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Summary 

The MRN complex (consisting of Mre11 Rad50 and Nbs1), and CtIP, functions to repair 

DNA double strand breaks. They are also known to have a role in the removal of 

topoisomerases from DNA, and can therefore provide resistance to topoisomerase inhibitors, 

such as camptothecin, which are used as anti-cancer drugs and function by increasing the 

half-life of topoisomerase-DNA cleavage complexes leading to the persistence of DNA 

breaks which can lead to cell death. Therefore it has been hypothesised that patient mutations 

in the MRE11, RAD50, NBS1 and CtIP genes can confer an increased sensitivity to 

topoisomerase inhibitors.  

A recent study, the NWCOG-2 trial, involving the treatment of colorectal carcinomas with 

irinotecan (a topoisomerase inhibitor) and capecitabine (which is metabolised to form the 

nucleoside analogue 5-FU) showed a pathological complete response in 22% of patients and 

a three year survival of 88%, it is unknown which genetic factors influence the response this 

method of treatment. The aforementioned genes are known to be mutated at high frequency 

in colorectal cancers associated with microsatellite instability. 

 In this study, mutations in these genes which have been previously identified in tumours 

have been recreated in Schizosaccharomyces pombe, using the Cre-lox system, and tested for 

sensitivity to camptothecin and MMS. The results show that many of these mutants exhibit a 

severe sensitivity to these drugs. The nbs1-MSI mutant, which encodes a mutant protein 

lacking the C-terminal Mre11 and Tel1
ATM

 binding domains appeared to show an increased 

sensitivity to MMS, with only a slight increase in sensitivity to camptothecin. This mutant is 

a separation of function mutant and shows that the Mre11 and Tel1
ATM

 binding domains of 

Nbs1 may not be essential for topoisomerase removal, but are required for downstream repair 

of MMS induced lesions. 

Sequencing of 25 NWCOG-2 patient tumour samples initially identified the presence of 30 

somatic mutations in. However, identification of all but one of these mutations, the CtIP-

poly(A)9 1 bp deletion of patient R48, was irreproducible and were not found in subsequent 

resequencing reactions. Fluorescent fragment analysis of the MRE11-poly(T)11 tract revealed 

the presence of a single base-pair deletion in one patient (patient R12). Fluorescent fragment 

analysis of CtIP-poly(A)9 tract confirmed the presence of a single base-pair deletion in 

patient R48 and identified patient R51 to possible harbour the mutation also. Bothe patients 

R12 and R48 responded well to the treatment regimen of irinotecan, capecitabine, radiation 

and excision; however it cannot be confirmed that this response was due to the presence of 

the mutations. 

S. pombe mre11Δ, rad50Δ, nbs1Δ and ctp1Δ strains were also tested for sensitivity to 5-FU, 

these strains showed no increase in sensitivity to 5-FU compared to the wild-type, suggesting 

that these genes may not confer sensitivity to 5-FU in tumours. A screen of the Bioneer 

genome wide deletion library was carried out to identify other genes for which mutations 

could potentially confer increased sensitivity or resistance to 5-FU. This identified a total of 

181 mutations which confer increased 5-FU sensitivity, and 316 which conferred an 

increased resistance. Many of the genes found to sensitise to 5-FU when deleted function in 

chromatin remodelling and centromere function, suggesting a possible role for the centromere 

in 5-FU sensitivity. Many of the genes found to confer resistance to 5-FU function in the 

processing of uridine in tRNA; this suggests that the processing of incorporated fluorouridine 

in tRNA may be a significant contributing factor to 5-FU cytotoxicity in S. pombe. 
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1 Introduction 

1.1 The Roles of the MRN Complex and CtIP 

1.1.1 The MRN complex and DNA double strand break repair 

DNA double strand breaks (DSBs) are the most cytotoxic form of DNA damage that occurs 

within cells. There are many agents that may induce DSBs including exogenous factors such 

as ionising radiation (IR) and certain chemotherapeutic drugs, such as radiomimetic drugs 

(e.g. bleomycin) and topoisomerase inhibitors. DSBs can also occur due to the endogenous 

production of reactive oxygen species [1] [2]. DSBs may also be induced by the cells in order 

to initiate various forms of recombination including V(D)J recombination [3], 

immunoglobulin class-switch recombination and meiotic homologous recombination. DSBs 

can also occur during DNA replication (known as replication mediated DSBs (Rep-DSBs)) 

by collisions of DNA polymerase enzymes with a single strand break (SSB), which convert 

single strand breaks (SSBs) into DSBs; and replication fork collapse [4]. 

DSBs are initially detected by the MRN complex [5], this complex is composed of three 

different proteins: Meiotic recombination 11 (Mre11), Rad50 and Nijmegen breakage 

syndrome 1 (Nbs1; also known as NBN). This complex consists of four structural domains, 

one of which is the “head” region which consists of an Mre11 dimer and two ABC ATPase 

domains of Rad50, this region is responsible for the 3′-5′ endonuclease and exonuclease 

activities of this complex. The coil and hook regions consist of the Rad50 coiled-coil 

domains connected by a Zn
+
-hook domain. The fourth region is the flexible adapter that is 

formed by Nbs1 and performs roles in signalling and protein recruitment [6]. Phosphorylation 

of Nbs1 has been shown to regulate the accumulation of the MRN complex and ATM at 

DSBs [7]. The structure of the MRN complex is shown in Figure 1.  
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(Tsutsui, Kawasaki & Iwasaki 2011) [8]  

 

 

 

The MRN complex binds to the broken DNA by the Mre11 DNA binding motifs and tethers 

the two broken ends in order to stabilise the broken chromosomes [5] [9]. Following the 

detection of DSBs, the Nbs1 subunit of the MRN complex then recruits and activates the 

Ataxia Telangiectasia mutated (ATM) protein kinase [10] [11]. ATM is activated via 

autophosphorylation [12]. This in turn leads to the phosphorylation of a range of substrates 

which lead to an arrest of the cell cycle, DNA repair or apoptosis by ATM [5] (See Figure 2). 

These substrates include the histone H2AX [13], which provides docking sites for proteins 

involved in DNA repair and activates checkpoint proteins [14], such as DNA damage 

checkpoint protein 1 (MDC1) [14]; Chk1 [15] and Chk2 [16]; p53 [17], Mdm2 and Mdmx, 

which also aid the stabilisation of p53. Once p53 has been expressed at high levels, it can 

either promote the production of p21/WAF1, which prevent cells from progressing into S-

Figure 1. Model of the MRN complex.  This shows the “head region” consisting of the Mre11 

dimer and the two Rad50 ATPase domains. The coil and hook regions are shown extending from the 

head region. The flexible adapter region consisting of Nbs1 is shown bound to Mre11. The ATM and 

CtIP/Ctp1 proteins are shown bound to the ATM binding and FHA domains respectively.  
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phase from G1 by the inhibition of cycline kinases; or induce the Bax, Noxa and Puma 

proteins which lead to initiation of the caspase cascade and apoptosis [18]. 

There are many pathways which the cell can utilise in order to repair the DSB. One of the 

most important of these pathways is homologous recombination (HR), which is a highly 

accurate mechanism of DNA repair that utilises a sister chromatid, or a homologous 

chromosome, as a template for repair; however, due to the requirement of a sister chromatid, 

this pathway can only take place during the S- and G2-phases of the cell cycle. Another 

highly important DSB repair mechanism, which can occur during the G1-, G0- and M-phases, 

is the non-homologous end joining (NHEJ) pathway which is error prone and can result in 

nucleotide loss and chromosomal translocations [5] [19]. 

Following the detection of DSBs in the NHEJ pathway the Ku heterodimer (consisting of 

Ku70 and Ku80 subunits) binds to the deoxyribose phosphate backbone of both ends of the 

broken DNA [20] (See Figure 3). The DNA dependent protein kinase subunit (DNA-PKcs) 

then binds to the Ku heterodimer thus forming the DNA-dependent protein kinase (DNA-PK) 

[21]. Both broken ends of the DSB are then tethered by DNA-PK, the DNA is then processed 

by a variety of nuclease and polymerase enzymes, including Pol-λ [22] and Pol-μ [23], which 

function to fill in or remove any overhangs of single stranded DNA, this is the stage at which 

errors are thought to occur [24]. The nucleases involved in the processing of the overhangs 

include Artemis which forms a complex with DNA-PK and possesses exonuclease activity 

required to process 5ʹ and 3ʹ overhangs [25] [26]; and Fen1 which plays a role in the 

processing of 5ʹ flaps [27]. Mre11 nuclease activity and Carboxy-Terminal Binding protein 

(CtBP) Interacting Protein (CtIP, also known as RBBP8) aid the dissociation of the Ku 

heterodimer from the DNA [28]. Prior to ligation the 5ʹ hydroxyl groups are phosphorylated 

by polynucleotide kinase (PNK), a process required for XRCC4 activity [29] [30]. The ends 

are then ligated by the LigIV/XRCC4 complex, which is believed to be stimulated by the 

XLF protein (also known as Cernunnos) in an ATP dependent manner [31] [32] (See Figure 

3). Studies have found that in Schizosaccharomyces pombe MRN and checkpoint proteins are 

not required for NHEJ, and no XRCC4 homologue is present [33] [34]. 
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During the HR pathway (see Figure 4) the broken ends must be resected, a process mediated 

by the MRN complex in cooperation with CtIP [35], following CtIP phosphorylation and 

deacetylation by Cdk1 and SIRT6 respectively [36] [37]. Mre11 endonuclease activity is 

required to induce HR by the initiation of resection [38]. It has been shown that in the 

budding yeast Saccharomyces cerevisiae resection is carried out by the Sgs1(Rqh1 in S. 

pombe, BLM in human) helicase which unwinds the DNA; the Dna2 nuclease which digests 

the DNA to create ssDNA overhangs and the replication protein A (RPA) which coats the 

newly formed ssDNA [39]. Exonuclease 1 (Exo1) also plays a role in DNA resection at DSBs 

during HR to generate ssDNA [40] and is required for the recruitment of RPA and Rad51 

[41]. The breast cancer 2 (BRCA2) protein transports the Rad51 recombinase to the ssDNA 

at the break where it replaces the RPA protein to form a polymer which winds around the 

DNA creating a nucleoprotein filament [42]. The replacement of RPA for Rad51 is 

stimulated by Rad52 [43]. The nucleoprotein then searches for homology and initiates strand 

invasion resulting in recombinant DNA molecules [44] (see Figure 4). 
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Figure 2. The DNA double strand break detection mechanism by the MRN complex. This figure 

shows the sequence of events which occur following the formation of a DSB the detection by MRN 

and the subsequent activation of ATM leading to cell cycle arrest, DNA repair and apoptosis, as 

described in section 1.1.1. 
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Figure 3. The non-homologous end-joining (NHEJ) pathway which can occur following 

DSB detection and ATM activation. This figure shows the sequence of events involved in non-

homologous end joining as described on page 3. Mre11 nuclease activity  also aids the 

dissociation of the Ku hetorodimer from DNA (not shown in figure). 
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     (Stracker & Petrini et al 2011) [45] 

 

 

  

Figure 4. The homologous recombination (HR) pathway which can occur following DSB detection 

and ATM activation. This figure shows the events in homologous recombination, as described on pages 

3-4. Rad51is transported by BRCA2 to the ssDNA where is replaces RPA, in a process stimulated by 

Rad52. Rad51 binds to the ssDNA and forms the nucleoprotein filament (not shown in figure). 
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1.1.2 The role of the MRN complex in telomere maintenance 

During DNA replication in eukaryotic cells, genetic material, around 50-200 bp [46], is lost 

from the 5ʹ terminus of the lagging strand thus posing the problem of chromosome shortening 

and potential loss of genes following numerous mitoses [47]. To prevent this from occurring, 

structures known as telomeres are present at the ends of chromosomes. These structures 

consist of guanine rich non-coding repeat sequences bound by proteins forming a T-loop in 

higher eukaryotes. These structures are created by the enzyme telomerase, which in 

vertebrates creates telomeres long enough so that the progeny may go through limited rounds 

of cell division, before the telomeres shorten to the critical length, inducing senescence and 

apoptosis. This process also carries a tumour suppressive effect as cancer cells proliferating at 

an uncontrolled high rate undergo senescence when the telomeres reach critical length [47], 

therefore telomerase reactivation and immortalisation are believed to be important events in 

carcinogenesis as they allow the cancer cells to avoid senescence and to continue 

proliferating [48] [49]. Telomerase has been shown to be expressed at high levels in 90% of 

human cancers [49] [50]. 

In S. cerevisiae, the MRX complex (homologue of the MRN complex) was shown to 

associate with telomeres during the time of the cell cycle in which telomeres are synthesised, 

thus suggesting that the MRX complex may have a role in telomere synthesis [51]. The 

human MRN complex was then also found to localise to the telomeres of human fibroblasts 

during meiosis, suggesting that the MRN complex is also involved in the synthesis of 

telomerase in higher eukaryotes [52]. The exact role of MRN in telomere maintenance 

remains unknown; MRN may aid telomerase through a direct interaction, or indirectly by 

modifying the structure of the telomeres so that telomerase may bind [47]. MRX mutants in S. 

cerevisiae are known to have shortened telomeres [53] [54]. 
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1.2 Mismatch Repair and Microsatellite Instability  

1.2.1 The roles of mismatch repair 

During DNA replication, polymerase errors can cause DNA base mismatches and base 

insertions and deletions to occur [55]. These mismatches are repaired by the mismatch repair 

(MMR) mechanism in order to prevent these acquired mutations from persisting into the 

daughter cells. Defects of the MMR pathway can lead to an increased rate of spontaneous 

mutations and an increased risk of cancer development [56]. 

In response to the DNA mismatches in human cells, the hMSH2 and hMSH6 proteins 

(homologues of the E. coli MutS protein) form a heterodimer known as the MutSα complex 

which detects mismatch lesions of 1-2 bp in length, larger lesions are detected by MutSβ, a 

heterodimer consisting of hMSH2 and hMSH3 [55] [57]. Following mismatch recognition, 

MutSα recruits the MutLα complex, a heterodimer formed by MLH1 and PMS2 (homologues 

of E.coli MutL) (see Figure 5). The MutLα complex then aids the recruitment of other 

proteins which are involved in the repair of the mismatch, in addition to stabilising the 

interaction between MutSα and the DNA [57]. It is believed that the MutSα/MutLα complex 

then travels along the DNA in 3ʹ-5ʹ direction until it reaches a break in one of the DNA 

strands, at this point the exonuclease, Exo1, is loaded in order to degrade the strand 

containing the error [58]. RPA then binds the ssDNA created by Exo1 prior to the repair of 

the strand by DNA polymerase δ, DNA ligase I then seals the nick [59] (see Figure 5). 

There is evidence to suggest that the MMR pathway plays a role in DNA-damage signalling 

and apoptosis [60]. It is thought that many consecutive failed MMR attempts at the same 

locus can lead to the formation of replication blocks which can in turn trigger cell cycle arrest 

[61]. It has been shown that when cells deficient in the MMR protein complexes MutSα and 

MutLα are treated with certain DNA damaging agents they exhibit a lower level of cell cycle 

arrest, a lower level of p53 and p73 phosphorylation and a greater survival than MMR 

proficient cells [56] [62]. There is evidence to suggest that the MutSα and MutLα proteins 

can recruit Ataxia Telangiectasia Related (ATR) kinase and ATR-Interacting Protein 

(ATRIP) at sites of damage, which then phosphorylates Chk1 [63], the ATR-Chk1 pathway 

causes the cell cycle to arrest at the G2/M transition [64]. Nbs1 may function in the activation 

of ATR at sites of stalled DNA replication forks [65], independent of Mre11 [66]. 

  



10 

 

 

Figure 5. The Mismatch Repair (MMR) pathway which can occur following the formation of a DNA base 

mismatch as a result of DNA replication, as described on page 9.  
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1.2.2 Mismatch repair deficiency, microsatellite instability and cancer 

A deficiency of MMR can be caused by defects within the genes of the proteins involved in 

MMR, such as CpG island hypermethylation of the MLH1 gene promoter region [67] [68] 

and germline and sporadic mutations in MLH1 and MSH2 [69]. MMR deficiency results in an 

increased rate of mutagenesis which can lead to the deactivation of tumour suppressor genes 

and the activation of oncogenes thus promoting carcinogenesis [70].The most significant 

characteristic of MMR deficiency is microsatellite instability (MSI) in which there is a 

greater rate of unrepaired replication errors which occur within short repetitive sequences 

[71] [72]. MSI usually occurs within intergenic regions and non-coding parts of genes, 

however it has also been found to occur within coding regions [70]. 

Tumour cells showing a high level of MSI (MSI-H) exhibit defects within many genes which 

have microsatellites including genes which function in cell signalling, DNA repair, apoptosis, 

transcription and protein modification [67].  

MSI is known to occur and play an important role in various cancers such as gastric cancer 

[73], endometrial cancer [74] and pancreatic cancer [75], however it is most commonly 

reported in colorectal cancer in which it occurs in 20% of all cases [76].Tumours with MSI-

H, including sporadic and hereditary cases, show many genotypic and phenotypic 

characteristics which differ from microsatellite stable (MSS) tumours due to the distinct 

carcinogenic pathway of these tumours caused by their highly specific mutation spectrum 

[77]. The MSI-H tumours show phenotypes of a high level of mucin secretion, lymphocytic 

infiltration, a poor differentiation and occur most commonly within the proximal region of 

the colon [77] [78]. MSI-H caused by germline mutations within the genes involved in MMR 

is the underlying causes of colorectal cancers (CRCs) associated with Lynch Syndrome (also 

known as hereditary non-polyposis colorectal cancer (HNPCC)) [77] [79], the most common 

form of hereditary colorectal cancer [80]. In Lynch syndrome the aforementioned mutations 

alone do not directly lead to MSI-H and cancer and a “second hit” is required to inactivate the 

remaining wild-type allele, this can occur by a loss of heterozygosity (LOH), somatic 

mutations or DNA methylation of the MLH1 and p14
ARF

 promoters [81].  

MMR deficiency and MSI is also known to occur in around 15-20% of all sporadic colorectal 

cancers [82] [83]. Mutations within the genes involved in MMR are rarely found and it is 

believed that the epigenetic CpG island methylation, known as the CpG island methylator 

phenotype (CIMP) [84], of the hMLH1 promoter, is responsible for MSI in these tumours 
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[83]. Methylation of the promoters of the tumour suppressor genes p16 and THBS1 also 

occurs with a high incidence within CIMP+ (Exhibiting CpG island methylator phenotype) 

cells [84]. CIMP+ has been shown to have a strong association with BRAF and K-RAS 

mutations [85]. Both the K-RAS and BRAF proteins are involved in the mitogen activated 

protein kinase (MAPK) pathway in which these proteins play a role in the transduction of 

signals from a tyrosine kinase receptor in response to binding exogenous growth factors, this 

pathway leads to the activation and translocation of extracellular signal-related kinase (ERK) 

to the nucleus where it up-regulates the transcription of genes that promote cellular growth 

and proliferation [86]. 

Despite the fact that MMR deficiency and MSI are mostly associated with mutagenesis 

within repetitive sequences some mutations which occur in non-repetitive sequences, such as 

mutations which activate BRAF, K-RAS and PIK3CA, also occur frequently within MMR 

deficient tumours [87]. Mutations within the BRAF and K-RAS genes which arise from MSI 

are known to play a role in carcinogenesis by the serrated pathway [86]. The BRAF activating 

(BRAF-V600E) mutation induces a period in which the cell exhibits hyperproliferation and a 

resistance to apoptosis [88] due to an increase in signalling by the MAPK pathway resulting 

in hyperplasia of the crypts, this process is also associated with the MAPK/ERK dependent – 

Akt independent phosphorylation of Gsk3β causes β-catenin to translocate to the nucleus 

[89]. The increased activation of BRAF also up-regulates the production and secretion of 

Insulin-like growth factor binding protein 7 (IGFBP7) which acts via an autocrine/paracrine 

pathway which causes the inhibition of the BRAF-MEK-ERK signalling pathway leading to 

senescence and apoptosis of the affected cells [90]. 
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1.3 Topoisomerases as Targets for Cancer Therapy Using Topoisomerase 

Inhibitors 

 

1.3.1 Topoisomerases and Topoisomerase Inhibitors 

Certain processes, such as DNA replication, transcription and recombination require the 

unwinding of the helical DNA structures. This requirement for unwinding presents the cell 

with a topological issue, as the unwinding at the required site would lead to an over-winding 

of the chromosome. This issue is solved by the creation of transient breaks in the DNA which 

allows for the DNA to be unwound without causing excess winding. These breaks are 

induced by the topoisomerase enzymes type I which induces single-strand breaks, and type II 

which induces DSBs [91] [92] [93]. During the formation of the breaks, topoisomerases 

become covalently bound to DNA and are then released from the DNA following ligation of 

the break [93] [94]. 

If a topoisomerase persists at DNA then the associated break can lead to disruptions of 

transcriptions and replication leading to cell death [94]. The topoisomerase inhibitors, 

camptothecins (CPT) and etoposide derivatives are anti-cancer drugs which exploit the 

consequences of topoisomerase persistence by increasing the half-life of topoisomerase-DNA 

cleavage complex, leading to their retention during replication and transcription leading to 

the death of the cancer cells [94]. 

 

1.3.2 Uses of topoisomerase inhibitors in the treatment of colorectal cancer 

Currently surgery is used as the main treatment for colorectal cancer, the outcome of this 

treatment is improved when adjuvant chemoradiotherapy (combination of radiation and an 

anti-cancer drug, such as irinotecan) is administered. When given postoperatively, adjuvant 

chemoradiation has been found to improve the local control of the disease and increase the 

disease-free survival rate when compared to surgery alone [95]. One study showed that 

preoperative chemoradiotherapy provides greater local control and a reduction in adverse 

toxicity, when compared with postoperative chemoradiotherapy [96]. 

Topoisomerase inhibitors can also be given in combination with radiotherapy as the 

topoisomerase I inhibitors, camptothecins, have been shown to increase the sensitivity of 

cancer cells to radiation [97]. One study by Klautke et al (2011) involving patients with 
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locally advanced rectal adenocarcinoma showed that the camptothecin derivative irinotecan 

when used in conjunction with radiotherapy and the radiation sensitizing drug 5-fluorouracil 

to treat rectal cancer gives good results with a pathologic complete response (pCR) observed 

in 22% of patients, and a four year survival rate of 66% [98]. A pathologic complete response 

is defined as showing no residual invasive tumour or lymph node metastasis following 

treatment [99]. The North West/North Wales Clinical Oncology Group (NWCOG) -2 trial, a 

2011 study by Gollins et al involving 110 adenocarcinoma patients showed that preoperative 

chemoradiotherapy with capecitabine and irinotecan can be used as an effective method of 

downstaging for colorectal cancer prior to surgery with the T-stage downstaged in 67% of 

patients and the N stage downstaged in 80% of patients; this has shown to improve prognoses 

giving increased response rates and improved long-term survival, with a three year local 

recurrence free survival of 96.9%, a metastasis free survival of 71.1%, a disease free survival 

of 63.5% and an overall survival of 88.2%. 22% of patients showed a pathologic complete 

response [100]. Only around 15-30% of colorectal cancers are hypersensitive to 

camptothecins [101] [102]. The aforementioned observations suggest the involvement of 

cellular mechanisms that remove the covalently bound topoisomerases from DNA, even in 

the presence of inhibitors, to aid the survival of the cell. 

 

1.3.3 Mechanisms of topoisomerase removal 

The Tyrosyl-DNA phosphodiesterase (Tdp1) enzyme has been found to hydrolyse the 

topoisomerase-DNA bond to remove top1 from DNA at transcription stalls [94] [103]. 

However, deletions of the tdp1 gene in yeast have shown to only provide a mild sensitivity to 

CPT, suggesting that there are other proteins involved in the removal of topoisomerases and 

the resistance to topoisomerase inhibitors [94]. 

During meiotic recombination in S. pombe the topoisomerase-like protein Rec12 (homologue 

of S. cerevisiae Spo11) covalently binds to DNA to induce a DSB, Rec12 is then removed 

prior to end resection. One study showed that this process was carried out by the nuclease 

activity of Mre11 and Ctp1
CtIP

 [104]. Another study showed that Mre11 together with 

Ctp1
CtIP

 are also involved in the removal of covalently bound topoisomerases from DNA, 

Mre11 was shown to aid the removal of Top1 and Top2 from DNA in vivo, Ctp1
CtIP

 was 

shown to be involved in the removal of Top2 but inhibited the removal of Top1 from DNA, 
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these results and a survival assay showed a role for these proteins in the resistance to 

topoisomerase inhibitors. [94].  

As the MRN complex and CtIP proteins are involved in topoisomerase inhibitor resistance, it 

was theorised that mutations within the genes which encode these proteins could present 

affected cells with an increased sensitivity to topoisomerase inhibitors. Mutations in these 

genes frequently occur in MSI tumours due to the presence of repeat sequences within the 

genes, studies have shown an increase in sensitivity of MSI colorectal tumour cells to the 

camptothecin derivative Irinotecan [102] [105] [67]. CRC patients with MSI-H showed a 

greater response to irinotecan therapy over patient’s with MMR proficient tumours, but 

showed no greater sensitivity to fluorouracil [67]. One study found that the S. pombe rad50S 

(rad50-K81I, separation-of-function mutant that retains the ability to form meiotic DNA 

breaks, but loses resection and repair abilities [106]) and the nuclease dead mre11-D65N 

confer a high sensitivity to topoisomerase inhibitors but only mild sensitivity to other agents 

that damage the DNA [94]. Another study in human cells demonstrated that a specific mutant 

of MRE11, the Δ5-7MRE11 mutant conferred hypersensitivity to camptothecin when 

transfected into a camptothecin resistant cell line and acts in a dominant negative manner 

[107]. These results suggest that mutations of the MRE11, RAD50, NBS1 and CtIP genes may 

provide targets for drugs that increase sensitivity to topoisomerase inhibitors through 

inhibition of MRN or CtIP. For example, mirin has been identified as an inhibitor of Mre11 

nuclease activity [108] and therefor may sensitise cells to topoisomerase inhibition. 

Mutations within these genes may provide prognostic markers to cancers treated with 

topoisomerase inhibitors and that certain specific mutations may confer a higher degree of 

sensitivity over other mutations. Many mutations in MRE11, RAD50, NBS1 and CtIP have 

been identified so-far and are described in section 1.5. These mutations require further 

investigation to identify the specific prognostic value which may be carried by each 

individual mutation. 
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1.4 The use of Nucleoside Analogues in Cancer Therapy 

 

1.4.1 Colorectal cancer treatment using nucleoside analogues 

Nucleoside analogues are a class of drugs that have been administered to treat cancer and 

viral disease for over half a century [109]. The NWCOG-2 trial (as mentioned in section 

1.3.2) utilised the drug capecitabine along with irinotecan, radiotherapy and excision [110] 

[100]. Capecitabine is an orally administered prodrug that is metabolised into the base 

analogue 5-fluorouracil (5-FU) inside the body [111]. This trial showed a pCR in 22% of all 

patients and a three year survival rate of 88% [100]. Another study using a similar regimen 

also showed a pCR in 22% of patients [98]. 

Radiosensitisation of colorectal cancer cells can be induced by administration of nucleoside 

analogues such as gemcitabine [112] and nucleobase analogues such as 5-FU [113] and 5-

fluorocytosine [114], and thus facilitates treatment using radiotherapy. 

 

1.4.2 The mechanisms of action of nucleoside analogues 

Nucleoside analogues are known to cause cytotoxicity through three main mechanisms, by 

incorporation into DNA, incorporation into RNA, or by inhibiting enzymes which function in 

nucleic acid and nucleotide synthesis [115]. 

 

1.4.2.1 DNA incorporation 

For some nucleoside analogues, such as fludarabine and gemcitabine, DNA incorporation is 

required for cytotoxicity [116]. Once the nucleosides have entered a cell, they are converted 

into their respective triphosphate forms through phosphorylation and are subsequently 

incorporated into DNA [117] [118]. The base excision repair (BER) proteins Polymerase β 

and XRCC1 have been found to function in the incorporation of the nucleoside analogues 

gemcitabine and cytarabine into DNA. Following the recognition of DNA damage during 

BER, the damaged base is excised, creating gap which is subsequently filled and ligated by 

Polymerase β and XRCC1 respectively, during which a nucleoside analogue can be 

misincorporated into the DNA [119]. The MMR pathway can also lead to the 

misincorporation of nucleoside analogues into DNA, as MMR creates a nick in the DNA 

250-100 bp from the mismatch, which is subsequently degraded and then filled by DNA 
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synthesis, which can misincorporated nucleoside analogues [120]. Nucleoside analogues can 

also be incorporated into nuclear and mitochondrial DNA during DNA replication [121]. 

Nucleoside analogues cause the steric hindrance of replication forks when incorporated into 

DNA, this causes the replication forks to stall, which activates the S-phase checkpoint 

leading to cell cycle arrest and apoptosis [122] [123]. Blocking of cell cycle progression 

through S-phase has been found to induce radiosensitivity in cells treated with gemcitabine 

[124].  

DNA incorporation of the active metabolite of the nucleoside analogue 5-fluorouracil (5-FU), 

has also been shown to contribute to cytotoxicity by inducing mutations that lead to aberrant 

protein synthesis  [125] [126]. 

 

1.4.2.2 RNA incorporation 

Nucleoside analogue incorporation into mRNA can also lead to cytoxicity through the 

synthesis of aberrant proteins through miscoding and defective splicing [125] [127]. 

Nucleoside analogues can also be incorporated into tRNA [128], and inhibit 

posttranscriptional modification, and rRNA, which can inhibit pre-rRNA processing [129]. 

These mechanisms are known to contribute to the cytotoxicity of 5-FU [125] [127] [128] 

[129]. 

 

1.4.2.3 Inhibition of enzymes involved in nucleic acid synthesis 

Nucleoside analogues can also exert cytotoxicity through the inhibition of enzymes that 

function in the synthesis of nucleotides. Gemcitabine is known to inhibit ribonucleotide 

reductase (RNR) [130] [131], an enzyme required to synthesise deoxyribonceotides. 

Inhibition of RNR leads to depletion of cellular nucleotide pools. [131] [132]. An active 

metabolite of 5-FU is known to inhibit the enzyme thymidylate synthase (TS), an enzyme 

which functions in the synthesis of dTMP, which is required for dTTP synthesis. TS inhibiton 

leads to thymidineless death through the depletion of cellular thymidine pools and the 

misincorporaton of dUTP into DNA [133]. 

 



18 

 

1.4.3 Roles of the MRN complex and CtIP in nucleoside analogue resistance 

The MRN and ATM proteins have been found to function in the resistance to nucleoside 

analogues by responding to stalled replication forks that have occurred due to the 

incorporation of nucleoside analogues into DNA [134]. MRN and ATM have been found to 

co-localise with γ-H2AX in response to nucleoside analogue induced replication fork stalling, 

even in the absence of DSBs [135]. Poly-(ADP-ribose) polymerase 1 (PARP1) binds to 

stalled replication forks following nucleoside analogue treatment [136] and recruits Mre11 to 

the replication fork to promote resection of DNA and initiate repair of the stalled fork [137]. 

Unpublished research data from the Hartsuiker lab suggests that mutations in MRE11 confer 

hypersensitivity to nucleoside analogues such as gemcitabine, suggesting that the MRN 

complex is required to maintain resistance to nucleoside analogues. Therefore mutations 

within the MRN encoding genes, and also CtIP may confer increased sensitivity in tumours 

to treatment with nucleoside analogues. 
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1.5 Known Mutations of MRE11, RAD50, NBS1 and CtIP 

 

1.5.1 Syndromes associated with germline mutations in MRE11, NBS1, RAD50 and 

CtIP  

Mutations within the MRE11 gene are known to be aetiologically linked to ataxia 

telangiectasia-like disorder (AT-LD) which is an extremely rare progressive disease similar 

to ataxia telangiectasia (AT) and presents with progressive cerebellar ataxia, oculomotor 

apraxia, increased sensitivity to radiation, cell cycle checkpoint defects and chromosomal 

instability [138], however, unlike AT, AT-LD does not present with telangiectasia or severe 

immunodeficiency [139] [140] and has not been shown to cause an increased risk of cancer 

[139] [141]. One study showed that mice heterozygous for an AT-LD causing mutation did 

not exhibit cancer predisposition [142]. The MRE11 N117S [143], W210C [139], T481K, 

[144], R572X [144] [145] and R633X [143] [146] mutations are associated with AT-LD. The 

locations of the aforementioned AT-LD related mutations on the human MRE11 gene and 

Mre11 protein amino acid sequence are shown in Figure 6 and Figure 7 respectively. Table 1, 

on page 29 shows the known MRE11 mutations. Figure 16 on page 87 shows the domain 

structure of human Mre11 in comparison to mutants, including the Mre11-R572X protein. 

The germline MRE11 R633X mutation, when present heterozygously, has been found to 

cause an increased predisposition to breast cancer, this was also found of the R202G mutation 

[146]. 

Germline mutations within NBS1 are known to cause Nijmegen breakage syndrome (NBS), a 

rare autosomal recessive disease which presents with microcephaly, radiosensitivity, 

impaired growth, immunodeficiency and an increased risk of developing cancer [147] [148]. 

Over 90% of the mutations in NBS1 that are responsible for NBS are the founder mutation, 

657del5 [148] [149], a 5 base pair deletion causing a frameshift and a premature stop codon 

resulting in a truncated protein which contains the N-terminal fork-head-associated (FHA) 

and the domain required for BRCA1 interaction however the domain required for Mre11 

interaction is not present [150]. Compound heterozygotes of 657del5 and another NBS 

related mutation, R215W, exhibit a phenotype which is more severe that those homozygous 

for 657del5 [151, 152, 153]. The R215W mutation affects the BRCT (BRCA1 Carboxyl 

Terminal) domains causing impairment in the protein’s ability to bind to histone γ-H2AX 

resulting in a delay in DNA-DSB repair [153]. Other mutations associated with NBS include 
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the nonsense mutations Q326X and Y363X and the frameshift truncations 681delT, 698del4, 

742insGG, 835del4, 842insT, 900del25 and 1142delC [149] [154]. 

Heterozygous mutations in NBS1, particularly the 657del5, I171V, R215W and IVS11+2insT 

mutations, have also been found to cause an increase in cancer predisposition, particularly to 

tumours of the colon and rectum, breast, prostate, lymphoblastic leukaemia and non-

Hodgkin’s lymphoma due to haploinsufficiency of Nbs1 [149]. A study has shown that the 

NBS1-I171V mutation functions in a dominant negative manner, impairing DNA repair 

leading to chromosomal instability [155]. A homozygous germline mutation of E185Q was 

thought to increase cancer predisposition [156] [157] [158], however a recent meta-analysis 

has suggested that there is no association between this variant and overall cancer risk [159] 

[160]. The locations of aforementioned NBS related mutations on the human NBS1 gene and 

Nbs1 protein and amino acid sequence are shown in Figure 10 and Figure 11 respectively. A 

table showing the known NBS1 mutations is shown in Table 3. 

There currently is no syndrome attributed to mutations in RAD50, however one patient with 

compound heterozygous mutations of RAD50 was described with an NBS-like disorder 

(NBS-LD). The two mutations identified were the R1093X truncation and the 

X1313YextX*66 mutation in which the stop codon is replaced by a tyrosine residue leading 

to the translation of an additional 66 amino acids [161]. The locations of aforementioned 

NBS-LD related mutations on the human RAD50 gene and Rad50 protein and amino acid 

sequence are shown in Figure 8 and Figure 9 respectively. A table showing the known 

RAD50 mutations is shown in Table 2. 

Homozygous mutations of CtIP have recently been identified to cause Seckel syndrome, a 

disorder characterised by neurological and growth syndromes. An increase in cancer risk has 

also been attributed to this disorder although few malignancies have been reported in Seckel 

syndrome. CtIP has also been linked to the Seckel-like microcephalic disorder Jawad 

syndrome. The Seckel Syndrome mutation (CtIP
S
) occurs at the 15

th
 splice donor site, 

causing the insertion of the sequence from intron 15 and a premature stop codon. The Jawad 

syndrome mutation (CTIP
J
) is a 2bp deletion causing a frameshift and truncation [162]. The 

locations of aforementioned Seckel syndrome and Jawad syndrome related mutations on the 

human CtIP gene and CtIP protein and amino acid sequence are shown in figures 12 and 13 

respectively. A table showing the known CtIP mutations is shown in Table 4. 
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1.5.2 MSI associated mutations of MRE11, RAD50, NBS1 and CtIP 

There have been many different mutations of the MRE11, RAD50, NBS1 and CtIP genes 

found within colorectal cancer cells. Many of these mutations occur within short repeating 

sequences with cancer cells which exhibit MSI. One of these repeat sequences which is 

commonly effected is the poly(T)11 repeat located within intron 4 of the MRE11 gene in 

which 1 or 2 bp deletions were found within 93% of all MMR deficient colorectal cancers 

[163] (see Figure 6 and Figure 7). These mutations are believed to interfere with the splicing 

process following transcription leading to the generation of a truncated Mre11 protein [163] 

[164] as this poly(T)11 repeat sequence provides an accessory splicing signal for the MRE11 

intron 4 (IVS-4) 3ʹ-splice acceptor site which can lead to the removal of exon 5 by the 

splicing process [164]. It is thought that the number of deletions of T bases within this 

sequence can greatly affect the expression of the Mre11 protein as it was shown that most 

cells carrying a wild type or a single base pair deletion show a normal level of Mre11 

expression whereas the level of Mre11 expression is greatly reduced in cells carrying a 2 bp 

deletion with a complete absence occurring in 56% of cases [164]. 

There are two known transcripts which arise due to these mutations one of which is the 

MRE11-484del88 mutant gene generated by a complete deletion of exon 5 and frameshift 

which causes a premature stop codon to occur within the transcript, leading to the synthesis 

of a 105 amino acid (out of 708) protein [4] [163]. This mutant protein is associated with a 

reduction in the expression of the other two proteins which constitute the MRN complex 

[165]. The Mre11-484del88 mutant protein is only found in colorectal cancer cells with 

MMR deficiency, in which one study identified this transcript in 98% of MMR deficient 

colorectal cancers [163] [165]. Mre11-484del88 has never been found within the 

microsatellite stable colorectal cells, non-cancerous surrounding colonic mucosa or within the 

peripheral blood [163]. 

The other mutant transcript that arises due to deletions within the poly(T)11 sequence of 

MRE11 intron-4 is that of Δ5-7MRE11 in which exons 5-7 are deleted resulting in a 593 amino 

acid protein in which the 3
rd

 and 4
th

 highly conserved phosphodiesterase domains, which are 

required for 3ʹ-5ʹ exonuclease activity, are removed [107]. The domain structure of wild-type 

Mre11 and Δ5-7Mre11 is shown in figure 16. A loss of nuclease activity is characteristic of the 

Mre11-D65N nuclease dead mutant protein in S. pombe (see page 15) suggesting a possibility 

that Δ5-7MRE11 may encode a separation of function mutant protein. This mutant protein, like 

the Mre11-484del88 protein, is found only within MMR deficient colorectal cancer cells and 
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has not been identified in any MMR proficient cells. This mutant protein has been shown to 

have decreased levels of interaction with Rad50 and decreased affinity for Nbs1 in 

comparison to wild-type Mre11, however the affinity for ssDNA regions is greater in this 

mutant than the wild-type suggesting a possibility that Δ5-7Mre11 persists at DNA following 

stress at the replication fork [107]. Cells expressing the Δ5-7Mre11 mutant have shown an 

increased sensitivity to the topoisomerase inhibitor camptothecin (see page 15) and 

thymidine, a drug which interferes with the cellular nucleotide balance by inhibiting the 

ribonucleotide reductase enzyme, causing an increase in the cellular concentration of 

deoxythymidine triphosphate (dTTP) and a decrease in the deoxycytosine triphosphate 

(dCTP) levels, thus disrupting DNA synthesis and the cell’s progression through to S-phase. 

Thymidine induces homologous recombination, it has been shown that cells expressing Δ5-

7MRE11 are defective in thymidine induced homologous recombination [107]. Following 

thymidine treatment in Δ5-7MRE11 expressing cells, ATM autophosphorylation is impaired, 

however the phosphorylation of Chk1, Chk2 and Nbs1 is not. Δ5-7 Mre11 containing cells 

were found to be defective at forming Mre11 foci and showed a slightly higher sensitivity to 

high doses of ionising radiation than the wild-type cells [107]. Cells expressing Δ5-7MRE11 

have been shown to exhibit hypersensitivity to inhibition of poly(ADP-ribose)polymerase 

(PARP-1), an enzyme which functions to repair DNA single-stranded breaks with ends that 

require processing, inhibition of this enzyme can lead to the accumulation of DNA single-

stranded breaks which can form DSBs as a result of DNA replication [166] [167]. 

Transfection of the Δ5-7MRE11 transcript into the HR proficient U937 cell had a detrimental 

effect on HR, as shown by an increase in the number of phosphor-γH2AX foci and a decrease 

in the number of Rad51 foci, following inhibition of PARP [167]. 

The frequencies of mutations in the aforementioned poly(T)11 mutation of Mre11 in MMR 

deficient colorectal cancers has been found to decrease with stage, with one study showing 

100% of MMR deficient tumours of stage A and B, whereas this was only found in 68.8% of 

tumours at grade C and D. The biallelic mutation frequency was also found to differ by grade 

with 55.6% of grade G1 and G2 patients having biallelic MRE11 mutations, this decreased to 

37.5% in grade G3 [165]. 

Repeat sequences located within coding regions can also be subject to mutation in cells with 

MSI, as is the case with the poly(A)9 repeat sequence in exon 13 of the RAD50 gene (see 

Figure 8 and Figure 9). This region has been found to be affected by single base pair 

deletions and insertions [70] [168] [169] which result in frameshifts that give rise to truncated 
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proteins consisting of 734 and 726 amino acids (out of 1312) respectively, both of which lack 

the C-terminal heptad repeat and therefore are unable to bind to Mre11 [168]. 2 bp deletions 

within this repeat have also been reported, these cause a frameshift similar to that of the 1 bp 

insertion but with a loss of a lysine residue, resulting in a 733 amino acid protein [70]. The 

aforementioned mutations have been found to occur in 33% of colon cancers and 38% of 

gastric cancers with MSI [70]. These mutations only occur within MSI-H cells, in which they 

were identified in 60% of MSI-H colorectal cancer cell lines and 46% of primary colorectal 

carcinomas with MSI-H and where not found in any MSI-S or MSI-L cell lines or primary 

tumour samples [168]. The aforementioned mutations were thought to only occur 

heterozygously within cells, as it is thought that a homozygous phenotype would be 

incompatible for cell survival [168], however one study showed a homozygous poly(A)8 

mutation within the LoVo cell line [169]. These mutations occur at high frequencies 

throughout the different stages of colorectal cancer, with frequencies of 57.1%, 71.4% and 

40% at Dukes A, B and C stages respectively in tumours from patients with HNPCC [170].  

A second repeat sequence, the poly(A)8 repeat in exon 17, that may be affected by MSI and 

lead to the generation of a mutated protein is present within Rad50 [169] [171] (see Figure 8 

and Figure 9). A homozygous single base pair deletion in this repeat sequence was identified 

in the LS411N cell line. A single base pair deletion causes a frameshift with a premature stop 

codon, leading to the expression of a truncated 938 (out of 1312) amino acid protein [169] 

(see figure 17 on page 89) 

The NBS1 gene contains a poly(A)7 repeat within exon 11 that is known to be subject to a 

single A base deletion, also referred to as the 1651delA mutation, in MSI tumours (see Figure 

10 and Figure 11). This mutation gives rise to a truncated protein that is 577 amino acids in 

length (see figure 18 on page 91). This mutation is found only in MSI-H tumours, in which it 

occurs within 3% of MSI-H colorectal cancers and 3.3% of MSI-H gastric cancers, and is not 

found in any MSI-S or MSI-L tumour cells [172]. 

Microsatellite instability can also affect the microsatellites of the CtIP gene with the 

poly(A)9 sequence of exon 12 being a frequent target for mutation (see Figure 12). This 

mutation leads to the expression of a truncated protein that consists of the N-terminal 357 

amino acid region [173] (see figure 19 on page 93). This mutation is also known to confer 

hypersensitivity to PARP inhibition [167]. In one study, this mutation was found in 22.9% of 

MSI colorectal tumours, significantly higher than the mutation frequency of intronic 
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poly(A)9 repeats (approximately 5%). Tumours containing this mutation were most common 

in the proximal region of the colon, similar to that of other MSI colorectal tumours. The 

occurrence of this mutation differed by the grade of the tumour, with 16%, 52%, 28% and 4% 

of cases of tumours with this mutation in grades I, II, III and IV respectively, which was 

similar to other MSI tumours (occurring at 8%, 72%, 20% and 0% at grades I, II, III and IV 

respectively) [174].  

 

1.5.3 Other mutations of the MRE11, RAD50, NBS1 and CtIP found in cancers 

Mutations in MRE11, RAD50, NBS1 and CtIP that are not associated with MSI have also 

been found to occur in various cancers. The locations of these mutants on the MRE11, 

RAD50, NBS1 and CtIP genes are shown in figures 6, 8, 10 and 12 respectively. The 

locations of these mutants on the Mre11, Rad50, Nbs1 and CtIp protein amino acid sequences 

are shown in figures 7, 9, 11 and 13 respectively. Full lists of the mutations, and their 

associated diseases, are shown in tables 1-4.  

Seven different MRE11 mutations, W210X, C249X, Q459X, E460X, L473F, M523K, Q629K 

and M675I, have been identified in colorectal cancers with chromosomal instability (CIN) 

[175]. Tumours with CIN are characterized by aneuploidy and the high rate of which affected 

cells gain and lose whole, or large parts of, chromosomes [175] [176]. Tumours with CIN 

carry a poor prognosis, worse than that of MSI tumours [176] [177]. A figure showing the 

domain structure of wild-type Mre11 and Mre11-W210X is shown in figure 16. 

MRE11 mutations can also arise in cancers of other organs, such as the breast in which the 

missense mutations S104C [178], F237C, H302Y [179] and R503H [178] have been 

identified. A mutation in which a 63bp sequence from intron 20 is inserted between codons 

690 and 691 was identified in a breast cancer cell line, this inserted sequence codes for a 

premature stop codon leading to a truncated MRE11 protein that lacks the C-terminal charged 

amino acid domain. This transcript is thought to occur due to a splicing error as no mutations 

on the DNA have been attributed [178]. 

Other cancers in which MRE11 has been found to be mutated include ovarian cancer and 

lymphoma, in which the mutations R305W [180] and R572Q [178] have been identified 

respectively. 
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Mutations in RAD50 have also been identified in cases of breast and ovarian cancer, one such 

mutation is the 687delT frameshift that leads to the production of Rad50 proteins that are 

approximately 80% shorter than that of the wild type, only containing the N-terminal domain 

required for binding to MRE11. One study found this mutation in around 2.5% of breast 

cancer cases [180]. Two missense mutations of RAD50 have also been found in breast and 

ovarian cancer, the I94L and R224H mutations that affect the amino-terminal and coiled coil 

domain of Rad50 respectively [180]. 

One study identified three novel NBS1 mutants found in breast, ovarian, colorectal and 

gastric cancer. These mutations were R43X, a truncation within the first exon found in more 

than half of all sequenced alleles; Ins 50 bp from Intron 2, a splicing error in which leading to 

a premature in-frame stop codon; and Δ13 NBS1, a splicing error which leads to the deletion 

of exon 13 in the transcript. No splice donor or acceptor site mutations have been identified 

for the latter two mutations [181]. 

Other mutations in NBS1 have been found in breast cancer, L150F [180]; renal cancer, 

Y679H [182]; ALL and lymphoma, S93L, D95N and V210F [183] [184]. 

Mutations in CtIP have been found in cells of colorectal cancer, V394M, P436S and Y819S 

[185]; pancreatic cancer, K337E [185]; ovarian cancer and breast cancer, R589H [173] [185]. 
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1.6 Figures Showing the Mutations Mapped to the Genes and Proteins 

1.6.1 MRE11

Figure 6. A map of the human MRE11 gene showing the exon/intron structure of the gene and the locations of the mutations which have been 

identified in tumour cell lines, cancer patient samples and patients with Ataxia Telangiectasia-like Disorder (AT-LD). 

hMRE11 
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Alignment of the Human Mre11 Protein with the Mouse, Chicken, S. pombe and S. cerevisiae Homologues 

 

 

 

 

hMre11   1 -----MSTADALDDENTFKILVATDIHLGFMEKDAVRGNDTFVTLDEILRLAQENEVDFILLGGDLFHENKPSRKTLHTCLELLRKYCMGDRPVQFEILSDQSVNFGFSKFPW 

mMre11   1 -----MSPTDPLDDEDTFKILVATDIHLGFMEKDAVRGNDTFVTFDEILRLALENEVDFILLGGDLFHENKPSRKTLHSCLELLRKYCMGDRPVQFEVISDQSVNFGFSKFPW 

gMre11   1 -----MSAVSLQDDEDTFKILIATDIHLGYLEKDAVRGNDTFVTFNEILEHAQKNEVDFILLGGDLFHENKPSRKTIHTCLESLRKYCMGDRPVSFEVLSDQAVNFQLSKFPW 

pMre11   1 MPNDPSDMNNELHNENTIRILISSDPHVGYGEKDPVRGNDSFVSFNEILEIARERDVDMILLGGDIFHDNKPSRKALYQALRSLRLNCLGDKPCELELLSDTSLTTGDTAVCN 

cMre11   1 ---------MDYPDPDTIRILITTDNHVGYNENDPITGDDSWKTFHEVMMLAKNNNVDMVVQSGDLFHVNKPSKKSLYQVLKTLRLCCMGDKPCELELLSDPSQVFHYDEFTN 

 

 

 

 

 

hMre11 109 VNYQDGNLNISIPVFSIHGNHDDPTGADALCALDILSCAGFVNHFGRSMSVEKIDISPVLLQKGSTKIALYGLGSIPDERLYRMFVNKKVTMLRPKEDENSWFNLFVIHQNRS 

mMre11 109 VNYQDGNLNISIPVFSIHGNHDDPTGADALCALDVLSCAGFVNHFGRSMSVEKVDISPVLLQKGSTKLALYGLGSIPDERLYRMFVNKKVTMLRPKEDENSWFNLFVIHQNRS 

gMre11 109 VNYQDENLNIFMPIFSIHGNHDDPTGVDALCALDILSCAGLLNHFGRSTSVEKIDISPILLRKGRTKIALYGLGAIPDERLYRMFVNKQVTMLRPKEDEDSWFNMFVIHQNRS 

pMre11 114 INYLDPNINVAIPVFSIHGNHDDPSGDGRYSALDILQVTGLVNYFGRVPENDNIVVSPILLQKGFTKLALYGISNVRDERLYHSFRENKVKFLRPDLYRDEWFNLLTVHQNHS 

cMre11 105 VNYEDPNFNISIPVFGISGNHDDASGDSLLCPMDILHATGLINHFGKVIESDKIKVVPLLFQKGSTKLALYGLAAVRDERLFRTFKDGGVTFEVPTMREGEWFNLMCVHQNHT 

 

 

 

  

 

hMre11 222 KHGSTNFIPEQFLDDFIDLVIWGHEHECKIAPTKNEQQLFYISQPGSSVVTSLSPGEAVKKHVGLLRIK-GRKMNMHKIPLHTVRQFFMEDIVLANHPDIFNPDNPKVTQAIQ 

mMre11 222 KHGNTNFIPEQFLDDFIDLVIWGHEHECKIGPIKNEQQLFYVSQPGSSVVTSLSPGEAVKKHVGLLRIK-GRKMNMQKLPLRTVRRFFIEDVVLANHPNLFNPDNPKVTQAIQ 

gMre11 222 KHGATNYIPEQFLDDFINLAVWGHEHECKITPAQNEQQHFYVTQPGSSVVTSLSPGEAVKKHIGLLRVK-GKKMKMQRIALETVRTFYMEDVVLADHPELFNPDNPKVTQAIQ 

pMre11 227 AHTPTSYLPESFIQDFYDFVLWGHEHECLIDGSYNPTQKFTVVQPGSTIATSLSPGETAPKHCGILNIT-GKDFHLEKIRLRTVRPFIMKDIILSEVSSIPPM--VENKKEVL 

cMre11 208 GHTNTAFLPEQFLPDFLDMVIWGHEHECIPNLVHNPIKNFDVLQPGSSVATSLCEAEAQPKYVFILDIKYGEAPKMTPIPLETIRTFKMKSISLQDVPHLRP----HDKDATS 

 

 

 

 

 

hMre11 334 SFCLEKIEEMLENAERERLGNSH---------QPEKPLVRLRVDYSG--------GFEPFSVLRFSQKFVDRVANPKDIIHFFRHREQKEKTGEEINFGKLITKPS-EGTTLR 

mMre11 334 SFCLEKIEEMLDSAERERLGNPQ---------QPGKPLIRLRVDYSG--------GFEPFNVLRFSQKFVDRVANPKDVIHFFRHREQKGKTGEEINFGMLITKPASEGATLR  

gMre11 334 AFCMEKVEMMLDNAERERLGNPR---------QPQKPLIILRVDYTG--------GFEPFIVHRFSQKYMDRVANPKDIIHFFRHREQKEKNDNDINFGKLLSRPASEEVTLR  

pMre11 338 TYLISKVEEAITEANAQWYEAQG-TVPVVENEKPPLPLIRLRVDYTG--------GYQTENPQRFSNRFVGRVANATDVVQFYLKKKYTRSKRNDGLYTSAVEDIKIN-----  

sMre11 328 KYLIEQVEEMIRDANEETKQKLADDGEGDMVAELPKPLIRLRVDYSAPSNTQSPIDYQVENPRRFSNRFVGRVANGNNVVQFYKKRSPVTRSKKSGINGTSISDRDVEKLFSE 
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hMre11 429 --VEDLVKQYFQTAEKNVQLSLLTERGMGEAVQEFVDKEEKDAIEELVKYQLEKTQRFLKERHIDALEDKIDEEVRRFRETRQKNTNEEDDEVREAMTRARALRSQSEESASA 

mMre11 430 --VEDLVKQYFQTAEKNVQLSLLTERGMGEAVQEFVDKEEKDAIEELVKYQLEKTQRFLKERHIDALEDKIDEEVRRFRESRQRNTNEEDDEVREAMSRARALRSQSETSTSA 

gMre11 430 --VEDLVKQYFQTAEKKVQLSLLTERRMGEAVQEFVDKEEKDAIEELVKFQLEKTQRFLKERHIDAEEEKIDEEVRKFRESRRKNTEEEDEEVREAMTRARAHRSEGVVLDSA 

pMre11 436 ---SLRVESLVNEYLKTNRLECLPEDSLGEAVVNFVEKDDRDAIKECVETQLNKQINLLVK-KRVTEENLEQEISSIINDLPKISTTK---------------RKDYEELPEE 

cMre11 440 SGGELEVQTLVNDLLNKMQLSLLPEVGLNEAVKKFVDKDEKTALKEFISHEISNEVGILSTNEEFLRTDDAEEMKALIKQVKRANSVRP------------TPPKENDETNFA 

 

 

 

 

 

hMre11 540 FSADDLMSIDLAEQMANDSDDSISAATNKGRGRGRGRRGGRGQNSASRGGSQRGRADTGLETSTRSRNSKTAVSASRNMSIIDAFKSTRQQPSRNVTTKNYSEVIEVDESDVE 

mMre11 541 FSAEDLS-FDTSEQTANDSDDSLSAVPSRGRGRGRGRRGARGQSSAPRGGSQRGR-DTGLEITTRGRSSKATSSTSRNMSIIDAFRSTRQQPSRNVAPKNYSETIEVDDSD-E  

gMre11 541 SSDEGLM--DTGMKASGDSDDDIPTTLSRGRGRGRAR-GARGQNSAARGSSRRGRGNTSQGSSTSSRTYKSVP--DKNSSIMDAFRSLKPEPSQ-STSKFFSEDIIDDEMDLE 

pMre11 530 VSET------SINIAEHTPVLKHTSSLLDH------------HSPLATSSSEHEMEATPSPALLKKTNKRRE-------LPSSLTKKNTRTPQRSKEVKKVPARKLSQSTKKS 

cMre11 541 FNGNGLDSFRSSNREVRTGSPDITQSHVDN------------ESRITHISQAESSKPTSKPKRVRTATKKKIPAFSDSTVISDAENELGDNNDAQDDVDIDENDIIMVSTDEE 

 

 

 

 

 

hMre11 653 EDIFPTTSKTDQRWSSTSS-SKIMSQSQVSKGVDFESSEDDDDDPFMNTSSLRRNRR 

mMre11 651 DDIFPTNSRADQRWSGTTS-SKRMSQSQTAKGVDFESDEDDDDDPFMSSSCPRRNRR 

gMre11 648 ESPISLSSKTNQRSSAMSSFSKRGSQSQMSRGVDFESDE---DDPFKNTATSRRKK- 

pMre11 618 DK-----NTQSTLLFYDPS-----STTEAQYLDNE-------DDEILDD-------- 

cMre11 642 DASYGLLNGRKTKTKTRPA-----ASTKTASRRGKGRASRTPKTDILGSLLAKKRK- 

 

 

 

Figure 7. Mre11 amino acid alignment. An alignment of the amino acid sequences of the human, mouse, chicken, Schizosaccharomyces pombe and Saccharomyces cerevisiae Mre11 

proteins (hMre11, mMre11, gMre11, pMre11 and cMre11 respectively).The sequence is shaded to show the similarities between the sequences of the aforementioned proteins. The 

mutations found in human tumour cell lines and patient samples as well as those found in AT-LD are labelled at their positions on the protein. The area of red text corresponds to the 

exons 5-7 in the human Mre11 as this is the deleted region in the Δ5-7MRE11 mutation. 
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Table 1: Mutations Found Within the Human MRE11 Gene 
 

Mutation Associated Condition(s) Association with MSI or CIN References 

S104C Breast cancer No [178] 

1 or 2 bp deletions in the poly(T)11 repeat in 

intron 4 creating the splice variants MRE11-

484del88 and Δ5-7MRE11 

Colorectal cancer MSI [4], [163], [165] 

N117S AT-LD No [143] 

R202G Breast cancer No [146] 

W210C AT-LD No [139] 

W210X Colorectal cancer CIN [175] 

F237C Breast cancer No [179] 

C249X Colorectal cancer CIN [175] 

H302Y Breast cancer No [179] 

R305W Ovarian cancer No [180] 

Q459X Colorectal cancer CIN [175] 

E460X Colorectal cancer CIN [175] 

L473F Colorectal cancer CIN [175] 

T481K AT-LD No [143] 

R503H Breast cancer No [178] 

M523K Colorectal cancer CIN [175] 

R572X AT-LD No [144], [145] 

R572Q Lymphoma No [178] 

Q629K Colorectal cancer CIN [175] 

R633X AT-LD, Breast cancer No [143], [146] 

M675I Colorectal cancer CIN [175] 

690-691 63 bp Insertion Breast cancer No [178] 

 

Table 1. Table describing the MRE11 mutations shown on Figure 6 and Figure 7. This table shows the amino acid changes for each mutation and the condition for which 

they are associated. The poly(T)11 mutations are also associated with MSI. 
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1.6.2 RAD50

Figure 8. A map of the human RAD50 gene showing the exon/intron structure of the gene and the locations of the mutations which have been 

identified in tumour cell lines, cancer patient samples and patients with Nijmegen Breakage Syndrome-like Disorder (NBS-LD).  

hRAD50 
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Alignment of the Human Rad50 Protein with the Mouse, Chicken, S. pombe and S. cerevisiae Homologues 

  

 

 

 

hRad50   1 MSRIEKMSILGVRSFGIEDKDKQIITFFSPLTILVGPNGAGKTTIIECLKYICTGDFPPGTKGNTFVHDPKVAQETDVRAQIRLQFRDVNGELIAVQRSMVCTQKSKKTEFKT 

mRad50   1 MSRIEKMSILGVRSFGIEDKDKQIISFFSPLTILVGPNGAGKTTIIECLKYICTGDFPPGTKGNTFVHDPKVAQETDVRAQIRLQFRDVNGEMVAVHRSMLCSQKNKKTEFKT 

gRad50   1 MAKIEKMSILGVRSFGVEDKDKQIITFFNPLTILVGPNGAGKTTIIECLKYISTGDFPPGTKGNSFVHDPKVANETDVRAQIRLQFRDVSGELIAVQRSMVCTQKSKKTEFKT 

pRad50   1 MSCIDRMSIMGIRSF--DNRSRESIQFFSPLTLIVGQNGSGKTTIIECLKYATTGILPPNTKGGAFIHDPKICGEKEVLAQVKLAFRNTNQVKMICTRSLQLSVKKTTRQQKT 

cRad50   1 MSAIYKLSIQGIRSFD--SNDRETIEFGKPLTLIVGMNGSGKTTIIECLKYATTGDLPPNSKGGVFIHDPKITGEKDIRAQVKLAFTSANGLNMIVTRNIQLLMKKTTTTFKT 

 

 

 

 

 

hRad50  114 LEGVITRTKH-GEKVSLSSKCAEIDREMISSLGVSKAVLNNVIFCHQEDSNWPLSEGKALKQKFDEIFSATRYIKALETLRQVRQTQGQKVKEYQMELKYLKQYKEKACEIRD 

mRad50  114 LEGVITRMKH-GEKVSLSSKCAEIDREMISCLGVSKSVLNNVIFCHQEDSNWPLSEGKALKQKFDEIFSATRYIKALDTLRQVRQTQGQKVKECQTELKYLKQNKEKACEIRD 

gRad50  114 LEGVITRTKH-GEKVSLSSKCAEIDREMISALGVSKSVLNNVIFCHQEESNWPLSEGKALKQKFDEIFSATRYIKALETLRQVRLKQGTKVKECQTELKYLKQNKEKAQEIQD 

pRad50  112 LDGQLLILKD-NERTTISNRCAELDSQVPLSLGVSKALLDYVIFCHQEESFWPLSEPANLKKRFDEIFESLRYAKALDQIKGLKRDQETQVKVDQATLTHYRSDKERAEKIEL 

cRad50  112 LEGQLVAINNSGDRSTLSTRSLELDAQVPLYLGVPKAILEYVIFCHQEDSLWPLSEPSNLKKKFDEIFQAMKFTKALDNLKSIKKDMSVDIKLLKQSVEHLKLDKDRSKAMKL 

 

 

 

 

 

hRad50  226 QITSKEAQLTSSKEIVKSYENELDPLKNRLKEIEHNLSKIMKLDNEIKALDSRKKQMEKDNSELEEKMEKVFQGTDEQLNDLYHNHQRTVREKERKLVDCHRELEKLNKESRL 

mRad50  226 QITSKEAQLASSQEIVRSYEDELEPLKNRLKEIEHNLSKIMKLDNEIKALESRKKQMEKDNSELEQKMEKVFQGTDEQLNDLYHNHQRTVREKERRLVDCQRELEKLNKEARL 

gRad50  226 NLANREAQLSASKENIKSIESQLDPLKSSLAAVEKNLMEVMSLDNNVKALESRRIQMEKDNQDLQRKMEKVFQGTDEQLKDRYHNHQRTVKEKEKRLSDCKRELDRASKECQR 

pRad50  224 RVHESLKRISCIRSKVEELDQEITETARLQDELFKSTEEYEQQMITIRHLESQSDIINTTINDLKSQMTITDE-SSEDLEKLHSNFAEKVKEEQELYKSLEKKRSDLESLLKS 

cRad50  225 NIHQLQTKIDQYNEEVSEIESQLNEITEKSDKLFKSNQDFQKILSKVENLKNTKLSISDQVKRLSNSIDILDL-SKPDLQNLLANFSKVLMDKNNQLRDLETDISSLKDRQSS 

 

 

 

 

 

hRad50  339 LNQEKSELLVEQGRLQLQADRHQEHIRARDSLIQSLATQLELDGFERGPFSERQIKNFHKLVRERQEGEAKTANQLMNDFAEKETLKQKQIDEIRDKKTGLGRIIELKSEILS 

mRad50  339 LNQEKAELLVEQGRLQLQADRHQEHIRARDSLIQSLATHLELDGFERGPFSERQIKNFHELVKERQEREAKTASQLLSDLTDKEALKQRQLDELRDRKSGLGRTIELKTEILT 

gRad50  300 FNSEKSELLIERGRLQLQADRHQEHIKVRDSLIQALSAQLELDGFEQAPFNDRQIAVFHELLKERQKSDTEAANQLMREFTKEAMKQEQIDQKIRDRKTGLERSIDLKSDIQN 

pRad50  336 RRELLEKLTGDLGKIQGEIESLEKLKVKKSTMINEIVHRYNINEINEEGIMT-EVSKYASLVN-------KNYEISSGKLKERQVAVRARIEGIKAHEMFLNNRVSEINSSLE 

cRad50  337 LQSLSNSLIRRQGELEAGKETYEKNRNHLSSLKEAFQHKFQGLSNIENSDMAQVNHEMSQFKAFISQDLTDTIDQFAKDIQLKETNLSDLIKSITVDSQNLEYNKKDRSKLIH 
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hRad50  452 KKQNELKNVKYELQQLEGSSDRILELDQELIKAERELSKAEKNSNVETLKMEVISLQNEKADLDRTLRKLDQEMEQLNHHTTTRTQMEMLTKDKADKDEQIRKIKSRHSDELT 

mRad50  452 KKQSELRHVRSELQQLEGSSDRILELDQELTKAERELSKAEKNSSIETLKAEVMSLQNEKADLDRSLRKLDQEMEQLNHHTTTRTQMEMLTKDKTDKDEQIRKIKSRHSDELT 

gRad50  452 KRLAELKNVKYELCQLEGSSDRIAELDREIVKMEHELEKAERNSNVETLEQEVQTLQNEKINLDKVLRRLDQEMEQLNLHTTTITQMEMLKKDKADKEEQIRKVKLRHSEELT 

pRad50  441 KQLTTQKELRSRFEILFPVKLQREDFTKDVEKSDLWIKSLRQEYESKNLLELLDKHQTALSSVENRLDEISEIVDSYHKYSGVRTKLQVFEENKTNKSAILANQLMTLKSSFS 

cRad50  448 DSEELAEKLKSFKSLS--TQDSLNHELENLKTYKEKLQSWESENIIPKLNQKIEEKNNEMIILENQIEKFQDRIMKTNQQADLYAKLGLIKKSINTKLDELQKITEKLQNDSR 

 

 

 

 

 

hRad50  566 SLLGYFPN--------KKQLEDWLHSKSKEINQTRDRLAKLNKELASSEQNKNHINNELKRKEEQLSSYEDKLFDVCGSQD-FESDLDRLKEEIEKSSKQRAMLAG-ATAVYS 

mRad50  566 SLLGYFPN--------KKQLEDWLHSKSKEINQTRDRLAKLNKELASAEQNKNHINNELKKKEEQLSSYEDKLFDVCGSQD-LESDLGRLKEEIEKSSKQRAMLAG-ATAVYS 

gRad50  566 LLLGYFPN--------KKQLEDWLHGKSTEINETRSRHALLNKQLASAEQQKNYISAELRKKEEQLSNYEAKLFDVCGSQD-FDSNLNKLQDEIEKSSKQRAVLAG-ATAVYS 

pRad50  551 EVMSYELKDDDN---YNEELDKLVEDVRKKLQEKEEAESSLRSVRERLEIRISLSVQSINDLTENKKIKTKTLKSYSGTFASMISEIKALESEIEENRKTLHSLQF-GSTFYE 

cRad50  561 IRQVFPLTQEFQRADLEMDFQKLFINMQKNIAINNKKMHELDRRYTNALYNLNTIEKDLQDNQKSKEKVIQLLSENLPEDCTIDEYNDVLEETELSYKTALENLKMHQTTLEF 

 

 

 

 

 

hRad50  668 QFITQLTDENQSCCPVCQRVFQTEAELQEVISDLQSKLRLAPDKLKSTESELKKKEKRRDEMLGLVPMRQSIIDLKEKEIPELRNKLQNVNRDIQRLKNDIEEQETLLGTIMP 

mRad50  668 QFITQLTDENQSCCPVCQRVFQTEAELQEVISDLQSKLRLAPDKLKSTESELKKKERRRDEMLGLVPVRQSIIDLKEKEIPELRNRLQSVNRDIQRLKNDIEEQETLLGTIMP 

gRad50  668 QFITQLTEENQSCCPVCQRVFQTEAELQDVISDLQSKLRLAPDKLKSTESELKKREKKRDEMIGLKPIRQTVVELQERDIPDLRNRLQTVNRDFARLKGEIEEQETLLQTVLS 

pRad50  662 KAIEICVD--QHACQLCQRSLDKEEE-KLFVEHCHSMIDVIPSKSAEVYSHLETLTKTFKNLSEAKPIFD-EIELLDKRLSETKTELSDLQGDLQGLDIRKDIQSELDTLYEL 

cRad50  674 NRKALEIAERDSCCYLCSRKFENESFKSKLLQELKTKTDAN---FEKTLKDTVQNEKEYLHSLRLLEKHIITLNSINEKIDNSQKCLEKAKEETKTSKSKLDELEVDSTKLKD 

 

 

 

 

 

hRad50  781 EEESAK-VCLTDVTIMERFQMELKDVERKIAQQAAKLQGIDLD----RTVQQVNQEKQEKQHKLDTVSSKIELNRKLIQDQQEQIQHLKSTTNELKSEKLQISTNLQRRQQLE 

mRad50  781 EEESAK-VCLTDVTIMERFQMELKDVERKIAQQAAKLQGVDLD----RTVQQVNQEKQEKQHRLDTVTSKIELNRKLIQDQQEQIQHLKSKTNELKSEKLQIATNLQRRQQME 

gRad50  781 EKEGAN-ACLQDITLMERYQTDIRDVERKIAQQEAKLLGVDLN----RTVLQVSQEKQAKKHLWDTVTSKIELNQKMKQDQQNQIQELKSTVNELRAEKLQISSSVQRRQQLE 

pRad50  772 RRANLE-KLQLLVKDISNLEEEIRTIDRETEVLRIELPSSIAH----HNLDEIYAEREKLLEKRGYLRKQIERTKLEETSFKKKIDDAVLANNEQKLKLTKLNFQVNELEQLE 

cRad50  784 EKELAESEIRPLIEKFTYLEKELKDLENSSKTISEELSIYNTSEDGIQTVDELRDQQRKMNDSLRELRKTISDLQMEKDEKVRENSRMINLIKEKELTVSEIESSLTQKQNID 
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hRad50  889 EQTVELSTEVQSLYREIKDAKEQVSPLETTLEKFQQEKEELINKKNTSNKIAQDKLNDIKEKVKNIHGYMKDIENYIQDGKDDYKKQKETELNKVIAQLSECEKHKEKINEDM 

mRad50  889 EQSVELSTEVQSLNREIKDAKEQISPLETALEKLQQEKEELIHRKHTSNKMAQDKINDIKEKVKNIHGYMKDIENYIQDGKDDYKKQKETELNGVAVQLNECEKHREKINKDM 

gRad50  889 EQTVELTTEVQSLSREIKEEKEQVFPLDATLEKLQQDKEDLINKRTASNKEIQEKMNAIKEKVKDINKYTKEIENYIQQGKEEYKKQKECELDEVNSQLVACEKQKEKISKEM 

pRad50  880 KDINKSSEDCDLQKKKLLEVSSKQGSQAPFLNELESEYEKLEADIQEMAQKSRTEILEANEYLHQLNEWNSELRIDVSTKFKCIKEKK----SNIGEEVRIIASKIESTDDNL 

cRad50  897 DSIRSKRENINDIDSRVKELEARIISLKNKKDEAQSVLDKVKNERDIQVRNKQKTVADINRLIDRFQTIYNEVVDFEAKGFDELQTTIK-ELELNKAQMLELKEQLDLKSNEV 

 

 

 

 

 

hRad50 1002 RLMRQDIDTQKIQERWLQDNLTLRKRNEELKEVEEERKQHLKEMGQMQVLQMKSEHQKLEENIDNIKRNHNLALGRQKGYEEEIIHFKKELREPQFRDAEEKYREMMIVMRTT 

mRad50 1002 GTMRQDIDTQKIQERWLQDNLTLRKRRDELKEVEEEPKQHLKEMGQMQVLQMKNEHQKLEENIDTIKRNHSLALGRQKGYEDEILHFKKELREPQFRDAEEKYREMMIVMRTT 

gRad50 1002 EIIRQDIDTQKIQERWLEDNLTLRERNKELKGVEDNIKELVKKMGEMKVPQLKNEQKHLEEKIEALKRNHHVALGRQRGFEEEIVRFKKELRESQFKDAEEKHREMMIVMRTT 

pRad50  989 RKLQERLADLRTRERNASDNLRLRALMRQLEEAVTQKNYLLSQQSHDDRESFRERMQILKSKYGALNAERAGLLGECKQLENSITKDKEELN-MEFKDADERFRRQLIKTKTT 

cRad50 1009 NEEKRKLADSNNEEKNLKQNLELIELKSQLQHIESEISRLDVQNAEAERDKYQEESLRLRTRFEKLSSENAGKLGEMKQLQNQIDSLTHQLR-TDYKDIEKNYHKEWVELQTR 

 

 

 

 

 

hRad50 1115 ELVNKDLDIYYKTLDQAIMKFHSMKMEEINKIIRDLWRSTYRGQDIEYIEIRSDADENVSASDKRRNYNYRVVMLKGDTALDMRGRCSAGQKVLASLIIRLALAETFCLNCGI 

mRad50 1115 ELVNKDLDIYYKTLDQAIMKFHSMKMEEINKIIRDLWRSTYRGQDIEYIEIRSDADENVSASDKRRNYNYRVVMLKGDTALDMRGRCSAGQKVLASLIIRLALAETFCLNCGI 

gRad50 1115 ELVNKDLDIYYKALDKAIMTFHSMKMQEINKIIRDLWRSTYRGQDIEYIEIRSDADENVSASDKRRSYNYRVVMIKGDTALDMRGRCSAGQKVLASLIIRLALAETFCLNCGI 

pRad50 1101 GKANEDLGKYAKALDVAIMQLHSMKMNEINRIVDELWKQTYCGTDIDTILIRSDSEG-----KGNRTYNYRVCMVKGDAELDMRGRCSAGQKVLACIIIRLALAECLGVNCGI 

cRad50 1121 SFVTDDIDVYSKALDSAIMKYHGLKMQDINRIIDELWKRTYSGTDIDTIKIRSDEVS---STVKGKSYNYRVVMYKQDVELDMRGRCSAGQKVLASIIIRLALSETFGANCGV 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1093X 

Poly(A)8 mutation 

 

End of Coiled-

coil Domain II 

  

 

 

 

ABC ATPase C 

Mre11 Interacting    

Domain II  

Mre11 Interacting    

Domain III 

 Walker B Motif  



34 

 

 

 

 

 

 

 

 

 

hRad50 1228 IALDEPTTNLDRENIESLAHALVEIIKSRSQQRNFQLLVITHDEDFVELLGRSEYVEKFYRIKKNIDQCSEIVKCSVSSLGFNVH 

mRad50 1228 LALDEPTTNLDRENIESLAHALVEIIKSRSQQRNFQLLVITHDEDFVELLGRSEYVEKFYRVKKNMDQCSEIVKCSISSLGSYVH 

gRad50 1228 LALDEPTTNLDRENIESLAHALVEIIKSRSRQRNFQLLVITHDEDFVELLGRSEYVETFYRIRKNIDQCSEIMKCSVSSLGSYVH 

pRad50 1209 LALDEPTTNLDEENICSLAKNLSRIVEFRRKQANFQLIVITHDEQFIRLVNSDAYCSYYYRVKRDTNQKSMIVKEPL-------- 

cRad50 1231 IALDEPTTNLDEENIESLAKSLHNIINMRRHQKNFQLIVITHDEKFLGHMNAAAFTDHFFKVKRDDRQKSQIEWVDINRVTY--- 

 

 

Figure 9. Rad50 amino acid alignment. An alignment of the amino acid sequences of the human, mouse, chicken, Schizosaccharomyces pombe and Saccharomyces cerevisiae Rad50 

proteins (hRad50, mRad50, gRad50, pRad50 and cRad50 respectively). The sequence is shaded to show the similarities between the sequences of the aforementioned proteins. The mutations 

found in human tumour cell lines and patient samples as well as those found in NBS-LD are labelled at their positions on the protein.  

 

Table 2: Mutations Found Within the Human RAD50 Gene 
 

Mutation Associated Condition(s) Association with MSI References 

I94L Ovarian cancer, breast cancer No [180] 

R224H Ovarian cancer, breast cancer No [180] 

687delT Ovarian cancer, breast cancer No [180] 

Poly(A)9 1 bp deletion Gastric cancer, colorectal cancer Yes [70], [168], [169] 

Poly(A)9 1 bp insertion Gastric cancer, colorectal cancer Yes [70], [168], [169] 

Poly(A)9 2 bp deletion Gastric cancer, colorectal cancer Yes [70], [168], [169] 

Poly(A)8 1 bp deletion Colorectal cancer Yes [169], [171] 

R1093X NBS-LD No [161] 

X1313YextX*66 NBS-LD No [161] 

X1313YextX*66 

Table 2. Table describing the RAD50 mutations shown on Figure 8 and Figure 9. This table shows the amino acid changes for each mutation and the condition for which they are 

associated. The poly(A)9 and poly(A)8 mutations are also associated with MSI. 
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1.6.3 NBS1

 Figure 10.  A map of the human NBS1 gene showing the exon/intron structure and the locations of the mutations which have been identified in 

tumour cell lines, cancer patient samples and patients with Nijmegen Breakage Syndrome (NBS). 

hNBS1 
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Alignment of the Human Nbs1 Protein with the Mouse, Chicken, S. pombe and S. cerevisiae Homologues 

 

 

 

 

hNbs1    1 MWKL----LPAAGPAGGEPYRLLTGVEYVVGR---KNCAILIENDQSISRNHAVLTANFSVTNLSQTDEIPVLTLKD-NSKYGTFVNEEKMQNGFSRTLKSGDGITFGVFGSKF 

mNbs1    1 MWKL----LPAAGAAPGEPYRLLAGVEYVVGR---KNCGILIENDQSISRNHAVLTVNFPVTSLSQTDEIPTLTIKD-NSKYGTFVNEEKMQTGLSCTLKTGDRVTFGVFESKF 

gNbs1    1 MWKL----VPAAG--PGEPFRLLVGTEYVVGR---KNCAFLIQDDQSISRSHAVLTVSRPETTHSQSVSVPVLTIKD-TSKYGTFVNGSKLS-GASRSLQSGDRVNFGVFESKF 

pNbs1    1 MWII----EAEGDILKGKSRILFPG-TYIVGRNVSDDSSHIQVISKSISKRHARFTILTPSEKDYFTGGPCEFEVKDLDTKFGTKVNEKVVGQNGDSYKEKDLKIQLGKCPFTI 

cXrs2    1 MWVVRYQNTLEDGSISFISCCLQAFKTYSIGR--SSKNPLIIKNDKSISRQHITFKWEINNSSDLKHSSLCLVNKGKLTSLNKKFMKVGETFTINASDVLKSTIIELGTTP--I 

 

 

 

 

 

hNbs1  107 RIEYEPLVACSSCLDVSGKTALNQAILQLG-GFTVNNWTEECTHLVMVSVK----VTIKTICALICGRPIVKPEYFTEFLKAVESKKQP---------------------PQIE 

mNbs1  107 RVEYEPLVVCSSCLDVSGKTVLNQAILQLG-GLTANNWTEECTHLVMSAVK----VTIKTICALICGRPIIKPEYFSEFLKAVESKKQP---------------------PDIE 

gNbs1  103 RVEYESLVVCSSCLDVAQKTALNEAIQQLG-GLVVNEWTKECTHLIMESVK----VTVKTICALICGRPIVKPEFFSELMKAVQSRQQL---------------------PTPE 

pNbs1  110 NAYWRSMCIQFDNPEMLSQWASNLNLLGIPTGLRDSDAT---THFVMNRQAGSS-ITVGTMYAFLKKTVIIDDSYL-------------------------------------- 

cXrs2  111 RIEFEWINEVWNIPPHLTQFRTMLSEYGISTEISINDIPANLMISDYPKSEDNSIRELYALVSTIPMKKSRFLMELCNTLLPTSKTNLKFDEMWNDMISNPEYNVFDFDPNILL 

 

 

 

 

 

hNbs1  195 SFYPPLDEPSIGSKNVDLSGRQERKQIFKGKTFIFLNAKQHKKLSSAVVFGGGEARLITEENEEEHNFFLAPG-----------TCVVDTGITNSQTLIPDCQKKWIQSIMDML 

mNbs1  195 SFYPPIDEPAIGSKSVDLSGRHERKQIFKGKTFVFLNAKQHKKLSSAVAFGGGEARLMAEDDEEEQSFFSAPG-----------TCVVDVGITNTQLIISHSQKKWIHLIMDTL 

gNbs1  192 SFYPSVDEPAIGIDNMDLSGHPERKKIFSGKTFVFLTAKQHKKLGPAVILGGGEAKLMAEE-RKETSLLVSPE-----------VCVVDVGVTNSQILGSESMRNWTDSILAVL 

pNbs1  182 QYLSTVKESVIEDASLMPDALECFKNIIK----------------------------------NNDQFPSSPE-----------DCINSLEGFSCAMLNTSSES---HHLLELL 

cXrs2  225 SKFMRLNNIRVLTTIKSEPRLSSLLRTFNINLFAFDNIDSLYKYVDSLEASTEYLILTTTDKKENGKILCTIKTMLTSIIDGTLSAVINMKGASSRTLDNGKFDQISEGMSTIL 

 

 

 

 

 

hNbs1  298 QR------------------QGLRPIPEAEIGLAVIFMTTKNYCDPQGHPSTGLKTTTPG----PSLSQGVSVDEKLMPSAPVNTTTY-VADTESEQADTWD-LSERPKEIKVS 

mNbs1  298 QR------------------NGLRPIPEAEIGLAVIFMTTENYCNPQGQPCTELKTTTPG----PSLSQVLSANGKIIPSAPVNMTTY-VADTESEPADTCMPLSERPEEVKIP 

gNbs1  294 ES------------------NNLRAIPEAEIGLAVIFMSTEIYCNPQRQPDNKAVTASTASKVRPVSSQSSTVDETIMPTAAADYSTLNVADTEIEEQTCMEIERTTSQTTRRE 

pNbs1  248 GL------------------RISTFMSLGDIDKELISKTDFVVLNNAVYD-----------------SEKISFPEGIFCLTIEQLWKIIIERNSRE------------------ 

cXrs2  339 KTSRAPEVEASPVVSKKRKLNRRRVLPLDSLDFFAGGLSTKTLSENRSLTDAKRLNCGAESKTVISSPNIAEADEKHAPFLQNALKPTEDIGKKSGHSSPGAIIVSSPNLGTVN 
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hNbs1  388 KMEQ----------KFRMLSQDAPTVKESCKTSSNNNSMVS--NTLAKMRIPNYQLSPTKLPSINKSKDRASQQQQTNSIRNYFQPSTKKRERDEENQEMSSCKSARIETS-CS 

mNbs1  389 GLEQ----------SSRKLSQETFNIKEAPKPSSKANNVAS--DTLVRGKTPSYQLSPMKFPVANKNKDWTSQQQQ-NSIKNYFQPCTRKRERDEDNPELSSCKSSRMELS-CS 

gNbs1  390 KVA---------------FQQAAVRENPSTSGTVNAGMLISRVNRTSGFGQKNHPHSPSKILEVDKPRECTPRQQS-NSITNYFH-VARKRERAEEGEETSLSKQAKLEKKPLP 

pNbs1  291 -----------------LISKEIERLKYATASNSTPQKIIQPQRHIQKNIVDDLFSVKKPLPCSPKSKRVKTLENL--SIMDFVQPKQMFGKEPEGYLSNQSNNGSAQNKK--- 

cXrs2  417 TSEDSLDKSLQSHKLPQPSLPEVAGIGSQTISSNSADYETAAVNSMDDAEVTKNFRVNHHQNIEQPSKNIRKLSNYSREISSPLQENCKSPVKELSIKEKSGTPHAFVEAIQET 

 

 

 

 

 

hNbs1  489 LLEQTQPATPSLWKNKEQHLSENEPVDTNSDNNLFTDTDLKSIVKNSASKSHAAEKLRSN---------KKREMDDVAIEDEVLEQLFKDTKPELEIDVKVQKQEEDVNVRKRP 

mNbs1  488 LLEQTQPAGPSLWKSKE-HQSQNATLDREADTSSVGGMDIELNRKSPDRKPLPTETLRPR---------KRKDVD-LATEEEVLEELLRSTKPELAVQVKVEKQEADDTIRKKP 

gNbs1  487 VSECTESSASSAWNSEKEQHGKGNNIQLGRESG-------ELASDKTDIKITFSENPAPK---------KRKELDDVSEDVETLEMVFESRDLDWEEQTANGDQEAQSNKRKKR 

pNbs1  401 SGDNSEKTKNSLKSSSKKSANTGSGQG-------------KTKVEYVSYNSVDKGNSSPF---------KPLELNVVGEKKANAEVDSLPSE---NVQESEDDKAFEENRRLRN 

cXrs2  567 KNREVKRVKSTIVELKDEELSEEAINQLKNLAIVEPSNNLLRKSFDSEGNKTSRTTEKWENSLMEPEWHKRKNFKTFVKVRPKSKAHKEEGKNNTQSSDFIRNAAFLITRNYVP 

 

 

 

 

 

hNbs1  592 RMDIETNDTFSDEAVP-ESSKISQENEI------GKKRELKEDS-LWSAKEISNNDKLQDDSEMLPKKLLLTEFRSLVIKNSTSRNPSGINDDYGQLKNFKKFKKVTYPGAGKL 

mNbs1  590 RMDAERNRPLNGGSEP-ESNSALQEDER------EKKDELQTES-WSTKHEIANSDGLQDSSEELPRKLLLTEFRSLVVSNHNSTSRNLCVNECGPLKNFKKFKKATFPGAGKL 

gNbs1  585 CLETKGSRTEEGNTKQREENEMLRKEEVGSVLTLEDKSKIKEESSVSIRNKLINHNKLEDDSSRLPSKLLLTEFRSLVVSCPRSNSPTMRNTKCRGQNNFKTFRKVPYPGAGQL 

pNbs1  490 LGSVEYIRIMSSEKSN--------------------ANSRHTSKYYSGRKNFKKFQKKASQKAPLQAFLSLSEHKKTEVFDQDDTDLEPVP---------RLMSKVESIPAGAS 

cXrs2  681 LKKYSKKDTTTKWGTEENEDMFALTEMERFGSNTFMSDNINSNTIQKRSQALNRFTNEDSSNEGEEDSFSFSRCSGTAASVQPLKNKIFITDEDDLGDIDDKSDRLNHRENNRN 

 

 

 

 

 

hNbs1  700 PHIIGGSDLIAHHARKNTELEEWLRQEMEVQ------NQHAKEESLADDLFRYNPYLKRRR 

mNbs1  688 PHIIGGSDLVGHHARKNTELEEWLKQEMEVQ------KQQAKEESLADDLFRYNPNVKRR- 

gNbs1  689 PYIIGGSDLVAHQARKNSELEEWLREELEEQ------NRRAREESLADDLFRYDPNVKRRR 

pNbs1  578 SDKSGKSSISKKSSNS--------FKELSPK------TNNDEDDEFNDLKFHF-------- 

cXrs2  795 LFVVKEMNLRPNLSEECSKQSRHSRSATSRSRGSFGASNNGDGDDDDDDGPKFTFKRRKG- 

 

 
Figure 11. Nbs1 Amino acid alignment.  An alignment of the amino acid sequences of the human, mouse, chicken and Schizosaccharomyces pombe Nbs1 proteins (hNbs1, mNbs1, gNbs1 

and pNbs1 respectively) and the Saccharomyces cerevisiae Xrs2 protein (cXrs2). The sequence is shaded to show the similarities between the sequences of the aforementioned proteins. The 

mutations found in human tumour cell lines and patient samples as well as those found in NBS are labelled at their positions on the protein. The area of red text corresponds to exon 13 in the 

human Nbs1 as this is the deleted region in the Δ13NBS1 mutation.
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Table 3: Mutations Found Within the Human NBS1 Gene 
 

Mutation Associated Condition(s) Association with MSI References 

R43X Breast cancer, ovarian cancer, colorectal cancer No [181] 

Ins 50 bp from intron 2 Colorectal cancer No [181] 

S93L Lymphoma, ALL No [183], [184] 

D95N Lymphoma, ALL No [183], [184] 

L150F Breast cancer No [180] 

I171V 
Lymphoma, ALL, colorectal cancer, breast 

cancer, laryngeal cancer 
No [149], [155] 

E185Q Lung cancer, ALL No [156], [157], [158] 

V210F ALL No [183], [184] 

R215W NBS, ALL, colorectal cancer, breast cancer No [149] 

657del5 

NBS, colorectal cancer, gastric cancer, 

melanoma, non-Hodgkin lymphoma, prostate 

cancer 

No [148], [149], [151], [152], [153] 

681delT NBS No [149], [154] 

698del4 NBS No [149], [154] 

742insGG NBS No [149], [154] 

835del4 NBS No [149], [154] 

842insT NBS No [149], [154] 

900del25 NBS No [149], [154] 

Q326X NBS No [149], [154] 

Y363X NBS No [149], [154] 

1142delC NBS No [149], [154] 

1651delA Colorectal cancer, gastric cancer Yes [172] 

Ivs11+2insT Colorectal cancer, gastric cancer No [149] 

Δ13 Nbs1 Ovarian cancer No [181] 

Y679H Renal cancer No [182] 

Table 3. Table describing the NBS1 mutations shown on Figure 10 and Figure 11. This table shows the amino acid changes for each mutation and the condition for which they 

are associated. The 1651delA mutation is also associated with MSI. 
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1.6.4 CtIP

CtIP 

Figure 12. A map of the human CtIP gene showing the exon/intron structure and the locations of the mutations which have been identified in 

tumour cell lines, cancer patient samples and patients with Seckel and Jawad syndromes. 
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Alignment of the Human CtIP Protein with the Mouse, Chicken, S. pombe and S. cerevisiae Homologues 

 

 

 

 

hCtIP     1 MNISGSSCGSPNSADTSSD-FKDLWTKLKECHDREVQGLQVKVTKLKQERILDAQRLEEFFTKNQQLREQQKVLHETIKVLEDRLRAGLCDRCAVTEEHMRKKQQEFENIRQQ 

mRBBP8    1 MSISGSGCGSPNSADASND-FKELWTKLKEYHDKEVQGLQVKVTKLKKERILDAQRLEEFFTKNQQLRDQQKVLQETIKILEDRLRAGLCDRCAVTEEHMHKKQQEFENIRQQ 

gRBBP8    1 MNASGGTCGSPSSAEPAGDFFKELWSKLKECHDKEVQGLQLKISKLKKERCLDAERLEEFYTKNQQLREQQKALHDTIKVLEDRLRAGLCDRCAVTEEHMRKKQLEFENIRQQ 

pCtp1     1 ----------MNEEEHNKS---VHWSIVYRQLGNLLEQYEVEIARLKSQ-----------------------------LVLEKKLRI--------------QVEKELESVKTK 

cSae2     1 -----------MVTGEENVYLKSSLSILKELSLDELLNVQYDVTTLIAKR---------------------------VQALQNRNKCVLE-----------EPNSKLAEILCH 

 

 

 

 

 

hCtIP   113 NLKLITELMNERNTLQEENKKLSEQLQQKIENDQQHQAAELECEEDVIPDSPITAFSFSGVNRLRRK-ENPHVRYIEQTHTKLEHSVCANEMRKVSKSSTHPQHNPNENEILV 

mRBBP8  113 NLKLITELMNEKNTLQEENKKLSEQLQQKMENGQQDQVAELACEENIIPDSPVTSFSFSGINRLRKK-ENLHVRYVEQTHTKLERSLCTNELRKISKDSAPAPVNSEEHEILV 

gRBBP8  114 NLKLITELMNEKNSLQDENKKISEQFQQLQKELEEQKQQALDVEEGVIPDSPVLTSSFSMVNRMRRKKENRHIRYTEHTHPDLELAKSNSEFQIPLYSTQASSHH--EEEILV 

pCtp1    58 QISSSASSKVSSNTIQELDS---------------------TTDEDEIPGS-------------------------------------------------------------- 

cSae2    65 EKNAPQQSSQTSAGPGEQDS---------------EDFILTQFDEDIKKES-------------------------------------------------------------- 

 

 

 

 

 

hCtIP   225 ADTYDQSQSPMAKAHGTSSYTPDKSSFNLATVVAETLGLGVQEESETQG-PMSP------LGDELYHCLEGNHKKQPFEESTRNTEDSLRFSDSTSKTPPQEELPTRVSSPVF 

mRBBP8  225 ADTCDQNHSPLSKICETSSYPTDKTSFNLDTVVAETLGLNGQEESEPQG-PMSP------LGSELYHCLKEDHKKHPFMESARSKEDSLRFSDSASKTPPQE-FTTRASSPVF 

gRBBP8  226 ADTCDPQLSPVPNKPRMGGYPVPKPSFNLAAVVAETIGLAVQDESESQS-VLSSPHTSTAMNQAPEGIRSEDSRKHSASES-RNEDNSSGLSGPSQNTPPRVDWDSQVVSPVF 

pCtp1    88 -DTVDEEDPSLN--LPLVTMPPNRHKRKISEFSSPLNGLNNLSDLEDCS---------------------------------------------------------------- 

cSae2   101 AEVHYRNENKHTVQ---APFSEKNQSVKIP---PHSPTLPVQNASAFVKP--------------------------------------------------------------- 

 

 

 

 

 

hCtIP   331 GATSSIKSGLDLNTSLSPSLLQPGKKKHLKTLPFSNTCISRLEKTRSKSEDSALFTHHSLGSEVN-KIIIQSSNKQILINKN---ISESLGEQNRTEYGKDSNTDKHLEPLKS 

mRBBP8  330 GATSTVKAHLGLNTSFSPSLLDIGKKNLLKTAPFSNIAVSRSEKVRSKSEDNALFTQHSLGSEVK-VISQSFSSKQILTNKT---VSDSVDEQCSADHMNTTVADKYLVPLKS 

gRBBP8  337 GASSNTRN--NSSTSHAPCILDSNSKPNVKVNLFNNPSSSRSHKNRSKSEDVAFVAPLNLGTEINSVISQVSINRQMVVKKNSNEVVTSVGNTCAAKN-EVIKSDFLLAHQKQ 

pCtp1   129 ---------------ISVPLGNVKEEKFLDTNPIG------------------------------------------------------------------------AESFES 

cSae2   150 ----------------DTVIHEKDNDKENKTRKLLG---------------------------------------------------------------------IELENPES 

 

 

 

K337E V394M P436S Poly(A)

9 

Poly(A)9 1bp deletion 
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hCtIP   440 LGGRTSKRKKTEEESEHEVSCPQASFDKENAFPFPMDNQFSMNGDCVMDKPLDLSDRFSAIQRQEKSQGSE-TSKNKFRQVTLYEAL----KTIPKGFSSSRKASDGNCTLPK 

mRBBP8  439 LGGKASKRKRTEEESEHAVKCPQACFDKENALPFPMENQFSMNGDHVMDKPLDLSDRFAATQRQEKNHGNE-TSKNKLKQATIYEAL----KPIPKGSSSGRKALSGDCMPAK 

gRBBP8  444 PEGRCAKRKKAED--EHAISCENASFNKENSVPFRSDIQH-MNGEHTGDKPLDLSDRFCGVRCQEKKQGSEETCKNKLKQVTLYDVFLQLGKPIHEGSSSVQNANNERSLFGR 

pCtp1   155 SDGEMHLRARSPE---------------------------------------------------------------------------------------------------- 

cSae2   178 TSPNLYKNVKDNFLFDFNTN--------------------------------------------------------------------------------------------- 

 

 

 

 

 

hCtIP   548 DSPGEPCSQECIILQPLNKCSPDNKPSLQIKEENAVFKIPLRPRESLETENVLDDIKSAGSHEPIKIQTRSDHGGCELASVLQLNPCRTGKIKSLQNNQDVS---FENIQWSI 

mRBBP8  547 DS-WETYCLQPRSLQSSSKFSPDQKTPLQIKEENPVFKTPPCSQESLETENLFGDVKGTGSLVPTKVKSRAVHGGCELASVLQLNPCRVAKTKALPSNQDTS---FENIQWSV 

gRBBP8  556 DMQEEPYVQEAV----LAKTFADTKKQVQMKEEVPPLKITPLP-STVDTEQLFNDMKVASDHVPNRKKTRTGHGESEPASVLQPNPCRLSKNKVQPNEQDLKEKPLENLQWSI 

pCtp1   168 -------------------------DMILLRETQP-----------------------------------------------------------------------------L 

cSae2   198 ---------------------PLTKRAWILEDFRP------------------------------------------------------------------------------ 

 

 

 

 

 

hCtIP   658 DPGADLSQYKMDVTVIDTKDGSQSKLGGETVDMDCTLVSETVLLKMKKQEQKGEKSSNEERKMNDSLEDMFDRTTHEEYESCLADSFSQAADEEEE---------LSTATKKL 

mRBBP8  756 DPGADLSQYKMDVTVIDTKDSSHSRLGGETVDMDCTLVSETVLLKMKKQEQK-ERSPNGDIKMNDSLEDMFDRTTHEEYESCLADSFSQVPDEEE----------LPDTTKKT 

gRBBP8  664 DPGADLAQYKMDVTVIDTKDDSQSRIGGEAVDMDYTYVSENVLLKMKNQEQTQESSPRREKKMNDTITEMFDRTADEEYESCLPEDSLSACDEKETVHGEEQNKEITVASKKL 

pCtp1   179 AP--------LDINTLGVSDN-------------------------RQKKGTEKKRPFEPEFLNDDVIRGNKRKALPAYECPDCQKFYELHGPVKE----------------- 

cSae2   212 -----------NEDIAPVKRG-------------------------RRKLERFYAQVGKPEDSKHRSLSVVIESQNSDYEFAFDNLRNRSKSPPG------------------ 

 

 

 

 

 

hCtIP   762 HTHGDKQDKVKQKAFVEPYFKGDERETSLQNFPHIEVVRKKEERRKLLGHTCKECEIYYADMPAEEREKKLASCSRHRFRYIPPN-TPENFWEVGFPSTQTCMERGYIKEDLD 

mRBBP8  758 NIPADKQDGVKQKAFVGPYFKDKERETSIQNFPHIEVVRKKEERRKLLGHTCKECEIYYADLPAEEREKKLASCSRHRFRYIPPN-TPENFWEVGFPSTQTCLERGYIKEDLD 

gRBBP8  777 KKHEDKQDKAKQKAFVEPYFKSDERKNTMLDFPHIEVIRKKEERRKLPGHTCKECEIYYADIPEEEREKKLAACSRHRFRYIPPN-TPENFWEVGFPSTQTCMERGYIKEDVA 

pCtp1   242 -------------SSVAPTWNDENR-------------------------------LGGGSLPNCKHQPLVQKVGRHRKLNIPKP-IPNGFWESDFVD--------------- 

cSae2   271 --------------FGRLDFPSTQE----------------------------------GNEDKKKSQEIIRRKTKYRFLMASNNKIPPYEREYVFKREQ----LNQIVDDGC 
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hCtIP   874 PCPRPKEQKTYNAVFSPKGKEQRT 

mRBBP8  870 LSPRPKRRQPYNAVFSPKGKEQRT 

gRBBP8  889 PCQRPKRRQPYAVMFSPKGKEQKT 

pCtp1       ------------------------ 

cSae2   324 FFWSDKLLQIYARC---------- 

 

 

Figure 13. CtIP amino acid alignment. An alignment of the amino acid sequences of the human CtIP (hCtIP), mouse and chicken RBBP8 proteins (mRBBP8 and gRBBP8 respectively), the 

Schizosaccharomyces pombe Ctp1(pCtp1) and the Saccharomyces cerevisiae Sae2 protein (cSae2). The sequence is shaded to show the similarities between the sequences of the 

aforementioned proteins. The mutations found in human tumour cell lines and patient samples as well as those found in Seckel and Jawad syndromes are labelled at their positions on the 

protein. 

 

 

Table 4: Mutations Found Within the Human CtIP Gene 
 

Mutation Associated Condition(s) Association with MSI References 

K337E Pancreatic cancer No [185] 

Poly(A)9 1 bp deletion Colorectal cancer, endometrial cancer Yes [163], [167], [174] 

V394M Colorectal cancer No [185] 

P436S Colorectal cancer No [185] 

R589H Ovarian cancer, breast cancer No [173], [185] 

CtIP
j 

Jawad syndrome No [162] 

CtIP
s 

Seckel syndrome No [162] 

Y819S Colorectal cancer No [185] 

 

Table 4. Table describing the RAD50 mutations shown on Figure 12 and Figure 13. This table shows the amino acid changes for each mutation and the condition for which they 

are associated. The poly(A)9 mutation is also associated with MSI. 

End of MRN Binding                       

Domain II 
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1.7 Aims of the Project 

This project aimed to identify genetic markers that predict colorectal cancer patient response 

following chemoradiation therapy utilising concurrent irinotecan and capecitabine. This 

project aimed to identify mutations of the MRE11, RAD50, NBS1 and CtIP genes and 

determine any correlation between the presence of mutations and the response to treatment, 

and to investigate the impact of specific mutations on camptothecin sensitivity. This project 

also aimed to identify novel genetic markers in S. pombe that confer hypersensitivity to 5-FU, 

that may suggest potential genetic markers for 5-FU sensitivity in human orthologues. 
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2 Materials and Methods 

2.1 Media and Strains 

2.1.1 Media 

For 4L LB (Luria Broth) medium, the following was added to a 5 L beaker: 

 3 L dH2O 

 40 g tryptone 

 20 g yeast extract 

 20 g NaCl 

 

For 4 L YE (Yeast extract) medium, the following were added to a 5 L beaker: 

 3 L dH2O  

 20 g yeast extract 

 120 g glucose 

 400 mg each of adenine (ade), uracil (ura), histidine (his), leucine (leu) and arginine 

(arg)For 4 L EMM (Edinburgh Minimal Media), the following were added to a 5 L 

beaker: 

 3 L dH2O 

 109.2 g Formedium EMM powder 

 15 g glutamate 

 

All media were dissolved using a magnetic stirrer, then additional H2O was added to bring 

the total volume to 4 L. The medium was then distributed over 10 x 500 ml bottles (400 ml in 

each). If solid LB (LBA), YE (YEA) or EMM were required, then 8 g agar was added to each 

bottle. If EMM + ade/leu/ura is required, then the 400 mg of the required additive is added 

per 400 ml bottle. If the addition of ampicillin (+ Amp) is required, ampicillin is added to a 

final concentration 100 µg/ml) 
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2.1.2 Preparation of electrocompetent E. coli cells 

Electrocompetent DH5α E.coli cells were used for transformation by electroporation. To 

prepare these cells, DH5α cells were first streaked onto LBA plates and incubated overnight 

at 37°C. The next day, a colony was inoculated into 100 ml LBL in a sterile flask and 

incubated at 37°C. This pre-culture was then used to inoculate 400 ml of LBL and incubated 

at 37°C, the optical density was measured at regular intervals until the OD600 was between 

0.5-0.7. During this time, 10% glycerol solution, 2 x 50 ml centrifuge tubes and 2 x 250 ml 

centrifuge tubes were cooled on ice. After the cells had reached the desired optical density, 

the cells were chilled on ice for 30 minutes. 

The culture was then divided into two 250 ml centrifuge tubes and centrifuged at 4000 x g for 

15 minutes at 4°C. The supernatant was removed and the cell pellets were resuspended in 200 

ml 10% glycerol, the tubes were centrifuged at 4000 x g for 15 minutes at 4°C.  

The supernatant was removed and the cell pellets resuspended in 100 ml 10% glycerol, the 

tubes were centrifuged at 4000 x g for 15 minutes at 4°C. 

The supernatant was removed and the cell pellets resuspended in 10 ml 10% glycerol, the 

suspensions were transferred to the 10 ml tubes and centrifuged at 4000 x g for 15 minutes at 

4°C. 

50 μl of the cultures were then transferred to chilled labelled microcentrifuge tubes which 

were frozen using liquid nitrogen. The cells were stored at -80°.  
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2.1.3 E. coli strains 

E. coli strains used in this investigation are shown in the Table 5. 

Table 5: Table of E. coli strains used in this investigation 

Strain Plasmid Source 

DH5α  Hartsuiker collection 

TE2 pAW8-mre11-W210X This investigation 

TE5 pAW8-Δ5-7mre11 This investigation 

TE11 pAW8-ctp1-MSI This investigation 

TE12 pAW8-nbs1-MSI This investigation 

TE13 pAW8-rad50-MSI This investigation 

TE14 pAW8-mre11-R572X This investigation 

Table 5: Table showing the E. coli strains used in this investigation, showing the strain name, 

plasmid and the source of the strain. Strains TE2-TE14 were created during this project by 

transformation of DH5α. 

 

2.1.4 S. pombe strains 

S. pombe strains used in this investigation are shown in the Table 6, which continues to the 

next page. 

Table 6: Table of S. pombe strains used in this investigation 

Strain Genotype Description Source 

EH00065 h
-
 smt0 rad50::Kan, ura4-D18 ura4

- 
rad50Δ Hartsuiker collection 

EH00068 h
-
 smt0 ura4-D18 ura4

- 
wild type Hartsuiker collection 

EH00176 h
-
 smt0 rad50::Kan rad50Δ Hartsuiker collection 

EH00338 h- smt0 Wild type h
-
 Hartsuiker collection 

EH00722 h
+
 WT Wild type Hartsuiker collection 

EH00805 h
-
smt0 mre11-D65N ura4-D18 ura4

- 
mre11 

nuclease dead  

Hartsuiker collection 

EH00921 h
-
smt0 mre11-D65N mre11   

nuclease dead 

Hartsuiker collection 

EH01030 h
+ 

ade6-704 leu1-32 ctp1::loxP-

ura4-loxM3 ura4-D18 

ctp1 base 

strain 

Hartsuiker collection 
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EH01031 h
+ 

ade6-704 leu1-32 nbs1::loxP-

ura4
+
-loxM3 ura4-D18 

nbs1 base 

strain 

Hartsuiker collection 

EH01104 h
-
 smt0, leu1-32 mre11::loxP-

ura4
+
-loxM3, ura4-D18 

mre11 base 

strain 

Hartsuiker collection 

TJ1 h
- 
smt0, leu1-32, rad50::loxP-

ura4
+
-loxM3, ura4-D18 

rad50 base 

strain 

EH238 + Rad50bs 

TJ3 h
- 
smt0 ,leu1-32, mre11::loxP-

mre11-W210X-loxM3, ura4-D18 

mre11-W210X Transformation of 

EH01104 

TJ4 h
-
 smt0, leu1-32,mre11::loxP- 

mre11-484del88-loxM3, ura4-D18 

mre11-

484del88 

Transformation of 

EH01104 

TJ5 h
-
 smt0, leu1-32,mre11::loxP- 

mre11
+
-loxM3, ura4-D18 

lox-mre11-WT Transformation of 

EH01104 

TJ7 h
-
 smt0, leu1-32,rad50::loxP- 

rad50
+
-loxM3, ura4-D18 

lox-rad50-WT Transformation of TJ1 

TJ8 h
+
 ade6-704 leu1-32, nbs1::loxP- 

nbs1
+
-loxM3, ura4-D18 

lox-nbs1-WT Transformation of 

EH01031 

TJ9 h
+
 ade6-704 leu1-32,nbs1::loxP- 

nbs1-MSI-loxM3, ura4-D18 

nbs1-MSI 

(1651delA) 

Transformation of 

EH01031 

TJ12 h
+
 ade6-704 leu1-32, ctp1::loxP- 

ctp1
+
-loxM3, ura4-D18 

lox-ctp1-WT Transformation of 

EH01030 

TJ15 h
+
 ade6-704 leu1-32, ctp1::loxP- 

ctp1-MSI-loxM3, ura4-D18 

ctp1-MSI Transformation of 

EH01030 

TJ19 h
-
 smt0, leu1-32,mre11::loxP- Δ5-7 

mre11-loxM3, ura4-D18 

Δ5-7mre11 Transformation of 

EH01104 

TJ20 h
-
 smt0, leu1-32, mre11:loxP- 

mre11-R572X-loxM3, ura4-D18 

mre11-R572X Transformation of 

EH01104 

TJ21 h
-
 smt0, leu1-32, rad50::loxP- 

rad50-MSI2-loxM3, ura4-D18 

rad50-MSI Transformation of TJ1 

Table 6: Table showing the S. pombe strains used in this investigation, showing the strain 

name, genotype, the usage of the strain and the source of the strain. Strains TJ4-TJ21 were 

created during this project. 
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2.2 Creation of MRN Mutants in Schizosaccharomyces pombe 

2.2.1 Creation of mutant inserts by PCR 

Primers that could be used to create the MRN mutant inserts by the polymerase chain 

reaction (PCR) were designed. These primers incorporated loxP and loxM3 sites and any 

additional bases that may be present in the human mutants as a result of a frameshift. The lox 

sites are as follows: 

loxP: 5′-ATAACTTCGTATAGCATACATTATACGAAGTTAT-3′ 

loxM3: 5′-ATAACTTCGTATATGGTATTATATACGAAGTTAT-3′ 

The primers used for the creation of the mutant inserts are shown in Table 7. 
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Table 7: Primers used to create mutant mre11, rad50, nbs1 and ctp1 inserts 

Number Primer Name Sequence 

1 lox-mre11-F 5′-ggggataacttcgtatagcatacattatacgaagttat 

atgccaaatgacccctcagatatgaataat-3′ 

2 mre11-W210X –R 5′-ggggataacttcgtatataataccatatacgaagttat 

tcattcatcccgatatagatcaggacgtaa-3′ 

3 Δ5-7 mre11-R1 5′-aggtaaatagctcgttggtgtatgggcaga 

agccgtatccccagtggttaaggatgtgtc-3′ 

4 Δ5-7 mre11-F2 5′-gacacatccttaaccactggggatacggct 

tctgcccatacaccaacgagctatttacct-3′ 

5 Δ5-7 mre11-R2 5′-ggggataacttcgtatataataccatatacgaagttat 

tcaatcatctaaaatttcgtcatcctcgtt-3′ 

6 mre11- R572X-R 5′-ggggataacttcgtatataataccatatacgaagttat 

tcacaaaagtgctggagaaggtgttgcttc-3′ 

7 lox-rad50-F 5′-ggggataacttcgtatagcatacattatacgaagttat 

atgtcgtgcattgacagaatgtccatcatg-3′ 

8 rad50-MSI-R 5′-ggggataacttcgtatataataccatatacgaagttat 

ttatttagtagcttgaattttttt atctgcttctaatttttcatactctgactc-3′ 

9 Lox-nbs1-F 5′-ggggataacttcgtatagcatacattatacgaagttat 

atgtggataattgaggctgagggtgacatt-3′ 

10 nbs1-1651delA-R 5′-ggggataacttcgtatataataccatatacgaagttat 

ttaaggccacatcatccatttacc 

tggtttgaacggagaagaatttcctttatc-3′ 

11 lox-ctp1-F 5′-gggg ataacttcgtatagcatacattatacgaagttat 

atgaatgaggaggaacacaataagtcggtc-3′ 

12 ctp1-MSI-R 5′-gggg ataacttcgtatataataccatatacgaagttatttaaatgtttttt 

tttcacgttacccaatggcacagaaattgg-3′ 

 Table 7: This table shows the primers that were used to construct the mutant mre11, rad50, 

nbs1 and ctp1 genes. Each primer is numbered and the sequence is given. The lox sites are 

underlined. 
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The components added to a 0.2 ml PCR tube for the PCR reactions to create the mutant 

inserts were: 

 35.5 μl dH2O 

 1 μl S. pombe wild-type (WT) genomic DNA (100 ng/μl) 

 1 μl Forward primer (10 pmol/μl) 

 1 μl Reverse primer (10 pmol/μl) 

 1 μl dNTP solution (10 mM each) 

 0.5 μl Phusion DNA polymerase 

 10 μl high fidelity (HF) buffer (F-518 5x Phusion HF Reaction Buffer 7.5 mM MgCl2) 

The reagents were mixed by pipetting and the tubes were briefly spun to ensure that the 

reagents were at the bottom of the tubes.  

A 2-step PCR reaction was carried out to create the inserts due to reduce secondary structures 

as a result of hairpin formation. The reaction used was: 

 Initial denaturation of 98°C for 30 seconds 

 30 cycles of: 

o Denaturation of 98°C for 10 seconds 

o Extension of 72°C for 30 seconds per kb of product 

 Final extension of 72°C for 5 minutes 

 

 

2.2.2 Agarose gel electrophoresis 

The PCR was then checked by electrophoresis using a gel consisting of 0.8% agarose in 10% 

Tris/Borate/ EDTA (TBE) buffer. This was created by adding 0.4 g agarose (or 1.2 g for a 

150 ml gel) to 50 ml TBE buffer in a conical flask. The gel solution was heated in a 

microwave at 630 w for 2 minutes (or 3 minutes for a 150 ml gel). The flask was then cooled 

with cold running water, before adding 2 μl of ethidium bromide solution (6 μl for a 150 ml 

gel). The gel was poured into a casting tray and a wide-toothed comb was added to create the 

wells. Once the gel had set, the gel was transferred to an electrophoresis tank containing TBE 

buffer into which the gel was submerged.  

The samples were prepared by adding 1 μl 6x loading dye to 5μl PCR product. The samples 

were loaded into the wells following 6 µl 1 kb marker loaded into the first well. The gel tank 
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lid was placed onto the tank and connected to a power supply. The electrophoresis was run at 

400 mA and 90 V (or 120 V for a 150 ml gel) for 45 minutes. 

Following the electrophoresis the gel was imaged using a gel doc system, utilising ultraviolet 

light to visualise the bands of ethidium bromide stained DNA in the gel.  

 

2.2.3 DNA purification from agarose gels 

If the sample loaded into the gel requires purification, then an agarose gel containing SyBr 

green should be used. This gel was created as described previously but with SyBr green dye 

added instead of ethidium bromide. During the stage at which the comb is added, two or more 

teeth may be taped together to create large wells to accommodate a larger volume of sample. 

When the gel is loaded the entire PCR product may be used and prepared with 6 x loading 

dye.  

The gel was viewed using a blue light transilluminator and the bands were excised, using a 

scalpel blade, then placed into a sterile microcentrifuge tube. The DNA was then purified 

using the Machery Nagel DNA extract II kit as per manufacturer’s instructions. 

 

2.2.4 DNA quantification using the Invitrogen Qubit 

DNA was quantified using the Invitrogen Qubit. For this, Pico-green dye diluted 2,000 x in 

TE buffer was used. Two standard samples were created, the first consisting 100 μl 

Tris/EDTA (TE) buffer, 100 μl diluted pico-green solution; and the second standard 

consisting of 100 μl bacteriophage λ DNA solution (1 mg/μl), and 100 μl diluted pico-green 

solution. 

The samples were prepared by adding 1 μl of DNA sample to 99 μl TE buffer and 100 μl 

diluted pico-green solution. The standards and the samples were vortexed thoroughly and 

incubated at room temperature for two minutes. The Qubit was set to “dsDNA HS” and 

calibrated. The samples were read by the machine and the DNA concentration was recorded. 
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2.2.5 Fusion PCR 

In order to create the Δ5-7mre11(MRE1), in which a region inside the gene corresponding to 

exons 5-7 in the human MRE11 gene required deletion, fusion PCR was used. Firstly, two 

parts of the mutant gene were created by PCR (as described in section 2.2.1), the first part 

(Δ5-7mre11 A) consisting of the LoxP site and the region of the mre11 gene corresponding to 

exons 1-4 in human MRE11 (requiring primers 1 and 3 shown in Table 7), and the second 

part (Δ5-7mre11 B) consisting of the mre11 region corresponding to human MRE11 exons 8-

20 (requiring primers 4 and 5 shown in Table 7). An overlap of the sequences of the two 

constituent parts was required to allow for fusion of both parts by a subsequent PCR. The 

products were then checked by electrophoresis, purified and quantified (as described in 

sections 2.2.2 - 2.2.4 respectively). 

PCR was then carried out (as described in section 2.2.1) using 0.5 μl of Δ5-7mre11 A (10 

ng/μl) and 0.5 μl Δ5-7mre11 B (10 ng/μl) in one reaction as the template DNA using the 

external primers. The PCR products were checked by electrophoresis, purified from agarose 

gel, as described in section 2.2.3. The purified product was quantified. A diagram showing 

the stages of the creation of the mutant inserts, including fusion PCR, is shown in Figure 14, 

page 83. 

 

2.2.6 In vitro Cre recombination 

In order to carry out the in vitro cre recombination required to insert the mutant gene insert 

into the plasmid vector, the required mass of vector needs to be determined. The mass of 

insert required for a 1:1 ratio can be calculated using the equation below: 

                              
                

                
                

As an insert to vector ratio of 1:4 is required, the calculated mass of insert should be 

multiplied by 4. The required masses of insert and vector are then scaled so that the total 

mass of DNA in the reaction is approximately 250 ng. All inserts were diluted to 50 ng/μl and 

the pAW8ccdb plasmid was at a concentration of 100 ng/μl, the volumes of the plasmid and 

insert solutions required could then be calculated. 
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In addition to the reactions containing the insert, positive and negative controls were also 

used, all of which were carried out in 0.2 ml PCR tubes. The reagents that were added to each 

tube are shown in Table 8. 

Table 8: Required reagents for the in vitro Cre-lox reaction 

 Reaction 

Reagent Insert Reaction Positive Control Negative Control 

10x Cre Buffer 1 µl 1 µl 1 µl 

Linear pAW8ccdb 

(100 ng/µl) 

Calculated N/A N/A 

Insert (50 ng/µl) Calculated volume  N/A N/A 

2LoxP Control N/A 2 µl N/A 

PEG-8000 25% 2 µl N/A N/A 

dH2O Make up to 10 µl 6 µl 7 µl 

Cre Recombinase 1 µl 1 µl 1 µl 

Table 8: The above table shows the volumes of each reagent required for each in vitro cre 

recombinase reaction. The reagents required for the reaction to insert the desired mutant gene 

into the pAW8-ccdb plasmid vector, the positive control and the negative control, are shown. 

The reaction tubes were then placed into a thermocycler and run at 37°C for 30 minutes 

followed by 70°C for 10 minutes. 

The products were immediately transformed into electrocompetent DH5α E. coli cells. 

 

2.2.7 Transformation of Escherichia coli cells by electroporation 

2 mm cuvettes and micro centrifuge tubes (one of each for each reaction) were cooled on ice 

for approximately 20 minutes. Frozen electrocompetent E. coli cells were thawed on ice. 25 

μl of electrocompetent cell suspension was added to each of the empty microcentrifuge tubes, 

1 μl of the reaction product was then added to the tubes and mixed be pipetting. The contents 

of the microcentrifuge tube were then transferred to a cuvette. The cuvettes were then gently 

tapped on the bench to ensure the contents were at the bottom and that no bubbles were 

present as this can lead to arcing.  

The cuvettes were placed into a BioRad electropulser set for use with E. coli in 2 mm 

cuvettes. The cuvettes were pulsed, immediately followed by 975 μl of SOC medium 

carefully pipetted into the cuvette. The contents were gently mixed and transferred into the 
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original microcentrifuge tube. This process was repeated for all required reactions. Samples 

were incubated for 2 hours at 30°C in a shaking incubator. Following this incubation period, 

100 μl of the cell suspension was spread onto LBA + Amp plates, which were subsequently 

incubated for 2 days at 30°C. 

If following incubation, the positive control plate has a very low number or absence of 

colonies, or if the negative control plate has colonies present then the in vitro Cre 

recombination and electroporation need repeating.  

 

2.2.8 Screening of colonies for the uptake of the pAW8 plasmid containing the 

insert 

E. coli colonies were taken and inoculated into 3 ml LB + Amp medium and grown for 1-2 

days at 30°C. 1 ml of the cultures were then taken and used with the Machery Nagel plasmid 

mini-prep kit to extract the plasmids. This kit was used as per manufacturer’s instructions.  

The extracted plasmids can then be checked by electrophoresis and quantified to check for a 

successful extraction. 
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The plasmids were then checked for the correct integration of the mutant insert using PCR 

with Taq polymerase. For this a 2x master mix was created using the following volumes of 

each reagent per reaction: 

 5 μl 10x Taq buffer 

 3 μl 25mM MgCl2 

 1 μl dNTPs (10 mM each) 

 15.75 μl dH2O 

 0.25 μl Taq polymerase 

25 μl of this master mix was added to: 

 1 μl plasmid solution (10-100 ng/μl) 

 1 μl forward primer (10 pmol/μl) 

 1 μl reverse primer (10 pmol/μl) 

 22 μl dH2O 

The primers used are shown in Table 9. 

Table 9: Primers used to check for the correct integration of the mutant cassette 

Number Name  Sequence 

13 loxEx2-F 5′-gaccatgattacgccaagc-3′ 

14 loxEx2-R 5′-taaaacgacggccagtgaat-3′ 

Table 9: This table shows the name, designated number and sequence for the primers used to 

screen for the correct integration of the mutant insert into the pAW8-ccdb plasmid. 

The following PCR cycle was then used: 

 Initial denaturation of 95°C for 30 seconds 

 30 cycles of: 

o Denaturation of 95°C for 30 seconds 

o Annealing of 55° for 30 seconds 

o Extension of 72°C for 1 minute per kb of product (1 minute used for products 

under 1 kb) 

 Final extension of 68°C for 5 minutes 

The PCR products were checked by electrophoresis, if a band was seen at the desired length 

then this is indicative of a successful in vitro cre recombinase reaction and transformation. 

The products were then purified and quantified.  
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2.2.9 Sequencing 

For products under 1kb in length, 75 ng of DNA was added to a microcentrifuge tube bearing 

a barcode label, whereas for products over 1 kb, 150 ng was used. 1 μl of primer (10 ng/μl) 

was then added to the tube. The total volume was then made up to 15 μl with dH2O.  

To check for the presence of the mutant gene insert in the plasmid, the primers 13 and 14 

(shown in Table 9) were used. Additionally, primers which bind to regions inside genes were 

also used if required (shown in Table 10). One sequencing section was carried out per primer. 

The tubes were then sent to Eurofins MWG/Operon for sequencing. The sequences were 

analysed for the successful integration of the mutant gene cassette and to confirm the absence 

of undesired mutations.  
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Table 10: mre11, rad50, nbs1 and ctp1 internal primers used for sequencing 

Number Name Sequence 

15 mre11 int-F 5′-ggtacgaagctcaaggaacc-3′ 

16 mre11 int-R 5′-cggaagtatataggccgtcg-3′ 

17 rad50 int-F1 5′-ccgctcagcttgggtgtgag-3′ 

18 rad50 int-F2 5′-gcgctcacgctttgaaat cc-3′ 

19 rad50 int-R1 5′-tagacgatgctgtcttagcc-3′ 

20 rad50 int-R2 5′-gcgaaggtcccactataaga-3′ 

21 nbs1 int-F 5′-ggacctcgatacgaagttg-3′ 

22 nbs1 int-R 5′-ggtaaactatctacctccgc-3′ 

23 ctp1 int-F 5′-cgaagaagacactcctgaag-3′ 

24 ctp1 int-R 5′-gctaatcgcaagtgatgggg-3′ 

Table 10. Table shows the primers which bind internally to the target gene for use with 

sequencing to ensure that the entire length of the gene is sequenced. 

 

2.2.10 Archiving of E. coli strains 

After a strain of E. coli has been identified to contain the plasmid with the desired insert 

successfully integrated, the strain is then frozen and stored for future use. Firstly the strain 

was inoculated into 3 ml LBL + Amp and was grown for 2 days at 30°C in a shaker 

incubator. 500 μl of the culture was transferred to a cryogenic vial labelled with the strain’s 

designated number. An equal volume of 30% glycerol solution was added and mixed 

thoroughly by vortexing. The strains were stored at -80°C. 

When required, the strains can be woken by streaking a small amount of the frozen stock onto 

an LB + Amp plate, followed by incubation at 37ºC. 

 

2.2.11 Plasmid extraction from E. coli cells by Midi-prep 

In order to obtain larger quantities of the desired plasmid, a midi-prep plasmid extraction 

method was used. For this, the Machery-Nagel Midi-prep kit was used as per the 

manufacturer’s instructions for the extraction of low-copy number plasmids from E. coli 

cells.  
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Following the Midi-prep the purified plasmid solution is then checked by electrophoresis and 

quantified using the Invitrogen Qubit as described in section 2.2.4. 

 

2.2.12 Transformation of S. pombe cells 

Transformation was carried out to transform the plasmids into S. pombe in order to introduce 

the desired mutant genes into the cells. The S. pombe base strains for the desired genes were 

chosen for transformation.  

For this, a single colony of the chosen base strain was inoculated into 10 ml of YEL medium 

and incubated in a shaker incubator at 30°C for 1-2 days. 1ml of the culture was transferred 

into a sterile 250 ml conical flask containing 100 ml YEL medium. This was incubated for a 

further 1-2 days at 30°C until the culture was at a concentration of 5x10
6
 – 10

7
 cells/ml. The 

concentration was determined by placing 10 μl of the culture onto a haemocytometer which 

was examined microscopically and the cells inside the gridded area were counted and 

multiplied by 10
4
 to give the number of cells per ml. 

50 ml of the culture was taken and transferred to a centrifuge tube and spun at 1,000 x g for 5 

minutes. The supernatant was removed and the cells were then washed in 50 ml dH2O. The 

cells were then resuspended in 1 ml LiAC/TE (0.1M lithium acetate, 10mM Tris pH 7.5, 1 

mM EDTA) and transferred to a microcentrifuge tube, and then spun for 30 seconds at 

11,000 x g the supernatant was subsequently discarded.  

The cell suspension was then resuspended in LiAc/TE to a concentration of 2x10
9
 cells/ml. 

100 μl of this suspension was then taken and placed into a microcentrifuge tube. 2 μl of 

salmon sperm DNA was added along with 10μl of the plasmid DNA extracted by midi-prep. 

This was then incubated at room temperature for 10 minutes. 260 μl 40% PEG/LiAC/TE was 

added and incubated for 1 hour at 30°C in a water bath.  

43 μl DMSO was added to the mixture, which was transferred to a second water bath at 42°C 

for and incubated for five minutes to heat shock the cells. 

The suspension was spun at 11,000 x g, for 30 seconds, the supernatant was removed, and the 

cells were resuspended in 1 ml dH2O. This was spun for 30 seconds at 11,000 x g, the 

supernatant discarded and the cells resuspended in 500 μl dH2O and then plated onto 5 EMM 

plates containing thiamine at 15 μM (+ Ade if necessary). and incubated for up to 5 days at 
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30°C. The lack of leucine in the medium is used to screen for transformants as the base 

strains are of the leu1-32 genotype and therefore require leucine in the medium for growth, a 

wild-type S. cerevisiae LEU2 gene present in the pAW8 plasmid and therefore provides 

transformants with leucine. The addition of thiamine in the medium reduces the expression of 

Cre via the nmt1 promotor. 

 

2.2.13 In vivo cre recombination in S. pombe and selection of transformants 

Transformants were inoculated into 10 ml of YEL medium and incubated for 2-3 days at 

30°C. The lack of thiamine in the medium allows for the expression of Cre, leading to 

cassette exchange. The plasmid was also lost from cells during this time. Serial dilutions of 

the culture were made to 10
-5

 times, 100 μl of each dilution were then plated onto YEA + 5-

fluroorotic acid (5-FOA) at 0.1% (w/v). The plates were incubated for 3-5 days at 30°C. The 

transformant colonies were then streaked onto YEA plates and incubated for a further 2-3 

days at 30°C. The plates were replica plated onto EMM + ura+ leu, EMM + ura and EMM 

+leu (adenine also added to all plates if required), the plates were incubated for 2 days at 

30°C. Colonies which grow on the EMM + ura +leu but not on the other two are indicative of 

successful cassette exchange (loss of ura4
+
) and plasmid loss (loss of LEU2

+
). 

 

2.2.14 Extraction of genomic DNA from S. pombe 

To confirm if the transformants have correctly integrated the mutant gene, the genomic DNA 

was extracted from the transformant cells so that the region of interest could be amplified by 

PCR, screened by electrophoresis, purified and sequenced. 

The transformant cells were inoculated into 10 ml YEL and incubated at 30°C until 

saturation. The cultures were spun at 3,000 x g for 5 minutes and the supernatant was 

removed. The cells were resuspended in 1 ml TE and transferred to a screw-cap 

microcentrifuge tube and centrifuged for 3,000 x g for 5 minutes. The supernatant was 

discarded and the cells were then resuspended in 250 μl TE buffer. 300 μl phenol chloroform 

and 0.3 g zircon beads were added. 

The tubes were ribolysed for 3 x 30 seconds at speed 6.5. The aqueous phase was collected 

and placed into a microcentrifuge tube. 2 μl RNAse (50 mg/ml) was added followed by a 30 
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minute incubation at 37 °C. 2μl 10% SDS (Sodium docecyl sulphate) and 2μl proteinase K (5 

mg/ml) were added, the tubes were subsequently incubated for 1 hour at 55°C. 

Equal volumes of phenol chloroform were added, vortexed and then spun for 5 minutes at 

11,000 x g. The aqueous phase was taken and placed into a clean microcentrifuge tube. This 

phenol chloroform extraction stage was then repeated.  

20 μl 3M NaAc and 440 μl isopropanol were added to precipitate the DNA. The tubes were 

vortexed and centrifuged at 11,000 x g for 15 minutes at room temperature. The supernatant 

was discarded and 1 ml 70% ethanol was added followed by a centrifugation at 11,000 x g for 

10 minutes. The supernatant was removed and the pellet was air dried for approximately 5 

minutes. The DNA pellet was then resuspended in 100 μl TE. 
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2.2.15 Screening of S. pombe genomic DNA 

The regions of interest were screened for the correct integration of the cassette by PCR of the 

desired region using the primers given in Table 11 and the method described in section 2.2.8.  

The PCR products were checked by electrophoresis. If the product formed a band at the 

correct length, then PCR product was purified and sequenced as described in section 2.2.9 

Table 11: Primers used to check for the correct integration of the mutant mre11, rad50, 

nbs1 and ctp1 genes in S. pombe 

Number Name Sequence 

25 mre11 check-F 5′- cgtgagatttctttcgccagc-3′ 

26 mre11 check-R 5′-gtacaggtgtgtgctcagc -3′ 

27 rad50 check-F 5′- ggcagtcaaactggtcatcg-3′ 

28 rad50 check-R 5′- gcgagagaatattttggatcacc-3′ 

29 nbs1 check-F 5′-gcaaggctaggacagagaac-3′ 

30 nbs1 check-R 5′-ggtcgtacattgctacgcag-3′ 

31 ctp1 check-F 5′-ctaatcgcaagtgatgggg-3′ 

32 ctp1 check-R 5′-cgaagaagacactcctgaag-3′ 

Table 11. The names and nucleotide sequences of the primers used to check for the correct 

integration of the mutant mre11, rad50, nbs1 and ctp1 genes in S. pombe by PCR and 

subsequent sequencing. 
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2.2.16 Archiving of S. pombe strains 

S. pombe strains which were found to have correctly integrated the cassette were designated 

numbers, frozen and stored. This was done by inoculating a single colony of the strain into 10 

ml YEL and incubating for at 30°C until saturation. 500 µl cell culture and 500 µl 50% 

glycerol were added to a cryogenic vial and vortexed. The strains were then stored at -80°C. 

When required, the strains can be woken by streaking a small amount of the frozen stock onto 

a YEA plate and incubated at 30ºC. 

 

2.2.17 Testing for the sensitivity of mre11, rad50, nbs1 and ctp1 mutants to 

camptothecin and methyl-methanesulphonate  

YEA plates containing camptothecin (CPT) at 0.5 μM, 1 μM, 5 μM and 10 μM; and Methyl-

Methanesulphonate (MMS) at 0.001%, 0.002%, 0.005% and 0.01% were made. YEA plates 

without drugs were used as a control. 

Strains were grown for 2 days in YEL at 30°C. The cellular concentration of each culture was 

determined as described in section 2.2.12 (page 58). The cultures were diluted to 

concentrations of 10
7
 cells/ml. Serial dilutions of 10

6
, 10

5
, 10

4
 and 10

3
 cells/ml were made.  

10 μl of each dilution for each strain were spotted onto a plate for each concentration of both 

drugs and the control plate. Plates were incubated for 3-5 days at 30°C. Following incubation 

images of the plates were created by scanning. 

For strains showing a very high sensitivity to the drugs, this test may be repeated using lower 

concentrations of the drugs in order to identify any differences in the sensitivity of the strains 

to the drugs in comparison to the base strains related to the mutant. CPT concentrations of 0.1 

μM – 0.5 μM, and MMS concentrations of 0.0001%, 0.0002%, 0.0005% and 0.001% were 

used. 
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2.3 Sequencing of MRE11, RAD50, NBS1 and CtIP in Patient Tumour 

Samples from the NWCOG-2 (RICE) Trial 

2.3.1 Evaluation of tumour samples 

The tumour biopsy samples acquired from patients participating in the NWCOG-2 (RICE) 

trial were evaluated for their quality and potential use in this investigation. The haematoxylin 

and eosin stained microscope slides of the samples were analysed microscopically along with 

Professor Geraint Williams of Cardiff University. The number of fragments, number of 

cancerous fragments, percentage of tumour nuclei in cancerous fragments, number of 

dysplastic fragments, percentage of dysplastic nuclei in fragments, number of non-tumours 

fragments and overall tumour nuclei were analysed for each sample and recorded. Any other 

relevant observations, such as high levels of immune infiltration, grade of dysplasia and type 

of cancer were also noted. 

The paraffin tissue blocks were also evaluated to assess their usability based upon their 

thickness, quantity of sample in block and quantity of tumorous regions in the blocks.  

 

2.3.2 Microtomy of tumour samples 

The tumour sample blocks, both those taken from the RICE trial and normal-tissue control 

blocks, were placed face down on ice. A clean unused microtome blade was inserted onto the 

microtome; the microtome was set to cut sections 10 μM thick. A cool block was then placed 

into the microtome and the blade holder was adjusted as to cut a full face of the block to 

minimise waste. This initial section was discarded to prevent the acquisition of contaminant 

DNA. Subsequent sections were cut from the block and a short ribbon of sections was cut 

from each sample, using forceps to lift the ribbon from the microtome. The ribbon was then 

removed from the microtome and then placed onto a water bath. Forceps were then used to 

separate the sections which were collected onto glass slides. Up to 8 sections were taken, 

when possible, from each block. The slides were left to dry. 
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2.3.3 Extraction of DNA from tumour samples 

The areas of the slide containing tissue were outlined on the reverse of the slide with a 

marker pen. The tissue was then scraped off the slide with a clean scalpel blade and placed 

into a microcentrifuge tube. 

The DNA was then extracted from the samples using the QIAgen QIAmp DNA FFPE Tissue 

kit used as per manufacturer’s instructions. 

 

2.3.4 Quantification of DNA using NanoDrop 

Following the extraction of DNA, the concentration of DNA in the sample was measured 

using a Thermo Scientific NanoDrop. This was carried out by washing the reader with 2 μl 

H2O. The NanoDrop software was opened and 2 μl H2O was added for the initialisation step 

when prompted, and then wiped off afterwards. A blank sample was then read using 2 μl of 

the DNA elution buffer into which the DNA sample was suspended. The first sample was 

then loaded and read. The reader was cleaned between each sample. This was repeated for all 

samples. The nucleic acid concentrations and the specificity readings were recorded. 

 

2.3.5 Primers used for PCR and sequencing of NWCOG-2 patient tumour samples 

The primers that were used to amplify the coding regions of MRE11, CtIP, NBS1 and RAD50 

were designed with the aid of Primer3 software. The primers were all designed to have a 

melting temperature (Tm) of approximately 60ºC. The primer sequences are shown, in 5′to 3′ 

direction in tables 12-15. Generally, 1 PCR reaction was used per exon, however for larger 

exons multiple reactions were required due to difficulties associated with the amplification of 

larger fragments with DNA extracted from FFPE tissue). 
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Table 12: Primers used for PCR and sequencing of the coding regions of MRE11 

Exon Forward Reverse 
Product 

Size 

2 TGCAGCGTAAATCATGTTGG CATAAACAGGTTCCTTATTTACTGC 314 bp 

3 CAGATTTTCAGATGAACTCTAAGGC TTCAAGCAGGCAAGGTAAGC 396 bp 

4 ACCAGATTGAAAGTCCCTTTGA GGAAGGCAAAACAGTTGTGTG 409 bp 

5 TGCAGTTTGCCTATGATTGC AAGGCATGCTTTCCACAGAC 262 bp 

6 CAGGTGATACGATATTCATGCAG GTCACCAATAAAGAATAAGGTTTGC 336 bp 

7 TTGAGAAGGACATAATTTAGAAGCAA CAAAATGAAATCACACAAAGCAAATC 359 bp 

8 CCAATCCTGTGCACACTTTC GTTAGCGGTAACCTTAACATAGGC 423 bp 

9 GAAAGCTTTCGTTTGCACATCA GTCCTTACAGGCTTCATGAGAA 371 bp 

10 CCTGTGGTAATAAGCTGCTATTCAG GAGCACTCTCCTCACTACTTTTCA 257 bp 

11 GCATAAACACTGTGAATACTGAAGG TCCCACTGTCAATTTGTTTAAGA 355 bp 

12 CCTTCTCCACTGACAACTTGC TTGTCACCCTACTTACTTCATAGAAA 318 bp 

13 AGTAGGCTTAACTACAGCTGTTCACT GAGAGGTTAAATAGTGATTTACCAGAA 400 bp 

14 GCATTTCTTAATTGTAGCCCCTTG TCCCCTAGACCTATGGACTGA 247 bp 

15 CAGCCTCCTTTATGTTTTTATAGTATG TTCAACTCTGACAAGATCTAATTCTG 416 bp 

16 TGGTCAGACTCTAGATGTTTGTTC GGGCTACCAATGGTGATTACC 314 bp 

17 GGCATCATTCAGTTTTGCAG CCTTCCAGCTTTAATGTTCCA 297 bp 

18 TGGTTATGGCTTTCTGTCTCC GCCCTTGGTCTGTTTTCATT 356 bp 

19 GCCGCTAATGTAGATTTTAAGGGA CACGCAATTCCCATGTAACAAA 373 bp 

20 CCCATGTGAAATGACTCTCACT TGGAGTTATGCTCAGGAAACAA 273 bp 

Table 12: The forward and reverse primers used in the PCR and sequencing of MRE11 in the 

NWCOG-2 patient tumour samples. This table shows the base sequences (in a 5′-3′ direction) 

and the size of the PCR product created using primer pair. 
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Table 13: Primers used for PCR and sequencing of the coding regions of CtIP 

Exon Forward Reverse 
Product 

Size 

3 TTTGACCTGTCCAAAGACGACT ACTGTCATACAAAGGTATACAAAGCC 280 bp 

4 TTTAGAGGCCAGACTGATGTGA GGTCAAATTGGACATCAGTATCAAC 238 bp 

5 AAACACGGTGGAGCTCTTAGAA AAGGTGAGAGAAGGCTGTGG 296 bp 

6 CAGTATTTGCCAAGTCAGTTCCT GTGGACAGTATTTGCACAACCT 430 bp 

7 TGGCACGGTGTGAGATGTAG CTGCAACTCTTACAGTTATCTTCATGG 343 bp 

8 CTCCATGCCATGTAGTAAATGTTTT GGATACCAGAATAGTGACTATCTTCTT 361 bp 

9 GCTTTGTTTCTTAGTGAAATTAAAGGAG ACTGTGGGTCACTGTTACCCA 369 bp 

10 GTGTGAGCCTTTTCCTTCATCT GTTTCAGGCCTTTACCCAAGA 323 bp 

11 ACATTATGTGGCCTTTGTCTGG TGTTGAAGGAGAGAAATGGCTTAA 344 bp 

12a GGTTAATCATTTGCTTCTAAGAGGTAG ACAAGTGTTGCTAAAAGGGAGTG 265 bp 

12b ACCTACTCGAGTGTCATCTCCTG GGGGCTCCAAATGTTTATCAGTG 347 bp 

12c TTCACACATCACAGTCTTGGGT CCTTGGCTTTTCTCTTGACGC 371 bp 

12d GTGAACATGAAGTAAGCTGCCC TTCAAGGGCTGAAGGATGAT 334 bp 

12e GACCATTCCAAAGGGCTTTTCC GGCTCATGAGAACCAGCACT 336 bp 

13 AAGGTTTGTGTTAAATGTTCAAGGAT CAGACACCTGAAGGAAGAAATAAGT 333 bp 

14 AGTCCTTTACCAGACATATGATTTGC GTGAGTCACGAGAGGAGGTTG 288 bp 

15 CCTAAATCCTTACCTGTTCGTAAAG CCTGCTTTATGGTGAAGAGGTC 387 bp 

16 GGACTGCATTCTGTTATTGTGTGG GTCATCAAGCCTTTGTTAATTAGCTTG 335 bp 

17 GGAAGTTTGAGTGCGTGTCATT GCAGTGAGCTGAGTTTACGC 312 bp 

18 AGCACTTAATAAGTATTTGACGAAGC CTGTTACGCCTGGCTCAAAT 364 bp 

19 AGACTGCTGAATATCTTAGTAAATGGC CAAAGTGTTGGGATTATAGGCGT 344 bp 

20 ATCAATCATCAGCATCACACAGC GGTGCAAAAGCAAAATATCACAAAC 400 bp 

Table 13: The forward and reverse primers used in the PCR and sequencing of CtIP in the 

NWCOG-2 patient tumour samples. This table shows the base sequences (in a 5′-3′ direction) 

and the size of the PCR product created using primer pair. Exon 12 was split into 5 smaller 

products due to the length of the exon (892 bp). 
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Table 14: Primers used for PCR and sequencing of the coding regions of NBS1 

Exon Forward Reverse 
Product 

Size 

1 CACTCCCGCCTCATCCAAG GCTTGCCATACAGCGTACTCG 336 bp 

2 CTTACATGTATGTGTGTGTTCGTG ACTGGTACCACTGCCACAATATAA 386 bp 

3 GGTTAGCCACCTGCCTATTGT CCATGGCACAGAGTCCAATACT 390 bp 

4 ACTAAAAATTGCCATCTCTGCAAC GTATACAAAGGGATGGAGTGGGTA 371 bp 

5 GGATGTAAACAGCCTCTTTGTAGT CCTGAAACAAGCATTAAAGAGGGA 294 bp 

6 GTGTCAGATAGTCACTCCGTTTAC CATGATCACTGGGCAGGTCT 362 bp 

7 CTCAAGAAGTAGCACCAAGTCTTC CTTTTACATTGTTAGGTGAAAAGCAAC 401 bp 

8 GAGGTTGCTTTATCTTGACATTATCTG TGAATATGGTCACCCCTAGCAAG 283 bp 

9 TCCCCTCAGCATGGTATAGTCT CCCATTCTTCCATGCTTTCTCTC 346 bp 

10a GGAGTTGCTTTCTTGGGATGG GATGGAGTTGGTCTGCTGCT 402 bp 

10b TCACAAGATGCACCCACTGT GACATTTCTGAGAGGGAAAGCG 356 bp 

11a GTGAACTAAATGGAGGGAGTGATG TGTCCACAGGCTCATTCTCA 249 bp 

11b GCAAATCAGCAAGAATAGAAACGTC GTTTCTATATCCATCCTTGGCCTT 364 bp 

11c CTGCCAGTAAATCTCATGCTGC GACATTAATGGATGCTCATACTGTCA 341 bp 

12 ATTCAAAAGGCCAAGAAGTGATAGA GATCAATCCATTTCAAGGCACAATC 291 bp 

13 TCTATAGATTCCCAAATGACAAGTGAC GCTTTTATCTTTGTTTAGCATCACTGG 318 bp 

14 CACTTATGCATGATTTACCATCTTTGC GGAATGCTCCTGAATGAATGACTT 345 bp 

15 CAGGATGTGGAAATCTCTAAGATGAC GGACTAGGTGTCTATGAGGACAG 265 bp 

16 CCCATCCTATTTGCCAAAGTGTG CATATAACCTTGTTGGCCTGAAGTAG 209 bp 

Table 14: The forward and reverse primers used in the PCR and sequencing of NBS1 in the 

NWCOG-2 patient tumour samples. This table shows the base sequences (in a 5′-3′ direction) 

and the size of the PCR product created using primer pair. Exons 10 and 11 were split into 

smaller products due to the lengths of the exons (273 bp and 478 bp respectively). 
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Table 15: Primers used for PCR and sequencing of the coding regions of RAD50 

Exon Forward Reverse 
Product 

Size 

1 CTTGCTTCGGCCTCAGTTAAG TAGGGACGCTTCTGCTCCTA 296 bp 

2 AGCATTTCTGTGAACTTACAGCA AGTTTTCCAGTGCCAAGTTTTCT 347 bp 

3 CCCTCATTTTGGGTAAGATTGCT GAAAACAACCATCAACTTACAGACC 321 bp 

4 CTAACGGGATAGGTGAAGGGC GAAGCATCCAAATTGCAAACACAG 381 bp 

5 GTGACAGCATAATATCCCACTGTATG GCCAGTCCACGATGTATACTTATATC 371 bp 

6 CTAAATGCCTGGACCTGGAGTATC CCAATGTGGATGGCAAAATGGAT 312 bp 

7 TCCATTTTGCCATCCACATTGG CACTCAGCATAAGTCCTTGGAGA 425 bp 

8 CGTGAATCTGCAGCTATCTCAAC GCCAAAATGGAGTCCAACCAA 357 bp 

9A CTGAGCAACACACGACTGTAC GCTCCTGGTCCAGTTCAAGAAT 317 bp 

9B CTGGACTGGGAAGAATAATTGAGTT GTTGTAGAACCAAAGAGTCAGAAGATC 318 bp 

10 CAGTAATATTTGGAACATTCTGAGGAG GACTTATGAGTGCAAGGTAGGC 366 bp 

11 GCTTAGAACTTTAGTCAGTCTAGAATT CTGAAGTCTCCTTGTATGTAAGAACT 391 bp 

12 CTCTTGTCATGATTTGTTGGCAGA ATTCCCCATCCTTAACAGTTACCT 364 bp 

13 AGATACAACCGTATTCAGAATACTGT CCCAGGCATGAGATGGGTAC 383 bp 

14 CAATGTCACTTCTGTGGTATTCTTCC ACTCTCACACTTCAAATTCAAGCC 357 bp 

15 AGTCAGCTTCCTTTTGTTTACATCA GACTGTAAAAGGCATGTGCTCG 395 bp 

16 GCATTTGTGGATTCCATAGACCG GGGTGACAGAACGAGACTGT 383 bp 

17 AGACTGTGAAGTCTGACCCCT CCGACGTGGTGCTATGAACA 253 bp 

18 GTTCATAACTTCCCAGCCAGTG TCTCGCATTCACTTAGTTGAGCT 310 bp 

19 AGATGGGAAAGACGACTATAAGAAGG TGTGAGCCACCACGCTT 336 bp 

20 GTCACCAGTTGCCTGTTACAGA CAAAGGATACCAGGCTGAGGC 314 bp 

21 CTATGACTTTTCCACTTCAGGTTGT CCAGCCTGGGAAACAAGAGT 430 bp 

22 GCCAAGCAGCAAAGTTTTGC GAGAGGTCATAAGGGGAAGAGC 347 bp 

23 CCTCATCTGTTGTTCCTAGGCTT GTGCTTCCACTGCACTGATG 319 bp 

24 TCAGGACTGCTTGCCTGC TGAAGAACTATCACAACCTGTCCC 276 bp 

25 CTGACAAGGTTTGCGGTGAC TCCTAGACACAATGTTCCTTTGAAAG 396 bp 

Table 15: The forward and reverse primers used in the PCR and sequencing of RAD50 in the 

NWCOG-2 patient tumour samples. This table shows the base sequences (in a 5′-3′ direction) 

and the size of the PCR product created using primer pair. Exon 9 was split into 2 smaller 

products due to the length of the exon (207 bp) and G/C poor regions which flank the exon, 

requiring primers that bind further from the exon. 
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2.3.6 Multiplex PCR  

Due to the generally low quality and concentration of patient sample DNA, a primary 

multiplex PCR reaction was carried out using all primers for a single gene for each patient in 

a single reaction to amplify the amount of template available. For this, the following were 

added to each reaction for a total reaction volume of 50 µl. 

 Multiplex primer mix containing each primer at a concentration of 20 pmol/µl. (1 µl 

for each primer pair 

 1 µl patient sample DNA 

 25 µl Bioline MyTaq HS Red Mix 

 Make up to 50 µl with PCR grade H2O 

The following reaction programme was used 

 Initial denaturation of 95°C for 3 minutes 

 25 cycles of: 

o Denaturation of 95°C for 30 seconds 

o Annealing and  synthesis at 56.8°C for 4 minutes 

 Final extension of 72°C for 5 minutes 
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2.3.7 PCR of patient tumour sample DNA 

The exons of the genes of interest in the patient sample DNA were amplified by PCR. 

Negative controls were also used for each primer pair to check for PCR contamination. The 

following were added to each reaction for a total reaction volume of 10 μl: 

 2 μl PCR grade dH2O (3 μl for negative control reactions in which multiplex products 

are not used) 

 1 μl patient sample DNA/patient sample multiplex PCR product/negative control 

multiplex PCR product 

 1 μl Forward primer (5 pmol/μl) 

 1 μl Reverse primer (5 pmol/μl) 

 5 μl Bioline MyTaq HS Red Mix 

The following reaction programme was used: 

 Initial Denaturation of 95°C for 3 minutes 

 33 cycles of: 

o Denaturation of 95°C for 15 seconds 

o Annealing for 15 seconds at the optimal temperature defined by gradient 

PCR 

o Extension of 72°C for 15 seconds 

 Final extension of 72°C for 5 minutes 

 

2.3.8 PCR optimisation 

2.3.8.1 Annealing Temperature 

The optimal annealing temperature for each primer pair was determined by gradient PCR 

using the conditions defined in section 2.3.7. A gradient for the annealing stage ranging from 

51.8°C – 62.2°C was used. The reactions were set-up in 96-well plates DNA acquired from a 

control sample was used in each reaction optimisation reaction. The full range of annealing 

temperatures was tested for each primer pair. 

The PCR products were checked by electrophoresis. The annealing temperature which gives 

a single specific band showing the correct length is chosen as the optimal temperature for use 

for the PCR reactions of the trial DNA for that specific primer pair. 
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2.3.8.2 Cycle Number 

To reduce the concentration of potential contaminating DNA PCR products in the PCR 

reactions whilst maintaining the highest possible yield of PCR product, the PCR cycle 

number was optimised. For this, PCR reactions were carried out as described 2.3.7 using 

wild-type DNA and a no-template control, with varying cycle numbers from 30-35. The 

primers for MRE11 exon 2 were used. The PCR products were checked by electrophoresis. 

The cycle number for which the highest yield of PCR product was observed in the wild-type 

DNA reaction with little to no PCR product in the no-template control reaction, was chosen. 

 

2.3.9 PCR screening using the QIAxcel system 

PCR products were screened by QIAxcel using QIAgen QIAxcel DNA screening kit with the 

15 bp – 1 Kb alignment marker and the 50-800 bp v2.0 size marker. The QIAxcel was run as 

per the manufacturer’s instructions using AM320 method. 

 

2.3.10 Purification of PCR product using the ExoSAP method 

0.5 µl of Exonuclease I (ExoI) (20 U/µl) and 2 µl of shrimp alkaline phosphatase (SAP) (1 

U/µl) were added to the PCR products and then incubated in a thermocycler for 15 minutes at 

37°C and then 85°C for a further 15 minutes.  

The purified products can then be checked and quantified as described in sections 2.2.2 and 

2.2.3.  

 

2.3.11 Plate Sequencing 

Sequencing was carried out using the Eurofins plate sequencing service for purified DNA. 

Approximately 75 ng of PCR products were added to the wells of the sequencing plate and 

then made up to 15 µl using dH2O. 2 µl of the corresponding primer (10 µM) were then 

added to samples. The plates were then sent to Eurofins MWG Operon for sequencing. 
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2.3.12 SmartSeq sequencing 

Sequencing of individual samples was also carried out using the Eurofins SmartSeq service in 

which approximately 75 ng PCR product, made up to 15 µl with dH2O, and 2 µl of the 

corresponding primer (10 µM) were added to a Eurofins SmartSeq barcoded tube. These 

samples were then sent to Eurofins MWG Operon for sequencing. 

 

2.3.13 Identification of mutations 

Sequencing data was aligned to the wild-type sequences ( accession numbers NG_007261.1, 

NG_021151.1, NG_008860.1 and NG_012121.1 for MRE11, RAD50, NBS1 and CtIP 

respectively) for the corresponding exons for each gene using Clustal Omega (ClustalO) 

alignment software to identify any bases in the patient tumour DNA that do not match that of 

the wild-type.  

Chromatograms were also checked by eye to identify and mutations that may be present that 

were not called by the base calling software. 

Sequencing of the opposite DNA strand was carried out for all exons in which a mutation was 

found to be present in order to confirm the presence of the mutation. 

 

2.3.14 Estimation of the pathogenic effect of mutations 

The potential damaging effect of the mutations was estimated using the Polyphen2 and Align 

GVGD mutation analysis software. 
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2.4 Resequencing of NWCOG-2 Patient Tumour Samples 

2.4.1 Resequencing of NWCOG-2 samples  

PCR and sequencing was carried out, as described in section 2.3.7, on exons in which 

mutations were identified, using primers that bind external to those used in the initial PCR 

and sequencing reactions. The primers are shown in tables 16-19. 

Table 16: Primers used for PCR and resequencing of MRE11 

Exon Forward Reverse 
Product 

Size 

3X CTGTATTGAACTAGTGGTTAGG GCTCCTACTTGAATTTAAGACAC 516 bp 

8X GGTCAGGAGTTAGCATTGATG CATATAAATGACAATACTGCCAG 478 bp 

11X GCTCCATCATGATCTACTGTAG CGTTGTGCACATGTACCCTAG 491 bp 

13X CGTGTCCTGTACTCCTCCC GCAAGACTCTGTTCTAGGC 553 bp 

19X CCTCGGCCCCAGAGTCC GGGATCTGTACCAAACCTCAGC 438 bp 

Table 16: The forward and reverse primers used in the PCR and sequencing of MRE11 exons 

which required resequencing in the NWCOG-2 patient tumour samples. This table shows the 

base sequences (in a 5′-3′ direction) and the size of the PCR product created using primer 

pair. The “X” next to the exon number denotes that these primers are external to the original. 

 

Table 17: Primers used for PCR and resequencing of CtIP 

Exon Forward Reverse 
Product 

Size 

11X GCTTTCTGTCCCTAGAGATTTACC GGTCAGAAACTAGGGAGACAATTT 462 

12AX GCCAAAAGCTGTACCTTGTCTT GTGTGAAAAGGGCACTATCTTCAG 349 

16X CACAGTTACTAAGCTCAGTACCCA GGTTGGGTCAAAGGTACAGGAG 533 

20X GAGGAAACTGATGCTAAATAGTGAGAT GAGTGCAAAATGAAAGCGCC 458 

Table 17: The forward and reverse primers used in the PCR and sequencing of CtIP exons 

which required resequencing in the NWCOG-2 patient tumour samples. This table shows the 

base sequences (in a 5′-3′ direction) and the size of the PCR product created using primer 

pair. The “X” next to the exon number denotes that these primers are external to the original. 

 

  



74 

 

Table 18: Primers used for PCR and resequencing of NBS1 

Exon Forward Reverse 
Product 

Size 

4X GGTTACAAAGCTTAATGATGAGGAAC GGTTATATGAAAAGCCACTCAAGCC 510 

Table 18: The forward and reverse primers used in the PCR and sequencing of NBS1 exons 

which required resequencing in the NWCOG-2 patient tumour samples. This table shows the 

base sequences (in a 5′-3′ direction) and the size of the PCR product created using primer 

pair. The “X” next to the exon number denotes that these primers are external to the original. 

 

Table 19: Primers used PCR and resequencing of RAD50 

Exon Forward Reverse 
Product 

Size 

1X CCTGACCCTGAGATTCGCG CCTACACCTGTGGAGCCC 354 

3X CATACCTGATCTCCTAATGATGCTG GCTCCCCTAAACTTATAGTAGAAAACA 477 

10X CCTTAGAGCATATATAGTGCCTTATGT GAGTACTAAGCTCACTTAGCCTCT 479 

11X GACCATCCCCACTTGAAGACT GAACTTGATGGAGCTTATGTTGAGA 542 

13X GCTCTTTGGAAGCGAATATCGG CCTTACTGAGTAACTACCATCTGCC 503 

16X TTGTTGCAGTGGGTGGGG TGCTACTGCACTCCAGCC 432 

19X CATGGCTATATGAAAGACATTGAG TGTGAGCCACCACGCTT 371 

21X CTGATTGCTAAGGAGAATGATACTTAACC GCTGAGATCGTGCCATTGC 494 

23X CCAGCCATTGTTTTCCTCTGG CAGGTGTAGCCTTGGGTGC 364 

24X CGTTTCCCACTTTTCCCTGC GGGAACACAGCTAGAGAACGT 355 

25X CCTGACACACAGCACAAGTTC GAACCTCTCAACATCCAAAATCCT 443 

Table 19: The forward and reverse primers used in the PCR and sequencing of RAD50 exons 

which required resequencing in the NWCOG-2 patient tumour samples. This table shows the 

base sequences (in a 5′-3′ direction) and the size of the PCR product created using primer 

pair. The “X” next to the exon number denotes that these primers are external to the original. 
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2.4.2 Resequencing on new sections cut from NWCOG-2 patient samples 

Sections were cut from the tumour sample bocks for patients in which MRN/CtIP mutations 

were found. Microtomy was carried out as described in section 2.3.2. DNA was then 

extracted as described in section 2.3.3. PCR was carried out as described in section 2.3.7 

using newly ordered primers (with the same sequences as the primers listed in tables 12-15), 

fresh PCR grade H2O and fresh MyTaq HS Red Mix. To prevent contamination in the DNA 

extraction and PCR stages, protective coveralls and facemasks were worn and the procedures 

were carried out in a laboratory in which no work on human DNA or PCR has previously 

been carried out. This laboratory was also cleaned thoroughly with bleach and DNA-Zap. 

The PCR products were checked by QIAxcel (as described in section 2.3.9), purified by 

ExoSAP method (described in section 2.3.10) and sequenced by SmartSeq (as described in 

section 2.3.12). The sequencing results were analysed by alignment using ClustalO, and the 

chromatograms were checked by eye (as described in section 2.3.13). 
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2.5 Analysis of Mutations in the Microsatellite Regions of MRE11 and CtIP 

2.5.1 Fluorescent fragment analysis 

FAM (6-Fluorescein amidite) labelled primers were designed to amplify the region of MRE11 

containing the poly(T)11 repeat and the region of CtIP containing the poly(A)9 repeat. These 

primers are shown below in Table 20. 

Table 20: Primers used for fluorescent fragment analysis of MRE11 and CtIP 

Gene Forward Reverse 
Product 

Size 

MRE11 FAM-

GAGGAGAATCTTAGGGAAAACAGC 

 GTTTCT-

GGAATTGAAATGTTGAGGTTGCC 

119 bp 

CtIP FAM- 

GGAGCTACCTCTAGTATCAAAAGTGG 

GTTTCT- 

GGGCACTATCTTCAGATTTTGATCTAG

  

163 bp 

Table 20: The forward and reverse primers used to amplify the regions of MRE11 and CtIP 

which required analysis by fluorescent fragment analysis in the NWCOG-2 patient tumour 

samples. This table shows the base sequences (in a 5′-3′ direction) and the size of the PCR 

product created using primer pair. FAM- denotes the fluorescent FAM label added to the 

forward primer to create a fluorescently labelled PCR product. The GTTCT tails were added 

to the 5′ ends of the reverse primers to promote the completion of the reaction by which Taq 

polymerase adds additional non-templated A bases to the fragment. This reduces the 

prevalence of stutter peaks [186] [187]. 

 

PCR was carried out as described in section 2.3.7 on patient sample DNA using the FAM 

labelled primers. The PCR products were then checked using the QIAxcel as described in 

section 2.3.9 

The products were treated with T4 DNA polymerase, as this is done to remove additional A 

bases added by the Taq polymerase to further reduce stutter peaks and inaccurate allele 

calling [188] [189]. 0.1 U of T4 polymerase was added to the samples. The samples were 

then heated for 37ºC for 10 minutes and then heat at 72ºC for 20 minutes to inactivate the 

enzyme. 

1 µl of 1/50 x dilution PCR product, 0.3 µl GeneScan 350 ROX size standard and 9 µl 

formamide were added to the wells of a 96 well optical plate and mixed well by pipetting. 

Samples were then run on an ABI 3130xl genetic analyser. The peaks were analysed using 

ABI GeneMapper software. 
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2.6 Screen for S. pombe Mutants Which Show an Increased Sensitivity to    

5-Fluorouracil 

2.6.1 Testing for sensitivity of mre11Δ, rad50Δ, nbs1Δ and ctp1Δ mutants to the 

drug 5-Flurouracil 

YEA plates containing 5-fluorouracil (5-FU) at concentrations of 0, 1, 10, 100, 150 and 500 

μM were made. The strains used were mre11Δ, rad50Δ, nbs1Δ and ctp1Δ (EH01104, TJ1, 

EH1031 and EH1030 respectively). Strains of these aforementioned genotypes with the ura4-

D18 mutation were also used. Sensitivity tests were then carried out as described in section 

2.2.17. 

 

2.6.2 5-FU pre-screen 

Wells of a 96-well culture plate were filled with 50 μl YEL. ura4-D18 EH00068 strain was 

inoculated into the wells. The plate was then tightly covered, placed into a humidity chamber 

to prevent evaporation, and incubated at 30°C for 4 days. 

YEA plates were made containing 5-FU at concentrations of 0 μM, 100-500μM in increments 

of 50 μM and 600-800 μM in increments of 100μM. 

A 48 pin replicator was sterilised by IMS and flaming. After the replicator cooled, the pins 

were inserted into the wells of the 96 well plate containing the cultures, and replicated onto 

the plates. The replicator was sterilised between each replication. 

The plates were scanned into a computer and then incubated at 30°C, being scanned every 12 

hours for 5 days. 

ImageJ software was then used to stack the images and measure the intensity of the spots on 

each plate at each time-point. These values were then used to construct growth curves for the 

WT strain for each concentration of 5-FU. This was then analysed to determine the 

concentration of 5-FU to be used in the plates for the library screen. 
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2.6.3 Waking of the S. pombe library 

34 96-well culture plates were filled with 50 μl YEL into each well and numbered. The 

Bioneer Library version 2.0 was thawed. Each plate was placed onto a plate vortex to 

resuspend the cells. A 96-pin replicator was then used to replicate the cells from the library 

into the fresh 96-well plate of the same number and at the correct rotation. This was then 

repeated for all plates.  

The plates were placed into a humidity chamber and incubated at 30°C for 4 days. 

 

2.6.4 Transfer of S. pombe deletion library to 384 solid agar format 

The library was transferred from 96 well liquid medium format onto 384 solid medium 

format to reduce the number of plates to be used. This was done using the Singer ROTOR 

robot. The protocols were set using 96 liquid format as the source plates, and 384 solid 

format as the target plates. 96-long-pin pads were used to replicate the library from liquid to 

solid. Following replication, the library, on solid media, was incubated for 3 days at 30ºC 

 

2.6.5 Library screen for mutants showing an increased sensitivity to 5-FU 

10 YEA control plates, 10 YEA + 200 µM 5-FU and 10 YEA + 400 μM 5-FU plates were 

made and numbered. The antibiotic G418 was added to a concentration of 1 µg/ml, to prevent 

contamination by bacteria and non-library yeast cells (the library strains are all G418 

resistant). The plates were dried under a microbial culture hood to prevent condensation. 

Using the ROTOR robot the library was replicated from the plates made in section 2.6.4 onto 

the plates described above. The settings were chosen for 384 solid medium as a source plate 

and for 3 x 384 solid medium target plates. 384-short-pin pads were used. Following the 

replication of the library, the plates were placed (colony-side down) onto a set of scanners (1 

set of plates per scanner) inside an incubator, to be incubated at 30 ºC for 72 hours. 

A script was run on a computer connected to the scanners in the incubator so that they would 

scan the library plates every 2 hours for 72 hours (starting at 0 hours). 

This was repeated a total of 8 times. 
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2.6.6 Analysis of the library screen using Colonyzer and QFA 

The scanned images were cropped using ImageMagick, so that there was an individual image 

of each plate, at each 5-FU concentration, at each time point, for each 8 repeats. The 

Colonyzer software was then used to measure the size and density of each colony throughout 

the time course. The statistics package R, was installed with the QFA package, and run to 

analyse the measurements obtained from Colonyzer. QFA then constructed growth curves, 

calculated the fitness for each strain and conducted fitness plots. QFA epistasis then 

calculates the significance of 5-FU sensitivity and resistance for each strain and identifies a 

list of strains that are sensitive to 5-FU at each concentration. 

 

2.6.7 Ontological Analysis 

Ontological analysis was carried out on the list of genes identified to be significantly 

sensitive to 5-FU when deleted using Cytoscape software with the BiNGO plugin. The list of 

genes were entered into the BiNGO interface on Cytoscape and the analysis was run with S. 

pombe selected as the organism and a custom reference list consisting of the genes deleted in 

the Bioneer deletion library. This generated a table showing the list of processes that were 

found to be significant in maintaining resistance to 5-FU in S. pombe, as well as a network 

image to visualise the relationships between the significant processes.  
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3 Creation of Known Patient MRE11, RAD50, NBS1 and CtIP Mutations 

in Schizosaccharomyces pombe 

3.1 Introduction 

3.1.1 Roles of Mre11, Rad50, Nbs1 and CtIP in DSB repair and topoisomerase 

removal 

Several studies in a range of model organisms have suggested roles of the MRN complex in 

the repair of DNA DSBs and the removal of covalently bound topoisomerases from DNA. As 

discussed in the introduction to this thesis, the Mre11, Rad50, Nbs1 and CtIP proteins are 

involved in the detection and repair of DNA DSBs. The Mre11 protein dimers detect DSBs 

and bind to each broken chromosome end [190]. A Rad50 protein binds to each Mre11 dimer, 

and then to one another via the zinc hook domain [191]. Nbs1 binds to Mre11 and then 

recruits and interacts with ATM leading to the activation of ATM via autophosphorylation 

[192] [11]. ATM then interacts and activates a range of substrates involved in cell cycle 

arrest, apoptosis and DNA repair [5] [11] [12]. One such protein is CtIP, which was shown in 

human cells to bind the fork-head associated (FHA) domain of Nbs1 following activation by 

ATM [193], and then function in the DNA DSB repair pathway of HR [194]. CtIP has also 

been shown to function in the repair of etoposide-induced DSBs by NHEJ in human cells 

[195]. In S. pombe the CtIP homologue Ctp1 functions in NHEJ by promoting the 

dissociation of the Ku heterodimer from DNA [28]. In human cells, CtIP promotes HR by 

regulating the initial DSB end resection [196]. 

Also, as described in the introduction to this thesis the S. pombe Mre11 and Ctp1 proteins 

have been shown to be involved in the removal of covalently bound topoisomerases from 

DNA and thus contribute to resistance to topoisomerase inhibitors [94]. The human Mre11 

protein is also known to have involvement in the removal of topoisomerase II from DNA 

[197].  

 

3.1.2 Aims 

Due to the known involvement of the MRN complex and CtIP in the resistance to 

topoisomerase inhibitors, and the knowledge that mutations within the encoding genes confer 

increased sensitivity to topoisomerase inhibitors, it was hypothesised that some specific 

patient mutations of these genes found in colorectal cancers may confer a specific 
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hypersensitivity to camptothecin. The aim of this investigation was to identify if known 

mutations in MRE11, RAD50, NBS1 and CtIP; which have previously been identified in 

cancer and associated syndromes (AT-LD, NBS-LD, NBS, Seckel syndrome and Jawad 

syndrome), confer an increased sensitivity to camptothecin. This investigation aimed to 

identify if any of these patient mutations cause separation of function mutants which 

specifically sensitise to camptothecin, without sensitising to other DNA damaging agents. 

Separation of function mutants which sensitise to camptothecin be of great relevance to the 

treatment of tumours with irinotecan, as irinotecan is a camptothecin derivative, and therefore 

these mutations, when present in cancers, may be indicative of a greater response to 

irinotecan but not to other treatments. 

A separation of function phenotype is observed for the S. pombe mre11-D65N mutant, in 

which camptothecin sensitivity is heightened and methyl-methanesulphonate (MMS) 

sensitivity remains unchanged in comparison to that of the wild-type (see Figure 20, page 

95). The mutant mre11-D65N is known to be a separation of function mutant as it is defective 

in Top1 and Top2 removal, for which Mre11 nuclease activity is required, yet retain 

proficiency in downstream DNA repair functions which do not require Mre11 nuclease 

activity [94]. The human MSI related Δ5-7Mre11 mutant is an example of a known separation 

of function mutant found in colorectal cancers that retains affinity for Rad50 and ssDNA, yet 

abolishes Nbs1 binding activity and 3′-5′ exonuclease activity, due to the loss of part of the 

nuclease and Nbs1 binding domains. This mutant was found to confer hypersensitivity to 

camptothecin, thymidine and higher doses of ionising radiation (IR), but remains resistant to 

IR at lower doses [107]. 

In this investigation the known mutations have been recreated into the orthologues of the 

aforementioned genes in the model eukaryotic organism S. pombe (mre11, rad50, nbs1 and 

ctp1 respectively), and tested for their sensitivity against camptothecin and MMS. 

 

3.1.3 Creation and testing of mutants in S. pombe 

To create the mutants in S. pombe, alignments of the human and S. pombe homologues of 

each gene were made (shown in the introductory section to this thesis) so that the homology 

of the amino acid sequences could be assessed. The mutations were constructed in S. pombe 

at locations that aligned to the location of the mutation in the human sequence. Any aberrant 
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C-terminal amino acids that occur due to frameshifts in the human mutants were incorporated 

into the corresponding S. pombe mutants. 

The mutant strains were created using the Cre-lox system (as shown in Figure 14 and Figure 

15) and then tested for sensitivity to camptothecin (CPT) and methyl-methanesulphonate 

(MMS), and compared to the sensitivity of the wild-type strain and corresponding knockout 

strain to gauge the sensitivity to both agents as a result of the mutation. A corresponding 

floxed wild-type strain (harbours the wild-type gene flanked by loxP and loxM3 sites) was 

also tested in order to identify if the presence of the lox sites affects the function of the 

corresponding gene. 

The mutants were tested for sensitivity to MMS in addition to CPT in order to identify if any 

degree of increased sensitivity is specific to CPT, and thus specifically impairs the ability of 

the cell to remove topoisomerases from DNA. MMS damages DNA through a different 

mechanism to that of CPT. MMS methylates DNA causing lethal lesions that inhibit DNA 

synthesis. These lesions are known to be repaired by recombination repair and base excision 

repair (BER) [198]. A small portion of lesions are repaired by the MMR pathway [199]. 

Studies in S. cerevisiae have also shown that disruptions in HR increase sensitivity to MMS 

[200] [201], as it is thought that MMS can induce DSBs. These DSBs are thought to arise 

during BER, when a SSB encounters a replication fork [201]. DSBs can also arise from two 

SSBs that form on opposite DNA strands in close proximity [202]. 

The nuclease dead mre11-D65N mutant was also tested alongside the mre11 mutants. This 

mutant is known to retain its proficiency for MRN complex formation [104] and downstream 

recombination repair. This mutant is however, defective in the removal of Top1 and Top2 

from DNA, as this process requires nuclease activity. These attributes result in a separation of 

function mutant that has a greater sensitivity to camptothecin, as resistance to this drug 

requires nuclease activity (see introduction) of which this mutant lacks; than to MMS, which 

does not. A previous study shows this to be the case [94]. 

The workflow for the creation and selection of the mutants is shown in figures 14 and 15.  
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Figure 14. In vitro Cre-lox recombination.  Diagram to show the first parts of the procedure used to create 

the mre11, rad50, nbs1 and ctp1 mutants in pAW8-ccdb. This diagram shows the creation of the mutant 

insert, consisting of the mutant gene flanked by the loxP and loxM3, the PCR product is then inserted into 

the pAW8-ccdb plasmid using cre recombinase. The plasmid is then transformed and cloned into E. coli.  
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Figure 15.Creation of mutant S. pombe strains using Cre-lox recombination. Diagram to show the latter 

stages of the procedure used to create the mre11, rad50, nbs1 and ctp1 mutants in S. pombe. This diagram 

shows the mutant plasmid being inserted into the S. pombe base-strain for the corresponding gene. Cre 

recombinase then functions to exchange the mutant gene insert with the ura4 gene in place of the 

corresponding gene in the base strain. Selection procedures select strains which have recombined to 

incorporate the mutant gene and have lost the ura4 marker and the plasmid. 
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3.1.4 Known MRE11, RAD50, NBS1 and CtIP patient mutations 

3.1.4.1 MRE11-W210X 

The MRE11-W210X (X refers to a stop codon) mutation has been identified heterozygously in 

a colorectal cancer with chromosomal instability [175]. This mutation causes a truncation, 

resulting in an Mre11 protein consisting of only 209 out of 708 amino acids. This truncation 

occurs partway through the nuclease domain resulting in a mutant protein which consists only 

of the first three phosphodiesterase domains, the first Mre11 binding domain and the Nbs1 

binding domain. When recreated into S. pombe in this study, this mutation consists of the first 

241 residues (W215X), however it is referred here as mre11-W210X to match that of the 

human homologue. In S. pombe, this mutant protein also only consists of part of the nuclease 

domain, including the first Mre11 dimer interface and the nbs1-binding domain. 

 

3.1.4.2 Δ5-7 MRE11 

In tumours, Δ5-7 MRE11 mutation is known to arise as a result of 1-2 base pair 

insertion/deletion in the poly(T)11 tract of intron IV caused by MSI. This mutant is known to 

function in a dominant negative manner [107], and has been found as both homo- and 

heterozygous in MSI tumours [165]. This mutant results in a mutant transcript that encodes a 

593 amino acid protein that lacks the 3
rd

 and 4
th

 highly conserved phosphodiesterase domains 

of the nuclease domain, which are required for 3ʹ-5 exonuclease activity [107]. This protein 

also lacks 14 amino acids of the Nbs1 binding domain. 

This mutant protein is known to have a reduced affinity for Rad50 and very little affinity at 

all for Nbs1 in comparison to the wild-type, whilst exhibiting a greater affinity for ssDNA 

[107]. This mutant is known to confer an increase in sensitivity to camptothecin, thymidine 

[107] and PARP-1 inhibitors in human cells1 [166]. 

When recreated into S. pombe in this study, this mutation is referred to as mre11-Δ5-7. In S. 

pombe this mutant protein also lacks the third and fourth phosphodiesterase domains and part 

of the Nbs1 binding domain. 
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3.1.4.3 MRE11-R572X 

The MRE11-R572X mutation results in a 571/708 amino acids long Mre11 protein. This 

mutant has been observed in cases of AT-LD [145] [203] [204]. This mutant protein lacks 

parts of the MLH1 binding domain and GAR motif in addition to a complete deletion of the 

second DNA binding domain. When recreated into S. pombe this mutant is referred to as 

mre11-R572X. It is unknown if the MLH1 and second DNA binding domain are present in S. 

pombe Mre11 and homology of these regions between human and S. pombe is poor. The 

GAR motif is not present in S. pombe Mre11. 

Diagrams of the wild-type Mre11 protein and the mutants described above are shown in 

Figure 16. 
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Figure 16. Diagram of the human Mre11 wild-type and patient mutant proteins (not to scale). The 

location of each domain in Mre11 is labelled on the wild-type diagram with the corresponding amino acid 

residue numbers. The schematic for the Mre11-W210X mutant shows that this protein is truncated in the 

nuclease domain before the fourth and fifth phosphodiesterase domains. This mutant also lacks both DNA 

binding domains, an Mre11 dimerization domain, the MLH1 binding domain and the glycine-arginine rich 

(GAR) motif. The Schematic for the Δ5-7Mre11 mutant shows that a region of the nuclease domain 

containing the third and fourth nuclease domains, and the last 14 residues of the Nbs1 binding domain, are 

missing. The third mutant, Mre11-R572X, is shown to be truncated partway through the MLH1-binding and 

GAR domains and therefore completely lacks the second DNA binding domain. The nuclease and Rad50 

binding domains and the first Mre11 dimer interface are known to be conserved in S. pombe. There is strong 

homology in the amino acid sequences of the human Mre11 Nbs-binding domain and the corresponding 

region of S. pombe  Mre11, this suggest that this domain is also conserved in S. pombe. It is unknown if the 

DNA binding or MLH1 binding domains exist in the S. pombe Mre11, there is poor homology between the 

human and S. pombe Mre11 proteins at these areas. The GAR motif is not present in S. pombe Mre11. 
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3.1.4.4 RAD50-MSI 

The human RAD50 gene is known to be subject to mutations as a result of MSI in two 

separate mononucleotide repeat sequences. The first occurs at the poly(A)9 repeat in exon 13 

[70] [168] [169], and the second occurs in the poly(A)8 tract of exon 17 [169] [171]. Both 

mutations cause frameshifts that result in truncations and have only been found 

heterozygously in patients [169]. For this investigation, the latter was chosen initially for 

creation in S. pombe as it results in a longer protein, 938 out of 1312 amino acids as opposed 

to the 726-734 amino acid length protein (length dependent on whether the mutation is a 1 bp 

insertion, 1 bp deletion or 2 bp deletion, as discussed in thesis introduction) that can arise 

from the former. If the longer mutant produces a null phenotype, then there will be no need to 

construct a shorter mutant. 

For this investigation, this mutant is referred to as RAD50-MSI, for the human mutant, and 

rad50-MSI for the S. pombe mutant. 

This truncation occurs partway through the second coiled-coil domain (residues 787-1116 

[191]) and deletes the C-terminal ABC ATPase (residues 1195-1297 [205]), the second and 

third Mre11 binding domains (residues 1140-1154 and 1192-1205 [206]), the second 

nucleotide binding domain (residues 1232-1270 [45]) and the Walker B motif (residues 1227-

1232 [45]). These domains appear to be conserved in S. pombe (see Figure 9), and are 

therefore absent in the S. pombe rad50-MSI mutant. Due to the frameshift, the final 5 amino 

acids (IQATK) are aberrant and not present in the wild-type protein. These aberrant amino 

acids have been incorporated into the S. pombe mutant.  

Due to the observed null phenotype of this mutant, as shown in section 3.3.2 (page 97), the 

poly(A)9 MSI mutant was not created and tested as it was assumed this would also result in a 

null phenotype due to a loss of an even greater portion of the protein. 

A diagram of the wild-type Rad50 protein, and the mutant described above are shown in 

Figure 17. 
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Figure 17. Diagram of the human Rad50 wild-type and MSI related patient mutant protein (not to 

scale). The location of each domain in Rad50 is labelled on the wild-type diagram with the corresponding 

amino residue numbers. The schematic for the Rad50-MSI mutant shows that this protein is truncated in the 

second coiled-coil domain and thus lacks the second ATPase domain, the second nucleotide binding domain, 

the Walker-B motif and the second and third Mre11 binding domains. Due to the frameshift that gives rise to 

this truncation, a short sequence of aberrant amino acids is present at the C-terminal of the protein (IQATK). 

The Zinc hook domain is known to be conserved in S. pombe Rad50. Strong homology between human and S. 

pombe Rad50 at the ABC-ATPase, DNA binding and Mre11 binding domains along with the Walker A and 

Walker B motifs suggests that these domains are conserved in S. pombe. 
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3.1.4.5 NBS1-MSI 

The poly(A)7 repeat in exon 7 of the human NBS1 gene is known to be subject to mutation in 

tumours exhibiting MSI. This mutation, a 1 bp deletion also known as NBS1-1651delA, 

causes a frameshift resulting in a mutant transcript that encodes a truncated Nbs1 protein, 577 

out of 754 amino acids in length [172]. In this investigation, this mutant is referred to as 

NBS1-MSI (human) and nbs1-MSI (S. pombe). The final 7 amino acids are aberrant and arise 

due to the frameshift. These aberrant amino acids have been incorporated into the S. pombe 

mutant. 

As a result of this truncation, in humans the C-terminal Mre11 and ATM binding domains are 

absent (amino acid residues 640-691 and 734-754 respectively [205]). This mutant protein 

retains the N-terminal region consisting of the FHA domain, BRCT1 domain, BRCT2 

domain and the Nbs1 dimer interface. These domains are conserved in S. pombe, so that 

when this mutant was created in the S. pombe nbs1 gene the N-terminal Mre11 and Tel1
ATM

 

binding domains in the Nbs1 protein were absent [207] [208]. 

A diagram showing the human wild-type and mutant Nbs1 proteins are shown in Figure 18. 
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Figure 18. Diagram of the human Nbs1 wild-type and MSI related patient mutant protein (not to 

scale). The location of each domain in Nbs1 is labelled on the wild-type schematic with the corresponding 

amino residue numbers. The diagram for the Nbs1-MSI mutant shows that this mutant lacks the Mre11 and 

ATM binding domains due to the truncation. These domains are conserved in S. pombe. Due to the 

frameshift that gives rise to this truncation, a short sequence of aberrant amino acids is present at the C-

terminal of the protein (GKWMMWP). 
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3.1.4.6 CtIP-MSI 

In the human CtIP gene, the poly(A)9 tract can also be subject to mutation in MSI+ tumours. 

A single base pair deletion, which occurs in around 22.9% of MSI+ colorectal cancers, causes 

a frameshift that causes a premature stop codon resulting in a truncated CtIP protein 

consisting of only 358 out of 897 amino acids [174].  

The resultant truncated protein retains the first MRN binding domain, the CtIP dimerizing 

coiled-coil domain, CxxC motif I and the Rb binding site, which are all located between 

residues 22-167 [209] [210]. The CtBP binding site, Proliferating cell nuclear antigen 

(PCNA) binding domain, DNA binding domain, second MRN binding domain and CxxC 

motif II are all absent in this mutant protein. Of three known important phosphoserine 

residues, two are omitted (both ATM binding residues) leaving only one (the first 

CDK/BRCA1 binding residue). The phosphothreonine residue, which is involved in CDK 

binding is also absent. The frameshift that causes this truncation also encodes 2 aberrant 

amino acids at the C-terminus prior to the stop codon. These amino acids were included in 

the S. pombe mutant protein. 

In the S. pombe Ctp1 protein, a MRN binding site is located between residues 74-94 [211]. It 

is not known if a second MRN binding domain exists; however the whole Ctp1 protein is 

known to have homology with the C-terminal region of CtIP, which comprises the second 

MRN binding domain of CtIP [212]. The C-terminal region of S. pombe Ctp1 (residues 200-

294) comprise the RHR domain, which has been found to be required for the efficient repair 

of DSBs [211]. 

In this study, this mutation is referred to as CtIP-MSI in humans and ctp1-MSI for this 

mutation created in S. pombe. 

A diagram showing the locations of the functional domains of the human wild-type and 

mutant CtIP proteins is shown in Figure 19. 
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Figure 19. Diagram of the human CtIP wild-type and MSI related patient mutant protein (not to 

scale). The location of each domain in CtIP is labelled on the wild-type schematic with the corresponding 

amino residue numbers. The schematic for the CtIP-MSI mutant shows that this mutant lacks the CtBp, 

PCNA and second MRN binding domains. This mutant also lacks two phosphoserine residues that function 

in ATM and one phosphothreonine residue that functions in CDK binding. This mutant protein also lacks 

the second CxxC motif.  Due to the frameshift that gives rise to this truncation, a short sequence of aberrant 

amino acids is present at the C-terminal of the protein (NI). There is little homology between the human 

CtIP and S. pombe Ctp1 proteins. The S. pombe Ctp1 protein is known to be somewhat homologous to the 

C-terminal region of the human CtIP protein (a region often referred to as the Sae2/Ctp1-like region). The 

phosphoesterase and phosphothreonine residues are not conserved. The C-terminal CxxC motif is 

conserved. 
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3.2 Results 

3.2.1 Creation and verification of mutants 

Mutants were created using the Cre-lox system as described in the Materials and Methods 

section 2.2 (Pages 48-62). Candidate strains were grown in medium containing leucine and 

uracil, to cause the plasmid to be lost from the cells. Candidate strains were then grown on 

medium containing 5-FOA to select for cells which have lost the ura4 marker. The locus of 

interest for the candidate strains was then fully sequenced in both directions to check that the 

mutant gene has been integrated into the correct part of the genome, is intact and has not 

gained any additional spontaneous mutations. All mutant strains used in this investigation 

have been sequenced. The integration of the mutant gene into the correct locus, with no 

additional undesired changes, has been confirmed for all mutant strains used in this 

investigation. 

 

3.2.2 Sensitivity to camptothecin and MMS for mre11 mutant strains 

Sensitivity to camptothecin and MMS for the mutant mre11 strains was tested and compared 

to the sensitivity of the wild-type, mre11Δ and the nuclease-dead mre11-D65N strain. 

Sensitivity of the floxed wild-type mre11 gene was also tested to determine if the lox sites 

affect the function of Mre11. The results are shown in Figure 20. 
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Figure 20. Sensitivity of mre11 mutants to CPT and MMS. Sensitivity of the WT, mre11Δ strain and the 

mre11::loxP-mre11
+
-loxM3 strain compared to the hMRE11 mutant equivalents (MRE11-W210X, Δ5-

7MRE11 and MRE11-R572X) recreated in S. pombe  (mre11-W210X, mre11-Δ5-7and mre11-R572X 

respectively) to Camptothecin (A) and MMS (B). The tests shown are representative of three repeats. 
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Figure 20 shows that that the nuclease dead mre11-D65N mutant shows sensitivity to 

camptothecin and MMS greater than that of the wild-type but not as severe as the mre11Δ 

strain. This figure also shows that the floxed mre11 wild-type shows no increase in sensitivity 

compared to the wild-type indicating that the lox sites do not affect the function of Mre11. 

The mutants, mre11-W210X and mre11-Δ5-7 are both severely sensitive to camptothecin and 

MMS, similar to that of the base-strain, indicating a null phenotype. The mre11-R572X 

mutant however, shows slightly increased sensitivity to camptothecin only at high 

concentrations and an increase in sensitivity to MMS only at high concentrations, in 

comparison to the wild-type, showing that this mutation confers only a slight increase in 

sensitivity to these drugs.  
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3.2.3 Sensitivity to camptothecin and MMS for the mutant rad50 strains  

Sensitivity to camptothecin and MMS for the mutant rad50 strains was tested and compared 

to the sensitivity of the wild-type and rad50Δ strain. Sensitivity of the floxed wild-type rad50 

gene was also tested to determine if the lox sites affect the function of Rad50. The results are 

shown below in Figure 21. 

 

 

 

 

 

Figure 21 shows that the floxed rad50 strain shows a level of sensitivity to camptothecin 

similar to that of the wild-type, and an increased sensitivity to MMS at high concentrations, 

thus suggesting that the lox sites have a slight effect on the function of Rad50. The rad50-

MSI mutant shows a severe sensitivity to both drugs, similar to that of the base strain, 

suggesting a null phenotype. 

  

Figure 21. Sensitivity of rad50 mutants to CPT and MMS. Sensitivity of the WT, rad50Δ and 

rad50::loxP-rad50
+
-loxM3 strains and  the equivalent of the hRAD50 related MSI mutant recreated in S. 

pombe (rad50-MSI) to Camptothecin (A) and MMS (B). The tests shown are representative of three repeats. 
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3.2.4 Sensitivity to camptothecin and MMS for the mutant nbs1 strains 

Sensitivity to camptothecin and MMS for the mutant nbs1 strains was tested and compared to 

the sensitivity of the wild-type and nbs1 base strain. Sensitivity of the floxed wild-type nbs1 

gene was also tested to determine if the lox sites affect the function of Nbs1. The results are 

shown below in Figure 22. 

 

 

  
Figure 22. Sensitivity of nbs1 mutants to CPT and MMS. Sensitivity of the WT, nbs1Δ and the 

nbs1::loxP-nbs1
+
-loxM3strains and  the equivalent of the hNBS1 related MSI mutant recreated in S. pombe 

(nbs1-MSI) to Camptothecin (A) and MMS (B). The tests shown are representative of three repeats. 
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The results shown in Figure 22 suggest that the lox sites affect the function of Nbs1 as the 

floxed nbs1 strain shows an increase in sensitivity to both camptothecin and MMS compared 

to wild type. Due to this, the sensitivity of the nbs1-MSI mutant was compared to the floxed 

wild-type nbs1 strain and not the wild-type strain. The nbs1-MSI mutant shows a slight 

increase in sensitivity to camptothecin compared to the floxed wild-type, however there was a 

greater increase in sensitivity of the nbs1-MSI mutant to MMS in comparison to the floxed 

wild-type, this suggests that this mutant is a possible separation of function mutant thus 

having a greater effect on the role of Nbs1 in the resistance to MMS than to camptothecin. 

Due to the observed effect of the lox sites on the function of Nbs1, this mutant should be 

recreated into a strain which lacks the lox sites in order to further study the effects of this 

mutation without any additional effects of the lox sites. 
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3.2.5 Sensitivity to camptothecin and MMS for the mutant ctp1 strains 

Sensitivity to camptothecin and MMS for the mutant ctp1 strains was tested and compared to 

the sensitivity of the wild-type and ctp1Δ. Sensitivity of the floxed wild-type ctp1 gene was 

also tested to determine if the lox sites affect the function of Ctp1. The results are shown 

below in Figure 23. 

 

 

 

 

Figure 23 shows that the floxed ctp1 strain shows a level of sensitivity to camptothecin and 

MMS similar to that of the wild-type, suggesting that the lox sites have no effect on the 

function of Ctp1. The ctp1-MSI mutant shows a severe sensitivity to both drugs, similar to 

that of the base strain, suggesting a null phenotype. 

Figure 23. Sensitivity of cpt1 mutants to CPT and MMS. Sensitivity of the WT, ctp1Δ and the 

ctp1Δ::loxP-mre11
+
-loxM3 strains and  the equivalents of the  CtIP related MSI mutant recreated in S. 

pombe (ctp1-MSI) to Camptothecin (A) and MMS (B). The tests shown are representative of two repeats. 
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3.3 Discussion 

3.3.1 Sensitivity of mre11 mutants 

3.3.1.1 mre11-Δ5-7 

In human cells, this mutant is known to act in a dominant negative manner [107]. In human 

cells the, Δ5-7Mre11 mutant protein was shown to exhibit weak interactions with the Rad50 

protein, whereas this mutant abrogates affinity with Nbs1 [107], this may be due to the partial 

deletion (the last 14 amino acids) of the Nbs1 binding domain of Mre11, located between 

residues 86-119 [213] (see Figure 16), whereas the Rad50 binding domain, located between 

residues 446-484 [206], remains intact (see Figure 16).  

This mutant protein also retained affinity for binding to ssDNA (including 3′-overhangs and 

ssDNA regions at fork-like structures) [14] which may be due to the fact that both DNA 

binding domains, located between residues 407-421 and 643-692 [213] [214] [215], remain 

intact.  

One study showed that this mutation confers sensitivity to PolyADP ribose polymerase-1 

(PARP-1) inhibitors [166]. PARP-1 functions in the detection and repair of SSBs [216]. 

PARP-1 inhibition allows for SSBs to persist, which then, upon DNA replication, become 

DSBs [217]. The sensitivity of this mutant to PARP-1 inhibition would suggest that this 

mutant is defective in DSB repair. 

This mutant was also found to be defective in the formation of Mre11 foci, ATM 

autophosphorylation and thymidine induced homologous-recombination [107]. The lack of 

Mre11 nuclease activity alone does not abrogate the formation of Mre11 foci, and the 

activation of ATM [218]. Studies have suggested that Nbs1 may be involved in the formation 

of Mre11 foci, as NBS cells (harbouring mutations in Nbs1) were deficient in formation of 

Mre11 foci [219] [220], cells harbouring a deletion of the Forkhead-associated domain of 

NBS1 also showed a decrease in Mre11 foci formation [221]. Nbs1 is also required for the 

recruitment, autophosphorylation and activation of ATM [208], therefore failure of Mre11 to 

recruit Nbs1 at a site of a DSB would result in the failure to recruit and activate ATM and 

thus failure to activate DSB repair pathways such as NHEJ and HR. The inability of Δ5-7 

MRE11 cells to form Mre11 foci, autophosphorylate ATM and carryout HR may be due to 

the partial deletion of Nbs1 binding site, leading to a lack of affinity for Nbs1 and thus 

inability to recruit Nbs1 to the MRN complex. 
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In this investigation the S. pombe Δ5-7Mre11 equivalent, mre11-Δ5-7, was shown to have a 

severe sensitivity to both camptothecin and MMS, similar to that of the mre11Δ strain, thus 

suggesting a null phenotype (see Figure 20). This mutant was shown to be more sensitive to 

both agents than the nuclease dead mre11-D65N mutant (see Figure 20). This suggests that 

this mutation affects more functions of this protein than just nuclease activity. 

This phenotype may be due to this mutant’s combined deficiencies in nuclease activity and 

Nbs1 binding. It is unknown exactly if the Nbs1 binding domain described in human Mre11 

is conserved in S. pombe Mre11, however there is a strong level of homology in the amino 

acid sequences for the human Nbs1 binding domain and the corresponding S. pombe Mre11 

region (see Figure 11), suggesting that this domain may be conserved. The lack of nuclease 

activity, due to the deletion of the fourth and fifth highly-conserved phosphodiesterase motifs 

in the nuclease domain, could result in defective topoisomerase removal as Mre11 nuclease 

activity is required for topoisomerase removal from DNA [94]. Defective topoisomerase 

removal would then confer an increase in camptothecin sensitivity. Sensitivity to MMS, and 

further sensitivity to camptothecin, could possibly be explained by the inability to bind to 

Nbs1. Inability to recruit Nbs1, which would in turn recruit and activate ATM, would result 

in the failure to activate downstream pathways involved in DNA repair thus allowing for the 

persistence of DSBs. 

The 1-2 bp insertion/deletion in the poly(T)11 tract of MRE11 intron IV which results in the 

Δ5-7 MRE11 mutant transcript is found in approximately 80% of all human MSI+ colorectal 

tumours [163]. One study has shown that MSI+ tumours exhibit an increased sensitivity to 

the camptothecin derived drug irinotecan [105]. These results coincide with the increased 

sensitivity to camptothecin in yeast for the mre11-Δ5-7 mutant found in this investigation. 

 

3.3.1.2 mre11-W210X 

The mre11-W210X mutant also showed a null phenotype with severe sensitivity to 

camptothecin and MMS, similar to that of the base strain. This mutant is without the 

phosphodiesterase domains IV and V of the nuclease domain, which likely renders this 

mutant unable to remove topoisomerases from DNA as Mre11 nuclease activity is required 

for this process [94]. The deletion of the second Mre11 dimer interface (residues 430-530 

[222]) could prevent Mre11 dimerization, which is required for Mre11 to efficiently bind to 

DNA [215] [223] and presumed to aid the stability of the MRN complex [224]. The absence 
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of both DNA binding domains would abolish DNA binding activity for this protein. It is 

unknown if these DNA binding domains and the C-terminal Mre11 dimer interface are 

conserved in S. pombe, homology of these domains with the S. pombe Mre11 protein is poor 

(See Figure 7). The absence of the Rad50 binding domain (residues 446-484 [206]) would 

prevent Mre11 from binding to Rad50 and therefore prevent MRN complex formation and 

the repair of DSBs. The Rad50 binding domain is conserved in S. pombe Mre11 (residues 

452-490) [206]. These factors would all contribute to the observed phenotype of this mutant. 

 

3.3.1.3 mre11-R572X 

The mre11-R572X mutant shows a slightly increased sensitivity to camptothecin and MMS at 

higher concentrations, compared to that of the wild-type. If the S. pombe Mre11-R572X 

protein lacks the second DNA binding domain (residues 643-692 [213] [214] [215]) as the 

human Mre11-R562X protein does, then this would suggest that only a single DNA binding 

domain may be sufficient for Mre11 to bind to DNA and form the MRN complex. It is 

unknown if this domain is present in S. pombe, and homology of this region between the 

human and S. pombe Mre11 protein is low (see Figure 7). In humans, this mutant is also 

missing part of the GAR motif, which functions to recruit and activate ATR and Chk1 and 

also to recruit RPA and Rad51 [225]; however this motif is not present in the S. pombe 

Mre11 protein (See section 3.1.4 ).  

In the mutant human protein, part of the MLH1 binding domain (residues 452-634 [226]) is 

absent in this mutant. As described in the introduction, MLH1 functions in the mismatch 

repair pathway, only 0.3% of lesions caused by MMS are repaired by MMR, these lesions are 

O
6
-Methylguanine (O6MG) [199]. Human Mre11 has been shown to interact with MLH1 

during the MMR pathway in the repair of O6MG lesions [227]. Should this be the case with 

the S. pombe Mre11 protein, the partial deletion in the S. pombe Mre11-R572X mutant and 

corresponding MMR defect, may only confer an increased sensitivity to MMS at high 

concentrations, (as was observed in this study and shown in Figure 20) due to the very small 

portion of lesions that require MMR for repair. 

Even though in S. pombe this mutant only shows a mild phenotype, the human equivalent of 

this mutant, which is a recessive allele and found as compound heterozygous AT-LD patients 

[203] [204], is degraded by non-sense mediated decay [145].  
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Further work is required for these mutants. These mutants should be recreated in a human cell 

line using the CRISPR/Cas9 system to study the effects of these mutations in human. A 

nuclease activity assay could be performed for each mutant to asses any impairment to 

nuclease activity caused by the mutants. Also, binding activity to Rad50 and Nbs1, and MRN 

complex formation could be assessed to identify if these mutants cause impairments to these 

interactions, which may account for the increased sensitivity to the drugs. DNA binding 

activity of the mutants should be assessed as a lack of Mre11 DNA binding activity would 

abolish DNA DSB repair. Lastly, the effects that these mutant proteins have on 

topoisomerase removal should be assessed to study if these mutants impair topoisomerase 

removal, which would contribute to an increased sensitivity to camptothecin. 

 

3.3.2 Sensitivity of rad50 mutants 

3.3.2.1 rad50-MSI 

The rad50-MSI mutant was recreated from the MSI related mutation that occurs within the 

poly(A)8 tract of the human RAD50, which has been identified in the cell lines RKO, HCT-

116 and LoVo [228]. This mutation causes a truncation of the Rad50 protein, partway 

through the second coiled-coil domain (residues 787-1116 [191]). This mutant appears to be 

severely sensitive to camptothecin to a level similar to that of the rad50Δ strain, and only 

possibly slightly less sensitive than the rad50Δ to MMS, showing a null phenotype (see 

Figure 21).  

This phenotype is probably due to the lack of several functional domains of Rad50, which 

share a strong homology between human and S. pombe (See Figure 9). This mutant is without 

the C-terminal ABC ATPase (human residues 1195-1297 [205]), which is involved in the 

dimerization of Rad50 [229] and the modulation of Mre11 nuclease activity through the 

binding and hydrolysis of ATP [230]. This may affect this mutant’s ability to remove 

topoisomerases from DNA, as this requires Mre11 nuclease activity [94], and therefore may 

result in hypersensitivity to camptothecin. 

The second and third Mre11 binding domains (human residues 1140-1154 and 1192-1205 

[206]) have been lost as a result of this truncation and therefore, in combination with the lack 

of the second ABC-ATPase domain and second DNA binding domain (human residues 1232-
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1270 [45]), would affect the MRN complex to form, bind to DSBs and remove 

topoisomerases from DNA, thus contributing to the observed phenotype. 

Further work is required to study how this mutant confers sensitivity camptothecin. These 

mutants should be recreated in a human cell line using the CRISPR/Cas9 system to study the 

effects of these mutations in human. This would include studies into the affinity of this 

mutant for DNA and Mre11, as well as studies into MRN complex formation. 

 

3.3.3 Sensitivity of nbs1 mutants 

3.3.3.1 nbs1-MSI 

The nbs1-MSI mutant is recreated from the nbs1 poly(A)7 tract that is frequently mutated in 

MSI+ tumours [26]. In humans, this mutation causes a truncation that results in a Nbs1 

protein without the Mre11 binding domains (residues 640-662 and 681-691) and the ATM 

binding domain (residues 734-754) [205] (see Figure 18). 

The lack of the ATM/Tel1 binding domain (S. pombe residues 604-616 [208]), and thus the 

inability of MRN to recruit ATM, may affect topoisomerase removal or repair functions 

downstream of removal. In humans, ATM is involved in the pathway of Top1-cleavage 

complex resolution and ATM deficiency can result in the accumulation of these complexes 

[231]. If the ability of the MRN complex to recruit Tel1
ATM

 is impaired by this mutation, then 

that may explain the observed increase in sensitivity of this mutant in S. pombe compared to 

the wild-type. However, this increase in sensitivity is only slight, suggesting that the binding 

of Nbs1 to Tel1
ATM

 may not be essential for the removal of topoisomerase inhibitors from 

DNA, or the downstream repair of topoisomerase induced DNA lesions, in S. pombe. 

One study showed that a deficiency of ATM did not cause a reduction in the frequency of HR 

in the repair of a DSB or affect MRE11 focus formation. It was also shown that the deletion 

of the ATM binding site of Nbs1 caused only a slight reduction in the frequency of HR. The 

ATM binding domain is however crucial for the intra-S checkpoint [232].  

Although homology of amino acid sequence is limited between human and S. pombe Nbs1 

(see figure 11), the S. pombe Mre11 binding domains are located at residues 470-500 and 

517-27 [207]. These domains are absent in this mutant and could therefore have impact on 

the ability of Nbs1 to bind Mre11.The lack of camptothecin sensitivity in this mutant would 
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suggest that the Nbs1-Mre11 interaction may not be essential for the removal of 

topoisomerase inhibitors from DNA, or the downstream repair of topoisomerase induced 

DNA lesions, in S. pombe. 

This mutant does however retain the FHA (human residues 1-110) and BRCT (human 

residues 111-206 and 227-334) domains [205] and the dimer interface (human residues 126-

138). In S. pombe Ctp1 binds to the FHA domain of Nbs1, mutations in this domain disrupt 

interactions between Nbs1 and Ctp1 and result in a greatly increased sensitivity to 

camptothecin [233]. The retention of the FHA domain may then account for the observed 

lack of sensitivity to camptothecin observed in this mutant. 

The increased sensitivity to camptothecin as a result of FHA domain mutations contrasts the 

results for the deletion of Tel1 and Mre11 binding domains in which only a very slight 

increase in sensitivity was observed (see Figure 22). This suggests that the FHA domain 

plays a greater role in the removal of covalently bound topoisomerases, or downstream repair 

functions, and the resistance to camptothecin than the C-terminal domains. This also suggests 

that ATM activation, and the Mre11-Nbs1 binding may not be essential for camptothecin 

resistance in S. pombe. The lack of ATM and Mre11 binding activity may contribute to the 

increased sensitivity to MMS as ATM activation and Mre11 binding are essential for HR 

[232], and in S. cerevisiae, disruptions of the HR pathway leads to an increase in sensitivity 

to MMS [200] [201]. 

The retention of the FHA domain in this mutant may prevent hypersensitivity to 

camptothecin as this domain binds to Ctp1, a protein known to have involvement in 

topoisomerase removal [12]. nbs1Δ cells show no enrichment of Ctp1 at DSBs even though 

the abundance of Ctp1 remains unchanged. nbs1-FHAΔ cells also exhibit vast impairment of 

Ctp1 enrichment at DSBs. Also, cells harbouring mutants in the Nbs1-binding SXT motifs of 

Ctp1 show a great reduction in Ctp1 enrichment at DSBs with no change to Ctp1 abundance 

or nuclear localisation. These cells also exhibited great sensitivity to camptothecin, showing 

that interaction between Nbs1 and Ctp1 is essential for camptothecin resistance [233].  

In humans certain mutations in the FHA and BRCT domains can be detrimental to MDC1 

interaction leading to defective MRN accumulation at damaged sites of DNA [234]. MDC1 is 

a protein that functions in the localisation of repair factors at DSB sites [235]. An orthologue 

of MDC1 was not known to exist in S. pombe and it was been speculated that the Nbs1 FHA 

domain may mediate interactions with other DSB repair proteins in a phosphorylation-
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dependent FHA-only interaction [233]. Recently the Mdb1 protein was identified as an 

orthologue of MDC1 in S. pombe [236]. 

In conclusion, the slightly increased sensitivity to MMS may be as a result of defective HR 

due to inability of this mutant to bind Mre11 and Tel1
ATM

. The lack of camptothecin 

hypersensitivity for this mutant cannot be currently fully explained, but may be as a result of 

the ability to bind CtIP, or possible alternative interactions between other domains of Nbs1 

and Mre11 or other proteins involved in DNA repair and/or topoisomerase removal; or that 

Nbs1/Ctp1 may possibly be able to function separately from Mre11/Rad50 in the removal of 

topoisomerases from DNA. 

Further analysis of this mutant is required. This mutant in future should be created into a 

strain lacking the lox sites, to study if this mutant confers similar changes in sensitivity to 

camptothecin and MMS if the lox sites are not present. This will be especially important for 

this mutant as the lox sites were found to interfere with wild-type Nbs1 function. Further 

studies should be undertaken to identify if this protein maintains any affinity at all for Mre11 

and Tel1 and if MRN complex formation still occurs. Further work should also examine any 

reduction in affinity for Ctp1. 

 

3.3.4 Sensitivity of ctp1 mutant 

3.3.4.1 ctp1-MSI 

The ctp1-MSI mutant was recreated from a CtIP mutation that occurs frequently in MSI 

tumours, resulting in truncation that removes the CtBp binding site (residues 490-494), DNA 

binding domain (residues 509-557), PCNA binding site (residues 515-537), the MRN binding 

domain (residues 650-897), the second CxxC motif (residues 813-816) and two 

phosphoserine residues involved in ATM binding and the phosphothreonine residue involved 

in CDK binding [210] (see Figure 19). The CDK binding site does not exist in S. pombe Ctp1 

however [212]. 

This mutant showed to be severely sensitive to both camptothecin and MMS, to a level 

similar to that of the ctp1Δ strain (see Figure 23). This mutant lacks the C-terminal region 

involved with MRN binding, although a smaller N-terminal MRN binding domain is known 

to exist in human CtIP (residues 22-45) [212] [194] and S. pombe Ctp1 (residues 78-89) 

[237].  
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In humans, CtIP is required to bind to the MRN complex, at Nbs1, so that CtIP can be 

recruited to sites of DSBs. CtIP then acts to repair DSBs, as it aids the transition from DSB 

sensing to processing thus promoting resection of DNA, checkpoint activation and HR [238]. 

CtIP is required for HR as it functions to promotes the coating of ssDNA with RPA near 

DSBs, aids the MRN complex in 5′-3′ resection and recruits ATR to the DSB [35] functions 

that are also provided by S. pombe Ctp1 [239].  

CtIP requires dimerization for recruitment to sites of DSBs. Mutants unable to dimerize CtIP 

exhibit strong defects in HR, end resection and activation of ATM [240]. The CxxC motifs of 

CtIP may function to bring the two termini of the protein together and may facilitate 

dimerization [241]. The loss of this second CxxC motif could therefore confer defects in CtIP 

dimerization and thus HR. 

The loss of the aforementioned domains of Ctp1 could contribute to the hypersensitivity of 

this mutant to MMS, as disruptions of HR pathway increase MMS sensitivity [200] [201]. 

In S. pombe it is known that Ctp1, along with the MRN complex, is required for the removal 

of topoisomerase like protein Rec12 from DNA [104] [242]. It is also known that Ctp1 is 

involved in the removal of Top2 from DNA yet inhibits the removal of Top1 [94]. CtIP has 

also been shown to be involved in topoisomerase II removal [243]. The inhibiting role of 

Ctp1 on Top1 removal contrasts the increased sensitivity to camptothecin observed in the 

mutant, as camptothecin inhibits Top1 [244] [245], and therefore removal of this inhibitory 

activity of Ctp1 would increase resistance to camptothecin, this suggests that there may be 

another possible way in which Ctp1 deficiency can sensitise cell to camptothecin other than 

lack of direct role in Top1 removal. Even if ctp1Δ cells are proficient in Top1 removal, they 

may still be defective in downstream repair. 

The hypersensitivity of this mutant to camptothecin may be due to detrimental effects on 

MRN nuclease activity that could occur as a result of an inability of Ctp1 to bind to MRN due 

to loss of the C-terminal MRN binding region. CtIP is known to modulate the nuclease 

activity of MRN though it’s conserved C-terminal region [246]. Binding of CtIP stimulates 

the nuclease activity of MRN [35] [247] [248]. MRN nuclease activity is required for the 

removal of topoisomerases from DNA [94]. If MRN nuclease activity is not stimulated by 

Ctp1 binding in this mutant, then this could account for inability to remove topoisomerases 

and camptothecin sensitivity. 
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The deletion of the PCNA binding domain in human CtIP is known to result in excess DNA 

DSBs [246], this region is absent in the human CtIP-MSI mutant. If this domain is conserved 

in S. pombe Ctp1, and absent in Ctp1-MSI, then this could potentially increase sensitivity to 

both agents. 

Further work is required to study the interactions between this mutant and the MRN complex 

and Tel1 to identify if all MRN and Tel1 binding functions are abolished due to the omission 

of the second MRN binding domain and tel1 interaction phosphoserine residues. Also, studies 

should also be carried out to assess the DNA binding capability of this protein due to the lack 

of the DNA binding domain in the human homologue. Interactions with Nbs1 should also be 

assessed to identify if a possible lack of Nbs1 binding affinity may account for the increased 

sensitivity to the two drugs. Further experiments should also be carried out to identify if this 

protein retains any ability to remove topoisomerases. 

 

3.3.5 Conclusion 

It can be concluded that certain mutations in mre11, rad50, nbs1 and ctp1 can confer 

increased sensitivity to the topoisomerase inhibitor camptothecin as they may have 

detrimental effects on the ability of the cells to remove DNA-bound topoisomerases or 

downstream repair functions. However not all mutations confer an increase in topoisomerase 

inhibitor sensitivity, suggesting that certain domains of the studied proteins are not required 

for topoisomerase removal or are not conserved in the S. pombe homologues. Mutations may 

also increase sensitivity to other DNA damaging agents, such MMS, without increasing 

sensitivity to camptothecin. This suggests that certain domains of these proteins are not 

required for topoisomerase removal but are involved in the repair of other DNA lesions. 

The main aim of this project was to identify separation of function mutants in mre11, rad50, 

nbs1 and ctp1, that confer sensitivity to CPT without sensitising to MMS, but none were 

found. There was one separation of function mutant, nbs-MSI, which showed hypersensitivity 

to MMS but not to CPT. This mutant encoded for a Nbs1 protein that lacks the C-terminal 

Mre11 and Tel1
ATM

 binding domains, indicating that the binding of Nbs1 to Mre11 and Tel1 

may not be required for the removal of topoisomerases from DNA, but is required for the 

repair of MMS induced damage. 
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The human homologues of these mutations may have similar effects on the ability of affected 

cells to remove topoisomerases from DNA and may also confer hypersensitivity to 

camptothecin. This therefore may suggest that tumours harbouring these mutations would be 

sensitive to camptothecin, and that patients with tumours harbouring these mutations may 

benefit from camptothecin treatment. 

Additional work is required to study these mutations further. Such work would include assays 

of MRN complex formation and interaction between individual MRN proteins and CtIP; 

DNA binding, and topoisomerase interaction. Also due to possible effects of the lox-sites, 

certain mutants should be created into strains which lack the lox sites to identify if the 

observed sensitivity is purely due to the mutation and not partly due to the presence of the lox 

sites. 

Additional studies of these mutations in human cell lines would identify if the sensitivities 

conferred by these mutants in S. pombe also lead to hypersensitivity in human cells. These 

mutants could be created using the CRISPR (clustered regularly interspaced short 

palindromic repeat) system, for an easier and more efficient method of genome editing [249]. 

This would provide evidence that could further suggest that, in tumours, these mutations 

sensitise the cells to camptothecin. These results could therefore be indicative of the use of 

camptothecins, such as irinotecan, in patients whose tumours harbour the described mutation. 
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4 Sequencing of NWCOG-2 Patients to Identify the Presence of MRE11, 

RAD50, NBS1 and CtIP Mutations to Correlate with Patient Outcome 

4.1 Introduction 

4.1.1 The NWCOG-2 (RICE) trial 

The North West/ North Wales Clinical Oncology Group (NWCOG) -2 clinical trial involved 

a total of 110 patients with confirmed rectal adenocarcinoma. This trial aimed to study the 

effectiveness of preoperative downstaging of colorectal carcinomas utilising chemoradiation 

with irinotecan and capecitabine. This trial is also known as the RICE trial due to the 

methods of treatment involved (radiotherapy, irinotecan, capecitabine and excision) [110] 

[100]. 

The patients of this trial were selected to be candidates for preoperative downstaging as they 

had tumours with TNM stages of T3/4 (in which the tumour invades through the muscularis 

propria (T3) or through to other nearby organs and tissues (T4)), N0-2 (any number of 

lymph-node involvement) and M0 (no distant metastasis). Tumours of T3/T4 stage may carry 

a high risk of postoperative local recurrence unless downstaging is carried out on the tumour 

prior to surgery in order to achieve a better overall long-term outcome [110]. TNM staging is 

shown in Figure 24. 
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(Fauci et al 2012) [250] 

 

 

 

A previous study into preoperative downstaging using concurrent 5-FU with capecitabine, 

radiotherapy and excision, showed that for the 65% of patients, for whom downstaging was 

achieved, a better prognosis was achieved [251]. Orally administered capecitabine, a prodrug 

that is metabolised to 5-FU [252], was used instead of intravenous 5-FU in the NWCOG-2 

trial [110].The drug 5-FU acts as a thymidylate synthase inhibitor, which blocks the 

production of thymidine, a nucleoside essential for DNA replication, leading to death of 

rapidly proliferating cancer cells due to depleted thymidine pools [253].  

Due to a need to improve downstaging methods, a second chemotherapeutic drug was added. 

The drug that was chosen was the camptothecin derivative irinotecan. This was chosen due to 

its radio sensitising properties [110]. 

Figure 24. Diagram showing the progression of colorectal carcinomas through the TNM system. The T 

stages grade the invasion through the submucosa, muscularis propria and other layers of the colon. The N 

stages assess the involvement of nearby lymph nodes. M stages the presence of distant metastasis. Sourced 

from McGraw-Hill’s Access Medicine [250]. 
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The NWCOG-2 regimen showed to be an effective method of downstaging, with 67% of 

patients showing downstaging in their T-stage and 80% had their N-stage downstaged. 22% 

of patients showed a pathologic complete response (pCR) [100], which is defined as no 

residual invasive tumour or lymph node metastasis [99]. The three-year local recurrence free 

survival, metastasis-free survival, disease-free survival and overall survival were 96.9%, 

71.1%, 63.5% and 88.2% respectively [100].  

Another study into preoperative downstaging using 5-FU and irinotecan showed that 22% of 

patients achieved a pCR, corresponding with that found in the NWCOG-2 trial. An additional 

28% of patients achieved a near-pCR [98]. It is currently unknown what genetic factors 

influence the response to these regimens and only around 15-30% of all cancers are found to 

be hypersensitive to camptothecins, such as irinotecan [102] [103]. 

The use of preoperative chemoradiotherapy to downstage colorectal carcinomas is now 

standard practice in the UK in the treatment of advanced colorectal cancer [254] [255]. 

 

4.1.2 Roles of Mre11, Rad50, Nbs1 and CtIP in irinotecan resistance 

Irinotecan is a topoisomerase I inhibitor and as discussed in the introduction of this thesis 

(Page 13) functions to increase the half-life of DNA-topoisomerase cleavage complexes, 

allowing for the persistence of the associated SSB which sequentially leads to cell death.  

Also as previously discussed (section 1.3.3, page 14), the fission yeast orthologues of Mre11 

and CtIP function in the removal of covalently bound topoisomerase I [94]. The human 

Mre11 protein has also been shown to function in the removal of topoisomerase II from DNA 

[197]. The Rad50 and Nbs1 proteins form the MRN complex with Mre11. These proteins 

may also function in topoisomerase removal, as Rad50 modulates Mre11 nuclease activity 

[26], which is essential for topoisomerase removal in S. pombe [94]. The Nbs1 protein is 

required to recruit CtIP at sites of DSBs [233] and may recruit CtIP to topoisomerase 

cleavage complexes. A deletion of the Ctp1 binding FHA domain of S. pombe Nbs1 causes 

affected cells to become hypersensitive to camptothecin [233] [256]. 

In S. pombe it has been shown that a deletion of any MRN gene or ctp1 causes a severe 

sensitivity to camptothecin (see Chapter 3 results). In humans the Δ5-7MRE11 mutant, which 

lacks parts of the nuclease and Nbs1 binding domains, confers hypersensitivity to 

camptothecin when transfected into a camptothecin resistant cell line [107]. 
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MRE11, RAD50, NBS1 and CtIP are known to be subject to mutations in short mononucleotide 

repeat sequences in tumours exhibiting MSI [163] [169] [172] [173], a characteristic caused by 

MMR deficiency that is found in approximately 15-20% of all sporadic colorectal cancers [82] 

[83]. MSI related MRE11, RAD50 and CtIP mutations occur at high frequencies in colorectal 

cancers exhibiting a high level of MSI (MSI-H) [165] [170] [174], whilst NBS1 mutations are 

much less frequent [172]. Studies of MSI colorectal cancer cell lines showed an increased 

sensitivity to camptothecin and etoposide (a topoisomerase II inhibitor), compared to MMR 

proficient cells [257] [258]. One clinical trial showed that MSI colon cancers showed a more 

favourable outcome to a chemotherapeutic regimen consisting of irinotecan, 5-FU and leucovorin 

compared to the regimen of just 5-FU and leucovorin [67]. MSI-H colorectal cancers do not 

appear to predict a benefit from 5-FU based drugs [259] [260], although unpublished data suggest 

that MRE11 mutants are hypersensitive to nucleoside analogues such as gemcitabine 

[Unpublished, Hartsuiker Lab]. Mutations in MRE11 and RAD50 may account for the increased 

sensitivity to topoisomerase inhibitors as they are frequently mutated in MSI tumours [163] [169] 

and studies have shown that cells deficient in these genes are sensitive to camptothecin [105]. 

These observations, along with those obtained in chapter 1 suggest that Mre11, Rad50, Nbs1 

and CtIP may be factors that contribute to camptothecin resistance and that mutations within 

encoding genes may confer hypersensitivity to camptothecin. 

4.1.3 Hypothesis and aims 

Due to the observations discussed in the previous section and chapter 1, it is hypothesised 

that mutations within the MRN and CtIP genes could confer an increased sensitivity to 

camptothecin. It is also hypothesised that patients harbouring these mutations would have a 

more favourable outcome in a treatment regimen that utilises topoisomerase inhibitors, such 

as the regimen used by the NWCOG-2 trial. This investigation aims to identify if the 

presence of these mutations correlates to a better response to this regimen in comparison to 

tumours without such mutations. 

This investigation aimed to first identify any mutations of MRE11, RAD50, NBS1 and CtIP 

present in the tumours of patients from the NWCOG-2 trial. Formalin-fixed paraffin 

embedded (FFPE) tumour pre-treatment biopsy sample blocks were available for patients of 

the NWCOG-2 trial. DNA was extracted from sections cut from these blocks, amplified by 

PCR and then sequenced (see Materials and Methods section 2.3, pages 63-72). The 

sequencing data was then analysed in conjunction with the patient response information to 

detect any correlations between the presence of mutations and response to treatment.  
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4.2 Results 

4.2.1 Selection of patient samples 

Haematoxylin and Eosin (H&E) stained sections of NWCOG-2 patient tumour samples, were 

available and were previously prepared by various centres partaking in the NWCOG-2 trial, 

and were examined microscopically and assessed for their usability in this investigation. The 

samples were assessed by Professor Geraint Williams of Cardiff University Medical School, 

whilst I recorded the observations. The criteria for which they were assessed were: the 

number of tissue fragments in the section; the number of fragments that contained dysplasia; 

the number of fragments that contained cancer; the percentage of tumour nuclei in the 

dysplastic fragments; the percentage of tumour nuclei in cancerous fragments; the number of 

fragments without tumour and the overall percentage of tumour nuclei in the section. The 

amount of tissue available in the block was also assessed as an adequate amount of tissue 

would be required to successfully take sections and extract DNA. Other observations were 

also made on any distinctive morphological features that are characteristic of certain types of 

colorectal cancer, for example if the cancer was mucinous or if there was marked 

inflammation. 

FFPE tissue blocks were available for a total of 132 patients, of which prepared H&E stained 

biopsy slides were available for 113. Two blocks no longer contained any tissue and a further 

40 blocks contained only very small amounts of tissue. This left a total of 90 blocks for which 

H&E stained slides were available for 77. For two of these samples, no tumour was present in 

the biopsies. Another 6 biopsies showed presence of adenoma but no invasive carcinoma. 

This left 69 potentially usable cases. 

For this investigation, samples from the 69 potentially usable cases were selected for analysis 

based on a high percentage of tumour nuclei (≥60%) observed on the biopsy slide. Samples 

with a high percentage of tumour nuclei were chosen for initial analysis as these were easier 

to process for analysis as no microdisection was required. By these criteria, a total of 26 cases 

were selected, however patient consent was not available for one case leaving a total of 25 

cases for analysis. Information on these patient samples are shown in Table 21. Information 

for all patient samples is available in Table 45 in Appendix I: NWCOG-2 Patient Biopsy 

Information. 
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Table 21: Biopsy information for the 25 NWCOG-2 patient samples selected for initial analysis                                                                                                                        

Table 21. Table showing the information for each of the 25 patient biopsy samples selected for analysis. This table shows the patient number and biopsy number for each 

sample along with information on the approximate percentage of dysplastic and cancerous nuclei in the samples, and an overall tumour nuclei percentage for the samples. 

Additional comments onto the quality of the block/sample and descriptions of specific types and grading of cancer and dysplasia are also shown in the table.
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R7 9656/03 5 5 65 0 0 0 65 Good Small fragments 

R11 1337/04 2 2 80 0 0 0 80 Good  

R12 16/04 4 4 60 0 0 0 60 Good  

R13 711/04 5 2 75 3 85 0 80 Good High grade dysplasia 

R18 4590/04 2 2 80 0 0 0 80 Good  

R24 14223/04 5 4 85 0 0 2 70 Poor Thin block, small fragments 

R38 672/05 5 5 65 0 0 0 65 Good  

R48 3539/05 7 5 70 0 0 2 60 Good  

R50 10391/05 A 6 6 75 0 0 0 75 Good Mucinous Cancer 

R51 3073/05 B 2 0 0 2 80 0 80 Good Low grade dysplasia 

R60 7192/05 7 6 75 0 0 1 70 Good  

R61 7366/05 4 2 70 0 0 1 65 Good  

R69 25344/05 4 4 65 0 0 0 65 Poor Small biopsies 

R72 12975/05 5 5 65 0 0 0 65 Good Marked Inflammation 

R74 10104/05 B 3 3 75 0 0 0 75 Good  

R84 15814/05 D1 3 3 60 0 0 0 60 Good  Thin Block 

R93 1477/06 6 6 60 0 0 0 60 Poor  

R103 4254/06 5 5 60 0 0 0 60 Good  

R104 3273/06 7 7 70 0 0 0 70 Good Marked inflammation 

R115 8025/06 7 6 70 1 70 0 60 Good Low grade dysplasia, serrated dysplasia 

R119 4984/06 7 7 60 0 0 0 60 Poor  

R133 8159/06 2 2 75 0 0 0 75 Good  

R135 10627/06 2 2 65 0 50 0 65 Good  

R139 10628/06 3 3 70 0 0 0 70 Good Mucinous Cancer 

R145 15760/06 3 3 70 0 0 0 70 Good  
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4.2.2 Microtomy and DNA extraction of patient tumour material 

Up to eight 10 µm thick sections were cut from each of the initial 25 NWCOG-2 sample 

blocks for each DNA extraction. DNA was then extracted from these sections as described on 

page 64. The DNA was then quantified using the NanoDrop. The concentration for each 

DNA sample is given in Table 22 on the next page. The DNA extraction concentrations 

varied from as low as 2.7 ng/µl, to as high as 539.6 ng/µl. 
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Table 22: Nucleic acid concentration for each NWCOG-2 patient DNA sample 

Patient 

Number 

Extraction 

Number 

Nucleic Acid 

Concentration 

(ng/µl) 

Patient 

Number 

Preparation 

Number 

Nucleic Acid 

Concentration 

(ng/µl) 

R7 
1 2.7 

R69 

1 25.8 

2 8.7 2 29.8 

R11 

1 9.5 3 34.6 

2 8.4 R72 1 160.6 

3 73.8 R74 1 176.8 

4 220.7 
R84 

1 5.0 

R12 
1 8.2 2 27.7 

2 29.1 
R93 

1 6.9 

R13 

1 56.6 2 37.6 

2 238.8 
R103 

1 5.1 

3 165.7 2 44.2 

R18 1 210.6 

R104 

1 78.2 

R24 
1 8.2 2 206.2 

2 29.1 3 191 

R38 

1 76.6 

R115 

1 37.4 

2 72.2 2 108.1 

3 39.8 3 376.6 

R48 

1 13.0 
R119 

1 45.8 

2 20.5 2 230.1 

3 56.9 

R133 

1 74.1 

R50 

1 97.8 2 281.6 

2 320.1 3 32.7 

3 168.8 

R135 

1 54.9 

R51 
1 6.0 2 506.7 

2 2.9 3 539.6 

R60 

1 119.9 

R139 

1 13.7 

2 169.7 2 9.9 

3 141.0 3 79.6 

R61 

1 22.7 4 89.0 

2 74.2 
R145 

1 8.5 

3 153.9 2 60.9 

Table 22: Table showing the DNA concentrations of the NWCOG-2 patient samples for each DNA extraction. 

Each extraction had a total volume of 23 µl after quantification.  
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4.2.3 Optimisation of PCR for individual exons 

The PCR procedure was optimised in order to achieve highly specific PCR reactions which 

yield a high concentration of the desired product. For this, PCR was carried out on wild-type 

control DNA (extracted from a normal colon tissue sample) for each exon for each gene in 

which a gradient of 10ºC for the annealing stage was used over 12 PCR tubes for each exon. 

The PCR products were checked and quantified using the QIAgen QIAxcel capillary 

electrophoresis system. The annealing temperature that generated the highest yield of the 

desired PCR product with very low or preferably no undesired non-specific PCR product for 

the most exons was chosen as the annealing temperature to be used on the PCR products of 

patient samples. This optimisation procedure was carried out for all required PCRs. The 

temperature of 56.8ºC was selected as the optimum annealing temperature, as this was the 

annealing temperature which gave the highest yield of PCR product for the majority of PCRs. 

An example of a QIAxcel image of the optimisation is shown on the next page as Figure 25. 

Figure 25 suggests that annealing temperature makes little difference to the PCR product 

yield. 
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Temperature 

(ºC) 

53.8 54.3 55.1 56.1 56.8 57.6 58.2 59.6 60.2 61.3 62.2 62.2 

DNA 

Concentration 

(ng/µl) 

64.25 64.27 44.21 53.64 94.56 67.4 62.74 87.13 83.18 57.58 58.11 78.01 

 

  
Figure 25. An example of a QIAxcel electrophoresis image for the optimisation of PCR using a 

temperature gradient for the annealing stage of the PCR reaction. This image here shows the optimisation of 

the PCR of CtIP exon 5(shown by the dark band in each column at a length of 296 bp). This image shows 

the presence of nonspecific PCR products at annealing temperatures from 53.8ºC-56.1ºC. The 

accompanying table show the concentration of the 296 bp band at each different annealing temperature as 

measured by the QIAxcel, this shows that an annealing temperature of 56.8ºC yields the highest 

concentration of PCR product.  
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In order to reduce the concentration of potential contaminating PCR products in the reactions 

whilst attaining the highest possible yield of desired PCR product, the number of PCR cycles 

was optimised. Two PCR reactions were carried out using 10 ng wild-type control DNA 

template and a no template control for different PCR cycles varying in cycle number from 

30-35. The products were checked by electrophoresis. The highest cycle number in which 

very little to no product was observed in the no template control, yet show a high yield of 

product in the sample in which template DNA was added, was selected as the cycle number 

to use for the PCR of the patient samples. 33 cycles was chosen as the optimum cycle 

number. This is shown below in Figure 26. 

 

 

 

 

 

 

 

 

 

 

Figure 26. Gel electrophoresis image of the PCR products for the optimisation of PCR cycle number, 

from the reactions using DNA template (+) and no DNA template (-) at varying cycle numbers from 30-35 

cycles. This image shows a band present for each reaction in which DNA template was used, with increasing 

intensity as cycle number increases from 30 to 33 cycles, indicating an increase in the concentration of PCR 

product. This band shows the PCR product for MRE11 exon 2, and is 314 bp in length. For the reactions in 

which no DNA template was used, contaminant can be seen faintly at 34 cycles. 
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Multiplex PCR using primers for every exon of a single gene was used as a preliminary PCR 

stage to amplify the amount of DNA available for two reasons. Firstly due to the generally 

low quantities of patient DNA available, as little as 2.7 ng/µl for one patient (see Table 22). 

Secondly, because of large number of PCR reactions required for each patient sample 

(usually one per coding exon, with some large exons requiring multiple PCR reactions).  

PCR for each individual exon was then carried out using the multiplex PCR product as a 

template. Negative controls, which contained no patient DNA, were amplified by multiplex 

and then for each individual exon using the negative control multiplex PCR product as a 

template, along with the patient samples to assess the level of contamination when checked 

by QIAxcel. In most cases, no contamination was detected. If substantial contamination (a 

DNA concentration in the negative control greater than 5% of DNA concentration measured 

in the patient sample) was detected, the corresponding samples were discarded and the PCR 

was repeated. 

 

4.2.4 Sequencing of each exon of MRE11, RAD50, NBS1 and CtIP for each patient 

sample 

Each exon for each gene for each patient was amplified by PCR and then sequenced to 

identify any mutations. Some exons of some patients were unable to be sequenced due to low 

PCR yields and unsuccessful PCR reactions. Successful PCR amplification and sequencing in 

all patients was achieved for 100% of exons in MRE11, 98.5% of all exons in RAD50, 97.7% 

of all exons in NBS1 and 99.6% of all CtIP exons. 98.9% of all exons for all genes for all 

patients were successfully amplified and sequenced. 

The sequences were aligned to the wild-type consensus sequences using ClustalO software to 

identify mutations. The reference sequences used were obtained from NCBI, the accession 

numbers for MRE11, RAD50, NBS1 and CtIP were NG_007261.1, NG_021151.1, 

NG_008860.1 and NG_012121.1 respectively. The chromatograms were then also analysed 

by eye, to identify any heterozygous/mix of mutant and wild type bases in which the mutant 

base was not called over the wild-type base. A heterozygous/mix mutant is defined as mutant 

that both the wild-type and mutant bases are detected at the same position. This can be due to 

heterozygosity of the mutation or as a result of a mix of the sequences of wild-type and 

mutant cells present in the sample. 
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For any mutations that were detected, a second sequencing reaction to sequence the opposite 

strand was carried out to confirm the presence of the mutation. If the mutation was 

confirmed, then sequencing was carried out on patient blood DNA to identify if said mutation 

was present in the germline or was of somatic origin. Patient blood was not available for 

patients R13, R24, R50, R51 and R104. 

Examples of chromatogram for the mutations are shown in figures 27-30. These figures show 

the chromatograms for forward and reverse sequencing reactions for the patient tumour DNA 

and the forward sequencing reaction for the patient blood DNA. Figure 27 shows an example 

of a homozygous/hemizygous somatic mutation as only the mutant base is present in the 

tumour sample sequence. A hemizygous mutation occurs if only one copy of the gene is 

present in a cell, which can occur as a result of a loss of heterozygosity a frequent feature of 

cancers. Figure 28 shows an example of a heterozygous/mix mutant and a wild-type somatic 

mutation, as both the wild-type and mutant bases were present in the tumour sample 

sequences. Figure 29 shows an example of a frameshift caused by a single base-pair deletion. 

Figure 30 shows an example of a germline variant. Chromatograms for all other mutations 

are available in Appendix II, (chapter 10). 
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Figure 27. Example Chromatograms for the MRE11-L341P mutation in patient R119 from three 

separate sequencing reactions (forward and reverse sequences from the same PCR product). This shows the 

T>C base change in the forward strand and the corresponding A>G base change in the reverse strand (as 

indicated by the arrows). The forward and reverse traces show no trace of the wild-type base suggesting that 

this mutation may be homozygous or hemizygous. This figure also shows the chromatogram for the same 

region in the same patient from normal DNA extracted from the patient’s blood. This shows an absence of 

this mutation, indicating that this mutation has occurred somatically. 

T>C 
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Figure 28. Example chromatograms for the MRE11-E257X mutation in patient R11 from three separate 

sequencing reactions (forward and reverse sequences from independent PCR products). This shows the G>T 

base change in the forward strand and the corresponding C>A base change in the reverse strand (as indicated 

by the arrows). The forward and reverse sequences also show a trace of the wild-type base suggesting that 

either this trace may include sequence from nearby normal tissue, or that this mutation may be heterozygous. 

This figure also shows the chromatogram for the same region in the same patient from normal DNA 

extracted from the patient’s blood. This shows an absence of this mutation, indicating that this mutation has 

occurred somatically. 
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Figure 29. Example chromatograms for the CtIP-1073delA mutation in patient R48 from three separate 

sequencing reactions (forward and reverse sequences from independent PCR products from the same initial 

multiplex PCR). The forward and reverse sequences show a single base pair deletion in the poly(A)9 

(poly(T)9 for reverse) tract in exon 12 of CtIP. The forward and reverse sequence chromatograms show a 

trace of the wild-type base suggesting that either this trace may include sequence from nearby normal tissue, 

or that this mutation may be heterozygous. This figure also shows the chromatogram for the same region in 

the same patient from normal DNA extracted from the patient’s blood. This shows an absence of this 

mutation, indicating that this mutation has occurred somatically. 
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Figure 30. Example chromatograms for the NBS-P672P silent variant in patient R18 from three 

separate sequencing reactions (forward and reverse sequences from the same PCR product). This shows the 

A>G base change in the forward strand and the corresponding T>C base change in the reverse strand (as 

indicated by the arrows). The forward and reverse traces show no trace of the wild-type base suggesting that 

this mutation may be homozygous or hemizygous. This figure also shows the chromatogram for the same 

region in the same patient from normal DNA extracted from the patient’s blood. This shows the presence of 

this variant, showing that this mutation is germline. This variant was also found in patients R7, R24, R84, 

R93, R103 and R115. This variant was found to also be homozygous in patients R7, R18, R24 and R103, 

and was found to be heterozygous in patients R84, R93, and R115. This variant was found to be germline in 

all patients were blood DNA was available (no blood DNA available for patient R24), and is a known SNP     

(rs ID: rs1061302). 
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For MRE11 a total of 8 different mutations were identified, all of which were somatic. 1 

mutation was a silent mutation, 6 were missense mutations and 1 was a nonsense mutation. 

Mutations in MRE11 were only found in patients R11 and R119. Information on these 

mutations is shown in Table 23. 

 

Table 23: Table of MRE11 mutants identified in the NWCOG-2 patient samples 

Gene Mutation Patient(s) Homozygous* 

/Mix** 

(Tumour) 

Somatic/ 

Germline 

MRE11 

E51V R11 Homozygous* Somatic 

E257X R11 Mix** Somatic 

L314P R119 Homozygous* Somatic 

S382N R11 Homozygous* Somatic 

L446P R11 Mix** Somatic 

G569P R119 Homozygous* Somatic 

K682K R11 Homozygous* Somatic 

V684A R11 Homozygous* Somatic 

*May be hemizygous   

**Mixture of wild-type and mutant traces. May be heterozygous and/or represent a mixture of 

wild-type and mutant cells 

Table 23. Table showing information on the MRE11 mutations identified in the NWCOG-2 patients. This shows 

a total of 8 different somatic mutations found in a total of 2 patients. 6 of these mutations were 

homozygous/hemizygous whilst two showed traces of the wild-type and mutant base in the chromatograms. 
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For CtIP a total of 7 different mutations/variants were identified, 5 of which were somatic 

and 2 were germline. 3 of these mutations/variants were silent, of these silent 

mutations/variants 1 was somatic and the other two were germline. Three of the mutations 

were missense mutations, all of which were somatic. A frameshift mutation caused by a 

single base pair deletion was also identified, this was somatic. These mutations were found in 

6 different patients. Information on these mutations is shown in Table 24. 

 

Table 24: Table of CtIP mutants identified in the NWCOG-2 patient samples 

Gene Mutation Patient(s) Homozygous* 

/Mix** 

(Tumour) 

Somatic/ 

Germline 

CtIP 

L286L R11 Homozygous* Somatic 

Q293R R119 Mix** Somatic 

Poly(A)9 

1bp del 
R48 Mix** Somatic 

D548D R11 Mix** Germline 

S641F R119 Homozygous* Somatic 

K704K 

R72 Homozygous* Germline 

R135 Mix** Germline 

R139 Mix** Germline 

L740S R11 Mix** Somatic 

*May be hemizygous 

**Mixture of wild-type and mutant traces. May be heterozygous and/or represent a mixture of 

wild-type and mutant cells 

Table 24. Table showing information on the CtIP mutations identified in the NWCOG-2 patients. This shows a 

total of 5 different somatic mutations found in a total of 3 patients and 2 germline mutations found in 4 patients. 

Most of these mutations showed traces wild-type and mutant base in the chromatograms.  
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For NBS1 a total of 6 different mutations/variants were identified, 2 of which were somatic 

and the other 4 were germline. Of the 4 germline mutations/variants 3 were silent and 1 was 

missense. The two somatic mutants/variants were both missense. These mutations were found 

in 12 different patients. Information on these mutations is shown in Table 25. 

Table 25: Table of NBS1 mutants identified in the NWCOG-2 patient samples 

Gene Mutation Patient(s) Homozygous* 

/Mix** 

(Tumour) 

Somatic/ 

Germline 

NBS1 

L34L 

R7 Mix** Germline 

R18 Homozygous* Germline 

R24 Homozygous* Unknown 

R60 Homozygous* Germline 

R84 Mix** Germline 

R93 Mix** Germline 

R103 Homozygous* Germline 

R115 Mix** Germline 

R139 Mix** Germline 

H149D R119 Homozygous* Somatic 

V155E R11 Mix** Somatic 

E185Q 

R7, R84, R93, R115, R133, R139 Mix** Germline  

R18, R103 Homozygous* Germline 

R24                Homozygous* Unknown               

D399D 

R13 Mix** Unknown 

R18 Homozygous* Germline 

R24 Homozygous* Unknown 

P672P 

R7 Homozygous* Germline 

R18 Homozygous* Germline 

R24 Homozygous* Unknown 

R84 Mix** Germline 

R103 Homozygous* Germline 

R115 Mix** Germline 

*May be hemizygous 

**Mixture of wild-type and mutant traces. May be heterozygous and/or represent a mixture of 

wild-type and mutant cells 

 

Table 25. Table showing information on the NBS1 mutations identified in the NWCOG-2 patients. This shows a 

total of 7 different somatic mutations found in a total of 2 patients and 2 germline mutations found in 10 patients 

(although this could not be confirmed for patients R13 and R24 as no blood DNA was available for these 

patients). 
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For RAD50 a total of 17 different mutations/variants were identified. 4 of these 

mutations/variants were silent, 1 was a frameshift, 1 was a nonsense mutation and the 

remaining 11 were all missense mutations/variants. None of the mutations were found to be 

germline. The somatic/germline status could not be confirmed for 5 of these mutations, as no 

blood DNA was available for these patients. RAD50 mutations were found in 9 different 

patients. Information on these mutations is shown in Table 26. 

 

Table 26: Table of RAD50 mutants identified in the NWCOG-2 patient samples 

Gene Mutation Patient(s) Homozygous* 

/Mix** 

(Tumour) 

Somatic/ 

Germline 

RAD50 

G36E R50 Homozygous* Unknown 

G39G R93 Mix** Somatic 

R78R R93 Mix** Somatic 

Q524Q R12 Mix** Somatic 

1703delG R50 Mix** Unknown 

C680S R60 Mix** Somatic 

V733M R60 Mix** Somatic 

T896I R133 Homozygous* Somatic 

M1001K R93 Mix** Somatic 

Q1006R R60 Homozygous* Somatic 

Q1011H R93 Homozygous* Somatic 

E1084G R104 Mix** Unknown 

L1092F R72 Homozygous* Somatic 

R1093X R50 Mix** Unknown 

V1250I R61 Mix** Somatic 

E1275E R12 Mix** Somatic 

S1280F R51 Mix** Unknown 

*May be hemizygous 

**Mixture of wild-type and mutant traces. May be heterozygous and/or represent a mixture of 

wild-type and mutant cells 

 

Table 26. Table showing information on the RAD50 mutations identified in the NWCOG-2 patients. This shows 

a total of 12 different confirmed somatic mutations found in a total of 6 patients and 5 unknown 

germline/somatic mutations found in 3 patients. 
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The numbers of identified somatic mutations, germline mutations/natural variants and 

mutations/variants for which the somatic/germline could not be confirmed for each patient 

are shown in Table 27. 

 

Table 27: Numbers of mutations identified in NWCOG-2 patient samples 

Patient Number of Somatic 

mutations 

Number of germline 

mutations/variants 

Number of mutations/variants with 

unknown somatic/germline status 

R7 0 3 0 

R11 9 1 0 

R12 3 0 0 

R13 0 0 1 

R18 0 4 0 

R24 0 0 4 

R38 0 0 0 

R48 1 0 0 

R50 0 0 2 

R51 0 0 1 

R60 3 1 0 

R61 1 0 0 

R69 0 0 0 

R72 2 1 0 

R84 0 3 0 

R93 4 2 0 

R103 0 3 0 

R104 0 0 1 

R115 0 3 0 

R119 5 0 0 

R133 1 1 0 

R135 0 1 0 

R139 0 3 0 

R145 0 0 0 

 

Table 27. This table shows the numbers of somatic mutations, germline mutations/natural variants and 

mutations/variants for which the somatic/germline could not be confirmed for each NWCOG-2 trial patient. 

This table shows that no mutations/variants were identified in patients R38, R69 and R145. This also shows that 

a high number of somatic mutations were found in patient R11 with 9 mutations identified. Patients R12, R60, 

R72, R93 and R119 were also found to harbour multiple somatic mutations. A single somatic mutation was 

found in patients R48, R61 and R133. 
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4.3 Discussion 

4.3.1 Predicted pathogenicity of missense mutations in MRE11, CtIP, NBS1 and 

RAD50 identified by sequencing of NWCOG-2 patient tumour samples 

Missense mutations can vary in the degree of impact they have on the affected protein which 

can in turn lead to pathogenicity. The most common way in which missense mutations may 

pathogenically affect protein function is by affecting the structural stability of the protein, 

most prominently by disruptions of the hydrophobic core [261] [262]. This accounts for 

around 80% of disease associated missense mutations [261] [263]. A missense mutation can 

also affect protein function if it occurs in binding interfaces and can thus affect interaction 

with DNA or other proteins due to geometric or energetic changes [263]. Missense mutations 

can also effect protein expression and subcellular localisation [263]. 

In order to estimate the pathogenicity of the mutations identified in this study, the programs 

Polyphen-2 and Align GVGD were used to predict the severity of impact the mutations 

would have on the protein. Polyphen-2 estimates the effect of the mutation based on 

structural parameters and structural effects of an amino acid change; analysis and alignment 

with homologous proteins; and analysis of specific protein sites, such as active sites and 

coiled-coil regions [262]. Polyphen-2 also calculates the Naïve Bayes posterior probability of 

a mutation being damaging and grades the mutation as either benign, possibly damaging or 

probably damaging [264]. The Naïve Bayes posterior probability is a statistical classification 

method using the Bayesian classification algorithm that assumes all features are independent 

(naïve) and assigns the probability of the feature (in this case, the probability of the mutation 

being damaging) to the category of maximum probability [265].  

Align GVGD estimates the effect of the mutation by combining the differences in biophysical 

characteristics between the exchanged amino acids with multiple sequence alignment analysis 

of the protein with homologues of other species [266]. Alignment and comparison of amino 

acid sequences between homologous proteins of different species is useful as highly 

conserved residues are generally of great importance in protein stability, function and 

interaction [263]. 
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This analysis was carried out in order to predict which mutations may have detrimental 

effects on the function of the associated protein, which may impair topoisomerase removal or 

repair following removal, and thus confer increased sensitivity to irinotecan. 

Information and predicted pathogenicity for each missense mutation are shown in Table 28.1 

(for MRE11, CtIP and NBS1) and Table 28.2 (for RAD50). 
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Table 28: Predictions of pathogenicity for MRE11, CtIP and NBS1 missense mutations identified in the 

NWCOG-2 patient samples 

Gene Mutation Patient(s) 

Homozygous* 

/Mix** 

(Tumour) 

Polyphen 

Prediction 

Align 

GVGD 

Prediction 

(1) 

Align 

GVGD 

Prediction 

(2) 

Somatic/ 

Germline 

MRE11 

E51V R11 Homozygous* 
Benign 

 
C15 C35 Somatic 

L314P R119 Homozygous* 
Probably 

damaging 
C0 C65 Somatic 

S382N R11 Homozygous* 
Possibly 

damaging 
C0 C45 Somatic 

L446P R11 Mix** 
Possibly 

damaging 
C45 C65 Somatic 

G569P R119 Homozygous* 
Possibly 

damaging 
C0 C0 Somatic 

V684A R11 Homozygous* 
Benign 

 
C0 C65 Somatic 

CtIP 

Q293R R119 Mix** 
Benign 

 
C0 C0 Somatic 

S641F R119 Homozygous* 
Possibly 

damaging 
C0 C0 Somatic 

L740S R11 Mix** 
Possibly 

damaging 
C0 C65 Somatic 

NBS1 

H149D R119 Homozygous* 
Probably 

damaging 
C65 C65 Somatic 

V155E R11 Mix** 
Probably 

damaging 
C35 C65 Somatic 

E185Q 

R7, R84, 

R93, 

R115, 

R133, 

R139 

Mix** Benign C0 C0 
Germline 

Mix 

R18, R103 Homozygous* Benign C0 C0 
Germline 

Homozygous 

R24                  Homozygous* 
Benign 

 
C0 C0 Unknown               

Table 28.1 *May be hemizygous.                                                                                                                                    

** Mixture of wild-type and mutant traces. May be heterozygous and/or represent a mixture of 

wild-type and mutant cells 

Table 28: Predictions of pathogenicity for MRE11, CtIP, NBS1 and RAD50 missense mutations 

identified in the NWCOG-2 patient samples 
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Table 28.2: Predictions of pathogenicity for RAD50 mutants identified in the NWCOG-2 patient samples 

Gene Mutation Patient(s) 

Homozygous* 

/Mix** 

(Tumour) 

Polyphen 

Prediction 

Align 

GVGD 

Prediction 

(1) 

Align 

GVGD 

Prediction 

(2) 

Somatic/ 

Germline 

RAD50 

G36E R50 Homozygous* 
Probably 

damaging 
C65 C65 Unknown 

C680S R60 Mix** 
Possibly 

damaging 
C0 C65 Somatic 

V733M R60 Mix** 
Benign 

 
C0 C0 Somatic 

T896I R133 Homozygous* 
Possibly 

damaging 
C0 C65 Somatic 

M1001K R93 Mix** 
Possibly 

damaging 
C0 C65 Somatic 

Q1006R R60 Homozygous* 
Benign 

  
C0 C35 Somatic 

Q1011H R93 Homozygous* 
Benign 

 
C0 C15 Somatic 

E1084G R104 Mix** Benign C0 C65 
Unknown 

 

L1092F R72 Homozygous* 
Probably 

damaging 
C0 C15 Somatic 

V1250I R61 Mix** 
Possibly 

damaging 
C0 C25 Somatic 

S1280F R51 Mix** 
Possibly 

damaging  
C15 C65 Unknown 

Table 28.2  *May be hemizygous                                                                                                                                                 

** Mixture of wild-type and mutant traces. May be heterozygous and/or represent a mixture of 

wild-type and mutant cells 

Table 28.1 and 28.2: Missense mutations identified in MRE11, CtIP, NBS1 and RAD50 by sequencing these 

genes from DNA extracted from NWCOG-2 trial patient tumour samples. Bold text indicates that the the 

mutation has been confirmed by sequencing in the opposite direction, for the mutation not denoted by bold text, 

sequencing in the other direction was not possible due to the low quantity and quality of the patient DNA 

available. The predicted pathogenicity of these mutations is shown as predicted by Polyphen2 and Align GVGD. 

The Align GVGD predictions range from C0 to C65, the least likely and most likely to be damaging 

respectively. The Align GVGD (1) is based on alignments of the proteins from human to sea urchin (MRE11, 

NBS1), Coelacanth (CtIP) or zebra fish (RAD50). The Align GVGD (2) column is based on alignments from 

human to platypus (MRE11, RAD50) or chicken (NBS1, CtIP). This table shows if the mutations found in the 

tumour samples are somatic or germline; this was done by sequencing patient blood DNA. “Unknown” in the 

somatic/germline section denotes a lack of blood DNA available (the case for R50, R51 and R104). Underlined 

text denotes an independent PCR product was used for confirmatory sequencing using the same multiplex 

product as template. Double underlined text denotes the PCR product for confirmation was amplified directly 

from the template.  
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According to the Polyphen-2 analysis a total of 10 mutations are predicted to be benign and 

carry no associated pathogenicity or detrimental effects on protein function. 10 mutations 

were predicted to be possibly damaging and may affect protein function. The remaining 5 

mutations were predicted to be probably damaging and are thus most likely to affect protein 

function. Of these 5 mutations 4 were also given the highest value of predicted pathogenicity 

(C65) by Align GVGD (prediction 2). This would suggest that these mutations would very 

likely disrupt protein function and therefore may impair topoisomerase removal and confer 

hypersensitivity to the topoisomerase inhibitor irinotecan. 
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4.3.2 Nonsense and frameshift mutations identified in NWCOG-2 patient tumour 

samples 

Nonsense and frameshift mutations which result in premature stop codons are generally the 

most detrimental form of mutation which produce truncated proteins that are often non-

functional [263]. The transcribing mRNA for such non-functional proteins are often degraded 

by the process of nonsense-mediated decay [267]. 

Two nonsense mutations and two frameshift mutations, which lead to a truncation, have been 

identified in the NWCOG-2 patient tumour samples. Information on these mutations is shown 

below in Table 29. 

Table 29: Information on nonsense and frameshift mutations identified in NWCOG-2 patient samples 

Gene Mutation Patient Homozygous*/Mix** Somatic/Germline 

MRE11 E257X R11 Mix** Somatic 

CtIP 

Poly(A)9 1bp 

deletion 

(1073delA) 

R48 Mix** Somatic 

RAD50 
1703delG R50 Mix** Unknown 

R1093X R72 Homozygous* Somatic 

*May be hemizygous                                                                                                                                               

** Mixture of wild-type and mutant traces. May be heterozygous and/or represent a mixture of wild-type and 

mutant cells 

Table 29: Table showing the nonsense and frameshift mutations of MRE11, CtIP, NBS1 and RAD50. All 

mutations have been confirmed by sequencing of the opposite strand. This table also shows whether the 

mutations found in the tumour samples are somatic or germline, this was done by sequencing of patient blood 

DNA. The “unknown” in the somatic/germline section denotes a lack of blood DNA available for this patient 

(R50). Underlined text denotes that a new PCR product, from the same multiplex was used for confirmatory 

sequencing. 

 

The MRE11-E257X mutation would result in an Mre11 protein consisting only of the N-

terminal nuclease domain, the first Mre11 dimer interface and the Nbs1 binding domain. This 

would likely result in a non-functional protein due to a lack of both DNA binding domains, 

the second Mre11 dimer interface and the Rad50 binding domain (see Figure 16, page 87).  

The CtIP Poly(A)9 1 bp deletion is a known mutation that is associated with MSI. This 

mutation results in a truncated protein only 357 amino acids in length [173]. This mutation is 

found in around 22.9% of MSI+ colorectal tumours. The frequency is also known to differ by 
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tumour grade, with frequencies of 16%, 52%, 28% and 4% at grades I, II, III and IV 

respectively [174]. This mutation was created in S. pombe in chapter 3 and conferred a null 

phenotype and severe sensitivity to camptothecin (see page 100). A diagram of this mutant 

protein in comparison to the wild-type is shown in chapter 3 (Figure 19, page 93). This shows 

that certain important functional domains, including the DNA binding and MRN binding 

domains, are absent in this mutant, and therefore may contribute to a severe phenotype. The 

transcript of this mutant is not degraded by nonsense-mediated decay [268]. 

The RAD50-1703delG frameshift mutation would cause a truncation in the first coiled-coil 

domain. This protein would lack multiple important functional domains including the Zinc 

hook domain, second coiled-coil domain, second and third Mre11 binding domains, the 

second nucleotide binding domain and the ABC ATPase C domain. Therefore this protein 

would likely be non-functional and the mutation is likely to cause irinotecan sensitivity if 

present heterozygously as a single functional copy of RAD50 has been reported to be 

haploinsufficient [269]. This mutation is unlikely to occur homozygously as functional Rad50 

is essential for life in mammalian cells [270]. 

The RAD50-R1093X mutant protein would lack the important C-terminal domains involved 

in Mre11 binding and nucleotide binding and the ABC ATPase C domain. This truncation 

would therefore likely have a great impact on the function of the protein and likely render it 

non-functional. This mutant has been identified in a patient with an NBS-like disorder (NBS-

LD) as a compound heterozygous with RAD50-YextX*66 [161]. This mutation was found to 

produce low levels of unstable protein [161]. In the NBS-LD patient, this mutation was 

germline, whereas it was found to occur somatically in the NWCOG-2 patient. 

 

4.3.3 Silent mutations and natural variants identified in NWCOG-2 patient tumour 

samples 

A total of 12 different silent mutations/variants were identified in the NWCOG-2 patient 

tumour samples. Of these 5 were found to be germline and also occur in the Patient blood 

DNA. The other 7 were somatic. Information on these mutations and variants are shown in 

Table 30 on the next page. 
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Gene Mutation Patient(s) Homozygous*/Mix 

**(Tumour) 

Homozygous*/Mix**/Wild-

type (Blood) 

Somatic/Germline 

MRE11 K682K R11 Homozygous* Wild-type Somatic 

CtIP 

L286L R11 Homozygous* Wild-type Somatic 

D548D R11 Mix** Mix** Germline 

K704K 

R72 Homozygous* Mix** Germline 

R135 Mix** Mix** Germline 

R139 Mix** Mix** Germline 

NBS1 

L34L 

R7 Mix** Mix** Germline 

R18 Homozygous* Homozygous* Germline 

R24 Homozygous* Unknown Unknown 

R60 Homozygous* Mix** Germline 

R84 Mix** Mix** Germline 

R93 Mix** Mix** Germline 

R103 Homozygous* Homozygous* Germline 

R115 Mix** Mix** Germline 

R139 Mix** Mix** Germline 

D399D 

R13 Mix** Unknown Unknown 

R18 Homozygous* Homozygous* Germline 

R24 Homozygous* Unknown Unknown 

P672P 

R7 Homozygous* Mix** Germline 

R18 Homozygous* Homozygous* Germline 

R24 Homozygous* Unknown Unknown 

R84 Mix** Mix** Germline 

R103 Homozygous* Homozygous* Germline 

R115 Mix** Mix** Germline 

RAD50 

G39G R93 Mix** Wild-type Somatic 

R78R R93 Mix** Wild-type Somatic 

Q524Q R12 Mix** Wild-type Somatic 

V1187V R12 Mix** Wild-type Somatic 

E1275E R12 Mix** Wild-type Somatic 

*May be hemizygous                                                                                                                                               

** Mixture of wild-type and mutant traces. May be heterozygous and/or represent a mixture of wild-type and 

mutant cells 

Table 30: Table showing all the silent mutations found in the MRE11, CtIP, NBS1 and RAD50 genes in the 

patients in the NWCOG-2 (RICE) trial. Bold text indicates mutations which have been confirmed by sequencing 

of the opposite strand. This table also shows whether the mutations found in the tumour samples are somatic or 

germline; this was done by sequencing of patient blood DNA. The “unknown” in the somatic/germline section 

denotes that blood DNA is currently unavailable for that patient. Underlined text denotes that the product from 

an independent PCR from the original multiplex was used for confirmatory sequencing. 

Table 30: Information on silent mutations/variants identified in NWCOG-2 patient samples 
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Table 30 shows that generally most germline mutations/variants that showed traces of both 

mutant and wild-type base in the patient blood DNA also showed the same in the patient 

tumour DNA. However for some, CtIP-K704K in patient R72, NBS1-L34L in patient R60 and 

NBS1-P672P in patient R7, appeared to be homozygous/hemizygous only showing the 

mutant trace in the tumour DNA despite the mixture of traces in the blood DNA. This 

suggests that a loss of heterozygosity may have occurred in these patients at loci 

encompassing the region containing the mutation. 

 

4.3.4 Natural variants found in the NWCOG-2 trial 

The mutations/variants found in the NWCOG-2 trial patient tumour samples were searched 

for in the SNP databases dbSNP [271] [272] and EVS/ESP [273]. 6 of the NWCOG-2 

mutations/variations were found in these databases. A table of these mutations and data on 

their respective frequencies and heterozygosity rates are shown in Table 31 on the next page. 
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Gene Mutation/ 

Variation 

rs ID MAF* 

(dbSNP) 

MAF* 

(EVS/ESP) 

Heterozygosity 

(dbSNP) 

Heterozygosity 

(EVS/ESP) 

Homozygosity 

(EVS/ESP) 

Patient(s) Pathogenicity 

CtIP D548D rs534780140 0.73% 
1.1863%(EU) 

0.8382% (All) 
1.5% 

2.37(EU) 

1.68 (All) 

0 (EU) 

0 (All) 
R11 

Unknown 

(Silent) 

NBS1 

L34L rs1063045 34.99% 
31.47% (EU) 

31.2% (All) 
45.5% 

43.58% (EU) 

42.95% (All) 

9.67% (EU) 

9.84% (All) 

R7, R18, R24, R84, 

R93, R103, R115, 

R139 

Unknown 

(Silent) 

E185Q rs1805794 33.29% 
31.63% (EU) 

28.66% (All) 
44.4% 

43.51% (EU) 

40.77% (All) 

9.60% (EU) 

8.27% (All) 

R7, R18, R24, R84, 

R93, R103, R115, 

R133, R139 

Unknown 

D399D rs709816 42.38% 
35.59% (EU) 

49.03% (All) 
48.8% 

46.11% (EU) 

43.25% (EU) 

12.53% (EU) 

27.4% (All) 
R13, R18, R24 

Unknown 

(Silent) 

P672P rs1061302 32.78% 
31.32% (EU) 

28.42 %(All) 
41% 

43.56% (EU) 

40.5% (All) 

9.54% (EU) 

8.17% (All) 

R7, R18, R24, R84, 

R103, R115 

Unknown 

(Silent) 

RAD50 R1093X rs121912628 N/A N/A N/A N/A N/A R72 

Damaging, 

found in a case 

of NBS-like 

disorder 

*MAF: Minor Allele Frequency 

Table 31: Table showing mutations/variations of MRE11, CtIP, NBS1 and RAD50 found in the patients of the NWCOG-2 (RICE) trial that have also been previously 

identified and are included in the dbSNP and ESP databases. This table shows the rare variants CtIP-D548D, RAD50-V315L, R1093X and T1114I, in addition to the more 

common variants of NBS1. No mutations/variants of MRE11 found in NWCOG-2 were found in dbSNP or ESP databases. (EU) denotes European ethnicity; (ALL) denotes 

all ethnicities combined.

Table 31: Information on known CtIP, NBS1 and RAD50 variants identified in the NWCOG-2 patient samples 
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The mean allele frequency (MAF) for the CtIP-D548D variant in the dbSNP and EVS/ESP 

databases is 0.73% - 1.19%. The European MAF is 1.9%. In this study, this variant was found 

to be mix/heterozygous in one patient, thus the MAF is approximately 2%. This is similar to 

that found in the databases. 

The NBS1 variants L34L, E185Q and P672P in the databases are 31.2-34.99%, 28.66-33.29% 

and 28.42-32.78% respectively. For the NWCOG-2 patients the respective MAFs for these 

variants are 24%, 30% and 18% which are not too dissimilar to those of the databases. The 

homozygosity rates for these three variants in the NWCOG-2 patients were 12%, similar to 

the 9.67-9.84%, 8.27-9.60% and 8.17-9.54% stated by the EVS/ESP database. The MAFs for 

these variants was found to be slightly higher in Europeans than all ethnicities combined. 

The MAF of the NBS1-D399D variant was much lower in the NWCOG-2 patients, at only 

10%, in comparison to the 35.59-49.03% MAFs stated by the databases. The homozygosity 

of this variant was also lower than the homozygosity rate stated by the EVS/ESP database at 

8% compared to 12.53-27.4%. The relatively small sample size of this study may account for 

differences in MAF and homozygosity found in this study compared to the dbSNP and 

EVS/ESP databases. Unlike the other NBS1 variants, the MAF of this variant is much lower 

in Europeans compared to the global population. 

The rare RAD50-R1093X variant was found in case of NBS-LD as a compound heterozygous 

with another RAD50 variant [161]. This was found in a single NWCOG-2 patient, however it 

was found to have occurred somatically in that patient. 
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4.3.5 Mutation rates in NWCOG-2 patient tumours 

The somatic mutation rates for each patient were calculated by dividing the total number of 

the patient’s somatic mutations by the total combined length of the coding regions of MRE11, 

RAD50, NBS1 and CtIP (a total of 11,025 bp). Mutations for which the somatic/germline 

status could not be confirmed were not included. Separate mutation rates were calculated for 

silent and non-silent mutations in addition to a combined mutation rate. The silent, non-silent 

and combined mutation rates for the whole study were also calculated. The MSI status for 

each patient was obtained. The MSI status was graded based on the Negri and Braun criteria. 

A table showing the somatic mutation rates and MSI status for each patient is shown on the 

next page in Table 32.  
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Table 32: Mutation rates for the NWCOG-2 patient tumour samples 

Patient 
Silent 

Mutations 

Non-Silent 

Mutations 

Total 

Mutations 

Silent 

Mutation 

Rate*  

Non Silent 

Mutation 

Rate*  

Total 

Mutation 

Rate*  

MSI 

Status 

R7 0 0 0 0 0 0 MSS 

R11 2 7 9 181.4 634.92 816.32 MSS 

R12 3 0 3 272.11 0 272.11 MSS 

R13 0 0 0 0 0 0 MSS 

R18 0 0 0 0 0 0 MSS 

R24 0 0 0 0 0 0 MSI 

R38 0 0 0 0 0 0 MSS 

R48 0 1 1 0 90.7 90.7 MSS 

R50 0 0 0 0 0 0 MSI 

R51 0 0 0 0 0 0 MSS 

R60 0 3 3 0 272.11 272.11 MSS 

R61 0 1 1 0 90.7 90.7 MSS 

R69 0 0 0 0 0 0 MSI 

R72 0 2 2 0 181.4 181.4 MSS 

R74 0 0 0 0 0 0 MSS 

R84 0 0 0 0 0 0 MSS 

R93 2 3 5 181.4 272.11 453.51 MSI 

R103 0 0 0 0 0 0 MSS 

R104 0 0 0  90.7 90.7 MSS 

R115 0 0 0 0 0 0 MSI 

R119 0 5 5 0 453.51 453.51 MSS 

R133 0 1 1 90.7 90.7 181.4 MSS 

R135 0 0 0 0 0 90.7 Unknown 

R139 0 0 0 0 0 0 MSS 

R145 0 0 0 0 0 0 MSS 

Total 7 23 30 25.4 83.45 108.84  

*Mutation rate = Mutations/Mb. Common natural variants and germline mutations not included. 

Table 32: Table showing the mutations of MRN/CtIP found in colorectal tumours for patients of the NWCOG-2 

(RICE) trial. Common natural variants have been excluded. Microsatellite instability (MSI) status is also given. 

The level of MSI is based on showing an altered mismatch repair (MMR) status by Negri and Braun criteria. 

None of these 25 patients were found to show alterations by Braun criteria. Mutations for which it is unknown 

whether they are somatic or germline, have been excluded. In the entire NWCOG-2 study, two patients of the 

124 tested showed alterations in both Negri and Braun criteria. 
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The MSI status of each patient shows that most patients (19/25) are MSS and only 5 show a 

level of MSI based on Negri criteria. No patients were found to be MSI based on Braun 

criteria. Of the entire NWCOG-2 study, MSI status was assessed for 124 patient tumours, of 

which 23 (16.94%) were MSI. Of the initial 25 patients, MSI status was tested in 24 patients, 

for which 5 (20.83%) were MSI. The percentage of MSI tumours in this study is lower than 

the 37.6% reported in a previous study [274]. There does not appear to be any correlation 

between MSI status and mutation rate. Interestingly, patient R48 was MSS, despite 

harbouring the CtIP poly(A)9 1 bp deletion mutation, which has only before been identified 

in MSI tumours [174]. 

The mutation rates were calculated and compared to the mutation rates of two other studies in 

order to estimate the likelihood that the non-silent mutations are driver mutations, 

contributing to the phenotype, and not just passenger mutations or artefacts which arose as 

result of formalin fixation. If these mutations were passenger mutations or due to formalin 

fixation then it would be expected that there would be a higher silent mutation rate and a 

lower non-silent to silent mutation ratio, as these mutations would occur at random. 

Passenger mutations are the mutations which arrive during tumourigenesis that are neutral to 

the phenotype, providing no selective advantage for affected cells [275]. DNA extracted from 

FFPE tissues are known to frequently generate sequencing artefacts appearing as mutations, 

most commonly as G>A/C>T, due to the deamination of cytosine [276]. The MRE11 

mutations E51V, S382N and G569P; the CtIP mutations L286L and S641F; and the RAD50 

mutations G36E, G39G, Q524Q, V733M, T896I, L1092F, R1093X, V1187V, V1250I, E1275E 

and S1280F are all G>A/C>T mutations. 

As silent mutations do not generally contribute to tumourigenesis, the ratio of non-silent to 

silent mutations can be used to estimate the likelihood that the mutations are driver mutations 

and not passenger mutations. A high number of driver mutations would also suggest that the 

mutations are real and not artefacts caused by tissue processing. 

The silent mutation rate of MRN/CtIP for the NWCOG-2 patients is 25.4 mutations per Mb. 

The non-silent mutation rate of MRN/CtIP for NWCOG-2 patients is 83.45 per Mb. The total 

mutation rate of MRN/CtIP for NWCOG-2 is 108.84 mutations per Mb. 

The silent, non-silent and combined mutation rates along with the non-silent: silent mutation 

rate ratio for the NWCOG-2 samples, were compared with those found in colorectal cancers 

by The Cancer Genome Atlas (TCGA) and the Catalogue of Somatic Mutations in Cancer 
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(COSMIC) studies. In TCGA, whole genome analysis was carried out over 276 samples 

[277]. COSMIC collects data from the Cancer Genome Project (CGP) and TCGA [278]. 

These studies use fresh frozen samples as opposed to FFPE tissue. A table showing the 

mutation rate information is shown in Table 33 below. 

 

Table 33: Mutation rates of NWCOG-2, TCGA and COSMIC 

Patient Set 

Silent mutation 

rate (mutations 

per Mb) 

Non-silent mutation 

rate (mutations per 

Mb 

Total Mutation 

rate (mutations 

per Mb) 

Non-silent: silent 

mutation ratio 

(approximate) 

NWCOG-2 35.4 83.45 108.84 2.5:1 

TCGA 0.81 12.15 12.96 15:1 

COSMIC 2.38 12.47 14.85 5:1 

 

Table 33: Table showing silent, non-silent and total mutation rates for MRN/CtIP for the NWCOG-2, TCGA 

and COSMIC patients. This shows far greater mutation rates for NWCOG-2 compared to TCGA and COSMIC. 

This table also shows that the non-silent: silent mutation ratio is greater in TCGA than COSMIC and NWCOG-

2, and that the non-silent: silent mutation ratio for NWCOG-2 is less than that of COSMIC. Mutations for which 

it is unknown whether they are somatic or germline, have been excluded. 

In comparison to the two other studies, the NWCOG-2 patients have a far greater silent 

mutation rate and a far greater non-silent and total mutation rates. Also, the non-silent: silent 

mutation ratio for the NWCOG-2 patients is far less than that of TCGA and half-that of 

COSMIC. The small sample size of the 25 NWCOG-2 patients may have distorted the 

mutation rates as a the presence of a single mutation in a single patient would increase the 

NWCOG-2 mutation rate by 3.6, therefore a single silent mutation would cause a higher 

silent mutation rate in NWCOG-2 than TCGA or COSMIC. The increased mutation rates 

may also be due to the fact that these tumour samples were not randomly selected and do not 

represent a broad spectrum of cancers. All tumours of the NWCOG trial were T grade T3/4 

and all 25 that were selected for this analysis consisted of at least 60% tumour nuclei in the 

biopsy samples. These tumours may be more prone to hypermutation than colorectal cancers 

in general and may have been unintendedly selected for. The TCGA and COSMIC studies 

may have underestimated the total number of mutations due to the mutation detection and 

validation procedures that are performed. For example, any variant found fewer than five 

times were removed [277]. 
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4.3.6 NWCOG-2 mutation spectra 

To further study the mutation rates and assess the likelihood that the mutations are real and 

not just sequencing artefacts, the mutation spectra were analysed to assess the spread of 

different base changes. Studies have shown that such sequencing artefacts are most 

commonly G:C>A:T, accounting for 70-91.5% [279], or even up to 94% [280] or 96% [276] 

of FFPE related sequencing artefacts, thought to possibly arise as a result of cytosine 

deamination [280] although there may be other mechanism [281]. The mutation spectra by 

patient and by gene are shown on the next page in Table 34 and Table 35 respectively.  
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Table 34: Mutation spectra of NWCOG-2 patient samples by patient 

 Transversions Transitions 

Patient A:T>C:G A:T>T:A C:G>A:T C:G>G:C Total A:T>G:C G:C>A:T Total 

R11 0 2 1 0 3 4 2 6 

R12 0 0 0 0 0 0 3 3 

R48 0 0 0 0 0 0 0 0 

R60 0 1 0 0 1 1 1 2 

R61 0 0 0 0 0 0 1 1 

R72 0 0 0 0 0 0 2 2 

R93 0 1 1 0 2 1 1 2 

R119 0 0 0 1 1 2 2 4 

R133 0 0 0 0 0 0 1 1 

Total 0 
4  

(14.3) 

2 

 (7.1) 

1  

(3.6) 

7  

(25) 

8 

 (28.6) 

13  

(46.4) 

21 

(75) 

 

Table 34: Mutation spectrum for somatic mutations of MRE11, CtIP, NBS1 and RAD50 for the NWCOG-2 

patients. This table shows the types of mutation and the numbers of each type for each patient. Only Patients 

with somatic mutations are shown. Mutations for which it is unknown whether they are somatic or germline 

have been excluded. Numbers in parentheses indicate percentage of total mutations. 

 

Table 35: Mutation spectra of NWCOG-2 patient samples by gene 

 Transversions Transitions 

Gene A:T>C:G A:T>T:A C:G>A:T C:G>G:C Total A:T>G:C G:C>A:T Total 

MRE11 0 1 1 0 2 4 2 6 

CtIP 0 0 0 0 0 2 3 6 

NBS1 0 1 0 1 2 0 0 0 

RAD50 0 2 1 0 3 2 8 10 

Total 0 
4  

(14.3) 

2  

(7.1) 

1  

(3.6) 

7 

(25) 

8 

 (28.6) 

13  

(46.4) 

21 

(75) 

 

Table 35: Mutation spectrum for somatic mutations for the NWCOG-2 patients for each gene. This table shows 

the types of each mutation and the numbers of each type for MRE11, CtIP, NBS1 and RAD50. Numbers in 

parentheses indicate the percentage of total mutations. 
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Table 34 and Table 35 show that G:C>A:T was the most common type of mutation overall, 

accounting for 46.4% of all mutations. This however is not as high as the 70-96% of total 

mutations for this type that is reported to arise due to FFPE related sequencing artefacts [276] 

[279] [280]. This suggests that many of the observed mutations may not be FFPE related 

sequencing artefacts. 

The mutation spectra of NWCOG-2 patients was compared to the mutation spectra of TCGA 

and COSMIC. This is shown below in Table 36. 

 

Table 36: Mutation spectra of NWCOG-2, TCGA and COSMIC 

 Transversions Transitions 

Study A:T>C:G A:T>T:A C:G>A:T C:G>G:C Total A:T>G:C G:C>A:T Total 

NWCOG-2 0 
4 

(14.3) 

2 

(7.1) 

1 

(3.6) 

7 

(25) 

8 

(28.6) 

13 

(46.4) 

21 

(75) 

TCGA 
3 

(12) 
0 

7 

(28) 
0 

10 

(40) 

5 

(20) 

10 

(40) 

15 

(60) 

COSMIC 
2 

(2.6) 

1 

(1.3) 

24 

(31.2) 
0 

27 

(35.1) 

25 

(32.5) 

25 

(32.5) 

50 

(65) 

 

Table 36: Mutation spectra for somatic mutations in MRE11, CtIP, NBS1 and RAD50 in the NWCOG-2, TCGA 

and COSMIC studies. The percentages of each mutation for the studies are shown in parentheses. This shows 

similar spectra across all studies. 

The total percentage of transitions of the NWCOG-2 (75%) trial is not vastly greater than that 

of TCGA (60%) or COSMIC (65%), which are taken from frozen samples as opposed to 

FFPE tissue samples. The total percentage of G:C>A:T mutations of NWCOG-2 (46.7%) was 

slightly higher than those observed in TCGA (40%) and COSMIC (32.5%). This similarity in 

mutation spectra would suggest that the observed apparent NWCOG-2 mutations are not 

largely artefactual. 

Interestingly, the A:T>T:A transversion was the most common transversion, occurring 4 

times and accounting for 14.3% of total mutations. This type of mutation was much rarer in 

TCGA and COSMIC, observed only once in COSMIC (1.3% of mutations) and not at all in 

TCGA, despite the vastly larger sample sizes of both studies and the greater number of 

mutations found in total. 
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Some mutations were confirmed by sequencing of the reverse strand in independent PCR 

products. This suggests that these mutations are not artefactual as it would be unlikely for the 

same artefact to appear at the same location in two separate independent PCR reactions, and 

not occur in any other samples. 

 

4.3.7 NWCOG-2 patient response and the presence of MRE11, RAD50, NBS1 and CtIP 

mutations 

The NWCOG-2 mutation data was analysed with respect to the patient response data in order 

to identify if there is any correlation between the presence of MRN/CtIP mutations and 

response to treatment with concurrent irinotecan. A table showing the patient mutation and 

response data is shown on the next page in Table 37. 
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Table 37: Mutation and response information for NWCOG-2 patients as of March 2013 

Patient Silent 

Mutations 

Non-silent 

Mutations  

Total 

Mutations 

Recurrent Local 

Recurrence 

Distant 

Metastases 

Alive  

R7** 0 0 0 No No No Yes 

R11 2 7 9 No No No Yes 

R12** 3 0 3 No No No Yes 

R13 0 0 0 Yes No No No 

R18 0 0 0 No No No Yes 

R24 0 0 0 Yes No No No 

R38** 0 0 0 Yes No Yes No 

R48** 0 1 1 No No No Yes 

R50 0 0 0 No No No Yes 

R51 0 0 0 Yes No No No 

R60* 0 3 3 No No No Yes 

R61* 0 1 1 No No No Yes 

R69* 0 0 0 No No No Yes 

R72 0 2 2 Yes Yes Yes Yes 

R74 0 0 0 No No No Yes 

R84** 0 0 0 Yes Yes No Yes 

R93** 2 2 4 No No No Yes 

R103 0 0 0 Yes No Yes Yes 

R104 0 0 0 Yes No Yes No 

R115 0 0 0 Yes No Yes Yes 

R119 0 5 5 No No No Yes 

R133 0 1 1 No No No Yes 

R135 0 0 0 No No No Yes 

R139 0 0 0 No No No Yes 

R145** 0 0 0 No No No Yes 

* pCR: No residual invasive tumour or lymph node metastasis in post resection sample                                            

**Near pCR: Only microfoci present in in post resection sample 

Table 37: Table showing the numbers of mutations for the patients in addition to the disease recurrence and 

survival data as of March 2013, mutations for which it is unknown whether they are somatic or germline have 

been excluded. This table shows that all patients with mutations survived and that only 1 patient out of 8 

(12.5%) showed a recurrence of disease. Bold text denotes patients with somatic, non-synonymous MRN/CtIP 

mutations.  
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All patients for whom MRN/CtIP mutations were found were alive as of March 2013, 

whereas 5 (29.4%) patients with wild-type MRN/CtIP had died. Distant metastases were only 

seen in a single (11%) MRN/CtIP mutated patient as opposed to the 4 (23.2%) wild-type 

MRN/CtIP patients. Local recurrence only occurred in one (12.5%) MRN/CtIP mutated 

patient and one (5.9%) MRN/CtIP wild-type patient. Recurrence was only observed in a 

single MRN/CtIP mutated patient (12.5%), but observed in 8 (47.06%) MRN/CtIP wild-type 

patients. The survival and recurrence rates for MRN/CtIP wild-type and mutated patients are 

shown below in Table 38. 

 

Table 38: Survival and recurrence information for wild-type and mutated MRN/CtIP NWCOG-2 Patients 

Genotype Survival Recurrence 

MRN/CtIP Wild Type* 70.59% (12/17) 47.06% (8/17) 

MRN/CtIP Mutated** 100% (8/8) 12.5% (1/8) 

* Also includes patient R12, which only harboured silent mutations 

**At least one non-synonymous mutation in one of the MRN/CtIP genes 

 

Table 38: This table shows the percentages of wild type and muted MRN/CtIP patients that survived and the 

percentages of MRN/CtIP wild type patients that showed recurrence of disease. This table shows a higher 

survival and lower recurrence rates in patients with mutated MRE11, CtIP, NBS1 and RAD50 genes. 

 

The MRN/CtIP mutated patients show higher survival rates and lower recurrence rates than in 

wild-type patients, suggesting that these patients have responded better to treatment, due to a 

possible sensitising effect to irinotecan, 5-FU or radiation that the MRN/CtIP mutations have 

on the tumours. This would support the hypothesis that the presence of MRN/CtIP mutations 

confers an increased response to treatment using topoisomerase inhibitors. Chi-squared 

analyses were carried out on this data for the effect of mutations on survival and recurrent-

free survival; the respective p values were 0.082 and 0.062, which do not show statistical 

significance. The small sample size may be responsible for this lack of statistical 

significance; therefore future work should involve the sequencing of the remaining usable 

NWCOG-2 tumour samples, which then may give a clearer picture of any correlation 

between the presence of mutation and response to treatment.  
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4.3.8 Conclusion 

In this investigation a total of 30 somatic MRN/CtIP mutations, 25 of which were non-

synonymous, were identified in 9 of 25 NWCOG-2 patient samples. 5 of these were missense 

mutations that were predicted to be probably damaging by Polyphen-2, with a further 10 

missense predicted to be possibly damaging. Two nonsense mutations and two frameshift 

mutations, including the CtIP poly(A)9 1 bp deletion (CtIP-1073delA), were found. This is 

the first time that the CtIP-1073delA mutation has been reported in a microsatellite stable 

cancer. 

 This patient set appeared to have higher non-silent, silent and total mutation rates in 

comparison to the TCGA and COSMIC studies, but without a vastly different mutation 

spectrum. The percentage of mutations that are of the G:C>A:T is 46.4%, much lower than 

the 70-96% that has been reported to occur as a result of FFPE sequencing artefacts [276] 

[279] [280], this suggest that the mutations found in this investigation are not purely 

artefactual arising from FFPE tissue processing. Further work was required to test for 

whether these mutations are genuine or artefactual; this work forms the next chapter. 

The survival data appears to show a more favourable response in those who harboured 

MRN/CtIP mutations with a 100% survival rate, and an 87.5% recurrence free survival. This 

survival data supports the hypothesis that the presence of MRN/CtIP mutations in colorectal 

cancer confers a more favourable response to treatment utilising irinotecan, capecitabine and 

radiation than those that do not. The correlation between survival/recurrence-free survival 

and presence of mutations was not found to be statistically significant, which may be due to 

the small sample size of this study, therefore this study should in future be expanded to 

encompass more NWCOG-2 patients to better study and understand any possible correlation 

between the presence of mutations and the response to treatment. 

I was confident that these mutations were not artefactual due to several factors. Firstly, the 

presence of these mutations was confirmed by sequencing of the opposite strand, which in 2 

cases was carried out on totally independent PCR products. It would be unlikely for a PCR or 

sequencing artefact to occur at the same location in one patient in two independent PCR 

reactions but not occur in any other samples. Secondly, the mutation spectra of this study 

showed that only 46.4% of the NWCOG-2 mutations were of the G:C>A:T variety, much 

lower that 70-96% that is reported to occur due to FFPE related artefacts. This rate of 

G:C>A:T is similar to that found in the TCGA and COSMIC studies (40% and 32.5% 
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respectively). Lastly, the response data showed more positive response for those with at least 

one mutation in MRN/CtIP in comparison to those with wild-type MRN/CtIP, and thus 

supporting the hypothesis that MRN/CtIP mutations would confer an increased sensitivity to 

this treatment regimen.  
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5 Resequencing of NWCOG-2 Mutants and Fluorescent Fragment 

Analysis 

5.1 Introduction 

5.1.1 Resequencing of NWCOG-2 mutations 

The previous chapter discussed mutations that were identified in the NWCOG-2 patient 

tumour samples. Out of the 25 patient samples analysed, a total of 30 somatic mutations were 

identified, of which 23 were non-synonymous. An additional 3 non-synonymous mutations 

were found for which the somatic/germline status could not be confirmed. 

The silent, non-silent and total mutations rates for the NWCOG-2 patients were far greater 

than those of the TCGA and COSMIC studies. The non-silent: silent mutation ratio is less for 

the NWCOG-2 patients than for TCGA and COSMIC. It is currently unknown why this is. 

All mutations were confirmed by sequencing of the reverse DNA strand. In 21 cases the same 

PCR product was resequenced, for 5 cases a new final PCR product was amplified from the 

same multiplex PCR product and resequenced. For 2 cases a fresh PCR product, amplified 

from a fresh multiplex PCR product, was used for resequencing. The presences of the 

mutations were confirmed for these 29 of these somatic mutations. Due to the low quantity 

and quality of DNA available for patient R133, the RAD50-T869I mutation was not 

confirmed with resequencing. 

Due to the observed high mutation rates, we were advised by Professor Jeremy Cheadle of 

Cardiff University to resequence with new primers on DNA from fresh sections to check that 

the observed mutations are real and not FFPE related artefacts, PCR errors, or from 

contaminant DNA. The mutation spectra (as discussed in the previous chapter) are similar to 

that of TCGA and COSMIC, and do not suggest that there is a problem with contamination. 

Also, if the observed mutations were due to contamination, it would be expected that the 

same mutation would arise in multiple samples. 

For the first round of resequencing, each mutation containing exon was amplified by PCR 

using primers that bind external to the previous PCR primers to prevent amplification of 

previous PCR product that could cause contamination. 

For the second round of resequencing, DNA was extracted from freshly cut sections of 

tumour and extra precautions were put into place to minimize the risk of contamination of 
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patient DNA with wild-type DNA or DNA from another patient. The precautions included 

using newly ordered external PCR primers, PCR grade H2O and polymerase mix. DNA 

extraction and PCR was carried out in a laboratory in which no work on human DNA or PCR 

has previously been carried out. This laboratory was cleaned with bleach and DNA-Zap. 

Coveralls and facemask were worn to prevent contamination with human DNA.  

For the work in the previous chapter, similar precautions were implemented in the PCR 

procedure, however no coveralls or face mask were worn. Due to the repeated use of the 

same primer stocks, template DNA, and the area in which the procedures were carried out, 

contamination could have occurred through these factors.  
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5.1.2 Analysis of mononucleotide repeats 

As discussed in previous chapters, each of the four genes of interest include mononucleotide 

repeat sequences that have been found to be subject to single or double base pair insertions 

and deletions (see section 1.5.2, page 21). Therefore the determination of the length of said 

mononucleotide repeats is essential to identify whether such mutations are or are not present 

in the patient tumour samples. It is known that the sequencing of mononucleotide repeats can 

be problematic [282]. For the NWCOG-2 patient samples, sequencing of the MRE11 

poly(T)11 repeat was particularly problematic, and thus an alternative method was required 

to measure the length of the mononucleotide sequence. The sequencing of the MRE11 

poly(T)11 tract suggested that mutations may be present in this repeat for all patients. Figure 

31 shows an example of the problematic sequencing of the MRE11 poly(T)11 repeat. 

 

 

 

 

 

MRE11 Poly(T)11 Repeat 

P 

Figure 31. Example chromatograms for the attempted sequencing of the MRE11 Poly(T)11 tract. This 

shows that the sequences become unclear through the poly(T)11 tract in both the forward and reverse 

sequencing. There appears to be a frameshift in the reverse sequence, however this was seen in a high 

number of samples and could likely be due to polymerase slippage during PCR or sequencing. Due to this 

another method is required to determine if any mutations are present in this tract. 
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Fluorescent fragment analysis is a method that can be used to determine the length of 

mononucleotide sequences to a resolution of a single base pair. This technique involves the 

PCR amplification of a fragment of the patient DNA that contains the mononucleotide repeat 

using a fluorescently labelled primer. The lengths of the fluorescently labelled PCR products 

are then measured by a capillary electrophoresis platform on a genetic analyser [187]. The 

intensity of each peak was recorded. The patient sample peaks were compared to the wild-

type control peak to determine if any peaks exist at a different length, and thus show the 

presence of a mutation. This method was chosen to analyse these repeats as it may reduce the 

effects of polymerase slippage. For sample sequencing polymerase slippage can occur at the 

PCR and sequencing stages, whereas in fluorescent fragment analysis, polymerase is only 

utilised in the PCR stage. 

 

5.2 Results 

5.2.1 Resequencing of mutations identified in NWCOG-2 patient tumour samples 

To confirm that the mutations described in the previous chapter are real and not artefactual, 

PCR was carried out for the regions in which mutations were found, using the primers 

external to the primers used in previous sequencing; these PCR products were then 

sequenced. The same patient genomic DNA samples analysed in the previous chapter were 

used as template DNA for a new multiplex reaction, from which secondary PCR reactions 

were carried out to be sent for resequencing. All somatic mutations, except for the CtIP-

Poly(A)9 1 bp deletion, were not detectable after resequencing; instead the wild-type base 

was present. 

 To then check if the observed loss of mutation could have been the product of 

contamination, the PCR was repeated using fresh tumour sections. After DNA from fresh 

sections of NWCOG-2 patient tumour material was obtained, PCR was carried out to amplify 

the regions of DNA for which somatic mutations have been identified. Fresh ordered primers 

with the same sequence as those used in the PCR and sequencing round in the previous 

chapter (sequences shown on pages 65-68), were used for this PCR. These procedures were 

carried out in conditions to minimise contamination risk (described in materials and method 

page 75). These sequencing products also showed wild-type sequence, with exception of the 
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CtIP-Poly(A)9 1bp deletion. Of the 29 identified somatic mutations, 20 were resequenced 

using this method, the remaining 9 were not resequenced due to failed PCR. Figure 32 shows 

an example of the chromatograms of one mutation, showing the blood, initial sequencing, 

sequencing of product from PCR with external primers and fresh section sequencing product 

chromatograms. Figure 33 shows chromatograms for the same products but for the CtIP-

Poly(A)9 1 bp deletion mutation. These figures are shown over the next 2 pages. 
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Figure 32. Example chromatograms for the MRE11-S382N mutation in patient R11, from four separate 

sequencing reactions from independent PCR products. A is the chromatogram for the base in question 

sequenced from patient blood DNA, this chromatogram shows the wild-type G base (as indicated by the 

arrow). B is the chromatogram for the forward sequencing of this mutation, showing the mutant A base. C is 

the chromatogram from the sequence of the exon, from a longer PCR product (amplified with primers 

external to that of the original), this chromatogram shows an absence of the mutation and the presence of the 

wild-type G base. D is the chromatogram of the sequence for this region from DNA extracted from a new 

tissue section, this chromatogram also shows the wild-type base. 
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Figure 33. Chromatograms for the CtIP-1073delA mutation in patient R48, from four separate 

sequencing reactions from independent PCR products. A is the chromatogram for the base in question 

sequenced from patient blood DNA, this chromatogram shows the wild-type A9 tract. B is the 

chromatogram for the forward sequencing of this mutation, showing a mix of the mutant A8 and the wild-

type A9 tracts (reverse sequencing of this mutation shown in Figure 29). C is the chromatogram from the 

sequence of the exon, from a longer PCR product (amplified with primers external to that of the original), 

this chromatogram also shows a mixture of the wild-type A9 tract and the mutant A8 tract. D is the 

chromatogram of the sequence for this region from DNA extracted from a new section of tissue, this 

chromatogram only shows the presence of the mutant A8 tract. This indicates presence of a single base-pair 

mutation in the microsatellite that may be homozygous and/or not present in all cells in the sample. 
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The sequencing of CtIP-Poly(A)9 1 bp deletion showed a mixture of the wild-type A9 tract 

and the mutant A8 tract for the initial sequence and sequence of longer PCR product. For the 

sequence of a new section only the mutant A8 tract was found to be present (see Figure 33). 

Despite the fact that the vast majority of mutants identified in chapter 2, were not found when 

sequencing from a longer product or from the new section, 2 new mutations did arise that 

were not found in the original sequencing reaction. These mutations also appeared when 

sequencing the reverse strand. An example of one such mutation is shown in Figure 34 on the 

next page. A total of 2625 bp were resequenced in new section samples, therefore the 

observed mutation rate for the resequencing was approximately 762 mutations per Mb, much 

higher than that observed for TCGA and COSMIC (see page 147), although this was a very 

small sample size. 
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Figure 34. Example chromatograms for a new MRE11 mutation which only arose from sequencing of 

DNA from a new section of tissue, in patient R11, from four separate sequencing reactions each from 

independent PCR products. A is the chromatogram for the base in question sequenced from patient blood 

DNA, this chromatogram shows the wild-type C base (as indicated by the arrow). B is the chromatogram for 

the forward sequencing of this base from the initial sequencing of this exon, showing the wild-type C base. 

C is the chromatogram from the forward sequencing of the exon, from  DNA extracted from a fresh section 

of the tumour, this chromatogram shows the presence of a C>T mutation that was not present in the initial 

sequencing. D is the chromatogram of the reverse sequence from a fresh sample, also showing the presence 

of this mutation.  
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5.2.2 Fluorescent fragment analysis of the MRE11-poly(T)11 and CtIP-poly(A)9 tracts 

Due to the difficulty in sequencing through the mononucleotide repeat sequences of MRE11 

and CtIP, that can occur as a result of polymerase slippage in either the PCR or sequencing 

reaction, fluorescent fragment analysis was carried out to determine the size of the PCR 

product, and thus the length of the mononucleotide tract, to a single base-pair to identify any 

insertions or deletions within the tract. The FAM labelled PCR products for the MRE11 

poly(T)11 tract were determined. The electropherograms for the wild-type control and patient 

R12 are shown in Figure 35. Electropherograms for all patients are available in Apendix III 

(chapter 11). 

 

 

 

 

 

Figure 35. Example electropherograms for the fluorescence fragment analysis of the region of MRE11 

that contains the poly(T)11 tract, which is subject to mutation in MSI+ cancers. A is from normal tissue. 

This shows the presence of only a single strong peak at 119 base-pairs, showing the wild-type length of this 

region. The peaks either side of the wild-type peak are likely due to polymerase slippage, or the addition of 

A bases by the polymerase during the PCR reaction. B shows the chromatogram for the same region in 

patient R12, this shows a stronger peak at 118bp, suggesting that this patient sample may harbour a 1 bp 

deletion in the MRE11 poly(T)11 tract . 
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The sizes of the primary (WT) and secondary (mutant) peaks for all patients and the wild-

type control were measured and compared. Table 39 shows the intensities of each peak and 

the WT: mutant peak intensity ratio. 

 

 

 

  



167 

 

Table 39: Average wild-type and mutant peak intensities of the MRE11 Poly(T)11 repeat in the NWCOG-

2 patient samples 

Patient WT peak Mutant Peak WT/Mutant 

WT 2963 937 3.16 

R11 2146 787 2.73 

R12 1262 705 1.79 

R13 932 335 2.78 

R18 1180 438 2.69 

R24 1097 429 2.56 

R38 1500 547 2.74 

R48 1820 763 2.38 

R50 3550 1167 3.04 

R60 4869 1624 3.00 

R61 3534 1243 2.84 

R69 6773 2122 3.19 

R72* 7658 2637 2.90 

R74* 6028 2905 2.08 

R93 2042 682 3.00 

R103 4990 142 2.71 

R104 6501 2427 2.68 

R115 5039 1760 2.86 

R119 893 339 2.63 

R133 4963 1735 2.86 

R135* 5556 2487 2.23 

R139 2886 1056 2.73 

R145 4399 1485 2.96 

*Saturated peak in at least one repeat 

WT/Mutant Mean for all samples: 2.72  

WT/Mutant Standard Deviation for all samples: 0.34 

 

Table 39: Table showing the intensities of the wild-type and 1 bp deletion mutant peaks for the Wild-type 

control and each NWCOG-2 patient sample. The measurements are shown as averages from two repeats, which 

were both from independent PCR products taken from independent preliminary multiplex reactions. The wild-

type peaks for patient samples R72, R74 and R135 were saturated. There is little variance between the wild-

type/mutant ratios of the control and patient samples. Only one patient sample showed a wild-type/mutant ratio 

greater than 2 standard deviations above the mean, R12, which was a total of 2.76 standard deviations from the 

mean. This suggests that this patient may harbour a 1bp deletion in the poly(T)11 tract of MRE11. 
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The length of the wild-type fragment is 119 bp, all patient samples, except for patient R12, 

appeared to show one main peak, similar that which is shown in Figure 35, this indicates that 

none of these NWCOG-2 patient tumours tested harbour insertion or deletion mutations in 

the MRE11-poly(T)11 tract. No patients showed a mutant peak higher than that of the wild-

type. The wild-type/mutant peak intensity ratios of the NWCOG-2 patient samples did not 

appear to deviate greatly from that of control. It is likely that the smaller peaks either side of 

the primary peak do not represent a mutation but a variation in PCR product that occurs due 

to the random addition of 3′ A bases by the Taq polymerase used in PCR, known as stutter 

peaks [283]. Only one patient sample wild-type/mutant peak intensity ratio was greater than 2 

standard deviations away from the mean (within the 5% confidence interval), Patient R12, 

this suggests that this patient sample may harbour a 1bp deletion in the poly(T)11 tract of 

MRE11. 

The chromatogram for the poly(T)11 repeat of patient R12 is shown in Figure 36. 

 

 

 

 

 

 

MRE11 Poly(T)11 Repeat 

Patient: R12 

Figure 36. Chromatogram for the reverse MRE11-poly(T)11 repeat in patient R12. This shows a 

sequence of 11 A bases in the repeat, indicating that this patient has the wild-type poly(T)11 tract (A bases 

are shown as this is the reverse sequence). An apparent frameshift can be seen indicated by the arrow. This 

suggests that this patient sample may possess a 1 bp deletion in the poly(T)11 tract of MRE11. 
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The chromatogram of the poly(T)11 tract of patient R12 shows a frameshift in the poly(T)11 

tract. This indicates that this patient sample may harbour both the wild-type T11 allele and 

the mutant T10 allele. This therefore shows that this sample may harbour a 1 bp deletion in 

this tract heterozygously, or the sample may be a mixture of wild-type and mutant cells. 

Wild-type control and patient sample DNA FAM-labelled PCR products of the CtIP-

poly(A)9 tract were also checked by fluorescent fragment analysis. The electropherograms 

for the wild-type and patients R48 and R51 are shown in Figure 37. Electropherograms for all 

patients are available in Apendix III (chapter 11). 
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Figure 37. Example electropherograms for the fluorescence fragment analysis of the region of CtIP 

that contains the poly(A)9 tract, which is subject to mutation in MSI+ cancers. A shows the 

elctropherogram for normal tissue, this only shows a single strong peak at 164 bp, showing that it is the 

wild-type length. This is similar to how the electropherograms appeared for all patients, except R48 and 

R51, showing that none of those patients harboured a insertion or deletion in this region. B and C show the 

chromatograms for patients R48 and R51 respectively. These both show a higher signal at 163 bp in 

comparison to the WT, suggesting the presence of a single base deletion in the microsatellite, that may be 

heterozygous and/or not present in all cells in the sample. 
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The electropherograms for the CtIP-poly(A)9 tract show the wild-type fragment length at 

approximately 164 bp, the only peak present for the wild-type sample, and for most of the 

NWCOG-2 patient tumour samples. However for patient R48 a peak with a high intensity (an 

intensity of 1883, compared to the wild-type peak at 3364) was also seen at the 163 bp 

position suggesting the presence of fragments containing a 1 bp deletion in the CtIP-poly(A)9 

tract. Due to the large wild-type peak in this patient sample, this suggests that the mutation is 

present as a heterozygous mutation and/or due to a mixture of mutated and normal cells. This 

coincides with the sequencing data for this patient at this region (see page 162). For patient 

R51 a smaller, yet still prominent, 163 bp peak was seen in the fragment. This suggests that 

this patient may also harbour a single base-pair deletion in the CtIP-poly(A)9 tract, and that 

the fragments represent a smaller number of mutated cells mixed with a larger population of 

non-mutated cells. For patient R51, the single base-pair deletion in the CtIP-poly(A)9 tract 

was not as prominent in the sequencing chromatogram as it was in patient R48. This 

sequence is shown in Figure 38. 

 

 

 

 

 

The sizes of the primary (WT) and secondary (mutant) peaks for all patients and the wild-

type control were measured and compared. Table 40 shows the intensities of each peak and 

the WT: mutant peak intensity ratio.  

Figure 38. Chromatogram for the CtIP-poly(A)9 repeat in patient R51. This shows a sequence of 9 A 

bases in the repeat, indicating that this patient has the wild-type poly(A)9 tract. An apparrant frameshift 

can be seen to be present at very low levels, this is likely due to polymerase slippage during PCR or 

sequencing that can occur at mononucleotide repeat sequences. 
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Table 40: Wild-type and mutant peak intensities of the CtIP Poly(A)9 repeat in the NWCOG-2 patient 

samples 

Patient WT peak Mutant Peak WT/Mutant 

WT 2911 432 6.74 

R7 843 211 4.00 

R11 2394 296 8.09 

R12 3413 689 4.95 

R13 8649 2076 4.17 

R18 2200 325 6.77 

R24 2436 331 7.36 

R38 4715 690 6.83 

R48 3364 1883 1.79 

R50 3496 506 6.91 

R51 1539 554 2.78 

R60 7606 950 8.01 

R61 3419 487 7.02 

R69 8814 2326 3.79 

R72 443 58 7.64 

R74 586 173 3.39 

R84 1161 297 3.91 

R93 2746 327 8.40 

R103 905 123 7.36 

R104 2519 332 7.59 

R115 1670 220 7.59 

R119 979 284 3.45 

R133 1928 456 4.23 

R135 1089 149 7.31 

R139 985 143 6.89 

R145 3512 402 8.74 

R48b 169 84 2.01 

R48c 596 322 1.85 

R48d 1167 582 2.01 

R48e 590 305 1.93 

R51b 2977 1013 2.94 

WT/Mutant Mean: 5.95 (does not include additional repeats for R48 and R51) 

WT/Mutant Standard Deviation: 2.05 (does not include additional repeats for R48 and R51) 

 

Table 40: Table showing the intensities of the wild-type and mutant peaks for the Wild-type control and each 

NWCOG-2 patient sample. Repeats for patient R48 are shown as R48b-e and the repeat of R51 is shown as 

R51b. Samples for patients R48 and R51 are highlighted in bold as they have strong mutant peaks. 
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The data shown in Table 40 was used to plot a graph of the mutant peak intensity against the 

wild-type peak intensity. This is shown below in Figure 39. 

 

 

 

 

 

 

 

Table 40 shows that patient samples R48 and R51 both have relatively low WT/Mutant peak 

ratios compared to that of the other patient samples and the wild-type control. The average 

WT/mutant ratio for R48 is 1.92, which is approximately 2 standard deviations away from the 

mean (5.95), and thus puts this patient sample within the 5% confidence interval, suggesting 

that the height of the secondary peak is due to the presence of a mutant fragment. The 

WT/mutant ratio for patient sample R51 is 2.86, which is 1.5 standard deviations below the 

mean. The graph (Figure 39) shows that the points representing R48 samples lie above the 

trend line. The points for R51 also lie above the trend line albeit to a lesser extent. 
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Intensity of WT and mutant peaks for fluorescent fragment analysis of CtIP 

All Patients
R51 repeats
R48 repeats

Figure 39. Intensity of WT and mutant peaks for the fluorescent fragment analysis of CtIP. Plot of the 

intensity (height of peak) of the mutant (1 bp deletion) peak against the intensity of the wild-type peak of the 

region of CtIP containing the poly(A)9 region for all patients. A linear trend line has been drawn for all 

patients. This graph shows that the two data points  for patient R51 lie above the trend line showing a greater 

mutant to wild-type peak intensity ratio compared to all patients. The four plots for R48 lie further from the 

trend line showing a greater mutant to wild-type peak intensity for this patient in comparison to all patients. 

This indicates the possible presence of a single base deletion in the microsatellite that may be heterozygous 

and/or not present in all cells in the sample. 
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5.3 Discussion 

5.3.1 Loss of NWCOG-2 mutations 

Out of all the somatic mutations identified in the NWCOG-2 patients, only the CtIP-poly(A)9 

1 bp deletion was found present in both rounds of resequencing. Also, two new mutations 

were found in the resequencing that were not found in the initial sequencing. There are a few 

possible reasons as to why this apparent loss of mutations may have occurred.   

One potential explanation for this lack of reproducibility is these mutations may have been 

artefacts caused by FFPE processing of tissue. This process is known to cause the 

deamination of cytosine residues which leads to a high number of apparent C:G>T:A 

mutations, accounting for 70-96% of FFPE related sequencing artefacts  [276] [279] [280]. 

However in the NWCOG-2 patient mutations, only 46.4% of mutations were of this type, 

much lower than what is commonly reported. This suggests that cytosine deamination is not 

the sole cause of apparent NWCOG-2 mutations. 

Another possible explanation is that the observed mutations were actually errors incorporated 

into the DNA by the polymerase. However, many of the observed mutations showed a clear 

mutant trace with no wild-type trace. This would require the error to be incorporated during 

the first PCR cycle without subsequent amplification of the original wild-type strand. This is 

also unlikely as each initial reaction contained 10 ng of DNA, which contains around 2786 

copies of the human genome (using 3.59 pg as the mass of the human genome, based on a 

genome length of 3,300 Mb [284]) and thus around 2786 copies of each gene per sample. 

This would require the PCR to only amplify erroneous copies without the amplification of the 

wild-type. Also, 2 mutations were confirmed in the initial section with new PCR products 

amplified directly from the patient DNA, which also showed the mutations, it is unlikely that 

the same polymerase error would appear in two separate samples. There is also a possibility 

that in those samples only 1 of the 2786 copies of each gene was amplifiable. This 

amplification may have been facilitated by the long elongation time of the multiplex PCR. 

This copy harbouring this mutation may have then provided the template for all subsequent 

PCR reactions, and thus the PCR products would incorporate this mutation. 

Another potential explanation is that the DNA samples became contaminated with wild-type 

DNA following the confirmatory reverse sequencing. This contaminant DNA then may have 

been preferentially amplified over the patient DNA thus showing wild-type traces, especially 

if the contaminant DNA is of a higher quality than that of the FFPE extracted patient DNA. 
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Tumour heterogeneity may have also contributed to this. The PCR amplified from the new 

sections may have had a greater percentage of non-cancerous cells than the original sections 

or may have had a smaller population of cancerous cells that do not harbour the original 

mutations, which may harbour mutations not found in the original section, such as the two 

new mutations that were found. Also, this may account for change in zygosity observed with 

the CtIP-poly(A)9 mutation of patient R48, as the second sections may have contained a high 

population of homozygous/hemizygous cells as oppose to the population of heterozygous 

cells or mutant/wild-type mixture of the original sections. This could be due to a loss of 

heterozygosity, as loss of heterozygosity at loci 5q and 18q have been reported as frequent 

intratumoural heterogeneous events in colorectal cancer [285], the CtIP gene is located at 

18q11.2 [286]. The heterozygosity of RAD50 may also subject to such heterogeneity in 

tumours as it is located at 5q31 [287]. 

If the CtIP-poly(A)9 mutation produces a null phenotype as it does in S. pombe (see page 

100), then it would not be able to be present homozygously as total depletion of CtIP is lethal 

in mammalian cells [243]. Although, two C-terminal truncation mutants are known to occur 

homozygously in patients with Seckel syndrome or Jawad syndrome, showing that C-

terminal truncation of CtIP does not necessarily lead to a null phenotype [162]. 

 

5.3.2 Mutations in mononucleotide repeat sequences 

Fluorescent fragment analysis of the region of MRE11 containing the poly(T)11 repeat for the 

NWCOG-2 patients showed little differences in the wild-type/mutant peak intensity ratios of 

the wild-type control compared to the NWCOG-2 patient samples. Only one patient, patient 

R12, showed a wild-type/mutant peak intensity ratio that was more than 2 standard deviations 

lower the mean, which would indicate that this lies within the 5% confidence interval of 

being a genuine mutation. This would suggest that a single base-pair deletion mutation may 

be present in the MRE11 poly(T)11 tract for this patient. 

For CtIP however, two patients, R48 and R51, showed secondary peaks of relatively high 

intensity at the 1 bp deletion position, suggesting that a single base-pair deletion mutation 

may be present at the CtIP poly(A)9 region for these patients.  
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All fluorescent fragment analyses performed on the poly(A)9 region of CtIP in patient R48 

indicate the presence of a single base-pair deletion (See Figure 37. This further supports that 

this mutation is present in this patient sample and is not artefactual. In the resequencing of 

DNA from a new section of R48 patient tumour material, this mutation appeared as 

hemizygous/homozygous, whereas it had appeared as a mixture of wild-type and mutation in 

prior sequencing reactions. This may have occurred as a result of the PCR initially only 

amplifying a single strand, although this is unlikely. This could have also occurred due to 

tumour heterogeneity, and the initial section may have contained a mixture of mutant and 

wild-type or heterozygous cells, whereas the new section may have consisted mostly of 

homozygous/hemizygous mutant cells. For patient R51, the mutation was not as prominent in 

sequencing reactions.  

This mutant has been described in the literature [167] [173] [174], in which it was only found 

in MSI patients. The patient R48 tumour is microsatellite stable (See Table 32, page 145). 

The MSI status was determined by immunohistochemistry of MMR proteins, which is 

considered a simple method for the diagnosis of MSI in colorectal cancer patients [288], 

however one study showed that only as little as 23% of MSI-H colorectal cancers show 

immunohistochemical evidence for a loss of an MMR protein [289]. If patient R48 genuinely 

is microsatellite stable, then this would be the first time in which this mutation has been 

identified in a microsatellite stable tumour. This shows that this mutation can occur 

independently of MSI, but less frequently. 

 

5.3.3 MRE11-Poly(T)11 mutant 

A single base pair deletion within the MRE11-poly(T)11 tract is known to give rise to two 

mutant transcripts. One of which is the Δ5-7MRE11 mutation, caused by a splicing defect that 

removes exons 5-7, resulting in a loss of the third and fourth highly conserved 

phosphodiesterase motifs of the nuclease domain [107], and part of the Nbs1 binding domain 

(see Figure 16). The other mutant transcript is the MRE11-484del88 mutation which results in 

the loss of the 5
th

 exon from the mRNA due to a splicing defect, resulting in a frameshift and 

truncation, resulting in a protein 105 amino acids (out of 708) in length [163]. The MRE11-

484del88 mutation is known to be associated with a reduction in the expression of RAD50 

and NBS1 [165]. A 1 or 2 bp deletion in this tract has been found to occur in up to 100% of 
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all lower-grade MMR deficient tumours, and 68.8% of higher grade MMR deficient tumours 

[165]. 

The Δ5-7MRE11 mutation was studied in the third chapter (see section 3.1.4.2). In humans, 

this mutant results in a protein which lacks the 3
rd

 and 4
th

 phosphodiesterase domains of the 

nuclease domain, which are required for 3′-5′ exonuclease activity [107]. This mutation is 

known to act in a dominant negative manner [107]. This could lead to an increase in 

sensitivity to topoisomerase inhibitors, as Mre11 nuclease activity is thought to be required 

for topoisomerase removal, also in S. pombe. [94]. A previous study has shown that this 

mutant transcript sensitises cells to camptothecin when transfected into a camptothecin 

resistant cell line [107]. The results in chapter 3 show that when this mutant is recreated into 

S. pombe, it results in an apparent null phenotype, severely sensitive to camptothecin and 

MMS, showing that this mutant is defective in topoisomerase removal and/or downstream 

DNA repair functions (See page 95). Studies have also shown that in human cell lines, this 

mutant transcript also sensitises cells to thymidine [107] and PARP-1 inhibitors [166] [167]. 

The Δ5-7Mre11 mutant protein is known to have a decreased infinity for Rad50, and very little 

binding affinity for Nbs1 [107], which may be due to a lack of part of the Nbs1 binding 

domain (see Figure 16, page 87). This could therefore severely affect the ability of this 

mutant to activate ATM, and result in a failure to activate the downstream repair pathways 

required to repair DNA DSBs. 

The positive response to treatment using concurrent irinotecan observed in this patient (R12) 

may be due to the presence of this mutation as this mutation may sensitise cells to 

topoisomerase inhibitors. Table 37 in section 4.3.7 (page 152) showed that this patient did 

respond well to treatment of radiotherapy, irinotecan and capecitabine, with no recurrence or 

metastasis and only microfoci present in the resection sample. 

 

5.3.4 CtIP-Poly(A)9 mutant 

 If this mutant is present heterozygously, it is known to lead to a two-fold decrease in the 

expression of functional CtIP and a defective HR response [167]. This mutant was found to 

occur in 22.9% [173] to 36% [167] of MSI tumours. In one study, this mutation was found to 

sensitise cells to PARP inhibition [167]. 
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This mutation was one of the mutations studied in the third chapter, Figure 19 (page 93) 

shows that this mutant CtIP protein lacks the CtBp binding site, the DNA binding domain, 

the PCNA binding site, the second MRN binding domain, the CxxC motif, the two ATM 

binding phosphoserine residues and the CDK binding phosphothreonine residue. The deletion 

of the second MRN binding domain could prevent this protein from binding to MRN and 

being recruited to the sites of DSBs, where it is required for DSB resection [35]. Binding of 

CtIP to MRN is required for efficient HR, a lack of an MRN binding domain may be a 

possible explanation for the HR defects [35]. This could also hinder topoisomerase removal, 

as CtIP is required for topoisomerase removal along with the MRN complex, therefore if this 

mutant is unable to bind the MRN complex then it may not lead to defective topoisomerase 

removal. The lack of the DNA binding domain could also contribute to the defective HR as 

this domain functions to promote DNA resection at sites of DSBs, which leads to checkpoint 

activation and HR [290]. As this mutation is heterozygous, a wild-type copy is still present. 

This may be insufficient as studies have shown that CtIP is haploinsufficient in mice 

resulting in tumourigenesis [291].  

The lack of the C-terminal CDK binding phosphothreonine residue could also lead to defects 

in HR, as the activation of CtIP in HR requires phosphorylation of this residue [196]. This 

residue is also required for the activation, via phosphorylation by Plk3, in G1 phase to 

function in the NHEJ pathway [292]. The activation of CtIP in HR also requires the 

phosphorylation of the phosphoserine residues S664 and S745, by ATM [193]. Mutations in 

these residues have shown to result in HR defects [193], and therefore, a lack of these 

residues would also confer HR defects. 

In chapter 3, it was shown that this mutation, when created into S. pombe ctp1, leads to an 

increase in sensitivity to camptothecin and MMS (see page 100). If this mutation has a 

similar effect in humans then it would lead to a greater sensitivity to camptothecin, and 

possibly a better response to treatment with irinotecan. In the NWCOG-2 trial this patient 

responded positively with near pCR (only microfoci present post-resection) and no 

recurrence or distant metastases. This mutation may have contributed to this positive 

response through its sensitising effect to topoisomerase inhibitors. 

Further work should be conducted to analyse the effects of this mutation on sensitivity to 

topoisomerase inhibitors. This mutation should be created in human cell line and then tested 

for sensitivity to camptothecin in comparison to the wild-type. 
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5.3.5 Conclusion 

Despite the number of mutations identified in the previous chapter, all but one could not be 

reproduced in subsequent PCR using different primers and new sections of patient tumour 

material. One mutation however, the CtIP-poly(A)9 1 bp deletion mutation of patient R48 

was confirmed in all subsequent sequencing reactions, albeit with altered zygosity in the new 

section. This mutation was also confirmed by fluorescent fragment analysis, also showing 

that this mutation may be present in patient R51 also. This mutant has only before been 

described in MSI tumours, were here was found in an apparent microsatellite stable tumour. 

If this tumour is genuinely microsatellite stable, then this marks the first time in which this 

mutation has been found in a non-MSI tumour, showing that this mutation is not purely 

specific to MSI cancers. Further work is required to confirm that this tumour is microsatellite 

stable, for example sequencing of the MMR gene MSH2 [289]. 

Patient R48 showed a positive response with a near pCR and no recurrent disease, however it 

cannot be confirmed that this positive response was due to the mutation. Further study of this 

mutation is required to assess its role in sensitising cells to topoisomerase inhibitors. This 

mutation should be created into a human cell line and then tested for sensitivity to 

camptothecin.  

A 1 bp deletion mutation was also identified in the MRE11-poly(T)11 tract of patient R12, 

which was not identified initially by sequencing due to difficulties in sequencing through this 

tract (as described on page 158). This patient also showed a near pCR and no recurrent 

disease or distant metastasis. It also could not be confirmed that this response was due to this 

mutation. This mutation has also only been previously identified in MSI tumours [163], 

whereas the tumour for patient R12 was MSS. Further work is required to asses that this 

tumour is MSS. If this tumour is confirmed to be MSS, this would mark the first time in 

which this mutation has been identified in a MSS tumour, showing that this mutation is not 

specific to MSI cancers. 
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6 Identification of S. pombe Mutants That Confer Hypersensitivity to 5-

FU 

6.1 Introduction 

6.1.1 Use of 5-FU in cancer treatment 

The NWCOG-2 trial, as described in section 4.1.1, utilises the drug Capecitabine 

concurrently with Irinotecan. This trial showed a pathologic complete response in 22% of all 

patients. It is currently unknown what genetic factors influence response to this treatment 

regimen. 

Capecitabine is a prodrug for 5-FU, that is administered orally. Capecitabine is first 

metabolised by carboxylesterase (CES) to 5′-deoxy-5-fluorocytidine (5′-DFCR). 5′-DFCR is 

then metabolised to 5′-deoxy-5-fluorouridine (5′-DFUR) by cytidine deaminase. Thymidine 

phosphorylase then converts 5′-DFUR to 5-FU [111]. The administration of capecitabine is 

advantageous over 5-FU administration, as capecitabine can be administered orally, whereas 

5-FU can only be administered intravenously, offering greater convenience [293]. A previous 

clinical trial also showed that oral capecitabine administration has a greater relapse free 

survival rate and a lower rate of adverse side-effects than intravenous 5-FU [294]. 

 

6.1.2 5-FU mechanism of action 

Once inside the body, 80% of 5-FU is degraded by dihydropyrimidine dehydrogenase (DPD) 

[295] into dihydrofluorouracil (DHFU) [296]. The remaining 5-FU can then be converted 

through a series of reactions into the three different main active metabolites, 

fluorodeoxyuridine monophosphate (FdUMP), fluorodeoxyuridine triphosphate (FdUTP) and 

Fluorouridine triphosphate (FUTP) [297] (See Figure 40). 

5-FU is known to cause cytotoxicity in three different ways. One such way is through the 

inhibition of thymidylate synthase (TS) [298]. Thymidylate synthase is an enzyme essential 

for the de novo synthesis of 2′deoxythymidine-5′monophosphate (dTMP). For this reaction 

the substrate, 2′deoxyuridine-5′monophosphate (dUMP) is methylated by TS using 5, 10-

methylene-tetrahydrofolate as the methyl donor [299]. The 5-FU active metabolite FdUMP 

inhibits TS [299]. Inhibition of TS prevents the synthesis of dTMP, and thus the synthesis of 

deoxythymdine triphosphate (dTTP) leading to depletion of cellular thymidine pools and 
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thymidineless death. TS inhibition has also been found to increase the cellular concentration 

of deoxyuridine triphosphate (dUTP). In the absence of thymidine, dUTP is misincorporated 

into DNA and subsequently excised, leading to DNA strand breakage [133].  

The other ways in which 5-FU can cause cytotoxicity is by incorporation of the active 

metabolites FdUTP and FUTP into DNA [300] and RNA [301] respectively. A study in 2004 

showed that there was no correlation between the efficacy of 5-FU and the incorporation of 

5-FU metabolites into DNA and RNA [302]. However later studies then found that DNA and, 

to a greater extent, RNA incorporation are important contributing factors to 5-FU cytotoxicity 

[303] [304]. Excision of FdUTP from DNA can reduce cytotoxicity from FdUTP DNA 

incorporation. Two previous studies showed that Smug1, and not uracil-DNA glycosylase 

(UNG) excised incorporated FdUTP [303] [305]; however another study showed UNG to be 

more important in FdUTP excision [304].  

DNA and RNA incorporation can lead to apoptosis through a number of mechanisms [125]. 

Incorporation into DNA can lead to cytotoxicity by causing mutations and miscoding during 

transcription, leading to aberrant protein synthesis [126] [125]. Incorporation of FUTP into 

RNA causes cytotoxicity in a number of ways. mRNA can be affected by polyadenylation, 

splicing defects and miscoding [125] [127]. tRNA post-transcriptional modification can be 

inhibited [125] [128]. rRNA can be affected through the inhibition of pre-rRNA processing 

[125] [129].  
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(Longley, Harkin & Johnston 2003) [297] 

 

  

Figure 40. The pathways of 5-FU metabolism. This figure shows pathways, enzymes and intermediates 

involved in the metabolism of 5-FU into the three active metabolites, fluorodeoxyuridine monophosphate 

(FdUMP), fluorodeoxyuridine triphosphate (FdUTP) and fluorouridine triphosphate (FUTP), which cause 

cytotoxicity by TS inhibition, DNA incorporation and RNA incorporation respectively. This also shows the 

pathways which cause 5-FU to be metabolised into the inert product dihydrofluorouracil DHFU. The 

skeletal formula of 5-FU is shown in the bottom left corner. 
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6.1.3 Known genes, proteins and pathways involved in 5-FU resistance and sensitivity 

in human cancers 

6.1.3.1 Thymidylate synthase (TS) 

As described in section 6.1.2, thymidylate synthase is an important enzyme required for the 

synthesis of dTMP, which is required for DNA synthesis. TS is inhibited by the 5-FU 

metabolite FdUMP leading to dTMP depletion, dUTP accumulation, DNA damage and 

thymidineless death.  

It was found that a reduced protein and gene expression of TS correlate to an improved 

response to treatment with 5-FU in gastric and colorectal tumours [306]. Another study 

showed that in colorectal cancer cell lines, amplification of the TS gene can increase 

resistance to 5-FU, and that a constant exposure to 5-FU can result in TS amplification and 

overexpression leading to 5-FU resistance [307]. Multiple studies have shown that TS 

polymorphisms confer hypersensitivity to 5-FU [298] [308] [309].  

The S. pombe TS homologue is hal3 (SPAC15E1.04) [310]. A genome-wide screen by 

Mojardín et al found that deletion of hal3 in S. pombe is known to sensitise to 5-FU [311]. 

 

6.1.3.2 Dihydropyrimidine Dehydrogenase (DPD) 

As discussed in section 6.1.1, the DPD enzyme degrades approximately 80% of 5-FU into a 

DHFU, which is then expelled from the body. A previous study has shown that elevated 

levels of DPD correlated directly to decreased 5-FU sensitivity [312]. An increase in the 

levels of DPD would cause an increase in the portion of 5-FU that is metabolised into the 

non-cytotoxic DHFU, and thus a decrease in the percentage of 5-FU that is ultimately 

converted into the three cytotoxic metabolites. It is unknown if there is a DPD homologue in 

S. pombe. 

 

  



184 

 

6.1.3.3 Orotate Phosphoribosyltransferase (OPRT) 

Orotate phosphoribosyltransferase (OPRT) is the enzyme which catalyses the conversion of 

5-FU into Fluorouridine monophosphate (FUMP), a precursor of FUTP, which causes 

cytotoxicity via RNA incorporation. Subsequent reactions can also lead to the conversion of 

FUMP to FdUTP and FdUMP, which cause cytotoxicity by DNA incorporation and TS 

inhibition [297]. Studies have shown that an increase in OPRT activity leads to heightened 

sensitivity to 5-FU [313] [314]. This may be due to an increase in the percentage of 5-FU that 

is ultimately converted into the cytotoxic active metabolites as opposed to DHFU. The S. 

pombe OPRT enzyme is encoded by the ura5 gene [315]. 

 

6.1.3.4 MMR 

As discussed in sections 1.2.1 and 1.4.2.1, the MMR pathway functions in the removal of 

misincorporated DNA bases, lesions which can be caused by the misincorporation of FdUTP 

or dUTP into DNA. The fluouracil and uracil bases are known to form mismatches with 

guanine [316]. A proficient MMR pathway is required for cytotoxicity [317] as the repair of 

these mismatches by MMR creates a nick in the DNA 250-1000 bp from the mismatch, the 

DNA from these points is degraded. The synthesis of DNA to repair this gap then increases 

the chances of further incorporation of FdUTP or dUTP into DNA [120]. Defects in the 

MMR pathway result in increased resistance to 5-FU due to a decrease in the 

misincorporation of 5-FU metabolites into DNA during the MMR process [318]. A clinical 

trial has showed that for the treatment of colon cancer MMR deficiency provides a predictive 

marker for a lack of benefit when treated with 5-FU based therapies [319]. A direct 

correlation exists between 5-FU cytotoxicity and the binding activity of hMutSα and hMutSβ 

[320].  

 

6.1.3.5 ATM, CHK1, CHK2 & H2AX 

The ATM, CHK1, CHK2 proteins and H2AX levels are elevated following induction of 

DNA damage by 5-FU,suggesting that these proteins function in the repair of 5-FU induced 

damage and 5-FU resistance, therefore defects in functions of these proteins may sensitise 

cells to 5-FU [321]. As these proteins are involved in the signalling and repair of DNA DSBs, 

it suggests that other DSB signalling and repair proteins, such as the MRN complex and CtIP, 
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may also function in the repair of 5-FU induced DNA damage, and 5-FU resistance. The S. 

pombe homologues of ATM, CHK1, CHK2 are Tel1, Chk1, Cds1 [322] respectively. 

6.1.3.6 p53 & p53R2 

Defective p53 is known to increase sensitivity of cancer cells to 5-FU [323], and is thought to 

be a major determinant of 5-FU sensitivity [324]. The p53R2 gene, which encodes for subunit 

2 of the ribonucleotide reductase (RNR) homolog, is induced by DNA damage. Increased 

expression of p53R2 increases resistance to 5-FU, and silencing of this gene was found to 

sensitise cancer cells to 5-FU [325]. 

 

6.1.3.7 Bcl2 & Bax 

Bcl-2 represses apoptosis by binding to proapoptoic proteins [326]. Apoptosis is promoted by 

heterodimerisation of Bcl2 with Bax, binding with Bax prevents Bcl2 from binding to 

proapoptotic proteins, therefore allowing for the progression of apoptosis. The ratio of Bcl2 

to Bax determines whether apoptosis is repressed or promoted [327]. The induction of Bax 

and the Bcl2 to Bax protein ratio was found to correlate with 5-FU sensitivity in cancer cells 

[328]. Low levels of Bax have been found to correlate with a greater resistance to 5-FU 

whereas high levels of Bax, coupled with low Bcl levels, have been found to correlate with an 

increase in sensitivity to 5-FU [329]. 

 

6.1.3.8 Methylenetetrahydrofolate reductase (MTHFR) 

The methylenetetrahydrofolate reductase (MTHFR) protein functions in the conversion of 5, 

10-methylenetetrahydrofolate into 5-methylenetetrahydrofolate, a step required for the 

conversion of homocysteine to methionine. 5, 10-methylenetetrahydrofolate is required for 

the inhibition of TS, as 5,10-methylenetetrahydrofolate forms a ternary complex with 

FdUMP and TS, preventing the methylation of dUMP to dTMP, leading to thymidineless 

death [330] [331]. Defective MTHFR would cause an accumulation of 5, 10-

methylenetetrahydrofolate, and thus an increase in TS inhibition. Polymorphisms in the 

MTHFR gene have been found to increase sensitivity of cancer cells to 5-FU [309] [331] 

[332]. The S. pombe orthologues of MTHFR are met9 and met11 [333]. 
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6.1.3.9 c-Myc 

The c-Myc transcription factor, which functions in the expression of a wide range of genes 

involved in a variety of cellular processes including cellular proliferation, cell growth and 

apoptosis; has been found to be involved in 5-FU sensitivity. A previous study has shown that 

elevated levels of the c-Myc protein increase 5-FU sensitivity in human colorectal cancers 

[334]. 

 

6.1.3.10 Base Excision Repair 

The base excision repair (BER) system functions in the removal of damaged DNA bases, and 

also in the removal of misincorporated uracil [335]. As 5-FU can cause cytotoxicity through 

DNA incorporation, the BER pathway may be an important mechanism functioning in the 

resistance of 5-FU. In S. cerevisiae the mutations of the BER genes ntg1, ntg2, apn1 and 

apn2 have been found to confer hypersensitivity to 5-FU [125]. A study of 5-FU sensitivity in 

an ung1Δ S. cerevisiae strain showed an increased resistance to 5-FU and a vast increase in 

the amounts of incorporated uracil bases in the genome [336]. 
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6.1.4 Possible implications of the MRN complex and CtIP in 5-FU resistance 

Mre11, Rad50 and ATM, which is activated by Nbs1, have been found to have involvement 

in the resistance to nucleoside analogues. These proteins have been found to respond to the 

stalled replication forks that are caused by incorporation of nucleoside analogues such as 

gemcitabine, troxacitabine and cytarabine into DNA, and are required for the survival of such 

damage. Nbs1 and H2AX, however were found to not greatly affect response to such stalled 

replication forks [134]. 

As previously discussed (see section 6.1.3.5, page 184), levels of the ATM protein, which 

functions in the DSB repair pathway along with the MRN complex, have been found to be 

elevated following exposure to 5-FU suggesting a possible role of ATM in the response to 5-

FU [321]. As ATM may function in 5-FU response, the associated MRN and CtIP proteins 

may therefore also be involved in 5-FU response. 

Also as discussed (section 6.1.2) 5-FU can cause DNA damage through strand breakage as a 

result of TS inhibition and subsequent incorporation and excision of dUTP in DNA [133]. 

The MRN complex and CtIP proteins function in the repair of DNA DSBs (see section 1.1.1), 

therefore MRN and CtIP may provide resistance to 5-FU through the repair of DSBs. 

These observations suggest that the MRN complex, and the associated CtIP protein may be 

involved in resistance to 5-FU through responding to the stalled replication forks that occur 

as a result of the incorporation of the 5-FU metabolite FdUTP or by the repair of DSBs that 

occur as a result of SSBs following the incorporation and excision of dUTP. 
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6.1.5 Aims and hypotheses 

This investigation aims to identify if the S. pombe MRN and Ctp1 function in the resistance 

to 5-FU, this was studied by testing the sensitivity of mre11Δ, rad50Δ, nbs1Δ and ctp1Δ cells 

to 5-FU. This investigation also aims to identify a number of genes in S. pombe that function 

in the resistance to 5-FU, by screening of the Bioneer genome-wide deletion library to 5-FU. 

The roles of any specific pathways will then be assessed through the ontological analyses of 

the genes identified to function in 5-FU resistance. 

The hypothesis of this investigation is that the mre11Δ, rad50Δ, nbs1Δ and ctp1Δ strains will 

be hypersensitive to 5-FU due to defects in the repair of stalled replication forks and defects 

in DSB repair. It is also hypothesised that strains lacking the genes involved in the base 

excision repair pathway will also sensitise to 5-FU as this pathway is required for 5-FU 

resistance in S. cerevisiae.  

 

6.1.6 Screening and analysis of the Bioneer deletion mutant library  

It is estimated that the S. pombe genome contains around 4941 protein coding genes [337], of 

which 17.5% are thought to be essential [338]. The Bioneer deletion mutant library consists 

of 3345 different mutant strains, each one lacking a different gene. The deletion mutants in 

this library represent approximately 68% of all non-essential S. pombe genes. This library 

was screened against 5-FU, at concentrations of 200 µM and 400 µM, in order to identify 

mutants that confer increased sensitivity, or resistance, to 5-FU. This procedure was carried 

out as described in the Materials and Methods section (section 2.6.5) for 8 repeats for each 

different 5-FU concentration. 

The growths of the strains were quantified using Colonyzer, which assesses the growth of 

colonies based on their size and optical intensity. Colonyzer provides an accurate and reliable 

method of detecting even small differences in the densities of microbial colonies [339].  

QFA (Quantitative fitness analysis) software is used to estimate the effects of drugs and 

genetic mutations on the growth of microbes and can be used in experiments using thousands 

of colonies in parallel [340]. Colonyzer data are fitted to a generalised logistic population 

growth model [341]. The software offers a choice of fitness parameters, some of which are 

making use of the fitted model, some using the curve passing through the experimental points 

(experimental curve). For this analysis, we used the maximum slope of the experimental 
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curve (“maxslp” parameter, C. Lawless, personal communication), as this parameter was 

shown to discriminate well between reference genotypes (data not shown). The biological 

interpretation of this parameter is not trivial. However, it was decided not to make use of 

maximum growth rate estimators, as these rely heavily on early data points, for which the 

signal/noise ratio can lead to significant error. The QFA analyses identifies colonies which 

show an increase in sensitivity or resistance to 5-FU by calculating the genetic interaction 

score (GIS), which calculates the deviation of the fitness for each point against the regression 

line (as shown in Figure 44 and Figure 45). The expected fitness of the strain is subtracted 

from the observed fitness of the strain. A negative GIS indicates a strain with an increased 

sensitivity to 5-FU, a positive GIS indicates a strain with an increased resistance to 5-FU. A 

Wilcoxon test is then carried out to calculate the statistical significance of the sensitivity or 

resistance of the deletion mutants to 5-FU.
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6.2 Results 

6.2.1 Testing of mre11, rad50, nbs1 and ctp1 mutants for sensitivity to 5-FU 

The mre11Δ, rad50Δ, nbs1Δ and ctp1Δ strains, along with wild-type S. pombe were tested for 

their sensitivity to 5-FU at concentrations varying from 0 to 400 µM. This is shown below in 

Figure 41. 

 

 

 

 

The mre11Δ, rad50Δ, nbs1Δ and ctp1Δ S. pombe strains appeared to show sensitivity to 5-FU 

similar to that of the wild-type. This suggests that the Mre11, Rad50, Nbs1 and Ctp1 do not 

function in 5-FU resistance and mutations within these genes do not confer sensitivity to 5-

FU. Due to this other mutants of these genes, like those tested in chapter 3 (see sections 3.2.2 

- 3.2.5), were not tested for their sensitivity to 5-FU. A slight hyper-resistance of the mre11Δ 

and rad50Δ strains can be seen in Figure 41; however this was not apparent in repeats. 

Figure 41. Sensitivity of the WT, mre11Δ, rad50Δ, ctp1Δ and nbs1Δ strains to 5-FU. This figure shows 

that the mre11Δ and rad50Δ strains show no increase in sensitivity to 5-FU in comparison to the wild-type. 

This suggests that mutations in these genes will not confer an increase in sensitivity to 5-FU. A slight hyper-

resistance of the mre11Δ and rad50Δ strains can be seen, however this was not apparent in repeats. This spot 

test is indicative of 3 repeats. 
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6.2.2 Optimisation of screen 

The pre-screen was carried out, as described in the Materials and Methods section (see page 

77) in order to determine the concentration of 5-FU for which the library screen should be 

carried out at. The colony density for each time point and each 5-FU concentration were 

measured using ImageJ software and were plotted onto a graph. This graph is shown below in 

Figure 42.  

 

 

 

 

 

The graph in Figure 42 shows that the growth of the wild-type S. pombe decreases at around 

200 µM and then another marked decrease in growth at around 400 µM. From this it was 

decided that the screen should be carried out at both 200 µM and 400 µM. 
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Figure 42. Growth curves for wild-type S. pombe grown on media with varying concentrations of 5-FU 

varying from 0 µM to 800 µM, with samples taken every 12 hours for 120 hours. This shows that the growth 

of the wild-type S. pombe decreases at around 200 µM, with another large decrease in growth at 400 µM. 

Therefore it was decided that the screen of the Bioneer library to 5-FU would be carried out at 200 µM and 

400 µM. 
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6.2.3 Deletion mutants identified to have an increased sensitivity or an increased 

resistance to 5-FU 

The analyses for the growth of the deletion mutants of the Bioneer library screen were carried 

out as described (page 79). The QFA analyses generated growth curves for each strain at each 

concentration of 5-FU. An example of such growth curves is shown in Figure 43. 

Figure 43 shows the growth curves for the wild-type (Positive Strain), the dus3 mutant and 

the pub1 mutant. The dus3 mutant is shown as it was found to be significantly hypersensitive 

to 5-FU. The pub1 mutant is shown as this strain was found to be significantly resistant to 5-

FU. The growth curve of the wild-type (WT) shows slight decreases in growth from the no 

drug control to the 200 µM plate and again to the 400 µM plate. The growth curves for the 

dus3 mutant show that this strain is greatly hindered by that of the 5-FU exposure, whereas 

the growth of the pub1 mutant is unaffected by the presence of 5-FU at 200 µM and 400 µM 

respectively. The genotype of the wild-type strain is h
+
 ade6-M210, leu1-32, ura4-D18. 
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Figure 43. Example growth curves for mutant strains in the Bioneer library screen. The dus3 deletion 

mutant was found to be significantly sensitive to 5-FU at 200 µM and 400 µM, as seen by the sharp decrease 

in growth between the control and 5-FU growth curves in comparison to the WT. dus3 is predicted to 

encode for the tRNA diuridine synthase Dus3. Pub1 (encodes an ubiquitin protein ligase) deletion mutant 

was found to be resistant to 5-FU and maintains a high level of growth at 200 µM and 400 µM 5-FU in 

comparison to the WT. This is indicative of 8 repeats. 
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The screen of the library was carried out as described in the Materials and Methods section 

(page 78). 8 repeats of the screen for the control, 200 µM 5-FU and 400 µM 5-FU were 

carried out. Images for each plate were acquired every 2 hours for a total of 72 hours. 

Colonyzer software measured the growth of each strain. The fitness, GIS and significance 

was calculated using QFA (as described in section 6.1.6). A negative GIS indicates sensitivity 

to 5-FU and a positive GIS indicates resistance to 5-FU.  

The QFA analysis generated fitness plots of the deletion library strains. The fitness plots for 

the screens at 200 µM and 400 µM generated by the QFA analyses are shown in Figure 44 

and Figure 45. Resistant strains are plotted above the trend line and have positive GIS value. 

Sensitive strains have a negative GIS value and are plotted below the trend line. 
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Figure 44. Fitness plot for the screen of the Bioneer genome wide deletion library screen at a 5-FU 

concentration of 200 µM. This graph shows a distinct cloud of strains (highlighted by black text and green 

markers) which have been found to be significantly sensitive to 5-FU at a concentration of 200 µM. This also 

shows a distinct cloud of mutants that have been found to be significantly resistant to 5-FU (highlighted by 

red markers and black text) at a concentration of 400 µM. 
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For both screens, distinct clouds of strains that are sensitive to 5-FU (highlighted by green 

markers) can be seen. Also, distinct clouds of strains for which 5-FU resistance was enhanced 

can be seen (as indicated by red markers). The lists of strains sensitive and resistant to 5-FU 

at 200µM and 400µM are similar, but with more strains identified at 400 µM. Due to this the 

results for the screen at 400 µM 5-FU were used for analysis. Full lists of strains identified as 

significantly sensitive or resistant at 400 µM 5-FU are shown in Table 41 and Table 42. 

Figure 45. Fitness plot for the Bioneer genome wide deletion library screen at a 5-FU concentration of 

400 µM. This graph shows a distinct cloud of strains (highlighted by black text and green markers) which 

have been found to be significantly sensitive to 5-FU at a concentration of 400 µM. This also shows a 

distinct cloud of mutants that have been found to be significantly resistant to 5-FU (highlighted by red 

markers and black text) at a concentration of 400 µM. 
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Table 41: Genes identified to sensitise to 5-FU when deleted in S. pombe (p<0.05) 

ORF Gene Product Human homolog P GIS 

SPCPB16A4.04C trm8 
tRNA (guanine-N7-)-methyltransferase 

catalytic subunit Trm8 
METTL1 0.0104 -0.0260 

SPAC17G6.04C cpp1 
Protein farnesyltransferase beta subunit 
Cpp1  

FNTB/         
CHURC1-FNTB 

0.0002 -0.0225 

SPAC16.04 dus3 tRNA Dihydrouridine Synthase Dus3 DUS3L 0.0104 -0.0209 

SPCC18.13 SPCC18.13 
tRNA (guanine-N7-)-methyltransferase 

subunit Trm82 (predicted)  
WDR4 0.0104 -0.0197 

SPCC4G3.11 mug154 Conserved Fungal Protein Unknown 0.0003 -0.0185 

SPAC18G6.13 SPAC18G6.13 Schizosaccharomyces specific protein  Unknown 0.0104 -0.0172 

SPAC57A10.10C sla1 La protein homolog  SSB 0.0104 -0.0165 

SPBC428.08C clr4 Histone H3 lysine methyltransferase Clr4 SUV39H1/SUV39H1 0.0404 -0.0164 

SPAC18G6.10 lem2 LEM domain protein Heh1/Lem2  LEMD2 0.0019 -0.0163 

SPAC17H9.10C ddb1 Damaged DNA binding protein Ddb1 DDB1 0.0070 -0.0159 

SPCC70.06 SPCC70.06 Nuclear export factor (predicted)  SAC3D1/MC3AP 0.0002 -0.0159 

SPBC11B10.10C pht1 Histone H2A variant H2A.Z, Pht1  H2AFV/H2AFZ 0.0104 -0.0159 

SPCC188.08C ubp22 Ubiquitin C-terminal hydrolase Ubp5  USP7 0.0002 -0.0158 

SPBC2D10.16 mhf1 
CENP-S ortholog, FANCM-MHF complex 
subunit Mhf1 

APITD 0.0002 -0.0155 

SPCC970.07C raf2 Rik1-associated factor Raf2  DNMT1 0.0003 -0.0146 

SPAC23H3.05C swd1 Set1C complex subunit Swd1  RBBP5 0.0379 -0.0145 

SPAC25A8.01C fft3 
SMARCAD1 family ATP-dependent DNA 
helicase Fft3  

SMARCAD1 0.0002 -0.0144 

SPCC1682.16 rpt4 
19S proteasome regulatory subunit Rpt4 

(predicted)  
PSMC6 0.0379 -0.0144 

SPAC1610.02C mrpl1 
Mitochondrial ribosomal protein subunit L1 

(predicted)  
MRPL1 0.0104 -0.0142 

SPBC337.13C gtr1 Gtr1/RagA G protein Gtr1 (predicted RRAGA/RRAGB 0.0104 -0.0142 

SPBC29A10.02 spo5 Meiotic RNA-binding  protein 1  
RBMS1/RBMS2/ 

RBMS3 
0.0002 -0.0140 

SPBC31F10.09C nut2 Mediator complex subunit Med10  MED10 0.0009 -0.0137 

SPAC31A2.14 bun107 
WD repeat protein, human WDR48 family 

Bun107  
WDR48 0.0104 -0.0136 

SPCC576.12C mhf2 
CENP-X homolog, FANCM-MHF complex 

subunit Mhf2  
STRA13 0.0104 -0.0134 

SPAC23D3.09 arp42 SWI/SNF and RSC complex subunit Arp42 ACTL6A/ATCL6B 0.0104 -0.0131 

SPCC1919.10C myo52 Myosin type V 
MYO5A/MYO5B/ 
MYO5C 

0.0104 -0.0123 

SPCC306.04C set1 Histone lysine methyltransferase Set1  SET1A/SET1B 0.0207 -0.0123 
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SPBC36B7.08C SPBC36B7.08c Nucleosome assembly protein (predicted)   SET 0.0019 -0.0122 

SPAC6B12.09 trm10 tRNA m(1)G methyltransferase Trm10 TRMT10A 0.0002 -0.0120 

SPBC119.12 rud3 Golgi matrix protein Rud3 (predicted) Unknown 0.0003 -0.0117 

SPBC21C3.20C git1 C2 domain protein Git1 Unknown 0.0104 -0.0116 

SPAC1F5.05C mso1 Endocytic docking protein Mso1 Unknown 0.0379 -0.0113 

SPAC57A10.08C SPAC57A10.08c 
Carboxylic ester hydrolase activity 

(predicted 
Unknown 0.0104 -0.0113 

SPAC12G12.13C cid14 Poly(A) polymerase Cid14  PAPD5/PAPD7 0.0104 -0.0113 

SPBC1198.11C reb1 

RNA polymerase I transcription termination 

factor/ RNA polymerase II transcription 

factor Reb1 

DMTF1 0.0002 -0.0110 

SPAC4G9.10 arg3 Ornithine carbamoyltransferase Arg3 OTC 0.0104 -0.0109 

SPCC550.14 vgl1 Vigilin (predicted) HDLBP 0.0070 -0.0107 

SPAC4C5.02C ryh1 GTPase Ryh1  
RAB6A/RAB6B/ 

RAB6C 
0.0148 -0.0107 

SPBC3B8.03 SPBC3B8.03 Saccharopine dehydrogenase (predicted)  AASS 0.0207 -0.0107 

SPBP8B7.23 rnf10 
Ubiquitin-protein ligase E3 implicated in 

transcription (predicted)  
RNF10 0.0070 -0.0106 

SPBC577.06C srt4 
1-phosphatidylinositol 4-kinase Stt4 
(predicted)  

PI4KA 0.0074 -0.0105 

SPAC3H5.11 SPAC3H5.11 NAD/NADH kinase (predicted) NADK 0.0002 -0.0104 

SPBC16A3.19 eaf7 
Histone acetyltransferase complex subunit 

Eaf7  
MRGBP 0.0148 -0.0102 

SPAC824.04 swd22 WD repeat protein (predicted)  WDR82 0.0006 -0.0101 

SPAC6C3.08 nas8 
Proteasome regulatory particle, gankyrin 

(predicted)  
PSMD10 0.0047 -0.0101 

SPBC21C3.02C dep1 Sds3-like family protein Dep1  
BRMS1/BRMS1L/ 

SUDS3 
0.0011 -0.0100 

SPBC14F5.10C SPBC14F5.10c Ubiquitin-protein ligase E3 (predicted)  
LONRF1/LONRF2/ 
LONRF3 

0.0030 -0.0100 

SPBC530.14C dsk1 SR protein-specific kinase Dsk1  
SPRK1/SPRK2/ 
SPRK3 

0.0070 -0.0100 

SPBC1709.14 SPBC1709.14 Peptide N-glycanase (predicted)  NGLY1 0.0011 -0.0098 

SPAC23H3.13C gpa2 
Heterotrimeric G protein alpha-2 subunit 

Gpa2  
Unknown 0.0003 -0.0098 

SPBC23E6.08 sat1 
Golgi membrane exchange factor subunit 

Sat1 (predicted)  
RGP1 0.0104 -0.0097 

SPAC11E3.01C swr1 
SNF2 family ATP-dependent DNA helicase 

Swr1  
EP400 0.0002 -0.0097 
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SPBC725.10 SPBC725.10 
Mitochondrial transport protein, tspO 

homolog (predicted)  
TSPO/TSPO2 0.0003 -0.0097 

SPBC3B8.10C nem1 
Nem1-Spo7 phosphatase complex catalytic 

subunit Nem1 (predicted) 
CTDNEP1 0.0104 -0.0095 

SPAC144.06 apl5 
AP-3 adaptor complex subunit Apl5 
(predicted)  

AP3D1 0.0104 -0.0094 

SPAC3G9.04 ssu72 Phosphoric ester hydrolase Ssu72 (predicted)  SSU72 0.0003 -0.0092 

SPBC3H7.12 rav2 RAVE complex subunit Rav2  ROGDI 0.0499 -0.0091 

SPCC23B6.03C tel1 ATM checkpoint kinase ATM 0.0006 -0.0091 

SPBC16G5.15C fkh2 Forkhead transcription factor Fkh2 Unknown 0.0006 -0.0090 

SPAC343.11C msc1 Multi-copy suppressor of Chk1 
KDMC5A/KDMC5B/

KDMC5C/KDMC5D 
0.0003 -0.0090 

SPAC12G12.12 gms2 
UDP-galactose transmembrane transporter 
Gms2 (predicted)  

SLC35F6 0.0030 -0.0090 

SPCC188.02 par1 Protein phosphatase regulatory subunit Par1 
PPP2R5A/PPP2R5B/ 

PPP2R5C/PPP2R5D/ 

PPPPR5E 
0.0002 -0.0089 

SPBC16C6.05 SPBC16C6.05 
Mitochondrial translation initiation factor 

(predicted)  
DENR 0.0006 -0.0088 

SPBC106.10 pka1 
cAMP-dependent protein kinase catalytic 
subunit Pka1  

PRKACA/PRKACB/ 
PRKACG/PRKX 

0.0002 -0.0087 

SPBC23G7.08C rga7 Rho-type GTPase activating protein Rga7  CHN1/CHN2 0.0047 -0.0087 

SPAC6G9.14 SPAC6G9.14 RNA-binding protein (predicted)  Unknown 0.0070 -0.0086 

SPAC4G9.14 sym1 
Mitochondrial Mpv17/PMP22 family protein 
2 (predicted)  

PXMP2 0.0011 -0.0086 

SPBC16H5.13 SPBC16H5.13 WD repeat protein, human WDR7 ortholog WDR7/WDR72 0.0207 -0.0085 

SPAC13A11.06 SPAC13A11.06 Pyruvate decarboxylase (predicted)  Unknown 0.0006 -0.0084 

SPBP4H10.17C SPBP4H10.17c Carboxyl methyl esterase (predicted)  PPME1 0.0281 -0.0084 

SPAC30D11.05 aps3 
AP-3 adaptor complex subunit Aps3 

(predicted)  
AP3S1/AP3S1 0.0281 -0.0083 

SPCC794.03 SPCC794.03 Amino acid permease (predicted) Unknown 0.0002 -0.0083 

SPBC18H10.15 ppk23 Serine/threonine protein kinase cdk11  CDK11B 0.0002 -0.0083 

SPBC16G5.02C rbk1 Ribokinase Rbk1 (predicted)  RBKS 0.0006 -0.0082 

SPAC13G7.07 arb2 Agonaute binding protein 2  
FAM172A/ 

FAM172BP 
0.0002 -0.0081 

SPAC4F10.20 grx1 Glutaredoxin Grx1 GLRX/GLRX2 0.0011 -0.0081 
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SPBC30B4.03C adn1 Adhesion defective protein  LDB1 0.0030 -0.0081 

SPBPB2B2.10C gal7 
Galactose-1-phosphate uridylyltransferase 

Gal7  
GALT 0.0104 -0.0079 

SPAC1296.02 cox4 Cytochrome c oxidase subunit IV (predicted)  COX5B 0.0047 -0.0079 

SPAC30D11.14C SPAC30D11.14c RNA-binding protein (predicted)  KIAA0907 0.0281 -0.0078 

SPBC106.07C SPBC106.07c 
N alpha-acetylation related protein Nat2 
(predicted)  

FAM210A/FAM210B 0.0104 -0.0078 

SPAC6G10.08 idp1 Isocitrate dehydrogenase Idp1 (predicted)  IDH1/IDH2 0.0104 -0.0077 

SPAC922.03 SPAC922.03 
1-aminocyclopropane-1-carboxylate 

deaminase (predicted)  
Unknown 0.0499 -0.0076 

SPAC26A3.09C rga2 Rho-type GTPase activating protein Rga2  CHN1/CHN2 0.0379 -0.0075 

SPBC577.11 SPBC577.11  DUF3074 family protein  Unknown 0.0019 -0.0075 

SPAC513.03 mfm2  M-factor precursor Mfm2 Unknown 0.0104 -0.0075 

SPAC57A10.12C ura3 Dihydroorotate dehydrogenase Ura3 DHODH 0.0148 -0.0074 

SPCC297.05 SPCC297.05 Diacylglycerol binding protein (predicted) Unknown 0.0104 -0.0073 

SPAC4G9.06C chz1 Histone chaperone Chz1 (predicted)  
CDY1/CDY2A/ 

CDYL2 
0.0070 -0.0073 

SPBC1778.09 SPBC1778.09 GTPase activating protein (predicted)  USP6NL 0.0104 -0.0073 

SPAC1486.04C alm1 Medial ring protein Alm1  Unknown 0.0104 -0.0072 

SPAC27D7.14C tpr1 
 RNA polymerase II associated Paf1 
complex subunit Tpr1  

CTR9 0.0009 -0.0071 

SPCC1223.11 ptc2 Protein phosphatase 2C Ptc2 PPM1G 0.0030 -0.0071 

SPCC162.01C SPCC162.01c 
U4/U6 x U5 tri-snRNP complex subunit 

(predicted)  
SNRNP27 0.0047 -0.0070 

SPBC2A9.11C iss9 Conserved eukaryotic protein  LENG8 0.0104 -0.0069 

SPBC31F10.12 tma20 RNA-binding protein Tma20 (predicted) MCTS1 0.0070 -0.0068 

SPBC1604.02C ppr1 Mitochondrial PPR repeat protein Ppr1  Unknown 0.0379 -0.0067 

SPCC126.08C SPCC126.08c 
Lectin family glycoprotein receptor 
(predicted)  

LMAN/LMAN2 0.0006 -0.0067 

SPAC694.02 SPAC694.02 DEAD/DEAH box helicase DDX60/DDX60L 0.0047 -0.0067 

SPBC776.15C kgd2 

Dihydrolipoamide S-succinyltransferase, e2 

component of oxoglutarate dehydrogenase 
complex Kdg2 (predicted)  

DLST2 0.0207 -0.0066 

SPBC21B10.13C yox1 MBF complex corepressor Yox1 Unknown 0.0047 -0.0066 
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SPBC1861.07 SPBC1861.07 elongin C (predicted)  TCEB1 0.0281 -0.0066 

SPAC4G8.05 ppk14 
Serine/threonine protein kinase Ppk14 

(predicted)  
Unknown 0.0019 -0.0065 

SPAC1296.04 mug65 
Spore wall assembly protein Mug65 

(predicted)  
Unknown 0.0006 -0.0064 

SPAC1782.09C clp1 
Cdc14-related protein phosphatase 
Clp1/Flp1 

CDC14A/CDC14B 0.0030 -0.0064 

SPAPB17E12.04

C 
csn2 COP9/signalosome complex subunit Csn2  COPS2 0.0070 -0.0064 

SPAC890.07C rmt1 
Type I protein arginine N-methyltransferase 

Rmt1  
PRMT1/PRMT8 0.0148 -0.0064 

SPAC26F1.05 mug106 
Schizosaccharomyces pombe specific protein 
Mug106  

UNknown 0.0030 -0.0063 

SPAC19G12.08 scs7 Sphingosine hydroxylase Scs7  FA2H 0.0104 -0.0063 

SPAC9.02C SPAC9.02c Polyamine N-acetyltransferase (predicted)   AANAT 0.0104 -0.0063 

SPAC31G5.18C sde2 Silencing defective protein Sde2  SDE2 0.0379 -0.0063 

SPCC736.08 cbf11 
CBF1/Su(H)/LAG-1 family transport factor 

Cbf11  
RBPJ/RBPJL 0.0499 -0.0063 

SPAC7D4.13C SPAC7D4.13c Schizosaccharomyces specific protein  Unknown 0.0499 -0.0063 

SPAC2F7.03C pom1 DYRK family protein kinase Pom1  
DYRK2/RYRK3/ 
DYRK4 

0.0281 -0.0062 

SPCC1393.10 ctr4 
Vacuolar copper transmembrane transporter 

Ctr6 
SLC31AC/SLC31A2 0.0499 -0.0061 

SPBC1105.10 rav1 RAVE complex subunit Rav1  DMXL1/DMXL2 0.0281 -0.0060 

SPBC1105.08 SPBC1105.08 EMP70 family  TM9SF2/TM9SF4 0.0047 -0.0059 

SPAC22H10.09 SPAC22H10.09 Schizosaccharomyces specific protein  Unknown 0.0379 -0.0059 

SPAC1142.08 fhl1 Forkhead transcription factor Fhl1  Unknown 0.0011 -0.0058 

SPCC1840.05C SPCC1840.05c Phosphoglucomutase (predicted)  PGM2/PGM2L1 0.0104 -0.0058 

SPBC29A10.16C SPBC29A10.16c Cytochrome b5 (predicted)  CYB5A/CYB5B 0.0499 -0.0057 

SPAC6C3.07 mug68 
Schizosaccharomyces specific protein 

Mug68  
Unknown 0.0499 -0.0057 

SPCC18B5.03 wee1 M phase inhibitor protein kinase Wee1 WEE1/WEE2 0.0207 -0.0057 

SPBC3H7.13 far10 
SIP/FAR complex FHA domain subunit 

Far10/Csc1  
SLMAP 0.0207 -0.0057 
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SPCC663.12 cid12 Poly(A) polymerase Cid12  Unknown 0.0207 -0.0056 

SPAC26A3.16 dph1 UBA domain protein Dph1 UBQLN1-4 0.0148 -0.0056 

SPAC23C4.08 rho3 Rho family GTPase Rho3  RHOA/RHOB/RHOC 0.0281 -0.0056 

SPAP27G11.10C nup184 Nucleoporin Nup184 NUP188 0.0379 -0.0056 

SPBC336.13C SPBC336.13c 
Mitochondrial inner membrane peptidase 

complex catalytic subunit 2 (predicted)  
IMMP2L 0.0148 -0.0055 

SPAC140.03 arb1 Argonaute inhibitor protein 1 Unknown 0.0499 -0.0054 

SPBC6B1.06C ubp14 Ubiquitin C-terminal hydrolase Ubp14  USP5 0.0379 -0.0054 

SPCC1223.15C spc19 DASH complex subunit Spc19 Unknown 0.0006 -0.0054 

SPCC1259.11C gyp2 GTPase activating protein Gyp2 (predicted)  
TBC1D8B/TBC1D9/ 

TBC1D9B 
0.0499 -0.0053 

SPBC651.09C prf1 
RNA polymerase II associated Paf1 complex 

(predicted)  
RTF1 0.0499 -0.0053 

SPBC2G2.06C apl1 
AP-2 adaptor complex subunit Apl1 
(predicted)  

AP1B1/AP2B1 0.0070 -0.0052 

SPAC56E4.07 SPAC56E4.07 N-acetyltransferase (predicted)  Unknown 0.0281 -0.0052 

SPAC20H4.07 rhp57 RecA family ATPase Rad57/Rhp57  XRCC3 0.0047 -0.0052 

SPCC1739.07 cti1 
Cut3 interacting protein Cti1, predicted 

exosome subunit  
C1D 0.0207 -0.0051 

SPCC594.06C vsl1 Vacuolar SNARE Vsl1/Vam7 STX8 0.0281 -0.0051 

SPCC553.08C ria1 GTPase Ria1 (predicted)  EFTUD1 0.0281 -0.0050 

SPAC17C9.02C lys7 
Alpha-aminoadipate reductase 

phosphopantetheinyl transferase Lys7  
AASDHPPT 0.0207 -0.0050 

SPAC2C4.05 cor1 Cornichon family protein (predicted)  
CNIH1/CNIH2/ 
CNIH3/CNIH4 

0.0003 -0.0050 

SPAP7G5.04C lys1 Aminoadipate-semialdehyde dehydrogenase   AASDH 0.0499 -0.0050 

SPAC18B11.04 ncs1 
Neuronal calcium sensor related protein 
Ncs1  

NCS1 0.0379 -0.0049 

SPBC1734.06 rhp18 
Rad18 homolog ubiquitin protein ligase E3, 

Rhp18  
RAD18 0.0104 -0.0048 

SPAC22H10.11C SPAC22H10.11c 
TOR signaling pathway transcriptional 

corepressor Crf1 (predicted)  
Unknown 0.0379 -0.0047 

SPBC23G7.16 ctr6 
Vacuolar copper transmembrane transporter 
Ctr6  

SLC31A1/SLC31A2 0.0281 -0.0047 

SPAPB17E12.08 eos1 N-glycosylation protein Eos1 (predicted) Unknown 0.0104 -0.0047 

SPAC1F7.09C SPAC1F7.09c Allantoicase (predicted)  ALLC 0.0379 -0.0047 

SPBC887.15C sur2 Sphingosine hydroxylase Sur2  Unknown 0.0030 -0.0046 
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SPAC13A11.04C ubp8 
SAGA complex ubiquitin C-terminal 
hydrolase Ubp8  

USP51 0.0207 -0.0046 

SPAC8C9.19 SPAC8C9.19 conserved fungal protein Unknown 0.0379 -0.0045 

SPBC21B10.08C SPBC21B10.08c 
Antibiotic biosynthesis monooxygenase-like 
domain (predicted)  

Unknown 0.0281 -0.0044 

SPAC24B11.10C chr3 
Chitin synthase regulatory factor-like Cfh1 

(predicted)  
Unknown 0.0499 -0.0044 

SPAC4A8.10 rog1 
Vacuolar membrane alkaline phosphatase 
(predicted)  

Unknown 0.0281 -0.0044 

SPAC56E4.06C ggt2 Gamma-glutamyltranspeptidase Ggt2  
GGT1/GGT2/GGT3P/

GGT5/GGTLC1-3 
0.0011 -0.0043 

SPAC6F6.01 cch1 Calcium channel Cch1  NALCN 0.0499 -0.0042 

SPAC22G7.06C ura1 

Carbamoyl-phosphate synthase (glutamine 
hydrolyzing), aspartate carbamoyltransferase 

Ura1  

CAD 0.0499 -0.0041 

SPBC29A3.05 vps71 Swr1 complex subunit Vps71 ZNHIT1 0.0070 -0.0041 

SPAC1783.05 hrp1 ATP-dependent DNA helicase Hrp1  CHD1/CHD2 0.0379 -0.0040 

SPCC11E10.08 rik1 Silencing protein Rik1  DDB1 0.0104 -0.0040 

SPCC1620.07C SPCC1620.07c Lunapark homolog Lnp1 KIAA1715 0.0104 -0.0039 

SPBC16C6.08C qcr6 
Ubiquinol-cytochrome-c reductase complex 

subunit 8, hinge protein (predicted)  
UQCRH 0.0148 -0.0039 

SPAC3H1.12C snt2 Lid2 complex subunit Snt2  Unknown 0.0207 -0.0039 

SPCC1259.09C pdx1 
Pyruvate dehydrogenase protein x 

component, Pdx1 (predicted)  
PDXP 0.0379 -0.0038 

SPBC32F12.07C SPBC32F12.07c 
Ubiquitin-protein ligase E3, MARCH family 
(predicted) 

MARCHH9 0.0499 -0.0037 

SPAC19A8.04 erg5 C-22 sterol desaturase Erg5 
CYP26A1/CYP26B1/

CYP26C1 
0.0030 -0.0037 

SPBC1734.12C alg12 

Dolichyl pyrophosphate Man7GlcNAc2 

alpha-1,6-mannosyltransferase Alg12 

(predicted)  

ALG12 0.0281 -0.0037 

SPAC1851.02 slc1 
1-acylglycerol-3-phosphate O-

acyltransferase Slc1 (predicted)  
AGPAT1/AGPAT2 0.0379 -0.0034 

SPAC227.11C yos9 
Sensor for misfolded ER glycoproteins Yos9 

(predicted) 
OS9/ERLEC1 0.0499 -0.0033 

SPAC110.02 pds5 Mitotic cohesin-associated protein Pds5  PDS5B 0.0207 -0.0033 

SPCC550.15C SPCC550.15c Ribosome biogenesis protein (predicted)  ZNF622 0.0104 -0.0032 

SPBC725.06C ppk31 
Serine/threonine protein kinase Ppk31 

(predicted)  
STK38/STK38L 0.0148 -0.0031 

SPCC576.01C xan1 
Alpha ketoglutarate dependent xanthine 

dioxygenase Xan1  
Unknown 0.0499 -0.0029 

SPAPB17E12.02 yip12 SMN family protein Yip12  GEMIN2 0.0281 -0.0029 

SPAC1783.01 SPAC1783.01 Methionine synthase reductase (predicted)  MTRR 0.0499 -0.0029 

SPAC17G8.05 med20 Mediator complex subunit Med20 MED20 0.0180 -0.0028 

SPAC8E11.07C alp31 
Tubulin specific chaperone cofactor A, 

Alp31 
TBCA 0.0006 -0.0013 

SPAC688.11 end4 Huntingtin-interacting protein homolog HIP1/HIP1R 0.0046 -0.0007 
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SPCC31H12.03C tho1 RNA binding protein (predicted) SARNP 0.0249 -0.0005 

SPAC16A10.05c dad1 DASH complex subunit Dad1 Unknown 0.0128 -0.0003 

 

Table 41: Genes identified by the screen of the S. pombe genome wide deletion library to 

sensitise to 5-FU when deleted (p<0.05). These tables shows the open reading frames 

(ORFs), gene, the product encoded by the gene and the name of any known human homologs. 

The tables are sorted by GIS (in ascending order), then by p value (in ascending order).   



205 

 

Table 42: Genes found to confer resistance to 5-FU when deleted in S. pombe cells 

ORF Gene Product Human Homologue P GIS 

SPAC29B12.04 snz1 Pyridoxine biosynthesis protein  SNZ1/SNZ2/SNZ3 0.0002 0.0154 

SPBC4F6.08C mrpl39 
Mitochondrial ribosomal protein subunit L39 

(predicted)  
MRPL33 0.0002 0.0146 

SPAC1B3.01C SPAC1B3.01c Uracil phosphoribosyltransferase (predicted)  UCK1/UCK2/UCKL1 0.0002 0.0141 

SPAC11G7.02 pub1 HECT-type ubiquitin-protein ligase E3 Pub1  NEDD4/NEDD4L 0.0002 0.0139 

SPCC162.11C SPCC162.11c 
Uridine kinase/uracil 
phosphoribosyltransferase (predicted)  

UCKL1 0.0011 0.0127 

SPAC3F10.17 SPAC3F10.17 
 Ribosome biogenesis protein Ltv1 
(predicted)  

LTV1 0.0002 0.0121 

SPAC2F3.11 SPAC2F3.11 Exopolyphosphatase (predicted)  PRUNE/PRUNE2 0.0002 0.0115 

SPBC36.07 iki3 Elongator subunit Elp1 (predicted) IKBKAP 0.0002 0.0113 

SPBC3H7.10 elp6 Elongator complex subunit Elp6 (predicted)  ELP6 0.0047 0.0111 

SPCC584.01C SPCC584.01c 
Sulfite reductase NADPH flavoprotein 

subunit (predicted)  
Unknown 0.0002 0.0110 

SPCC1235.13 ght6 Hexose transmembrane transporter Ght6 Unknown 0.0030 0.0108 

SPAC1250.03 ubc14 
Ubiquitin conjugating enzyme E2 Ubc14 
(predicted)  

Unknown 0.0002 0.0105 

SPBC776.04 sec2302 
COPII cargo receptor subunit Sec23b 

(predicted)  
SEC23A/SEC23B 0.0030 0.0105 

SPBP22H7.06 SPBP22H7.06 Nicotinamide riboside kinase (predicted) NMRK1/NMRK2 0.0003 0.0101 

SPAC6G10.06 SPAC6G10.06 

FAD-dependent amino acid oxidase 

involved in late endosome to Golgi transport 
(predicted)  

Unknown 0.0011 0.0099 

SPBC30D10.03C SPBC30D10.03c IMP 5'-nucleotidase (predicted) Unknown 0.0019 0.0099 

SPBC106.04 ada1 Adenosine deaminase Ada1 AMPD1-3 0.0003 0.0099 

SPAC23G3.04 ies2 Ino80 complex subunit Ies4  Unknown 0.0019 0.0093 

SPAC11D3.13 hsp3104 Thij domain protein Unknown 0.0379 0.0093 

SPAC1687.10 mcp1 Microtubule binding protein Mcp1  PRC1 0.0002 0.0090 

SPBC16H5.09C omh2 
Alpha-1,2-mannosyltransferase Omh2 

(predicted) 
Unknown 0.0006 0.0089 
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SPAC222.08C sno1 
Glutamine aminotransferase subunit Sno1 

(predicted)  
Unknown 0.0003 0.0089 

SPBC3B9.09 vps36 ESCRT II complex subunit Vps36  VPS36 0.0207 0.0086 

SPAC25G10.09C pan1 
Actin cortical patch component, with EF 

hand and WH2 motif Panl (predicted)  
ITSN1/ITSN2 0.0030 0.0085 

SPAC5D6.10C mug116 
Schizosaccharomyces pombe specific protein 

Mug116  
Unknown 0.0379 0.0085 

SPCC736.07C uri1 

Unconventional prefoldin chaperone 

involved protein complex assembly Uri1 
(predicted)  

URI1 0.0011 0.0085 

SPAC11D3.04C SPAC11D3.04c Polyketide cyclase snoal-like domain protein  Unknown 0.0281 0.0084 

SPCC1672.09 SPCC1672.09 
Triglyceride lipase-cholesterol esterase 
(predicted)  

LIPA/LIPF/LIPJ/ 
LIPK/LIPM 

0.0104 0.0083 

SPBC685.02 exo5 
Mitochondrial single stranded DNA specific 
5'-3' exodeoxyribonuclease Exo5 (predicted)  

EXO5 0.0281 0.0083 

SPAC57A10.09C nhp6 
High-mobility group non-histone chromatin 

protein (predicted)  
SSRP1 0.0030 0.0082 

SPAC1834.07 klp3 Kinesin-like protein Klp3 KIF5B 0.0011 0.0081 

SPAC4D7.06C met8 Siroheme synthase Met8 (predicted) Unknown 0.0002 0.0080 

SPAC1805.05 cki1 Serine/threonine protein kinase Cki3  
CSNK1G1/CSNK1G2

/CSNK1G3 
0.0104 0.0080 

SPBC119.08 pmk1 MAP kinase Pmk1  MAPK7 0.0002 0.0080 

SPAC15A10.15 sgo2 Inner centromere protein, shugoshin Sgo2  SGOL1 0.0047 0.0080 

SPBC725.04 SPBC725.04 Oxalyl-coa coA decarboxylase (predicted)  ILVBL 0.0011 0.0079 

SPBC11C11.10 SPBC11C11.10 tRNA pseudouridine synthase (predicted)  TRUB1 0.0379 0.0079 

SPAP7G5.03 prm1  Conjugation protein Prm1  Unknown 0.0148 0.0078 

SPAC4H3.05 srs2 
ATP-dependent DNA helicase, uvrd 

subfamily 
Unknown 0.0030 0.0078 

SPBC26H8.01 thi2 Thiazole biosynthetic enzyme THI4 0.0070 0.0077 

SPAC8E11.06 SPAC8E11.06 Schizosaccharomyces pombe specific protein  Unknown 0.0207 0.0076 

SPCC16C4.11 pef1 
Pho85/phoa-like cyclin-dependent kinase 

Pef1 
CDK5 0.0030 0.0076 

SPAC1250.04C atl1 Alkyltransferase-like protein Atl1  MGMT 0.0030 0.0076 
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SPBC27.06C mgr2 
Mitochondrial membrane protein Mgr2 

(predicted)  
ROMO1 0.0002 0.0076 

SPBC21B10.06C inp2 

Myosin binding vezatin family protein 

involved in peroxisome inheritance Inp2 

(predicted)  

VEZT 0.0030 0.0076 

SPAP27G11.12 SPAP27G11.12 Human HID1 ortholog 1  HID1 0.0070 0.0075 

SPBC19G7.17 SPBC19G7.17 
Translocon subunit Sec61 homolog 

(predicted)  
SEC61A1/SEC61A2 0.0047 0.0074 

SPAC29E6.07 SPAC29E6.07 Schizosaccharomyces pombe specific protein  Unknown 0.0070 0.0074 

SPBPB2B2.07C SPBPB2B2.07c S. pombe specific duf999 protein family 7  Unknown 0.0047 0.0074 

SPAC694.05C rps2502 40S ribosomal protein S25 (predicted) RPS25 0.0070 0.0074 

SPAC4A8.14 prs1 
Ribose-phosphate pyrophosphokinase 
(predicted)  

PRPSAP1/PRPSAP2 0.0030 0.0074 

SPCC285.10C SPCC285.10c SPRY domain protein  Unknown 0.0002 0.0073 

SPAPB1A10.08 SPAPB1A10.08 Schizosaccharomyces specific protein  Unknown 0.0207 0.0073 

SPAC23H4.09 cdb4 
Curved DNA-binding protein Cdb4, 

peptidase family  
PA2G4 0.0281 0.0073 

SPBP23A10.05 ssr4 SWI/SNF and RSC complex subunit Ssr4  Unknown 0.0003 0.0073 

SPBC651.06 mug166 
Schizosaccharomyces specific protein 
Mug166  

Unknown 0.0281 0.0072 

SPAC2H10.02C nas3 
26S proteasome regulatory particle assembly 
protein Nas2 (predicted)  

PSMD9 0.0207 0.0072 

SPAC22G7.02 kap111 Karyopherin Kap111 (predicted) IPO13 0.0006 0.0072 

SPCC1494.01 SPCC1494.01 Iron/ascorbate oxidoreductase family  Unknown 0.0047 0.0071 

SPBC21H7.06C opi10 Hikeshi protein, Opi10  C11orf73 0.0148 0.0071 

SPBC215.14C vps20 ESCRT III complex subunit Vps20  CHMP6 0.0070 0.0071 

SPBC27B12.11C pho7 Transcription factor Pho7  Unknown 0.0148 0.0071 

SPCC417.11C SPCC417.11c 
Glutamate-1-semialdehyde 2,1-aminomutase 
(predicted)  

Unknown 0.0207 0.0070 

SPAC11D3.01C SPAC11D3.01c Conserved fungal protein  Unknown 0.0047 0.0070 

SPAC1071.12C stp1 Protein tyrosine phosphatase Stp1 ACP1 0.0281 0.0070 
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SPAC1B3.03C wis2 
Cyclophilin family peptidyl-prolyl cis-trans 

isomerase Wis2  
PPID 0.0011 0.0070 

SPAC22A12.04C rps2201 40S ribosomal protein S15a (predicted)  RPS15A 0.0148 0.0069 

SPAC2E1P3.05C SPAC2E1P3.05c Fungal cellulose binding domain protein Unknown 0.0104 0.0069 

SPAC26H5.03 pcf2 
CAF assembly factor (CAF-1) complex 

subunit B, Pcf2  
CHAF1B 0.0011 0.0068 

SPBC25B2.03 SPBC25B2.03 Zf-C3HC4 type zinc finger  Unknown 0.0148 0.0068 

SPBC23G7.14 SPBC23G7.14 Schizosaccharomyces specific protein Unknown 0.0379 0.0068 

SPBC14C8.03 fma2 
Methionine aminopeptidase Fma2 
(predicted) 

METAP2 0.0379 0.0068 

SPBC530.04 mod5 Tea1 anchoring protein Mod5  Unknown 0.0003 0.0068 

SPCC1442.11C SPCC1442.11c 
Schizosaccharomyces pombe specific 

protein  
Unknown 0.0002 0.0067 

SPBC8E4.05C SPBC8E4.05c Fumarate lyase superfamily  Unknown 0.0104 0.0067 

SPBC17D11.08 SPBC17D11.08 
WD repeat protein, DDB1 and CUL4-

associated factor 7 (predicted) 
DCAF7 0.0047 0.0067 

SPAC6G9.16C xrc4 
XRCC4 nonhomologous end joining factor 

Xrc4 
XRCC4 0.0148 0.0067 

SPAC3H5.09C SPAC3H5.09c 
Conserved eukaryotic mitochondrial protein 
(predicted)  

KIAA0100 0.0207 0.0066 

SPAC1556.04C cdd1 Cytidine deaminase Ccd1 (predicted)  CDA 0.0104 0.0066 

SPCC1393.13 SPCC1393.13 DUF89 family protein  C6orf211 0.0047 0.0066 

SPAC2G11.10C uba42 
Thiosulfate sulfurtransferase, URM1 
activating enzyme E1-type Uba42 

(predicted)  

MOCS3 0.0011 0.0066 

SPAC5D6.06C alg14 
UDP-glcnac transferase associated protein 

Alg14 (predicted)  
ALG15 0.0070 0.0066 

SPAC31G5.12C maf1 Repressor of RNA polymerase III Maf1 MAF1 0.0104 0.0066 

SPCC1620.03 mug163 Conserved eukaryotic protein, mitochondrial  C6orf136 0.0148 0.0066 

SPBC18E5.07 SPBC18E5.07 DUF3210 family protein  Unknown 0.0379 0.0065 

SPAC1F5.03C SPAC1F5.03c 
FAD-dependent oxidoreductase involved in 

late endosome to Golgi transport (predicted)  
Unknown 0.0019 0.0065 

SPAC144.14 klp8 Kinesin-like protein Klp8 
KIF1A/KIF1C/ 
KIF13A/KIF13B/ 

KIF14/ KIF16B 

0.0281 0.0064 
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SPAC11H11.01 sst6 ESCRT I complex subunit Vps23  TSG101 0.0499 0.0064 

SPAC3F10.18C rpl4102 60S ribosomal protein L41 (predicted)  RPL41A/RPL41B 0.0281 0.0063 

SPCC1183.06 ung1 Uracil DNA N-glycosylase Ung1  UNG 0.0379 0.0063 

SPCC16A11.07 coq10 
Mitochondrial ubiquinone binding protein 

Coq10  
COQ10A/COQ10B 0.0207 0.0063 

SPAC17G6.05C bro1 BRO1 domain protein Bro1 (predicted)  
RHPN1/RHPN2/ 

PTPN23/PDCD6IP 
0.0104 0.0063 

SPAC8F11.05C mug130 Schizosaccharomyces specific protein  Unknown 0.0047 0.0062 

SPAC26F1.12C ghg1 Conserved eukaryotic protein Hgh1 HGH1 0.0148 0.0062 

SPBC19C7.10 bqt4 Bouquet formation protein Bqt4  Unknown 0.0104 0.0062 

SPBC16E9.06C uvi31 Bola domain UV induced protein Uvi31 BOLA1 0.0499 0.0061 

SPBC27.08C sua1 Sulfate adenylyltransferase  PAPSS1/PAPSS2 0.0207 0.0061 

SPAC10F6.08C nht10 
Ino80 complex HMG box subunit Nhp10 

(predicted)  
NHP10 0.0011 0.0061 

SPAC4H3.01 SPAC4H3.01 
DNAJ domain protein Caj1/Djp1 type 

(predicted)  
Unknown 0.0207 0.0061 

SPAC23H3.04 SPAC23H3.04 Conserved fungal protein  Unknown 0.0104 0.0061 

SPAC1F7.06 hsp3105 Thij domain protein  Unknown 0.0148 0.0061 

SPBC2G2.10C mug110 
Schizosaccharomyces specific protein 

Mug110  
Unknown 0.0281 0.0061 

SPBC3B8.08 SPBC3B8.08 
Sjögren's syndrome/scleroderma autoantigen 

1 family (predicted)  
SSSCA1 0.0379 0.0061 

SPAC17G8.06C SPAC17G8.06c Dihydroxy-acid dehydratase (predicted)  Unknown 0.0047 0.0061 

SPBP8B7.27 mug30 
HECT-type ubiquitin-protein ligase E3 

(predicted)  
HECTD2 0.0019 0.0060 

SPCC1259.01C rps1802 40S ribosomal protein S18 (predicted)  RPS18 0.0006 0.0060 

SPAC13F5.07C hpz1 Zf PARP type zinc finger protein Hpz2  Unknown 0.0281 0.0060 

SPBC25H2.05 egd2 
Nascent polypeptide-associated complex 

alpha subunit Egd2  
NACA 0.0011 0.0059 

SPAC3A11.14C pkl1 Kinesin-like protein Pkl1  KIFC1 0.0207 0.0059 
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SPAC13C5.02 dre4 Splicing associated factor Dre4  PRPF40A/PRF40B 0.0207 0.0059 

SPBC27B12.14 SPBC27B12.14 
Mitochondrial membrane protein complex 
assembly protein (predicted)  

Unknown 0.0148 0.0059 

SPBC19F5.01C puc1 Cyclin Puc1  Unknown 0.0104 0.0059 

SPAC17H9.12C SPAC17H9.12c 
Mitochondrial cytochrome c-heme linkage 

protein Cyc2 (predicted)  
CYB5RL 0.0070 0.0059 

SPBC14C8.15 SPBC14C8.15 
Triglyceride lipase-cholesterol esterase 

(predicted)  

LIPA/LIPF/LIPJ/ 

LIPK/LIPM 
0.0104 0.0059 

SPAC2E1P5.02C mug109 
Rab GTPase binding protein upregulated in 

meiosis II (predicted)  
Unknown 0.0499 0.0058 

SPBC1347.09 SPBC1347.09 
Hexaprenyldihydroxybenzoate 
methyltransferase, Coq3 variant (predicted)  

COQ3 0.0499 0.0058 

SPBC1778.02 rap1 Telomere binding protein Rap1  TERF2IP 0.0104 0.0058 

SPAC4F8.01 did4 ESCRT III complex subunit Did4  CHMP2A 0.0499 0.0058 

SPBC25B2.08 SPBC25B2.08 
Schizosaccharomyces pombe specific 

protein  
Unknown 0.0207 0.0058 

SPAC8C9.07 SPAC8C9.07 rRNA processing protein Fyv7 (predicted)  CCDC59 0.0011 0.0058 

SPAC17G8.14C pck1 Protein kinase C (PKC)-like Pck1  

PRKCA/PRKCB/ 

PRKCD/PRKCDE/ 
PRKCH/PRKCQ 

0.0030 0.0058 

SPCC1322.16 phb2 Prohibitin Phb2 (predicted) PHB2 0.0379 0.0058 

SPAC6G10.11C ubi3 
Ribosomal-ubiquitin fusion protein Ubi3 
(predicted)  

RPS27A 0.0019 0.0057 

SPBC25H2.14 mug16 UNC-50 family protein  UNC50 0.0148 0.0057 

SPBC1105.04C cbp1 CENP-B homolog  
JRKL/CENPB /              

TIGD1-7 
0.0379 0.0057 

SPAC607.07C SPAC607.07c Schizosaccharomyces specific protein  Unknown 0.0148 0.0057 

SPBC106.13 SPBC106.13 

Ubiquitin ligase complex subunit, involved 

in proteasome-dependent catabolite 
inactivation of fbpase (predicted)  

MAEA 0.0281 0.0057 

SPAC12B10.10 nod1 
Medial cortical node Gef2-related protein 
protein Nod1  

Unknown 0.0379 0.0057 

SPCP31B10.06 mug190 C2 domain protein  
ESYT1/ESYT2/ 
ESYT3 

0.0104 0.0057 

SPAC4F10.06 bud22 
Ribosome small subunit biogenesis protein, 

BUD22 family (predicted)  
SRFBP1 0.0104 0.0056 

SPAC16C9.06C upf1 ATP-dependent RNA helicase Upf1  UPF1 0.0006 0.0056 
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SPBC11C11.09C rpl502 60S ribosomal protein L5  RPL5 0.0148 0.0056 

SPBC19C2.13C ctu2 Cytosolic thiouridylase subunit Ctu2 CTU1 0.0148 0.0056 

SPCC1739.05 set5 
Histone lysine methyltransferase Set5 

(predicted)  
Unknown 0.0070 0.0056 

SPBC839.03C SPBC839.03c Neddylation protein Dcn1 (predicted)  DCUN1D1 0.0207 0.0056 

SPAPB1A11.02 SPAPB1A11.02 Esterase/lipase (predicted)  

AADAC/AADACL2/

AADACL3/ 
AADACL4/NCEH1 

0.0207 0.0056 

SPBC1778.10C ppk21 Serine/threonine protein kinase Ppk21  PDPK1 0.0070 0.0056 

SPAC3G9.11C SPAC3G9.11c Pyruvate decarboxylase (predicted)  Unknown 0.0003 0.0055 

SPBPB10D8.05C SPBPB10D8.05c Transmembrane transporter (predicted) Unknown 0.0148 0.0055 

SPAC11E3.08C nse6 Smc5-6 complex non-SMC subunit Nse6  Unknown 0.0002 0.0055 

SPAC22E12.18 SPAC22E12.18 Conserved fungal protein  Unknown 0.0047 0.0055 

SPAC1A6.06C meu31 
Schizosaccharomyces specific protein 

Meu31  
Unknown 0.0281 0.0055 

SPAC4F10.17 SPAC4F10.17 Conserved fungal protein Unknown 0.0104 0.0055 

SPAC31G5.07 dni1 Tetraspan protein Dni1 Unknown 0.0379 0.0055 

SPCC794.02 wtf5 Wtf element Wtf5 Unknown 0.0207 0.0054 

SPBC685.03 SPBC685.03 Schizosaccharomyces specific protein  Unknown 0.0379 0.0054 

SPCC1742.01 gsf2 Galactose-specific flocculin Gsf2  Unknown 0.0379 0.0054 

SPAC27D7.05C apc14 
Anaphase-promoting complex subunit 

Apc14  
Unknown 0.0207 0.0053 

SPBC21B10.04C nrf1 GTPtpase regulator Nrf1  Unknown 0.0047 0.0053 

SPBC1709.04C cyp3 
Cyclophilin family peptidyl-prolyl cis- trans 
isomerase Cyp3  

PPIH 0.0006 0.0053 

SPCC970.05 rpl3601 60S ribosomal protein L36  RPL36 0.0006 0.0053 

SPBC428.07 meu6 
Meiotic chromosome segregation protein 

Meu6  
Unknown 0.0207 0.0053 

SPCC737.05 SPCC737.05 Peroxin Pex28/29 (predicted)  Unknown 0.0019 0.0053 
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SPBPJ4664.05 SPBPJ4664.05 Conserved fungal protein  Unknown 0.0379 0.0053 

SPAC1687.05 pli1 SUMO E3 ligase Pli1  PIAS1-4 0.0281 0.0053 

SPAC25G10.06 rps2801 40S ribosomal protein S28 (predicted)  RPS28 0.0281 0.0053 

SPBC800.10C SPBC800.10c 
EPS15 repeat family actin cortical patch 

component (predicted)  
EPS15/EPS15L1 0.0148 0.0053 

SPBC83.18C fic1 C2 domain protein Fic1  Unknown 0.0148 0.0052 

SPBC651.07 csa1 
Schizosaccharomyces specific protein 

Mug166  
Unknown 0.0499 0.0052 

SPCC1739.15 wtf21 Wtf element Wtf21  Unknown 0.0207 0.0052 

SPAC9E9.13 wos2 p23 homolog, predicted co-chaperone Wos2  PTGES3 0.0148 0.0052 

SPCC548.04 urm1 Ubiquitin family protein Urm1 (predicted URM1 0.0104 0.0052 

SPAC458.06 atg1803 
WD repeat protein involved in autophagy 

Atg18c 
WDR45/WDR45B 0.0281 0.0052 

SPAC23H4.16C SPAC23H4.16c Schizosaccharomyces specific protein  Unknown 0.0148 0.0052 

SPCC569.04 SPCC569.04 Schizosaccharomyces pombe specific protein  Unknown 0.0104 0.0052 

SPBC409.03 swi5 Swi5 protein  SWI5 0.0499 0.0051 

SPCC777.02 SPCC777.02 Transcription factor (predicted)  Unknown 0.0070 0.0051 

SPAC14C4.13 rad17 RFC related checkpoint protein Rad17  RAD17 0.0030 0.0051 

SPBC25B2.04C mtg1 
Mitochondrial GTPase involved in 

translation Mtg1 (predicted)  
MTG1 0.0030 0.0051 

SPCP1E11.03 mug170 
Arrestin family Schizosaccharomyces 

specific protein Mug170  
Unknown 0.0070 0.0051 

SPBPB10D8.02C SPBPB10D8.02c Arylsulfatase (predicted)  

ARSA/ARSB/ARSD/ 

ARSE/ARSF/ARSG/ 
ARSH/ARSI/ARSJ/ 

GALNS/STS 

0.0047 0.0051 

SPAC823.13C SPAC823.13c 
Mitochondrial inner membrane protein 

(predicted)  
Unknown 0.0047 0.0051 

SPBC29A10.05 exo1 Exonuclease I Exo1  EXO1 0.0148 0.0051 

SPAC27E2.07 pvg2 Galactose residue biosynthesis protein Pvg2  Unknown 0.0281 0.0050 

SPAC12G12.11C SPAC12G12.11c DUF544 family protein  FAM63A/FAM63B 0.0104 0.0050 
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SPAP8A3.04C hsp9 Heat shock protein Hsp9  Unknown 0.0148 0.0050 

SPAPB8E5.05 mfm1 M-factor precursor Mfm1  Unknown 0.0104 0.0050 

SPBC106.08C mug2 Mug2/mug135/meu2 family  Unknown 0.0499 0.0050 

SPAPJ695.01C SPAPJ695.01c S. pombe specific upf0321 family protein 3  Unknown 0.0148 0.0050 

SPAC9.06C SPAC9.06c 
5'-methylthioribulose-1-phosphate 

dehydratase, adducin (predicted)  
APIP 0.0148 0.0050 

SPAC57A7.08 pzh1 Serine/threonine protein phosphatase Pzh1  Unknown 0.0148 0.0050 

SPAC25G10.02 cce1 
Mitochondrial cruciform cutting 
endonuclease Cce1  

Unknown 0.0281 0.0050 

SPBC29A3.10C atp14 F1-ATPatpase subunit H (predicted) Unknown 0.0148 0.0050 

SPBP35G2.06C nup131 Nucleoporin Nup131  NUP133/NUP155 0.0070 0.0049 

SPCC70.02C SPCC70.02c Mitochondrial ATPase inhibitor (predicted)  ATPIF1 0.0207 0.0049 

SPAC15A10.08 ain1 Alpha-actinin  
ACTN1/ACTN2/ 

ACTN4 
0.0207 0.0049 

SPAC19B12.10 sst2 
Human AMSH/STAMBP protein homolog, 

ubiquitin specific-protease  
STAMBP 0.0047 0.0048 

SPBC25B2.01 SPBC25B2.01 
Elongation factor 1 alpha related protein 
(predicted)  

HBS1L 0.0281 0.0048 

SPCC622.19 jmj4 Jmj4 protein (predicted)  Unknown 0.0148 0.0048 

SPAC2G11.12 rqh1 RecQ type DNA helicase Rqh1  WRN/BLM 0.0011 0.0048 

SPAC1F7.12 yak3 Aldose reductase ARK13 family yakc  Unknown 0.0499 0.0048 

SPBC713.05 SPBC713.05 
WD repeat protein, human MAPK organizer 

1 (MORG1) family (predicted)  
WDR83 0.0207 0.0048 

SPAC24B11.08C SPAC24B11.08c 
 COPII-coated vesicle component Erv46 

(predicted)  
ERGIC3 0.0104 0.0047 

SPAC12B10.15C SPAC12B10.15c 
 Ribonuclease H2 complex subunit 
(predicted)  

RNASEH2C 0.0379 0.0047 

SPAC22E12.04 ccs1 
Superoxide dismutase copper chaperone 
Ccs1  

CCS 0.0499 0.0047 

SPBC19F8.02 nud3 Nuclear distribution protein NUDC homolog  NUDC 0.0047 0.0047 

SPBC12C2.05C bzz1 
 Diacylglycerol binding protein Bzz1 

(predicted)  

FNBP1/TRIP10/ 

FNBP1L 
0.0499 0.0047 
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SPBC15D4.12C mug98 
Schizosaccharomyces specific protein 

Mug98  
Unknown 0.0207 0.0047 

SPAC1952.03 otu2 
Ubiquitin specific cysteine protease, OTU 
family, Otu2  

OTUD6A/OTUD6B 0.0379 0.0046 

SPAC144.11 rps1102 40S ribosomal protein S11 (predicted)  RPS11 0.0148 0.0046 

SPAC26A3.11 SPAC26A3.11 Amidohydrolase (predicted) NIT2 0.0104 0.0046 

SPBC106.11C plg7 Phospholipase A2, PAF family homolog  PLA2G7/PAFAH2 0.0379 0.0046 

SPAC10F6.13C SPAC10F6.13c Aspartate aminotransferase (predicted) GOT1/GOTL1 0.0019 0.0045 

SPAC56F8.14C mug115 
Schizosaccharomyces pombe specific protein 
Mug115  

Unknown 0.0148 0.0045 

SPBC29A10.14 rec8 Meiotic cohesin complex subunit Rec8  REC8 0.0148 0.0045 

SPCC24B10.12 cgi121 
EKC/KEOPS complex subunit Cgi121 

(predicted)  
TPRKB 0.0281 0.0045 

SPBC776.11 rpl2801 60S ribosomal protein L27/L28  RPL27A 0.0379 0.0045 

SPBP35G2.07 ilv1 Acetolactate synthase catalytic subunit  Unknown 0.0006 0.0044 

SPBC1711.13 his2 Histidinol dehydrogenase His2 (predicted)  Unknown 0.0207 0.0044 

SPAC1687.14C SPAC1687.14c EF hand family protein, unknown role  
CETN1/CETN2/ 
CETN3 

0.0047 0.0044 

SPAC32A11.01 mug8 Conserved fungal protein  Unknown 0.0104 0.0044 

SPBC15D4.03 slm9 Hira protein Slm9  HIRA 0.0379 0.0044 

SPBC646.15C pex16 
Pex16 family peroxisome import protein 

Pex16 (predicted)  
PEX16 0.0499 0.0044 

SPAC23D3.03C SPAC23D3.03c GTPase activating protein (predicted) TBC1D12/TBC1D14 0.0104 0.0043 

SPAC11G7.04 ubi1 
Ribosomal-ubiquitin fusion protein Ubi1 

(predicted)  
UBA52 0.0047 0.0043 

SPAC328.06 ubp2 Ubiquitin C-terminal hydrolase Ubp2  Unknown 0.0207 0.0043 

SPAC26A3.06 bud23 
rRNA (guanine) methyltransferase Bud23 
(predicted)  

WBSCR22 0.0281 0.0043 

SPAC25B8.07C rcf1 
Cytochrome c oxidase assembly protein 

Rcf1  

HIGD1A/HIGD1B/ 
HIGD1C/HIGD2A/ 

HIGD2B 

0.0207 0.0043 

SPAC5H10.01 SPAC5H10.01 DUF1445 family protein  C14orf159 0.0104 0.0043 
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SPAC1250.02 mug95 
Schizosaccharomyces specific protein 

Mug95  
Unknown 0.0379 0.0043 

SPAC22F8.11 plc1 Phosphoinositide phospholipase C Plc1  

PLCB1/PLCB2/ 

PLCB3/PLCD1/ 

PLCD3/PLCD4/ 
PLCG1/PLCG2/ 

PLCH1/PLCH2/ 

PLCL1/PLCL2 

0.0499 0.0043 

SPAC3F10.06C rit1 
Initiator methionine tRNA 2'-O-ribosyl 
phosphate transferase (predicted)  

Unknown 0.0207 0.0043 

SPAC4F8.08 mug114 
Schizosaccharomyces pombe specific protein 

Mug114  
Unknown 0.0281 0.0043 

SPAC2G11.04 SPAC2G11.04 
RNA-binding protein, G-patch type, splicing 

factor 45 ortholog (predicted)  
RBM17 0.0030 0.0042 

SPBC3E7.10 fma1 
Methionine aminopeptidase Fma1 

(predicted)  
METAP1 0.0148 0.0042 

SPBC1711.11 SPBC1711.11 Autophagy associated protein (predicted)  SNX4/SNX7/SNX30 0.0379 0.0042 

SPBC28E12.06C lvs1 Beige protein homolog Lvs1 (predicted)  WDFY3/WDFY4 0.0499 0.0042 

SPAC25H1.02 jmj1 Histone demethylase Jmj1 (predicted)  JMJD4 0.0281 0.0042 

SPAC11E3.11C syt22 Guanyl-nucleotide exchange factor Syt22  
PSD/PSD2/PSD3/ 

PSD4 
0.0002 0.0042 

SPAC1952.07 rad1 Checkpoint clamp complex protein Rad1 RAD1 0.0499 0.0042 

SPAC664.12C SPAC664.12c 
Mitochondrial succinate dehydrogenase 

assembly factor 1 (predicted)  
SDHAF1 0.0207 0.0042 

SPAP8A3.14C sls1 
Mitochondrial inner membrane protein Sls1 

(predicted)  
Unknown 0.0207 0.0042 

SPCC584.11C SPCC584.11c Svf1 family protein Svf1  Unknown 0.0281 0.0042 

SPBC1289.15 pfl5 Cell surface glycoprotein (predicted)  Unknown 0.0207 0.0042 

SPCC320.07C mde7 RNA-binding protein Mde7  RBPMS 0.0379 0.0041 

SPAC1399.05C toe1 
Transcription factor, zf-fungal binuclear 

cluster type  
Unknown 0.0281 0.0041 

SPCC1281.08 wtf11 Wtf element Wtf11 Unknown 0.0499 0.0041 

SPAC19G12.13C poz1 Pot1 associated protein Poz1  Unknown 0.0104 0.0041 

SPAC3C7.04 SPAC3C7.04 Transcription factor (predicted)  Unknown 0.0003 0.0041 

SPCC777.08C bit61 TORC2 subunit Bit61  PRR5/PRR5L 0.0030 0.0041 

SPCC2H8.05C dbl1 
Schizosaccharomyces specific protein, 

double strand break localizing Dbl1  
Unknown 0.0499 0.0040 
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SPBC1861.02 abp2 ARS binding protein Abp2  Unknown 0.0019 0.0040 

SPAC11D3.16C SPAC11D3.16c Schizosaccharomyces specific protein  Unknown 0.0379 0.0040 

SPAC4G9.05 mpf1 Meiotic PUF family protein 1 (predicted)  Unknown 0.0379 0.0040 

SPCC132.02 hst2 Sir2 family histone deacetylase Hst2  SIRT2/SIRT3 0.0148 0.0039 

SPAC25B8.15C SPAC25B8.15c 
Wybutosine biosynthesis protein Tyw3 

(predicted)  
TYW3 0.0379 0.0039 

SPBC839.13C rpl1601 60S ribosomal protein L13/L16 (predicted)  
RPL13A/RPL16A/ 

RPL16B 
0.0104 0.0039 

SPAC8C9.11 fra2 
Transcriptional repressor protein bola 
domain (predicted)  

BOLA2/BOLA2B 0.0207 0.0039 

SPBC4B4.04 SPBC4B4.04 Translation initiation factor eif2a (predicted)  EIF2A 0.0148 0.0039 

SPAC2C4.15C ubx2 UBX domain protein Ubx2 UBXN7 0.0148 0.0038 

SPBC418.01C his4 
Imidazoleglycerol-phosphate synthase 

(predicted)  
Unknown 0.0499 0.0038 

SPCC162.06C SPCC162.06c Vacuolar sorting protein Vps60 (predicted) CHMP5 0.0104 0.0038 

SPCC191.06 SPCC191.06 Schizosaccharomyces pombe specific protein  Unknown 0.0499 0.0038 

SPCC576.14 dph5 Diphthine synthase Dph5 (predicted)  DPH5 0.0499 0.0038 

SPCC777.10C ubc12 NEDD8-conjugating enzyme Ubc1 UBE2M 0.0281 0.0038 

SPAC9.12C atp12 
Mitochondrial F1-ATPatpase chaperone 

Atp12 (predicted) 
ATPAF2 0.0207 0.0038 

SPAC22F8.07C rtf1 Replication termination factor Rtf1  DMTF1 0.0379 0.0037 

SPCC297.04C set7 
Histone lysine methyltransferase Set7 

(predicted)  
Unknown 0.0379 0.0037 

SPAC1039.08 SPAC1039.08 Serine acetyltransferase (predicted)  Unknown 0.0281 0.0036 

SPBC685.06 rps001 40S ribosomal protein S0A (p40)  RPSA 0.0047 0.0036 

SPAC8C9.08 rps5 40S ribosomal protein S5 (predicted) RPS5 0.0499 0.0036 

SPAC521.05 rps802 40S ribosomal protein S8 (predicted)  RPS8 0.0006 0.0036 

SPCC285.15C rps2802 40S ribosomal protein S28, Rps2802  RPS28 0.0104 0.0036 
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SPAC25G10.05C his1 ATP phosphoribosyltransferase  Unknown 0.0207 0.0036 

SPBPB2B2.11 SPBPB2B2.11 Nucleotide-sugar 4,6-dehydratase (predicted)  TGDS 0.0104 0.0035 

SPBC428.15 SPBC428.15 Obg-like ATPatpase (predicted)  OLA1 0.0499 0.0035 

SPBC14C8.16C bot1 Mitochondrial ribosomal protein subunit S35  Unknown 0.0104 0.0035 

SPBC14C8.09C dbl3 IMPACT domain protein, Dbl3  IMPACT 0.0379 0.0035 

SPBP35G2.10 mit1 
SHREC complex ATP-dependent DNA 

helicase subunit Mit1  
CHD3 0.0030 0.0034 

SPAC1A6.10 SPAC1A6.10 Small protein activating enzyme (predicted)  UBA5 0.0148 0.0034 

SPBC29A10.11C vps902 
Guanyl-nucleotide exchange factor Vps902 
(predicted)  

RABGEF1 0.0207 0.0034 

SPAC1687.06C rpl44 60S ribosomal protein L28/L44 (predicted)  RPL28 0.0207 0.0034 

SPBC28F2.03 ppi1 
Cyclophilin family peptidyl-prolyl cis-trans 

isomerase Cyp2  
PPIA/PPIE/PPIF 0.0379 0.0034 

SPBC2A9.07C hpz1 
Zf-PARP type zinc finger protein, G1-S 

transition regulator Hpz1  
Unknown 0.0281 0.0033 

SPAC1F8.01 ght3 Hexose transmembrane transporter Ght3 Unknown 0.0281 0.0033 

SPAC11E3.04C ubc13 Ubiquitin conjugating enzyme E2 Ubc13  UBE2N 0.0499 0.0033 

SPAC23C4.12 hhp2 Serine/threonine protein kinase Hhp2 CSNK1D/CSNK1E 0.0379 0.0033 

SPAC9G1.05 aip1 Actin cortical patch component Aip1  WDR1 0.0207 0.0032 

SPAP32A8.03C bop1 Ubiquitin-protein ligase E3 (predicted) RNF126 0.0499 0.0032 

SPCC613.03 SPCC613.03 Conserved fungal protein  Unknown 0.0499 0.0032 

SPAC23D3.01 pdp3 
PWWP domain protein, involved in 

chromatin remodeling (predicted)  
Unknown 0.0104 0.0032 

SPBC106.02C srx1 Sulfiredoxin SRXN1 0.0104 0.0032 

SPBC56F2.09C arg5 
Arginine specific carbamoyl-phosphate 
synthase subunit Arg5 (predicted)  

CPS1 0.0207 0.0032 

SPCC1020.13C SPCC1020.13c DDHD family phospholipase (predicted) 
SEC23IP/DDHD1/ 

DDHD2 
0.0207 0.0031 

SPBC106.03 SPBC106.03 DUF1776 family protein Unknown 0.0379 0.0031 
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SPBC660.12C egt2 Ergothioneine biosynthesis protein Egt2  Unknown 0.0281 0.0031 

SPAC22H10.04 ppa3 Protein phosphatase type 2A Ppa1 
PPP3CA/PPP3CB/ 
PPP3CC 

0.0499 0.0031 

SPAC20G4.01 caf16 
CCR4-Not complex subunit Caf16 

(predicted)  
Unknown 0.0379 0.0031 

SPBC800.05C tub1 Tubulin alpha 2 TUBA/B 0.0379 0.0030 

SPAC806.07 ndk1 Nucleoside diphosphate kinase Ndk1  
NME2/NME3/NME4/

NME2P1 
0.0281 0.0030 

SPCC737.09C hmt1 Vacuolar transmembrane transporter Hmt1  ABCB6 0.0379 0.0030 

SPBC27B12.05 SPBC27B12.05 
WD repeat protein involved in 
transcriptional regulation (predicted)  

Unknown 0.0499 0.0030 

SPAC14C4.03 mek1 
Cds1/Rad53/Chk2 family protein kinase 
Mek1 

Unknown 0.0148 0.0029 

SPBC16G5.16 SPBC16G5.16 
Transcription factor, zf-fungal binuclear 

cluster type (predicted)  
Unknown 0.0499 0.0029 

SPAC12G12.16C SPAC12G12.16c 
Fen1 family nuclease, XP-G family 

(predicted)  
FEN1 0.0499 0.0029 

SPAC23G3.05C SPAC23G3.05c 
Regulator of G-protein signaling (RGS) 

domain (predicted)  
Unknown 0.0379 0.0029 

SPBC3H7.14 mug176 BRCT domain protein Unknown 0.0047 0.0028 

SPCC1840.03 sal3 Karyopherin Sal3 IPO5/RANBP6 0.0379 0.0028 

SPBC21B10.05C pop3 WD repeat protein Pop3  MLST8 0.0104 0.0028 

SPAC824.02 bst1 GPI inositol deacylase Bst1 (predicted) PGAP1 0.0104 0.0027 

SPBC83.05 SPBC83.05 
Mitochondrial RNA-binding protein 

(predicted)  
Unknown 0.0281 0.0027 

SPAC824.08 gda1 Guanosine-diphosphatase Gda1  ENTPD5/ENTPD6 0.0379 0.0027 

SPAC20H4.11C rho5 Rho family GTPase Rho5  RHOA/RHOB/RHOC 0.0499 0.0025 

SPBC106.17C cys2 Homoserine O-acetyltransferase (predicted)  Unknown 0.0003 0.0024 

SPAC823.14 ptf1 

Mst2 histone acetytransferase 

acytyltransferase complex, predicted 

phosphoric monoester hydrolase Ptf1  

PSPH 0.0207 0.0024 

SPBC2G5.03 ctu1  Cytosolic thiouridylase subunit Ctu1 CTU1 0.0281 0.0024 

SPBC28E12.04 SPBC28E12.04  Schizosaccharomyces specific protein  Unknown 0.0499 0.0023 
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SPCC11E10.07C SPCC11E10.07c 
Translation initiation factor eif2b alpha 

subunit (predicted)  
EIF2B1 0.0281 0.0021 

SPAC23C11.10 mpn1 RNA processing protein (predicted)  USB1 0.0281 0.0020 

SPCC1450.07C dao1 D-amino acid oxidase  DAO 0.0499 0.0019 

SPCC1020.11C ecm6 
ER membrane protein complex subunit 6 

(predicted)  
EMC6 0.0298 0.0017 

SPCC777.13 vps35 Retromer complex subunit Vps35  VPS35 0.0298 0.0017 

SPAC23C4.11 atp18 F0-ATPatpase subunit J (predicted)  Unknown 0.0128 0.0002 

SPBC776.02C dis2 
Serine/threonine protein phosphatase PP1 
subfamily, Dis2  

PPP1CA/PPP1CB/ 
PPP1CC 

0.0325 0.0002 

SPCC191.11 inv1 External invertase, beta-fructofuranosidase Unknown 0.0325 0.0002 

 

Table 42: Genes identified by the screen of the S. pombe genome wide deletion library to 

increase resistance to 5-FU when deleted (p<0.05). This table shows the open reading frames 

(ORFs), gene, the product encoded by the gene and the name of any known human homologs. 

Table is ordered by GIS (in descending order), then by p value (in ascending order). 
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6.2.4 Ontologies for genes found confer increased sensitivity or resistance to 5-FU 

when deleted 

Ontological analysis, using Cytoscape and BiNGO software, was carried out on this list of 

genes to identify which cellular processes and pathways are over-represented in the list of 

genes, and thus identify cellular pathways which may lead to 5-FU hypersensitivity when 

impaired. The Cytoscape and BiNGO analysis generated a network showing the ontologies of 

the genes identified by the screen. This is shown as Figure 46. The processes and genes 

involved in said process, which confer sensitivity to 5-FU when deleted are shown in Table 

41. Ontological analysis was also carried out for genes that where identified by the screen to 

confer resistance to 5-FU when deleted, this is shown in Figure 47, the identified process and 

genes identified by the ontological analysis to confer resistance to 5-FU when deleted are 

shown in Table 43.
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Figure 46. Gene ontology network for the genes identified to confer hypersensitivity to 5-FU when deleted by QFA analysis of the S. pombe deletion mutant library. 

The relevant processes indicated by the terminal nodes of this network are sown in table 43. 
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Table 43: Table of relevant process identified by ontological analysis to confer increased 

sensitivity to 5-FU when deficient 

Process Genes 
Chromatin remodelling arp42, chz1, clr4, dep1, eaf7, fft3, hrp1, msc1, pht1, 

set1, snt2, swd1, swr1, ubp8, vps71 

Chromatin silencing at centromere arb1, arb2, cid12, clr4, hrp1, raf2, rik1 

Attachment of spindle microtubules to kinetochore 

involved in mitotic sister chromatid segregation 

cid12, clr4 

Kinetochore assembly mhf1, mhf2 

Sister chromatid biorientation cid12, clp1, dad1, spc19 

Negative regulation of histone modification hrp1, raf2, rik1 

Positive regulation of histone modification raf2, rik1, SPBC36B7.08C 

Histone Exchange msc1, pht1, swr1, vps71 

Gene silencing by RNA arb1, arb2, raf2, cid12 

RNA polyadenylation cid12, cid14, swd22 

Conversion of ds siRNA to ss siRNA involved in 

RNA interference 

arb1, arb2 

Donor selection clr4, rik1 

G2/M transition of mitotic cell cycle clp1, fkh2, wee1 

cAMP-mediated signalling  git1, gpa2, ncs1, pka1 

Regulation of Ras protein signal transduction clp1, clr4, fft3, gyp2,  par1, rga2, rga7, SPBC1778.09  

Transcription termination hrp1, reb1, sla1, ssu72 

Regulation of cytokinetic process cbf11, clp1, par1, pom1, rho3  

Regulation of ascospore formation chr3, sla1 

Regulation of cell shape end4, pka1, pom1, ppk14, ppk23, rho3, wee1  

Vacuolar proton-transporting V-type ATPase complex 

assembly 

rav1, rav2 

Macromolecule methylation clr4, prf1, set1, SPCC18.13, swd1, trm8, trm10, rmt1  

Protein modification process alg12, clp1, clr4, cpp1, csn2, ddb1, dep1, dsk1, eaf7, 

eos1, gal7, msc1, nem1, pka1, pom1, ppk14, ppk23, 

ppk31, prf1, ptc2, rhp18, rmt1, rnf10, set1, 

SPBC106.07C, SPBC14F5.10C, SPBC1709.14, 

SPBC1861.07, SPBC32F12.07C, swd1, tel1, ubp8, 

ubp14, wee1  

Regulation of catabolic process csn2, dph1, gyp2, pka1, rav2, rga2, rga7, 

SPBC1778.09  

Sulphur compound catabolic process ggt2, xan1 

Sphingolipid metabolic process arb1, arb2, clr4, scs7, sur2 

Response to zinc ion grx1, rav1 

 

Table 43. Table showing a list of processes and associated genes found to be required for the 

maintenance of 5-FU resistance in S. pombe, as identified by ontological analysis using 

Cytoscape software with the BiNGO plugin. These terms were selected by Cytoscape and the 

BiNGO plugin. 
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Figure 47. Gene ontology network for the genes identified to confer hyper-resistance to 5-FU 

when deleted by QFA analysis of the S. pombe deletion mutant library. Only one significant process, 

protein urmylation, was identified, as indicated by the single terminal node. The genes identified by 

this screen that are involved in this process are shown in table 44.

 

Table 44. 
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Table 44: Table of relevant process identified by ontological analysis to confer increased 

resistance to 5-FU when deficient 

Process Genes  
Protein urmylation ctu1, ctu2, uba42, urm1 

 

Table 44. Table showing the process (protein urmylation) and associated genes found to 

confer resistance to 5-FU when deficient in S. pombe identified by ontological analysis using 

Cytoscape software with the BiNGO plugin. This term was selected by Cytoscape and the 

BiNGO plugi
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6.3 Discussion 

6.3.1 S. pombe mre11, rad50, nbs1 and ctp1 mutants were not found to be 

hypersensitive to 5-FU 

The S. pombe mre11Δ, rad50Δ, nbs1Δ and ctp1Δ mutants did not show any increased 

sensitivity to 5-FU in comparison to the wild-type, this show that mre11, rad50, nbs1 and 

ctp1 mutants do not confer hypersensitivity to 5-FU and that these genes do not function in 5-

FU resistance in S. pombe. This contrasts to the hypothesis (discussed on page 188), despite 

the known roles of the MRN complex in the resistance to nucleoside analogues, such as 

gemcitabine.  

This insensitivity suggest that the MRN complex does not function in the resistance to 5-FU 

in S. pombe. In humans, the primary pathway leading to 5-FU cytotoxicity is through the 

inhibition of TS by the active 5-FU metabolite FdUMP, which leads to the misincorporation 

of dUTP, which is then excised leading to DNA strand breakage. FdUMP synthesis requires 

either the conversion of fluorodeoxyuridine (FUDR) by thymidine kinase (TK), or the 

conversion of fluorouridine diphosphate (FUDP) to fluorodeoxyuridine diphosphate 

(FdUDP), by the ribonucleotide reductase (RNR) protein. FdUDP is then subsequently 

converted by dephosphorylation to FdUMP [253]. FdUDP can also be phosphorylated to 

FdUDP, which can be incorporated into DNA, leading to cytotoxicity [253]. S. pombe is 

known to lack a thymidine kinase gene [342], but retains RNR homologues cdc22 and suc22, 

which encode for the large and small RNR subunits respectively [343]. The lack of TK in S. 

pombe may lead to a reduction in the proportion of 5-FU that is ultimately metabolised 

intracellularly to FdUMP in comparison to mammalian cells, and therefore thymidineless 

death. Integration of the active metabolites FdUTP and FUTP into DNA and RNA 

respectively may contribute more to 5-FU cytotoxicity in S. pombe than TS inhibition. 

The S. pombe mutants that were tested retain proficiency in BER, a pathway which functions 

in the removal of misincorporated uracil from DNA [335]. The BER pathway may therefore 

be sufficient in the removal of FdUTP and FUTP that has been misincorporated into DNA, 

and thus provide resistance to 5-FU in the absence of a functional DSB repair pathway. 

The lack of 5-FU hypersensitivity conferred by these mutants suggests that mutations in these 

genes may also not confer hypersensitivity to 5-FU in human carcinomas. Further work is 

required by testing mutants of MRE11, RAD50, NBS1 and CtIP in human cancer cells. If a 

similar lack of increased sensitivity is observed in human cells, this may suggest that in the 
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NWCOG-2 trial, an increased response to the treatment regimen of radiation, irinotecan and 

capecitabine, conferred by MRN/CtIP mutations may be a result of sensitisation to radiation 

or irinotecan and not capecitabine. 

The insensitivity to 5-FU observed in these S. pombe mutants may not necessarily be 

conferred in higher eukaryotes. Due to this further work is required in testing the sensitivity 

in mutants in homologous genes in a mammalian cell line.  

 

6.3.2 S. pombe deletion mutants identified to confer hypersensitivity to 5-FU 

The QFA analysis of the screen that was carried out on S. pombe deletion mutants identified a 

total of 181 genes for which deletion is significantly sensitive to 5-FU at 400 µM. The mre11, 

rad50, nbs1 and ctp1 deletion mutants were not found to have a greater sensitivity to 5-FU. 

A number of significant genes and processes that were found to confer hypersensitivity to 5-

FU when deficient are described in sections 6.3.2.1 - 6.3.2.5. 

 

6.3.2.1 Chromatin modelling, histone modification and centromere function 

As shown by Figure 46 and Table 43, one process that has been found to be important in 5-

FU resistance is chromatin silencing at centromeres. Chromatin silencing is required or 

normal chromosome segregation during mitosis. The genes clr4 and rik1, were to confer 

hypersensitivity to 5-FU in the screen, are known to function in the silencing of chromatin at 

centromeric regions. Deficiencies of clr4 and rik1 are known to cause a sharp reduction in 

centromeric chromatin silencing leading to elevated rates of chromosome loss [344] [345]. 

Centromeres were found to lag at anaphase spindles in mutants lacking clr4, rik1 or swi6 

[344] [345]. A recently published 5-FU S. pombe screen [311] has also determined that 

defects in chromatin silencing at centromeres correlate to increased 5-FU sensitivity and that 

5-FU impairs chromosome segregation. The study by Mojardín et al also identified swi6, 

clr4, rik1, arb1, arb2, cid12, pob3 and rdp1 as genes that function in this pathway for which 

deletions causes 5-FU hypersensitivity. The study by Mojardín et al further confirmed the 

role of centromeres in 5-FU resistance. This was shown by an increase in 5-FU sensitivity 

caused by the application of thiabendazole, an agent which destabilises microtubules [311].  
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The raf2 gene functions in chromatin silencing at centromeres. raf2 has not before been 

identified to confer 5-FU hypersensitivity upon knockout. Raf1 and Raf2 are known to form 

the histone H3K9 methyltransferase CLRC complex along with Clr4, Cul4 and Rik1. 

Formation of this complex requires RNAi. The CLRC complex is required for 

heterochromatin formation [346]. Raf2 contains a Replication Foci Targeting Sequence 

(RFTS) domain, which shares homology to the RFTS domain of human DNMT1, this RFTS 

domain is required for interaction with Cul4 and centromeric heterochromatin formation 

[347]. 

In human cells, the SWI/SNF complex functions in chromatin remodelling and transcription 

modulation and has been found to be frequently mutated in cancers [348]. A study has shown 

that knockdown of ING2, a protein that is known to associate with SWI/SNF, sensitises cells 

to 5-FU [349], this therefore may indicate a role of SWI/SNF in 5-FU resistance. The S. 

pombe arp42 gene, which was identified by the screen to confer hypersensitivity when 

deleted and identified by the gene ontology analysis to be involved in the process of 

chromatin remodelling, is an S. pombe homologue of a SWI/SNF subunit [350]. 

The cAMP-mediated signalling pathway was also identified by the screen to confer 

sensitivity to 5-FU when deficient. In S. cerevisiae this pathway has been found to function in 

the regulation of Ras and chromatin modelling [351]. In mammalian cells this pathway has 

been found to function in the regulation of the progression of the cell cycle through G1 phase 

through the histone 3 phosphorylation regulatory mechanisms of protein kinase A (PKA) and 

mitogen activated protein (MAP) kinases [352]. In this screen, deletion of the S. pombe 

homolog of PKA, pka1 was found to sensitise cells to 5-FU. Other genes which were 

identified by this screen to sensitise to 5-FU in deletion mutants include git1, gpa2 and ncs1 

(see Table 43). The genes git1 and gpa2 have not before been identified to confer 5-FU 

sensitivity upon deletion in S. pombe. The ncs1 gene has been previously identified to confer 

5-FU hypersensitivity when deleted in S. pombe [311]. 

Histone modification was identified to be another significant process which can sensitize to 

5-FU when defective. A study in colorectal cancer cells has shown that inhibition of histone 

deacetylase induces sensitivity to 5-FU [353]. In mammalian cells, phosphorylation of 

histone H3 occurs following activation of Ras or MAP kinase pathways. This modification is 

thought to function in chromatin remodelling and transcription initiation [354]. In S. pombe 

histone 3 phosphorylation at serine 10 (H3S10) suppresses swi6 expression. During mitotic 
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S-phase the heterochromatic transcripts accumulate. These transcripts are processed into 

siRNA following replication and function to promote swi6 expression when cohesin 

isrecruited [355]. 

The Ras signalling pathway, which is known to induce histone modification [354], has also 

been shown to induce 5-FU sensitivity if defective. In human cells, RAS mutants are known 

to sensitise to 5-FU [356]. The S. pombe RAS homologue (ras1) mutant was not tested in this 

screen as it did not grow on any plates, although a previous screen carried out by Mojardín et 

al showed an increased sensitivity of 5-FU for this mutant [311]. Other genes in this pathway 

identified by the screen to induce hypersensitivity to 5-FU when deleted include clp1, clr4, 

fft3, gyp2, par1, rga2, rga7 and SPBC1778.09. 

Novel chromatin remodelling genes, which increase sensitivity to 5-FU upon deletion, that 

were identified by this screen include chz1, dep1, msc1 and ubp8. The msc1 gene is known to 

encode a protein that interacts with Swi6 [357] and functions in chromosome function and 

stability of centromere through interaction with histone H2A.Z [358]. Other relevant 

chromatin remodelling genes identified in this screen, that were also identified in the screen 

recently published by Mojardín et al include ada2, arp42, bdc1, clr4, eaf7,  fft3, hrp1, pht1, 

pob3, set1, snt2, swd1, swr1 and vps71 [311]. 

The ontological analysis identified G2/M transition of the mitotic cycle as a relevant cellular 

process that can sensitise to 5-FU when deficient. One of the proteins involved in this process 

is Wee1. In human cells, Wee1 functions in the G2/M-phase checkpoint regulation by 

inactivating CDK1, via phosphorylation, in response to DNA damage. An inhibitor of Wee1, 

MK-1775, was found to increase cytotoxicity to 5-FU [359], this is in keeping with the 

observations of wee1 in the S. pombe 5-FU screen. wee1, along with mitotic regulator gene 

clp1 have not before been associated with 5-FU cytotoxicity in S. pombe. The fkh22 (which 

also functions in the G2/M transition of mitotic cell cycle) strain, was also identified to 

sensitise to 5-FU in this screen in addition to the recently published screen by Mojardín et al 

[311]. 

Gene silencing by RNA was also found to be associated with 5-FU response. This process 

also involves raf2, and gene silencing by RNAi is required for the formation of the CLCR 

complex, which includes Raf2, and is required for centromeric heterochromatin formation 

[347]. The RNAi component genes ago1, dcr1 and rdp1 are known to be required maintain 

the chromatin silencing, that is required for centromere formation, and Swi6 binding [360]. 
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Other genes involved in silencing by RNA identified in this screen, that were also identified 

in the screen recently published by Mojardín et al include arb1, arb2, and cid12 [311]. 

Some genes identified by the screen to confer 5-FU sensitivity when deleted are known to 

encode proteins which function in RNA processing, such as cid12 [361] and cid14 [362].In 

mammalian cells, pre-rRNA processing is known to be inhibited by the application of 5-FU 

[129]. In S. pombe cells, rRNA processing by polyadenylation requires cid14 function. cid14 

mutants are known to exhibit increased chromosomal missegregation and heightened 5-FU 

sensitivity [363]. Other RNA processing genes identified by this screen, which have not been 

previously linked to 5-FU sensitivity, include swd22 [364] and sla1 [365]. 

Transcription termination was also identified as a relevant process. A study has shown that 

dUTP DNA incorporation in S. cerevisiae is linked to transcription [366]. sla1 and ssu72 are 

novel 5-FU associated genes that function in transcription termination. The reb1 and hrp1 

(which also function in transcription termination) strains, were also identified to sensitise to 

5-FU in this screen in addition to the recently published screen by Mojardín et al [311]. 

 

6.3.2.2 tel1
ATM

 

As discussed in the introduction to this chapter (see page 184), it was suggested that ATM 

mutants may sensitise human cells to 5-FU [321]. This screen has identified that a deletion of 

the S. pombe ATM homologue tel1 confers sensitisation to 5-FU in S. pombe, tel1 has not 

before been identified to confer hypersensitivity to 5-FU in S. pombe when deleted. 

 

6.3.2.3 rhp18
RAD18

 

The S. pombe RAD18 homolog rhp18 deletion mutant was found to be hypersensitive to 5-

FU. In humans Rad18 functions in the promotion of homologous recombination via 

interactions with Rad51C [367], and also recruits pol-η to stalled replication forks via 

monoubiquitination and direct interaction with PCNA [368]. In S. cerevisiae Rad18 and Rad6 

(homologue of S. pombe rhp6) form a heterodimeric complex [369] with DNA binding, ATP 

hydrolytic and ubiquitin conjugating activities [370]. In S. pombe rhp18 mutants exhibit a 

longer DNA damage checkpoint arrest following irradiation [371]. rhp18 has not before been 

identified to confer hypersensitivity to 5-FU in S. pombe when deleted. 
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6.3.2.4 rhp57
XRCC3

 

The human homologue of rhp57, XRCC3, is required to mediate homologous recombination 

[372] and for the assembly of Rad51 complexes [373]. XRCC3 is also known to be required 

for chromosome stability [374] and correct chromosomal segregation in mammals [375]. A 

study has found that XRCC3 can provide a useful marker to predict the outcome of colorectal 

cancer treatment using 5-FU and oxaliplatin [376]. Rhp57 has not before been identified to 

confer hypersensitivity to 5-FU in S. pombe when deleted. 

 

6.3.2.5 trm8
METTL1

, trm10 and dus3 

The S. cerevisiae homologous proteins, Trm8, Trm10 and Dus3 function in the modification 

of tRNA. The Trm8 methyltransferase forms a complex with Trm82, and catalyses the 

formation of the m7G46 (methylation of guanidine at position 46), Trm8 possesses the 

catalytic activity [377]. Trm10 is an m
1
G9 methyltransferase (catalyses the methylation of 

guanidine at position 9) [378] and is known to be sufficient to catalyse all required m
1
G9 in S. 

cerevisiae [379]. The Dus3 tRNA dihydrouridine synthase is required for the formation of D 

U47 (dihydrouridine at position 47) [380]. These tRNA modifications are required to protect 

tRNA from rapid tRNA degradation (RTD) [381] [382]. S. cerevisiae deletion mutants of 

trm8, trm10 and dus3 were also found to be hypersensitive to 5-FU [383]. Knockdown of the 

trm8 human homolog METTL1 in HeLa cells has been shown to sensitise to 5-FU [384]. 

trm10 has not before been identified to confer hypersensitivity to 5-FU in S. pombe when 

deleted. 

 

6.3.3 Role of centromere function in 5-FU sensitivity 

Many of the genes identified by the screen function in the establishment and maintenance of 

centromeres directly through the silencing and remodelling of chromatin at centromeric 

regions, such as clr4, or indirectly through the RNAi mechanism, such as arb1 and arb2. This 

suggests an additional route in which 5-FU causes toxicity, through the disruption of 

centromeres during mitosis, leading to chromosome missegregation and subsequent cell 

death.  
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6.3.4 S. pombe deletion mutants identified to confer increased resistance to 5-FU 

The QFA analysis of the screen that was carried out on S. pombe deletion mutants identified a 

total of 316 genes for which deletion is significantly resistant to 5-FU at 400 µM. The mre11, 

rad50, nbs1 and ctp1 deletion mutants were not found to have a greater resistance to 5-FU. 

A number of significant genes and processes that were found to confer resistance to 5-FU 

when deficient are described in sections 6.3.4.1 - 6.3.4.4. 

 

6.3.4.1 ctu1, ctu2, uba42 and urm1 

The process identified by the screen and gene ontology analysis to confer increased 5-FU 

resistance when deficient was protein urmylation (see Figure 47 and   
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Table 44), of which four genes were associated. These genes are ctu1, ctu2, uba42 and urm1. 

Deletions of ctu1, ctu2, uba42 and urm1 have not before been identified to confer increased 

5-FU resistance in S. pombe. 

Ubiquitination is the process of the conjugation of the ubiquitin modifier protein to other 

proteins. Ubiquitination marks proteins for degradation, although there are other known 

regulatory roles for ubiquitination. The process of urmylation involves the conjugation of the 

ubiquitin related modifier Urm1 to proteins [385]. In S. cerevisiae Urm1 was found to be 

conjugated to the antioxidant Ahp1 in response to oxidative stress by a process involving 

Uba4 (the S. cerevisiae homologue of Uba42) [386].  

In addition to urmylation the Ctu1, Ctu2, Uba42 and Urm1 proteins also function in the 

thiolation of uridine in tRNA. In S. pombe the Ctu1 and Ctu2 proteins form a cytosolic 

thiouridylase complex which functions in the 2-thiolation of uridine in cytosolic tRNAs. 

Inactivation of this complex is known to result in a deficiency of tRNA thiolation leading to 

marked aneuploidy and aberrant development [387]. 

In S. cerevisiae the Urm1 and Uba4 protein function in the 2-thiolation step of the synthesis 

of 5-methoxycarbonylmethyl-2- thiouridine (mcm
5
s

2
U) in tRNA [388]. These proteins are 

known to carry out such modifications at position 34 (mcm
5
s

2
U34), close to the anticodon. 

The modification of tRNA nucleosides close to the anticodon are known to be important for 

translation, particularly at the uridine at the 34
th

 position (U34) in glutamate, glutamine and 

lysine tRNAs. The addition of the 5-methoxycarbonylmethyl side-chain is mediated by Elp3 

[387].  

The dual urmylation and thiolation functions of Uba42 and Urm1 are conserved from yeast to 

humans [389]. 

The genes iki3 and elp6 were also identified by the screen to confer resistance to 5-FU when 

deleted. The S. cerevisiae homologues proteins Elp1 and Elp6 also function in the 

modification of uridines in tRNA to form mcm
5
s

2
U, 5-carbamoylmethyluridine (ncm

5
U34), 

and 5-methoxycarbonylmethyluridine (mcm
5
U) [390].  

The mechanisms by which Ctu1, Ctu2, Urm1 and Uba42 contribute to 5-FU cytotoxicity is 

unknown. These four proteins all function in the modification of uridine in tRNA. 5-FU is 

known to cause cytotoxicity through the incorporation of FUTP into RNA. RNA 

incorporation is known to contribute significantly to 5-FU cytotoxicity in S. cerevisiae [391]. 
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These modifying proteins may then act to thiolate the incorporated fluourouridine bases 

which may possibly destabilise RNA or create a cytotoxic product. One study has shown that 

5-Fluoro-4′-thiouridine is toxic in leukaemia L1210 and Streptococcus faecium cells [392].  

 

6.3.4.2 exo1 and rqh1
WRN/BLM

 
 

The Exo1 protein is known to function in the processing of DSBs [393], a process which in S. 

cerevisiae also requires Sae2 (Ctp1) and Sgs1 (Rqh1). Exo1 is also known to function in the 

MMR pathway in S. pombe [394] and humans [395]. As discussed in section 6.1.3.4, MMR 

pathway is known to be required for 5-FU toxicity in mammalian cells [317] and deficient 

MMR is known to confer an increased resistance to 5-FU. No other MMR mutants were 

found in the screen, this suggests that this heightened resistance may be due to the loss of 

MMR independent functions of Exo1.Deletions of exo1 and rqh1 have not before been 

identified to confer increased 5-FU resistance in S. pombe. 

 

6.3.4.3 xrc4
XRCC4

 

In mammalian cells the Xrc4 homologue XRCC4 functions in NHEJ to link DNA end 

processing to DNA ligation in the final stages of NHEJ [396]. Studies have shown that NHEJ 

deficiency does not confer 5-FU sensitivity in S. cerevisiae [125] or hamster cell lines [397]. 

The results indicate that NHEJ may play a role in 5-FU cytotoxicity, however further 

investigation into a potential role for NHEJ in the cytotoxicity of 5-FU is required. Deletions 

of xrc4 have not before been identified to confer increased 5-FU resistance in S. pombe. 

6.3.4.4 rad1 and rad17 

The Rad1 protein, along with Rad9 and Hus1, form the 9-1-1 complex upon Hus1 

phosphorylation in response to DNA damage [398] and is loaded onto sites of damage by the 

Rad17-replication factor C (RFC) [399]. The 9-1-1 complex also exists in humans [400] and 

is also loaded by the Rad17-RFC complex [401]. In humans 9-1-1 recruits TopBP1, which 

subsequently activates the ATR-mediated Chk1 pathway by phosphorylation [402]. In S. 

cerevisiae TopBP1 activates ATR via the phosphoinositide 3-kinase related kinase (PIKK) 

domain of ATRIP [403]. 

The human Rad9 component of the 9-1-1 complex is known to interact with BCL-2 to 

promote apoptosis [404]. A lack of the Rad1 subunit is known to destabilise Rad9 and Hus1 
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[405]. This destabilisation of the 9-1-1 complex may abrogate Rad9-BCL-2 interaction, and 

therefore prevent apoptosis, which may contribute to the increased resistance of the rad1Δ 

mutant to 5-FU. As discussed in section 6.1.3.7, defects in BCL/Bax proapoptotic pathways 

increases resistance to 5-FU [328] [329]. These findings, along with the data obtained from 

the S. pombe deletion mutant library screen, may indicate at a potential role for 9-1-1 in 

maintaining 5-FU toxicity. Further work is required to determine if the 9-1-1 complex is 

involved in 5-FU sensitivity. Deletions of rad1 and rad17 have not before been identified to 

confer increased 5-FU resistance in S. pombe. 
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6.3.5 Future work 

In order to confirm the conferred effects of increased 5-FU sensitivity or resistance that result 

from any of the mutants identified, further tests should be carried out. These tests should be 

in the form of “spot-tests”, as shown on page 190, testing for the sensitivity of the mutants at 

varying concentrations of 5-FU, and varying cell densities, in comparison to the wild-type.  

Future work should be carried out to identify if 5-FU affects centromere function in higher 

eukaryotes as many genes found to sensitise to 5-FU upon deletion effect the centromeres in 

a direct or indirect manner. One such experiment in a mammalian cell line could involve the 

visualisation of centromeres, using a fluorescently labelled anti-CENPA antibody, and 

microtubules through mitosis following 5-FU exposure, compared to a no drug control. Other 

experiments could then be carried out to create the mutants identified in the screen in the 

mammalian homologues, and then test for sensitivity to 5-FU. Such mutants could be created 

using the CRISPR/Cas9 system. 

Future work should also be carried out to test if mutations in the genes encoding certain 

tRNA modifying lead to an increase in 5-FU sensitivity as seen in the screen. Mutants could 

be created using the CRISPR/Cas9 system and then tested for 5-FU sensitivity in comparison 

to a wild-type. 
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6.3.6 Conclusion 

The 5-FU sensitivity tests of the mre11Δ, rad50Δ, nbs1Δ and ctp1Δ were not found to 

increase sensitivity to 5-FU despite the known sensitising effects of these mutations to other 

nucleoside analogues. Thus showing that Mre11, Rad50, Nbs1 and Ctp1 do not function in 

the cellular resistance to the drug 5-FU. 

The S. pombe genome wide deletion mutant library screen identified a total of 181 strains that 

were found to be significantly sensitive to 5-FU. Gene ontology identified a number of 

processes in which the mutant genes functioned. Such processes involved chromatin 

modelling process, centromeric processes and cell cycle related process. Many genes which 

function in these processes, and for which the mutants were identified to confer 5-FU 

sensitivity, have not previously been identified to enhance 5-FU sensitivity when deficient, 

for example raf2, wee1 and cid14. Other genes for which deficiency is known to increase 5-

FU cytotoxicity, such as clr4 and rik1, were also identified by the screen. 

These results also suggest that 5-FU may cause cytotoxicity in S. pombe by interfering with 

centromeres, leading to chromosome missegregation and cell death following mitosis, as 

most of the identified genes and processes function, either directly or indirectly, in 

centromere formation, centromere maintenance and mitosis. 

The screen also identified a total of 316 novel genes that confer an increased resistance to 5-

FU. Some of the genes identified are involved in the processing of uridine in tRNA. This may 

suggest that the processing of incorporated fluorouridine in tRNA is a significant contributing 

factor of 5-FU cytotoxicity in S. pombe. A number of DNA repair genes, such as exo1, rqh1, 

xrc4, rad1 and rad17 also showed to increase 5-FU resistance when deleted, therefore DNA 

repair pathways may be required to integrate 5-FU metabolites into DNA. 

Further work is required to confirm that the novel mutants found to increase sensitivity or 

resistance to 5-FU actually confer increased sensitivity or resistance to 5-FU. Sensitivity tests 

should be carried out in these mutants at varying concentrations of 5-FU, and sensitivity 

should then be compared to a wild-type strain.  
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Further work should be then carried out in mammalian cells to identify if the mammalian 

homologs of the S. pombe genes that were found to increase 5-FU sensitivity or resistance, to 

determine if such mutants have a similar effect in higher eukaryotes. The mutants could be 

created using the CRISPR/Cas9 system.  
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7 Final Conclusions 

7.1 Conclusions of Research 

This project identified that certain mutations in S. pombe mre11, rad50, nbs1 and ctp1 confer 

hypersensitivity to the topoisomerase inhibitor camptothecin. The mre11Δ5-7, mre11-W210X, 

rad50-MSI and ctp1-MSI all showed null phenotypes, with severe sensitivity to camptothecin 

and MMS. This increase in cytotoxicity may be due to impairment of topoisomerase removal 

or defective downstream repair functions. One of the truncation mutants studied, mre11-

R572X, showed no increase in sensitivity to camptothecin, suggesting that the C-terminal 

region of S. pombe Mre11 are not required for removal of topoisomerase I from DNA. A 

mutant of nbs1, nbs1-MSI, which encodes a protein lacking the C-terminal Mre11 and ATM 

binding domains, showed a great increase in sensitivity to MMS, whilst only showing a very 

slight increase in sensitivity to camptothecin, this suggests that this mutant is a separation of 

function mutant and that the Mre11 and ATM binding domains of Nbs1 may not be required 

for topoisomerase removal but are still required for other forms of DNA repair. The MRE11-

R572X mutant showed only a very slight phenotype, indicating that the C-terminal region of 

S. pombe Mre11 may not be required for topoisomerase removal, downstream DNA repair or 

repair of MMS induced lesions. 

Similar mutations in the human homologues of the aforementioned genes may confer similar 

increases to camptothecin sensitivity via impairment of topoisomerase removal or 

downstream DNA repair mechanisms. These mutations, when present in cancers, may have 

sensitising effects to camptothecin, and thus patients with such tumours may benefit from 

camptothecin based treatment. 

The sequencing of MRE11, RAD50, NBS1 and CtIP in the 25 NWCOG-2 patient tumour 

samples initially revealed a total of 30 somatic mutations, of which 25 were non-

synonymous. 15 of these mutations were missense mutations that were predicted by 

Polyphen-2 analysis to be either possibly or probably damaging. An additional 2 nonsense 

and additional 2 frameshift mutations were identified. One such frameshift mutation was the 

CtIP-poly(A)9 1 bp deletion, which has previously only been described in cancers displaying 

MSI, this therefore marks the first occasion of this mutation being identified in an MSS 

tumour. 
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The patient set appeared to have higher mutation rate than that of the TCGA and COSMIC 

studies with a vastly different mutation spectrum. The percentage of mutations that were of 

the G:C>A:T type was much lower than that known occur as a result of FFPE sequencing 

artefacts.  

The patient survival data appeared to show an improved response to treatment in those of 

whom a mutation was identified over patients with wild-type MRN/CtIP tumours, thus 

supporting the hypothesis that MRN/CtIP mutations are indicative of improved treatment 

with camptothecin based therapies. 

We were advised to resequence the mutations using primers which bind external to those 

used in the original sequencing reactions. All but one mutation were irreproducible in this 

resequencing, despite the confirmatory sequencing that was previously carried out for all 

mutations. Again, when sequencing from newly cut patient tumour sections only the 

identification of the CtIP-poly(A)9 1 bp deletion mutant in patient R48 was found to be 

reproducible. The presence of this mutation was then confirmed using fluorescent fragment 

analysis, which also identified that this mutation may also be present in the patient R51 

tumour sample. As discussed previously, this mutation has only before been observed in 

cancers displaying MSI. If this tumour genuinely is MSS, confirmation of this mutant would 

mark the first occasion of this mutation being identified in an MSS tumour. Further work 

should be carried out on the patient R48 tumour sample to determine the MSI status. 

A 1 bp deletion mutation was also found in the MRE11-poly(T)11 tract in patient R12 using 

fluorescent fragment analysis. This mutation has also only previously been described in MSI 

cancers, whereas the cancer for patient R12 is MSS. If this tumour genuinely is MSS, 

confirmation of this mutant would therefore mark the first occasion of this mutation being 

identified in an MSS tumour. Further work should be carried out on the patient R12 tumour 

sample to determine the MSI status. 

The loss of the mutations upon resequencing may have been due FFPE related sequencing 

artefacts, however the mutation spectra showed a much lower level of C:G>T:A mutations 

than what is known to occur as a result of FFPE processing. These mutations may have been 

caused by errors incorporated by the polymerase, however with approximately 3000 copies of 

the genome per sample, it is unlikely for the same error to be incorporated in PCRs from all 

template copies. Another possibility is that due to the low quality of FFPE DNA, a low 

number, possibly even just a single copy, of the genome may be amplifiable by PCR which 
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may contain the mutation. This PCR may have been facilitated by the long elongation time of 

the initial multiplex PCR reactions. This copy may then have formed the template for all 

other subsequent reactions, and thus leading to the synthesis of PCR products harbouring the 

mutation. Another possible explanation is tumour heterogeneity, in which subsequent PCRs 

may have amplified from an area of tumour which does not contain cells harbouring the 

previously observed mutations. 

Tests for the sensitivity of 5-FU on S. pombe mre11, rad50, nbs1 and ctp1 deletion mutants 

did not reveal any increase in the sensitivity to 5-FU, despite the known sensitising effects of 

these mutations to nucleoside analogues. This shows that in S. pombe Mre11, Rad50, Nbs1 

and CtP1 are not required for cellar resistance to 5-FU.  

The S. pombe deletion mutant library screen identified at total of 181 mutations that were 

found to be significantly sensitive to 5-FU. Ontological analysis identified a number of 

cellular pathways that are over represented by the genes of the mutants identified by the 

screen. The processes identified included chromatin silencing, chromatin remodelling, 

negative regulation of mitotic cell cycle, gene silencing by RNA and RNA 3′-end processing. 

Some of these genes and processes have been recently described to contribute to 5-FU 

sensitivity when disrupted, such as chromatin remodelling and chromatin silencing at 

centromeres, and the genes clr4 and rik1. However, a number of genes have been identified 

as novel markers for 5-FU hypersensitivity including raf2, wee1, cid14 and many more.  

The results of the screen suggest that 5-FU may cause cytotoxicity in S. pombe through 

disruption of centromeric activities, leading to chromosome missegregation following 

mitosis, as many of the identified genes and processes which increase 5-FU sensitivity when 

deficient, function either directly or indirectly in centromere formation, maintenance and 

mitosis. 

The mutants of some DNA repair genes were found to sensitise to 5-FU, these mutants 

include tel1
ATM

, rhp18
RAD18

 and rhp57
XRCC3

. 

The screen also identified a total of 316 mutants which have an increased resistance to 5-FU. 

These mutants include ctu1, ctu2, uba42 and urm1, which function in the thiolation of uridine 

residues in tRNA. This may suggest that the thiolation of incorporated 5-FU, in the form of 

fluorothiouridine, in tRNA may be a contributing factor to 5-FU toxicity in S. pombe. 
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The screen also identified certain DNA repair genes which increase 5-FU resistance when 

deleted. These genes are exo1, rqh1
WRN/BLM

, xrc4
XRCC4

, rad1 and rad17. This suggests that 

these genes may also contribute to 5-FU toxicity, possibly aiding the incorporation of 5-FU 

metabolites into DNA. It is known that BER and MMR can lead to the incorporation of 

nucleoside analogues and 5-FU metabolites into DNA [119] [120].  

 

7.2 Potential Significance of Research on Cancer Therapy 

This work identified that when certain patient tumour mutations are created in S. pombe, the 

cells become sensitised to camptothecin, whereas some mutations confer little to no 

hypersensitivity to camptothecin. This suggests that certain domains, such as the Mre11 

nuclease domain, are important for camptothecin resistance, whereas other domains, such as 

the Nbs1, Mre11 and ATM binding domains, are not as essential. This suggests that these 

mutations may potentially confer a similar effect in human cancer cells, and that the presence 

of certain MRN/CtIP mutations may provide markers that are indicative of an improved 

response to topoisomerase inhibition. These genes therefore may be good candidates for 

personalised therapy using camptothecin based therapies in patients in which such mutations 

are identified. 

The genome wide deletion screen identified a number of candidate genes for 5-FU sensitivity 

in S. pombe, many of which function in the formation, maintenance and function of 

centromeres. This has therefore identified a number of potential genes, for which the human 

homologues, may contribute to 5-FU resistance in cancers. Therefore such genes may provide 

potential candidates for personalised cancer therapy using 5-FU when mutated. This also 

identified a potential role of the centromere function in 5-FU resistance, and therefore drugs 

which affect centromeric function, such as thiabenzadole [406] or Eribulin (E7398) [407], 

could potentially be administered concurrently with 5-FU to increase the efficacy of 5-FU 

[311]. The identification of mutations which increase sensitivity to 5-FU could also 

potentially contribute to personalised therapy as mutations in these genes may provide 

contraindicative markers for 5-FU based therapies. 
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7.3 Future Work 

Additional work to study the mutants created in S. pombe could include assays that assess 

MRN complex formation, interaction between individual MRN proteins and Ctp1, DNA 

binding and topoisomerase interaction. This would aim to identify the mechanisms in which 

these proteins are dysfunctional. Also, due to the possible effects of the lox-sites, these 

mutants should be created into strain lacking the lox sites, to confirm that the observed 

phenotype is a result of the mutation and not caused by the presence of the lox sites. This is 

especially important for nbs1 mutants as the lox-nbs1-WT strain exhibited a phenotype 

showing increased sensitivity to camptothecin and MMS. 

As the CtIP-poly(A)9 1 bp deletion and MRE11-poly(T)11 mutants have only been 

previously identified in MSS tumours, further work should be carried out to confirm that 

these tumours are microsatellite stable. Such work could include the sequencing of MMR 

genes such as MLH1. If all tests confirm that that these patients definitely are MSS, then this 

will mark the first time that these mutations have been identified in MSS tumours, showing 

that these particular mutations are not specific to MSI tumours. 

Future work should be carried out to evaluate the potential of the role of centromeres as a 

target for cancer therapy using 5-FU. Mutations of the candidate genes identified by the 

screen could be made using the CRISPR/Cas9 system in mammalian cells and then tested for 

sensitivity to 5-FU. Work could also be carried out to test the effects of centromere disruption 

on 5-FU efficacy in mammalian cells. An experiment using 5-FU resistant cells comparing 

the cytotoxicity of cells treated with 5-FU + thiabendazole/Eribulin versus 5-FU alone could 

be carried out to study these effects. 

 

  



243 

 

8 References 

 

1. Khanna, K. K.; Jackson, S. P. DNA Double-Strand Breaks: Signalling, Repair and the 

Cancer Connection. Nature Genetics 2001, 27, 247-254. 

2. Mahaney, B. L.; Meek, K.; Lees-Miller, S. P. Repair of Ionizing Radiation-Induced 

DNA Double Strand Breaks by Non-Homologous End-Joining. Biochemical Journal 

2010, 417 (3), 639-650. 

3. McBlane, J. F.; Van Gent, D. C.; Ramsden, D. A.; Romeo, C.; Cuomo, C. A.; Gellert, 

M.; Oettinger, M. A. Cleavage at a V(D)J Recombination Signal Requires Only RAG1 

and RAG2 Proteins and Occurs in Two Steps. Cell 1995, 83 (3), 387-395. 

4. Takemura, H.; Rao, V. A.; Sordet, O.; Furuta, T.; Miao, Z.; Meng, L.; Zhang, H.; 

Pommier, Y. Defective Mre11-dependent Activation of Chk2 by Ataxia Telangiectasia 

Mutated in Colorectal Carcinoma Cells in Response to Replication-dependent DNA 

Double Strand Breaks. The Journal of Biological Chemistry 2006, 281 (41), 30814-

30823. 

5. Czornak, K.; Chughtai, S.; Chrzanowska, K. H. Mystery of DNA Repair: The Role of 

the MRN Complex and ATM Kinase in DNA Damage Repair. Journal of Applied 

Genetics 2008, 49 (4), 383-396. 

6. Williams, G. J. Mre11-Rad50-Nbs1 Conformations and the Control of Sensing, 

Signaling, and Effector Responses at DNA Double-Strand Breaks. DNA Repair 2010, 9 

(12), 1299-1306. 

7. Wen, J.; Cerosaletti, K.; Schultz, K. J.; Wright, J. A.; Concannon, P. NBN 

Phosphorylation Regulates the Accumulation of MRN and ATM at Sites of DNA 

Double-Strand Breaks. Oncogene 2013, 32 (37), 4448-4456. 

8. Tsutsui, Y.; Kawasaki, A.; Iwasaki, H. Human CtIP and Its Homologs: Team Players 

in DSB Resection Games. In DNA Repair - On the Pathways to Fixing DNA Damage 

and Errors; Intech, 2011. 

9. Van Den Bosch, M.; Bree, R. T.; Lowndes, N. F. The MRN Complex: Coordinating 

and Mediating the Response to Broken Chrmosomes. EMBO Reports 2003, 4 (9), 844-

849. 

10. Uziel, T.; Lerenthal, Y.; Moyal, L.; Andegeko, Y.; Mittelman, L.; Shiloh, Y. 

Requirement of the MRN Complex for ATM Activation by DNA Damage. The EMBO 

Journal 2003, 22 (20), 5612-5621. 



244 

 

11. Lee, J.; Paull, T. T. ATM Activation by DNA Double-Strand Breaks Through the 

Mre11-Rad50-Nbs1 Complex. Science 2005, 308 (5721), 551-554. 

12. Dupré, A.; Boyer-Chatenet, L.; Gautier, J. Two-Step Activation of ATM by DNA and 

the Mre11-Rad50-Nbs1 Complex. Nature Structural & Mlecular Biology 2006, 13, 

451-457. 

13. Burma, S.; Chen, B. P.; Murphy, M.; Kurimasa, A.; Chen, D. J. ATM Phosphorylates 

Histone H2AX in Response to DNA Doubl-Strand Breaks. The Journal of 

Biochemistry 2001, 276 (45), 42462-42467. 

14. Wu, C.; Kang, H.; Lang, W.; Wu, J.; Jeong, Y. S.; Wang, J.; Chan, C.; Lee, S.; Zhang, 

X.; Lamothe, B.; Campos, A. D.; Darnay, B. G.; Lin, H. Critical Role of 

Monoubiquitinationof Histone H2AX Protein in Histone H2AX Phosphorylation and 

DNA Damage Response. The Journal of Biological Chemistry 2011, 266 (35), 30806-

30815. 

15. Chaturvedi, P.; Eng, W. K.; Zhu, Y.; Mattrn, M. R.; Mishra, R.; Hurle, M. R.; Zhang, 

X.; Annan, R. S.; Lu, Q.; Faucette, L. F.; Scott, G. F.; Li, X.; Carr, S. A.; Johnson, R. 

K.; Winkler, J. D.; Zhou, B. S. Mammalian Chk2 is a Downstream Effector of the 

ATM-Dependent DNA Damage Checkpoint Pathway. Oncogene 1999, 18 (28), 4047-

4054. 

16. Gatei, M.; Sloper, K.; Sörensen, C.; Syljuāsen, R.; Falck, J.; Hobson, K.; Savage, K.; 

Lukas, J.; Zhou, B.; Bartek, K. K. K. Ataxia-Telangiectasia-Mutated (ATM) and 

NBS1-Dependent Phosphoryation of Chk1 on Ser-317 in Response to Ionizing 

Radiation. The Journal of Biological Chemistry 2003, 278 (17), 14806-14811. 

17. Turenne, G. A.; Paul, P.; Laflair, L.; Price, B. D. Activation of p53 Transcriptional 

Activity Requires ATM's Kinase Domain and Multiple N-Terminal Serine Residues of 

p53. Oncogene 2001, 20 (37), 5100-5110. 

18. Lavin, M. F.; Kozlov, S. ATM Activation and DNA Damage Response. Cell Cycle 

2007, 6 (8), 931-942. 

19. Lieber, M.; Raghavan, K. Y. S. Roles of Nonhomologous DNA End Joining, V(D)J 

Recombination, and Class Switch Recombination in Chromosomal Translocations. 

DNA Repair 2006, 5 (9-10), 1234-1235. 

20. Walker, J. R.; Corpina, R. A.; Goldberg, J. Structure of the Ku Heterodimer Bound to 

DNA and its Implications for Double-Strand Break Repair. Nature 2001, 412, 607-614. 

 

 

 



245 

 

21. Romero, F.; Multon, M. C.; Ramos-Morales, F.; Domínguez, Á.; Bernal, J. A.; Pintor-

Toro, J. A.; Torolero, M. Human Securin, hPTTG, is Associated with Ku Heterodimer, 

the Regulatory Subunit of the DNA-Dependent Protein Kinase. Nucleic Acids Research 

2001, 29 (6), 1300-1307. 

22. Lee, J. W.; Blanco, L.; Zhou, T.; Garcia-Diaz, M.; Bebenek, K.; Kunkel, T. A.; Wang, 

Z.; Povirk, L. F. Implication of DNA Polymerase λ in Alignment-based Gap Filling for 

Nonhomologous DNA End Joining in Human Nuclear Extracts. The Journal of 

Biological Chemistry 2004, 279, 805-811. 

23. Mahajan, K. N.; McElhinny, S. A. N.; Mitchell, B. S.; Ramsden, D. A. Association of 

DNA Polymerase μ (pol μ) with Ku and Ligase IV: Role for pol μ in End-joining 

Double-Strand Break Repair. Molecular and Cellular Biology 2002, 22 (14), 5194-

5202. 

24. Weterings, E.; Chen, D. J. The Endless Tale of Non-Homologous End-Joining. Cell 

Research 2008, 18 (1), 114-124. 

25. Ma, Y.; Pannicke, U.; Schwarz, K.; Lieber, M. R. Hairpin Opening and Overhang 

Processing by an Artemis/DNA-Dependent Protein Kinase Complex in 

Nonhomologous End Joining and V(D)J Recombination. Cell 2002, 108, 781-794. 

26. Lieber, M. R.; Ma; Y; Pannicke, U.; Schwarz, K. Mechanism and Regulation of 

Human Non-Homologous DNA End-Joining. Nature Reviews Molecular Cell Biology 

2003, 4, 712-720. 

27. Wu, X.; Wilson, T. E. L. M. R. A Role for FEN-1 in Nonhomologous DNA End 

Joining: The Order of Strand Annealing and Nucleolytic Processing Events. PNAS 

1999, 96 (4), 1303-1308. 

28. Langerak, P.; Mejia-Ramirez, E.; Limbo, O.; Russell, P. Release of Ku and MRN from 

DNA Ends by Mre11 Nuclease Activity and Ctp1 Is Required for Homologous 

Recombination Repair of Double-Strand Breaks. PLoS 2001, 7 (9). 

29. Lees-Miller, S. P.; Meek, K. Repair of DNA Double Strand Breaks by Non-

Homologous End Joining. Biochimie 2003, 85, 1161-1173. 

30. Chappell, C.; Hanakahi, L. A.; Karimi-Busheri, F.; Weinfeld, M.; West, S. C. 

Involvement of Human Polynucleotide Kinase in Double-Strand Break Repair by Non-

Homologous End Joining. The EMBO Journal 2002, 21 (11), 2827-2832. 

31. Ahnesorg, P.; Smith, P.; Jackson, S. P. XLF Interacts with the XRCC4-DNA Ligase IV 

Complex to Promote DNA Nonhomologous End-Joining. Cell 2006, 124 (2), 301-313. 

 



246 

 

32. Riballo, E.; Woodbine, L.; Stiff, T.; Walker, S. A.; Goodarzi, A. A.; Jeggo, P. A. XLF-

Cernunnos Promotes DNA Ligase IV-XRCC4 Re-Adenylation Following Ligation. 

Nucleic Acids Research 2009, 37 (2), 482-492. 

33. Cavero, S.; Chahwan, C.; Russell, P. Xlf1 is Required for DNA Repair by 

Nonhomologous End Joining in Schizosaccharomyces pombe. Genetics 2007, 175 (2), 

963-967. 

34. Manolis, K.; Nimmo, E.; Hartsuiker, E.; Carr, A.; Jeggo, P.; Allshire, R. Novel 

Functional Requirements for Non-Homologous DNA End Joining in 

Schizosaccharomyces pombe. EMBO Journal 2001, 20 (1-2), 210-221. 

35. Sartori, A. A.; Lukas, C.; Coates, J.; Mistrik, M.; Fu, S.; Bartek, J.; Baer, R.; Lukas, J.; 

Jackson, S. P. Human CtIP Promotes DNA End Resection. Nature 2007, 450 (7169), 

509-514. 

36. Peterson, S. E.; Li, Y.; Chait, B. T.; Gottesman, M. E.; Baer, R.; Gautier, J. Cdk1 

Uncouples CtIP-Dependent Resection and Rad51 Filament FormationDuring M-Phase 

Double-Strand Break Repair. TheJournal of Cell Biology 2011, 194 (5), 705-720. 

37. Kaidi, A.; Weinert, B. T.; Choudhary, C.; Jackson, S. P. Human SIRT6 Promotes DNA 

End Resection Through CtIP Deacetylation. Science 2010, 329 (5997), 1348-1353. 

38. Shibata, A.; Moiani, D.; Arvai, A. S.; Perry, J.; Harding, S. M.; Genois, M.-M.; Maity, 

R.; Van Rossum-Fikkert, S.; Kertokalio, A.; Romoli, F.; Ismail, A.; Ismalaj, E.; 

Petricci, E.; Neale, M. J.; Bristow, R. G.; Masson, J.-V.; Wyman, C.; Jeggo, P. A.; 

Tainer, J. A. DNA Double-Strand Break Repair Pathway Choice Is Directed by 

Distinct MRE11 Nuclease Activities. Molecular Cell 2014, 53 (1), 7-18. 

39. Cejka, P.; Cannavo, E.; Polaczek, P.; Masuda-Sasa, T.; Pokharel, S.; Campell, J. L.; 

Kowalczykowski, C. DNA end resection by DNA2-Sgs1-RPA and its stimulation by 

Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature 2010, 467 (2), 112-117. 

40. Zhu, Z.; Chung, W.-H.; Shim, E. Y.; Lee, S. E.; Ira, G. Sgs1 Helicase and Two 

Nucleases Dna2 and Exo1 Resect DNA Double-Strand Break Ends. Cell 2008, 134 (6), 

981-994. 

41. Bolderson, E.; Tomimatsu, N.; Richard, D. J.; Boucher, D.; Kumar, R.; Pandita, T. K.; 

Burma, S.; Khanna, K. K. Phosphorylation of Exo1 Moduates Homologous 

Recombination Repair of DNA Double-Strand Breaks. Nucleic Acids Research 2010, 

38 (6), 1821-1831. 

 

 



247 

 

42. Carreira, A.; Hilario, J.; Amitani, I.; Baskin, R. J.; Shivji, M. K. K.; Venkitaraman, A. 

R.; Kowalczykowski, S. C. The BRC Repeats of BRCA2 Modulate the DNA Binding 

Selectivity of RAD51. Cell 2009, 136 (6), 1032-1043. 

43. New, J. H.; Sugiyama, T.; Zaitseva, E.; Kowalczykowski, S. C. Rad52 Protein 

Stimulates DNA Strand Exchange by Rad51 and Reolication Protein A. Nature 1998, 

391, 407-410. 

44. Heyer, W.; Li, X.; Rolfsmeier, M.; Zhang. Rad54: The Swiss Army Knife of 

Homologous Recombination. Nucleic Acids Research 2006, 34 (15), 4115-4125. 

45. Stracker, T. H.; Petrini, J. H. J. The MRE11 Complex: Starting from the Ends. Nature 

Reviews Molecular Cell Biology 2011, 12, 90-103. 

46. Shay, J. W.; Zou, Y.; Hiyama, E.; Wright, W. E. Telomerase and Cancer. Human 

Molecular Genetics 2001, 10 (7), 677-685. 

47. Lamarche, B. J.; Orazio, N. I.; Weitzman, M. D. The MRN Complex in Double-Strand 

Break Repair and Telomere Maintenance. FEBS Letters 2010, 584, 3682-3695. 

48. Hahn, W. C.; Counter, C. M.; Lundberg, A. S.; Beijersbergen, R. L.; Brooks, M. W.; 

Weinberg, R. A. Creation of Human Tumour Cells with Defined Genetic Elements. 

Nature 1999, 400, 464-468. 

49. Stewart, S. A.; Weinberg, R. A. Telomeres: Cancer to Human Ageing. 2006, 22, 531-

557. 

50. Kim, N. W.; Piatyszek, M.; Prowse, K. R.; Harley, C. B.; West, M. D.; L, H. P.; 

Coviello, G. M.; Wright, W. E.; Weinrich, S. L.; Shay, J. W. Specific Association of 

Human Telomerase Activity with Immortal Cells and Cancer. Science 1994, 266 

(5193), 2011-2015. 

51. Takata, H.; Tanaka, Y.; Matsuura, A. Late S Phase-Specific Recruitment of Mre11 

Complex Triggers Hierarchical Assembly of Telomere Replication Proteins in 

Saccharomyces Cerevisiae. Molecular Cell 2005, 17 (4), 573-583. 

52. Lombard, D. B.; Guarente, L. Nijmegen Breakage Syndrome Disease Protein and 

MRE11 at PML NuclearBodies and Meiotic Telomeres. Cancer Research 2000, 60, 

2331-2334. 

53. Kironmai, K. M.; Muniyappa, K. Alteration of Telomeric Sequencies and Senescence 

Caused by Mutations in RAD50 of Saccharomyces cerevisiae. Genes to Cells 1997, 2 

(7), 443-455. 

 



248 

 

54. Boulton, S. J.; Jackson, S. P. Components of the Ku-Dependent Non-Homologous 

End-Joining Pathway are Involved in Telomeric Length Maintenance and Telomeric 

Silencing. The EMBO Journal 1998, 17 (6), 1819-1828. 

55. Valeri, N.; Gasparini, P.; Fabbri, M.; Braconi, C.; Veronese, A.; Lovat, F.; Adair, B.; 

Vannini, I.; Fanini, F.; Bottoni, A.; Costinean, S.; Sandhu, S. K.; Nuovo, G. J.; Alder, 

H.; Gafa, R.; Calore, F.; Ferracin, M.; Lanza, G.; Volinia, S.; Negrini, M.; McIlhatton, 

M. A.; Amadori, D.; Fishel, R.; Croce, C. M. Modulation of Mismatch Repair and 

Genomic Stability by miR-155. PNAS 2010, 107 (15), 6982-6987 

56. Lin, G. M. Mechanisms and Functions of DNA Mismatch Repair. Cell Research 2008, 

18, 85-98. 

57. Martin, S. A.; McCabe, N.; Mullarkey, M.; Cummins, R.; Burgess, D. J.; Nakabeppu, 

Y.; Oka, S.; Kay, E.; Lord, C. J.; Ashworth, A. DNA Polymerases as Potential 

Therapeutic Targets for Cancers Deficient in the DNA Mismatch Repair Proteins 

MSH2 or MLH1. Cancer Cell 2010, 17 (3-3), 235-248. 

58. Jiricny, J. MutLα: At the Cutting Edge of Mismatch Repair. Cell 1998, 92 (1), 117-

129. 

59. Liu, Y.; Fang, Y.; Shao, H.; Lindsey-Boltz, L.; Sancar, A.; Modrich, P. Interactions of 

Human Mismatch Repair Proteins MutSα and MutLα with Proteins of the ATR-Chk1 

Pathway. The Journal of Biological Chemistry 2010, 285 (8), 5974-5982. 

60. Jiricny, J. The Multifaceted Mismatch-Repair System. Nature Reviews Cell Biology 

2006, 7, 335-346. 

61. Wimmer, K.; Etzler, J. Constitutional Mismatch Repair-Deficiency Syndrome: Have 

We So Far Seen Only the Tip of an Iceberg? Human Genetics 2008, 124, 105-122. 

62. Stojic, L.; Mojas, N.; Cejka, P.; Di Pietro, M.; Ferrari, S.; Marra, G.; Jiricny, J. 

Mismatch Repair-Dependent G2 Checkpoint Induced by Low Doses of SN1 Type 

Methylating Agents Requires the ATR Kinase. Genes & Development 2004, 18 (11), 

1331-1344. 

63. Yoshioka, K.; Yoshioka, Y.; Hsieh, P. ATR Kinase Activation Mediated by MutSalpha 

and MutLalpha in Response to Cytotoxic 06-Methylguanine Adducts. Molecular Cell 

2006, 22 (4), 501-510. 

64. Yamane, K.; Taylor, K.; Kinsella, T. J. Mismatch Repair-Mediated G2/M Arrest by 6-

Thioguanine Involves the ATR-Chk1 Pathway. Biochemical and Biophysical Research 

Communications 2004, 318 (1), 297-302. 

 



249 

 

65. Picherri, P.; Rosselli, F. The DNA Crosslink-Induced S-Phase Checkpoint Depends o 

ATR-CHK1 and ATR-NBS1-FANCD2 Pathways. The EMBO Journal 2004, 23 (5), 

1178-1187. 

66. Kobayashi, J. Molecular Mechanism of the Recruitment of NBS1/hMRE11/hRAD50 

Complex to DNA Double-Strand Breaks: NBS1 Binds to γ-H2AX through FHA/BRCT 

Domain. Journal of Radiation Research 2004, 45 (4), 473-478. 

67. Bertagnoli, M. M.; Niedzwiecki, D.; Compton, C. C.; Hahn, H. P.; Hall, M.; Damas, 

B.; Jewell, S. D.; Mayer, R. J.; Goldberg, R. M.; Saltz, L. B.; Warren, R. S.; Redston, 

M. Microsatellite Instability Predicts Improved Response to Adjuvent Therapy With 

Irinotecan, Fluoracil, and Leucovorin in Stage III Colon Cancer: Cancer and Leukemia 

Group B Protocol 89803. Journal of Clinical Oncology 2009, 21 (11), 1814-1821. 

68. Hawkins, N.; Norrie, M.; Cheong, K.; Mokany, E.; Ku, S.; Meagher, A.; O'Connor, T.; 

Ward, R. CpG Island Methylation in Sporadic Colorectal Cancers and Its Relationship 

to Microsatellite Instability. Gastroenterology 2002, 122 (5), 1376-1387. 

69. Bapat, B. V.; Madlensky, L.; Temple, L. K. F.; Hiruki, T.; Redston, M.; Baron, D. L.; 

Xia, L.; Marcus, V. A.; Soravia, C.; Mitri, A.; Shen, W.; Gryfe, R.; Berk, T.; 

Chodirker, B. N.; Cohen, Z.; Gallinger. Family History Characteristics, Tumour 

Microsatellite Instability and Germline MSH2 and MLH1 Mutations in Herditary 

Colorectal Cancer. Human Genetics 1999, 104 (2), 167-176. 

70. Kim, N.; Choi, Y. R.; Baek, M. J. Frameshift Mutations at Coding Mononucleotide 

Repeats of the hRAD50 Gene in Gastrotestinal Carcinomas with Microsatellite 

Instability. Cancer Research 2001, 61 (1), 36-38. 

71. Alemayehu, A.; Fridrichova, I. The MRE11/RAD50/NBS1 Complex Destabilization in 

Lynch-Syndrome Patients. European Journal of Human Genetics 2007, 15 (9), 922-

929. 

72. Gisnnini, G.; Rinaldi, C.; Ristori, E.; Ambrosini, M. I.; Cerignoli, F.; Viel, A.; Bidoli, 

E.; Berni, S.; D'Amati, G.; Scambia, G.; Frati, L.; Screpanti, I.; Gulino, A. Mutations of 

an Intronic Repeat Induce Impaired MRE11 Expression in Primary Human Cancer 

with Microsatellite Instability. Oncogene 2004, 23 (15), 2640-2647. 

73. Suzuki; H; Itoh, F.; Toyota, M.; Kikuchi, T.; Kakiuchi, H.; Hinoda, Y.; Imai, K. 

Distinct Methylation Pattern and Microsatellite Instabillity in Sporadic Gastric Cancer. 

International Journal of Cancer 1999, 83 (3), 309-313. 

 

 



250 

 

74. Simpkins, S. B.; Bocker, T.; Swisher, E. M.; Mutch, D. G.; Gersell, D. J.; Kovatich, A. 

J.; Palazzo, J. P.; Fishel, R.; Goodfellow, P. J. MLH1 Promoter Methylation and Gene 

Silencing is the Primary Cause of Microsatellite Instability in Sporadic Endometrial 

Cancers. Human Molecular Genetics 1998, 8 (4), 661-666. 

75. Kondo, E.; Furukawa, T.; Yoshinaga, K.; Kijima, H.; Semba, S.; Yatsuoka, T.; 

Yokoyama, T.; Fukushige, S.; Horii, A. Not hMSH2buthMLH1 is Frequently Silenced 

by Hypermethylation in Endometrial Cancer But Rarely Silenced in Pancreatic Cancer 

with Microsatellite Instability. International Journalof Oncology 2000, 17 (3), 535-

541. 

76. Leite, M.; Corso, G.; Sousa, S.; Milanezi, F.; Afonso, L. P.; Henrique, R.; Soares, J. L.; 

Castedo, S.; Carneiro, F.; Roviello, F.; Oliveira, C.; Seruca, R. MSI Phenotype and 

MMR Alterations in Familial and Sporadic Gastric Cancer. International Journal of 

Cancer 2011, 128 (7), 1606-1613. 

77. Imai, K.; Yamamoto, H. Carcinogenesis and Microsatellite Instabillity: The 

Interrelationship Between Genetics and Epigenetics. Carcinogenesis 2008, 29 (4), 673-

680. 

78. Jass, J. R. Hereditary Non-polyposis Colorectal Cancer: The Rise and Fall of a 

Confusing Term. World Journal of Gastroenterology 2006, 12 (31), 4943-4950. 

79. Peltomäki, P. Role of DNA Mismatch Repair Defects in the Pathogenesis of Human 

Cancer. Journal of Clinical Oncology 2003, 21 (6), 1174-1179. 

80. Lynch, H. T.; Boland, C. R.; Gong, G.; Shaw, T. G.; Lynch, P. M.; Fodde, R.; Lynch, 

J. F.; De la Chapelle, A. Phenotypic and Genotypic Heterrtogeneity in the Lynch 

Syndrome: Diagnostic, Surveillance and Management Implications. European Journal 

of Human Genetics 2006, 14 (4), 390-402. 

81. Kaz, A.; Kim, Y.; Dzieciatkowski, S.; Lynch, H.; Watson, P.; Washington, M. K.; lin, 

L.; Grady, W. M. Evidence for the Role of Aberrant DNA Methylation in the 

Pathologenesis of Lynch Syndrome Adenomas. 2007, 120 (9), 1922-1929. 

82. Bubb, V. J.; Curtis, L. J.; Cunningham, C.; Dunlop, M. G.; Carothers, A. D.; Morris, R. 

G.; White, S.; Bird, C. C.; Wyllie, A. H. Microsatellite Instability and the Role of 

hMSH2 in Sporadic Colorectalcancer. Oncogene 1996, 12 (12), 2641-2649. 

83. Wheeler, J. M. D.; Loukola, A.; Aaltonen, L. A.; Mortensen, N. J. M.; Bodmer, W. F. 

The Role of Hypermethylation of the hMLH1 Promoter Region in HNPCC Versus 

MSI+ Sporadic Colorectal Cancers. Journal of Medical Genetics 2000, 37, 588-592. 

 



251 

 

 

84. Toyota, M.; Ahuja, N.; Ohe-Toyota, M.; Herman, J. G.; Baylin, S. B. CpG Island 

Methylator Phenotype in Colorectal Cancer. PNAS 1999, 96, 8681-8686. 

85. Weisenberger, D. J.; Siegmund, K. D.; Campan, M.; Young, J.; Long, T. I.; Faasse, M. 

A.; Kang, G. H.; Widschwendter, M.; Weener, D.; Buchanan, D.; Koh, H.; Simms, L.; 

Barker, M.; Leggett, B.; Levine, J.; Kim, M.; French, A. J.; Thibodeau, S. N.; Jass, J.; 

Haile, R.; Laird, P. W. CpG Island Methylator Phenotype Underlies Sporadic 

Microsatellite Instability and is Tightly Associated with BRAF Mutation in Colorectal 

Cancer. Nature Genetics 2006, 38 (7), 787-793. 

86. Leggett, B.; Whitehall, V. Role of the Serrated Pathway in Colorectal Cancer 

Pathogenesis. Gastroenterology 2010, 138, 2088-2100. 

87. Velho, S.; Moutinho, C.; Crines, L.; Albuquerque, C.; Hamelin, R.; Schmitt, F.; 

Carnairo, F.; Oliveira, C.; Seruca, R. BRAF, KRAS and PIK3CA Mutations in 

Colorectal Serrated Polyps and Cancer: Primary or Secondary Genetic Events in 

Colorectal Carcinogenesis. BMC Cancer 2008, 8 (255). 

88. Minoo, P.; Moyer, M. P.; Jass, J. R. Role of BRAF-V600E in the Serrated Pathway of 

Colorectal Tumourigenesis. Journal of Patholgy 2007, 212 (2), 124-133. 

89. Carragher, L. A. S.; Snell, K. R.; Giblett, S. M.; Aldridge, V. S. S.; Patel, B.; Cook, S. 

J.; Winton, D. J.; Marais, R.; Pritchard, C. A. V600E Braf Induces Gastrointestinal 

Crypt Senescence and Promotes Tumour Progression Through Enhanced CpG 

Methylation of p16INK4a. 2010, 2 (11), 458-471. 

90. Wajapeyee, N.; Serra, R. W.; Zhu, X.; Mahalingam, M.; Green, M. Oncogenic BRAF 

INduces Senescence and Apoptosis through Pathways Mediated by the Secreted 

Protein IGFBP7. Cell 2008, 32, 363-374. 

91. Nitiss, J. L. DNA Topoisomerase II and its Growing Repertoire of Biological 

Functions. Nature Reviews Cancer 2009, 9 (5), 327-337. 

92. Durand-Dubief, M.; Persson, J.; Norman, U.; Hartsuiker, E.; Ekwall, K. Topoisomerase 

I Regulates Open Chromatin and Controls Gene Expression in vivo. EMBO Journal 

2010, 29 (13), 2126-2134. 

93. Champoux, J. J. DNA Topoisomerases: Structure, Function, and Mechanism. Annual 

Review of Biochemistry 2001, 70, 369-413. 

94. Hartsuiker, E.; Neale, M. J.; Carr, A. M. Distinct Requirements for the Rad32
Mre11

 

Nuclease and Ctp1
CtIP

 in the Removal of Covalently Bound Topoisomerase I and II 

from DNA. Molecular Cell 2009, 33 (1), 117-123. 



252 

 

95. McMullen, K. P.; Blackstock, A. W. Chemoradiation with Novel Agents for Rectal 

Cancer. Clinical Colorectal Cancer 2002, 2 (1), 24-30. 

96. Sauer, R.; Becker, H.; Hohenberger, W.; Rödel, C.; Wittekind, C.; Fietkau, R.; Martus, 

T. J.; Hager, E.; Hess, C. F.; Karstens, J.; Liersch, T.; Schmidberger, H.; Raab, R. 

Preoperative versus Postoperative Chemoradiotherapy for Rectal cancer. The New 

England Journal of Medicine 2004, 351 (17), 1731-1740. 

97. Chen, A. Y.; Okunieff, P.; Pommier, Y.; Mitchell, J. B. Mammalian DNA 

Topoisomerase I Mediates the Enhancement of Radiation Cytotoxicity by 

Camptothecin Derivatives. Cancer Research 1997, 57, 1529-1536. 

98. Klautke, G.; Feyerherd, P.; Ludwig, K.; Prall, F.; Foitzik, T.; Fietkau, R. Intensified 

Concurrent Chemoradiotherapy with 5-Fluorouracil and Irinotecan as Neoadjuvant 

Treatment in Patients with Locally Advanced Colorectal Cancer. British Journal of 

Cancer 2005, 92 (7), 1215-1220. 

99. Marchiò, C.; Sapino, A. The Pathologic Complete Response Open Question in Primary 

Therapy. JNCI Monographs 2011, 2011 (43), 86-90. 

100. Gollins, S.; Myint, A. S.; Haylock, B.; Wise, M.; Saunders, M.; Neupae, R.; Essapen, 

S.; Samuel, L.; Dougal, M.; Lloyd, A.; Morris, J.; Topham, C.; Susnerwala, S. 

Preoperative Chemoradiotheapy Using Concurrent Capecitabine and Irinotecan in 

Magnetic Resonance Imaging-Defined Locally Advanced Rectal Cancer: Impact on 

Long-Term Clinical Outcomes. Journal of Clinical Oncology 2011, 29 (8), 1042-1049. 

101. Cunningham, D.; Pyrhönen, S.; James, R. D.; Punt, C. J. A.; Hickish, T. F.; Heikkila, 

R.; Johannesen, T. B.; Starkhammar, H.; Topham, C. A.; Awad, L.; Jaques, C.; Herait, 

P. Randomised Trial Irinotecan Plus Supportive Care Versus Supportive Care Alone 

After Fluorouracil Failure for Patients with Metastatic Colorectal Cancer. The Lancet 

1998, 352, 1413-1418. 

102. Fallik, D.; Borrini, F.; Boige, V.; Viguier, J.; Jacob, S.; Miquel, C.; Sabourin, J.; 

Ducreux, M.; Praz, F. Microsatellite Instability Is a Predictive Factor of the Tumor 

Response to Irinotecan in Patients with Advanced Colorectal Cancer. Cancer Research 

2003, 63, 5378-5344. 

103. Liu, C.; Pouliot, J. J.; Nash, H. A. Repair of Topoisomerase I Covalent Complexes in 

the Absence of the Tyrosyl-DNA Phosphodiesterase Tdp1. PNAS 2002, 99 (23), 

14970-14975. 

 

 



253 

 

104. Hartsuiker, E.; Mizuno, K.; Molnar, M.; Kohli, J.; Ohat, K.; Carr, A. M. Ctp1
CtIP

 and 

Rad32
Mre11

 Nuclease Activity Are Required for Rec12
Spo11

 Removal, but Rec12
Spo11

 

Removal is Dispensable for Other MRN-Dependent Meiotic Functions. Molecular and 

Cellular Biology 2009, 29 (7), 1671-1681. 

105. Vilar, E.; Scaltriti, M.; Balmaña, J.; Saura, C.; Guzman, M.; Arribas, J. Microsatellite 

Instability Due to hMLH1 Deficiency is Associated with Increased Cytotoxicity to 

Irinotecan in Human Colorectal Cancer Cell Lines. British Journal of Cancer 2008, 99, 

1607-1612. 

106. Young, J. A.; Schreckhise, R. W.; Steiner, W. W.; Smith, G. R. Meiotic Recombination 

Remote from Prominent DNA Break Sites in S. pombe. Molecular Cell 2002, 9, 253-

263. 

107. Wen, Q.; Scorah, J.; Phear, G.; Rodgers, G.; Rodgers, S.; Meuth, M. A Mutant Allele 

of MRE11 Found in Mismatch Repair-deficient Tumour Cells Supresses the Cellular 

Response to DNA Replication Fork Stress in a Dominant Negative Manner. Molecular 

Biology of the Cell 2008, 19, 1693-1705. 

108. Dupré, A.; Boyer-Chatenet, L.; Sattler, R. M.; Modi, A. P.; Lee, J.-H.; Nicolette, M. L.; 

Kopelovich, L.; Jasin, M.; Baer, R.; Paull, T. T.; Gautier, J. A Forward Chemical 

Genetic Screen Reveals an Inhibitor of the Mre11-Rad50-Nbs1 Complex. Nature 

Chemical Biology 2008, 4 (2), 119-125. 

109. Jordheim, L. P.; Durantel, D.; Zoulim, F.; Dumontet, C. Advances in the Development 

of Nucleoside and Nucleotide Analogues for Cancer and Viral Diseases. Nature 

Reviews Drug Discovery 2013, 12 (6), 447-464. 

110. Gollins, S. W.; Myint, S.; Susnerwala, S.; Haylock, B.; Wise, M.; Topham, C.; Samuel, 

L.; Swindell, R.; Morris, J.; Mason, L.; Levine, E. Preoperative Downstaging 

Chemoradiation with Concurrent Irinotecan and Capecitabine in MRI-Defined Locally 

Advanced Rectal Cancer: A Phase I Trial (NWCOG-2). British Journal of Cancer 

2009, 101 (6), 924-934. 

111. Tabata, T.; Katoh, M.; Tokudome, S.; Hosakawa, M.; Chiba, K.; Nakajima, M.; Yokoi, 

T. Bioactivation of Capecitabine in Human Liver: Involvement of the Cytosolic 

Enzyme on 5′-Deoxy-5-Fluorocytidine Formation. Drug Metabolism & Disposition 

2004, 32 (7), 762-767. 

112. Shewach, D. S.; Hahn, T. M.; Chang, E.; Hertel, L. W.; Lawrence, T. S. Metabolism of 

2′,2′-Difluoro-2′-Deoxycytidine and Radiation Sensitization of Human Colon 

Carcinoma Cells. CancerResearch 1994, 54 (12), 3218-3223. 

 



254 

 

113. Hughes, L. L.; Luengas, J.; Rich, T. A.; Murray, D. Radiosensitization of Cultured 

Human Colon Adenocarcinoma Cells by 5-Fluorouracil: Effects on Cell Survival, 

DNA Repair, and Cell Recovery. International Journal of Radiation 

Oncology*Biology*Physics 1992, 23 (5), 983-991. 

114. Khil, M. S.; Kim, J. H.; Mullen, C. A.; Kim, S. H.; Freytag, S. O. Radiosensitization by 

5-fluorocytosine of Human Colorectal Carcinoma Cells in Culture Transduced with 

Cytosine Deaminase Gene. Clinical Cancer Research 1996, 2 (1), 53-57. 

115. Galmarini, C. M.; Mackey, J. R.; Dumontet, C. Nucleoside Analogues and 

Nucleobases in Cancer Treatment. The Lancet Oncology 2002, 3 (7), 415-424. 

116. Huang, P.; Plunkett, W. Fludarabine- and Gemcitabine-Induced Apoptosis: 

Incorporation of Analalogs into DNA is a Critical Event. Cancer Chemotherapy and 

Pharmacology 1995, 36 (3), 181-188. 

117. Kufe, D. W.; Major, P. P.; Egan, E. M.; Beardsly, G. P. Correlation of Cytotoxicity 

with Incorporation of Ara-C into DNA. Journal of Biological Chemistry 1980, 255 

(19), 8997-9000. 

118. Huang, P.; Chubb, S.; Hertel, L. W.; Grindey, G. B.; Plunkett, W. Action of 2',2'-

difluorodeoxycytidine on DNA Synthesis. Cancer Research 1991, 51 (22), 6110-6117. 

119. Gowda, A. S. P.; Polizzi, J. M.; Eckert, K. A.; Spratt, T. E. Incorporation of 

Gemcitabine and Cytarabine into DNA by DNA Polymerase β and Ligase III/XRCC1. 

Biochemistry 2010, 49 (23), 4833-4840. 

120. Grogan, B. C.; Parker, J. B.; Gumunski, A. F.; Stivers, J. T. Effect of the Thymidylate 

Synthase Inhibitors on dUTP and TTP Pool Levels and the Activities of DNA Repair 

Glycosylases on Uracil and 5-Fluorouracil in DNA. Biochemistry 2011, 50 (5), 618-

627. 

121. Zhu, C.; Johansson, M.; Karlsson, A. Incorporation of Nucleoside Analogs into 

Nuclear or Mitochondrial DNA is Determined by the Intracellular Phosphorylation 

Site. The Journal of Biological Chemistry 2000, 275 (35), 26727-26731. 

122. Shi, Z.; Azuma, A.; Sampath, D.; Li, Y. X.; Huang, P.; Plunkett, W. S-Phase Arrest by 

Nucleoside Analogues and Abrogation of Survival Without Cell Cycle Progression by 

7-Hydroxystaurosporine. Cancer Research 2001, 61 (3), 1065-1072. 

123. Sampath, D.; Shi, Z.; Plunkett, W. Inhibition of Cyclin-DependentKinase 2 by the 

Chk1-Cdc25A Pathway During the S-phase Checkpoint Activated by Fludarabine: 

Dysregulation by 7-Hydroxystaurosporine. Molecular Pharmacology 2002, 62 (3), 

680-688. 



255 

 

124. Pauwels, B.; Korst, A. E. C.; Pattyn, G. G. O.; Lambrechts, H. A. J.; Van Bockstaele, 

D. R.; Vermeulen, K.; Lenjou, M.; De Pooter, C. M. J.; Vermorken, J. B.; Lardon, F. 

Cell Cycle Effect of Gemcitabine and its Role in the Radiosensitising Mechanism in 

vitro. International Journal of Radiation Oncolgy*Biology*Physics 2003, 57 (4), 1075-

1083. 

125. Matuo, R.; Sousa, F. G.; Escargueil, A. E.; Soares, D. G.; Grivich, I.; Saffi, J.; Larsen, 

A. K.; Henriques, J. A. P. DNA Repair Pathways Involved in Repair of Lesions 

Induced by 5-Fluorouracil and its Active Metabolite FdUMP. Biochemical 

Pharmacology 2010, 79 (2), 147-153. 

126. Rosen, B.; Rothman, F.; Weighert, M. G. Miscoding Caused by 5-Fluorouracil. 

Journal of Molecular Biology 1969, 44, 363-375. 

127. Grem, J. L. Mechanisms of Action and Modulation of Fluorouracil. Seminars in 

Radiation Oncology 1997, 7 (4), 249-259. 

128. Santi, D. V.; Hardy, L. W. Catalytic Mechanism and Inhibition of tRNA (Uracil-5-

)Methyltransferase: Evidence for Covalent Catalysis. Biochemistry 1987, 26 (26), 

8599-8606. 

129. Ghoshal, K.; Jacob, S. T. Specific Inhibition of Pre-Ribosomal RNA Processing in 

Extracts from the Lymphosarcoma Cells Treated with 5-Fluorouracil. Cancer Research 

1994, 54 (3), 632-636. 

130. Heinemann, V.; Xu, Y. Z.; Chubb, S.; Sen, A.; Hertel, L. W.; Grindey, G. B.; Plunkett, 

W. Inhibition of Ribonucleotide Reduction in CCRF-CEM Cells by 2',2'-

difluorodeoxycytidine. Molecular Pharmacology 1990, 38 (4), 567-572. 

131. Pereira, S.; Fernandes, P. A.; Ramos, M. J. Mechanism for Ribonucleotide Reductase 

Inactivation by the Anticancer Drug Gemcitabine. Journal of Computational Chemistry 

2004, 25 (10), 1286-1294. 

132. Cerqueira, N. M. F. S. A.; Fernandes, P. A.; Ramos, M. J. Understanding 

Ribonucleotide Reductase Inactivation by Gemcitabine. Chemistry - A European 

Journal 2007, 13 (30), 8507-8515. 

133. Curtin, N. J.; Harris, A. L.; Aberne, G. W. Mechanism of Cell Death Following 

Thymidylate Synthase Inhibition: 2'-Deoxyuridine-5'-triphosphate Accumulation, DNA 

Damage, and Growth Inhibition Following Exposure to CB3717 and Dipyridamole. 

Cancer Research 1981, 51 (9), 2346-2352. 

 

 



256 

 

134. Ewald, B.; Sampath, D.; Plunkett, W. ATM and the Mre11-Rad50-Nbs1 Complex 

Respond to Nucleoside Analogue-Induced Stalled Replication Forks and Contribute to 

Drug Resistance. Cancer Research 2008, 68 (19), 7947-7955. 

135. Ewald, B.; Sampath, D.; Plunkett, W. Co-localization of the Mre11-Rad50-Nbs1 

Complex, Phosphorylated ATM, and γ-H2AX May Identify Sites of Nucleoside 

Analogue-Induced Stalled Replication Forks. Cancer Research 2007, 67 (9 

Supplement), 4037. 

136. Wang, Y.; Kuramitsu, Y.; Tokuda, K.; Baron, B.; Kitagawa, T.; Akada, J.; Maehara, 

S.-I.; Yoshihiko, M.; Nakamura, K. Gemcitabine Induces Poly (ADP-Ribose) 

Polymerase-1 (PARP-1) Degradation Through Autophagy in PancreaticCancer. PLoS 

One 2014, 9 (10), e109076. 

137. Bryant, H. E.; Petermann, E.; Schultz, N.; Jemth, A.-S.; Loseva, O.; Issaeva, N.; 

Johansson, F.; Fernandez, S.; McGlynn, P.; Helleday, T. PARP is Activated at Stalled 

Forks to Mediate Mre11-Dependent Replication Restart and Recombination. The 

EMBO Journal 2009, 28 (17), 2601-2615. 

138. Lavin, M. F. Ataxia-Telangiectasia: From a Rare Disorder to a Paradigm for Cell 

Signalling and Cancer. Nature Reviews Molecular Cell Biology 2008, 9 (10), 759-769. 

139. Fernet, M.; Gribaa, M.; Salih, M. A. M.; Seidahmed, M. Z.; Hall, J.; Koenig, M. 

Identification and Functional Consequences of a Novel MRE11 Mutation Affecting 10 

Saudi Arabian Patients with the Ataxia Telangiectasia-Like Disorder. Human 

Molecular Genetics 2005, 14 (2), 307-318. 

140. Oba, D.; Hayashi, M.; Minamitani, M.; Hamano, S.; Uchisaka, N.; Kikuchi, A.; 

Kishimoto, H.; Takagi, M.; Morio, T.; Mizutani, S. Autopsy Study of Cerebellar 

Degeneration in Siblings with Ataxia-Telangiectasia-Like Disorder. Pathologica 2010, 

119 (4), 513-520. 

141. Taylor, A. M. R.; Groom, A.; Byrd, P. J. Ataxia-Telangiectasia Like Disorder(ATLD) - 

Its Clinical Presentation and Molecular Basis. DNA Repair 2004, 3 (8-9), 1219-1225. 

142. Theunissen, J. F.; Kaplan, M. I.; Hunt, P. A.; Williams, B. R.; Ferguson, D. O.; Alt, F. 

W.; Petrini, J. H. J. Checkpoint Failure and Chromosomal Instability without 

Lymphomagenesis in MRE11(ATLD1/ATLD1) Mice. Molecular Cell 2003, 12 (6), 

1511-1523. 

143. Stewart, G. S.; Maser, R. S.; Stankovic, T.; Bressan, D. A.; Kaplan, M. I.; Jasers, N. G. 

J.; Raams, A.; Byrd, P. J.; Petrini, J. H. J.; Taylor, A. M. R. The DNA Double-Strand 

Break Repair Gene hMRE11 is Mutated in Individuals with an Ataxia-Telangiectasia-

like Disorder. Cell 1999, 99 (6), 577-587. 



257 

 

144. Palmeri, S.; Rufa, A.; Pucci, B.; Santarnecchi, E.; Malandrini, A.; Stromillo, M. L.; 

Mandalà, M.; Rosini, F.; De Stefano, N.; Federico, A. Clinical Course of Two Italian 

Siblings with Ataxia-Telangiectasia-Like Disorder. Cerebellum 2013, 12 (4), 596-599. 

145. Delia, D.; Piane, M.; Buscemi, G.; Savio, C.; Palmeri, S.; Lulli, P.; Carlessi, L.; 

Fontanella, E.; Chessa, L. MRE11 Mutation and Impaired ATM-Dependent Responses 

in an Italian Family with Ataxia-Telangiectasia-Like Disorder. Human Molecular 

Genetics 2004, 13 (18), 2155-2163. 

146. Bartkova, J.; Tommiska, J.; Oplustilova, L.; Aaltonen, K.; Tamminen, A.; Keikkinen, 

T.; Mistrik, M.; Aittomäki, K.; Blomqvist, C.; Heikkilä, P.; Lukas, J.; Nevanilinna, H.; 

Bartek, J. Aberrations of the MRE11-RAD50-NBS1 DNA Damage Sensor Complex in 

Human Breast Cancer: MRE11 as a Candidate Familial Cancer-Predisposing Gene. 

Molecular Oncology 2008, 2 (4), 296-316. 

147. Van der Burgt, I.; Chrzanowska, K. H.; Smeets, D.; Weemaes, C. Nijmegen Breakage 

Syndrome. Journal of Medical Genetics 1996, 33 (2). 

148. Digweed, M.; Sperling, K. Nijmegen Breakage Syndrome: Clinical Manifestation of 

Defective Response to DNA Double-Strand Breaks. DNA Repair 2004, 3 (8-9), 1207-

1217. 

149. Di Masi, A.; Antoccia, A. NBS1 Heterozygosity and Cancer Risk. Current Genomics 

2008, 9 (4), 275-281. 

150. Maser, R. S.; Zinkel, R.; Petrini, J. H. J. An Alternative Mode of Translation Permits 

Production of a Variant NBS1 Protein from the Common Nijmegen Breakage 

Syndrome Allele. Nature Genetics 2001, 21, 417-421. 

151. Seemanová, E.; Sperling, K.; Neitzel, H. V. R.; Hadac, J.; Butova, O.; Schröck, E.; 

Seeman, P.; Digweed, M. Nijmegen Breakage Syndrome (NBS) with Neurological 

Abnormalities and Without Chromosomal Instability. Journal of MedicalGenetics 

2006, 43, 218-224. 

152. Seemanová, E.; Jarolim, P.; Varon, R.; Digweed, M.; Swift, M.; Sperling, K. Cancer 

Risk of Heterozygotes With the NBN Founder Mutation. Journal of the National 

Cancer Institute 2007, 99 (24), 1975-1980. 

153. Di Masi, A.; Viganotti, M.; Polticelli, F.; Ascenzi, P.; Tanzarella, C.; Antoccia. The 

R215W Mutation in NBS1 Impairs γ-H2AX Binding and Affects DNA Repair: 

Molecular Bases for the Severe Phenotype of 657del5/R215 Nijmegen Breakage 

Syndrome Patients. Biochemical and Biophysical Research Communications 2008, 369 

(3), 835-840. 



258 

 

154. Varon, R.; Dutrannoy, V.; Weikert, G.; Tanzarella, C.; Antoccia, A.; Stöckl, L.; 

Spandoni, E.; Krüger, L.; Di Masi, A.; Sperling, K.; Digweed, M.; Maraschio, P. Mild 

Nijmegen Breakage Syndrome Phenotype due to Alternative Splicing. Human 

Molecular Genetics 2006, 15 (5), 679-689. 

155. Yamamoto, Y.; Miyamoto, M.; Tatsuda, D.; Kubo, M.; Nakagama, H.; Nakamura, Y.; 

Satoh, H.; Matsuda, K.; Watanabe, T.; Ohta, T. A Rare Polymorphic Variantof NBS1 

Reduces DNA Repair Activity and Elevates Chromosomal Instability. Cancer 

Research 2014, 74 (14), 3707-3715. 

156. Lu, M.; Lu, J.; Yang, X.; Yang, M.; Tan, H.; Yun, B.; Shi, L. Association Between the 

NBS1 E185Q Polymorphism and Cancer Risk: A Meta-Analysis. BMC Cancer 9, 124-

133. 

157. Jiang, L.; Liang, J.; Jiang, M.; Yu, X.; Zheng, J.; Liu, H.; Wu, D.; Zhou, Y. Functional 

Polymorphisms in the NBS1 Gene and Acute Lymphoblastic Leukemia Susceptibility 

in a Chinese Population. European Journal of Haematology 2011, 86 (3), 199-205. 

158. Medina, P. P.; Ahrebdt, S. A.; Pollan, M.; Fernandez, P.; Sirdransky, D.; Sanchez-

Cespedes, M. Screening of Homologous Recombination Gene Polymorphisms in Lung 

Cancer Patients Reveals an Association of the NBS1-185Gln Variant and p53 Gene 

Mutations. Cancer Epidemiology, Biomarkers & Prevention 2003, 12 (8), 699-704. 

159. Yao, F.; Fang, Y.; Chen, B.; Jin, F.; Wang, S. Association Between the NBS1 

Glu185Gln Polymorphism and Breast Cancer Risk: A Meta-Analysis. Tumor Biology 

2013, 34 (2), 1255-1262. 

160. He, Y.-Z.; Chi, X.-S.; Zhang, Y.-C.; Deng, X.-B.; Wang, J.-R.; Lv, W.-Y.; Zhou, Y.-

H.; Wang, Z.-Q. NBS1 Glu185Gln Polymorphism and Cancer Risk: Update on Current 

Evidence. Tumor Biology 2014, 35 (1), 675-687. 

161. Waltes, R.; Kalb, R.; Gatei, M.; Kijas, A. W.; Stumm, M.; Sobeck, A.; Wieland, B.; 

Varon, R.; Lerenthal, Y.; Lavin, M. F.; Schindler, D.; Dörk, T. Human RAD50 

Deficiency in Nijmegen Breakage Syndome-like Disorder. American Journal of 

Human Genetics 2009, 84 (5), 605-616. 

162. Qvist, P.; Huertas, P.; Jimeno, S.; Nyegaard, M.; Hassan, M. J.; Jackson, S. P.; D, B. A. 

CtIP Mutations Cause Seckel and Jawad Syndromes. PLoS Genetics 2011, 7 (10), 

e1002310, 1-e1002310,12. 

163. Giannini, G.; Ristori, E.; Cerignoli, F.; Rinaldi, C.; Zani, M.; Viel, A.; Ottini, L.; 

Crescenzi, M.; Martinotti, S.; Bignami, M.; Frati, L.; Screpanti, I.; Gulino, A. Human 

MRE11 is Inactivated in Mismatch Repair-Deficient Cancers. EMBO Reports 2002, 3 

(3), 248-254. 



259 

 

164. Ottini, L.; Falchetti, M.; Saieva, C.; De Marco, M.; Masala, G.; Zanna, I.; Paglierani, 

M.; Giannini, G.; Gulino, A.; Nesi, G.; Mariani, R.; Costantini, R. M.; Palli, D. MRE11 

Expression is Impaired in Gastric Cancer with Microsatellite Instability. 

Carcinogenesis 2004, 25 (12), 2337-2343. 

165. Giannini, G.; Rinaldi, C.; Ristori, E.; Ambrosini, M. I.; Cerignoli, F.; Viel, A.; Bidoli, 

E.; Berni, S.; D'Amati, G.; Scambia, G.; Frati, L.; Screpanti, I.; Gulino, A. Mutations of 

an Intronic Repeat Induce Impaired MRE11 Expression in Primary Human Cancer with 

Microsatellite Instability. Oncogene 2004, 23 (15), 2640-2647. 

166. Vilar, E.; Bartnik, C. M.; Stenzel, S. L.; Raskin, L.; Ahn, J.; Moreno, V.; Murkherjee, 

B.; Iniesta, M. D.; Morgan, M. A.; Rennert, G.; Gruber, S. B. Mre11 Deficiency 

Increases Sensitivity to Poly(ADP-ribose) Polymerase Inhibition in Microsatellite 

Unstable Colorectal Cancers. Cancer Research 2011, 71 (7), 2632-2642. 

167. Gaymes, T. J.; Mohamedali, A. M.; Patterson, M.; Matto, N.; Smith, A.; Kulasekararaj, 

A.; Chelliah, R.; Curtin, N.; Farzaneh, F.; Shall, S.; Mufti, G. Microsatellite Instability 

Induced Mutations in DNA Repair Genes CtIP and MRE11 Confer Hypersensitivity to 

Poly (ADP-ribose) Polymerase (PARP) Inhibitors in Myeloid Malignancies. 

Haematologica 2013, 98 (9), 1397-1406. 

168. Ikenoue, T.; Togo, G.; Nagai, K.; Ijichi, H.; Kato, J.; Yamaji, Y.; Okamoto, M.; Kato, 

N.; Kawabe, T.; Tanaka, A.; Matsumura, M.; Shiratori, Y.; Omata, M. Frameshift 

Mutations at Mononucleotide Repeats in RAD50 Recombinational DNA Repair Gene 

in Colorectal Cancers with Microsatellite Instability. Cancer Research 2001, 92 (6), 

587-591. 

169. Li, H.; Shagisultanova, E. I.; Yamashita, K.; Piao, Z.; Perucho, M.; Malkhosyan, S. R. 

Hypersensitivity of Tumour Cell Lines with Microsatellite Instability to DNA Double 

Strand Break Producing Chemotherapeutic Agent Bleomycin. Cancer Research 2004, 

64, 4760-4767. 

170. Yamaguchi, T.; Iijima, T.; Mori, T.; Takahashi, K.; Matsumoto, M. H.; Hishima, T.; 

Miyaki, M. Accumulation Profile of Frameshift Mutations During Developmental and 

Progression of Colorectal Cancer From Patients with Hereditary Nonpolyposis 

Colorectal Cancer. Diseases of the Colon & Rectum 2006, 49 (3), 399-406. 

171. Park, K.; Betel, D.; Gryfe, R.; Michalickova, K.; Nicola, N. D.; Gallinger, S.; Hogue, 

C. W. V.; Redston, M. Mutation Proiling of Mismatch Repair-Deficient Colorectal 

Cancers Using an in Silico Genome Scan to Identify Coding Microsatellites. Cancer 

Research 2002, 62 (5), 1284-1288. 

 



260 

 

172. Kim, Y. R.; Chung, N. G.; Kang, M. R.; Yoo, N. J.; Lee, S. H. Novel Somatic 

Frameshift Mutations of Genes Related to Cell Cycle and DNA Damage Response in 

Gastricand Colorectal Cancers with Microsatellite Instability. Tumori 2010, 96, 1004-

1009. 

173. Chinnadurai, G. CtIP, a Candidate Tumor Susceptibility Gene is a Team Player with 

Luminaries. Biochemica et Biophysica Acta 2006, 1765 (1), 67-73. 

174. Vilkki, S.; Launonen, V.; Karhu, A.; Sistonen, P.; Västrik, I.; Aaltonen, L. A. 

Screening for Microsatellite Instability Target Genes in Colorectal Cancers. Journal of 

Medical Genetics 2002, 39 (11), 785-789. 

175. Wang, Z.; Cummins, J. M.; Shen, D.; Cahill, D. P.; Jallepalli, P. V.; Wang, T. L.; 

Parsons, D. W.; Traverso, G.; Awad, M.; Silliman, N.; Ptak, J.; Szabo, S.; Willson, J. 

K.; Markowitz, J. K.; Goldberg, M. L.; Karess, R.; Kinzler, K. W.; Vogelstein, B.; 

Velculescu, V. E.; Lengauer. Three Classes of Genes Mutated in Colorectal Cancers 

With Chromosomal Instability. Cancer Research 2004, 64 (9), 2998-3001. 

176. Thompson, S.; Bakhoum, S. F.; Compton, D. A. Mechanisms of Chromosomal 

Instability. Current Biology 2010, 20 (6), R285-R295. 

177. Walther, A.; Houlston, R.; Tomlinson, I. Association Between Chromosomal 

Instability and Prognosis in Colorectal Cancer: A Meta-Analysis. Gut 2008, 57, 941-

950. 

178. Fukuda, T.; Sumiyoshi, T.; Takahashi, M.; Kataoka, T.; Asahara, T.; Inui, H.; 

Watatani, M.; Yasutomi, M.; Kamada, N.; Miyagawa, K. Alterations of the Double-

Strand Break Repair Gene MRE11 in Cancer. Cancer Research 2001, 61 (1), 23-26. 

179. Sjöblom, T.; Jones, S.; Wood, L. D.; Parson, D. W.; Lin, J.; Barber, T. D.; Mandelker, 

D.; Leary, R. J.; Ptak, J.; Silliman, N.; Szabo, S.; Buckhaults, P.; Farrell, C.; Meeh, P.; 

Markowitz, S. D.; Willis, J.; Dawson, D.; Wilson, J. K. V.; Gazdar, A. F.; Hartigan, J.; 

Wu, L.; Liu, C.; Parmigiani, G.; Park, B. H.; Bachman, K. E.; Papadopoulos, N.; 

Vogelstein, B.; Kinzler, K. W.; Velculescu, V. E. The Consensus Coding Sequences of 

Human Breast and Colorectal Cancers. Science 2006, 314 (268), 268-274. 

180. Heikkinen, K.; Karppinen, S. M.; Soini, Y.; Mäkinen, M.; Winqvist, R. Mutation 

Screening of Mre11 Complex Genes: Indication of RAD50 Involvement in Breast and 

Ovarian Cancer Susceptibility. Journal of Medical Genetics 2003, 40 (12), e131. 

181. Tessitore, A.; Biordi, L.; Flati, V.; Toniato, E.; Marchetti, P.; Ricevuto, E.; Ficorella, 

C.; Scotto, L.; Giannini, G.; Masciocchi, C.; Tombolini, V.; Gulino, A.; Martinotti, S. 

New Mutants and Protein Variants of NBS1 Are Identified in Cancer Cell Lines. 

Genes, Chromosomes & Cancer 2003, 36, 198-204. 



261 

 

182. Varela, I.; Tarpey, P.; Raine, K.; Huang, D.; Ong, C. K.; Stephens, P.; Davies, H.; 

Jones, D.; Lin, M. L.; Teague, J.; Bignell, G.; Butler, A.; Cho, J.; Dalgliesh, G. L.; 

Galappaththige, D.; Greenman, C.; Hardy, C.; Jia, M.; Latimer, C.; Lau, K. W.; 

Marshall, J.; McLaren, S.; Menzies, A.; Mudie, L.; Stebbings, L.; Largaespada, D. A.; 

Wessels, L. F. A.; Kahnoski, R. J.; Anema, J.; Tuveson, D. A.; Perez-Mancera, P. A.; 

Mustonen, V.; Fischer, A.; Adams, D. J.; Rust, A.; Chan-On, W.; Subimerb, C.; 

Dykema, K.; Furge, k.; Campbell, P. J.; Teh, B. T.; Stratton, M. R.; Futreal, P. A. 

Exome Sequencing Identifies FrequentMutation of the SWI/SNF Complex 

GenePBRM1 in Renal Carcinoma. Nature 2011, 469, 539-542. 

183. Mosor, M.; Ziółkowska, I.; Pernak-Schwarz, M.; Januszkiewicz-Lewandowska, D.; 

Nowak, J. Association of the Heterozygous Germline I171V Mutation of the NBS1 

Gene with Childhood Acute Lymphoblastic Leukemia. Leukemia 2006, 20 (8), 1454-

1456. 

184. Varon, R.; Reis, A.; Henze, G. Mutations in the Nijmegen Breakage Syndrome Gene 

(NBS1) in Childhood Acute Lymphoblastic Leukaemia (ALL). Cancer Research 2001, 

61, 3570-3572. 

185. Wong, A. K. C.; Ormonde, P. A.; Pero, R.; Chen, Y.; Lian, L.; Salada, G.; Berry, S.; 

Lawrence, Q.; Dayananth, P.; Ha, P.; Tavitigian, S. V.; Teng, D. H. F.; Bartel, P. L. 

Characterisation of a Carboxy-Terminal BRCA1 Interacting Protein. Oncogene 1998, 

17, 2279-2285. 

186. Scholl, R.; Walker, A.; Ballard, L. Multiplex, Fluorescent Single-Strand Conformation 

Polymorphism Using Stepped Polymerase Chain Reaction Primers. Journal of 

Biomolecular Techniques 2001, 12 (1), 1-3. 

187. Imle, P. Fluorescence-based Fragment Size Analysis. Methods in Molecular Biology 

2005, 311, 139-146. 

188. Ginot, F.; Bordelais, I.; Nguyen, S.; Gyapay, G. Correction of Some Genotyping Errors 

in Automated Flourescent Microsatellite Analysis by Enzymatic Removal of One Base 

Overhangs. Nucleic Acids Research 1996, 24 (3), 540-541. 

189. Oda, S.; Oki, E.; Maehara, Y.; Sugimachi, K. Precise Assessment of Microsatellite 

Instability Using High Resolution Fluorescent Microsatellite Analysis. Nucleic Acids 

Research 1997, 25 (17), 3415-3420. 

190. De Jager, M.; Dronkert, M. L. G.; Modesti, M.; Beerens, C. E. M. T.; Kanaar, R.; Van 

Gent, D. C. DNA-Binding and Strand-Annealing Activities of Human Mre11: 

Implications for its roles in DNA Double-Strand Break Repair Pathways. Nucleic Acids 

Research 2001, 29 (6), 1317-1325. 



262 

 

191. Hopfner, K. P.; Craig, L.; Moncalian, G.; Zinkel, R. A.; Usui, T.; Owen, B. A. L.; 

Karcher, A.; Henderson, B.; Bodmer, J. L.; McMurray, C. T.; Carney, J. P.; Petrini, J. 

H. J.; Tainer, J. A. The Rad50 Zinc-Hook is a Structure Joining Mre11 Complexes in 

DNA Recombination and Repair. Nature 2002, 418 (6897), 562-566. 

192. Lee, J.-H.; Paull, T. T. Direct Activation of the ATM Protein Kinase by the 

Mre11/Rad50/Nbs1 Complex. Science 2004, 304 (5667), 93-96. 

193. Wang, H.; Shi, L. Z.; Wong, C. C. L.; Han, X.; Hwang, P. Y.-H.; Truong, L. N.; Zhu, 

Q.; Shao, Z.; Chen, D. J.; Berns, M. W.; Yates III, J. R.; Chen, L.; Wu, X. The 

Interaction of CtIP and Nbs1 Connects CDK and ATM to Regulate HR-Mediated 

Double-Strand Break Repair. PLOS Genetics 2013, 9 (2), e1003277. 

194. Yuan, J.; Chen, J. N Terminus of CtIP Is Critical for Homologous Recombination-

Mediated Double-Strand Break Repair. The Journal of Biological Chemistry 2009, 284 

(46), 31746-31752. 

195. Quennet, V.; Beucher, A.; Barton, O.; Takeda, S.; Löbrich, M. CtIP and MRN Promote 

Non-Homologous End-Joining of Etoposide-Induced DNA Double-Strand Breaks in 

G1. Nucleic Acids Research 2011, 39 (6), 2144-2152. 

196. Huertas, P.; Jackson, S. P. Human CtIP Mediates Cell Cycle Control of DNA End 

Resection and Double Strand Break Repair. The Journal of Biological Chemistry 2009, 

284 (14), 9558-9565. 

197. Lee, K. C.; Padget, K.; Curtis, H.; Cowell, I. G.; Moiani, D.; Sondka, Z.; Morris, N. J.; 

Jackson, G. H.; Cockell, S. J.; Tainer, J. A.; Austin, C. A. MRE11 Facilitates the 

Removal of Human Topoisomerase II Complexes from Genomic DNA. Biology Open 

2012, 1 (9), 863-873. 

198. Chang, M.; Bellaoui, M.; Boone, C.; Brown, G. W. A Genome-Wide Screen for 

Methyl Methanesulfonate Sensitive Mutants Reveals Genes Required for S Phase 

Progression in the Presence of DNA Damage. PNAS 2002, 99 (26), 16934-16939. 

199. Cai, S.; Xu, Y.; Cooper, R. J.; Ferkowicz, M. J.; Hartell, J. R.; Pollok, K. E.; Kelley, 

M. R. Mitochondrial Targeting of Human O6-Methylguanine DNA Methyltransferase 

Protects Against Cell Killing by Chemotherapeutic Agents. Cancer Research 2005, 65 

(8), 3319-3327. 

200. Krogh, B. O.; Symington, L. S. Recombination Proteins in Yeast. Annual Review of 

Genetics 2004, 38, 233-271. 

 

 



263 

 

201. Lundin, C.; North, M.; Erixon, K.; Walters, K.; Jenssen, D.; Goldman, A. S. H.; 

Helleday, T. Methyl Methanosulfonate(MMS) Produces Heat-Labile DNA Damage 

But No Detectable in vivo DNA Double-Strand Breaks. Nucleic Acids Research 2005, 

33 (12), 3799-3811. 

202. Shikazono, N.; Noguchi, M.; Fujii, K.; Urushibara, A.; Yokoya, A. The Yield, 

Processing and Biological Consequences of Clustered DNA Damage Induced by 

Ionizing Radiation. Journal of Radiation Research 2009, 50 (1), 27-36. 

203. Palmeri, S.; Rufa, A.; Pucci, B.; Santarnacchi, E.; Malandrini, A.; Stromillo, M. L.; 

Mandalà, M.; Rosini, F.; De Stefano, N.; Federico, A. Clinical Course of Two Italian 

Siblings with Ataxia-Telangiectasia-Like Disorder. Cerebellum 2013, 12 (4), 596-599. 

204. Uchisaka, N.; Takahashi, N.; Sato, M.; Kikuchi, A.; Mochizuki, S.; Imai, K.; 

Nonoyama, S.; Ohara, O.; Watanabe, F.; Mizutani, S.; Hanada, R.; Morio, T. Two 

Brothers with Ataxia-Telangiectasiia-Like Disorder with Lung Adeocarcinoma. The 

Journal of Pediactrics 2009, 155 (3), 435-438. 

205. Damiola, F.; Pertesi, M.; Oliver, J.; Le Calvez-Kelm, F.; Voegele, C.; Young, E. L.; 

Robinot, N.; Forey, N.; Durand, G.; Vallée, M. P.; Tao, K.; Roane, T. C.; Williams, G. 

J.; Hopper, J. L.; Southey, M. C.; Andrulis, I. L.; John, E. M.; Goldgar, D. E.; Lesueur, 

F.; Tavigian, S. V. Rare Key Functional Domain Missense Substitutions in MRE11, 

RAD50 and NBN Contribute to Breast Cancer Susceptibility: Results from a Breast 

Cancer Family Registry Case-Control Mutation-Screening Study. Breast Cancer 

Research 2014, 16 (R:58), 1-16. 

206. Lammens, K.; Bemeleit, D. J.; Möckel, C.; Clausing, E.; Schele, A.; Hartung, S.; 

Schiller, C. B.; Lucas, M.; Angermüller, C.; Söding, J.; Sträßer, K.; Hopfner, K. The 

Mre11:Rad50 Structure Shows and ATP-Dependent Molecular Clamp in DNA 

Double-Strand Break Repair. Cell 2011, 145 (1), 54-66. 

207. Ueno, M.; Nakazaki, T.; Akamatsu, Y.; Watanabe, K.; Tomita, K.; Lindsay, H. D.; 

Shinagawa, H.; Iwasaki, H. Molecular Characterisation of the Schizosaccharomyces 

pombe nbs1
+
 Gene Involved in DNA Repair and Telomere Maintenance. Molecular 

and Cellular Biology 2003, 23 (18), 6553-6563. 

208. You, Z.; Chahwan, C.; Bailis, J.; Hunter, T.; Russell, P. ATM Activation and Its 

Recruitment to Damaged DNA Require Binding to the C Terminus of Nbs1. Molecular 

and Cellular Biology 2005, 25 (13), 5363-5379. 

 

 

 



264 

 

209. Huret, J. L.; Ahmad, M.; Arsaban, M.; Bernheim, A.; Cigna, J.; Desangles, F.; 

Guignard, J. C.; Jacquemot-Perbal, M. C.; Labarussias, M.; Leberre, V.; Malo, A.; 

Morel-Pair, C.; Mossafa, H.; Potier, J. C.; Texier, G.; Viguio, F.; Yau Chun Wan-

Senon, S.; Zasadzinski, A.; Dessen, P. Atlas of Gentics and Cytogenetics in Oncology 

and Haematology. Nuceic Acids Research 2013, 41 (Database Issue), D920-D924. 

210. Chinnadurai, G.; Subramanian, T.; Vijayalingam, S. RBBP8 (Retinoblastoma Binding 

Protein 8). Atlas of Genetics and Cytogenetics in Oncology and Haematology 2009, 13 

(4), 282-284. 

211. Andres, S. N.; Appel, C. D.; Westmoreland, J. W.; Williams, J. S.; Nguyen, Y.; 

Robertson, P. D.; Resnick, M. A.; Williams, R. S. Tetrameric Ctp1 Coordinates DNA 

Binding and DNA Bridging in DNA Double-Strand-Break Repair. Nature Structural & 

Molecular Biology 2015, 2 (22), 158-166. 

212. You, Z.; Bailis, J. M. DNA Damage and Decisions: CtIP Coordinates DNA Repair and 

Cell Cycle Checkpoints. Trends in Cell Biology 2010, 20 (7), 402-409. 

213. Park, Y. B.; Chae, J.; Kim, Y. C.; Cho, Y. Crystal Structure of Human Mre11: 

Understanding Tumorigenic Mutations. Structure 2011, 19 (11), 1591-1602. 

214. Porro, A.; Feuerhahn, S.; Lingner, J. TERRA-Reinforced Association of LSD1 with 

MRE11 Promotes Processing of Uncapped Telomeres. Cell Reports 2014, 6 (4), 765-

776. 

215. Borde, V. The Multiple Roles of the Mre11 Complex for Meiotic Recombination. 

Chromosome Research 2007, 15, 551-563. 

216. Lord, C. J.; Ashworth, A. Targeted Therapy for Cancer Using PARP Inhibitors. 

Current Opinion in Pharmacology 2008, 8 (4), 363-369. 

217. Farmer, H.; McCabe, N.; Lord, J. L.; Tutt, A. N. J.; Johnson, D. A.; Richardson, T. B.; 

Santarosa, M.; Dillon, K. J.; Hickson, I.; Knights, C.; Martin, N. M. B.; Jackson, S. P.; 

Smith, G. C. M.; Ashworth, A. Targeting the DNA Repair Defect in BRCA Mutant 

Cells as a Therapeutic Strategy. Nature 2005, 434 (7035), 917-921. 

218. Buis, J.; Wu, Y.; Deng, Y.; Leddon, J.; Westfield, G.; Eckersdorff, M.; Sekiguchi, J. 

M.; Chang, S.; Ferguson, D. O. Mre11 Nuclease Activity Has Essential Roles in DNA 

Repair and Genomic Stability Distinct from ATM Activation. Cell 2008, 135 (1), 85-

96. 

219. Dong, Z.; Zhong, Q.; Chen, P.-L. The Nijmegen Breakage Syndrome Protein Is 

Essential for Mre11 Phosphorylation upon DNA damage. The Journal of Biological 

Chemistry 1999, 274 (28), 19513-19516. 



265 

 

220. Furuta, T.; Takemura, H.; Liao, Z.-Y.; Aune, G. J.; Redon, C.; Sedelnikova, O. A.; 

Pilch, D. R.; Rogakou, E. P.; Celeste, A.; Chen, H. T.; Nussenzweig, A.; Aladjem, M. 

I.; Bonner, W. M.; Pommier, Y. Phosphorylation of Histone H2AX and Activation of 

Mre11, Rad50 and Nbs1 in Response to Replication-dependent DNA Double-strand 

Breaks Induced by Mammalian DNA Topoisomerase I Cleavage Complexes. The 

Journal of Biological Chemistry 2003, 278 (22), 20303-20312. 

221. Tauchi, H.; Kobayashi, J.; Morishima, K.-I.; Matsuura, S.; Nakamura, A.; Shiraishi, T.; 

Ito, E.; Masnada, D.; Delia, D.; Komatsu, K. The Forkhead-associated Domain of 

NBS1 is Essential for Nuclear Foci Formation after Irradiation but Not Essential for 

hRAD50·hMRE11·NBS1 Complex DNA Repair Activity. The Journal of Biological 

Chemistry 2001, 276 (1), 12-15. 

222. Chamankha, M.; Wei, Y.; Xiao, W. Isolation of hMRE11B: Failure to Complement 

Yeast MRE11 Defects Due to Species-Specific Protein Interactions. Gene 1998, 225 

(1), 107-116. 

223. Williams, R. S.; Moncalian, G.; Williams, J. S.; Yamada, Y.; Limbo, O.; Shin, D. S.; 

Groocock, L. M.; Cahill, D.; Hitomi, C.; Guenther, G.; Moiani, D.; Carney, J. P.; 

Russell, P.; Tainer, J. A. Mre11 Dimers Coordinate DNA End Bridging and Nuclease 

Processing in Double-Strand-Break Repair. Cell 2008, 135 (1), 97-109. 

224. De Jager, M.; Wyman, C.; Van Gent, D. C.; Kanaar, R. DNA End-Binding Specificity 

of Human Rad50/Mre11 is Influenced by ATP. Nucleic Acids Research 2002, 30 (20), 

4425-4431. 

225. Yu, Z.; Vogel, G.; Coulombe, Y.; Dubeau, D.; Spehalski, E.; Hébert, J.; Ferguson, D. 

O.; Masson, J. Y.; Richard, S. The MRE11 GAR Motif Regulates DNA Double-Strand 

Break Processing and ATR Activation. Cell Research 2012, 22 (2), 305-320. 

226. Vo, A. T.; Zhu, F.; Wu, X.; Yuan, F.; Gao, Y.; Gu, L.; L, G.; Lee, T.; Her, C. hMRE11 

Deficiency Leads to Microsatellite Instability and Defective DNA Mismatch Repair. 

EMBO Reports 2005, 6 (5), 438-444. 

227. Mirzoeva, O. K.; Kawaguchi, T.; Pieper, R. O. The Mre11/Rad50/Nbs1 Complex 

Interacts with the Mismatch Repair System and Contributes to Temozolomide-Induced 

G2 Arrest and Cytotoxicity. Molecular Cancer Therapy 2006, 5 (11), 2757-2766. 

228. Tahara, M.; Inoue, T.; Sato, F.; Miyakura, Y.; Horie, H.; Yasuda, Y.; Fujii, H.; Kotake, 

K.; Sugano, K. The Use of Olaparib (AZD2281) Potentiates SN-38 Cytotoxicity in 

Colon Cancer Cells by Indirect Inhibition of Rad51-Mediated Repair of DNA Double-

Strand Breaks. Molecular Cancer Therapeutics 2014, 13, 1170-1180. 

 



266 

 

229. Williams, G. J.; Lees-Miller, S. P.; Tainer, J. A. Mre11-Rad50-Nbs1 Conformations 

and the Control of Sensing, Signaling, and Effector Responses at DNA Double-Strand 

Breaks. DNA Repair 2010, 9 (12), 1299-1306. 

230. Majka, J.; Alford, B.; Ausio, J.; Finn, R. M.; McMurray, C. T. ATP Hydrolysis by 

RAD50 Protein Switches MRE11 Enzyme from Endonuclease to Exonuclease. The 

Journal of Biological Chemistry 2012, 287 (4), 2328-2341. 

231. Alagoz, M.; Shiang, S.-C.; Sharma, A.; El-Khamisy, S. ATM Deficiency Results in 

Accumulation of DNA-Topoisomerase I Covalent Intermediates in Neural Cells. PLoS 

ONE 2013, 8 (4), e58239. 

232. Sakamoto, S.; Iijim, K.; Mochizuki, D.; Nakamura, K.; Teshigawara, K.; Kobayashi, J.; 

Matsuura, S.; Tauchi, H.; Komatsu, K. Homologous Recombination Repair is 

Regulated by Domains at the N- and C-Terminus of NBS1 and is Dissociated with 

ATM Functions. Oncogene 2007, 26 (41), 6002-6009. 

233. Williams, R. S.; Dodson, G. E.; Limbo, O.; Yamada, Y.; Williams, J. S.; Guenther, G.; 

Classen, S.; Glover, J. N. M.; Iwasaki, H.; Russell, P.; Tainer, J. A. Nbs1 Flexibly 

Tethers Ctp1 and Mre11-Rad50 to Coordinate DNA Double-Strand Break Processing 

and Repair. Cell 2009, 139 (1), 87-99. 

234. Hari, F. J.; Spycher, C.; Jungmichel, S.; Pavic, L.; Stucki, M. A Divalent FHA/BRCT-

Binding Mechaism Couples the MRE11-RAD50-NBS1 Complex to Damaged 

Chromatin. EMBO Reports 2010, 11 (5), 387-392. 

235. Jungmichel, S.; Clapperton, J. A.; Lloyd, J.; Hari, F. J.; Spycher, C.; Pavic, L.; Li, J.; 

Haire, L. F.; Bonalli, M.; Larsen, D. H.; Lukas, C.; Lukas, J.; MacMillan, D.; Nielsen, 

M. L.; Stucki, M.; Smerdon, S. J. The Molecular Basis of ATM-Dependent 

Dimerization of the Mdc1 DNA damage Checkpoint Mediator. Nucleic Acids Research 

2012, 40 (9), 3913-3928. 

236. Wei, Y.; Wang, H.-T.; Zhai, Y.; Russell, P.; Du, L.-L. Mdb1, a Fission Yeast Homolog 

of Human MDC1, Modulates DNA Damage Response and Mitotic Spindle Function. 

PLOS One 2014, 9 (5), e97028. 

237. Lloyd, J.; Chapman, J. R.; Clapperton, J. A.; Haire, L. F.; Hartsuiker, E.; Li, J.; Carr, 

A. M.; Jackson, S. P.; Smerdon, S. J. A Supramodular FHA/BRCT-RepeatArchitecture 

Mediates Nbs1 Adaptor Function in Response to DNA Damage. Cell 2009, 139 (1), 

100-111. 

238. You, Z.; Shi, L. Z.; Zhu, Q.; Wu, P.; Zhang, Y.-W.; Basilio, A.; Tonnu, N.; Verma, I. 

M.; Berns, M. W.; Hunter, T. CtIP Links DNA Double-Strand Break Sensing to 

Resection. Molecular Cells 2009, 36 (6), 954-969. 



267 

 

239. Limbo, O.; Chahwan, C.; Yamada, Y.; De Bruin, R. A. M.; Wittenberg, C.; Russell, P. 

Ctp1 Is a Cell-Cycle-Regulated Protein that Functions with Mre11 Complex to Control 

Double-Strand Break Repair by Homologous Recombination. Molecular Cell 2007, 28 

(1), 134-146. 

240. Wang, H.; Shai, Z.; Shi, L. Z.; Hwang, P. Y.; Truong, L. N.; Berns, M. W.; Chen, D. J.; 

Wu, X. CtIP Protein Dimerisation Is Critical for Its Recruitment to Chromosomal DNA 

Double-Stranded Breaks. The Journal of Biological Chemistry 2012, 287 (25), 21471-

21480. 

241. Dubin, M. J.; Stokes, P. H.; Sum, E. Y. M.; Williams, R. S.; Valova, V. A.; Robinson, 

P. J.; Lindeman, G. J.; Glover, J. N. M.; Visvader, J. E.; Matthews, J. M. Dimerisation 

of CtIP, a BRCA1- and CtBP-interacting Protein, Is Mediated by an N-terminal Coiled-

coil Motif. The Journal of Biological Chemistry 2004, 279 (26). 

242. Rothenberg, M.; Kohli, J.; Ludin, K. Ctp1 and the MRN-Complex are Required for 

Endonucleolytic Rec12 Removal with Release of a Single Class of Oligonucleotides in 

Fission Yeast. PLoS Genetics 2009, 5 (11), e1000722. 

243. Nakamura, K.; Kogame, T.; Oshiumu, H.; Shinohara, A.; Sumitomo, Y.; Agama, K.; 

Pommier, Y.; Tsutsui, K. M.; Tsutsui, K.; Hartsuiker, E.; Ogi, T.; Takeda, S.; 

Taniguchi, Y. Collaborative Action of Brca1 and CtIP in Elimination of Covalent 

Modifications from Double-Strand Breaks to Facilitate Subsequent Break Repair. PLoS 

Genetics 2010, 6 (1), e1000828. 

244. Knab, A. M.; Fertala, J.; Bjornsti, M. A. Mechanisms of Camptothecin Resistance in 

Yeast DNA Topoisomerase I Mutants. The Journal of Biological Chemistry 1993, 268 

(30), 22322-22330. 

245. Pommier, Y. Drugging Topoisomerases: Lessons and Challenges. ACS Chemical 

Biology 2013, 8 (1), 82-95. 

246. Gu, B.; Chen, P.-L. Expression of PCNA-Binding Domain of CtIP, a Motif Required 

for CtIP Localization at DNA Replication Foci, Causes DNA Damage and Activation 

of DNA Damage Checkpoint. Cell Cycle 2009, 8 (9), 1409-1420. 

247. O'Donovan, P. J.; Livingston, D. M. BRCA1 and BRCA2: Breast/Ovarian Cancer 

Susceptibility Gene Products and Participants in DNA Double-Strand Break Repair. 

Carcinogenesis 2010, 31 (6), 961-967. 

248. Chen, L.; Nievera, C. J.; Yueh-Luen Lee, A.; Wu, X. Cell Cycle-Dependent Complex 

Formation of BRCA1·CtIP·MRN Is Important for DNA Double-Strand Break Repair. 

The Journal of Biological Chemistry 2008, 283 (12), 7713-7720. 



268 

 

249. Harrison, M. M.; Jenkins, B. V.; O'Connor-Giles, K. M.; Wildonger, J. A CRISPR 

View of Development. Genes & Development 2014, 29 (2), 1859-1872. 

250. Fauci, A. S.; Kasper, D. L.; Braunwald, E.; Hauser, S. L.; Longo, D. L.; Jameson, J. L.; 

Loscalzo, J. Gastrointestinal Tract Cancer: Introduction. http://dualibra.com/wp-

content/uploads/2012/04/037800~1/Part%206.%20Oncology%20and%20Hematology/

Section%201.%20Neoplastic%20Disorders/087.htm (accessed March 02, 2015). 

251. Mawdsley, S.; Gynne-Jones, R.; Grainger, J.; Richman, P.; Makris, A.; Harrison, M.; 

Ashford, R.; Harrison, R. A.; Osborne, M.; Livingstone, J. I.; MacDonald, P.; Mitchell, 

I. C.; Meyrick-Thomas, J.; Northover, J. M. A.; Windsor, A.; Novell, R.; Wallace, M. 

Can Histopathologic Assessment of Circumferential Margin After Preoperative Pelvic 

Chemoradiotherapy for T3-T4 Rectal Cancer Predict for 3-Year Disease-Free Survival. 

International Journal of Radiation Oncology*Biology*Physics 2005, 63 (3), 745-752. 

252. Tsukamoto, Y.; Kato, Y.; Ura, M.; Horii, I.; Ishitsuka, H.; Kusuhara, H.; Sugiyama, Y. 

A Physiologically Based Pharmacokinetic Analysis of Capecitabine, A Triple Prodrug 

of 5-FU, in Humans: The Mechanism for Tumour-Selective Accumulation of 5-FU. 

Pharmaceutical Research 2001, 18 (8), 1190-1202. 

253. Longley, D. B.; Harkin, D. P.; Johnston, P. G. 5-Fluorouracil: Mechanisms of Action 

and Clinical Strategies. Nature Reviews 2003, 3 (5), 330-338. 

254. The Assosciation of Coloproctology of Great Britain and Ireland. Guidlines for the 

Management of Colorectal Cancer; London, 2007. 

255. London Cancer Alliance. LCA Colorectal Cancer Clinical Guidlines; London Cancer 

Alliance: London, 2014. 

256. Lloyd, J.; Chapman, J. R.; Clapperton, J. A.; Haire, L. F.; Hartsuiker, E.; Li, J.; Carr, 

A. M.; Jackson, S. P.; Smerdon, S. J. A Supramodular FHA.BRCT-Repeat 

Architechture Mediates Nbs1 Adaptor Function in Response to DNA Damage. Cell 

2009, 139 (1), 100-111. 

257. Jacob, S.; Aguado, M.; Fallik, D.; Praz, F. The Role of the DNA Mismatch Repair 

System in the Cytotoxicity of the Topoisomerase Inhibitors Camptothecin and 

Etoposide to Human Colorectal Cancer Cells. Cancer Research 2001, 61 (17), 6555-

6562. 

258. Magrini, R.; Bhonde, M. R.; Hanski, M. L.; Notter, M.; Scherübl, H.; Boland, C. R.; 

Zeitz, M.; Hanski, C. Cellular Effects of CPT-11 on Colon Carcinoma Cells: 

Dependence on P53 and hMLH1 Status. International Journal of Cancer 2002, 101 

(1), 23-31. 



269 

 

259. Pino, M. S.; Chung, D. C. Microsatellite Instability in the Management of Colorectal 

Cancer. Expert Review of Gastroenterology & Hepatoogy 2011, 5 (3), 385-399. 

260. Stadler, Z. K. Diagnosis and Management of DNA Mismatch Repair-Deficient 

Colorectal Cancer. Hematology/Oncology Clinics of North America 2015, 29 (1), 29-

41. 

261. Wang, Z.; Moult, J. SNPs, Protein Structure, and Disease. Human Mutation 2001, 17 

(4), 263-270. 

262. Ramensky, V.; Bork, P.; Sunyaev, S. Human Non-Synonymous SNPs: Server and 

Servey. Nucleic Acids Research 2002, 30 (17), 3894-3900. 

263. Zhang, Z.; Miteva, M. A.; Wang, L.; Alexov, E. Analyzing Effects of Naturally 

Occurring Missense Mutations. Computational and Mathematical Methods in Medicine 

2012, 2012 (805827), 1-15. 

264. Adzhubei, I. A.; Schmidt, S.; Pechkin, L.; Ramensky, V. E.; Gerasimova, A.; Bork, P.; 

Kondrashov, A. S.; Sunyaev, S. R. A Method and Server for Predicting Damaging 

Missense Mutations. Nature Methods 2010, 7 (4), 248-249. 

265. Yuan, L. An Improved Naive Bayes Text Classification Algorithm In Chinese 

Information Processing. Proceedings of the Third International Symposium on 

Computer Science and Computational Technology 2010, 14-15, 267-269. 

266. Tavigian, S. V.; Deffenbaugh, A. M.; Yin, L.; Judkins, T.; Scholl, T.; Samollow, P. B.; 

De Silva, D.; Zharkikh, A.; Thomas, A. Comprehensive Statistical Study of 452 

BRCA1 Missense Substitutions with Classification of Eight Recurrent Substitutions as 

Neutral. Journal of Medical Genetics 2006, 43 (4), 295-305. 

267. Lykke-Andersen, J.; Shu, M.-D.; Steitz, J. A. Human Upf Proteins Target an mRNA 

for Nonsense-Mediated Decay When Bound Downstream of a Termination Codon. 

Cell 2000, 103 (7), 1121-1131. 

268. El-Bchiri, J.; Buhard, O.; Penard-Lacrnique, V.; Thomas, G.; Hamelin, R.; Duval, A. 

Differential Nonsense Mediated Decay of Mutated mRNAs in Mismatch Repair 

Deficient Colorectal Cancers. Human Molecular Genetics 2005, 14 (16), 2435. 

269. Tommiska, J.; Seal, S.; Renwick, A.; Barfoot, R.; Baskomb, L.; Jayatilake, H.; 

Bartkova, J.; Tallila, J.; Kaare, M.; Tamminen, A.; Heikkilä, P.; Evans, D. E.; Eccles, 

D.; Aittomäki, K.; Blomqvist, C.; Bartek, J.; Stratton, M. R.; Nevanlinna, H.; Rahman, 

N. Evaluation of RAD50 in Familial Breast Cancer Predisposition. International 

Journal of Cancer 2006, 118 (11), 2911-2916. 

 



270 

 

270. Luo, G.; Yao, M. S.; Bender, C. F.; Mills, M.; Bladl, A. R.; Bradley, A.; Petrini, J. H. J. 

Disruption of mRad50 Causes Embryonic Stem Cell Lethality, Abnormal Embryonic 

Developmen, and Sensitivty to Ionizing Radiation. PNAS 1999, 96 (13), 7376-7381. 

271. Sherry, S. T.; Ward, M. H.; Kholodov, M.; Baker, J.; Phan, L.; Smigielsk, E. M.; 

Sirotkin, K. dbSNP: The NCBI Database of Genetic Variation. Nucleic Acids Research 

2001, 29 (1), 308-311. 

272. Polymorphisms, D. o. S. N. dbSNP. http://www.ncbi.nlm.nih.gov/SNP/index.html 

(accessed May 5, 2014). 

273. Server, E. V. NHLBI GO Exome Sequencing Project(SP). 

http://evs.gs.washington.edu/EVS/ (accessed May 5, 2014). 

274. Thibodeau, S. N.; French, A. J.; Cunningham, J. M.; Tester, D.; Burgart, L. J.; Roche, 

P. C.; McDonnell, S. K.; Schald, D. J.; Walsh Vockley, C.; Michels, V. V.; Farr, M. G. 

H. J.; O'Connell, M. J. Microsatellite Instability in Colorectal Cancer: Different 

Mutator Phenotypes and the Principal Involvement of hMLH1. Cancer Research 1998, 

58 (8), 1713-1718. 

275. Parmigiani, G.; Boca, S.; Lin, J.; Kinzler, K. W.; Velculescu, V.; Vogelstein, B. Design 

and Analysis in Genome-Wide Somatic Mutation Studies of Cancer. Genomics 2009, 

93 (1), 17-21. 

276. Williams, C.; Pontén, F.; Moberg, C.; Söderkvist, P.; Uhlén, M.; Pontén, J.; Sitbon, G.; 

Lundeberg, J. A High Frequency of Sequence Alterations is Due to Formalin Fixation 

of Archival Specimens. The American Journal of Pathology 1999, 155 (5), 1467-1471. 

277. The Cancer Genome Atlas Network. Comprehensive molecular characterization of 

human colon and rectal cancer. Nature 2012, 487 (7407), 330-337. 

278. Forbes, S. A.; Bindal, N.; Bamford, S.; Cole, C.; Kok, C. H.; Beare, D.; Jia, M.; 

Shepherd, R.; Leung, K.; Menzies, A.; Teague, J. W.; Campbell, P. J.; Stratton, M. R.; 

Futreal, P. A. COSMIC: Mining Complete Cancer Genomes in the Catalogue of 

Somatic Mutations in Cancer. Nucleic Acids Research 2011, 39 (Database Issue), 

D945-D950. 

279. Do, H.; Wong, S. Q.; Li, J.; Dobrovic, A. Reducing Sequence Artifacts in Amplicon-

Based Massively Parallel Sequencing of Formalin-Fixed Paraffin-Embedded DNA by 

Enzymatic Depletion of Uracil-Containing Templates. Clinical Chemistry 2013, 59 (9), 

1376-1383. 

 

 



271 

 

280. Do, H.; Dobrovic, A. Dramatic Reduction of Sequence Artefacts from DNA Isolated 

from Formalin-Fixed Cancer Biopsies by Treatment with Uracil-DNA Glycosylase. 

Oncotarget 2012, 3 (5), 546-558. 

281. Lamy, A.; Blanchard, F.; Le Pessot, F.; Sesboüé, R.; Di Fiore, F.; Bossut, J.; Fiant, E.; 

Frébourg, T.; Sabourin, J.-C. Metastatic Colorectal Cancer KRAS Genotyping in 

Routine Practice: Results and Pitfalls. Modern Pathology 2011, 24 (8), 1090-1100. 

282. Fazekas, A.; Steeves, R.; Newmaster, S. Improving Sequencing Quality from PCR 

Products Containing Long Mononucleotide Repeats. Biotechniques 2010, 48 (4), 277-

285. 

283. Brownstein, M. J.; Carpten, J. D.; Smith, J. R. Modulation of Non-templated 

Nucleotide Addition by Taq DNA Polymerase: Primer Modifications that Facilitate 

Genotyping. Biotechniques 1996, 20 (6), 1008-1010. 

284. International Human Genome Sequencing Consortium. Initial Sequencing and Analysis 

of the Human Genome. Nature 2001, 409 (6822), 860-921. 

285. Losi, L.; Baisse, B.; Bouzourene, H.; Benhattar, J. Evolution of Intratumoral Genetic 

Heterogeneity During Colorectal Cancer Progression. Carcinogenesis 2005, 26 (5), 

916-922. 

286. Fusco, C.; Reymond, A.; Zervos, A. S. Molecular Cloning and Characterization of a 

Novel Retinoblastoma-Binding Protein. Genomics 1998, 51 (3), 351-358. 

287. Dolganov, G. M.; Maser, R. S.; Novikov, A.; Tosto, L.; Chong, S.; Bressan, D. A.; 

Petrini, J. H. J. Human Rad50 Is Physically Associated with Human Mre11: 

Identification of a Conserved Multiprotein Complex Implicated in Recombinational 

DNA Repair. Molecular and Cellular Biology 1996, 16 (9), 4832-4841. 

288. Rigau, V.; Sebbagh, N.; Olschwang, S.; Paraf, F.; Mourra, N.; Parc, Y.; Flejou, J. F. 

Microsatellite Instability in Colorectal Carcinoma. The Comparison of 

Immunohistochemistry and Molecular Biology Suggests a Role for hMSH6 

[Correction of hMLH6] Immunostaining. Archives of Pathology and Laboratory 

Medicine 2003, 127 (6), 694-700. 

289. Poynter, J. N.; Siegmund, K. D.; Weisenberger, D. J.; Long, T. I.; Thibodeau, S. N.; 

Lindor, N.; Young, J.; Jenkins, M. A.; Hopper, J. L.; Baron, J. A.; Buchanan, D.; 

Casey, G.; Levine, J. A.; Le Marchand, L.; Gallinger, S.; Bapat, B.; Potter, J. D.; 

Newcomb, P. A.; Haile, R. W.; Laird, P. W. Molecular Characterization of MSI-H 

Colorectal Cancer by MLH1 Promoter Methylation, Immunohistochemistry, and 

Mismatch Repair Germline Mutation Screening. Cancer Epidemiology, Biomarkers & 

Prevention 2008, 17 (11), 3208-3215. 



272 

 

290. You, Z.; Shi, L. Z.; Zhu, Q.; Wu, P.; Zhang, Y. W.; Basilio, A.; Tonnu, N.; Verma, I. 

M.; Berns, M. W.; Hunter, T. CtIP Links DNA Double-Strand Break Sensing to 

Resection. Molecular Cell 2009, 36 (6), 954-969. 

291. Chen, P.-L.; Liu, F.; Cai, S.; Lin, X.; Li, A.; Chen, Y.; Gu, B.; Lee, E. Y.-H. P.; Lee, 

W.-H. Inactivation of CtIP Leads to Early Embryonic Lethality Mediated by G1 

Restraint and to Tumorigenesis by Haploid Insufficiency. Molecular and Cellular 

Biology 2005, 25 (9), 3535-3542. 

292. Barton, O.; Naumann, S. C.; Diemer-Biehs, R.; Künzel, J.; Steinlage, M.; Conrad, S.; 

Makharashvili, N.; Wang, J.; Feng, L.; Lopez, B. S.; Paull, T. T.; Chen, J.; Jeggo, P. 

A.; Löbrich, M. Polo-like Kinase 3 Regulates CtIP During DNA Double-Strand Break 

Repair in G1. The Journal of Cell Biology 2014, 206 (7), 877-894. 

293. Pazdur, R.; Hoff, P. M.; Medgyesy, D.; Royce, M.; Brito, R. The Oral Fluorouracil 

Prodrugs. Oncology 1998, 12 (10 Supplement 7), 48-51. 

294. Twelves, C.; Wong, A.; Nowaki, M. P.; Abt, M.; Burris, H.; Carrato, A.; Cassidy, J.; 

Cervantes, A.; Fagerberg, J.; Georgoulias, V.; Husseini, F.; Jodrell, D.; Koralewski, P.; 

Kröning, H.; Maroun, J.; Marschner, N.; McKendrick, J.; Pawlicki; Rosso, R.; 

Schüller, J.; Seitz, J.-F.; Stabuc, B.; Tujakowski, J.; Van Hazel, G.; Zaluski, J.; 

Scheithauer, W. Capecitabine as Adjuvent Treatment of Stage III Colon Cancer. New 

England Journal of Medicine 2005, 352 (26), 2696-2704. 

295. Saif, M. W.; Ezzeldin, H.; Vance, K.; Sellers, S.; Diasio, R. R. DPYD*2A Mutation: 

The Most Common Mutation Associated with DPD Deficiency. Cancer Chemotherapy 

and Pharmacology 2007, 60 (4), 503-507. 

296. Zhang, N.; Yin, Y.; Xu, S.-J.; Chen, W.-S. 5-Fluorouracil: Mechanisms of Resistance 

and Reversal Strategies. Molecules 2008, 13 (8), 1551-1569. 

297. Longley, D. B.; Harkin, D. P.; Johnston, P. G. 5-Fluorouracil: Mechanisms of Action 

and Clinical Strategies. Nature Reviews 2003, 3 (5), 330-338. 

298. Stoehlmacher, J.; Ghaderi, V.; Xiong, Y.-P.; Ingles, S. A.; Sherrod, A.; Warren, R.; 

Tsao-Wei, D.; Groshen, S.; Lenz, H.-J. Thymidylate Synthase Gene Polymorphis 

Determines Response and Toxicity of 5-FU Chemotherapy. The Pharmacogenetics 

Journal 2001, 1 (1), 65-70. 

299. Peters, G. J.; Backus, H. H. J.; Freemantle, S.; Van Triest, B.; Codacci-Pisanelli, G.; 

Van der Wilt, C. L.; Lunec, J.; Calvert, A. H.; Marsh, S.; McLeod, H. L.; Bloemena, 

E.; Meijer, S.; Jansen, G.; Van Groeningen, C. J.; Pinedo, H. M. Induction of 

Thymidylate Synthase as a 5-Fluorouracil Resistance Mechanism. Biochemica et 

Biophysica Acta (BBA) - Molecular Basis of Disease 2002, 1587 (2-3), 194-205. 



273 

 

300. Major, P. P.; Egan, E.; Herrick, D.; Kufe, D. W. 5-Fluorouracil Incorporation in DNA 

of Human Breast Carcinoma Cells. Cancer Research 1982, 42 (8), 3005-3009. 

301. Kufe, D. W.; Major, P. P. 5-Fluorouracil Incorporation into Human Breast Carcinoma 

RNA Correlates with Cytotoxicity. The Journal of Biological Chemistry 1981, 256 

(19), 9802-9805. 

302. Noordhuis, P.; Holwerda, U.; Van der Wilt, C. L.; Van Groeningen, C. J.; Smid, K.; 

Meijer, S.; Pinedo, H. M.; Peters, G. J. 5-Fluorouracil Incorporation into RNA and 

DNA in Relation to Thymidylate Synthase Inhibition of Human Colorectal Cancers. 

Annals of Oncology 2004, 15 (7), 1025-1032. 

303. An, Q.; Robins, P.; Lindahl, T.; Barnes, D. E. 5-Fluoruracil Incorporated into DNA is 

Excised by the Smug1 DNA Glycosylase to Reduce Drug Cytoxicity. Cancer Research 

2007, 67 (3), 940-945. 

304. Pettersen, H. S.; Visnes, T.; Vågbø, C. B.; Svaasand, E. K.; Doseth, B.; Slupphaug, G.; 

Kavli, B.; Krokan, H. E. UNG-initiated Base Excision Repair is the MajorRepair Route 

for 5-Fluorouracil in DNA, but 5-Fluorouracil Cytotoxicity Depends Mainly on RNA 

Incorporation. Nucleic Acids Research 2011, 39 (19), 8430-8444. 

305. Nagaria, P.; Svilar, D.; Brown, A. R.; Wang, X.-H.; Sobol, R. W.; Wyatt, M. D. 

SMUG1 but not UNG DNA Glycosylase Contributes to the Cellular Response to 

Recovery from 5-Fluorouracil induced Replication Stress. Mutation 

Research/Fundamental and Molecular Mechanisms of Mutagenesis 2013, 743-744, 26-

32. 

306. Johnston, P. G.; Lenz, H.-J.; Leichman, C. G.; Danenberg, K. D.; Allegra, C. J.; 

Danenberg, P. V.; Leichamn, L. Thymidylate Synthase Gene and Protein Expression 

Correlate and Are Associated with Response to 5-Fluorouracil in Human Colorectal 

and Gastric Tumors. Cancer Research 1995, 55 (7), 1407-1412. 

307. Copur, S.; Aiba, K.; Drake, J. C.; Allegra, C. J.; Chu, E. Thymidylate Synthase Gene 

Amplification in Human Colon Cancer Cell Lines Resistant to 5-Fluorouracil. 

Biochemical Pharmacology 1995, 49 (10), 1419-1426. 

308. Lacopetta, B.; Grieu, F.; Joseph, D.; Elsaleh, H. A Polymorphism in the Enhancer 

Region of the Thymidylate Synthase Promoter Influences the Survival of Colorectal 

Cancer Patients Treated with 5-Fluorouracil. British Journal of Cancer 2001, 85 (6), 

827-831. 

 

 



274 

 

309. Jakobsen, A.; Nielsen, J. N.; Gyldenkerne, N.; Lindeberg, J. Thymidylate Synthase and 

Methylenetetrahydrofolate Reductase Gene Polymorphism in Normal Tissue As 

Predictors of Fluorouracil Sensitivity. Journal of Clinical Oncology 2005, 23 (7), 1365-

1369. 

310. Molero, C.; Petényi, K.; González, A.; Carmona, M.; Gelis, S.; Abrie, J. A.; Strauss, 

E.; Ramos, J.; Dombradi, V.; Hidalgo, E.; Ariño, J. The Schizosaccharomyces pombe 

Fusion Gene hal3 Encodes Three Distinct Activities. Molecular Microbiology 2013, 90 

(2), 367-382. 

311. Mojardín, L.; Botet, J.; Moreno, S.; Salas, M. Chromsome Segregation and 

Organization are Targets of 5′-Fluorouracil in Eukaryotic Cells. Cell Cycle 2015, 14 

(2), 206-218. 

312. Ishikawa, Y.; Kubota, T.; Otani, Y.; Watanabe, M.; Teramoto, T.; Kumai, K.; Takechi, 

T.; Okabe, H.; Fukushima, M.; Kitajima, M. Dihydropyrimidine Dehydrogenase and 

Messenger RNA Levels in Gastric Cancer: Possible Predictor for Sensitivity to 5-

Fluorouracil. Japanese Journal of Cancer Research 2000, 91 (1), 105-112. 

313. Fujii, R.; Seshimo, A.; Kameoka, S. Relationships Between the Expression of 

Thymidylate Synthase, Dihydropyrimidine Dehydrogenase, and Orotate 

Phosphoribosyltransferase and Cell Proliferative Activity and 5-Fluorouracil 

Sensitivity in Coorectal Cancer. International Journal Clinical Oncology 2003, 8 (2), 

72-78. 

314. Taomoto, J.; Yoshida, K.; Wada, Y.; Tanabe, K.; Konishi, K.; Tahara, H.; Fukushima, 

M. Overexpression of the Orotate Phosphoribosyl-Transferase Gene Enhances the 

Effect of 5-Fuorourailon Gastric Cancer Cell Lines. Oncology 2006, 70 (6), 458-464. 

315. Mudge, D. K.; Hoffman, C. A.; Lubinski, T. J.; Hoffman, C. S. Use of ura5
+
-lys7

+
 

Cassette to Construct Unmarked Gene Knock-ins in Schizosaccharomyces pombe. 

Current Genetics 2012, 58 (1), 59-64. 

316. Fischer, F.; Baerenfaller, K.; Jiricny, J. 5-Fluorouracil is Efficiently Removed from 

DNA by the Base Excision and Mismatch Repair Systems. Gastroenterology 2007, 133 

(6), 1858-1868. 

317. Iwaizumi, M.; Tseng-Rogenski, S.; Carethers, J. M. DNA Mismatch Repair 

Proficiency Executing 5-Fluorouracil Cytotoxicity in Colorectal Cancer Cells. Cancer 

Biology & Therapy 2011, 12 (8), 756-764. 

318. Carethers, J. M.; Chauhan, D. P.; Fink, D.; Nebel, S.; Bresalier, R. S.; Howell, S. B.; 

Boland, C. R. Mismatch Repair Proficiency and in vitro Response to 5-Fluorouracil. 

Gastroenterology 1999, 117 (1), 123-131. 



275 

 

319. Sargent, D. J.; Marsoni, S.; Thibodeau, S. N.; Labianca, R.; Hamilton, S. R.; Torri, V.; 

Monges, G.; Ribic, C.; Grothey, A.; Gallinger, S. Confirmation of Deficient Mismatch 

Repair (dMMR) as a Predictive Marker for Lack of Benefit from 5-FU Based 

Chemotherapy in Stage II and III Colon Cancer (CC): A Pooled Molecular Reanalysis 

of Randomized Chemotherapy Trials. Journal of Clinical Oncology 2008, 26 (15S), 1. 

320. Tajima, A.; Iwaizumi, M.; Tseng-Rogenski, S.; Cabrera, B. L.; Carethers, J. M. Both 

hMutSα and hMutSß DNA Mismatch Repair Complexes Participate in 5-Fluorouracil 

Cytotoxicity. PLOS One 2011, 6 (12), e28117. 

321. Adamsen, B. L.; Kravik, K. L.; De Angelis, P. M. DNA Damage Signaling in 

Response to 5-Fluorouracil in Three Colorectal Cancer Cell Lines with Different 

Mismatch Repair and TP53 Status. International Journal of Oncology 201, 39 (3), 673-

682. 

322. Shieh, S.-Y.; Ahn, J.; Tamai, K.; Taya, Y.; Prives, C. The Human Homologues of 

Checkpoint Kinases Chk1 and Cds1 (Chk2) Phosphorylate p53 at multiple DNA 

damage-inducible sites. Genes & Development 2000, 14 (3), 289-300. 

323. Bunz, F.; Hwang, P. M.; Torrance, C.; Waldman, T.; Zhang, Y.; Dillehay, L.; 

Williams, J.; Lengauer, C.; Kinzler, K. W.; Vogelstein, B. Disruption of p53 in Human 

Cancer Cells Alters the Respponses to Therapeutic Agents. The Journal of Clinical 

Investigation 1999, 104 (3), 263-269. 

324. Boyer, J.; McLean, E. G.; Aroori, S.; Wilson, P.; McCulla, A.; Carey, P. D.; Longley, 

D. B.; Johnson, P. G. Characterization of p53 Wild-Type and Null Isogenic Colorectal 

Cancer Cell Lines Resistant to 5-Fluorouracil, Oxaliplatin, and Irinotecan. Clinical 

Cancer Research 2004, 10 (6), 2158-2167. 

325. Yanamoto, S.; Iwamoto, T.; Kawasaki, G.; Yoshitomi, I.; Baba, N.; Mizuno, A. 

Silencing of the p53R2 Gene by RNA Interference Inhibits Growth and Enhances 5-

Fluorouracil Sensitivity of Oral Cancer Cells. Cancer Letters 2005, 223 (1), 67-76. 

326. Teijido, O.; Dejean, L. Upregulation of Bcl2 Inhibits Apoptosis-Driven BAX Insertion 

but Favours BAX Relocalization in Mitochondria. FEBS Letters 2010, 584 (15), 3305-

3310. 

327. Oltval, Z. N.; Milliman, C. L.; Korsmeyer, S. J. Bcl-2Heterodimerizes in vivo with a 

Conserved Homolog, Bax, that Accelerates Programed Cell Death. Cell 1993, 74 (4), 

609-619. 

328. Mirjolet, J. F.; Barberi-Heyob, M.; Didelot, C.; Peyrat, J. P.; Abecassis, J.; Millon, R.; 

Merlin, J. L. Bcl-2/Bax Protein Ratio Predicts 5-Fluorouracil Sensitivity Independently 

of p53 Status. British Journal of Cancer 2000, 83 (10), 1380-1386. 



276 

 

329. Violette, S.; Poulain, L.; Dussaulx, E.; Pepin, D.; Faussat, A.-M.; Chambaz, J.; Lacorte, 

J.-M.; Staedel, C.; Lesuffleur, T. Resistance of Colon Cancer Cells to Long-Term 5-

Fluorouracil Exposure is Correlated to the Relative Level of Bcl-2 and Bcl-X in 

Addition to Bax and p53 Status. International Journal of Cancer 2002, 98 (4), 498-

504. 

330. Sharma, R.; Hoskins, J. M.; Rivory, L. P.; Zucknick, M.; London, R.; Liddle, C.; 

Clarke, S. J. Thymidylate Synthase and Methylenetetrahydrofolate Reductase Gene 

Polymorphisms and Toxicity to Capecitabine in Advanced Colorectal Cancer Patients. 

Clinical Cancer Research 2008, 14 (3), 817-825. 

331. Thomas, F.; Montsinger-Reif, A. A.; Hoskins, J. M.; Dvorak, A.; Roy, S.; Alyasiri, A.; 

Myerson, R. J.; Fleshman, J. W.; Tan, B. R.; McLeod, H. L. Methylenetetrahydrofolate 

Reductase Genetic Polymorphisms and Toxicity to 5-FU Based Chemoradiation in 

Rectal Cancer. British Journal of Cancer 2011, 105 (11), 1654-1662. 

332. Etienne, M. C.; Ilc, K.; Formento, J. L.; Laurent-Puig, P.; Formento, P.; Cheradame, S.; 

Fischel, J. L.; Milano, G. Thymidylate Synthase and Methylenetetrahydrofolate 

Reductas Gene Polymorphisms: Relationships with 5-Fluorouracil Sensitivity. British 

Journal of Cancer 2004, 90 (2), 526-534. 

333. Naula, N.; Walther, C.; Bauman, D.; Schweingruber, M. E. Two Non-Complementing 

Genes Encoding Enzymatically Active Methylenetetrahydrofolate Reductases Control 

Methionine Requirement in Fission Yeast Schizosaccharomyces pombe. Yeast 2002, 19 

(10), 841-848. 

334. Arango, D.; Corner, G. A.; Wadler, S.; Catalano, P. J.; Augenlicht, L. H. c-myc/p53 

Interaction Determines Sensitivity of Human Colon Carcinoma Cells to 5-Fluorouracil 

in Vitro and in Vivo. Cancer Research 2001, 61 (12), 4910-4915. 

335. Wang, Z.; Wu, X.; Friedberg, E. C. Molecular Mechanism of Base Excision Repair of 

Uracil-Containing DNA in Yeast Cell-Free Extracts. The Journal of Biological 

Chemistry 1997, 272 (38), 24064-24071. 

336. Seiple, L.; Jaruga, P.; Dizdaroglu, M.; Stivers, J. T. Linking Uracil Base Excision 

Repair and 5-Fluouroracil Toxicity in Yeast. Nucleic Acids Research 2006, 34 (1), 140-

151. 

337. Deshpande, G. P.; Hayles, J.; Hoe, K.-L.; Kim, D.-U.; Park, H.-O.; Hartsuiker, E. 

Screening a Genome Wide S. pombe Deletion Library Identifies Novel Genes and 

Pathways Involved inthe DNA Damage Response. DNA Repair 2009, 8 (5), 672-679. 

338. Decottignies, A.; Sanchez-Perez, I.; Nurse, P. Schizosaccharomyces pombe Essential 

Genes: A Pilot Study. Genome Research 2003, 13 (3), 399-406. 



277 

 

339. Lawless, C.; Wilkinson, D. J.; Young, A.; Addinall, S. G.; Lydall, D. A. Colonyzer: 

Automated Quantification of Micro-Organism Growth Characeristics on Solid Agar. 

BMC Bioinformatics 2010, 11 (287), 1-12. 

340. Banks, A. P.; Lawless, C.; Lydall, D. A. A Quantitative Fitness Analysis Workflow. 

Journal of Visualized Experiments 2012, 13 (66), 4018. 

 

341. Addinall, S.; Holstein, E.-M.; Lawless, C.; Yu, M.; Chapman, K.; Banks, A. P.; Ngo, 

H.-P.; Maringele, L.; Taschuk, M.; Young, A.; Ciessiolka, A.; Lister, A. L.; Wipat, A.; 

Wilkinson, D. J.; Lydall, D. Quantitive Fitness Analysis Shows That NMD Proteins 

and Many Other Protein Complexes Suppress of Enhance Distinct Telomere Cap 

Defects. PLOS Genetics 2011, 7 (4), e1001362. 

342. Hodson, J. A.; Bailis, J. M.; Forsburg, S. L. Efficient Labeling of Fission Yeast 

Schizosaccharomyces pombe with Thymidine and BUdR. Nucleic Acids Research 

2003, 31 (21), e134. 

343. Fernandez Sarabia, M. J.; McInerny, C.; Harris, P.; Gordon, C.; Fantes, P. The Cell 

Cycle Genes cdc22
+
 and suc22

+
 of the Fission Yeast Schizosaccharomyces pombe 

Encode the Large and Small Subunits of Ribonucleotide Reductase. Molecular & 

General Genetics 1993, 1-2, 241-251. 

344. Ekwall, K.; Javerzat, J. P.; Lorentz, A.; Schmidt, H.; Cranston, G.; Allshire, R. The 

Chromodomain Protein Swi6: A Key Component at Fission Yeast Centromeres. 

Science 1995, 269 (5229), 1429-1431. 

345. Ekwall, K.; Nimmo, E. R.; Javerzat, J. P.; Borgstrom, B.; Egel, R.; Cranston, G.; 

Allshire, R. Mutations in the Fission Yeast Silencing Factors clr4
+
 and rik1

+
 Disrupt 

the Localisation of the Chromo Domain Protein Swi6 and Impair Centromere Function. 

Journal of Cell Science 1996, 109 (11), 2637-2648. 

346. Buscaino, A.; White, S. A.; Houston, D. R.; Lejeune, E.; Simmer, F.; De Lima Alves, 

F.; Diyora, P. T.; Urano, T.; Bayne, E. H.; Rappsilber, J.; Allshire, R. C. Raf1 Is a 

DCAF forthe Rik1 DDB1-Like Protein and Has Separable Roles in siRNA Generation 

and Chromatin Modification. PLoS Genetics 2012, 8 (2), e1002499. 

347. White, S. A.; Buscaino, A.; Sanchez-Pulido, L.; Ponting, C. P.; Nowicki, M. W.; 

Allshire, R. C. The RFTS Domain of Raf2 Is Required for Cul4 Interaction and 

Heterochromatin Integrity in Fission Yeast. PLoS One 2014, 9 (8), e104161. 

348. Wilson, B. G.; Roberts, C. W. M. SWI/SNF Nucleosome Remodellers and Cancer. 

Nature Reviews Cancer 2011, 11 (7), 481-492. 



278 

 

349. Zhong, J.; Yang, L.; Liu, N.; Zheng, J.; Lin, C.-Y. Knockdown of Inhibitor of Growth 

Protein 2 Inhibits Cell Invasion and Enhances Chemosensitivity to 5-FU in Human 

Gastric Cancer Cells. Digestive Diseases and Sciences 2013, 58 (11), 3189-3197. 

350. Monahan, B. J.; Villén, J.; Marguerat, S.; Bähler, J.; Gygi, S. P.; Winston, F. Fission 

Yeast SWI/SNF and RSC Complexes Show Compositional and Functional Differences 

from Budding Yeast. Nature Structural & Molecular Biology 2008, 15 (8), 873-880. 

351. Zhu, X.; Démolis, N.; Jacquet, M.; Michaeli, T. MSI Suppresses Hyperactive RAS via 

the cAMP-Dependent Protein Kinase and Independently of Chromatin Assembly 

Factor-1. Current Genetics 2000, 38 (2), 60-70. 

352. Rodriguez-Callazo, P.; Snyder, S. K.; Chiffer, R. C.; Bressler, E. A.; Voss, T. C.; 

Anderson, E. P.; Genieser, H.-G.; Smith, C. L. cAMP Signaling Regulates Histone H3 

Phosphorylation and Mitotic Entry Through a Disruption of G2 Progression. 

Experimental Cell Research 2008, 314 (15), 2855-2869. 

353. Tumber, A.; Collins, L. S.; Petersen, K. D.; Thougaard, A.; Chrisiansen, S. J.; 

Dejligbjerg, M.; Jensen, P. B.; Sehested, M.; Ritchie, J. W. A. The Histone Deacetylase 

Inhibitor PXD101 Synergises with 5-Fluorouracil to Inhibit Colon Cancer Cell Growth 

in vitro and in vivo. Cancer Chemotherapy and Pharmacology 2007, 60 (2), 275-283. 

354. Espino, P. S.; Li, L.; He, S.; Yu, J.; Davie, J. R. Chromatin Modification of the Trefoil 

Factor 1 Gene in Human Breast Cancer Cells by the Ras/Mitogen-Activated Protein 

Kinase Pathway. Cancer Research 2006, 66 (9), 4610-4616. 

355. Kloc, A.; Zaratiegui, M.; Nora, E.; Martienssen, R. RNA Interference Guides Histone 

Modification During the S Phase of Chromosomal Replication. Current Biology 2008, 

18 (7), 490-495. 

356. Klampfer, L.; Swaby, L.-A.; Huang, J.; Sasazuki, T.; Shirasawa, S.; Augenlicht, L. 

Oncogenic Ras Increases Sensitivity of Colon Cancer Cells to 5-FU-Induced 

Apoptosis. Oncogene 2005, 24 (24), 3. 

357. Lawrence, R. J.; Volpe, T. A. Msc1 Links Dynamic Swi6/HP1 Binding to Cell Fate 

Determination. PNAS 2008, 106 (4), 1163-1168. 

358. Ahmed, S.; Dul, B.; Qiu, X.; Walworth, N. C. Msc1 Acts Through Histone H2A.Z to 

Promote Chromosome Stability in Schizosaccharomyces pombe. Genetics 2007, 177 

(3), 1487-1497. 

 

 



279 

 

359. Hirai, H.; Arai, T.; Okada, M.; Nishibata, T.; Kobayashi, M.; Sakai, N.; Imagaki, K.; 

Ohtani, J.; Sakai, T.; Yoshizumi, T.; Mizuarai, S.; Iwasawa, Y.; Kotani, H. MK-1775, a 

Small Molecule Wee1 Inhibitor, Enhances Anti-Tumour Efficacy of Various DNA-

Damaging Agents, Including 5-Fluorouracil. Cancer Biology & Therapy 2010, 9 (7), 

514-522. 

360. Volpe, T.; Schramke, V.; Hamilton, G. L.; White, S. A.; Teng, G.; Martienssen, R. A.; 

Allshire, R. C. RNA Interference is Required for Normal Centromere Function In 

Fission Yeast. Chromosome Research 2003, 11 (2), 137-146. 

361. Motamedi, M. R.; Verdel, A.; Colmenares, S. U.; Gerber, S. A.; Gygi, S. P.; Moazed, 

D. Two RNAi Complexes, RITS and RDRC, Physically Interact and Localize to 

Noncoding Centromeric RNAs. Cell 2004, 119 (6), 789-802. 

362. Bühler, M.; Spies, N.; Bartel, D. P.; Moazed, D. TRAMP-Mediated RNA Surveilance 

Prevents Spurious Entry of RNAs into the Schizosaccharomyces pombe siRNA 

Pathway. Nature STructural & Molecular Biology 2008, 15 (10), 1015-1023. 

363. Win, T. Z.; Draper, S.; Read, R. L.; Pearce, J.; Norbury, C. J.; Wang, S.-W. 

Requirement of Fission Yeast Cid14 in Polyadenylation of rRNAs. Molecular and 

Cellular Biology 2006, 26 (5), 1710-1721. 

364. Roguev, A.; Bandyopadhay, S.; Zofall, M.; Zhang, K.; Fischer, T.; Collins, S. R.; Qu, 

H.; Shales, M.; Park, H.-O.; Hayles, J.; Hoe, K.-L.; Kim, D.-U.; Ideker, T.; Grewal, S. 

I.; Weissman, J. S.; Krogan, N. J. Conservation and Rewiring of Functional Modules 

Revealed by an Epistasis Map in Fission Yeast. Science 2008, 322 (5900), 405-410. 

365. Zhao, Z.; Su, W.; Yuan, S.; Huang, Y. Functional Conservation of tRNase ZL Among 

Saccharomyces cerevisiae, Schizosaccharomyces pombe and Humans. Biochemical 

Journal 2009, 422, 483-492. 

366. Kim, N.; Jinks-Robertson, S. dUTP Incorporation Into Genomic DNA is Linked to 

Transcription in Yeast. Nature 2009, 459 (7250), 1150-1153. 

367. Huang, J.; Huen, M. S. Y.; Kim, H.; Leung, C. C. Y.; Glover, J. N. M.; Yu, X.; Chen, 

J. RAD18 Transmts DNA Damage Signalling to Elicit Homologous Recombination 

Repair. Nature Cell Biology 2009, 11 (5), 592-603. 

368. Watanabe, K.; Tateishi, S.; Kawasuji, M.; Tsurimoto, T.; Inoue, H.; Yamaizumi, M. 

Rad18 Guides polη to Replication Stalling Sites Through Physical Interaction and 

PCNA Monoubiquitination. The EMBO Journal 2004, 23 (19), 3886-3896. 

 

 



280 

 

369. Bailly, V.; Lamb, J.; Sung, P.; Prakash, S.; Prakash, L. Specific Complex Formation 

Between Yeast RAD6 and RAD18 Proteins: A Potential Mechanism for Targeting 

RAD6 Ubiquitin-Conjugating Activity to DNA Damage Sites. Genes & Development 

1994, 8 (7), 811-820. 

370. Bailly, V.; Lauder, S.; Prakash, S.; Prakash, L. Yeast DNA Repair Proteins Rad6 and 

Rad18 Form a Heterodimer that has Ubiquitin Conjugating, DNA Binding, and ATP 

Hydrolytic Activities. The Journal of Biological Chemistry 1997, 272 (37), 23360-

23365. 

371. Verkade, H. M.; Teli, T.; Laursen, L. V.; Murray, J. M.; O'Connell, M. J. A 

Homologue of the Rad18 Postreplication Repair Gene is Required for DNA Damage 

Responses Throughout the Fission Yeast Cell Cycle. Molecular Genetics and 

Genomics 2001, 265 (6), 993-1003. 

372. Pierce, A. J.; Johnson, R. D.; Thompson, L. H.; Jasin, M. XRCC3 Promotes 

Homology-Directed Repair of DNA Damage in Mammalian Cells. Genes & 

Development 1999, 13 (20), 2633. 

373. Bishop, D. K.; Ear, U.; Bhattacharyya, A.; Calderone, C.; Beckett, M.; Weichselbaum, 

R. R.; Shinohara, A. Xrcc3 is Required for Assembly of Rad51 Complexes in vivo. The 

Journal of Bioogical Chemistry 1998, 273 (34), 21482-21488. 

374. Cui, X.; Brenneman, M.; Meyne, J.; Oshimura, M.; Goodwin, E. H.; Chen, D. J. The 

XRCC2 and XRCC3 Repair Genes are Required for Chromosome Stability in 

Mammalian Cells. Mutation Research/DNA Repair 1999, 434 (2), 75-88. 

375. Griffin, C. S.; Simpson, P. J.; Wilson, C. R.; Thacker, J. Mammalian Recombination-

repair Genes XRCC2 and XRCC3 Promote Correct Chromosome Segregation. Nature 

Cell Biology 2000, 2 (10), 757-761. 

376. Liu, Y.; Chen, H.; Chen, L.; Hu, C. Prediction of Genetic Polymorphisms of DNA 

Repair Genes XRCC1 and XRCC3 in the Survival of Colorectal Cancer Receiving 

Chemotherapyin the Chinese Population. Hepato-Gastroenterology 2012, 59 (116), 

977-980. 

377. Alexandrov, A.; Grayhack, E. J.; Phizicky, E. M. tRNA m7G Methyltransferase 

Trm8p/Trm82p: Evidence Linking Activity to a Growth Phenotype and Implicating 

Trm82p in Maintaining Levels of Active Trm8p. RNA 2005, 11 (5), 821-830. 

378. Jackman, J. E.; Montange, R. K.; Malik, H. S.; Phizicky, E. M. Identification of the 

Yeast Gene Encoding the tRNA m1G Methyltransferase Responsible for Modification 

at Position 9. RNA 2003, 9 (5), 574-585. 



281 

 

379. Swinehart, W. E.; Henderson, J. C.; Jackman, J. E. Unexpected Expansion of tRNA 

Substrate Recognition by the m1G9 Methyltransferase Trm10. RNA 2013, 19 (8), 

1137-1146. 

380. Xing, F.; Hiley, S. L.; Hughes, T. R.; Phizcky, E. M. The Specificities of Four Yeast 

Dihydrouridine Synthases for Cytoplasmic tRNAs. The Journal of Biological 

Chemistry 2004, 279 (17), 17850-17860. 

381. Alexandrov, A.; Chernyakov, I.; Gu, W.; Hiley, S. K.; Hughes, T. R.; Grayhack, E. J.; 

Phizicky, E. M. Rapid tRNA Decay can Result from Lack of Nonessential 

Modifications. Molecular Cell 2006, 21 (1), 87-96. 

382. Whipple, J. M.; Lane, E. A.; Chernyakov, I.; D'Silva, S.; Phizicky, E. M. The Yeast 

Rapid tRNA Decay Pathway Primarily Monitors the Structural Integrity of the 

Acceptor and T-Stems of Mature tRNA. Genes & Development 2011, 25 (11), 1173-

1184. 

383. Gustavsson, M.; Ronne, H. Evidence that tRNA Modifying Enzymes are Important in 

vivo Targets for 5-Fluorouracil in Yeast. RNA 2008, 14 (4), 666-674. 

384. Okamoto, M.; Fujiwara, M.; Hori, M.; Okada, K.; Yazama, F.; Konishi, H.; Xiao, Y.; 

Qi, G.; Shimamoto, F.; Ota, T.; Temme, A.; Tatsuka, M. tRNA Modifying Enzymes, 

NSUN2 and METTL1, Determine Sensitivity to 5-Fluorouracil in HeLa Cells. PLoS 

Genetics 2014, 10 (9), e1004639. 

385. Goehring, A. S.; Rivers, D. M.; Sprague, G. F. J. Urmylation: A Ubiquitin-like 

Pathway that Functions During Invasive Growth and Budding in Yeast. Molecular 

Biology of the Cell 2003, 14 (11), 4329-4341. 

386. Goehring, A. S.; Rivers, D. M.; Sprague, G. F. J. Attachment of the Ubiquitin-Related 

Protein Urm1p to the Antioxidant Protein Ahp1p. Eukaryotic Cell 2003, 2 (5), 930-

936. 

387. Dewez, M.; Bauer, F.; Dieu, M.; Raes, M.; Vandernhaute, J.; Hermand, D. The 

Conserved Wobble Uridine tRNA Thiolase Ctu1-Ctu2 is Required to Maintain 

Genome Integrity. PNAS 2008, 15 (14), 5459-5464. 

388. Huang, B.; Lu, J.; Byström, A. S. A Genome-wide Screen Identifies Genes Required 

for the Formation of the Wobble Nucleoside 5-Methoxycarbonylmethyl-2-thiouridine 

in Saccharomyces cerevisiae. RNA 2008, 14 (10), 2183-2194. 

 

 



282 

 

389. Jüdes, A.; Ebert, F.; Bär, C.; Thüring, K. L.; Harrer, A.; Klassen, R.; Helm, M.; Stark, 

M. J. R.; Schaffrath, R. Urmylation and tRNA Thiolation Functions of Ubiquitin-Like 

Uba4-Urm1 Systems are Conserved from Yeast to Man. FEBS Letters 2015, S0014-

5793 (15), 116-117. 

390. Huang, B.; Johansson, M. J. O.; Byström, A. S. An Early Step in Wobble Uridine 

tRNA Modification Requires the Elongator Complex. RNA 2005, 11 (4), 424-436. 

391. Hoskins, J.; Scott Butler, J. Evidence for Distinct DNA- and RNA-based Mechanisms 

of 5-Fluoruouracil Cytotoxicity in Saccharomyces Cerevisiae. Yeast 2007, 24 (10), 

861-870. 

392. Bobek, M.; Bloch, A. Synthesis and Biological Activity of 5-Fluoro-4′-thiouridine and 

Some Related Nucleosides. Journal of Medical Chemistry 1975, 18 (8), 784-787. 

393. Tomita, K.; Matsuura, A.; Caspari, T.; Carr, A. M.; Akamatsu, Y.; Iwasaki, H.; 

Mizuno, K.-I.; Ohta, K.; Uritani, M.; Ushimaru, T.; Yoshinaga, K.; Ueno, M. 

Competition Between the Rad50 Complex and the Ku Heterodimer Reveals a Role for 

Exo1 in Processing Double-Strand Breaks but Not Telomeres. Molecular and Cellular 

Biology 2003, 23 (15), 5186-5197. 

394. Rudolph, C.; Fleck, O.; Kohli, J. Schizosaccharomyces pombe exo1 is Involved in the 

Same Mismatch Repair Pathway as msh2 and pms1. Current Genetics 1998, 34 (5), 

343-350. 

395. Tishkoff, D. X.; Amin, N. S.; Viars, C. S.; Arden, K. C.; Kolodner, R. D. Identification 

of a Human Gene Encoding a Homologue of Saccharomyces cerevisiae EXO1, and 

Exonuclease Implicated in Mismatch Repair and Recombination. Cancer Research 

1998, 58 (22), 5027-5031. 

396. Koch, C. A.; Agyei, R.; Galicia, S.; Metalnikov, P.; O'Donnell, P.; Starostine, A.; 

Weinfeld, M.; Durocher, D. Xrcc4 Physically Links DNA End Processing by 

Polynucleotide Kinase to DNA Ligation by DNA Ligase IV. The EMBO Journal 2004, 

23 (19), 3874-3885. 

397. Haveman, J.; Kreder, N. C.; Rodermond, H. M.; Bree, C. V.; Franken, N. A. P.; 

Stalpers, L. J. A.; Zdzienicka, M. Z.; Peters, G. J. Cellular Response of X-Ray 

Sensitive Hamster Mutant Cell Lines to Gemcitabine, Cisplatin and 5-Fluorouracil. 

Oncology Reports 2004, 12 (1), 187-192. 

398. Kostrub, C. F.; Knudsen, K.; Subramani, S.; Enoch, T. Hus1p, a Conserved Fission 

Yeast Checkpoint Protein, Interacts with Rad1p and is Phosphorylated in Response to 

DNA Damage. The EMBO Journal 1998, 17 (7), 2055-2066. 



283 

 

399. Venclovas, C.; Thelen, M. P. Structure-based Predictions of Rad1, Rad9, Hus1 and 

Rad17 Participaton in Sliding Clamp and Clamp-Loading Complexes. Nucleic Acids 

Research 2000, 28 (13), 2481-2493. 

400. Volkmer, E.; Karnitz, L. M. Human Homologs of Schizosaccharomyces pombe Rad1, 

Hus1, and Rad9 Form a DNA Damage-Responsive Protein Complex. The Journal of 

Biological Chemistry 1999, 274 (2), 567-570. 

401. Bermudez, V. P.; Lindsey-Boltz, L. A.; Cesare, A. J.; Maniwa, Y.; Griffith, J. D.; 

Hurwitz, J.; Sancar, A. Loading of the Human 9-1-1 Checkpoint Complex onto DNA 

by the Checkpoint Clamp Loader hRad17-Replication Factor C complex in vitro. PNAS 

2003, 100 (4), 1633-1638. 

402. Delacroix, S.; Wager, J. M.; Kobayashi, M.; Yamamoto, K.-I.; Karnitz, L. M. The 

Rad9-Hus1-Rad1 (9-1-1) Clamp Activates Checkpoint Signalling via TopBP1. Genes 

& Development 2007, 21 (12), 1472-1477. 

403. Mordes, D. A.; Glick, G. G.; Zhao, R.; Cortez, D. TopBP1 Activates ATR through 

ATRIP and a PIKK Regulatory Domain. Genes & Development 2008, 22 (11), 1478-

1489. 

404. Komatsu, K.; Miyashita, T.; Hang, H.; Hopkins, K. M.; Zheng, W.; Cuddeback, S.; 

Yamada, M.; Lieberman, H. B.; Wang, H.-G. Human Homologue of S. pombe Rad9 

Interacts with BCL-2/BCL-x L and Promotes Apoptosis. Nature Cell Biology 2000, 2 

(1), 1-6. 

405. Bao, S.; Lu, T.; Wang, X.; Zheng, H.; Wang, L.-E.; Wei, Q.; Hittelman, W. N.; Li, L. 

Disruption of the Rad9/Rad1/Hus1 (9-1-1) Complex Leads to Checkpoint Signalling 

and Replication Defects. Oncogene 2004, 23 (33), 5586-5593. 

406. Van Hummelen, P.; Elhajouji, A.; Kirsch-Volders, M. Clastogenic and Aneugenic 

Effects of Three Benzimidazole Derivativesin the in vitro Micronucleus Test Using 

Human Lymphocytes. Mutagenesis 1995, 10 (1), 23-29. 

407. Okouneva, T.; Azarenko, O.; Wilson, L.; Littlefield, B. A.; Jordan, M. A. Inhibition of 

Centromere Dynamics by Eribulin (E7389) During Mitotic Metaphase. Molecular 

Cancer Therapeutics 2008, 7 (7), 2003-2011. 

 



284 

 

9 Appendix I: NWCOG-2 Patient Biopsy Information 

 

Table 45: Biopsy information for the NWCOG-2 patient samples 

P
a

ti
en

t 
(R

IC
E

) 

N
u

m
b

er
 

B
io

p
sy

 N
u

m
b

er
 

N
u

m
b

er
 o

f 
ti

ss
u

e 

fr
a

g
m

en
ts

 i
n

 b
io

p
sy

 

N
u

m
b

er
 o

f 
ti

ss
u

e 

fr
a

g
m

en
ts

 w
it

h
 

ca
n

ce
r
 

A
v

er
a

g
e 

%
 o

f 

tu
m

o
u

r 
n

u
cl

ei
 i

n
 

ca
n

ce
r
o

u
s 

fr
a

g
m

en
ts

 

N
u

m
b

er
 o

f 
ti

ss
u

e 

fr
a

g
m

en
ts

 w
it

h
 

d
y

sp
la

si
a

 

A
v

er
a

g
e 

%
 o

f 

tu
m

o
u

r 
n

u
cl

ei
 i

n
 

d
y

sp
la

st
ic

 f
ra

g
m

en
ts

 

N
u

m
b

er
 o

f 
ti

ss
u

e 

fr
a

g
m

en
ts

 w
it

h
o

u
t 

tu
m

o
u

r
 

A
v

er
a

g
e 

%
 o

f 

o
v

er
a

ll
 t

u
m

o
u

r 

n
u

cl
ei

 

A
m

o
u

n
t 

o
f 

ti
ss

u
e 

a
v

a
il

a
b

le
 i

n
 b

lo
ck

 

C
o

m
m

en
ts

 

R1 6337/03 5 1 5 0 0 4 1 Good   

R2 6703/03        Poor Block only, not much tissue 

R3 7167/03        Good Block only, adequate tissue 

R4 9069/03 8 7 55 0 0 2 50 Good Small fragments 

R5 8897/03        Poor Block only, not much tissue 

R5 9520/03        Good Block only, adequate tissue 

R6 16866/03 2 2 35 0 0 0 35 Good Marked inflammation 

R7 9656/03 5 5 65 0 0 0 65 Good Small fragments 

R8 15306/03 6 0 0 6 70 0 70 Good High grade dysplasia 

R10 13121/03 8 6 40 0 0 2 35 Poor Only 5 fragments in block, three contain cancer 

R11 1337/04 2 2 80 0 0 0 80 Good  

R12 16/04 4 4 60 0 0 0 60 Good  

R13 711/04 5 2 75 3 85 0 80 Good High grade dysplasia 

R14 2861/04 4 4 40 0 0 0 40 Good Small fragments, marked inflammation 

R15 2775/04 5 4 40 1 15 0 30 Poor 4 fragments in block, 3 contain cancer 

R17 5985/04 5 2 70 1 10 2 30 Good High grade dysplasia 

R18 4590/04 2 2 80 0 0 0 80 Good  

R19 2404/04 3 1 15 1 40 1 30 Poor Thin block, low grade dysplasia 

R21 8229/04 6 6 45 0 0 0 45 Good Marked inflammation 

R22 9038/04 5 4 45 1 10 0 35 Poor Low grade dysplasia, marked inflamation, some thin 

fragments 

R23 2404/04 3 1 15 1 40 1 30 Poor Thin block, low grade dysplasia 

R24 14223/04 5 4 85 0 0 2 70 Poor Thin block, small fragments 
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R25 7919/04 5 4 35 0 0 1 30 Good  

R26 7910/04 2 2 25 0 0 0 25 Good  

R27 08475/04 2 2 70 0 0 0 70 Good  

R28 15678/04         No block 

R29 9459/04        Good Block only 

R30 9798/04 6 5 60 0 0 1 55 Good  

R31 10093/04 9 8 60 0 0 1 50 Good Marked area: 60% cancer 

R32 9768/04 4 2 20 0 0 2 10 Poor Thin Block 

R34 9928/04 5 2 40 0 0 3 20 Good  

R35 13125/04 5 5 50 0 0 0 50 Good Marked inflammation 

R37 9420/04        Good Block only 

R38 672/05 5 5 65 0 0 0 65 Good  

R39 512/05 4 3 60 0 0 1 40 Poor  

R40 11865/05 4 3 20 0 0 1 15 Poor Thin Block 

R41 6327/05 6 6 45 0 0 0 45 Poor Thin Block 

R42 8168/15 5 3 40 2 60 0 50 Good Most tumour is not cancer 

R43 2689/05 2 2 30 0 0 0 30 Poor Not much in block 

R44 6327/05 5 3 80 0 0 2 50 Good May be able to microdisect 

R45 6329/05 1 1 5 0 0 0 5 Good Small amount of tissue 

R46 3141/05 1       Poor Block only, small amount of tissue 

R47 3657/05        Poor Block only, small amount of tissue 

R48 3539/05 7 5 70 0 0 2 60 Good  

R49 6423/05 5 4 60 0 0 1 50 Good  

R50 10391/05 A 6 6 75 0 0 0 75 Good Mucinous Cancer 

R50 10391/05 B          

R51 3073/05 A        Good Mostly Normal 

R51 3073/05 B 2 0 0 2 80 0 80 Good Low grade dysplasia 

R52 5408/05 1 1 60 0 0 0 60 Good  

R54 8110/05 2 2 40 0 0 0 40 Good Smal fragments 

R55 16902/05 5 5 45 0 0 0 45 Good  

R56 19352/05 6 2 40 2 70 2 50 Poor Not much in block, low grade dysplasia 

R57 8662/05         No block 

R58 6571/05 3 1 45 2 55 0 45 Poor Low grade dysplasia. Much of the cancerous tissue is 

lost in the bloc 

R59 9535/05 4 3 45 0 0 1 40 Good  

R60 7192/05 7 6 75 0 0 1 70 Good  

R61 7366/05 4 2 70 0 0 1 65 Good  
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R63 8336/05 7 2 70 0 0 5 35 Poor Not much tissue 

R64 15809/05 7 5 25 0 0 2 15 Poor  

R65 6086/05         No block 

R66 8000/05 2       Poor Block only, thin block 

R67 10669/05 1       Unusable inadequate tissue 

R68 8178/05        Good Block only 

R69 25344/05 4 4 65 0 0 0 65 Poor Small biopsies 

R70 23046/05 5 5 50 0 0 0 50 Poor Not much tissue on block 

R71 8044/05 5 0 0 5 70 0 70 Good Low grade dysplasia 

R72 12975/05 5 5 65 0 0 0 65 Good Marked Inflammation 

R73 6907/05 5 5 50 0 0 0 55 Good Marked inflammation 

R74 10104/05 A          

R74 10104/05 B 3 3 75 0 0 0 75 Good  

R74 10104/05 X          

R75 12146/05 3 3 45 0 0 0 45 Good Most cancer in one fragment, 75% cancer in said 

fragment 

R76 19939/05 6 3 10 0 0 3 5 Poor Thin block, inflammation 

R77 9378/05        Good Block only 

R78 16912/05 5 4 50 0 0 1 30 Poor Only 2 fragments in block, 50% cancer in two 

fragments 

R79 9329/05        Poor Blok only 2 small fragments 

R80 14129/05 4 1 60 3 55 0 55 Good High grade dysplasia 

R82 19975/05 3 3 30 0 0 0 30 Good Marked inflammation 

R83 9952/05 5 5 40 0 0 0 40 Good 60% in marked areas 

R84 15814/05 A1 1 0 0 1 70 0 70 Good Low grade dysplasia 

R84 15814/05 B1 1 0 0 1 50 0 50 Good Low grade dysplasia 

R84 15814/05 C1 3 0 0 3 45 0 45 Good Low grade dysplasia 

R84 15814/05 D1 3 3 60 0 0 0 60 Good  Thin Block 

R85 10117/05 8 4 55 0 0 4 30 Good 65% cancer in marked area 

R86 11209/05        Good Block only 

R87 13513/05 4 1 60 3 80 0 70 Good Villous adenoma, low grade dysplasia, 

adenocarcinoma, most pieces that contain cancer are 

lost from block 

R88 668/06 5 2 20 3 50 0 35 Poor High grade dysplasia, cancerous fragment lost from 

block 

R89 2043/06 4 4 50 0 0 0 50 Poor Marked inflammation 

R90 344/06 4 1 30 0 0 3 10 Good 60% cancer in marked area 
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R91 138/06 1 0 0 1 30 0 30 Good Low grade adenoma 

R92 452/06         11 blocks, probable endoscopy series 

R93 1477/06 6 6 60 0 0 0 60 Poor  

R94 1958/06 1 0 0 1 70 0 70 Good High grade adenoma 

R95 1682/06 4 4 25 0 0 0 25 Good  

R96 2037/06 6 6 65 0 0 0 65 Poor  

R97 1221/06 6 3 45 0 0 3 25 Poor 70% cancer in marked areas 

R98 51552/06 5 4 35 0 0 1 25 Poor Small fragments, marked inflammation,70% cancer in 

marked area 

R100 1725/06 7 7 70 0 0 0 70 Poor Signet ring cell carcinoma 

R101 1214/06 5 5 10 0 0 0 10 Good Only 2 sections with 30 

R102 2355/06 4 2 40 0 0 2 20 Good 1 piece with 70% cancer 

R103 4254/06 5 5 60 0 0 0 60 Good  

R104 3273/06 7 7 70 0 0 0 70 Good Marked inflammation 

R105 4490/06 5 4 50 0 0 1 40 Good  

R106 2795/06 (1) 3         

R106 2795/06 (2) 3         

R106 2795/06 (3) 6 6 50 0 0 0 50 Good 65% cancer in marked area 

R108 4550/06 8 4 50 0 0 4 25 Good 55% cancer in marked area 

R109 4752/06 2 2 40 0 0 0 40 Good 60% cancer in marked area 

R110 2737/06 5 4 70 0 0 1 40 Poor Mucinous cancer 

R111 1732/06 1 0 0 1 75 0 75 Unusable Low grade dysplasia 

R112 3866/06        Poor Block only 

R113 13580/06 6 5 60 0 0 1 45 Good 65% cancer in marked area 

R115 8025/06 7 6 70 1 70 0 60 Good Low grade dysplasia, serrated dysplasia 

R116 637373 2 2 35 0 0 0 35 Good 45% cancer in marked area 

R117 3886/06 6 3 20 0 0 3 10 Good 20% cancer in marked area 

R118 7252/06 (1) 4 0 0 0 0 4 0 Good  

R118 7252/06 (2) 9 5 60 1 70 3 40 Good Low grade dysplasia, 70% cancer in marked area 

R119 4984/06 7 7 60 0 0 0 60 Poor  

R120 4724/06 3 2 20 0 0 1 10 Poor 40% cancer in marked area 

R122 7346/06 9 7 50 0 0 2 40 Good 60% cancer in marked area 

R123 15966/06 2 0 0 0 0 2 0 Unusable  

R124 6178/06        Good Block only 

R125 7255/06 3 0 0 3 40 0 40 Good Low grade dysplasia, 50% cancer in marked area 

R127 6785/06 A1        Poor Block only 

R127 6785/06 B1        Poor Block only 
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R128 9066/06 5 5 50 0 0 0 50 Good  

R129 10770/06 7 2 70 1 15 4 15 Good Low grade dysplasia 

R130 6870/06 7 6 60 0 0 1 50 Good 75% cancer in marked area 

R131 7501/06        Good Block only 

R132 4971/06 6 4 50 0 0 0 30 Good 75% cancer in marked area 

R133 8159/06 2 2 75 0 0 0 75 Good  

R135 10627/06 2 2 65 0 50 0 65 Good  

R136 21525/06 3 3 50 0 0 0 50 Good  

R137 7949/06 4 3 45 0 0 0 35 Good Cancer in marked areas 

R138 22385/06 6 3 70 0 0 0 35 Good  

R139 10628/06 3 3 70 0 0 0 70 Good Mucinous Cancer 

R140 10166/06 7 7 55 0 0 0 55 Good  

R141 11935/06 5 1 30 2 50 2 15 Poor High grade dysplasia 

R142 14375/06 5 1 45 0 0 0 15 Good  

R143 9245/06 6 3 65 3 45 0 50 Good Low grade dysplasia 

R144 13412/06 3 3 10 0 0 0 5 Poor  

R145 15760/06 3 3 70 0 0 0 70 Good  

R146 10189/06 2 2 50 0 0 0 50 Poor  

R147 11103/06 6 5 55 0 0 1 45 Good 65% cancer in marked area 

Table 45. Table showing the information for each biopsy from each patient of the NWCOG-2 trial. For some patients multiple biopsies were taken. This table shows the 

patient number and biopsy number for each sample along with information on the approximate percentage of dysplastic and cancerous nuclei in the samples, and an overall 

tumour nuclei percentage for the samples. Additional comments onto the quality of the block/sample and descriptions of specific types and grading of cancer and dysplasia 

are also shown in the table. 
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10 Appendix II: Chromatograms for the Sequencing of MRE11, CtIP, 

NBS1and RAD50 for the NWCOG-2 Patient Samples 

 

 

 

 

 

 

 

Figure 48. Chromatograms for the MRE11-E51V mutation in patient R11 from three separate 

sequencing reactions (forward and revers sequences from independent PCR products). This shows the A>T 

base change in the forward strand and the corresponding T>A base change in the reverse strand (as indicated 

by the arrows). The forward sequence chromatogram also shows a trace of the wild-type base (enlarged 

trace of the mutation shown) suggesting that either this trace may include sequence from nearby normal 

tissue, or that this mutation may be heterozygous. This figure also shows the chromatogram for the same 

region in the same patient from normal DNA extracted from the patient’s blood. This shows an absence of 

this mutation, indicating that this mutation has occurred somatically. 
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Figure 49. Chromatograms for the MRE11-S382N mutation in patient R11 from three separate 

sequencing reactions (forward and reverse sequences from independent PCR products). This shows the G>A 

base change in the forward strand and the corresponding C>T base change in the reverse strand (as indicated 

by the arrows). The forward and reverse sequences show no trace of the wild-type base suggesting that this 

mutation may be homozygous or hemizygous. This figure also shows the chromatogram for the same region 

in the same patient from normal DNA extracted from the patient’s blood. This shows an absence of this 

mutation, indicating that this mutation has occurred somatically. 
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Figure 50. Chromatograms for the MRE11-L446P mutation in patient R11 from three separate 

sequencing reactions (forward and reverse sequences from independent PCR products). This shows the T>C 

base change in the forward strand and the corresponding A>G base change in the reverse strand (as 

indicated by the arrows). The forward and reverse sequence chromatograms also shows traces of the wild-

type base suggesting that either this trace may include sequence from nearby normal tissue, or that this 

mutation may be heterozygous. This figure also shows the chromatogram for the same region in the same 

patient from normal DNA extracted from the patient’s blood. This shows an absence of this mutation, 

indicating that this mutation has occurred somatically. 
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Figure 51. Chromatograms for the MRE11-G569P mutation in patient R119 from three separate 

sequencing reactions (forward and reverse sequences from the same PCR products). This shows the G>A 

base change in the forward strand and the corresponding C>T base change in the reverse strand (as indicated 

by the arrows). The forward and reverse sequences show no trace of the wild-type base suggesting that this 

mutation may be homozygous or hemizygous. This figure also shows the chromatogram for the same region 

in the same patient from normal DNA extracted from the patient’s blood. This shows an absence of this 

mutation, indicating that this mutation has occurred somatically. 
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Figure 52. Chromatograms for the MRE11-K682K mutation in patient R11 from three separate 

sequencing reactions (forward and reverse sequences from independent PCR products). This shows the A>G 

base change in the forward strand and the corresponding G>A base change in the reverse strand (as 

indicated by the arrows). The forward and reverse sequences show no trace of the wild-type base suggesting 

that this mutation may be homozygous or hemizygous. This figure also shows the chromatogram for the 

same region in the same patient from normal DNA extracted from the patient’s blood. This shows an 

absence of this mutation, indicating that this mutation has occurred somatically. 
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Figure 53. Chromatograms for the MRE11-V684A mutation in patient R11 from three separate 

sequencing reactions (forward and reverse sequences from independent PCR products). This shows the T>C 

base change in the forward strand and the corresponding A>G base change in the reverse strand (as 

indicated by the arrows). The forward and reverse sequences show no trace of the wild-type base suggesting 

that this mutation may be homozygous or hemizygous. This figure also shows the chromatogram for the 

same region in the same patient from normal DNA extracted from the patient’s blood. This shows an 

absence of this mutation, indicating that this mutation has occurred somatically. 
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Figure 54. Chromatograms for the CtIP-L286L mutation in patient R11 from three separate sequencing 

reactions (forward and reverse sequences from the same PCR product). This shows the G>A base change in 

the forward strand and the corresponding C>T base change in the reverse strand (as indicated by the arrows). 

The forward and reverse sequences show no trace of the wild-type base suggesting that this mutation may be 

homozygous or hemizygous. This figure also shows the chromatogram for the same region in the same 

patient from normal DNA extracted from the patient’s blood. This shows an absence of this mutation, 

indicating that this mutation has occurred somatically. 
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Figure 55. Chromatograms for the CtIP-Q293R mutation in patient R119 from three separate 

sequencing reactions (forward and reverse sequences from the same PCR product). This shows the A>G 

base change in the forward strand and the corresponding T>G base change in the reverse strand (as indicated 

by the arrows). The reverse sequence chromatogram also shows a trace of the wild-type base suggesting that 

either this trace may include sequence from nearby normal tissue, or that this mutation may be heterozygous. 

This figure also shows the chromatogram for the same region in the same patient from normal DNA 

extracted from the patient’s blood. This shows an absence of this mutation, indicating that this mutation has 

occurred somatically. 

CtIP-Q293R 

P 
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Figure 56. Chromatograms for the CtIP-D548D mutation in patient R11 from three separate sequencing 

reactions (forward and reverse sequences from independent PCR products from the same initial multiplex 

PCR). This shows the T>C base change in the forward strand and the corresponding A>G base change in the 

reverse strand (as indicated by the arrows). The reverse sequence chromatogram also shows a trace of the 

wild-type base (enlarged trace of the mutation shown) suggesting that either this trace may include sequence 

from nearby normal tissue, or that this mutation may be heterozygous. This figure also shows the 

chromatogram for the same region in the same patient from normal DNA extracted from the patient’s blood. 

This also shows the mutation, and a trace of the wild-type base (enlarged trace of the mutation base shown) 

this shows that this mutation is germline heterozygous. 
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Figure 57. Chromatograms for the CtIP-F614F mutation in patient R119 from three separate 

sequencing reactions (forward and reverse sequences from the same PCR product). This shows the G>A 

base change in the forward strand and the corresponding C>T base change in the reverse strand (as indicated 

by the arrows). The forward and reverse sequences show no trace of the wild-type base suggesting that this 

mutation may be homozygous or hemizygous. This figure also shows the chromatogram for the same region 

in the same patient from normal DNA extracted from the patient’s blood. This shows an absence of this 

mutation, indicating that this mutation has occurred somatically. 
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Figure 58. Chromatograms for the CtIP-K704K mutation in patient R135 from three separate 

sequencing reactions (forward and reverse sequences from the same PCR product). This shows the G>A 

base change in the forward strand and the corresponding C>T base change in the reverse strand (as indicated 

by the arrows). The forward and reverse sequence chromatograms also show traces of the wild-type base 

(enlarged trace of the mutation shown) suggesting that either this trace may include sequence from nearby 

normal tissue, or that this mutation may be heterozygous. This figure also shows the chromatogram for the 

same region in the same patient from normal DNA extracted from the patient’s blood. This also shows the 

mutation, and a trace of the wild-type base (enlarged trace of the mutation base shown) this shows that this 

mutation is germline heterozygous. This mutation, with similar chromatograms, was also found for patients 

R133 and R139 (chromatograms not shown). 
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Figure 59. Chromatograms for the CtIP-L740S mutation in patient R11 from three separate sequencing 

reactions (forward and reverse sequences from the same PCR products). This shows the T>C base change in 

the forward strand and the corresponding A>G base change in the reverse strand (as indicated by the 

arrows). The forward and reverse sequence chromatograms also shows traces of the wild-type base 

suggesting that either this trace may include sequence from nearby normal tissue, or that this mutation may 

be heterozygous. This figure also shows the chromatogram for the same region in the same patient from 

normal DNA extracted from the patient’s blood. This shows an absence of this mutation, indicating that this 

mutation has occurred somatically. 
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Figure 60. Chromatograms for the NBS-L34L mutation in patient R18 from three separate sequencing 

reactions (forward and reverse sequences from the same PCR product). This shows the G>A base change in 

the forward strand and the corresponding C>T base change in the reverse strand (as indicated by the arrows). 

The forward and reverse traces show no trace of the wild-type base suggesting that this mutation may be 

homozygous or hemizygous. This figure also shows the chromatogram for the same region in the same 

patient from normal DNA extracted from the patient’s blood. This shows the presence of this mutation, 

showing that this mutation is germline. This mutation was also found in patients R7, R24, R60, R84, R93, 

R103, R115, and R139. This mutation was found to also be homozygous in patients R24, R60 and R103, 

and was found to be heterozygous in patients R7, R84, R93, R115 and R139. This mutation was found to be 

germline in all patients were blood DNA was available (no blood DNA available for patient R24). 
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Figure 61. Chromatograms for the NBS1-H149D mutation in patient R119 from three separate 

sequencing reactions (forward and reverse sequences from independent PCR products from the same initial 

multiplex PCR). This shows the C>G base change in the forward strand and the corresponding G>C base 

change in the reverse strand (as indicated by the arrows). The forward and reverse sequences show no trace 

of the wild-type base suggesting that this mutation may be homozygous or hemizygous. This figure also 

shows the chromatogram for the same region in the same patient from normal DNA extracted from the 

patient’s blood. This shows an absence of this mutation, indicating that this mutation has occurred 

somatically. 
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Figure 62. Chromatograms for the NBS-E185Q mutation in patient R18 from three separate sequencing 

reactions (forward and reverse sequences from the same PCR product). This shows the G>C base change in 

the forward strand and the corresponding C>G base change in the reverse strand (as indicated by the 

arrows). The forward and reverse traces show no trace of the wild-type base suggesting that this mutation 

may be homozygous or hemizygous. This figure also shows the chromatogram for the same region in the 

same patient from normal DNA extracted from the patient’s blood. This shows the presence of this mutation, 

showing that this mutation is germline. This mutation was also found in patients R7, R24, R84, R93, R103, 

R115, R133 and  R139. This mutation was found to also be homozygous in patients R24 and R103, and was 

found to be heterozygous in patients R7, R84, R93, R115, R133 and R139. This mutation was found to be 

germline in all patients were blood DNA was available (no blood DNA available for patient R24) 

NBS1-E185Q 
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Figure 63. Chromatograms for the NBS-D399D mutation in patient R18 from three separate sequencing 

reactions (forward and reverse sequences from the same PCR product). This shows the T>C base change in 

the forward strand and the corresponding A>G base change in the reverse strand (as indicated by the 

arrows). The forward and reverse traces show no trace of the wild-type base suggesting that this mutation 

may be homozygous or hemizygous. This figure also shows the chromatogram for the same region in the 

same patient from normal DNA extracted from the patient’s blood. This shows the presence of this mutation, 

showing that this mutation is germline. This mutation was also found in patients R11, R13, R24, R84, and 

R115. This mutation was found to also be homozygous in patients R24 and R115, and was found to be 

heterozygous in patients R11, R13, and R84. This mutation was found to be germline in all patients were 

blood DNA was available (no blood DNA available for patients R13 and R24). 
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Figure 64. Chromatograms for the RAD50-G36E mutation in patient R50 from two separate sequencing 

reactions (forward and reverse sequences from the same PCR products). This shows the G>A base change in 

the forward strand and the corresponding C>T base change in the reverse strand (as indicated by the arrows). 

The forward and reverse sequences show no trace of the wild-type base suggesting that this mutation may be 

homozygous or hemizygous. No blood DNA was available for this patient, therefore it is unknown if this 

mutation is somatic or germline. 
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Figure 65. Chromatograms for the RAD50-G39G mutation in patient R93 from three separate 

sequencing reactions (forward and reverse sequences from the same PCR products). This shows the G>A 

base change in the forward strand and the corresponding C>T base change in the reverse strand (as indicated 

by the arrows). The forward and reverse sequence chromatograms also shows traces of the wild-type base 

suggesting that either this trace may include sequence from nearby normal tissue, or that this mutation may 

be heterozygous. This figure also shows the chromatogram for the same region in the same patient from 

normal DNA extracted from the patient’s blood. This shows an absence of this mutation, indicating that this 

mutation has occurred somatically. 
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Figure 66. Chromatograms for the RAD50-R78R mutation in patient R93 from three separate 

sequencing reactions (forward and reverse sequences from the same PCR product). This shows the A>G 

base change in the forward strand and the corresponding T>C base change in the reverse strand (as indicated 

by the arrows). The forward and reverse sequence chromatograms also shows traces of the wild-type base 

suggesting that either this trace may include sequence from nearby normal tissue, or that this mutation may 

be heterozygous. This figure also shows the chromatogram for the same region in the same patient from 

normal DNA extracted from the patient’s blood. This shows an absence of this mutation, indicating that this 

mutation has occurred somatically. 
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Figure 67. Chromatograms for the RAD50-Q524Q mutation in patient R12 from three separate 

sequencing reactions (forward and reverse sequences from the same PCR product). This shows the G>A 

base change in the forward strand and the corresponding C>T base change in the reverse strand (as indicated 

by the arrows). The forward and reverse sequence chromatograms also shows traces of the wild-type base 

suggesting that either this trace may include sequence from nearby normal tissue, or that this mutation may 

be heterozygous. This figure also shows the chromatogram for the same region in the same patient from 

normal DNA extracted from the patient’s blood. This shows an absence of this mutation, indicating that this 

mutation has occurred somatically. 

RAD50-Q524Q 
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Figure 68. Chromatograms for the RAD50-1703delG mutation in patient R50 from two separate 

sequencing reactions (forward and reverse sequences from independent PCR products). This shows the G 

base deletion in the forward strand and the corresponding C base deletions in the reverse strand (as indicated 

by the arrows). The forward and reverse sequences show a trace of the wild-type suggesting that this sample 

may contain DNA from nearby normal tissue or that the mutation is heterozygous. No blood DNA was 

available for this patient; therefore it is unknown if this mutation is somatic or germline.  

Patient: R50               1 bp deletion 

 

 

1 bp del 
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Figure 69. Chromatograms for the RAD50-C680S mutation in patient R60 from three separate 

sequencing reactions (forward and reverse sequences from the same PCR product). This shows the T>A 

base change in the forward strand and the corresponding A>T base change in the reverse strand (as indicated 

by the arrows). The forward and reverse sequence chromatograms also shows traces of the wild-type base 

suggesting that either this trace may include sequence from nearby normal tissue, or that this mutation may 

be heterozygous. This figure also shows the chromatogram for the same region in the same patient from 

normal DNA extracted from the patient’s blood. This shows an absence of this mutation, indicating that this 

mutation has occurred somatically. 
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Figure 70. Chromatograms for the RAD50-V733M mutation in patient R60 from three separate 

sequencing reactions (forward and reverse sequences from the same PCR product). This shows the G>A 

base change in the forward strand and the corresponding C>T base change in the reverse strand (as indicated 

by the arrows). The forward and reverse sequence chromatograms also shows traces of the wild-type base 

suggesting that either this trace may include sequence from nearby normal tissue, or that this mutation may 

be heterozygous. This figure also shows the chromatogram for the same region in the same patient from 

normal DNA extracted from the patient’s blood. This shows an absence of this mutation, indicating that this 

mutation has occurred somatically. 
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Figure 71. Chromatograms for the RAD50-T896I  mutation in patient R133 from two separate 

sequencing reactions. This shows the C>T base change in the forward strand (as indicated by the arrow). 

The forward sequences show no trace of the wild-type base suggesting that this mutation may be 

homozygous or hemizygous. This figure also shows the chromatogram for the same region in the same 

patient from normal DNA extracted from the patient’s blood. This shows an absence of this mutation, 

indicating that this mutation has occurred somatically. 
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Figure 72. Chromatograms for the RAD50-M1001K mutation in patient R93 from three separate 

sequencing reactions (forward and reverse sequences from the same PCR product). This shows the T>A 

base change in the forward strand and the corresponding A>T base change in the reverse strand (as indicated 

by the arrows). The forward and reverse sequence chromatograms also shows traces of the wild-type base 

suggesting that either this trace may include sequence from nearby normal tissue, or that this mutation may 

be heterozygous. This figure also shows the chromatogram for the same region in the same patient from 

normal DNA extracted from the patient’s blood. This shows an absence of this mutation, indicating that this 

mutation has occurred somatically. 
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Figure 73. Chromatograms for the RAD50-Q1006R mutation in patient R60 from three separate 

sequencing reactions (forward and reverse sequences from the same PCR product). This shows the A>G 

base change in the forward strand and the corresponding T>C base change in the reverse strand (as indicated 

by the arrows). The forward and reverse sequences show no trace of the wild-type base suggesting that this 

mutation may be homozygous or hemizygous. This figure also shows the chromatogram for the same region 

in the same patient from normal DNA extracted from the patient’s blood. This shows an absence of this 

mutation, indicating that this mutation has occurred somatically. 
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Figure 74. Chromatograms for the RAD50-Q1011H mutation in patient R60 from three separate 

sequencing reactions (forward and reverse sequences from the same PCR product). This shows the G>T 

base change in the forward strand and the corresponding C>A base change in the reverse strand (as indicated 

by the arrows). The forward and reverse sequences show no trace of the wild-type base suggesting that this 

mutation may be homozygous or hemizygous. This figure also shows the chromatogram for the same region 

in the same patient from normal DNA extracted from the patient’s blood. This shows an absence of this 

mutation, indicating that this mutation has occurred somatically. 
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Figure 75. Chromatograms for the RAD50-E1084G mutation in patient R104 from two separate 

sequencing reactions (forward and reverse sequences from the same PCR product). This shows the A>G 

base change in the forward strand and the corresponding T>C base change in the reverse strand (as indicated 

by the arrows). The forward and reverse sequence chromatograms also shows traces of the wild-type base 

suggesting that either this trace may include sequence from nearby normal tissue, or that this mutation may 

be heterozygous.  No blood DNA was available for this patient; therefore it is unknown if this mutation is 

somatic or germline. 
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Figure 76. Chromatograms for the RAD50-L1092F mutation in patient R72 from three separate 

sequencing reactions (forward and reverse sequences from the same PCR product). This shows the C>T base 

change in the forward strand and the corresponding G>A base change in the reverse strand (as indicated by 

the arrows). The forward and reverse sequences show no trace of the wild-type base suggesting that this 

mutation may be homozygous or hemizygous. This figure also shows the chromatogram for the same region 

in the same patient from normal DNA extracted from the patient’s blood. This shows an absence of this 

mutation, indicating that this mutation has occurred somatically. 



318 

 

 

 

 

 

 

 

Figure 77. Chromatograms for the RAD50-L1093X mutation in patient R72 from three separate 

sequencing reactions (forward and reverse sequences from the same PCR product). This shows the C>T base 

change in the forward strand and the corresponding G>A base change in the reverse strand (as indicated by 

the arrows). The forward and reverse sequences show no trace of the wild-type base suggesting that this 

mutation may be homozygous or hemizygous. This figure also shows the chromatogram for the same region 

in the same patient from normal DNA extracted from the patient’s blood. This shows an absence of this 

mutation, indicating that this mutation has occurred somatically. 
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Figure 78. Chromatograms for the RAD50-V1187V mutation in patient R12 from three separate 

sequencing reactions (forward and reverse sequences from the same PCR product). This shows the G>A 

base change in the forward strand and the corresponding C>T base change in the reverse strand (as indicated 

by the arrows). The forward and reverse sequence chromatograms also shows traces of the wild-type base 

suggesting that either this trace may include sequence from nearby normal tissue, or that this mutation may 

be heterozygous. This figure also shows the chromatogram for the same region in the same patient from 

normal DNA extracted from the patient’s blood. This shows an absence of this mutation, indicating that this 

mutation has occurred somatically. 
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Figure 79. Chromatograms for the RAD50-V1187V mutation in patient R61 from three separate 

sequencing reactions (forward and reverse sequences from independent PCR products). This shows the G>A 

base change in the forward strand and the corresponding C>T base change in the reverse strand (as indicated 

by the arrows). The forward and reverse sequence chromatograms also shows traces of the wild-type base 

suggesting that either this trace may include sequence from nearby normal tissue, or that this mutation may 

be heterozygous. This figure also shows the chromatogram for the same region in the same patient from 

normal DNA extracted from the patient’s blood. This shows an absence of this mutation, indicating that this 

mutation has occurred somatically. 
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Figure 80. Chromatograms for the RAD50-E1275E mutation in patient R12 from three separate 

sequencing reactions (forward and reverse sequences from independent PCR products). This shows the G>A 

base change in the forward strand and the corresponding C>T base change in the reverse strand (as indicated 

by the arrows). The forward and reverse sequence chromatograms also shows traces of the wild-type base 

suggesting that either this trace may include sequence from nearby normal tissue, or that this mutation may 

be heterozygous. This figure also shows the chromatogram for the same region in the same patient from 

normal DNA extracted from the patient’s blood. This shows an absence of this mutation, indicating that this 

mutation has occurred somatically. 
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Figure 81. Chromatograms for the RAD50-S1280F mutation in patient R61 from two separate 

sequencing reactions (forward and reverse sequences from independent PCR products). This shows the C>T 

base change in the forward strand and the corresponding G>A base change in the reverse strand (as 

indicated by the arrows). The forward and reverse sequence chromatograms also shows traces of the wild-

type base suggesting that either this trace may include sequence from nearby normal tissue, or that this 

mutation may be heterozygous.  No blood DNA was available for this patient; therefore it is unknown if this 

mutation is somatic or germline. 
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11 Appendix III: Fluorescent Fragment Analysis Electropherograms for 

NWCOG-2 Patient Samples 

11.1 MRE11 
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Figure 82. Example electropherograms for the fluorescence fragment analysis of the region of MRE11 

that contains the poly(T)11 tract, which is subject to mutation in MSI+ cancers for each of the initial 25 

patient samples of the NWCOG-2 trial. Fluorescent fragment analysis for MRE11 not carried out on patients 

R7, R51 and R84 due to insufficient DNA. 
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11.2 CtIP 
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Figure 83. Example electropherograms for the fluorescence fragment analysis of the region of CtIP 

that contains the poly(A)9 tract, which is subject to mutation in MSI+ cancers for each of the initial 25 

patient samples of the NWCOG-2 trial. 

 


