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Abstract 

Due to numerous bottlenecks, the human brain is unable to consciously process all data 

available at the retina. To overcome these constraints, evolution has developed a system 

that breaks down retinal information into fragments and subsequently analyses them 

according to current goals and expectations. This biasing system is frequently referred 

to as attention. Yet despite a long history of itself having been the focus of analysis, 

there are a number of questions about attention that are clearly unanswered by the 

literature. Therefore, we wanted to address three problems highlighted by our literature 

review. Specifically, we wanted learn, (I) Are the effects of probabilistic expectations, 

when instructed either by spatial blocking of the target location or through a central cue, 

on response latencies the product of a ballistic, attentional process, or the product of an 

information theoretical decision-making process? (II) Can the inhibitory aspects of 

spatial attention be pre-deployed by using a central cue to manipulate prior expectations 

of where a task-irrelevant distractor is likely to appear? (III) What is the relationship 

between attention and eye movements?  

            We investigated this last question by way of testing healthy participants on 

covert and overt versions of the behavioural paradigms designed to address questions I 

and II, and then in a neuropsychology patient who presented with hypometric saccades, 

we investigated if eye movements and attention can be dissociated. Experiments 1-4, 

showed that the effects of target probability - when either spatially manipulated or 

instructed through a central cue - can neither be fully accounted for by attentional 

accounts or information theoretical accounts. Additionally, the outcome of target 

probability is context dependent. That is, outcomes depend on how target probability 

was instructed. Experiment 5 showed that spatial inhibition cannot be endogenously 

deployed using central cues. Although we found that distractor suppression takes place 

when targets are invalidly cued, suggesting distractor suppression takes place during 

reorienting. Experiments 6-7 showed that attentional orienting can be preserved in the 

presence of oculomotor impairment, indicating eye movements and attention can be 

structurally dissociated. Whereas the results of experiments 1-5 are consistent with 

claims that covert and overt orienting are similarly affected by expectations due to a 

common attentional process. We conclude that expectations influence a mechanism 

common to overt and covert responses, but ultimately, both processes are distinct.    

             In the discussion chapter, we discuss a number of future avenues of research, 
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including how electrophysiology could be used to further understand the phenomena 

presented here. Overall, the contribution of this body of research is to illustrate that the 

relationship between top-down expectations and exogenous effects is extremely 

complicated, and are, currently, inadequately captured by present models of attention. 
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Chapter I 
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A fundamental behaviour of biological organisms is to orient in response to a sensory 

stimulus. This behaviour has been empirically observed in bacteria (Chen, Ma, Jiang, & 

Song, 2011), plants (Adams, Volk, Hoehn, & Demmigadams, 1992), and humans 

(Posner, 1980). Unsurprisingly, orienting towards a sensory stimulus has long been a 

subject of scholarly interest. As far back as the Age of Enlightenment, Descartes 

claimed that humans oriented towards salient objects by tilting the pineal gland in the 

direction of the stimulus (1649). William James noted that that attentional orienting 

could be reflexively captured by suddenly appearing stimuli (1890). An early 

introspective report from Helmholtz (1896) concluded that attention could be covertly 

and willingly orientated independently of gaze. In the early 20th century, orienting was 

of interest to Soviet scientists. Pavlov (1927) famously reported that when there were 

changes in the environment, such as a door opening or a light switch being activated, 

that the dogs kept within his laboratory would orientate their gaze and/or ears towards 

the estimated location of the stimulus. Later, Sokolov (1960) reported a number of 

cortical and subcortical areas that were active during orienting, suggesting that orienting 

is represented at various levels within the central nervous system. An important 

methodological advance was provided by Michael Posner (1980), in the way of a simple 

but elegant cueing paradigm for manipulating and measuring the effect of expectations 

on covert attentional orienting. Later, and somewhat ironically, data obtained using this 

paradigm was used to make the claim that attention is simply the by product of cortical 

activation of the oculomotor circuitry (Rizzolatti, Riggio, Dascola, & Umiltá, 1987). 

More recent efforts have attempted to capture the nature of attentional orienting using 

computational models, ranging from the simple (e.g. Carpenter & Williams, 1995) to 

the complex (Itti & Koch, 2001).  

Therefore the question of how animals orientate towards a sensory stimulus has 

not only historically been of interest but is still an important, interesting, and 

challenging topic. The purpose of this present body of work is to investigate the nature 

of top-down expectations on covert and overt attentional orienting. Specifically, our 

goals were to learn: A) How do top-down, probabilistic expectations influence 

attentional orienting to an imperative stimulus? B) Can top-down expectations prevent 

orienting towards a spatial location where distractors are expected to appear? C) Is it 

possible to dissociate covert and overt attention behaviourally and 

neuropsychologically? Therefore, the remainder of this chapter will describe the current 

state of the visual attention literature, as relevant to these topics. 
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Visual Attention 

Visual environments are rich in information and due to various processing bottlenecks 

within the brain, biological systems are unable to consciously access all sensory data 

available at the retina (e.g. Levin, 1997). To counter these limitations, evolution has 

developed a biasing system for the purpose of maximizing the use of limited 

computational resources by breaking down retinal information into sections, which are 

then selectively processed according to system priorities. This system is referred to as 

visual attention. 

 Attention is a crucial process for biological systems, enabling them to identify 

dangers within the environment, or resources required for survival and reproduction. 

For example, sustained attention allows a snake to focus on its prey for prolonged 

periods, until the right moment to strike; alternatively, attention can be involuntarily 

orientated towards a predator detected in peripheral vision. Attention may also required 

for processing and bringing awareness of internal events, such as thirst, hunger or fear. 

Failures of attention are often features of many pathologies such as Alzheimer’s disease, 

schizophrenia, or attention deficit disorder, and therefore attention may be the focus of 

medical intervention – even though a clinicians notion of attention will be different to 

that of scientists. When considering these examples, they highlight that the term 

attention describes a multitude of different processes for laymen, clinicians, and 

scientists. For the purpose of this thesis, when discussing attention we shall use the 

classical view that has driven much of contemporary attention research, given by 

Williams James in the principles of Psychology: 

 

 “Everyone knows what attention is. It is the taking possession by the mind, in 

clear and vivid form, of one out of what seem several simultaneously possible objects or 

trains of thought. Focalization, concentration, of consciousness are of its essence. It 

implies withdrawal from some things in order to deal effectively with others.”. 

    

This quote has become something of a cliché within attention research, however it 

is so often used precisely because it provides an excellent description of attention, in it 

is a selective process that allows a selected stimulus to receive priority processing whilst 

simultaneously deprioritizing other stimuli. Although somewhat ironically, despite the 

long history of research and many experiments, Sutherland claimed that only slightly 

more is known about attention than the contents of a black hole (Sutherland, 1998). 
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Whilst there are indeed a number of unresolved debates, there are several principles that 

are accepted by contemporary attention researchers. 

 

Attention is selective and other principles 

How selection of a stimulus is specifically achieved has received a number of 

hypothetical solutions. Some accounts have claimed that attention operates as a 

spotlight (e.g. Posner, 1980) or a zoom lens (e.g. Eriksen & James, 1986; Laberge, 

1983). The core tenant of such descriptions is that within the visual environment, 

attention acts as a beam, which prioritizes whatever falls within it loci for processing. 

Whilst there are criticisms of this account (see review by Cave & Bichot, 1999), for 

example; the observation that multiple locations may be attended simultaneously (e.g. 

McMains & Somers, 2004), such metaphors provide a useful shorthand description of 

how attention is controlled, independent of gaze. Another characteristic of focal 

attention is the manner in which it may be summoned. Attention can be summoned 

exogenously by the sudden appearance of a new stimulus, or it can be deployed 

endogenously, through top-down processes. Finally, attention can be deployed overtly, 

through shifting body, head or eye position, or covertly by adjusting the focus of 

attention without adjusting bodily position. 

 

Models of attention 

Models of attention have played an important role in designing experiments and 

interpreting their results. Early selection models have generally described attention as a 

mechanism for preferentially allocating limited resources to visual stimuli, in 

accordance with either overwhelming exogenous contingencies or current behavioural 

goals (Broadbent, 1958; Treisman & Gelade, 1980; Bundesen 1990; Carrasaco, 2011). 

One influential conception of attention, which has strongly influenced the literature, was 

formulated by Posner (1980) and later associated with specific neural circuits (Posner & 

Peterson, 1990; Petersen & Posner, 2012). According to this perspective, attention is 

comprised of several functionally and anatomically distinct systems - the alerting 

system, the orienting system, and the detection system - designed to facilitate the 

binding of sensory representations to action and cognition. These systems are described 

in greater detail below. 

 

 

Alerting system 
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The first system described by this model is alerting, which promotes a state of readiness, 

to facilitate prompt and accurate responses to stimuli. For example, a warning signal 

prior to an event causes a change in alertness, which can facilitate the response to 

subsequent targets (Petersen & Posner, 2012). Alertness is sensitive to a number of 

physiological and circadian factors (Posner, 1975) and is considered lateralized to the 

right hemisphere (Posner & Peterson, 1990). Neurochemically, alerting has been 

associated with the noradrenergic brainstem nuclei. Since warning signals are known to 

increase metabolic activity in the locus coeruleus (Aston-Jones & Cohen, 2005) a 

brainstem nucleus whose noradrenergic neurons project diffusely to cerebral cortex. 

Whilst separate processes, it is considered that alerting and orienting operate closely 

together (Fan et al., 2009). 

  

Orienting 

Orienting refers to the process of directing attention to spatially localized signals 

(Posner, 1980). More specifically, overt orienting refers to the alignment of sensory 

signals away from irrelevant stimuli, and towards relevant stimuli to for the purposing 

of improving the quality of the sensory data concerning targets of potential interest. 

Generally, orienting can take place also covertly and allows the observer to respond to 

the attended stimulus. It has been suggested that orienting may also take place in non-

spatial dimensions (Corbetta & Shulman 2002). In other words, when attending to 

colour or shape, observes may use the same neural processes employed when orienting 

to a location. 

Orienting is clearly a dynamic process since attention is deployed at different 

locations. A crucial aspect of the orienting response, as conceptualized by Posner, is 

that this response depends on distinct processes; which (i) disengage attention from a 

location; (ii) shift attention to a new location; (iii) before finally engaging attention to 

the new location. These separate operations are carried out by different brain structures, 

so that brain lesions can disrupt different subcomponents of the orienting response with 

separate effects on attention. Posner proposed that attention could be summoned 

exogenously by a suddenly appearing stimulus, or endogenously through internal, 

cognitive processes (Posner, 1978). The idea that attention can be summoned both 

voluntary or reflexively is now well established (Berger, Henik, & Rafal, 2005).  

According to neurological models of attention, there are separate neural systems 

for endogenous and exogenous orienting (Corbetta & Shulman, 2002). There is a dorsal 

attentional network that is distributed hemispherically and includes mainly areas along 
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the Intra-Parietal Sulcus (IPS) and in the Frontal Eye Fields (FEF) and a right 

hemisphere lateralized ventral attention network, which includes the Temporal-Parietal 

Junction (TPJ) and Ventro-Lateral Prefrontal (VPF) cortex. Evidence for the dorsal 

system includes increased activity in the IPS and FEFs following the presentation of a 

central arrow cue, used to guide endogenous spatial attention (Corbetta & Shulmen, 

2002). Additionally, activity in the IPS shows sustained increases in the hemisphere 

contralateral to the attended visual stimulus (Shomtsein & Yantis 2004). When the 

target appears in a location other than that indicated by the central cue, then the ventral 

system is activated, suggesting a specific susceptibility to exogenous targets and 

possibly reorienting of attention. The ventral system has been described as responsible 

for interrupting current attentional processes when a salient, but unexpected stimulus 

requires reorienting of attention. The function of the ventral attentional system has been 

compared to that of a circuit breaker (Corbetta & Shulman, 2002). Recent evidence has 

called into question this highly popular interpretation of the function of the ventral 

attentional system. A number of investigators have suggested that the ventral attentional 

system may be more concerned with evaluative processes that follow the detection of 

the target, rather than processes that precede it (Doricchi et al., 2010; Hiang & Marois, 

2014). One distinct feature of the activity of the ventral attentional system is that it is 

modulated by the probability of a target (Corbetta & Shulman, 2002). 

 

Detection/executive system 

In the original Posner and Peterson (1990) review, the third system was described in 

terms of processes engaged following target detection. In a recent elaboration (Petersen 

& Posner, 2012) this was renamed the executive system. This third system describes the 

moment when a target enters into conscious awareness, which according to the authors 

encompasses two main systems. The first system relates to a global system or state, that 

is maintained across the block of a task and signals may be related to participant 

instructions provided at the start of a block (Peterson & Posner, 2012). Cortical regions 

that have been proposed to be involved in this maintenance signal include the medial 

frontal/cingulate cortex and bilateral anterior insula (Dosenback et al., 2006). Whereas 

activity of the second system is allied to single trials within a task, and appears to be 

more concerned with adapting performance to the current required demands. Cortical 

regions associated with the more reactive signals include the parietal and lateral frontal 

regions (Dosenback et al., 2006). With the main advantage of duel networks being a 

system that can be adaptive to transient, trial events, whilst also stable across the block 
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of a task (Doesnbach, Fair, Cohen, Schlaggar, Petersen, 2008). 

 

Effects of top-down expectations on attentional orienting 

Expectations in the context of this thesis refers to brain states that reflect an internal 

estimate of the prior about some probable, future event (Summerfield & Egner, 2009). 

Much of the empirical support for selective models of attention are provided in the way 

of experimental paradigms where attentional orienting is manipulated through biasing 

observer expectations through a centrally presented cue. The cue is thought to be 

symbolic, because it provides indirect information regarding where the target is likely to 

appear. This paradigm is generally referred to as the Posner paradigm (Posner, 1980), 

although it was first employed by Leonard (1953) to investigate the time required for an 

observer to process a single bit of information.  

The general format of the Posner paradigm is as follows (see figure 1): Observers 

fixate on a centrally located fixation point at the center of a display. After a period of 

time delay, a cue will appear, either centrally or peripherally located for a fixed amount 

of time. After another brief period of time, known as a foreperiod, the target will appear 

either at the location indicated by the cue (validly cued) or at one of the other locations 

(invalidly cued). 

 

 
Figure 1. Prototypical Posner paradigm. A. Observers are first presented with a cue for a period of time, 
which is then followed by a (B.) foreperiod, before (C.), the target appears. If the target appears at the 
previously cued location it is validly cued, if it appears at a location other than the cued one, it is invalidly 
cued. D. Results presented here are from Posner, Nissen, and Ogden (1978) demonstrating that reaction-
times are faster for validly cued targets than invalidly cued targets. 

 

The consistent findings in such experiments are that reaction times are faster on 

d.
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valid trials compared to invalid trials, and that validly cued trials are only marginally 

faster than uncued trials in which the target is preceded by an uninformative cue (Green 

& Woldorff, 2012; Hommel, Pratt, Colzato, & Godijn, 2001; Jonides, 1983; Posner, 

1980). Furthermore, it is possible to calculate a validity effect by subtracting the 

difference between response times for invalid trials from valid trials, to provide an 

estimate of the measurable benefit from using the cue. The canonical explanation for 

faster responses to valid than invalid targets (e.g. Posner, 2014) is that during validly 

cued trials when the target appears at the cued location, attention is not required to 

orientate as it is already at the location containing the target. Thus a response can be 

initiated as soon as the target appears. Whilst the appearance of a target in the absence 

of a cue is sufficient enough to generate a shift of attention, thus explaining why there is 

only a marginal benefit of the cue in valid compared to uncued trials (Posner, 2013). 

The cost seen on invalidly cued trials is interpreted as attention must first disengage 

from the currently attended location, and then re-orientate to the new location, and 

finally engage the new location. Centrally presented cues, used to guide attention 

endogenously, generally require ~150 to 300 ms to covertly orientate attention to the 

cue in simple manual response tasks (where observers are required to maintain fixation; 

Umiltà, Riggio, Dascola, & Rizzolatti, 1991) and around 150 ms to execute a saccadic 

response (Rayner, 1998). 

Many studies have used the Posner paradigm to selectively bias attention (Jonides, 

1983; Lambert & Duddy, 2002; Peterson & Gibson, 2011; Smith, Ball, & Ellison, 2014), 

although the mechanisms by which centrally presented cues bias attention remain 

debated. Early claims assumed that these effects would only occur when cues were 

informative about the target location (Crump, Milliken, & Ansari, 2007; Jonides, 1981). 

However, several studies have demonstrated cueing effects even when central cues offer 

no predictive information (Green & Woldorff, 2012; Qian, Shinomori, & Song, 2011) 

and the likelihood of the target appearing at the cued location is the same as for any 

other location. Other investigators have suggested that arrow cues tap into a reflexive 

orienting system (Bayliss, di Pellegrino, & Tipper, 2007; Kuhn & Kingstone, 2009). If 

the effects of symbolic cueing are largely reflexive, then they should be largely 

independent of the cue validity, contrary to a number of reports. However, the 

observation of a validity effect in the face of a non-predictive cue may still reflect an 

endogenous effect, driven by either an incorrect appraisal of its value, or a sub-optimal 

utilization strategy.  

One strategy which can account for the validity effect produced by uninformative 
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cues is probability matching (Jonides, 1983). Jonides proposed that in a task where the 

cue correctly indicates the target location less than 100 percent of the time, the cue is 

only processed on a proportion of trials. Essentially observers behave according to a two 

process model where they are either allocating all available attentional resources to the 

location indicated by the cue, or they are attending elsewhere. Probability matching 

assumes that observers will use the cue on a proportion of trials, which match the 

reliability of the cue (Jonides, 1983). This particular strategy can be a consequence of a 

simple “win-stay, lose-shift” rule (Gaissmaier & Schooler, 2008), where following a 

trial in which the cue correctly indicated the location of the target, observers will attend 

the cued location. Whilst following a trial in which the cue indicates the incorrect target 

location, the observer will not attend the cued location. In short, participants use the 

strategy that would have been successful in the previous trial. Jonides (1983) found 

support for this strategy since it predicted performance better than a single process 

model, which assumed that a percentage of attentional processes (according to cue 

validity) were allocated to the cued location on each trial. Though probability matching 

may seem suboptimal, because it will lead to fewer correct trials than if observers 

exclusively sampled the highest probability location on each trial, as long as one 

assumes that the benefits of attending the cued location are larger than the costs of 

attending the incorrect location. However, it has been suggested that it forms part of a 

more general strategy when searching for patterns in the face of more complex 

environments (Gaissmaier & Schooler, 2008).  

Subsequently, responses would appear erratic if using a strategy of win-stay, lose-

shift when outcomes are random, however such a strategy is more sensitive to finding 

patterns which humans appear to disposed to identifying (Gaissmaier & Schooler, 2008). 

Indeed even in studies where stimuli presentation is random, participants will report 

having identified patterns (Unturbe & Corominas, 2007). An anecdotal and analogous 

example would be the gamblers fallacy applied to a game of roulette, where players try 

to use previous outcomes to predict future outcomes, despite past events and future 

events being independent, thus providing no probabilistic information regarding the 

outcome. 

 Empirically, a number of studies have observed participants using probability 

matching during choice tasks. For example, Jonides (1983) tested the idea that 

observers only attended the cued location on a number of trials proportional to the 

validity of the cued, against a model predicting participants would distribute attentional 

resources amongst all possible locations, but with the proportion of attentional 
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allocation matching the cues validity. Thus in this second model, it was proposed that 

attentional resources would be disproportionally allocated to the cued location 

according to the cues validity. Jonides predicted that if the two process model was 

correct, differences in reaction times for reliability would occur because of there would 

be differences on the proportion of trials where participants were attending to the cued 

location. Inspection of the data demonstrated that differences in reaction-times were the 

result changes in the proportion of attended and unattended trials, supporting the idea 

that attention was fully committed to cued locations, rather than weighted at different 

locations according to cue reliability. Furthermore, a number of other studies have 

found that observers use a probability matching strategy (Gaissmaier & Schooler, 2008; 

Johnson & Yantis, 1995; Unturbe & Corominas, 2007; West & Stanovich, 2003). 

Nonetheless, despite the empirical support for probability matching as a decision 

strategy when choosing to use a cue, there is evidence for an alternative explanation of 

the effects of cue validity on endogenous orienting. 

 

Information theoretical accounts  

An alternative, and prominent idea of how observers may internalize estimates of an 

event probability to optimize response times and accuracy is based on information 

theoretical accounts (Carpenter & Williams, 1995; Hick, 1952; Hyman, 1953). A crucial 

aspect of these models is that they consider responses to be the product of a decision 

making process, based on the accumulation of information transmitted through a limited 

capacity channel. These models can be considered as the extension to theories providing 

basic insights into the transmission of information along noisy channels (Shannon, 

1948). One of the earliest papers demonstrating a relationship between choice 

probability and reaction times consistent with information theoretical accounts, was 

provided by the finding that as the number of decision choices increases, reaction-times 

also increase, but in a logarithmic manner (Hick, 1952). This logarithmic relationship 

between uncertainty and reaction times has been replicated by a number of decision-

making models (Carpenter & Williams, 1995; McSorley & McCloy, 2009; Ratcliff, 

2001; Schall, 2000). One common feature of these models is that all possible decisions, 

representing the possible target location that an impending eye movement can be 

directed to, are represented by distinct decision units. For a decision unit to be declared 

the winner, its level of activation has to reach a certain threshold. This threshold may 

either be reached by the accumulation of a noisy sensory signal or of a decision signal 

transmitted along a noisy channel. Once activity of a specific decision unit has reached 
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its threshold, the associated response is then executed (Carpenter & Williams, 1995; 

Schall, 2000). 

Some of the most compelling support for decision-making accounts is provided 

by neurophysiological studies. In particular, studies demonstrating neuronal activity, 

which is sensitive to probabilistic information in structures crucial to simple motor 

responses. Basso and Wurtz (1998) compared activity of buildup neurons, fixation 

neurons, and burst neurons within the superior colliculus (SC) of non-human primates, 

whilst systematically varying the target’s spatial uncertainty by changing the number of 

possible target locations. Changes in target probability modulated the baseline activity 

of SC neurons prior to the stimulus appearance. More specifically baseline activity 

specific to buildup neurons decreased as the number of possible target locations 

increased, implying that this indexed the probability that the target would appear at a 

certain location. Similar findings have been reported in a number of other brain areas 

considered crucial for covert and overt orienting such as the FEF (Schall, Stuphorn, & 

Brown, 2002) and the IPS (Heekeren & Marrett, 2008), which suggests that 

probabilistic information may have widespread effects on neural activity. 

 

LATER Model  

Whilst many models attempt to explain the decision processes (McSorley & McCloy, 

2009; Ratcliff, 2001; Schall, 2000), one particularly popular information theoretic 

model is the Linear Approach to Threshold with Erdogic Rate model, known as the 

LATER model (Carpenter, 2014; Carpenter & McDonald, 2007; Carpenter & Williams, 

1995). According to the LATER model, some of the time between the appearance of a 

salient target and the execution of a saccade towards the target represents decision-

making time. The core assumption is that following the appearance of a target, a signal 

representing the level of activation in the decision unit coding for a saccade toward the 

target, rises from its baseline level, at a constant linear rate, until it reaches a threshold. 

Once the rising activity level has reached a predetermined threshold, a decision is 

executed – in this case, a saccade towards the winning target. Conceptually, the decision 

signal represents the log-likelihood of the target probability location and the sensory 

evidence causes the log probability to increase, until a criterion level which is analogous 

to a significance level, or p value, is reached which can only be updated at a finite rate 

because of the noisiness in the relevant information channel. 
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Mathematically, the LATER model can be expressed as: 
 

𝐥𝐨𝐠 𝐋! = 𝐥𝐨𝐠 𝐋 + 𝐒, 𝐰𝐡𝐞𝐫𝐞   𝐒 = 𝐥𝐨𝐠
𝐩𝐫𝐨𝐛 𝐄 𝐇𝟏
𝐩𝐫𝐨𝐛 𝐄 𝐇𝟐 

 

  

Where L represents the Likelihood of some hypothesis H, and E represents observed 

evidence. The collection of evidence E increases the log likelihood by a constant 

amount of S, which refers to the decision signal representing H₁ against H₂, given E.  

Empirical support for the LATER model was provided in the seminal paper, the 

neural computation of log-likelihood theory (Carpenter & Williams, 1995). In a simple 

experiment, the spatial distribution of the target, the target probability, was manipulated 

over several levels ranging from 5 to 95 percent by changing the odds that the target 

stimulus would appear either left or right of fixation. The authors reported that after 

many trials with each probability level, median saccadic latencies for the two observers 

gradually shifted to reflect the level of target probability (see figure 2). Crucially, the 

distribution of reciprocal latencies were well described by a normal distribution, a 

finding that could be accounted for if one assumes that latency variability reflects trial 

to trial normally distributed variation in the rate of activity accrual. In addition to the 

main latency distribution of each level of target probability, there was another, earlier 

distribution comprised of shorter latency saccades called express saccades, which are 

described in greater depth in the chapter on eye movements. The proportion of express 

saccades also positively increased with higher levels of target probability. According to 

Carpenter, a second decision unit with a lower decision threshold can account for 

express saccades. It should be noted that this explanation of express saccades is 

significantly different compared to the attention-disengagement accounts of express 

saccades described later in this review. One unique aspect of the LATER model that 

makes it particularly useful over other models is that reciprocal transformation of the 

latencies is a feature of this model. These transformed latencies when visualized in 

reciprobit plots (see figure 2) are more intuitive for visualizing the faster population of 

saccades, than the more common bell curve method of visualizing data. 



	

	
	

21	

 
Figure 2 Reciprobit plot of participants’ response latencies (ms) scale linearly with target log-likelihood. 
The first, shorter line reflects a faster population of latencies known as express saccades, whilst the 
second line represents regular saccades. Figure taken from Carpenter & Williams, 1995. 

 
Summary: response strategies 

 

One issue within the orienting and attention literature is how prior information biases 

observer responses. Formal models of attention (Petersen & Posner, 2012; Posner & 

Petersen, 1990) describe expectations as influencing sequential, ballistic processes 

which control the focus of attention, which include disengaging from the currently 

attended location, before orientating towards a new spatial location and finally re-

engaging attention. These models theorize that expectations influence the orienting 

process by pre-emptively orienting attention to the cued location. Support for such 

accounts come from a variety of experiments, where expectations of where a target is 

likely to appear are provided using a centrally located cue. Typically, reaction times are 

faster on trials where the target appears in the cued location (valid trials) than trials 

where the target appears at a location other than where the cue appears (invalid trials). 

In terms of the pattern of behavioural data, these findings could be accounted for in 

terms of a probability matching strategy where attention will attend process the cue over 

a percentage of trials which matches the level of cue reliability (Johnson & Yantis, 

1995; Laberge, 1973) thus leading to reaction times scaling linearly with changes in cue 

reliability.  

These explanations are distinct from information theoretical accounts, which take 

the view that responding is mostly the result of a decision making process. These offer a 

markedly different account of the effect of expectations on reaction-times, in that 

responses to the presence of a stimulus are the result of a decision-unit collecting a 

required amount of sensory evidence which gradually increases the logarithm of a 
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decision signal until a criterion is reached, and subsequently an outcome associated with 

the winning decision unit (such as a saccade) is executed.  

Whilst both models have been overwhelmingly useful and can account for a wide 

variety of empirical findings, they are in clear disagreement. On one hand, attention 

models predict that one aspect of the sensory environment is considered during a 

response and this supports the notion that attention is a process-limited resource. Whilst 

the other predicts that a competing decision unit represents each probable outcome. 

Therefore an important question for our understanding of visual attention, is the nature 

of the effects of target probability on attentional mechanisms - do they influence a 

decision making process; or alternatively, do they influence a probability matching 

strategy where attention is deployed only to any one location at a specific moment in 

time. 

 

Visual search: selecting target from distractor stimuli 

Rarely will stimuli important to current task demands be found in isolation. In fact, we 

spend a large portion of our time awake carrying out visual search tasks. For example, 

we search for the correct coins amongst a handful of change to pay for a cup of coffee, 

we may search for a PDF of an interesting journal article amongst a cluttered desktop, 

or we may scan through the results presented from a Google search to find the one most 

relevant to our current task demands. In primitive society too, efficient visual search 

would have been important when scavenging for food, or looking for predators to avoid. 

The manner in which we achieve this is still under much debate.  

Visual search generally involves covert and overt orienting in order to bring 

attended stimuli into the high-resolution, foveal part of the retina. Search is guided by 

top down processes, which specify the task relevant aspects of the target and 

expectations regarding its likely location (Miller, 1988), defining features of colour and 

shape (Laarni, 2001). Also there may be processes which keep track of previously 

searched locations and stimuli (Abrams & Dobkin, 1994) to improve search efficiency.  

 

Feature Integration Theory  

There are several accounts of visual search (Eckstein, 2011; Wolfe, Cave, & Franzel, 

1989). One of the most influential is feature integration theory (Treisman & Gelade, 

1980). The core aspect of feature integration is the pre-attentive stage, which occurs 

early in perceptual processing before visual information enters conscious awareness. 

During this stage, retinal signals about objects are broken down into different categories 
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of features, such as colour, orientation and motion. The spatial coordinates of each of 

these features are contained within a separate map, one map for each feature. The 

second stage is the focused attention stage, where features are combined to create an 

overall master map, which contains the retinal coordinates of complete objects. Also 

during the attention stage is when the spotlight is required, and features within its loci 

are considered to be integrated, or glued together in order to form whole objects 

(Quinlan, 2003). One beneficial characteristic of this model is that it accounts for visual 

search. Search can proceed in one of two-ways, either sequential or parallel. The search 

strategy used depends if search is for an individual feature – such as a red object – 

versus a collection of objects, such as a red L amongst a sea or red and green T’s. 

Searches for individual features are considered to happen in parallel, whereas object 

searches happen in serial; naturally, parallel search is faster than serial search. 

 

Distractor suppression in visual search  

Top-down signals are used to guide attention when searching for a target amongst task 

irrelevant stimuli. For example, when searching for a coffee cup, one will usually start 

from the last location the cup was recalled to be in. Many studies have demonstrated 

that spatial and feature information regarding the target can improve search 

performance, including probabilistic information about target location (Geng & 

Behrmann, 2005), colour (Dunai, Castiello & Rossetti, 2001), information on the spatial 

location of the target (Geng & Behrmann, 2002). There is some recent evidence that 

observers can actively suppress the processing of task irrelevant information. For 

example, it is well documented that previously searched locations are inhibited from 

being attended again (Klein, 2000; Lupianez, Klein, & Bartolomeo, 2006) since 

observers are slower to response to targets appearing in previously attended locations.  

Other research has shown that responses to a stimulus which share features with a 

previously identified distractor are delayed (Fox, 1995; Terry & Valdes, 1994; Tipper, 

Weaver, Cameron, Brehaut, & Bastedo, 1991). Such data suggests that active inhibition 

of distractors is possible. However whether inhibition can be deployed purely 

endogenously, or rather requires exposures to distractor stimuli is yet not clear. Several 

recent studies have suggested that cueing the location or colour of task irrelevant 

distractors can lead to improved task performance, thought to reflect suppression of the 

distractor containing location. One of the first studies to argue for endogenous distractor 

suppression was an fMRI study by Ruff and Driver (2006). In this study, pre-cueing the 

location of an upcoming task-irrelevant distractor led to a reduced behavioural cost of 
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the distractor. The authors also observed increased preparatory activity in the occipital 

lobe, in the hemisphere contralateral to where the distractor was expected to appear (as 

indicated through the cue), as well as increased activation in a parietal and frontal 

structures. The authors concluded that cueing diminished the distractor related costs, by 

biasing activity in visual and attentional networks for the purpose of suppressing 

distractor processing. Additional evidence for active suppression is provided by 

behavioural studies. Munneke, Van der Stigchel, and Theeuwes (2008) found a reduced 

flanker effect when subjects were cued about the location of distractor stimuli. 

Distractor cueing can also modify eye movement trajectories (Van der Stigchel & 

Theeuwes, 2006) which tend to curve away from the expected location of a distractor, 

even on trials when no distractor was presented. This suggests that inhibition of the 

cued distractor location took place during saccadic programming. 

 Whilst there is evidence to suggest that expectations can enable the system to 

reduce the impact of a distractor stimulus on attentional orienting, there is another body 

of research which shows that prior information regarding some element of a distractor 

can paradoxically result in the observer attending to them instead. For example, 

observers who have been instructed to actively ignore occasionally appearing distractors 

perform worse than observers who are not informed about the presence of distractors 

(Chisholm & Kingstone, 2014). This finding might be accounted for by the so called 

white bear effect, namely that cueing an irrelevant stimulus can lead to increased 

attention to the distractor (Lahav, Makovski, & Tsal, 2012; Tsal & Makovski, 2006; 

Wegner & Schneider, 2003) in that trying to actively not think about a stimulus leads to 

maintenance of the stimulus within memory.  

 
Summary: endogenous spatial inhibition of a distractor containing location. 

 

A large area of the attention research is concerned with the effect of top-down 

expectations and how they modulate task performance. The idea that information 

regarding the location of a relevant stimulus improves task performance by modifying 

top-down expectations is well supported within the literature. Less clear, however, are 

the effects of programming top-down expectations about the location of task-irrelevant, 

distractor stimuli. Currently the literature is conflicting, with some studies claiming that 

cueing the location of a distractor leads to spatial inhibition at the distractor-expected-

location, whilst other studies indicate that information regarding the location of 

distractor stimuli paradoxically impairs performance, by increasing the processing 
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priority of the expected location. Therefore another important question within the 

literature is to investigate how information regarding the likely location of irrelevant 

stimuli modulates task performance. 

 

Attention and eye movements 

 

The final section of this review will deal with the relationship between eye movements 

and attention. First, we will review the anatomy of the eye, then describe different 

methods of recording eye movements and related research methodology (including the 

one employed in this body of work), before finally describing the final problem central 

to this review, the relationship between attention and eye movements. 

 

Anatomy of the eye 

The human eye is a wonderfully complex optical system, and its construction and 

design inspired many of the instruments used in early astronomy research (e.g. Kepler’s 

camera obscura; Dupré, 2008). The orientation of the eye in the orbit is controlled by 

three pairs of antagonist muscles. These extra-ocular muscles are responsible for 

rotating the eye along three axis – horizontal, vertical, and torsional. Horizontal 

movements are either adduction (toward the nose) or abduction (away from the eye). 

Horizontal movements are controlled the medial and lateral rectus muscle. Vertical 

movements can be either elevation or depression, and are controlled by the superior and 

inferior rectus muscles, and also the oblique muscles. Torsional movements are either 

towards the nose (intorsion) or away from the nose (extorsion).  

The eye itself is a fluid filled globe comprised of three layers. The outer layer is known 

as the sclerotic coat, or sclera, and is referred to as the white of the eye. The transparent part 

of the sclerotic coat is the cornea. The cornea allows light into the anterior of the eye and also 

bends the light rays so they can be brought into the focus. The middle layer of the eye is 

known as the choroid coat, and this reduces reflection within the eye as well as forming the 

iris and also being responsible for eye colour. The final part of the eye is the retina, which is 

the inner part of the eye and it is here where visual perception begins. Here are contained the 

rods and cones which are the two types of photoreceptors. The central part of the retina is 

called the fovea, and is specialized for acuity vision. The first stage of visual perception 

begins when light enters the retina and falls upon the photoreceptors. This information is then 

transmitted through the optic nerve at speeds of around 875,000 bits per second (~ 12 

megabytes), per eye (Koch et al., 2006) to regions within the brain for further processing. 
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Eye movement research 

Modern eye movement research has a relatively recent history. The term saccade, one 

of the most common movements we make, was originally coined by Javal (Javal, 1878) 

to describe the jerky ballistic eye movements made whilst reading. One of the early 

methodologies for measuring eye movements was devised by Delabarre (Delabarre, 

1898), who attached a leaver to a plaster of Paris cup, which was placed on the cornea. 

Raymond Dodge (Dodge, 1903) designed one of the first non-invasive eye trackers. He 

created a photochronograph, which measured corneal reflections. The equipment was 

driven by a piano tuning fork and was able to record the eye position at around 100 Hz. 

Dodge also used such an arrangement to investigate oculomotor control in 

schizophrenia. Today, contemporary eye tracking methodology is currently used in a 

broad array of applied basic and translational research (Fairhall, Indovina, Driver, & 

Macaluso, 2009; Klein, 2008; Smyrnis, 2008). 

 

Recording oculographic data  

The equipment employed throughout this body of research is the camera based Eyelink 

1000 system (SR Research, Canada). The Eyelink measures an observer’s gaze by 

Figure 3: Gross anatomy of the human eye, showing the three layers and the retina. 
Credit to National Eye Institute, National Institutes of Health. 
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illuminating the eye with an infrared light, and tracking the position of the pupil and the 

corneal reflection using a camera. The data are used to estimate the observer’s gaze 

direction. Data are collected through discrete sampling; each sample refers to the image 

acquired and subsequently processed using a gaze algorithm. The Eyelink 1000 system 

is able to sample at maximum rate of 1000 Hz, one sample each millisecond. Each 

sample the system provides gives information about a number of oculomotor events 

including pupil size and fixation time. The system also calculates a number of other 

parameters, such as eye velocity, amplitude, and saccadic latency. We were specifically 

interested in measuring saccadic latencies, which provide a measure of how long it took 

to initiate a saccade from the onset of an imperative stimulus. Additionally, saccadic 

amplitude, velocity and duration can be used to define the characteristics of the main 

sequence, namely the power law which describes the relationship between saccadic 

amplitude and peak velocity (Bahill, Clark, & Stark, 1975). fFor saccades with an 

amplitude of < 10 °, the relationship is almost linear when plotted in log – log 

coordinates. The main sequence data can provide a sensitive index of malfunction 

within the saccadic system (Garbutt, Harwood, & Harris, 2001; Smeets & Hooge, 2003). 

 

Relationship between attention and eye movements 

Another long running theme within the research literature is the relationship between 

attention and action, or more specifically eye movements and attention. Generally it is 

known that eye movements and shifts of attention are tightly coupled in primates, 

providing the basic mechanisms of a saccade-and-sample strategy: where when the eyes 

saccade to a specific regions of interest within a scene, allowing stimuli to be sampled 

using the higher sampling resolution provided by the fovea. A useful model of how 

attention and eye movements are coupled during saccade generation can be explained 

using express saccades. 

 

Express saccades 

One illustrative example of the relationship interaction between shifts of attention and 

saccades come from the explanation for express saccades (Saslow, 1967), namely a type 

of extremely fast saccadic eye movement with a latency of ~100 ms (Fischer & Weber, 

1993), compared to regular saccades with a latency of around 150 – 180 ms. Whilst the 

existence of express saccades is contentious, a number of studies have demonstrated a 

bimodal distribution of saccadic latencies under certain experimental conditions 

(Carpenter & Williams, 1995). Thus supporting the argument that express saccades 
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represent a special population of response. One explanation is that express saccades are 

the result of a direct pathway from the retina to the SC, known as the retinotectal 

pathway (Kato, Takaura, Ikeda, Yoshida, & Isa, 2011). Whilst express saccades can 

result from manipulations of inter-trial history where variables such as spatial location 

are kept constant (Carpenter & Williams, 1995), the most common paradigm for 

eliciting express saccades is the so called gap paradigm where the fixation point is 

removed ~200 ms prior to the onset of the target (Fischer & Ramsperger, 1984). The 

typical finding is that latencies are shorter in trials when the fixation point is removed 

prior to appearance of the target, than on trials where the fixation point is visible up to 

the target onset or beyond (Weber, Dürr, & Fischer, 1998).  

The effect of fixation offset cannot be simply accounted by temporal cueing, 

since they are found even when the temporal uncertainty of the observer is equated by 

using auditory alerting signals. One account for the gap effect is that removal of the 

fixation points removes the need for attention to disengage from fixation, before a 

saccade can be executed towards the target (e.g. Kristjánsson, 2011). Additionally, there 

is evidence that presenting distractors at the point of fixation leads to greater delays in 

target evoked saccades than presenting the same distractors at eccentric locations, 

suggesting that foveal representation may play a prominent role in ensuring stable 

fixation (Beck & Lavie, 2005). Interestingly, the costs of disengaging from the currently 

foveated locations on saccadic latencies echoes a similar aspect of attentional orienting 

(Posner, 1980), namely the proposal that attention must first be disengaged from the 

currently attended location, before it can be reoriented to the new location. An operation 

that is thought to underlay the large behavioural costs associated with invalidly cued 

trials. Although there is currently little evidence to suggest that disengaging attention 

from an attended location and disengaging fixation both rely on the same neural 

mechanism, the former operation having been attributed to the parietal lobe (Posner, 

Walker, Friedrich, & Rafal, 1984) and the maintenance of fixation to the foveal 

representation of middle and deep layers of the colliculus (Munoz & Wurtz, 1993). 

 

Relationship between attention and eye movements  

The relationship between eye movements and attention has attracted much scholarly 

interest. One popular model is the VAM: the Visual Attention Model (Schneider, 1995). 

According to this account, limited attentional resources need a selection-for-perception 

process, which biases which parts of a visual scene are prioritized for processing after a 

saccade. The second system – selection-for-action – refers to motor systems. Visual 
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environments also contain many stimuli which could be the target of motor actions. 

However, motor actions are also of limited capacity as generally they are directed to 

only one target at any one moment in time. According to Schneider, these two, closely 

related selection systems are coupled by a joint, single process, which selects a single 

object at any one moment for enhanced processing priority. Schneider’s (1995) model is 

based on several assumptions. Selection-for-visual-perception is the task of the visual 

ventral pathway, which runs from the primary visual cortex to the inferior visual cortex. 

This pathway is posited to be the system that processes visual information such as shape.  

Whereas selection-for-action is considered to be the product of the visual dorsal 

pathway. This system also begins in the primary visual cortex and ends in the posterior 

parietal cortex. This system computes spatial information for aiding motor actions, such 

as the spatial coordinates of the target to be grasped. In this system, the programing of 

an action will activate the circuit, but the action required a separate release signal to be 

executed. According to the visual attention model, there is a single, supramodal visual 

attention mechanism which is communal to the selection-for processes, which controls 

the processing priority of stimuli represented in the primary visual cortex. Whilst the 

original model proposed that selection was directed in the primary visual cortex, it has 

recently been updated with the claim that the selection aspect of the model tasks place 

in attentional priority maps that are found in lateral intra-parietal region (Bishley & 

Goldberg, 2010). As a result of this, when a stimuli represented in the primary visual 

cortex is selected for increased processing priority, which subsequently leads to parallel, 

increased priority of the selected stimulus in both the ventral and dorsal systems. Thus 

in the ventral system the prioritized stimuli is recognized faster and enters conscious 

visual perception faster; whereas within the dorsal pathway, motor programs for 

foveating, or grasping, or stepping on the high priority object, are programed with the 

highest level of processing priority. Whilst VAM proposes that attention is therefore a 

supramodal process, which is common to perception and action systems, there is a 

competing and highly influential model discussed below. 

 One of the most influential studies within the literature on attention and eye 

movements was conducted by (Rizzolatti et al., 1987; see figure 3) which demonstrated 

the so called meridian effect. That is, in a covert orienting task when attention is 

invalidly cued to the hemifield opposite the one where the target stimuli appears, there 

is a larger cost (in terms of increased manual reaction times) than when responding to 

invalidly cued targets within the same hemifield. The authors reasoned that no 

attentional account can explain why a purely cognitive, supramodal process should bear 
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an extra cost for crossing the main visual meridians. Instead the authors suggested one 

plausible explanation that could account for the meridian effect would be if covert shifts 

of attention arose because of an ocular motor plan, which was not executed. 

Subsequently the increased cost of changing meridians is reflective of erasing a 

previously prepared oculomotor movement and preparing a new one; whereas 

reorienting to invalidly cued targets within the same hemifield simply requires an 

adjustment of saccadic amplitude.  

In addition to the so-called meridian effect, the authors drew on several other 

studies to argue that attention and eye movements arise from the same cortical circuits. 

Proponents of premotor theory suggest that cortical pragmatic maps are used to code the 

metric of covert and overt orienting. Moreover, signals generated within these maps are 

used to enhance processing at corresponding locations in sensory representations, whilst 

increasing motor readiness for the activated vectors.  

 

The core essence of premotor theory can be captured as thus: 

 

“Attention does not result from, nor require a control system separated from sensorimotor 

circuits. Attention derives activation of the same circuits that under other conditions, 

determine perceptual and motor activity.” (Craighero & Rizzolatti, 2005, p. 181). 

 
Figure 4 Schematic illustration of the paradigm used to demonstrate the meridian effect by Rizzolatti, 
Riggio, and Dascola, 1987. A number would appear in the central fixation box, acting as cue to indicate 
the likely location of the target (with a reliability of 80%). Participants were required to maintain central 
fixation and respond to the appearance of the target using a manual button press. Dashed line represents 
the vertical meridian. The meridian effect was not present for invalidly cued targets in the same hemifield 
(A), only when the target was invalidly cued across vertical or horizontal meridians (B), despite that in 
both types of trials, the distance of the target from the cued location is the same. 
 

 

Neurophysiological investigations 

A number of fMRI studies provide support for shared neural mechanisms between 
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attention and eye movements. Corbetta and collegues (Corbetta et al., 1998) measured 

BOLD responses whilst observers responded to stimuli either covertly or overtly. 

Covert and overt orienting evoked BOLD signals in the same overlapping regions of 

parietal, frontal and temporal cortex, suggesting that cortical networks engaged by shifts 

of attention and eye movements are largely similar. These findings have been replicated 

in a number of neuroimaging studies. For example; Nobre, 2000; Beauchamp, Petit, 

Ellmore, Ingeholm, and Haxby (2001) also found overlapping signals following covert 

and overt shifts of attention, however the amplitude of the evoked BOLD response was 

higher for overt than covert shifts. The authors claim that the increased activity 

represents the increased level of effort required to program an eye movement. More 

recently, overlapping ocular and attention pathways have been observed in the 

cerebellum (Striemer, Chouinard, Goodale, & de Ribaupierre, 2015), suggesting that 

subcortical structures also contribute to both covert and overt orienting.  

 

Patient studies 

Patient studies also provide compelling evidence for a shared neural mechanism. 

Several studies have demonstrated impaired attentional orienting in the presence of 

oculomotor disorders (Craighero, Nascimben, & Fadiga, 2004; Craighero, Carta, & 

Fadiga, 2001; Gaby, Henik, & Gradstein, 2010; Rafal, Posner, Friedman, Inhoff, & 

Bernstein, 1988). For example it has been shown that patients with ophthalmoplegia 

show a reduced validity effect when attention is directed to locations where such 

individuals have difficulty executing a saccade. Remarkably, deficits due to peripheral 

issues such as muscle weakness can also be associated with impairments in covert 

orienting (Smith, Rorden, & Jackson, 2004), suggesting that disruption of overt 

orienting will eventually result in disruption of covert orienting as well. Even in healthy 

observers, attending to cued targets placed beyond the oculomotor range, thus cannot be 

directly foveated, but still within peripheral vision, is greatly diminished compared to 

attending to cued targets placed with the oculomotor range (Smith et al., 2014). 

 

 Behavioural evidence 

There appears to be a tight coupling between eye movements and attention. Katnani and 

Gandhi (2013) studied the relationship between attentional shifts and saccades using a 

blink perturbation method. During blinks, activity in a set of neurons known as 

omnipause neurons decreases. Omnipause neurons are believed to gate the saccadic 

system, since activity in these neurons is associated with preventing a programed 



	

	
	

32	

saccade from being performed. Therefore by invoking a blink at various epochs of a 

task, which leads to prematurely releasing the saccade, it is possible to delineate the 

temporal properties of saccadic programming. In an antisaccade task, Katnani and 

Ghandi (2013) found that a blink delivered during early epochs of the task (around 60-

200 ms after the presentation of the singleton) elicited a saccade towards the singleton, 

irrespective of the trial being pro or anti-saccade. At later epochs however, the end point 

of elicited saccades were closer to the correct endpoint for pro (towards the singleton) 

and anti saccade trials (away from the singleton). The main interpretation of these 

observations is that as attention is captured by a new onset singleton, an eye movement 

is concurrently programmed, which is executed when gaze holding mechanisms are 

turned off. 

Further evidence for a relationship between saccades and attention comes from 

the observation that perception is facilitated at the location of an impending saccade, 

before the saccade is executed. For example, Smith and colleagues (Smith et al., 2014) 

asked observers to identify letters presented, prior to the execution of a saccade, at 

various locations. Letter discrimination was at chance, except for letters that were 

presented at the saccadic goal. This coupling between the location of the saccadic target 

and the locus of increased perceptual acuity suggested that attention is automatically, if 

transiently, deployed to the upcoming saccadic goal (Smith et al., 2014). 

Whilst there is strong evidence for a tight coupling between attention and eye 

movements, recent research has started to question the assumption that they are 

structurally the same. The functional data suggests a shared circuitry for covert and 

overt responses, thus providing a compelling case that eye movements and attention are 

linked. However independence has been demonstrated within these structures using 

single cell recordings, which provide a higher spatial resolution than is available with 

fMRI. Schall (2004) showed with single cell recordings in the frontal eye fields of 

primates that different populations of neurons are recruited when programming an eye 

movement than are recruited when covertly orienting to a stimuli; demonstrating that 

dissociation of covert and overt attention appears within the structure at the neuronal 

level. Additionally, whilst the behavioural data from Katnani and Ghandi (2013) using 

the blink perturbation method demonstrates a tight temporal and spatial coupling 

between saccadic programming and attention, it is unable to establish if this activity is 

the product of a single system. Therefore the claim from premotor theory that 

preparation of an eye movement is sufficient to generate a covert shift of attention is not 

fully supported at the neuronal level. 
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Counter evidence 

Recent behavioural evidence has also been used to question the link between covert and 

overt orienting. Juan and Shorter-Jacobi (2004) used microstimulation of the frontal eye 

fields in an anti-saccade paradigm in order to elicit premature saccades. Participants 

were instructed to perform either an antisaccade if the singleton was vertically 

orientated, or a prosaccade if the singleton was horizontally orientated. They reasoned 

that if an eye movement were programed when attention is captured by a new onset 

singleton, then one would expect to see saccades first directed towards the singleton as 

observers would first have to orientate towards the singleton in order to ascertain the 

appropriate response. Juan and Shorter-Jacobi found that all eye movements evoked by 

microstimulation during antisaccade trials were executed away from the singleton, 

whilst on prosaccade tasks were executed towards the singleton. The author’s main 

interpretation of these results is that attention could be orientated towards the singleton 

without having to program a concurrent eye movement. However it is possible that 

microstimulation of the FEF somehow interfered with saccade programming thus 

explaining why these results contradict the data obtained using the blink perturbation 

method.  

 A number of behavioural studies have also demonstrated differences in how 

behavioural effects may differently affect different response modalities. For example, 

Hick’s Law is the finding that manual reaction times increase in accordance with the 

number of response alternatives, until a point is reached when reaction time remains 

constant (Hick, 1952). However, Kveraga, Boucher, and Hughes (2002) investigated if 

Hick’s Law is multimodal across different response types. That is, they manipulated the 

number of response alternatives and participants were required to either perform a 

manual key press in response to the target, look at the target (prosaccade), or look at the 

target outline opposite the target (anti-saccade). The authors found that response times 

only increased as a function of the number of potential target locations for manual 

button presses, and antisaccades, indicating that different response systems are recruited 

for prosaccades, than are employed for manual responses and antisaccades. Another 

instance of a well-documented behavioural effect not extending across response 

modalities is the gap paradigm, discussed in the section on express saccades. Whilst 

studies have found the gap paradigm results in faster reaction-times in simple manual 

response tasks and choice manual response tasks, they do not result in the same bimodal 
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distribution of regular-express responses observed in saccadic versions of the task (e.g. 

Machado-Pinheiro, Gawryszewski, Riberio-do-Valle, 1998). 

Compelling evidence for the dissociation between saccades and shifts of attention 

was found in a patient with unilateral optic ataxia (Khan et al., 2009). Whilst this 

patient’s saccadic latencies were slower than controls, he showed no differences in in 

latencies between his affected and unaffected visual field. However, in a secondary 

discrimination task where the target appeared at the saccadic endpoint, his performance 

in the unaffected field was comparable to controls, whilst performance in the affected 

field was at chance. These findings were taken as evidence that oculomotor planning 

and presaccadic facilitation can be dissociated (Khan et al., 2009). 

 

Summary: attention and eye movements 

The end of this section brings us onto third second problem. Despite claims from the 

influential premotor theory that the oculomotor system and the attention system are 

functionally similar, this position has been undermined by a number of recent studies, 

which have shown that instances where the two processes can be behaviourally and 

functionally dissociated. Therefore an important question to enhance our understanding 

of covert and overt orienting is under what conditions can the two processes be 

dissociated. One limitation of the present literature is that studies often attempt to 

delineate the two processes by showing they are dissociable. However this overlooks 

that one of the arguments of premotor theory is that attention arises from oculomotor 

planning, and is independent of motor execution (e.g. Smith & Shenk, 2012). Therefore 

an alternative proposal to investigate the relationship between eye movements and 

attention would be to simply compare saccadic latencies with simple manual reaction 

times across the same tasks. Particularly suited to this would be tasks manipulating 

expectations, such as discussed so far. This would allow an adequate comparison of 

behavioural responses which were collected within the same paradigm, and if a single 

system is responsible for the orienting stage for both covert and overt responses, then 

one could expect similar patterns of behavioural results for both covert and overt 

responses. Furthermore, any differences between patterns would be indicative of 

different computational processes having processed expectations.  

A further problem within the premotor literature comes in the way that whilst 

patient studies are useful, often grouped patient data can be problematic in that lesions 

are rarely isolated to the exact same location, therefore a single patient’s impaired 

performance arising from subtleties can be lost within a broad group analysis due lack 
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of homogeneity across patient lesions. Whilst group methods are useful for broad 

structural investigations, such an approach may not be adequate within the framework 

of premotor research when considering that eye movements and attention can be 

dissociated at the neuronal level but not at the structural level. Therefore single patient 

case studies may provide a more powerful approach to investigate premotor theory 

neuropsychologically. 

Final statement 

 

The purpose of this literature review was to show that the topic of attention is an 

exciting, challenging, and important one. It was also the aim to show that despite the 

huge amount of effort that has gone into understanding the topic, there are still a 

number of unresolved problems. The aim of this thesis is to make a contribution to each 

of the three main areas reviewed; therefore the rest of the thesis will flow as follows. 

The problem regarding how expectations influence attentional orienting will be 

examined in chapter two. The second problem, can inhibition of irrelevant information 

be initiated endogenously will be explored in chapter three. The final question, which is 

central to this thesis, will be an investigation of the relationship between attention and 

eye movements. This will be investigated behaviourally in chapters two and three. 

Furthermore, chapter four will describe a neuropsychological case study of a single 

patient, who presented with ocular impairment. The fifth and final chapter will then 

conclude with a discussion regarding the broader implications and contributions of the 

findings to the current state of the literature.  
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Chapter II  
Comparing Target Probability and Cueing Effects on Covert and Overt Orienting 
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Abstract 

 
Shif 
Shifts of attention are spatially and temporally yoked to saccades, suggesting that covert 

and overt orienting are controlled by the same premotor circuitry.  

However, manipulations of target spatial probability have suggested different 

computational constraints on covert attentional shifts and overt oculomotor responses 

(e.g. Posner, 1980; Carpenter & Williams, 1995). While latencies of covert orienting are 

thought to depend on the number of sequential operations needed to be performed to 

align attention with the target, overt orienting latencies are thought to be contingent on 

the time taken to transmit a decision signal along a limited capacity channel. The two 

models predict that response latencies will either vary linearly (attention model) or 

logarithmically (information theoretic model) with target probability. To examine this 

apparent inconsistency, we measured how prior knowledge of a target location affects 

simple detections and visually evoked saccades, under conditions that equate all 

remaining experimental factors. Naïve observers were informed about the location of an 

upcoming target either by blocking its spatial probability distribution, or by a central 

cue. When the target spatial distribution was blocked, the effects of target probability on 

covert and overt orienting were of similar magnitude, with changes in detection and 

saccadic latencies, relative to a condition where target locations were equiprobable, 

greater for low than high probability targets. This finding is inconsistent with both the 

attentional account and the information theoretic account. When the target location was 

cued, latencies were shorter for high rather than low probability targets, and for validly 

rather than invalidly cued targets. The effects of target probability and validity being 

greater for overt than covert orienting responses. Saccadic, but not detection, responses 

varied logarithmically with target probability following central cues, while validity 

effects were found even when the cue was uninformative. We conclude that similar 

computational constraints affect covert and overt orienting. Although, central cues also 

engage mechanisms specific to overt orienting. Finally, neither the attentional nor 

information theoretic models fully account for response latencies in covert and overt 

orienting paradigms. 
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Initial and more recent reports examining the effects of an observer’s uncertainty about 

the position of a upcoming target on manual and oculomotor responses found that 

latencies varied logarithmically with the target probability or the spatial precision of the 

required response (Hick, 1952; Hyman, 1953; Carpenter & Williams, 1995). Responses 

being faster for targets appearing at probable locations, than targets appearing at 

improbable locations. These findings support the notion that response latencies reflect 

the combined effects of the observer’s initial spatial uncertainty and, once the target 

becomes visible, the finite rate at which a decision signal, which determines the metric 

of the motor response, is transmitted along a limited capacity channel (Hick, 1952; 

Hyman, 1953). 

 An alternative model of how spatial expectations influence response latencies 

comes from the attention literature. The prototypical paradigm is based on the use of 

central cues, which indicate the likely location of an upcoming target (Posner, 1980). 

Results from studies of brain injured patients and functional imaging have provided 

evidence that separate brain networks are recruited when preparing and responding to 

visual targets (Posner et al., 1982; Rafal & Posner, 1987; Posner & Petersen, 1990; 

Corbetta & Shulman, 2002; Petersen & Posner, 2012) supporting the proposal that 

various operations are carried out when the observer orients to a novel stimulus. The 

core assumption is that for the response to be executed, even following the simple 

detection of a clearly visible target, attention has to be spatially aligned with the target. 

This alignment is carried out by sequentially ordered operations, either voluntarily or 

reflexively (Posner & Petersen, 1990), which include shifting the attentional vector 

across the visual field, engaging and locking attention at a particular location and, 

finally, disengaging attention from its current location, before orientating to a new 

location (Laberge, 1973; Posner, 1980; Posner & Cohen, 1984; Rafal & Posner, 1987; 

Posner & Petersen, 1990; Petersen & Posner, 2012). This scheme accounts for shorter 

response latencies when the target appears at the expected location, and longer latencies 

when it appears elsewhere, because in the latter condition, attention has to be 

disengaged before it is reoriented toward the target (e.g. Posner & Petersen 1990).  

 While both the information based and attention based viewpoint have been widely 

influential in the respective field, they are clearly at odds with the implications of 

several studies indicating that covert and overt orienting rely on shared processes 

(Rizzolatti et al., 1987; Kowler et al., 1995; Deubel & Schneider, 1996; Godijn & 

Theeuwes, 2003; Doré-Mazars, Pouget, & Beauvillain, 2004). How can one reconcile 

these diverging accounts of the computational constraints on covert and overt orienting 
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with the view that the underlying mechanisms are basically identical? Before addressing 

this issue, we summarize previous evidence regarding the effects of spatial probability 

on response latencies. 

 

Effects of target probability on response latencies are variable 

It seems obvious that an observer’s expectation regarding the location of an upcoming 

target should depend on internal estimates of the target’s spatial distribution. Indeed, the 

importance of learning in shaping spatial expectations was confirmed in highly trained 

observers, by the finding that visually evoked saccades had briefer latencies when the 

targets appeared at high than low probability locations, even when the only information 

about the target’ spatial distribution was repeated exposures to the target over thousands 

of trials (Carpenter & Williams, 1995). Presumably, in this and similar tasks, observers 

keep a tally of visual events, in order to build an internal representation of a target’s 

spatial distribution (Carpenter & Williams, 1995; Geng & Behrmann, 2005; Bestmann 

et al., 2008). Moreover, neural correlates of internal estimates of the target spatial 

probability have been described in both cortical and subcortical structures of highly 

trained, non-human primates performing visually evoked saccades (Basso & Wurtz, 

1998; Churchland et al., 2008) suggesting that representations of the target spatial 

distribution, shaped by experience, can directly bias processes in the oculomotor centres 

of the primate brainstem. However, spatial expectations do not only influence 

preparatory signals, but also which neural circuits may be engaged by a visual target. In 

fact, participants execute more frequently express saccades, a distinct population of 

short latency ballistic eye movements generated mostly sub-cortically (Fischer & 

Ramsperger, 1984), when targets appear at probable than improbable locations 

(Carpenter & Williams, 1995; Dorris & Munoz, 1998; Haushofer et al., 2002; Schiller et 

al., 2004). The presence of distinct populations of oculomotor responses, whose 

frequency is affected by target probability, thus suggests that spatial expectations can 

determine which neural circuits will be engaged by the target. 

Spatial expectations have also been manipulated in simple detection tasks by 

pre-cueing the target location on every trial (Posner, 1980), or by varying the number of 

possible target locations (Hick, 1952; Hyman, 1953). These manipulations do not 

require repeated exposures to the target for the behavioural effects of target probability 

to be observed. However, cues and the number of possible target locations affect 

response latencies in ways that are not always consistent with those reported when the 

target spatial probability is fixed and learned through repeated exposures. For example, 
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as the number of possible target locations is increased, latencies of arm movements 

show asymptotic rather than linear increments with diminishing target log-likelihood 

(Corbetta et al., 2000; Pellizzer & Hedges, 2004), or no change at all (Favilla, 1996). 

Similarly, the latency of visually evoked saccades performed by naïve participants does 

not change (Kveraga & Hughes, 2002) or, paradoxically, may even decrease (Lawrence 

et al., 2008) as the number of target location, and hence spatial uncertainty, decreases. 

Additionally, the effects of target probability on reaching and saccadic latencies can 

depend on seemingly unrelated factors, such as whether the end-point is instructed 

exogenously or endogenously (Lawrence, 2010), or whether the fixation point is visible 

or not at the time of target onset (Carpenter, 1999; Marino & Munoz, 2009). Indeed, a 

previous study showed that observers, after they had become familiar with the spatial 

distribution of the target, responded more quickly when the target appeared at a high 

than a low probability location, indicating that search may be initialized at the expected 

target location (Geng & Behrmann 2005). When a central cue was introduced, which 

provided additional information about the target position, additive effects were found 

possibly suggesting that the effects of cueing were mediated by independent 

mechanisms.  

 

Comparing the effects of spatial expectations on covert and overt orienting. 

The above evidence clearly shows that the effects of target probability on covert and 

overt orienting can only be adequately compared when testing conditions are closely 

matched. Therefore to understand the computational constraints on covert and overt 

orienting, we examined the effects of target probability on saccadic and simple manual 

detection latencies. The empirical results were compared to predictions of the 

attentional and information theoretic models. Information theoretic accounts of response 

selection predict a logarithmic relation between target probability and response latencies 

(Carpenter & Williams, 1995) while attentional accounts predict that response latencies 

are either not modulated, or according to the probability matching hypothesis, vary 

linearly with target probability (Jonides, 1981; Yantis & Johnson, 1990). The latter 

prediction stems from the conceptualization of attention as a finite state machine, whose 

basic operations are either performed or not, but cannot otherwise be adjusted. 

Therefore, the only way target probability can affect the workings of such a mechanism 

is by changing the probability that a specific operation, such as attending the cued 

location, will be performed (Jonides, 1981). Specifically, the assumption is that 

observers will attend the cued location on a proportion of trials, which matches the 
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probability that the target will appear there. Response latencies will therefore depend on 

the proportion of trials in which the observer attended the high probability location, 

rather than all locations. In valid trials, for example, response latencies will decrease 

linearly with increasing cue reliability whereas on invalid trials they will increase 

linearly with the cue reliability.  

The rates of increase and decrease in valid and invalid trials respectively, will be 

determined by the relative benefits and costs associated with attending the cued 

location, relative to keeping attention in a diffuse state. Previous studies have suggested 

that cost and benefits are generally matched, at least following central cues, suggesting 

that also rates of latency change as a function of cue reliability should be similar for 

valid and invalid trials (Posner et al., 1980; Theeuwes, 1989). When the target spatial 

distribution is blocked, a similar prediction follows except that whereas a non 

informative cue, for example a 50% reliable cue indicating one out of two possible 

target location, is still predicted to bias attention in 50% of the trials toward the cued 

side, knowledge that the target appears with equal probability at two possible locations 

should not bias attention to either side. Despite its simplicity, whether probability 

matching is able to account for response latencies has not been conclusively established, 

since previous work used tasks which required fine discriminations in crowded displays 

(Jonides, 1981; Johnson & Yantis, 1995) and thus confounded effects of spatial 

expectations on the accumulation of sensory evidence with those on orienting. Both 

Posner (1980) and Carpenter and Williams (1995) were careful to avoid this confound, 

by using highly visible targets presented in isolation. Thus diminishing the 

distinctiveness of the target, either by decreasing its contrast (Carpenter, 2004), adding 

distractors to the display or changing the task from a simple to a choice detection 

(Posner et al., 1980), paradoxically decreases the effects of target probability on 

response latencies. 

In the following series of experiments we carried out, highly visible targets were 

used to minimise the effects of sensory factors on response latencies. Simple detection 

reaction times and saccadic response latencies were collected, under the same 

experimental conditions and in separate groups of participants, to allow a direct 

comparison of the effects of spatial expectancy on covert and overt orienting. Spatial 

expectations were instructed either by cueing the likely target location, or by blocking 

the spatial distribution of the target. The target probability was varied over multiple 

levels to allow us to determine the nature of the relation between the nature of response 

latencies and target probability. Our results indicate that covert and overt orienting 
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exhibit largely similar effects of spatial expectations whether they were instructed by 

blocking target probability or by cueing the likely target location, suggesting that in 

naïve participants the computational constraints on covert and overt orienting are 

largely shared. Moreover, the effects of target probability on response latencies were not 

well accounted by simple information theoretic or attentional models of orienting. 

 

Methods 

 

Participants. All participants were right handed naïve observers, with normal or 

corrected to normal vision, recruited among students at Bangor University School of 

Psychology. In the first experiment, which investigated the effects of a fixed spatial 

distribution of the target on simple detection latencies, ten participants (six females) 

with a mean age of 25 (range: 19-40) were recruited. In the second experiment, which 

investigated the effects of fixed spatial distribution of the target on saccadic latencies, 

ten participants (three males) with a mean age of 28 (range: 23-52) took part. Nine 

participants (four males) with a mean age of 27 (range 22-31) completed the third 

experiment, which examined the effects of partially valid cues on detection latencies. In 

the fourth experiment, investigating the effect of partially valid cues on saccadic 

latencies, nine observers (five males) took part. The mean age was 26 years (range: 19-

39). The experimental protocols had been approved by the Ethics Committee at Bangor 

University, School of Psychology. Participants gave written consent prior to 

commencing any experimental procedure and received monetary compensation for their 

time. 

 

Apparatus and procedure. Participants were tested in a dark room. Head position was 

restrained by a chin and forehead rest. Stimuli were generated and displayed using a 

custom coded MATLAB™ script and a set of procedures, which allow precise timing of 

the display and synchronization with the eye-tracker (Brainard, 1997; Cornelissen et al., 

2002; Pelli, 1997). Visual stimuli were presented at a distance of 57 cm from the 

observer, on a 19” Viewsonic G90fB Graphics Series Monitor, set at a 1024 x 768 

resolution and a 60 Hz refresh rate. Eye movements were recorded using an infrared 

camera based Eyelink CL 1000 system (SR Research, Mississauga, Canada), set at a 

1000 Hz sampling rate. Calibration took place at the start of each block, using a nine-

point calibration and validation procedure. Calibration was considered successful when 

the error was < 1° of visual angle. 
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 In the first experiment, each trial began when the fixation point turned from black 

to red for 400ms. The fixation point was visible throughout the trial. This was followed 

by a non-aging foreperiod, lasting between 600 and 1200 ms. Its duration, namely the 

stimulus onset asynchrony (SOA), was obtained by sampling the following exponential 

distribution, with replacement: 

 

where τ = 0.2 s.  
  

A bright, highly salient circular target appeared on 95% of trials. The target had a 

Gaussian luminance profile with a standard deviation of 0.25°, and appeared in one of 

the four visual quadrants, at an eccentricity of 7° along the main diagonals. The 

background luminance was 12.75 cd/m2, and the peak target luminance was 62.4 cd/m2. 

Participants were required to press a spacebar whenever the target appeared on the 

screen, whilst maintaining central fixation. Fixation was monitored using the eye 

tracker. The target remained visible for 900 ms. An auditory tone indicated the end of 

the trial and prompted the participant to press the spacebar to initiate a new trial. At this 

time, a drift correction was performed. In half of the blocks, one of the locations 

contained the target in 75% of the trials, while each of the other locations contained the 

target in approximately 8% of the trials. In the other half of the blocks, the four 

locations were equally likely to contain the target. At the start of each block, 

participants were informed of the spatial distribution of the target verbally by the 

experimenter and also by written instruction that appeared prior to the commencement 

of each block. Each participant took part in three sessions. In the initial training session, 

participants’ performance was monitored, and participants were informed when errors, 

such as breaks of fixation, occurred. The final two sessions comprised twelve blocks, 

six for each target probability distribution. Each block consisted of one hundred trials, 

plus five catch trials.  

 In experiment 2, the trial structure was identical to experiment 1, except that 

observers had to fixate the target as quickly as the target appeared or, on catch trials, 

maintain fixation until the trial was over. In experiment 3 and 4 (see figure 5) the target 

location was cued by a centrally presented line.  

 Each trial began when a red diagonal line abutting the fixation point was 

presented for 400 ms. The trial structure was otherwise identical to the one in blocked 

p SOA( ) = e−
SOA−0.6s

τ  iff 0.6s<SOA<1.2s
                             else
p SOA( ) = 0
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probability trials. In half of the blocks, the cue correctly indicated the location of the 

target in 75% of the trials. In the other half, an uninformative cue correctly indicated the 

target location on 25% of the trials. Participants were informed of the cue reliability at 

the start of each block. The order in which blocks containing cues of different 

reliabilities were presented was alternated and counterbalanced across participants. In 

all experiments participants were tested on three consecutive days. The first session 

comprised two training blocks of one hundred trials, one for each level of cue reliability. 

During the training session, subjects’ performance was monitored by the experimenter 

who emphasized timely and accurate responses, while discouraging anticipatory 

saccades. The other two experimental sessions comprised a total of twelve blocks of one 

hundred and five trials each. No feedback was given during these sessions. Experiment 

3 required participants to press a key as soon as the target appeared, whereas in 

experiment 4 participants had to foveate the target as soon as it appeared. 

 

 

 

 

 

 

 

 

Data analysis. For each experiment, a total of 1200 trials were collected from each 

participant over the last two testing sessions; except for the cued and blocked 

probability saccadic experiments, where due to a technical error, 1100 trials were 

collected from one of the participants in both instances. Saccadic latency was 

defined as the period between target onset and initiation of the saccade. Correct 

responses were defined as saccades starting within 2° of the central fixation point 

and landing within 2° of the target. Only the first saccade made in a trial was 

analysed. Saccadic latencies briefer than 80 ms and longer than 800 ms were 

excluded from further analysis. The oculomotor traces for each trial were visually 

tim
e

Figure 5. Schematic illustration of the 
experimental paradigm used in 
experiments 3 and 4. 1) Subjects 
maintained fixation on a central fixation 
point. 2) A red central cue was then 
displayed for 400ms, which indicated the 
likely location of the subsequent target. 
The cue reliability was varied over two 
levels, 25% and 75% valid. 3) Following 
a non-aging foreperiod, 4) the target 
stimuli appeared. 



	

	
	

45	

inspected, and trials containing artefacts or blinks were discarded. Overall, in 

experiment one 90% of trials, and in experiment three 97% of trials were used in 

the group analysis. When a manual response was required, responses briefer than 

150 ms or greater than 800 ms were excluded from further analysis. Oculomotor 

traces for each individual trial were examined and trials containing artefacts, such 

as blinks, or saccadic responses to the target were discarded. Overall, 94% and 95% 

of trials were used for the analysis in the second and fourth experiments 

respectively. Finally, to remove outlier responses, for each participant and condition 

latencies were calculated by averaging 10,000 bootstrapped estimates of the median 

latency. 

 

Separating express from regular saccades. In order to examine the effect of spatial 

expectations on the distribution of saccadic latencies, we estimated the proportion 

of express and regular saccades and their mean latencies. A maximum likelihood 

procedure was used to obtain separate estimates of the mean and spread of the 

reciprocal values of regular and express saccadic latencies distributions, which was 

similar to a previously published analytical protocol (Guan et al., 2012). The steps 

taken to perform the de-convolution of the latencies distribution included 

computing the reciprocal saccadic latencies lat-1 and then fitting a mixture model, 

which assumed the overall distribution of reciprocal saccadic latencies reflected the 

mixture of two Gaussian distributions N, which differed in their location and 

spread: 

 

 

Thus, we estimated five parameters: the proportion of regular saccades, m, the average 

reciprocal latencies, , and standard deviations, , of the distributions of regular, 

latreg, and express, latexp, saccadic latencies, respectively, by maximizing the log-

likelihood , of the data. 

 

 

  
When the average latency of express saccades was estimated to be greater than 140 ms, 

suggesting that the latencies distribution included no express saccades, the model was 

simplified and made to include a single distribution of regular saccades, with m=1.0. 

p lati
−1 m,latreg

−1 ,σ reg ,latexp
−1 ,σ exp( ) = m ⋅N latreg

−1 ,σ reg( ) + 1−m( ) ⋅N latexp
−1 ,σ exp( )

lat −1 σ

Λ

Λ lat1...n
−1 m,latreg

−1 ,σ reg ,latexp
−1 ,σ exp( ) = log p lati

−1 m,latreg
−1 ,σ reg ,latexp

−1 ,σ exp( )⎡
⎣⎢

⎤
⎦⎥i=1

n
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Group level statistics were calculated after normalizing the estimated probability of 

regular saccades, for each participant, using the inverse sine of the square root 

transformation. Latencies of express saccades were not further analysed at the group 

level, since no express saccades were effectively found in a number of participants and 

conditions. 

Results 
 

Overview of the analysis and models’ predictions 
We report the reaction times of covert and latencies of overt orienting responses when 

spatial expectations were either instructed by i) blocking the target spatial distribution 

(manipulating the probability of where the target would appear across blocks) or ii) 

using a central cue to indicate likely location of the target. Our aim is to compare these 

results to the predictions of information theoretic and attentional, probability matching 

models of orienting in order to establish which of the two models are able to account for 

the results. While the information theoretic model’s predictions are determined simply 

by the target spatial probability, the predictions of the probability matching model 

depend also on how target probability is instructed: the reason is that when all locations 

are equiprobable, according to the probability matching model, attention will be kept 

diffuse in every trial when the spatial target probability is blocked. However, following 

a cue, attention will be focused at the cued location in a proportion of trials matching 

the target probability, even following uninformative cues. The implication is that when 

the target spatial distribution is blocked or its likely location cued, the latency difference 

between responses to high probability and equiprobable targets should be the same as 

the latency difference between equiprobable and low probability targets, if the costs and 

benefits of breached and met expectations, respectively are matched. However, 

following uninformative cues, the probability matching model predicts a validity effect 

whilst the information theoretic account does not. 

 

Effects of blocked probability on reaction times 

In experiment 1, we examined the effects of blocking the spatial probability of the target 

on simple detection reaction times. Two levels of probability were used. The target was 

either equally likely to appear at each of four eccentric locations or it had a probability 

of .75 of appearing at one of the four locations and approximately .08 of appearing at 

each of the other three locations. Figure 6A shows the overall, group averaged reaction 

times as a function of target probability. A one-way, repeated measures ANOVA 
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indicated that target probability had a significant effect F(2, 18) = 20.86, p > .001, ηp2 

= 0.70, reaction times being faster to targets appearing at probable (probability = .75) 

than equiprobable (probability = .25) or improbable (probability ≈ .08) locations, 

Moreover, figure 6B shows that the reaction time difference between low probability 

and equiprobable targets was greater in size than the difference between equiprobable 

and high probability targets t(9)= -2.769, p = .02, d’ = -0.88. The finding is inconsistent 

with both the information theoretic account, which predicts that the latency differences 

should be identical, and the attentional accounts, which predicts that the latency 

difference should be equal if the cost and benefits are matched. 

 

Effects of blocked target spatial probability on saccadic latencies 

In experiment 2 we examined the effects of blocking the spatial probability of the target 

on saccadic latencies. The experimental conditions were exactly matched to those used 

in experiment 1, except that participants were instructed to foveate the target as soon as 

the target appeared. Group averaged saccadic latencies are shown in figure 6C. 

Moreover, to discount the effects of target location on saccadic latencies (see below), 

latencies to high and low probability targets were rebased using the latency values 

obtained in trials in which targets appeared at the same locations during the 

equiprobable blocks. Figure 6D shows that target probability had a significantly greater 

effect on saccadic latencies to low probability than high probability targets, since the 

latency difference between responses to high probability and equiprobable targets was 

smaller than the difference between equiprobable and low probability targets t(9) = 4.89, 

p < .001, d’ = 1.54. This finding is again inconsistent with the predictions of the 

attentional model and information theoretic models, which predict an equally sized 

difference. 

 Finally, a mixed factor was used to examine whether covert and overt orienting 

showed differences in the effects of target probability. As expected there was an overall 

effect of probability F(1, 18) 34.085, p < .001, ηp2 = 0.65, although the interaction 

between probability and response type F(1, 18) = 0.004, p = .950, was not significant, 

consistent with the impression that differences between tasks were, if present, minimal. 
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Target probability mainly affects regular saccades latencies 

Humans can generate saccades with very brief latencies, so called express saccades 

(Fisher & Weber, 1993). In order to understand the contribution of express saccades to 

the effects of target probability, we estimated the proportion of express saccades and the 

median latency of express and regular saccades for each target probability level. A 

repeated measures ANOVA was used to assess the effects of spatial probability on the 

proportion of express saccades and regular saccades latencies. The group Averaged 

proportion of express saccades when targets appeared at the high probability location 
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Figure 6. Blocked target probability effects on manual and saccadic latencies. A. Group averaged saccadic 
latencies are plotted as a function of the target log-likelihood. B. Group averaged differences between saccadic 
latencies to high probability and equiprobable targets, and between low probability and equiprobable targets. C. 
Group averaged manual responses latencies are shown as a function of target probability. D. Group averaged 
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was 0.07, at equiprobable locations 0.04, and the low probability location 0.01. While 

this data suggest that express saccades were more likely to high than low probability 

targets, this effect was not significant F(2, 18) = 1.75, p = .202. On the other hand, the 

group averaged latency of regular saccades to high probability targets was 190 ms (SD 

= 22.5 ms), to equiprobable targets 196 ms (SD = 14.4ms), and to low probability 

targets 209 ms (SD = 13.5 ms). The effect of target probability on the latency of regular 

saccades was significant F(2, 18) = 7.914, p = .003, ηp2 = 0.47. These data suggest that 

most of the effects of blocked target probability on saccadic latencies were attributable 

to modulations of the latency of regular saccades rather than changes in the proportion 

of express saccades.  

 

Effects of target probability and validity on manual reaction times 

In experiment 3, we examined the effects of cueing the likely target location on simple 

manual reaction times. The cue was a central line pointing to one of four eccentric 

locations. Two levels of cue reliability were used. The cue reliability was either 25%, 

and the cue did not provide any information about the upcoming target location, or 

75%, and the informative cue indicated the location containing the target on 75% of the 

trials. Both cue types resulted in trials in which the target appeared at the cued location 

(valid trials) and at an uncued locations (invalid trials).  
Figure 7A shows the group averaged median latencies on valid and invalid trials for the 

two levels of cue reliability. The effect of cue validity on reaction times was highly 

significant F(1, 8) = 21.53, p < .002, ηp2 = 0.73, being longer to invalidly than validly 

cued targets. The effect of cue reliability was not significant F(1, 8) = 2.91, p < .127. 

The interaction between cue validity and cue reliability was also significant F(1, 8) = 

8.45, p < .02, ηp2 = 0.51, indicating that the size of the validity effect was affected by 

the reliability of the cue. Lastly, figure 7B shows that a significant validity effect was 

found even when the cue reliability was 25% and the cue was uninformative t(8) = -

3.181, p < .013, d’ = -1.06, suggesting that cue validity and target probability may exert 

partly independent effects. Moreover, the validity effects were about three times larger 

following high reliability than low reliability cues, consistent with the probability 

matching, attentional model, which predicts a threefold change in the size of the validity 

effect for a threefold change in cue reliability. The probability matching model could 

account for the validity effects following uninformative, 25% reliable cues, as it 

assumes that on these trials the participant will attend the cued location on 25% of the 

trials and attend all locations on the remaining 75% of the trials. On the other hand, the 
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latency differences between valid trials following 25% and 75% reliable cues were 

larger than the latency difference between invalid trials following 25% and 75% reliable 

cues t(8) = -2.825, p = .022, d’ = -.094, contrary to both the information theoretic and 

probability matching models’ prediction that these differences should be identical. 

 

 

 
Effects of cue validity and target probability on saccadic latencies 

In experiment 4, we examined the effects of cueing the target location on saccadic 

latencies. The same testing procedure used in experiment 3 was utilized here, except 

that participants were instructed to foveate the target as soon as it appeared. Figure 7D 

shows the group averaged median latencies on valid and invalid trials for the two levels 
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of cue reliability. The effect of cue validity was highly significant F(1,8) = 47.39, p < 

.001, ηp2 = 0.86, longer latencies being observed on invalid than valid targets. The main 

effect of cue reliability was not significant F(1, 8) = 0.03, p = .874, but the interaction of 

validity by cue reliability was F(1, 8) = 97.89, p < .001, ηp2 = 0.92. A paired samples t-

test confirmed that the magnitude of the validity effect was modulated by the reliability 

of the cue, t(8)= 9.89, p < .001, d’ = 3.30, and, by extension, target probability. 

Additionally, a significant validity effect was found following uninformative, 25% 

reliable cues t(8) = -4.50, p < .002, d’ = -1.47, with shorter latencies on valid than 

invalid trials. Saccadic latencies, following central cues, were affected by the target 

probability in a manner consistent with the predictions of both models. They also 

demonstrated an effect of validity following uninformative cues, which is inconsistent 

with information theoretic accounts. A three-way, repeated measures mixed ANOVA 

was used to compare the effects of cueing on covert and overt orienting. The repeated 

factors were cue reliability (75% vs. 25%) and validity (valid vs. invalid), the between 

subject factor was task (covert vs. overt). There was a significant effect of validity F(1, 

16) = 67.809, p = < .001, ηp2 = 0.81, but no overall effect of cue reliability F(1, 16) = 

1.714, p = .209. The interactions between validity and cue reliability F(1,16) = 38.628, 

p < .001, ηp2 = 0.71, and validity and task F(1, 16) = 5.011, p = .04, ηp2 = 0.24, were 

significant, the magnitude of the validity effect, as shown in figure 7B and figure 7E 

being larger on overt than the covert orienting. The three-way interaction was not 

significant F(1,16) = 0.731, p = .405.  

 

Cueing effects on express saccades 

We examined the effects of target validity and target probability on the proportion of 

express and regular saccades as well as the latency of regular saccades. Two-way, 

repeated measures ANOVAs were used to assess the effect of cue reliability and 

validity on the proportion and mean latency of regular saccades. Figure 8 shows the 

group averaged proportion of regular saccades for valid and invalid targets following 

25% and 75% reliable cues. Validity had a significant effect on the proportion of 

express and regular saccades F(1, 8) = 20.97, p = .002, ηp2 = 0.72, express saccades 

being more frequent in valid than invalid trials. Neither cue reliability, F(1,8) = 2.30, p 

= .168, while the interaction of reliability by validity affected the proportion of express 

saccades only marginally F(1,8) = 3.76, p = .089, ηp2 = 0.32.  

The group averaged mean latencies of regular saccades are shown in figure 8B. 

There was a significant effect of cue validity F(1, 8) = 24.32, p = .001, ηp2 = 0.75, the 
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latencies of regular saccades being shorter to valid than invalid targets. There was no 

significant effect of cue reliability F(1, 8) = 0.51, p = .494, but there was a significant 

interaction between cue validity and reliability F(1, 8) = 5.65, p = .045, ηp2 = 0.41. We 

conclude that target validity affected both the proportion and the latency of regular 

saccades, while target probability affected the latency of regular saccades, but had 

negligible effects on the proportion of express saccades. We conclude that cueing 

causes larger validity effects on overt than covert orienting, partly because validity 

affects the proportion of express saccades. 

 

 
Saccadic latencies, but not detection reaction times, show spatial anisotropies 

We found that target location affected the latency of saccadic, but not detection 

responses both when the target spatial distribution was blocked and cued. These results 

are reported next. A two-way ANOVA was used to examine the effect of target location 

in the blocked conditions. The first factor was the vertical location of the target, i.e. 

lower vs. upper visual field; the second was its horizontal location, i.e. left vs. right 
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Figure 8. Effect of cue reliability and validity on the proportion and latency of regular saccades. A. 
Reciprobit plots illustrate the cumulative distribution of saccadic latencies following both informative 
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visual field. In the detection task, reaction times were not significantly modulated either 

by the vertical F(1, 9) = 1.09, p = .32 or horizontal F(1, 9) = 0.53, p = .49, position of 

the target nor by the interaction F(1, 9) = 0.001, p = .91. However, saccadic latencies 

showed a significant effect of the target vertical position F(1, 9) = 70.41, p < .001, ηp2 

= 0.89, saccadic latencies being longer for targets in the lower (m = 214 ms, SD = 18.78 

ms) than upper visual field (m = 184 ms, SD = 21.39 ms). The horizontal position did 

not have a significant effect F(1, 9) = 0.94, p = .357, nor the interaction of vertical and 

horizontal target position F(1, 9) = 0.042, p = .843. 

 A three-way, repeated measures ANOVA was used to examine the effect of target 

location and validity on responses following central cues. The first factor was the 

vertical location of the target, the second factor was its horizontal location, the third 

factor was cue validity. In the detection task, there were no significant reaction time 

differences F(1, 8) = 2.37, p = .162, for targets appearing in the upper versus lower 

visual field. Additionally, there was no significant effect of the horizontal target 

location, F(1, 8) = 1.288, p = .289. As expected, there was a significant effect of cue 

validity F(1, 8) = 35.121, p < .001, ηp2 = 0.81. The interaction between the horizontal 

and vertical position, F(1, 8) = 0.041, p = .845, the horizontal position and validity F(1, 

8) = 1.273, p = .292, vertical position and validity F(1, 8) =1.627, p = .238, and the 

three-way interaction F(1, 8) = 1.06, p = .333, were all not significant. In the saccadic 

task, there was a highly significant effect of the vertical position of the target F(1, 8) = 

33.153, p < .001, ηp2 = 0.81, with shorter latencies when the target appeared in the 

upper (m = 185 ms, SD = 31 ms) than the lower visual field (m = 208 ms, SD = 30 ms). 

The effect of the target horizontal position was nearly significant, F(1, 8) = 5.09, p 

= .054, ηp2 = 0.39, with shorter latencies for targets in the left (m = 193 ms, SD = 31 

ms) than right visual field (m = 199 ms; SD = 33 ms). The interaction between the 

horizontal and vertical position, F(1, 8) = 1.974, p = .198, the interaction of the 

horizontal position and validity F(1,8) = 2.03, p = .192, vertical position and validity, 

F(1, 8) = 0.552, p = .479, and the three-way interaction F(1, 8) = 0.430, p = .530, were 

all not significant. We conclude that saccadic latencies, but not detection reaction times, 

show effects of target location. These effects do not interact with those of target 

probability and validity.  

 

Discussion 

 

Spatial expectations affect orienting when observers respond to the onset of visual 
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stimuli. The finding that animals faced with unexpected sensory stimuli exhibit a 

complex, but stereotypical set of responses (Pavlov, 1927), liable to the effects of 

repeated exposures (Sokolov, 1963) and that the spatial probability of a target affects 

detection reaction times, lead to the proposal that spatial expectancies engage specific 

preparatory processes (Posner, 1980; Posner et al., 1982). These were envisioned as 

sequentially organized operations aligning an attentional vector with the expected target 

location (Posner & Petersen, 1990). This view has been highly influential in the field of 

visual attention and has lead, for example, to a number of specific neuroanatomical 

models of visual attention (Posner & Petersen, 1990; Corbetta & Shulman, 2002). 

 A separate conceptualization of response selection and overt orienting draws from 

basic insights into the nature of information and its transmission (Shannon, 1948). 

These ideas lead to the finding that the time taken to make the instructed response, 

following an imperative stimulus, varies with either the initial number of response 

alternatives or the precision of the response required (Hick, 1952; Hyman, 1953). This 

suggests that response latencies reflect central procedures that incrementally select the 

response to be made from a pre-specified script of response alternatives, the greater the 

initial uncertainty and therefore the amount of information required to uniquely specify 

the response, the longer the reaction time. The finding that latencies increase 

logarithmically with the number of alternatives was taken as evidence that information 

may be coded similarly in the brain and digital circuits. While the generality of this 

phenomenon has been challenged and response distributions more consistent with 

analogical processes have been reported (e.g. Pellizzer & Hedges, 2004; Kleiner et al., 

2007), others have endorsed this computational view of response selection. In a seminal 

study, Carpenter and Williams (1995) examined the latency distribution of visually 

evoked saccades under conditions in which the spatial probability of a target was 

manipulated directly, rather than by changing the number of possible target locations. A 

simple race to threshold model of the neural activity was proposed, which could 

replicate the distribution of saccadic latencies as a function of target probability. One 

crucial feature of the model was that preparatory, baseline activity varies with the 

logarithm of the target probability, in accordance with neurophysiological evidence 

regarding the coding of spatial expectancies in subcortical and cortical structures (Basso 

& Wurtz, 1994; Churchland et al., 2008). These information theoretic models, which 

regarded decision making in the brain as a two stage computation, first the uncertainties 

of the response set are computed and, once the target appears, the response is specified 

by transmitting information along a limited capacity channel, also maps quite naturally 
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into the idea, popularized more recently, that the brain computes perceptual and motor 

decision by combining expectancies with sensory data to maximize the likelihood of a 

correct response (e.g. Gold & Shadlen, 2007).  

 One crucial difference between attentional and information theoretic 

conceptualizations is that the former has a limited ability to track changes in target 

probability, except if one assumes that observers engage in probability matching 

(Jonides, 1981), attending the likely target location in some and maintaining attention in 

a diffuse state, in the remainder of the trials. Thus an obvious way to distinguish 

between the two models is to examine the effects of target probabilities on orienting 

responses. Accordingly, the former model would predict response latencies that are 

either independent of target probabilities or, if the observer matches the target 

probability, vary linearly with target probabilities. Whereas the information theoretic 

account would predict that response latencies vary logarithmically with target 

probabilities. 

 

Target spatial probability affects covert and overt orienting 

When participants oriented covertly and overtly to targets appearing at locations of 

varying probabilities, responses were briefer for targets at likely than unlikely locations, 

suggesting that target probabilities shaped spatial expectations. Although detection 

reaction times were consistently slower than saccadic latencies, the effects of target 

probability on covert and overt orienting were similar in magnitude, suggesting that 

target probability effects arose independently of central and biomechanical constraints 

specific to covert and overt orienting responses. Interestingly, the effects of target 

probability on overt responses were larger for low probability than high probability 

targets, relative to equiprobable targets. This finding is inconsistent with both the 

attentional, probability matching model, if one assumes that the benefits of attending the 

cued location on valid trials match the costs of attending the cued location on invalid 

trials, as well as the information theoretic model, since the both predict equally sized 

effects. Nevertheless this finding is not novel. Already (Posner et al. 1980) reported 

greater spatial expectancy effects on low than high probability targets, relative to 

equiprobable targets, when the target spatial probability was blocked. Similarly, when 

the reliability of central cues is learnt implicitly from sequential exposures to several 

cue-target pairings (Daunizeau, Bauer, Driver & Friston, 2014), or the reliability of the 

cued is explicitly communicated to the participant and the time taken to identify a 

poorly visible target is measured (Giordano et al., 2009), target probability effects are 
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found to be greater on low, invalid than high probability, valid trials. These data suggest 

that target probability may affects processes specifically engaged when spatial 

expectations are violated by invalid or low probability targets. A number of explanations 

have been put forward to account for the greater cost of breached expectations. These 

have included habituation to repeated stimuli (Sokolov, 1963), or the need to interrupt 

on-going neural processes in order to examine a novel, unexpected target, (Corbetta & 

Shulman, 2002; Pavlov, 1927) or the disengagement of visual attention from the 

currently attended location to examine the location containing the target (Laberge, 

1973). Regardless of the exact reason for the disproportionally large cost found when 

orienting to low probability targets, an imaging study recently examined the 

consequences on preparatory neural activity of the probability that an endogenous signal 

will instruct either to maintain attention at the current location or shifting attention to 

the contralateral side (Shulman et al., 2010). It was found that when the instruction is to 

shift attention the effects of the instruction probability on BOLD signals evoked in 

frontal and basal ganglia regions is much greater than when the instruction is to 

maintain attention. This suggests that disengagement of attention and shifting attention 

may be specifically modulated by probability, in agreement with the results from the 

blocked probability experiments.  

 

Cueing affects differentially saccadic and detection latencies 

Participants were faster to orient to and detect supra-threshold visual targets, when they 

appeared at cued than uncued locations, suggesting that observers used the cue when 

preparing to respond to an upcoming target (Posner, 1980; Jonides, 1981). Furthermore, 

cueing effects on detection and saccadic latencies were modulated by the cue reliability, 

suggesting that target probability affected preparatory processes engaged by the cue. 

Saccades showed a 8ms latency difference between valid targets that followed a 75% 

reliable cue and a 25% reliable cue. A similar difference was found for invalid targets. 

Since the difference in target log-likelihood following high and low reliability cues was 

equated for valid and invalid targets, this result is consistent with the predictions of the 

information theoretic model, and the probability matching model. This latency 

difference is smaller than previously reported in a study using highly practiced 

participants, a three fold change in target probability resulting instead in a 30 to 50ms 

change in response latency (see Table 1 in Carpenter & Williams, 1995), but closer to 

values reported in later studies (Carpenter, 2004). Moreover, we found a validity effect 

in both the covert and overt orienting task following low reliability cues, when the 
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target was equally likely to appear at any of the four locations. This latter finding is 

inconsistent with the predictions of the information theoretic account and with the long 

held view that central cues engage attention only when they provide task relevant 

information (Jonides, 1980). However, a number of authors have found that symbolic 

cues can engage attention even if uninformative (Eimer, 1997; Tipples, 2002). Various 

reasons have been invoked to account for this effect, including that central cues engage 

top-down processes, which then lead to both voluntary and automatic orienting (Kuhn 

& Kingstone, 2009). Alternatively, the validity effect following uninformative cues 

could simply reflect a probability matching strategy.  

 Covert orienting response latencies were affected by target probability more so in 

valid than invalid trials, the latter showing little if any effect of target probability. This 

finding is neither consistent with the attentional, probability matching model, nor the 

information theoretic model, since both predict equally sized probability effects on valid 

and invalid trials. Additionally, the size of the validity effect on covert orienting 

response latencies approximately tripled following highly reliable cues compared to low 

reliability cues, which is consistent with the attentional, probability matching model. 

Saccadic latencies showed similar validity effects. However, the size of the validity 

effect was larger in the overt than covert orienting task, following both low and high 

reliability cues (see figure 7). This difference is likely accounted by fact that in the overt 

orienting task express saccades are made more frequently to valid than invalid targets, 

while in the covert orienting tasks there is no separate population of express, short 

latency responses (data not shown, but see Bekkering & Abrams, 1996; Pratt & Nghiem 

2010 for extensive analysis of response distribution in manual and saccadic tasks). 

Overall, our data can be taken to imply that the central constraints on covert and 

overt orienting are largely shared, albeit their computational nature is incompletely 

captured by both information theoretic and probability matching models. Differences 

between the effects of target probability and validity on covert and overt orienting 

latencies could then be interpreted conservatively, by assuming that processes specific 

to overt, but not covert orienting, exists which are also amenable to cueing effects. This 

proposal is consistent with independent observations indicating dissociable effects on 

response latencies in covert and overt orienting tasks when experimental manipulations 

which specifically affect the proportion of express saccades are introduced (Bekkering 

& Abrams, 1996; Pratt & Nghiem, 2010). A straightforward account for the limited 

differences we found between covert and overt orienting in experiments, where the 

target spatial distribution was instructed by a cue, would then be that overt orienting can 
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recruit neural short-cuts leading to express saccades, when responses to highly expected 

targets are elicited, however, we cannot exclude that other differences may be present as 

well: we found faster saccadic latencies to targets presented in the upper than lower 

visual field, confirming previous observations in both human participants (Heywood & 

Churcher, 1980) and non-human primates (Schlykowa et al., 1996). We did not find a 

difference in detection reaction times when targets appeared in the upper versus lower 

visual field, nor was the effect of target location on saccadic latencies modulated by cue 

validity, leading us to conclude that the effects of target location on saccadic latencies 

are purely oculomotor. However, our conclusion differs from that drawn on the basis of 

data obtained in non-human primates by Zhou and King, 2002, who suggested that this 

spatial anisotropy may reflect a orienting effect, having found smaller validity effect for 

vertical than horizontal saccades made to exogenously cued targets. 

 

Target probability effects depend on behavioural context 

A potential account of the differential effect on response latencies, of blocking the target 

spatial distribution and manipulating the reliability of a central cue can be drawn from 

the body of work concerning choice behaviour under risk. These studies have shown 

that the internal representation of probability and utility is frequently biased in human 

participants, and shaped by the manner in which expectations and financial prospects 

are instructed (e.g. Allais, 1953; Kahneman & Tversky 1979). Indeed, comparison of 

our data to data obtained under conditions in which the target probability was 

manipulated by changing the number of possible target locations is supportive of this 

suggestion. Both arm (Favilla, 1996; Dassonville et al., 1999; Pellizzer & Hedges 2003; 

Pellizzer and Hedges 2004) and saccadic eye movements (Heywood & Churcher 1980; 

Kveraga & Hughes, 2002) display latencies, which plateau as the stimulus probability 

decrease. Paradoxically, saccadic latencies can even decrease as target probability 

decreases (Lawrence et al., 2008; Lawrence & Gardella, 2009). These effects depart 

considerably from those demonstrated here, especially when blocking the target spatial 

distribution. This discrepancy has no plausible explanation other than to conclude that 

spatial expectations and the preparatory processes which depend on them are shaped by 

the way possible outcomes are presented.  
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Chapter three 

 

Distractors are suppressed during reorienting to invalidly cued targets: support for 

the filtering hypothesis 
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Abstract 

 

The finding that the same brain regions deactivated by distractors, respond 

prominently to invalid targets, lead to the hypothesis that distractors are prevented 

from capturing attention by increasing the selectivity for the target defining feature 

of reorienting mechanisms (Shulman et al., 2004). On the other hand, whether 

endogenous spatial attention can prevent distractors capturing attention remains 

contentious. We examined detection reaction times and saccadic latencies following 

central cues. Cues indicated either the target or a distractor’s likely location. 

Distractors slowed orienting, except when the target was invalidly cued. Cueing the 

distractor lead to faster responses, when a distractor or the target appeared at the 

cued location. Finally, orienting was faster when the previous several trials 

contained a target than when they did not. Smaller, but spatially specific effects 

were also found for the distractor. We conclude that, 1) when reorienting to 

invalidly cued target, distractors do not capture attention, in keeping with the 

filtering hypothesis; 2) cueing the distractor does not lead to inhibition of the cued 

location; 3) orienting is facilitated by a slowly decaying tonic signal, associated 

with previously observed stimuli. 
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Introduction 

Processing of sensory data is constrained by slow neural processes of limited 

capacity. To accommodate these limitations, human observers are thought to 

prioritize those elements of the sensory array relevant to their current behavioural 

goals, leading, for instance, to faster responses to attended than unattended stimuli 

(Bundesen, 1990). These prioritizing processes have been commonly identified with 

attention (Carrasco, 2011).  

 

Mechanisms of attention 

The facilitatory effects of attention on sensory and motor processes are well 

documented. For example, faster and more accurate responses are found for visual 

targets appearing at expected than unexpected locations (e.g. Posner, 1980; Jonides, 

1981; Posner, Snyder & Davidson, 1980; Carpenter & Williams, 1995; Geng and 

Behrmann, 2005). When the target is highly visible and appears without competing 

distractors, valid cues are thought to affect behavioural performance by facilitating the 

motor response, which requires attention to be deployed at the location of the imperative 

stimulus (Posner, 1980). Others have suggested instead that spatial expectations shorten 

response time by lowering the decision threshold, required to generate a directional 

response to a highly visible target (Carpenter & Williams, 1995). Under conditions of 

low target visibility, attention may increase the apparent contrast of a target (Carrasco, 

Penpeci-Talgar & Eckstein, 2000) and its resolution (Carrasco, Williams, & Yeshurun, 

2002), implying that attention can change the grain of sensory sampling. In the presence 

of distractors attention may diminish their interference on sensory and decision 

processes (e.g. Desimone & Duncan, 1995; Dosher & Lu, 2000). A number of these 

proposals can be captured using well-established analogies. For example, attention may 

act as an internal spotlight or a zoom lens, which highlights internal representations of 

selected parts of the visual scene to the exclusion of the remainder (Eriksen & St James, 

1986; Eriksen & Hoffman, 1972).  

 

Distractor suppression: automatic vs. voluntary effects  

The proposals listed above insinuate that ignoring particular locations, objects, or 

features, is simply a consequence of not being selected. Nevertheless, inhibitory 

mechanisms are known to be important in the deployment of attention. For 

example, inhibitory interactions among homogenous distractors diminish their 

saliency, while increasing the saliency of odd elements, in a purely bottom-up 
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fashion (Koch & Ullman, 1987). There is also recent evidence for top-down control 

of inhibitory processes. For example, distractor interference is diminished when the 

display is expected to contain distractors, compared to when it is not (Awh, 

Matsukura & Serences, 2003). 

 Posner and Klein (1984) were the first to report spatial inhibition of 

orienting, having found that detection reaction times were delayed when the target 

appeared at a location where an exogenous cue had previously been shown. They 

suggested that previously attended locations are inhibited (Klein, 2000). Others 

have shown that the processing of target stimuli is slowed when they share visual 

features with distractors shown in preceding trials (Tipper, 1985; Tipper & 

Cranston, 1985). This phenomenon may indicate that distractors and their features 

are actively inhibited and that this inhibition lingers into the next trial.  

 Like facilitatory mechanisms, some studies have suggested that inhibitory 

mechanisms can be engaged voluntarily ahead of the main stimulus (e.g. Munneke, 

Van der Stigchel, & Theeuwes, 2008; Van der Sitgchel & Theeuwes, 2005; Ruff & 

Driver, 2006). For example, a preview benefit is observed in conjunction search 

tasks. When observers are shown distractors prior to the display containing the 

target, the previewed distractors have minimal effects on search times (Watson & 

Humphreys, 1997), suggesting that previewed distractor locations are inhibited. 

However, other accounts of this phenomenon have been offered that do not invoke 

spatial inhibition (Donk & Theeuwes, 2003; Pratt, Theeuwes, & Donk, 2007). 

Munneke, Van der Stigchel, and Theeuwes (2008) found a reduced flanker 

compatibility effect, when flankers appeared at the location cued by a central arrow, 

suggesting that observers voluntary inhibited cued locations and therefore 

experienced diminished interference when distractors appeared there. However, 

cues sped up responses to both congruent and incongruent trials, suggesting that 

cues had additional effects beyond inhibiting the locations cued. Van der Stigchel 

and Theeuwes (2006) found that saccadic trajectories deviated away from the 

expected distractor location, even if no distractor appeared, under conditions in 

which the relative position of the target and distractor was fixed. This suggested 

that purely endogenous, preparatory signals can affect oculomotor programming 

either through spatial inhibition or other mechanisms.  

 Neuroimaging and electrophysiological data have provided some support for 

the idea that distractor suppression can be initiated endogenously. Ruff and Driver 

(2006) examined the consequences of informing the observer whether a distractor 
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would appear in the hemifield opposite the target. In the presence of a distractor, 

faster discrimination responses were found in cued than uncued trials. Moreover, 

increased preparatory BOLD signals were observed, following the cue, in 

retinotopic regions of the hemisphere contralateral to the expected distractor 

location, as well as higher order regions. The authors suggested that this preparatory 

activity indexed suppression of sensory processes at the expected distractor 

location. Other studies confirmed that prior information regarding the location and 

timing of distractors results in both diminished distractor interferences and 

increased preparatory BOLD signals at corresponding locations in retinotopic 

cortex (Serences, Yantis, Culberson & Awh, 2004). However, these studies also 

allow a different interpretation, namely that the same preparatory signals used to 

improve target related responses can also minimize distractor interference (Lahav & 

Tsal, 2013). Overall, neuroimaging data are more consistent with the latter 

interpretation. Decrements in preparatory BOLD signals, following a cue indicating 

the likely target location, are found in retinotopic cortex at locations corresponding 

to the expected position of task irrelevant stimuli (Sylvester et al., 2008). 

Preparatory BOLD signal decrements in non-target regions are found in somato-

sensory cortical areas as well (Drevets, Burton, Videen, Snyder, Simpson & 

Raichle, 1995), suggesting that suppression of task irrelevant sensory inputs is not 

specific to visual processes. Negative BOLD responses to task irrelevant visual 

stimuli are found in both thalamic and cortical areas (Gouws, Alvarez, Watson, 

Uesaki, Rogers, & Morland, 2014), suggesting that negative BOLD responses, 

whether endogenously or exogenously generated, may index diminished sensory 

processing of suppressed distractors. In summary, the finding that expectation of a 

distractor can result in both increases and decreases of BOLD signals, suggests that 

preparatory processes for distractors may reflect a variety of strategies. While all 

can result in diminished distractor interference, only some are inhibitory in nature.  

 In contrast to the above accounts, several researchers have found that cueing 

the location of distractors is not effective. Chisholm and Kingstone (2014) 

examined how expectations affected distractor interference in a speeded choice 

task. Performance was worse when participants were instructed to actively avoid 

the distractor, compared to when participants were not informed that a distractor 

could appear on some trials. Thus when participant are actively encouraged to 

ignore distractors, they fail singularly to do so. Instead, they attend them more than 

they would otherwise (e.g. Stale & Makovski, 2006; Moher & Egeth, 2012). One 
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interpretation is that cueing the distractor results in an attentional white bear effect. 

That is, when prompted to ignore a location or a feature, observers activate the 

corresponding representation in working memory (Kahnemen & Treisman, 1984; 

Tsal & Makovski, 2006; Wegner, Schneider, Carter, & White, 1987), which biases 

attention toward the location and feature, regardless of task relevance (Lahav, 

Makovki & Tsal, 2012; Lahav, Makovski, & Tsal, 2012; Tsal & Makovski, 2006). 

However, the idea that the contents of working memory draw attention 

automatically (e.g. Woodman, Carlisle, and Reinhart, 2013; Downing 2000; Awh, 

Jonides, and Rueter-Lorenz,1998) has not gone unchallenged. Several studies have 

suggested that working memory can guide attention in a flexible manner (Close, 

Sapir, Burnett, & d’Avossa, 2014; Downing, 2000; Downing & Dodds, 2004; 

Woodman and Luck, 2004; Olivers, 2009). Others have suggested that inhibition is 

commonly recruited to diminish distractor interference with target processing, but 

that inhibitory mechanisms are inherently slower than processes associated with 

target selection (Moher & Egeth, 2012; Moher, Lakshmanan, Egeth, & Ewen, 

2014).  

 In conclusion, whether spatially selective inhibitory processes can be 

initiated purely voluntarily and independently of processes associated with target 

selection has not been conclusively demonstrated. In the present work, we aimed to 

probe whether endogenous inhibition of locations where distractors are expected to 

appear, can be demonstrated in tasks requiring a simple orienting response, either 

covert or overt. If cueing the distractor location leads to suppression of processes 

evoked by stimuli appearing at the cued location, then orienting latencies should be 

faster when the distractor appears there, but slower when the target does. Instead, if 

cueing leads to enhanced processing of any stimulus presented at the cued location, 

then similar cueing effects should be found whether the target or a distractor appear 

at the cued location; regardless of whether the target or a distractor location has 

been cued.  

 

Effects of partially valid cues on distractor suppression 

In this study, we also examined the interaction between target validity and distractor 

presence. Previous imaging data have shown that during visual search through 

sequentially presented distractors, regions related to reorienting to invalidly cued 

targets are deactivated (Shulman, McAvoy, Cowan, Astafiev, Tansy, d'Avossa, & 

Corbetta, 2003; Shulman, Astafiev, McAvoy, d'Avossa & Corbetta, 2007). This 
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finding lead to the suggestion that deactivations in these regions reflect distractor 

suppression to prevent attentional capture by task irrelevant stimuli. If this 

interpretation is correct then one would predict that reorienting to invalidly cued 

targets will be particularly robust to distractor interference and the interaction 

between distractor capture and reorienting.  

Detection reaction times and overt orienting latencies were compared since 

it is still debated whether a simple detection requires a covert shift of attention. It 

has been suggested that while detection of a pop-out target does not (Bravo & 

Nakayama, 1992), visually guided saccades are obligatorily preceded by a shift of 

attention to the target location (McPeek, Maljkovic, & Nakayama, 1999). However, 

others have suggested that simple detection latencies reflect the time taken to 

covertly orient to the target location (Posner, 1980). If the latter view is correct, 

then both simple detection and saccadic latencies can be used to examine orienting 

independently from the effects of attention on visual sensitivity. Thus, highly 

visible targets and distractors, preceded by partially valid cues are particularly well 

suited to understand whether basic mechanisms of spatial attention are deployed 

similarly during covert shifts of attention and overt eye movements (e.g. Rizzolatti, 

Riggio, Dascola, & Umiltà, 1987; Sheliga, Riggio, & Rizzolatti, 1995).  

 

Method 

 

Participants. Twelve right-handed observers (five males) with a mean age of 26 

years (range 19-40) and normal or corrected to normal vision were recruited among 

students at Bangor University School of Psychology. All experimental protocols 

were approved by the local Ethics Committee. Participants gave written consent 

prior to commencing any experimental procedure and received monetary 

compensation for their time. 

 

Materials. All aspects of stimuli presentation and data collection were carried out 

via a custom coded MATLAB™ program, using psychtoolbox for the accurate 

display and timing of visual stimuli and the recording of behavioural responses 

(Brainard, 1997; Cornelissen, Peters and Palmer, 2002; Pelli, 1997). Visual stimuli 

were presented on a 19” Viewsonic G90fB Graphics Series Monitor, set at a 

1024x768 resolution and a 60 Hz refresh rate. Participants were tested in a darkened 

room. Head position was restrained by a chin and forehead rest. 
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 Eye movements were recorded from the left eye using an infrared camera 

based Eyelink CL 1000 system (SR Research, Mississauga, Canada), set at a 1000 

Hz sampling rate. The eye tracker was calibrated at the start of each block, using a 

nine-point calibration and validation procedure. This was considered successful 

when the difference between estimates and actual gaze position was < 1° of visual 

angle. Manual responses were collected via button press using the Cedrus RB-540 

Response Pad (Cambridge Research Systems, Rochester UK). 

 

Stimuli and Procedure. We compared the effects on response latencies of cueing 

the location of the target or a task-irrelevant distractor. In half of the blocks, 

participants performed a simple reaction time task. In the other half, participants 

performed a choice reaction time task instead: the appearance of the target required 

an overt saccade directed at the target. The target display was preceded by a central 

cue, which, in separate blocks, indicated the likely location of either the target or 

the distractor. Thus, participants engaged in four different block types.  

 The basic trial structure is illustrated in figure 9. A 0.8°, black fixation square 

was visible at the centre of the screen throughout each block. After performing a 

drift correct, the trial began when the participant pressed the response key. A 0.8° 

long white line, abutting the fixation point, was then shown for 400ms. The line was 

the cue, which indicated, either the likely location of the target, or the likely 

location of a distractor. Depending on the block, the cue was either 75% valid for 

the target and 25% valid for the distractor, or the other way around. On 7% of trials 

a non informative cue was used instead. This was a white circle with a 0.8° 

diameter. A non-aging foreperiod, lasting between 600 and 1200ms followed the 

cue offset. The trial-wise distribution of foreperiods was obtained by sampling an 

exponential distribution with a time constant of 0.2s. The sample values were 

truncated to a 0.6s and 1.2s.  
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Figure 9. Trial event structure. The figure illustrates the sequence of events in trials where 
participants either made a simple manual response to the sudden appearance of the target stimulus or 
foveated it. Each trial started with a change at fixation. Either a partially valid cue, indicating which 
of four locations was likely to contain either the target or the distractor, or a change in the fixation 
point alerted the participants that the main stimulus would follow shortly. After a non-aging 
foreperiod the main display appeared. This could consist of either a target, a distractor, a target and a 
distractor, or two distractors. Participants were instructed to respond only to the target, either by 
pressing a button key with their right hand (detection task), or by looking at it (saccadic task).  
	

 
 

The stimulus display contained either the target by itself, a distractor by 

itself, the target and a distractor or two distractors. The target and the distractors 

were either the outline of a rectangle with a diameter of 2.0° outer frame and 1.7° 

inner frame, or a circle of 0.8° diameter. When two stimuli appeared, either the 

target and a distractor or two distractors, one was a rectangle outline, the second a 

circle. This allowed presenting two stimuli at the same location. The four 

configurations were presented an equal number of times, thus maximizing the 

independence between target and distractors, while simultaneously minimizing 

available cues to target presence. Observers were informed that distractors would 

appear on most trials, and were instructed to respond only to the target, which 

appeared in half the trials. The target and distractor were equiluminant and were 
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distinguished by their colour (red and green). Colour equiluminance was established 

for each participant in a pre-session, using a minimum motion procedure (Anstis & 

Cavanagh, 1983) which equalized the probability of perceiving clockwise or anti-

clockwise motion of two superimposed red and green circular sine waves, by 

adjusting the luminance of the green phosphor to match that of a maximally bright 

red one. Half the participants had to respond to a green target and ignore the red 

distractors, while the other half responded to the red target and ignored the green 

distractors. In the saccadic task, participants were instructed to fixate the target as 

soon as it appeared. In the detection task, participants had to press a response key as 

soon as the target appeared, whilst maintaining their gaze on the fixation point. 

Fixation was monitored by the eye tracker, and trials where participants broke 

fixation were identified offline and removed from the analysis. 

 Participants were tested on five consecutive days, each session lasting around 

one hour and fifteen minutes. In the first session, participants undertook the 

procedure to estimate their equiluminance point. Participants were then familiarized 

with the detection and saccadic tasks following target and distractor cues, over four 

blocks, each containing one hundred and fifty trials. During training, participants 

were encouraged to make timely and accurate saccades, or to maintain fixation of 

the central target in the detection task. The remaining four sessions comprised six 

blocks each. In each block, participants completed one hundred and fifty trials. In 

each session, participants were cued either to the target or the distractor’s likely 

location. The task alternated over blocks. Each condition was tested once in a 

repeated sequence. The order of the sequence was randomized over participants.  

 

Data analysis. Nine hundred trials were collected from each participant on the 

detection and saccadic task, respectively. Half of the trials contained the target. 

Eye-movements were analysed off-line using MATLAB™. Saccadic latencies were 

defined as the period between target onset and onset of the visually evoked saccade. 

Correct responses were defined as saccades starting within 2° of the central fixation 

point and landing within 2° of the target. Only the first saccade in a trial was 

included in the analysis. In the saccadic task, saccadic latencies between 80ms and 

900ms were included in the final analysis. In the detection task, responses between 

150ms and 900ms were considered to be target evoked responses, and trials 

containing saccades were excluded. For both the detection and saccadic task, 

individual oculomotor traces for each trial were visually inspected and trials 
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containing artefacts such as blinks were discarded from further analysis. For each 

participant and condition, latencies were calculated by averaging 10,000 

bootstrapped estimates of the median latency. Overall, 95% of saccadic responses 

and 96% of manual responses were kept for final analysis.  

 

Results 

 

The aim of the experiments was to determine the effects of endogenous cues and 

exogenous distractors on covert and overt orienting. We examined how cueing the 

location of targets and distractors, and distractor presence affected latencies of 

target related responses. First, we compared the effects of cueing the likely location 

of the target vs. the distractor. Second, we examined the effects of distractor 

presence. Finally, we examined sequential effects of target and distractor presence 

and location on response latencies. All follow-up post-hoc tests were computed 

using Fisher’s Least Significant Differences.  

 

Comparing target versus distractor cueing  

A repeated measures ANOVA was used to examine the effects of cued stimulus 

(target vs. distractor) and validity (valid target, valid distractor, both invalid) using 

only trials, where the stimulus display contained, at separate locations, the target 

and a distractor.  

 Figure 10A and 10B shows the group averaged, median reaction times in the 

detection task. There was a significant effect of validity F(2,22)= 13.41, p < .001, 

ηp2 = 0.71, with faster detection when the target appeared at the cued location, 

compared to when the distractor appeared at the cued location (p = .033) and when 

neither target or distractor appeared at the cued location (p < .001). Detection 

reaction times were also faster when the distractor appeared at the cued location, 

than when neither target nor distractor appeared there (p = .001). Crucially, the 

main effect of cued stimulus was not significant F(1, 11)= 2.962, p = .113, nor its 

interaction with validity F(2,22) = 1.939, p = .168, suggesting that any change in 

attentional set, due to whether the target or distractor location had been cued, did 

not greatly influence detection latencies.  

 Figure 10C and 10D shows the overall latencies for the saccadic task. There 

was a significant effect of validity F(2, 22) = 15.215, p < .001, ηp2 = 0.58, with 

faster responses when the target appeared at the cued location, compared to when 
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the distractor appeared at the cued location (p = .002), or when neither appeared at 

the cued location (p < .001). Furthermore, responses were also faster when the 

distractor appeared at the cued location compared to when neither stimulus 

appeared there (p = .04). Again, the main effect of stimulus cued was not significant 

F(1, 11) = 2.387, p = .151, nor its interaction with validity F(2, 22) = 0.43, p = .656.  

 The detection and saccadic data were combined and analysed using a three-

way ANOVA, with the additional factor of task (detection vs. saccadic). The main 

effect of task was significant F(1,11) = 104. 405, p < .001, ηp2 = 0.90, with 

detection reaction times being on average slower than saccadic latencies. Also, the 

main effect of validity was significant F(2, 22) = 21.16, p < .001, ηp2 = 0.66. There 

was a near significant main effect of stimulus cued F(1,11) = 4.769, p = .052, ηp2 = 

0.30 with responses being marginally slower when the cue indicated the likely 

location of the distractor than the target. The interaction between task and validity 

F(2,22) = 0.523, p = .60, task and stimulus cued F(1,11) = 0.116, p = .74, stimulus 

cued and validity F(2,22) = 1.241, p = .308, and the three-way interaction were not 

significant F(2,22) = 1.61, p = .223.  

 

Effects of distractor and validity 

Next, we examined whether cues affected distractor’s interference with covert and 

overt orienting responses. Figure 11A shows detection reaction times when the 

target was presented alone or with a distractor (target and distractor at different 

locations). A three-way repeated measures ANOVA was used to examine the effect 

of cued stimulus (target vs. distractor), validity (valid target vs. invalid target) and 

distractor (present vs. absent) on manual detection latencies. There was a significant 

effect of validity, F(1, 11) = 44.963, p < .001, ηp2 = 0.80. There was also a main 

effect of distractor F(1, 11) = 19.432, p < .001, ηp2 = 0.64, with faster responses on 

distractor absent than distractor present trials. The main effect of stimulus cued was 

marginally significant F(1, 11) = 3.459, p = .09, with faster reaction times following 

target than distractor cues. The interactions of cued stimulus and validity F(1, 11) = 

0.169, p = .689, validity and distractor presence F(1,11) = 0.09, p = .77, were not  
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significant. The interaction of stimulus cued and distractor presence was marginally 

significant F(1,11) = 3.753, p = .079, ηp2 = 0.25, reaction times differences between 

distractor present and absent trials when the target location was cued being smaller 

than when the distractor location was cued. The three-way interaction between 

stimulus cued, validity and distractor was not significant either F(1,11) = 1.767, p = 

.211.  
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Figure 10. Effects of cued stimulus, target validity and task on response latencies in distractor 
absent trials. The bar graphs in panel A show manual detection reaction times in the target cueing 
condition, when either the target appeared at the cued location (target), the distractor appeared at 
the cued location (distractor), no stimuli appeared at the cued location (invalid), or a neutral cue 
preceded the target (neutral). The bar graphs in Panel B shows the same trial-types for manual 
detection, in the distractor cueing condition. Panel C and D represents saccadic responses in the 
target cueing and distractor cueing condition, respectively. Notably, when the target appeared at 
the location where the distractor was expected, reaction times were briefer than when the target 
appeared elsewhere or was preceded by a neutral cue. Furthermore, notwithstanding a large 
difference in overall latencies between detection and saccadic responses, the effects of 
experimental factors are comparable. Error bars represent standard error of the mean. 
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 The effect of stimulus cued, validity and distractor presence on saccadic 

latencies are shown in figure 11B. There was a significant effect of validity F(1,11) 

= 27.913, p < .001, ηp2 = 0.72 and distractor F(1, 11) = 4.989, p < .047, ηp2 = 

0.031, but no main effect of cued stimulus F(1,11) = 1.852, p = .201. The 

interactions of cued stimulus and validity F(1,11) = 0.134, p = .721, validity and 

distractor F(1,11) = 0.439, p = .521, were not significant. The interaction of cued 

stimulus and distractor F(1,11) = 3.454, p = .09, ηp2 = 0.24, was marginally 

significant with faster latencies on distractor present trials when the target location 

was cued. The three-way interaction was significant F(1,11) = 6.194, p = .03, ηp2 = 

0.36. This indicates that during the target cueing condition, distractors slowed 

responses on valid trials (when the target appeared at the cued location) and trials 

when the distractor appeared at the cued location. However, the effects of the 

distractor were remarkably reduced on invalid cued trials; that is, when the target 

did not appear at the cued location. In the distractor cueing condition, the distractor 

always increased reaction times. 

 Detection and saccadic latencies were jointly analysed using a four-way 

ANOVA, with an additional factor of task. There was a significant effect of task 

F(1,11) = 97.433, p < .001, ηp2 = 0.90, validity F(1,11) = 38.067, p < .001, ηp2 = 

0.78, and distractor F(1,11) = 12.391, p < .005, ηp2 = 0.53, with faster response 

when overtly orienting to valid targets in the absence of distractors. The main effect 

of stimulus cued was marginally significant F(1,11) = 4.444, p = .059, ηp2 = 0.29, 

with faster responses following target cues. There was also a significant interaction 

of cued stimulus by distractor F(1,11) = 8.442, p = .014, ηp2 = .43, and a significant 

three-way interaction of stimulus cued, validity and distractor F(1,11) = 5.221, p = 

.043, ηp2 = 0.32. The latter interaction reflected the fact that distractors did not 

appreciably affect detection reaction times and saccadic latencies following 

invalidly cued targets, when the target was cued. In the remainder of the trials, 

distractors slowed responses down. All the other interactions were not significant 

and are reported in table 1. 
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Table 1: Non-significant interactions of task, cued stimulus, validity and distractor.  

 

Effect                  df F P 

T * C          1, 11 0.499    .495 

T * V 1, 11 2.151    .17 

T * P 1, 11 0.056    .817 

C * V 1, 11 0.261    .62 

V * P 1, 11 0.083    .778 

T * C * V 1, 11 0.01    .923 

T * C * P 1, 11 0.01    .921 

T * V * P 1, 11 0.346    .568 

T * C * V * P           1, 11 0.001    .977 

Task is either manual or saccadic task. Cued stimuli is whether the target was cued, or the distractor 
was cued. Validity refers to if the target stimuli appeared at the cued location or not, independent of 
cued stimuli. Distractor presence was either distractor present or absent. df = degrees of freedom. F = 
F Statistic. p = p value.  

 

Target and distractor at the same location slow responses  

We compared responses in trials where the distractor and target appeared at the 

same or different locations. We first examined neutrally cued trials using a two-way 

ANOVA, with factors stimulus cued (target vs. distractor) and location (same vs. 

different). In the detection task, there was an effect of location F(1,11) = 6.237, p = 

.03, ηp2 = 0.36, with slower responses when target and distractor appeared at the 

same location. There was no significant effect of stimulus cued F(1,11) = 0.473, p = 

.506. The interaction was not also significant F(1,11) = 0.473, p = .506. 

 For the saccadic condition, there was an effect of stimulus location F(1,11) = 

7.418, p < .02, ηp2 = 0.40, with slower responses when the target and distractor 

appeared at the same location. There was no significant effect of cueing condition 

F(1, 11) = 0.027, p = .872. The interaction was also not significant F(1, 11) = 1.59, p 

= .233. When we combined data from the two tasks, we found that there was a 

significant effect of task F(1, 11) = 61.211, p < .001, ηp2 = 0.85, and location F(1, 

11) = 10.428, p = .008, ηp2 = 0.49. There was no significant effect of stimulus cued 

F(1, 11) = 0.337, p = .573. The interaction of task and cued stimulus was not 

significant F(1, 11) = 0. 33, p = .577, nor the interaction of task and location F(1, 

11) = 0.168, p = .69. The interaction of cued stimulus and location was marginally 

significant F(1, 11) = 4.737, p = .052, ηp2 = 0.30, because responses following 

target cues were slower than responses following distractor cues only when the 

target and distractor appeared at different locations (compare neutral trials response 
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timings for neutrally cued trials in figure 10 and figure 12). The three-way 

interaction was not significant F(1, 11) = 0.186, p = .675. 

 We also examined the effect of validity in trials in which the target and 

distractor appeared at the same location, with a two-way, repeated measures 

ANOVA. The factors were stimulus cued (target vs. distractor) and validity (valid 

vs. invalid). In the detection task, there was no effect of stimulus cued F(1, 11) = 

2.757, p = .125, but there was a significant effect of validity F(1, 11) = 14.163, p = 

.003, ηp2 = 0.56 with faster responses to valid than invalid targets. The interaction 

between cued stimulus and validity was not significant F(1, 11) = 0.008, p = .930. 

In the saccadic task, there was no significant effect of stimulus cued F(1, 11) = 

1.741, p = .214. However, there was an effect of validity F(1, 11) = 9.106, p = .012, 

ηp2 = 0.45, with faster responses to valid than invalid targets. The interaction 

between cued stimulus and validity was not significant F(1, 11) = 0.634, p = .443.  

 For the combined manual and saccadic data that was analysed using a 3 way 

repeated measures ANOVA, there was a significant main effect of task F(1, 11) = 

81.03, p < .001), ηp2 = 0.88, and validity F(1, 11) = 11.871, p < .005, ηp2 = 0.51. 

There was a marginally significant effect of cued stimulus F(1, 11) = 4.074, p = 

.069, with faster responses when the target was cued. The interaction of task and 

validity was marginally significant F(1, 11)= 3.808, p = .077, because validity 

effects were larger in the saccadic than the detection task. The interaction of task 

and stimulus cued F(1,11) = 0.432, p = .525, validity and stimulus cued F(1, 11) = 

0.33, p = .577, and response, stimulus cued and validity was not significant F(1, 11) 

= 0.472, p = .506. 
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Memory kernel analysis 

An unanticipated aspect is that the timings of the ocular responses are markedly 

longer than those customarily reported in similar tasks. For example, the latency of 

saccadic eye movements in choice reaction time tasks is generally around 180 ms 

(Carpenter and Williams, 1989), on the contrary saccadic latencies in our task were 

around 270 ms (see figure 11B), even when no distractor was present. Equally, we 

previously found much faster covert and overt orienting responses in experiments 

where targets were presented in most trials and in the absence of distractors, 

suggesting that response latencies in this task may be unusually slow. There are a 

number of explanations one could put forth.  

 Firstly, participants may have cautiously adopted a strict criterion to initiate a 

response, because of uncertainty regarding the presence and location of the target 

and distractor(s). Therefore, increased detection reaction times and saccadic 

latencies may simply reflect longer decision times. Alternatively, mixing trials in 

which the target was present and trials in which the target was absent, may have lead 
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Figure 12. Effects of cued 
stimulus, cued stimulus 
validity, and task on 
response latencies in trials 
where the target and 
distractor appear at the 
same location. Panels A 
and B show the group 
averaged response 
latencies, in the detection 
and saccadic task 
respectively. When the 
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appeared at the cued 
location, response latencies 
were briefer than when 
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Following cued indicating 
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response latencies when 
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of the mean. 
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to a decrease in response priming, previously shown to affect response timing in 

visual search tasks (Maljkovic, & Nakayama, 1994; McPeek, Maljkovic & 

Nakayama, 1999). We therefore examined sequential effects of target presence, 

target position, distractor presence, and distractor position on response latencies. 

Figure 13 shows the detection reaction time and saccadic latency difference between 

trials preceded by: A) trials containing the target vs. trials not containing the target; 

B) trials in which the target appeared at the same location vs. trials in which the 

target appeared at a different location; C) trials in which the distractor appeared vs 

trials in which it did not, all the trials containing a target; D) trials in which the 

distractor appeared at the same location or at a different location, all trials containing 

a target. The effects of sequential position of the preceding trial and task were 

assessed using a two-way ANOVA, the dependent variable was the reaction time 

difference between trials preceded by target present vs. target absent trials and so on. 

We first examined the effects of target presence in the preceding trials on the current 

trial response latency. There was a near significant effect of task F(1,11) = 4.322, p 

= .062, ηp2 = 0.28. There was a significant effect of time, F(9, 99) = 12.541, p < 

.001, ηp2 = 0.53, and a significant interaction of task by time F(9, 99) =11.400, p < 

.001, ηp2 = 0.51, suggesting that the effects of target presence vs. absence in the trial 

prior the current trial was different for detection reaction times and saccadic 

latencies. To examine more closely the effects of previous trials on the current nth 

trial, a single exponential function was fit to the detection reaction time and saccadic 

latency differences, starting from to the n-2 up to the n-10 trial. The bootstrapped 

group median time constant was 2.69 inter trial intervals (ITIs), for the detection 

reaction times, and 2.26 ITIs, for the saccadic latencies. The difference was not 

significant, t(11) =1.00, p = .34. The amplitude of the exponential was 36.78ms, for 

reaction times and 32.01ms for latencies. The difference was not significant, t(11) = 

0.93. p = .37. Overall the effect of previous trials’ target presence on reaction times 

and latencies was similar, suggesting that the difference between the two was short 

lived. 

 An important issue is whether the priming effects of target presence reflect 

facilitation of target pop-out (Maljkovic & Nakayama, 1994). If so, priming should 

be greatly diminished when the target appears alone. To examine this we split the 

data in distractor present and distractor absent trials and return the ANOVA adding 

distractor presence as a factor. There was no main effect of distractor presence 

F(1, 11) = 0.463, p = .51. The interaction of distractor presence and time F(9, 99) 
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= 1.178, p = .318, distractor presence and task F(1, 11) = 2.036, p = .181) and the 

three-way interaction F(9, 99) = 0.424, p = .920, were not significant.  

 Distractor priming effects are illustrated in figure 13B, for trials in which the 

distractor was present. There was no main effect of task F(1, 11) = 2.147, p = .171) 

or time F(9, 99) = 1.069, p = .392). The interaction of task by time was also not 

significant F(9, 99) = 0.939, p = .495), suggesting that the presence or absence of 

distractors in previous trials did not affect distractor effects in the current trial. 

 The effects of target position are shown in Figure 13C. Priming effects were 

smaller than those of target presence, suggesting that priming by target presence did 

not simply reflect the accumulation of target related spatial information. Task had 

no significant effect on target position priming F(1, 11) = 2.874, p = .118, but there 

was a significant effect of time F(9, 99) = 2.593, p < .010, ηp2 = .19, suggesting 

that when the target location in the preceding trials was repeated in the current one, 

detection reaction times and saccadic latencies were speeded up. The interaction of 

task by time was also not significant F(9, 99) = 0 .742, p < .670. The exponential 

fits indicated that the time constant was 13.2 ITIs for detection reaction times and 

2.28 ITIs for the saccadic latencies. The difference was not significant, t(11) = 1.04, 

p = .32. The amplitude was 1.40ms for the detection reaction times and 18.39 ms 

for the saccadic latencies. The difference was not significant, t(11) = -1.08, p = .32.  

 Finally, we examined the priming effects of repeated distractor position, 

shown in figure 13D. The main effect of task was significant F(1, 11) = 4.987. p = 

.047, ηp2 = 0.31, priming being larger in the saccadic than detection task. The main 

effect of time was also significant F(9, 99) = 8.955, p < .001, ηp2 = 0.44. The 

interaction of response and time was significant F(9, 99) = 8.695, p < .001, ηp2 = 

0.44, indicating that the priming effects for the trial immediately preceding the 

current one were smaller in the detection than saccadic task. The exponential fits 

indicated that the time constant was 3.22 ITIs for the detection reaction times and 

3.07 ITIs for the saccadic latencies. The difference was not significant, t(11) = 0.75, 

p = .47. The amplitude was 7.2ms for the detection reaction times and 7.4ms for 

saccadic latencies. The difference was not significant, t(11) = -1.17, p = .12, 
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Discussion 

Endogenous distractor cueing does not result in spatial inhibition 

We examined how covert and overt orienting responses, evoked by an eccentric 

visual target, are influenced by endogenous cues, providing probabilistic 

information about the likely location of either the target or a task-irrelevant 

distractor. We found that when the distractor location was cued and the distractor 

appeared at the cued location, its interference with the target response was 

diminished compared to when the distractor appeared elsewhere, suggesting that 

participants used advance information about the distractor location to diminish 
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Figure 13. Sequential effects of target presence and location, distractor presence and location, by task on 
response latencies. Panel A shows the effects of target presence in trials preceding by one, two etc. the 
current one, in the detection and saccadic task respectively. The effects of target presence were very similar 
in the detection and saccade task, except fro the trial preceding the current one, where no priming effect was 
found in the detection task. In panel B the effects of distractor presence are shown. The effect of repeating 
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distractor interference. However, when the target occupied the location where the 

distractor had been cued to appear, responses were also faster than when the target 

appeared elsewhere, suggesting that processing of stimuli at the cued location was 

not suppressed. If this interpretation of the findings is correct, then diminished 

distractor interference by itself does not imply that distractor processing is 

suppressed, instead diminished distractor interference may simply reflect more 

efficient processing of the stimulus at the cued location. This conclusion may also 

provide a plausible explanation for the puzzling finding that distractor cueing leads 

to positive preparatory BOLD signals in retinotopic regions, similar to those evoked 

by target cues (Ruff & Driver, 2006; Serences et al., 2004).  

 We did find that cueing the target led to faster responses than cueing the 

distractor, and that when the distractor and the target appeared at the same location 

this effect was diminished. One explanation for this finding may be that observers 

started their search at the location containing the stimuli which was cued on that 

trial (e.g. the cue was informative for target locations), therefore leading to faster 

responses when the target, rather than the distractor, was cued. However, 

endogenous orienting to valid targets was not highly selective for the features that 

distinguished target and distractor, since distractors slowed responses. This clearly 

stands in contrast with the remarkable selectivity observed in invalidly cued trials 

discussed below.  

 

Violations of spatial expectations diminish distractor interference  

When the target location was invalidly cued, detection reaction times and saccadic 

latencies were prolonged, compared to when the target was validly cued, a finding 

widely replicated since its initial demonstration (Posner, 1980). More interestingly, 

the presence of a distractor did not prolong detection reaction times and saccadic 

latencies further when the target location was invalidly cued, even though the 

presence of a distractor delayed the response when a valid target appeared at the 

cued location, or when the distractor location was cued, either validly or invalidly. 

The obvious inference from these data is that a highly selective feature search (Folk, 

Remington & Johnston, 1992; Lamy & Egeth, 2003; Lamy, Carmel, Egeth & Leber, 

2006) is initiated following reorienting of attention to an invalid target.  

Previous neuroimaging findings provide a simple, if mechanistic 

interpretation of this result. During search through visual stimuli presented in a 

rapid sequence, cortical areas in the Temporal-Parietal junction (TPJ) show 
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sustained decrements in baseline BOLD signals (Doricchi et al, 2010; Shulman et 

al., 2003, 2007). However, following target detection, TPJ shows prominent 

positive responses (Corbetta & Shulman, 2002), that are greater for invalid than 

valid targets, at least in the non-dominant hemisphere (Doricchi et al, 2010). 

Furthermore, the amplitude of the search related deactivation in TPJ predicts 

whether the observer will correctly detect the target in demanding tasks (Shulman et 

al., 2007), suggesting that signal decrements improve the efficiency of visual search. 

Therefore, brain regions involved in reorienting to invalid targets (Corbetta & 

Shulman, 2002) and the evaluation of target related properties (Hayn and Marois, 

2014), are prominently deactivated during the search for the target, presumably 

because distractor related signals, which would otherwise activate them, are filtered 

out.  

A prediction, based on the imaging and behavioural data, can then be 

formulated: reorienting does not only initiate a transient attentional shifts, but also a 

strategy change, which enforces a highly selective feature based search. This 

strategy change is prompted by the appearance of the search stimulus and is 

maintained by a specific attentional set. This interpretation is in keeping with the 

fact that reorienting to an invalid target did result in greatly diminished distractor 

interference, when the target location was cued, but not when the distractor location 

was cued. Presumably, when the distractor location was cued, the participants 

began searching for the non-target feature and therefore could initiate the search for 

the target only after the one for the distractor had been completed.  

Previous behavioural data indicated that parallel search can either be driven 

by target saliency, in a purely bottom up fashion, or by target defining features, in a 

top down fashion (Bacon & Egeth, 1994). The fact that distractors slower response 

timing suggest that feature guided mechanisms were not recruited by default in our 

paradigm, for reasons that are not further explored here. However, previous 

evidence suggests that when participants can select the target by either saliency, 

such as novel onset, or on the basis of a specific target feature, e.g. the stimulus 

colour, they prefer the former strategy, and adopt the latter only when inappropriate 

on most trials (Lamy, & Egeth, 2003; Lamy, Carmel, Egeth, & Leber, 2006). Since 

the target appeared by itself in half of the target present trial, one may speculate that 

a saliency driven search may have been adopted, leading new onset distractors, 

presented simultaneously with the target, to capture attention automatically. 

Nevertheless, our results suggest that the search becomes highly selective after the 
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target appears at an unexpected location. Only then distractors, which do not share 

the target colour, are efficiently prevented from capturing attention and therefore do 

not interfere with reorienting to the target.  

Alternative interpretations of this finding are less likely. For example, it has 

been suggested that distractor suppression is engaged only when the sensory load 

and the attentional demands of the task are increased (Lavie, Hirst, de Fockert, & 

Viding, 2004). On invalid trials, where the task is made more difficult by a breech 

of spatial expectations, improved distractor suppression could then be the 

consequence of the attentional demands placed by reorienting to an invalid target. 

By itself, this account does not explain why the same degree of distractor 

suppression was not found when the distractor location was cued, despite response 

latencies being just as long as when the target location was cued, or longer (Lahav, 

Makovski & Tsal, 2012; Lahav & Tsal, 2013; Lavie, Hirst, de Fockert, & Viding, 

2004; Tsal & Makovski, 2006). Overall, our findings are consistent with the idea 

that in this task distractor suppression cannot be initiated purely endogenously, but 

requires an exogenous event, such as the appearance of an invalidly cued target 

(Corbetta & Shulman, 2002). This conclusion is in keeping with a number of 

previous studies, which failed to document evidence for distractor suppression, 

under conditions that require the inhibitory set to be adjusted trial by trial (e.g. 

Lahav & Tsal, 2013). 

 

Covert and overt orienting show similar cueing effects 

Overall, detection reaction times were longer than saccadic latencies, reflecting 

biomechanical differences between the motor plants used to report target a detection 

and a saccade. Nevertheless, the effects of endogenous cues and distractors on 

detection reaction times and saccadic latencies were remarkably similar. The 

finding that endogenous and exogenous manipulations of attention have similar 

effects on detection and saccadic latencies has a couple of implications. First, it 

suggests that both target detection and target evoked saccades require the 

preliminary deployment of focal attention to the target location, contrary to the 

suggestion that only the latter does (Bravo & Nakayama, 1992; Maljkovic & 

Nakayama, 1994; McPeek, Maljkovic & Nakayama, 1999), but in keeping with 

earlier conceptualizations of the detection task (e.g. Posner, 1980). Moreover, it is 

consistent with the idea that covert attentional shifts and overt saccadic eye 

movements largely share the same control processes (Rizzolatti, Riggio, Dascola, & 
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Umiltà, 1987; Shepherd, Findlay, & Hockey, 1986; Sheliga, Riggio, & Rizzolatti, 

1995).  

 Our finding that saccades are affected by distractors does depart from some 

earlier observations. Under conditions, which minimize observers’ spatial and 

temporal uncertainty regarding targets and distractors, the appearance of a distractor 

modifies the distribution of saccadic latencies with a specific spatiotemporal profile 

(Buonocore & McIntosh, 2013). When the target and the distractor appear in close 

proximity, saccadic latencies are decreased and saccades land at locations 

intermediate between target and distractor, suggesting additive interactions between 

target and distractor evoked signals (Findlay, 1983, 1983). On the other hand, when 

the target and the distractor appear at locations separated, in the radial direction, by 

more than 20°, the distribution of saccadic latencies shows a dip at around 60-

100ms following the distractor’s onset (Ottes, Van Gisbergen & Eggermont, 1984; 

Walker, Deubel, Schneider & Findlay, 1997; Walker, Kentridge & Findlay, 1995), 

with a prolongation of the median saccadic latency, suggesting inhibitory 

interactions between distractor and target evoked signals. Our data indicate that the 

appearance of the distractor and target at the same location did not result in saccadic 

latencies briefer than those evoked when target and distractor appeared at different 

locations. Instead, saccadic latencies to spatially contiguous stimuli were longer 

than those to targets that were spatially separated from the distractor (compare 

figure 2B and figure 4B). This lack of averaging effects may reflect competition 

between sensory, attentional (Desimone & Duncan, 1995) or response related 

signals when target and distractor appear at the same location. Additionally, 

distractors delayed saccadic latencies, even though their onset preceded the median 

responses by more than 200ms, suggesting that distractors influence saccadic 

latencies over more extensive time windows than those previously associated with 

saccadic inhibition (Reingold, & Stampe, 2002). This prolonged inhibition of 

saccadic latencies has several potential explanations. For example, the overall 

slowing in saccadic latencies observed in our paradigm may have also delayed 

distractors’ interference on the selection of the target and responses.  

  

Cumulative effects of orienting and distractors  

We found that response latencies, even when the target appeared in isolation, were 

remarkably increased compared to values reported in previous studies (e.g. Findlay, 

1983; Carpenter & Williams, 1995). A number of possible reasons for this 
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departure could be hypothesised. Our task differed from previous, because the 

observer’s uncertainty, regarding the presence, location and timing of the target and 

distractor, was maximised. Therefore, observers could not use ad-hoc strategies and 

had to rely on general purpose, possibly inefficient, search mechanisms. 

Alternatively, it is possible that the absence of consistent repetitions of stimulus 

configuration in subsequent trials, may have lead to a loss of priming effects on the 

latency of covert and overt orienting responses (Feactau & Munoz, 2002). Indeed, 

McPeek, Maljkovic, and Nakayama (1999) examined saccadic latencies to a target 

displayed among distractors. The target’s colour was different from the distractor’s, 

thus providing the opportunity for both a saliency and feature driven search. When 

the colour of the target was the same as in previous trials, observers showed faster 

saccadic latencies than when the target’s colour switched from trial to trial. 

Moreover, the repetition of the target feature had a cumulative effect, which 

extended over about seven trials, suggesting that a central integrator, with a long 

time constant, accumulated information about the target feature. These sequential 

effects appear to be automatic and impermeable to voluntary influences (Maljkovic 

& Nakayama, 1996) and have been interpreted as reflecting the facilitation of 

bottom-up, driven target saliency (Maljkovic & Nakayama, 1994, 1996), which 

guide attentional selection.  

 The interpretation that repetition priming improves target pop-out has been 

disputed (Lamy, Carmel, Egeth, & Leber, 2006). We examined the effects of target 

and distractor presence and location on detection reaction times and saccadic 

latencies. There were large effects of target presence on both detection and saccadic 

responses, with faster responses when previous trials contained a target compared to 

when they did not. However, these data also indicate that these priming arise in 

context, which does not match the experimental conditions thought essential by the 

investigators who made those seminal observations. First, the detection task used 

here simply required observers to establish whether a highly discriminable target 

was present, contrary to Maljkovic and Nakayama (1996, 1998 and 2000) who 

asked their highly trained observers to perform a fine shape discrimination task to 

ensure that they would attend the target. We found large effects of target repetition, 

on both detection and saccadic latencies. If this effect arose because of facilitation 

of target selection, then one may have predicted that saccades would have shown it, 

since they require the deployment of focal attention, while detection should have 

not, contrary to the empirical evidence. Therefore, either focal attention was 
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deployed to the target, both in the detection and saccadic tasks, as the similarity of 

the effects of endogenous attention and distractor capture on the detection and 

saccadic latencies already indicates, or priming indexes facilitation of a process 

other than target saliency. 

 Maljcovich and Nakayama (1994, 1996) argued that priming effects mainly 

benefit the ability to select salient targets among distractors, where performance is 

determined by how quickly the observer can establish which feature identifies the 

target, having found that increasing the number of distractors, which improves the 

target saliency, when homogenous distractors are used, decreased the effects of 

previous trials priming. These authors concluded that this interaction provided 

evidence that previous trial priming and distractor density affect the same low-level 

processes, which give rise to pop out effects. However, priming effects were 

observed in our task, regardless of whether the target was presented in isolation or 

accompanied by a distractor. This finding suggests that priming facilitates target 

selection not by increasing somehow the saliency of the target, but by speeding up 

selection per se. The idea that sequential effects reflect a facilitation of premotor, 

selection mechanisms, may also account for the finding that the priming effects of 

the n-1 trial were much smaller in the detection than the saccadic task (see figure 

13A). Since priming effects in the two tasks were otherwise undistinguishable, the 

finding suggests a short lived, inhibitory signal is generated in the detection task 

during the response to a target. This inhibitory signal would then end up delaying 

the response to a target in the following trial and may be related to the need to 

withhold an overt orienting response in the detection, but not in the saccadic task 

(Tassinari, Aglioti, Chelazzi, Marzi, & Berlucchi, 1987).  

 

Distractor priming 

Not only the target, but also distractors primed subsequent trials. In the presence of 

a distractor, covert and overt orienting responses were faster when distractors had 

appeared at the same location as in previous trials. The priming effects of distractor 

on response latencies were smaller than those associated with target presence and 

were spatially specific, since they were not observed when distractors occupied 

different locations in the current and previous trials (see figure 13B). Maljkovic and 

Nakayama (1996) showed that when targets appeared at locations previously 

occupied by a distractor, response latencies were increased, suggesting that 

processing at locations of previous distractors is suppressed. Interestingly, these 
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authors also found that the effects of feature and location priming were 

independent, suggesting independent featural and spatial implicit memory 

mechanisms. Our results confirm the presence of priming effects that are both 

spatially and not spatially specific, although the former are much smaller. 

An interesting issue is the neural site where information about the history of 

previous trials is maintained, which is necessary to give rise to the priming effects 

we observed. The duration of the cumulative effects, observed up to eight trials 

prior, suggests that the mechanism responsible for storing information has a long 

time constant, in the range of 20 to 30 s at least (Maljkovich & Nakayama, 2000). 

Neural integrators with the required time constants are known to be located in the 

brainstem and provide a tonic signal, used to maintain steady fixation of eccentric 

targets following a saccade (Leigh & Zee, 1991). These mechanisms belong to 

circuits that are also involved in both covert and overt orienting (Hartwich-Young, 

Nelson, & Sparks, 1990; Krauzlis, Lovejoy, & Zénon, 2013). Consequently it is not 

unreasonable to put forth the speculative, but tantalizing proposal that the same 

neural mechanisms involved in the integration of saccadic eye velocity are also 

used to accumulate signals about target presence, features and position over 

subsequent trial. 
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Chapter four 

 

Endogenous orienting is unimpaired in a patient with abnormal saccades following a 

thalamic stroke 
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Abstract 

Patients with low level, oculomotor impairments can show significant attentional 

deficits. These results have suggested that any impairment in overt orienting can be 

followed by a similar impairment in covert orienting. We examined a middle aged 

stroke patient with a lesion to the medial-dorsal thalamus, who had recently presented 

with oscillopsia and objective oculomotor deficits, worse for vertical eye movements. 

The patient showed impaired saccadic kinematics whilst performing a visually guided 

saccadic task. In particular to targets in the upper and lower visual field. However, 

saccadic latency was not impaired in comparison to the control group. In a detection 

task, where highly visible visual targets were preceded by partially valid endogenous 

cues, the patient exhibited a validity effect not significantly different from controls, 

whether the targets were horizontally or vertically displaced. Overall these findings are 

consistent with the view that deficits of overt orienting can present without additional 

impairments in covert orienting. Implying that processes shared between covert and 

overt orienting may not include those specifically involved in determining the 

kinematics of visually evoked saccade and which arise in structures where the 

oculomotor signal is parcellated into horizontal and vertical components. 
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The relationship between eye movements and spatial attention has been the focus of 

much investigation. A number of studies have demonstrated that shifts of attention and 

gaze are tightly coupled (Craighero & Rizzolatti, 2005; Rizzolatti & Craighero, 1998; 

Rizzolatti, Riggio, Dascola, & Umiltá, 1987). One influential account of this finding is 

premotor theory, which claims that shifts of spatial attention are dependent on 

activation of oculomotor circuitry (Rizzolatti et al., 1987). 

Evidence supporting the idea that eye movements and attention arise from the 

same neural circuits comes from a variety of behavioural experiments. One of the most 

convincing arguments in support of premotor theory is the meridian effect (Rizzolatti et 

al., 1987. This was first demonstrated in a seminal study by Rizzolatti and colleagues 

(1987), where participants were required to manually respond to targets where the likely 

location was indicated using a partially valid, symbolic cue. The results showed that 

participants were slower to respond with a button press when the imperative stimuli 

appears in the hemifield opposite to where attention has been deployed by the cue. The 

authors concluded that this finding is not supportive of the position that attention arises 

from an independent system, as there is no reason why an anatomical landmark such as 

hemifield should affect a supramodel cognitive process. Instead, the authors claimed 

that a delay could be accounted for in a scenario where in order where in order for 

attention to be shifted, the system has to program an eye movement to the required 

location, as this would account for the effect of anatomical landmarks on orienting 

times. Consequently, if the target fails to appear in the expected location, then an eye 

movement must be reprogrammed to the new location. Such a scenario would account 

for the additional cost of invalidly cueing across hemifields, as a new saccade must be 

programmed. This and a number of subsequent studies (e.g. Craighero & Rizzolatti, 

2005; Sheliga, Riggio, & Rizzolatti, 1994) were used to make the claim that covert 

shifts of attention, where observers adjust attention without shifting gaze, are dependent 

on the programming (but not the execution) of an overt shift of attention, namely an eye 

movement. 

 The idea that attention and eye movements are coupled in this way has been 

extremely influential, leading to a large number of behavioural and neuropsychological 

attempts to delineate both processes. For example, several studies have demonstrated 

that perception is enhanced at, and around, the location of a planned saccade (Deubel & 

Schneider, 1996; Schneider & Deubel, 1995) with perceptual facilitation maintained at 

that location up until the eye movement is initiated (Jonikaitis, Papper, & Deubel, 2011). 

The general interpretation of this being that enhanced perception means that attention 
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cannot be deviated away from the planned location for a saccade, without a new saccade 

being programed.  

 Further support for the close coupling is provided from studies which show eye 

movements and attention share a common, mechanically defined boundary, in that 

attention cannot be optimally deployed to spatial locations which cannot be foveated 

through an eye movement. For example, Craighero, Nascimben, and Fadiga (2004) 

restrained participants in a headrest, and then used a central cue to indicate the likely 

location of an upcoming target which would appear in the peripheral vision, but too far 

for it be directly foveated. Participants showed a reduced validity effect compared to 

targets which could be foveated, which the authors claimed is evidence than attention 

and eye movements share similar networks. Other support for this mechanically 

dependent limitation have been reported in ophthalmic patients. For example, in eight 

patients with VI cranial nerve palsy affecting one eye, Craighero, Carta, and Fadiga 

(2001) reported that, when using a central cue in the paretic eye, patients failed to show 

a cost on invalid cues, suggesting that patients had difficulty covertly orienting attention 

to locations where they also had disability executing a saccade.  

 A number of other studies have also reported attentional impairments in the 

presence of oculomotor disability. For example, patients with progressive supranculear 

palsy (PSP) a neurodegenerative disorder affecting nuclei in subcortical structures of the 

brain stem and basal ganglia, often present with opthalmoplegia affecting vertical eye 

movements more than horizontal movements. A previous investigation of PSP patients 

(Rafal et al., 1988) reported PSP patient showed an impaired validity effect, when 

compared to Parkinsonian controls, suggesting that covert and overt orienting signals 

also converge within deep brain structures. Whilst the implication of these studies 

suggest that covert and overt orienting appear to share a common, biomechanically 

defined boundary, others have failed to demonstrate this. Khan and collegues (2009) 

reported in a single patient optic ataxia after suffering unilateral lesion in the parietal 

cortex dissociation of saccades and attention. Specifically, the patient was unable to 

perform a letter discrimination task in the contralateral field, despite being able to 

execute a saccade to that location, suggesting that attentional orienting was preserved in 

the presence of oculomotor impairment. 

 A number of neuroimaging studies have also demonstrated that signals relating to 

covert and overt orienting travel along common neural pathways. For example, Corbetta 

et al., (1998) and Nobre et al., (2000) were unable to dissociate eye movements and 

attention at the cortical level when comparing preparatory activity related to attentional 
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shifts and eye movements. However, whilst imaging signals appear to show virtual 

overlap between signals associated with covert and overt orienting, single unit recording 

have demonstrated some degree of dissociation between covert and overt orienting. For 

example, using a pro and anti-saccade task, Sato and Schall (2003) identified two 

distinct neuronal populations, which were activated at different epochs whilst the 

saccade was executed; one population appeared to be engaged by the appearance of a 

singleton and the other by the need to prepare a saccade. Other studies have also have 

also reported differences within the FEF among neurons coding for covert vs overt 

orienting responses (Cohen, Pouget, & Heitz, 2009; Juan et al., 2008).  

 In the literature it is clear that attention and the oculomotor system are tightly 

linked, behaviourally and anatomically, although there are instances where both 

processes can be dissociated. Therefore, here we investigate in a patient who reported a 

problem executing vertical, but not horizontal, eye movements after suffering a thalamic 

stroke, to investigate if the structures shared between covert and overt orienting also 

overlap at the location where horizontal and vertical components of eye movements are 

parcellated. 

 

Methods 

At the time of testing, the patient was a right handed, 47 year old male who had suffered 

a cryptogenic, thalamic stroke two weeks prior to commencing testing. The patient had 

taken part in an endurance-sporting event, following which he felt dizzy. The next day 

he noticed that he was having vertical diplopia and decided to seek medical help. On 

presenting to the Emergency Department of the local hospital, neurological examination 

revealed normal mental status with no impairment in orientation or memory. Magnetic 

resonance imaging revealed a focal lesion in right medial-dorsal thalamus, confined to 

the reticular thalamus nucleus (TRN) as shown in figure 14. 
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Controls 

We recruited nine age (mean age 46; range 40:53) and gender matched, right handed 

controls. Controls were recruited from the Bangor University community participant 

panel. The experimental protocols had been approved by the Ethics Committee at 

Bangor University, School of Psychology. Participants gave written consent prior to 

commencing any experimental procedure and received monetary compensation for their 

time. 

 

Apparatus and procedure 

All testing took place in a dark room. Head position was restrained by a chin and 

forehead rest. Stimuli were generated and displayed using a custom coded MATLAB™  

script and a set of procedures which allow precise timing of the display and 

synchronization with the eye-tracker (Brainard, 1997; Cornelissen et al., 2002; Pelli, 

1997). Visual stimuli were presented at a distance of 57 cm from the observer, on a 19” 

Viewsonic G90fB Graphics Series Monitor, set at a 1024 x 768 resolution and a 60 Hz 

refresh rate. Eye movements were recorded using an infrared camera based Eyelink CL 

1000 system (SR Research, Mississauga, Canada), set at a 1000 Hz sampling rate. 

Calibration took place at the start of each block, using a 3 point calibration and 

Figure 14 Patient’s T1 weighted axial MRI scan 
showing the lesion in the right, medial-dorsal 
thalamus. 



	

	
	

92	

validation procedure. Calibration was considered successful when the error was < 1° of 

visual angle. 

In experiment 1 (figure 15) each trial began when the central fixation point 

(0.2°) turned from black to red (0.8°) for 400ms. The fixation point was visible 

throughout the trial. This was followed by a non-aging foreperiod lasting between 600 

and 1200 ms. Its duration, namely the stimulus onset asynchrony (SOA) was obtained 

by sampling the following exponential distribution with replacement:  

  

where τ = 0.2 s.  

 
 

A bright, highly salient circular target appeared on 95% of trials. The target had a 

Gaussian luminance profile with a standard deviation of 0.25°, and appeared at an 

eccentricity of 7° from a central fixation square, along either the vertical or horizontal 

meridian. The background luminance was 12.75 cd/m2 and the peak target luminance 

was 62.4 cd/m2. Participants were required to execute a saccade whenever the target 

appeared on the screen. The location where the target could appear was equiprobable. 

The target remained visible for 900ms. An auditory tone indicated the end of the trial 

and prompted the participant to press the spacebar to initiate a new trial, and 

simultaneously performing a drift correct.  

p SOA( ) = e−
SOA−0.6s

τ  iff 0.6s<SOA<1.2s
                             else
p SOA( ) = 0

Figure	15.	Saccadic	
localisation	paradigm.	
Trial	started	with	a	drift	
correct,	followed	by	an	
enlargement	of	the	
central	fixation	point	for	
400ms.	Finally,	after	a	
non-aging	foreperiod	
between	600	–	1200ms,	
the	target	was	
presented	for	900ms.	
Participants	were	
instructed	to	make	
timely	and	accurate	
saccades	to	the	stimuli.	
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In experiment 2 (figure 16), all parameters were the same as in experiment 1, 

except at the start of each trial, there was a white, 0.8° long line abutting the fixation 

point (0.2°) which was removed after 400ms. The line functioned as a probabilistic cue 

which accurately indicated the target location 75% of the time.  

 

 

 
 

 

Eye movement and response analysis. 

Data for both tasks was collected over two sessions for all participants. In both 

experiments, latencies for each participant and condition were calculated by averaging 

10,000 bootstrapped estimates of the median latency. In the first experiment where 

participants were required to saccade to a highly visible target, we collected a total of 

450 trials over two sessions. Saccadic latency was defined as the period between target 

onset and initiation of the saccade and only the first saccade made during a trial was 

analysed. Saccadic latencies briefer than 80ms and longer 900ms, or 3.5 times away 

from individual participant means were excluded from further analysis. Correct 

responses were defined as saccades starting within 2° of the central fixation point. 

Visual traces were inspected and trials were only included if the saccade was over 1° in 

length and executed in the general direction of the target. A flexible criterion was 

chosen in light of the patient’s reported difficulty making eye movements. Overall in 

valid

invalid

drift correct/fixation

cue

non-aging foreperiod

tim
e

400 ms

600 ms - 1200 ms

900 ms
900 ms target

Figure 16. Central cueing 
paradigm. Trial started with 
a drift correct, following by 
the presentation of the cue 
for 400ms. Then followed a 
non-aging foreperiod 
between 600 – 1200ms, 
following by the 
presentation of a target for 
900ms. Participants were 
instructed to make a button 
press quickly and 
accurately whilst 
maintaining fixation on the 
centre point. 
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the first experiment, 95% were used for the patient and 93% trials were used for the 

control group. 

In the second experiment, participants were required to make a manual response 

to the target whilst maintaining fixation on the central point. Reaction times shorter than 

150 ms or greater than 900 ms, or 3.5 times away from individual participant means 

were excluded from further analysis. Finally, oculomotor traces for each individual trial 

were examined, and trials containing artefacts such as blinks or saccadic responses to 

the target were discarded. Overall, 93% of the patients trials and 89% of the control 

groups trials were used for final analysis.   

 

Results 

Experiment 1 

To examine saccadic performance we had the participants execute simple reflexive 

saccades to a highly visible luminance target that could appear in one of four locations, 

either left, right, above or below an the central fixation square, at an eccentricity of 7°. 

The target was presented at the four locations in a randomized order. The saccadic 

latency, amplitude, peak velocity duration were estimated trial by trial. Saccadic latency 

is the time between the onset of the visual target and the onset of the visually guided 

saccade.  

The median saccadic latencies to targets appearing in each of the four locations 

for the patient’s responses and those of the controls are presented in figure 17. As 

evident in the graph, the patient’s saccadic latencies were well within the 95% 

confidence intervals of the control group, suggesting that the time taken by the patient 

to determine the location of the target and the saccades is not different from that of the 

controls.  
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 location

patient Figure 17. Saccadic latencies to targets located in 
the four quadrants. The bar graphs show the 
latencies of the control group with 95% 
confidence intervals. The red stars represent the 
patient’s saccadic latencies. Notably the graph 
shows that the patient’s latencies are within the 
95% confidence intervals plotted by the error 
bars, and accordingly are not significantly 
different from the control group. 
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Looking at the graphed kinematics (figure 18A to 18C), it is clear that the patient 

showed abnormal saccadic kinematics compared to the controls. This was the case when 

the target appeared in all four locations. The patient’s saccadic amplitude falls beyond 

the 95% confidence intervals of the control group (figure 18C), to all target locations.  

The largest departure from the performance observed in the control group was 

found when targets appeared in the upper and the lower visual field. The duration of 

saccades to targets appearing in the upper and lower visual field all falls outside the 

control group 95% confidence intervals. Saccades to targets appearing in the upper 

visual field have a shorter duration than saccades to targets appearing in the lower 

visual field. The peak velocity for saccades to targets in the upper and lower visual field 

was also below the 95% confidence intervals of the control group. Interestingly, the 

velocity for saccades executed to targets appearing in the left visual field are above the 

95% confidence intervals of the control group, suggesting faster ballistic movements to 

targets at that location. Overall the results from this task suggest that the latencies of 

Figure 18. Bar graphs show in 
A. saccadic duration, in B. 
saccadic velocity, in C. 
saccadic amplitude. The bar 
graphs represent the control 
groups averaged median latency 
with 95% confidence intervals. 
The red star plots the patient’s 
data. As can be seen from the 
graphs, there is general 
widespread disruption of the 
patients saccadic kinematics to 
all locations. Particularly 
affected are responses to targets 
appearing in the upper and 
lower locations.  
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visually evoked saccades are not specifically disrupted in the patient. Nevertheless, the 

patient shows a slowing and hypometric saccades especially to targets placed above and 

below fixation. 

Discussion 

 

The impairment of oculmotor movement reported in the first experiment is clear 

evidence of oculomotor disruption. Whilst the overall reduced amplitude suggests the 

dysfunction is widespread to all locations within the visual field, it appears that the 

disruption is most severe in the upper and then lower visual field. Disruption of these 

parameters can also indicate fatigue (Miles, 1929), however here we observed location 

specific effects. Therefore it is unlikely fatigue, if a contributing factor, is the sole factor, 

and the results reflect an impairment of oculomotility.  

 However, it is of note that saccadic latencies were unimpaired. The time taken to 

program a saccade in response to the onset of a target, the saccadic latency, is often 

used as a proxy of spatial decision making (e.g. Carpenter & Williams, 1995; Glimcher, 

2003), although it also includes an element of attentional orienting (Walker et al., 1995). 

The normal results of the patient would suggest that his ability to program a saccade is 

not impaired to the point that performance is noticeably different from controls. 

Consequently, we may not expect to see an effect of this lesion on attentional orienting. 

 

Experiment 2 

In experiment 1, we found that the patient’s ability to make a saccade to a highly visible 

target was impaired when compared to age-matched controls. We next assessed his 

performance using a simple cueing paradigm using a centrally presented cue (see figure 

19). In this task, the participants were required to report as quickly as possible the 

appearance of a highly visible target. The target could appear in the same four locations 

used in the previous experiment. The trial structure was as follows. At the start of each 

trial participants were presented with central fixation point, and a central cue abutting 

the fixation point would appear for 400ms. The cue correctly indicated the location of 

the target 75% of the time. We expected that if the patient had an impairment with 

attentional orienting, this would be demonstrated in the way of an impaired validity 

effect when compared with controls. 

 The data for the cueing data is presented in figure 19A-C. The patient’s reaction 

times for valid (figure 19A) and invalidly cued trials (figure 19B) are within the 95% 

confidence intervals of the control group.  
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 We also calculated validity effects for each of the four locations (figure 19C) by 

subtracting valid response reaction times from invalid response reaction times to 

provide a measure of spatial orienting. As can be seen by the figure, the patient’s 

performance did not differ from the control group at any of the locations. To further 

investigate if there was a specific effect to horizontal and vertical orienting, we 

calculated a validity effect specifically those locations. The patient’s validity effect for 

the horizontal component (median = 22.78ms) was within the 95% confidence 

boundaries of the control group (group averaged medians (29.47ms, 95% CI: 13.05; 

48.20 ms). The patient’s validity effect for the vertical component (median = 21.05ms) 

was also within the confidence boundaries of the control group (group averaged 

medians = 21.05ms, 95% CI: 6.77ms; 27.03ms). Overall these results indicate the 

patients ability to orientate attention as directed through a central cue was not 

significantly different compared to the control group. 
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Figure 19. Detection reaction times in the covert orienting, central cueing task. The bar graphs show the averaged 
median reaction times of the control group with 95% confidence intervals. The red star plots the patient’s median 
reaction times. A. Shows invalid reaction times. B. Shows valid reaction times. C. Shows the validity effect which 
was calculated by subtracting valid from invalid reaction times. As is clearly evidence from the figures, the patient’s 
performance is within the 95% confidence intervals of the control group, indicating that attentional orienting was 
not significantly impaired in the patient. Error bars represent 95% confidence intervals. 
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The central cueing paradigm used in experiment 2 is a widely used paradigm for 

investigating attentional orienting (Posner, 1980). The data suggest that the patient 

reaction times in valid and invalid trials, and the magnitude of the validity effect, were 

not different from those observed in the control group. Therefore, the results presented 

here suggests that in this instance attentional orienting was not impaired. The 

implications of this will be discussed in the general discussion. 

 

General discussion 

We assessed the relation between covert and overt orienting in a patient with a focal 

lesion in the medial-dorsal thalamus. When the patient had to generate visually evoked 

saccades to targets appearing unpredictably at one of four cardinal positions, he 

demonstrated kinematic abnormalities which generalized across all gaze directions. 

Furthermore, these were most noticeable when targets appeared in the upper and lower 

visual field. On the other hand, saccadic latencies were not obviously slower in the 

patient compared to age matched healthy controls. In a separate task, we assessed the 

effects of partially valid endogenous cues on detection reaction times, where the likely 

target location was indicated by a central arrow cue. The patient showed no obvious 

decrement in reaction time speed whether orienting to a valid or reorienting to an 

invalidly cued target, suggesting that disengaging and moving attention covertly was 

not affected by his neurological deficits.  

 These results are at odds with previously published data, which indicate that 

congenital and acquired oculomotor impairments result in parallel decrements of 

exogenously driven covert orienting. These previous finding were interpreted as 

providing support for the premotor theory of attention, namely the idea that attentional 

orienting requires the same neural machinery that is recruited when moving one’s eyes 

(Rizzolatti et al., 1987). If so, then our result would be inconsistent with that theory. On 

the other hand an alternative interpretation of the premotor theory is that saccadic 

programming and saccadic execution represent separate phases of the processes 

involved in overt orienting response (Smith & Schenk, 2012). According to this view, 

despite the oculomotor impairments, the lack of diminished attentional orienting in the 

presence of normal saccadic latencies is not all that surprising. 

 However, whilst this account is consistent with our findings, several studies have 

demonstrated impaired covert orienting in individuals with oculomotor impairments due 

to peripheral abnormalities of the oculomotor plant. Craighero et al.,(2001) found that 

validity effects following central cues were diminished in patients with peripheral sixth 
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nerve palsy when the cued location laid in the field of action of the paralyzed lateral 

rectus muscle. Similarly Gabay, Henik, and Gradstein (2010) demonstrated in three 

patients with Duane Retraction Syndrome, a disorder characterized by impaired eye 

abduction, that while endogenous cueing resulted in validity effects similar to those 

found in controls, cueing resulted in a reversal of the validity effects when targets 

appeared in the field of diminished oculomotor range. Oddly this effect was driven 

entirely by an increase in reaction times on valid trials, but there was no obvious effect 

on invalid trials, whether the target appeared on the side of diminished oculomotor 

range or the opposite one. In a preceding study, an ophthalmologic patient with 

congenital hypoplasia of the extraocular muscles, demonstrated also abnormalities in 

covert orienting impairment, with diminished validity effects following exogenous cues, 

but increased validity effects following endogenous cues (Smith et al., 2001). These 

findings were interpreted as indicating that the attentional capture is diminished when 

normal overt orienting response cannot be generated. The reason why only reflexive, 

but not endogenously driven shifts of attention were affected in this patient was not 

investigated further. 

 Probably the work most relevant to the present findings is a study comparing 

covert orienting in patients with parkinsonism and progressive supranuclear palsy (PSP; 

Rafal et al., 1988). The crucial difference between the two patients groups, relevant to 

the hypothesis of the study, is that while patient with parkinsonism show a generalized 

deficit in initiating saccades in all directions, patients with PSP show a specific and 

prominent impairment performing vertical saccades especially in the downward 

directions. PSP patients had smaller validity effects when the targets were presented 

above or below the fixation point than when they were presented left and right of the 

fixation point. This was the case both when the target was cued exogenously or 

endogenously. The authors concluded that the ability PSP patients to covertly attend 

targets along the vertical meridian was less than targets along the horizontal meridian, 

thus replicating the overt orienting problem. However this interpretation does not 

account for the fact that the validity effects in patients were vastly greater than those 

encountered in healthy controls suggesting that patients did not have diminished covert 

orienting. Overall, here we empirically demonstrate intact attentional orienting in the 

presence of impaired upper and lower saccadic eye movements, suggesting that covert 

and overt orienting signals are not converged at the point where saccadic signals are 

parcellated by their horizontal and vertical components. 
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Chapter 5 

 
Discussion 
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In chapter one, we reviewed the literature on visual attention and highlighted three key 

issues for further investigation within this body of work. First we asked if probabilistic 

expectations influence a ballistic, binary process where attention is either committed to 

a location over a number of trials matching the cue; or if expectations influence an 

information theoretical, decision making process. The second question the inhibitory 

mechanisms of spatial attention, and if they are sensitive to top-down expectations. The 

final problem was the relationship between attention and eye movements, with some 

theories claiming attention and eye movements are one and the same, and competing 

accounts that propose attention and eye movements are tightly coupled, but ultimately 

distinct systems. In chapter two, we investigated if attentional accounts or information 

theoretical accounts could better explain the effects of target probability on covert and 

overt responses. The data we present shows that for both covert and overt orienting, the 

effects of target probability were largely the same, with the notable exception of a larger 

validity effect for central cues in overt response condition. Furthermore, this data is not 

adequately described by attentional accounts or information theoretical accounts. In 

chapter three we investigated predictions that central cues could be used to 

endogenously inhibit a spatial location where a distractor is expected to appear, as this 

is at odds with reports in the literature that central cues invoke automatic orienting. Here 

we presented data illustrating that central cueing a distractor containing location led to 

facilitation and not inhibition of the cued location. The effects of cueing the distractor 

location and the effects of the distractor were same for covert and overt responses. We 

did however find a difference for covert and overt responses in the priming effect of 

target and distractor stimuli, with the priming effect nulled for the immediately 

preceding trial in the manual response task. In Chapter four we investigated attentional 

orienting in a single patient who presented with saccadic disruption after a stroke 

resulting in lesion in the medial-dorsal thalamus. Based on data obtained in the previous 

experiments, and literature demonstrating a coupling between attention and eye 

movements, we expected to see an accompanying attentional impairment because of the 

ocular disruption, however this was not the case. 

 Taken together these findings indicate that the relationship between top-down 

expectations and exogenous effects on covert and overt attention is extremely complex. 

Subtle manipulation of expectations can result in drastically different behavioural 

outcomes, which none of the major theories presented within this thesis are currently 

able to adequately capture the presented results. In the next section, we shall discuss the 
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overall implications of the presented results, before discussing limitations and future 

avenues of research. 

 

The effects of expectations are largest when expectations are breached 

An overall theme of the data in this thesis is that the largest effects of expectations on 

covert and overt orienting appear to be captured when expectations are breached. This 

was presented in chapter II (figures 6), were we found that the largest effects of 

spatially blocking the cued location are found when targets appeared in low probability 

locations, rather than high or neutral probability locations and then in chapter III, as the 

distractor was suppressed on invalidly cued, target cueing trials (figure 11). These data 

suggest that the expectations specifically engage processes when expectations are 

breached. Accounts for this finding have included habituation to recurring stimuli 

(Sokolov, 1963) or that the interruption of expectations invokes circuitry specialized for 

examining novel and unexpected stimuli (e.g. Corbetta & Shulmen, 2002; Pavlov, 1927), 

or the reorientation of attention to the new stimuli containing location (Laberge, 1973). 

Indeed, a number of studies have reported a stimulus driven system, which is sensitive 

for orienting to sudden, unexpected stimuli (e.g. Shulman et al., 2010). 

 

Central cues do not initiate endogenous spatial inhibition 

The data presented in the second chapter (figures 10, 11, 12) suggests that centrally 

cueing the location of a distractor resulted in facilitation not inhibition of the cued 

location is harmonious with claims that attempts at active inhibition can, surprisingly, 

lead to increased priority of the to-be-inhibited stimulus (Lahav et al., 2012; Tsal & 

Makovski, 2006). There are several explanations for this. On one hand, these findings 

are inline with predictions that attempts at active inhibition leads to increased activation 

of the stimuli in memory, which results in facilitation rather than inhibition of the 

stimulus intended to be ignored. By contrast, another explanation is that the automatic 

orienting effects associated with central cues (Hietanen et al., 2006) could mean they 

are simply not suited to communicating information intended to encourage spatial 

inhibition (indeed the validity effect for neutral cues reported in chapter two may also 

reflect an automatic orienting effect). Indeed, previous reports that spatial inhibition can 

arise from using symbolic cues to cue a location are at odds with the finding that such 

cues result in automatic orienting of attention to the cued location. One explanation is 

that distractor cueing negates the effects of distractors on motor processes, rather than 

orienting processes. As previous studies have used a duel choice response method (e.g. 
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Munneke et al., 2008) or have investigated the effect of distractor cueing on motor 

processes such as saccadic trajectories (Van der Stigchel & Theeuwes, 2006). Although 

some claim that saccadic deviation from distractor stimuli is evidence of spatial 

inhibition (Sheliga, Riggio,& Rizzolatti,1994). Alternatively, the system may simply 

opt not to inhibit spatial locations when there is a chance, however small, that a relevant 

stimuli may appear in the distractor expected location, thus our finding may reflect an 

adaptive response strategy.  

Whilst the central cue failed to invoke spatial inhibition, our data showed 

evidence of non-spatially specific distractor suppression. Specifically, we found that the 

effect of the distractor was nullified during invalidly cued trials, when the purpose of 

the cue was to indicate the location of the target, but not for trials when the role of the 

cue was to encourage spatial inhibition by indicating the location of the task-irrelevant 

distractor. This suggests that the overall search strategy was defined according to the 

purpose of the cue, possibly leading to co-activation of the signals associated with 

filtering irrelevant distractors and the signals associated with re-orienting (Shulmen et 

al., 2007). 

The memory kernel analysis (figure 13) revealed reaction-times were slightly 

faster when the distractor appeared in a previously occupied location and the benefit for 

persisted for ~7 trials. The analysis also found that reaction times were faster when the 

target had previously been presented one of the previous 7 trials. These findings imply 

that prior events are tracked in the way of a tonic signal which is spatially specific for 

the location of the distractor stimuli, and spatially and event (when it appears vs. has not 

appeared) for the target stimuli. 

 

 The effects of expectations on covert and overt orienting are largely the same 

A central question to this thesis regards the nature of the relationship between eye 

movements and attention. Is the nature of this relationship one where attention and eye 

movements are tightly coupled, but inherently different systems? Or is this relationship 

one where attention, or the increased processing priority of a stimulus, is a byproduct of 

a planned ocular movement to the stimulus? We chose to investigate this behaviourally 

in chapters two and three, by comparing the effect of manipulating observer 

expectations on saccadic and manual responses in healthy young adults. When we were 

unable to discrimination between the two response types using this method, we decided 

to augment the first two behavioural studies with a neuropsychological investigation of 
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the relationship between the two processes using a patient who presented oculomotor 

problems. 

The patterns of the behavioural data presented in chapters II and III showed that 

the effects of expectations on covert and overt responses were largely the same, 

although there were a number of notable discrepancies. The first departure was the 

finding of saccadic anisotropies reported in chapter two. It has been claimed that this 

represents an orienting effect (Zhou & King, 2002), however that we failed to 

demonstrate this effect in the manual version of the task, indicates that mechanism 

responsible for this appears not to influence simple detection responses in the same 

manner. One potential explanation of this finding, is that these affects arise during the 

motor execution stage of a saccade, which has previously been argued as distinct from 

programming (Smith & Schenk). Consequently, these differences are not evidence 

against premotor theory (e.g. Smith & Schenk, 2012). However, the original 

explanation of premotor theory proposed that the involvement of motor specific 

structures, such as ocular muscles, took place during covert orienting (Rizzolati et al., 

1987) therefore such an argument is somewhat invalid. 

The next difference was also presented in experiment two where we found a 

larger validity effect for saccadic responses compared to manual responses (figure 7), 

which was due to cue validity modulating the proportion of express saccades. This 

finding is harmonious with reports that failed to find express responses for manual 

response tasks and suggests that central cues can activate ocular specific pathway. The 

final departure we reported was the absence of the priming effect in the previous trial 

shown in figure 13. One possible explanation for this finding, is that this inhibition 

reflects the lingering effects of cancelling a previously programmed eye movement, as 

has been proposed to occur in covert orienting tasks (Rizzolatti et al., 1987). However 

aside from the previous trial, the effects reported in that analysis are identical, which 

perfectly illustrates the idea that eye movements and attention are coupled by shared 

computational processes.  

In experiment three we further interrogated the relationship between attention 

and eye movements by investigating if there was evidence of an attentional impairment 

in a single patient who presented with upward, hypometric saccades after suffering a 

lesion in the medial-dorsal thalamus. Based on the behavioural results of experiment 

one and two, we would expected that the impairment in saccades to be accompanied by 

an attention impairment. Instead the data showed that whilst there was overall ocular 

disruption, with the largest disturbance in the upper and lower visual field, there was no 
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evidence of impaired covert orienting. This finding supports previous reports that there 

are ocular specific and attention specific structures within the brain (Smith & Schenk, 

2012), and specifically our finding indicates that this includes brainstem structures 

where horizontal and vertical aspects of eye movements are parcellated.  

Implications for theories of attention and eye movements 

Aside from some minor deviations, one of which - the manual response inhibition seen 

the memory kernel analysis - can still be connected to ocular processes, the behavioural 

results of this study are overall supportive of claims that covert and overt orienting 

share a single computational process. However the results presented in chapter IV are in 

line with claims that the signals for attention and eye movements are also isolated 

within certain structures. When the results presented in this thesis are considered 

together, the grand implication is that attention is unlikely to be the product of the 

ocular system as proposed by premotor theory (Rizzolatti et al., 1987). Nor is the 

converse explanation adequate, that attention and eye movements are two unrelated 

processes, as such a stance is not supported by the literature, because whilst attention 

can be deployed independently of eye movements (e.g. Helmholtz, 1867), saccadic 

movements typically require attention to be deployed at the planned saccadic location 

(Duebal & Schneider, 1996). Instead our findings are supportive of the perspective that 

covert and overt orienting are coupled by a single computational system as(Duebal & 

Scheider, 1996) but are ultimately distinct processes, as proposed by VAM. Since this 

viewpoint could account for similar patterns of behavioural findings across covert and 

overt orienting; indicative of a shared computational mechanism processing 

expectations. Whilst also accounting for the finding of unimpaired covert orienting in 

the presence of oculomotor disruption, which is indicative of distinct systems.  

In evolutionary terms, the notion that a single attentional resource is a shared 

asset across different perceptual modalities makes intuitive sense, due to limited cortical 

space and therefore it would be a waste of resources to have several systems with a 

common role – to orientate towards goal-relevant, visual stimuli. Less tantalizing, is the 

concept of a data processing system crucial for all aspects of our survival, which is 

interrupted each time the eye moves (Schneider, 1995). So where does leave premotor 

theory? Whilst the strictest interpretation of premotor theory clearly fails to hold up 

against the data presented in this thesis (and when examining the wider literature), it 

still provides an extremely useful platform from which to probe the relationship 

between eye movements and attention. Indeed, as this thesis has shown, simple 

paradigms can be easily adapted to investigate both processes, which provide easily 
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comparable data. Less useful however, is the use of premotor theory as an explanatory 

account. Instead, the VAM model described at the beginning of this thesis is 

significantly better at capturing the results presented within this thesis: namely that 

action and attention are distinct processes, which are reconciled through a shared 

mechanism.  

 

Limitations and future studies 

A number of interesting issues arose from the data presented in this thesis, which should 

be the subject of future investigations. One theme of the date is that much of the 

behavioural effects of expectations are observed when they are breached. Consequently, 

an interesting avenue of research could be to investigate what happens when 

expectations are met, using methods that may provide more sensitive measures than 

reaction-time tasks. One line of investigation could be to use electrophysiological 

techniques. For example, whilst the behavioural difference for high probability and 

equiprobable targets were less than the difference between low probability compared to 

high/equiprobable targets (chapter two), electrophysiological investigations could reveal 

differences not observable through reaction time based experiments. One candidate for 

investigation could be event related potential positive 300, the P300, which has been 

proposed as related to attentional expectations (e.g. Polich, 2004). This would also be 

particularly useful to follow-up the paradigm presented in chapter III, where we found 

no differences inn participant cue across cueing conditions, despite each of the two cues 

being reliable for different stimuli. Therefore an electrophysiological study could 

delineate different computational processes, which cannot be captured with purely 

behavioural experiments. 

Another thought-provoking question arises from the priming effects presented in 

chapter three, regarding where this tonic signal is stored. A likely structure could be the 

superior colliculus, as previous studies have shown this structure is sensitive to tracking 

previous events (Basso & Wurtz, 1998). Therefore future studies could investigate if 

activity within this structure, is correlated with the magnitude for the priming effect, by 

adapting our paradigm for use with functional magnetic imaging. Similarly, future 

studies on expectations could also apply the memory kernel analysis to ascertain 

precisely how much of a behavioural effect is the product of priming; rather than the 

result of strategic, top-down responses. One final interesting issue that arises from this 

analysis is if this effect is crossmodal. A future behavioural study could address this by 

mixing manual and saccadic response trials within blocks, and then perform MKA 
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analysis using the alternative response type as the history trial. The benefit of such an 

approach would be direct evidence of a shared computational process between attention 

and eye movements. 

We failed to demonstrate evidence of endogenously deployed inhibition in 

chapter three. One interpretation is that attempts at active suppression result in an 

attentional white bear effect, leading to facilitation of the distractor containing stimuli 

due to associated automatic orienting effects. Alternatively, it may be that central cues 

are simply not suited to communicating information intended to encourage in spatial 

inhibition. Therefore future studies should employ other means of biasing expectation 

of distractor stimulus, such as spatially blocking the distractor stimulus. 

The final limitation discussed here relates to the patient case study reported in 

chapter four. Whilst we were able to delineate ocular and attentional processes using 

two different paradigms, it would have useful to have applied the methodological theme 

used in chapters II and III, and had the patient perform both saccadic and detection 

versions of the target localization and cueing task. Consequently, future patient studies 

probing premotor theory should continue to use the single patient study due to it being 

more sensitive than group studies where lesion subtleties can be lost within group 

variance, but they should compare different response measures on the same task. 

Unfortunately in this instance we were unable to recall the patient back due to logistical 

difficulties on the patient’s side. 

Future studies investigating the relationship between attention and eye 

movements could extend research to investigate the extent to which attention is coupled 

to other motor modalities. Indeed the two prominent theories which claim eye 

movements and attention are related, both claim that this relationship extends to all 

motoric actions. Such a program of study could easily adapt the methodological theme 

adopted within this thesis of setting up paradigms in ways that different modalities of 

responses can be directly compared.  

 

Appropriateness of the methodology 

Another question that is pertinent for this discussion is the adequacy of the 

methodological method employed within this body of research. One of the key themes 

was the comparison of covert and overt response methods. We decided to directly 

compare manual and saccadic responses as this would allow us to adequately compare 

how saccades and manual detection (considered to index covert orienting) computed 

expectations, with the intention of seeing if we could disassociate attention and eye 



	

	
	

108	

movements by observing different patterns of behavioural results. One criticism of this 

method is that it could be considered to be less sensitive than methods which have 

attempted to delineate attention from eye movements by spatially dissociating the two 

processes (e.g. Kowler et al., 1995) or investigating how manipulating attentional 

demands affect eye movements. However, it is already well documented that attention 

is involved in eye movements, thus we wanted to probe the two systems with the main 

aim to of identifying differences in computational processes. That we found subtle 

differences between covert and overt orienting in chapters one and two, clearly supports 

this decision.  

 

Closing statement 

 

This body of research makes a number of contributions to the literature discussed in the 

opening chapter. One, the evidence presented here indicates that the facilitatory aspects 

of attention are extremely sensitive to expectations, particularly when they are breached. 

Two, the inhibitory mechanisms however seem less easy to manipulate using prior 

expectations, or at least they are not as intuitive as one would expect: namely as they 

did not use the cued information to inhibition a spatial location, rather they changed the 

search strategy, but not in a way that was non-spatially selective, rather event selective, 

when the target was invalidly cued. Three, the memory kernel analysis indicated that 

the events on a trial can influence expectations for a considerable number of future trials, 

thus attentional orienting is sensitive to endogenous effects. Finally, four, the 

behavioural results covert and overt orienting share a common, computational 

mechanism; however the results of the patient study fail to demonstrate a casual 

relationship between these two mechanisms. Overall these results, their implications, 

and the potential ways in which they could be followed up with future research 

confirms that attention is still no less of a challenging and exciting topic than it was for 

early researchers of the field.  
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