciprocal Method (Palmer, 1980). The depths 

to the refractors, beneath the shot points, and their relevant velocities were calculated assuming 

a plane layer forward model (Appendix 3.1). 

Seismic reflection surveying 

Background 

The seismic reflection method utilizes arrivals of energy that vary systematically from trace to 

trace, believed to represent energy reflected from sub-surface acoustic impedance interfaces 

(Sheriff and Geldart, 1995). The arrival travel times for reflection events are measured for 

various geophone groups, from which the location and geometry of the sub-surface interfaces 

can be calculated. Seismic reflection sections are often referred to as nonnal incidence sections 

and an important aspect of their geometry is the displacement of a reflection point (which 

corresponds to a data point) along the traverse. This dynamic shift or normal moveout (NMO) 

is defined as the difference between a recorded reflection time, for a source-receiver pair, and 

the corresponding normal incidence reflection time at the midpoint between the source and 

receiver. 

For the simplest case when a plane horizontal reflector is overlain by a homogenous medium of 

constant velocity (Figure 3.5), the travel-time between a source and receiver is described by: 

t=2 
h2+ (X/2)2 

3.6 
V 
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where x is the source-receiver offset, t is the travel time, v is the seismic velocity and h is the 

depth to the reflector. At normal incidence the travel time (to) would be to = 21,1v, and is often 

termed two way travel time. The increase in travel-time from to with offset effectively defines 

the NMO, and can be simplified as: 

C2 
t2 = t02 +X3.7 

v 

The affect of NMO causes travel times, for a shot and geophone array, produce a hyperbolic 

curve when plotted on a time distance graph (Figure 3.6). 

Extending this model to n horizontal layers, of differing thickness and velocity, the equation 
becomes: 

2 
t2= t02 +2+ c1x4 + c2x6 +... 3.8 

V 
rms 

where v2t, »S 
is the root-mean-square velocity and ci is a function of the thickness and velocity of 

the n layers. In the case of a dipping reflector the affect of NMO is the same, but the apparent 

velocity is altered by: 

t2= t02 + 2a / v2 3.10 

where a is the component of dip. 

Multi-channel reflection seismics 

In multi-channel data acquisition, a series of source and receiver offsets are combined to increase 

the signal to noise ratio by stacking individual traces with the same subsurface common mid- 

point (Figure 3.7). When processing the data, traces contained within reflection shot records are 

sorted into common mid-points (CMP), using the source and receiver positions, and prior to 

stacking, the individual traces within a CMP-gather are corrected for normal moveout. This 

results in a series of zero-offset traces which can be stacked to produce a final time section. As 

well as improving the signal-to-noise ratio, stacking partly attenuates multiple energy produced 
by interlayer reverberations. The NMO corrections, made when stacking CMP gathers, provides 
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information on the velocity structure which can be used to convert two-way travel time into 
depth. The final stacked output represents a zero-offset section, which may be taken to 

approximate the geological structure. 

Seismic methods have been applied mainly in the exploration of oil and gas, but with the 
development of new improved seismic sources giving improved penetration and/or resolution 
(Doornebal and Helbig, 1983) multi-channel data acquisition techniques have been adapted to 

suit a wide range of land based investigations (Bredewout and Goulty, 1986; Knapp and 
Steeples, 1988; Jongerius and Helbig, 1988; Brabham and McDonald, 1992; Miller et al., 1992; 

Miller et al., 1995; Jeng, 1995). To conduct a successful survey, detailed consideration must be 

given to the acquisition system which consists of a seismic source, geophones, geophone cables, 

amplifiers/filters (which condition the signal), analogue to digital converters and the data storage 
device (seismograph). For instance, high frequency geophones are also usually used for high 

resolution shallow reflection work. Furthermore, Miller et al. (1995) conclude that in situations 

where the surface materials are composed of fine grained saturated sediment, down hole sources 

work extremely well whereas if the surface is hard, weight drop sources should be used. The 

selection of a suitable source depends upon the near surface conditions (Miller et al., 1995) and 
the use of an unsuitable source can result in poor data quality. 

Shallow seismic investigations are particularly suited to in intertidal environments for a number 

of reasons. Firstly, as the near surface sediments are generally saturated the majority of the 

seismic energy is allowed to penetrate into the subsurface rather than being absorbed or 
internally reflected within a near surface low velocity layer. Secondly, the seismometers 
(geophones) can be placed beneath the surface to improve ground coupling and reduce ambient 

environmental noise. Furthermore, as beaches are often easily accessed, the logistical problems 

encountered when surveying on land are generally avoided. 

Although shallow seismic investigations are commonly applied to coastal engineering problems 
their application in the analysis of Quaternary environments is relatively limited until recently, 
but is rapidly increasing. High-resolution seismic profiling is applied in this study to investigate 

the sub-surface geometry of reflectors beneath the Pendine Sands to improve models of the 

subsurface lithology produced by refraction analysis within the burrows and the back-barrier 

area. 
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Seismic reflection data acquisition and position fixing 

Data were acquired using 12 & 24 channel ABEM Teraloc Seismic System, 24 geophones, two 

12 channel geophone cables, a Geostuff (Model RS-48/24) Rollalong Switch, together with a 14 

lb sledge hammer and steel plate. A refraction traverse was used to establish the optimal 

reflection geometry i. e. a suitable geophone spacing and shot offset. Once the two cables were 
laid out, and the geophones connected, the cables were attached to the rollalong switch. The 

switch was then connected to the Teraloc and the trigger geophone was placed at the shot point. 
Once five shots were recorded the shot point and switch were advanced and the process was 

repeated. When the shot point had advanced twelve times the first cable was disconnected and 

reconnected to the end of the second cable. In doing so the reflection traverse advanced across 
the beach surface. Using this common mid-point shooting technique 6-fold coverage was 

achieved i. e. a maximum of six traces shared the same CMP. The raw data were recorded using 

zero-delay over record lengths of 100 & 200 milliseconds, gain was applied and where 

appropriate the signal was passed through bandpass filters (10-600 dB). 

On the Pendine Sands the position fixing was done by surveying near prominent landmarks and 
by taking a number bearings. Using these two methods the positions of the reflection lines could 
be obtained with an accuracy greater than that provided by non-differential GPS. 

Data processing 

The data were processed using two packages, QSEIS and the UNIX based SierraSEIS system 
(Halliburton Company, Precision Software Solutions). QSEIS was used initially to process the 

data because at that time there was no available software to convert the Teraloc files to a SEGY 

format suitable for SierraSEIS. A Basic program was developed to convert the Teraloc files to 
OYO format so the data could be processed using QSEIS. Due to the lack of sophistication of 
the software data processing was very cumbersome and the types of velocity analysis, available 
to establish the velocity structure prior to stacking were very limited. It was for this reason that 

when the Teraloc files could be converted to SEGY format the majority of the reflection data 

from Pendine Sands was reprocessed using Sierra SEIS. 
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Figures 3.8a and 3.8b summarise the processing routines used to read in the SEG-Y data from 

disk into SierraSEIS and edit, mute and filter traces. Figure 3.8c displays the routine used to 

establish the velocity structure and stack the CMP gathers to produce a final stacked section. 

Geophysical and geological interpretation 

Using the final stacked sections, which represent zero-offset sections, the seismic reflectors were 

identified and their geological character was inferred using the semblance velocities and 

reflection coefficients. Refraction velocities obtained along the reflection traverses were used 

to corroborate the semblance velocities and tune the velocity structure used in the final stack. 
The conversion of the 'time section' to a'geological section' was done by multiplying the two- 

way travel times by a suitable velocity using a layer cake method (McQuillin et al., 1984); where 

the reflector geometry was more complex this conversion became more intricate. 

Marine reflection profiling 

Background 

In September 1993, a marine seismic survey was carried out within the upper and lower reaches 

of the Taf Estuary and across the confluence of the rivers Taf, Towy and Gwendraeth (Figure 

5.13). The whole area can be considered to be a'shallow water environment' (5-15 metres water 

depth) for seismic profiling purposes. Under such circumstances the traditional approach to 

seismic profiling, using a separate source and hydrophone streamer, would probably suffer from 

the effects of multiple masking (Trabant, 1984), where the real reflector signal is obscured by 

events which have undergone more than one reverberation cycle within the water column. In an 

attempt to minimise this problem an IKB-SEISTECTM profiling system, developed by IKB 

Technologies, was used since it has a quoted working water depth of less than 2 metres 

(Simpkin, 1993). 

In seismic reflection profiling acoustic signals transmitted by a surface towed seismic source, 

reflected from the sea-floor and underlying strata, are detected at the surface by a hydrophone 

or a series of hydrophones making-up a streamer. Hydrophones consist of piezo-electric acoustic 
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crystals which generate a small electric current in response to the pressure of the returned 

acoustic signals and ambient noise. Hydrophone cables contain a number of these crystals and 

when profiling the streamer needs to be set below the sea-surface to reduce noise from surface 

waves and cavitation. The buoyancy of the hydrophone cable has to be balanced to maintain the 

cable at a specific depth beneath the sea surface. 

The SEISTEC profiler combines a Boomer source and a In-line cone receiver (Simpkin, 1993), 

both of which are mounted onto a single catamaran which is floated and towed behind the vessel 

(Figure 3.9). The profiler minimises multiple masking by fixing the geometry of the source and 

receiver, in respect to one another and the sea surface, and by using an In-line cone system which 

focuses the return signal thus cutting out much of the multiple energy (Figure 3.10). It is by 

design that the SEISTEC system is able to successfully record reflection. data in shallow water 

environments 

Data acquisition, processing and position fixing 

The survey was conducted using the SEISTEC'sstandard components, power for the boomer 

source was provided by a 240 Volt generator through a Geopulse Power Supply (Model 5420A). 

The signal was processed using the IKB Dual Scope Signal Processor (Model SPA1) and the 

data were recorded on a Waverley Thermal Linescan Recorder (Model 3700). 

Voltage and frequency selection was accomplished by changing two plug-in configuration boards 

within the power supply. As the unit uses filters to suppress high current surges a smaller 

generator than usual is required to power the boomer; a second generator was used to run the 

SPA1 and Thermal Line Scan Recorder. An energy level of 175 Joules was used with the 

internal trigger mode and the data were recorded with a sweep time of 30 milliseconds. The 

SPA1 is a single channel analogue signal processor. When recording data from the Taf Estuary, 

a fixed gain of 20dB, a 6.3 kHz low pass filter and a1 kHz high pass filter were applied to the 

signal. 

Within the Taf estuary, the data were recorded between the fixed geographical points used to 

level the main channel. The survey vessel position was logged every four seconds using non- 
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differential GPS. The GPS positions were compared to the fixed geographical points within the 

estuary in order to asses the position fixing accuracy. 

Geophysical and geological interpretation 

Other than the primary signal processing described above no subsequent processing was carried 

out on the data. The seismic reflectors were identified on the records and then compared to 

refraction data acquired from the sand flats within the Taf Estuary. Further information used to 

aid the interpretation was obtained from exposures within the estuary, associated with reflectors 

approaching the sea-bed surface. Velocities, required to convert the two-way time data to a 

depth section, were obtained from the refraction data and the times through each layer were 

multiplied by a relevant velocity to yield depth. In doing so the depth to each reflector was 

determined in turn using a'layer cake' method (McQuillin et al., 1984). By combining seismic 

velocities and lithological 'ground truth' information, obtained from outcrop data, it became 

possible to make estimates as to the geological character of the reflectors and the relative 

thickness of Holocene sediments. 

6.1.6 Electrical resistivity surveying 

Background 

Electrical methods are based upon the application of an artificially produced current into the 

ground, whose flow is controlled predominantly by pore waters. Ohm's Law states that the 

current (I) transmitted is equal to the voltage (V) across the ground, divided by the resistance (R): 

I=V3.11 
R 

The resistivity (p) is the resistance of a unit cube to a current passing between opposite faces and 

is measured in ohm-metres. Resistance is therefore given by: 

R=pX3.12 
A 
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where x is the distance the current must travel and A is the cross-sectional area. Numerous arrays 

are used to make resistivity measurements and any specific value of resistivity, obtained using 

a particular electrode configuration on the surface, can be considered to be some form of 

'average' of the underlying medium. These values are referred to as apparent resistivities (pa). 

The Wenner and Schlumberger arrays are two commonly used electrode configurations which 

are favoured for 'depth sounding' (Telford et al., 1990). The Schlumberger array is an 

'expanding' electrode system which consists of two current and two potential electrodes (Figure 

3.11). When using this system both current electrodes are expanded outwards from an inner 

potential pair until the potential difference becomes too small to measure. The potential pair 

spacing is then increased and the current electrodes are further expanded. Each time the current 

electrodes are moved the resistance is measured. The apparent resistivities, calculated from the 

measured resistance and a geometric factor, are then plotted against the electrode separation on 

logarithmic paper. Although the depth to which a fraction of the current penetrates is in general 

increased by increasing the current electrode spacing, the lithology can have a profound affect 

upon current penetration into the ground (Telford et al., 1990). 

In a simple two layer case, the 'shape' of the resistivity electrode separation curve depends upon 

the resistivity contrast between the two layers and thickness of the upper layer. Resistivity 

curves are interpreted using a series of 'master curves', the selection of which depends upon a 

qualitative estimate of the number of layers present. As the direct interpretation of resistivity 

cures is a complex and sometimes subjective procedure, computer packages designed to process 

and model resistivity data are commonly used. 

Data acquisition 

Geopulse and ABEM terrameters were used, together with four electrodes and four cables, to 

conduct a series of Schlumberger depth-soundings behind the barrier. The maximum current 

base separation used in this study was restricted to 300 metres by the length of the cables 

connected to the current electrodes (150 metres). Further restrictions were imposed by field 

boundaries. At some sites a greater separation would have been desired. 
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Data processing and interpretation 

The data were processed using the PC-based package RESIXS-Plus. The apparent resistivities 

and corresponding electrode spacings were input into the together with an initial estimation of 

the number of layers, their relative thickness and resistivity. The computer makes a forward 

calculation to compute a synthetic sounding curve from the initiation ground model which can 

be compared to the original measured curve. The model can then be fine tuned to provide a 

better fit of the measured data by trial and error. Alternatively an iterative procedure can be used 

to provide a best fit model using a least squares method. 

Estimates of the geological character of the layers are inferred by comparing the modelled 

resistivities to published values of resistivity for common materials (Griffiths & King, 1981). 
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3.2 Laboratory procedures 

Heavy mineral analyses were used to investigate the sources of materials presently accumulating 

within the Taf Estuary. Samples, taken from cores recovered within the estuary and back-barrier 

area, are compared to sands from Carmarthen Bay and other potential sources in an attempt to 

elucidate spatial and temporal changes in the sedimentary dispersal patterns during the late 

Holocene. X-Ray Diffraction Analyses were used to determine whether there are any significant 

temporal or spatial changes in clay mineralogy, and to correlate these to similar changes in the 

composition of the heavy mineral assemblages. 

Environmental magnetic measurements were used to correlate cores recovered from the West 

Marsh and more detailed measurements undertaken on cores recovered from East Marsh were 

used to analyse variations in the magnetic mineral compositions of sedimentary units within the 

back-barrier complex. No attempt was made to trace sediment source using magnetic 

measurements; this analysis was conducted as it is a relatively rapid, nondestructive and 

inexpensive means of comparing a large number of samples. 

Foraminiferal analyses were used to identify back-barrier facies changes and to infer local 

relative sea-level tendencies within West and East Marshes. This information can be used to 

generate hypotheses which aim to describe the evolutionary history of the barrier complex and 

the mechanisms which cause those changes. The aim of conducting pollen analyses were two 

fold. First, to elucidate regional changes in vegetation for comparison with well dated regional 

pollen records. Second, to provide evidence for local ecological changes within West Marsh. 

The purpose of radiocarbon dating was to establish a chronostratigraphic framework for the 

studied sequences and provide a timescale over which the barrier complex developed; the 

sampling strategy was therefore designed to date the main phases of organic accumulation in 

West Marsh. Grain size analyses were used to determine the composition of the back-barrier and 

estuarine sediments, and provide supplementary evidence for the interpretation of heavy mineral 

assemblage data. 
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3.2.1 Heavy mineral analysis 

Introduction 

Assemblages of heavy minerals, which rarely constitute more than I% of a sediment, have been 

used for many years to analyse sedimentary sources and transport paths (Griffiths, 1967). The 

technique is based upon the assumption that every potential sedimentary source possesses its 

own unique assemblage of heavy minerals. The first step in the analysis is to search for a unique 

heavy mineral which ties the sediment to a unique source. Where this proves unsuccessful the 

emphasis is switched from unique minerals to unique assemblages reflected in the bulk 

mineralogy of the heavy fraction. However, to trace sedimentary dispersal patterns prior 

knowledge of both the potential sources and their heavy mineral compositions is required. 

Hydraulic relationships between light and heavy minerals 

An understanding of the processes which result in the transport and deposition of sand grains is 

necessary before useful interpretations can be made using heavy mineral data. The concept of 

hydraulic equivalence and the relationships between light and heavy minerals was first 

considered by Rubey (1933). He stated that 'whatever the conditions may have been which 

permitted the deposition of quartz grains of a certain size would also permit the deposition of 

magnetite grains (of a size) that had the same settling velocity'. Rubey used known settling 

velocity laws to calculate the grain diameter ratios of hydraulically equivalent minerals within 

a deposit; these ratios are inversely proportional to a power of the ratios of their densities. The 

theory therefore states that when two detrital minerals accompany each other, in a sediment or 

sedimentary rock, they must be hydraulically equivalent. 

Subsequent studies reveal that in most natural sands and sandstones light and heavy minerals are 

rarely hydraulically equivalent (Rittenhouse, 1943; Briggs, 1965; Lowright et al., 1972; 

Slingerland, 1977). Hydraulic inequivalence either results from differentially inherited mineral 

size restrictions within the source materials, or is caused by the differential transport of particular 

minerals within the sand fraction. 
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Rittenhouse (1943) and Briggs (1965) have both published data which supports the first 

hypothesis; however, Lowright et al. (1972) have shown that it is differential transport, not 

source restrictions, which result in the observed deviations from hydraulic equivalence in most 

natural sands. They examined the distribution and settling velocities of both light and heavy 

minerals in river, beach, dune, offshore sands and Pleistocene till near Presque Isle, Lake Erie. 

The results indicate that due to an 'equivalent range of heavy mineral sizes' within the tills no 

source availability problem existed for the larger heavies. Even so the largest and smallest heavy 

minerals, present within the source material, were absent from the Presque Isle beach or dune 

sands, subject to over 20 miles of river and longshore transport (Lowright et al., 1972). 

Lowright et al. (1972) conclude that'source influence' extends to the river mouth and that only 
five miles of longshore transport is required to selectively remove the smallest and largest heavy 

minerals. In this instance differential entrainment by longshore processes selectively sort the 

heavy minerals and result in hydraulically inequivalent sands. 

The differential entrainment theory was further extended by Slingerland (1977). He developed 

critical entrainment and critical suspension velocity equations to explain the effects of 

entrainment, with respect to settling velocities, on grains of differing density contained within 

the sand fraction. Using the critical equations, supported by experimental data, Slingerland 

(1977) constructed a four-fold classification of constant terminal settling velocity (CTSV) and 
in doing so placed boundaries on the hydraulic equivalent sizes of light and heavy minerals. He 

used a range of boundary Reynold's numbers (R*) and the ratio heavy mineral grain size to the 

bottom roughness grain size (d,, / BKS). If R* is less than five and dhBKS is roughly one then 

this combination will result in a heavy enriched well sorted medium sand deposit. Slingerland 

(1977) states that deviations from standard hydraulic equivalence (SHE) not only result from 

transport distance but are primarily controlled by hydraulic and boundary roughness conditions. 

Slingerland (1984) considered the role of hydraulic sorting in the origin of fluvial placers. He 

subdivided sorting into entrainment sorting and differential transport; the latter is influenced by 

entrainment as well as the motion and mean velocity of a grain already moving in the flow. 

Differential transport therefore includes both entrainment and suspension sorting. Slingerland 

concludes that heavy mineral enrichment, on any scale within streams, occurs in response to 

selective sorting by size and density due to differential entrainment, differential suspension, 
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differential bedload transport, and shear sorting or kinetic sieving. For instance heavy minerals 

are concentrated on the backs of mega ripples as larger and typically lighter grains are more 

readily entrained and transported than the smaller denser grains. 

Li and Komar (1992a) examined longshore grain sorting and beach placer formation, on beaches 

adjacent to the Columbia River. The results reveal a complex pattern of sorting which they 

interpreted at representing three superimposed levels of sorting. The first level of sorting 

involves the selection of which grains remain on the beaches as opposed to those which move 

offshore. Li and Komar argued that this process is controlled by particle settling velocities; 

particles with low settling rates, compared to turbulence velocities within the surf zone, are 

preferentially moved offshore. They also analysed the settling velocity distributions for the 

principle heavy minerals within beach sands and found an inverse relationship between the 

densities of individual minerals and their median diameters. 

Beyond 10km distance, from the mouth of the Columbia River, the median grain sizes and 

settling velocities decreased. Li and Komar suggest that after being delivered to the beach, from 

the Columbia River by settling velocities, the sediments undergo a second level of sorting during 

longshore transport and that settling velocities continue to be important to that sorting. The 

dependence on settling velocities suggests that longshore transport occurs as suspended load, 

possibly within the high energy beaker/surf zone. Li and Komar (1992a) also argued that as 

grain-settling velocities increase, in the longshore direction, differential grain settling plays a 

minimal role in concentrating heavy minerals close to the river mouth. They concluded that the 

sorting of individual minerals within placer deposits depends upon their densities and median 

diameters; the higher the density and smaller the diameter the more concentrated the mineral is 

within the placer. The mineral is then less likely to move longshore away from the river mouth 

(Li and Komar, 1992a). Superimposed on this is selective sorting due to selective entrainment 

and transport, during periods of beach erosion, which effectively modifies sorting due to 

differential settling velocities. Li and Komar (1992a) concluded that sorting by contrasting 

entrainment stresses and differential transport rates are the main cause of heavy mineral 

concentration close to the mouth of the Columbia River. 

Spatial variations in heavy minerals and patterns of sediment sorting along the Nile Delta exhibit 

a similar relationship (Frihy et al., 1995). Lower density and coarser sized minerals are 
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selectively entrained by waves and currents in areas of beach erosion are subsequently 

transported and deposited in zones of beach accretion. Conversely, higher density smaller sized 

minerals are concentrated in areas of beach erosion. Frihy et al. (1995) also discovered a 

distinctive pattern of cross-shore sorting in which heavy mineral concentrations are highest along 

the shoreline and progressively decrease offshore. They conclude that enhanced levels of high 

density minerals such as the opaques, rutile, zircon and monozite occur in coastal areas subject 

to erosion. 

Field measurements like those described are supported by both theoretical analyses and 

laboratory experiments. Li and Komar (1992b) developed a model for selective entrainment 

based upon flume experiments. The study examined selective transport using an artificial 

mixture of light and heavy minerals which have equivalent settling velocities, eliminating 

differential settling as a sorting mechanism. Their results reveal that pronounced sorting occurs 

as light minerals are preferentially entrained and transported, leaving behind a concentration of 

heavy minerals. Furthermore, experiments using a range of stresses indicate that as the 

magnitude of the flow increases the efficiency of mineral sorting and separation decreases. Li 

and Komar (1992b) concluded that relative grain size as well as mineral density are important 

factors which influence hydraulic sorting. For instance, as the heavy minerals typically have 

smaller grains sizes they have larger pivoting angles within the bed fabric and lower protrusion 

distances into the flow. The results clearly indicate that greater stresses are required to entrain 

these smaller dense grains into the flow (Li and Komar, 1992b). 

Selective sorting of grains by differential entrainment, differential transport and differential 

settling can significantly alter the heavy mineral composition of fluvial, estuarine, beach and 

dune sands. Care must therefore be taken when interpreting differences between samples, taken 

from within the same sedimentary dispersal system, as hydrodynamic sorting processes can mask 

all but the major changes in mineral composition. 

Sample strategy and pretreatment 

Material was sub-sampled from a series of short cores (1-4 metres), recovered from the 

saltmarshes within the Taf Estuary. Fifty grams of sediment were dispersed in sodium 
hexametaphosphate using a mechanical food mixer. The dispersant was then sieved through a 
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63µm sieve, and the material which passed through was subsequently used in the investigation 

of clay mineralogy (section 3.2.2 ). Samples were taken from sedimentary units which exhibited 

contrasting textural characteristics, as changes in grain size may reflect changing provenance. 

Heavy mineral separation 

Light and heavy minerals were fractionated using the method described by Jenkins (1964). 

Approximately 5 grams of the sand size fraction was placed in a tapered centrifuge tube (M. S. E. 

69386) and then dispersed in tetrabromoethane, whose density is 2.95 g/cm. The sample was 

then centrifuged for ten minutes at approximately 1300 rpm; faster rates shatter the centrifuge 

tubes. The two fractions were then redispersed (using a glass rod) and recentrifuged so as to 

increase the separation efficiency. Jenkins (1964) indicates that three successive periods of 

centrifugation recovers up to 97% of the heavy mineral fraction. 

Once the centrifugation was complete the two density fractions were separated by the 

introduction of a polythene plunger designed to isolate the heavy minerals at the bottom of the 

tapered tube(Figure 3.12). The light fraction was then redispersed and filtered under suction 

through hardened filter paper (Whatman 541). The remaining light minerals and 

tetrabromoethane were flushed out of the tube and onto the filter paper. The light fraction was 

then thoroughly washed under suction, using acetone, to remove any remaining 

tetrabromoethane. 

The heavy fraction was dispersed in acetone and the diluted tetrabromoethane was decanted. 

The minerals were then pipetted onto a watch glass, washed in acetone and placed in a drying 

cabinet. The dry heavy minerals were weighed, to quantify their total percentage, and split by 

coning and quartering. In most cases a fraction of the heavy mineral fraction was mounted onto 

a glass slide using Epoxy Resin (Logitech 2), which has the same refractive index as Canada 

Balsam (1.54) 

Heavy mineral identification 

The analysis was accomplished in transmitted light using a Swift Polarising Microscope. 

Minerals were counted using the Ribbon method whereby all the minerals, along equally spaced 
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transects, were identified. Optical properties such as refractive index, optical orientation, 

extinction angles, birefringence colours, 2V, pleochroism and the mineral colour were used in 

the identification of the heavy mineral fraction. Minerals were also compared to a reference 

collection in University of Wales Bangor and to examples given in the literature (Stuart, 1924; 

Griffiths, 1939; Troger, 1956; Milner, 1962; Jenkins, 1964; Barrie, 1978,1980; Gribble, 1988; 

Deer et al., 1992). 

Further information was obtained using an Energy Dispersive X-Ray Spectrometer (EDX). The 

heavy fraction was immersed in Methyl Salicylate (R. I. =1.54) and specific minerals were 

pipetted and mounted onto an SEM stub. The minerals and stub were coated in a thin layer of 

carbon, as it provides clear images but does not hinder mineral identification. 

When primary electrons in an SEM ionize the atoms in a mineral, the atoms eject electrons from 

their inner shells (secondary electrons), and to regain stability electrons from the outer shells 

enter the vacancies. These electron transitions release specific amounts of energy in the form 

of X-rays (Figure 3.13 ), whose energy levels depend upon the difference between the electron 

shells, differences in electron spin and the number of protons in the nucleus (Welton, 1984). 

When using the EDX, X-rays emitted from an isolated area of a particular mineral are separated 

in a multichannel pulse analyser. The major elements (>I%) are represented by peaks, whose 

energy levels (KeV) are diagnostic of that element. A semiquantitative estimation of each 

elements concentration can be obtained by calculating the integral of the KeV window (energy 

range). 

Data Analysis 

The heavy mineral assemblages obtained from saltmarsh and back-barrier sediments were 

compared to samples taken from probable source materials using Principle Components 

Analysis. The advantage of using PCA, which is a preliminary form of factor analysis, is that 

complex multivariate data sets can be reduced and summarised by the major components of 

variance extracted from the correlation matrix (Kline, 1994). In plotting the correlation 

coefficients, generated by the two major principle components of variance, the samples are 

displayed on scatter graph from which the similarity of samples can be assessed. PCA analysis 
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does not directly correlate samples but compares them to a particular 'factor' within the data set 

(Kline, 1994). 

3.2.2 X-Ray Diffraction Procedures 

Introduction 

The minerals contained within the clay fraction of samples taken from core 006,103 and the 

back-barrier deposits (P1) were analysed using X-ray Diffraction Analysis (XRDA). These 

samples are compared to surface sediments taken from the river bank at St Clears, Ginst Marsh 

and Carmarthen Bay. The analysis is qualitative at best and has been used to indicate the 

composition and relative proportion of clay minerals within a small number of samples. No 

attempt is made to either calculate the concentration of particular minerals or to correlate the 

assemblages contained within different samples. 

Sample preparation and strategy 

Fifty grams of material was dispersed in sodium hexametaphosphate and distilled water, using 

a mechanical food mixer. The material was washed into 1 litre measuring cylinder, shaken, and 
left for 16 hours. The clay fraction, contained within the top 20 cm (Stokes Law), was then 

syphoned off for subsequent analysis. 

The clay fraction was divided in two and saturated in either a 0.5 molar solution of magnesium 

acetate (MgAc), or a 1.0 molar solution of potassium chloride (KCl). The saturated clays were 

then centrifuged and washed in distilled water, to remove excess Cl and Ac cations. The clay 

sludge was resuspended in a small volume of distilled water and pipetted onto a glass slide 

producing an orientated mount. Orientated mounts greatly enhance the intensities of basal 

reflections as the clay minerals are orientated parallel to the slide surface. 

Expandable clays, such as smectite and vermiculite, as well as interstratified minerals, contain 

numerous cations whose properties vary. In saturating the samples in MgAc and KCI, the 
cations -are replaced by either Ac or Cl making those minerals more easily identifiable. 
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Additional information is obtained by saturating MgAc mounts in ethylene glycol and by heating 

KCl mounts to 300°C and 550°C. For instance, smectites swell when saturated in ethylene 

glycol and kaolinite and vermiculite collapse when heated to 300°C. 

Two samples taken from cores recovered within the Taf Estuary were compared to sediments 

from the barrier complex, a sample taken from Carmarthen Bay and surface samples taken from 

the contemporary marshes and river bank. 

Data Analysis 

Clay mineral analysis is generally a qualitative technique whereby the relative concentration of 

a specific mineral, within an assemblage, may be estimated by approximating the height of the 

diffraction maxima. Estimates of sediment provenance were inferred by comparing the back- 

barrier and saltmarsh mineralogy to probable sources and catchment geology. 

3.2.3 Geomagnetic measurements 

Introduction 

The magnetic properties of numerous materials are presently used by scientists world wide to 

investigate a whole series of environmental problems. Environmental magnetic measurements 

per se are made using the techniques developed by palaeomagnetists to analyse the properties 

of remanence carrying magnetic minerals in rocks and sediments. Unlike palaeomagnetic 

studies, which measure the natural magnetic properties of materials, geomagnetic studies 

measure a series of laboratory induced magnetic properties which relate to the composition of 

the magnetic mineral assemblage within the sediment i. e the size and mineralogy of the magnetic 

component. Environmental magnetic studies are generally applied to those systems in which 

magnetic grains have undergone transport, deposition or transformation in response to processes 

within the atmosphere, lithosphere and hydrosphere. A comprehensive guide to environmental 

geomagnetics is provided by Thompson and Oldfield (1986) and recent publications which 

review the potential applications of this field include Oldfield (1991) and Verosub and Roberts 

(1995). 
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Magnetic minerals in sedimentary environments 

Large multidomain grains of magnetite are generally formed in the earth's interior by slow 

cooling, whereas smaller single-domain, pseudo-single-domain and superparamagnetic grains 

are often produced by rapid cooling at the earth's surface or by surface processes such as erosion, 

weathering, chemical alteration, biogenesis or pedogenesis (Verosub and Roberts, 1995). 

Magnetic minerals, contained within a source material, may undergo chemical transformations 

in response to chemical weathering and soil formation. These processes can either be 

constructive (convert paramagnetic iron to ferri- or antiferrimagnetic forms), transformative or 

destructive (feni- or antiferrimagnetic to paramagnetic compounds), leading to significant 

changes in the magnetic remanent properties of these materials. For instance, Maher and Taylor 

(1988) describe the inorganic formation of ultra fine-grained magnetite in some UK soils; they 

suggest that soil derived magnetite may contribute to the remanent magnetism of sediments and 

can be used to indicate specific erosional events. 

Physical weathering, erosion and transport by water, wind or ice can cause changes in the size 

and shape of the magnetic minerals. This may lead to the formation of pseudo-single-domain 

or small single-domain grains from larger multidomain minerals (Thompson and Oldfield, 1986). 

As superparamagnetic (0.001-0.01 µm), small single-domain (0.02- 0.05 Nm), pseudo-single- 

domain (0.08-0.5 gm) and multidomain (> 1 µm) grains respond very differently to the extrinsic 

magnetic properties, changes in the shape and size of magnetic minerals during physical 

weathering and transport can lead to the magnetic properties of a sediment being different to the 

source from which they were derived. 

During sedimentation, sorting processes alter the composition of the magnetic and non-magnetic 

components within a sediment. The deposition of magnetic grains with an equivalent spherical 

diameter >10pm is primarily controlled by mechanical and gravitational forces rather than by 

magnetic forces (Ellwood, 1979). As these grains are included in the opaque component of the 

heavy mineral fraction, the distribution of larger multidomain grains may be influenced by 

differential entrainment, differential transport and differential settling within the depositional 

basin. Consequently, the distribution of larger magnetic grains in coastal sands and silts may be 

significantly affected by selective sorting processes. Deposition in coastal environments is 

extremely complex and there is a need to differentiate between magnetic variations caused by 
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changing sedimentary dispersal patterns and those resulting from secondary physical processes 

within the depositional environment. 

Postdepositional diagenetic processes can result in the formation of authigenic magnetic minerals 

(Thompson and Oldfield, 1986; Oldfield, 1991; Verosub and Roberts, 1995). Fine grained 

sediments, buried under anoxic/sulphate reducing conditions, often contain trace amounts of iron 

sulphates. Intermediate ferrimagnetic iron sulphide minerals, such as pyrrhotite (FeS) and 

greigite (Fe3S4) which lead to the formation of paramagnetic pyrite, through sulphurisation 

reactions, are extremely magnetic and the preservation of these phases within a sediment can 

significantly affect the magnetic properties of that deposit. 

Recent studies have revealed that magnetotactic bacteria are an additional source of authigenic 

magnetic phases in sedimentary environments (Farina et al., 1990; Mann et al., 1990; Bazylinski 

et al., 1993). Magnetotactic bacteria, such as Coccus and prokaryotes, contain magnetosome 

chains of either magnetite or greigite, which they use to orientate and navigate along 

geomagnetic field lines (Mann et al., 1990). These bacteria are able to control the mineralisation 

of iron sulphide and magnetite, in contrast to the biologically mediated processes which result 

in sulphate reducing bacteria generating high concentrations of H2S which subsequently 

combines with iron to form greigite, pyrrhotite and pyrite (Mann et al., 1990). Claims that fossil 

magnetosomes can significantly influence the remanent characteristics of sediments has sparked 

a debate between the 'detrital' and 'biomagnetic' schools of thought (Verosub and Roberts, 1995). 

Biomagnetic contributions to magnetic remanence in sediments cannot be ignored and recent 

studies have suggested criteria which can be used to distinguish between biogenic magnetite and 

other fine grained ferrimagnets in sediments (Oldfield, 1994). 

Sampling 

Material was sub-sampled at suitable levels from the cores recovered at sites 18,20,21,22,23 

and 24. Ten grams of wet sediment was dried at 40°C over night, disaggregated, and then tightly 

packed into 10 ml styrene sample holders using plastic film. 
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Magnetic measurements 

All the measurements made in this study were done using the equipment in the Department of 

Geography at Liverpool University. Whole core susceptibility (x) measurements were obtained 

for the cores recovered at sites 4,7,9,11 and 12. Susceptibility was measured at 2cm intervals 

using a Bartington Susceptibility meter connected to a PC. These measurements were designed 

to provide preliminary data for the correlation of sedimentary units. 

Five magnetic properties were measured using the samples taken from sites 18,20,21,22,23 

and 24: 

" Low frequency susceptibility (xLF°`x); 

" High frequency susceptibility ( XIT ); 

" Anhysteretic Remanent Magnetisation (ARM); 

" Isothermal Remanent Magnetisation (IRM) at 1000 mT (SIRM); 

" Isothermal Remanent Magnetisation using successively increasing reverse fields of -20 

mT, -30 mT, -40 mT, -50 mT, -100 mT and -300 mT. 

The remanence measurements were made using a portable Minispin slow speed spinner Fluxgate 

Magnetometer. ARM remanence were grown in a modified Molspin AF demagnetiser (cf. 

Oldfield & Yu, 1994) and IRM remanence were grown using a Molspin Pulse Magnetizer. 

Processing and analysis 

From the magnetic measurements a series of mass-specific magnetic properties were calculated: 

" susceptibility (XLF=X) (m3kg"); 

" frequency dependent susceptibility (Xfd% )(m3kg") 1; 

" ARM (Am2kg''); 

" susceptibility of ARM (XARM ) (m3kg"); 

" SIRM (Am2kg''); 

" 'Soft' IRM and 'Hard' IRM as well as other ratios and percentages (cf. Oldfield & Yu, 

1994). 
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These mass-specific magnetic properties were compared to information summarized in 

Thompson and Oldfield (1986), Thompson (1986), Maher (1988), Maher and Taylor (1989), 

Oldfield (1991), Oldfield (1994) and Oldfeld and Yu (1994). This comparison formed the basis 

of the interpretation from which inferences regarding magnetic provenance and the correlation 

of sedimentary were made. 

3.2.4 Foraminiferal analysis 

Introduction 

Foraminifera are unicellular protists which construct a hard test to enclose and protect soft 

cytoplasm from predators and unfavourable environmental conditions (Murray, 1979,1991). 

The test may also serve as a receptacle for excreted matter, aid in reproduction or provide 

buoyancy. The test is built incrementally, each addition consisting of a new chamber covering 

the preceding aperture, to allow cytoplasmic continuity through the test. Since there are limited 

ways in which this can be achieved many unrelated genera have repeated these arrangements 

through geological time. Chamber arrangements can be described as uniserial, biserial or 

triserial and the tests can also posses planispiral, trochospiral, or streptospiral coiling, as well 

as discrete or enveloping chambers (Loeblich & Tappan, 1988). 

The composition of modem foraminiferal tests are sub-divided into two main groups, 

agglutinated and calcareous. Agglutinated tests are composed of detrital grains, usually quartz, 

glued together with an organic cement which often contains iron (Murray, 1979). When 

constructing a new chamber an agglutinating foraminifera creates a pile of grains at the entrance 

to its test from which it selects suitable sized particles for building using its pseudopodia. 

Calcareous tests are composed of calcite, secreted by the foraminifera, which is either arranged 

in a random fashion or in an ordered radial pattern; these two wall structures are described as 

porcelaneous and hyaline, respectively (Murray, 1979). 

The classification of foraminifera is constantly being revised, as new genera are discovered. 

Taxonomy is based upon characteristics such as test composition, mineralogy, ultrastructure, and 

78 



Chapter 3 Methods 

the method of test construction. It is these features of test morphology which delimit the 12 

suborders, 74 superfamilies, 296 families, and 302 subfamilies in which foraminifera arc 

classified (Loeblich & Tappan, 1988). For instance, agglutinated tests are classified in the 

suborder Textulariina whereas porcelaneous and hyaline foraminifera arc classified into the 

suborders Miliiolina and Rotaliina respectively. 

To survive in a variety of dominantly marine environments, benthic foraminifera have developed 

contrasting feeding strategies. Individuals may be herbivores, actively or passively feeding on 

algae; carnivores, capturing small arthropods by spreading their pseudopodia nets; passive 

suspension feeders, detritivores living on fine grained sediments, or omnivores (Murray, 1991). 

In addition to the variety of substrates (rocks, shells, seaweeds or soft unconsolidated sediment) 

inhabited by foraminifera, individual species may have specific ecological requirements which 

are reflected in their mode of life (Murray, 1991). Foraminifera may be described as epifaunal, 

living on or above the sediment surface; semi-infaunal, living partly below and above the 

sediment surface; or infaunal, living below the sediment surface. These three ecological levels 

are further subdivided into sessile, clinging and free living to describe whether individual forams 

are permanently attached to the substrate, semi-permanently attached or free to move around. 

Test architecture is affected by the ecological requirements of specific foraminifera and 

environmental controls exerted upon the individual. For example, Cibicides is an 

epifaunal/sessile foram which constructs a test with low broad trochospiral architecture whereas 

Bulimina is infaunal/free living and constructs a test with high upright trochospiral architecture 

(Murray, 1991). The low streamline form developed by Cibicides is designed to reduce frictional 

drag in the high energy environments they inhabit. 

Many temperate tidal marshes, which develop in the upper half of the intertidal zone, display 

strong vertical ecological zonation that reflects the different tolerances of organisms to strong 

environmental gradients across the marsh surfaces. These gradients are controlled primarily by 

elevation relative to mean sea-level, salinity and proximity to tidal creeks (Scott and Leckie, 

1990; Patterson, 1990; Jennings and Nelson, 1992; Jonasson and Patterson, 1992; Williams, 

1994; Gehrels, 1994 and Jennings et al., 1995). 
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Because foraminifera are vertically zoned within temperate marshes, and arc sensitive to small 

changes in relative sea-level, analysis of fossil assemblages can be used to reconstruct former 

Holocene sea-levels (Scott and Medioli, 1978,1986). 

Analysis of fossil assemblages contained within former intertidal sediments can also be used to 

identify the depositional environments. For instance, Jonasson and Patterson (1992) examined 
foraminiferal biofacies in down-core samples from the Fraser Delta. Although fewer biofacics 

could be resolved in the palaeomarsh sediments than on the contemporary marsh surface, in 

response to differential preservation of tests, foraminiferal biofacies were used to reconstruct 

palaeoenvironments in this area. 

Taphonomic considerations 

Modern benthic foraminifera populations are described in terms of the living, dead or total 

assemblages. As differences exist in the composition of the living and dead populations (cf. 

Murray, 1991), the total assemblage is often examined as it is believed that a combination of the 

two fractions is more accurate when using modern analogues to interpret the fossil record (Scott 

& Medioli, 1980). However, the relative contribution from the living and dead assemblage must 
be considered before meaningful conclusions can be made from examining the total assemblage. 
For instance, in areas of rapid sedimentation the living and dead assemblage may be similar and 

as a result they will both be represented in the total assemblage. However, in areas of slow 

sedimentation the living and dead assemblages are likely to be dissimilar; their similarity to the 

total assemblage will depend upon the relative contribution from each population (Murray, 

1991). 

Through time total population ultimately converts to the fossil assemblage which is modified by 

a series of taphonomic processes. The total assemblage is in a state permanent dynamic flux and 

represents a composite of the processes active at the time of its formation; as tests grow and 
form, others are moved into or out of the environment, or are destroyed by dissolution. The 

faunal composition of the fossil assemblages may be further altered during diagenesis which 

effectively reduces species diversity and specimen numbers. The composition of the fossil 

assemblage may be further modified by the introduction of tests from living infaunal species. 
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Smith (1987) uses three examples to describe distinctly different fossilization potentials in the 

transition from living to fossil assemblages. He concludes that taphonomic changes are related 

to test composition and structure. Loosely cemented agglutinated tests have little or no 

fossilization potential whereas well cemented tests are much more likely to be preserved in the 

fossil assemblage. In calcareous specimens the fossilization potential varies between perforate 

and imperforate forms, and between tests with or without organic linings. For example, 
individuals with thinner walls and larger pores are more susceptible to dissolution due to their 

greater surface area (Smith, 1987). 

Boltovskoy and Totah (1992) conducted a study to investigate the reaction of foraminiferal 

species to dissolution and developed an 'index of preservation' which describes the preservation 

potential of a number of species. Although the preservation potential of benthic tests is generally 

greater than planktonic tests it varies considerably. For instance, after being immersed in a 

container filled with distilled buffered water (pH 63) for 50 days only 25% of an Elphidium 

excavatum test was still intact. In contrast it took 130 days for an Ammonia beccarii specimen 

to degrade into a similar condition (Boltovskoy and Totah, 1992). 

The loss of specific taxa upon death and differences in species diversity between live, dead and 

total populations may significantly affect the composition of the fossil assemblage; species 

diversity and specimen numbers are generally considered to decrease in the fossil assemblage 
(Smith, 1987). 

Postmortem transport can also significantly affect the fossilization potential of the living 

population. Although the dead assemblage at a particular locale may have a low fossilization 

potential in its living site it may be a significant component of the total or fossil assemblage at 

an adjacent site. For instance, living and dead benthic and planktonic specimens may be swept 
from the continental shelf during high energy storms and deposited in adjacent environments. 

Allochthonous depletion or enrichment may play a significant role in the ultimate generation of 

the fossil assemblage at particular site. For example, in the Bristol Channel powerful tidal 

currents and storms can transport foraminiferal tests from the outer shelf to low energy marginal 

marine environments. Estuaries in southwestern Britain receive tests ranging in size from 100- 

Al 



Chapter 3 Methods 

150 µm, transported in suspension from the shelf, and the proportion of exotic tests in modern 

estuarine sediments can vary between 30 to 70% (Murray & Hawkins, 1976). 

The depth to which infaunal foraminifera penetrate is controlled primarily by the sediment grain 

size, the extent of oxic sediments beneath the substrate surface and the availability of food 

(Murray, 1991). Foraminiferal production in the near surface sediments may vary and 
differences between the surface and infaunal populations depends upon whether or not the 

foraminifera exhibit distinct vertical microhabitat zonation. The most active taphonomic zone 
is located within the upper few centimetres of the sediment column (Loubere et al., 1993). 

Sediment mixing controls both the sediment interval over which species production will be 

blended and the movement of infaunal tests through the vertically segregated taphonomic zones. 
If the level of bioturbation at a particular site is relatively low then deeper production from 

infaunal species may never pass through the most active taphonomic zone. Consequently, the 

preservation potential for deeper infaunal tests is probably greater than for epifaunal production 

at this site. Loubere et al. (1993) concluded that bioturbation controls both the mixing of 

vertically stratified test production and whether deeper infaunal populations pass through the 

taphonomic filter. These taphonomic processes may vary in response to the depositional 

environment (Loubere et al., 1993). 

Goldstein and Harben (1993) indicated that infaunal production in a Georgia salt marsh may 

modify the death assemblages which accumulate in the subsurface sediments. Infaunal forams 

may become 'enriched' in relation to epifaunal species in response to selective preservation 
beneath the active taphonomic zone. The fossil assemblages preserved within the subsurface 

sediments may therefore differ from the living population on the marsh surface and the fossil 

assemblage is unlikely to adequately characterize the foraminiferal species accumulating at this 

site (Goldstein and Harben, 1993). 

Foraminiferal taphonomy is extremely complex and can significantly influence the composition 

of fossil assemblages. The uniformitarian approach uses modem analogues to assist in the 

reconstruction of former palaeoenvironments and is useful when the processes which result in 

the formation of the total assemblage are considered in context with the depositional 

environment. 
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Sampling and preparation 

In the fossil assemblage study, 40 g of sediment was taken from suitable levels within the cores 

recovered at sites 4,11,12,18,20 and 22. The samples were decanted into clean 63pm sieves 

and washed in water to remove any fine grained sediment. The residue was then washed into an 

evaporating basin and dried at 60-100°c. 

In the modern foraminiferal study, 40g of material was scraped from a known area on the 

saltmarsh, mudflat, or sandflat surface using a clean trowel. The sediment was washed through 

a 63µm sieve and then stained in Rose Bengal. Once washed the residue was dried in an oven 

at 60-100°c. 

Assemblage counts 

A known proportion of the 500-125µm fraction was transferred onto a gridded picking tray. 

Foraminifera were picked from evenly spaced transects, using a fine brush, and the individuals 

were placed onto a gridded adhesive slide for subsequent identification. 

When 250 or more individuals are counted the relative proportions of each component species 

becomes reasonably constant (Murray, 1991). In this study counts of between 300-400 

individuals were made, where possible, using an Olympus (Model CO 11) low power stereoscopic 

microscope with x40 magnification. However, in some levels where foraminiferal preservation 

was poor or concentrations were low, this number was greatly reduced and counts of less than 

50 individuals were obtained for the total sample. 

Identification and classification 

Individuals were identified to the lowest taxonomic level using a reference collection in the 

University of Wales, Bangor, the keys of Haynes (1973), Murray (1979) and Loeblich and 

Tappan (1988), and using the micrographs in Austin (1991). The classification was based on 

Loeblich and Tappan (1988). 
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Diagram construction 

The diagrams were constructed using version 2.26 of Psimpoll, a program written in'C' by K. 

D. Bennet (Cambridge University). The advantage of using Psimpoll, over other packages, is 

that the sediment description can be displayed adjacent to the percentage diagrams. Species 

percentages were calculated from the total number of individuals counted in that level. All the 
horizontal scales are comparable and are plotted with ax 10 exaggeration to emphasize species 

of lower abundance. The diagrams were zoned at levels where there was a clearly defined change 
in the composition of the fossil foraminiferal assemblages. 

Analysis 

Principle Components Analysis (Kline, 1994) was used to compare fossil assemblages with 

modern ecological data, in order to characterise palaeoenvironments within the back-barrier 

complex. The number of taxa within the data set was reduced to approximately 20 and the 

analysis was then applied to both modern and fossil data. The correlation scores, for the two 

major principle components, were plotted on a scatter diagram facilitating the direct comparison 

of all assemblages. As the principle component axis represent the two major sources of variance 

within the data set further information regarding the cause of this variance was inferred from 

these plots. 

3.2.5 Pollen analysis 

Introduction 

Pollen analysis is a technique used to reconstruct former vegetation by studying the pollen grains 

and spores produced by plants, preserved in deposits. The pollen grains are extracted using 

various physical and chemical techniques and are identified to the lowest taxonomic level using 

critical morphological features. This technique has become the most widely used method for the 

reconstructing past flora, vegetation and environments; pollen grains are extremely resistant to 
diagenesis, they are produced in enormous quantities, they are widely and evenly distributed and 

can be retrieved in great quantities (Fxgri & Iversen, 1989). 
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Pollen grains result from meiosis and their function is to transfer the male gametophytc 

generation of the angiosperm or gymnosperm to the female gamete (Moore et al., 1991). The 

pollen grain needs to be transported to the stigma of a plant of the same species before it is 

considered to have successfully completed its purpose. Pollination therefore requires the 

dispersal of pollen grains and the modes of transport are fundamental in the evaluation of pollen- 

analytical data (Fxgri & Iversen, 1989). Pollen grains are produced in tetrads and the 

gymnosperm grains tend to be spherical, may be invested with air sacs for wind dispersal and 

have poorly developed wall structures. Angiosperm pollen, due to their initial formation, posses 

apertures which follow critical patterns related to their position within the tetrad. These 

apertures may be described as pores, if both diameters are the same, or furrows if one diameter 

exceeds the other (Birks & Birks, 1980). Pollen grains may possess pores, furrows, or a 

combination of both and the apertures tend to be three or multiples of three. The angiosperm 

pollen grain is composed of three main concentric layers which contain the living cell (Fagri and 

Iversen, 1989). The middle layer, termed the intine, envelops the whole grain forming a uniform 

cellulose sheath. No part of this layer is known to be fossilized (Fagri & Iversen, 1989). 

If a pollen grain fails to reach the stigma it soon perishes, and both the cytoplasmatic interior and 

the intine are rapidly destroyed. What is left, the exine, may survive for a longer period as it is 

comprised of extremely resistant materials called sporopollenins (Faegri & Iversen, 1989). The 

exine is stratified into two main layers. The inner layer, the endexine, forms a microscopically 

homogenous membrane and other than where it is connected to apertures it has few 

morphological developments. The ektexine may be distinguished optically from the endexine 

as they react differently to staining. The ektexine is comprised of small radial, rod-like, elements 

whose development and distribution reflect the extreme variability of the exine (Fagri & 

Iversen, 1989). This layer may be further subdivided into three layers in which columellae 

separate an outer and inner stratum, referred to as the tectum and foot layer. The structure and 

development of the layers within the ektexine, together with the apertures arrangement, are some 

of the morphological features used to identify pollen taxa. 

Pollen grains are usually preserved in peat and sediments even when most other organic 

constituents are reduced to a structureless mass (Fxgri & Iversen, 1989). If a sediment or peat 
is weathered then pollen grains may be destroyed, and due to their varying resistance to corrosive 

agents there is a risk of differential destruction of pollen grains. 
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Pollen taphonomy 

The assumption made in pollen analysis is that changes in pollen frequencies represent a 

corresponding change in the contemporary pollen producing flora (Davis et al., 1973) which 

result from changing environmental conditions (Moore et al., 1991). Due to variations in pollen 

production and dispersal, pollen percentages and concentrations invariably do not correspond to 

vegetation cover as they are biased to certain taxa. For instance, wind pollinated trees such as 
Pinus are over-represented in comparison to insect pollinated plants such as Tilia (Traverse, 

1988). Pollen taphonomy considers the production and dispersal of grains, from modern plant 

communities, along with the processes which result in grains reaching the site of preservation. 

Plants use one of three mechanisms for pollen dispersal, driven by either water, animals or the 

wind; the mechanism used influences the total pollen production and therefore the representation 

of a particular species within an assemblage. Pollen from the few aquatic plants which use water 

dispersal are invariably not represented in the fossil assemblage as these plants produce few 

pollen grains possessing thin exines which are rarely preserved (Fxgri & Iversen, 1989). 

Zoophilous plants use animals, such as insects, birds and bats, to disperse their pollen. As the 

means of pollination becomes more specialised, fewer numbers of pollen are produced by the 

zoophilous blossom. Wind pollinated anemophilous plants produce the largest quantities of 

pollen; these species tend to be over-represented at the expense of other plants. 

Pollen frequencies, recorded in a fossil assemblage, are therefore greatly influenced by 

differential pollen production and the bias results from, for instance, different tree species 

producing differing amounts of pollen. Pollen production is also influenced by external 

environmental factors, which result in annual variations in pollen production within species. 

Complications in taphonomy are introduced by certain pollen taxa being more effectively 

dispersed than others. Effective dispersal is linked to the size of a'basin' and is influenced by 

the density of vegetation at a particular site (Watkins, 1991). As anemophilous pollen are 

effectively dispersed by the wind it becomes difficult to distinguish the source as being a few 

local stands, or having originated from a dense stand of vegetation some distance from the site 

of preservation. For instance, relatively high percentages of Pinus (25%) have to be recorded 
before a local presence can be interpreted (Huntley and Birks, 1983); as Tilia produces a 
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relatively heavy grain, which is ineffectively dispersed by animals, low frequencies of this taxa 

can be used to deduce a local origin. 

It is also necessary to consider how the pollen reached the site of preservation and how it behaves 

upon arrival (Moore et al., 1991). When attempting to reconstruct former palaeoenvironments 

at a particular site the interpretation must include all the factors which influence pollen 
deposition and preservation in that environment. 

Tauber (1965) developed a model to describe the various mechanisms which control the dispersal 

and deposition of pollen within a site surrounded by forest (Figure 6.14). Tauber regards the 

pollen input at a particular site as consisting of three components derived from the trunk space 
(Ct), the canopy (Cc) and from rain (Cr). The Ct component falls from the tree canopy, or is 

produced by shrubs of herbs beneath the canopy, and is dispersed by sub-canopy air movements. 
Some of this pollen may be transferred above the canopy by strong gusts of wind, but most is 

deposited on the forest floor. The Cc component consists of pollen carried by winds above the 

canopy itself. A certain amount of the Cc component may be transferred to high altitudes by 

thermals, where it can travel considerable distances; a similar proportion may sink in eddies 
down to the trunk space, where it is deposited along with the Ct component. The Cr component 

consists of pollen within the atmosphere which act as nuclei for water condensation. During 

precipitation rain drops, falling through the atmosphere, collect more dust and pollen returning 
the grains to the ground surface. The model produced by Tauber suggests that a small 'pond' may 
be dominated by the Ct component, whereas a large lake may have a considerable input supplied 
by the Cc and Cr components. 

Moore et al. (1991) suggested that the local or gravity (Cl) and 'secondary or inwash' (Cw) 

components should be included in Tauber's model to account for all pollen input mechanisms. 
The C1 component is derived from plants growing in immediate vicinity of the site of deposition. 

For instance, from aquatic plants growing in a lake, from helophytic species growing on the 

surface of a mire, or from trees which may over-hang the site (Moore et al., 1991). Problems 

may arise at sites which receive water from a surrounding catchment area. The drainage water 
may contain pollen grains which have been eroded and remobilised from sediments upstream. 
If the Cw component consists of recently deposited, well-preserved pollen, it is difficult to 
distinguish between local and non-local components (Moore et al., 1991). In contrast, if this 
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component is eroded and transported from older sediments then the reworked pollen introduces 

problems in interpretation of the observed mixed-age assemblages. 

The model developed by Tauber (1965) may be used as a basis for interpreting data; however 

the model needs to be modified for the requirements of any one particular site (Moore et al., 

1991). Jacobson and Bradshaw (1981) have developed a model to describe the influence of the 

size of a site upon the pollen source (Figure 6.15). They related basin size to the areas from 

which the pollen component is transported. The model serves as a guide for estimating the 

source of pollen for basins that receive no-inflowing streams; when streams enter the basin, 

additional pollen with be supplied by the Cw component (Jacobson & Bradshaw, 1981). Local 

pollen is defined as having originated from plants growing within 20 metres of the site, extra- 

local pollen is derived from communities growing twenty to several hundred metres from the 

basin whereas regional pollen can be described as having travelled from plants at greater 

distances. Jacobson and Bradshaw suggested that as generalisations, regarding pollen transport 

distances, do not apply to all taxa there is a need to distinguish pollen source areas for pollen 

accumulating at any one particular site. 

Pollen assemblages can distinguish between saltmarsh and mudflat biofacies in a stratigraphic 

sequence (Jennings et al., 1993). However, as with the sediments accumulating within an 

estuary, there are complex patterns of pollen provenance in which a large proportion of the pollen 

influx into an estuary may be strongly influenced by aquatic transport and contain reworked 

material. Consequently, pollen assemblages contained within any minerogenic unit, deposited 

in a coastal environment, will consist of an autochthonous component, derived from local 

vegetation, and an allochthonous component (Cw) transported to the site of preservation. As a 

result any deposit formed through sediment transport, as well as autochthonous sediments (peats) 

containing an allogenic mineral component, are likely to contain pollen which do not represent 

the local vegetation. Similar taphonomical constraints exist when using marine sequences to 

investigate long term climatic change, but when the limitations are identified useful 

reconstructions can be made from analysing these sediments (Mudie & Bryne, 1980; Clark et al., 
1986; Jennings et al., 1993). 
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Sampling 

The core surfaces were cleaned carefully prior to sampling to avoid contamination. Sub-samples 

of 0.5 cm3 were taken from both the organic and inorganic units recovered from sites 4,7, and 

12, using a calibrated sampler. The sampling strategy was designed to provide skeleton pollen 

diagrams to identify areas of vegetational change within the sequence. The sampling interval 

was then improved to resolve more rapid changes in vegetational development at site 4. This 

facilitated comparison of the organic units present at similar levels. 

Sample preparation 

There are numerous techniques designed to extract pollen from sediments, most of which are 

modified according to sediment composition. These techniques employ chemical and physical 

procedures to remove minerogenic and organic material from the sample in order to concentrate 

the pollen without reducing its frequency or quality. 

The method employed in this study closely follows the standard technique for the preparation 

of organic sediments used by Fxgri and Iversen (1989). A modified procedure, involving 

sieving and heavy liquid separation, was used to extract pollen from minerogenic sediment 

(Figure 3.16). 

Gravity separation 

The'gravity method' of pollen preparation was developed by Judy Allen (Watkins, 1991) and is 

based on Bjorck et al. (1978). The procedure eliminates the use of hydrofluoric acid as coarse 

and fine material is removed by sieving. The sample is then centrifuged in zinc chloride (p>1.8 

gcm 3) to remove fine sand and silt between 10 and 118 micrometres. During separation care was 

taken to ensure that the sample was thoroughly mixed, to prevent pollen being trapped in the 

denser fraction. Although gravity methods have been considered ineffective (Fa gri and Iversen, 

1989), Watkins (1991) found that the ZnC12 method was more effective than HF treatment, 

resulting in higher pollen concentrations with reduced exposure to acid. 
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Figure 3.16 The pollen preparation method (Watkins, 1991). 
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Preparation of organic rich sediments 

Acetolysis was used to remove cellulose from both organic and inorganic rich samples (cf. 

Erdtman, 1960). The sample was heated in nine parts anhydric acetic acid and one part cone 

H2SO4 for twenty minutes. Faegri and Iversen (1989) conclude that after acetolysis exine 

features become more distinct. 

Pollen counting and sum 

Routine counting was done using a standard HM ZEISS (16) microscope under a magnification 

of x400. Critical identification was done using a Leitz (Laborlux K/D) microscope with x 1000 

magnification, immersed in anisol. Grains were counted along regularly spaces traverses, whose 

spacing depended upon the pollen concentration. 

In order to obtain information regarding vegetation change in as many cores as possible, a pollen 

sum of 300 grains was adopted. For organic samples counts of between 300-400 were obtained; 
for a number of the minerogenic samples analysed this figure was reduced less than 100 counts. 

" Pollen Sum (P) = E(trees + shrubs + herbs) 

" Sum lower plants % of E(P + lower plants) 

" Aquatic (AQ) % calculated from Y, (P + AQ) 

" Indeterminable (ID) % calculated from E(P + ID) 

Identification 

Pollen grains were identified to the lowest taxonomic level using the keys of Fwgri and Iversen 

(1975,1989), the reference collection at the University of Wales, Bangor, and the photographs 
/ micrographs of Moore and Webb (1978) and Moore et al. (1991). 
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Supplementary information regarding the depositional environment and the method of extraction 

was provided by classifying indeterminable grains, following Berglund and Ralska-Jasiewiczowa 

(1986): 

" Unknown (a grain that has not been identified but is intact); 

" Corroded (exine etched, pitted and perforated); 

" Degraded (exine thin, fusion of structural elements or sculpturing); 

" Broken (mechanical damage to the grain); 

" Crumpled (grain crushed from original shape); 

" Concealed (hidden due to mineral or organic debris). 

Pollen concentration 

The pollen concentration (Pconc) of a sample was calculated as the number of pollen grains in 

a unit volume of wet sediment: 

Pconc = 
Grains counted x Exotic grains added = grains/cm' 3.13 

Exotic grains counted x Volume 

Diagram construction 

The diagrams were constructed using version 2.26 of Psimpoll. In the frequency diagrams the 

percentages of individual taxa were calculated from the pollen sum as described above. The 

percentage of indeterminable and aquatics were plotted along with the total number of grains 

counted at each level. All the horizontal scales are comparable and plotted with ax l0 

exaggeration to emphasize taxa with lower frequencies. The concentration diagrams display the 

concentration of each taxa per unit volume of sediment along with the total pollen concentration 

in each level. A vertical depth scale is displayed on the diagram, which records depths in metres 

below the ground surface. 

Radiocarbon dates, obtained from organic units, are displayed to the left of the diagram and are 

given in uncalibrated years before present. 
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Zonation 

A pollen zone represents the biostratigraphic category of an 'assemblage zone' characterized by 

a distinctive assemblage of individuals (Cushing, 1967). The diagrams were assessed visually 

and zones were placed at levels which exhibited significant changes in the composition of the 

flora. 

3.2.6 Grain size analysis 

Two different techniques were employed in this study to analyse the grain size distributions of 

sediments recovered from the contemporary saltmarshes and the reclaimed back-barrier deposits. 

The first combined sieving methods with a Sedigraph Particle Size Analyser, whereas the second 

used a Galai CIS-100 Particle size analyser. 

Sieving and Sedigraph analysis 

Samples of 40g were taken at suitable levels from the cores recovered within the estuary. The 

sediment was first dispersed in distilled water, using sodium hexametaphosphate and a 

mechanical food mixer, and was then sieved through a 63µm sieve. In samples with a high 

organic content, the organics were removed prior to dispersion by treating the material with 
dilute hydrogen peroxide. 

The grain size distribution within the sand fraction was determined by sieving. The silts and 

clays were analysed using a Sedigraph Particle Size Analyser (5000ET), produced by 
Micrometrics. 

The Sedigraph employs soft X-radiation to detect the relative particle concentration, within a 
'sample cell', since X-ray absorption is directly proportional to particle mass. The instrument 

was calibrated prior to each analysis by placing the reference baseline at zero percent whilst the 

sample cell was flushed with distilled water and sodium hexametaphosphate. The sample was 
then transferred from the beaker, where it was held in suspension by a magnetic stirrer, to the 

sample cell. The recorder was then adjusted to read 100% absorption, the exact starting diameter 
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was set and the cell was removed and inspected for bubbles. Once all the checks were complete, 
the analysis was started by switching the run switch to on. The fall rates of particles were 

measured in a 25 mm sedimentation zone within the sample cell. To examine particles of the 

order of 0.1 to 0.2 pm the Sedigraph decreased the height of the zone of measurement during the 

analysis, by moving the cell in respect to the X-ray beam. 

The output was plotted on log-log paper as equivalent spherical diameter against cumulative 

percent finer. To quantify the Sedigraph output, the sample concentration was determined by 

obtaining the dry weight of 5m1 of suspended material pipetted into a weighed crucible. Once 

the analysis was complete, the cell was flushed with particle free distilled water, and the process 

was repeated. 

The Sedigraph and sieving results were combined to produce a cumulative frequency curve for 

the whole sample. The sample statistics, which include graphic mean grain size, sorting 
(inclusive standard deviation), skewness and kurtosis, were then calculated using the cumulative 
frequency curve (Folk, 1966). 

One drawback of this approach is that the Sedigraph determines the equivalent spherical diameter 

from the settling velocities using Stoke's Law, whereas sieving measures the physical dimensions 

of the grains. 

Particle size analysis using laser-based optical analysis 

Samples of lcm3 were taken from the inorganic sediments recovered at sites 4,9 and 11. The 

samples were dispersed in distilled water using sodium hexametaphosphate and a magnetic 

stirrer. 

The Galai CIS-100 is a laser-based optical analyser which can be used to conduct both particle 
size analysis and dynamic shape characterisation. The system uses a modular concept which 
combines separate units for data acquisition, processing, data presentation and image viewing. 

The particle size analysis is based upon the time of transition theory. A He-Ne laser beam is 

scanned circularly by a rotating wedge prism and focused into a 1.2µm spot, which scans the 
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sample. When individual particles within a sample bisects the laser spot, interaction signals are 
detected by a PIN photodiode. As the beam rotates at constant speed, the duration and form of 

the obscuration signal provides a direct measurement of particle size. As the result represents the 

actual particle size, and not some secondary property from which an equivalent particle diameter 

can be derived, this type of analysis eliminates problems resulting from viscosity variations, 
Brownian motion, thermal convection and other physical phenomena. The shape analysis uses 

a CCD video camera microscope to provide an optimal images for processing, which are passed 

to a frame grabber card for analysis. 

A variety of acquisition ranges, from 0.5, um to 3600, um, can be selected depending upon the 

general texture of the sample. Prior to analysis, a series of acquisition and output parameters 
including sample size, sample statistics, differential histograms, and volume distribution tables, 

were selected. These parameters were printed automatically once each analysis was completed. 

The sample was introduced into a1 litre tapered vessel, connected to the laser unit, and was held 

in suspension using a mechanical stirrer. The sample was then slowly pumped through the 

'measurement zone' using a peristaltic pump. The analysis was initiated immediately after 
introducing the sample, and the total number of grains counted for each sample ranged from 10° 

to 106. Once the analysis was complete the sample cell was flushed with particle free water and 

the process repeated. 

A cumulative frequency curve was produced for each sample using the percentiles obtained from 

the volume distribution tables. These curves were then used to calculated the sample statistics. 
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3.3 Radiocarbon dating 

3.3.1 Introduction 

'4C formed in the atmosphere, by the combination of cosmic ray neutrons and atmospheric 

nitrogen, maintains a constant level of14C within the atmospheric and oceanic CO2 through a 

steady state of production and decay. Once produced this radioactive carbon isotope enters the 

global carbon cycle and subsequently becomes incorporated into living plants and animals. 
Whist alive plants and animals maintain a level 14C identical to the atmosphere; however once 

carbon becomes fixed in plant or animal tissue the radioactive carbon isotope decays at a 

constant rate. By measuring 14C in carbon containing matter it is possible to determine the age 

of that material. 

The measurement of conventional 14C ages is based on a number of assumptions and 
internationally agreed conventions (Mook and Van de Plassche, 1986): 

" Over geological time, 14C activity in carbon containing matter has remained constant 
during the formation of that material. 

0 Standard oxalic acid, distributed by the US National Bureau of Standards (NBS), is used 
to define 14C activity. 

' '4C dated samples are corrected for isotopic fractionation, according to the 13C/12C ratio. 

" The14C measurements are based on the Libby half-life of 5568 years. 
' 14C ages are quoted in years before present (BP. ) i. e. before AD 1950. 

3.3.2 Sources of Error 

In radiocarbon dating a level of statistical uncertainty is associated with the random nature of 

radioactive decay. Errors incurred during the counting of the decay rate in modern reference 

standards and fossil samples along with background noise cause repeated measurements to 

spread around a true value (Chappell, 1978). This uncertainty in the radiocarbon measurement 
is generally quoted by laboratories as one standard deviation (t 1(; ) of the normal distribution 
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curve. Errors can also result from the nature of the material analysed, the depositional 

environment and from the sampling procedures used. 

Contamination by the introduction of foreign carbon during pre-formation, formation and post- 

formation of a deposit can have a significant affect upon the 14C age measurement (Mook and 

Van de Plassche, 1986). For instance, areas which receive water draining from calcareous 

bedrock, soils, coal or carbon rich rock flour the redeposition of older/inert carbon can result in 

an overestimate of the true '4C age. Hard water errors occur when aquatic plants incorporate14C 

deficient carbon during photosynthesis; this consequently causes them become out of equilibrium 

with the atmosphere'4C/12C ratio. Inaccuracies are also caused by the in washing and deposition 

of allochtonous terrigenous material, the reworking and redeposition of older littoral sediments 

within the system, and by 'modern' carbon introduced during sampling or from rootlets. 

Furthermore, the leaching of humic acids can reduce the '4C age estimate; the redeposition of 

mobile humic acids in a sediment profile can introduce more recent 14C to older deposits within 

the sequence. 

The possible sources of error within this study are considered fully in chapter six when 
discussing the 14C results. 

3.3.3 Sampling 

In total ten samples were submitted to the NERC Radiocarbon Laboratory at East Kilbride for 

dating. Samples were taken from the lithostratigraphic boundaries between the organic and 
inorganic units, within cores recovered from freshly exposed profiles. The core surfaces were 

cleaned, to remove smeared and oxidised material, and a lem (10cm) slice was taken from the 

level to be dated. A further two slices were taken from either side of the level to provide reserve 

material for dating; this provided approximately 30 grams of wet sediment for measurement. 
The samples were subject to no pretreatment, were sealed in polythene bags and submitted with 
full site and sample descriptions. 

96 



Chapter 3 Methods 

3.3.4 Radiocarbon measurement 

Samples were digested in 0.5 M. Acid at 80°C for 24 hours, to remove labile organic 

components and carbonates, were washed and then dried to a constant weight in a vacuum oven. 
The liquid scintillation counting method was used to detect and measure the '4C activity within 

the samples. To provide sufficient carbon, for the measurement of 14C activity, all the material 

submitted was required (Miller pers comm., 1995). The results are uncalibrated and based on 

the Libby half life of 5568 ± 30 years. 

3.3.5 Interpretation 

The dates received from the NERC Laboratory are interpreted in context with the 

lithostratigraphic and biostratigraphic evidence. No dates were rejected or omitted in this study. 

The dates received from East Kilbride were quoted as x years ± 10 before present (BP), BP 

defined as years before 1950 AD. The one standard deviation is an estimate of the error of 

measurement associated within reproducibility in the laboratory and the statistical uncertainty 

resulting from the random nature of radioactive decay. All the dates were expressed as 

uncalibrated years before present. 
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Chapter 4 

Lithostratigraphy, mineralogy and geomagnetics 

4.1 Core descriptions 

4.1.1 Introduction 

Lithological data acquired both within the Taf Estuary and the barrier complex, are presented and 
discussed in this chapter along with borehole data obtained from the British Geological Survey 

and F. H. Gilman & Co., the owners of Coygan Quarry. The system is sub-divided into four main 

areas according to their localities and stratigraphy; these include the West Marsh, East Marsh, 

Pendine Burrows and the Taf Estuary (Figure 4.1). Detailed lithological descriptions are 

provided for those sites from which samples were taken and analysed in the laboratory. The 

remainder are summarized and described using a series of lithological sections. 

4.1.2 West Marsh 

West Marsh extends from Pendine to a line which runs from the fossil cliffline between Brook 

and Coygan to the burrows (Figure 4.1). In total nine boreholes, ranging from 5 to 13 metres in 

depth, were either recovered or described in this area (Figure 4.2). The tidal inlet sequences in 

West Marsh are dominated by silts and clays intercalated with organic rich and biogenic deposits. 

Pendine Woodend 

Sites 7 and 8 are located at the western end of West Marsh (Figure 4.2). The sequence at site 7 

(SN 2474 0833) is twelve metres deep and extends from 3.75 to -8.25 metres OD (Figure 4.3). 

At the base of the sequence a silty sand bed with clay laminae fines upwards into an overlying 
silty clay unit at -7.25 metres OD (Figure 4.4a). This silty clay, stratified by numerous sandy 
lenses, extends to -6.10 metres OD where it is replaced by sand and gravel. The sands at the top 

of this unit contain a high proportion of organics and are replaced at -5.50 metres OD by an 
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organic rich grey silty clay unit (Figure 4.4b). The organic content increases towards the top of 

this unit where at -3.65 metres OD minerogenic sediment is replaced by organic detritus (Figure 

4.4b). The latter extends to -3.55 metres OD where it is overlain by stratified silty clay and 
highly stratified silty sand (Figure 4.4a). At -0.075 metres OD the silty sand unit fines into an 

organic rich silty clay which grades into organic detritus at +0.06 metres OD. This upper organic 
bed (-0.06 to +0.70 metres OD) is composed predominately of fine grained ligneous and 
herbaceous fragments (Figure 4.4b). This unit is indistinctly laminated and also contains 
horizontally orientated wood fragments and sedge stems. The top of the organic bed is marked 
by a gradual boundary which grades into fine grained silty clay (Figure 4.4a). Above this the silty 

clay coarsens upwards into a stratified sandy silt which is replaced (at +0.80 metres OD) by a 
medium to fine grained sand with occasional shell fragments. The latter extends to +1.7 metres 
OD where it is succeeded by a stratified silty clay bed, which is oxidised and mottled near the 

ground surface (Figure 4.4a). 

The sequence at site 8 (SN 2467 0814) is nine metres deep and extends from 5.67 to -3.33 metres 
OD (Figure 4.3). At the base, organic rich silty clay grades into an organic layer which is 

stratified by a thin layer of shelly sand. The boundaries between this sand and the organic detritus 

are marked by very abrupt erosional contacts. Above this the organic deposit grades into a thin 

layer of organic rich silty clay, which is replaced by sand (containing reworked shell fragments) 

stratified by organic rich silty clay (Figure 4.3). At -0.50 metres OD sand is replaced by a second 

organic deposit, composed of fine grained detritus. The boundaries between these organics and 
the sands above and below this unit are marked by very sharp erosional contacts. Sand containing 

reworked shell fragments extends uninterrupted to 1.6 metres OD whereupon this facies becomes 

stratified by silt and clay and is intercalated with layers of well sorted medium to fine sand, which 

contains no calcareous material (Figure 4.3). 

Although the two upper organic beds at sites 7 and 8 occur at different elevations, similarities in 

their composition and structure suggests that they are laterally equivalent. 
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Dgl Dl1 Agi 7.5YR 3 N/ Very dark grey silty organic detritus 
Ag2 Asl Dgl 7.5YR 4 N/ Dark grey silty caly with organic detritus 

Dgl Ast Dh+ 7.5YR 5 N/ Grey silty ckiy containing nr(j, rnir (iointuv. 
4 

7- 

--- Aga Ga 1 7.5YR 5 N/ Grey sandy silt 

Dg4 Ag+ 7.5YR 2 N/ Black fine grained organic detritus 
5770 +/- 45 - r=_= Dg2 Ag2 7.5YR 4 N/ Dark grey silty organic detritus 

Dg3 Asl 7.5YR 3 N/ Very dark grey clayey organic detritus 
As2 Ag2 Dg+ 7.5YR 5 N/ Grey silty clay containing organic detritus 

-- f_. 
As2 Agl Dgl 7.5YR 3 N/ Very dark grey organic silty clay 

f-. Ast Ag2 Dg+ 7.5YR 5 N/ Grey silty clay containing organic detritus 

8- 

9 

Ast Ag2 Dg+ 7.5YR 5 N/ Grey silty clay containing organic detritus 

6230 +/- 125- ý`>" Dg3 Gal Ag+ 7.5YR 3 N/ Very dark grey sandy organic detritus 

9.5 Ga2 Gs2 7.5YR 4 N/ Dark grey sand 

Figure 4.4b A detailed sedimentary log describing the organics recovered from site 7 



Chapter 4 Lithostratigraphy, mineralogy and geomagnetics 

Westmead Section 

Sites 5,6,9, and 12 are located in the centre of West Marsh and lie on a line which runs 

perpendicular to the fossil cliff line from the fields in front of Westmead Farm to the Pendine 

Burrows (Figure 4.2). 

The sequence at site 6 (SN 2579 0889) is six and a half metres deep and extends from 4.05 to - 
2.45 metres OD. At this locale a series of highly stratified silty clay and sandy silt beds overly 

a dense red gravel, which contains both fine grained material and large horizontally orientated 

clasts of sandstone. The boundary between these two facies is marked by an abrupt erosional 

contact (Figure 4.5). 

The sequence at site 5 (SN 2570 0865) is twelve and a half metres deep and extends from 3.97 

to -8.53 metres OD (Figure 4.5). The sediments at the base of the sequence fine upwards from 

a clayey silt, stratified by numerous sand lenses, into a silty clay bed. In between these two units 
is a thin layer of organic detritus, which extends from -6.4 to -6.2 metres OD. The silty clay, 

intercalated with relatively thinner layers of sandy silt, extends to -2.45 metres OD where it is 

replaced by organic detritus. This organic unit is stratified by clay lenses and grades into organic 

rich silty clay (Figure 4.5). This clay then extends to -0.45 metres OD where it is replaced by a 

second layer of red brown organic detritus. This upper organic bed grades into a thin layer of 

shelly sand, which is overlain by silty sand stratified by occasional clay laminae. At 2.70 metres 
OD silty sand grades into a dense clayey silt, mottled by Fe-nodules (Figure 4.5). 

The sequence at site 12 (SN 2562 0844) is twelve metres deep and extends from 3.60 to -8.40 

metres OD. A highly stratified and horizontally bedded silty sand, at the base of the sequence, 
fines upwards into a silty clay stratified by numerous sand lenses (Figure 4.6a). There is a 
distinct colour change between theses two beds; the lower unit is pinkish grey (7.5YR 6/2) 

whereas the upper of these two units is grey (7.5 N 5/). The latter is replaced by a grey sandy silt 

which grades into an organic rich silty clay at -5.25 metres OD. This silty clay bed extends to 

-4.65 metres OD, where it is replaced by highly stratified sandy silt unit (Figure 4.6a). The latter 

grades into silty clay which is intercalated with sandy silt and has an increasing organic content. 
At -2.235 metres OD the organic rich silty clay grades into a organic unit which is intercalated 
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Height relative to OD (m) 



Depth (m) below Troel Munsr"II [)r ; r. rilrti n 
surface at 3.60 m Smith 
OD 

0 Ag2 Gal Th1 1OYR 3/3 Dark brown sandy silt 

--- Aga Gal Lf+ 7.5YR 4/2 Mottled brown sandy silt 

Ag2 As2 Gal 7.5YR N 5/ Mottled grey silty clay 
Lf+ 

Dg4 7.5YR N 2/ Black organic detritus 
As2Agl Dgl 7.5YR N 3/ Very dark grey silty clay containing org; rnic detritus 

= As2 Ag2 7.5YR N 5/ Grey silty clay 

3 As2 Agl Dgl 7.5YR N 3/ Very dark grey silty clay containing organic detritus 
3580 +/ GO - 

Og4 7.5YR N 2/ Black organic detritus 

4630 +/- 45 
4 As2 Ag1 Dgl 7.5YH N 3/ Very d, rrk qwy silty clay rnnt, rininýl nrl, rnilinti 

As2 Ag2 7.5YR N 5/ Grey silty cl. ry 

5- -- 

fß WO f/- 50 
6 

7- 

8- 

9- 

10 - 

12 - 

Ast Agl Dgl 7.5YR N 4/ Dark grey silty clay with increasing organic content 

Dg4 7 5YR N 21 Black organic detritus stratified by very dark 
Dg4 . grey peaty silty clay 
As2 Ag2 7.5YR N 5/ Grey silty clay 

Ag3 Gal 7.5YR N 5/ Grey sandy silt 

As2 Ag2 Ga+ 7.5YR N 5/ Grey silty clay 

Ga2 GsI Ag1 7.5YR N 5/ Highly shatihed yruy silty ;, rnrl 

Ag2 Gat 7 5YR N 5/ Highly stratitied s; +n<ly mit 
Gs+ 

Ast Ag2 Dg+ 7.5YR N 5/ Grey siIty cl, iy ctirrl+urliny (mt, rni, di-tittu.. 

As2 Agl Dg1 7.5YR N 4/ Dark grey peaty silty clay 
Ga3 Agl 7.5YR N 5/ Grey silly s, tnd 

Aga Gal 7.5YR N Vii/ Grey s; uely sill 

Ast Ag2 7.5YH N 5/ Strahhed grey silly cl, y crmt+riuiny r,. iiid 
lenses 

Ast Ag2 7.5YR 6/2 Highly stratified pinkish grey clay. !, alt, i., ii 
Gal Ga+ 

Figure 4.6a A detailed description of the lithology at site 1? 



Depth (m) below Troels- 

surface at 3.60m Smith 
OD 

3 --- As2 Ag2 Dg+ 
3580 +/- 60 - --- Dg3 As l 

Dg4 

, ý.,,, Dg3 DII 

Dg4 
4630 +/- 45 - ZZ, Dgl Ast Dh+ 

As2 Ag2 Dg+ 
4 

5- 

As2 Ag2 Dg+ 

Dg4 As+ 
Dg3 As l 
Dg4 
As2 Ag2 

5920 +/- 50 - Dg4 D1+ 

-- As2 Ag2 Dg+ 
6- -- 

Munsell Description 

7.5YR 5 N/ Grey silty cl. ry with c rymnc detritus 

7.5YR 3 N/ Very dark grey fine grained organic detritus 

7.5YR 2 N/ Black fine grained organic detritus 

7.5YR 2 N/ Black organic detritus containing large woody 
fragments 

7.5YR 2 N/ Black fine grained organic detritus 

7.5YR 4 N/ Dark grey silty organic detritus 
7.5YR 5 N/ Grey silty clay containing organic detritus 

7.5YR 5 N/ Grey silty clay containing organic detritus 

7.5YR 3 N/ Black fine grained organic detritus 
7.5YR 4 N/ Very dark grey silty organic detritus 
7.5YR 2 N/ Black fine grained organic detritus 
7.5YR 5 N/ Grey silty clay containing organic detritus 
7.5YR 2 N/ Black fine grained organic detritus 
7.5YR 5 N/ Grey silty clay containing organic detritus 

Figure 4.6b A detailed sedimentary log describing the organics recovered from site 12 



Chapter 4 Lithostratigraphy, mineralogy and geomagnetics 

with organic rich silty clay. The organics between -2.235 and -1.95 metres OD are composed of 

fine grained organic detritus which is horizontally laminated (Figure 4.6b). 

The lower organic unit at site 12 is replaced by an organic rich silty clay bed which extends to 

-0.28 metres OD where it is replaced by a second organic deposit. This second organic bed 

ranges from -0.28 to 0.48 metres OD and is composed of both fine grained organic detritus and 
large fragments of wood (Figure 4.6b). The upper boundary of this second organic deposit is 

marked by a gradual transition into organic rich silty clay. The clay is stratified by a thin organic 

lens, becomes mottled towards its upper boundary and is overlain by mottled brown sandy silt. 

Due to similarities in the elevation, structure and composition the organic beds at site 12, it is 

likely that these deposits are laterally equivalent to those described at site 7,8 and 5 (Figure 4.5). 

The sequence at site 9 (SN 2255 0825) is seven metres in length and extends from 5.35 to -1.65 

metres OD. The lithology at the base of the sequence is dominated by sand which contains 

reworked shell fragments (Figure 4.5). This facies is replaced by silty sand which subsequently 

grades into a layer of clayey silt. The upper boundary of the latter unit is marked by an abrupt 

contact whereupon clayey silt is replaced by a thin layer of shelly sand. This shelly sand is 

overlain by well sorted medium to fine sand which contains no calcareous material and becomes 

oxidised towards the ground surface (Figure 4.5). 

Brook Section 

Sites 3,4 and 11 are located at the eastern end of West Marsh and extend from the field 

immediately in front of Brook Farm seaward towards the Pendinc Burrows (Figure 4.2). 

Site 3 (SN 2670 0995) is located immediately in front of the fossil cliff line (Figure 4.2). The 

sequence at this locale is five and a half metres deep and extends from 4.05 to -1.45 metres OD. 

The sequence is underlain by a hard impenetrable material (possibly a large boulder within the 

gravel facies or highly compressed peat) which prevented any further penetration of the auger. 

The overlying lithology is dominated by grey silty clay which is stratified by silty sand and 
becomes oxidized towards the ground surface (Figure 4.7). 
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Depth (m) below 
surface at 3.92m 
OD 

0 

1- 

2- 

3810+/-60 

4380 +/- 50 
3- 

4- 

5- 

6220 +/- 45 

6- 

7- 

8- 

9- 

Troels- Munsell 
Smith 

Ag2 Ast Thl 1OYR 3/3 
Ag3 Ga1 7.5YR 5/2 
Ag2 Ag2 Lf+ 7.5YR N 5/ 

Aga Ga1 7.5YR 4.2 

Ga3 Agl 7.5YR N 5/ 

Ast Ag2 7.5YR N 5/ 

Ag2 Asl Dgl 7.5YR N 4/ 

Dg4 7.5YR N 2/ 

Ag2 As2 Dg+ 7.5YR N 4/ 
Ag2 As2 7.5YR N 5/ 

Ga3 Ag2 7.5YR N 5/ 

As2 Ag2 7.5YR N 5/ 
Ga3 Ag1 7.5YR N 5/ 
As2 Ag2 7.5YR N 5/ 

Ga3 Agl 7.5YR N 5/ 

As2 Ag2 7.5YR N 5/ 
Ag2 Asl Dgl 7.5YR N4/ 
Dg4 7.5YR N 2/ 
Ag2 Ast Dgl 7.5YR N 3/ 
Dg4 7.5YR N 2/ 
Ag2 Ast Dg 17.5YR N4/ 

Ast Ag2 7.5YR N 5/ 

Gg(min. )1 Gs l1 OR 4/8 
Agl As l 

Gg(maj. )2 
Gg(min. )1 10R 4/8 

Gs 1 Ag+ 

Description 

Dark brown clayey silt 
Brown sandy silt 
Grey silty clay 

Mottled dark brown sandy silty 

Grey silty sand 

Grey silty clay 

Dark grey silty clay with increasing organic content 
Black organic detritus 

Dark grey silty clay with decreasing organic content 
Grey silty clay 

Grey silty sand 

Grey silty clay 
Grey silty sand 
Grey silty clay 

Grey silty sand 

Grey silty clay 
Dark grey silty clay with increasing organic content 
Black organic detritus 
Very dark grey peaty clayey silt 
Black organic detritus 
Dark grey silty clay with decreasing organic content 

Highly stratified grey silty clay 

Red gravel, silty, clay 

Red boulder clay containing large orientated 
clasts 

Figure 4.8a A detailed description of the lithology at site 4 



Depth (m) below Troels- Munsell Description 

surface at 3.92 m Smith 
OD 

2 

3810+/-60 

4380 +/- 50 - ` %ý ̀' 

As2 Ag2 Dg+ 7.5YR 5W Grey silty clay with organic detritus 

3 

5 

6 

Dg3 Dl1 
Dg3 As1 
Dg4 
Dg3 Ast 
Dg4 

Ast Ag2 Dg+ 

As2 Ag2 Dg+ 

irr ti"i 

'" 

Dg3 As 1 
Dg4 
Ast A 1D l g g 
Dg3 As1 
Dg3 D11 

,w. Dg4 
6220 +/- 45 - -<": Dg3 As 1 

-- As2 Ag2 Dg+ 

7.5YR 2 N/ 
5YR 3 N/ 7 

Black organic detritus 
Very dark grey silty organic detritus 

. 7.5YR 2 N/ 
7.5YR 3 N/ 

Black organic detritus 
Very dark grey silty organic detritus 

7.5YR 2 N/ Black organic detritus 

7.5YR 5 N/ Grey silty clay with organic detritus 

7.5YR 5 N/ Grey silty clay with organic detritus 
7.5YR 3 N/ Very dark grey silty organic detritus 
7.5YR 2 N/ Black organic detritus 
7.5YR 4 N/ Dark grey silty organic clay 
7.5YR 3 N/ Very dark grey silly organic detritus 
7.5YR 2 N/ Black organic detritus with woody fragments 
7.5YR 2 N/ Black organic detritus 
7.5YR 3 N/ Very dark grey silty organic detritus 

7.5YR 5W Grey silty clay with organic detritus 

Figure 4.8b A detailed sedimentary log describing the organics recovered from site 4 



Depth (m) below 
surface at 4.05m 
OD 

0 

1 

2- 

3- 

4- 

5- 

6 

7- 

8- 

9- 

10 - 

11 - 

12 - 

Troels- Munsell Description 
Smith 

Aga Gal 7.5YR 4/2 Highly stratified dark grey brown sandy silt 

Gat Gs2 7.5YR N 5/ Clean grey sand 
As2 Ag2 7.5YR N 5/ Stratified grey brown silty clay 

Ga2 Gs2 7.5YR N 5/ Grey sand containing shell fragments 

Ga2 Gs2 7.5YR N 5/ Clean grey sand 
Aga Ast 7.5YR N 5/ Stratified grey clayey silt 
Ga2 Gs2 7.5YR N 5/ Clean grey sand 
Ag2 As2 7.5YR N 5/ Stratified grey silty clay containing shell fragments 

Ga2 Gs2 7.5YR N 5/ Stratified grey sand containing shell fragments 

Ag3 Ast 7.5YR N 5/ Grey clayey silt 
Ag2 As2 7.5YR N 5/ Stratified grey silty clay 

Ga2 Gs2 7.5YR N 5/ Grey sand containing shell fragments 

Aga Ast 7.5YR N 5/ Stratified grey clayey silt 

Ga3 Agl 7.5YR N 5/ Highly stratified grey silty sand 

Aga Gal 7.5YR N 5/ Stratified grey sandy silt 

Ga2 Gs2 7.5YR N 5/ Stratified grey sand containing shell fragments 

Aga Gal 7.5YR N 5/ Stratified grey sandy silt 

Ga3 Ag1 7.5YR N 5/ Stratified grey silty sand 
Ag3 Gal 7.5YR N 5/ Stratified grey sandy silt 

Ga2 Gs2 7.5YR N 5/ Stratified grey sand containing shell fragments 

Ag3 Gal 7.5YR N 5/ Highly stratified grey sandy silt 

Ga3 Ag1 7.5YR N 5/ Stratified grey silty sand 

Ag2 As2 Dl+ 7.5YR N 4/ Dark grey silty clay containing organic detritus 

Ag2 As2 7.5YR N 5/ Stratified grey silty clay 

Ag2 As2 Dl+ 7.5YR N 4/ Dark grey silty clay containing organic detritus 

Ga2 Gs2 7.5YR N 5/ Clean grey sand 

Figure 4.9 A detaited description of the lithology at site 11 



Chapter 4 Lithostratigraphy, mineralogy and goomagnotics 

The sequence at site 4 (SN 2676 0896) is nine metres deep and extends from 3.92 to -5.08 metres 

OD. At the base of the sequence is a poorly sorted dense red gravel bed, which contains large 

rounded (horizontally orientated) clasts and fine grained sediment (Figure 4.8a). The red gravel 

facies is replaced by a highly stratified grey silty clay at -4.305 metres OD and the boundary 

between these two units is marked by an abrupt contact. The latter extends to -1.815 metres OD 

where it grades into black organic detritus (Figure 4.8b). This organic bed is composed of both 

fine grained detritus and large fragments of horizontally compressed wood which are stratified 

by organic rich silty clay laminae (Figure 4.8b). At -1.255 metres OD the organic bed grades 
into a silty clay and then into silty sand at -0.86 metres OD (Figure 4.8a). The sand is stratified 
by relatively thinner silty clay beds and the deposit fines upwards into an organic rich silty clay 

at 0.77 metres OD. At 1.13 metres OD the silty clay grades into a second organic layer, which 
is composed of predominately fine grained organic detritus which is interstratified by organic rich 

silty clay (Figure 4.8b). These organics grade into a grey silty clay at 1.46 metres OD which 

subsequently extends to 2.345 metres OD. The latter is replaced by a mottled dark brown sandy 

silt, overlain by 0.24 metres of dark brown clayey silt. 

The sequence at site 11 (SN 2677 0848) is twelve metres deep and extends from 3.99 to -8.01 

metres OD (Figure 4.7). The lithology at this locale is dominated by well sorted medium to fine 

sand, silty sand and sand which contains reworked shell fragments (Figure 4.9). Although the 

major facies at site 11 resemble those described at site 9 the distribution and succession of these 

deposits are very different. At the base of the sequence well sorted sand (containing no 

calcareous material) is overlain by organic rich silty clay. The latter grades into stratified silty 

sand and then into sand containing reworked shell fragments (Figure 4.9). The boundary between 

these two units is marked by an abrupt contact and the latter grades into a silty sand, stratified by 

numerous shelly sand lenses. The sediments then grade very sharply into stratified shelly sand 

which is overlain by well sorted sand, containing no calcareous material. The sediments finally 

grade into highly stratified sandy silt which becomes oxidised towards the ground surface (Figure 

4.9). 
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Chapter 4 Lithostratigraphy, mineralogy and goomagnetics 

4.1.3 East Marsh 

East Marsh extends eastwards from Coygan to the sea-wall which runs from Salthouse to Ginst 

Point (Figure 4.1). In total twelve boreholes, ranging in depth from 6.5 to 4.5 metres, are 

described in this area (Figure 4.2). Information for a further five boreholes, located in the fields 

adjacent to Coygan Quarry, were obtained from F. H. Gilman & Co.. However, as these sites 

were levelled by a private contractor, the absolute accuracy of the heights given is uncertain. 

The lithology in East Marsh is dominated by silty clay, silt, sandy silt, silty sand, well sorted 

medium to fine sand and sand containing reworked shell fragments. In the western portion of this 

area the sequences are relatively complex with intercalated beds of shelly sand, silty sand, silty 

clay, sandy silt and well sorted medium to fine sand. 

Coygan Quarry 

Data from five boreholes, logged in the fields south west of Coygan Quarry (Figure 4.2), is 

summarised in figure 4.10. 

Section 1 

The borehole at site C8 (SN 2798 0886) is ten metres deep and extends from 4.00 to -6.00 metres 

OD. At the base of the sequence poorly sorted dense red gravel extends to -4.52 metres OD 

where it grades into a poorly sorted coarse sand. This latter unit is overlain by a stratified silty 

sand which fines upwards into a silty clay at -0.89 metres OD. Silty clay then extends to 2.58 

metres OD where it is replaced by a coarser silt (Figure 4.10). 

The sequence at site C9 (SN 2807 0861) is ten and a half metres deep and extends from 4.00 to 

-6.50 metres OD (Figure 4.10). The sediments are underlain by a dense red gravel facies which 

extends to -6.35 metres OD where it is in sharp contact with an overlying silty sand. This unit 

extends to -0.67 metres OD where the sediments fine upwards into an overlying silty clay bed. 

The latter is replaced at 2.23 metres OD by a well sorted medium to fine sand which is overlain 

by clayey silt. 
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Chapter 4 Lithostratigraphy, mineralogy and geomagnetics 

Section 2 

An eight metre borehole was recovered and logged at site C2 (SN 2820 0893). The sequence, 

which extends from 4.00 to -4.00 metres OD, is underlain by poorly sorted dense red gravel and 

a large limestone boulder (Figure 4.10). Stratified silty sand, in contact with the limestone 

boulder, extends to -1.55 metres OD where it is replaced by finer silty clay. The clay deposit is 

overlain by coarser silt which become oxidised towards the ground surface. 

The lithology at sites C11 (SN 2826 0872) and C10 (SN 2830 0853) is dominated by silty sand 

which extends from -6.00 to 2.81 and 2.44 metres OD respectively, where it is replaced by clayey 

silt (Figure 4.10). 

Causeway Section 

Sites 15,16,17,18 and 19 are positioned on a transect which runs perpendicular to the fossil cliff 

line in the fields adjacent to Causeway Road (Figure 4.2). 

The sequence at site 15 (SN 2875 0911) is five and a half metres deep and extends from 3.98 to 

-1.52 metres OD. The sediments fine upwards from a basal sand, containing reworked shell 

fragments, into an overlying silty clay unit (Figure 4.11). This unit grades upwards into a coarser 

stratified silty sand which is ultimately replaced by a second silty clay bed. The latter, which 

completes the sequence at this locale, contains a layer of coal fragments (3.64 to 3.74 metres OD). 

These coal particles may be derived from steam engines used to transport limestone from Coygan 

Quarry to Salthouse during the 19' century. 

The sequence at site 16 (SN 2876 0879) is six and a half metres deep and extends from 3.967 to 

-2.53 metres OD. The sediments at the base of this sequence fine upwards from a medium to fine 

sand, containing reworked shell fragments into a silty sand and then into a sandy silt. The latter 

grades into sandy silt which is overlain by a this layer of silty sand. The upper boundary of this 

latter unit is marked by an abrupt erosional contact with an overlying layer of well sorted medium 

to fine sand. The sand is replaced by silty sand, which contains a layer of juvenile whole 

Cerastoderma bivalves in their growth positions (Figure 4.11). The sand then grades into silty 

clay, silty sand and sandy silt (Figure 4.11). 
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Chapter 4 Lithostratigraphy, mineralogy and geomagnetics 

The sediments at site 17 (SN 2874 0859) were recovered for subsequent analysis in the 

laboratory. The sequence is six metres deep and extends from 4.30 to -1.70 metres OD (Figure 

4.11). As at sites 15 and 16 the sequence fines upwards from a sand containing reworked shell 

fragments into a silty clay. The clay is stratified by well sorted fine sand and sand which 

contains reworked shell fragments. The sediments then grade very sharply into well sorted fine 

sand (-0.32 metres OD) and then into sandy silt at 1.16 metres OD. The silts are overlain by finer 

silty clay, which is replaced by highly stratified silty sand at 1.76 metres OD. At 2.13 metres OD 

the sediments grade into a silty clay which is highly stratified by thin horizontal sand lenses at 

its base. The clay deposit grades into a sandy silt (at 3: 44 metres OD) which is ultimately 

replaced by a well sorted medium to fine sand. The boundary between these two units is marked 

by an abrupt erosional contact and the upper unit becomes oxidized and mottled towards the 

ground surface (Figure 4.12). 

The sequence at site 18 (SN 2878 0817) is five and a half metres deep and extends from 4.73 to 

-0.77 metres OD (Figure 4.11). The sediments fine upwards from a basal sand unit (containing 

reworked shell fragments) into a silty sand and then into a silty clay. The clay bed is overlain by 

a shelly sand and the boundary between these two units is marked by an abrupt erosional contact. 

The sand is overlain by a well sorted medium to fine sand which is stratified by silty sand and 

sandy silt lenses. The well sorted sand layer is replaced by a silty sand completing the sequence 

at site 18. 

Site 19 (SN 2880 0805) is located immediately behind the barrier at the end of Causeway Road 

(Figure 4.9). The sequence is five and a half metres deep and extends from 5.13 to -0.37 metres 

OD. The sediments at the base of the sequence fine upwards from a shelly sand into a fine 

grained silty clay. This latter unit extends to 2.69 metres OD where it is replaced by a medium 

to fine sand (with numerous reworked shell fragments), stratified by a thin layer of organic rich 

sand (Figure 4.11). The boundary between the shelly sand and the underlying silty clay is marked 

by an abrupt erosional contact. Towards the top of the shelly sand bed the sediments grade into 

a well sorted medium to fine sand which is oxidised towards at the ground surface (Figure 4.11). 
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Stratified grey shelly sand 
Stratified grey silty clay 
Clean grey sand 
Stratified grey silty clay 

Grey sand containing shell fragrnnnts 
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in situ 

Figure 4.12 A detailed description of the lithology at site 17 



Chapter 4 Lithostratigraphy, mineralogy and geomagnetics 

Salt House Section 

Sites 24 and 20 lie on a transect which extends from a field adjacent to Salt House Farm to a field 

next to Malthouse Farm (Figure 4.2). 

The sequence at site 24 (SN 2972 0955) is 4m 20 cm deep and extends from 4.01 to -0.19 metres 
OD(Figure 4.13). The sediments at the base of the sequence are composed of medium to fine 

sand containing numerous reworked shell fragments. These grade into well sorted medium to 

fine sand, with occasional shell fragments, which is overlain by silty clay (Figure 4.13). 

The sequence at site 20 (SN 2982 0965) is five and a half metres deep and extends from 4.59 to 

-0.91 metres OD. The sediments at the base of the sequence fine upwards from a dark grey sand, 

containing reworked shell fragments and whole Cerastoderma bivalves, into highly stratified 

sandy silt at -0.32 metres OD (Figure 4.13). The silt is replaced at -0.096 metres OD by a series 

of stratified silty clay and clayey silt beds (Figure 4.14). These fine grained deposits change 

sharply into shelly sand, which is intercalated with a layer of dark grey silty clay. At 1.99 metres 
OD the shelly sand fines upwards into a silty sand and then into sandy silt; these two upper units 

also contain numerous reworked shell fragments. The silt is overlain by a layer of shelly sand 

which contains whole Cerastoderma bivalves (Figure 4.14). The sandy unit then grades into a 

layer of silty clay which is highly stratified at its base and is overlain by mottled sandy silt, 

containing fragments of wood. 

East House Section 

Sites 23,21 and 22 at located at the eastern end of East Marsh (Figure 4.2). The borehole depth 

at site 23 (SN 3064 0875) is five and a half metres deep and extends from 3.64 to -1.86 metres 

OD (Figure 4.15). The lithology at this locale is dominated by medium to fine sand containing 

numerous reworked shell fragments. This unit is overlain by silty sand (containing reworked 

shell fragments) which grades into a finer silty clay deposit. 

The sequence at site 21 (SN 3065 0842) is five and a half metres deep and extends from 3.96 to 

-1.54 metres OD. The deposits are very similar to those described at site 23. A basal shelly sand 
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Depth (m) below Troels- Munsell Description 

surface at 4.59 mO D Smith 

0 Aga Gal 7.5YR 5/6 Strong brown sandy silt 

" Aga Ga1 7.5YR 5/2 Highly stratified mottled brown sandy silt with 
wood fragments 

1- _= As2 Ag2 7.5YR N 5/ Mottled grey silty clay 
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Ga2 Gs2 7.5YR N 5/ Grey Shelly sand` 

2 
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Ga3 Agl 7.5YR N 5/ Grey silty sand containing shell fragmonts 

3 a ý"a 4 
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Ga2 Gs2 7.5YR N 4/ Dark grey shelly sand 
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777 
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Figure 4.14 A detailed description of the Iithology at site 20 
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Figure 4.16 A detailed description of the lithology at site 22 
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Figure 4.18 Lithological sequence through Pendine Burrows drawn from borehole logs obtained from BGS 
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unit is overlain by silty sand which subsequently grades into silty clay at the top of the sequence 

(Figure 4.15). 

Site 22 (SN 3070 0796) is located immediately behind Laugharne Burrows in a field adjacent to 

East House (Figure 4.9). The sequence at this locale extends from 4.70 to -0.80 metres OD. A 

dark grey shelly sand extends from the base of the sequence to 1.62 metres OD where it grades 

into an overlying silty sand containing reworked shell fragments. The latter grades into silty clay 

(at 2.00 metres OD), which becomes stratified by numerous shelly sand lenses above 2.80 metres 

OD. At 3.68 metres OD silty clay is replaced by shelly sand and the boundary between these two 

units is marked by a very abrupt erosional contact (Figure 4.16). Above this the shelly sand is 

replaced by well sorted medium to fine sand; this latter unit contains no reworked shell fragments 

and becomes oxidised towards the ground surface (Figure 4.16). 

4.1.4 Pendine Burrows 

In 43 three boreholes have been either recovered or described within the burrows by private 

contractors for the Ministry of Defence. Detailed surveyed lithological descriptions were 

obtained from the British Geological Survey for all of these sites; however accurate positional 

data is available for only thirteen of the sites investigated (Figure 4.17). 

The lithology at eleven of these sites is summarised in figure 4.18. The sediments are dominated 

by well sorted medium to fine sand which is occasionally intercalated with either silty sand 

(CPT8) or coarse sand (CPT3, CPT2, CPT1 and CPT11). Although reworked shell fragments 

have been observed within some of the barrier sands, no calcareous material is described at any 

of the eleven sites summarised. None of the 43 lithological descriptions include any reference 

to bedding structures within the barrier dunes. 

4.1.5 Taf Estuary 

A large number of relatively short cores were obtained from two of the saltmarshes within the Taf 

Estuary (Figure 4.19). 
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Delacorse Marsh 

Five cores were recovered along a transect which extends from the cliff line to the edge of 

Delacorse Marsh. The marsh is located inland of Laugharne on the western side of the estuary 

(Figure 4.19). 

The sequence at site 004 (SN 3110 1174) is 93 cm deep and extends from 2.2 to 1.27 metres OD 

(Figure 4.20). The unconsolidated Holocene sediments are underlain by a hard impenetrable 

material, possibly bedrock, and is dominated dark greyish brown silty clay. 

At site 006 (SN 3113 1173) the sequence extends from 2.65 to -0.40 metres OD. The sediments 

at the base of the sequence fine upwards from silty sand into sandy silty. The latter is replaced 

at 0.26 metres OD by a clayey silt which ultimately grades into silty clay at 1.80 metes OD 

(Figure 4.20). 

The sequence at site 003 (SN 3117 1171) is 1.85 m deep and extends from 2.4 to 0.55 metres OD. 

As at site 006 silty sand fines upwards into sandy silt which subsequently grades into a dark 

greyish brown silty clay (Figure 4.20). 

The sequence at site 002 (SN 3120 1170) extends from 2.2 to 0.7 metres OD. At the base of the 

core the sediments fine upwards from silty sand into a thin bed of silty clay (Figure 4.20). At 

0.38 metres OD silty clay is replaced by a stratified sandy silt which extends to 0.95 metres OD. 

The latter grades into dark greyish brown silty clay, containing ferruginous nodules and organic 

material. 

Site 001 (SN 3126 1168) is located on the edge of Delacorse Marsh. The core recovered at this 

locale extends from 2.80 to 1.99 metres OD. The sediments at the base of the sequence are 

composed of dark greyish brown sand. At 2.11 metres OD the sand is replaced by silty clay and 

the boundary between these two units is marked by a gradual transition. 
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Black Scar Marsh 

Seventeen boreholes, one to one and a half metres deep, were recovered from Black Scar Marsh. 

The sediments at the base of the sequence are composed of well sorted medium to fine sand, 

which is underlain by boulder clay and bedrock. The sands fine upwards into highly stratified 

sandy silt which ultimately grades into stratified silty clay. The latter unit is on average one 

metre thick and extends to the contemporary marsh surface. 

Lithology of physiographic sub-environments within the Taf Estuary 

The contemporary saltmarshes deposits within the Taf are composed of stratified organic-rich silt 

and clay sized sediment; the proportion of organic matter and the level of bioturbation varies 

considerably within the near surface sediments. The sediments accumulating upon the low 

marshes contain a higher proportion of sand and are more highly stratified that the high marsh 

deposits. Marsh creeks contain a high proportion of silt and sand sized sediment. The sediment 

accumulating upon the mudflats are dominated by silt size sediment which is stratified by 

numerous sand lenses. In contrast sandflat deposits are composed of fine and medium grained 

sand. 

4.1.6 Summary 

The sequence in West Marsh is underlain by poorly sorted dense red gravel facies which contains 

large horizontally orientated clasts of sandstone. The relative depth to this facies, beneath the 

ground surface, varies throughout West Marsh and due to constraints imposed by the coring 

technique was located at only three of the nine sites investigated. 

At sites 9 and 11, located immediately behind the Burrows, the lithology is dominated by well 

sorted medium to fine sand, silty sand and sand with occasional shell fragments. These deposits 

represent medium to high energy environments located within close proximity to the barrier. 

These coarse deposits may represent washover or blowout sediment deposited during periods of 

barrier instability. Sites 7,12,6,5,3 and 4 are located landward of sites 8,9 and 11 in the back- 

barrier area immediately adjacent to the fossil cliff line (Figure 4.2). The lithology at these sites 

is dominated highly stratified fine grained silty clay and sandy silt which are characteristic of 
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tidally influenced low energy back-barrier environments. Two major organic beds have been 

described at sites 7,8,5,12 and 4. Similarities in their composition, structure and stratigraphic 

position suggest that these units may be laterally equivalent and that they represent two major 

phases of organic accumulation behind the Pendine Burrows within the West Marsh area, which 

are stratified by fine grained organic rich silts and clays. The contacts between the these organic 
layers and the overlying and underlying minerogenic sediments suggest a gradual rather than 

abrupt change from minerogenic to organic sediment and vice versa. 

The sediments in East Marsh are dominated by shelly sand, fine well sorted sand, silty sand, 

clayey silt and silty clay. These sediments may be underlain by poorly sorted red gravel though 

its depth and thickness is uncertain. The sediments in the centre of this area exhibit two phases 

of fine grained accumulation, which may have occurred during periods of barrier stability. The 

intervening coarser material may represent the deposition of washover or windblown sediments 

during periods of barrier instability. The deposits at the eastern end of this area exhibit a gradual 

fining upwards sequence which is overlain by washover deposits immediately behind the barrier. 

The thickness and extent of tidal-inlet sequences within East Marsh suggests that these deposits 

may have accumulated over a much shorter period than those described in West Marsh. 

The MOD test track section shows that the dune material described in this study is composed of 

predominately well sorted fine sand. The coarse material may represent washover by storm 

waves, with the fine material settling out of the water column as the sea-water slowly drained off 

the dunes. The data presented here suggests that the dunes do not rest upon fine grained silts and 

clays, provided that these deposits are not preserved at greater depth. If so, the barrier may not 

have retreated over back barrier deposits during periods of limited sediment supply and rapid sea- 

level rise. 

The deposits within the Taf Estuary are similar to those described along the East House section. 
The sediments fine upwards from a basal sand into silt clay at the top of the sequence. The large 

majority of the silt and clay, seaward of the Treathing' sea-wall (section 1.2.2), probably 

accumulated after the barrier had become established. 
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4.2 Provenance studies 

4.2.1 Heavy mineral analysis 

The heavy mineralogy of saltmarsh and back barrier sediments 

Heavy minerals present within samples taken from Delacorse marsh and the back barrier deposits 

are dominated by chlorite, zircon, amphiboles(blue/green amphiboles and hornblende), augite and 

apatite. The sediments also contain variable quantities of garnet, epidote, andalusite, rutile and 

tourmaline. Chloritoid and glaucophane have been identified but they occur in extremely low 

frequencies. The relative contribution of each of these minerals to the total non-opaque 

assemblage varies in response to the samples textural composition. Details regarding sample 

locations and their grain size characteristics are summarised in table 4.1. The heavy minerals 

identified in samples taken from the Taf Estuary and the back barrier deposits are summarised 

in table 4.2, as percentages of the non-opaque fraction. 

The heavy minerals contained within the fine sand at the base of core 006 are dominated by 

chlorite (22.3%), rutile (14.7%) and zircon (12.8%). These sands (006,4) also contains lesser 

amounts of apatite, garnet, augite, andalusite, tourmaline and epidote, as well as low numbers of 

zoisite, tourmaline and glaucophane (Table 4.2). Above this the sediments fine upwards into a 

poorly sorted silt. The heavy mineral fraction in level 006,3 is composed of chlorite (25.9%), { 

augite (15.7%), rutile (14.7%) and zircon (12.8%); the sample also contains lesser amounts of 

zoisite, apatite, hornblende, tourmaline, amphibole, andalusite and epidote (Table 4.2). Towards 

the top of site 006 the sediments grade from fine silt into clay and associated with this is a 

corresponding increase in the relative proportion of chlorite from 33.8 % (006,2) to 50.1% 

(006,1). Both of these units contain extremely small quantities of zircon, in comparison to the 

underlying sand (Table 4.2). The remainder of the heavy mineral fraction in sample 006,2 is 

composed of augite (16.7%) apatite (13.3%) and hornblende (13.3%), with occasional grains of 

zoisite, tourmaline, garnet, rutile, zircon and epidote. Other common heavy minerals within the 

clays at the top of the sequence (006,1) include hornblende (19%), augite (15.8%) and apatite 

(6.3%). These fine grained sediments also contain occasional grains of garnet, zoisite, 

tourmaline, andalusite and epidote (Table 4.2). 
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Sample 
number 

Core 
number 

Sample 
depth 
(m OD) 

Mean 
grain size 
(0) 

Sorting 
(4)) 

Skewness 
(4)) 

Kurtosis Description 

001,1 001 2.40 9.45 -3.13 0.18 0.78 Silty clay 

002,4 002 0.20 5.54 -3.09 -0.86 0.87 Silty sand 

002,3 002 0.35 8.79 -3.08 0.12 0.75 Silty clay 

002,2 002 0.80 7.62 -3.73 -0.20 0.55 Sandy silt 

002,1 002 1.80 9.88 -2.60 0.10 0.69 Silty clay 

003,3 003 0.45 3.06 -1.44 -0.66 0.50 Silty sand 

003,2 003 1.24 8.29 -3.07 -0.10 0.92 Sandy silt 

003,1 003 1.99 9.25 -2.35 -0.01 0.66 Silty clay 

006,4 006 -0.25 No data No data No data No data Silty sand 

006,3 006 0.20 No data No data No data No data Sandy silt 

006,2 006 1.35 No data No data No data No data Clayey silt 

006,1 006 2.25 No data No data No data No data Silty clay 

P2 PEN1 2.09 No data No data No data No data Clayey silt 

P1 PEN1 2.30 No data No data No data No data Silty sand 

CB4 Grab Surface 2.51 0.45 -0.36 1.83 Sand 

CB31 Grab Surface 1.58 0.64 -0.41 2.19 Sand 

CB55 Grab Surface 1.89 0.51 -0.27 0.98 Silty sand 

CB78 Grab Surface 2.05 0.44 -0.27 1.33 Sand 

CB101 Grab Surface 1.91 0.36 0.06 0.91 Silty sand 

CB128 Grab Surface 1.18 0.74 -0.26 1.65 Sand 

Table 4.1 The description and position of the samples examined using heavy 
mineral analysis 



Mineral 001.1 002,1 002,2 002,3 002,4 003,1 003,2 003,3 006,1 006,2 006,3 006.4 P1,1 P1,2 

Garnet 3.6 7.6 4.1 3.9 1.3 7.3 1.5 2.6 2.6 3.0 0.5 7.6 3.6 7.9 

Rutile 3.6 4.3 1.6 1.7 5.0 1.9 9.4 0.7 2.7 11.9 14.7 4.0 4.6 

Zircon 8.0 8.6 9.4 6.6 10.4 11.9 4.9 18.7 0.4 1.9 10.3 12.8 11.4 14.1 

Apatite 9.6 6.6 4.9 5.2 4.2 6.4 2.6 8.5 6.3 13.3 6.5 8.5 10.0 8.0 

Siderite 

Tourmaline 5.6 2.2 4.9 0.9 2.9 5.0 3.4 3.8 1.5 4.6 5.4 2.8 3.6 7.1 

Andalusite 2.8 1.3 3.2 0.9 0.8 3.7 2.6 4.7 1.1 3.8 3.2 5.7 6.8 2.5 

Brookite 

Staurolite 

Kyanite 

Amphibole 0.8 3.0 4.9 1.3 4.6 3.4 8.1 0.8 3.8 7.7 5.4 

Hornblende 1.2 4.3 3.2 2.1 3.3 3.2 5.2 5.1 19 13.3 . 5.9 5.7 1.4 2.5 

Barkevicite 1.2 

Blue Green 
Amphiboles 

7.2 

Glaucophane 0.4 0.4 0.4 

Chloritoid 0.4 0.9 1.0 1.4 

Chlorite 58.8 52.6 61.1 72.0 59.0 31.2 61.2 20.4 50.1 33.8 25.9 22.3 41.3 34 

Epidote 1.2 1.1 0.7 2.2 5.2 

Clinozoizite 0.4 

Zoisite 0.8 2.6 1.6 0.9 3.8 6.9 2.2 1.7 2.0 5.4 7.6 3.8 1.4 3.7 

Pyroxene 2.8 2.2 1.2 2.6 0.8 0.4 

Augite 1.2 4.3 1.6 3.1 5.9 14.2 10.0 15.7 15.8 16.7 15.7 6.6 4.1 2.5 

Diopside 

Opaque % 42.2 47.9 44.0 48.7 43.4 46.4 42.9 46.1 38.7 33.2 52.4 48.5 49.3 44.2 

Total 436 445 441 446 422 407 469 436 746 642 389 410 434 432 

Total Non-Op 252 232 247 229 239 218 268 235 457 428 185 211 220 241 

Table 4.2 Composition of heavy mineral assemblages from Delacorse Marsh and 
East Marsh 
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The poorly sorted fine sands at the base of site 003 are dominated by chlorite (20.4%), zircon 
(18.7%) and augite (15.7%) and contain lesser amounts of rutile, apatite, amphiboles, hornblende 

and andalusite, with the occasional grain of tourmaline and zoisite (Table 4.2). These sands fine 

upwards into very fine silt which is dominated by chlorite (61.2%). Level 003,2 also contains 
fewer numbers of augite, hornblende and zircon with the occasional grain of tourmaline, 

amphibole, apatite, zoisite, rutile and garnet (Table 4.2). At the top of the sequence the sediments 
fine into poorly sorted clay. The heavy minerals identified in level 003,1 contain relatively fewer 

numbers of chlorite (31.2%) and higher numbers of augite (14.2%), zircon (11.9%), garnet, 

zoisite, apatite, tourmaline and andalusite, than observed in the underlying very fine silt bed 

(Table 4.2). 

At the base of site 002 the sediment is composed of very poorly sorted medium silt which contain 

a heavy mineral fraction dominated by chlorite (59%). Level 002,4 also contains zircon (10.4%), 

blue/green amphiboles (7.2%) and augite (5.9%) together with occasional grains of apatite, 

zoisite, hornblende, tourmaline and garnet (Table 4.2). Overlying the latter unit is a thin layer 

of poorly sorted clay dominated almost exclusively by chlorite (72%). Level 002,3 also contains 

zircon (6.6%) and apatite (5.2%) with the occasional garnet, augite, rutile and amphibole (Table 

4.2). Above this the sediments grade into fine silt which is very poorly sorted and skewed 

towards the coarse fraction. The assemblage in level 002,2 is dominated by chlorite (61.1 %) and 

contains lesser amounts of zircon (9.4%), apatite (4.9%) and tourmaline (4.9%) with the 

occasional garnet and andalusite (Table 4.2). This sample also contains extremely low quantities 

of rutile, hornblende, zoisite, augite, pyroxene, glaucophane and chloritoid. The poorly sorted 

clay at the top of core 002 contains relatively lower number of chlorite minerals (52.6%). The 

remainder of the heavy mineral fraction in level 002,1 is composed of zircon (8.6%), garnet 

(7.6%), apatite (6.9%) and contains small quantities of rutile, augite, zoisite, pyroxene, 

tourmaline, andalusite and chloritoid (Table 4.2). 

The very poorly sorted clay at site 001 has a heavy mineral fraction composed of chlorite 
(58.8%) with lesser amounts of apatite (9.6%), zircon (8%) and tourmaline (5.6%). Level 001,1 

also contains low numbers of garnet, ruble, andalusite, pyroxene, epidote and augite (Table 4.2). 

The two samples taken from the back barrier area have very similar heavy mineral compositions 

to those described from Delacorse Marsh. Sample P2, which is a poorly sorted fine sand, has a 
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heavy mineral fraction dominated by chlorite (34%) and zircon (14.1%). The sample also 

contains apatite, garnet, tourmaline and amphiboles, with the occasional rutile, zoisite, andalusite, 

augite, hornblende and barevicite (Table 4.2). As the sediments fine upwards, into very fine 

poorly sorted silt, there is a corresponding increase in the relative proportion of chlorite (41.3%), 

apatite (10%), amphibole and andalusite minerals, with a decrease in the frequency of zircon 

(11.4%), garnet, rutile and tourmaline (Table 4.2). 

From the information outlined above it is clear that the highest concentrations of small dense 

minerals occur in the poorly sorted fine sands whereas the relatively larger lighter minerals are 

enriched in the silts and clays. For instance, there is a strong negative correlation (-0.71) between 

chlorite and mean grain size in contrast to the strong positive correlation (0.87) between zircon 

and mean grain size. The relationship between sample texture and heavy mineral composition 

may have significant implications upon the general validity of these results and their ability to 

trace sedimentary transport paths. 

The origin of sediments within the Taf Estuary and the barrier complex 

The sediments within the barrier complex and the Taf Estuary may originate from a number of 

possible sources, comprised mainly of drifts derived from either Welsh or Irish Sea Ice (Griffiths, 

1939; Cambell and Bowen, 1989). The proportion of foreign minerals within the Irish Sea Drift 

varies in response to the contribution from 'local' sources, and the Welsh drifts maybe subdivided 

on the basis of local erratics. Other sources include glacio-fluvial material of both Irish Sea and 

Central Welsh origin, together with other materials of mixed provenance. All these deposits 

contain their own characteristic suite of minerals which complicates any attempts to retrace 

sediment transport paths. 

In this study the estuarine and back-barrier sediments are compared to five potential source 

materials and six surface grab samples from Carmarthen Bay. The five potential sources include 

Late Devensian loess from Eastern Slade on the Gower Peninsula, till from Broughton Bay on 

the Gower Peninsula (deposit derived from Central Welsh Ice which has reincorporated Irish Sea 

till in Carmarthen Bay), Breconshire Drift (Welsh Origin) from Langland Bay on the Gower 

Peninsula, glacigenic material within the Taf Estuary and soil developing upon the Ordovician 

Llandeilo Mydrim shales northwest of St Clears (Table 4.3). 
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Mineral CB4 CB31 CB55 CB78 CB101 CB121 Taf 
Drift 

St Clears 
soil 

Loess Broughton 
Bay till 

Breconshire 
Drift 

Garnet 24.0 42.5 40.2 41.5 33.8 47.6 11.3 4.9 6.8 1.4 

Rutile 3.9 6.0 12.4 7.5 4.4 3.8 3.2 11.4 4.5 42.2 

Zircon 18.1 13.7 19.2 8.4 15.9 12.0 15.1 1.2 7.3 9.7 3.2 

Apatite 4.6 1.7 1.0 4.5 2.1 1.0 1.3 2.4 3.9 3.8 

Siderite 8.3 7.2 

Tourmaline 55.3 3.5 7.6 5.5 9.3 3.4 8.0 0.3 8.9 2.6 12.8 

Andalusite 6.9 2.8 1.0 1.0 1.0 0.6 2.9 

Brookite 3.3 0.95 

Staurolite 0.7 7.0 3.1 6.5 3.1 3.1 3.2 0.3 2.3 

Kyanite 1.6 1.4 3.4 2.0 1.4 

Amphibole 10.9 2.8 2.4 4.5 5.7 4.1 

Romblende 3.6 3.5 1.4 3.5 1.7 1.0 4.5 0.3 3.2 0.6 1.4 

Barkevicite 0.5 1.3 0.6 4.1 0.6 

Blue Green 
Amphiboles 

Glaucophane 0.7 0.6 0.3 

Chloritoid 0.3 

Chlorite 10.2 3.5 0.7 1.0 3.4 1.0 34,7 95.4 41.5 59.7 32.3 

Epidote 1.3 1.3 0.6 0.3 

Clinozoizite 1.2 4.1 0.7 

Zoisite 2.6 0.7 0.7 2.0 2.7 3.4 1.2 0.3 3.2 2.6 

Pyroxene 3.1 0.5 0.3 3.5 

Augite 3.6 10.2 2.4 4.5 2.6 2.7 6.8 3.2 1.3 

Diopside 1.4 1.4 0.8 

Opaque % 58.9 62.3 62.8 53.8 61.2 63.8 68.9 31.8 91.0 82.9 95.5 

Total 740 755 782 433 748 806 1000 481 1249 1803 4703 

Total Non-Op 304 285 291 200 290 292 311 328 123 308 211 

Table 4.3 Composition of heavy mineral assemblages from potential source 
materials. 
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The heavy minerals within the till from Broughton Bay, the Local Welsh till, the drift within the 

Taf Estuary and the loess from Eastern Slade are dominated by chlorite and contain greater or 
lesser amounts of zircon, garnet, rutile and tourmaline (Table 4.3). In seeking the source of 

minerals within the Irish Sea till Griffiths (1939) computed a heavy mineral assemblage typical 

of that deposit. The critical assemblage of foreign minerals, contained within the Irish Sea till, 

consists of staurolite, kyanite, chloritoid, epidote, andalusite and bluelgreen amphiboles 
(Griffiths, 1939; Case, 1983). If these minerals are identified in a particular deposit were derived 

from materials introduced into the area by the invasion of Irish Sea Ice. 

The extremely high proportion of chlorite (59.7%) in till from Broughton Bay represents the 

incorporation of Lower Palaeozoic Shales by the advancing ice mass (Griffiths, 1939). The high 

frequency of 'local' minerals within this till results in a reduction in the total number of foreign 

minerals derived from Irish Sea till reincorporated in Carmarthen Bay, which only account for 

7% of the total non-opaque heavy mineral assemblage in this sample (Table 4.3). 

Within the Taf Estuary a morainic ridge of poorly sorted red diamicton extends from the 

Devonian Old Red Sandstone cliff line, on the east side of the estuary, beneath the saltmarsh and 

across the sand and mudflats. This feature, known as Black Scar, is thought to represent either 

a halt stage or a slight readvance during the retreat of the Towy glacier in the Late Devensian 

(Griffiths, 1939; Bowen, 1970). A sample of this drift, taken from a field above the saltmarsh, 
has relatively high percentages of zircon, garnet and tourmaline, with chlorite amounting to only 
34.7% of the non-opaque heavy mineral assemblage (Table 4.3). The relatively high percentages 

of garnet, zircon and tourmaline together with the deposits diagnostic red colour reflects the close 

proximity of Devonian Old Red Sandstone. Foreign minerals within this deposit indicate that, 

if this feature was formed by a slight readvance in the retreating Towy glacier, the ice must have 

reincorporated Irish Sea till (Griffiths, 1939). 

The occurrence of kyanite and blue/green amphiboles within the windblown sediments from 

Eastern Slade indicates that these materials may be partly derived from Irish Sea till. 

The heavy mineral suite within the soil sample, taken from the floodplain adjacent to the River 

Taf, is composed almost exclusively of chlorite (95.4%) with occasional grains of zircon, 

tourmaline, staurolite, blue/green amphiboles, hornblende, epidote and zoisite (Table 4.3). The 
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trace amounts of foreign minerals within these soils may be derived from the considerable 

quantities of drift to the north and west of St Clears. These drifts are thought to represent the 

remains of an outwash fan generated by the Towy glacier during the Late Devensian maximum 

(Griffiths, 1939). As the Towy glacier is believed to have reincorporated Irish Sea till, these 

deposits contain both Irish Sea and Central Welsh material. 

Sediments offshore in Carmarthen Bay are composed of medium to fine sand which is well to 

moderately well sorted and has either a strong negatively skewed or symmetrical distribution 

(Table 4.1). The heavy mineral fractions in all six Carmarthen Bay samples are dominated by 

an assemblage composed of garnet, zircon, augite, apatite, hornblende, and amphibole (Table 

4.3). In contrast to the estuarine and back barrier sediments these sands contain very low 

frequencies of chlorite, which on average does not amount to more than 3.5% of the non-opaque 

assemblage. The relative proportion of foreign minerals within the Carmarthen Bay sands varies 

from 7.9% (CB55) to 11.2% (CB31) and includes andalusite, staurolite, kyanite and epidote 

grains. 

All fourteen samples taken from the back-barrier and saltmarsh sediments contain foreign 

minerals derived from Irish Sea Drift. Within the Delacorse Marsh sediments the relative 

proportion of foreign minerals is highest in the sands at the base of the sequence (4.7% to 10.0%) 

and lowest in the clays at the top of the sequence (1.3% to 3.7%). This foreign component is 

composed of andalusite, epidote, chloritoid and blue/green amphiboles; none of the samples 

contain the whole suite of foreign minerals. A similar decrease, in the observed frequency of 

foreign minerals, occurs in the back-barrier deposits. As the sediments fine upwards from sand 

(P1) into silt (P2) there is a corresponding decrease in the frequency of foreign minerals from 

6.8% to 2.5%. The presence of foreign minerals within all the estuarine and back-barrier samples 

analysed is undisputable evidence that these sediments are partly derived from Irish Sea till. 

Principle Component Analysis (PCA), applied to the untransformed non-opaque heavy mineral 

data, was utilised in order to compare the complex multivariate data sets identified in this study. 

The correlation coefficients derived from the first and second principle components account for 

66.1% and 22.6% of the total variance within all twenty five samples. By plotting PC 1 and PC2 

on the y- and x-axes it is clear that the heavy mineral compositions of the Carmarthen Bay sands 

are very different to the saltmarsh and back-barrier deposit (Figure 4.21). 
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Barrie (1978) examined the distribution of heavy minerals within the surficial sediments in the 

Bristol Channel. He indicates that there is a progressive increase in the concentration of garnet 

from the deeper outer channel to mid-depth (approximately 30 metres below chart datum). As 

the channel shallows the relative proportion of garnet decreases and reaches a minimum in areas 

of shoaling. Barrie (1978) also discovered that, due to its small size and high density, zircon is 

concentrated on the beaches exposed to the intense southwesterly storms, such as Rossili and 

Kenfig. Although the sands at Ginst Point have not been analysed it is likely that the same 

processes concentrate zircon on the beaches adjacent to the Taf Estuary. This indicates that the 

variance accounted in PC1 (Figure 4.21) represents selective sorting within Carmarthen Bay, 

whereby differential entrainment, transport, and settling effectively concentrate zircon on the 

beaches and garnet offshore. Similar concentrations of garnet are not found in any of the 

potential sources analysed in this study. 

The second principle component accounts for the major source of variance within the estuarine 

and back-barrier deposits (Figure 4.21). Although the back-barrier silt (Pl) and the clay at the 

top of core 002 have heavy mineral compositions very similar to those within the Irish Sea Drift 

and loess, their foreign component (2.5% and 1.3% respectively) is much lower than in the sands 

at the base of the sequence. This indicates that the similarity results from the relative proportions 

of the major constituents within the heavy fraction and does not reflect the dissimilarity in the 

relative proportion and composition of the foreign component. The remainder of the silts and 

clays within Delacorse Marsh have heavy mineral assemblages comparable to soil sample, and 

the sands are similar in composition to the drift within the Taf Estuary. None of the marsh or 

barrier complex sediments analysed have compositions similar to the Breconshire Drift from 

Langland Bay. 

Although at present there is a net westerly transport of material out of the Bristol Channel, recent 

studies suggest that in Carmarthen Bay, as in the Severn Estuary, bedload parting results in 

mutually evasive sediment transport (Stride and Belderson, 1990,1991). Material is transported 

onshore by the flood tide and contributes to the infilling of the Taf Estuary. This hypothesis was 

supported by Jago (1974,1980) who indicates that the Taf Estuary is currently being infilled by 

sand transported on-shore. As sea-level is believed to have attained its present level 

approximately 5,000 years BP (Heyworth and Kidson, 1982; Allen and Rae, 1988) it is likely that 
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the modem hydrodynamic regime was established soon after this time. This implies that any fine 

grained material contained within the offshore sediments, not removed by the advancing high 

energy shoreline, would have been removed rapidly. As the Bristol Channel and Carmarthen Bay 

sediments contain very little chlorite it is extremely unlikely that the chlorite within the estuarine 

sediments is derived from offshore. Barrie (1978) argues that sediment is presently entering the 

Bristol Channel via the rivers Taf, Towy and Severn. The Lower Palaeozoic shales within the 

catchment areas of the rivers Taf and Towy maybe a source of the large quantities of chlorite 

contained within Delacorse Marsh and back-barrier deposits. 

The relatively high proportion of chlorite in the wind blown sediments on the Gower Peninsula 

suggests the tills derived from Irish Sea and Welsh ice, exposed in Carmarthen Bay and the 

Bristol channel, contained a relatively large amount of this mineral. As the transgressing high 

energy surf-zone, enhance storm waves and tidal scour, reworked the Pleistocene deposits on the 

continental shelf the fine grained material contained within these deposits would have been 

rapidly removed. The sands remaining offshore were subsequently reworked and selectively 

sorted; the small dense heavies became concentrated in the beach and estuarine sands whereas 

the large light minerals became concentrated in the estuarine and back-barrier silts and clays. 

Therefore when this portion of south Wales was first inundated a large proportion of the fine 

grained material and chlorite was supplied from the reworking of offshore sediments. During the 

later part of the Holocene this supply must have decreased as at present the contribution of fine- 

grained sediments from offshore is insignificant (Allen, 1991). 

The analysis therefore reveals that at present heavy minerals are selectively sorted offshore and 

transported onshore by the flood tide (Jago, 1974,1980). Once in the estuary the sands are mixed 

with material rich in chlorite and the subsequent distribution of these minerals in the estuarine 

sediments depends upon selective sorting by differential entrainment and settling. The fine- 

grained sediment and chlorite presently accumulating within the estuary is either derived from 

freshwater input via the Taf and Towy (Barrie, 1978), or is derived from the reworking of fine 

grained coastal sequences exposed within Carmarthen Bay. The relative decrease in the 

proportion of chlorite in the sediments at the top of cores 003 and 002 may represent either a 

temporal decrease in the contribution of chlorite from offshore sources or the complex patterns 

of sedimentation across the salt marsh. 
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Although it is clear that the sands within the barrier complex and the Taf Estuary are derived from 

Central Welsh and Irish Sea Drift, the exact origin of the fine-grained component supplied during 

the late-Holocene is uncertain. The study is limited by the small number of samples analysed and 

any conclusions drawn from this discussion should be regarded as preliminary. In this instance 

heavy mineral analysis reveals how sediment provenance can be evaluated by using a critical 

assemblage of minerals and how selective sorting mechanisms have operated throughout the 

Holocene in the back-barrier area and the Taf Estuary. These processes have a significant 

influence over the ultimate composition of heavy minerals contained within the sediments 

analysed and cannot be ignored when assessing sediment transport paths. 

4.2.2 X-Ray Diffraction Analysis 

Clay mineralogy and indications of sediment source 

The XRDA results reveal that there is little or no variation in the clay mineral compositions 

within the estuarine or back barrier sediments (Figure 4.22). The samples are dominated by illite 

and contain lesser amounts kaolinite, smectite, vermiculite, chlorite and irregularly interstratified 

illite/vermiculite. Analysis of the clays within the Carmarthen Bay sample (CB101), the surface 

samples from Ginst Marsh and the river bank at St Clears show that these samples are extremely 

similar in composition to the samples taken from core 006,103 and the back-barrier sediments 
(Figure 4.23). The data therefore indicates that there is relatively little spatial or temporal 

variation in the clay mineral compositions within the samples analysed. 

Allen (1991) found that the clay minerals contained within the Severn Estuary are very similar 

in composition to the clays within the Taf Estuary and the adjoining back-barrier area. The 

assemblage is dominated by illite, expandable minerals, kaolinite and chlorite, which appear to 

be relatively unchanged throughout the tidal sediments. Allen (1991) argues that as the 

contribution of fine grained sediments from offshore is insignificant, the similarity between the 

fine grained saltmarsh deposits and the river input indicates the fine grained material within the 

Severn is derived from the river catchment. He also suggests that the intensity of the wind-wave 

climate and the strong tidal currents make the clay mineralogy within the Severn Estuary far less 

variable than within the river catchment. 
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Allen (1991) indicates that illite may be derived from the Lower Palaeozoic rocks in the Welsh 

Basin and the Triassic beds in the west Midlands and the margins of the Bristol Channel. 

Kaolinite may be derived from the Upper Palaeozoic sandstones within the south Wales coalfield, 

the Jurassic (Mesozoic) rocks in the Cotswolds and the Jurassic rocks in the Severn lowland. 

Chlorite on the other hand is thought to have been derived from the Old Red Sandstone 

(Devonian) in south-east Wales and the Welsh borders. This mineral may also be supplied by the 

older Carboniferous Limestone in south Wales or by the Lower Palaeozoic shales and slates 

within the Welsh Basin (Figure 4.24). Allen (1991) concludes that the macro-tidal flood 

dominated inner Bristol Channel and Severn Estuary constitute a system in which the 

provenances of fine and coarse sediment differ sharply. The fines are supplied by fresh-water 

input whereas the sands are supplied from well sorted reworked glacigenic material offshore. 

It is therefore likely that the similarity in the composition of the clay minerals contained within 

the estuarine and back barrier sands also results from intense mixing by strong tidal currents and 

wave activity. All the clay minerals contained within the samples analysed may be supplied from 

source rocks within the catchments of the rivers Taf, Towy and Gwendraeth. As illite is the most 
dominant clay mineral in marine sediments (Krouskopf, 1982; Wilson, 1987) it is not surprising 

that it is the major constituent within the sediments analysed. 

The fines presently accumulating within the Taf Estuary may therefore be derived from fresh- 

water input. As no early Holocene sediments have been analysed conclusions cannot be made 

with regard to the long term provenance of fines within this system. It is possible that with 

changing landuse patterns and forest clearence, in the surrounding landscape, that the rivers 
draning into Carmarthen Bay were a major source of fine grained material during the Holocene. 

Furthermore, as the major proportion of material within the Irish Sea and Central Welsh Drifts 

is derived from local sources it would be extremely difficult to elucidate changing fine grained 

sediment transport paths on the basis of clay mineralogy. 
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Figure 4.24 The major sources of clay minerals within the Severn Estuary and the 

lower Bristol Channel (Allen, 1991). 
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Although XRDA is less diagnostic than provenance studies based upon heavy mineral data, the 

clay mineral assemblages reflect the intensity of the hydrodynamics within Carmarthen Bay and 

the Taf Estuary and indicate that the sediment currently accumulating within the Taf Estuary may 

be derived from fresh water input. 
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4.3 Environmental Magnetism 

4.3.1 Description and interpretation of geomagnetic measurements 

West Marsh 

The whole core initial susceptibility measurements (k) for sites 7,12,9,4 and 11 are presented 

in figure 4.25; the measurements are quoted in SI units and relate to susceptibility per unit volume 
(Thompson and Oldfield, 1986). 

At site 7 the lower nine metres of the sequence exhibit extremely variable levels of susceptibility, 

which range from 0 to 468 SI (Figure 4.25a). The highest peaks in k are measured in stratified 

silty clay beds, whereas the lowest k values correspond to organic detrital units. For instance, the 

black organic detritus between 3 and 4 metres depth contains little or no minerogenic material and 

consequently has no measurable k (Figure 4.25a). Above 3 metres depth the k values increase 

slightly, as the sediments fine upwards from shelly sand into silty clay, and remain relatively 

constant at 15 SI until approximately 0.20 m depth where k increases to 48 SI in the oxidised top 

soil (Figure 4.25a). 

The susceptibility measurements at site 12 display a similar patterns to those obtained from site 
7. In the lower nine metres of the sequence k is extremely variable and values range from 0 to 

200 SI. The k peaks are measured in the silty clay and sandy silt beds, whereas the minimum 

values corresponds to organic detrital units (Figure 4.25b). Between 3 and 1 metres depth k 

increases initially to 31 SI, as the sediments grade from organic detritus into silty clay, and then 

diminishes as the relative proportion of organic detritus once again increases. Above this k 

gradually decreases to 9 SI as the deposits coarsen upwards into mottled brown sandy silt. There 

is no peak in susceptibility in the oxidised top soil at site 12 (Figure 4.25b). 

The susceptibility of the sands, silts and clays at site 9 is far less variable than at those sites 

previously described (Figure 4.25c). Although the k does vary, background levels decrease from 

15 SI at 7 metres depth to 6 SI at 0.4 metres depth, and a high k peak of 72 SI is measured in the 
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shelly sand at 5.60 metres depth. Susceptibility peaks in the upper 0.3 metres of the sequence; 

this corresponds to extremely oxidised sand just beneath the ground surface. 

The k measurements at site 4 are extremely variable and range from 0 SI, in the organic detrital 

units between 2 and 3 metres depth, to 153 SI in the intervening silty clays (Figure 4.25d). The 

background levels of k increase from 22 SI in the red gravel layer at the base of the sequence to 

53 SI in the overlying silty clay. Above 2 metres depth the k remains relatively constant at 22 SI 

and does not peak in the oxidised top soil (Figure 4.25d). 

The sediments at site 11 also exhibit extremely variable levels of susceptibility which range from 

4 SI, in the sands at the top of the sequence, to 65 SI in the silty clay between 9 and 10 metres 

depth (Figure 4.25e). In the upper metre of the sequence there is a sharp increase in susceptibility 

from 9 SI to 15 SI; this corresponds to the sediments fining upwards from well sorted fine sand 

into oxidised silty sand. 

Susceptibility is directly proportional to the total quantity and size of the magnetic grains 

contained within a sediment (Thompson and Oldfield, 1986; Maher, 1988; Maher and Taylor, 

1988; Oldfield, 1991; Verosub and Roberts, 1995). This magnetic property is very sensitive to 

the presence of coarse multidomain grains and the finest superparamagnetic grains. The level of 

k, obtained from the boulder clay at the base of site 4, indicates that the peaks in susceptibility 

measured at sites 7,12,9,4 and 11 are much higher than in the material from which they were 

potentially derived (Section 4.2.1). Chemical analysis of two samples taken from sites 4 and 7 

reveal that these sediments contain greigite (Jenkins pers com., 1996). The formation of 

authigenic iron sulphides, such as greigite, in the anoxic sands, silts and clays at sites 7,12,9,4 

and 11 would result in the extremely high and variable levels of susceptibility measured at these 

locales. The extremely low levels of k measured in the'organic detrital units at sites 7,12 and 11 

simply reflects the insignificant quantity of minerogenic material contained within these deposits. 

The enhancement of k in the near surface sediments at site 7,9, and 11 may be associated with 

the positive transformation of paramagnetic iron to ferrimagnetic or antiferrimagnetic forms 

within the oxidised top soil. 

The majority of the variation in susceptibility within West Marsh is caused by the 

postdepositional processes which, under anoxic sulphide rich conditions, produce highly 
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magnetic authigenic iron sulphide minerals. Consequently, susceptibility measurements cannot 

be used to correlate specific depositional events within this area of the sedimentary basin. 

East Marsh 

A series mass specific magnetic measurements, percentages and quotients, obtained from the 

sediments recovered at sites 17,20,21,22,23 and 24, are plotted in figures 4.26 to 4.31. 

The detailed measurements obtained from site 17 display differences in the composition of 

magnetic mineral assemblages within and between sedimentary units (Figure 4.26). The low field 

susceptibility measurements (XLF) remain low and relatively constant throughout the sequence, 

as does frequency dependent susceptibility (FD%). This suggests the sediments contain little 

coarse multidomain or extremely fine superparamagnetic material. Furthermore, there is 

relatively little material at or near to the small single domain / superparamagnetic boundary 

(SSD/SP c0.02pm). The shelly sand between 5.06 and 6.00 metres depth contains variable 

amounts of fine grained ferrimagnetic minerals with lesser amounts of imperfect antiferrimagnets; 

the magnetic component becomes coarser towards the top of this unit. SIRM values in the 

stratified clays, between 4.70 and 5.06 metres depth, indicates that the relative proportion of 

remanence carriers is greatest in the fine grained lenses; the magnetic assemblage is composed 

of generally coarse pseudo-single domain (PSD) and multidomain (MD) ferrimagnets with lesser 

amounts of imperfect antiferrimagnets and fine grained stable single domain grains (SSD). The 

silty sand unit which extends from 4.50 to 3.17 metres depth shows relatively little variation in 

the composition of the magnetic component (Figure 4.26). Between 3.15 and 2.00 metres depth, 

the relative proportion of remanence carrying minerals contained within the highly stratified silt, 

highly stratified silty clay, silty sand and clayey silt units increases. This is caused by greater 

quantities of coarse ferrimagnetic minerals, such as magnetite or maghaemite (Figure 4.26). 

Above this the relative proportion of remanence carriers decreases, as the sediments fine into grey 

silty clay, and the magnetic component is largely composed of fine grained antiferrimagnetic 

material, such as haematite or geotite. As the sediments grade from silty clay into sandy silt the 

magnetic component, composed mainly of imperfect antiferrimagnets, becomes coarser and the 

total amount of remanence carrying minerals reaches a minimum in the sandy silt at 1.02 metres 

depth. The SIRM values indicate that the sands at 0.6 metres depth contain a greater proportion 

of remanence carriers (Figure 4.26), which are largely composed of fine grained ferrimagnets and 
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imperfect antiferrimagnets. The sands at 0.3 metres depth exhibit lower levels of susceptibility 

and contain an extremely small proportion remanence carrying minerals. These sediments also 

contain a greater amount of material at the SSD/SP boundary. 

The shelly sands at the base of site 24 exhibit relatively low levels of Xlf and SIRM and the 

magnetic minerals are dominated by coarse antiferrimagnetic and ferrimagnetic material (Figure 

4.27). As the sediments grade into fine well sorted sand the Xlf and SIRM increases sharply. The 

magnetic assemblages within this deposit do vary and are composed of either fine SSD, at or near 

to the SSD/SP boundary, and PSD ferrimagnets or coarse imperfect antiferrimagnets (Figure 

4.27); Xlf, FD% and SIRM values decrease towards the top of this unit. The overlying silty clay 

contains a high proportion of coarse imperfect antiferrimagnetic material. 

At site 20 the Xlf is greatest in the silty clay beds, at 3.85 and 1.09 metres depth, and remains 

relatively constant through the intervening silts and sands (Figure 4.28). These two clay beds 

contain a relatively high proportion or remanence carrying minerals, which are composed of 

predominately fine small single domain and pseudo single domain ferrimagnets, such as 

magnetite or maghaemite. The magnetic minerals, within the silts and sands at this locale are 

generally larger than in clay beds, and are dominated by imperfect antiferrimagnets. 

As the sediments fine upwards from shelly sand into sandy silt and then into silty clay at site 23, 

there is a corresponding increase in the levels of Xlf and the total number of remanence carrying 

minerals (Figure 4.29). The silts and sands between 1.7 and 4.9 metres depth contain magnetic 

assemblages composed of predominately fine imperfect antiferrimagnets and ferrimagnets. 

However, the silt at 1.42 metres depth is dominated by coarse ferri- and imperfect 

antiferrimagnetic minerals. As the sediments fine upwards into silty clay the magnetic 

component becomes finer, the relative proportion of viscous grains at the SSD/SP boundary 

increases as does the relative proportion of imperfect antiferrimagnetic material. 

The Xlf and FD% measurements at site 21 exhibit little or no variation and suggest that only 

small proportion of the magnetic minerals at this locale lie at the small single domain / 

superparamagnetic boundary (Figure 4.30): The relative proportion of remanence carriers peaks 

in the shelly sand at 3.19 metres depth and gradually diminishes as the sediments fine upwards 

into sandy silt and silty clay. The sands at 3.19 metres depth are dominated by fine grained SSD 
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and PSD ferrimagnets, whereas the silts and clays above this level contain a relatively coarser 

magnetic component. The proportion of imperfect antiferrimagnetic minerals increases as the 

sediments fine upwards, reaching a maximum at 0.28 metres depth. 

The Shelly sand at the base of site 22 exhibits low levels of Xlf and the magnetic component is 

composed of relatively fine grained ferrimagnetic minerals and imperfect antiferrimagnets (Figure 

4.31). As the sediments fine upwards into sandy silt there is a corresponding increase in the 

concentration of fine SSD and PSD ferrimagnets (Figure 4.28). The silty clay at 2.13 metres 

depth exhibits relatively high levels of Xlf and SIRM, which indicates an increase in the quantity 

of both magnetic grains and remanence carrying minerals. The clays at this depth contain a large 

quantities of fine SSD, PSD and MD grains of both imperfect antiferrimagnetic and ferrimagnetic 

material. As the sediments coarsen upwards into well sorted sand there is a corresponding 

decrease in Xlf and SIRM (Figure 4.31). The magnetic component within this unit is composed 

largely of coarse imperfect antiferrimagnets and ferrimagnets. 

The magnetic mineral compositions of back-barrier deposits in East Marsh vary within and 

between the sedimentary units. As no grain size analysis was undertaken, in conjunction with 

the magnetic measurements, no attempt can be made to quantify the effects of grain size upon the 

magnetic parameters measured. It is clear that the composition of magnetic minerals contained 

within the back-barrier complex sediments are extremely variable making any attempt to correlate 
individual depositional units very difficult. The origin of SSD grains at or near to the SSD/SP 

boundary is uncertain as these minerals may form through postdepositional processes; however 

the large MD grains are likely to be detrital in origin (Oldfield, 1994). 

4.3.2 Summary 

The environmental magnetic measurements obtained from West Marsh and East Marsh prove 

extremely complex. The whole core susceptibility measurements from sites 7,12,9,4 and 11 

are overwhelmed by the susceptibility of authigenic greigite which obscures any subtle changes 
in susceptibility within the lower nine metres of the sequence. Consequently, any attempt to 

correlate specific depositional units within this area is significantly impaired. 
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Similarly, the complex nature of the more detailed measurements, obtained from sites 17,24,20, 

23,21 and 22, confounds any attempt to correlate deposits within East Marsh. The measurements 

do indicate the general composition of the magnetic material within these sediments, and displays 

how this fraction varies independently from the texture of sediment. 

Before designing the experimental procedure, when using environmental magnetic techniques, 

the objectives of the study have to be clearly defined. It is inevitable that even when simply 

attempting to correlate sedimentary units, on the basis of their induced magnetic properties, a 

whole series of questions are raised regarding the validity of the measurements made. In this 

instance the magnetic measurements reflect the biological, chemical and physical complexity 

within this coastal barrier system. 
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Chapter 5 

Geophysical surveys 

5.1 Seismic surveys 

5.1.1 Seismic refraction surveying 

Description of refraction data 

Seismic refraction data were acquired from 50 lines within the Pendine Burrows, West Marsh and 
East Marsh. However, due to poor data quality only 37 lines provide information suitable for 

refraction analysis (Figure 5.1). The data were processed using intercept times rather than the 

Generalised Reciprocal Method (Palmer, 1980), because there was insufficient overlap of the 

refraction arrivals on the normal and reverse spreads of each line. Consequently, refractor depths 

have only been determined for points immediately beneath the shot positions. Line positions, the 

number of layers, the velocity structure and corresponding refractor depths are summarised in 

table 5.1. 

Four seismic facies have been identified, on the refraction data acquired within West Marsh, East 

Marsh and the Pendine Burrows, on the basis of compressional wave data. Each of these layers 

exhibits a range of seismic velocities and all four are present at only seven of the 37 sites analysed 

(Table 5.1). 

For the upper most horizon (L1) the seismic velocity ranges from 241 to 590 m/s whereas the 

layer thickness varies between 0.8 to 3.92 metres (Table 5.1). As mentioned in section 3.1.5 

velocities lower than the velocity through water (1500 m/s) generally indicate that air, gas or 

methane fills some of the pore spaces within the medium of propagation. Low-velocity layers 

(LVL) generally occur on land near the surface; they are characterised by low variable seismic 

velocities and the base of the LVL usually coincides roughly with the water table (Sheriff and 

Geldart, 1995). It is therefore possible that the low seismic velocities measured in L1 correspond 

to the aerated zone above the water saturated zone within the Pendine Burrows, West Marsh and 

East Marsh. The thickness of L1 is controlled by the water table height and the position of the 
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Velocities metre sec Depth to re ractore metres 
Line Eastings Northings Number Layer 1 Layer 2 Layer 3 ayer 4 Ht H2 H3 

Number Leers 
1 230500 208110 3 370 1348 4125 1.07 29.71 

230500 207983 0.8 28.44 
2 224612 208270 3 350 1897 5376 4.1 36.58 

224540 208260 3.78 34.5 
3 226990 208700 4 345 1481 2117 3486 1.67 18.03 39.64 

226940 208585 1.99 22,1 41.13 
4 227320 208560 4 241 1645 2222 3486 0.82 17.75 38.98 

227335 208440 1.44 22.41 41.55 
5 226220 208470 3 241 1447 3981 1.94 28.85 

226330 208410 1.62 31.05 
6 227535 208830 4 368 1527 2125 4640 1.48 12.8 37.2 

227655 208860 1.58 23.15 51.44 
7 232625 207670 2 1630 3945 24.58 

232570 207530 23.35 
232475 207460 25.97 

8 231720 208325 4 460 1472 2417 6076 1.08 18.03 57.1 
231675 208430 1.23 20.61 48.63 

9 231370 208750 3 419 1477 3742 2.24 27.09 
231310 208870 2.61 26.7 

10 231740 207640 4 404 1574 2250 7484 2.4 18.8 64.2 
231700 207740 2.46 36.3 62.3 

11 228754 208179 3 590 1120 6965 1.6 29.37 
228754 208053 3.92 25.29 

12 228740 208400 3 441 1522 5951 1.56 20.52 
228740 208510 1.89 19.62 

13 228737 208825 3 441 1424 4069 1.95 26.1 
228711 209018 1.67 22.43 

14 229180 209439 3 419 1512 4428 1.56 18.09 
229180 209319 1.99 20.43 

15 229765 209570 3 404 1533 3886 1.68 18.41 
229770 209430 1.5 21.2 

16 229980 208545 3 397 1482 4423 1.9 28.3 
230020 208663 1.5 26.3 

17 226490 208830 3 384 1410 3021 2.6 29.2 
226525 208710 2.25 22.77 

18 227445 209275 4 427 1250 1923 3907 2 8.21 36.3 
227380 209365 3.14 13.72 22.49 

19 227925 209385 3 367 1992 4056 1.97 28.57 
227920 209270 2.2 38.86 

20 227895 208725 3 392 1544 2979 1.54 23.31 
227840 208820 1.72 20.31 

21 228000 208400 3 416 1610 3607 1.94 27.88 
228070 208305 1.4 28.33 

22 228110 208260 3 416 1509 3748 1.3 27.19 
228135 208140 1.3 25.54 

23 228190 208100 3 418 1515 3909 1.33 36.08 
229140 208000 1.33 23.75 

24 230345 208460 3 403 1669 3943 2.45 39.82 
230345 208345 1.83 36.28 

25 229598 208506 3 401 1488 3979 2.145 30.23 
229598 208339 2.47 34.08 

26 230940 209320 3 401 1458 4483 1.55 25.76 
231040 209180 2.15 26.64 

27 227630 209065 3 401 1783 3873 2.26 25.58 
227625 209180 1.91 32.8 

28 225440 208295 3 385 1495 3486 1.67 31.76 
225410 208410 2.7 39.48 

29 225130 208450 3 401 1157 3630 1.05 17.36 
225085 208490 1.06 22.03 

30 225510 208190 3 401 1452 3213 1.58 25.98 
225545 208297 1.68 37.5 

31 224200 208205 3 401 522" 5172 2.64 15.07 
224210 208145 2.9 13.92 

32 226000 207970 3 401 1708 3379 2.34 35.02 
226015 208060 2.27 22.16 

33 226620 208140 3 401 1553 6464 2.36 39.2 
226630 208015 1.88 39.48 

34 227000 207675 3 401 1896 4700 2.77 44.03 
226980 207545 2 38.92 

35 227745 207570 3 401 1644 10761 2.08 54.71 
227805 207450 0.8 57.13 

36 227345 207840 3 401 1573 2920 0.88 26.22 
227505 207780 1.41 27.43 

37 226700 209280 4 264 1247 2183 4371 1.41 12.19 30.82 
226750 209180 0.99 9,39 30.19 

38 226870 208860 3 295 1524 2839 2.08 29.98 
226910 208755 2.47 27.89 

'" Partially saturated sand with a compressional wave velocity slightly > V1 

Table 5.1 Seismic velocities and refractor depths obtained from refraction lines within the dunes 
and the back-barrier area 
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line relative to Ordnance Datum (OD) such that low water tables and increased height above OD 

increases Ll thickness. These assumptions are supported by data acquired from line 7, located 

on the foreshore at Ginst Point (Figure 5.1). Because the foreshore sediments were saturated no 

near-surface LVL was identified beneath line 7 (Table 5.1). 

Layer 2 (L2) velocities range from 1120 to 1708 m/sec and thicknesses vary between 6.21 to 

56.33 metres (Table 5.1). The seismic velocities measured in L2 are characteristic of partially 

or fully saturated unlithified sediments such as mud or sand (Telford et al., 1990). The velocity 

range exhibited by L2 may be caused by variations in lithology (particle size), density, the effect 

of overburden pressure or the degree of saturation (Sheriff and Geldart, 1995). For instance, a 
deeply buried and fully saturated sand, subject to overburden pressure, is likely to exhibit higher 

seismic velocities than a partially saturated mud at or near to the ground surface. L2 may 

therefore represent partially or fully saturated unconsolidated sediment beneath the Pendine 

Burrows, West Marsh and East Marsh. 

Layer 3 (L3) velocities range from 1783 to 2250 m/sec and thicknesses vary from 8.77 to 45.4 

metres (Table 5.1). The seismic velocities measured in L3 are characteristic of glacial diamicton 

such as gravel and boulder clay (Telford et al., 1990; Griffiths and King, 1982; Bennell pers 

com., 1996). The large variation in velocity may be due to changes in the consolidation state 

and/or the composition of the deposit. L3 may possibly represent a layer of glacial diamicton 

beneath the Pendine Burrows, West Marsh and East Marsh. 

Layer 4 (LA) is the lowest layer and has been identified beneath all 37 sites analysed. Velocities 

range between 2839 and 7484 m/s. These velocities are characteristic of lithified sandstone and 

limestone, both of which exhibit a wide range in velocity (Griffiths and King, 1982; Telford et 

al., 1990). The Vp velocity of 10,761 m/s for IA beneath line 35 is extremely high and must be 

regarded as anomalous and interpreted with some caution. Values of this order of magnitude are 

usually only encountered in the inner mantle. 

As mentioned in section 3.1.5 the seismic velocity through sandstone is generally lower than the 

velocity through limestone; however, purely on the basis of velocity data it may be difficult to 

distinguish between low velocity limestone and high velocity sandstone (Telford et al., 1990; 
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Sheriff and Geldart, 1995). It is therefore likely that I4 represents the bedrock beneath the 

Pendine Burrows, West Marsh and East Marsh. 

All four layers are identified beneath lines 3,4,6,8,10,18 and 37 (Table 5.1). The seismic 

refraction data therefore suggests that at these sites the bedrock (IA) is overlain by a gravel (L3) 

and saturated sands and silts (L2). This latter unit becomes unsaturated towards the ground 

surface (L1). The data acquired along lines 3,19,27 and 34 indicates that beneath these sites the 

bedrock (IA) is overlain by a layer of gravel (L3) which is covered by a thin veneer of unsaturated 

sediment (L1). The surface of L3 is therefore located relatively near to the ground surface 
beneath lines 3,19,27 and 34. 

At most of the remaining shot points it appears that the bedrock (IA) is overlain by sands and silts 

(L2) which become unsaturated near the ground surface (LI). Velocities characteristic of L3 were 

not identified on the seismic refraction data acquired from these sites. Although the refraction 

data indicate that the gravel/boulder clay facies (L3) is apparently absent from these sites, if L3 

is relatively thin and exhibits little velocity contrast to either the over consolidated sands and silts 

above or the underlying bedrock then it is possible that the horizon may be hidden. 

Comparison of refraction data to borehole information 

The seismic facies identified in the refraction analysis compare well to the sequence of sediments 

described in boreholes recovered from West Marsh, East Marsh and the Pendine Burrows 

(Section 4.1). For instance, the lithology within West Marsh is dominated by sands and silts 

intercalated with organic detrital units, which in places overlie a layer of dense red Pleistocene 

gravel/boulder clay (Section 4.1.2). Seismic data at the same location (line 37) suggest that the 

gravel/boulder clay layer lies at a depth of between 12.2 and 9.4 metres beneath the ground 

surface (Table 5.1). Unfortunately, as the borehole at site 3 only penetrated to 5.5 metres depth 

the Pleistocene surface was not located beneath line 37 by coring. However, a borehole located 

in an adjacent field at site 4 shows that gravel/boulder clay is encountered at 8.23 metres beneath 

the ground surface (Section 4.1.2). Relief in the gravel surface may account for any difference 

in the depth to this layer between ground truth and refraction data. 
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This has two important implications upon the validity of the refraction data analysed in this study. 
First, the seismic facies, identified on the basis of compressional wave velocities, correspond to 

the main lithofacies described in boreholes recovered from the Pendine Burrows, West Marsh and 

East Marsh. The seismic refraction analysis is able to distinguish between saturated/unsaturated 

sands and clays, the gravel facies and the underlying bedrock and can therefore be used to map 

the distribution of these deposits beneath the ground surface. Second, in the areas investigated, 

saturated organic layers within the near surface sediments, do not appear to have a significant 

effect upon the recorded travel-times. If the velocity through the organic units was much lower 

than in the intervening sands and clays the depth to the gravel/boulder clay and bedrock surfaces 

would be overestimated. 

A number of the refraction lines conducted within West Marsh yielded extremely poor data which 

was unsuitable for analysis; this occurred mainly in areas where the fine grained surface sediment 

was very dry and disturbed. The poor data quality at these sites is possibly due to the absorption 

and internal reflection of seismic energy within the near-surface LVL and may be affected by 

poor coupling between the geophones and the ground surface (Sheriff and Geldart, 1995). This 

problem may be overcome if the source was placed below the water table (Telford et al., 1990; 

Sheriff and Geldart, 1995). However, the relative thickness of Layer 1 gained at these locations 

corresponds to the extent of unsaturated and oxidized sediment described in the boreholes 

recovered from West and East Marshes. 

Surface models derived from refraction data 

The shot point heights, relative to Ordnance Datum, were determined from accurate levels 

obtained for the boreholes described in section 4.1. The depths to LA and L3 were then converted 

into heights relative to OD and the data were contoured using UNIMAP© to produce structural 

models of the bedrock basement and the pre-Holocene surface(Figures 5.2 & 5.3); the latter was 

taken as the depth to the L3 surface where present or L4 in other areas. The contours were 

interpolated using a'distance-weighted method'. The values are extrapolated to a region defined 

by the fossil cliffline (5m above OD) and the Mean High Water (MHW) level seaward of the 

dunes. 
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Chapter 5 Geophysical Surveys 

The refraction data indicates that two deeply incised depressions or channels have been eroded 
into the bedrock basement (Figure 5.2). The first extends from Brook in a sinuous fashion 

seawards beneath the Pendine Burrows (Figure 5.1) whereas the second trends from north-east 

to south-west from the Taf Estuary under the Laugharne Burrows (Figure 5.2). These two 

channels may have been formed at a time of lowered sea-level by the same rivers which eroded 

similar channels into the cliffline west of Coygan Quarry and by the River Taf respectively. 

During lower base-levels these rivers will have had greater erosive powers. 

East of Coygan Quarry the height of the bedrock basement gradually increases landward from < 

-25 metres OD to > -18 metres OD (Figure 5.5). This forms a relatively flat platform which may 

represent a wave-cut platform formed by coastal erosion during a period of lowered sea-level. 

Although the bedrock beneath West Marsh is incised by numerous drainage channels the 

intervening areas also shelve gradually from < -25 metres OD to > -18 metres OD. Note that the 

dramatic increase in bedrock height in the western margin of the plot is an artifact produced by 

UNIMAP© extrapolating when there is poor data coverage. 

The shape of the pre-Holocene surface is rather more complex than the underlying bedrock 

surface (Figure 5.3). The refraction data indicates that the channel incised into the bedrock 

basement beneath East Marsh and the Laughame Burrows is infilled with gravel/ boulder clay. 

Although, the data coverage is poor within East Marsh the plot suggests that prior to the 

formation of the Laugharne Burrows the River Taf followed a route which ran parallel to the 

fossil cliffline from Sir John's Hill to a point seaward of Coygan Quarry (Figure 5.3). At this 

point the River Taf possibly combined with streams draining from the fossil cliffline west of the 

quarry and subsequently may have excavated the deeply incised channel seen in figure 5.3. The 

possible confluence of the River Taf and the streams lies directly beneath the area presently 

occupied by Wytchet Lake (Figure 5.1). Between Brook to Sir John's Hill the height of the 

gravel surface increases landward from < -25 metre OD to >0 metres OD (Figure 5.3). This 

sharp increase in the height of the pre-Holocene surface corresponds to Pleistocene gravel and 

boulder clay identified along this portion of the fossil cliffline, above the level of the back-barrier 

sediments. 

The seismic refraction data indicates that the Pendine Burrows lie on top of a gravel ridge (L3) 

which extends from < -10 to >0 metres OD (Figures 5.1 & 5.3). However, the area beneath West 
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Chapter 5 Geophysical Surveys 

Marsh has been excavated (Figure 5.3), possibly by streams draining from the fossil cliffline, to 

form a relatively deep channel which extends from Llanmiloe beneath Wytchet Lake (Figure 5.1). 

The variation in the height of the gravel/boulder clay ridge (L3), beneath the Pendine Burrows, 

may represent either fluvial erosion, possibly by meandering channels, or erosion by coastal 

processes; this feature has been truncated by the interpreted former course of the River Taf 

(Figure 5.3). Lithological evidence from cores recovered in West Marsh suggests that these 

materials are glacial in origin and may therefore represent either terminal or lateral moraine 
deposited by a readvance of Central Welsh Ice (Towy Glacier) during the Late Devensian 

(Scourse pers comm. 1996). 

Implications for barrier formation and development 

The model of the pre-Holocene surface, derived from seismic refraction data acquired within the 

Pendine Burrows, West Marsh and East Marsh (Figure 5.3), has important implications for the 

formation and subsequent development of the barrier-complex. During the Holocene 

transgression rising relative sea-levels would have inundated West Marsh and the advancing high 

energy surf zone was probably prevented from reworking the fossil cliffline west of Coygan by 

the gravel ridge beneath the Pendine Burrows; this explains the slope of the fossil cliffline west 

of Coygan. If this feature represents Pleistocene material deposited during the Late Devensian 

then the model suggests that the barrier may have initially formed through the submergence of 

the antecedent topography. High sediment supply during the Holocene is likely to have led to 

the subsequent formation of the barrier and the infilling of the deeply incised channel beneath 

Wytchet Lake (Figure 5.3). 

Even during any periods of reduced sediment supply but continued sea-level rise, the gravel ridge 

beneath the Pendine Burrows would have pinned the barrier in place and prevented it from being 

overstepped and ultimately reworked. Since no similar feature occurs beneath the Laugharne 

Burrows it is probable that once sea-levels stabilised the barrier extended laterally as a'barrier- 

spit' by longshore transport. 
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5.1.2 Seismic reflection surveying 

Description of land based shallow reflection data 

High resolution seismic profiles were conducted within West and East Marshes and upon the 

foreshore of Pendine Sands. Data obtained from preliminary investigations within the back- 

barrier area, using both a sledge hammer/steel plate and a 12-gauge Buffalo Gun to generate shots 

(Brabham and McDonald, 1992), were extremely poor in quality and unsuitable for analysis. In 

the majority of the records the sub-surface reflectors were obscured by low frequency (<50Hz) 

surface waves. It is possible that a large proportion of the seismic energy, generated by both 

types of source, is either absorbed or internally reflected within a near-surface LVL (Telford et 

al., 1990; Sheriff and Geldart, 1995). However, reflection data acquired during the winter 

months, when the fields within West Marsh and East Marsh become water logged, showed only 

a marginal improvement in data quality. The near-surface sediments, composed predominately 

of highly stratified silts and clays intercalated with biogenic sediment (section 4.1) may therefore 

be unsuitable for the acquisition of high resolution seismic reflection data. 

The data acquired from three transects on Pendine Sands (Figure 5.4) were processed and the 

stacked sections are displayed in figures 5.5,5.6 and 5.7. The final sections reveal two main sub- 

surface reflectors which are thought to represent the boundary between the L2 and L3 horizons 

of the refraction analysis and the interface between L3 and IA horizons; the reflectors were 
identified using velocity data derived from normal-moveout correction and refraction analysis 

(Sheriff and Geldart, 1995). For simplicity, the geological interpretations displayed beneath each 

of the sections are based on an average velocity of 1650 m/sec. 

The surface sediment along the first 55 metres of transect 1(SN 27110714 to SN 2707 0698) was 

unsaturated when the survey was conducted. Consequently any sub-surface reflectors are 

concealed by low frequency noise (Figure 5.5). As the near surface sediments become saturated 

the data quality increases significantly. From 55 to 154 metres the gravel and bedrock surfaces 

exhibit little or no relief and appear to be horizontal and parallel to one another (Figure 5.5). The 

depth to the L3 varies between 19.6 to 21.2 metres whereas the bedrock lies between 25.7 and 

26.6 metres depth. An internal reflector within the gravel facies is indicated by the dashed line 

(Figure 5.5). Considering the gradient of the foreshore the reflection data implies that the gravel 
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Chapter 5 Geophysical Surveys 

and bedrock surfaces beneath transect 1 dip gently offshore, approximately parallel to the beach 

surface. 

Transect 2 (SN 2936 0666 to SN 2933 0656) yielded high data quality (Figure 5.6). The L3 

surface exhibits slight relief and lies between 21.1 and 23.3 metres depth. In contrast the bedrock 

(L4) appears horizontal at the start of transect 2 but then dips from approximately 28 to > 42 

metres depth (Figure 5.6). Internal reflectors within the L2 and L3 layers are indicated by dashed 

lines; these reflectors may represent changes in sediment composition and density (Sheriff and 

Geldart, 1995). The increase in the depth to the L4 surface along transect 2 corresponds to the 

channel in the bedrock basement beneath Wytchet Lake, identified using seismic refraction data 

(Section 5.1.1). The depth of L3 beneath transect 2 is comparable to transect 1 and but suggests 

that the height of this surface increases slightly beneath the lower shoreface (Figure 5.6). 

Transect 3 (SN 3270 0669 to SN 3274 0668) is a relatively short profile located on the foreshore 

at Ginst Point (Figure 5.4). Two reflectors can clearly be seen in the first 45 metres of the 

transect (Figure 5.7); seismic velocities indicate that the upper reflector corresponds to the surface 

of the gravel facies (L3) whereas the lower represents the bedrock surface (L4). Refraction data 

obtained from a 120 metre line adjacent to transect 3 indicates that L3 is absent from this area and 

that L2 overlies L4. Failure to locate the gravel, using refraction analysis, can either be due the 

large spacing between geophones or due to a small acoustic impedance contrast between the 

gravel and the material above or below this unit - yielding a weak refraction event. The gravel 

surface and bedrock basement show little relief and lie between 15.8 to 16.4 and 23.9 and 24.6 

metres respectively (Figure 5.7). 

The poor data quality at the start of transect 1 and at the end of transect 3 was largely caused by 

the near-surface sediments becoming unsaturated. Low velocity unsaturated sands on the 

foreshore absorbed a large proportion of the seismic energy and generated low frequency noise. 

In contrast, as the near-surface sediments along transect 2 remained saturated during the survey 

the data quality is far greater. Data quality would have been improved if high-frequency 

geophones were used in these surveys. 
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Discussion of high-resolution seismic reflection data 

Using velocity data obtained from refraction analysis and the normal-moveout velocity (stacking 

velocity), it is possible to relate the two main reflectors identified on the high-resolution seismic 

profiles to the boundary between sand and gravel (L2/L3 boundary in section 5.1.1), and the 

interface between gravel and bedrock (L3/L4 boundary in section 5.1.1). The reflection data 

suggests that the pre-Holocene surface beneath the foreshore dips gently offshore, roughly 

parallel to the contemporary beach surface, at a depth of approximately 20-22 metres. In contrast 

to the dunes and back barrier area the pre-Holocene surface beneath the Pendine Sands exhibits 

little or no relief, which may represent intense reworking by a high energy surf-zone during the 

Holocene transgression. 

The reflection data indicates that the gravel ridge located beneath the Pendine Burrows (section 

5.1.1), does not extend beneath the contemporary foreshore. Furthermore, no back-barrier facies 

(mud, silt or peat) have been identified on the seismic profiles. The reflection data possibly 

supports the hypothesis that the barrier formed through the inundation of a gravel ridge, upon 

which Holocene sediment accumulated. If the Pendine Burrows were formed through the retreat 

of an offshore barrier, in response to rapid sea-level rise during the early Holocene, any evidence 

of barrier roll-over has been removed from the shoreface sediments. 

Although the acquisition system used was not suited to this type of work (e. g the low resonant 
frequency geophones had too great a frequency bandwidth and the cables had different polarities) 

good quality high-resolution seismic reflection data were obtained from Pendine Sands. On the 

foreshore, data quality was drastically improved when the near-surface sediments were fully 

saturated. However, due to the composition of the near-surface sediment within the back-barrier 

area the quality of data acquired within West Marsh and East Marsh was very poor. 
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5.1.3 Marine reflection profiling 

Description of shallow marine reflection data 

The quality of the data acquired using the SEISTEC system were lower than expected; this was 

due to a tear in a rubber membrane within the boomer source which was identified after the 

survey was completed (Bennell pers com., 1996). Two main reflectors were identified on the 

majority of the records acquired within the Taf Estuary. Using velocity data obtained from 

refraction analysis along with the exposure of local Pleistocene gravel and boulder clay deposits 

theses reflectors are interpreted as the pre-Holocene surface (L3) and the bedrock basement (L4). 

Two typical sections of marine data, acquired within the estuary (Figure 5.8), are presented in 

figures 5.9 and 5.10 along with the corresponding geological interpretations. The sections show 

both reflectors and indicate that a channel incised into the bedrock basement is infilled with 

Pleistocene material (Figures 5.9 & 5.10). 

The depths to the gravel and bedrock surfaces were converted into depths relative to Ordnance 

Datum using tide gauge data, and were then contoured in UNIMAP© using a distance weighted 

method. Models of the bedrock basement (L4) and the pre-Holocene surface (L3) beneath the 

survey area (Figure 5.8) are presented in figures 5.11 and 5.12. 

The depth of the bedrock basement increases from < -14 metres OD in the southwestern portion 

of the survey area to > -2 metres adjacent to the fossil cliffline on the eastern side of the estuary 

(Figure 5.11). The marine reflection survey locates a relatively shallow channel in the bedrock 

basement which extends from north-east to south-west and is thought to extend beneath the 

contemporary saltmarsh and the back-barrier deposits (Figure 5.11). 

The height of the pre-Holocene surface ranges from <-14 to >2 metres OD (Figure 5.13). The 

model indicates that a channel, eroded into the pre-Holocene surface by the course of the River 

Taf (Figure 5.12), extends from Black Scar around the base of Sir John's Hill and beneath East 

Marsh (Figure 5.8). The gravel ridge exposed at Black Scar could not be accurately delimited 

because the water depth over this feature was too shallow for the survey vessel. Because of this 
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Chapter 5 Geophysical Surveys 

it is believed that the model does not truly represent the pre-Holocene surface in the extreme 

northeastern portion of the survey area (Figure 5.12). 

Discussion of shallow marine reflection data 

The two reflectors identified on the marine records have been interpreted as the pre-Holocene 

surface (L3) and the bedrock basement (L4). The data suggests that the bedrock basement, which 

lies between -18 and -2 metres OD, shelves rapidly from the southwestern portion of the survey 

area towards the fossil cliffline running from Black Scar and the outer reaches of the Taf Estuary 

(Figures 5.8). 

The reconstruction pre-Holocene surface indicates that a large proportion of the bedrock 

basement is covered by Pleistocene material (Figure 5.15), possibly deposited during the Late 

Devensian. The Pleistocene is pushed up against the fossil cliffline and forms the feature within 

the estuary known as Black Scar. Although data coverage within the northwestern portion of the 

survey area is poor, the reconstruction suggests that the course of the River Taf has been diverted 

by the ridge of glacial diamicton which extends from Black Scar towards the fossil cliffline on 

the eastern side of the estuary. The channel cut into the pre-Holocene surface does not match the 

contemporary course of the River Taf. 

137 



Chapter 5 Geophysical Surveys 

5.2 Electrical resistivity surveying 

Description of resistivity data 

Twenty four Schlumberger depth probes were conducted within East Marsh and the data were 

processed using RESIX-PLUS. The results were inconclusive in that the technique failed to 

locate the bedrock surface beneath the majority of sites investigated. In the areas adjacent to the 

fossil cliffline the resistivity model data compares well to the depths obtained from refraction 

analysis. However, at sites located seaward of the cliffline the bedrock was not detected even 

with a current base separation of 300 metres. 

The failure of resistivity techniques to locate the bedrock beneath East Marsh could be related to 

the composition of the pore fluid. If the pore fluid salinity or the degree of saturation (i. e. the 

electrical permeability) increases with depth, the current may leak laterally along the boundary 

possibly preventing the current field from penetrating down to the bedrock. It is possible that 

differences in the electrical permeability of the back-barrier sediments may have led to the 

general failure of this technique. 

Due to the failure of resistivity depth probes within East Marsh similar measurements were not 

conducted in the West Marsh area. With hindsight resistivity methods may have been more 

successful in locating the bedrock surface behind and on the Pleistocene ridge identified by 

refraction surveys. 
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Chapter 5 Geophysical Surveys 

5.3 Summary 

On the basis of seismic velocity data the main refractors and reflectors identified in the refraction 

analysis, the high-resolution seismic profiles and the shallow marine reflection survey were 

interpreted as representing the interface between sand and gravel and the boundary between 

gravel and bedrock. These three data sets were combined and contoured in UNIMAP© to 

produce reconstructions of the bedrock basement and the pre-Holocene surface (Figures 5.13 & 

5.14). The heavy black line drawn over the diagrams represents the MHW level from Sir John's 

Hill to Ginst Point, the MHW level seaward of the dunes, and the five metre contour behind the 

Pendine and Laugharne Burrows. 

The bedrock basement is intersected by two deeply incised channels, which may represent erosion 
by the River Taf and streams draining from the fossil cliffline west of Coygan Quarry (Figure 

5.13). However, although one can speculate on the possible origin of the majority of the features, 

displayed on the bedrock basement model, it is likely that this surface has been subject to 

successive stages of erosion during the Pleistocene. For this reason the interpretation of the 

bedrock basement surface model will be extended no further. 

The pre-Holocene surface suggests that, prior to the formation of the Laugharne Burrows, the 

River Taf followed a course roughly parallel to the fossil cliffline from Sir John's Hill to a point 

beneath Wytchet Lake (Figure 5.14). By combining the reflection data, acquired on the Pendine 

Sands, with the refraction data the model clearly indicates that gravel ridge beneath the Pendine 

Burrows does not extend beneath the foreshore. It is obvious that this feature played an integral 

role in the formation and subsequent development of the barrier complex (Figure 5.14). 

The thickness of Pleistocene (Figure 5.15) and the shape of the basin beneath West Marsh (Figure 

5.14) suggest that the gravel, beneath the western portion of the barrier complex, may represent 

terminal deposits formed by a readvance of the inland Welsh Ice, during the Late Devensian; the 

lithological evidence, acoustic properties and extent of the gravel show that these deposits do not 

represent a storm gravel ridge. Water draining from the fossil cliffline west of Coygan Quarry 

has modified these deposits, excavating the area behind the ridge (Figure 5.14). The extremely 

thick deposits beneath Laughame Burrows represent the amount of Pleistocene infill occupying 

the deeply incised bedrock channel (Figure 5.15) 
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Chapter 5 Geophysical Surveys 

The reconstructions of the bedrock and pre-Holocene surface produced from the analysis of 

seismic data provide good evidence for barrier formation and clearly display the former route 

along which the River Taf once flowed. With the absence of much needed ground truth data 

within West Marsh and the Burrows, a level of supposition has to be attached to the models 

produced in this study. The actual depth of the basin beneath West Marsh is uncertain and may 

have been overestimated in places by not considering low velocity layers (organic units) in the 

analysis of data from this area. 
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Chapter 6 Palaeoenvironments and Radiocarbon Dating 

Chapter 6 

Palaeoenvironments and Radiocarbon Dating 

6.1 Foraminifera 

6.1.1 Description of foraminiferal data 

Foraminiferal analysis was conducted on sub-samples taken from the sediments recovered at 

sites 12,4,11,17,20 and 22 (Figure 6.1). The sampling strategy was designed to examine 

changes in the foraminiferal compositions both within and between distinct sedimentary facies. 

The data is presented as percentages of the total number of foraminifera counted at each level and 
depths are discussed in metres beneath the ground surface; the ecological requirements of the 

most abundant species are summarised in table 6.1. 

Site 12 

Foraminifera were identified between 11.30 and 6.34 metres and at 5.10 and 4.80 metres. 

Samples taken from between 6.34 and 5.10 metres, and above 4.40 metres, contained no 
foraminiferal tests. On the basis of assemblage composition the foraminifera have been 

subdivided into three zones: 

Zone 12-1: The foraminifera in zone 12-1, which extends from 11.30 to 10.57 metres, are 

composed of hyaline and porcelaneous tests, dominated by Haynesina germanica, Elphidium 

williamsoni and Quinqueloculina seminulum. These fine grained clayey silts at the base of the 

sequence also contain smaller numbers of Cibicides lobatalus, Bolivina robusta, Elphidium 

excavartum, Miliolinella subrotunda, Rosalina anomala and Ammonia batavus. 

Zone 12-2: Extends from 10.57 to 6.57 metres and is defined by decrease in the relative 

proportion of porcelaneous tests. The sediments in this zone grade from clayey silt into highly 

stratified sandy silt at 10.15 metres; the latter is overlain by organic-rich silty clay (Figure 6.2). 
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Figure 6.2 Foraminiferal diagram for site 12. 
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Chapter 6 Palaeoenvironments and Radiocarbon Datin 

The Foraminifera at the base of zone 12-2 are dominated by Haynesina germanica, Cibicides 

lobatalus, Elphidium williamsoni, Asteriginata mamilla, Nonionella turgida and Ammonia 

batavus (Figure 6.2). Between 9.43 and 7.88 metres the relative proportion of Elphidium 

williamsoni increases sharply from 24% to 69%; this corresponds to a similar decrease in the 

frequency of Haynesina germanica. From 7.88 to 7.30 metres the relative proportion of 

Elphidium williamsoni, Lagena sulcata and Planorbulina distoma decreases. This corresponds 

to an increase in Haynesina germanica, Ammonia batavus, Cibicides lobatalus, Bolivina robusta 

and Asteriginata mamilla (Figure 6.2). 

As the sediment fines upwards into organic-rich silty clay at 6.85 metres there is a corresponding 

increase in Cibicides lobatalus, Quinqueloculina seminulum, Oolina squamosa and 

Globoquadrina hexagon; this coincides with a thin bed of silty sand at the base of the silty clay 

facies. This sandy bed also contains relatively few Haynesina germanica or Elphidium 

williamsoni tests (Figure 6.2). The foraminiferal assemblage preserved within the silty clay at 

6.34 metres is composed entirely of Haynesina germanica (80%) and Elphidium williamsoni 

(20%). ' 

Zone 12-3: Although the organic-rich silty clay between 4.55 and 3.32 metres contains very few 

foraminifera, sub-samples from 5.10 and 4.80 metres depth contained seven and 41 tests 

respectively. The foraminifera. at 5.10 metres are dominated by Quinqueloculina seminulum, 
Haynesina germanica, Oolina squamosa and Cibicides lobatalus. Between 5.10 and 4.80 metres 

the relative proportion of Ammonia becarii var. batavus and Jadammina macrescens increases 

sharply to 59% and 22% respectively. This level also contains Haynesina germanica and 

Trochammina inflata (Figure 6.2). 

Site 4 

Foraminifera were identified between 8.19 and 2.15 metres and on the basis of assemblage 

composition the foraminifera at site 4 have been sub-divided into three zones. 

Zone 4-1: Extends from 8.19 to 4.69 metres and is dominated by agglutinating and hyaline tests. 

The lithology consists of an organic-rich silty clay facies intercalated with a organic detritus. 
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Figure 6.3 Foraminiferal diagram for site 4. 
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Chapter 6 Palaeoenvironments and Radiocarbon Dating 

Highly stratified silty clay at the base of zone 4-1 contains a foraminiferal assemblage dominated 

by Haynesina germanica, Jadammina macrescens, Trochammina inflata and Asteriginata 

mamilla. These clays also contain fewer numbers of Elphidium williamsoni and Cibicides 

lobatalus. Between 8.19 and 7.40 metres the relative proportion of Jadammina macrescens 
increases sharply to 83%; this corresponds to an initial increase in the frequency of Trochammina 

inflata and to a decrease in Haynesina germanica, Elphidium williamsoni, Cibicides lobatalus 

and Asteriginata mamilla (Figure 6.3). No foraminifera are preserved in the highly stratified silty 

clay between 7.40 and 6.24 metres depth. 

The clay at 6.24 metres depth contains fewer Jadammina macrescens and a greater proportion 

of Haynesina germanica, Trochammina inflata, Asteriginata mamilla and Elphidium williamsoni 

tests. The silty clay, organic detritus and organic-rich silty clay between 6.24 and 4.88 metres 
depth contains no foraminiferal tests (Figure 6.3). 

At 4.88 metres the foraminifera are dominated by Jadammina macrescens and Haynesina 

germanica which account for 60% and 32% of the assemblage respectively. These sediments also 

contain small numbers of Asteriginata mamilla, Elphidium williamsoni and Quinqueloculina 

seminulum (Figure 6.3). As the sediments grade from silty clay into silty sand at 4.78 metres the 

relative proportion of Jadammina macrescens decreases sharply. This marks the upper boundary 

of zone 4-1. 

Zone 4-2: Extends from 4.69 to 3.15 metres and is dominated by hyaline tests. The sediments 

are composed predominantly of stratified silty sand. 

At 4.46 metres 4-2 Haynesina germanica increases sharply from 32% to 72%. These sands also 

contain Elphidium williamsoni, Lagena sulcata, Oolina squamosa, Bulimina elongata and 

Rosalina anomala (Figure 6.3). Between 4.46 and 3.87 metres Haynesina germanica decreases 

sharply to 19%; this corresponds to an increase in the frequency of Cibicides lobatalus, Ammonia 

batavus and Elphidium williamsoni. The silty sand between 4.46 and 3.87 metres also contains 

fewer Rosalina anomala, Lagena sulcata, Oolina squamosa, Oolina williamsoni, Bulimina 

marginata, Bulimina elongata, Planorbulina distoma, Elphidium crispum, Elphidium earlandi, 
Elphidium excavartum, Elphidium gerthi and Globoquadrina hexagona test (Figure 6.3). 
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Chapter 6 Palaeoenvironments and Radiocarbon Dating 

The sharp increase in Haynesina germanica between 3.87 and 3.68 metres corresponds to a 

decrease in Cibicides lobatalus, Ammonia batavus, Lagena sulcata, Oolina squamosa and Oolina 

williamsoni (Figure 6.3). Above this Haynesina germanica and Elphidium williamsoni decrease 

sharply; this coincides with an increase in the frequency of Ammonia batavus, Cibicides lobatalus 

and Elphidium crispum. No foraminiferal tests are contained in the silty sand, silty clay and 

organic detritus between 3.47 and 2.40 metres depth (Figure 6.3). 

Zone 4-3: Extends above 3.15 metres. The sediments are composed organic-rich silty clay facies 

intercalated with organic detritus. The organic rich silty clay at 2.40 metres contains a fossil 

assemblage dominated by Elphidium williamsoni, Haynesina germanica, Trochammina inflata 

and Jadammina macrescens. Between 2.40 and 2.15 metres the relative proportion of Haynesina 

germanica increases to 56.7%; this corresponds to a reduction in the numbers of Elphidium 

williamsoni, Trochammina inflata and Jadammina macrescens (Figure 6.3). 

Although the foraminifera are relatively well preserved between-2.40 and 2.15 metres no tests are 

contained in the silty clays or sandy silts above these levels (Figure 6.3). 

Site 11 

Foraminifera were identified in the sediments between 10.88 an 0.31 metres at site 11 and on the 

basis of fossil assemblage composition have been subdivided into four zones. 

Zone 11-1: Extends from 10.88 to 8.19 metres and the foraminifera are dominated by 

agglutinating and hyaline species. The sediments in zone 11-1 fine upwards from silty sand into 

organic-rich silty clay and then grade into highly stratified silty sand (Figure 6.4). 

As the sediments fine upwards into silty clay at the base of zone 11-1 the relative proportion of 

Haynesina germanica increases sharply from 28% at 10.88 metres to 87% at 10.70 metres. This 

corresponds to a decrease in the relative proportion of Elphidium williamsoni and Cibicides 

lobatalus. These sediments also contains trace amounts of Asteriginata mamilla, Rosalina 

anomala, Nonionella turgida, and Ammonia becarii var. batavus (Figure 6.4). 
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Figure 6.4 Foraminiferal diagram for site 11. 
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Chapter 6 Palaeoenvironments and Radiocarbon Datin 

Towards the top of the clay unit Jadammina macrescens increases sharply from 2% to 64%; this 

corresponds to a reduction in the relative proportion of Haynesina germanica. The deposits at 

9.72 metres also contain a small amount of Trochammina inflata and Cibicides lobatalus (Figure 

6.4). 

Associated with the coarsening upwards of the sequence towards the top of zone 11-1 is an 
increase relative proportion of Elphidium williamsoni which amounts to 34% of the assemblage 

at 8.68 metres. This corresponds to a decrease in the frequency of Jadammina macrescens and 
Trochammina inflata and to a slight increase in the number of porcelaneous and Haynesina 

germanica tests (Figure 6.4). 

Zone 11-2: Extends from 8.19 to 5.60 metres. The sediments grade from highly stratified silty 

sand into sandy silt at 6.62 metres. The foraminifera exhibit little variation and are dominated 

by Cibicides lobatalus, Quinqueloculina seminulum and Haynesina germanica. These sediments 

also contain small numbers of Ammonia batavus, Ammonia becarii var. batavus, Miliolinella 

subrotunda, Planorbulina distoma, Elphidium crispum and Elphidium williamsoni (Figure 6.4). 

Zone 11-3: Extends from 5.60 to 4.66 metres and corresponds to a sharp increase in the relative 

proportion of Haynesina germanica, from 10% at 5.72 metres to 78% at 5.48 metres. These silts 

and clays also contain a greater number of Elphidium williamsoni and fewer Cibicides lobatalus 

and Quinqueloculina seminulum tests (Figure 6.4). 

Zone 11-4: The sediments in zone 11-4, which extends from 4.66 to 1.49 metres, are composed 

mainly of highly stratified sand which contains reworked shell fragments. The boundary between 

zones 11-3 and 11-4 corresponds to a sharp decrease in the relative proportion of Haynesina 

gennanica which is associated with an abrupt contact between clayey silt and the overlying sand. 

The foraminiferal assemblages within this zone are composed predominately of hyaline and 

porcelaneous tests which are dominated by Cibicides lobatalus, Quinqueloculina seminulum, 

Ammonia batavus and Asteriginata mamilla. The increase in Ammonia batavus, Quinqueloculina 

seminulum and Elphidium williamsoni at 2.60 metres corresponds to a thin bed of silty clay 

within the shelly sand facies. 
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Zone 11-5: Extends from 1.49 to 0.31 metres and is defined by a sharp decrease in the relative 

proportion of porcelaneous tests i. e. Quinqueloculina seminulum. The lower boundary of zone 

11-5 also corresponds to a slight increase in Haynesina germanica and is associated with a 

gradual fining upwards of the sequence from sand into sandy silt. 

The foraminifera in zone 11-5 are dominated by Cibicides lobatalus, Ammonia batavus and 

Elphidium williamsoni. The sharp increase in Elphidium williamsoni at 0.91 metres corresponds 

to a thin silty clay bed within the sandy silt facies. Although the tests are more poorly preserved 

in the near-surface oxidised sediment, analysis of these deposits indicates a sharp increase in the 

relative proportion of Ammonia batavus at the top of zone 11-5. 

Site 17 

Foraminifera were identified between 5.89 and 1.84 metres and have been sub-divided into two 

zones. No forams were identified in the sediments above 1.84 metres (Figure 6.5). 

Zone 17-1: Extends from 5.89 to 2.53 metres and is dominated by hyaline and porcelaneous tests. 

The sediments at the base of zone 17-1 fine upwards from Shelly sand into stratified silty clay 

which then grades sharply into fine sand. The sediments then fine upwards into sandy silt and 

then into silty clay. 

The foraminifera in the shelly sand at the base of zone 17-1 are dominated by Cibicides lobatalus 

and contain fewer numbers of Elphidium williamsoni, Planorbulina distoma, Haynesina 

germanica, Miliolinella subrotunda and Quinqueloculina seminulum (Figure 6.5). These sands 

also contain trace amounts of Asteriginata mamilla, Ammonia becarii var. batavus, Oolina 

williamsoni, Elphidium margaritaceum and Elphidium macellum. Between 4.97 and 4.84 metres 

Miliolinella subrotunda and Lagena sulcata increase; this corresponds to a decrease in Cibicides 

lobatalus, Asteriginata mamilla and Quinqueloculina seminulum (Figure 6.5). The change in the 

foraminiferal composition coincides with a clay bed within the highly stratified silty clay facies. 

The composition of foraminifera assemblages varies only slightly as the sediments grade from 

sandy silt into silty clay at the top of zone 17-1. The assemblage is dominated by Cibicides 
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Figure 6.5 Foraminiferal diagram for site 17 
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lobatalus, Elphidium williamsoni, Planorbulina distoma, Haynesina germanica, Milionella 

subrotunda and Quinqueloculina seminulum (Figure 6.5). 

Zone 17-2: Extends upwards from 2.53 metres and is defined by a sharp decrease in Cibicides 

lobatalus. The sediments are composed stratified silty clay (Figure 6.5). 

The foraminifera at 2.16 and 1.84 metres are dominated by Elphidium williamsoni and also 

contain Cibicides lobatalus, Lagena sulcata and Haynesina germanica. These levels also contain 

trace amounts of Oolina williamsoni, Elphidium incertum, Elphidium margaritaceum and 

Asteriginata mamilla (Figure 6.5). 

Site 20 

Foraminifera were identified between 5.19 and 1.35 metres and on the basis of assemblage 

composition have been sub-divided into three zones. No foraminifera were identified in the 

sediments above 1.35 metres. 

Zone 20-1: Extends form 5.19 to 4.18 metres. The sediments fine upwards from highly stratified 

sandy silt at the base of the sequence into a series of stratified silty clay and clayey silt beds 

(Figure 6.6). 

The foraminifera in zone 20-1 are dominated by Haynesina germanica and Cibicides lobatalus, 

and contain fewer Ammonia batavus, Elphidium gerthi, Elphidium williamsoni and Asteriginata 

mamilla (Figure 6.6). The relative proportion of Haynesina germanica increases sharply between 

5.19 and 4.85 metres; this corresponds to a decrease in Cibicides lobatalus, Quinqueloculina 

seminulum, Ammonia batavus and Miliolinella subrotunda and coincides with the boundary 

between silty sand and sandy silt (Figure 6.6). 

Zone 20-2: Extends from 4.18 to 2.94 metres and is marked by a sharp decrease in Haynesina 

germanica. The sediments are composed of predominantly of shelly sand which is intercalated 

with a thin layer of dark grey silty clay. 
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Figure 6.6 Foraminiferal diagram for site 20 
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The foraminifera are dominated by Cibicides lobatalus and contain fewer Quinqueloculina 

seminulum, Asteriginata mamilla and Ammonia batavus (Figure 6.6). The relative increase in the 

proportion of Asteriginata mamilla between 4.06 and 3.44 metres corresponds to a decrease in 

Cibicides lobatalus. The relative proportion Quinqueloculina seminulum and Ammonia batavus 

remain relatively constant throughout zone 20-2. 

Zone 20-3: Extends from 2.94 to 1.35 metres and is defined by a decrease in Cibicides lobatalus, 

Asteriginata mamilla and Ammonia batavus. The sediments in zone 20-3 grade from shelly sand 
into silty sand and then into silty clay; the latter is overlain by shelly sand (Figure 6.6). 

The base of zone 20-3 exhibits an increase in the relative proportion of Haynesina germanica, 
Elphidium gerthi and Elphidium williamsoni. All the levels in zone 20-3 contain foraminifera 

dominated by Cibicides lobatalus, Haynesina gennanica, Quinqueloculina seminulum, Elphidiuin 

gerthi and Elphidium williamsoni (Figure 6.6). 

Site 22 

Foraminifera were identified between 5.22 and 0.73 metres. No foraminifera were contained in 

the silty clay between 2.83 and 1.03 metres (Figure 6.7). The sediments fine upwards from shelly 

sand at the base of the sequence into silty clay which is overlain by a layer of shelly sand. The 

boundary between the two latter facies is marked by an abrupt erosional contact. The 

foraminifera identified at site 22 are dominated by Cibicides lobatalus, Ammonia batavus and 

Quinqueloculina seminulum. These sediments also contain small amounts of Miliolinella 

subrotunda, Asteriginata mamilla, Elphidium crispum and Elphidium williamsoni. 

The relative proportion of Ammonia batavus and Quinqueloculina seminulum increase between 

5.22 and 3.79 metres; this corresponds a decrease in Cibicides lobatalus, Miliolinella subrotunda 

and Elphidium williamsoni. The silty clay at 1.03 metres contains and assemblage dominated by 

Ammonia batavus and Cibicides lobatalus and contains Jadammina macrescens. As the 

sediments grade abruptly into shelly sand there is a corresponding sharp decrease in Jadammina 

macrescens and Ammonia batavus; this coincides with an increase in Cibicides lobatalus and 
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Elphidium crispum (Figure 6.7). The sandy silt at 0.73 metres contains a greater proportion of 

Ammonia batavus than the underlying shelly sand. 

6.1.2 Modern foraminiferal associations in the Taf Estuary 

Analysis of modem foraminifera, contained in sub-samples taken from the Taf Estuary, shows 

clear zonation across Delacorse Marsh (Figure 6.8). Sediments recovered from the marsh creeks, 

the mud flats adjacent to the main channel and sand flats in the main channel also exhibit distinct 

differences in foraminiferal composition. Delacorse marsh can be sub-divided into high marsh, 

mid marsh and low marsh, each possessing a characteristic foraminiferal association. The 

analysis was conducted during 9/94 and 9/95 by the final year Geological Oceanography and 

Ocean Science class at the School of Ocean Sciences; the modern data used in this study are 

summarised in appendix 6.1. 

The high marsh sediments are dominated by Jadammina macrescens and commonly contain 

Trochammina inflata. The relative proportion of Jadammina macrescens varies from 50% to 

80% whereas Trochammina inflata ranges from 14% to 36% of the total assemblage. Additional 

species occurring in the high marsh include Quinqueloculina seminulum, Haynesina germanica, 
Elphidium williamsoni, Miliamminafusca and Ammonia batavus; these species generally occur 

as a small or trace proportion of the total assemblage. 

The mid marsh association is dominated by both Trochammina inflata and Jadammina 

macrescens which amount to 57% to 68% and 34% to 56% of the total assemblage respectively. 

Additional species include Quinqueloculina seminulum, Elphidium williamsoni, 
Haplophragmoides wilberti and llfiliammina fusca. 

The low marsh is dominated by Trochammina inflata, Jadammina macrescens and Elphidium 

williamsoni; the relative proportion of these three species varies between 16% to 45%, 19% to 

27% and 17% to 50% of the total assemblage respectively. The low marsh sediments also contain 

Haynesina germanica, Lagena sulcata, Cibicides lobatalus, Haplophragmoides wilberti and 

Ammonia batavus. 
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The total populations within the creeks are dominated by Haynesina germanica and contain a 

relative high proportion of Elphidium williamsoni, Jadammina macrescens and Trochammina 

inflata. Additional species include Cibicides lobatalus, Planorbulina distoma, Rosalina anomala, 
Bulimina elongata, Ammonia batavus, Elphidium excarvartum, Elphidium crispum, Miliammina 

fusca, Quinqueloculina seminulum and Miliolinella subrotunda. 

The mud flats adjacent to the main channel contain an extremely diverse assemblage dominated 

by Cibicides lobatalus and Haynesina germanica. The relative proportion of these two species 

varies between 21% to 44% and 10% to 33% of the total assemblage respectively. Additional 

species include Elphidium williamsoni, Miliolinella subrotunda, Quinqueloculina seminulum, 

Lagena sulcata, Lagena clavata, Ammonia batavus, Qolina williamsoni, Planorbulina distoma, 

Rosalina anomala, Bulimina elongata and Bulimina marginata. The mud flat sediments adjacent 

to the marsh also contain extremely low or trace frequencies of Jadammina macrescens and 

Trochammina inflata. 

The sand flats of the main channel are dominated by Ammonia batavus, Cibicides lobatalus and 

Quinqueloculina seminulum; the relative proportion of these species varies between 13% to 43%, 

10% to 38% and 9% to 39% of the total assemblage respectively. Additional species include 

Elphidium williamsoni, Elphidium crispum, Asteriginata mamilla, Planorbulina distoma, 

Rosalina anomala, Miliolinella subrotunda and Lagena sulcata. 

The differences in foraminiferal composition between the high marsh, mid-marsh and low marsh 

are a function of changes in elevation and salinity across the surface of Delacorse marsh. The low 

diversity exhibited in the high marsh reflects the high levels of stress imposed on this 

environment by prolonged periods of exposure or increased freshwater input from surface runoff 

and rainfall. The dominance of Jadammina macrescens reflects the ability of this species to 

compete successfully in the highly stressed brackish marsh environment. As the low and mid- 

marshes are more frequently inundated by the tide, foraminiferal diversities increase from the 

high to low marshes. The marsh foraminifera contain relatively few allochthonous tests 

transported from adjacent environments by tidal waters. Consequently, the dead assemblages 

accumulating on the marsh surfaces differ only slightly from the live population (Murray, 1991). 

150 



Charter 6 Palaeoenvironments and Radiocarbon Datin 

The interrelationships between the factors controlling the formation of the total population 

accumulating within the marsh creeks and upon the mud and sand flats in the main channel is 

extremely complex as these environments contain allochthonous and autochthonous components 

and are significantly influenced by post-mortem transport processes. The proportion of exotic 

tests is relatively lower in the creek sediment than on the mud and sand flats; the allochthonous 

component is comprised of Cibicides lobatalus, Planorbulina distoma, Asteriginata mamilla, 

Rosalina anomala, Bulimina elongata, Bulimina marginata and Globoquadrina hexagona. These 

species are derived from the Celtic Sea and the Bristol Channel and transported by storm waves 

and high energy tidal currents to marginal marine environments where they are deposited. For 

instance, Cibicides lobatalus is epifaunal and attaches itself to hard substrates such as rock 

surfaces or shells; the test can be described as plano-convex with a flat dorsal attachment side and 

moderately raised ventral side (Haynes, 1973). Upon death the test can be detached from the 

substrate and transported onshore as either suspended or bed load. Although Cibicides lobatalus 

maybe suited to living in the main channel the greatest concentrations of this species are found 

upon in the mud flat sediment. In contrast Ammonia batavus, which commonly occurs on 

marshes and in near-marine environments (Murray, 1991), is found in greatest numbers upon the 

sand flats in the main channel. Ammonia batavus tests are biconvex and roughly twice as wide 

as high (Haynes, 1973). This indicates that due to their test architecture once entrained into the 

flow Cibicides lobatalus is hydrodynamically lighter than Ammonia batavus and are consequently 

enriched in the fine grained mudflat sediments. Both allochthonous and autochthonous 
foraminifera accumulating within the main channel of the Taf Estuary are selectively sorted in 

the high energy tidal regime. 

6.1.3 Comparison of modern and of fossil assemblages 

Principle components analysis was used to compare the modern data with the fossil assemblages. 
Samples representative of the high marsh, mid marsh, low marsh, creeks, mud flats and sand flats 

(Appendix 6.1) were included in the analysis in an attempt to identify biofacies in the down core 

studies. 
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Figure 6.9 displays the first and second principle component, for the modern and fossil data, 

which account for 44% and 23% of the total variance within the data set respectively. The 

modem samples and fossil data are displayed as solid triangles and circles respectively; the axes 

values represent the correlation coefficients between the samples and the principle components. 

Using modem samples it is possible to define the areas occupied by the six biofacies on the PCA 

plot. Due to the considerable variability in the data set, multivariate analysis is unable to 

distinguish between high and mid-marsh samples; these two associations are displayed as one 

biofacies on the PCA plot (Figure 6.9). Although the low and high/mid-marsh biofacies overlap 

slightly, modem and fossil samples within these two environments can be clearly distinguished 

using supplementary lithological evidence. The PCA analysis suggests that the creek and low 

marsh biofacies do not overlap. The boundary between the creek and mud flat samples is less 

clearly defined; the relative similarity between the foraminiferal composition of creek and mud 

flat sediment samples will depend upon the proximity of a particular creek to the main channel 

within the estuary. Although the mud and sand flat biofacies overlap slightly the position of 

modem samples within this final biofacies can be used to distinguish fossil samples derived from 

these two environments. Differences between fossil assemblages and modern populations reflect 

the taphonomic processes active during fossilization. 

PC1 accounts for the major differences between high/mid marsh, low marsh and creek 

environments whereas PC2 explains the principal differences between these biofacies and the 

mud and sand flat samples. PC1 may represent stresses such as salinity, temperature and pH 

across the marsh surface, which are controlled primarily by the duration of exposure between 

successive high tides. For instance, high/mid-marsh samples are positively correlated to PC1 

whereas the low marsh and creek samples exhibit a negative correlation to stress; these latter two 

environments are inundated by each successive high tide whereas the high and mid-marshes are 

only flooded by higher spring tides. The mud and sand flat samples display the strongest negative 

correlation to PC I. 

The mud flat samples exhibit both negative and positive correlations to PC2 (Figure 6.9). 

Although the sand flat samples possess the greatest positive correlation to PC2 the coefficients 
for this component vary only slightly within this environment. It likely that PC2 represents the 
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intensity of hydrodynamic processes within the system; the intensity increases from the relatively 

low energy low marsh and creek to the mud and sand flats within the main channel. As would 

be expected the hydrodynamic intensity varies only slightly across the sand flats in the main 

channel; however, the major cause of variance within this environment is described by PCI 

(Figure 6.9). During low water certain areas of the sand flats within the main channel of the Taf 

Estuary are exposed whereas others are covered by fresh water draining from the catchment area. 

This produces a gradient of stresses across the sand flats from saline pools and exposed sand 
banks to sediment immersed in fresh water. 

The three samples which fall outside of the envelopes, used to define the five biofacies described 

above, have foraminiferal compositions intermediate of mud/sand flat and marsh environments. 

These samples may represent hyper-saline marsh environments subject to high energy tidal or 

storm processes. For instance, storm waves set up by storm surges may breach the barrier and 

flood the back barrier area. Foraminifera contained within the storm water may settle out of 

suspension and contribute to the total population accumulating upon the back barrier marsh 

surfaces at that time. 

It should be noted that the interpretation is qualitative, based upon the relationships between 

modern samples obtained from known environments; no attempt has been made to quantify the 

principle components described in this study. However, modern foraminifera supported by 

lithological evidence can be used to interpret the foraminiferal associations identified at sites 4, 

12,11,17,20 and 22. 

6.1.4 Interpretation of fossil data 

Site 12 

The PCA data suggests that zone 12-1 represents a relatively high energy marsh creek 

environment which is overlain by a low energy mud flat. The boundary between zones 12-1 and 

12-2 may represent a slight positive tendency in sea-level. Through zone 12-2 the environment 

gradually changes from mudflat back into a creek. However, at the top of zone 12-2 the 
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sediments grade into a thin bed of silty sand which is defined by the PCA data as a high energy 

sandflat environment. Although, the modem foraminiferal data used to define the sandflat facies 

was obtained from the estuary and not open marine sands in Carmarthen Bay, the relative 

proportion of exotic tests, the composition of the sands and the proximity of site 12 to the barrier 

dunes suggest that these sediments probably represent washover deposits. Zone 12-3 shows the 

accumulation of creek and marsh sediments above the sandflat deposits. The boundary between 

zones 12-2 and 12-3 represents an acretionary sequence and the development of back-barrier salt 

marshes. 

Poor preservation between 6.34 and 5.10 metres may represent the dissolution and destruction 

of foraminiferal tests within mid and high marsh sediments or indicate that these sediments were 
deposited by terrestrial processes. The sediments at 5.10 and 4.80 metres represent mud flat and 
low/mid marsh environments. The relatively high proportion of Quinqueloculina seminulum and 

Ammonia becarii var. batavus suggests that these samples may represent hypersaline mud flat and 

marsh associations. 

Site 4 

The samples at the base of zone 4-1 indicate that the environment gradually develops from creek 
facies at 8.19 metres through low marsh into high/mid marsh at 7.4 metres. Poor test preservation 
between 7.40 and 6.24 metres may result from the dissolution foraminifera in the oxidised near 

surface sediments within the marsh sediments. Above this the sample at 6.24 metres indicates 

that the high/mid-marsh biofacies is overlain by creek deposits which intum are replaced by a low 

marsh sediment at 4.88 metres. As the sediments grade from silty clay at the top of zone 4-1 to 

silty sand at the base of zone 4-2 the foraminiferal data indicates that environment changes from 

low marsh into creek biofacies. The boundary between zones 4-1 and 4-2 may represent a slight 

positive tendency in sea-level. 

The foraminifera indicate that through zone 4-2 the environment progressively changes from a 

creek into low and high energy mud flat. The boundary between zones 4-2 and 4-3 corresponds 

to a transition from high energy mud flat to marsh creek biofacies. Poor preservation of 

foraminiferal tests at site 4 is either due to dissolution in marsh sediments or to the introduction 
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of terrestrial sediment. The boundary between zones 4-2 and 4-3 represents an acretionary 

sequence and the progradation of back-barrier saltmarshes. 

Site 11 

At the base of zone 11-1 the sediments fine upwards into silty clay. This corresponds in a gradual 

change from creek to high/mid marsh biofacies between 11.30 and 9.72 metres. The marsh 

deposits are overlain by marsh creek deposits which extend to the top of zone 11-1. 

The boundary between zones 11-1 and 11-2 is rather abrupt and marked by a transition from 

creek to lower mud flat deposits. At the top of zone 11-2 the mud flat facies is replaced by sand 
flat deposits. The boundary between zones 11-2 and 11-3 are represent by rapid change from 

sand flat into creek biofacies. The highly stratified sand between 4.66 and 1.49 metres represents 

intercalated mud flat and sand flat deposits. The boundary between zones 11-4 and 11-5 is 

defined by a rapid change from sand flat to mud flat deposits. However, towards the top of zone 
11-5 the deposits grade from mud flat into brackish sand flat deposits. 

Due to the proximity of site 11 to the former tidal inlet, now occupied by Wytchet Lake, it is 

probable that the sand and mud flat deposits identified at this local accumulated in the main 

channel behind the Pendine Burrows. If the tidal inlet remained fixed in approximately in the 

same position during the Holocene transgression, then the biofacies changes identified at site 11 

may represent the changing position of the main channel behind barrier. However, if sediment 

by-pass did not occur then the Pendine Burrows may have extend in a longshore direction and 

the biofacies at site 11 may represent changes in the stability and Iongshore development of the 

Pendine Burrows. 

Site 17 

The shelly sand at the base of site 17 represents a high energy lower mud flat or sand flat 

environment; this classification is based on foraminiferal evidence and does not relate to the 

textural composition of these particular sands. Between 4.97 and 4.84 metres the sediments grade 
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into silty clay; this corresponds to a change from mud flat to creek facies. The sandy silt and silty 

clay between 4.84 and 2.53 metres represent mud flat deposits. The boundary between zones 17- 

1 and 17-2 is marked by a change from mud flat into creek biofacies. Poor preservation above 
1.84 metres may be caused by the dissolution of foraminiferal tests in oxidised near-surface 

sediment. The gradual transition from mud flat into creek facies probably represents the simple 

progradation of the mud flats within the back-barrier area. Conversely, the change from creek 

into mud flat facies between 4.84 and 3.87 metres may represent barrier instability or changing 

patterns of sedimentation within an accretionary back-barrier environment. 

As sea-level changes invariably influence barrier stability the relationship between barrier 

development, sea-level and sediment supply further complicates the interpretation of these back- 

barrier facies changes. 

Site 20 

The sediments at the base of zone 20-1 grade from sandy silt into silty clay; this corresponds to 

a change in the foraminiferal composition from mud/sand flat into mud flat associations. The 

mud flat deposits extend to the top of zone 20-1 where they grade into sand flat deposits. The 

sand flat deposits of zone 20-2 extend to 2.94 metres where they are replaced by a second mud 
flat facies. Poor preservation above 1.35 metres may represent dissolution in oxidised near- 

surface sediment. 

The two successive phases of mud flat development at site 20 may either represent slight 

regressive phases in sea-level rise or two successive phases of barrier-spit longshore extension 
in response to increased sediment supply and or changing oceanographic conditions. 

Site 22 

The PCA analysis indicates that the shelly sand and silty sand between 5.22 and 2.13 metres 

represents sand flat deposits. The silty sand bed within the silty clay unit at 1.03 metres contains 
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a foraminiferal assemblage indicative of hyper-saline sand flat deposits; the relatively low 

frequencies of Jadammina macrescens in this level indicates the proximity of this site to an 

adjacent saltmarsh. The absence of foraminifera in the stratified silty clay between 2.83 and 1.03 

metres may represent either post-depositional dissolution during fossilization/diagenesis or the 

introduction of terrestrial sediment. The composition and structure of these sediments suggests 

that these deposits may represent salt marsh deposits; however, no other direct evidence exists 

to draw a conclusion. 

The sequence at site 22 is overlain by a layer of shelly sand which represents sand flat facies. 

However, as these sediments lie above 3.68 metres OD it is probable that they represent wash- 

over deposits rather than deposits which have accumulated within the main channel. 

6.1.5 Summary 

By comparing modern foraminiferal populations to fossil data, using PCA analysis, it is possible 

to identify the sedimentary environment in which a particular deposit formed. Problems 

associated with the modification of the total populations, by post-mortem transport, are avoided 

as the modern data sets include this taphonomic variable. However, it is clear that the marsh 

assemblages are modified by post-depositional dissolution. Some of the stratified silty clays 

analysed contained no foraminiferal tests whilst their structure is extremely similar to saltmarsh 

deposits. In particular the organic- rich silty clay, in contact with the organic detrital units, at 

sites 12 and 4 contained very few foraminifera. The available foraminiferal information suggests 

that these organic units have accumulated above the Mean High Water Spring Tide levels and 

therefore probably represent terrestrial sediment. 

The fossil data obtained from site 12 suggests that at the base of the sequence the sediments grade 

from saltmarsh and creek deposits into mud flat facies. These sediments are then replaced by 

creek and saltmarsh deposits which grade into the lower organic unit at site 12. The organic bed 

is replaced by saltmarsh sediment which extends to the base of the upper organic unit. These 

organics are also replaced by fine grained silty clay which extends to the ground surface. 

Although poor foraminiferal preservation prevents the identification of fine grained facies it is 
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likely that they represent the accumulation of saltmarsh sediments. A similar pattern of 

development is exhibited by the foraminiferal associations identified at site 4. The silty clay in 

contact with the Pleistocene boulder clay and gravel at the base of the sequence have been 

identified as creek deposits. These grade into saltmarsh sediment which is overlain by an organic 
detrital bed. The organics are replaced by a second phase of salt marsh development overlain 
by creek and mud flat sediment. The mud flat facies grades into creek and marsh deposits which 

extend to the base of the upper organic unit at site 4. As at site 12 the organics are once again 

replaced by fine grained silty clay. Differences in sedimentary facies, identified between the 

organic beds at sites 12 and 4, indicate the proximity of those two sites to the main channel. The 

accumulation organic sediment at sites 12 and 4 may represent negative phases in sea-level rise 
during the late Holocene. 

The sedimentary facies identified at site 11 are dominated by mud flat and sand flat sediment. 

The foraminiferal assemblages suggests that site 11 has been influenced by the position of the 

main channel and or tidal inlet. This suggests that the tidal inlet, between the Pendine and 
Laugharne Burrows, may have continued to regulate back-barrier sedimentation up until the 

construction of the sea-wall defences, during the 18th and 19th centuries. 

The shelly sand at the base of sites 17,20 and 22 represent high energy sand flat deposits which 

contain a high proportion of open shelf tests derived from offshore. At sites 17 and 20 these 

sediments grade into mud flat sediment which is replaced by a second phase of sand flat 

development. These deposits are overlain by mud flat and creek sediments; however, although 

the lithological evidence suggest the subsequent development of saltmarshes, poor preservation 

within the oxidised near surface sediment prevents the identification of this facies using 

foraminifera. 

The facies identified at site 22 show that the sand flat deposits at the base of the sequence extend 

to 2.13 metres where they grade into mud flat deposits. These fine grained sediments are overlain 

by a sand flat facies which extends to the ground surface. The height of these sediments above 

Ordnance Datum suggests that they may represent wash-over deposits. However, other possible 

criteria used to identify wash-over deposits are absent in these sediments. 
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The two phases of mud flat development at site 17 and 20 may represent two successive stages 

of longshore barrier development barrier. This may be linked to either increased sediment supply 

or to a stillstand or slight regressive phase in sea-level rise. The absence of the lower mud flat 

unit at site 22 may imply that the sediment has either been removed or that the barrier extended 

east of this locale only on one occasion during the late Holocene. 
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6.2 Pollen analysis 

6.2.1 Description on pollen analytical data. 

Pollen analysis was used to reconstruct vegetational development and palaeoenvironments at 

three sites within West Marsh (Figure 6.10). The sampling strategy is designed to investigate 

changes in the composition of pollen within and between the organic beds recovered from sites 

7,12 and 4. 

Site 7 

The inorganic sediments recovered from site 7 contained extremely low frequencies of pollen 

(<3000 grains cm ); as a result the majority of the levels analysed are restricted to the organic 

layers. On the basis of pollen assemblage composition the sequence has been sub-divided into 

five local pollen assemblage zones (LPAZ). 

LPAZ 7-1: Extends from 9.89 to 5.54 metres. The spectrum at 9.89 metres is dominated by Pinus 

which is predominately composed of detached bladders. Quercus, Cyperaceae and Poaceae 

pollen maintain relatively high frequencies while Alnus, Corylus and Chenopodiaceae all occur 

in relatively small numbers (Figure 6.11). This level also contains a relatively high proportion 

of indeterminable pollen which are either broken or crumpled. The organic-rich sand at 9.37 

metres contains an extremely small amount of pollen (Figure 6.12). 

The pollen concentration increases dramatically to >150,000 grains cm 3 in the sandy organic 

layer between 9.35 and 9.27 metres. This level contains pollen dominated by Cyperaceae and 

Quercus with a smaller proportion of Poaceae, Corylus and Pinus. Although these organics 

contain Alnus pollen the values remain extremely low (Figure 6.11). No pollen were identified 

in the stratified silty clay between 9.27 and 7.72 metres. 

The organic detritus between 7.75 and 7.63 metres contains pollen dominated by Quercus with 

a smaller proportion of Poaceae, Chenopodiaceae, Corylus, Cyperaceae and Pinus taxa. The 

reduction in Cyperaceae pollen towards the top of this thin organic layer coincides with a slight 
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increase in the amount of Betula, Alnus, Poaceae and Corylus pollen. The organic-rich silty clay 

between 7.63 and 7.38 metres contained no pollen. 

The pollen concentration within the organic detritus between 7.38 and 7.30 metres varies between 

101,770 and 213,469 grains cm'3 (Figure 6.12). The assemblage identified at 7.38 metres is 

dominated Poaceae, Quercus and Cyperaceae with lower frequencies of Corylus and 

Chenopodiaceae. Between 7.38 and 7.35 metres the frequency of Poaceae increases dramatically; 

this corresponds to a decrease in Quercus and Cyperaceae pollen (Figure 6.11). Above this the 

relative proportion of Poaceae pollen decreases sharply whereas Cyperaceae recovers. The 

organics at 7.32 metres also contain a greater amount of Alnus and Quercus pollen and fewer 

Chenopodiaceae grains than the underlying level. The frequency of indeterminable grains and 

spores from lower plants increases between 7.35 and 7.32 metres (Figure 6.11). 

Because no pollen were identified in the sands and silts between 7.32 and 3.76 metres the 

boundary separating LPAZ 7-1 & 7-2 is placed between these two levels; this boundary does not 

represent a specific level at which a vegetational change occurs. 

LPAZ 7-2: Extends to 3.51 metres and is marked by a sharp rise in Alnus pollen. The organic- 

rich silty clay at 3.76 metres contains pollen dominated by Cyperaceae and Alnus with a smaller 

amount of Quercus, Corylus and Poaceae (Figure 6.11). As the sediments grade into organic 

detritus at 3.66 metres the Alnus curve increases from 33% to 54%; this corresponds to a decrease 

in Cyperaceae pollen from 51% to 32%. Other common taxa within this level also include 

Quercus, Corylus and Poaceae. 

LPAZ 7-3: Extends from 3.51 to 3.26 metres and is defined by a sharp decrease in Cyperaceae 

and Alnus pollen, corresponding to an increase Poaceae and a slight rise in Salix. Quercus and 

Corylus pollen maintain relatively high levels throughout this zone. 

LPAZ 7-4: Extends from 3.33 to 3.13 metres. The opening of LPAZ 7-4 is marked by a sharp 
decline in Poaceae, associated with an increase in the relative proportion of Cyperaceae and SaUx 

pollen. Alnus, Quercus and Corylus pollen frequencies remain relatively low (Figure 6.11). 
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Between 3.29 and 3.23 metres the Salix and Cyperaceae pollen diminish whereas Alnus increases 

sharply to 56%. The pollen composition varies only slightly between 3.23 and 3.16 metres. 

LPAZ 7-5: Extends above 3.13 metres and is marked by a sharp rise in the Poaceae curve. This 

corresponds to a fall in Alnus and Cyperaceae while Chenopodiaceae and Corylus pollen increase. 

Quercus and Corylus curves only exhibit a slight variation throughout the upper organic unit at 

site 7 and the pollen concentrations within this layer range between 110,000 and 400,000 grains 
3 cm . 

No pollen were identified in the silts, clays and sands between 3.05 and 1.40 metres. The pollen 

concentration in the organic-rich silty clay at 1.40 metres is relatively high at 41,477 grains cm's 
(Figure 6.12). The pollen composition at this level is extremely similar to the organics at 3.06 

metres. The spectrum is dominated by Poaceae and contains a relatively high proportion of 

Chenopodiaceae and Plantago maritima (Figure 6.11). Qüercus, Alnus and Corylus pollen 

maintain low values. 

Site 12 

Although relatively few pollen grains were identified in the majority of the inorganic sediments 

a number of levels contained pollen in sufficient concentration to be included in the pollen 

diagram. On the basis of pollen assemblage composition the sequence at site 12 has been sub- 

divided into four local pollen assemblage zones (Figure 6.13). 

LPAZ 12-1: Extends from 8.76 to 5.39 metres. The silty clay between 8.76 and 8.37 metres 

contains pollen dominated by Quercus and Poaceae with lower frequencies of Corylus, Pinus, 

Chenopodiaceae, Ulmus, Cyperaceae and Alnus (Figure 6.13). The pollen concentration between 

8.76 and 8.37 metres is relatively high, varying between 65,000 and 55,00 grains cm's (Figure 

6.14). No pollen were identified in the sandy silt and silty clay between 8.37 and 5.80 metres. 

The organics at 5.80 metres contains a greater proportion of Poaceae and Cyperaceae and fewer 

Quercus, Pinus, Ulmus and Corylus pollen than the silty clay at 8.37 metres (Figure 6.13). Betula 

and Alnus pollen continue to occur in relatively low numbers and the total pollen concentration 
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Chapter 6 Palaeoenvironments and Radiocarbon Dating 

remains relatively high at 42,300 grains cm 3 (Figure 6.14). As the sediments grade into organic 

rich silty clay at 5.76 metres the relative proportion of Quercus, Pinus and Chenopodiaceae pollen 
increases whereas Cyperaceae and Poaceae diminish. The Corylus and Betula curves do not vary 

as the sediments grade from organic into inorganic sediment. 

The transition from organic-rich silty clay to organic detritus at 5.66 metres is marked by a 

decrease in Poaceae and a corresponding increase in Cyperaceae and Chenopodiaceae pollen. 

The organics at 5.66 metres also contain Quercus, Corylus pollen and a small amount of Plantago 

maritima (Figure 6.13). The pollen concentration is extremely high and only a relatively small 

number of indeterminable grains were recorded within this level. The organics between 5.66 and 

5.54 metres contain pollen dominated by Poaceae with variable amounts of Cyperaceae and 

Quercus. The percentage data indicates that Chenopodiaceae pollen, which is occurs in relatively 

high numbers between 5.66 and 5.54 metres, is negatively correlated to Cyperaceae and 

positively correlated to Poaceae (Figure 6.13). 

LPAZ 12-2: Extends from 5.39 to 3.68 metres and is marked by a fall in Poaceae and Cyperaceae, 

which coincides with a rise in Quercus pollen. The pollen assemblage identified in the organic- 

rich silty clay at 5.25 metres contains a greater quantity of Corylus, Chenopodiaceae, Alnus, Tilia, 

Pteropsida and Polypodium than the underlying levels (Figure 6.13). Furthermore, the pollen 

concentration is >76,000 grains cm 3 (Figure 6.14) and relatively few indeterminable grains were 

recorded. No pollen were identified in the organic-rich silty clay between 5.25 and 3.85 metres. 

The level at 3.85 metres was sub-sampled from the boundary between clay and organic detritus. 

These sediments contain pollen dominated by Quercus and a relatively high proportion of 

Poaceae, Chenopodiaceae, Plantago maritima, Cyperaceae and Corylus (Figure 6.13). 

LPAZ 12-3: Extends from 3.68 to 2.90 metres and is defined by a sharp rise in Alnus and Betula 

pollen. This corresponds to a fall in Quercus, Poaceae, Corylus, Poaceae, Chenopodiaceae, 

Cyperaceae and Plantago maritima (Figure 6.13). The pollen concentration at 3.60 metres is 

extremely high and this level contains relatively few indeterminable grains. Between 3.45 to 3.22 

metres Corylus, Poaceae and Calluna pollen increase whereas Alnus, Quercus and Betula all 

163 



Chapter 6 Palaeoenvironments and Radiocarbon Dating 

decline in number (Figure 6.13). Above this the relative proportion of Quercus, Corylus and 

Cyperaceae increase whereas Poaceae and Calluna pollen diminish. The organic detritus at 3.13 

metres show an increase in Chenopodiaceae and Plantago maritima pollen (Figure 6.13). 

Between 3.13 and 2.95 metres Alnus and Betula both increase in quantity whereas Quercus, 

Corylus, Poaceae and Cyperaceae pollen diminish. 

LPAZ 12-4: Extends above 2.90 metres and is marked by an expansion in Quercus and 

Cyperaceae pollen; this coincides with a fall in Betula, Alnus, Corylus and Poaceae. These 

changes in assemblage composition within LPAZ 12-4 correspond to both a decrease in the total 

pollen concentration (from >1,100,000 to < 6,000 grains cm-3 ) and to a sharp increase in the 

relative proportion of Pteridium, Polypodium and indeterminable pollen (Figures 6.13 & 6.14). 

No pollen were identified in the silty clay between 2.85 and 1.70 metres. 

The pollen contained within the silty clay at 1.70 metres are dominated by Poaceae, Corylus, 

Alnus, Quercus and Calluna. These sediments also contain relatively few indeterminable grains 

and a high total pollen concentration (Figure 6.14). 

Site 4 

The sampling strategy at site 4 was designed to examine vegetational changes within the upper 

organic layer and any subsequent variation in pollen composition, associated with the transition 

from organic detritus into organic rich silty clay. On the basis of pollen composition the upper 

2.89 metres of the sequence can be sub-divided into three local pollen assemblage zones (Figure 

6.15). 

LPAZ 4-1: Extends up to 2.70 metres. The pollen spectra identified within the organic-rich silty 

clay at the base of the sequence are dominated by Cyperaceae and Polypodium and contain a 

small amount of Pinus, which is predominately represented by broken bladders. These inorganic 

sediments contain a relatively large amount of indeterminable grains and have a low pollen 

concentration (Figure 6.16). As the sediments grade into organic detritus, between 2.89 and 2.80 

metres, the pollen concentration increases sharply from <10,000 to >170,000 grains cm 3. This 

corresponds to a sharp decline in Cyperaceae and a rise in Poaceae pollen. Quercus, Corylus and 
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Figure 6.16 Pollen concentration diagram for site 4. 
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Alnus pollen maintain relatively constant frequencies through this zone whereas Betula, Ulmus, 

Chenopodiaceae, Pteropsida and Polypodium occur in small numbers (Figure 6.15). Between 

2.78 and 2.76 metres the relative proportion of Poaceae decreases sharply; this corresponds to a 

sharp rise in the Cyperaceae curve. The percentage data indicates that through LPAZ 4-1 the 

relative proportions of Poaceae and Cyperaceae pollen exhibit a strong negative correlation. 

Extremely high pollen concentrations are recorded in the majority of the levels sub-sampled from 

the organic sediment (Figure 6.16). 

LPAZ 4-2: Extends from 2.70 to 2.43 metres. The lower boundary of LPAZ 4-1 is marked by 

a sharp rise in the relative proportion of Alnus pollen which this corresponds to a decrease in 

Poaceae and Cyperaceae. The Quercus and Corylus curves exhibit little variation. Between 2.59 

and 2.55 metres the Alnus pollen frequency falls whereas Cyperaceae exhibits rapid expansion 

and Quercus rises slightly. 

Above this the Alnus and Poaceae curves recover while Cyperaceae and Quercus pollen diminish 

(Figure 6.15). These organics also contain a relatively high proportion of Salix pollen and a 

greater number of Chenopodiaceae and Plantago maritima than the underlying level. 

LPAZ 4-3: Extends above 2.43 metres and corresponds to the boundary between organic and 
inorganic sediment. As the organic detritus grades into organic rich silty clay Alnus and Salix 

pollen diminish rapidly (Figure 6.15). This corresponds to a significant rise in Chenopodiaceae 

pollen and to a slight rise in Quercus, Cyperaceae, Plantago maritima, Pteropsida and 

Polypodium (Figure 6.15). Between 2.40 and 2.30 metres Cyperaceae declines whereas 

Chenopodiaceae and Corylus curves continue to increase. Quercus, Alnus and Poaceae pollen 

maintain relatively high values between 2.40 and 2.20 metres. The pollen concentrations within 

these sediments is much lower than in the underlying organic detritus. 

Although ten levels were sub-sampled from the clay, silt and sand between 2.40 and 0.10 metres 

only three contained pollen in sufficient quantity for analysis (Figure 6.16). Pollen contained 

within the silty clay at 0.50,0.20 and 0.10 metres are dominated by Poaceae with fewer numbers 

of Quercus, Alnus, Corylus, Salix, Asteraceae, Chenopodiaceae, Cyperaceae, Pteropsida and 
Polypodium than the underlying sediment (Figure 6.15). The pollen concentration varies between 
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73,000 to 29,000 grains cm 3 and the levels contain a high number of crumpled, corroded or 

broken grains (Figure 6.16). 

6.2.2 Pollen sources in West Marsh and regional vegetation succession 

during the Holocene 

Prior to the interpretation of pollen analytical data one must first consider the various sources of 

pollen within the study area. Knowing the potential origin of pollen contained within the organic 

and inorganic sediments described in West Marsh, it may possible to assess whether the spectra 

represent local, extra-local or regional vegetational development. 

West Marsh is a low-lying area which covers approximately 5 km2 and is fed by springs, streams 

and small rivers draining from the fossil cliffline between Pendine and Coygan Quarry (Figure 

6.10). The various potential pollen sources in West Marsh (Figure 6.17) include pollen derived 

from local vegetation (Cl), pollen from freshwater inwashing (Cw), pollen supplied via air 

movements within the trunk-space (Ct), pollen supplied by the canopy (Cc) and pollen from 

rainfall (Cr). Jacobson and Bradshaw (1981) suggested that the local component is composed of 
Cl, Cw and Ct; the extra-local component is derived from Ct, Cw and Cc; whereas the regional 

component is largely supplied via Cc and Cr (section 3.2.4). 

The relative contribution from each of these sources may vary in response to vegetational 

development within the back-barrier area, increased freshwater discharge, or tidal inundation. 

During periods of saltmarsh development and inorganic sediment accumulation, the Cl may 

originate from local saltmarsh vegetation. The predominance of tree-less vegetation, on the low 

lying back-barrier marsh surface, indicates that the Cw, Ct and Cc components are derived from 

extra-local forest communities growing upon the fossil cliffline (Figure 6.17a). Regional pollen 

may be supplied by Cc, Cr and are possibly contained within the coastal and estuarine waters. 

Although the organic sediments contain a minerogenic component they are largely composed of 

plant debris, which have accumulated at a rate exceeding the combined effects of plant 

respiration, herbivore consumption and microbiological decomposition. Due to the inherent 
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topography of the marsh surface, the hydrology within West Marsh may have been extremely 

complex during periods of organic accumulation. The density of alder cart, sedge fen, and open 

grass vegetation within these rhetotrophic mires indicates that these organic detrital units may 

contain a large proportion of local pollen, derived from Cl, Ct and Cw (Figure 6.17b). The extra- 

local pollen component, supplied by Cw, Ct, and Cc from mixed woodland growing upon the 

fossil cliffline, would continue to be of significance and a smaller proportion of regional pollen 

may be derived from Cc and Cr (Figure 6.17b). 

The organic and inorganic sediments in West Marsh are therefore likely to contain local, extra- 
local and regional pollen; however, the relative contribution from each of these components may 

vary in response to barrier complex development. Consequently, the succession of sub- 

environments within West Marsh might have received differing amounts of local and extra-local 

pollen depending upon the density of local vegetation and the degree of inwashing into the 

sedimentary basin. Because the back-barrier sediments may contain a regional component it is 

necessary to discuss and compare the study area to a well-dated continuous record of Holocene 

vegetational succession. 

Tregaron south east bog (Dyfed) is the nearest continuous well-dated record of Post-glacial 

vegetational development in Wales. The stratigraphy was first analysed by Godwin and Mitchell 

(1938), who provide a description of the site and stratigraphy at Cors Goch Glan Teifi; this 

sequence shall provide the basis for comparison with the incomplete sequences described in West 

Marsh. 

Godwin and Mitchell (1938) sub-divided the sequence at Cors Goch Glan Teifi into six pollen 

assemblage zones (Figure 6.18), which were subsequently radiocarbon dated by Hibbert and 

Switsur (1976): 

1) Betula-Pinus-Salix-Juniperus Zone: Extends from 4.17 to 4.05 metres. Betula pollen 
dominates the tree taxa within this zone (Figure 6.18 ). Juniperus and Salix occur in relatively 
high frequencies whereas Pinus pollen is present in low but constant numbers. Other taxa include 

LEmpetrum and Sorbus. The opening of this zone is dated at 10,200: t 220 BP. 
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2) Betula-Pinus-Corylus Zone: Extends from 4.05 to 3.94 metres. This zone shows the continued 

dominance of Betula pollen while Pinus exhibits a small increase (Figure 6.18). The rapid 

expansion of Corylus pollen marks the beginning of this zone whereas Juniperus and Salix both 

remain relatively low. This zone begins at 9750 t 220 BP. 

3) Corylus-Pinus Zone: Extends from 3.94 to 3.50 metres. Initially Corylus pollen rises rapidly 

and then remain relatively constant whereas Betula and Juniperus decline while Pinus and Salix 

maintain low values. Ulmus and Quercus pollen increase through this zone. The Ulmus pollen 

rise has been dated at 9550 ± 200 BP. , the zone opens at 9300 ± 190 BP. and the level at which 
Pinus exceeds Betula is dated at 8285 ± 150 BP. 

4) Pinus-Corylus-Quercus Zone: Extends from 3.50 to 2.37 metres. Pinus, Ulmus and Quercus 

pollen all rise whereas Betula and Salix fall while Corylus representation remains high. This zone 

commences at 8150 ± 150 BP. and Alnus first appears at 7130 ± 180 BP. 

5) Quercus-Ulmus-Alnus Zone: Extends from 2.37 to 1.68 metres. The opening of this zone is 

defined by a marked rise in Alnus pollen while Pinus frequencies fall (Figure 6.18). Quercus 

pollen values rise to a maximum in this zone whereas Tilia and Fraxinus pollen first appear. The 

start of this zone is dated at 6990 ± 180 BP., the Alnus pollen rise is completed by 6530 ± 110 

BP., and Tilia pollen attains continuous representation by 5980 ± 100 BP. 

6) Quercus-Alnus Zone: Extends from 1.68 to 0.30 metres. The start of this zone is marked by 

a fall in Ulmus, Tilia and Fraxinus pollen. Quercus and Alnus pollen dominate this upper zone. 

The opening of zone six is dated at 4990 ± 70 BP. and the decline in Ulmus is dated 4890 ± 70 

BP. 

Hibbert and Switsur (1976) also provide dates for two phases Plantago pollen expansion along 

with the timing of a slight recovery in Ulmus and Fraxinus. The affect of anthropogenic activity 

at Tregaron south east bog has been dated at 2920 ± 50 BP. 

The well dated sequence at Tregaron provides a basis for the comparison of sites 7,12 and 4 to 

regional vegetation development during the Holocene. The rise in Ulmus and Alnus along with 
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the subsequent Ulmus decline represent regional vegetational indicators which can be used to 

determine the timing of events within the sequence. 

6.2.3 Vegetational development within West Marsh 

When pollen data are presented in percentage form problems arise from the individual taxa curves 
being inter-dependent. For instance, an increase in the influx of one particular taxa will lead to 

the suppression of percentages derived for the other taxa when they maintain at the same 

concentration. Therefore changes in the relative proportion of taxa obtained from percentage 

diagrams may not actually represent the ecological development at a particular site but may be 

an artifact of the percentage calculations. These problems can be overcome, by analysing the 

concentration of particular taxa within the sequence. To assist in the interpretation of fossil 

pollen-analytical data the ecological and environmental requirements of certain tree, shrub, herb 

and lower plants taxa are summarised in appendix 6.2. 

Site 7 

LPAZ 7-1: Cyperaceae, Poaceae and Chenopodiaceae, identified within the silty clay at 9.86 

metres, indicate the local abundance of sedge fen and saltmarsh vegetation at or above MHWST 

level (Godwin, 1975). Quercus, Alnus and Corylus pollen may be derived from forest 

communities located either locally or in the surrounding landscape. However, the high 

percentage of Pinus bladders, the low pollen concentration and the relatively high proportion of 

indeterminable grains indicates that this level contains a significant reworked component supplied 

probably via aquatic transport; pine bladders may either be derived from older sediments within 

the catchment or represent long-distance transport. 

The spectrum identified at 9.31 metres suggests that the organic layer between 9.35 and 9.27 

metres may represent the development and subsequent accumulation of treeless mire vegetation, 

dominated by sedges and grasses; these pollen are likely to represent local vegetation whereas 

Quercus, Corylus, Pinus, Alnus and Ulmus pollen indicate the presence of oak-hazel-alder 

woodland adjacent to the site of preservation. Alder may flourish in wetter areas, _such as on 
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stream banks, forming part of the oak canopy whereas hazel may grow in open areas within the 

oak woodland. The absence of pollen within the silty clay between 9.27 and 7.72 metres maybe 

an indication of either poor pollen preservation or high sediment supply in a near-shore 

environment. 

The high proportion of Quercus and Corylus pollen, identified within the organic detritus 

between 7.75 and 7.63 metres, indicates the continued development of mixed oak-hazel woodland 
in the surrounding landscape with occasional birch, alder and elm; oak-hazel stands may extend 
locally into relatively dry areas within the back-barrier environment. The high proportion of 
Pinus bladders and extremely low pollen concentrations throughout this organic unit suggest that 

these sediments contain reworked pollen. Chenopodiaceae pollen values indicate the local 

abundance of saltmarsh species such as Salicornia sp., Atriplex sp., Suaeda maritima and 
Halimione portulacoides, which are widespread on the coasts of Britain today. The frequency 

of Poaceae and Cyperaceae pollen implies the predominance of local treeless vegetation with 

occasional stands of sedges in areas subject to water-logging. Similar vegetational patterns can 

be observed within the Taf Estuary at present; sedges grow between Highest High Water Springs 

(HHWS) and Mean High Water Springs (MHWS) and are influenced by local salinity and 

waterlogging. The absence of pollen, within the organic-rich silty clay between 7.63 and 7.38 

metres may be a result of destructive processes during oxidation or increased sediment supply in 

a near-shore environment. 

Quercus and Corylus pollen, identified within the organics between 7.38 and 7.30 metres, suggest 

the continued development of mixed forest communities adjacent to site 7. However, the 

extremely high proportion of Poaceae throughout this unit may indicate the predominance of local 

grass dominant saltmarsh vegetation. The concentration data suggests that the decrease in 

Quercus, Poaceae and salt-tolerant pollen at 7.32 metres reflects the local expansion of alder carr 

and sedge fen communities (Godwin, 1975); the change from grass-dominant saltmarsh to 

freshwater carr and fen habitats may represents a decrease in marine influence. The scarcity of 

pollen in the inorganic sediments between 7.32 and 3.76 metres may result from destruction of 

sporopollenin during oxidation, increased sediment supply in a near-shore environment or a 

combination of these processes. 
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LPAZ 7-2: The rise in Alnus indicates the local development of alder can in areas subject to 

waterlogging. The inorganic and organic sediment between 3.76 and 3.51 metres is therefore 

likely to have accumulated within a freshwater environment dominated by alder and sedges; 
however, as Alnus can often be locally over-represented in can communities care should be taken 

when interpreting these environments. Although the majority of oak and hazel pollen is likely to 

be derived from extra-local mixed forest in the surrounding landscape, Quercus may grow locally 

in dry areas behind the barrier. As the sediments grade from inorganic into organic sediment at 
3.66 metres the concentration of both Alnus and Cyperaceae pollen increase (Figure 6.12); the 
dramatic rise in alder pollen which corresponds to the transition into organic sediment and results 
in the suppression of sedge on the percentage diagram (Figure 6.11). This indicates the continued 
development and accumulation of alder can and sedge fen vegetation. 

LPAZ 7-3: The sharp rise in Poaceae pollen indicates the development of treeless vegetation and 

possibly a fall in the local water table. The slight increase in Quercus and Corylus pollen 
frequencies may represent the local development of oak-hazel stands within the back-barrier 

environment (Figure 6.12). 

LPAZ 7-4: The sharp rise in Cyperaceae pollen indicates a local increase in waterlogging, 

suggesting a transition from grass-dominant saltmarsh vegetation to freshwater fen communities. 
The increase in willow pollen may represent the initial development of local stands of Salix. The 

expansion of Alnus pollen between 3.29 and 3.23 metres causes a reduction in the concentration 

of Cyperaceae and Salix pollen, indicating the local replacement of sedge and willow by alder 

can. The initial rise in Cyperaceae pollen at the onset of LPAZ 7-4 may possibly represent local 

changes in the distribution of sedge in response to hydrological and ecological changes within 

the back-barrier environment. 

LPAZ 7-5: The rise in Poaceae pollen possibly implies a transition from freshwater alder cart to 

grass-dominant saltmarsh vegetation. This corresponds tö an increase in Chenopodiaceae and 

extra-local pollen, which indicates greater marine and tidal influence and the possible 

development of saltmarsh vegetation. 
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The succession of plant communities within the back-barrier environment at site 7 occur in 

response to complex interrelationships between local hydrology and salinity. For instance, 

fluctuations in the frequency of alder, sedge and grass pollen reflect changes in the extent and 

distribution of wetter and drier areas behind the barrier. 

Site 12 

LPAZ 12-1: Pollen identified in the silty clay between 8.76 and 8.37 metres indicates the possible 

presence of extra-local pollen derived from mixed oak-hazel woodland adjacent to the site of 

preservation. The forest vegetation contains a high proportion of oak and hazel pollen with less 

elm, birch, alder, beech and pine. As previously indicated the relatively low concentrations of 

Pinus pollen must be interpreted with some caution as it may represent long-distance transport 

or reworking within the catchment. The local vegetation is dominated by Poaceae pollen and 
indicates the local presence of salt-tolerant species and Cyperaceae; this is indicative of grass- 
dominant saltmarsh vegetation growing at or above MHWST level. 

The pollen data indicates that the organics at 5.80 metres may represent pollen derived from the 

development and accumulation of local treeless vegetation, dominated by Poaceae and 
Cyperaceae. Quercus, Corylus, Betula and Alnus pollen indicate the continued development of 

mixed woodland adjacent to site 12 or the local development of oak-hazel and alder-birch stands 

within the back-barrier environment. As the sediments grade into organic-rich silty clay at 5.76 

metres the extra-local and Chenopodiaceae pollen increase whereas Poaceae and Cyperaceae 

diminish. The remainder of the organic and inorganic sediments in LPAZ 12-1 contain pollen 
indicative of local treeless vegetation dominated by Poaceae with Chenopodiaceae and 
Cyperaceae in local abundance. The concentration data indicates that the apparent inverse 

relationship between Chenopodeaceae and Cyperaceae pollen is an artifact of the percentage 

calculations and that the contribution from extra-local plant communities varies only slightly 

through this zone. 

LPAZ 12-2: The onset of LPAZ 12-2 is marked by an increase in the relative proportion of 

extra-local pollen and a decrease in the abundance of local pollen. As the concentration of 

Quercus, Corylus, Alnus and Tilia pollen does not increase through this zone the rise observed 
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on the percentage diagram (Figure 6.13) may be result from the interplay between local and extra- 

local pollen sources. These sediments do contain Chenopodiaceae and Plantago maritima pollen 
in sufficient quantity to suggest that these salt-tolerant plants occur in local abundance. 

LPAZ 12-3: The rise in Alnus pollen at the onset of zone 12-3 possibly may represent the local 

expansion of alder can vegetation within the back-barrier environment. The increase of alder, 

associated with a decrease in the concentration of Cyperaceae and Poaceae pollen, may suggest 

a transition from grass-dominant saltmarsh vegetation to fresh water carr at site 12. The rise in 

Betula pollen at 3.60 metres could also support this hypothesis (Godwin, 1975). The rise in 

Poaceae and Calluna pollen between 3.45 and 3.22 metres indicates the development of local 

grass-dominated vegetation and the possible clearance of mixed-woodland adjacent to the site of 

preservation; although this may be supported by the observed decrease in oak, hazel and alder 

pollen, local stands of Quercus, Corylus and Alnus are likely to have been replaced by grass- 
dominated vegetation (Figure 6.14). The increase in Cyperaceae, Saliz and Chenopodiaceae 

pollen between 3.22 and 3.13 metres may represent the development of local saltmarsh vegetation 

accumulating at or above MHWST. The expansion of Alnus and Betula pollen between 3.13 and 
2.95 metres indicates the local development of freshwater carr, which replaces the sedge, willow 

and saltmarsh vegetation. Quercus and Corylus pollen indicate that oak and hazel continue to 

be significant contributors to mixed forest communities within the surrounding landscape and that 

local stands of oak and hazel may have developed in dry areas behind the barrier. 

LPAZ 12-4: The rise in the Quercus, Cyperaceae and Pteridium curves above 2.90 metres may 

represent a decrease in the abundance of local vegetation with a continued contribution from 

extra-local plant communities. Cyperaceae pollen maybe derived from local sedge stands, 

growing between HHWST and MHWST, whereas oak and bracken pollen may originate from 

the adjacent woodland. The lack of pollen between 2.85 and 1.70 metres may either be due to 

post-depositional oxidation, which is supported by the presence of mottling, or high 

sedimentation rates within a near-shore environment. 

The pollen identified at 1.70 metres indicates the predominance of local treeless vegetation with 

continued development of extra-local mixed oak, alder, birch and hazel woodland, adjacent to the 

site of preservation. 
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Site 4 

LPAZ 4-1: Pollen, identified within the organic rich silty clay at 2.89 metres, suggests that the 

local vegetation at that level was composed predominately of sedge with an extremely low 

contribution from extra-local forest communities; extra-local pollen is composed of Pinus 

bladders, Quercus and Polypodium. The relatively high proportion of indeterminable grains, pine 

bladders and Polypodium spores suggests that these sediments contain reworked pollen and have 

been subject to destructive processes during oxidation. The low pollen concentrations may also 

indicate low pollen input into a near-shore environment subject to high sediment supply. 

The sharp rise in Poaceae, associated with the transition from inorganic to organic sediment, 
implies a change from sedge to local grass-dominant vegetation. Although the organics at 2.80 

metres contain a high pollen concentration the proportion of Quercus, Alnus and Corylus pollen 

remain relatively low. The rise in the Cyperaceae curve between 2.78 to 2.76 metres maybe an 
indication of increased waterlogging at this locale. Differences in the relative proportion of sedge 

and grass in LPAZ 4-1 are likely to be localised and represent changes in water table height. 

LPAZ 4-2: The rise in Alnus pollen is may represent the local expansion of alder carr at site 4. 

The concentration of Poaceae pollen remains relatively high and the minimum value of 
Cyperaceae coincides with a peak in the concentration of alder and grass pollen. This may 
indicate a gradual change from alder and sedge carr to slightly drier alder and grass communities. 

Above this the decline in Alnus and Poaceae, associated with the recovery of Cyperaceac pollen, 
indicate a switch to wetter conditions in which sedge becomes a significant component of the 

local vegetation. 

The recovery of Alnus and Poaceae pollen towards the top of LPAZ 4-2 indicates a transition to 

slightly drier conditions. The pollen imply that local vegetation is composed of alder and grass 

with occasional stands of willow and local presence of salt-tolerant plants such as 

Chenopodiaceae and Plantago maritima. The extra-local component, composed of Quercus, 

Corylus, Ulmus, Fraxinus and Pinus pollen, remains relatively low and constant throughout this 

zone. 
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LPAZ 4-3: As the sediments grade from organic into inorganic Alnus, Poaceae and the total 

pollen concentration decrease sharply (Figure 6.16). The rise in Chenopodiaceae, Plantago 

maritima and Cyperaceae pollen suggest a transition from local freshwater carr to saltmarsh 

vegetation. The lower pollen concentration maybe an indication of increased sediment supply 
in a near-shore environment and the subsequent decline in sedge is likely to represent greater 

marine influence. The concentration of the extra-local pollen remains relatively low and exhibits 
little variation. 

The extremely low pollen concentrations between 2.40 and 0.50 metres may represent reworking, 
destruction during oxidation, increased sediment supply or a combination of these processes. 
Pollen between 0.50 and 0.10 metres indicates that the local vegetation is dominated by Poaceae 

with the local presence of Cyperaceae, Chenopodiaceae and Asteraceae (Lactuceae). The latter 

includes Aster tripolium which at present is a common component of the saltmarsh vegetation 

within the modern Taf Estuary. Extra-local pollen values remain low in these sediments, 
indicating a reduced contribution from mixed woodland adjacent to site 4. 

6.2.4 Summary 

From consideration of the vegetational succession within West Marsh it is clear that pollen 
identified within the deposits recovered from sites 7,12 and 4 generally represent local and extra- 

local plant communities. None of the main regional changes in vegetation, described at Tregaron 

south east bog, can be identified within the incomplete sequences from West Marsh. However, 

the majority of the organic sediments contain pollen of Alnus and Quercus indicating that these 

sediments accumulated after the Alnus rise of approximately 6990 years BP (Hibbert and Switsur, 

1976). Although the silty clay at the base of site 12 contain Ulmus the exact point at which this 

tree declines is not clear; however, the pollen data does suggest that the silty clay at the base of 

site 12 was deposited prior to the Ulmus decline at approximately 4890 years BP (Hibbert and 
Switsur, 1976). The under-representation elm within West Marsh may be due to low pollen 

production, poor dispersal, and the fact that Ulmus is not a constituent of the local back-barrier 

vegetation. 
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During the accumulation of organic and inorganic sediments within West Marsh mixed oak- 

hazel-alder woodland dominated the fossil cliffline between Pendine and Coygan, the river 

catchments, and the landscape above Pendine, Llanmiloe and Brook (Figure 6.10). Alder formed 

part of the oak canopy in wetter areas whereas hazel will have developed in openings within the 

forest. The inorganic sediments generally contain very little pollen, largely derived from local 

and extra-local vegetation. Arboreal pollen is likely to be supplied by via air transport and 

freshwater discharge; grains introduced into the coastal and estuarine waters by rivers draining 

into Carmarthen Bay would be deposited upon the marsh and mudflat surfaces during high water. 
Where preserved, pollen derived from local vegetation indicates that the organic rich silty clay 

accumulated within an environment covered by grass-dominant saltmarsh vegetation. The low 

pollen concentrations observed within these sediments may result from the destruction of 

sporopollenin during oxidation, low pollen input, high sediment supply in a near-shore 

environment or a combination of these processes. 

The organic detritus identified at sites 7,12 and 4 represent the deposition and accumulation of 

plant debris within a predominately freshwater back-barrier environment. Although the area has 

largely been isolated from significant marine influence, during periods of organic accumulation 

the main successions in vegetation occur in response to local changes in hydrology and salinity; 
for instance, pollen indicative of saltmarsh vegetation have been identified within the upper 

organic unit at site 4. Analysis of the pollen analytical data highlights the complexity of local 

vegetational development within the back-barrier environment, the distribution of sub- 

environments within the system and the interplay between local, extra-local and regional pollen. 

The increase in Alnus pollen, observed within the upper organic units at all three sites, represents 

the local development of alder carr within West Marsh and not the regional rise in alder. 

Fluctuations in the relative frequency of Alnus and Cyperaceae represent the complex hydrology 

within the back-barrier area during periods of organic accumulation. Variations in the quantity 

of Quercus and Corylus pollen may represent periods of oak and hazel growth within drier areas 
behind the barrier. The difficulties encountered when reconstructing former vegetational 

succession within West Marsh are unsurprising. Modern coastal fen-carr environments, such as 

Oxwich Marsh on the Gower Peninsula, contain a whole series of sub-environments dominated 

by distinctive floras. 
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The transition from organic-rich silty clay into organic detritus corresponds to a gradual change 

from saltmarsh vegetation to sedge fen and then alder can. Similarly, as the sediments grade 

from organic detritus into organic rich silty clay the pollen indicate a change from freshwater carr 

into saltmarsh vegetation. This suggests that the transition from freshwater organics to intertidal 

saltmarsh sediment represent continuous sedimentation under increasing marine influence. 

Although the majority of the organics units in West Marsh represent the accumulation of 

freshwater vegetation above the HHWST level they contain pollen indicative of grass-dominant 

saltmarsh vegetation which suggests that they were periodically subject to marine influence. For 

instance, when extremely high spring tides coincided with large storms it is possible the sea 
inundated the fen communities at the back of the saltmarsh. 
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6.3 Radiocarbon Dating 

6.3.1 Radiocarbon results 

Site 7 

The organic bed between -5.60 to -5.53 metres OD is composed of organic-rich sand, which 

contains 10% organic matter. This level has been dated at 6230 ± 125 BP. (Table 6.2). The 

remaining three samples were taken from fine-grained silty organic detritus and fine-grained 

organic detritus. The organic content varies between 38% and 85% and the samples contain small 

fragments of wood and sedge (Table 6.2). 

The organics between -3.62 and -3.59 metres OD have been dated at 5770 ± 45 BP.. The base 

of the upper organic bed between 0.20 and 0.23 metres OD is dated at 4165 ± 50 BP., whereas 

the top of this unit is dated at 3890 ± 50 BP. (Table 6.2). 

Site 12 

The samples taken from site 12 are composed of silty organic detritus and fine-grained organic 
detritus. The organic content varies between 20% and 60% and these samples contain small 
fragments of wood and sedge (Table 6.2). 

The organics between -2.23 and -2.20 metres OD have been dated at 5920 t 50 BP.. The base 

of the upper organic bed at -0.21 metres OD has been dated at 4630 t 45 BP., whereas the top 

of this unit is measured at 3580 t 45 BP. (Table 6.2). 

Site 4 

Samples taken from site 4 are composed of fine-grained organic detritus and fine-grained silty 

organic detritus. The organic content varies between 49% and 82% and the samples contain small 

fragments of wood and sedge (Table 6.2). 
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The organics between -1.81 and -1.78 metres OD are dated at 6220 ± 45 BP. The base of the 

upper organic bed between 1.14 and 1.17 metres OD is dated at 4380 ± 50 BP., whereas the top 

of this unit is has a 14C age of 3810 ± 50 BP. (Table 6.2). 

6.3.2 Discussion of14C dates 

All ten samples contain a variable amount of allochthonous material composed principally of fine 

grained inorganic sediment, probably introduced via freshwater streams draining from the fossil 

cliffline and tidal in-washing, during periods of elevated sea-level. The organics probably 

represent insitu accumulation of organic detritus which have not been affected by oxidation or 

bioturbation. 

Four brooks, with relatively small catchments, drain from the Lower Old Red Sandstone 

Measures into West Marsh. The streams presently draining into West Marsh do not originate 

from areas of limestone or calcareous soils and the palaeohydrology during the Holocene is not 

likely to have been too dissimilar. If so the levels of dissolved carbonate and inert carbon within 

the freshwater streams, at the time of organic accumulation, is likely to have been low. 

Furthermore, the low levels of aquatic pollen identified within the organics at sites 7,12 and 4 

indicate that sub-aquatic photosynthesis is unlikely to have further diluted 14C levels within these 

deposits. On the basis of this evidence it is extremely unlikely that hard-water error has 

influenced the 14C ages determined for sites 7,12 and 4. 

Other than the'constant and unavoidable source of contamination' (Mook and Van de Plassche, 

1986) during the formation of these organic deposits, contamination from root penetration is 

thought to be minimal as these units contain no recognisable roots and rootlets. 

The relatively large standard deviation determined for the organic sand at site 7 is probably due 

to the extremely small amount of organics contained within this deposit. Increasing the 

measuring time or sample size would reduce the o value. The gradual contacts between organic 

and inorganic sediment at sites 7,12 and 4 indicates that the peat bed surfaces have not been 

eroded. The pollen data suggests that the sediments analysed within West Marsh accumulated 
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after the regional rise in Alnus, approximately 6990 years BP. (Hibbert and Switsur, 1976). On 

the basis of this evidence it is clear that the '4C dates are accurate and have not been significantly 

affected by contamination or hard-water error. 
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Chapter 7 

Discussion 

7.1 Introduction 

The sand barrier which now extends from Gilman Point near Pendine to the confluence of the 

rivers Taf, Towy and Gwendraeth at Ginst Point forms the landward portion of extensive 

intertidal sandflats within Carmarthen Bay (Figure 7.1). The barrier is comprised of two discrete 

dune systems known as the Pendine Burrows and Laughame Burrows which were separated by 

the Wytchet tidal inlet prior to marsh reclamation between 1660 AD and the late 19th century 

(James, 1991). The back-barrier area can be divided into West Marsh and East Marsh which lie 

behind the two dune systems respectively. The Pendine/Laugharne barrier complex has formed 

within a region with one of the largest tidal ranges in the world; this is unusual as sand barriers 

elsewhere of similar dimensions are confined to micro- and meso-tidal environments (Hayes, 

1975). 

Boreholes undertaken behind the barrier reveal very different sedimentary sequences within West 

Marsh and East Marsh. Geophysical data obtained from refraction surveys, from high-resolution 

multi-channel reflection lines in the intertidal zone and from a shallow marine reflection survey 

within the Taf Estuary provide a information on the pre-transgressive surface beneath the study 

area. Foraminifera, contained within the minerogenic deposits, are used for the identification and 

interpretation of sedimentary facies changes within the back-barrier area; pollen analytical data 

describe vegetational and ecological changes within West Marsh during phases of organic 

accumulation. The evidence described and discussed in the preceding chapters is used to 

construct a series of cross-sections which show back-barrier facies development. On the basis 

of the facies changes within West Marsh and East Marsh a qualitative model is proposed which 

aims to describe the formation and subsequent evolution of the barrier system during the 

Holocene. 
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Chapter 7 Discussion 

Mechanisms which are believed to control barrier development are discussed in the context of 

the Pendine barrier. These include rates of relative sea-level rise and differential sediment supply, 

the tidal range, storm activity and the influence of the antecedent topography. 

7.2 Sedimentary facies development 

7.2.1 West Marsh 

Biostratigraphic and lithostratigraphic evidence from boreholes recovered in West Marsh have 

been used to construct three cross-sections (Figure 7.2). The sediment sequences are dominated 

by stratified minerogenic saltmarsh facies intercalated with freshwater biogenic units, 

mudflat/sandflat sediment and occasional washover/blowout deposits. 

Pendine Woodend section 

The Pendine Woodend section (Ti) extends from the fossil cliffline west of Llanmiloe across 

West Marsh and the Pendine Burrows (Figure 7.3). The stratified silty sand at the base of site 7 

represents poorly-sorted sandflat sediment intercalated with finer deposits (section 6.1.6). This 

facies grades laterally into well-sorted medium fine sand between sites 7 and 8; the composition 

and distribution of these sands indicates that these deposits may represent washover or blowout 

events associated with periods of barrier breaching. The sandflat and washover facies are 

replaced by stratified silty clay, interpreted as consisting of mudflat and low marsh facies. Pollen 

data indicates that local saltmarsh vegetation and freshwater fen communities developed locally 

upon or adjacent to this area (Table 7.1). The saltmarsh facies at site 7 is intercalated with a unit 

of stratified sand and gravel. The base of the gravel layer is marked by an abrupt erosional 

contact and sands at the top of this unit contain a high proportion of organic material. This gravel 
layer does not occur at site 8 and has not been identified at any other locality within West Marsh; 

these deposits are believed to represent a former fluvial channel possibly generated by the stream 
draining from the fossil cliffline west of Ti (Figure 7.2). The organic-rich sands between -5.60 
and -5.57 metres OD, which have been radiocarbon dated at 6230: t 125 years BP, may have been 
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Site 7 

* 

Ground surface_ 

Height Radiocarbon Lithology Interpretation 
metres dates 

OD years BP 
3.75 Sand grades into Sandfiat deposits grade Into mudf let and 

stratified silty clay marsh fades - development of grass-dominant 
which becomes mottled saltmarsh vegetation 

1.70 near the ground surface 

1.70 Silty sand In sharp contact with Abrupt change from creek channel fades 
stratified grey sand containing Into high energy sandflat deposits 

0.80 shell fragments 

0.80 Organics grade Into grey Freshwater organics grade Into saltmarsh and 
organic rich silty clay which is creek channel fades - local abundance of 

0.70 overlain by stratified sandy silt salt-tolerant species 

0.70 3890 +/- 50 Silty clay grades Into black Transition from sedge-dominant fen to alder- 
(0.68 to 0.65 m OD) organic detritus dominant carr - this Is replaced by grass- 

dominant vegetation - freshwater fen - alder 
0.06 4165 +/- 50 carr and grass-dominant saltmarsh vegetation 

(0.23 toO. 20 m OD 
0.06 Silty sand grades Into dark Mudflat facies grades Into creek channel and 

grey organic rich silty clay marsh deposits - local abundance of salt-tolerant 
-0.08 species which are replaced by sedge fen 

-0.08 Silty clay grades Into Marsh deposits replaced by high energy 
highly stratified silty sand muditat and sand flat fades 

-1.56 

-1.56 Black organic detritus Marginal fresh/saline organic fades grades 
grades Into stratified into high/mid- marsh deposits 

-3.55 grey silty clay 

-3.55 5770 +/- 45 Organic rich silty clay Marsh facles Is succeeded by marginal 
(-3.56 to -3.59 m OD) grades Into stratified fresh/saline mire at or above MHWST level 

-3.65 organic detritus stratified by saltmarsh deposits 

-3.65 Organic rich sand Freshwater fen replaced by marsh facies - 
grades Into organic rich local abundance of salt-tolerant vegetation 

-5.50 silty clay 

-5.50 6230+/-125 Silty clay overlain by Poorly sorted gravel over/under- lain by well 
(-5.57 to -5.60 m OD) stratified grey sands, sorted fluvial sand - accumulation and development 

-6.10 gravels and organic rich of freshwater fen on top of the gravel bed 
sand 

-6.10 Stratified grey silt Mudflat fades grades Into creek channel 
grades Into silty clay and marsh deposits - local development of 

-7.25 saltmarsh and freshwater fen vegetation 

-7.25 Stratified grey silty High energy sandflat deposits replaced 
sand grades Into sandy by mudflat fades 

-8.25 silt 

Table 7.1 Facies development at site 7 during the Holocene 
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deposited below MHWST level within a freshwater drainage channel. Pollen data indicates the 

local development of grass- and sedge-dominant fen communities (section 6.2.5). 

The drainage channel is infilled with the saltmarsh deposits which continue up to -3.65 metres 

OD where the sediment grades from organic-rich silty clay into black organic detritus (Table 7.1). 

This organic layer occurs at sites 7 and 8 and is stratified by lenses of organic-rich silty clay 

(Figure 7.3). Pollen analysis indicates that these organics represent the local development of a 

freshwater mire with discrete lenses of saltmarsh sediment. The top of this organic unit has been 

radiocarbon dated as 5770 ± 45 years BP (Table 7.1). The stratified organics then grade into a 

stratified saltmarsh facies which is overlain by highly-stratified silts and sands. 

At site 8 two organic units, between -3.55 and 0.06 metres OD, are interstratified and overlain 

by well-sorted medium fine sand (Figure 7.3). The latter continue up to the ground surface at site 

8 and the boundaries between the organic and sand beds are marked by abrupt erosional contacts. 

As the sands extend across the back-barrier area it is possible that they may represent washover 

sediment deposited by storm waves breaching the barrier. Although pollen analysis was not 

conducted on the organics at site 8 the two upper organic levels probably represent the local 

development of freshwater vegetation above the MHWST level. The absence of these organic 

levels at site 7 is believed to reflect the complex hydrology within this area and variations in the 

height of the back-barrier surface rather than the removal of this deposit i. e. at this time the 

surface of site 7 may have been located below the MHWST level. 

The stratified silt and sand facies between -1.56 and -0.08 metres OD at site 7, contains washover 

deposits which are replaced by a thin layer of organic-rich silty clay. Pollen analysis indicates 

that as these fine-grained marsh and mudflat deposits grade into organic detritus at 0.06 metres 

OD the local grass-dominant saltmarsh vegetation is replaced by sedge-fen and alder-carr 

communities (section 6.2). The base of these organics have been radiocarbon dated at 4165 ± 50 

years BP whereas the top of this unit is dated at 3890 ± 50 years BP (Table 7.1). During this 

phase of organic accumulation alder-cart is replaced by grass- and sedge- dominant vegetation; 

this is then followed by a re-expansion of carr communities. These vegetational changes may 

reflect changes in the height of the local water table or the opening up of alder-can. The contact 

between organic detritus and organic-rich silty clay and sandy silt at 0.70 metres OD corresponds 
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to a transition from alder-can to grass-dominant saltmarsh vegetation. The fine-grained saltmarsh 

facies continues to 0.80 metres OD where they are replaced by well-sorted sand containing shell 

fragments. These sands extend across the back-barrier area and probably represent either 

washover or blowout deposits. The latter are overlain by fine-grained saltmarsh facies which 

becomes oxidised towards the ground surface. 

Westmead section 

The Westmead section (T2) extends from the fossil cliffline, east of Llanmiloe, across West 

Marsh and the Pendine Burrows (Figure 7.2). The silty sand facies at the base of the sequence 

represent high-energy sandflat deposits which grade laterally into well-sorted medium fine sand 
between sites 12 and 9 (Figure 7.4). These sandflats are replaced by mudflat deposits which 

grade into saltmarsh creek, low marsh and high/mid- marsh facies. Lithostratigraphic evidence 
from T2 indicates that the saltmarsh initially abutted against the fossil cliffline and subsequently 

extended across the mudflat and sandflat deposits towards the Pendine Burrows (Figure 7.4). The 

saltmarsh facies extends to approximately -2.21 metres OD at sites 5 and 12 where organic-rich 

silty clay is replaced by black organic detritus. The base of this unit is radiocarbon dated at 5920 

± 50 years BP (Table 7.2). Pollen analysis indicates that the lower organic unit at sites 5 and 12 

represents the development of grass- and sedge-dominant vegetation at or above MHWST 

(section 6.2.5). The local abundance of salt-tolerant pollen may represent extra-local pollen from 

saltmarsh vegetation within the back-barrier area or indicate that these environments were 

periodically inundated by the tide. The lower organic unit is replaced by high/mid-marsh and low 

marsh facies which extend to approximately -0.28 metres OD where they are replaced by a second 

organic unit. At site 9 the silty clay between -1.95 and 0.28 metres OD are intercalated with well- 

sorted medium fine sand containing reworked shell fragments (Figure 7.4). These deposits may 

represent washover or blowout deposits introduced into the back-barrier area during periods of 
barrier instability. The lack of organics at sites 6 and 9 indicates that the hydrology at these 

locales may have been unsuitable for organic accumulation or that the organics have subsequently 
been removed. 

The base of the upper organic unit at site 12 has been radiocarbon dated at 4630 ± 45 years BP 

whereas the top of this unit is dated at 3580 ± 60 years BP (Table 7.2). The transition from the 
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Site 12 

Ground surface_ 

Height Radiocarbon date Lithology Interpretation 
metres Years BP. 

OD 
3.6 Silty clay Continued accumulation of saltmarsh facies 

2.05 

2.05 Organic detritus grades Into Fen communities replaced by grass-dominant 
silty clay saltmarsh vegetation; accumulation of high/mid- 

0.48 marsh fades 

0.48 3580 +/- 60 Black organic detritus Local expansion of alder carr at site 12 
replaces sedge fen vegetation at or above 

-0.08 the HHWST level 

-0.08 Organic rich silty clay grades Saltmarsh vegetation replaced by grass and 
into organic detritus sedge, deposited In a predominately fresh 

-0.28 4630 +/- 45 water environment 

-0.28 Organics replaced by silty clay Transition from freshwater fen Into salt- 
marsh vegetation high/mid- marsh and low 

-1.95 marsh fades are replaced by mudtlat 
deposits 

-1.95 Silty clay grades into organic Accumulation of grass- and sedge- 
detritus stratified by organic dominant vegetation at or above MHWST 

-2.24 5920 +/- 50 rich silty clay level; saltmarsh vegetation occurs In local 
abundance 

-2.24 Silt grades Into organic-rich Creek channel deposits are replaced 
silty clay Intercalated with by low and high/mid- marsh fades 

-3.25 sandy silt beds marsh fades 

-3.25 Silty clay in sharp contact Saltmarsh facies replaced by high energy 
highly stratified sandy silt mudflat and sandflat deposits 

-4.65 

-4.65 Sandy silt grades into Mudflat fades replaced by creek channel 
organic-rich silty clay and marsh deposits; grass-dominant 

-5.25 saltmarsh vegetation in local abundance 

-5.25 Silty clay replaced by Creek channel deposits replaced by 
sandy silt high energy mudflat fades 

-6.4 

-6.4 Silt grades Into silty clay Transition from mudflat Into marsh 
stratified by numerous creek channel fades 

-7.05 sand lenses 

-7.05 Horizontally bedded silty High energy sandflat deposits replaced 
sand grade into sandy mudflat fades 

-8.4 silt 

Table 7.2 Facies development at site 12 during the Holocene 
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marsh facies to organic detritus is marked by a switch from grass-dominant saltmarsh vegetation 

to sedge-dominant fen communities; the latter is replaced by alder-can. The upper organic unit 

at sites 5 and 12 grades into a saltmarsh facies which corresponds to the local development of 

grass-dominant saltmarsh vegetation. Sandfiat and mudflat deposits overlying the saltmarsh 
facies at site 6 suggests that as the back-barrier area was once again subject to greater marine 
influence a tidal inlet opened up adjacent to the fossil cliffline (Figure 7.4). The tidal inlet was 

forced to migrate towards the Pendine Burrows, over the underlying saltmarsh and organic facies 

at site 5 and 12, by the development of saltmarshes along the fossil cliffline (Figure 7.4). 

Lithological data from site 9 suggests that the inlet was ultimately infilled by washover deposits 

introduced into the back-barrier area by storm waves. 

Brook Section 

Brook Section (T3) extends from the fossil cliffline at Brook across West Marsh and the Pendine 

Burrows (Figure 7.2). Foraminifera, contained within the highly-stratified silty clay at the base 

of site 4 show the development of creek channels and low marsh deposits which formed on top 

of Pleistocene till (section 6.1.6); this indicates that the high energy shoreface did not rework the 

pre-Holocene surface beneath site 4 (Table 7.3). These sediments are replaced by high/mid- 

marsh sediments which extend seawards towards the Pendine Burrows (Figure 7.5). At the base 

of site 11 well-sorted sand, possibly deposited within a tidal inlet or in response to 

washover/blowout events, is replaced by mudflat deposits which grade into high/mid-marsh facies 

(Table 7.4). These fine-grained sediments are believed to coincide with the saltmarsh facies at 

the base of site 4 and represent the same phase of back-barrier marsh development (Figure 7.5). 

At site 4 the saltmarsh facies continues up to -1.82 metres OD where fine-grained minerogenic 

sediment is replaced by black organic detritus (Table 7.3); the accumulation of freshwater 

biogenic sediment represents a regressive overlap defined by a decrease in marine influence. The 

base of this organic unit, which extends from -1.82 to -1.26 metres OD, has been radiocarbon 
dated at 6220 ± 45 years BP. Comparison of sites 4 and 11 indicates that while freshwater 

organics were accumulating in the area in front of Brook, saltmarshes probably continued to 

develop at site 11 where marine conditions persisted. The transition from freshwater organics to 

high/mid-marsh facies at site 4 corresponds to a change from saltmarsh facies to mudflat and then 

sandflat facies at site 11 (Table 7.4). The latter is composed predominantly of well-sorted sands 
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Site 4 

Ground surface- 

Height Radiocarbon date Lithology Interpretation 
(metres OD) Years BP. 

3.92 Silty clay replaced by mottled Creek channel facies replaced by mudfl 
dark brown clayey silt facies 

2.35 

2.35 Organics overlain by silty clay Transition Into marsh and creek channel 
facles with the development of saitmars 

1.46 vegetation 

1.46 3810 +/- 60 Dark red organic Local expansion of alder carr upon a 
detritus freshwater rhetotrophic mire above the 

1.22 HHWST level 

1.22 Organic rich silty clay grades Local grass-dominated saltmarsh 
Into black organic detritus vegetation replaced by freshwater sedg 

1.13 4380 +/- 50 fen 

1.13 Highly stratified sand Replacement of mudflat facles by low 
grades Into grey silty clay and high/mid- marsh fades; local 

0.77 freshwater fen dominated by sedge 

0.77 Silty clay overlain by sand Progressive change from creek channel 
stratified by thin layers of fades into low/high energy mudflat 

-0.86 silty clay 

-0.86 Organics grade Into highly Replacement of high/mid- marsh facies 
stratified grey silty clay by low marsh and creek channel facies 

-1.26 

-1.26 Black organic detritus The accumulation of plant debris 
composed of fine-grained between MHWST and HHWST 
detritus and horizontally in a predominately freshwater 

-1.82 6220 +/- 45 compressed wood environment 

-1.82 Highly stratified Replacement of creek channel facies 
grey silty clay by low marsh and high/mid- marsh 

-4.31 deposits 

-4.31 Poorly sorted dense Deposited during the Late Devensian 
red gravel/till 

Table 7.3 Facies development at site 4 during the Holocene 



Site 11 

Ground surface_ 

Height Lithology Interpretation 
metres 

OD 

3.99 Sand grades into highly stratified Sandfiat deposits are intercalated with 
mottled brown sandy silt a mudflat facies 

2.63 

2.63 Stratified grey sand Mudflat deposits are replaced by a sandflat 
facies 

-0.73 

-0.73 Sand replaced by stratified grey Creek channel deposits are stratified by 
clayey silt containing lenses thin lenses of sandflat sediment 

-1.01 of well sorted sand 

-1.01 Sharp change from silty clay into Abrupt change from mudflat into sandflat 
shelly sand facies 

-1.43 

-1.43 Sand replaced by highly stratified Sandfiat deposits grade into a mudflat 
grey silty sand which grades into facies which are succeeded by creek 

-2.66 stratified silty clay channel sediments 

-2.66 Stratified grey sand containing Mudflat deposits grade abruptly into a 
shell fragments* intercalated sandflat facies 

-4.56 with thin silty beds 

-4.56 Stratified grey silty sand in Creek channel facies are abruptly 
sharp contact with the under- replaced by high energy mudflat 

-5.66 lying unit deposits 

-5.66 Stratified dark grey silty clay Mudflats are replaced by creek channel 
grades into organic rich silty clay deposits which grade into high/mid- 

-6.76 marsh facies; the latter are succeeded 
by creek marsh facies 

-6.76 Well sorted grey sand overlain by Sandfiat facies grade into mudflat 
silty clay deposits 

-8.01 

Table 7.4 Facies development at site 11 during the Holocene 
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Chapter 7 Discussion 

containing shell fragments, and is intercalated with thin beds of silty clay; these deposits may 

represent tidal inlet facies possibly deposited within an intertidal creek in the back-barrier 

environment. 

Above this, the transgressive sequence from marsh to mudflat facies at site 4 suggest that the 

intertidal channel increased in width and the back-barrier area was subject to greater marine 

influence (Figure 7.5). However, the mudflat deposits at site 4 are replaced by a creek channel 

facies at 0.77 metres OD (Table 7.3). The latter grades into low-marsh facies which is overlain 

by high/mid- marsh sediment. Pollen analysis at site 4 indicates that sedge-dominant fen 

communities develop locally towards the top of this unit suggesting a decrease in marine 

influence and therefore a second regressive overlap. The contact between minerogenic and 

biogenic sediment at 1.13 metres OD corresponds to a transition from grass-dominant saltmarsh 

vegetation to a freshwater mire (Table 7.3). This is followed by the local expansion of alder-can 

vegetation at site 4 and implies that freshwater conditions persisted at this locale. The base of this 

upper organic unit at site 4 has been dated at 4380 ± 50 years BP where as the top of these 

organics are dated at 3810 ± 60 years BP. 

The upper biogenic unit at site 4 coincides with the formation and accumulation of mudflat and 

marsh creek deposits at site 11 (Table 7.4). These regressive sequences probably represent a 

second phase of barrier stability and decreasing marine influence within West Marsh. However, 

pollen data indicates that as the upper organic unit grades into minerogenic marsh at site 4 the 

vegetation switches from alder-carr to salt-tolerant vegetation; this corresponds to a transition 

from creek and mudflat facies to sandflat sediment at site 11. The latter may represent washover 

material deposited in response to storm waves breaching the barrier (Figure 7.5). Above this the 

marsh and sandflat facies are replaced by mudflat deposits which ultimately extend across the 

marsh surface at site 3 (Figure 7.5). Lithostratigraphic data from sites 3 and 4 suggest that during 

the late Holocene marshes began to prograde seawards from the fossil cliffline at Brook acrossthe 

intertidal sand and mudflats. 
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7.2.2 East Marsh 

Biostratigraphic and lithostratigraphic data from boreholes recovered in East Marsh have been 

used to construct two transects within East Marsh. In contrast to West Marsh the sediments 
behind the Laugharne Burrows are dominated by sandflat and mudflat facies which are 
intercalated with relatively thin layers of minerogenic saltmarsh sediment. No biogenic saltmarsh 

or freshwater deposits were identified within East Marsh. 

Causeway Section 

Causeway section (T4) extends from the fossil cliffline adjacent to Coygan Quarry across East 

Marsh and the Laugharne Burrows (Figure 7.2). Foraminifera contained within the well sorted 

shelly sand at the base of site 17 identify these deposits as a high energy sandflat facies (Table 

7.5). The height of the sandflat deposits at the base of the sequence increases towards the fossil 

cliffline (Figure 7.6). These sands may represent deposition within a sandy bay possibly prior 

to the formation of the Pendine Burrows. At sites 16 and 17 the sands are replaced by silty clay 
intercalated with sandflat sediment (Figure 7.6). These deposits contain whole Cerastoderma 

edule shells (Table 7.5) which are indicative of clean sand, muddy sand, mud or muddy gravel 

deposited within open bays or brackish estuaries. Cerastoderma edule are commonly found 

around the British Isles between the mid-tide level and low water (Tebble, 1976). 

At sites 15 and 19 well sorted sand at the base of the sequence grades into a fine-grained 

saltmarsh facies. These deposits represent the formation and development of saltmarshes adjacent 

to the fossil cliffline at Coygan and behind the Laugharne Burrows, separated by an intertidal 

drainage channels. At sites 18 and 19 the saltmarsh facies is overlain by well-sorted medium fine 

sand which extends across the mudflat deposits at the base of sites 16 and 17 (Figure 7.6). This 

facies may represent beach and barrier sands deposited into the back-barrier area by storm waves 

during a period of barrier instability. Above this the sand grades back into stratified mudflat 

sediment (Figure 7.6). 

The saltmarsh adjacent to the fossil cliffline at Coygan appears to have subsequently extended 

across the mudflat/sandflat facies identified beneath sites 16 and 17 (Table 7.5). However, the 

saltmarsh deposits at sites 15,16 and 17 are overlain by intertidal channel deposits; this 
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Site 17 

Height 
metres 
OD 

Ground 
Surface- 4.3 

Lithology 

Strong mottled brown sand 

Interpretation 

Abrupt change into sandflat facies 

3.83 

3.83 Mottled brown sandy silty 

3.43 

3.43 Stratified silty clay intercalated 
with a thin bed of sandy silt 

2.12 facies 

2.12 Highly stratified silty sand 
1.76 deposits 

Mudflat deposits replace creek channel 
facies 

Mudflat deposits grade into creek channel 

Creek channel facies are replaced by mudflat 

1.76 Highly stratified poorly sorted silty Mudflat sediments grade into a marsh 
1.44 clay containing shell fragments creek channel facies 

1.44 Highly stratified silty sand with Sandflat deposits grade into mudflat sediment 
clay laminations and shell 

1.16 fragments 

1.16 Silty sand containing reworked 
-0.15 shell energy fragments 

-0.15 Well sorted medium/fine sand in 
-0.32 sharp contact with underlying unit 

-0.32 Highly stratified silty clay 
-0.76 intercalated with shelly sand** 

sediment 

-0.76 Grey shelly sand 
-1.7 mudflat deposits 

Washover deposits are replaced by a high 
sandflat facies 

Barrier dune facies deposited during 
wäshover event 

Mudflat facies grades into creek channel 
deposits which are intercalated with sandflat 

High energy sandflat facies is replaced by 

Table 7.5 Facies development at site 17 during the Holocene 



L 
l 

L 
L 

15 16 17 18 19 

0 

CID 

Late glacial/Holocene FACIES N O sediments 
0 Mire 

R 
D 

-10 
Q 

Q 
Marsh 

Basement is based 
El 

Mudflat/Sandfiat 

on geophysical 
data Sandfla! Washover 

20 
ý^ý Gravel/Diamicton 

0 

u 
200 m 

Figure 7.6 Stratigraphic section (T4) based on Iithological data from sites 15,16,17,18 and 19. 



Site 20 

Ground surface_ 

Height Lithology Interpretation 
metres 

OD 

4.59 Silty replaced by highly stratified Abrupt change from creek 
mottled brown sandy silt channel facies into a mudflat 

3.71 facies 

3.71 Sand replaced by mottled grey silty Sandfiat facies grades into 

clay stratified at base mudflat deposits which are 
3.35 overlain by marsh/creek channel 

sediment 
3.35 Silty sand grades into shelly sand Mudflat deposits are replaced 

by a sandfiat facies 
2.54 

2.54 Sand replaced by shelly silty sand Sandfiat facies grades into 
mudflat deposits containing 

1.88 reworked shell fragments 

1.88 Silty clay int sharp contact with Abrupt change from mudflat 
dark grey shelly sand containing into sandflat facies 

1.09 whole Cerastoderma edule shells 

1.09 Sand grades into grey silty clay Mudflat sediment replaces 
high energy sandflat facies 

0.88 

0.88 Silty clay in sharp contact with Abrupt change from mudflat 
dark grey shelly sand into sandflat facies 

0.68 

0.68 Silt replaced by highly stratified Mudflat facies grade into 
grey silty clay creek channel deposits 

-0.15 

-0.15 Sand grades into highly stratified Sandflat facies are replaced 
grey sandy silt by transitional mud-/sand- flat 

-0.39 deposits 

-0.39 Dark grey shelly sand containing High energy sandflat facies 
whole Cerastoderma edule shells 

-0.91 

Table 7.6 Facies development at site 20 during the Holocene 



Site 22 

Ground surface_ 

Height Lithology Interpretation 
metres 

OD 

4.70 Brown mottled sand Washover/blowout deposits 
containing no shell derived from barrier dunes 

4.41 fragments 

4.41 Silty clay in sharp contact Abrupt change from mudflat 
with shelly sand which into sandflat/Washover facies 
grades into brown 
mottled shelly sand 

3.68 which become oxidized 

3.68 Dark grey silty clay Mudflat deposits grade into 
stratified by shelly creek channel and marsh 

2.04 sand lenses above facies which are stratified by 
3.13 metres OD sandflat/Washover sediment 

2.04 Sand replaced by silty Well sorted sandflat deposits 
sand containing shell grade into poorly sorted mud- / 

1.67 fragments sand- flat facies 

1.67 Dark grey shelly High energy sandflat deposits 
sand 

-0.80 

Table 7.7 Facies development at site 22 during the Holocene 
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transgressive sequence indicates a widening of the channel behind the Laugharne Burrows and 

that East Marsh was subjected to greater marine influence. An abrupt change to well-sorted 

washover sands at the top of sites 17,18 and 19 indicates barrier instability and a continued 

increase in marine influence (Figure 7.6). Lithological data from site 15 suggests that during the 

late Holocene saltmarsh deposits once again extended from the fossil cliffline adjacent to Coygan. 

Salthouse/Easthouse Section 

Salthouse/Easthouse Section (T5) extends from the fossil cliffline adjacent to Salthouse Farm 

across East Marsh and the Pendine Burrows (Figure 7.2). As at Causeway the sediments at the 

base of the sequence are of composed well sorted shelly sand, which contain whole Cerastoderma 

edule shells, indicative of an open bay or brackish estuary (Figure 7.7). Foraminiferal data from 

sites 20 and 22 indicate that these deposits represent high-energy sandflat facies. 

Site 20 is located landwards of the back-barrier island upon which Malthouse and Hurst House 

are built (Figure 7.2). The sands at the base of the sequence are overlain by interstratified 

mudflat, sandflat and saltmarsh creek sediment (Table 7.6). Above this the mudflat facies 

changes abruptly into sandflat facies which contains whole Cerastoderma edule shells (Figure 

7.7). The latter extend to approximately 3.35 metres OD where high energy sandflat deposits are 

replaced by mudflat and saltmarsh creek deposits (Table 7.6). 

In contrast, the shelly sand at the base of site 22 continues up to -0.80 metres OD where the 

sediments grade into mudflat and marsh deposits (Table 7.7). Above this the stratified marsh, 

which extends landward towards site 20, changes abruptly into sand which contains numerous 

shell fragments (Figure 7.7). The latter are believed to represent washover dune and beach 

deposits (Table 7.7) 
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Chapter 7 Discussion 

7.3 Coastal evolution 

The evolution of the Pendine barrier during the mid and late Holocene is well documented by 

lithostratigraphic and biostratigraphic evidence which is calibrated by radiocarbon dates obtained 

from organic levels in West Marsh. Although no direct evidence is available for coastal changes 

in the Bristol Channel and Carmarthen Bay during the Late Devensian and early Holocene, 

geophysical data, borehole information and published sources can be used to'infer' environmental 

changes during this period. 

7.3.1 Deglaciation and the onset of the Holocene transgression 
(18,000-10,000 BP) 

During the Late Devensian deglaciation glacigenic sediments in the Bristol Channel and Celtic 

Sea, underwent a short period of intense erosion. Meltwater channels generated by the retreating 

glaciers rapidly excavated certain areas of drift. Channel development, confined to a relatively 

short period between the retreat of Devensian ice sheets and the succeeding Holocene 

transgression, was greatest in shallow areas. Garrard and Dobson (1974) suggest that these 

channels were forced to run obliquely to the general gradient of the shelf by barriers which 
blocked their obvious seaward routes. Late Devensian loess deposits along the coast of South 

Wales indicate that sediments of glacial-fluvial origin were entrained by intense south-westerly 

or westerly winds which influenced the continental shelf during lowered sea-level (Case, 1983). 

Similar deposits may have generated extensive aeolian deposits which subsequently formed the 

barriers within the Bristol Channel and Carmarthen Bay during lowered sea-level (Garrard and 
Dobson, 1974). The landward transport of silt- and sand-sized particles would have been further 

enhanced by reworking within the surf zone; reworked sands exposed on the shoreface will have 

been entrained and transported onshore by intense storm winds. This 'hand-over' of sediment may 
have been reinforced during the period of lowered sea-levels by greater tidal amplitudes (Austin, 

1991) exposing wider expanses of reworked sediment during low tide. 

As the high-energy environment of the surf zone transgressed the exposed drifts, the surface of 

the glacial-fluvio deposits was reworked to produce a thin cover of gravel lag which rests upon 
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a distinct plane of marine erosion (Garrard and Dobson, 1974). Pre-Quaternary foraminifera, 

identified in early Holocene sediments within Swansea Bay and its approaches, highlight the 

vigorous reworking of the Celtic seabed during the Late Devensian (Culver and Banner, 1979). 

Flood tidal currents would have added their kinetic energy to the easterly and north-easterly wave 
induced currents which eroded the periglacially modified chalks, silts and sands offshore. 
Episodic regressive phases in relative sea-level rise would have further enhanced this erosion by 

re-exposing previously reworked sediment. 

7.3.2 Formation and evolution of the Pendine and Laugharne Burrows 

Back-barrier facies development is controlled primarily by the stability of the coastal barrier, the 

composition and volume of sediment supply into the back barrier area, tidal regime, storm 

activity and local changes in relative sea-level. Although, the shoreface reacts instantly to 

changes in the wave/wind climate and sediment supply, environmental changes within the back- 

barrier area often exhibit a delayed response to the processes acting upon the seaward side of the 

barrier. Depending upon the magnitude of the events, back-barrier tidal inlet sequences record 

both long- and short-term changes in coastal configuration and stability. Hypotheses describing 

the evolution of barrier systems can therefore be inferred from evidence derived from back-barrier 

facies development. 

The Pendine Burrows, Laugharne Burrows and adjoining back-barrier deposits represent an 

extremely complex coastal system which has evolved in response to oceanographic processes, 

changing sedimentary dispersal patterns and relative sea-level changes during the Holocene. The 

hypothesis describing the evolution of this system is based on geophysical data and the 

interrelationships between back-barrier facies recovered in cores. Radiocarbon dating of organic 

units recovered in West Marsh provides the basic chronological framework used to constrain this 

hypothesis. The absence of similar organic deposits within East Marsh means that changes within 

this portion of the system are not accurately calibrated; however, the stratigraphic position of 

these sequences suggest the deposits in East Marsh represent a later stage of barrier development 

than sediments described in West Marsh. 
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Chapter 7 Discussion 

Onset of the Holocene transgression: 10,000-8,000 years BP 

At the onset of the Holocene relative sea-levels within the Bristol Channel were below -35 metres 

OD (Mörner, 1980; Heyworth and Kidson, 1982; Shennan, 1983). By 10,000 years BP rising 

sea-levels probably began to inundate the deep melt water channel seaward of Coygan (section 

5.1.1), forming the upper reaches of an estuary whose origin was located some distance offshore 

(Figure 7.8). This drowned 'na-type' estuary would have been initially infilled by early Holocene 

estuarine sediments which may overlie Late Devensian channel sequences. 

Freshwater, draining from the fossil cliffline west of Coygan may have accumulated behind the 

ridge of Pleistocene till which extends from Pendine to a point seaward of Brook (Figure 7.8). 

As streams and small rivers continued to drain into this enclosed impermeable basin, water 

probably spilt over the Pleistocene ridge and in doing so excavated drainage channels in the 

surface of this feature (Figure 7.8). Although no evidence is available at present, Late Devensian 

and early Holocene lacustrine sediment may be preserved beneath the back-barrier deposits 

recovered from this part of West Marsh. 

Between 10,000 and 8,000 years BP the rapidly rising sea-levels will have continued to inundate 

the Taf valley (Figure 7.9). Because the gradient of the Pleistocene surface east of Coygan is far 

lower than within the deeply incised meltwater channel (section 5.3), this area may have been 

subject to vigorous reworking by tidal scour; flood and ebb currents would have been further 

enhanced by greater tidal amplitudes (Austin, 1991). 

Barrier formation, progradation and stability: 7,500-5,500 years BP 

By comparing the height of the pre-Holocene surface (section 5.3) to the position of relative sea- 

level (Heyworth and Kidson, 1982; Shennan, 1983) it is estimated that the area behind the 

Pleistocene ridge was inundated by approximately 7,500 years BP (Figure 7.10); it appears that 

the barrier initially formed through the drowning of this antecedent ridge. The transgressing 

high-energy surf zone probably abutted against the seaward portion of this feature and continued 

to rework exposed glacigenic deposits within Carmarthen Bay. Fine sands exposed upon the 

shoreface at low water were probably entrained by strong westerly and south westerly winds and 

deposited on the irregular surface of both the barrier and Pleistocene deposits landward of the 
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Chapter 7 Discussion 

MHWST level (Figure 7.10). Self-sustaining mobile dunes probably migrated landward ahead 

of the transgressing surfzone; these aeolian deposits may have accumulated upon the Pleistocene 

ridge prior to submergence by the rapidly rising relative sea-level. 

Fine-grained sediment contained within the turbid coastal waters began to infill the basin behind 

the submerging gravel and dune barrier. With continued relative sea-level rise storm set-up and 

run-up, waves were able to breach the barrier and introduce coarse washover deposits and/or tidal 

current infill into the back-barrier area. The deep channel adjacent to the barrier was probably 

rapidly infilled with coarse clastic sediment reworked from longshore and offshore sources. 

Between 8,000 and 7,000 years BP extremely high rates of sediment supply stabilised the barrier 

and allowed this feature to prograde, even under conditions of continued rapid relative sea-level 

rise (Figure 7.11). Although the barrier may have been periodically over-topped, when intense 

westerly and south westerly storms coincided with high spring tides, the Pleistocene ridge upon 

which this feature is anchored prevented its breakdown or landward migration i. e. when the wave 

climate changed and sediment was stripped from the seaward portion of the dunes by storm 

waves the landward translation of the shoreface was probably prevented by the re-exposure of the 

gravel ridge. 

The upward and longshore progradation of the barrier facilitated the development of back-barrier 

mudflats and saltmarshes which gradually extended across the inter-tidal sandflats (Figure 7.11). 

The small river draining from the fossil cliffline west of Llanmiloe was probably diverted by the 

continued development of the dunes system; this stream may have introduced the coarse fluvial 

deposits identified at site 7 (section 7.2.1). The dunes were supplied by wind blown sediment, 

stabilised by vegetation and advanced seawards forming a series of shore parallel ridges (Figure 

7.11). 

By 6,000 years BP the rapid rise in relative sea-level was replaced by a phase of more gradual rise 
(Heyworth and Kidson, 1982; Shennan, 1983). Barrier stability was maintained by continued 
high rates of longshore and offshore sediment supply from reworked glacigenic material within 

Carmarthen Bay. Saltmarshes occupied the majority of the back-barrier area and freshwater fen 

communities became established in areas above the level of MHWST subject to local 

192 



h, c, ul lion 
rýryanres 

ý 

reff; t t accumulation 

Q nr, 
npent 

blowout 
Marsh ]o es ý 

Langharne "ý 
Mudflat 

9lowout/erosronal 

snoreface ." 
El Sandfiat Pleistocene till " 

Sir Johns 0e 

Mnudu 
Coygan 

Hill . 0. 
p,, , "., 

/ 

mdoe M VJ r 

Pendine ** * ýýý * 
t y 

- 
ý e 

_- 
- 

At vv, 

' 
' Thinning .,, tr, l; rlý". I r, . F 

Secondary. . :. I, "rrnalir t 

dunes 
Blowouts 

",. poswl ir1 -1 

Elongation 

0 2km 
' 6,000 BP 

Figure 7.12 Barrier stability, marsh develo pment and organic acc; umul, ftiun 

Figure 7.13 Barrier breaching and breakdown 

ýý9"ýýýI` ' _ 
Shore p<mul o 

ion crest accumulation 

Marsh 
incipient blowout 
dunes Langharne ,o 

MudCat 
Blowout/erostonal 

shoretace 

Sandfiat Pleistocene till 
Sir John"; 

Hill 

Mobile Brook Y9an 
dunes AK 

i 

Pendine 14 
r r_, 

I:., . 

1K 
ý "ý -. 

_" 
flats Cad 

jjý 
11 ̀tt , fit 

Washover "ý7ý, 
fan Blowouts 

Stoll run 
up 

2 km 

N 

.ý 
., 

f' , 

1 5,500 - 5,000 BP 



Chaster 7 Discussion 

waterlogging (Figure 7.12); as environmental changes within the back-barrier area often lag 

behind processes acting on the barrier shoreface the barrier had to be well developed by 6200 

years BP for organics to begin accumulating. Fine-grained sediment was also supplied from the 

reworking of exposed glacigenic drift of Irish Sea and central Welsh origin within Carmarthen 

Bay. 

The elongation of the barrier spit may have diverted the River Taf towards the east and 

contributed to the infilling of the former meltwater channel seaward of Coygan. Waves refracting 

around the distal end of the barrier-spit probably attacked the fossil cliffline east of Coygan and 

travelled up the rapidly submerging Taf Estuary. The highly-stratified sands and silts, exposed 

along the fossil cliffline west of Wharley Point and beneath the intertidal sandflats seawards of 
Ginst Point (Figure 7.1), may have accumulated behind a low barrier which formed above a 
drowned gravel bank (Figure 7.12); however, other than the occurrence of these fine-grained 

deposits no evidence has been found to support this hypothesis. It is possible that these deposits 

accumulated behind a landward migrating barrier but this is mere speculation. 

Barrier instability, breakdown and reworking : 5,500-5,000 years BP 

Between 5,500 and 5,000 years BP the barrier system became unstable. Regressive saltmarsh and 
freshwater organic deposits within West Marsh were replaced by transgressive mudflat and 

sandflat sequences. Spit elongation and thinning in response to increased storm activity and or 

sediment starvation probably enabled waves, during periods of storm run up and set-up, to breach 

the barrier causing reworking and erosion of the barrier dunes (Carter, 1988); as storm waves 

washed over the barrier coarse sediment was introduced into the back-barrier area (Figure 7.13). 

Organics between -3.55 and 0.06 metres OD at site 8 suggests that freshwater vegetation may 
have continued to flourish upon washover deposits in areas elevated above the MHWST level. 

The distal, end of the barrier was probably then broken down and reworked under conditions of 
increased storm activity, continued relative sea-level rise and reduced sediment supply. The 

process of barrier breakdown may have been accelerated by wind erosion and scour though 

narrow tidal passes. 
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The total breakdown and reworking of the barrier was prevented by the Pleistocene ridge. Rather 

than migrating landwards, the western portion of this feature was fixed in position by the 

antecedent topography which preserved the large majority of the back-barrier deposits within 
West Marsh (Figure 7.13). Tidal scour and wave action probably reworked the majority of the 

fine grained back-barrier sediments deposited east of Coygan. This may have been compounded 
by high tidal amplitudes which exposed great expanses of these sediments to wave action and 

tidal scour during the tidal cycle. 

Barrier progradation and stability: 5,000-3,500 years BP 

Lithostratigraphic and biostratigraphic evidence indicates that between 5,000 and 4,500 years BP 

the barrier-spit became'stable began to extend eastward probably in response to either reduced 

storm activity, increased sediment supply or to a change in the rate of relative sea-level rise 
(Figure 7.14). During constructive periods the aeolian sediment, entrained by southwesterly 

winds from the beach surface, supplied low accreting dunes which were rapidly colonised by 

pioneer vegetation and wave continued to build up the beach profile. However, during 

destructive phases storm waves stripped sediment from the beach causing significant erosion 

along the seaward side of the barrier. Constructive and destructive processes acting on the 

shoreface probably generated a series of low shore-parallel ridges which were periodically 
breached by storm waves. 

As the barrier extended in a longshore direction it is likely that the tidal inlet seawards of Coygan 

was forced to migrate ahead of the advancing spit re-curve deposits. Saltmarshes began to 

develop within West Marsh and the distal end of the spit extended east of Coygan, diverting the 

course of the River Taf (Figure 7.15). By 4,500 years BP a freshwater mire began to develop 

behind the barrier, in areas above MHWST subject to local freshwater waterlogging. Sedge- 

dominant fen communities were replaced by alder carr which probably extended from the dunes 

and the fossil cliffline towards the centre of West Marsh. The accumulation and preservation of 

organics were largely controlled by the local hydrology and variations in the elevation of the 

organic beds reflects the uneven morphology of the back-barrier area. With the continued 

extension of the barrier saltmarshes probably began to develop in the area east of Coygan (Figure 

7.15). The stability exhibited by the barrier between 4,500 and 3,500 years BP indicates that 
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Chapter 7 Discussion 

during this time the feature was probably in a state of long-term dynamic equilibrium with the 

oceanographic processes, sediment supply and relative sea-level rise. It is likely that the barrier 

extended far beyond Coygan possibly reaching a point seawards of Sir John's Hill (Figure 7.15). 

Barrier instability and the formation of the Pendine and Laugharne Burrows: 

3,500-2,000 years BP 

Although the rate of relative sea-level rise began to diminish by approximately 3,000 years BP, 

the barrier underwent rotational instability and in-place narrowing (Figure 7.16). The thinning 

of the barrier may be related to sediment starvation or increased storm activity. In order to satisfy 

sediment transport requirements material eroded from the seaward side of the barrier was 

probably deposited at the distal end of the spit by waves refracting around this feature. The 

landward migration of the eastern portion of the barrier may have caused this feature to rotate 

counter-clockwise about a thinning mid-point which was fixed in place by the antecedent 

topography. The barrier shoreface was eroded and eventually breached by storm waves which 

created washover fans in the back-barrier area. Within West Marsh accretionary saltmarsh and 

freshwater organic sequences are replaced by transgressive mudflat and sandflat deposits. The 

barrier system then became unstable and began to breakdown. 

However, this phase of breakdown was very different to the instability between 5,500 and 5,000 

years BP. The duration or organic accumulation in West Marsh suggests that by 3,500 years BP 

the barrier system was far larger than at any earlier stage in its evolution. Inlets created by storm 

waves breaching the barrier were probably modified by tidal scour. The nature of the back-barrier 

deposits within West Marsh suggests that the tidal inlet dividing the Pendine and Laugharne 

Burrows formed after the second phase of organic accumulation. It is possible that a narrow tidal 

jet, created by a storms breaching the thinning centre portion of the barrier, opened up to form 

a large tidal inlet (Figure 7.16). This inlet became fixed in position and was subsequently 

maintained by the tidal currents. Although, the majority of the barrier system east of Coygan was 
broken down and reworked by wave action and tidal scour, a portion of the barrier dunes may 
have remained intact. It is possible that these deposits initiated the formation of the Laugharne 

Burrows (Figure 7.17). Furthermore the `island' upon which Mälthouse and Hurst House are 
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Chapter 7 Discussion 

constructed is composed of fine well-sorted sand which may represent the remnants of a former 

spit broken down during this phase of barrier instability. 

Progradation of the Pendine Laugharne Burrows: 2,000-500 years BP 

The phase of instability and barrier-spit breakdown after 3,500 years BP was succeeded by long- 

term stability and accretion. As the Wytchet Inlet probably remained in dynamic equilibrium and 

exhibited only a slight tendency toward down drift migration, sediment travelling along the 
Pendine Burrows via longshore transport would have by-passed this inlet and been deposited at 

the distal end of the Laugharne Burrows (Figure 7.17). In response to reduced storm activity 

continued sediment supply and possibly decreasing rates of relative sea-level rise (Heyworth and 
Kidson, 1982) the Pendine and Laugharne Burrows advanced seawards (Figure 7.18). Wind and 

wave activity constructed a series of shore parallel beach/dune ridges along the upper foreshore. 

West Marsh was infilled with fine-grained sediment and saltmarshes developed along the fringes 

of the dunes and the fossil cliffline. However, the proximity of the Wytchet inlet probably 
influenced back-barrier facies development within West Marsh and may have prevented the 

development of freshwater communities within this area. 

As the Laugharne Burrows extended eastward, the area behind this portion of the barrier was also 
infilled with fine-grained sediment and saltmarshes replaced coarser sandflat and mudflat facies. 

However, saltmarsh development east of Coygan is punctuated by coarse washover and 

sandflat/mudflat deposits. This indicates that the Laugharne Burrows were periodically breached 

by storm waves and that the longshore extension of this feature was not continuous but marked 
by phases of progradation and retreat. Because this portion of the barrier was not fixed in place 
by the antecedent topography and was drift aligned the configuration of the Laugharne Burrows 

was probably different to the Pendine Burrows. Intense storm activity may have resulted in the 

partial breakdown of the Laughame Burrows which possibly caused this feature to migrate 

landwards. 

By approximately 500 years BP the barrier, now consisting of two discrete dune systems, had 

extended to a point seaward of Sir John's Hill and was able to maintain a profile of equilibrium 
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Chapter 7 Discussion 

with changing wind/wave climates and differential sediment supply (Figure 7.18) i. e. sediment 

supply compensated sediment dispersal in response wind and wave erosion 

Reclamation of West Marsh and East Marsh: Late 17th century to present day 

By 1660 AD. sea-wall defences had been constructed across the Wytchet Inlet and between Sir 

John's Hill and the distal end of the Laugharne Burrows (Figure 7.19). A second embankment 

was built in the late 18th century to enclose lower marsh and by the 19th century dams had been 

constructed at the foot of Sir John's Hill and across the Wytchet Inlet (Figure 7.20). Reclamation 

of the back-barrier area effectively stabilised the barrier-spit by preventing erosion at the distal 

end of the Laugharne Burrows. The construction of sea-wall defences has promoted the rapid 

progradation of the Pendine and Laugharne Burrows (James, 1991). 

The closure of the Wytchet Inlet resulted in sediment accumulation at the distal end of the 

Pendine Burrows because the position of this pass could not be maintained by tidal currents. 
Freshwater accumulating within West Marsh was diverted along a series of man-made ditches 

and drained out onto the Pendine Sands via Wytchet brook (Figure 7.20). However, with 

continued sediment supply, via southwesterly winds and longshore transport, the Pendine 

Burrows extended eastwards in front of the Laugharne Burrows impounding Wytchet brook to 

form a shallow freshwater lake (Figure 7.21). 

During the last 100 years the Laugharne Burrows have continued to extend eastwards towards 

the confluence of the rivers Taf, Towy and Gwendraeth; saltmarshes now extend from the foot 

of Sir John's Hill to Ginst Point along the seaward side of the embankment, across the sandflats 

within the Taf Estuary (Figure 7.21). However, the continued elongation of the spit has caused 

thinning and erosion along the front of the Laugharne Burrows. During the 1970s the Ministry 

of Defence constructed sea-wall defences along the distal end of the barrier because they were 

concerned that rapid erosion by storm waves might lead to barrier breaching (Figure 7.21). 
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7.4 Mechanisms controlling Holocene barrier formation and evolution 

in south west Wales 

The proposed hypothesis of barrier development describes the initiation, progradation and 

stability of the barrier system between 8,000 and 5,500 years BP. This is followed by a phase of 

erosion, barrier instability, breakdown and reworking between 5,500 and 5,000 years BP; during 

this period the shoreface was unable to maintain its position in response to increased storm 

activity and or reduced sediment supply. During barrier breakdown, the western portion of this 

feature was fixed in place by the antecedent topography which prevented the total breakdown and 

reworking of the system. Consequently, the back-barrier sediments deposited within West Marsh 

are preserved whereas tidal inlet sequences east of Coygan were probably reworked by wave 

action and tidal scour. Between 5,000 and 3,500 years BP the barrier underwent a second phase 

of initiation, progradation and long-term stability during which time the net input of sediment 

must have exceeded net dispersal by storm waves. This was followed by a second phase of 

barrier instability, breakdown and reworking which led to the formation of two discrete dune 

systems by storm-waves breaching the thinning spit. The succeeding phase of barrier 

progradation resulted in the longshore development of the Laugharne Burrows and the seaward 

advance of the two dune systems. The tidal inlet separating the dunes lies above the former 

meltwater channel which is probably filled with early Holocene estuarine sediment overlain by 

shoreface sands and spit re-curve deposits. 

Seismic surveys show that the Pendine Burrows rest upon a ridge of Pleistocene till which 

extends from the cliffline at Pendine to a point seawards of Coygan. The area behind this feature 

has been excavated by freshwater streams and rivers draining from the fossil cliffline. At sites 

3,4 and 6 the Pleistocene material is unconformably overlain by fine grained mudflat and 

saltmarsh deposits. The absence of coarse beach sands or gravel lag deposits in contact with the 

pre-transgressive surface indicates that the high energy shoreface did not overstep this feature and 

rework the base of the fossil cliffline west of Coygan. It is proposed that the barrier formed 

initially in response to the in-place drowning of the antecedent topography. Rapid relative sea- 

level rise during the early Holocene inundated the area behind the ridge, introducing fine 

reworked sediment from exposed glacial drift within Carmarthen Bay. High-resolution reflection 

data acquired on the Pendine Sands show that the Pleistocene surface seaward of the ridge is 
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extremely flat and roughly parallel to the contemporary beach surface (section 5.1.2); this surface 

represents a distinct plane of marine erosion. The uneven morphology of the Plestocene ridge 

probably represents reworking wave action and erosion by freshwater drainage networks. 

Small mobile dunes, sustained by sands entrained from the shoreface at low tide by strong 

westerly and southwesterly winds, probably became attached the ridge forming a low dune belt. 

Sand binding perennial dune grasses, such Ammophilia arenaria or Carex arenaria, may have 

rapidly colonised these dunes and in doing so would have stabilised the sands and promoted 
further sediment accumulation. The age of the lower biogenic sediments within West Marsh 

indicates that this feature predates similar barrier systems which are believed to have formed 

along the coast of south west Wales and Cornwall by approximately 6,000 years BP (Lewis, 

1992; Healy, 1995). By 8,000 years BP it is likely that the transgressing shoreface began to 

rework extensive glacial deposits within Carmarthen Bay. Sediment would have been supplied 

to the barrier via longshore transport, from eroding glacial material west of Gilman Point, and 
from the reworking of relict sediments offshore. Once the sediment reached the barrier system 
it would have been partitioned across an energy gradient resulting in coarse sands being 

concentrated on the shoreface and fines transported into the back-barrier area. Relative sea-level 

rise would have ensured a continuous supply of sediment by exposing fresh areas of drift to 

erosion in the coastal zone. 

The regressive overlap at the base of the sequence within West Marsh suggests that once the 

shoreface had established an equilibrium profile, in response oceanographic processes, 

differential sediment supply and relative sea-level rise, the barrier was able to prograde eastwards 

as a spit; provided that the wave climate, sediment supply and the rate of relative sea-level rise 

did not vary significantly the barrier would have been able to exhibit 'long-term' stability. 

Furthermore, the high relief of the fossil cliffline behind the barrier would have promoted spit 

development rather than the landward retreat of the barrier (Swift, 1975). The transition from 

mudflat to intertidal marsh at the base of the sequence within West Marsh is therefore a 

manifestation of long-term barrier stability. 

Foraminiferal and pollen analyses indicate that the transition from minerogenic to organic 

sediment at sites 7,12 and 4 corresponds to a decrease in marine influence i. e. from a saltmarsh 
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to a freshwater fen/swamp. Although, this negative tendency in sea-level may be interpreted as 

a regressive phase in relative sea-level rise, Jennings et al. (1995) argue that barrier systems are 

extremely complex and regressive/transgressive facies changes may simply represent phases of 

barrier stability and instability. For instance, if the surface of the marsh became elevated above 

the MHWST level, in response to rapid sedimentation during extremely high spring tides or a 

storm event, then freshwater vegetation may be able to develop at these sites above marine 

influence (Jennings et al., 1995). Provided the surface of the mire remained above the MHWST 

level then freshwater organics would continue to accumulate if hydrological conditions were 

suitable. It is likely that the organics beds between -3.55 and 0.06 metres OD at site 8 represent 
freshwater communities accumulating upon washover deposits which were elevated above the 

MHWST level. However, conventional radiocarbon dates from organic deposits at sites 7,12 and 
4 indicate that organics of similar ages were accumulating at very different elevations within the 

back-barrier area; at 6,220± 45 years BP freshwater organics were accumulating at an elevation 

of -1.82 metres OD at site 4, by 5920 ± 50 years BP organics began to accumulate at an elevation 

of -2.21 metres OD at site 12, whereas organic accumulation continued at site 7 until 5770 ± 45 

years BP at a height of -3.56 metres OD. The radiocarbon dates from the upper organic levels 

indicate that this second phase of biogenic accumulation was greatest at site 12, which was at that 

time lower than sites 4 and 7. Although, sediment compaction invoked during consolidation and 
by the coring procedure may account for some of the difference in elevation, similarities in the 

thickness of the organic units and overlying/underlying clays suggest that the differences in 

elevation are not an artifact of recovery or post-depositional processes. 

For freshwater organics to accumulate at very different elevations within West Marsh between 

6,200-5,700 years BP and between 4,500-3,500 years BP, while marine conditions persisted 

locally within the back-barrier area, the height of local relative sea-level probably fell. The 

organic levels at sites 7,12 and 4 are believed to represent two regressive phases in local relative 

sea-level rise at Pendine. Organic accumulation in West Marsh was controlled primarily by the 

height of the local water table and reflects the complex hydrological patterns and uneven 

morphology within the back-barrier area. Fine grained organic-rich minerogenic sediment 
intercalated with the lower organic unit at sites 7,12 and 4 indicates that during the first 

regressive phase (6220 to 5770 years BP) the position of local relative sea-level was fluctuating 

within West Marsh. Minerogenic lenses contained within the organic unit, are thickest at sites 
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7 and site 12 which lie below site 4 where biogenic accumulation is punctuated by thin lenses of 

saltmarsh sediment. In contrast, the upper organic units at sites 7 and 12 contain no minerogenic 

sediment whereas the organics at site 4 contain thin lenses of organic rich silty clay. The latter 

may represent the erosion and redeposition of sediment at site 4 by freshwater streams draining 

over the former marsh surface. The elevation and duration of organic accumulation between 

4,630 and 3,580 years BP at sites 7,12 and 4 suggests that the height of MHWST probably varied 

only slightly within West Marsh during this second regressive phase in relative sea-level rise. 

Allen (1990) describes a series of peat levels within the Severn Estuary which occur several 

metres below the present marsh surface and can be found two metres above OD; the thickness of 

these deposits extends to over 1 metre. Conventional radiocarbon dates provided by Godwin and 
Willis (1964), Hawkins (1971), Heyworth and Kidson (1982) and Allen and Rae (1987) indicate 

that the oldest radiocarbon date is 6100 years BP whereas the youngest is 2180 years BP. Allen 

(1990) indicates that on the basis of mammalian remains, botanical character and root bases these 

deposits represent high marshes which were relatively infrequently flooded by the tide. The 

organic levels within the inner Severn Estuary are believed to represent a period of approximately 

3000 conventional radiocarbon years when relative sea-levels fluctuated several times on a time 

scale of 500 to 1000 years (Allen, 1990). 

It is likely that the organic sediments identified in West Marsh were deposited in response to the 

same episodic fluctuations in relative sea-level as described by Allen (1990). These fluctuations 

are however superimposed upon a gradual upward trend in local relative sea-level. The timing 

of these regressive phases corresponds to the change from rapid relative sea-level rise to a more 

gradual rise at approximately 6,000 years BP and the transition to slow relative sea-level rise at 

approximately 3,000 years BP (Heyworth and Kidson, 1982; Shennan, 1983). As discussed in 

section 2.2, reconstructions of former sea-level in south west Britain are complicated by the 

region being located on one of the widest continental shelves in the world, in an amphidromically 

complex situation, in a westerly storm belt, and by the large tidal range and crenellate coastline. 

As the coastal configuration and bathymetry changed within the Bristol Channel and Carmarthen 

Bay, in response to relative sea-level rise during the Holocene, the tidal range is believed to have 

decreased and the rate of change exhibited strong spatial gradients (Austin, 1991; Scourse and 

Austin, 1995). The fluctuations in relative sea-level within the Severn Estuary and West Marsh 
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may be linked to shifts in the position of tidal amphidromes and rapid changes in tidal range; 

however, until numerical models are able to accurately predict changes in the tidal amplitudes 

within the Bristol Channel in response to the Holocene transgression, the cause of the fluctuations 

in relative sea-level will remain unclear. Nevertheless, the two regressive phases in local relative 

sea-level rise at Pendine correspond to the changes in relative sea-level within the Severn Estuary 

over the same period (Allen, 1990). This indicates that relative sea-level rise within the Bristol 

Channel during the Holocene has been extremely complex. The smooth continuous curve 

produced by Heyworth and Kidson (1982) does not accurately represent the episodic nature of 

relative sea-level rise within this area. 

Facies changes within West Marsh after 5770 and 3580 years BP indicate that the two phases of 
long-term stability were replaced by barrier instability, breaching and breakdown. The switch 
from freshwater organics to minerogenic marsh therefore indicates a positive tendency in sea- 
level. It is likely that if a large storms coincided with an extremely high spring tides then waves 

would have breached the barrier and introduced coarse washover deposits into West Marsh. 

However, if sediment supply continued to exceed erosion and dispersal then the shoreface would 
be able to re-establish an equilibrium profile and maintain long-term stability. This suggests that 

either the rate sediment supply decreased or the wave climate changed; although slight regressive 

phases in relative sea-level rise promote barrier stability and progradation it is unlikely that 

relative sea-level changes during the late Holocene were responsible for the phases of barrier 

instability described in this study. 

Lewis (1992) suggested that the submerged forests exposed on the foreshore at Marros, 

Whitesands Bay, Lydstep and Pen-y-Bont formed behind a series of bay-head barriers which 

enclosed and protected the back-barrier areas. These barriers are believed to have formed in 

response to a fall in relative sea-level. Conventional radiocarbon dates show that organic 

accumulation continued at these sites during and after the breakdown of the Pendine/Laugharne 

barrier. Unlike the spit-barrier at Pendine these features were relatively enclosed and able to 

maintain an equilibrium with differential sediment supply and dispersal; they migrated landwards 

in response to relative sea-level rise permitting the continued accumulation of organic back- 

barrier facies. The formation of a whole series of barriers along the coastline probably affected 

the sediment budget and sediment dispersal within Carmarthen Bay. Sediment which would have 
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previously been supplied to the barrier at Pendine, from eroding glacigenic sediment via 

longshore transport, probably became trapped in smaller beach-barrier systems along the 

coastline. Although, reduced supply and changing sedimentary dispersal systems contributed to 

the eventual erosion of the barrier, oceanographic processes ultimately construct and destroy these 

features. 

Prior to the construction of sea-wall defences at Ginst Point, the natural processes at the distal end 

of Laugharne Burrows could still be observed. During calm constructive periods low windblown 
dunes were able to form rapidly in front of the spit (Jago pers com., 1996). These deposits were 

colonised by vegetation and slowly built up over the calm summer months. However, during the 

winter months when storms combined with high spring tides, waves were able to breach the 

advancing dunes causing catastrophic erosion (Jago pers com., 1996). As storm activity within 
Carmarthen Bay is focused along the main intertidal drainage channels the wave heights increase 

progressively from Pendine to Ginst Point. Consequently, while the distal end of the barrier was 

periodically breached and broken down the centre of the barrier may have been able to prograde. 
Because the system exhibits long-term stability Ginst Point was able to re-establish a profile of 
dynamic equilibrium during calm constructive periods. 

It is likely that during phases of long-term barrier stability and progradation the low vegetated 
dunes at the distal end of the spit advanced during calm constructive conditions and retreated 
during destructive storm events. As the spit extended eastwards its advance would have diverted 

the course of the River Taf; the distal end of the spit was probably attacked by large storm waves 

propagating up the intertidal channel excavated by the course of the Taf. Low frequency, high 

magnitude storm events are therefore superimposed upon the long-term evolution of the back- 

barrier area. The coarse sediments within East Marsh do not necessarily indicate the total 

breakdown of the Laughame Burrows, but may represent the deposition of beach/dune sands by 

waves which periodically breached the barrier when strong southwesterly storms coincided with 

extremely high spring tides. 

Changes in the growth and decay of the Pendine Barrier are therefore most probably due to 

changing oceanographic conditions which may by driven by climate changes in the North 

Atlantic during the Holocene. For instance, Lamb (1977,1991) indicated that during the first 
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phase of the Little Ice Age (ca. 1350-1550 AD) the Polar climate zone began to expand toward 

the south. This forced the main westerly wind stream and cyclone tracks to move southwards and 

the subsequent increase in storm frequency had a profound effect on coastal development. It is 

very likely that these processes operated throughout the Holocene and are ultimately responsible 
for changing oceanographic conditions during the formation and development of the barrier at 
Pendine Sands. 

As the shoreface responds instantly to changing wind and wave climates, increased storm activity 

could cause the rapid erosion and breakdown this feature. An increase in the frequency of 

westerly and southwestern storms could cause the barrier erosion and breakdown described in this 

study. Wind transport is a key factor in barrier dune development and is probably responsible 

for the long-term maintenance and recent development of the Pendine barrier system. 

The absence of any datable horizons within East Marsh limits the applicability of the hypothesis 

because changes within this area of the system are not accurately calibrated. However, it is 

believed that the sequences within East Marsh formed over a much shorter time scale than those 

described within West Marsh. Lithostratigraphic data suggests that the Wytchet tidal inlet was 

created after 3,580 years BP during a period of barrier instability and breakdown. Neolithic finds 

within the Laugharne Burrows (SN 296076) are believed to represent a small settlement within 

the dunes (Cantrill, 1909; James, 1991); for such a settlement to be built the dunes were probably 

able to protect the inhabitants from strong southwesterly storms. As the Neolithic is believed to 

have continued up until approximately 4,000 BP in Europe (Challinor, 1978), the Laugharne 

Burrows may have been occupied during the second phase of long-term barrier stability between 

approximately 5,000 and 3,500 years BP. This supports the hypothesis that the Laugharne 

Burrows per se were formed by the breaching of the spit during the second phase of barrier 

instability. 

This study has attempted to use multidisciplinary geophysical, biostratigraphic, lithological and 

minerogenic evidence to test hypotheses regarding the formation and subsequent evolution of the 

coastal sand barrier complex at Pendine. The proposed hypothesis of barrier evolution and the 

mechanisms explaining these changes represent one interpretation of the evidence described 

within the preceding chapters and by no means should be considered as definitive. Although, the 
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preferred hypothesis is to some degree supported by supplementary evidence from other sites 

within Carmarthen Bay (Allen, 1990; Lewis, 1992), it relies upon changing oceanographic 

conditions, the inherent episodic nature of local sea-level rise and assumes that sedimentary 

dispersal patterns within Carmarthen Bay have varied during the Holocene. The study does 

indicate that the gravel ridge beneath the Pendine Burrows played an integral role in the 

formation and subsequent survival of this feature and that many mechanisms have operated 

during the development of this system. If the western portion of the barrier had not been fixed 

in place by the antecedent topography it is very likely that the barrier at Pendine would either not 

have formed or would have been overstepped and reworked during the Holocene transgression. 

The ridge preserved the sediments within West Marsh and provided a platform from which the 

barrier subsequently developed. The evidence described in this study support theories which 

suggest that large barriers formed by mainland beach detachment and spit development is 

favoured in coastal areas with steep rugged relief (Hoyt, 1967; Swift, 1975). Although, the 

evolution of the Pendine barrier-spit exhibits some similarity to qualitative regional response-type 

models (McBride et al., 1995), local topographic, oceanographic and sedimentological factors 

ultimately controlled the development of this particular system. 

The study highlights the complexity of coastal barrier systems and the problems encountered 

when attempting to interpret back-barrier facies development. Information from numerous 

techniques are required to develop plausible hypotheses which aim to describe coastal barrier 

evolution. The barrier complex at Pendine has experienced significant changes in wave/wind 

climate, differential sediment supply, tidal range and possibly relative sea-level rise during the 

Holocene. The significance of antecedent topography indicates that the formation and evolution 

of this particular barrier is unique and should not be considered as a hypothesis for regional 

barrier evolution. 
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Chapter 8 

Conclusions 

8.1 Conclusions 

This study uses a multidisciplinary approach to examine complex sequences within a large sand 

barrier system at Pendine Sands, South Wales. Lithostratigraphic, biostratigraphic and 

geophysical evidence is used to generate hypotheses which describe I) the formation and 

evolution of this feature during the Holocene and ii) the mechanisms which caused the changes 

in coastal configuration. The findings were as follows: 

0 

0 

Geophysical evidence shows that the western portion of the barrier (Pendine Burrows) 

rests on a ridge of Pleistocene glacigenic sediment; the area behind this feature has been 

excavated by freshwater draining into West Marsh from the fossil cliffline between 

Pendine and Coygan. The barrier at Pendine Sands initially formed in response to the 

drowning of the antecedent topography by rapidly rising relative sea-levels during the 

early Holocene (ca. 10,000-7,000 years BP). The ridge beneath the western portion of 

the barrier then played an integral role in the subsequent development and preservation 

of this feature. The evidence presented in this study does not suggest that the Pendine 

Barrier migrated landwards over back-barrier deposits in response to rising sea-levels 

during the early Holocene. 

Foraminifera and pollen contained within the back-barrier sequences are used to identify 

the sedimentary facies and local ecological changes within West and East Marshes; this 

information is used to interpret depositional environments within the back-barrier area 

and elucidate phases of barrier complex stability and instability. The proposed hypothesis 

of barrier development describes the initiation, progradation and stabilisation of the 

barrier system between 8,000 and 5,500 years BP. This was followed by a phase of 

erosion, barrier instability, breakdown and reworking between 5,500 and 5,000 years BP. 

During barrier breakdown the western portion of the feature was fixed in place by the 
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antecedent topography which prevented the landward migration and total reworking of 

the barrier dunes. Consequently, the back-barrier sediments deposited within West Marsh 

were preserved whereas tidal inlet sequences east of Coygan were reworked by wave 

action and tidal scour. Between 5,000 and 3,500 years BP the barrier underwent a second 

phase of progradation and stabilisation during which time sediment input must have 

exceeded sediment dispersal by storms. This was followed by a second phase of barrier 

instability, breakdown and reworking which led to the formation of two discrete dune 

systems by the breaching of the thinning spit by storm waves. The succeeding phase of 

barrier progradation resulted in the longshore development of the Laugharne Burrows and 

the seaward advance of the two dune systems. The tidal inlet separating the dunes lies 

directly above a former meltwater channel which is probably filled with early Holocene 

estuarine sediment, overlain by shoreface sands and spit re-curve deposits. 

The mechanisms which control barrier development at Pendine are related to 

oceanographic processes, sediment supply and relative sea-level change. Pollen, 

foraminiferal and lithostratigraphic evidence show that the two main periods of biogenic 

accumulation in West Marsh represent two regressive phases in relative sea-level change. 

These regressive phases triggered the initial stabilisation of the barrier and promoted 
longshore spit development; this was probably enhanced by the steep rugged relief of the 

cliffline between Pendine and Sir John's Hill. Rather than being a continuous process, 
long-term spit development is marked by relatively short periods of advance and retreat. 
The succeeding instability and reworking of the barrier dunes was caused by a change in 

the wave/wind climate, possibly driven by climatic changes in the North Atlantic during 

the Holocene. The ridge beneath the Pendine Burrows played a critical role in the 

response of this particular barrier system to changing oceanographic conditions and 
differential sediment supply; the antecedent topography ultimately prevented the total 

breakdown and or landward migration of this system in response to increased storm 

activity. Barrier stability was re-established when storm activity decreased and sediment 

was released from the reworking of smaller bay-head barriers within Carmarthen Bay. 

As these features were probably not fixed in the same way, they responded to increased 

storm activity by migrating landwards over their adjoining back-barrier deposits. 

Continued relative sea-level rise also exposed fresh glacigenic deposits which were 
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reworked by the surf zone. This increased the sediment budget within Carmarthen Bay 

and supplied a greater proportion of material to the barrier at Pendine Sands. 

" Relative sea-level changes within the Bristol Channel and Carmarthen Bay were 

extremely complex during the Holocene. This study shows that the smooth gradual sea- 
level curves drawn for this region do not accurately represent local episodic changes 

which have had a significant effect on the configuration of the coastline. 

" Reclamation of West and East Marshes for agricultural purposes during the 17th and 19th 

centuries has stabilized the system and promoted rapid spit development and sediment 

accumulation along the seaward side of the barrier. The configuration of the Pendine and 
Laugharne Burrows would be very different today if the seawall defences had not been 

erected and many of the mechanisms described above would continue to operate. Most 

of the sediment currently accumulating upon the upper foreshore of the Pendine Sands is 

supplied by southwesterly winds which influence the lower shoreface. The large expanse 

of sand flats which are exposed in Carmarthen Bay at low tide, and the frequency of 

strong southwesterly winds, were critical factors in the formation and development of the 

barrier dunes at Pendine Sands. 

It can be concluded from this study that a number of mechanisms operated during the formation 

and development of the Pendine barrier system. Although the geomorphological response of this 

particular feature exhibits some similarity to regional response hypotheses, local sedimentological 

and topographic controls ultimately dictate the response of this barrier system to changing 

oceanographic conditions and relative sea-levels during the Holocene. The significance of 

antecedent topography indicates that the formation and evolution of the barrier at Pendine Sands 

is unique and should not be considered as universally applicable to regional barrier evolution. 
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8.2 Further Research 

0 The geophysical data used to elucidate the morphology of the pre-Holocene surface 

requires supplementary ground truth data from boreholes which penetrate the Pleistocene 

glacigenic sediments beneath West Marsh and East Marsh. This is necessary in order to 

calculate the absolute depth to the bedrock and Pleistocene beneath the study area. In 

addition more extensive marine reflection surveys within Carmarthen Bay would provide 

information on the pre-transgressive surface within the region. This data could be 

incorporated in palaeo-tidal models used to interpret local and regional eustatic changes 

in relative sea-level. 

0 Detailed studies of the modem hydrodynamic regime within Carmarthen Bay are required 

in order to elucidate and model possible sedimentary dispersal patterns- during the 

Holocene transgression. This information can be used to establish the actual mechanisms 

which led to phases of barrier stability and instability at Pendine Sands. 

0 Relative sea-level rise within the Bristol Channel during the Holocene was extremely 

complex. Further work is required to determine whether the regressive and transgressive 

phases in relative sea-level rise at Pendine Sands represent regional changes or are simply 

a local phenomenon. 
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APPENDICES 



Appendix 3.1 

Multiple layer refraction shooting 
(adapted from UCNW Engineering Seismology supplementary notes) 

The analysis of several layers, at varying angles of dip, involves the break-down of time-terms 

into shot-terms (intercept time/delay time) and geophone terms. The delay time in any bed is 

equal to: 

h. (cos i+ cos e) 
v 

where h is the thickness of the bed related to the shot point, V is the velocity in that bed, and i 

and e are incident and emergent angles for any ray travelling through that bed. The total shot- 

term for any intercept time measured on the time-distance graph is given by: 

[h (cos i+ cos e)] 
v 

The geophone term for any position along the ground surface is given by: 

X 
Va 

where Va is the apparent surface velocity derived from the inverse slope of the time-distance 

graph. If Vl is the surface velocity then: 

Va = 
Vi 

sin ö 

where 8 is the emergent angle (between ray and normal) at the surface. 



Shot-terms (intercept-times) 

"Plane Layer Forward Model" 

Medium 1: 

I, '= (2h1' cos 0)/V1 Down slope 

I, " = (2h1" cos e)N1 Up slope 

Medium 2: 

I2' = (2h2 cos 0)/V2 + h1'/V1( cos a, + p, ) Down slope 

Iz" = (2hz" cos 0)/V2 + h, '/V, ( cos a, + ß, ) Up slope 

Medium 3: 

13'= (2h3 cos 0)N3 + h2'/V2( cos a2 *+p, *) + hi'Nl( cos a2 + ß2) Down slope 

13" = (2h31' cos 6)/V3 + h2'Nz( cos a2 ++p, *) + hl"N, ( cos as + ßz) Up slope 

sin a, = V1N2 sin[02 - (42-4 )] 

sin ß, = V1/V2 sin[02 + %41A 

sin a2 = V1N2 sin[a2* - 0141)] 

sin ß2 = V1N2 sin[ß2`+ (42-4, )] - 

sin a3* = VJV3 sin[63 - 
%-Q] 

sin P3* ="V3/V3 sin[63 + %42A 

S 
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APPENDIX 6.2 

Ecological and environmental requirements of certain tree, shrub, herb and 

lower plant taxa (derived from Godwin, 1975; Huntley and Birks, 1983; 

Clapham, Tutin & Moore, 1987) 

Pinus spp. are generally tall forest-forming trees which occupy marginal habitats; when 

favourable conditions persist Pinus is capable of vigourous growth. Pines are prolific on dry, 

sandy soils such as dunes, on podsols, on peats, in montane and boreal environments, are 

secondary colonisers of abandoned cultivated areas and avoid water-logged areas (Huntley and 

Birks, 1983). The dominance of Pinus in the environments they inhabit may be a result of the 

poor soils pines tolerate, compounded by decomposition of an acidic litter. All species are 

prolific pollen producers and as a result high values of Pinus (>50%) are often recorded in 

modem treeless localities (Huntley and Birks, 1983). 

Betula forms extensive natural woodlands in Europe in the sub-arctic, and generally occurs as 

secondary woods following forest clearance in lowland areas. Although birch grow on podsols 

they form mull humus and as they are high pollen producers their pollen is usually well 

dispersed. Consequently values >10% indicate local presence whereas values >25% indicate 

local birch-dominated woodland (Huntley and Birks, 1983). 

The twenty-two European Oak species vary in stature from low shrubs to tall forest trees and 

they can range from being widespread to only locally significant (Huntley and Birks, 1983). 

Although Quercus exhibits considerable ecological variation, occurring in a whole variety of 

vegetation types and habitats, they are generally dominant or co-dominant in most European 

lowland forests and wet base-rich soils. These characteristics complicate the inference of local 

dominance; values z2% may represent local presence of oak whereas values >50% represent 

local dominance. When the Quercus frequency exceeds 10% oak is likely to be a significant 

contributor to the vegetation (Huntley and Birks, 1983). 

Ulmus is a tall growing forest tree which frequently occurs in mixed canopies along with 

Fraxinus, Quercus and Acer, and are therefore characteristic of mesic mixed deciduous 



woodland. Elms favour clay-rich soils and avoid waterlogged soils, shallow soils on freely- 

drained acidic or basic bedrock, and podsols. Pollen values k 2% indicate local presence 

whereas 10% indicates that Ulmus amounts to a significant forest component (Huntley and B irks, 

1983). 

Alnus spp. are generally high pollen producers, their pollen maybe transported over long 

distances, and they are often abundant in wet or waterlogged environments (Huntley and Birks, 

1983). Alder is generally abundant in fens and swamps forming carr communities associated 

with Salix, Cyperaceae, Poaceae and other hydrophilous herbs. Alnus commonly grows on peaty 

soils, where its litter forms part of the deposit, but can also flourish on silty or gravel substrates 

(Huntley and Birks, 1983). High pollen values can be recorded in areas of tree growth but it may 

be difficult to distinguish between local or widespread presence within the catchment. 

The genus Salix includes 69 species of dwarf-shrubs, upright dwarf-shrubs, low shrubs, tall 

shrubs and trees native to Europe (Huntley and Birks, 1983). They are widely distributed and 

favour moist or waterlogged conditions on the edge of river banks or in fen carr. Willow is not 

a primary woodland species but may be locally dominant in carr or damp woodland. Local 

stands of Salix in carr communities may complicate the interpretation of pollen data and values 

> 2% indicate the local presence of Salix. 

Corylus is a large shrub or small tree which generally occurs as an understorey species in mixed 
forests of Quercus, Ulmus, Fraxinus and Tilia with a mesic herb layer (Huntley and Birks, 1983). 

Hazel is found on a variety of soils but most commonly occurs on mull humus. Through 

determining the contribution of hazel to vegetation is complex, values greater than 25% indicate 

the presence of forests in which Corylus may be dominant. 

Poaceae is the largest family of flowering plants and includes examples of almost every 

ecological type and life form (Clapham, Tutin & Moore, 1987). They occur in the majority of 

habitats from woodlands, dunes and shingles to steppes and aquatic environments. One common 

property of all the species is their basal rather than apical growth. Pollen values of up to 10% 

may occur in primarily wooded sites whereas values >25% imply the predominance of treeless 

vegetation (Huntley and Birks, 1983). 



The Chenopodiaceae taxon includes over 100 genera and 1400 species of herbs and shrubs 

associated with either and or saline environments (Clapham, Tutin & Moore, 1987). Although 

species are generally wind-pollinated the pollen is rarely transported over great distances and 

values > 1% indicate local presence whereas values >10% suggest the local abundance of 

Chenopodiaceae (Huntley and Birks, 1983). Examination of coastal and estuarine sites reveals 

that significantly high values of Chenopodiaceae can be recorded, reflecting the abundance with 

which the family grows in saltmarsh and other coastal environments Godwin (1975). 

Although Cyperaceae grow in a whole variety of environments, and are ubiquitous in 

distribution, they favour cool, moist mires with treeless vegetation (Huntley and Birks, 1983). 

Sedges have capitalised upon the development of mires and waterlogged soils during the 

Holocene and their occurrence in the fossil record is an indication of the extent of treeless bog 

vegetation. Pollen frequencies > 10% occur consistently in areas where treeless vegetation 

persists whereas sporadic values of > 50% may be recorded in lacustrine sites where sedge 

swamps are surrounded by woodland (Huntley and Birks, 1983). 

Plantains are annual or perennial herbs which flourish in unstable open treeless habitats and are 

common in coastal and inland sites. For instance, Plantago lanceolata is characteristic of 

grasslands whereas the halophytic salt tolerant species Plantago maritima has a strong preference 

to coastal sites and is likely to respond to eustatic changes in sea-level (Godwin, 1975). 

Although they produce large quantities of pollen they are poorly dispersed and occur in local 

abundance; consequently values >5% are rarely exceeded (Huntley and Birks, 1983). 

Pteridium is primarily a woodland plant which avoids waterlogged soils and is still widespread 

throughout Europe within open forests, on acid soils and in locales where wind exposure may 
be too great for tree growth (Huntley and Birks, 1983). As bracken germinates after fire 

anthropogenic burning may have triggered the expansion of Pteridium into new areas during the 

late Holocene; the occurrence of spores indicates local abundance. 

Polypodium spp. exhibit no significant soil preferences but occur as epiphytes on a wide variety 

of trees including Quercus, Alnus, Fraxinus and Ulmus (Huntley and Birks, 1983). Although 

they are prolific spore producers their low growth results in poor dispersal and spore values only 

exceed 3% in areas of abundant epiphytic growth. Relatively high Polypodium values, in the 



absence of rupestral and epiphytic environments, may suggest that these resistant spores are an 

artifact of reworking and dissolution. 


