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SUMMARY 
Calcium carbonate skeletons produced by organisms such as foraminifera, ostracodes, corals 
and molluscs have the potential to contain within their isotope and elemental composition 
signatures (i. e. proxies) that reflect the environment in which the organisms calcified. 
Bivalves offer the potential for high resolution reconstructions over a wide geographical 
range and in the fossil record since the Early Ordovician. However, when compared to other 
biogenic carbonate archives there have been relatively fewer studies that have investigated 
bivalve mollusc shell geochemistry, especially robust validation studies of likely 
geochemical proxies. This study contributes to the evaluation and validation of geochemical 
proxies in bivalves. More specifically, the aim was to investigate and validate the 
relationships between the elemental composition (Mg/Ca, Sr/Ca and Mn/Ca) of bivalve shell 
calcite and its primary environmental controlling factors, i. e. seawater temperature, dissolved 
and particulate Mn concentrations. In addition, the role of secondary control factors (i. e. 
"vital" effects and small-scale element heterogeneity), as a source of non-environmental 
variability in bivalve geochemical proxies was also investigated. 

Studies on the temperature dependence of Mg/Ca ratios in bivalve calcite shells have 
produced contradictory results. In the bivalve species studied, Pinna nobilis (Chapter 2), 
Mytilus edulis (Chapter 4) and Pecten maximus (Chapters 3 and 4), the temperature 
dependence of shell calcite Mg/Ca ratios was found to be generally weak. The occurrence of 
a large variability in Mg/Ca ratios at the species, inter- and intra- individual shell levels, as 
well as through ontogeny, together with a weak temperature control, clearly suggests a 
strong physiological control of calcite Mg/Ca ratios during shell biomineralization. Bivalve 
calcite Mg/Ca ratios do not yet appear to be a reliable and precise temperature proxy, at least 
in the species studied. 

In the three bivalve species studied, Pinna nobilis (Chapter 2), Mytilus edulis (Chapter 5) 
and Pecten maximus (Chapters 3 and 5), shell Sr/Ca ratios were found to be influenced by 
more than a single physiological control (shell growth rate, metabolic activity and even shell 
Mg content), which may differ from one species to another, but also vary temporally in a 
single species. Shell growth rate, assumed to indicate a precipitation rate control, was 
significantly correlated to shell Sr/Ca ratios in field- and laboratory-grown P. maximus and 
M. edulis. The positive relationship observed between absolute respiration rate and Sr/Ca 
ratios in M. edulis, grown both in laboratory and field culturing experiments, provides the 
first direct evidence of an influence from metabolic activity on bivalve calcite Sr/Ca ratios. 

The seasonal variation of Mn/Ca ratios in the shell calcite of field grown Pecten maximus 
specimens followed a similar intra-annual variation to dissolved Mn concentrations 
described previously (Chapter 5). In Mytilus edulis, shell Mn/Ca ratios were found not to be 
influenced by either dissolved or particulate Mn2+ concentrations (Chapter 6). Shell Mn/Ca 
ratios and shell growth rates showed a remarkably similar seasonal variation. However, such 
similarity is not indicative of a precipitation rate control since precipitation rate and Mn 
partition coefficient in synthetic inorganic calcite are inversely related. The influence of shell 
growth rate on shell Mn/Ca ratios must reflect a physiological control most likely acting at 
the transport of Mn into the extra-pallial fluid. 

Significant small-scale heterogeneity in Mg/Ca, Sr/Ca and Mn/Ca ratios in the shells of 
Pecten maximus and Mytilus edulis deposited at a constant temperature was observed 
(Chapter 7). In particular, elaborate shell features and disturbance growth marks, were 
associated with significant variations of the elemental content of the shell calcite and may 
represent an important interference in the use of geochemical proxies in bivalve shell calcite. 
Importantly, shell Mg/Ca ratios in the inner regions of P. maximus shells promise the 
potential to become a valid palaeotemperature proxy. In both bivalve species studied, 
elemental/Ca ratios vary significantly in shell deposited from the same extra-pallial fuild and 
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thus strongly suggests that element incorporation in to the shell carbonate at the crystal- 
solution interface is a key control step in determining the element composition of shell 
calcite. 

Most of the results in this study contribute to the growing evidence that bivalve calcite 
element composition is controlled by physiological factors that underlie a tight control of 
element incorporation during shell biomineralization. Unless the secondary controls (i. e. 
metabolic and/or kinetic factors) on element incorporation, in particular their influence on 
the small-scale heterogeneity of shell elemental composition, can be understood in more 
detail, and subsequently compensated for, the use of the geochemical proxies Mg/Ca, Sr/Ca 
and Mn/Ca ratios in bivalves for reliable and accurate reconstructions of past or present 
environmental conditions remains unlikely, at least in the species studied to date. 
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Chapter 1 

I- General Introduction 

1.1 Background 

General Introduction 

In the past decades there has been a growing interest in understanding and 

reconstructing past environmental conditions. The knowledge of the causes and 

controls of Earth's climate are of major importance to the ability to predict and 

monitor future changes associated with the potential impacts of human activity and 
disturbance of natural systems. Furthermore, there is a growing need to reconstruct 

environmental events after they have taken place, assessing the impact of both 

natural (e. g. storms, productivity, temperature and salinity fluctuations) and 

anthropogenic (e. g. pollution) occurrences. Instrumental records on the variation of 

environmental conditions are relatively recent, covering a few centuries at most, rare 

and spatially limited. To reconstruct past and present environmental conditions prior 

to the instrumental record or in areas where such records are scarce or absent, the use 

of natural archives of environmental conditions is necessary and often the only way 

to retrieve such information. Natural archives, be it in geological (e. g. ice cores, 

rocks, sediments and speleotherms) or biological structures (e. g. trees, corals, 

bivalves, etc), record environmental information both as physical and chemical 

properties. 

A proxy is a measurable chemical or physical signal preserved in biological or 

geological structures that reflect an un-measurable environmental signal. A "proxy"- 

based approach for the reconstruction of environmental conditions is especially 
important when and where instrumental records of oceanographic and climatic 

parameters are absent. An ideal marine geochemical proxy will depend on a single 

oceanographic parameter, and will enable a perfect reconstruction of the variation of 

such a parameter in the past. Often, multiple parameters can influence these proxies, 

thereby confounding their use. It is now clear that the organism metabolic activity 

significantly interfere with geochemical proxies recorded in the carbonate skeletons 
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of foraminifera (Spero and Lea, 1993; Spero and Lea, 1996; Lea et al., 1999; Zeebe, 

1999b), corals (e. g. McConnaughey, 1989a; McConnaughey, 1989c; e. g. de Villiers 

et al., 1995; McConnaughey et al., 1997; Adkins et al., 2003; Rollion-Bard et al., 

2003), and bivalves (Klein et al., 1996b; Vander Putten et al., 2000; Kennedy et al., 

2001; Owen et al., 2002b; Lorrain et al., 2004; Gillikin et al., 2005b; Lorrain et al., 

2005; Cane et al., 2006; Gillikin et al., 2006b). Consequently, each new potential 

proxy needs to be rigorously calibrated and validated and its veracity confirmed (for 

reviews, see e. g. Wefer et al., 1999; Lea, 2003). To complete such an exercise the 

role of environmental, and potentially biological, factors in controlling the proxy 

variation must be understood. 

Carbonate minerals are ubiquitous in a wide variety of terrestrial and aquatic 

environments, constituting a significant component of sediments throughout the 

world oceans (e. g. Broecker and Peng, 1982). The chemical and isotopic composition 

of carbonate minerals may reflect the mode and environment of their formation and 

subsequent alterations, and thus provides a valuable source of information on the 

Earth's past climates and oceanographic conditions. In particular, successive growth 

layers of calcium carbonate skeletons (i. e. biogenic accretionary hard parts), or in a 

stratigraphic sequence of shells, produced by organisms such as foraminifera, 

ostracodes, corals and bivalves have the potential to contain within their isotope and 

elemental composition signatures that reflect the environment in which the 

organisms calcified (e. g. Lea and Boyle, 1989; Lea et al., 1989; Wefer and Berger, 

1991; Delaney et al., 1993; Druffel, 1997; Lea et al., 1999; Swart and Grottoli, 

2003). Variable growth rates produce distinct growth increments that allow 

estimating the organism age, attributing a time frame to different portions of the 

skeleton or assessing the life history of the organism. 

The use of elemental/Ca ratios in biogenic carbonates as geochemical proxies has 

grown rapidly in the last decade, particularly of Mg/Ca and Sr/Ca ratios, and 

complements the more traditional &80 and S13C proxies. However, the factors 

controlling the trace-element composition of biogenic carbonates generally are much 

less well understood than those governing stable-isotope ratios. The importance of 

Mg/Ca and Sr/Ca ratio palaeo-thermometry has encouraged active research into the 

evaluation of biological and environmental (e. g., temperature, salinity and pH) 
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factors which may influence the incorporation of elements into biogenic carbonates. 
Compared to other biogenic carbonate archives there have been relatively fewer 

studies that have investigated bivalve mollusc shell geochemistry, especially robust 

validation studies of likely geochemical proxies. 

1.2 Marine Bivalves 

For several decades bivalve shells have been known to provide valid archives of past 

environmental conditions (e. g. for a review see Richardson, 2001). The potential 

utility of mollusc shells as palaeoenvironmental archives is due to their incremental 

deposition, such that they possess in their shell geochemical and physical 

composition a temporal record reflective of ambient conditions during growth (Jones, 

1983; Richardson, 2001). For instance, the initial work carried by Epstein et al. 
(1951), and later corrected by Epstein et al. (1953), to establish a biogenic carbonate 

5180-water temperature scale was done mainly using gastropods and bivalve 

molluscs. Marine bivalves also are widely distributed throughout the oceans, from 

the tropics to the polar regions, whereas many other substrates such as corals are 

limited in their latitudinal extent, and from coastal estuarine waters to the deep 

ocean, displaying a range of growth rates and longevity of usually less than 10 years, 

but in some cases more than 50 years or even more than 300 years for Artica 

islandica (Schöne et al., 2005?. Furthermore, bivalve shells are often found in 

archaeological middens and in fossil records since the Cretaceous. Bivalve shell 

geochemistry thus provides the potential to reconstruct high temporal resolution 

records of environmental conditions over a wide range of spatial and also temporal 

scales, from decades to even centuries if a sclerochronological approach is taken (e. g. 

Jones, 1983; Weidman et al., 1994). 

1.2.1 Morphology 

Bivalvia, a class of the phylum Mollusca, are laterally compressed animals 

possessing 2 valves which enclose the animal tissues (Russell et al., 1996). The shell 
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consists of two more or less similar valves, which are attached and articulated to one 

another by the hinge system which includes a ligament, teeth and other specific 

specializations (Figure 1-1). The umbo is a dorsal protuberance and bears the oldest 

part of the shell. The valves of the shell are pulled together by one or two adductor 

muscles, an anterior and a posterior, and in bivalves enclose a well developed mantle 
(or pallial) cavity, the space between the mantle and the internal organs. The mantle 

cavity contains essentially seawater, although its composition can be altered during 

extended closure of the valves. The mantle is a thin organ that lines the inner shell 

surface, which in bivalves consists of 2 lobes of tissues that completely enclose the 

animal within the shell. Both the inner surface of the mantle (facing the mantle or 

pallial cavity) and the outer surface of the mantle (facing the inner shell surface) are 

covered by a layer of single cell epithelium. The bivalve mantle possesses different 

tissues: muscle tissue, connective tissue, nerve fibres, haemolymph and may contain 

most of the gonads. Therefore, the mantle may serve different functions: sensorial, 

shell formation, reproductive, endocrinal. The mantle margins are organized in 3 

folds (Benninger and Le Pennec, 1991; Gosling, 2003): the outer fold, close to the 

shell edge and responsible for shell formation, which contains the periostracum 

groove where the periostracum is formed; the middle fold, with a sensory function 

and the inner fold or vellum, muscular and which controls water flow into the mantle 

cavity. The mantle is attached to the shell by muscle in the pallial line (not clearly 
detectable in all species) and runs in a semicircle parallel to the shell edge. A space, 

the extra-pallial space, contains a fluid named the extra-pallial fluid (EPF), which is 

enclosed between the mantle and the inner shell surface. 

1.2.2 Species Used 

Three bivalve species were used in this study: the fan mussel Pinna nobilis, the blue 

mussel Mytilus edulis and the scallop Pecten maximus. The former species has been 

shown to calcify under oxygen-isotope equilibrium with surrounding seawater, 

confirming the potential for high temporal resolution palaeotemperature 

reconstruction (Kennedy et al., 2001), and together with its large size and fast shell 

growth rate provides an interesting model to investigate the temperature control of 

Mg/Ca and Sr/Ca ratios in bivalve calcite. The latter two species, as well as closely 

related taxa, have been proposed previously as valid archives for palaeoceanographic 

A 



Chapter 1 General Introduction 

studies (e. g. Krantz et al., 1988; Klein et al., 1996a; Hickson et al., 1999; Chauvaud 

et al., 2005; Gillikin et al., 2006a; Wanamaker et al., 2006) and arguably are two of 
the most studied bivalve species, thus yielding a valuable wealth of knowledge 

regarding its ecology and physiology (Brand, 1991; Gosling, 1992). 

i 

Third Party Material excluded from digitised copy. 
Please refer to original text to see this material. " 
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Figure 1- 1- The morphology of the shell of Mytilus edulis (from Gosling 2003). 

Pinna nobilis (Figure 1-2) is a large (up to 1 m) and long lived bivalve (up to 20 yrs), 

with relatively fast growth rates (up to 59 cm in 8 yrs) (Richardson et al., 1999). P. 

nobilis is an endemic endangered species of the Mediterranean Sea that occur in 

sheltered coastal areas in the infralitoral and circalitoral, usually in seagrass 

meadows between 0.5 and 60 m water depth, with approximately z/3 of the shell 
buried in sediments and use byssal threads to attach to sand or gravel bottoms 

(Moreteau and Vicente, 1982). 

Scallops (Figure 1-3), bivalves belonging to the family Pectinidae, are found in all 

waters of the Northern and Southern Hemispheres. Pecten maximus is found in the 

Northeast Atlantic Ocean from Norway to west Africa, in the western Mediterranean 

and in the archipelagos of the Acores, Canarias and Madeira (Brand, 1991). Pecten 

maximus is an unattached surface dweller that lives from the low tide mark down to 

200 m, but usually at 20-45 m, in clear firm sand and fine or sandy gravel (Brand, 

1991). Adults can reach up to 150 mm and bury slightly in the sediment with the 

flat/left valve upwards. Life span is variable with location, but can reach over 10 
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years. The valves have two auricules on either side of the umbo and are not 

symmetric, with the left (upper) valve being flattened and slightly overlapped by the 

right one, which is convex. The shell of P. maximus has several ribs radiating from 

the umbo (typically 14-15), alternating with grooves. Distinct yearly rings that are 

deposited during winter are usually easily observed, although they may be absent or 

easily mistaken by disturbance marks. The shell shows concentric stria all along its 

length. Scallops have the ability to swim by clapping the valves, usually to avoid 

predation or for habitat selection. 

Figure I-2 The Pinnu nohilis shells used in this study. Shell features: Shell Margin (M); Spines 

(S); Shell Main Growth Axis (A); Umbo (U); Sampling Grooves (G). 

a 
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Third Party Material excluded from digitised copy. 
Please refer to original text to see this material. 

Figure I-3 The morphology of the shell of* ecten maximus (from Gosling, 2003). 

Bivalves from the genus Mvtilus" (Figure 1-1) are attached surface dwellers and have 

a wide geographical distribution living in temperate water from the Northern and 

Southern Hemispheres, and occupy a wide range of habitats: from high inter-tidal to 

sub-tidal, from marine to estuarine waters, from rocky shores to fine sediments 

(Seed and Suchanek, 1992). Furthermore, M. cclulis have the capacity to withstand 

large variations in salinity, temperature, dessication and oxygen content (Seed, 

1976). Mvtilus Midis can reach up to 15 cm, but normally grow to 5-8 cm with a life 

span of up to 18-24 years. Mytilus" sp. also are commonly used throughout the world 

in environmental hiornonitoring programs (e. g. fior heavy metal pollution). 
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1.2.3 Growth and Metabolism in Bivalves 

Physiological processes are thought to significantly influence the isotopic and 

element composition of biogenic carbonates (Urey et al., 1951; Lorens and Bender, 

1977; McConnaughey, 1989a; Rosenberg and Hughes, 1991; de Villiers et al., 1995; 

Klein et al., 1996b; Spero and Lea, 1996; McConnaughey et al., 1997; Lea et al., 
1999), and thus the growth and metabolic activity of each organism may interfere 

with the use of geochemical proxies from biogenic carbonates. In bivalves, growth 

represents the integration of physiological processes of energy acquisition and 

utilization, and it is dependent on the interaction of endogenous factors, such as size, 
age, genotype and physiological condition with several environmental factors, 

mainly food availability and temperature, but also population density, water flow, 

and pollution (Gosling, 2003). As such, growth rate and reproduction may differ 

between species, but also vary significantly between populations of the same species, 

between individuals of the same population, being modulated by seasonal and inter- 

annual variations of environmental conditions. In bivalves, an ontogenetic change 

occurs in which the focus of production switches from growth in young and small 

animals to reproduction in older and larger animals (Gosling, 2003). This change, 

associated with higher respiratory demands, is probably what causes the observed 

decrease in growth efficiency and absolute growth with size and age in bivalves. 

Shell growth occurs throughout the life of the animal, but a clear ontogenetic 

decrease in growth rate can be observed in most species. Bivalves may produce 

growth marks, rings, lines, scales or stria during shell growth, all of which can be 

used to determine age (Lutz and Rhoads, 1980). The use of growth marks to record 

age in bivalves is dependent on their periodicity and cause and may not be present or 
discernable in all species. Annual growth marks are usually associated to seasonal 

changes in growth rates, but in some cases a spawning mark may also be observed. 
Marks such as rings or stria may be deposited at a higher periodicity related to tides, 
daily or lunar spring-neap tidal cycles. Other events such as storms, damage to the 

shell, handling, parasites and predation may leave their own marks in the shell and be 
indistinguishable from other growth marks. As can be seen, there is still a large 
debate concerning the periodicity of deposition of growth increments in different 

species, which may vary from annual to tidal, and are not present in all species (e. g. 
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mussels and oysters). Nevertheless, growth marks and growth increments are 

morphological identities and represent events that can be linked to physiological or 

environmental factors (Richardson, 2001). 

Growth in bivalves is usually measured by changes in soft tissue dry weight or in a 

shell dimension. Soft tissue weight is seen as the best method as it reflects overall 

production, on the other hand it needs the sacrifice of the animals and more 

important it is modulated by seasonal energy storage and reproductive cycles. A shell 

dimension is usually used and a weight-length regression determined to estimate 

growth. Shell length, the distance between the anterior and posterior margins, is 

normally used, although the distance between the dorsal (hinge) and ventral margins, 

shell height, is also used (Gosling, 2003). The relationship between shell and somatic 

tissue growth varies in different bivalve species depending on the main energy 

source for reproduction, i. e. stored energy or external food (Bricelj and Shumway, 

1991). In species where gametogenesis mainly depends on energy reserves, shell and 

somatic tissue growth may not follow the same pattern, with the later being more 

strongly influenced by the reproductive cycle than in species that meet most of the 

energy costs of reproduction from external food sources (Bricelj and Shumway, 

1991). For instance, in Mytilus edulis shell and somatic tissue growth are not 

necessarily coupled (Hillbish, 1986). In the soft shell clam Mya arenaria, shell 

growth and somatic tissue growth are uncoupled, and the former reflects metabolic 

activity while the latter reflects the energy budget and storage regulated by 

reproduction (Lewis and Cerrato, 1997). 

The most common method of assessing the energy balance is to determine the 

components of the following energy budget: C=P+R+F+U, where C is the 

energy input or food consumption and the energy losses includes energy used into 

shell and somatic tissue production P, respiratory heat loss R, faecal losses F and 

excretory products U (Bayne and Newell, 1983). Only when the energy balance is 

positive, i. e. the energy available for production after respiration and excretion have 

been subtracted from absorption (C-F)-(R+U) >0 (Warren and Davis, 1967), may an 

animal allocate energy for growth or reproduction, otherwise energy reserves must 

be used. In mussels, the total metabolic cost of maintenance, including respiration, 

digestion, absorption, and cost of growth can reach 50% of the total energy intake 
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(Hawkins and Bayne, 1992). Shell production in Mytilus sp. may reach values of 
20% of total production (Hawkins and Bayne, 1992). However, there are large 

uncertainties in estimating the cost of shell formation in bivalves due to 

methodological difficulties in measuring all the components of the total energy 
budget. Wilbur and Saleuddin (1983) in their review suggested a value of 1/4 to 1/3 

of the total energy budget as the cost of shell growth, which is most likely an 

underestimation and there are large differences among species with different shell 

sizes, densities and structures. 

Various methods exist to determine metabolic rate (also described as energy demand 

or turnover rate) in bivalves (De Zwaan and Mathieu, 1992), and in aerobic 

conditions the rate of oxygen consumption is an indirect measurement of metabolic 

rate, which can be obtained by converting the rate of oxygen consumption to energy 

demand (Bayne and Newell, 1983). In anoxic conditions, metabolic rate can be 

measured by biochemical methods or by direct calorimetry. Metabolic rate is known 

to be influenced by several variables (e. g. for a review see Bayne and Newell, 1983): 

temperature, body size, oxygen tension, food concentration, reproductive state, 

feeding, activity level and physiological condition. Of these, temperature, size and 

activity level are the most relevant ones (Bayne and Newell, 1983). The rate of 

metabolism varies with short term temperature variations, with an initial overshoot 

followed by a period of stabilization after minutes to hours. Many organisms show a 

longer term adaptation (or acclimation) to changed temperature conditions after days 

or weeks, adjusting the rate of oxygen consumption to levels similar to the ones that 

preceded the temperature change (Bayne and Newell, 1983). The scope for activity 
(the increase in oxygen consumption associated with activity) of Mytilus edulis can 
be 2 to 3 times resting, starved condition, and is mainly associated with feeding 

activity and indirect costs (posture, mucus productions, ingestion and digestion). In 

mussels there is evidence that metabolic efficiency decreases with increasing size 

and age (Gosling, 2003). 

1.2.4 Shell Biomineralization 

Shell Structure and Morphology 
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The bivalve shell serves several functions: it acts as a skeleton for muscle 

attachment, protection from predators, protection from environmental changes and in 

burrowing species for protection from sediments (Gosling, 2003). The main 

component of the shell is calcium carbonate (CaCO3) at around 95-99.9 wt% with 

the remainder being an organic matrix made of macromolecules (Hare, 1963), 

forming a microlaminate composite of mineral and biopolymers exhibiting 

exceptional nanoscale regularity, and a strength - 3000 times greater than that of the 

crystals themselves (Currey, 1988). 

Most mollusc shells have an outer organic layer, covering the outer surface of the 

shell, and an inner calcified layer. Bivalve shells possess two distinct crystal 

polymorphs of CaCO3 with similar crystal structures, calcite and aragonite. Vaterite, 

a third polymorph, is usually absent (Wilbur and Saleuddin, 1983). Shells from the 

family Pinnacea and the genus Pinna are constituted by a dominant outer prismatic 

calcite layer with a thin aragonite nacreous inner layer (Watabe, 1988). The general 

shell structure of Pecten maximus consists of both outer and inner irregularly 

oriented foliated calcite layers (Taylor et al., 1969; Carter, 1990a), with some 

pectinid species also having a very thin aragonite prismatic pallial myostracum 

(Taylor et al., 1969). The inner layer of irregularly oriented foliated calcite structure 

appears to be a secondary feature, deposited late in the life of the animal on the 

inside of the shell between the umbo and midway along the growth axis. The general 

structural characteristics of Mytilus edulis bivalve shells are reported to be two 

primary calcium carbonate layers and an outer organic layer, the periostracum, which 

covers the outer surface of the shell. The outer shell layer is finely prismatic calcite 

with the inner layer a nacreous aragonite, these being separated by a thin pallial 

myostracum made up of irregular simple prismatic aragonite (Taylor et al., 1969; 

Carter, 1990b). 

The Extra-Pallial Fluid: The Environment of Shell Deposition 

The total shell formation system in molluscs comprises 4 compartments: 1) the 

external medium, 2) the haemolymph and body tissues, 3) the extra-pallial fluid 

(EPF) between the mantle and the inner shell surface, 4) the shell (Wilbur and 

Saleuddin, 1983). Shell formation can be described as two separate parts (Wilbur and 
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Saleuddin, 1983): 1) EPF formation - active and diffusive processes of intracellular 

and intercellular ion transport, synthesis and secretion of the EPF organic compounds 
that will build the organic matrix of the shell and modulate crystallization; 2) 

Crystallization -a series of physicochemical processes in which crystals of CaCO3 

are nucleated, oriented and grow in intimate association with the organic matrix and 

soluble proteins. 

In bivalves, like in other molluscs, shell deposition occurs from the EPF, a liquid 

present in the space between the mantle epithelium and the calcifying inner shell 

surface, the extra-pallial space (EPS) (Crenshaw, 1972; Misogianes and Chasteen, 

1979; Wilbur and Saleuddin, 1983; Checa, 2000). In bivalves, the muscular 

attachment of the mantle to the shell along the pallial line, an attachment of the 

mantle on the inner shell surface, further divides the shell-forming compartment (i. e. 

EPS) in two distinct zones. The marginal EPS, outside the pallial line, is associated 

with the highest rate of shell deposition and contributes to increases in the height and 

length of the shell and is where the outer and mid shell layers are deposited. The 

central (or inner) EPS, within the pallial line, is associated with both deposition 

(thickening) and redissolution of shell (Wheeler, 1992; Nair and Robinson, 1998), 

and is where deposition of the inner shell layer occurs. Usually, the periostracum 

seals the EPS (the marginal EPS to be precise) isolating it from both 
, the external 

(seawater) and internal (haemolymph) environments (Wilbur, 1976; Saleuddin and 

Petit, 1983; Falini et al., 1996). However, EPS isolation from seawater varies 

amongst bivalves. In scallops, like in oysters, shell deposition at the shell margin 

occurs from a periodically exposed EPS, while in Mytilus edulis it occurs from a 

continuously isolated one (Clark II, 1974; Carriker, 1992). In species with 

periodically exposed EPS, the margins of mantle lobes are frequently withdrawn into 

the mantle cavity exposing the crystals at the inner shell surface to seawater or 

mantle cavity fluid (Clark II, 1974; Carriker, 1992). 

The element and/or isotopic composition of the EPF may thus differ from both 

seawater and the haemolymph. For instance, freshwater and marine bivalve have 

EPFs with different chemical compositions most likely due to a physiological control 

related to differences in the external medium (Wada and Fujinuki, 1974; Wilbur and 

Saleuddin, 1983). Bivalves are expected to be able to biochemically regulate the 
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activity of Ca2+ and other ions from the EPF, solution from which mineralization 

takes place. For instance, the majority of Ca in the EPF is not in free ionic form but 

bound to organic molecules secreted by the mantle (Crenshaw, 1972; Misogianes and 

Chasteen, 1979; Nair and Robinson, 1998). 

Element Transport to the Extra-Pallial Fluid 

In bivalves, any surface of the body, not protected by the shell, may participate in the 

interaction between the environment and the animal (Simkins and Mason, 1983; 

Wilbur and Saleuddin, 1983). The gills, the foot, the mantle and the alimentary tract 

have all been implicated as sites of metal uptake, with the gills seen as the major 

uptake site (Simkiss and Mason, 1983; Wilbur and Saleuddin, 1983). Elements in the 

EPF may be derived from both the external medium and the animal tissues, reaching 

the EPF after diffusion (i. e. intercellular) or active (i. e. intracellular) transport across 

the mantle (Crenshaw, 1972; Wilbur and Saleuddin, 1983; Wheeler, 1992). Direct 

input from the external medium can also occur in the event of rupture of the mantle- 

shell connection at the shell edge. Furthermore, a mechanism for the transport of ions 

across the periostracum through the presence of pores was proposed for oysters and 

most bivalve groups that attach to the substratum (Harper, 1991), and based on the 

similarity of the periostracum (i. e. its small thickness, <1 µm) extended to the entire 

pteriomorph group, which includes the three species studied (Hickson et al., 1999). 

Active transport of ions to the EPF was proposed to be mediated by an enzyme 

responsible for a Cat+/H+ exchange across the mantle epithelial cells (Wilbur and 

Saleuddin, 1983). The enzyme Ca2+ ATPase transports Ca2+ to the EPF while 

removing 2H+ and has been proposed to be involved Ca2+ and divalent ion transport 

across epithelial cells of corals (McConnaughey, 1989c; Cohen and McConnaughey, 

2003) and has been also observed in calcifying algae (McConnaughey and Falk, 

1996). In bivalves, precipitation of the shell occurs under physiologically controlled 

concentrations of Ca2+ and HC03' (Wada and Fujinuki, 1976), and the enzyme 

carbonic anhydrase, which catalyses the reaction H2O + CO2 H H2C03 H H+ + 

HCO3", is involved in the precipitation of CaCO3 (e. g. Crenshaw, 1980). 

Recently, Carr6 et al., (2006) argued that the two proposed pathways for Ca2+ 

transport through the calcifying mantle, a diffusive inter-cellular pathway and an 
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active infra-cellular pathway based on Ca2+ -ATPase, cannot support the Ca2+ flux 

necessary for biomineralization. According to these authors most Ca 2+ transport must 

be intra-cellular to avoid ionic deregulation of the internal medium, but Cat+-ATPase 

cannot account for the Ca2+ flux necessary to sustain mineralization. Carre et al., 

(2006) thus propose an alternative intra-cellular pathway based on ionic calcium 

channels, which are widespread in biological tissues, are ion selective and can 

support very high ionic fluxes. In such a model, calcification rates change the 

electrochemical potential driving ions through the channel and ultimately the ion 

selectivity of calcium channels leading to variable transport of divalent ions to the 

EPF. 

Shell Deposition and Growth 

The EPF was found to contain a complex mixture of organic compounds, which are 
involved in the organic matrix-mediated biomineralization of the shell (Crenshaw, 

1972; Wada and Fujinuki, 1976; Misogianes and Chasteen, 1979; Wilbur and 

Saleuddin, 1983; Weiner and Dove, 2003; Addadi et al., 2006). The organic 

compounds are secreted by the cells of the outer mantle epithelium (Wheeler, 1975; 

Wilbur and Saleuddin, 1983) and are constituted by similar macromolecules to the 

materials found in the shell matrix, mainly by proteins, glycoproteins, amino acids 

and carbohydrates (Misogianes and Chasteen, 1979). As in the plasma, complexation 

of elements with organic molecules is significant in the EPF and influences the 

activity of different ions. For instance, of the total Ca in the plasma, the majority (up 

to 85%) is bound to small chelates, insoluble carbohydrates and soluble 

macromolecular (Misogianes and Chasteen, 1979; Nair and Robinson, 1998). Bound 

Ca may serve several functions: represent dissolution of deposited shell, be a 

preliminary step in shell formation or a reservoir of Ca2+ ions for shell formation 

(Crenshaw, 1972). In Mytilus edulis, 56% of the protein content of the EPF was 
found to be a single histidine rich glycoprotein that bounded Ca2+ and was proposed 
to be a precursor or a building block of the soluble organic matrix of the shell 
(Hattan et al., 2001). 

The compositional and conformational features of the organic matrix are seen as 
having a significant influence on the structural properties of the shell crystal (Kaplan, 
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1998). The organic matrix consists of a structural framework of hydrophobic 

macromolecules that are used to partition the extra-cellular space and provide 

mechanical support, while acidic macromolecules interact with the ions of the 

surrounding solution, determine its chemical activity, lower the activation energy for 

inorganic nucleation, and provide a template structure that direct the resulting 

mineralization process (for reviews see Weiner and Dove, 2003; Addadi et al., 2006). 

The composition of the organic component of bivalve shells, varies not only among 

different taxa (Lowenstam and Weiner, 1989), but also within different shell layers 

(outer vs inner layers and calcitic vs aragonitic layers) and microstructural layers of 

the same species (Hare, 1963; Hare and Abelson, 1965; Goodfriend, 1992). 

Mount et al., (2004) have recently observed the intra-cellular formation of crystals in 

the oyster Crassostrea virginica, and thus suggested that intra-cellular crystal 

nucleation may at least complement the organic matrix-mediated biomineralization 

in bivalves. Furthermore, the transfer of ions and organic molecules by direct contact 
between the mantle epithelium and the mineralizing matrix has also been suggested, 

thus reducing the role of the EPF in shell mineralization (Simkiss and Wilbur, 1989; 

Addadi et al., 2006). 

Calcite vs Aragonite 

The mineralogy and structure of the shell carbonate is important since calcite and 

aragonite although crystal polymorphs of calcium carbonate, have different mineral- 

water fractionation factors (Romanek et al., 1992) and partition coefficients (Morse 

and Bender, 1990). Calcite (trigonal structure) is thermodynamically more stable 

than aragonite (orthogonal structure) at ambient temperatures and pressures, and in 

spite of possessing very similar crystal structures, the major difference between the 

two polymorphs is in the organization and orientation of the carbonate molecules 
(Lipmann, 1973). 

Control of which of the two CaCO3 polymorphs is formed by marine calcareous 

organisms has been suggested to depend on environmental factors, such as 
temperature and salinity (Taylor and Reid, 1990; Cohen and Branch, 1992), but also 

concentration of ions, mainly Mgt+. The presence of doubly charged ions, especially 
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Mgt+, in CaCO3 solutions, as well as high temperature, favours the formation of 

aragonite (Kitano et al., 1976), possibly since the incorporation of Mg in the calcite 

crystal lattice increases its solubility relative to that of pure calcite (Berner, 1975b). 

However, several studies have shown that bivalves possess a tight control on which 

polymorph is deposited. Belcher et al., (1996) observed that soluble proteins 

determined the carbonate polymorph during crystal growth, and the formation of 

each of the two crystal polymorphs was accompanied by the synthesis of specific 

polyanionic proteins. Furthermore, macromolecules from aragonite layers induced in 

vitro formation of aragonite, while macromolecules from calcite layers induced 

formation of calcite (Falini et al., 1996; Feng et al., 2000). Therefore, differential 

expression of proteins allows the organism to control and to induce phase changes in 

the shell crystal (He and Mai, 2001). 

Calcite is softer than aragonite, but secretion of calcite by bivalves may present some 

advantages. In shells where calcite and aragonite coexist there is always a sharp 

boundary without microstructural intergradation (Taylor et al., 1969; Taylor et al., 

1973). Calcite tends to break along well defined cleavage planes and in conjunction 

with aragonite layers contribute to avoid propagation of fractures along the shell 

(Carter, 1980). Secretion of calcite may also contribute to minimize shell density. A 

mixture of CaCO3 polymorphs is usually never found at the same location, but many 

organisms are capable of precipitating both polymorphs at adjacent locations and 

some present an ontogenic change in the polymorph used in specific shell structures 
(He and Mai, 2001). In bivalves, the occurrence of calcite shell layers is rare and 

occurs only in Pteriomorpha (except Arcoida) and Chamacea of Heterodonta 

(Kobayashi, 1981). The distribution of calcite in Mytilacea occurs as fibrous 

prismatic at the outer calcified layer, in Pinnacea it occurs as prismatic at the outer 

calcified layer and in Pectinacea it occurs as foliated in the inner and outer calcified 
layers (Kobayashi, 1981). 

1.3 Stable Isotope Geochemical Proxies 

1.3.1 Isotopes and Isotope Fractionation 
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Isotopes are atoms of the same element that contain the same number of protons but 

different number of neutrons. In stable isotopes, i. e. non-radioactive isotopes, there is 

no decay to produce other isotopes of the same or other element. The basis behind 

the use of stable isotopes in geochemical studies of Earth systems is the difference in 

atomic mass between heavier and lighter isotopes (Hoefs, 1997). Such mass 
difference may cause isotopes to react differently during chemical and physical 

reactions. Chemically, the isotopes are equivalent and form the same type of 

chemical bonds, but there are slight physicochemical differences between the 

isotopes that cause them to have slightly different bond energies. The vibrational 
frequency of an atom is inversely proportional to the square root of the mass, 

meaning that the lighter isotopes will have higher vibrational frequencies that the 

heavier ones (Hoefs, 1997). This causes the chemical bonds formed by lighter 

isotopes to be weaker that the ones formed by the heavier isotopes, making the 

lighter isotopes more prone to react than the heavier isotopes. 

The isotope species of an element will react at different rates and to different extents, 

with the light isotope usually reacting faster and to a greater extent. This will cause 

the reactants and the products of a chemical reaction to have different abundances of 

the heavy and light isotope. This is termed isotopic fractionation and the degree to 

which the products of a reaction become enriched or depleted in one of the isotopes 

can be expressed as a fractionation factor, a, where R is the isotopic ratio of the 

heavier isotope over the lighter isotope (e. g. Hoefs, 1997): 

a= RproductsfRreactants (1 

Fractionation factors decrease with increasing reaction temperature and at high 

enough temperatures a will tend to 1, as the differences due to dissimilar isotopic 

composition become irrelevant in comparison with the vibrational energy of a given 

molecule, i. e. the mass differences in the products of a reaction become bigger at 
lower temperatures and smaller at higher temperatures (Hoefs, 1997). Carbon and 

oxygen display large chemical fractionations, due to the large relative mass 
differences between each isotope. 
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Two types of fractionation occur, thermodynamic (or equilibrium) and kinetic (e. g. 

Swart, 1983; McConnaughey, 1989a; McConnaughey, 2003). Thermodynamic or 

equilibrium fractionation occurs, according to a equilibrium constant, in chemical 

reactions that reach equilibrium, e. g. in materials that are in equilibrium but have 

different molecular structures or in reactions involving phase changes. 

Thermodynamic fractionations are temperature and pressure dependent. The isotope 

species will redistribute themselves within the system to obtain the minimum free 

energy. For example, in the reaction: 

H2180 (g) + H2160 (1) +, H2160 (g) + H2180 (1) (2) 

The products with the lighter isotope require less energy to be maintained in the gas 

phase and are therefore favoured. The heavier isotope "prefers" the phase with the 

lowest heat capacity: 
Gas H Liquid i -º Solid 

+160 .--, +180 

+12C 4_ -º +13C 

Kinetic fractionations occur when the rate of a given physical or chemical processes 

differs for different isotopes, usually during fast unidirectional reactions such as 

diffusion or phase changes. For instance, when CaCO3 precipitation is fast enough 

for HC03' and/or CO32' to precipitate before isotopic equilibration with H2O 

(McConnaughey, 1989a; McConnaughey, 1989c). Since both C and 0 are in the 

same molecule, kinetic effects will influence both elements and cause the carbon and 

oxygen isotopic composition of CaCO3 to be correlated (e. g. McConnaughey, 1989c; 

McConnaughey et at., 1997; McConnaughey, 2003). In kinetic fractionations the 

light element reacts faster than the heavier one, causing the products to be enriched 

in the former relative to the reactants. Fractionation arises from differences in the 

rates at which the isotopes pass from the reactants to the products, rates that are 

usually concentration dependent. Therefore, kinetic fractionations are rate dependent, 

are usually concentration dependent, depend on the isotopic composition of the 

reactants and depend on the degree to which the process or reaction has occurred, but 

are usually temperature independent. Kinetic fractionation may also occur in 

chemical processes that do not reach equilibrium and it is common in biologically 

mediated processes, which are often enzyme-catalyzed and occur in a series of step 

reactions that tend to make them behave as unidirectional (McConnaughey, 2003). 
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The relative abundance of stable isotopes of an element is usually expressed as a 

ratio, with the most abundant isotope, usually the lighter, on the denominator. The 

isotope ratio of a sample is always measured relative to a standard, and the data is 

expressed in per mil difference to a well defined reference standard, i. e. the Del 

notation (McKinney et al., 1950). 

Ssamp1e = [Ratiosample - Ratiostthrd/ Ratiostandard] x 1000 (in %o) (3) 

and 

CL-- (bproducts+1000)/( Sreactant+1000) (in %o) (4) 

The standard for oxygen isotopes in water and most mineral phases is the Vienna 

Standard Mean Ocean Water (VSMOW), while the standard for carbon isotopes, but 

also for oxygen isotopes in carbonates, is the Vienna PeeDee Belemnite (VPDB). 

The conversion between the two standards in water is given by the equation: 
S18OVPDB = 6180VSMOW 

- 0.27%o (Hut, 1987) (5) 

while for carbonates the conversion is given by the equation: 
618OVPDB = 1.03091 * 618OvsMOw + 30.91 (Coplen et al., 1983) (6) 

Table 1-1- Relative abundance of some stable Isotopes ('Radioactive). From (Gill, 1997). 

Atomic 
Number 

Symbol Analysed 
as 

Mass 
Number Abundance Reference 

Standard 
6 C CO2 12 98.888 

13 1.1112 VPDB 
14* 10"l0 

7 N N2 14 99.634 Air 
15 0.366 

8 0 C02(02) 16 99.759 VSMOW 
17 0.037 Or 
18 0.204 VPDB 

The analysis of stable oxygen and carbon isotopes have played a major role in 

palaoceanography since the work of Emiliani (1955), following the previous work of 

Urey (1947), McCrea (1950) and Epstein et al., (1951; 1953), which interpreted the 

isotopic record of foraminifera shells from deep-sea cores as climate/temperature 

cycles. Shackleton and Opdyke (1973) by correlating the oxygen isotope stratigraphy 

with the magnetic stratigraphy, established the use 6180 as a dating tool as well as a 

tool to reconstruct global ice volume (Shackleton, 1967) and temperature fluctuations 
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(Emiliani, 1955). Furthermore, Shackleton (1977) demonstrated the potential of 

carbonate 613C for studies on water mass movement and palaeoproductivity. 

1.3.2 Oxygen Isotopes in Carbonates 

The use of oxygen isotope ratios in carbonate material as a temperature indicator is 

based on the temperature dependent fractionation that occurs during precipitation 
(Urey, 1947). Urey (1947) suggested that variations in the temperature of seawater 

would lead to measurable 180/160 ratio of CaCO3 precipitated from that same 

seawater. McCrea (1950) established a palaeotemperature curve by carrying 

experiments with inorganically precipitated CaCO3 and showing a clear temperature 
dependent isotope fractionation of the 180/160 ratio between CaCO3 and water. This 

is translated in the isotopic exchange reaction: 
CaC160160160(s) + H2180(1) +-º CaC'80160160(s) + H2160(1) (7) 

At equilibrium, this isotope exchange reaction causes the carbonates to be 

significantly enriched in 180 relative to the water, at 25 °C by 28.39,00 (VSMOW). In 

addition, shell mineralogy is also important for the 5180 of carbonate material, and 

calcite is depleted relative to aragonite by about 0.6 to 1.0 %o (Tarutani et al., 1969; 

Grossman and Ku, 1986; Bohm et al., 2000). However, the 5180 of carbonate 

material is dependent not only on temperature but also on the 6180 of the seawater 

(518Owater) from which it precipitated (McCrea, 1950; Epstein et al., 1953; Epstein 

and Mayeda, 1953b; Emiliani, 1955). Roughly, a change of 0.25 %o of 518OWater or 1 

in salinity at mid-latitudes corresponds to the equivalent of 1.1°C. The 818OWater is 

determined by two major factors (Garlick, 1974; Broecker and Peng, 1982): 1) the 

mean ocean S18OWater, which in turn depends on the volume of continental ice (160 is 

preferentially sequestered in ice leaving seawater enriched in 180) on time scales of 

104 to 105 yrs (V1Ce*S18Oice+Vocean*5180ocean Vtotal*&80t('tal), and on exchange of 

water between the ocean and the crust on time scales of 107 to 108 yrs; 2) the 

local/regional precipitation-evaporation balance (E-P), this is often called the salinity 

effect since both tend to co-vary with E-P. When evaporation takes place, the 160 

will be favoured in the gas phase, causing the liquid phase to be enriched in 180 and 

the gas phase in 160, the reverse occurs during precipitation (Dansgaard, 1964). 

However, the salinity-SI80wate, relationship is variable in the ocean due to variable 
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6180 values of precipitation and river run-off freshwaters (Epstein and Mayeda, 

1953b), and due to the Raleigh distillation process is lighter at higher altitudes 

(Broecker and Peng, 1982; Bigg and Rohling, 2000). The extent to which 

evaporation and condensation reactions occur will affect the 6180 of both the reactant 

and products of such reactions. Such a process, in which the isotopic composition of 

the product varies with the extent of th reaction, is called a Raleigh distillation. The 

influence of the different factors that control the variation of the salinity-5 18Owater 

relationship (i. e. the source of evaporation and distance to that source, precipitation 

of water with different 5180) does not allow salinity to be faithfully used as a proxy 

for 818Owater and vice versa. However, in certain oceanic areas, especially away from 

coastal areas and enclosed basins, this relationship is linear indicating a simple 

dilution effect (e. g. Ingram et al., 1996a; Mueller-Lupp et al., 2003). In coastal and 

estuarine waters the influence of freshwaters with very different 6180, as well as 

environments with high evaporation, may deviate the salinity-&8Owater relationship. 

Moreover, it is in coastal and estuarine areas where bivalves are most abundant, but 

also where the presence of past and present human populations is most strong and 

where most of the archaeological middens occur. 

Palaeotemperature equations 

Several studies have developed empirical palaeotemperature equations by 

determining the 5180 composition of biogenic carbonates deposited under known 

temperature and 818Ow. Epstein et al. (1953) developed an equation for calcitic 

bivalves, which was later modified by Anderson and Arthur (1983): 

T (°C) = 16 - 4.14*(S18Ocalcite - S18OWater) + 0.13*(S18Ocalcite - 518Owater)2 (8) 

where 518Oeaiciteis the S18O value of CO2 (VPDB) produced from the reaction of the 

carbonate with phosphoric acid at 25°C and S'8Owater is the value of (VSMOW) 

equilibrated with water at 25°C. Grossman and Ku (1986) determined an equation 

for aragonitic molluscs: 

T (°C) = 19.7 - 4.34 * (S18Ocalcite - S18ýWater) (9) 

Bivalves precipitate calcite in or near thermodynamic equilibrium (Epstein et al., 
1951; Epstein et al., 1953; O'Neil et al., 1969; Wefer and Berger, 1991; Hickson et 

al., 1999; Chauvaud et al., 2005; Wanamaker et al., 2006). Chauvaud et al., (2005) 
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and Wannamaker et al., (2006,2007) have shown Pecten maximus and Mytilus 

edulis, respectively, to precipitate calcite close to the isotope equilibrium predicted 
by the equation obtained for inorganic carbonate by Kim and O'Neil (1997): 

10001na= 18.03 * 1000/ T(K)-32.42 (10) 

where a is the fractionation factor and T is in Kelvin. For P. maximus (Chauvaud et 

al., 2005): 

T (°C) = 14.84 - 3.75 (S18Ocalcite 
- S18OWater) 

while for M. edulis (Wanamaker et al., 2007): 

(11) 

T (°C) = 16.28 - 4.57*(6l8Oca1c, te- 518Owater) + 0.06*(518OcaIcite- S18Owater)2 (12) 

There are many palaeotemperature equations in the literature for carbonates 

produced by different organisms and the choice of equation has varied in different 

studies (e. g. see Bemis et al., 1998). 

1.3.3 Carbon Isotopes 

The use of biogenic carbonate stable-carbon isotope composition (613Cshell) as a 

proxy for the stable-carbon isotope composition of seawater dissolved inorganic 

carbon (613CDIC) is based on the assumption that in such carbonates, carbon is 

directly derived from seawater DIC (Mook and Vogel, 1968; Killingley and Berger, 

1979; Arthur et al., 1983). The stable carbon isotope composition of biogenic 

carbonates (513Csheli) thus has the potential to reflect processes that are related and/or 

determine seawater 613CDIC, i. e. salinity, atmospheric CO2 exchanges, productivity, 

respiration and consequently nutrient concentration. If one assumes DIC to be 

mainly composed of HC03 , then to calculate equilibrium values from seawater 
613CDIC, the equilibrium fractionation for experimentally precipitated carbonate 

relative to HC03 , is simply added to the value of 613CDIC, i. e. +1.0 ± 0.2 %o for 

calcite and +2.7 ± 0.6 %o for aragonite (Romanek et al., 1992). 

Grossman (1987) summarised that carbon isotope ratios in almost all biogenic 

carbonates are to some extent influenced by vital effects, which almost invariably 

cause depletion relative to equilibrium. There is growing evidence that carbon in 

marine biogenic carbonates is derived from two sources of carbon, seawater DIC and 

metabolic DIC that derives from respiratory C02 (Keith and Weber, 1965; Weber 

and Woodhead, 1970; Vinot-Bertouille and Duplessy, 1973; Dillaman and Ford, 
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1982; Swart, 1983; Tanaka et al., 1986; Spero and Deniro, 1987; McConnaughey et 

al., 1997; Furla et al., 2000; Kennedy et al., 2001; Owen et al., 2002b; Lorrain et al., 

2004; Gillikin et al., 2006b). The magnitude of the vital effect seems to be 

proportional to the amount of metabolic CO2 within the organisms internal CO2 Pool 

(Erez, 1978), which, in turn, should be a function of the organisms ability for gas- 

exchange with ambient water. Like animal tissues, metabolic CO2 is highly depleted 

in 13C, with a 613C value from -10 to -25 %o, relative to seawater DIC that has a 513C 

usually close to 1 %o (Craig, 1953; Tanaka et al., 1986; McConnaughey et al., 1997; 

Lorrain et al., 2002; Lorrain et al., 2004; Gillikin et al., 2006b). Therefore, the larger 

the proportion of metabolic carbon incorporated in the shell carbonate the lower the 

shell 613C will be, thus masking the seawater 613CDIC signal. The proportion of 

carbon with a metabolic origin in biogenic carbonates is still a subject of some 
dispute, with suggestions of values as high as 85% (Tanaka et al., 1986), although 

values of 10 to 20% are now thought to be better estimates (Klein et al., 1996b; 

McConnaughey et al., 1997; Hickson et al., 1999; Lorrain et al., 2002; Lorrain et al., 

2004; Gillikin et al., 2006b; Gillikin et al., 2007). Furthermore, in bivalves, a strong 

ontogenetic decrease in 613Cshe11, and thus an increase in the proportion of metabolic 

carbon incorporated in the shell carbonate, has been observed by several authors 

(Krantz et al., 1987; Kennedy et al., 2001; Keller et al., 2002; Elliot et al., 2003; 

Lorrain et al., 2004), although in some species such decrease of 613Cshell with age was 

not observed (Buick and Ivany, 2004; Gillikin et al., 2005c). 

The bivalve shell 613C signal can thus be seen as a result of the seawater S 13CDIC 

signal (varying seasonally and annually), with a variable metabolic signal of up to 2 

%o (McConnaughey et al., 1997) super-imposed on it. Moreover, the carbon isotope 

composition of biogenic carbonates has been shown to suffer kinetic, carbonate ion 

concentration, and metabolic effects. Thus, the use of biogenic carbonate S 13C as a 

tracer of palaeo-water 613CDIC is far from being straight forward and caution must be 

employed. 

1.3.4 Isotope Vital effects 

Biogenic carbonates may deviate from predicted isotope equilibrium and the term 

"vital effects" has been used to describe the processes responsible for such 
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disequilibria (Urey et al., 1951): kinetic effects (Swart, 1983; McConnaughey, 

1989c; Spero and Lea, 1996; Bijma et al., 1998; Owen et al., 2002a) or carbonate ion 

effects (Turner, 1982; Romanek et al., 1992; Spero et al., 1997; Zeebe, 1999a; 

Adkins et al., 2003; McConnaughey, 2003; Rollion-Bard et al., 2003). 

Kinetic effects arise from compartmentalization of calcification and from rate 
dependent reactions such as enzyme catalyzed or diffusion mediated processes, e. g. 

when CO2 diffuses across membranes in which molecules bearing the lighter oxygen 
isotope react preferentially. If the 180 depleted HC03" and/or CO32- thus formed, 

precipitate to form shell CaC03 before equilibration with H20, such isotopic 

disequilibrium will be expressed in the shell carbonate. Kinetic effects originate from 

slower hydration and hydroxylation of CO2 of any origin, not necessarily respired, by 

molecules bearing the heavier isotopes 180 and 13C (McConnaughey, 1989b). Kinetic 

effects will act on both 0 and C isotopes as both are on the same molecule, lowering 

the predicted 8180 and 513C of carbonates, and thus cause a correlation between the 

two (e. g. McConnaughey, 1989c; McConnaughey et al., 1997; McConnaughey, 

2003). 

McCrea (1950) observed that the 5180 of inorganically precipitated carbonates varied 

with pH, which was later suggested to result from equilibration with the different 

carbonate species, each one with their own fractionation factor with water (Usdowski 

et al., 1991; Usdowski and Hoefs, 1993). The 518OVSMOW of the carbonate species at 

equilibrium with H2O of 0 %o at 19°C (and 25°C for C02, see Rollion-Bard et al., 

2003) is: 41.2 %o for CO2 (Kim and O'Neil, 1997), 34.3 %o for HC03 (Zeebe and 

Wolf-Gladrow, 2001), 18.4 %o for C032" (Usdowski et al., 1991) and -41.1 %o for 

OH" (McCrea, 1950). Since the concentration of HC03 and C032- will change with 

increasing pH, the former decreasing and latter increasing, and in addition HC03' is 

enriched in 180 relative to C032'0 the 8180 of DIC decreases with increasing pH. If 

shell CaCO3 is formed from a mixture of carbonate species in proportion to their 

relative contribution to DIC, then the 5180 of CaCO3 (and S13C) will also decrease 

with increasing pH (Spero et al., 1997; Zeebe, 1999b; Adkins et al., 2003). As no 

kinetic effects are involved in such reactions, these are equilibrium reactions. 
However, Rollion-Bard et al., (2003) observed in deep-sea corals a large deviation of 
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5180 from equilibrium hydroxylation that could not be attributed only to the 

carbonate ion effect. These authors suggested that pH will change the proportion of 

HC03" derived from hydration and hydroxylation. Since hydroxylation takes 

considerably more time to reach equilibrium than hydration (Johnson, 1982), at 

higher pH carbonate 5180 would be expected to be lower as more HC03- is derived 

from hydroxylation. Nevertheless, such a model is controversial and some authors 

suggest that the effects observed by Rollion-Bard et al., (2003) can be explained by 

kinetic effects alone (Cohen and McConnaughey, 2003; McConnaughey, 2003). 

Furthermore, neither the kinetic or carbonate ion effects, as understood in 

foraminifera and corals, appear to be applicable to bivalve S18Ocalcite" Bivalves 

precipitate their calcite in or close to oxygen isotopic equilibrium (Wefer and Berger, 

1991; Chauvaud et al., 2005; Wanamaker et al., 2006; Wanamaker et al., 2007), shell 

518Ocalcite and 513Ccalcite are usually not significantly correlated (Owen et al., 2002b; 

Elliot et al., 2003), and the EPF pH is known to vary significantly (Wada and 

Fujinuki, 1976; Crenshaw, 1980). In addition, the presence of carbonic anhydrase in 

the shell matrix (Miyamoto et al., 1996) or of "carbonic anhydrase" compounds in 

the organic matrix (e. g. see Mann, 2001), will reduce the occurrence of kinetic 

effects by catalyzing the hydration of CO2 (Weiner and Dove, 2003). Moreover, if a 

significant amount of the carbonate species in the EPF are derived directly from 

seawater and are equilibrated with it. 

1.4 Elemental Geochemical Proxies of Carbonates 

1.4.1 Principles of Elemental Substitution in Calcium Carbonates 

Natural carbonates contain a variety of co-precipitated ions other that Cat+, which 

reflect their mode and environment of formation. The incorporation of trace elements 

into carbonates has been the subject of research in a wide variety of disciplines and 

the knowledge of the environmental factors that control carbonate elemental 

composition is extremely useful in performing reconstructions of 

27 



Chapter 1 General introduction 

palaeoenvironments and in monitoring present ones, be it temperature, salinity, 

nutrient concentration, productivity, pH, pCO2, metal concentrations, etc. 

The use of elemental/Ca ratios as indicators of environmental conditions at the time 

of carbonate precipitation arises from the fact that divalent cations, which have an 

ionic radius similar to Ca 2+ (i. e. Mgt+, Sr2+, Ba 2+ and to a lesser extent Cue+, Mn2+ 

and Pb2) , are able to substitute for Ca2+ ions in the carbonate lattice (Speer, 1983). A 

solid solution can occur when ions of one element substitute for ions of another 

element in a lattice, forming a single crystalline phase. Such substitution is strongly 

influenced by the fact that the different elements, which substitute for Ca2+ in the 

CaCO3 crystal lattices (e. g. Mgt+, Sr2+, Mn2+, Ba2+ and Pb2) , are chemically 

different from Ca2+ (e. g. ionic radius, mass, etc). Therefore, the incorporation of 

divalent cations into CaCO3 crystal lattices may depend on several factors, apart 

from thermodynamic or kinetic considerations. The more similar the substituting ion 

is to Ca2+ the closer to ideal mixing solid solution the resulting crystal will be (Morse 

and Bender, 1990). Ions that have ionic radii larger than Ca2+ (e. g. Sr2+, Pb2+ and 

Bat+) generally substitute for Ca2+ in the orthorhombic aragonite lattice, rather than 

in the rhombohedral structure of calcite, while the calcite lattice can accommodate 

more easily divalent metal ions that have smaller ionic radii than Ca2+ (e. g. Mgt+, 

Cue+, Mn2+ and Zn2+) (Tesoriero and Pankow, 1996). Low partition coefficients (see 

below) may reflect the incapacity of the calcite lattice to accommodate large divalent 

ions, such as Ba2+ (r = 1.49 A) and Sr2+ (r = 1.32 A) in Ca2+ (r = 1.14 A) sites without 

significant structural deformation (Onuma et al., 1979), and non-lattice substitution 

may become the preferred substitution mechanism (Pingitore, 1986). 

The perception that the elemental composition of biogenic carbonates, i. e. Mg and 

Sr, was temperature dependent occurred simultaneously and in parallel to the use of 

stable isotopes in geosciences (Chave, 1954). Mg and Sr form the most important 

solid solutions in the CaCO3 series, Mg with calcite while the larger ionic radius of 

Sr2+ leads it to form a solid solution with aragonite (Speer, 1983). The main interest 

in the use of elemental composition of biogenic carbonates as proxies of 

palaeotemperature lies in the independence from salinity, since the ratios of some 

elements (i. e. Mg/Ca and Sr/Ca) are not expected to vary with salinity (Broecker and 

Peng, 1982; Dodd and Crisp, 1982). The combination of elemental and isotope 

28 



Chapter 1 General Introduction 

proxies provides the ability to simultaneously estimate both temperature and 

518Owate., i. e. of factors related to it such as ice volume and salinity. The use of 

Mg/Ca and Sr/Ca ratios in biogenic carbonates, especially in foraminifera and corals, 

have gone through major advances in the last 10 to 15 years and thus appear to be the 

so long-sought source of oxygen isotope and salinity independent temperature 

information (Weber, 1973; Rosenberg, 1980; Beck et al., 1992; Nurnberg et al., 

1996a; Lea et al., 1999; Elderfield and Ganssen, 2000; Lea et al., 2000; Rosenheim et 

al., 2004). 

Partition coefficients 

Studies on inorganic carbonates have focused on the measurement of partition 

coefficients that relate the composition of the carbonate to the solution from which it 

precipitates, as well as on the factors that influence elemental partition coefficients, 

such as temperature, crystal and solution composition, precipitation rate, mineralogy, 

and surface processes (e. g. sector zoning). Morse and Bender (1990) and Rimstidt et 

al., (1998) provide good reviews on the experimental determination of partition 

coefficients at or near room temperature. Studies on biogenic carbonates have taken a 

more empirical and practical approach focusing on the relationships between 

elemental carbonate content and environmental variable(s) that determine it or are in 

some way related to it. Partitions coefficients are a way of describing the partition of 

an element between a solution and a solid, where DE is the partition coefficient of the 

element E: 

DE = (E/Ca)soud/ (E/Ca)s0j 110n (13) 

It must be noted that partition coefficients are not equivalent to stoichiometric 

constants and can only be related to thermodynamic equilibrium constant by solid (f) 

and liquid (y; ) activity coefficients if true equilibrium is attained (e. g. Morse and 

Bender, 1990). If the molar ratios of E and Ca in the solid phase and in the ECO3 

mineral to calcite are the same, D is related to K as: 
D=K[ (7E2+ / TCa2+) / (JEC03 / fCaC03) 1 (14) 

Partition coefficients reflect phenomenological measurements of concentrations in 

the respective phases under a given set of conditions, and several factors (e. g. 

reaction rate), apart from the obviously relevant thermodynamically variables 
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(pressure, temperature and composition) may exert significant influence on D (Morse 

and Bender, 1990). Furthermore, D is dependent on solution phase activity 

coefficients and in order to apply them to another solution there is the need to correct 
for changes in such coefficients. In bivalves, the shell is precipitated from the EPF 

rather than directly from seawater, which may have a different chemical composition 

relative to seawater (Crenshaw, 1972; Wada and Fujinuki, 1976; Misogianes and 

Chasteen, 1979). 

Incorporation processes 

The incorporation of ions from solution in to carbonate crystals may occur from 

surface-solution ion exchange, i. e. sorption. Ions can be sorbed (i. e. taken out of 

solution and attached to a foreign surface) by true adsorption, by absorption or 

diffusion into the solid, by surface precipitation (to form a single, distinct adherent 

phase) or by co-precipitation (to form an adherent precipitate which might be a solid- 

solution incorporating a second sorbate or even a mixture of precipitates) (Stipp et 

al., 1992). It is important to distinguish between processes that originate a uniformly 

distribution in the carbonate crystal such as co-precipitation, and the ones which 

cause a heterogeneous distribution on the surface of carbonate minerals, e. g. 

adsorption. Sorption on the surface of calcite was shown to be strong for Cd2+, Zn2+, 

Mn2+, Coe+, Ni2+ (in decreasing order of selectivity), while Ba2+ and Sr2+ are weakly 

sorbed, e. g. (Lorens, 1981b; Davis et al., 1987; Zachara et al., 1988; Zachara et al., 

1991; Reeder, 1996; Tesoriero and Pankow, 1996), with the adsorption constants for 

each element following the sequence expected from their ionic radii, according to the 

degree to which their radii match the ionic radius of Ca2+ (Comans and Middelburg, 

1987). Strongly sorbed cations have solid-liquid partition coefficients greater than 

unity, ionic radii less than or close to that of Cat+, are miscible in calcite and form 

anhydrous carbonates having the calcite structure, the weakly sorbed cations have 

solid-liquid partition coefficients less than unity, ionic radii larger than Cat+, are 

immiscible in calcite, and form anhydrous carbonates with the aragonite structure 

(Zachara et al., 1991). In addition, crystal-fluid interface processes have been shown 

to influence the composition of synthetic calcite, such as diffusive transport 

conditions to the mineral surface (Wasylenki et al., 2005a) and sector zoning where 
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elemental composition vary significantly in different non equivalent vicinal crystal 
faces (e. g. Reeder and Paquette, 1989; Paquette and Reeder, 1995). Watson (1996; 

2004) proposed a surface enrichment model in which the composition of the crystal 

reflects equilibrium element concentrations in the near-surface region of the crystal 

1.4.2 Mg/Ca Ratios 

The underlying basis for Mg palaeothermometry is that Mg forms a solid solution 

with calcite (Speer, 1983), and the substitution of Ca2+ by Mg2+ in calcite is 

endothermic and therefore is favoured at higher temperatures. Temperature appears 

to be a dominant factor in the incorporation of Mg2+ in inorganic carbonates (Chave, 

1954; Katz, 1973b; Burton and Walter, 1987; Mucci, 1987a; Oomori et al., 1987; 

Morse and Bender, 1990), but also in biogenic ones (Klein et al., 1996a; Nurnberg et 

al., 1996a; Lea et al., 1999; Elderfield and Ganssen, 2000; Lear et al., 2002). 

Any reaction for which there is change in enthalpy or heat of reaction (AH) will be 

exponentially dependent on temperature, as shown in van't Hoff equation: 

d1nK/d(1/T)=-iH/R (15) 

Where T is the temperature in degrees Kelvin, R is the gas constant and K the 

equilibrium constant for the reaction. The greater absolute OH, the greater 

temperature dependence the reaction will have. A recent estimate of OH for Mg 

substitution in calcite is 21 kJ/mol, suggesting that the Mg/Ca content of a 

thermodynamically ideal calcite will increase exponentially by -3% per degree 

between 0° and 30°C (Koziol and Newton, 1995). 

Biogenic calcites have been found to have lower Mg content and a temperature 

dependence of Mg substitution higher than the one observed in calcite from 

inorganic precipitation experiments, and thus suggest a clear vital effect on biogenic 

calcite Mg/Ca ratios (Nurnberg et al., 1996a; Rosenthal et al., 1997; Lea et al., 1999). 

Furthermore, the clear species-specific temperature dependence of Mg/Ca ratios that 

has been observed in foraminifera, calcite (Rosenthal et al., 1997; Lea et al., 1999; 

Elderfield and Ganssen, 2000; Lear et al., 2002) suggests that parameters other than 

temperature also can influence the Mg/Ca ratios of biogenic calcites and calibrations 
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have to be performed for each species (Nurnberg et al., 1996a; Lea et al., 1999; 

Elderfield and Ganssen, 2000; Lear et al., 2002; Skinner and Elderfield, 2005). For 

example, biological parameters such as gametogenesis, ontogeny, growth rate and 

size, as well as environmental and physical parameters such as salinity, pH and post- 

depositional dissolution, have all been proposed to significantly influence 

foraminiferal Mg/Ca ratios (Delaney et al., 1985; Lea et al., 1999; Elderfield et al., 

2001; Bentov and Erez, 2005). Furthermore, observations of significant small-scale 

intra-shell heterogeneity in Mg contents indicates a strong biological control on the 

Mg/Ca ratio of biogenic calcites, such as observed in foraminifera (Rio et al., 1997; 

Hathorne et al., 2003; Eggins et al., 2004; Bentov and Erez, 2005; Sadekov et al., 

2005), ostracodes (Rio et al., 1997) and bivalves (Lorens and Bender, 1977; Lorens 

and Bender, 1980; Rosenberg and Hughes, 1991; Vander Putten et al., 2000; 

Rosenberg et al., 2001). Nevertheless, the large exponential response of biogenic 

calcite Mg/Ca to temperature, combined with the fact that shell Mg/Ca can be 

precisely measured, makes this a promising and powerful tool for palaeotemperature 

reconstructions. 

In calcitic bivalve molluscs the occurrence of a temperature control on shell Mg/Ca 

ratios has been the subject of several studies that have returned contrasting results, 

but nevertheless shell Mg/Ca ratios have been used to reconstruct palaeotemperatures 
from fossil bivalves (e. g. Klein et al., 1997; Immenhauser et al., 2005). In an early 

study, a weak positive correlation between shell calcite Mg concentration with 

temperature was reported for three species from the genus Mytilus (Dodd, 1965). 

More recently, Klein et al. (1996a) described a clear temperature dependence of 

Mg/Ca ratios for the mussel Mytilus trossulus, as did Vander Putten et al., (2000) for 

Mytilus edulis (blue mussel), but in the latter case an apparently seasonal breakdown 

in the relationship between Mg/Ca and temperature also was reported. For other 

bivalve species, such as Pecten maximus (king scallop), Lorrain et al., (2005) 

reported an absence of a significant correlation between Mg/Ca ratios and 

temperature for this species. Furthermore, several studies report, or suggest, the 

occurrence of significant non-thermodynamic controls on the Mg content of bivalve 

mollusc calcite, such as salinity (Dodd, 1965), solution Mg/Ca ratios (Lorens and 

Bender, 1980), the animal's metabolism (Lorens and Bender, 1977; Lorens and 

Bender, 1980; Vander Putten et al., 2000) or even variations in the activity of 

fructose diphosphase, a Mg-dependent enzyme involved in gluconeogenesis 
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(Vasil'ev, 2005). Moreover, significant small-scale heterogeneity in Mg content also 
has been described for bivalve shell calcite. Such variability has been associated with 

stress (Lorens and Bender, 1980), metabolic activity (Rosenberg and Hughes, 1991) 

and control of shell crystal elongation (Rosenberg et al., 2001). In conclusion, 

constrained calibration and validation studies need to be completed for Mg/Ca ratios 
in the calcite of marine bivalves to fulfil its potential as a palaeotemperature proxy. 

1.4.3 Sr/Ca Ratios 

SrCO3 does not form a solid solution in calcite but it does with aragonite due to the 

large ionic radius of Sr2+ (Speer, 1983). Although, Sr2+ also substitutes for Ca2+ in 

the calcite crystal lattice (Pingitore et al., 1992) it is not possible to use 

thermodynamic parameters to predict or describe the temperature dependence of 

such substitution. 

Inorganic precipitation experiments have shown Sr incorporation in aragonite to be 

inversely related to temperature (Kinsman and Holland, 1969a; Dietzel et al., 2004) 

but independent on precipitation rate (Zhong and Mucci, 1989). However, in 

experimentally precipitated inorganic calcite, Sr/Ca ratios are strongly dependent on 

precipitation rate, increasing with increasing precipitation rate (Lorens, 1981 a; Morse 

and Bender, 1990; Tesoriero and Pankow, 1996), and also are influenced by the 

Sr/Ca ratio of the solution from which precipitation occurred (Mucci and Morse, 

1983; Pingitore and Eastman, 1986), and the Mg content of the solution and solid 

mineral which favours the incorporation of other elements by distorting the mineral 

lattice (Mucci and Morse, 1983; Ohde and Kitano, 1984; Morse and Bender, 1990). 

Sr/Ca ratios from biogenic carbonates have been proposed or used to obtain 
information on past seawater temperatures (Weber, 1973; Beck et al., 1992; 

Guilderson et al., 1994; Hughen et al., 1999; McCulloch et al., 1999; Rosenheim et 

al., 2004), but also on past ocean Sr/Ca ratios (Martin et al., 1999; Stoll et al., 1999). 

In biogenic carbonates, kinetic effects are thought to strongly influence Sr 

incorporation in biogenic aragonite, where control by precipitation rate is not 

expected, such as in corals (de Villiers et al., 1995; Cohen et al., 2001) and bivalves 
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(Gillikin et al., 2005a; Gillikin et al., 2005b; Carre et al., 2006), but also in biogenic 

calcite such as foraminifera (Lea et al., 1999), coccoliths (Stoll and Schrag, 2000; 

Rickaby et al., 2002; Stoll et al., 2002a; Stoll et al., 2002b) and bivalves (Lorrain et 

al., 2005). A positive temperature influence on Sr/Ca ratios has also been observed in 

foraminifera (Lea et al., 1999), coccolithophores (Stoll et al., 2002a, b) and bivalves 

(Dodd, 1965; Lorrain et al., 2005) but can be attributed to a kinetic influence and a 

co-variation between temperature and growth rates. 

In bivalve calcite, the mechanisms controlling Sr incorporation continue to be 

investigated and the matter of some debate, and physiological controls (Klein et al., 

1996b; Lorrain et al., 2005), are thought to influence Sr/Ca ratios, and a secondary 

influence of salinity also has been suggested (Klein et al., 1996b). However, while 

kinetic effects have been observed in the dependence of Sr/Ca ratios on shell growth 

rates (Lorrain et al., 2005), the suggestion of a metabolic control of Sr/Ca ratios in 

bivalves has been derived from indirect evidence, rather than direct observation, 

gathered from the relationship of Sr/Ca ratios with 613C, as well as the intra- 

individual variability (fast growing sections relative to slow growing sections) of 

Sr/Ca ratios (Klein et al., 1996b). 

1.4.4 Mn/Ca Ratios 

If a consistent relationship can be established between the Mn content of biogenic 

carbonates and the dissolved and/or particulate Mn concentrations of seawater, 

Mn/Ca ratios of marine calcifying organisms potentially could provide a useful proxy 

for dissolved and particulate Mn concentrations and thus for those redox processes 

that can determine the concentration of this element in seawater. Because of the 

association of numerous elements (such as carbon, sulphur, phosphorus and several 

trace elements), organic matter and redox conditions with the redox cycle of Mn, the 

latter may play an important role in tracing the biogeochemical cycles of many 

elements, as well as the response of coastal systems to seasonal and long term 

eutrophication (e. g. Murray, 1975; Turekian, 1977; Balistrieri and Murray, 1986; 

Hunt and Kelly, 1988; Burdige, 1993). 
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In inorganic calcite manganese has been shown to substitute for calcium in the 

crystal lattice, and to be incorporated into the calcite mineral by the formation of a 

dilute solid solution of MnCO3 in CaCO3 (Pedersen and Price, 1982; Pingitore et al., 

1988). In inorganic calcite, precipitation rate also has been shown to influence the 

incorporation of Mn2+, and the partition coefficient for Mn was found to be inversely 

correlated to the rate of precipitation (Mucci, 1987b; Mucci, 1988; Pingitore et al., 

1988; Dromgoole and Walter, 1990). In addition, small changes DM� have been 

observed with solid or solution composition for calcites precipitated from artificial 

seawater, probably due to the effect of Mg2+ present in seawater (Franklin and 

Morse, 1983; Mucci, 1988). The effect of temperature on DM� is still controversial 

with studies reporting both positive and inverse relationships, although in calcite 

deposited from synthetic solutions under controlled precipitation rates, the increase 

in DM� with increasing temperature was of similar magnitude to the effect of 

precipitation rate (Dromgoole and Walter, 1990). Also, sector zoning of Mn in 

calcite, where elemental composition vary significantly in different non equivalent 

vicinal crystal faces, has been observed in natural calcite cements and induced in 

synthetic calcite crystals (e. g. Reeder and Grams, 1987; e. g. Reeder and Paquette, 

1989; Paquette and Reeder, 1995). 

The manganese content of bivalve shells is seen as a potential record of ambient Mn 

concentrations. However, it is unclear if the Mn content of aragonite or calcite 

bivalve shells reflect the dissolved or particulate Mn concentrations. In particular, the 

aragonitic shells of freshwater unionoid bivalves have been shown to be valid 

archives of dissolved Mn levels associated with riverine anthropogenic inputs (Lindh 

et al., 1988; Jeffree et al., 1995; Markich et al., 2002), but also of both dissolved and 

biogenic particulate Mn concentrations associated with lacustrine upwelling and 

related changes in productivity (Langlet et al., 2007). In the calcite of marine 

bivalves, investigations relating shell Mn/Ca ratios to environmental variables have 

led to the suggestion of a possible control of shell Mn/Ca ratios by both particulate 

and/or dissolved Mn concentrations (Arthur et al., 1985; Vander Putten et al., 2000; 

Langlet et al., 2006). Elevated shell Mn/Ca ratios have been suggested to be related 

to spring bloom-induced increases in particulate and/or dissolved Mn in the bivalve 

Mytilus edulis (Vander Putten et al., 2000), or to increased riverine discharge events 

and associated increases in particulate and/or dissolved Mn in the tropical mangrove 
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bivalve Isognomon ephippium (Lazareth et al., 2003). Gillikin (2005), however, 

suggested that food is not an important source of Mn to the calcite of M. edulis from 

an experimental study on the elemental composition of the haemolymph, tissue, shell 

and seawater. Langlet et al., (2006), by repeatedly marking animals in seawater with 

artificially elevated dissolved Mn concentrations, produced the first direct evidence 
for the rapid uptake of dissolved Mn2+ into the shell calcite of the oyster Cassostrea 

gigas. 

Further calibration work is required to validate robustly bivalve shell Mn/Ca ratios- as 

a potential proxy for seawater dissolved manganese concentrations, as well as to 

determine the extent of any physiological controls on shell Mn/Ca ratios. 

1.5 Limitations of Biogenic Carbonate Archives 

1.5.1 Growth Rates and Sampling Techniques: Influence on Time Averaging and 

Resolution 

In biogenic carbonate archives, skeletal growth produces distinct growth increments 

and thus can significantly influence the preservation of environmental signals within 

skeletal structures. Variable growth rates influence the amount of time during which 

a portion of skeletal structures were deposited, i. e. the time window that each sample 

represents. Other factors affecting the retrieval of proxy data from biogenic hard 

parts are the size of the growth structures from which information is to be extracted 

and the minimum size the sampling technique can produce. 

Shell growth in bivalves is incremental with shell being extended by adding discrete 

increments from the extra-pallial fluid (EPF) at the shell margin (Lutz and Rhoads, 

1980). This results in a pattern of older shell towards the umbo and younger shell 

towards the shell margin, but also results in a change in age across the shell, i. e. from 

the older outer shell surface to the younger inner shell surface. Therefore, variations 
in sample size, depth of sampling and sampling interval will influence the time 
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represented by any given shell sample. Furthermore, variations in shell growth rate 

also influence the time-averaging of any given sample, i. e. for shell samples 

collected with the same size, interval and up to the same depth, the higher the growth 

rate the shorter the time represented by a sample (Wilkinson and Ivany, 2002; 

Goodwin et al., 2003; Ivany et al., 2003; Goodwin et al., 2004). Time-averaging thus 

results in sub-sampling of the full amplitude of the seasonal cycle of any given 

parameter. Furthermore, growth cessations occur in bivalves when temperatures 

exceed the thermal tolerances of the organisms (Jones and Quitmyer, 1996), or 

growth rates are reduced even when temperature approach but do not exceed the 

thermal tolerances (Goodwin et al., 2001) or thresholds of other parameters that 

control growth, e. g. salinity, food, reproductive cycle. Shell growth reduction or 

cessation results in a temporally distorted or discontinuous sampling, which becomes 

biased towards the seasons of maximum growth through sub-sampling of one period 

of the seasonal cycle relative to another or even missing one or both extremes of the 

seasonal cycle of the relevant environmental parameter (e. g. temperature). 

Nevertheless, relevant information on environmental conditions during growth can 

still be retrieved from bivalve shells if enough is known about the ecology, growth 

and ontogeny of any given species (Jones, 1983; Wefer and Berger, 1991; 

Richardson, 2001). 

1.6 Rationale and aims of this study 

This dissertation contributes to the use of bivalves as a palaeo-tool for the 

reconstruction of past environmental conditions. Its aim is to investigate and validate 

the relationships between the elemental composition (Mg/Ca, Sr/Ca and Mn/Ca) of 
bivalve shell calcite and its primary environmental controlling factors, mainly 

seawater temperature, dissolved and particulate element concentration. A special 
focus will be placed on the role of secondary controlling factors, i. e. vital effects 

such as kinetic effects, shell growth rate and metabolic activity. In addition, the 

small-scale element composition heterogeneity in bivalve shells is investigated as a 

potential variability source of bivalve calcite elemental/calcium ratios. 
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In this dissertation, a combined field and laboratory culture approach was taken 

whereby the stable 0 and C isotope and elemental composition of shell carbonate for 

a defined interval of growth was compared to a contemporaneous data set of 

environmental and biological parameters. Specifically, no laboratory calibration of 

the Mg/Ca ratio-temperature relationship in bivalve calcite, or of the influence of 

metabolic and kinetic controls on Sr/Ca ratios in bivalve calcite, has been performed 

under constrained and constant seawater temperatures. The constrained chronology 

of new shell growth obtained for both field and laboratory experimentally grown 

animals has allowed completion of a reliable comparison of shell elemental/Ca ratios 

to measurements of contemporaneous seawater temperature, salinity and other 

relevant environmental variables, as well as to biological variables such as shell 

growth rate, size and metabolic activity. A laboratory culturing approach enables 

manipulation of specimens, control of additional environmental factors, and 

measurement of other parameters, such as size and growth rate. It must be 

acknowledged, however, that laboratory aquaria are not a true representation of the 

animal's natural habitat. Nevertheless, a laboratory culturing approach is the only 

means whereby complex environmental variables can be constrained and only one 

variable, i. e. seawater temperature in this study, varied. However, the outcomes of 

laboratory culturing studies are only of value when validated by field-based studies, 

albeit with the latter suffering from a lesser degree of constraint of environmental 

variables. 

The temperature dependence of Mg/Ca ratios in bivalve calcite was investigated in 

field-grown specimens of Pinna nobilis (chapter 2), Pecten maximus (chapter 3) and 
Mytilus edulis (chapter 4) and laboratory-grown specimens of P. maximus (chapter 4) 

and M. edulis (chapter 4). More specifically, the aim was to derive empirical Mg/Ca 

ratio to temperature calibrations to enable paleotemperature reconstructions, and to 

investigate the non-temperature variability and its possible physiological sources 

(ontogeny, metabolic activity and shell growth rate) that may render invalid the 

establishment of such calibrations. 

The physiological sources (ontogeny, metabolic activity and shell growth rate), as 

well as the influence of environmental parameters such as temperature and salinity, 

on Sr/Ca ratios of bivalve calcite also was investigated in field-grown specimens of 
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Pinna nobilis (chapter 2), Pecten maximus (chapter 3) and Mytilus edulis (chapter 5) 

and laboratory-grown specimens of P. maximus and M. edulis (chapter 5). 

An assessment of the association between the variation of shell Mn/Ca ratios and the 

seasonal changes of seawater dissolved Mn2+ concentrations also has been made for 

field-grown specimens of Pecten maximus (chapter 3). In addition, the relationship 
between dissolved and particulate Mn 2+ concentrations and shell Mn/Ca ratios was 

assessed in field-grown specimens of Mytilus edulis (chapter 6). This dataset also has 

enabled the additional consideration of the significance of shell growth rate effects 

on shell Mn/Ca ratios. 

Finally, an initial assessment of the extent of any small-scale heterogeneity in 

Mg/Ca, Sr/Ca and Mn/Ca ratios in bivalve shell calcite laboratory-grown specimens 

of Pecten maximus and Mytilus edulis (chapter 7) has been analysed using SIMS. 

Small-scale heterogeneity may provide further insights into explaining the sources 

and processes of elemental/Ca ratios variability observed in bivalve calcite. 
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Chapter 2 Mg/Ca and Sr/Ca ratios in Pinna nobilis 

Chapter II 

Mg/Ca, Sr/Ca and stable-isotope (8180 and 613C) ratio 

profiles from the fan mussel Pinna nobilis: Seasonal records 

and temperature relationships 

Publications related to this chapter: 

Freitas P., Clarke L. J., Kennedy H., Richardson C. and Abrantes F., 2005. Mg/Ca, 

Sr/Ca and stable-isotope (5180 and 613 C) ratio profiles from the fan mussel Pinna 

nobilis: Seasonal records and temperature relationships. Geochemistry Geophysics 
Geosystems, 6, QO4D 14, doi: 10.1029/200400000872. 
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Chapter III 

Environmental and biological controls on elemental 
(Mg/Ca, Sr/Ca and Mn/Ca) ratios in shells of the king scallop 
Pecten maximus 

Publications related to this chapter: 

Freitas P., Clarke L. J., Kennedy H., Richardson C. and Abrantes F., 2006. Elemental 

(Mg/Ca, Sr/Ca and Mn/Ca) and stable-isotope (6180 and 613C) records from shells of 

the scallop Pecten maximus (Bivalvia): Preliminary results from field deployments. 

Geochimica et Cosmochimica Acta, 70,5119-5133. 
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IV - Inter- and intra-specimen variability 

masks reliable temperature control on 

shell Mg/Ca ratios in laboratory and field 

cultured Mytilus edulis and Pecten 

maximus (bivalvia) 

4.1 Abstract 

The Mg/Ca ratios of biogenic calcites are commonly seen as a valuable palaeo-proxy 

for reconstructing past ocean temperatures. The temperature dependence of Mg/Ca 

ratios in bivalve calcite has, however, been the subject of contradictory observations. 

The palaeoceanographic use of a geochemical proxy, like Mg/Ca ratios, is dependent 

on initial, rigorous calibration and validation of relationships between the proxy and 

the ambient environmental variable to be reconstructed. In this study, Mg/Ca ratio 

data are reported for the shell calcite of two bivalve species, Mytilus edulis (common 

mussel) and Pecten maximus (king scallop), for the first time grown in laboratory 

culturing experiments at controlled and constant aquarium seawater temperatures 

over a range from -10 to -20°C. Furthermore, Mg/Ca ratio data of laboratory-grown 

M. edulis specimens were compared with data from specimens of this same species 

grown in a field-culturing experiment. Only a weak, albeit significant, shell Mg/Ca 

ratio-temperature relationship was observed in the two bivalve species: M. edulis (r2 

= 0.37, p<0.001 laboratory cultured specimens and r2 = 0.50, p<0.001 for field 

cultured specimens) and P. maximus (r2 = 0.21, p<0.001, laboratory cultured 

specimens only). In the two species, shell Mg/Ca ratios also were not found to be 

controlled by shell growth rate and salinity. Furthermore, measurement of Mg/Ca 
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ratios in the shells of multiple specimens illustrated that a large degree of variability 
in the measured shell Mg/Ca ratios was significant at the species, inter- and intra- 

individual shell levels. The study data suggest that the use of bivalve calcite Mg/Ca 

ratios as a reliable, precise and accurate temperature proxy still remains limited, at 

least in the species studied to date. Such limitations are most likely due to the 

presence of significant physiological effects on Mg incorporation in bivalve calcite, 

with such variability differing both within single shells and between shells of the 

same species that were precipitated under the same ambient conditions. 

4.2 Introduction 

Carbonate skeletal remains, i. e. foraminifera, corals, ostracodes and bivalves, are 

valuable archives of information for palaeo-reconstruction of changes in physical and 

chemical oceanographic conditions. The incremental growth of biogenic carbonates, 

such as the shells of marine bivalve molluscs or the coral skeleton, has the potential 

to record high-resolution time-series of those environmental conditions in which the 

organism grew. Furthermore, marine bivalves occupy widely distributed habitats in 

the modern-day oceans, as well as being relatively common throughout the fossil 

record since the Cretaceous. Information on past environmental conditions that are 

preserved in carbonates can be obtained through the use of proxies, i. e. physical and 

chemical signals that provide information on sought after variables that cannot be 

measured directly, such as seawater temperature or salinity. However, a proxy is 

rarely dependent on a single variable, and the influence of other secondary 
independent variables complicates, to a lesser or larger extent, proxy use in palaeo- 

studies; such factors must be assessed rigorously via calibration and validation 

studies prior to successful application (for reviews, see e. g. Wefer et al., 1999; Lea, 

2003). 

The use of the oxygen-isotope composition (180/160 ratios expressed as 6'80 values) 

of biogenic carbonate archives as a proxy for seawater temperature (for reviews, see 

e. g. Emiliani, 1966; Wefer and Berger, 1991) is one of the most powerful tools in 

palaeoceanographic studies (e. g. Shackleton, 1967; Shackleton and Opdyke, 1973; 
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Gagan et al., 2000), but its use is complicated by factors other than temperature, 

namely variation in the oxygen-isotope composition of seawater, pH and kinetic 

effects (e. g. McConnaughey, 1989a; Spero et al., 1997). By comparison, the 

predicted thermodynamic control of Ca2+ substitution by Mg2+ in inorganically 

precipitated calcite (Chilingar, 1962; Katz, 1973a; Mucci, 1987b; Oomori et al., 

1987) and the observed temperature dependence of Mg/Ca ratios in some biogenic 

calcites (Chave, 1954; Dwyer et al., 1995; Klein et al., 1996a; Nurnberg et al., 1996a; 

Rosenthal et al., 1997; Lea et al., 1999; Dwyer et al., 2000; Elderfield and Ganssen, 

2000; Lear et al., 2002) have resulted in Mg/Ca ratios being seen as a salinity- 

independent temperature proxy that makes an ideal companion to the 

5180-temperature proxy. However, the clear species-specific temperature 

dependence of Mg/Ca ratios that has been observed in foraminiferal calcite 

(Rosenthal et al., 1997; Lea et al., 1999; Elderfield and Ganssen, 2000; Lear et al., 

2002) suggests that parameters other than temperature also can influence the Mg/Ca 

ratios of biogenic calcites. For example, biological parameters such as 

gametogenesis, ontogeny, growth rate and size, as well as environmental and 

physical parameters such as salinity, pH and post-depositional dissolution, have all 
been proposed to significantly influence foraminiferal Mg/Ca ratios (Delaney et al., 
1985; Lea et al., 1999; Elderfield et al., 2001; Bentov and Erez, 2005). Furthermore, 

observations of significant small-scale intra-shell heterogeneity in Mg contents 

indicates a strong biological and/or kinetic control on the Mg/Ca ratio of biogenic 

calcites, such as observed in foraminifera (Rio et al., 1997; Hathorne et al., 2003; 

Eggins et al., 2004; Bentov and Erez, 2005; Sadekov et al., 2005), ostracodes (Rio et 

al., 1997) and bivalves (Lorens and Bender, 1980; Rosenberg et al., 2001). 

In calcitic bivalve molluscs the occurrence of a temperature control on shell Mg/Ca 

ratios has been the subject of several studies that have returned contrasting results, 
but nevertheless shell Mg/Ca ratios have been used to reconstruct palaeotemperatures 

from fossil bivalves (Klein et al., 1997; e. g. Immenhauser et al., 2005). In an early 

study, a weak positive correlation between shell calcite Mg concentration with 

temperature was reported for three species from the genus Mytilus (Dodd, 1965). 

More recently, Klein et al., (1996a) described a clear temperature dependence of 

Mg/Ca ratios for the mussel Mytilus trossulus, as did Vander Putten et al., (2000) for 

Mytilus edulis (blue mussel), but in the latter case an apparently seasonal breakdown 
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in the relationship between Mg/Ca and temperature also was reported. A clear 

seasonal relationship between shell Mg/Ca ratios and calcification temperature for 

the large fan mussel Pinna nobilis has also been reported (Chapter 2), albeit with an 

additional ontogenetic influence. For other bivalve species, such as Pecten maximus 

(king scallop), there also exists no clear temperature relationship; Lorrain et al., 

(2005) reported an absence of a significant correlation between Mg/Ca ratios and 

temperature for this species while a weak, albeit significant, Mg/Ca ratio to 

temperature relationship was also observed (Chapter 3), with the relationship 

breaking down during winter months. Furthermore, several studies report, or suggest, 

the occurrence of significant non-thermodynamic controls on the Mg content of 

bivalve mollusc calcite, such as salinity (Dodd, 1965), solution Mg/Ca ratios (Lorens 

and Bender, 1980) or the animal's metabolism (Lorens and Bender, 1977; Lorens 

and Bender, 1980; Vander Putten et al., 2000). Significant small-scale heterogeneity 

in Mg content has also been described for bivalve shell calcite. Such variability has 

been associated with stress (Lorens and Bender, 1980), metabolic activity 

(Rosenberg and Hughes, 1991) and control of shell crystal elongation (Rosenberg et 

al., 2001). 

The purpose of this study was to advance an understanding of the degree of 

variability of Mg/Ca ratios in calcite bivalve shells using a controlled laboratory 

aquarium culturing approach. Specifically, no laboratory calibration of the Mg/Ca 

ratio-temperature relationship in bivalve calcite has previously been performed 

under constrained and constant seawater temperatures. This approach is a significant 

advancement on previous studies, since it enables manipulation of specimens, control 

of environmental variables, and measurement of other parameters, such as size and 

growth rate. It must be acknowledged, however, that laboratory aquaria are not a true 

representation of the animal's natural habitat. However, the outcomes of laboratory 

culturing studies are only of value when validated by field-based studies, albeit with 

the latter suffering from a lesser degree of constraint of environmental variables. In 

summary, the ultimate goal of this investigation was to determine whether a reliable 

calibration of the Mg/Ca ratio-temperature relationship could be obtained for the 

shell calcite from two bivalve species, Mytilus edulis (blue mussel) and Pecten 

maximus (king scallop), grown under constrained and constant temperature 
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laboratory aquaria conditions. Finally, the M. edulis laboratory culturing data have 

been compared with data from field-grown specimens of this same species. 

4.3 Material and Methods 

4.3.1 Laboratory Culture Experiment 

Two species of marine bivalve mollusc were cultured in constant-temperature 

aquaria in the School of Ocean Sciences, University of Wales Bangor, U. K. Mytilus 

edulis specimens were collected in December 2003, from naturally settled spat (1 cm 

< size <2 cm; age < one year) in Cable Bay, a site on the coast of Anglesey, 

northwest Wales, while Pecten maximus specimens (1 cm < size <2 cm; age < one 

year) were collected from a commercial fishery, Ramsay Sound Shellfish, Isle of 

Skye, Scotland, in November, 2003. Once moved into the laboratory environment, 

all animals were acclimated at a temperature of -13°C for more than two months. 

Subsequently, animals of similar size were moved into separate aquaria each under 

different but constant temperatures and controlled food and light conditions; the 

aquaria were routinely cleaned of all detritus. For the duration of the experiments, 

animals were kept in individual plastic mesh cages within each aquarium. 

Acclimation to the different temperatures in each aquarium was achieved by 

increasing/decreasing water temperature by 1 °C every 2 days before commencement 

of the experimental periods. A mixed algae solution of Pavlova lutheri, Rhinomonas 

reticulata and Tetraselmis chui was collected every morning from stock cultures, 

split into equal volumes of eight litres and then supplied to the aquaria, from 

containers with a drip-tap, throughout that day at rates of -5.5 ml/min. Because of 

the limited number of aquaria available, two separate temperature-controlled 

experiments were completed with three aquaria used in each. 

The two separate culturing experiments were performed to evaluate the influence of 

temperature on shell Mg/Ca ratios of Mytilus edulis and Pecten maximus in the 

laboratory environment. During experiment one, from 23' February to 7th April, 

2004, nominal seawater temperatures in the three available aquaria were maintained 
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at 12,15 and 18°C, and only M. edulis was cultured. In experiment two, from 6th 

May to 18`h June 2004, nominal seawater temperatures were maintained at 10,15 and 
20°C and both Af edulis and P. maximus were cultured. In each aquarium, with 
individual thermostat temperature control via a heating/glycol cooling system, the 

nominal seawater temperatures were controlled by setting upper and lower 

temperature thresholds on the individual control systems, with a maximum resolution 

achievable by these controllers of 1°C. For improved constraint, seawater 

temperature was also monitored in each aquarium every 15 minutes using submerged 
temperature loggers (Gemini Data Loggers TinyTag - TGI 3080; accuracy off 0.2°C 

and resolution <0.05°C; Figure 4.1). The intermittent lack of temperature control in 

some aquaria is a limitation of the aquarium system used and most manifest at the 

lowest nominal temperature of 10°C, when the cooling system sometimes struggled 
to compensate for fluctuations in the temperature of the external seawater supply. 
Natural seawater is pumped from the proximal Menai Strait into settling tanks before 

being introduced as a common supply into the laboratory aquaria. 

Once the animals had acclimatised, individual specimens were removed at weekly 
intervals (with the exception of the last growth interval in experiment two, which 

was longer than a week for both the 15°C and 20°C aquaria) to be processed. Each 

time the Mytilus edulis specimens were removed from the aquaria they were exposed 
to the air for 5 to 6 hours, while Pecten maximus specimens were kept in small 
holding tanks for periods of 30 to 45 minutes. Both methods resulted in emplacement 

of a disturbance mark on the surface of the shells. The shells then were photographed 
and digitally imaged using the AnalySIS software package. The combination of 
disturbance marks and photographs was used to identify and measure all shell growth 
between emersion and provided a time control of the new shell growth laid down 

throughout the experiments. Subsequently the term "growth interval" has been used 
to describe the time intervals between emersions of animals (Table 4-1). The 

duration of the experiments, and hence the number of growth intervals, varied with 

species and aquarium temperature (Table 4-1). 
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Figure 4-1- Variation of seawater temperature measured every 15 minutes in all the aquaria during 

experiments one and two. Vertical lines define limits of growth intervals in each tank. In experiment 
two, the last growth interval was of different duration for the two species, and the suffixes M and P 
indicate the last growth interval for Mytilus edulis and Pecten maxim us, respectively. 

Table 4- 1- Start dates of the two culturing experiments and duration of growth intervals (days) in 
each aquarium for which new shell growth was evident. 

Exneriment I 

Species Aquarium 12°C 15°C 18°C 
Interval 123456 123456 12345 

Mytilus Start 2004 23/02 25/02 01/03 
edulis Date 

Duration Days 777779 777776 77777 

Experiment 2 

Species Aquarium 10°C 15°C 20°C 
Interval 123456 123 4M 4P 12 3M 3P 

Mytilus Start 2004 07/05 06/05 17/05 
edulis Date 
Peden Duration Days 777777 7777 12 77 10 13 

maximus 

In experiment two the last growth interval was of different duration for the two species grown at IS and 20°C and the suffixes M and P indicate 

the last growth interval for Myrilu edulls and Pecten maxirare, respectively. 

Seawater samples for measurement of salinity and 618Os wat were collected using 

sealed salinity bottles every other day from the 15°C aquarium in both experiments. 

Samples were collected from one aquarium only, since the seawater supply was 

common in all aquaria and water turnover time was short (-7-8 hours for a volume 

of -650 litres). Samples were analysed for S18Oseawater at the School of Environmental 

Sciences, University of East Anglia, by off-line equilibration with CO2 and 

subsequent measurement of isotope ratios using a Europa-PDZ Geo 20/20 isotope- 

ratio mass spectrometer, with normalisation relative to a laboratory standard, North 

Sea Water (accepted value of -0.14 9'oo VPDB). The precision of replicate 6180seawe, er 

Mg/Ca ratios in M. edulis and P. maximus 
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analyses is 0.05 %o (1 a; N= 30) and all data are reported in per mil (9/0o) deviations 

relative to the to the VPDB scale (Hut, 1987), where 618Oseawat (VPDB) = 
618Oseawater (VSMOW) - 0.27 %o. Salinity was determined using an AutoSal 8400 

Autosalinometer calibrated with International Association for Physical Sciences of 

the Ocean (I. A. P. S. O. ) standard seawater (analytical accuracy and resolution of ± 

0.003 equivalent PSU) for a subset of samples that covered the entire range of the 

5180Seawater variation. The temperature and 818Oseawater data were collected at a higher 

than weekly frequency, hence average values were calculated for each growth 
interval (Appendix 3). 

4.3.2 Field Culturing Experiment 

Specimens of the bivalve Mytilus edulis were suspended 1 metre below a moored raft 

in the Menai Strait (north Wales, U. K.; Figure 3-1, pp 71) from the 8th December 

2004 to the 12th December 2005. The animals were all less than 1 year old when 
deployed, obtained from one spat cohort and initially ranged from 2.0 to 2.7 cm in 

shell length. This raft is moored in the close vicinity (ca. 500 m) of the School of 

Ocean Sciences, University of Wales Bangor in a section of the Menai Strait where 

the water column is completely mixed, due to strong turbulent tidal mixing (Harvey, 

1968). Animals were deployed in mesh cages and each shell was identified by a mark 

hand drilled on its surface. Two different, but parallel, experimental approaches were 

taken: 1) "short" deployment specimens were placed into cages for 16 short, well- 

defined and consecutive growth intervals that together covered the duration of the 

entire field experiment. The duration of each growth interval varied during the 

experiment according to expected seasonal changes in shell growth rate; 2) In 

contrast to the short-deployment specimens, "annual" deployment specimens were 

placed in the field for the entire duration of the experiment. To ensure that short- 
deployment specimens were in the same physiological condition as their annual- 

deployment counterparts, and to avoid the inevitable period of acclimation if animals 

were deployed directly from laboratory conditions, the former were taken at the start 

of each growth interval from a stock of animals deployed in the beginning of the 

experiment and kept in a separate cage. 
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At the end of each growth interval (which also was the beginning of the next growth 

interval) all short specimens from the preceding deployment and all annual- 

deployment specimens were removed from the raft, together with a new set of short- 

deployment specimens taken from the stock that were to be used during the next 

growth interval deployment. All of these shells then were photographed and digitally 

imaged using the AnalySIS software package. Between each deployment growth 

interval both short- and annual- deployment Mytilus edulis specimens were exposed 

to the air for 5 to 6 hours resulting in emplacement of a disturbance mark on the 

surface of the shells. The combination of disturbance marks and photographs was 

used to identify and measure all shell growth for each growth interval, as well as 

shell height (i. e. the distance from the umbo to the shell margin along the main axis 

of growth), and thus provide a time control of the new shell growth laid down 

throughout the field experiment by assuming shell growth rate to be constant during 

each growth interval. 

Seawater temperature was monitored every two hours throughout the experimental 

deployment period using submerged temperature loggers placed in the mesh cages 

containing the animals (Gemini Data Loggers TinyTag - TGI 3080; accuracy of f 

0.2°C). Surface seawater samples for measurement of S180sewater were collected 

every two to five weeks, in the vicinity of the moored raft, using sealed salinity 

Winchester glass bottles. Samples were analysed for B18Oseawater as described in 

section. 

4.3.3 Shell Preparation and Surface Milling 

Laboratory Culture Experiment 

The surfaces of the left hand valve of Pecten maximus shells were cleaned with a 
brush and any encrusting material removed using a 0.4 mm wide steel carbide burr 

(Minerva Dental Ltd) attached to a hand-held dental drill. The left hand valve of 
Mytilus edulis shells were cleaned in a similar manner to the Pecten maximus shells 

but, in addition, the outer organic periostracum was milled away with the drill until 

periostracum-free shell was visible in the entire sampling area. Shell powder samples 

subsequently were taken from the new shell growth by milling to a depth of ca. 200 
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µm. Accurate milling was completed under a binocular microscope fitted with an 

eyepiece graticule, and depth and width of milling were controlled carefully. Each 

milled powder sample was taken from the main axis of shell growth: in P. maximus 

from the mid 2-3 axial ridges (ribs), and in M. edulis from the middle section, to 

avoid the increase in shell curvature that occurs away from themain growth axis 

(Figure 4-2). Only one powder sample was milled from each individual growth 

interval and, particularly at the lower temperatures, the milled powder from one or 

more growth intervals had to be combined to provide enough shell material for 

analysis. Whenever the amount of sample permitted, single milled powder samples 

were split into separate aliquots for Mg/Ca and stable-isotope ratio determinations, 

otherwise only Mg/Ca ratios were measured (Appendix 3). 

a 

b 
T1 

TZ T3 

Figure 4-2- Schematic representation of a shell representing the sampling approach for Mytilus 
edulis and Pecten maximus shells. a) View of the outer shell surface from above and b) Longitudinal 
section of the shell. M is the shell margin; U is the shell umbo; grey lines define the boundaries 
between growth intervals identified by Ti, T2 and T3. Samples of shell calcite were collected for each 
growth interval along the main axis of growth, avoiding areas of excessive shell curvature, and up to a 
depth of ca. 200 µm in the areas delimited by the dotted lines in a) and b). 

Lorens and Bender (1980) have described that the stress of capture and adaptation to 

a new laboratory environment induced the deposition of a region of shell (termed 

"transition zone calcite" by those authors) with higher Mg/Ca ratios. Therefore, it is 

possible that the regular handling disturbance (for measurement purposes) imposed 

on the animals of both species during the present study may explain some of the 
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variability of shell calcite Mg/Ca ratios that have been observed. However, Lorens 

and Bender (1980) only inferred the "transition zone" between new and old calcite 

using spot chemical compositions measured by electron microprobe, and their 

transition zone that exhibited higher Mg/Ca ratios occurs perpendicular to the shell 

surface. Also, no scale was reported in the Lorens and Bender (1980) study making it 

difficult to determine the size of the region of "transition zone calcite". Therefore, in 

the current study the sampling of individual growth intervals by hand-milling of 

powder samples between the disturbance marks on the surface of the shell, that 

represent the times of immersion during the experimental period, has minimized the 

influence of handling disturbances on measured Mg/Ca ratios. 

Field Culture Experiment 

The left hand valve of two short-deployment Mytilus edulis specimens were sampled 

for each growth interval, while three annual-deployment M. edulis specimens (A2, 

A6, A20) were sequentially sampled for all growth intervals as described for the 

laboratory culture experiment. Whenever the amount of shell growth permitted more 

than one sample was collected from a single growth interval. On such occasions the 

new shell growth was equally divided between the number of samples collected (2 S 

N <4). 

4.3.4 Shell Stable-Isotope and Elemental Ratio Analyses 

The shell milled powder sample preparation and analytical methodologies used in 

this study are as described in detail in chapters 2 and 3. Shell and water oxygen 

stable-isotope data are reported in per mil (%o) deviations relative to VPDB and 

VSMOW, respectively. The overall analytical precision for shell 6180 measurements 

based on analyses of an internal laboratory standard run concurrently with all Mytilus 

edulis and Pecten maximus samples analysed in this study is 0.08 9/0o (1 a; N= 32). 

Sufficient material was not available from any one growth interval to enable replicate 

isotope analyses for an assessment of true sample precision; however, Freitas et at. 

(2006) used the same method as reported here and obtained a 6180 precision of 0.06 

%o for five replicate measurements of the same milled powder sample obtained from 

one P. maximus specimen. 
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Calibration for Mg/Ca ratio determinations was performed via an established ICP- 

AES intensity-ratio method (de Villiers et al., 2002), using synthetic standard 

solutions in the range 0-25 mmol/mol for Mg/Ca, and most at Ca concentrations of 

50 (N = 304) and 60 µg/m1 (N = 161). The smallest milled powder samples were 

analysed at 30 yg/ml (N = 102). Measurements were made using the Perkin Elmer 

Optima 3300RL ICP-AES instrument housed at the NERC ICP Facility, Royal 

Holloway University of London. Instrumental drift was monitored by running an 

intermediate (16 mmol/mol) calibration standard every 5 to 10 samples and data then 

were corrected accordingly. Analytical precision (expressed as relative standard 

deviation or RSD) was 0.5 % for the laboratory experiments (N = 86) and 1.3 % for 

the field experiment (N = 29). In the laboratory experiments, sufficient material was 

not available from any one growth interval to enable replicate analyses for an 

assessment of true sample precision; in the field experiment, however, sample 

precision was 6.2 % RSD for replicate measurements (N = 3) of the same milled 

powder samples obtained from five Mytilus edulis specimens. Furthermore, the same 

method as reported here was used in chapter 3 and obtained a Mg/Ca ratio precision 

of 3.5 % RSD for five replicate measurements of the same milled powder sample 

obtained from one Pecten maximus specimen. For comparison with past and future 

datasets, Mg/Ca ratio measurements also are reported for a set of solutions prepared 

by the Elderfield group at the University of Cambridge, U. K. (Greaves, pers. comm., 

2003; cf. de Villiers et al., 2002), as well as for three solutions (BAM-RS3, ECRM- 

752 and CMSI-1767) that have been proposed as certified reference materials 

(CRMs) for Mg/Ca ratio measurements in carbonates (Greaves et al., 2005) and that 

are subject to an ongoing international inter-laboratory calibration study (Table 4-2). 

For each CRM, approximately 50 mg of powder was dissolved in 50 g of 0.075M 

HNO3 (Merck Ultrapur), resulting in Ca concentrations in solution of ca. 400 µg/ml- 

Subsequently, 1.5 ml of each solution was centrifuged for 10 minutes and an aliquot 

then was pipetted into clean 12 ml centrifuge tubes and diluted to 10 ml to give final 

Ca concentrations of 50 and 30 pg/ml in order to match the sample and standard 

solutions. The linearity of the intensity-ratio calibration lines, combined with the 

independent assessment of the accuracy of the analytical procedure (Chapter 2 and 
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3), confirms the veracity of the Mytilus edulis and Pecten maximus Mg/Ca ratios 

obtained in this study. 

Table 4-2- Comparison of expected (Greaves et al., 2005) with measured Mg/Ca ratios for three 
certified reference material (CRMs) solutions. 

CRM solution Expected Inter-laboratory This study % Difference 
BAM-RS3 0.80 0.80 ± 0.01 (N = 6) 0.78 t 0.12 (N = 9) -3.0 
ECRM-752 3.90 3.50 ± 0.04 (N = 6) 3.82 f 0.07 (N = 13) -2.1 
CMSI-1767 6.10 5.58±0.09(N=6) 5.76: 1: 0.07(N=11) -5.7 

The values in the third column are those returned from the University of Wales Bangor as part of an ongoing international inter-laboratory 

comparison exercise, with the replicates representing six separate dissolutions of each CRM (I ml of each solution was centrifuged for 10 minutes 

at -6000 rpm and ca. 0.75 ml from each solution then diluted to final solution Ca concentrations of 60 µg/ml). By comparison, the replicates 

reported for this study in the fourth column are repeated measurements of a single dissolution completed for each CRM and diluted to Ca 

concentrations of 50 or 30 pg/ml. All measurements were made on the same Perkin Elmer Optima 3300RL ICP-AES instrument. 

4.3.5 Statistical Analyses 

Two-sample t-tests were used to determine statistically whether significant 

differences existed between measured shell Mg/Ca ratios precipitated at different 

seawater temperatures in pairs of constant-temperature aquaria. Herein, probability 

levels less than 5% (p<0.05) are considered significantly different. Linear regressions 

and ANOVA analyses of shell Mg/Ca ratios and seawater temperature were 

performed using the software package MINITAB. Regressions were compared by 

testing the equality of variance in the regression residuals, since unequal variance in 

the regression residuals (F-test, p<0.05) indicates significantly different regressions. 

GLM ANOVA has been used to test for differences in the slope and intercepts of the 

regressions. The variability in shell Mg/Ca ratios attributable to different factors was 

determined using fully nested ANOVA. 

4.4 Results 

4.4.1 Culture Conditions and Confirmation of Shell Precipitation in 

Thermodynamic Equilibrium 

Seawater temperature was stable during experiment one, but more variable during 

experiment two, especially in the lower (10°C) and mid (15°C) temperature aquaria 
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(Figure 3). Nevertheless, clear temperature differences were maintained in the three 

different aquaria in each of the experiments (Figure 3). Aquaria mean seawater 

temperatures were 11.96±0.12°C, 15.61±0.12°C and 18.39±0.05°C during 

experiment one, and 10.76±0.41°C, 15.54±0.25°C and 20.23±0.22 °C during 

experiment two. Variation of 618Oseawater was different in the two experiments, with 

variable but increasing values from -0.10 to 0.10 %o during experiment one. In 

experiment two 618Oseawater decreased from initially high values (-0.08 %o) to the 

lowest values observed (-0.33 %o) in the middle of the experiment and then increased 

to 0.00 %o. 
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Figure 4-3- Seawater temperatures plotted against mean AS18O values (S18Oca na, ý - 
6180, swat � on 

the VPDB and VSMOW scale, respectively) for laboratory cultured Mytilus edulis (" - experiment 
one and o- experiment two) and Pecten maximus (+ - experiment two only), and field cultured M. 

edulis (A). Plotted also are the data (o - solid black line) for inorganic calcite deposited from seawater 
in oxygen-isotope thermodynamic equilibrium from Kim and O'Neil (1997), but also species-specific 
palaeotemperature equations obtained for P. maximus (solid grey line) by Chauvaud et al., (2005) and 
M. edulis (dashed black line) by Wannamaker et al., (2007). Due to the use of different acid 
fractionation factors between the present study and Kim and O'Neil (1997), 0.25%o was substracted 
from their original E18O., b,, �e,. values. For comparison, twice the analytical error for 5180 �e, o - 
6180... w (±0.09 96o) also is shown 

During the field culturing experiment, seawater temperature exhibited a clear 

seasonal pattern, and 618Oseawater was less seasonally variable (Figure 4a). Seawater 

temperature decreased from ca. 10.0°C in December 2004 to a minimum temperature 
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of ca. 5.0°C in the end of February, followed by a rise to ca. 9.5°C during mid 

March-late April (from day 105 to 140) and then a further rise up to a maximum 

temperature of ca. 19.0°C in early-mid July (ca. day 225). From that time to early 

September (ca. day 280) seawater temperature remained high at ca. 18.0°C, before it 

decreased to ca. 9.0°C in December 2005. During the field culturing experiment, 

S180Seawater varied from -0.48 to 0.03 %o, with a mean value of -0.20 (±0.13) o, with 

lower values usually occurring during winter and higher values during spring and 

summer (Figure 4a). 

The variation of oxygen-isotope data 0818Oca �ate_Seawater = shell S180 values minus 

seawater 5180 values) of M. edulis and P. maximus with temperature (Figure 5) was 

compared to previously derived data for the precipitation of inorganic calcite from 

seawater in oxygen-isotope thermodynamic equilibrium (Kim and O'Neil, 1997), but 

also to species-specific palaeotemperature equations obtained for P. maximus 

(Chauvaud et al., 2005) and M. edulis (Wanamaker et al., 2006; Wanamaker et al., 

2007). P. maximus and M. edulis OS 18Oca, 
bonate_Seawater values at each temperature are 

similar for both species, similar for laboratory- and field-grown M. edulis specimens 

and similar to oxygen-isotope equilibrium values (Figure 5). Thus, during both the 

laboratory and field culturing experiments deposition of new shell material occurred 

in or close to oxygen-isotope equilibrium. 

4.4.2 Shell Mg/Ca Records and Variability of Shell Calcite Mg/Ca Ratios from 

Laboratory Cultured Mytilus edulis and Pecten maximus 

Measured shell Mg/Ca ratios range from 2.84 to 9.50 mmol/mol in Mytilus edulis 

(experiments one and two) and from 8.08 to 29.92 mmol/mol in Pecten maximus 

(experiment two) over the experimental temperature range (Figure 4-4). Four main 

features are clear from the shell Mg/Ca ratio data: 1) Variability of shell Mg/Ca 

ratios at each temperature is very large for both species (Figures 4-4 and 4-5). 2) 

Despite the high degree of variability, a significant (p<0.001 for both species), albeit 

weak, correlation exists between seawater temperature and shell Mg/Ca ratios in both 

species (r2 = 0.38 and 0.57 for Mytilus edulis in experiment one and two, 

respectively; rz = 0.21 for P. maximus in experiment two). 3) In experiment two, 

during which both species were grown at the same temperatures and in the same 
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aquaria, shell Mg/Ca ratios are approximately three times higher in P. maximus than 

in M. edulis (t-test, p<0.001, degrees of freedom >_41 for all temperatures). 4) For M. 

edulis that was cultured in both experiment one and two there is a significant 

difference in the Mg/Ca ratio to temperature relationship between experiments and 

shell Mg/Ca ratios were higher in experiment two than in experiment one (Figure 4- 

4). 
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Figure 4-4- Shell Mg/Ca ratios against seawater temperature from: a) laboratory cultured Mytilus 
edulis (" - experiment one and o- experiment two) and Pecten maximus (+ - experiment two only); b) 
field cultured M. edulis (e - short-deployment specimens; annual-deployment specimens, see Chapter 
6 for a detailed description of field experiment design: "- A2, A- A6 and +- A20). Each point 
represents a paired seawater temperature value and Mg/Ca ratio obtained for individual growth 
intervals. For comparison, twice the analytical error (±0.10 mmol/mol) also is shown. 

Irrespective of the observation that shell Mg/Ca ratios are significantly, albeit 

weakly, correlated with temperature in both bivalve species, the significant 
differences evident in the absolute shell Mg/Ca ratios of the two species indicate a 

clear species-specific Mg/Ca ratio-temperature relationship for the two bivalve 

species investigated in this study. Furthermore, the degree of variability of shell 

Mg/Ca ratios at each temperature also is higher in Pecten maximus than in Mytilus 

edulis. Unequal variance in the residuals indicates significantly different regressions 

of Mg/Ca ratios with temperature between M. edulis and P. maximus from 

experiment two (F-test, p<0.05). The linear fit of Mg/Ca ratios (mmol/mol) to 

seawater temperature (°C), with 95% confidence intervals, is for M. edulis Mg/Ca = 

1.286 (A: 0.84) + 0.320 (f 0.072) *T (N = 59) while for P. maximus is Mg/Ca = 

9.886 ± 2.96 + 0.520 ± 0.19 *T (N = 111). ANOVA analysis of the regressions of 
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Mg/Ca with temperature shows that the slope of the linear regressions does not differ 

significantly (F= 2.13, p=0.146), but that the intercept does (F= 37.67, p<0.001). 

Mytilus edulis shell Mg/Ca ratios also are statistically different between the two 

experiments, with higher values during experiment two (Figure 4-4). The correlation 

between M. edulis shell Mg/Ca ratios and temperature also is stronger in experiment 

two than in experiment one (r2 = 0.38 and 0.57 in experiment one and two, 

respectively, p<0.001 in both experiments), although this may be due solely to the 

smaller number of individuals analysed in experiment two compared to experiment 

one, i. e. the capture of a smaller degree of Mg/Ca ratio variability, as well the greater 

temperature range for the experiment two regression. Unequal variance in the 

residuals confirms significantly different regressions of Mg/Ca ratios with 

temperature in M. edulis between experiments one and two (F-test, p<0.05). Further 

analysis of variance of the regressions of M. edulis Mg/Ca ratios and temperature 

shows that the slope of the regressions is not significantly different (F = 2.50, p= 

0.116), but that the intercept (F = 127.92, p<0.001) is different in the two 

experiments. 

Evidence exists for statistically significant (t-test, p<0.05) inter-individual shell 

variability of shell Mg/Ca ratios between individuals cultured within any one 

aquarium (Figure 4-5). Maximum differences between mean shell Mg/Ca ratios from 

different Mytilus edulis individuals cultured in the same aquarium were: 1.3 

mmol/mol at 12°C (N = 7), 1.9 mmol/mol at 15°C (N = 6) and 2.1 mmol/mol at 18°C 

(N = 6) in experiment one and 1.2 mmol/mol at 10°C (N = 6), 3.3 mmol/mol at 15°C 

(N = 6) and 3.0 mmol/mol at 20°C (N = 6) in experiment two. For Pecten maximus 

maximum differences between mean Mg/Ca ratios from different individuals 

cultured in experiment two were: 8.9 mmol/mol at 10°C (N = 8), 9.2 mmol/mol at 

15°C (N = 10) and 9.0 mmol/mol at 20°C (N = 10). 

In addition to inter-individual shell variability, there is also a degree of intra- 

individual shell variability in Mg/Ca ratios within the dataset, i. e. between milled 

samples taken from different growth intervals (Figure 4-5). For either species, the 

proportion of individual shells that produced Mg/Ca ratios significantly different 

among samples milled from the same specimen (i. e. the difference between any two 
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Mg/Ca measurements was larger than twice the analytical error) was similar at each 
temperature. However, P. maximus showed a higher frequency of milled samples 

with different Mg/Ca ratios within an individual shell (> 97% in all aquaria) than did 

M. edulis, (68% < experiment one < 73%, and 72% < experiment two < 83%). 
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Figure 4-5- Shell Mg/Ca samples plotted against animal number for each aquarium (temperature in 
brackets) in order to illustrate inter- and intra-individual shell variability of Mg/Ca ratios in a) Mytilus 
edulis and b) Pecten maximus. For each animal, individual data points correspond to Mg/Ca ratios of 
new shell growth deposited in the experiment during different growth intervals. For comparison, twice 
the analytical error (±0.10 mmol/mol) also is shown. 
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4.4.3 Shell Mg/Ca Records and Variability of Shell Calcite Mg/Ca Ratios from 

Field Cultured Mytilus edulis 

In field cultured Mytilus edulis, measured shell Mg/Ca ratios range from 2.96 to 9.16 

mmol/mol in the short specimens; from 2.86 to 8.34 mmol/mol in the A2 specimen; 

from 2.78 to 5.97 mmol/mol in the A6 specimen and from 2.75 to 6.11 mmol/mol in 

the A20 specimen (Figure 4-4). 

In field cultured Mytilus edulis, a significant (p<0.001 for all specimens), albeit not 

strong, correlation exists between seawater temperature and shell Mg/Ca ratios 

(Figure 4-4): r2 = 0.54 for the short specimens (N = 62); r2 = 0.77 for the A2 

specimen (N = 28); r2 = 0.72 for the A6 specimen (N = 34) and r2 = 0.81 for the A20 

specimen (N = 30). However, the correlation between shell Mg/Ca ratios and 

temperature is weaker (r2 = 0.50, p<0.001) when all data from all specimens is 

pooled together. Furthermore, variance of the residuals was only equal for the 

regressions of Mg/Ca ratios with temperature between M. edulis specimens between 

short and A2 specimens and between A6 and A20 (F-test, p>0.05). In all other 

specimens, unequal variance of residuals indicates significantly different regressions 

of Mg/Ca ratios with temperature (F-test, p<0.05). ANOVA analysis of the 

regressions of Mg/Ca with temperature between short and A2 specimens, and 

between A20 and A6 specimens, shows that the slope of the linear regressions does 

not differ significantly (F = 2.70, p=0.104 and F=1.40, p=0.242, respectively), 

but that the intercept does (F = 126.11, p<0.001 and F= 196.31, p<0.001, 

respectively). Evidence thus exists for significant inter-individual variability of shell 

Mg/Ca ratios and its relationship with temperature from M. edulis specimens grown 

in the same field culture conditions. Maximum shell Mg/Ca ratios, in particular, are 

markedly different between individual specimens and range from 5.97 to 9.16 

mmol/mol. 

For the same range of temperature, shell Mg/Ca ratios of M. edulis grown in the 

laboratory- and field-culturing experiments showed a similar range (Figure 6). 

However, the correlation between Mg/Ca ratios and temperature was stronger in field 

cultured (0.54 <r<0.81) than in laboratory cultured M. edulis specimens (0.38 < r2 

< 0.57). Furthermore, ANOVA analysis of the regressions of Mg/Ca with 
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temperature between laboratory cultured and field cultured Medulis specimens 

shows that the slope of the linear regressions does not differ significantly (F = 0.70, 

p=0.799), but that the intercept does (F= 224.68, p<0.001). 

4.5 Discussion 

4.5.1 Inter-Species, Inter-Individual and Intra-Individual Variability in Shell 

Mg/Ca Ratios 

In addition to the weak, but significant, relationships with seawater temperature, the 

shell Mg/Ca ratio data obtained in this study also clearly show a large degree of 

variability in absolute shell Mg/Ca ratios in both Mytilus edulis and Pecten maximus 

species. As in other bivalve geochemical and physical proxies (for review, see e. g. 

Richardson, 2001), variability of shell Mg/Ca ratios occurs at different levels, 

requiring consideration of differences between the two bivalve species cultured 

(inter-species level), between shells of different individuals grown simultaneously in 

the same aquarium and under the same culture conditions (inter-individual shell 

level) and within individual shells, i. e. between milled samples taken from one 

individual shell that correspond to different growth intervals during the experimental 

period (intra-individual shell level). 

Differences in shell Mg/Ca ratios of the same species have been observed in previous 
field-based studies at levels of both inter- and intra-individual shell variability 
(Rosenberg and Hughes, 1991; Klein et al., 1996a; Vander Putten et al., 2000; Freitas 

et al., 2005; Lorrain et al., 2005; Freitas et al., 2006). For example, Klein et al. 

(1996) presented data from two field-collected shells (British Columbia, Canada) of 

the mussel Mytilus trossulus which clearly show large Mg/Ca ratio differences at 

inter- (up to 2.5 mmol/mol) and intra- (up to 1.5 mmol/mol) individual shell levels, 

in addition to a temperature relationship (r2 = 0.74, p<0.001) over a range from 5.5 to 

22.7°C. By comparison; Vander Putten et al. (2000) reported inter-individual 

differences in Mg/Ca ratios between four Mytilus edulis field-grown shells (Schelde 

Estuary, Netherlands) as high as -7 mmol/mol. Similarly, Lorrain et al. (2005) 
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presented data from four Pecten maximus specimens collected from the Bay of Brest, 

France, where differences of up to 6 mmol/mol in Mg/Ca ratios were observed 

between individual specimens for shell samples that corresponded to the same time 

of calcification. Most recently, in three P. maximus specimens grown in a field-based 

experiment, and for a similar temperature range to that used in the present laboratory 

culturing study (10 to 20°C), differences were observed in Mg/Ca ratios of up to 7.5 

mmol/mol between shells (Chapter 3). Specifically, for S18O-derived calcification 

temperatures of 101 0.5°C (N = 8) and 15 ± 0.5°C (N = 6), Mg/Ca ratios varied by 

up to 4.06 and 5.61 mmol/mol, respectively (Chapter 3). The inter- and intra- 

individual variability of Mg/Ca ratios in shell calcite of M. edulis and P. maximus 

grown in field-based and laboratory culturing studies thus are of similar magnitude. 

Significant differences in absolute shell Mg/Ca ratios can be observed between the 

two cultured bivalve species (Figure 4-4); P. maximus shell Mg/Ca ratios being 

approximately three times higher than those in M edulis. Large variations in the Mg 

content of biogenic calcite from different species has been observed previously in 

bivalves (Lorens and Bender, 1980; Klein et al., 1996a; Vander Putten et al., 2000; 

Lorrain et al., 2005). The Mg/Ca ratio data obtained in this study for laboratory 

cultured M. edulis and P. maximus have been compared to previously published data 

for other marine bivalve species investigated in field-based studies (Figure 4-6). On 

the whole, a large degree of overlap can be observed between the Mg/Ca ratio data 

derived from the laboratory and field cultured M edulis and P. maximus specimens. 

Nevertheless, laboratory and field cultured M. edulis show lower shell Mg/Ca ratios 

than data reported from field experiments for M. edulis (Vander Putten et al., 2000), 

although the latter data were obtained by laser ablation ICP-MS and there is the 

potential for calibration issues between datasets. The Mg/Ca ratios for M. edulis 

cultured in this study are, however, similar to Mg/Ca ratios reported for M. trossulus 

(Klein et al., 1996a), a close relative of M. edulis. Shell Mg/Ca ratios in the P. 

maximus animals cultured in this study are similar to Mg/Ca ratios reported for 

specimens of the same species grown or collected in field studies (Lorrain et al., 

2005; Chapter 3), but extend to higher values and also show a larger variability than 

in specimens grown at a field location adjacent to the present aquarium based study 

(Chapter 3). This latter observation suggests that the influence of any non- 

temperature control (i. e. physiological factors) on P. maximus shell Mg/Ca ratios 
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may well be stronger under laboratory culture conditions than in field-based 

situations that more closely mimic the conditions best suited for optimal growth of 

natural populations. 
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Figure 4-6- Comparison of bivalve calcite shell Mg/Ca ratios, plotted against temperature, from: a) 
laboratory culturing completed in this study for Pecten maximus1 and Mytilus edulis'; and b) field 

culturing completed in this study for Mytilus edulis' and other field-based studies, for the species: 
Mytilus edulis (Vander Putten et al., 2000)', Pecten maximus (Chapter 3)2, Mytilus trossulus (Klein et 
al., 1996a) 1 and Pinna nobilis (Chapter 2)2. [1 denotes temperature is measured seawater temperature; 
2 denotes temperature is S18Oc 

. Bic; «derived calcification temperature]. 

4.5.2 Imprecise Temperature Control on Shell Mg/Ca Ratios 

Despite the observation that the shell and seawater oxygen-isotope composition 

relationship was significantly correlated to seawater temperature, indicating shell 
deposition in or near to oxygen-isotope thermodynamic equilibrium (Figure 4-3), one 

obvious feature of the measured shell Mg/Ca ratios obtained from specimens of 
Mytilus edulis and Pecten maximus cultured in the constant-temperature aquaria in 

this study is that there is only a weak dependence on temperature (Figure 4-4 and 

Table 4-3). Nevertheless, in M. edulis specimens cultured in the field, shell Mg/Ca 

ratios were significantly correlated with temperature (0.54 < r2 < 0.81). However, the 

inter-individual variability of Mg/Ca ratios is large (Figure 4-4) and results in a 

weaker correlation (r2 = 0.50, p<0.001) when data from all specimens is pooled 

together. Furthermore, linear regressions of Mg/Ca ratios with temperature are 
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different between individual specimens and thus do not support the use of a single 

valid regression for all specimens. Such an observation contrasts markedly with the 

well-documented temperature dependent incorporation of Mg into inorganic calcite 

experimentally precipitated from seawater (Chilingar, 1962; Katz, 1973a; Burton and 

Walter, 1987; Mucci, 1987b; Oomori et al., 1987) and in other biogenic calcites (e. g. 

Dwyer et al., 1995; Nurnberg et al., 1996a; Stoll et al., 2001). Clearly, as has been 

observed previously in some field studies, the weak temperature dependence of shell 

Mg/Ca ratios in the two marine bivalve species that were cultured is a feature 

specific to the incorporation of Mg into the calcite shells of these organisms and 

must therefore relate to their specific biomineralization processes, including any 

secondary physiological influences. 

The suggestion of additional, physiological controls on Mg/Ca ratios in bivalve 

calcite (i. e. metabolic or kinetic controls) is supported further by the significant 

difference in the absolute shell Mg/Ca ratios in Mytilus edulis grown at 15°C in two 

aquaria in experiments one and two of -1.1 mmol/mol (t-test, p=0.004, DF = 24), 

but also by the large inter- and intra-individual variability of Mg/Ca ratios observed 

in both the laboratory and field cultured bivalves (Figure 4-4). These observations 

clearly indicate that specimens from the same species cultured at different times at 

the same seawater temperature can have different shell Mg/Ca ratios. It is therefore 

important to recognise that other non-thermodynamic factors in the two experiments 

must also have influenced shell Mg/Ca ratios. Furthermore, it is not possible to 

discount the possibility that the M. edulis animals cultured in experiment two were 

better conditioned for the laboratory environment than those in experiment one, due 

to their longer acclimation in the experimental aquaria prior to commencement of the 

experimental period. 

Given the experimental design in this study, only factors that were entirely 

independent of seawater temperature can be discussed as additional potential controls 

on shell Mg/Ca ratios. This consideration thus prohibits a detailed discussion of the 

influence of shell growth rate on shell Mg/Ca ratios, since growth rates co-vary 

significantly with temperature in both the laboratory (for Pecten maximus, r2 = 0.62, 

p<0.001; for Mytilus edulis, r2 = 0.23, p=0.001 and r2 = 0.15, p=0.032 in 

experiment one and two, respectively) and field culture experiments (for M. edulls, 
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0.26 < r2 < 0.43, p<0.002). Nevertheless, as reported by Lorens and Bender (1980) 

for cultured M. edulis specimens, shell Mg/Ca ratios also were only weakly 

correlated to shell growth rates in both the laboratory and field culture experiments 
(Table 4-3). 

Table 4-3- Summary of correlations between Mg/Ca and temperature, shell growth rate (SGR - 
µm/day) and salinity for all laboratory (temperature = experiment one and two) and field culture 
experiments. 

Experiment Temperature 
r2 r2 

SGR Salinity 
r2 

Temperature 
M edulis Exp 1 0.38 < 0.001 0.19 0.006 ->0.05 

Exp 2 0.57 <0.001 0.33 < 0.001 ->0.05 
Exp 1+2 0.37 < 0.001 0.23 < 0.001 ->0.05 

P. maximus Exp 2 0.21 < 0.001 0.09 0.002 0.21 < 0.001 

Field 
0.22 

M. edulis 0.50 <0.001 to < 0.004 -- 
0.41 

A metabolic control, i. e. the physiological exclusion of Mg from its shell-forming 
fluid (the extra-pallial fluid or EPF), on calcite Mg content has been proposed 

previously for Mytilus edulis (Lorens and Bender, 1977; Lorens and Bender, 1980). 

Metabolic control also was suggested as a possible way of explaining an observed 

seasonal breakdown in the relationship between Mg/Ca and temperature reported for 

M. edulis (Vander Putten et al., 2000). An apparent ontogenetic control of Mg/Ca 

ratios has been described in the fan mussel Pinna nobilis, although a temperature 

control on shell Mg/Ca ratios also was present in this species (Chapter 2). For Pecten 

maximus, recent field-based studies have shown the absence of a significant 

correlation between shell Mg/Ca ratios and seawater temperature (Lorrain et al., 
2005) or a strong seasonal variation in the strength of the correlation between shell 
Mg/Ca ratios and seawater temperatures, again suggesting that other factors must 
influence Mg/Ca ratios in P. maximus shell calcite (Chapter 3). 

Seawater salinity is a truly independent variable in the laboratory culture experiment, 
but not in the field culture experiment where it co-varies with seawater temperature 
(r2 = 0.50, p<0.001). Any differences in seawater salinity between the laboratory 

experiments thus could influence the amount of magnesium available for 
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incorporation, assuming that shell Mg/Ca ratios are not solely related to seawater 

Mg/Ca ratios. Indeed, Lorens and Bender (1980) have shown that shell Mg/Ca ratios 

increase with increasing solution Mg concentrations, albeit at much higher 

concentrations than would be expected from natural changes in seawater salinity. 

Although, an earlier study by Dodd (1965) observed the opposite trend of increasing 

Mg concentrations in Mytilus edulis shell calcite with decreasing salinity. In addition, 

salinity has been reported to significantly influence the Mg/Ca ratios of foraminifera 

calcite (Lea et al., 1999). In M. edulis, salinity was not significantly correlated with 

shell Mg/Ca ratios in the two laboratory experiments in this study (p>0.05), and only 

weakly, in Pecten maximus (rz = 0.21, p<0.001). The strength of this correlation 

between shell Mg/Ca ratios and salinity is of comparable magnitude to that between 

temperature and shell Mg/Ca ratios (r2 = 0.21, p<0.001). Nevertheless, temperature 

and salinity together (r2 = 0.37, p<0.001) still do not explain much more of the 

observed shell Mg/Ca variability in P. maximus than just temperature alone. 

4.5.3 Are Mg/Ca Ratios in Bivalve Calcite an Unreliable Palaeotemperature 

Proxy? 

Bivalve molluscs, like other calcifying organisms, are capable of regulating or at 

least influencing to variable extents, the Mg content of their calcium carbonate 

skeletons (Dodd, 1965; Lorens and Bender, 1977; Neri et al., 1979; Onuma et al., 

1979; Lorens and Bender, 1980; Rosenberg and Hughes, 1991; Rosenberg et al., 

2001). This phenomenon can be expressed by temperature-dependent partition 

coefficients (DMg) between the solid mineral phases and ambient seawater medium 

(DMg = Mg/Cacaicite / Mg/Caseawater). In other words, the differences in the Mg content 

of calcite secreted by different taxa, as well as differences in Mg/Ca ratios between 

and within individuals of a single species, suggest a strong physiological control of 

the incorporation of Mg into biogenic calcites. Examples of such physiological 

effects that may influence, either directly or indirectly, the Mg content of bivalve 

shell calcite are: variable chemical composition of the precipitating fluid, i. e. the 

EPF, resulting from biological control on differential transport of ions into and out of 

the EPF; variable calcification rates; and differences in crystal growth orientation and 

morphology (Mucci and Morse, 1983; Reeder and Grams, 1987; Debeney et al., 

2000; Erez, 2003; Wasylenki et al., 2005a). 
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Small-scale heterogeneous distribution of Mg may represent a particularly relevant 

source of error in the use of bivalve calcite Mg/Ca ratios as a palaeotemperature 

proxy. Lorens and Bender (1980) have described significant small-scale variability of 

Mg/Ca ratios, from <5 to 40 mmol/mol over scales of 100's gm, in the very first new 

shell growth from Mytilus edulis cultured in natural seawater under controlled 

conditions at temperatures between 22 and 24°C. Significant small-scale variability 

of Mg/Ca ratios has also been observed in M. edulis and Pecten maximus shells 

grown in the same experiment as the present study (Chapter 6). Small scale 

variations in Mg concentrations in M. edulis calcite have been shown to derive from 

Mg being concentrated along the margins of calcite prisms, especially along the 

terminations of the crystals, with the alignment of adjacent crystals then producing 

compositional growth bands within the shell (Rosenberg et al., 2001). The latter 

observation lead to the suggestion that in M. edulis Mg and also sulphur in the shell 

could control rates of shell crystal elongation, shell curvature along different axes 

and ultimately the Mg distribution throughout the shell (Rosenberg et al., 2001). 

The use of Mg/Ca ratios from bivalve calcite shells as a reliable and accurate 

temperature proxy thus remains unlikely at present, at least in the species studied to 

date. The now well-documented variation of Mg/Ca ratios in bivalve calcite at 

species-specific, inter- and intra-individual shell levels prevents the establishment of 

valid Mg/Ca ratio-temperature relationships, even for individual species. 
Furthermore, there exists support for a strong physiological control of Mg/Ca ratios 
in bivalve shells (Lorens and Bender, 1977; Lorens and Bender, 1980; Rosenberg 

and Hughes, 1991; Vander Putten et al., 2000; Rosenberg et al., 2001) present study, 

although the mechanisms by which such control acts are still not fully clear, as well 

as for extensive small-scale heterogeneity in shell Mg contents (Lorens and Bender, 

1980; Rosenberg et al., 2001; Chapter 6). Future research should address these issues 

in greater detail, if ever this geochemical proxy is to be used as a reliable and 

accurate temperature proxy in bivalve calcite. 
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4.6 Conclusions 

Mg/Ca ratios in M. edulis and P. maximus 

In a laboratory and field culturing experiments only a weak dependence on 

temperature, as well as a large degree of variability, has been observed for shell 

Mg/Ca ratios in calcite sampled from two marine bivalve species, Mytilus edulis and 

Pecten maximus. Such variability is significant at the species, inter- and intra- 

individual shell levels, and most likely reflects the influence of additional secondary 

physiological factors influencing shell biomineralisation and Mg content. Shell 

Mg/Ca ratios were different between M. edulis and P. maximus, being three to five 

times greater in the latter species. The variability of shell Mg/Ca ratios for laboratory 

cultured M. edulis in the present study was similar to the variability observed in 

previous field-grown specimens. Laboratory cultured P. maximus specimens, 
however, showed approximately twice the variability of shell Mg/Ca ratios than has 

been reported previously for field-grown specimens. In the two species, shell Mg/Ca 

ratios were not found to be controlled by shell growth rate and salinity. The Mg/Ca 

ratio data obtained in the present laboratory and field culturing of M. edulis and P. 

maximus, together with supporting evidence from previous field studies, clearly 

suggests that bivalve Mg/Ca ratios do not yet appear to be a reliable and precise 

temperature proxy. Strong metabolic controls and extensive small-scale 
heterogeneity in shell Mg content may even prevent unique Mg/Ca ratio to 

temperature relationships for individual species to be defined. Unless the secondary 

controls (i. e. metabolic and/or kinetic factors) on Mg incorporation, and their 

influence on the small-scale heterogeneity of shell Mg content, can be understood in 

more detail, and subsequently compensated for, the use of this geochemical proxy as 

a reliable and accurate temperature proxy remains unlikely, at least in the species 

studied to date. 
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Chapter V 

Sr/Ca ratios in the calcite shells of the marine bivalves Mytilus 

edulis and Pecten maximus: Evidence of physiological 

controls from laboratory and field culturing experiments. 
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V- Sr/Ca ratios in the calcite shells of the 

marine bivalves Mytilus edulis and Pecten 

maximus: Evidence of physiological 

controls from laboratory and field 

culturing experiments 

5.1 Abstract 

The minor and trace element composition of natural carbonates has been widely used 
in paleoclimatic studies. The Sr/Ca ratios preserved in the skeletons of corals and 

sclerosponges have been successfully used as temperature proxies. In abiogenic 

calcite, Sr/Ca ratios are strongly controlled by precipitation rate and previous work 

on aragonitic and calcitic bivalve shells suggests a major control of Sr/Ca ratios by 

growth rate, but the role of metabolic activity on shell Sr/Ca ratios remains 

inconclusive. The influence of physiological (shell growth rate and metabolic 

activity) controls on the Sr/Ca ratios of shell calcite was investigated in two marine 
bivalve species, Mytilus edulis (blue mussel) and Pecten maximus (king scallop), 

grown in laboratory and field (M. edulis only) culturing experiments. Seawater 

temperature was clearly not a significant control of bivalve calcite Sr/Ca ratios, while 

shell growth rate was found to exert a significant influence on shell Sr/Ca ratios of 

M. edulis, but only a weak influence on shell Sr/Ca ratios of P. maximus. The 

positive relationship observed between absolute respiration rate, a measure of 

metabolic activity, and Sr/Ca ratios in M. edulis grown in the laboratory and field 

culturing experiments provides the first direct evidence of a metabolic activity 

control in bivalve calcite Sr/Ca ratios. In addition, a significant inverse relationship 

between Sr/Ca and shell S13C ratios was observed in M. edulis, P. maximus and 

Pinna nobilis, and thus further supports a control of shell Sr/Ca ratios by metabolic 
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activity. High metabolic activity is thus suggested to increase both the transport of 

Sr2+ and low 613C metabolic carbon into the EPF, ultimately resulting in higher shell 

Sr/Ca ratios as well as lower shell 613C ratios. 

5.2 Introduction 

Natural carbonates contain a variety of co-precipitated ions other than Ca, which 

reflect their mode and environment of formation. However, element incorporation in 

biogenic carbonates is only partially dependent on environmental factors and 

physiological effects (often called vital effects), both kinetic and metabolic, may also 

significantly influence the incorporation of elements such as Mg and Sr in biogenic 

carbonates (e. g. Lorens and Bender, 1980; Delaney et al., 1985; Rosenberg and 

Hughes, 1991; de Villiers et al., 1995; this study; Klein et al., 1996b; Lea et al., 

1999; Elderfield et al., 2001; Bentov and Erez, 2005). Such biological effects, and 

the mechanisms through which they act, thus must be thoroughly assessed to validate 

the potential use of these geochemical proxies from biogenic carbonate archives. 

Strontium is the second most abundant cationic impurity in carbonates after Mg, and 

its incorporation is significantly influenced by mineralogy, forming a solid solution 

with aragonite due to its large ionic radius (Speer, 1983), but also substitutes for Ca 

in the calcite crystal lattice (Pingitore et al., 1992). Inorganic precipitation 

experiments have shown Sr incorporation in aragonite to be inversely related to 

temperature (Kinsman and Holland, 1969b; Dietzel et al., 2004) but independent on 

precipitation rate (Zhong and Mucci, 1989). In experimentally precipitated inorganic 

calcite, Sr/Ca ratios are strongly dependent on precipitation rate (Lorens, 1981a; 

Morse and Bender, 1990; Tesoriero and Pankow, 1996), and also are influenced by 

the Sr/Ca ratio of the solution from which precipitation occurred (Mucci and Morse, 

1983; Pingitore and Eastman, 1986), and the Mg content of the solution and solid 

mineral which favours the incorporation of other elements by distorting the mineral 

lattice (Mucci and Morse, 1983; Ohde and Kitano, 1984; Morse and Bender, 1990). 
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Sr/Ca ratios from biogenic carbonates have been proposed or used to obtain 

information on past seawater temperatures (Weber, 1973; Beck et al., 1992; 

Guilderson et al., 1994; Hughen et al., 1999; McCulloch et al., 1999; Rosenheim et 

al., 2004), but also on past ocean Sr/Ca ratios (Martin et al., 1999; Stoll et al., 1999). 

Nevertheless, in biogenic carbonates, kinetic effects are thought to strongly influence 

Sr incorporation in biogenic aragonite, where control by precipitation rate is not 

expected, such as in corals (e. g. de Villiers et al., 1995; Cohen et al., 2001) and 

bivalves (Takesue and van Geen, 2004; Gillikin et al., 2005b; Carre et al., 2006), but 

also in biogenic calcite such as foraminifera (Lea et al., 1999), coccoliths (Stoll and 

Schrag, 2000; Rickaby et al., 2002; Stoll et al., 2002a; Stoll et al., 2002b) and 

bivalves (Lorrain et al., 2005; Chapter 3). A positive temperature influence on Sr/Ca 

ratios of biogenic calcite also has been observed in foraminifera (Lea et al., 1999), 

coccoliths (Stoll et al., 2002a; Stoll et al., 2002b) and bivalves (Dodd, 1965; Lorrain 

et al., 2005; Chapter 3) but can be attributed to a kinetic influence and a co-variation 

between temperature and growth rates. 

In bivalve calcite, the mechanisms controlling Sr incorporation continue to be 

investigated and the matter of some debate, and both kinetic (Lorrain et al., 2005; 

Chapter 3) and metabolic (Klein et al., 1996b) effects have been proposed to 

influence Sr/Ca ratios, and a secondary influence of salinity also has been suggested 

(Klein et al., 1996b). However, while kinetic effects have been observed in the 

dependence of Sr/Ca ratios on shell growth rates (Lorrain et al., 2005; Chapter 3), the 

suggestion of a metabolic control of Sr/Ca ratios in bivalves has been derived from 

indirect evidence, rather than direct observation, gathered from the relationship of 

Sr/Ca ratios with 613C, as well as the intra- individual variability (fast growing 

sections relative to slow growing sections) of Sr/Ca ratios (Klein et al., 1996b). 

Furthermore, kinetic and metabolic effects on the elemental composition of biogenic 

carbonates are interlinked and are difficult, if not impossible to distinguish (e. g. de 

Villiers et al., 1995; Nurnberg et al., 1996a; Lea et al., 1999; Lea, 2003; Gillikin et 

al., 2005b; Carr & et al., 2006). 

To determine the influence of physiological controls on Sr/Ca ratios of bivalve 

calcite, two marine bivalve species, Mytilus edulis (blue mussel) and Pecten maximus 

(king scallop), were grown in a controlled laboratory aquarium culturing approach. 
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Animals were grown at five different, but constant, seawater temperatures over the 

range from 10 to 20 °C and under the same food regime. In addition, respiration and 

shell growth rates were decoupled from seawater temperature in an experiment with 
food regimes, but constant temperature. Furthermore, M. edulis specimens were 

grown in the field during one year to validate the results obtained from the laboratory 

culturing approach. Specifically, the aim was to investigate the role of temperature, 

shell growth rate, shell Mg content and metabolic activity in controlling shell Sr/Ca 

ratios of bivalve calcite. The purpose of this study was to advance the understanding 

of the physiological controls of Sr/Ca ratios in the calcite shells of the two bivalve 

species which have been proposed previously, as well as closely related taxa, as 

archives for palaeoceanographic studies (e. g. Krantz et al., 1988; Klein et al., 1996a; 

Hickson et al., 1999; Chauvaud et al., 2005; Gillikin et al., 2006a; Wanamaker et al., 
2007). 

5.3 Material and Methods 

5.3.1 Laboratory Culture Experiment 

Two species of marine bivalve mollusc were cultured in aquaria in the School of 
Ocean Sciences, University of Wales Bangor, U. K. Mytilus edulis specimens were 

collected in December 2003, from naturally settled spat (10 mm < size < 20 mm; age 

< one year) in Cable Bay, a site on the coast of Anglesey, northwest Wales, while 

Pecten maximus specimens (10 mm < size < 20 mm; age < one year) were collected 

from a commercial fishery, Ramsay Sound Shellfish, Isle of Skye, Scotland, in 

November, 2003. Once moved into the laboratory environment, all animals were 

acclimated at a temperature of -13°C for more than two months. Both water 
temperature and food availability were used to further investigate the control of 

growth rate on Sr/Ca ratios in these bivalves. Animals of similar size were moved 
into separate aquaria each under different but constant temperatures and controlled 
food and light conditions; the aquaria were routinely cleaned of all detritus. A mixed 

algae solution of Pavlova lutheri, Rhinomonas reticulata and Tetraselmis chui was 

collected every morning from stock cultures, split into equal volumes of eight litres 
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and then supplied to the aquaria, from containers with a drip-tap, throughout that day 

at rates of -5.5 ml/min. Because of the limited number of aquaria available, two 

separate temperature-controlled experiments were completed with three aquaria used 

in each. Clear temperature differences were maintained in the three different aquaria 

in each of the experiments. Aquaria mean seawater temperatures were 11.96 

±0.12°C, 15.61 ±0.12°C and 18.39 ±0.05°C during experiment one, and 10.76 

±0.41°C, 15.54 ±0.25°C and 20.23 ±0.22°C in 20°C aquarium during experiment 

two. The objective of the third experiment was to decouple respiration rate and shell 

growth rate from seawater temperature. In this experiment, temperature was similar 

in two aquaria (18.28°C ±0.10 in the low food aquarium and 18.01°C ±0.13 in the 

high food aquarium), but the amount of food was four times higher in one aquarium 

than in the other. 

Once the animals had acclimatised, individual specimens were temporarily removed 

from each aquarium at weekly intervals (with the exception of the last growth 

interval in experiment two, which was longer than a week for both the 15°C and 

20°C aquaria). During emersion Mytilus edulis specimens were exposed to the air for 

5 to 6 hours, while Pecten maximus specimens were kept in small holding tanks for 

periods of 30 to 45 minutes. Both methods resulted in emplacement of a disturbance 

mark on the surface of the shells. The shells then were photographed and digitally 

imaged using the AnalySIS software package. Subsequently, the term "growth 

interval" has been used to describe the time intervals between emersions of animals. 

The duration of the experiments, and hence the number of growth intervals, varied 

with species and aquarium temperature (for a detailed description, see Chapter 4). At 

the end of each experiment, the tissue was removed from the each shell, dried to 

constant weight and tissue dry weight measured. 

5.3.2 Field Culture Experiment 

Specimens of the bivalve Mytilus edulis were suspended Im below a moored raft in 

the Menai Strait (north Wales, U. K. ) from the 8th December 2004 to the 12th 

December 2005 (Figure 3-1, pp 71). The animals were all less than 1 year old when 

deployed, obtained from one spat cohort and initially ranged from 20 to 27 mm in 

shell length. The raft is moored in the close vicinity (ca. 500m) of the School of 
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Ocean Sciences, University of Wales Bangor in a section of the Menai Strait where 

the water column is homogenous with depth, due to strong turbulent tidal mixing 

(Harvey, 1968). Animals were followed for short, defined and consecutive growth 
intervals (N = 16) that together cover the duration of the entire field experiment. To 

ensure that specimens were adapted to field conditions in the beginning of each 

growth interval, animals were taken at the start of each growth interval from a stock 

of animals deployed in the beginning of the field experiment and kept in a separate 

cage. 

The duration of each growth interval varied during the experiment according to 

expected seasonal changes in shell growth rate and in seawater parameters. At the 

end of each growth interval, which also is the beginning of the next interval, 

specimens were removed from the raft together with a new set of stock specimens to 

be used during the next growth interval. Each time the Mytilus edulis specimens were 

exposed to the air for 5 to 6 hours resulting in emplacement of a disturbance mark on 

the surface of the shells. The shells then were photographed and digitally imaged 

using the AnalySIS software package. The animal tissue was removed from the shell, 

dried to constant weight and tissue dry weight determined. 

5.3.3 Shell Growth Rate Measurements 

The combination of disturbance marks and photographs was used to identify and 

measure all shell growth for each growth interval, as well as shell height (i. e. the 
distance from the umbo to the shell margin along the main axis of growth), and thus 

provide a time control of the new shell growth laid down throughout the laboratory 

and field experiments. Shell growth rates were calculated assuming shell growth rate 
(SGR, µm day") to be constant during each growth interval. Both in the laboratory 

and field experiments SGR was determined for all specimens, albeit in the former 

only for a sub-set of the growth intervals (Appendix 4). 

Shell growth rates (SGR), i. e. the daily linear increase in shell height, have been 

commonly used in bivalves as indicative of precipitation rate (Klein et al., 1996b; 

Purton et al., 1999; Gillikin et al., 2005b; Carre et al., 2006), which is known to 

strongly control the incorporation of Sr in synthetic calcite (Lorens, 1981 a; Pingitore, 
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1986; Morse and Bender, 1990; Tesoriero and Pankow, 1996; Gabitov and Watson, 

2006). Lorrain et al., (2005), however, found in Pecten maximus that the daily 

increase in shell surface area (DSAI) or shell weight (DSWI), estimated from strong 

morphometric relationships with shell height, represent best the amount of CaCO3 

precipitated in the shell and both their relationships with Sr/Ca ratios were stronger 

than SGR. Subsequently, a stronger relationship between Sr/Ca and DSAI has been 

also observed (Chapter 3), than with SGR in P. maximus. In the present study, DSAI 

was measured at each growth interval using the AnalySIS software package and 

DSWI was estimated using the same approach as Lorrain et al., (2005). However, no 
differences were found in the strength of the relationships between Sr/Ca and SGR, 

DSAI and DSWI in Mytilus edulis and P. maximus (Table 5-1) and thus only SGR 

has been used as indicative of shell precipitation rate. 

Table 5-1- Summary of correlations between Sr/Ca and shell growth rate (SGR - µm/day), daily 
shell area increment (DSAI - mm2/day) and daily shell weight increment (DSWI - µg/day) for all the 
experiments. 

Experiment SGR DSAI DSWI 
I2 r2 r2 

Temperature 
M. edulis 0.17 <0.001 - >0.05 0.21 <0.001 

P. maximus 0.24 <0.001 0.19 <0.001 0.30 <0.001 

Food 
M. edulis 0.57 <0.001 0.66 <0.001 0.40 <0.001 

P. maximus 0.10 0.012 0.14 0.006 - >0.05 

Field 
M. edulis 0.40 <0.001 0.38 <0.001 0.20 <0.001 

5.3.4 Respiration Rate Measurements 

The resting absolute respiration rate (ARR, mmolO2/h) of Mytilus edulis and Pecten 

maximus animals was measured in all specimens at the end of each experiment, and 
for field cultured M edulis in all short-deployment specimens at the end of each 

growth interval. Various methods exist to determine metabolic rate (also described as 

energy demand or turnover rate) in bivalves (De Zwaan and Mathieu, 1992), and in 

aerobic conditions the rate of oxygen consumption is an indirect measurement of 

metabolic rate, which can be obtained by converting the rate of oxygen consumption 
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to energy demand (Bayne and Newell, 1983). Individual animals were removed from 

the experiment aquaria and placed in a respirometry chamber with a volume of 100 

ml. The respirometry chamber consisted of a cylindrical transparent perspex 
apparatus of 10.5 cm diameter and 4.5 cm height, with a volume of 100 ml. 
Temperature in the respirometry chamber was kept at ±0.5°C from the individual 

experimental aquaria by a surrounding water jacket attached to a recirculating water 
bath. A groove at the base of the respirometry chamber accommodated a polythene- 

covered magnetic spin bar with a plastic mesh separating the groove from the 

remainder of the chamber and providing support for the animals. The respirometry 

chamber was placed on a magnetic stirrer set at the maximum speed that would 

minimise the diffusion boundary layer and guarantee a homogenous distribution of 
dissolved oxygen in the chamber without disturbing the animal. A complete seal in 

all apertures, including the lid, was ensured by rubber o-rings and all air bubbles 

were removed from the chamber using a third aperture that was subsequently closed 

with a plastic screw. A polarographic dissolved oxygen probe with automatic 
temperature compensation and a HiTemp temperature sensor probe (both DCP 

Microelements) were inserted through apertures in the lid of the chamber. The 

oxygen electrode contained an electrolyte solution (Strathkelvin Instruments) which 

was checked and changed before each batch of measurements. The oxygen and 

temperature probes were attached to a LogIT DataMeter 1000 (DCP Microelements) 

and logged in a computer using the DataLogging Insight software package. 

Calibration to 0 and 100% oxygen saturation was performed using 0.2 µm filtered 

and U. V. irradiated seawater (FSW) containing dissolved sodium dithionite for 0% 

saturation and air saturated FSW kept at measurement temperature in the water bath 
for 100% saturation. A control run was performed before each set of measurements 
to determine blank ARR and to ensure the respirometry chamber was free from 

significant bacterial contamination. Animals were placed in the chamber, the lid 

closed and the sensor probes inserted. Any air bubbles were removed and the animals 

allowed to settle in FSW close to oxygen saturation. After a period of stabilization, 
the decrease in oxygen saturation was measured for a period of 15 to 30 minutes 

depending on animal size and seawater temperature. The rate of decrease in oxygen 
saturation then was converted to the rate of oxygen consumption (mmolO2/h) by 

calculating the amount of oxygen in the chamber. The precision of replicate 
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measurements of ARR (N = 3) in Mytilus edulis specimens (N = 8), expressed as 

relative standard deviation or RSD, was better than 7%. However, the bivalve Pecten 

maximus is known to be an active swimmer, through clapping of the valves, usually 

to avoid predation and for habitat selection. The high activity levels of Pecten 

maximus animals in the respiration chamber prevented the accurate measurement of 

resting absolute respiration rate in this species. Replicate measurements of individual 

animals showed RSD higher than 50%. It was impossible, therefore, to measure 

accurately resting ARR in P. maximus. 

5.3.5 Shell Preparation and Milling 

Shell powder samples were taken from the new shell growth by milling to a depth of 

ca. 200 µm. Accurate milling was completed under a binocular microscope fitted 

with an eyepiece graticule, and depth and width of milling were controlled carefully. 
Each milled powder sample was taken from the main axis of shell growth: in Pecten 

maximus from the mid 2-3 axial ridges (ribs), and in Mytilus edulis from the middle 

section, to avoid the increase in shell curvature that occurs away from the main 

growth axis. In the laboratory experiment, only one powder sample was milled from 

each individual growth interval and, particularly at the lower temperatures, the milled 

powder from one or more growth intervals had to be combined to provide enough 

shell material for analysis. Whenever the amount of sample permitted, single milled 

powder samples were split into separate aliquots for elemental and stable-isotope 

ratio determinations (8180 values reported in chapter 4), otherwise only element/Ca 

ratios were measured. In the field experiment, shell powder samples were collected 
from two specimens for each growth interval. Whenever the amount of shell growth 

permitted more than one sample was collected from a single growth interval. In such 

occasions, the new shell growth was equally divided between the numbers of 

samples collected (2 SN <_4). Both for the laboratory and field experiment, shell 

preparation and sampling is described in more detail elsewhere (Chapters 4 and 6). 

5.3.6 Shell Stable-Isotope and Elemental Ratio Analyses 

The shell milled powder sample preparation and analytical methodologies used in 

this study are as described in detail in Chapter 2 and 3. Stable-isotope data are 
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reported in per mil (%o) deviations relative to VPDB and the overall analytical 

precision for shell 613C measurements based on analyses of an internal laboratory 

standard run concurrently with all Mytilus edulis and Pecten maximus samples 

analysed in this study is 0.08 %o (1 v; N= 32). 

Table 5-2- Comparison of expected (Greaves et al., 2005) with measured Sr/Ca ratios for three 
certified reference material (CRMs) solutions. 

CRM solution This 
BAM-RS3 0.19 0.20: L 0.02 (N = 9) 
ECRM-752 0.20 0.19 ± 0.01 (N = 13) 
CMSI-1767 - 1.54±0.01 (N= 11) 

The values in the third column are those returned from the University of Wales Bangor as part of an ongoing international inter-laboratory 

comparison exercise, with the replicates representing six separate dissolutions of each CRM (I ml of each solution was centrifuged for 10 minutes 

at -6000 rpm and ca. 0.75 ml from each solution then diluted to final solution Ca concentrations of 60 pg/ml). By comparison. the replicates 

reported for this study in the fourth column are repeated measurements of a single dissolution completed for each CRM and diluted to Ca 

concentrations of 60 pg/ml. All measurements were made on the same Perkin Elmer Optima 3300RL ICP-AES instrument. 

Calibration for Sr/Ca ratio determinations was performed via an established ICP- 

AES intensity-ratio method (de Villiers et al., 2002), using synthetic standard 

solutions in the range 1.0-1.8 mmol/mol for Sr/Ca, and most at Ca concentrations of 

50 and 60 pg/ml. The smallest milled powder samples were analysed at 30 µg/ml- 

Measurements were made using the Perkin Elmer Optima 3300RL ICP-AES 

instrument housed at the NERC ICP Facility, Royal Holloway University of London. 

Instrumental drift was monitored by running an intermediate (1.5 mmol/mol) 

calibration standard every 5 to 10 samples and data then were corrected accordingly. 

Analytical precision (expressed as relative standard deviation or RSD) was 0.8 % for 

the laboratory experiments (N = 11) and 0.3 % for the field experiment (N = 29). In 

the laboratory experiments, sufficient material was not available from any one 

growth interval to enable replicate analyses for an assessment of true sample 

precision; in the field experiment, however, sample precision was 1.3 % RSD for 

replicate measurements (N = 3) of the same milled powder samples obtained from 

five Mytilus edulis specimens. For comparison with past and future datasets, Sr/Ca 

ratio measurements also are reported for three solutions (BAM-RS3, ECRM-752 and 

CMSI-1767) that have been proposed as certified reference materials (CRMs) for 

Sr/Ca ratio measurements in carbonates (Greaves et al., 2005) and that are subject to 

an ongoing international inter-laboratory calibration study (Table 5-2). The linearity 

of the intensity-ratio calibration lines, combined with the independent assessment of 
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the accuracy of the analytical procedure (see also chapters 2 and 3), confirms the 

veracity of the M. edulis and Pecten maximus Sr/Ca ratios obtained in this study. 

5.4 Results 

5.4.1 Shell Sr/Ca Records 

In the laboratory temperature experiments, measured shell Sr/Ca ratios range from 

1.18 to 1.76 mmol/mol in Mytilus edulis, and for Pecten maximus shell Sr/Ca ratios 

range from 1.38 to 1.76 mmol/mol during experiment two only (Figure 5-1). In the 

laboratory food regime experiment, M. edulis shell Sr/Ca ratios range from 1.01 to 

1.29 mmol/mol in the low food aquarium and from 1.36 to 1.87 mmol/mol in the 

high food aquarium (Figure 5-la). In P. maximus shell Sr/Ca ratios range from 1.42 

to 1.73 mmol/mol in the low food aquarium and from 1.46 to 1.78 mmol/mol in the 

high food aquarium (Figure 5-1b). In the field experiment, M. edulis shell Sr/Ca 

ratios range from 0.82 to 1.23 mmol/mol. 

No single parameter controlled shell Sr/Ca ratios in both species. In the laboratory 

temperature and field experiments, shell Sr/Ca ratios in both species were 

significantly correlated to Mg/Ca, salinity, shell growth rate, 613C ratios and to ARR 

in Mytilus edulis only (Tables 5-1 and 5-3). 

Table 5-3- Summary of correlations between Sr/Ca and other parameters for all the experiments. 

Experiment Mg/Ca Temperature Salinity Vic ARR 
r2 rZ r, rz rz 

Temperature 
M. edulis 0.10 <0.001 - >0.05 0.16 <0.001 0.34 <0.001 0.59 <0.001 

P. maximus 0.45 <0.001 0.18 <0.001 0.29 <0.001 0.53 <0.001 -- 

Food 
M. edulis 0.32 <0.001 -- - >0.05 0.84 <0.001 0.36 <0.001 

P. maximus 0.15 0.002 -- - >0.05 0.55 0.006 -- 

Field 
M. edulis 0.28 <0.001 0.52 <0.001 0.28 <0.001 0.50 <0.001 0.58 <0.001 
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Figure 5-1- Shell Sr/Ca samples plotted against animal number for each aquarium (temperature in 
brackets) in order to illustrate inter- and infra-individual shell variability of Sr/Ca ratios in a) Mytilus 
edulis and b) Pecten maximus. For each animal, individual data points correspond to Sr/Ca ratios of 
new shell growth deposited in the experiment during different growth intervals. For comparison, twice 
the analytical error (± 0.01 mmol/mol) also is shown. 

5.4.2 Shell Growth Rate Records 

In the laboratory temperature experiments Mytilus edulis shell growth rates (SGR) 

vary from 29 to 284 µm/day in M. edulis during experiments one and two, while for 

Pecten maximus SGR range from 33 to 394 µm/day during experiment two (Figure 

5-2). In the laboratory food regime experiment, M. edulis SGR range from 21 to 48 

pm/day in the low food aquarium and from 27 to 225 pm/day in the high food 

aquarium (Figure 5-2). In P. maximus SGR ranges from 32 to 138 µm/day in the low 

food aquarium and from 41 to 180 µm/day in the high food aquarium (Figure 5-2). In 

M. edulis and P. maximus, SGR was significantly lower in the low food aquarium 

relative to the high food aquarium (t-test, p<0.001 and p=0.004, respectively). In 

the field experiment, M. edulis specimens SGR range from 19 to 347 pm/day (Figure 

5-2). 
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Figure 5-2- Shell Sr/Ca ratios plotted against shell growth rates from a) Mytilus edulis (Laboratory 
and Field experiments) and b) Pecten maximus (Laboratory experiments, only). 

Shell growth rate values observed both in the laboratory and field experiments are 

within the range of shell growth rates (0 to 350-400 gm/day) reported for Mytilus 

edulis (Bayne and Worral, 1980; Hillbish, 1986) and Pecten maximus of similar age 

from non-manipulated populations (Chauvaud et al., 1998a; Lorrain et al., 2000; 

Chauvaud et at., 2005; Lorrain et at., 2005) 

No single parameter showed a dominant control of SGR of both species. Seawater 

temperature was found to be significantly correlated to Mytilus edulis and Pecten 

maximus SGR, albeit weakly in the former, in the laboratory temperature 

experiments (r2 = 0.15, p<0.00 1 and r2 = 0.62, p<0.00 1, respectively), as well as in 
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the field experiment in M edulis (r2 = 0.43, p<0.001). In addition, in M. edulis only, 
SGR was significantly correlated with ARR, albeit weakly in the laboratory 

temperature and food experiments (r2 = 0.32, p=0.001 and r2 = 0.14, p=0.004, 

respectively), but stronger in the field experiment (r2 = 0.58, p=0.001). 

5.4.3 Shell 5'3C Records 

In the laboratory temperature experiments, Mytilus edulis shell 813C ratios range 
from -1.9 to -0.6 %o during experiments one and two, while for P. maximus shell 

613C ratios range from 0.0 to 1.2 %o during experiment two (Figure 5-3). During 

experiment two, when the two species were grown together in the same aquaria, shell 

mean 813C ratios were significantly lower (t-test, p<0.001) in M. edulis than in P. 

maximus (Figure 5-3). In the laboratory food regime experiment, M edulis shell 813C 

ratios range from -0.7 to -0.1 %o in the low food aquarium and from -1.8 to -0.8 %o in 

the high food aquarium; whereas in P. maximus shell 813C ratios range from -0.2 to 

0.3 %o in the low food aquarium and from -0.3 to 0.1 %o in the high food aquarium 
(Figure 5-3). In the field experiment, M edulis shell 513C ratios range from -2.5 to - 
0.2 %o (Figure 5-3). 
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In Mytilus edulis and Pecten maximus, shell mean 813C were higher (t-test, p<0.001 

and p=0.032, respectively) in the low food aquarium relative to the high food 

aquarium, i. e. strong metabolic influence in the high food aquarium in both species. 
Nevertheless, in the present study the metabolic control of 813C ratios was species 

specific, and the incorporation of carbon with a metabolic origin was larger in M. 

edulis than in P. maximus, i. e. when both species where grown side-by-side in the 

same aquaria and under the same food regime during experiments two and three, 

shell 813C ratios were significantly lower in the former than in the latter species (t- 

test, p<0.001). 

5.4.4 Respiration Rate Records 

In the laboratory temperature experiments, Mytilus edulis ARR range from 0.006 to 

0.023 mmolO2 h4 in experiments one and two (Figure 5-4). In the laboratory food 

regime experiment, M edulis ARR ranges from 0.004 to 0.010 mmolO2 h"1 in the 

low food aquarium and from 0.005 to 0.024 mmolO2 h'1 in the high food aquarium 

(Figure 5-4). In the field experiment, M. edulis ARR range from 0.033 to 0.442 

mmo1O2 h"1 (Figure 5-4). 

Mytilus edulis resting respiration rate is known to depend on temperature and animal 

size (e. g. Bayne and Newell, 1983). In the laboratory temperature, however, ARR 

was not significantly correlated to seawater temperature (p > 0.05), but in the field 

experiment, ARR was significantly correlated to seawater temperature (r2 = 0.67, p< 

0.001). Animal size strongly influenced ARR in all experiments, as indicated by the 

significant positive correlations between ARR and shell height and tissue dry weight 

observed in the laboratory temperature (r2 = 0.71, p<0.001 and r2 = 0.71, p<0.001, 

respectively), in the food regime experiment (r2 = 0.74, p<0.001 and r2 = 0.88, p< 
0.001, respectively) and in the field experiment (r2 = 0.36, p<0.001 and r2 = 0.46, p 

< 0.001, respectively). 
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Figure 5-4- Shell Sr/Ca ratios from Mytilus edulis (Laboratory and Field experiments) and Pecten 
maximus (Laboratory experiments, only) plotted against absolute respiration rate (ARR, mmol02/h). 
Note that ARR from laboratory and field grown M. edulis are plotted in different axis. 

5.4.5 Relationships of Shell Sr/Ca Ratios with Metabolic Activity Related 

Parameters: Absolute Respiration Rates and Shell 6 13C Ratios 

In Mytilus edulis, shell Sr/Ca ratios were significantly correlated to ARR in all 

experiments, while in both species shell Sr/Ca ratios were significantly correlated to 

shell 613C ratios (Table 5-3). In addition, in the laboratory food regime experiment, 

shell mean Sr/Ca ratios of both species were also significantly lower in (t-test, p< 

0.001) in the low food and low metabolic activity aquarium compared to the high 

food and high metabolic activity aquarium. In both species, therefore, shell Sr/Ca 

ratios were influenced by metabolic activity. In the laboratory food regime 

experiment, SGR and metabolic activity (measured by ARR) were dissociated from 

its temperature dependence. Indeed, Mytilus edulis mean SGR and ARR were lower 
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(t-test, p<0.001) in the low food aquarium relative to the high food aquarium. 

Metabolic activity of M. edulis animals was thus significantly higher in the high food 

aquarium than in the lower food aquarium. 
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Figure 5-5- Absolute respiration rate (ARR, mmol02/h) of Mytilus edulis from both laboratory and 
field experiments plotted against shell 613C (%o) ratios. Note that ARR from laboratory and field 
grown M edulis are plotted in different axis. 

In Mytilus edulis, SGR also explains a significant proportion of the variability of 

Sr/Ca ratios in the laboratory food and field experiments (Table 5-1). In contrast to 

previous observations in bivalves (Lewis and Cerrato, 1997), SGR and ARR were 

only weakly correlated or only strongly correlated in the field experiment (r2 = 0.58, 

p=0.001). However, such correlations can be attributed to co-variation of both SGR 

and ARR with seawater temperature (rz = 0.43, p<0.001 and r2 = 0.67, p<0.001, 

respectively). 
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In Mytilus edulis, ARR and shell 613C ratios were significantly inversely correlated 

in all experiments (Figure 5-5), supporting the use of shell 613C ratios as reflecting 

metabolic activity: in the laboratory temperature experiment (r2 = 0.57, p=0.012), in 

the laboratory food regime experiment (r2 = 0.57, p=0.001) and in the field 

experiment (r2 = 0.58, p<0.001). 

5.5 Discussion 

In bivalve calcite, the mechanisms controlling trace element incorporation continue 

to be investigated and the matter of some debate, with both kinetic (Vander Putten et 

al., 2000; Lorrain et al., 2005; Chapter 3) and metabolic (Klein et al., 1996b) controls 

thought to influence bivalve calcite Sr/Ca ratios. Shell Mg content has been also 

observed to influence shell Sr/Ca ratios in Pecten maximus (Chapter 3). However, 

shell Mg content was not a major control of shell Sr/Ca ratios in the present study 

(Table 5-3). 

5.5.1 Physiological Controls of Shell Sr/Ca Ratios 

Kinetic controls of Sr incorporation in bivalve calcite have been hypothesized to 

control shell Sr/Ca ratios of Mytilus edulis (Vander Putten et al., 2000), but a strong 

dependence of bivalve calcite Sr/Ca ratios on SGR, indicating the presence of a 

strong kinetic control, has only been observed recently in Pecten maximus (Lorrain et 

al., 2005). In addition, SGR has been observed to exert a strong control on the shell 

Sr/Ca ratios of the aragonitic bivalves Saxidomus giganteus (Gillikin et al., 2005b) 

and Mesodesma donacium and Chione subrugosa (Carr6 et al., 2006). 

In Pecten maximus, shell Sr/Ca ratios have been found to be strongly correlated with 

the daily increment in shell area (DSAI) and shell weight (DSWI), thought to 

represent better the increase in shell CaC03 deposited than SGR (Lorrain et al., 

2005). However, no differences were found in the strength of the relationships 

between Sr/Ca and SGR, DSAI and DSWI in Mytilus edulis and P. maximus (Table 

5-1) and thus only SGR has been used as indicative of shell precipitation rate and the 
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presence of kinetic effects. In this study, shell Sr/Ca ratios of P. maximus were 

significantly, albeit weakly correlated with SGR, which therefore can only explain a 

small proportion of the observed variability in shell Sr/Ca ratios (Figure 5-2 and 
Table 5-1), and such kinetic influence is weaker than previously reported (Lorrain et 

al., 2005; Chapter 3). Nevertheless, in M. edulis SGR still explains a significant 

proportion of the variability of Sr/Ca ratios from animals grown in the laboratory 

food experiment and field experiment (Table 5-1). However, it is unclear if the 

kinetic control of Sr incorporation in shell calcite occurs at the crystal-solution 
interface or during transport of Sr from the surrounding medium to the extra-pallial 

space as proposed by Carre et al., (2006). 

In bivalve calcite, metabolic effects have been suggested to strongly control shell 

Sr/Ca ratios (Klein et al., 1996b). However, contrary to Mg (Rosenberg and Hughes, 

1991), the suggestion of a metabolic control of Sr/Ca ratios in bivalve calcite has 

been derived from indirect evidence, rather than direct observation. Regarding Sr, the 

relationship of Sr/Ca ratios with 613C, as well as the intra- individual variability (fast 

growing sections relative to slow growing sections) of Sr/Ca ratios have supported 

the suggestion of a strong metabolic control of shell Sr/Ca ratios in the calcite of 

Mytilus trossulus (Klein et al., 1996b). 

Direct evidence for the influence of metabolic activity on bivalve shell Sr/Ca ratios 

was observed for the first time in Mytilus edulis grown both in the laboratory and 

field experiments. Shell Sr/Ca ratios were significantly positive correlated with 

absolute resting respiration rate (ARR) (Figure 5-4 and Table 5-3), a measure of 

metabolic rate (Bayne and Newell, 1983). Furthermore, in M. edulis grown at the 

same temperature, shell Sr/Ca ratios were significantly higher in specimens kept at a 
higher metabolic activity (i. e. higher ARR) than in those kept at a lower metabolic 

activity (Figure 5-4). In M. edulis, Rosenberg and Hughes (1991) observed that intra- 

shell variations of Mg content along the shell edge are linked to local variations in 

the metabolic activity of the adjacent mantle, and higher Mg content was associated 

with higher mantle metabolic activity. The metabolic control of shell Sr/Ca ratios 

reported here for M. edulis, however, reflects the influence of the animal's total 

metabolic activity on the Sr content of a defined shell region along the main axis of 

shell growth, the area of the shell with the least curvature. 
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In addition, the significant relationship between Sr/Ca and 613C ratios, which reflect 

metabolic activity due to the incorporation of respired carbon in the shell carbonate 

(Tanaka et al., 1986; Klein et al., 1996b; Kennedy et al., 2001; Owen et al., 2002b; 

Lorrain et al., 2004; Gillikin et al., 2006b; Gillikin et al., 2007) and were 

significantly correlated with ARR (Figure 5-5), further supports a metabolic control 

of shell Sr/Ca in Mytilus edulis animals grown in both the laboratory and the field 

conditions, but also in P. maximus animals grown in the laboratory only (Figure 5-3 

and Table 5-3). 

In Mytilus edulis, however, the influence of metabolic activity on shell Sr/Ca ratios 

differed between laboratory and field grown M. edulis (Figure 5-4), i. e. the slopes 

from the linear regressions of ARR and Sr/Ca are significantly different (ANOVA, F 

= 52.6, p<0.001). Respiration rate of M. edulis is strongly dependent on animal size 

(Bayne and Newell, 1983), particularly in the laboratory experiment (section 5.3.4), 

and thus differences in the size attained may explain the observed differences in the 

range of ARR values between laboratory and field grown animals (Figure 5-6). 

However, a general difference in the metabolic activity between M. edulis animals 

grown in the laboratory and field conditions is further supported by a difference in 

the relationship between shell height and ARR, i. e. for the same shell height ARR 

were lower in laboratory relative to field grown animals (Figure 5-6). Differences in 

food supply, as well as in water flow, most likely cause animals grown in the 

laboratory or in the field to be in a different physiological condition (Bayne and 
Worral, 1980) and may explain the observed differences in metabolic activity 

between the laboratory and field experiments. 
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Figure 5-6- Absolute respiration rate (ARR, mmolO2/h) of Mytilus edulis from both laboratory and 
field experiments plotted against: a) shell growth rate (SGR, um/day) and b) shell height (mm). Note 
that ARR from laboratory and field grown M. edulis are plotted in different axis. 
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shell Sr/Ca ratios are clearly associated with metabolic activity (i. e. ARR and 613C), 

previously published calcite Sr/Ca and 613C ratios data of Pecten maximus (Chapter 

3), Mytilus trossulus (Klein et al., 1996b) and Pinna nobilis (Chapter 2), as well as of 

the aragonitic bivalves Mercenaria mercenaria and Saxidomus giganteus (Gillikin et 

al., 2005b) show contrasting results (Figure 5-3). In the aragonitic bivalves 

Mercenaria mercenaria and Saxidomus giganteus, shell Sr/Ca and 613C ratios were 

uncorrelated (Gillikin et al., 2005b). In Mytilus trossulus, a close relative of M. 

edulis, shell Sr/Ca ratios of two specimens were found to be either positive 

correlated, albeit weakly (r2 = 032, p=0.003), or uncorrelated with shell 613C ratios 

(Klein et al., 1996b). However, both shell Sr/Ca and 613C ratios were significantly 

correlated with salinity (Klein et al., 1996b), particularly shell 613C ratios (r2 = 0.85, 

p<0.001), suggesting shell 613C ratios may reflect changes in seawater 613C of 

dissolved inorganic carbon rather than an influence of metabolic activity. In field 

grown P. maximus specimens (Chapter 3) and in field collected specimens of Pinna 

nobilis (Chapter 2), however, significant relationships (r2 = 0.29 p<0.001 and r2 = 

0.44, p<0.001, respectively) were observed between Sr/Ca ratios and 613C ratios 

(Figure 5-3), suggesting a possible metabolic control of Sr/Ca ratios in these two 

bivalve species. 

5.5.2 What Controls Shell Sr/Ca ratios in Mytilus edulis and Pecten maximus? 

At present, three different models have been proposed to describe kinetic (Gillikin et 

al., 2005b; Carre et al., 2006) and metabolic controls of bivalve shell Sr/Ca ratios 
(Klein et al., 1996b). 

In Mytilus trossulus, Sr2+ incorporation in shell calcite was proposed to be modulated 

by metabolic efficiency in the mantle epithelium, where increased metabolic 

pumping of Ca2+ relative to Sr2+ would cause lower Sr/Ca ratios and lower 613C 

(Klein et al., 1996b). Gillikin et al., (2005b), however, has shown the metabolic 

pumping model of Klein et al. (1996) to be flawed in assuming a positive 

relationship between Sr/Ca ratios and 613C in bivalves, which is the opposite of what 

was observed in the present study and other studies (Gillikin et al., 2005b; Chapter 

2), and on the basis of current knowledge of calcification, particularly on the 

151 



Chapter 5 Sr/Ca in M. edulis and P. maximus 

incapacity of Cat+-ATPase to sustain a high enough transport of Ca2+ to the site of 

calcification at high precipitation rates (Cohen and McConnaughey, 2003). 

Gillikin et al. (2005) suggested that increased activity of Cat+-ATPase, an enzyme 
involved in the transport of Ca2+ to the site of calcification (Cohen and 
McConnaughey, 2003), at higher metabolic activity increases calcification rate and 

should decrease Sr/Ca ratios by increasing Ca2+ pumping disproportional to Sr2+, due 

to the higher affinity of Ca2+ -ATPase for Cat+. However, this implies that Sr/Ca 

ratios and shell growth rates should be inversely correlated, which is the opposite of 

what is observed in bivalves (Klein et al., 1996b; Gillikin et al., 2005b; Lorrain et al., 

2005; Carre et al., 2006). Gillikin et al., (2005b), suggested that increased Sr/Ca 

ratios in the central extra-pallial fluid (EPF) during periods of rapid shell growth 

(Wada and Fujinuki, 1976), if valid for the marginal EPF, could explain the 

relationship between shell Sr/Ca ratios and calcification rate. 

Recently, Carre et al., (2006) proposed a new model for control of Sr/Ca ratios that 

explains the unexpected (Zhong and Mucci, 1989) positive relationship between 

Sr/Ca and SGR observed in aragonite bivalves (Stecher et al., 1996; Takesue and van 

Geen, 2004; Gillikin et al., 2005b), as well as in the calcite from Mytilus trossulus 

(Klein et al., 1996b) and Pecten maximus (Lorrain et al., 2005; Chapter 3). Carre et 

al., (2006) argue that the two proposed pathways for Ca2+ transport through the 

calcifying mantle (Wheeler, 1992; Klein et al., 1996b), a diffusive inter-cellular 

pathway and an active intra-cellular pathway based on Ca2+ -ATPase (Cohen and 

McConnaughey, 2003; Gillikin et al., 2005b), cannot support the Ca2+ flux necessary 

for biomineralization. According to these authors most Ca2+ transport must be intra- 

cellular to avoid ionic deregulation of the internal medium, but Ca2+ -ATPase cannot 

account for the Ca2+ flux necessary to sustain mineralization. Carre et al., (2006) thus 

propose an alternative intra-cellular pathway based on ionic calcium channels, which 

are widespread in biological tissues, are ion selective and can support very high ionic 

fluxes. In such a model, high calcification rates change the electrochemical potential 

driving ions through the channel and decrease the ion selectivity of calcium channels 

leading to an increase in the transport of Sr to the EPF, and ultimately to higher shell 

Sr/Ca ratios. 
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Gillikin et al., (2005b) and Carre et al., (2006) models thus are based on kinetic 

effects due to transport across biological membranes that are driven by shell growth 

rate. However, such growth rate based models cannot explain Sr/Ca variations in 

shells with stable growth rate or in very slow growing species that may not involve 

Cat+-channels in ionic transport (Carre et al., 2006). Furthermore, Gillikin et al., 

(2005b) and Carre et al., (2006) models are not necessary to explain the observed 

dependence of shell Sr/Ca ratios on SGR in calcite, which are known from 

experimentally precipitated inorganic calcite to be precipitation rate dependent 

(Lorens, 1981a; Morse and Bender, 1990; Tesoriero and Pankow, 1996), a 

dependence that can occur at the crystal-solution interface (Reeder and Paquette, 

1989; Paquette and Reeder, 1995; Wasylenki et al., 2005b). 

The present study supports Gillikin et al., (2005b) view on the Klein et al., (1996b) 

model, by showing an inverse relationship between shell Sr/Ca and 613C ratios in 

Mytilus edulis and Pecten maximus, but it does not support, however, the view that 

shell Sr/Ca ratios are controlled by the activity of Cat+-ATPase since this would 

cause an inverse relationship between Sr/Ca ratios and SGR, which is the opposite of 

what was observed. Furthermore, it is clear that no generalization can be made 

regarding the relationship between shell Sr/Ca and 613C ratios in bivalves, which can 
be absent (Gillikin et al., 2005b; this study), inverse (Chapter 2 and 3, this study) or 

even positive (Klein et al., 1996b). The observation that SGR and ARR are unrelated 
in M. edulis, suggests that the model of Carr6 et al., (2006) is not valid for this 

species, i. e. that high metabolic activity would drive calcification rate and thus lower 

the ion selectivity of the proposed Ca channel transport pathway and favour Sr2+ 

transport over Ca 2+ to the EPF. In Mytilus edulis, therefore, shell Sr/Ca ratios were 

found to be under a joint, but distinct, control by SGR and ARR. Such observation 

suggests that the influence SGR and ARR on shell Sr/Ca ratios acts through different 

mechanisms, the former most likely at the crystal-solution interface and the latter 

through Srz+ transport to the EPF. 
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5.6 Summary 

To determine the physiological controls on Sr/Ca ratios in bivalve calcite, Mytilus 

edulis and Pecten maximus specimens were grown in laboratory and field (M. edulis 

only) culturing experiments. The well-defined chronology of newly deposited shell 

growth allowed to accurately determine the influence of seawater temperature, shell 

Mg content, shell growth rates and metabolic activity on the shell Sr/Ca ratios. 

Seawater temperature was clearly not a significant control of bivalve calcite Sr/Ca 

ratios, while shell growth rate was found to exert a significant influence on shell 

Sr/Ca ratios of M. edulis, but only a weak influence on shell Sr/Ca ratios of P. 

maximus. The positive relationship observed between absolute respiration rate and 

Sr/Ca in M. edulis grown in the laboratory and field culturing experiments provides 

the first direct evidence of the influence of metabolic activity on bivalve calcite 

Sr/Ca ratios. Further support for a metabolic control of shell Sr/Ca ratios also comes 
from the significant inverse relationship between shell Sr/Ca and 613C ratios in M. 

edulis, P. maximus and Pinna nobilis. However, such metabolic control of Sr/Ca 

ratios cannot be applied to bivalves in general. 

In Mytilus edulis, shell Sr/Ca ratios were found to be under a joint control, albeit 

unrelated, by precipitation rate (i. e. SGR) and metabolic activity (i. e. ARR) that most 

likely acts through different mechanisms, the former at the crystal-solution interface 

and the latter through Sr2+ transport to the EPF. In addition, high metabolic activity is 

suggested to increase both the transport of Sr2+ and low S13C metabolic carbon into 

the EPF, ultimately resulting in higher shell Sr/Ca ratios as well as lower shell 613C 

ratios. Further research into the relationship between metabolic activity and shell 

Sr/Ca ratios is needed to fully understand the mechanisms of metabolic control of Sr 

incorporation in bivalve shells. 
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VI - An examination of potential controls 

on shell Mn/Ca ratios in the calcite of the 

bivalve Mytilus edulis 

6.1 Abstract 

The Mn/Ca ratios in the calcite of marine bivalves have been suggested to reflect 

both the dissolved and/or particulate Mn concentrations of seawater. However, a 

clear understanding of what controls shell Mn/Ca ratios is still lacking and a clear 

quantitative relationship between dissolved and/or particulate Mn and shell Mn/Ca 

ratios in either calcitic or aragonitic molluscs must be established and validated 

before any application of a bivalve Mn/Ca palaeoproxy. To study the influence of 

seawater dissolved and particulate Mn concentrations on bivalve shell calcite Mn/Ca 

ratios, Mytilus edulis specimens were grown in a field experiment in the Menai 

Strait, U. K., for a one-year period. A single maximum (0.54 µmol/1) during spring 
dominated the annual variation of seawater dissolved Mn concentrations, while 

seawater particulate Mn concentration was highest (up to 0.18 11mol/1) during autumn 

and winter, although smaller increases in particulate Mn during the phytoplankton 

spring bloom were also observed. In M. edulis, shell Mn/Ca ratios of newly 

precipitated calcite showed a double-peak annual variation with maximum values (up 

to 0.19 mmol/mol) during early spring and early summer. None of the two maximum 

of shell Mn/Ca ratios can be explained by an increase in either seawater dissolved or 

particulate Mn concentrations. Shell Mn/Ca ratios thus were not controlled by 

dissolved or particulate Mn concentrations. In M. edulis, the double-peak seasonal 

variation of shell Mn/Ca ratios was remarkably similar to the seasonal variation of 

shell growth rates. The influence of shell growth rate on shell Mn/Ca ratios is the 

opposite of the inverse relationship observed unequivocally between precipitation 

rate and Mn partition coefficient in synthetic inorganic calcite, and thus must reflect 

a physiological influence on shell Mn content. It is suggested the latter most likely 

acts through an increase in the transport of Mn into the extra-pallial fluid, raising its 

Mn content, and ultimately causing higher shell Mn/Ca ratios. The use of Mn content 
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from marine bivalve shell calcite as a proxy for the dissolved and/or particulate Mn 

concentrations, and thus the biogeochemical processes that control them, is unlikely 

until such physiological controls are better understood and eventually compensated 

for. 

6.2 Introduction 

Marine bivalves are widely distributed throughout the oceans, from the tropics to the 

polar regions and from coastal estuarine waters to the deep ocean, displaying a range 

of growth rates and longevity. The shells of marine bivalves are deposited 

incrementally and the elemental and isotopic composition of their shell changes in 

response to variations in the environment in which they live. Hence marine bivalve 

shells have the potential to record high-resolution time-series of the environmental 

conditions in which the organism grew, such as temperature (e. g., Williams et al., 

1982; Klein et al., 1996a; e. g., Kennedy et al., 2001; Elliot et al., 2003; Schoene et 

al., 2003; Schoene et al., 2004; Chauvaud et al., 2005), salinity (Ingram et al., 1996b; 

Klein et al., 1996b) and trace-element concentration (Fuge et al., 1993; Raith et al., 

1996; Stecher et al., 1996; Price and Pearce, 1997; Vander Putten et al., 2000; 

Richardson, 2001; Gillikin et al., 2005a; Gillikin et al., 2006a; Pearce and Mann, 

2006). The incorporation of manganese in riverine and marine calcitic and aragonitic 

bivalve shells has been suggested as a possible proxy for either dissolved or 

particulate manganese (Lindh et al., 1988; Jeffree et al., 1995; Vander Putten et al., 

2000; Markich et al., 2002; Lazareth et al., 2003; Freitas et al., 2006; Langlet et al., 

2006; Langlet et al., 2007). 

The dominant factor that affects the aquatic geochemistry of Mn is the change in 

oxidation state between two oxidation states, the soluble Mn 2+ ion and the insoluble 

Mn4+ ion (e. g. Burton and Statham, 1988), which undergo transformations between 

the dissolved and particulate phases mainly in response to changes in pH and redox 

conditions (e. g. Glasby and Schulz, 1999 and references therein). The rate of 

dissolved Mn oxidation is slow and so it may persist for some time in the water 

column (Wilson, 1980). Dissolved Mn2+ can be removed from solution by oxidation 
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to Mn4+ in insoluble manganese oxides through abiogenic oxidation (e. g. Bruland, 

1983), photo-oxidation (Nico et al., 2002), as well as by uptake into, or oxide 

precipitation onto surfaces of bacteria (Emerson et al., 1982; Sunda and Huntsman, 

1985; Sunda and Huntsman, 1987) and phytoplankton (Richardson et al., 1988; 

Lubbers et al., 1990; Richardson and Stolzenbach, 1995; Schoemann et al., 1998; 

Roitz et al., 2002). Dissolved Mn sources include release via bacterial reduction of 

Mn-oxides (Klinkhammer and McManus, 2001) and photo-reduction of Mn-oxides, 

but mainly from freshwater inputs and benthic fluxes when bacterial remineralisation 

of organic matter exhausts dissolved oxygen in the sediment pore waters and 

alternative oxidants such as Mn oxides are used (Burton and Statham, 1988; Burdige, 

1993; Laslett, 1995; Tappin et al., 1995; Millward et al., 1998; Burnett et al., 2003). 

Benthic fluxes of Mn2+ to the water column are enhanced in the warmer summer 

months, when biological activity is increased and oxygen concentrations are 

generally lower (Hunt, 1983; Sundby et al., 1986; Dehairs et al., 1989; Berelson et 

al., 2003). Particularly, the seasonal inputs of organic material (e. g. phytoplankton- 

derived) in coastal areas have been shown to be associated with the release of Mn" 

from surface sediments to the water column (Sundby et al., 1981; Hunt, 1983; 

Sundby et al., 1986; Dehairs et al., 1989; Thamdrup et al., 1994; Slomp et al., 1997; 

Millward et al., 1998; Hall et al., 1999). 

The biogeochemical cycle of Mn in marine and estuarine waters is associated with 

numerous elements (such as carbon, sulphur, phosphorus and several trace elements), 

organic matter and redox conditions, and thus Mn may play an important role in 

tracing the biogeochemical cycles of many elements, as well as the response of 

coastal systems to seasonal and long term eutrophication (e. g. Murray, 1975; 

Turekian, 1977; Balistrieri and Murray, 1986; Hunt and Kelly, 1988; Burdige, 1993). 

For instance, the hydroxides of Mn act as efficient scavengers of other metals (e. g. 

Glasby, 1984) and when Mn remobilisation occurs in sub-oxic sediments, metals 

associated with the Mn-oxyhydroxide coatings may also be released (e. g. Duinker et 

al., 1982). If a consistent relationship can be established between the Mn content of 

biogenic calcites and the dissolved and/or particulate Mn concentrations of seawater, 

the Mn/Ca ratios of marine calcifying organisms potentially can provide a proxy for 

dissolved and particulate Mn concentrations and thus for those redox processes that 

can control the concentration of this element in seawater. 
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In inorganic calcite, manganese has been shown to substitute for calcium in the 

crystal lattice, and to be incorporated into the calcite mineral by the formation of a 

dilute solid solution of MnCO3 in CaCO3 (Pedersen and Price, 1982; Pingitore et al., 

1988). In inorganic calcite, precipitation rate also has been shown to influence the 

incorporation of Mn2+, and Mn concentration in calcite was found to be to be 

inversely correlated to the rate of precipitation (Lorens, 1981a; Mucci, 1988; 

Pingitore et al., 1988; Dromgoole and Walter, 1990). In addition, the composition of 

the precipitation solution has been found to influence the partition of Mn in calcites 

precipitated from artificial seawater, probably due to the effect of Mg2+ ion present in 

seawater (Franklin and Morse, 1983; Mucci, 1988). The effect of temperature on the 

incorporation of Mn in synthethic calcites is still controversial with studies reporting 

both positive and inverse relationships, although in calcite deposited from synthetic 

solutions under controlled precipitation rates, the positive temperature effect was of 

similar magnitude to the effect of precipitation rate (Dromgoole and Walter, 1990). 

The manganese content of bivalve shells is seen as a potential record of ambient Mn 

concentrations. In particular, the aragonitic shells of freshwater unionoid bivalves 

have been shown to be valid archives of dissolved Mn levels associated with riverine 

anthropogenic inputs (Lindh et al., 1988; Jeffree et al., 1995; Markich et al., 2002), 

but also of both dissolved and biogenic particulate Mn concentrations associated with 

lacustrine upwelling and related changes in productivity (Langlet et al., 2007). In the 

calcite of marine bivalves, investigations relating shell Mn/Ca ratios to 

environmental variables have led to the suggestion of a possible control of shell 

Mn/Ca ratios by particulate and/or dissolved Mn (Vander Putten et al., 2000; 

Lazareth et al., 2003; Freitas et al., 2006; Langlet et al., 2006) concentrations. 

Elevated shell Mn/Ca ratios have been suggested to be related to spring bloom- 

induced increases in particulate and/or dissolved Mn in the bivalve Mytilus edulis 

(Vander Putten et al., 2000), or to increased riverine discharge events and associated 

increases in particulate and/or dissolved Mn in the tropical mangrove bivalve 

Isognomon ephippium (Lazareth et al., 2003). The seasonal variation of Mn/Ca ratios 

in the calcitic Pecten maximus in the Menai Strait, U. K. (chapter 3), has been shown 

to follow a similar trend to dissolved Mn described previously at the same location 

(Morris, 1974). The source of the seasonal signal in the water and hence the record in 

the shell was suggested to be due to benthic recycling. Langlet et al. (2006), by 
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repeatedly marking animals of the oyster Cassostrea gigas in seawater with 

artificially elevated dissolved Mn concentrations, produced the first direct evidence 
for the rapid uptake of dissolved Mn2+ into the calcite of bivalve shells. These studies 

demonstrate the potential of Mn/Ca ratios archived in bivalve shells as a bio-monitor 

for anthropogenic inputs and as record of dissolved and/or particulate Mn 

concentrations from both freshwater and marine environments. But despite these 

encouraging results a clear understanding of what controls shell Mn/Ca ratios, i. e. 

dissolved and/or particulate Mn concentrations, is still lacking. In addition, a clear 

quantitative relationship between dissolved and/or particulate Mn and shell Mn/Ca 

ratio in either calcitic or aragonitic molluscs must be established and validated before 

any application of a bivalve Mn/Ca palaeoproxy. 

It is apparent, despite a wide range of studies, that little or no clear understanding of 

the effects and interplay that environmental conditions and physiological processes 

have on the incorporation of Mn in bivalve shells has been obtained. In this study, 

the relationship between dissolved and particulate Mn 2+ concentrations and shell 
Mn/Ca ratios in bivalve calcite has been assessed. Specimens of the blue mussel, 

Mytilus edulis, were grown in a field experiment for a one-year period. The 

constrained chronology of new shell growth obtained has allowed completion of a 

reliable comparison between shell Mn/Ca ratios and measurements of 

contemporaneous seawater dissolved and particulate Mn concentrations, shell growth 

rate and other relevant environmental variables. This dataset also has enabled the 

additional consideration of the significance of shell growth rate effects on shell 

Mn/Ca ratios. Such an approach develops further a reliable evaluation of the use Mn 

content from marine bivalve shells as a proxy for dissolved or particulate Mn 

concentrations. 

6.3 Material and Methods 

6.3.1 Field Culturing Experiment 
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Specimens of the bivalve Mytilus edulis were suspended 1 metre below a moored raft 

in the Menai Strait (Figure 3-1, pp 71) from the 8th December 2004 to the 12th 

December 2005. The animals were all less than 1 year old when deployed, obtained 

from one spat cohort and initially ranged from 20 to 27 mm in shell length. This raft 

is moored in the close vicinity (ca. 500 m) of the School of Ocean Sciences, 

University of Wales Bangor in a section of the Menai Strait where the water column 

is completely mixed, due to strong turbulent tidal mixing (Harvey, 1968). Animals 

were deployed in mesh cages and each shell was identified by a mark hand drilled on 

its surface. Two different, but parallel, experimental approaches were taken: 1) 

Short-deployment specimens were placed into cages for 16 short, well-defined and 

consecutive growth intervals that together covered the duration of the entire field 

experiment. The duration of each growth interval varied during the experiment 

according to expected seasonal changes in shell growth rate and in seawater 

parameters, particularly in dissolved Mn2' concentration; 2) In contrast to the short- 

deployment specimens, annual-deployment specimens were placed in the field for 

the entire duration of the experiment. To ensure that short-deployment specimens 

were in the same physiological condition as their annual-deployment counterparts, 

and to avoid the inevitable period of acclimation if animals were deployed directly 

from laboratory conditions, short-deployment specimens were taken at the start of 

each growth interval from a stock of animals maintained in the Menai Strait from the 

beginning of the experiment and kept under the same conditions, but located in a 

separate cage. 

At the end of each growth interval, all short-deployment specimens and all annual- 

deployment specimens, were removed from the raft, together with a new set of short- 

deployment specimens taken from the stock that were to be used during the next 

growth interval deployment. All of these shells then were photographed and digitally 

imaged using the AnalySIS software package. During this manipulation, Mytilus 

edulis specimens were exposed to the air for 5 to 6 hours resulting in emplacement of 

a disturbance mark on the surface of the shells. The combination of disturbance 

marks and photographs was used to identify and measure all shell growth for each 

growth interval, as well as shell height (i. e. the distance from the umbo to the shell 

margin along the main axis of growth). The data provide a time control of the new 

shell growth laid down throughout the field experiment by assuming shell growth 
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rate to be constant during each growth intervals. Furthermore, the known 

deployment and retrieval times of the M edulis specimens thus have allowed for 

direct comparison of shell Mn/Ca ratios with contemporaneous measurements of 

seawater parameters. At the end of each growth interval, the tissue was removed 

from each shorth-deployment specimen, dried to constant weight at 60°C and tissue 

dry weight measured. 

6.3.2 Seawater Temperature, Salinity, Chlorophyll-a and Nutrient Concentrations, 
Particulate and Dissolved Mn + Measurements 

For the duration of the field experiment the following key seawater parameters were 

measured every two to five weeks (Figures 6-2 and 6-3; Appendix 5): seawater 

temperature, salinity, nutrient concentration (nitrate and nitrite, phosphate and 

silicate), chlorophyll-a and total particulate and dissolved Mn2+ concentration. 

Seawater temperature was monitored every two hours throughout the experimental 

deployment period using submerged temperature loggers placed in the mesh cages 

containing the animals (Gemini Data Loggers TinyTag - TGI 3080; accuracy of ± 

0.2°C). Surface seawater samples for measurement of salinity were collected, in the 

vicinity of the moored raft, using sealed salinity Winchester glass bottles. Salinity 

was determined using an AutoSal 8400 Autosalinometer calibrated with International 

Association for Physical Sciences of the Ocean (I. A. P. S. O. ) standard seawater 

(analytical accuracy and resolution of ± 0.003 equivalent PSU). For chlorophyll-a, a 

separate surface seawater sample and back at the laboratory agitated to ensure 

homogeneity and then filtered (500-1000 ml) through Whatman GF/C filters of 47 

mm diameter (nominal pore size 1.2 µm and frozen for storage. Subsequently, 

samples were defrosted and chlorophyll-a extracted for 18 hours at 4°C with 90% 

acetone and measured using a Turner Design 10-AU fluorometer calibrated against a 

chlorophyll-a standard (method adapted from (Parsons et al., 1984). The filtrate from 

the chlorophyll-a samples was collected in 30 ml clean polythene bottles and kept 

frozen until subsequent determination of the major dissolved inorganic nutrients. 

Nitrate plus nitrite (hereafter, nitrate), dissolved inorganic phosphorus (DIP) and 

silicic acid, were determined using standard colourimetric methodology (Grasshof et 

al., 1983), as adapted for flow injection analysis (FIA), on a LACHAT Instruments 

Quick-Chem 8000 autoanalyzer (Hales et al., 2004). 
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Particulate Mn was determined following a method adapted from Millward et al., 

(1998). Samples were collected from the same container used for chlorophyll-a 

sampling and then filtered (120-650 ml) through 0.4 µm polycarbonate filters of 47 

mm diameter, which were mounted in clean glass filter holders, washed with milli-Q 

water and frozen for storage in clean individual petri dishes. After thawing, the filter 

and the particulate matter were digested in clean centrifuge tubes for 10 hours at 

room temperature using 1.5 ml of 1M HCl (Aristar). This fraction of the particulate 

Mn represents easily reducible Mn oxides and does not include the Mn in detrital 

mineral grains. Following digestion, the sample was centrifuged for one hour to 

settle the undissolved material and 1 ml of the supernatant diluted between 50 to 400 

times depending on Mn concentration. The Mn concentration in the digest solutions 

was analysed using a Varian Instruments 220Z Zeeman graphite furnace atomic 

absorption spectrometer with Zeeman background correction calibrated with 

synthetic solutions made up in 1M HCL (Mn concentration range 0-15 pg 1''). 

Procedure blanks were prepared likewise by leaching blank filters. Replicate 

measurements of a particulate Mn sample run concurrently with the samples (2.62 ± 

0.10 µg 1'1; N= 16) returned an analytical precision of 3.8 % (RSD), while 

measurements of replicate particulate Mn samples (2.47 ± 0.09 µg 1'1; N= 6) showed 

a best sample precision of 3.5 % (RSD). 

Samples of surface seawater also were collected for the determination of dissolved 

Mn2+ using 100 ml polythene syringes. These samples were filtered in-situ through 

an in-line syringe and 0.4 µm polycarbonate filters. The filtrate was collected into a 
30-mL HDPE bottle, after discarding the first 10 ml aliquot, and then frozen on 

return to the laboratory until analysis. Samples were analysed for dissolved Mn 

concentration using a Varian Instruments 220Z Zeeman graphite furnace atomic 

absorption spectrometer with Zeeman background correction using a method adapted 
from Su and Huang (1998). A chemical modifier, Pd(N03)2, was added to the 

samples and standards at a concentration of 2000 µg/m1 to overcome matrix 
interferences. Calibration was achieved by standard additions (total Mn 

concentration range 0.9-30.9 gg 1") using 0.2 . tm filtered and ultraviolet irradiated 

Menai Strait seawater. Certified reference seawater (CASS-4, National Research 

Council, Canada) was analysed with each batch of samples to validate the accuracy 
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of the dissolved Mn measurements. Replicate measurements of CASS-4 (2.91 ± 0.11 

µg 1"1; N= 24) returned a recovery of 104.5 % relative to the certified Mn 

concentration value (2.78 ± 0.19 µg 1-1) and an analytical precision of 4.6 % (RSD), 

while replicate measurements (N = 3) of two seawater samples showed a best sample 

precision of 8.8 % (RSD). 

6.3.3 Shell Preparation and Milling 

The left hand valve of Mytilus edulis shells from the short and annual deployments 

were cleaned with a brush and the outer organic periostracum was milled away with 

the drill until periostracum-free shell was visible in the entire sampling area. Two 

short specimens were sampled for each growth interval, while three annual 

specimens were sequentially sampled for all growth intervals. Shell powder samples 

were taken from the new shell growth by milling to a depth of ca. 200 µm using a 0.4 

mm wide steel carbide burr (Minerva Dental Ltd) attached to a hand-held dental drill. 

Accurate milling was completed under a binocular microscope fitted with an 

eyepiece graticule, and depth and width of milling were controlled carefully. Each 

milled powder sample was taken from the main axis of shell growth to avoid the 

increase in shell curvature that occurs away from the main growth axis. Whenever 

the amount of shell growth permitted more than one sample was collected from a 

single growth interval. On such occasions the new shell growth was equally divided 

between the number of samples collected (2: 5 N: 5 4). 
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Figure 6-I- Variation of seawater temperature, salinity, chlorophyll-a concentration, and nutrient 
concentrations (dissolved inorganic phosphate, nitrate + nitrite and silicic acid) measured in surface 
waters of the Menai Strait from December 2004 to December 2005. 
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Figure 6-2- Variation of dissolved and particulate Mn concentrations measured in surface waters of 
the Menai Strait from December 2004 to December 2005. 

6.3.4 Shell Mn/Ca Ratio Analyses 

Calibration for Mn/Ca ratio determinations was performed via an established ICP- 

AES intensity-ratio method (de Villiers et al., 2002), using synthetic standard 

solutions in the range 0.03-0.30 mmol/mol for Mn/Ca ratios at Ca concentrations of 
60 pg/ml. Sample preparation is described in detail elsewhere (Chapters 2 and 3) 

Measurements were made using the Perkin Elmer Optima 3300RL ICP-AES 

instrument housed at the NERC ICP Facility, Royal Holloway University of London. 

Instrumental drift was monitored by running an intermediate (0.1 mmol/mol) 

calibration standard every 10 samples and data then were corrected accordingly. 

Analytical precision (expressed as relative standard deviation or RSD; N= 33) was 
4.0 % for Mn/Ca ratios, while replicate measurements of the same milled powder 

samples obtained from four Mytilus edulis specimens showed a precision better than 

7.5 % RSD. For comparison with future datasets, Mn/Ca ratio measurements are 

reported (Table 6-1)for three solutions (BAM-RS3, ECRM-752 and CMSI-1767) 

that have been proposed as certified reference materials (CRMs) for measurement of 

element/Ca ratios in carbonates (Greaves et al., 2005). 
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Table 6- 1- Measured Mn/Ca ratios for three certified reference material (CRMs) solutions (Greaves 
et al., 2005). 

CRM solution This study 
BAM-RS3 0.011 ± 0.003 (N = 8) 
ECRM-752 0.141 ± 0.003 (N = 8) 
CMSI-1767 0.075 ± 0.002 (N = 8) 

The replicates reported for this study are repeated measurements of a single dissolution completed for each CRM and diluted to Ca concentrations 

of 60 µg/ml. All measurements were made on the same Perkin Elmer Optima 3300RL ICRAES instrument. 

6.4 Results 

6.4.1 Seawater Temperature, Salinity, Nutrient and Chlorophyll-a Concentrations 
in the Menai Strait 

Seawater temperature exhibited a clear seasonal pattern (Figure 6-1). Seawater 

temperature decreased from ca. 10.0°C in December 2004 to a minimum temperature 

of ca. 5.0°C in the end of February, followed by a rise to ca. 9.5°C during mid 

March-late April (from day 105 to 140) and then a further rise up to a maximum 

temperature of ca. 19.0°C in early-mid July (ca. day 225). From that time to early 

September (ca. day 280) seawater temperature remained high at ca. 18.0°C, before it 

decreased to ca. 9.0°C in December 2005. Salinity in the Menai Strait also exhibited 

variation throughout the experimental period (Figure 6-1), with maxima of 33.3 and 

33.6 in January and July, respectively, while salinity minima of 31.1 and 31.6 

occurred in March-April and November-December, respectively. 

During the experimental period, chlorophyll-a increased from pre-spring bloom 

values of ca. 1.2 µg 1', after the end of April 2005 (ca. day 150), and reached a 

maximum of 19.5 µg 1'' in May 2005 (day 178) (Figure 6-1). There was a rapid 

decrease in nutrient concentrations in early April, while no increase in chlorophyll-a 

concentrations were observed until late April. The broad maxima in chlorophyll 
(with a double maximum on days 160 and 178) existed for over a4 week period 

from the end of April (day 150) through the beginning of June (day 185 (Figure 6-1), 

which itself, was concurrent with the minima in nitrate, silicate and phosphate 

(Figure 6-1). Chlorophyll-a concentration then returned to pre-bloom values in July 

(Figure 6-1). 
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6 4.2 Dissolved and Particulate Mn 2+ concentrations in the Menai Strait 

Dissolved Mn2+ concentrations were <0.06 µmol I-' from December 2004 until the 

beginning of May 2005 (day 155), when values increased rapidly to a maximum of 

up to 0.54 µmol l"', during the period between the end of May (day 160) and mid June 

(day 200). Dissolved Mn" concentrations then decreased to values of ca. 0.18 µmol I- 

' by early July (day 213) and at a slower rate of decrease to values of ca. 0.09 gmol 1'' 

by early October (day 315). From October to December 2005 dissolved Mn2+ 

concentrations remained low and similar to values measured in the last months of 

2004 and first months of 2005. The marked annual variation in dissolved Mn was 

somewhat similar to chlorophyll-a concentrations in terms of the occurrence of a 
broad double maxima concentrations (Figures 6-2 and 6-3), albeit with the maximum 

concentrations being observed later than the maximum in chlorophyll-a. 

Particulate Mn concentrations showed a marked annual variation with two distinct 

broad maxima from 0.18 to 0.14 gmol C` during January-March and October- 

November 2005, respectively. Two smaller, but still distinct particulate Mn maxima 

(0.11 µmol 1'' on day 160 and 0.08 µmol 1"' on day 175) occurred in May 2005 

concurrent with the spring bloom double maximum in chlorophyll-a concentrations 

(Figures 6-2 and 6-3). Lower particulate Mn concentrations of 0.01 to 0.11 µmol 1'' 

occurred from April to September 2005 (Figure 6-2). 

6.4.3 Shell Growth Rates and Tissue Dry Weights 

Shell growth rates (SGR) exhibited two distinctive growth maxima in late April (ca. 

day 140) and mid-late June (ca. day 200) (Figure 6-3). Growth rates increased from 

the lowest values of ca. 20 µm/day in December 2004 to the early maxima of up to 

204 pm/day in April 2005 (ca. day 140). Shell growth rates then decreased to a 

minima of 50-100 gm. /day in mid May (ca. day 160), before a sharp increase to 

maximum values of up to 381 gm/day by mid June (ca. day 200). Shell growth rates 

then decreased to 44-109 4m/day in December 2005. The annual variation of SGR 
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of different animals, and also of short- and annual- deployment specimens, is similar 

during the experiment (Figure 6-3), and mean annual SGR were not significantly 

different (t-test, p>0.05) between individuals. Nevertheless, at any given time 

differences in SGR occur between individual individuals. For instance, from August 

onwards SGR were higher in the short-deployment than in the annual-deployment 

specimens, while in the two SGR maxima, SGR of individual animals range from 

137 to 204 µm/day in the April maximum and from 250 to 381 pm/day in the June 

maximum (Figure 6-3). 

Tissue dry weight of short-deployment specimens only, increased steadily in early 

April 2005 (ca. day 125) from the lowest values of < 0.1 g in the winter months from 

December 2004 to March 2005 towards maximum values from late July to October 

2005, after which tissue dry weight values were highly variable (Figure 6-3). 

6 4.4 Shell Mn/Ca Records 

In both short- and annual-deployment specimens, shell Mn/Ca ratios showed a 

double-peak variation that was similar in timing to the maxima in SGR (Figure 6-2). 

Shell Mn/Ca ratios increased from low values of 0.02-0.06 mmol/mol during winter 
(December 2004-March 2005) to first maxima of 0.09-0.17 in late April (ca. day 

140), before decreasing to minima of 0.03 to 0.04 mmol/mol in the end of May (ca. 

day 175). Second maxima in Mn/Ca ratios, of up to 0.19 mmol/mol, occurred during 

June (ca. day 190). After June, shell Mn/Ca ratios decreased to values below ca. 0.04 

until December 2005. Mean annual shell Mn/Ca ratios were significantly different 

between short- and annual- deployment specimens (t-test, p=0.008), but there were 

no significant differences between the three annual specimens (t-test, p>0.05). Shell 

Mn/Ca ratios were significantly correlated, albeit weakly, to SGR in both short- (r2 = 

0.34, p<0.001) and annual-deplyment specimens (r2 = 0.13, p<0.001), as well as to 

dissolved Mn2+ concentration in both short- (r2 = 0.34, p<0.001) and annual- 

deployment specimens (r2 = 0.38, p<0.001). 
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Figure 6-3- Variation of shell growth rates, tissue dry weight (short-deployment specimens only) 
and shell Mn/Ca ratios of Mytilus edulis specimens grown in the Menai Strait from December 2004 to 
December 2005. 
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Chapter 6 

6.5 Discussion 

Mn/Ca ratios in field grown M. edulis 

6.5.1 Variation of Dissolved and Particulate Mn Concentrations in the Menai 

Strait: The influence of Biogeochemical Processes 

In the Menai Strait (Morris, 1971), as in other coastal locations (Morris, 1971; 

Davidson and Marchant, 1987; Richardson et al., 1988; Lubbers et al., 1990; 

Richardson and Stolzenbach, 1995; Schoemann et al., 1998; Roitz et al., 2002), 

dissolved and particulate Mn concentrations during spring are closely associated with 

phytoplankton blooms. Increased particulate Mn concentrations have been observed 

at or after the peak of the phytoplankton bloom (Morris, 1971; Schoemann et al., 

1998). Two clear particulate Mn maxima (0.11 pmol 1 on day 160 and 0.08 pmol 1" 

on day 175) were observed concurrently with the spring bloom double maximum in 

chlorophyll-a concentrations, but preceding maximum dissolved Mn concentrations 

(Figures 6-2 and 6-3). A similar sequence of concurrent maxima in particulate Mn 

and chlorophyll-a, which coincide with a minimum in dissolved Mn that then 

increases, also was observed on day 234 (Figures 6-2 and 6-3). Increased dissolved 

Mn concentrations are often observed to occur after the peak of primary production, 

when chlorophyll-a concentration is decreasing and heterotrophic activity is high 

(Schoemann et al., 1998), Maximum dissolved Mn concentrations followed the onset 

of the spring bloom, as defined by an increase in chlorophyll-a and occurred 

approximately at the time of the expected increase in heterotrophic activity in the 

Menai Strait (Figures 6-2 and 6-3), which lags by one to two weeks the Phaeocystis 

and chlorophyll-a bundance maxima (Blight et al., 1995). In the Menai Strait and in 

the coastal waters of the North Sea (Morris, 1971; Lubbers et al., 1990; Schoemann 

et al., 1998), Mn surface adsorption to Phaeocystis bladder colonies and diatoms is 

thought to be an important mechanism by which particulate Mn levels may increase 

during bloom conditions, while sedimentation and degradation of decaying colonies 

causes the slow decrease in particulate Mn levels (Morris, 1971) that followed each 

of the two particulate Mn maxima (Figure 6-2, days 160 and 175). 
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Release of dissolved Mn will occur during decomposition of phytoplankton derived 

organic material in the sediment (Morris, 1971; Sundby et al., 1981; Hunt, 1983; 

Sundby et al., 1986; Dehairs et al., 1989; Thamdrup et al., 1994; Slomp et al., 1997; 

Schoemann et at., 1998), in sub-oxic micro-environments within suspended 

aggregates (Klinkhammer and McManus, 2001) and associated to high heterotrophic 

acitivity (Schoemann et al., 1998), Some of the dissolved Mn will then adsorb or 

precipitate to suspended particulate material, while the remainder will stay in 

solution in the water column (Schoemann et al., 1998). The latter will contribute to 

the observed post-bloom increase in dissolved Mn concentrations (Figures 6-2 and 6- 

3). The balance between the sedimentary/reductive sinks and the phytoplankton 

uptake/adsorption sources, most likely will control the variation in particulate Mn 

concentrations during the summer (Figure 6-2). The decrease in heterotrophic 

activity over the summer, associated with the exhaustion of the phytoplankton bloom 

derived organic matter, would result in the observed decrease in dissolved Mn 

concentrations during the summer, while particulate Mn concentrations subsequently 

increased to a autumn and winter maxima (Figure 6-2). In the coastal waters of the 

North Sea German Bight, a winter maximum in particulate Mn concentration has 

been shown to be associated with Mn poor particles but a high suspended particulate 

matter (SPM) load (Dellwig et al., 2007). In addition, in the Humber and the Thames 

estuaries higher particulate Mn concentration during winter have been attributed to 

minimal biogenic production and higher sediment resuspension by seasonally- 

elevated wind speeds and larger swell (Turner and Millward, 2000). In the Menai 

Strait, suspended particulate matter is dominated by inorganic terrigenous particles 

(Kratzer et al., 2000), varies seasonally with lower values in the summer and higher 

values in winter, and has been suggested to respond to long-term variations in wind- 

forcing (Kratzer et at., 2003), In addition, the number of days with gales and the 

monthly mean wind speed from the Valley weather station, within ca. 25 km from 

the Menai Straits, show a marked seasonal variation with higher values in winter and 

lower values in summer (www. metoffice. gov. uk/climate/uk/location/wales. winds 

/html and ' www. llansadwrn-wx. co. uk/w graphs05. html), Consequently, the autumn 

and winter maxima of particulate Mn in the Menai Strait during 2005 most likely 

result from higher SPM concentrations relative to the spring and summer. 
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Nevertheless, the influence of freshwater inputs of dissolved Mn, which can be 

significant in the coastal waters of the Irish Sea (Laslett, 1995) and North Sea (e. g. 

Dellwig et al., 2007), cannot be discarded. Furthermore, the marked seasonal 

variation of dissolved Mn in the Menai Strait during 1969 and 1970 was suggested 

not to be related with the spring bloom or particulate Mn concentration maxima 

(Morris, 1974), both of which it preceded, but to an increase during spring in the 

release of Mn from the sediments of the Menai Strait (Morris, 1974). 

6.5.2 Shell Mn/Ca ratios in Mytilus edulis Controlled by Dissolved or Particulate 

Mn? 

There is no clear consensus from the literature of whether dissolved or particulate 
Mn controls the Mn/Ca ratio in bivalve carbonate (Lindh et al., 1988; Jeffree et al., 

1995; Vander Putten et al., 2000; Markich et al., 2002; Lazareth et al., 2003; Langlet 

et al., 2006; Langlet et al., 2007), and the relative importance of dissolved and 

particulate seawater Mn as sources of Mn to the shells of marine bivalves remains 

largely unknown. A significant correlation (0.58 < r2 < 0.72, p<0.001) between 

seawater temperature and shell Mn content has been was observed by Langlet et at., 

(2006), in agreement with the observations for synthetic inorganic calcite 

(Dromgoole and Walter, 1990). However, in this study the Mytilus edulis shell 

Mn/Ca ratios were not significantly correlated to temperature (p > 0.05). 

For the Mytilus edulis shells investigated in this study, a simple relationship between 

shell Mn/Ca ratios and dissolved and/or particulate Mn concentrations has not been 

observed. In multiple specimens of M edulis, Mn/Ca ratios above 0.04 mmol/mol 

occurred as two clear peaks, the first between day 100 and 175 and the second 

between day 175 and 225 (Figure 6-3). By comparison, in the water column, the 

highest particulate Mn concentrations were observed over the winter periods between 

days 25 to 125 and day 315 to 365 (Figure 6-2), while the peak in dissolved Mn 

occurred between day 160 and 270 (Figure 6-2). Thus there is no overlap between 

timing of the particulate Mn and Mn/Ca maxima, but there was an overlap between 

the dissolved Mn and the second of the Mn/Ca maxima. 
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Notwithstanding this overlap, the documented maximum in dissolved Mn preceded, 
by ca. two weeks, the second of the two peaks in Mytilus edulis shell Mn/Ca ratios 
(Figures 6-3 and 6-4). A lag of a few days has been observed between the response 

of shell calcite Mn contents to an experimentally induced increase in ambient Mn 

concentrations in the freshwater bivalve Hyridella depressa (Jeffree et al., 1995), but 

a lag of less than 24h has been observed in the marine bivalve Cassostrea edulis 

(Langlet et al., 2006), Therefore, it would be reasonable to expect the occurrence of a 

similar duration lag in the field experiment. Thus neither maximum in shell Mn/Ca 

ratios can be explained by an increase in dissolved Mn. For the first Mn/Ca peak 

there was no preceding or concurrent increase in dissolved Mn and for the 2"d Mn/Ca 

maxima the increase in shell Mn concentrations occurred too long after the observed 

peak in dissolved Mn concentrations. 

Outside the period of the autumn and winter particulate Mn maxima, there are 

smaller increases in particulate Mn during the phytoplankton spring bloom 

chlorophyll-a maximum on day 160 and day 175. In this study a lag of ca. 30 days 

occurred between the last of the two spring-bloom particulate Mn maxima, at the end 

of May, and the second peak in shell Mn/Ca in the middle of June. A longer lag 

period for the incorporation of particulate Mn than dissolved Mn may be appropriate 

as particles have to be ingested and then transported through the animals' body prior 

to incorporation into the shell. As for dissolved Mn, there was no preceding or 

concurrent increase in particulate Mn that could account for the first Mn/Ca peak. 

Thus, in Mytilus edulis shell Mn/Ca ratios do not appear to be under the sole 

influence of either dissolved and/or particulate Mn concentrations. 

6.5.3 Shell Growth Rates and Mn/Ca ratios in Mytilus edulis: A Physiological 

Control? 

In this study, there is evidence for a physiological influence on shell Mn/Ca ratios 

due to the significant relationship with shell growth rates (SGR; r2 = 0.34 in short- 

deployment specimens and r2 = 0.13 in annual-deployment specimens; p<0.001 for 

all). Such a relationship is weak and thus can only explain a small proportion of the 

total variability in shell Mn/Ca ratios. However, the support for a physiological 
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influence on Mytilus edulis shell Mn content comes from the remarkable similarity in 

the seasonal variation of shell Mn/Ca ratios and SGR (Figure 6-3). 

The two distinct SGR peaks most likely were driven by different processes: 1) the 

early peak fuelled by an increase in seawater temperature and probably fuelled by 

energy reserves, since no relevant changes in phytoplankton biomass (from 

chlorophyll-a measurements) were observed at that time (Figure 6-1); 2) The second 

peak in SGR was most likely fuelled by an increased food supply following the 

spring bloom. The reduction in SGR during May, i. e. between the two reduction in 

SGR is not accompanied by a decrease in tissue dry weight, which increased steadily 
from March until September-October (Figure 6-2), suggesting that during that time 

energy use was focused on tissue growth, most likely gametogenesis and spawning 
(Seed and Suchanek, 1992), and thus diverted away from shell growth. Nevertheless, 

whatever the reasons for the observed seasonal changes in SGR in this study, shell 
Mn/Ca ratios and SGR varied synchronously, with two marked peaks evident in both 

records during early spring (March-early May) and early summer (late May-June). 

If it is assumed that a positive relationship between shell Mn/Ca ratios and SGR 

relates to mineral precipitation rate during shell calcification, then the above 
described relationship is the opposite of the inverse relationship observed 

unequivocally between precipitation rate and Mn partition coefficient in synthetic 

inorganic calcite (Lorens, 1981a; Mucci, 1988; Pingitore et al., 1988; Dromgoole and 

Walter, 1990). Therefore, the significant positive relationship observed between SGR 

and shell Mn/Ca ratios in Mytilus edulis, cannot be indicative of a precipitation rate 

control but must reflect one or more physiological processes. 

Wada and Fujinaki, (1976) found that Mn/Ca ratios in the shell-forming fluid (the 

extra-pallial fluid or EPF) of the central extra-pallial space (the space between the 

mantle and the inner shell surface or EPS) of four marine bivalve species was higher 

during periods of increased growth than in periods of reduced growth. Further 

evidence for a physiological control on the Mn content in the EPF of bivalves, albeit 
in freshwater species (Pietrzak et al., 1976), are the observations that the Mn 

concentrations in the EPF of unionid bivalves are maintained within a narrow range 
(from 0.05 to 0.09 µmol 1't) independently of the external Mn concentration (from ca. 
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0 to 0.85 µmol 1"1). If such observations are applicable to the marginal EPF, where 

shell deposition in the shell margin occurs and which is separated from the central 

EPF by the attachment of the mantle to the inner shell surface along the pallial line, 

one logical hypothesis to explain the data obtained in this study is that SGR 

influences the concentration of Mn in the EPF, i. e. high rates of shell deposition 

would cause an increase in the transport of Mn into the EPF, raising its Mn content, 

and ultimately causing higher shell Mn/Ca ratios. Furthermore, only a small fraction 

of the Mn in the EPF of Mytilus edulis is present as free ionic Mn, with the 

remainder bound with organic molecules (Misogianes and Chasteen, 1979), which 

most likely repsesents a physiological control on the activity of Mn in the EPF. 

In Mytilus edulis, Mn/Ca ratios of shell calcite were not controlled by either 

dissolved or particulate seawater Mn concentrations, but were under the control of 

one or more physiological processes that most likely act through an increase in the 

transport of Mn into the extra-pallial fluid. The use of Mn content from marine 

bivalve shell calcite as a proxy for the dissolved and/or particulate Mn 

concentrations, and thus the biogeochemical processes that control them, is thus 

unlikely until such physiological controls are better understood and eventually 

compensated for. 

6.6 Summary 

In Mytilus edulis, grown in a field culturing experiment in the Menai Strait for one 

year, shell Mn/Ca ratios were found not to be influenced by dissolved or particulate 

Mn concentrations. Shell Mn/Ca ratios of M. edulis specimens showed a double-peak 

variation with maximum values during early spring and early summer, while only a 

single maximum dominated the annual variation of dissolved Mn. Particulate Mn 

was highest throughout autumn and winter and was at minima at the time of the two 

spring shell Mn/Ca maxima. Support for a physiological influence on M. edulis shell 

Mn content comes from the remarkable similarity in the double-peak seasonal 

variation of both shell Mn/Ca ratios and shell growth rates. However, such an 

observation is the opposite of the inverse relationship observed unequivocally 
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between precipitation rate and Mn partition coefficient in synthetic inorganic calcite. 
It is suggested that the influence of shell growth rate on shell Mn/Ca ratios must 

reflect a physiological influence most likely acting through an increase in the 

transport of Mn into the extra-pallial fluid, raising its Mn content, and ultimately 

causing higher shell Mn/Ca ratios. 
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VII - Ion microprobe assessment of the 

heterogeneity of Mg/Ca, Sr/Ca and 

Mn/Ca ratios in Pecten maximus and 

Mytilus edulis (bivalvia) shell calcite 

precipitated at constant temperature 

7.1 Abstract 

Small-scale heterogeneity of biogenic carbonate elemental composition can be a 

significant source of error in the precise and accurate use of elemental/Ca ratios as 

geochemical palaeoenvironmental proxies. In this study, ion microprobe (secondary 

ionisation mass spectrometry; SIMS) has been used to obtain high-spatial resolution 

Mg/Ca, Sr/Ca and Mn/Ca ratio profiles through new shell calcite, from single 

structural layers, of the marine bivalves Pecten maximus (king scallop) and Mytilus 

edulis (blue mussel). For both mollusc species the new shell calcite was precipitated 

at a constant temperature of ca. 20°C in a laboratory aquaria culturing experiment. In 

the P. maximus shell Mg/Ca, Sr/Ca and Mn/Ca ratios varied consistently between 

SIMS profiles, from the outer to the inner shell surfaces, with: an outermost shell of 

highest and most variable element/Ca ratios and a mid region to innermost shell with 

lower and rather invariant Mg/Ca ratios, whereas Sr/Ca and Mn/Ca ratios were 

lowest in the mid region but higher closer to the innermost shell. In the M. edulis 

shell, Mg/Ca, Sr/Ca and Mn/Ca ratios also were more spatially variable than in P. 

maximus, but varied over a smaller range of values. The M. edulis new shell growth 

also exhibited different Mg/Ca and Sr/Ca ratios within individual growth increments 

deposited contemporaneously but at different locations within the shell. In addition, 

elevated Mg/Ca, Sr/Ca and Mn/Ca ratios are associated with the deposition of 

elaborate shell features, i. e. a shell surface stria in P. maximus; surface shell 
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disturbance marks in both species also perturb shell Mg/Ca and Sr/Ca ratios 

compared to the rest of the shell. Since the latter shell features are a common 

occurrence in all marine bivalve shells they will thus influence strongly the 

outermost shell Mg/Ca ratios and hence compromise application of any Mg/Ca- 

temperature relationship based on conventional milling techniques. In contrast, 

invariant Mg/Ca ratios observed in the mid region and inner part of the P. maximus 

shell suggests potential application of Mg/Ca ratios from such material as a 

palaeotemperature proxy in this particular species. Small-scale element distribution 

in the shells of P. maximus and M. edulis is suggested to derive from the combined 
influence of the organic matrix and mantle metabolic activity in element 

incorporation during shell biomineralization. Furthermore, in both P. maximus and 

M. edulis, a large variation in elemental/Ca ratios in shell deposited from the same 

EPF was observed and thus suggests that element incorporation at the shell crystal- 

solution interface, and not transport to the EPF, most likely is the key control step of 

shell element composition. 

7.2 Introduction 

The elemental composition of marine biogenic carbonates has been thought to 

provide a powerful tool to obtain information on Earth's present and past climates 

and oceanographic conditions. The basis of this approach is the observed dependence 

of the elemental compositions of marine biogenic calcite and aragonite minerals on 

several ambient environmental parameters, such as temperature, salinity, nutrient 
levels, carbonate ion concentration and seawater chemistry. Application of this kind 

of palaeoceanographic proxy-based approach is dependent, however, on rigorous 

testing of the veracity of relationships between the geochemical proxies and 

controlling environmental parameters, and must be documented and tested by both 

laboratory and field-based calibration and validation studies. High degrees of 

variability recorded in these proxy-parameter relationships will reduce the precision 

with which past environmental conditions can be reconstructed, and the potential 

source(s) of such variability need(s) to be recorded and understood. 
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Several factors are known to complicate any simple dependence of element/Ca ratios 

in biogenic and synthetic calcites on the associated environmental variables of 

interest. For instance, growth rates, salinity, pH, and biological kinetic and/or 

metabolic factors have all been proposed to influence the Mg and Sr composition of 

biogenic calcites (Lorens and Bender, 1977; Lorens and Bender, 1980; Elderfield et 

al., 1996; Klein et al., 1996a; Klein et al., 1996b; Lea et al., 1999; Rickaby et al., 

2002; Freitas et al., 2006) while precipitation rate, solution composition and near- 

surface kinetics have been shown to influence elemental incorporation into synthetic 

calcite precipitated from controlled solutions (e. g. Lorens, 1981 a; Mucci and Morse, 

1983; Pingitore and Eastman, 1986; Dromgoole and Walter, 1990; Morse and 

Bender, 1990; Paquette and Reeder, 1995). The reliable and accurate use of 

elemental/Ca ratios in marine biogenic calcites as geochemical proxies, thus is 

dependent on understanding in more detail, and subsequently compensate for, the 

role of secondary controls (i. e. metabolic and/or kinetic factors) on element 

incorporation into biogenic and inorganic calcites. 

The factor or factors that determine the small-scale (<100 µm) element composition 

will most likely control to a large extent the observed non-environmental variation 

(i. e. not associated with changes in environmental parameters) of elemental/Ca ratios 

in bivalve calcite at a larger scale. Conventional `bulk' sampling techniques, i. e. that 

mill to depths of up to a few hundred microns in order to obtain powders for solution 

elemental analyses, could integrate any compositional heterogeneity to variable 

extents in different samples, thereby reducing spatially resolved records and 

introducing a significant unknown error. Such compositional heterogeneity has been 

reported previously for Mg/Ca ratios in Mytilus edulis (Lorens and Bender, 1980; 

Rosenberg and Hughes, 1991; Rosenberg et al., 2001). Thus, application of 

analytical techniques that allow elemental determinations at a spatial resolution 

commensurate with the natural incremental growth pattern in bivalve mollusc shells 

is necessary in order to gain a greater knowledge of the extent and causes of any 

small-scale heterogeneity of elemental ratios within bivalve shell calcite. For 

instance, such knowledge allows a greater appreciation of the implications that this 

compositional heterogeneity may have on the limited temperature control and large 

variability of Mg/Ca ratios reported for some bivalves, i. e. M. edulis (Dodd, 1965; 

Klein et al., 1996a; Vander Putten et al., 2000) and Pecten maximus (Lorrain et al., 
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2005; Chapter 3), as well as for the potential use of the Mg/Ca ratio-temperature 

proxy, or Sr/Ca and Mn/Ca ratios, in bivalve calcite for palaeoceanographic 

reconstructions. 

For archives that retain a potential palaeotemperature proxy, such as Mg/Ca, it is as 

critical to test the veracity of the proxy under a single constant temperature as it is 

under a range of temperatures. In contrast to other biominerals produced by marine 

organisms, the high spatial resolution distribution of elements within molluscan shell 

calcite deposited at a constant temperature has not been studied in any detail. The 

majority of mloluscan studies to date have focussed on small scale temporal 

variability in shell chemistry, rather than testing small scale variability under more 

stable and controlled conditions. Ion microprobe, or secondary ionisation mass 

spectrometry (SIMS), has proven extremely useful for assessing small-scale 

heterogeneity (-10 gm) in the distribution of thermodynamically-controlled elements 

(i. e. Mg and Sr) within the shells of planktonic (Bice et al., 2005) and benthonic 

foraminifera (Allison and Austin, 2003), as well as corals (Allison, 1996; Cohen et 

al., 2001; Meibom et al., 2004). In molluscs, however, the SIMS technique has only 

been used previously to investigate high spatial resolution time-series variability of 

pollutant-type elements in bivalve shells (Jeffree et al., 1995; Siegele et al., 2001; 

Markich et al., 2002). Electron microprobe (Lorens and Bender, 1980; Lutz, 1981; 

Rosenberg and Hughes, 1991; Rosenberg et al., 2001; Dauphin et al., 2003; Dauphin 

et al., 2005), particle-induced X-ray emission (PIXE) (Swann et al., 1991; Siegele et 

al., 2001), cathodoluminescence emission (Langlet et al., 2006), proton microprobe 

(Coote and Trompetter, 1995), synchrotron radiation-based X-ray fluorescence 

(Thorn et al., 1995; Kurunczi et al., 2001) and laser ablation ICP-MS (e. g. Raith et 

al., 1996; Price and Pearce, 1997; Leng and Pearce, 1999; Toland et al., 2000; 

Vander Putten et al., 2000; Lazareth et al., 2003; Langlet et al., 2007) also have been 

used to determine spatial variability in the elemental composition of molluscan 

shells, albeit again related to high resolution reconstructions in animals experiencing 

time varying environmental conditions. 

Only a few studies have focused on the small-scale variability (-10 µm) of element 

composition within bivalve shells when environmental conditions would predict 

invariant element composition and the majority of these studies have focussed on 
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Mg/Ca ratios because of its potential application as a palaeotemperature proxy 

(Lorens and Bender, 1980; Rosenberg and Hughes, 1991; Rosenberg et al., 2001; 

Dauphin et al., 2003; Langlet et al., 2006). At the spatial scale of individual crystals, 

precipitated over very short time scales it would have been expected that element/Ca 

ratios would be invariant but Dauphin et al., (2003) observed variation in the Mg and 

S content of the organic rich inter- and intra prismatic structures of the shell 

prismatic calcite in Pinna nobilis and Pinctada margartifera. Therefore, changes in 

the amount of the shell organic matrix, but also in the size of the shell calcite 

crystals, could have a significant impact on the shell Mg content. Langlet et al. 2006 

observed Mn incorporation in the shell calcite of the oyster Cassostrea gigas to be 

related to the dissolved Mn concentration, as well as to seawater temperature, and to 

vary within the shell over tens of microns up to several millimetres at daily, tidal and 

seasonal scales. Significant small-scale variability of Mg/Ca and Sr/Ca ratios (from 

<5 to 40 mmol/mol and 0.6 to 1.6 mmol/mol, respectively) over scales of 100's µm, 

has been observed in new shell growth from Mytilus edulis cultured in natural 

seawater under controlled conditions at temperatures between 22 and 24°C, but also 

in semi-artificial `seawater' solutions with varying Mg/Ca and Sr/Ca ratios (Lorens 

and Bender, 1980). In that study, the stress of capture and adaptation to a new 
laboratory environment induced the deposition of a shell region (termed "transition 

zone calcite" by those authors) with Mg/Ca and Sr/Ca ratios up to five and two times 

higher, respectively, than surrounding shell material. Furthermore, Rosenberg et al., 
(2001) demonstrated, using digital electron probe microscopy, that small scale 

variations in Mg concentrations in M. edulis calcite were due to Mg being 

concentrated along the margins of calcite prisms, especially along the terminations of 

the crystals, with the alignment of adjacent crystals then producing compositional 

growth bands within the shell. In M. edulis, the Mg content of the outer calcite shell 

layer also was shown to be higher in regions with slow-growth, high shell curvature 

and with high mantle (the organ that controls calcification) activity, than in shell 

areas with fast shell growth, low shell curvature and low mantle activity (Rosenberg 

and Hughes, 1991). It also has been suggested that M. edulis uses Mg (and sulphur) 

to control shell crystal elongation and hence shell form along different axes 

(Rosenberg et al., 2001). Despite the relatively intensive studies on Mg/Ca ratios 

there has been little or no examination of spatial variability in Sr/Ca and/or Mn/Ca 

despite their potential utility as palaeoproxies. 
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In an initial preliminary assessment of the extent of any small-scale heterogeneity in 

Mg/Ca, Sr/Ca and Mn/Ca ratios in bivalve shell calcite, new shell material 

precipitated by Pecten maximus (king scallop) and Mytilus edulis (blue mussel) in a 

constant-temperature laboratory culturing experiment has been analysed using the 

ion microprobe or SIMS technique. These two bivalve species, as well as closely 

related taxa, have been proposed previously as archives for palaeoceanographic 

studies (e. g. Krantz et al., 1988; Klein et al., 1996a; Hickson et al., 1999; Chauvaud 

et al., 2005; Gillikin et al., 2006a; Wanamaker et al., 2006; Wanamaker et al., 2007) 

and hence are suitable materials for such an investigation of the extent of spatial 

variability in bivalve shell elemental concentrations. Since culturing took place under 

constant temperature conditions, any observed variation of element/Ca ratios will be 

independent of temperature, thus allowing consideration of other potential 

controlling factors. This methodological approach is especially valid for Mg/Ca 

ratios in bivalve calcite, which should be invariant within the new shell growth if a 

simple thermodynamic influence is the predominant control on this geochemical 

proxy, and also may provide further insights into explaining the reported weak or no 

temperature control and large variability of bivalve calcite Mg/Ca ratios (Dodd, 

1965; Taylor et al., 1969; Carter, 1990a; Klein et al., 1996a; Vander Putten et al., 

2000; Lorrain et al., 2005; Freitas et al., 2006). 

7.3 Material and Methods 

Single specimens of Pecten maximus (shell height - 34.5 mm) and Mytilus edulis 
(shell height - 29.3 mm) were selected from a group of individuals that had been 

cultured for 27 and 24 days, respectively, in laboratory constant-temperature aquaria. 
Seawater temperature in the aquarium was measured by in-situ logger (Gemini Data 

Loggers TinyTag - TGI 3080) as 20.33±0.13°C (N = 2952) and 20.21±0.13°C (N = 

2304) for the duration of the two culturing periods. A full and detailed description of 

the culturing experiment set-up can be found elsewhere (Chapter 4). For both species 

studied, approximately 5-6 mm of new shell was precipitated during the total 

hk 186 



Chapter 7 Small-scale heterogeneity of element composition 

experimental period; emergence (M. edulis) or handling (P. maximus) of each animal 

occurred at the beginning of the culturing period and twice more during the 

experiment and resulted in three "growth intervals" (denoted as Ti, T2 and T3 on 

Figures 7-1 and 7-2), separated from one another by disturbance marks on the 

surface of the shell (denoted by the black vertical lines on Figures 7-1 and 7-2), with 

each "growth interval" representing ca. one weeks shell growth. 

One shell of each species was mounted in blocks using Robnor resins epoxy resin 

(direct equivalent of araldite CY1301 and MY778) and Aradur hardener (HY951) 

and subsequently sectioned parallel to the main growth axis. Polished sections were 

digitally photographed under a light microscope and then sputter-coated with gold to 

inhibit build up of charge on the sample during SIMS analysis. Following SIMS 

analysis, the resin blocks were re-polished, etched in 0.5% acetic acid with 12.5% 

gluteraldehide, sputter-coated with gold and imaged under a Cambridge-S 120 

scanning electron microscope. 

The general shell structure of Pecten maximus consists of both outer and inner 

irregularly oriented foliated calcite layers (Taylor et al., 1969), with some pectinid 

species also having a very thin aragonite prismatic pallial myostracum (Taylor et al., 

1969; Carter, 1990b). Neither the inner layer, nor the myostracum, was observed in 

the new growth region of the P. maximus specimen subject to SIMS analyses. The 

general structural characteristics of Mytilus edulis bivalve shells are reported to be 

two primary calcium carbonate layers and an outer organic layer, the periostracum, 

which covers the outer surface of the shell. The outer shell layer is finely prismatic 

calcite with the inner layer a nacreous aragonite, these being separated by a thin 

pallial myostracum made up of irregular simple prismatic aragonite (Hinton, 1995). 

Only the outer prismatic calcite layer was observed in the new growth region of the 

M. edulis specimen subject to SIMS analyses. Therefore, for both species the SIMS 

profiles only spanned a single, outer, structural layer of both bivalve mollusc species. 
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Chapter 7 Small-scale heterogeneity of element composition 

Ion microprobe analyses were completed at the NERC Ion Microprobe Facility, 

Edinburgh University, U. K., using a Cameca ims-4f ion microprobe instrument. The 

optimisation of this instrument and application of the SIMS technique (Allison, 

1996) for the determination of element/Ca ratios in biogenic carbonates is described 

in more detail elsewhere (c. f. Allison and Austin, 2003). The samples were analysed 

using an 8-10 nA 160- primary ion beam, accelerated at -10.7 keV. The sample was 
held at +4.5 keV resulting in total impact energy of -15 keV. The image setting was 

for 25 µm and a field aperture (number 2) was inserted to restrict the analysed area 

on the sample to 8-10 µm in diameter. The depth of these SIMS analyses is probably 

about 0.1-0.2 microns (Hinton, pers. comm. 2007). Line profiles from the outer to 

inner surfaces of the two shells were undertaken in the new shell growth only using a 

step-size of 10 µm resolution (Appendix 6). Three profiles were completed on the 

Pecten maximus shell (profiles P1 to P3 in Figure 7-1) and six profiles on the Mytilus 

edulis shell (profiles P4 to P9 in Figure 7-2); for both shells individual profiles 

traversed the full shell thickness, but in some cases also included other shell features, 

i. e. shell surface disturbance marks in both species (Figures 7-1 and 7-2) and a shell 

surface stria (growth ridge present in the surface of the left valve) in P. maximus 

(Figure 7-1). An energy offset of -75 eV was applied to the sample and data collected 

with a ±20 eV energy window in order to minimise measurement of interferences 

caused by molecular ions. The ims-4f was operated in low mass resolution (M/AM = 

400-500) and secondary positive ions were counted by an electron multiplier at the 

following masses, for counting times appropriate to the expected relative elemental 

concentrations: mass 22.5 (average background counts of <1/second; 10 seconds); 
26Mg (5s); 30Si (2s); 4Ca (2s); 55 Mn (5s); 88Sr (2s); 138Ba (10s). Prior to data 

collection, initial pre-spluttering was completed for 20 seconds. Data were collected 
for 10 consecutive cycles of the sequential switching of the magnetic field. The 88Sr 

signal was corrected for interference from the Ca2+ dimer (principally 44Ca44 Ca+) 

using a constant Sr/Ca ratio of 0.0001, and the 44Ca signal was used to identify where 

the individual line profiles crossed from the resin to the shell and vice versa. Silicon 

and barium were not above detection limits throughout the two samples. A single- 

point calibration was completed using the OKA carbonatite standard (Lutz and 

Rhoads, 1980), with nine repeat analyses of this material used to determine a sample 
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precision of 2.19 %RSD (relative standard deviation) for the determination of Mg/Ca 

ratios. 

7.4 Intra-shell Spatial Heterogeneity of Elemental/Ca 

Ratios 

In Pecten maximus, the minimum and maximum Mg/Ca ratios measured within the 

shell were 5.24 and 64.89 mmol/mol, respectively (Table 7-1). By comparison, 

Mytilus edulis showed lower Mg/Ca ratios than P. maximus overall, with minimum 

and maximum ratios of 4.96 and 19.06 mmol/mol, respectively (Table 7-1). In P. 

maximus, the minimum and maximum Sr/Ca ratios measured within the shell were 

1.09 and 2.07 mmol/mol, respectively, while in M. edulis the minimum and 

maximum Sr/Ca ratios measured within the shell were 1.10 and 1.70 mmol/mol, 

respectively (Table 7-1). The minimum and maximum Mn/Ca ratios measured within 

the P. maximus shell were 0.004 and 0.051 mmol/mol, respectively; in M. edulis 

minimum and maximum shell Mn/Ca ratios were 0.006 and 0.073 mmol/mol, 

respectively (Table 7-1). 

7.4.1 Pecten maximus 

In Pecten maximus (Figure 7-1) two main features characterise the Mg/Ca ratio 

profiles: 1) In all profiles, Mg/Ca ratios decrease from maxima in the outermost shell 

to a minimum value at depths of ca. 110-170 µm. The greatest maxima were 

observed in regions of modified shell structures, i. e. the shell stria (profile P2) and 

disturbance growth mark (profile P3); 2) Below the sub-surface minima, Mg/Ca 

ratios in the inner shell were relatively invariant, both within (P 1: depths of 110-700 

µm, 7.02±0.67 mmol/mol, N= 60; P2: depths of 160-640 µm, 7.12±0.41 mmol/mol, 

N= 49; and P3: depths of 170-480 µm, 7.17±0.44 mmol/mol, N= 32) and between 

each of the three profiles, which show no significant difference in mean Mg/Ca ratios 

between each profile (t-test, p>0.05 for all comparisons). 
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Table 7-1- Summary Mg/Ca, Sr/Ca and Mn/Ca ratio data (mmol/mol) for the nine ion microprobe 
profiles (P1 to P9). 1Q is the mean standard deviation. RSD is the relative standard deviation, i. e. 
1a/mean* 100. 

R D 
Mg/Ca Min Max Range Mean N lo S 

P. maximus 
P1 5.24 38.38 33.14 9.97 71 7.9 79 
P2 6.27 64.89 58.62 13.03 65 13.41 103 
P3 6.59 58.90 52.31 16.02 49 14.26 89 

M. edulis 
P4 4.96 14.56 9.60 9.99 32 2.52 25 
P5 5.14 12.75 7.61 9.70 38 2.10 22 
P6 5.10 19.06 13.96 10.11 32 2.87 28 
P7 5.65 13.92 8.27 9.07 33 2.15 24 
P8 5.54 10.53 4.99 8.01 19 1.54 19 
P9 5.21 8.43 3.22 6.56 11 0.95 15 

R D 
Sr/Ca Min Max Range Mean N 1a 

S 

P. maximus 
P1 1.13 1.72 0.59 1.35 71 0.10 7 
P2 1.15 2.07 0.92 1.39 65 0.21 15 
P3 1.09 1.98 0.89 1.38 49 0.24 17 

M. edulis 
P4 1.14 1.42 0.28 1.33 32 0.06 5 
P5 1.24 1.70 0.46 1.44 38 0.10 7 
P6 1.10 1.59 0.49 1.29 32 0.09 7 
P7 1.29 1.65 0.36 1.38 33 0.07 5 
P8 1.24 1.51 0.27 1.37 19 0.08 6 
P9 1.28 1.63 0.35 1.39 11 0.11 8 

RSD 
Mn/Ca Min Max Range Mean N lo 

P. maximus 
PI 0.005 0.049 0.044 0.011 71 0.007 60 
P2 0.004 0.051 0.047 0.012 65 0.008 65 
P3 0.005 0.049 0.044 0.015 49 0.008 56 

M. edulis 
P4 0.006 0.023 0.017 0.013 32 0.004 31 
P5 0.009 0.036 0.027 0.019 38 0.007 39 
P6 0.015 0.033 0.018 0.024 32 0.005 20 
P7 0.015 0.032 0.017 0.022 33 0.004 20 
P8 0.017 0.029 0.012 0.023 19 0.004 19 
P9 0.026 0.073 0.047 0.035 11 0.013 37 

Three main features characterize the Pecten maximus Sr/Ca ratio profiles (Figure 7- 

1): 1) Shell Sr/Ca ratios were highest in the upper 100-120 µm of the profiles (1.6 to 

2.1 mmol/mol), especially in the shell structures sampled in profiles P2 and P3, i. e. 

the stria (up to 2.1 mmol/mol) and disturbance growth mark (up to 2.0 mmol/mol); 2) 
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Deep sub-surface minima in shell Sr/Ca ratios (1.1 to 1.2 mmol/mol) were apparent 

200-300 µm above the inner shell surface; 3) Shell Sr/Ca ratios then increase from 

the minima to higher values towards the inner shell surface. 

Taking the whole of each profile, the Sr/Ca and Mg/Ca ratios were significantly 

correlated (Table 7-2; all p<0.001) in profiles P1, P2 and P3. The greatest degree of 

correlation was found in the 110-180 µm closest to the outer shell surface where 

both Sr/Ca and Mg/Ca reach maxima (Table 7-2, all p<0.001). From this outermost 

section (deeper than 110-180 µm) to the inner shell surface no significant 

relationship was observed between Sr/Ca and Mg/Ca in any of the profiles. 

Table 7-2- Summary of correlations between Mg/Ca, Sr/Ca and Mn/Ca ratios for the three ion 

microprobe profiles (P1 to P3) in the Pecten maximus shell. `Outermost' defines a shell region 
between the upper shell surface and 110 µm, 150 µm and 200 µm depth for profiles P1, P2 and P3, 
respectively. 'Innermost' defines a shell region lower than 490 µm, 390 µm and 170 µm depth in the 
profiles P1, P2 and P3, respectively. 'All' represents the entire profiles. 

P. maximus Mg vs Sr Mg vs Mn Mn vs Sr 
rz rz r2 

Outermost 
P1 0.48 0.06 0.48 
P2 0.87 0.88 0.81 
P3 0.77 0.49 0.45 

Innermost 
P1 - - 0.55 
P2 - - 0.82 
P3 - - 0.63 

All 
P1 0.35 - - 
P2 0.83 - 0.08 
P3 0.78 0.12 0.29 

The Pecten maximus Mn/Ca ratio profiles (Figure 7-1) were characterised by three 

main features : 1) Shell Mn/Ca ratios were highest in the ca. 100 µm proximal to the 

outer shell surface, particularly in the shell features sampled in profile P2 and P3, the 

stria (up to 0.023 mmol/mol) and disturbance growth mark (up to 0.050 mmol/mol), 

respectively; 2) Shell Mn/Ca ratios were lowest at the mid-depths within the profiles 

(0.004 to 0.016 mmol/mol); 3) Shell Mn/Ca ratios increase to higher values towards 

the inner shell surface (0.030 to 0.051 mmol/mol). Taking the whole of each profile, 

the Mn/Ca and Mg/Ca ratios were not significantly correlated (Table 7-2). In the 

110-200 m closest to the outer shell surface of P. maximus, Mn/Ca ratios were 

significantly correlated to Sr/Ca in P1, P2 and P3 (Table 2; all p<0.001), and also 

195 



were significantly correlated to Mg/Ca ratios in the shell features sampled in profile 
P2 and P3, the stria and disturbance growth mark (Table 7-2; both p<0.001). In 

addition, shell Mn/Ca ratios also were significantly correlated to Sr/Ca ratios in the 

170-490 pm closest to the inner shell surface (Table 7-2; r2 - 0.55, r2 = 0.82 and r2 = 
0.63, for profiles P 1, P2 and P3 respectively; all p<0.001). 

7.4.5 Mytilus edulis 

Spatial variability of Mg/Ca, Sr/Ca and Mn/Ca ratios in the Mvti/us eclu/is shell 

(Figure 7-1) was less systematic than in Pecten maximus (Figure 7-2). Three main 

features characterise the M. edulis shell Mg/Ca ratios in profiles P4, P5, P6, P7 and 

P8: 1) Mg/Ca ratios generally decrease from the outer surface of the shell to 

minimum values at ca. 20-40 µm depth below the shell surface; 2) Below the sub- 

surface minimum there was a general increase in Mg/Ca ratios from the minimum 

value to maximum values at depths of ca. 240-270 µm below the shell surface; 3) 

Mg/Ca ratios then usually decrease to a lower (but not always the lowest in that 

profile) values at the inner shell surface. The remaining profile P9 shows no 

particular trend with profile depth depth. M. edit/is shell Sr/Ca ratios were highest in 

the upper 50-100 µm of four of the profiles (P5, P6, P7 and P9) and range from 1.6 

to 1.7 mmol/mol (Figure 7-2)., Shell Mn/Ca ratios showed no clear pattern with 

profile depth, but mean Mn/Ca ratios decreased from profile P9 towards profile P4, 

i. e. mean profile Mn/Ca ratios decreased along the main growth axis from the shell 

margin towards the uºnbo region (Figure 7-2). Shell Mg/Ca, Sr/Ca and Mn/Ca ratios 

were not significantly correlated in any of the M. edit/is profiles (p > 0.05). 

7.5 Relationships Between Element/Ca Ratios and 
Shell Features and Structure 

7.5.1 Pecten maximus 

kk 
'Mom" 
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Mg/Ca, Sr/Ca and Mn/Ca ratios are particularly high and variable in the stria (P2) 

and disturbance mark (P3), respectively. SEM images (Figure 7-3a and b and insets) 

illustrate that the three Pecten maximus ion microprobe profiles, situated in the new 

growth region of the shell, traversed only one layer of irregularly oriented foliated 

calcite. Nevertheless, highly variable Mg/Ca, Sr/Ca and Mn/Ca ratios are associated 

with some differences in the crystal arrangement and size particularly within the stria 

(profile P2) and to a lesser extent within the region of the surface disturbance mark 

(profile P3), which are comprised of a relatively unorganized arrangement of the 

calcite crystals. Mg/Ca ratios are of lower magnitude and relatively invariant in the 

mid region to innermost shell, whereas Sr/Ca and Mn/Ca ratios vary significantly in 

this region of the shell and must be controlled by some other factor other than crystal 

arrangement. Clearly, shell features, such as the stria and disturbance growth marks, 

and associated variations in crystal arrangement and size have an influence in Mg/Ca 

ratios in P. maximus beyond a simple thermodynamic control.. 

Figure 7-3 Scanning electron microscope images of the 1't' ii nrusinicec shell showing: a) the stria 
sampled in SIMS profile t'2; b) the surface disturbance nark separating the second ("1'2) and third (13) 

growth intervals sampled in SIMS profile P3: c) an example of the crystal arrangement within the mid 
region to lowermost parts of the shell as sampled by all three SIMS profiles. Insets 1,2,3 and 4 are 
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more detailed images of the contrasting crystal orientation in the shell surface stria (a) and disturbance 
mark (b). Scale bar in images a, b and c is 50 µm; images 1,2,3 and 4 have dimensions of 50 x 50 
µm. 

7.5.2 Mytilus edulis 

All of the Mytilus edulis SIMS analyses only sampled the outer prismatic calcite 
layer (Figures 7-2 and 7-4), even profiles P4 and P5 that were located between the 

shell margin and the pallial line, the latter being a mark observed on the inner shell 

surface that is caused by attachment of the animals' body, i. e. by the mantle (Figure 

7-2a). Internal disturbance/growth lines are easily identifiable in the SEM images of 

the M. edulis shell (Figures 7-2a and 7-4) and these run oblique to the outer and inner 

shell surfaces. The disturbance marks on the surface of the shell ('hump-like' 

features where profiles P4, P5 and P6 are directly or proximally situated; Figures 7- 

2a and 7-4) and their associated internal disturbance lines (the most prominent lines 

labelled a, b and c on Figures 7-2a and 7-4) were formed during emersion of the 

animals between growth intervals, whereas the other internal growth lines formed 

while the animal remained immersed. Because of the nature of the incremental 

growth pattern in bivalve mollusc shells (Lorens, 1981a; Morse and Bender, 1990; 

Tesoriero and Pankow, 1996) internal growth lines can be used to identify shell 

deposited contemporaneously at different locations within the shell. This incremental 

growth pattern of bivalve shells is such that within individual profiles, the uppermost 

data points are representative of shell material deposited at the shell margin at one 

point in time, with data points lower in the profile being representative of shell 

material precipitated subsequently, away from the shell margin at other point in time, 

thus contributing to the increase in shell thickness. Therefore, the age of the new 

shell material sampled decreases down each SIMS profile. In addition, each 
individual growth line, representing a common time line, can be traced between 

SIMS profiles. For example, the internal disturbance line (labelled b) in Figure 7-4 

that runs from near the base of SIMS profile P4 to the disturbance mark on the shell 

surface at the top of profile P5 delineates a break in shell deposition during emersion, 

with the growth region immediately above and adjacent the growth line having been 

deposited contemporaneously prior to emersion and the growth region situated 

immediately below having been deposited contemporaneously following subsequent 

immersion. A similar structural relationship and internal disturbance line (labelled c) 
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can be seen running from near the base of profile PS and the disturbance mark on the 

shell surface at the top of profile P6 (Figures 7-2 and 7-4). Throughout the shell the 
individual internal growth bands, defined by two growth lines, also thicken towards 

the margin of the shell (Figure 7-4). 

It could be expected, therefore, that shell deposited between the same two growth 
lines (i. e. within a growth band) would have a constant Mg/Ca ratio due to 

contemporaneous precipitation at a constant seawater temperature, independent of 
location of new crystallisation within the shell. Calcite Sr/Ca and Mn/Ca ratios, on 
the other hand, are influenced by mineral precipitation rate, the former is positively 

correlated to precipitation rate (Lorens, 1981a; Mucci, 1988; Pingitore et al., 1988; 

Dromgoole and Walter, 1990) and the latter inversely correlated to precipitation rate 
(Clark II, 1974; Carriker, 1992). Shell growth rate varies with location of shell 
deposition along the inner shell surface: higher towards the shell margin and lower 

away from it (i. e. the thickness of an individual growth band decreases away from 

the margin of the shell; Figure 7-4). Sr/Ca and Mn/Ca ratios, thus, are not expected 
to be constant throughout an individual internal band. 
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Chapter 7 Small-scale heterogeneity of element composition 

Interestingly, Mg/Ca and Sr/Ca ratios differ within two individual growth bands that 

were not affected by experimental emersion disturbance (Figure 7-4; regions 
delimited by internal disturbance lines b and c and the inner shell surface, and by the 

blue and red lines) even though they relate to contemporaneous periods of shell 
deposition. For example, during the period of shell deposition covered by the growth 
increment T2, sampled by SIMS profiles P4 and PS and delimited by the blue lines in 

Figure 7-4, the shell precipitated at the shell margin (at the top of profile P5) exhibits 

a general increase in Mg/Ca ratios with profile depth (mean of 8.5 mmol/mol, 1a= 

1.9, N= 18); a similar pattern is evident for Sr/Ca ratios (mean of 1.49 mmol/mol, 1 

v=0.08, N= 18), which albeit more variable, also follow the Mg/Ca variation. In 

contrast, the new shell material deposited contemporaneously in the innermost shell 

away from the shell margin (near the base of SIMS profile P4) has much more 

variable Mg/Ca ratios (mean of 11.0 mmol/mol, 1a=3.1, N= 8) and Sr/Ca ratios 

(mean of 1.31 mmol/mol, 1a=0.09, N= 8). A very similar pattern can be observed 
for new shell precipitated contemporaneously at the start of growth interval T3, 

following emplacement of internal growth disturbance line c and delimited by the red 

coloured lines between profiles P5 and P6. The new shell precipitated at the shell 

margin (at the top of profile P6) exhibits a rapid decrease and then general increase 

in Mg/Ca (mean of 8.90 mmol/mol, 1a=3.1, N= 19) and Sr/Ca ratios (mean of 

1.33 mmol/mol, 1Q=0.08, N= 19), whereas the new shell material deposited 

contemporaneously on the inner shell surface (near the base of SIMS profile P5) 

exhibits a general trend of decreasing Mg/Ca (mean of 11.14 mmol/mol, 1a=1.4, N 

= 11) and Sr/Ca ratios (mean of 1.34 mmol/mol, 1a=0.06, N= 11) with profile 

depth. 

Lorens and Bender (1980) have described previously a similar influence of 

disturbance on Mytilus edulis shell Mg/Ca and Sr/Ca ratios, whereby the stress of 

capture and adaptation to a new laboratory environment induced the deposition of a 

shell region (termed "transition zone calcite" by those authors) with high organic 

matrix content, high Mg/Ca (> 40 mmol/mol) and Sr/Ca (> 1.4 mmol/mol) ratios. 

Subsequent shell growth then exhibited decreasing Mg/Ca (to < 10 mmol/mol) and 

Sr/Ca (to < 0.6 mmol/mol) ratios as the animals adapted to their new environment. 

However, Lorens and Bender (1980) only inferred the "transition zone" between new 
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and old calcite using spot chemical compositions measured by electron microprobe, 

and their transition zone that exhibited higher Mg/Ca and Sr/Ca ratios occurs 

perpendicular to the shell surface, an observation that is inconsistent with the 

incremental growth pattern of M. edulis, i. e. growth lines actually run oblique to the 

shell surface. By comparison, in this study ion microprobe determined Mg/Ca and 

Sr/Ca ratios have been compared directly to SEM images of shell growth banding 

and indicate a more complex relationship between elemental composition and shell 

structure. 

7.6 Potential Causes of the Observed Small Scale 

Element/Ca Ratio Heterogeneity within Pecten 

maximus and Mytilus edulis Shell Calcite 

Of all the elements investigated in this study, Mg in the outermost sections of Pecten 

maximus shell provides the clearest indication for the likely presence of control(s), 

other than temperature, on the elemental composition of bivalve calcite formed 

during shell biomineralization. By comparison, the low and stable interior P. 

maximus shell Mg/Ca ratios are consistent with temperature being the main control 

on Mg incorporation. This hypothesis is strengthened by the evidence that the Mg/Ca 

ratios were relatively invariant both within and between each of the three profiles in 

the mid region and lowermost shell sampled, even though deposition occurred at 

different times and locations along the inner shell surface. 

The extent of the small-scale heterogeneity of element/Ca ratios differs significantly 

between Pecten maximus and Mytilus edulis, suggesting that the processes 

controlling elemental incorporation into shell calcite also differ between these two 

marine bivalve species. Pecten maximus produces elaborate shell features during 

biomineralization, such as surface striae, while M. edulis has a more smooth shell 

surface that is also covered by an organic periostracum, a shell component which is 

absent in the former species. Furthermore, shell deposition at the shell margin occurs 
differently in the two species. In scallops, like in oysters, shell deposition at the shell 
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margin occurs from an extra-pallial space (EPS) that is periodically exposed to the 

ambient seawater medium, while in M. edulis biomineralization occurs from a 

continuously isolated EPS (Clark II, 1974; Carriker, 1992). In bivalve species with 

periodically exposed EPS the margins of the mantle (the soft-tissue organ that 

controls calcification) are frequently withdrawn into the mantle cavity, exposing the 

crystals along the inner shell surface to seawater or mantle cavity fluid from the shell 

margin to the attachment of the mantle on the inner shell surface at the pallial line 

(Mucci and Morse, 1983; Ohde and Kitano, 1984; Morse and Bender, 1990). 

It is probable that different species-specific shell biomineralization processes 

contribute to the variable small-scale heterogeneity of elemental composition 

observed in Pecten maximus and Mytilus edulis. Several inorganic and biological 

processes can be considered as potential explanations for the differential 

incorporation of elements into bivalve shells and may explain the significant small- 

scale heterogeneity of Mg, Sr and Mn content in P. maximus and M. edulis shell 

calcite that has been observed in the present study. 

7.6.1 Elemental composition of shell calcite 

The Mg content of calcite is known to influence the incorporation of other elements 

during calcite precipitation, whereby substitution of Ca2+ by Mg2+ distorts the crystal 

lattice and favours the incorporation of other elements, namely ones with large ionic 

radii, such as Sr2+ and Mn2+ (Mann, 2001; Weiner and Dove, 2003; Addadi et al., 

2006). In Pecten maximus, significant positive correlations were observed between 

Mg/Ca and Sr/Ca and Mn/Ca ratios in the outermost 100-200 µm of the shell, 

particularly in the shell stria and disturbance mark. Therefore, shell Mg may 
influence Sr and to a lesser extent Mn incorporation in the outermost part of the 

shell, where Mg/Ca ratios are highest (Figure 7-1). However, such control is absent 

in the mid region and innermost part of the shell, which has low and stable Mg/Ca 

ratios (Figure 7-1). In that part of the shell, Sr and Mn are significantly correlated to 

each other (Table 7-2), suggesting that a common process, or processes, other than 

Mg content controls both Sr and Mn incorporation. 
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7.6.2 Composition and the amount of the shell organic matrix 

Biogenic minerals are composed of both an inorganic and organic fractions in which 

the latter controls crystal nucleation and growth (e. g. (Dalbeck et al., 2006) and may 

influence element incorporation into the mineral. In Mytilus edulis, an increase of 

Mg concentration from the outer shell surface towards the inner shell surface, similar 

to the one observed in the present study, has been previously reported and suggested 

to be associated with differences in crystal size and in the organic matrix component 

(Berner, 1975a). In addition, Lorens and Bender (1980) suggested that in the shell 

calcite of M. edulis, sulphur reflects the amount of the organic matrix. These authors 

suggested that the M. edulis compensates for increased Mg levels in the EPF, which 

inhibits calcite nucleation and crystal growth (Lorens and Bender, 1980), by 

secreting additional S-bearing organic matrix. Therefore, the high S/Ca and Mg/Ca 

ratios observed in shell regions deposited under stress conditions reflect increased 

organic matrix content, although Mg is not thought to be bound to S-organic matrix 

(Rosenberg and Hughes, 1991; Rosenberg et al., 2001). For instance, Dauphin et al. 
(2003) observed in the shell prismatic calcite of Pinna nobilis and Pinctada 

margartifera that Mg content was lower in the organic prismatic walls relative to the 

inorganic calcite mineral. Nevertheless, Mg and S co-vary in the shell calcite of Al. 

edulis (2007) and it has been suggested that M. edulis uses Mg and S (as a 

component of the matrix) to control shell crystal elongation and hence shell form 

along different axes (Rosenberg et al. 2001). Furthermore, England et al., (2007) 

used electron microprobe analyses to investigate elemental distribution within the 

shells of two extant species of brachiopod that had been sampled from the same 

environment. One species, Novocrania anomala, exhibited no significant difference 

in Mg concentrations between shell layers. However, in Terebratulina retusa Mg 

concentrations did differ between shell layers. More significantly, England et al., 

(2001) also demonstrated that the distribution of Mg within Terebratulina retusa 

correlated with sulphur and they proposed that sulphur could be used as a measure of 

the sulphated organic matrix of the shell and that a proportion of the measured Mg 

content of the shell of this species is associated with the sulphated fraction of the 

shell organic matrix and not just the inorganic calcite mineral. Therefore, it is 

plausible that the elevated Mg/Ca ratios in the outermost shell of Pecten maximus but 

also in some regions of the M. edulis shell, are associated with a greater proportion of 
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sulphated organic matrix in that part of the shell, compared to the mid region and 
innermost parts of the shell. 

In addition, Rosenberg et al., (Lorens and Bender, 1980) observed in M. edulis that 

Mg is concentrated along the margins of calcite prisms, especially along the 

terminations of the crystals, with the alignment of adjacent crystals then producing 

compositional growth bands within the shell. In Pecten maximus and M. edulis, 

disturbance growth marks correspond to the extremities of calcite crystals (Figures 7- 

3 and 7-4). Since shell disturbance growth marks are associated with increased 

organic matrix (Wasylenki et al., 2005a), variations in both the amount of the organic 

matrix and the abundance (and size) of the calcite crystals associated with 

disturbance growth marks may explain the variable Mg/Ca ratios associated with 

such marks observed in P. maximus and M. edulis (Figures 7-1 and 7-4). 

7.6.3 Crystal fluid interface processes 

Crystal-fluid interface processes have been shown to influence the composition of 

synthetic calcite. Diffusive transport conditions to the mineral surface (e. g. Reeder 

and Paquette, 1989; Paquette and Reeder, 1995) and sector zoning, where elemental 

composition varies significantly in different non-equivalent vicinal crystal faces 

(Taylor et al., 1969; Carter, 1990a) have all been observed to influence the elemental 

composition of calcite crystals. It is plausible that such processes occur during shell 

biomineralization and influence its element composition. However, it is unclear how 

these processes could be responsible for the larger scale variation of Mg/Ca, Sr/Ca 

and Mn/Ca observed in Pecten maximus and Mytilus edulis shells. For instance, the 

structure of P. maximus shell consists of both an outer and inner irregularly oriented 

foliated calcite layers (e. g. Morse and Bender, 1990), thus the SIMS profiles sample 

multiple crystals and a variety of crystal faces, however, Mg/Ca ratios are stable 
throughout the mid and innermost shell region (Figure 7-1). 

7.6.4 Mineral precipitation rate 

In calcite, Mg incorporation is not thought to be influenced by mineral precipitation 

rate, both in synthetic (Lorens and Bender, 1980) and in bivalve calcite (Lorens, 
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1981a; Pingitore et at., 1988; Dromgoole and Walter, 1990; Morse and Bender, 

1990). Increasing precipitation rate has been shown to cause an increase in Sr/Ca 

ratios, but a reduction in Mn/Ca ratios in calcite (Lorrain et al., 2005; Chapters 2 and 

5). In addition, in Pecten maximus and Mytilus edulis, a strong kinetic control of 

Sr/Ca ratios has been reported previously (Klein et al., 1996b; Gillikin et al., 2005a; 

Carre et al., 2006; Chapter 6). However, in P. maximus Sr and Mn positively co-vary 

in the innermost shell regions (Figure 7-1 and Table 7-2) and thus a simple influence 

of precipitation rate in Sr and Mn incorporation in P. maximus calcite is not clear. 

7.6.5 Metabolic effects 

Physiological metabolic effects, related to element transport processes from seawater 

and the mantle to the EPF, have been proposed to influence the Mg, Sr and Mn 

incorporation in bivalve shells (Rosenberg and Hughes, 1991). For instance, in 

Mytilus edulis, shell portions with high organic matrix, Mg, S and minor element 

content are energetically more costly to produce than Ca rich shell areas (Gillikin et 

al., 2005a; Carre et al., 2006; Chapters 5 and 6). In addition, in bivalves, shell Sr/Ca 

and Mn/Ca ratios have been found to be positively correlated to metabolic activity 
(Mucci and Morse, 1983; Pingitore and Eastman, 1986; Dromgoole and Walter, 

1990). Therefore, elevated Mg/Ca, Sr/Ca and Mn/Ca ratios in the outermost shell of 

Pecten maximus, but also in some regions of the M. edulis shell, could be associated 

with higher mantle metabolism during shell biomineralization, relative to regions of 

the shell with lower Mg/Ca, Sr/Ca and Mn/Ca ratios, i. e. the mid region and 

lowermost shell, which would be associated with lower mantle metabolism during 

shell biomineralization. 

7.6.6 Composition of the extra-pallial fluid (EPF), the precipitating solution in 

bivalves 

The elemental composition of the solution from which calcification occurs is known 

to have a strong influence on the incorporation of Mg, Sr and Mn in calcite (e. g. 

Morse and Bender, 1990). Apart from element concentration, the activity coefficients 
(i. e. the fraction of ions available for chemical interactions) of elements are known to 

strongly influence elemental incorporation into synthetic calcite (Crenshaw, 1972; 
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Misogianes and Chasteen, 1979; Nair and Robinson, 1998). Bivalves are known to 
be able to biochemically regulate the activity of Ca2+ and other ions from the EPF 

solution from which calcfification takes place. For instance, the majority of Ca in the 

EPF is not in free ionic form but bound to organic molecules secreted by the mantle 
(Hattan et al., 2001), some of which have been suggested to be a precursor or a 
building block of the soluble organic matrix of the shell (Woodward and Davidson, 

1968; Crenshaw, 1975). The organic matrix has also been suggested to sequester Ca 

and then release Ca to seed calcite crystal growth (Simkiss and Wilbur, 1989; Checa, 

2000; Addadi et al., 2006). 

In both Pecten maximus and Mytilus edulis, a large variation in elemental/Ca ratios 

in shell deposited from the same marginal EPF was observed and thus suggests that 

element incorporation at the shell crystal-solution interface, and not transport to the 

EPF, most likely is the key control step of shell element composition. The close 

association between the mantle epithelium and the shell surface, which are separated 
by a small distance and may be in contact with each other, allows the transfer of ions 

and organic molecules to occur virtually by direct contact (Richardson, 2001), and 

thus could provide the potential for small-scale variations in the chemical and 

physical conditions at different precipitation sites. 

Whatever processes influence elemental incorporation into the calcite shells of 
Pecten maximus and Mytilus edulis, clearly these processes must vary with time and 

location of shell deposition in order to produce the small-scale heterogeneity of 

element composition observed. 

7.7 Small-Scale Element Heterogeneity and 
Implications for the Use of Geochemical Proxies 
in Bivalves 

It is clear from the ion microprobe elemental data collected in this study that for both 

bivalve species investigated highly variable Mg/Ca, Sr/Ca and Mn/Ca ratios can 
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occur within one structural layer of shell calcite precipitated at a single and constant 

seawater temperature and via deposition from the same marginal extra-pallial space 

(EPS), albeit a non-permanent EPS in Pecten maximus. Such significant small-scale 

heterogeneity of the Mg, Sr and Mn content in the shells of Mytilus edulis and P. 

maximus has profound implications for the application of these geochemical proxies 

in bivalve calcite. First, the deposition of elaborate shell features and surface 

disturbance growth marks, the latter ubiquitous features of shells of many bivalve 

shells, is associated with highly variable element/Ca ratios. Second, factors/processes 

that may influence elemental incorporation into bivalve calcite potentially do not just 

operate at the scale of whole shells, or even within a single shell structural layer, but 

can vary at tens of microns scale. Third, users of large-scale `bulk' shell sampling 

methods, and even micro-sampling methods such as micro-milling or laser ablation 

sampling, need to consider carefully which section, or sections, of the shell are 

sampled, otherwise they risk obtaining a large variability in element/Ca ratio 

measurements that do not relate to any change in environmental conditions. Finally, 

Mg, Sr and Mn incorporation into bivalve calcite most likely is under the control of 

multiple factors (e. g. Mg content, organic matrix content, mantle metabolic activity, 

and transport and activity conditions at the shell crystal-solution interface) and that 

the relative influence of any one factor most likely varies with time and with the 

location of the shell deposition. 

In particular, significant small-scale heterogeneity (i. e. tens of microns) in bivalve 

shell Mg/Ca ratios is potentially a significant source of error when attempting to use 

Mg/Ca ratios of these biogenic calcites in palaeotemperature reconstructions. For 

instance, in Mytilus edulis and Pecten maximus specimens grown in the same 

experiment as the ones analysed by SIMS in the present study, but sampled by 

surface milling, displayed a large variability in Mg/Ca ratios at constant temperature 

and a weak correlation between shell Mg/Ca ratios and seawater temperature (r2 = 

0.37, p<0.001 and r2 = 0.21, p<0.001, respectively) was observed over a range 

from 10 to 20°C (Chapter 4). It is clear from the ion microprobe data obtained in this 

study that small-scale variability in the Mg content is one possible reason why such a 

weak relationship was observed between shell Mg/Ca ratios and seawater 

temperature. The inclusion of variable amounts of material from parts of the shell 

structure with different Mg/Ca ratios, as well as the sampling of shell areas with 
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striae and/or surface disturbance marks, may provide an explanation for the large 

variability observed in Mg/Ca ratios from shell calcite grown at constant 
temperatures. In another field culturing experiment study, the unexpected increase in 

Mg/Ca ratios of P. maximus specimens grown in a field-based culturing experiment 

at low winter temperatures reported in chapter 3 could now be explained by a higher 

number of striae (ca. 12 striae/mm) being milled and included in each `winter' 

powder sample, compared to Mg/Ca ratios in spring and summer samples with a 
lower number of stria (ca. 4-6 striae/mm), which had a more robust relationship to 

water temperatures. 

In Mytilus edulis there is some evidence that Mg/Ca ratios vary significantly 

depending on whether shell deposition occurs at the shell margin or on the inner shell 

surface away from it. The observation that M. edulis shell Mg/Ca ratios are 

influenced by disturbance marks formed during emersion could be particularly 

significant since in a natural inter-tidal environment the twice daily emersion- 

immersion cycles control the internal and surficial growth banding of M. edulis 

shells. Furthermore, disturbance marks are ubiquitous in M edulis shells, as well as 

in other bivalve species, and can reflect interruption of shell deposition during 

periods of non-tidal environmental and/or physiological stress (Klein et al., 1996a). 

Such observations further question the validity, and indicate the difficulty, of using 

Mg/Ca ratios in M. edulis as a palaeotemperature proxy, despite a previous study that 

demonstrated a Mg/Ca ratio-temperature relationship in the closely related species 

Mytilus trossulus (Lorens and Bender, 1977; Lorens and Bender, 1980; Rosenberg 

and Hughes, 1991; Vander Putten et al., 2000; Rosenberg et al., 2001; Markich et al., 

2002; Lazareth et al., 2003; Takesue and van Geen, 2004; Gillikin et al., 2005a; 

Lorrain et al., 2005; Carre et al., 2006; Gillikin et al., 2006a; Pearce and Mann, 

2006). 
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VIII - Conclusions 

Conclusions 

Geochemical proxies have been comprehensively studied and used in marine 
biogenic carbonates as proxies for environmental conditions. Bivalve shells have also 
been expected to contain valid and useful geochemical proxies of the environmental 

conditions under which the shell was deposited. Previous studies have expanded the 

knowledge on the controls of the stable-isotopic and elemental composition of 
bivalve shells (e. g. Krantz et al., 1988; Klein et al., 1996a; Hickson et al., 1999; 

Chauvaud et al., 2005; Gillikin et al., 2006a; Wanamaker et al., 2007). Such studies 
have shown the stable oxygen isotopic composition of bivalve shell carbonates to be 

deposited in or close to isotopic equilibrium, while elemental/Ca ratios in bivalve 

shells, in spite of some promising results (e. g. Klein et al., 1996a; Vander Putten et 

al. 2000; Gillikin et al., 2006a; Langlet et al., 2006), are not yet reliable and accurate 

proxies for environmental conditions and are influenced at variable degrees by 

secondary control factors, e. g. physiological processes or precipitation rate. 

The present study has focused on validating the use of elemental/Ca ratios (Mg/Ca, 

Sr/Ca and Mn/Ca) in bivalve calcite as geochemical proxies of environmental 

conditions (temperature, salinity, dissolved or particulate Mn, respectively). The 

species used have previously been proposed, as well as closely related taxa, as 

potential archives for palaeoceanographic studies (e. g. Krantz et al., 1988; Klein et 

al., 1996a; Hickson et al., 1999; Kennedy et al., 2001; Chauvaud et al., 2005; Gillikin 

et al., 2006a; Wanamaker et al., 2007). 

The temperature dependence of shell Mg/Ca ratios was found to be generally weak in 

bivalve calcite, as well as the occurrence of a large degree of variability of Mg/Ca 

ratios, and thus clearly suggests that bivalve Mg/Ca ratios do not yet appear to be a 

reliable and precise temperature proxy, at least in most of the species studied to date 

(Chapters 2,3 and 4). Such variability is significant at the species, inter- and intra- 

individual shell levels, and thus suggests a strong physiological control (metabolic 

and/or kinetic factors) of calcite Mg/Ca ratios during shell biomineralization. 

Nevertheless, shell Mg/Ca ratios in field grown specimens of Pinna nobilis are a 
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valid temperature proxy during the first 4 to 5 years of growth, after which 

ontogenetic effects decouple significantly the relationship between shell Mg/Ca 

ratios and calcification temperature (Chapter 2). 

Seawater temperature was not a significant control of shell calcite Sr/Ca ratios in the 

three species studied Pinna nobilis, Pecten maximus and Mytilus edulis (Chapters 2, 

3, and 5). Shell Sr/Ca ratios thus appear to be influenced by physiological controls. 

Shell growth rate, assumed to indicate a precipitation rate control, was significantly, 

correlated to shell calcite Sr/Ca ratios in field- and laboratory-grown P. maximus and 

M. edulis (Chapters 3 and 5), albeit not as strongly as previously reported for P. 

maximus (Lorrain et al., 2005). Generally, shell Mg content did not influence shell 

Sr/Ca ratios, albeit a significant but weak control of Sr/Ca ratios was observed in 

both field- and laboratory-grown specimens of P. maximus (Chapters 3 and 5). The 

positive relationship observed between absolute respiration rate and Sr/Ca in M 

edulis grown both in laboratory and field culturing experiments provides the first 

direct evidence of a physiological control on bivalve calcite Sr/Ca ratios (Chapter 5). 

Further support for a physiological control of shell Sr/Ca ratios also comes from the 

significant inverse relationship between shell Sr/Ca and S13C ratios in M. edulis, P. 

maximus and P. nobilis. However, such physiological control of Sr/Ca ratios cannot 

be applied to bivalves in general, which can be absent (e. g. Gillikin et al., 2005b), 

inverse (Chapter 2 and 5) or even positive (Klein et al., 1996b). Shell calcite Sr/Ca 

ratios thus appear to be under the control of more than a single factor (shell growth 

rate, metabolic activity and even shell Mg content), which may differ from one 

species to another (Chapter 5), but also temporally in a single species (Chapter 3). 

A significant relationship between bivalve calcite Mn/Ca ratios and dissolved Mn 2+ 

concentrations was suggested (Chapter 3) from the similar intra-annual variations of 

shell Mn/Ca in field-grown specimens of Pecten maximus and previously described 

seawater dissolved Mn2+ concentrations (Morris, 1974). In field-grown specimens of 

Mytilus edulis, shell Mn/Ca ratios were found not to be influenced by either 

dissolved or particulate Mn 2+ concentrations. Shell Mn/Ca ratios and shell growth 

rates showed a remarkably similar seasonal variation, which was not indicative of a 

precipitation rate control. The influence of shell growth rate on shell Mn/Ca ratios 

must reflect a physiological control most likely acting through an increase in the 
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transport of Mn into the extra-pallial fluid, raising its Mn content, and ultimately 

causing higher shell Mn/Ca ratios (Chapter 6). 

Significant small-scale heterogeneity in Mg/Ca, Sr/Ca and Mn/Ca ratios in the shells 

of P. maximus and M. edulis deposited at a constant temperature of was observed 

(Chapter 7). It is clear from the ion microprobe data obtained in this study that 

differences in the relative contribution of specific shell features, i. e. the number and 

size of stria and surface disturbance growth marks milled, as well as the depth of 

milling through regions of shell with variable Mg/Ca, Sr/Ca and Mn/Ca ratios, can 

explain some of the variability in elemental/Ca ratios observed previously for M. 

edulis and P. maximus shells (Chapters 3,4,5 and 6). In particular, the unexpected 

increase in Mg/Ca ratios at low winter temperatures of field grown P. maximus 

specimens (chapter 3) could potentially be explained by a higher number of stria (ca. 

12 striae/mm) being milled and included in each `winter' powder sample, compared 

to Mg/Ca ratios in spring and summer samples with a lower number of stria (ca. 4-6 

striae/mm). However, such small-scale heterogeneity in shell elemental/Ca ratios 

cannot be attributed to particular structural shell layers. Most importantly, in both 

bivalve species studied, elemental/Ca ratios vary significantly in shell deposited from 

the same EPF and thus strongly suggests that element incorporation in to the shell 

carbonate at the crystal-solution interface is a key control step in determining the 

element composition of shell calcite. 

Most of the results presented in this dissertation do not support the use of the 

elemental/Ca ratios studied in bivalve calcite, and contribute to the growing evidence 

that bivalve calcite element composition is controlled by physiological factors that 

underlie a tight control of element incorporation during shell biomineralization. Such 

physiological control of shell elemental composition in bivalves could be associated 
in some occasions to particular processes, such as shell growth rate or metabolic 

activity (chapter 3,5 and 6). Furthermore, elaborate shell features and disturbance 

growth marks, which are ubiquitous in bivalve shells, were associated with 

significant variations of the elemental content of the shell calcite and thus may 

represent an important interference in the use of geochemical proxies in bivalve shell 

calcite. 
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The results of the present work suggest that specimens or species, subject during 

their lives to a disturbing and stressful environment are most likely unsuitable for 

palaeoenvironmental reconstructions using elemental/Ca ratios. The use of bivalve 

shells in palaeoenvironmental reconstruction studies relies on the use of fossil shells 

and more often than not the choice of specimens, and even of species, to be used in 

such studies is limited for practical reasons (e. g. location, presence in the deposit, 

preservation, etc). Sources of metabolic stress and growth disturbance are ubiquitous 

during the life of many bivalve species and will no doubt influence the elemental/Ca 

records preserved in their shells. In particular, most bivalve species used in 

palaeoenvironmental studies often occupy coastal or estuarine environments and are 

exposed to stressful factors such as: exposure to air in inter-tidal areas; variations in 

salinity, pH and oxygen concentrations; presence of harmful substances and even 

toxic phytoplankton. Furthermore, growth in bivalves can be disturbed by storms, 

strong currents, sediment transport and predation, which causes disturbance growth 

marks in the shell, and even endogenous factors such as reproduction, may be a 

source of metabolic stress to the animals. For instance, Mytilus edulis can live in a 

wide range of habitats, from inter-tidal to sub-tidal areas, from fully marine to 

estuarine areas and in hard or soft substrates. It is reasonable to assume that 

contemporaneous M. edulis specimens from the same location, but that grew in 

different habitats, such as adjacent inter-tidal and sub-tidal areas, will have distinct 

elemental/Ca ratios and thus invalidate any reconstructions of past or present 

environmental conditions. 

Unless the secondary controls (i. e. metabolic and/or kinetic factors) on element 
incorporation, in particular their influence on the small-scale heterogeneity of shell 

elemental composition, can be understood in more detail, and eventually 

compensated for, the use of the geochemical proxies Mg/Ca, Sr/Ca and Mn/Ca ratios 

in bivalves for reliable and accurate reconstructions of past or present environmental 

conditions remains unlikely, at least in the species studied to date. Nevertheless, shell 

Mg/Ca ratios in the earlier years of growth in Pinna nobilis and particularly in the 

inner regions of Pecten maximus shells promise the potential of valid 

palaeotemperature proxies that deserve further investigation. 
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In the present study, a complementary field and laboratory experimental approach 

was used with constrained or monitored environmental and physiological conditions 
during new shell growth. Laboratory aquaria are not a true representation of the 

animal's natural habitat and the outcomes of laboratory culturing studies are only of 

value when validated by field-based studies, albeit with the latter suffering from a 
lesser degree of constraint of environmental variables. The constrained chronology of 

new shell growth obtained for both field and laboratory experimentally grown 

animals has thus allowed completion of a reliable comparison of shell elemental/Ca 

ratios to measurements of contemporaneous seawater temperature, salinity and other 

relevant environmental variables, as well as to biological variables such as shell 

growth rate, size and metabolic activity. The approach used in the present study is 

thus a significant advancement on previous studies of elemental/Ca ratios in bivalve 

shells, providing which have often relied on S18O-derived calcification temperature, 

unconstrained growth and variation of environmental and physiological variables. 

Furthermore, an initial assessment of the extent of any small-scale heterogeneity in 

Mg/Ca, Sr/Ca and Mn/Ca ratios in bivalve shell calcite laboratory-grown specimens 

of Pecten maximus and Mytilus edulis under constant temperature has also been 

investigated. 

The present thesis was presented with increasing degrees of experimental constrain 

of environmental and physiological conditions from chapter 2 and 3 to chapters 4,5 

and 6. For instance, in chapter 2, the field calibration of the Mg/Ca temperature 

proxy in Pinna nobilis was done using calcification temperatures derived from shell 
6180, assuming an annual mean value for ö'8Owater, since no seawater temperature or 

were available. However, in chapter 3, seawater temperature and 618O 
Water data 

during growth were available, but Pecten maximus shell growth during the one-year 

experiment was not constrained and a shell growth model had to be constructed. In 

the laboratory and field culturing experiments used in chapters 4,5 and 6 (field only) 

a constrained chronology of new shell growth was obtained and environmental and 

physiological variables were either monitored or constrained. 

Studies on the evaluation and calibration of geochemical proxies in marine biogenic 

carbonates should move, and are already moving, from studies with loosely 

constrained growth and environmental conditions towards well constrained field and 
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laboratory calibration studies. In addition, the questions raised in the present work, 
but also from previous studies, suggest that only with high-resolution techniques 

such as SIMS, it is possible to understand the physiological and biomineralization 

processes that underline the larger scale variability of elemental/Ca ratios observed in 

bivalve shells. For instance, such high-resolution techniques will be necessary to 

explain why the variability of Mg/Ca ratios from shell deposited at constant 

temperature is so large; why shell deposited contemporaneously from the same extra- 

pallial fluid, but at different locations along the inner shell surface, has different 

elemental/Ca ratios; how changes in shell biomineralization processes associated 

with the deposition of disturbance growth marks and elaborate shell features 

influence the shell elemental composition and also what is the role of the organic 

matrix on the elemental composition of bivalve shells. 

Finally, the findings of the present work should be considered in the development of 

future work on the use of geochemical proxies in bivalve shells, either guiding future 

research on the proxies studied here (see above) or as potential problems to be 

encountered in the development of recent and novel geochemical proxies in bivalve 

shells, such as potential palaeotemperature proxies already investigated in other 

marine biogenic carbonates, e. g. Li/Ca, U/Ca and Mg isotopes. 
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