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Endophytic fungi in elms: Implications for the Integrated 
Management of Dutch Elm Disease 

Abstract 
Integrated pest management calls for new biocontrol solutions in management of forest 
diseases. Endophytic fungi that are commonly found in tree tissue may have potential 
in biocontrol. However, the links between endophyte status and disease tolerance are 
still unclear, and we know little about the mechanisms by which the endophytes can 
influence tree pathogens.   

 The first goal of the thesis was to compare the endophyte status in elm (Ulmus 
spp.) trees with low vs. high susceptibility to Dutch elm disease (DED), caused by 
Ophiostoma fungi, and to find correlations between endophytes and the susceptibility 
pattern of the trees. The second goal was to investigate the potential mechanisms of 
antagonism by the endophytes towards the pathogen. Thus, endophytes were isolated 
from leaves, bark and xylem of elms that differed in DED susceptibility. The isolates 
were screened for their potential to counteract the pathogen in dual cultures. Selected 
strains were investigated using Phenotype MicroArrays to obtain the substrate 
utilization profiles that reflect the endophytes’ ability to compete with the pathogen for 
a nutritional niche. To test for a protective effect against the disease, promising isolates 
were injected into young elms. Preliminary analyses were done to identify the 
extracellular chemicals that some of the endophytes released into the growth medium.
 The results showed that the frequency and diversity of endophytes was higher 
in xylem of elms with high susceptibility to DED. Some endophytes deadlocked the 
pathogen with extracellular chemicals in vitro, while others had a faster growth rate.  
Several endophytes were able to utilize substrates more effectively than the pathogen. 
A preventive treatment with endophytes protected elms against DED, but the effect was 
unstable across years. Bioactive fungal extracts had a complex chemical profile, and the 
individual compounds in the extracts remain to be identified. Because endophytes 
antagonized the pathogen through different mechanisms, I suggest that an endophyte-
based biocontrol of DED could be best achieved through a synergistic effect of several 
endophyte strains.  
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interactions, Antagonism, Niche differentiation, Ophiostoma spp., Ulmus spp. 
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1 Introduction 
In the future, a changing climate may increase the frequency and intensity of 
natural disturbances in forest ecosystems, some of which may involve damage 
due to pests and pathogens (Dale et al., 2001). In addition, changes in crop 
management practices such as intensification may create new conditions that 
promote chronic and epidemic diseases or pests in plant systems (Anderson et 
al., 2004). The intensive global trade of plants and plant-based materials 
provides rapid dispersal routes for pathogens (viruses, bacteria, fungi, 
oomycetes) and insect herbivores (Boyd et al., 2013) to new habitats, creating 
opportunities for these organisms to establish and thrive in geographic areas 
that have been unreachable earlier (Santini et al., 2013). Thus, the need for 
sustainable tree and forest protection solutions is likely to increase in the 
coming decades, especially as society moves towards a bio-based economy and 
aims to reduce the use of environmentally hazardous pesticides and fungicides 
(Tiilikkala et al., 2010). 

 In forest protection, great expectations have been placed on breeding 
resistant plant cultivars using traditional selection processes (Martín et al., 
2015a) or genetic modifications (Gartland et al., 2000; Harfouche et al., 2011) 
and on boosting plant resistance through the use of chemical or biological 
inducers (Blodgett et al., 2005; Eyles et al., 2010; Albrectsen & Witzell, 2012). 
However, none of these alone may eliminate all plant protection problems that 
result from dynamic, biological interactions between the plants and their 
microbial biota. To acknowledge this, the concept of integrated pest 
management (IPM) has been gaining acceptance as a sustainable option for 
crop protection, and has been embraced by EU (ECPA, 2015). Central to IPM 
are ecologically-based control strategies, relying on natural mortality factors 
and broad spectrum of control actions (Flint & van den Bosch, 1981). Thus, the 
more control method options there are for a certain disease, the better are the 
chances to control it. In order to ensure a multitude of effective options, new 
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control methods, based on biological mechanisms, need to be developed 
continuously. A potential source of new control methods offering crop 
protection without toxic chemicals is the use of beneficial organisms, such as 
symbiotic fungi and bacteria that can directly reduce the negative effects of 
pests or pathogens, e.g., through chemical antagonism or competition (Arnold 
et al., 2003; Bale et al., 2008; Albrectsen et al., 2010). 

 The research described in this thesis aims to add to the knowledge-
base regarding the use of beneficial organisms as tools in integrated 
management of the diseases of forest trees. Specifically, the thesis addresses 
the role of a group of potentially beneficial fungi, endophytes, in resistance of 
elm (Ulmus spp.) trees to a vascular disease, Dutch elm disease (DED), caused 
by pathogenic Ophiostoma species. Particular attention is given to the potential 
mechanisms of antagonism between the putatively beneficial elm endophytes 
and Ophiostoma-pathogens.  
 

1.1 Endophytes 

Symbiotic, endophytic bacteria and fungi colonize the internal tissue of their 
host plant, either intercellularly or intracellularly, without inducing external 
signs of infection in the host (Carroll, 1988; Clay, 2004; Schulz & Boyle, 
2006). Most plant species worldwide are considered to host at least one 
endophytic organism (Strobel et al., 2004; Rosenblueth & Martínez-Romero, 
2006). 
 Endophytic bacteria are found in roots, stems, leaves, seeds, fruits, 
tubers, ovules, and legume nodules (Hallmann et al., 1997; Sturz et al., 1997). 
The population density of endophytes is highly variable, depending mainly on 
the bacterial species and host genotypes but also in the host developmental 
stage, inoculum density, and environmental conditions (Tan et al., 2003). In 
most plants, roots have the higher numbers of bacterial endophytes compared 
with above-ground tissues (Rosenblueth & Martínez-Romero, 2006). Many 
seeds carry a diversity of endophytic bacteria (Hallmann et al., 1997), and 
plants that propagate vegetatively (such as potatoes or sugarcane) can transmit 
their endophytes to the next generation. Bacterial endophytes do not inhabit 
living vegetal cells, but colonize intercellular spaces and xylem vessels (Ryan 
et al., 2008). Endophytic bacteria can establish a mutualistic association with 
their hosts (Hallmann et al., 1997), and increase crop yields, degrade 
contaminants and produce novel substances or fixed nitrogen (Rosenblueth & 
Martínez-Romero, 2006). Endophytic bacteria can promote plant growth 
through nitrogen fixation (e.g., Sevilla et al., 2001), production of 
phytohormones, by enhancing nutrient availability (Sturz et al., 2000; Verma et 
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al., 2001; Lee et al., 2004; Pirttilä et al., 2004) or by biocontrol of 
phytopathogens in the root zone (through production of antifungal or 
antibacterial agents, siderophore production, nutrient competition and 
induction of systematic acquired host resistance or immunity) or in the vascular 
system (Hallmann et al., 1997). Competition experiments with bacterial 
endophytes have shown that some endophytes are more aggressive colonizers 
and displace others (Rosenblueth & Martínez-Romero, 2006). It is unknown if 
bacterial communities inside plants interact, and it has been speculated that 
beneficial effects are the combined effect of their activities (Rosenblueth & 
Martínez-Romero, 2006). A future crop protection application may be to use 
genetically engineered endophytes with biological control potential in 
agricultural crops. The endophytic bacteria Herbaspirillum seropedicae and 
Clavibacter xylii have been genetically modified to produce and excrete the δ-
endotoxin of Bacillus thuringensis to control insect pests (Turner et al., 1991; 
Downing et al., 2000). 
 Fungi of several clades colonize plant roots, including arbuscular 
mycorrhizal fungi of the phylum Glomeromycota which are obligate biotrophs 
(Harrison, 2005). Nevertheless, mycorrhizae are distinguished from endophytic 
fungi by lacking external hyphae or mantels (Saikkonen et al., 1998) and are 
therefore not further described here.  
 Roots of terrestrial plants are often associated with nonmycorrhizal, 
root-endophytic fungi, which have been suggested to impact plant growth and 
development (bioregulation), plant nutrition (biofertilisation) and plant 
tolerance and resistance to abiotic and biotic stresses (bioprotection) 
(Borowicz, 2001; Franken, 2012). Dark septate endophytes are a group of root 
endophytes (Jumpponen & Trappe, 1998), which contain mycorrhiza-forming 
and nonmycorrhizal root colonisers and occur worldwide (Weiß et al., 2011). 
One of the best studied members is the species Piriformospora indica 
(Franken, 2012). Its plant growth-promoting effects have been revealed for 
various hosts, and its application to plant production has been proposed 
(Varma et al., 1999). For instance, barley plants colonised by P. indica were 
more resistant to pathogens and more tolerant to salt stress and showed higher 
yield (Waller et al., 2005). It has been suggested that P. indica may protect a 
wide variety of plants against fungal pathogens: root pathogens might be 
directly inhibited by antagonistic activities of the endophyte, which is able to 
produce ROS (reactive oxygen species) and synthesize antioxidants (Waller et 
al., 2005). It has been demonstrated that P. indica root colonisation 
systemically induces resistance, which may provide protection against 
pathogens in the above-ground plant parts (Waller et al., 2005). 
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In forest trees, asymptomatic infections by fungal endophytes have been found 
to be ubiquitous in leaves, bark, wood, seeds, and roots (Carroll, 1988; Petrini 
& Fisher, 1990; Saikkonen, 2007; Sieber, 2007). These infections result from 
wind- or water dispersed spores, originating from the environment (Arnold et 
al., 2003; Clay, 2004). The environmental transmittance of endophyte 
infections is referred to as horizontal transmission, as opposite to the vertical 
transmission through seeds which is commonly observed in grasses (Petrini et 
al., 1992; Clay & Holah, 1999). Taxonomically, the tree endophytes are with 
few exceptions Ascomycetes, but within the Ascomycetes they are very diverse 
(Petrini & Fisher, 1986). In general, endophyte communities of forest trees 
seem to be highly diverse and only a fraction of the endophyte diversity has 
probably been described so far (Unterseher, 2011). 
 In the internal tissues of their host trees, endophytic fungi are bound to 
interact with other microbes, including con-specific, saprophytes as well as 
pathogens, which all co-habit the same hosts at the same time. Competitive 
interactions between fungi are likely to be common, and can be either for the 
primary resource capture (colonization of unoccupied habitat) or the secondary 
resource capture (colonization of habitat that is already occupied) (Rayner & 
Webber, 1984). A species can persist on a resource at a stable level, or in 
competitive exclusion where the winner is the species that can survive on the 
lowest level of a resource (Bleiker & Six, 2009). These interactions are 
complex to investigate in vivo, because endophytic infections are usually 
highly localized (Carroll, 1988; Petrini et al., 1992; Saikkonen et al., 1998) and 
non-systemic, because they are restricted to disjunctive microthalli which may 
consist of only a few cells (Stone, 1987). Due to the horizontal spreading, the 
colonization of perennial tissues is a result of seasonal accumulation of local 
and independent fungal colonies (Helander et al., 1993; Stone & Petrini, 1997). 
The infection patterns of endophytes in trees are variable in dispersion and 
density and depend on the availability, viability and infection success of fungal 
spores, which in turn is influenced by the surrounding vegetation and 
topography, plant density and architecture, weather conditions and the 
microclimate within or near the plant (Helander et al., 1994; Saikkonen et al., 
1996). 
 The interaction between an endophyte and its host plant are described 
as non-static (Saikkonen et al., 1998). Some endophytes have the ability to 
establish a mutualistic or commensalistic symbiosis with their hosts (Sieber, 
2007). After the weakening of the host by any abiotic or biotic stressor, the 
stage may shift to be parasitic or saprophytic (Promputtha et al., 2007; 
Saikkonen, 2007; Rodríguez et al., 2011). Some fungi might be pathogenic on 
the main host species, but symptomless endophytes on other hosts. This 
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differential behaviour may result from differences in fungal gene expression in 
response to the plant, or from the differences in the ability of the plant to 
respond to the fungus (Sieber, 2007).   
 The high diversity and omnipresence of the symbiotic endophytes in 
trees (Arnold et al., 2000) has raised questions about the consequences of these 
infections to trees. Endophytes may affect population dynamics and 
community structure of plants and their associated species (Saikkonen et al., 
1998). In the internal tissues of the hosts, the endophytes are bound to be 
affected by the chemical and physical traits of the host cells. On the other hand, 
it is considered that the endophytic fungi have a potential to influence the 
physiology, metabolism, and ecological interactions of trees in various ways 
(Witzell et al., 2014). The symptomless endophytes may provide protection 
against drought tolerance, or enhance the growth of the host plants (Redman et 
al., 2001). While the evidence is not explicit, the results of several studies 
indicate that the presence, diversity, or frequency of tree endophytes may be 
linked to phenotypic patterns of defence or expression of resistance against 
natural enemies in forest trees (Bettucci & Alonso, 1997; Arnold et al., 2003; 
Gennaro et al., 2003; Ragazzi et al., 2003; Clay, 2004; Santamaría & Diez, 
2005; Ganley et al., 2008; Mejía et al., 2008; Albrectsen et al., 2010). 
Specifically, endophytes may function as competitors or antagonists to forest 
tree pathogens (Arnold et al., 2003; Mejía et al., 2008) that occupy the same 
tissues. The antagonistic potential of endophytes against pathogenic fungi 
indicates that endophytes may be used as IPM tools in forest protection 
(Newcombe, 2011). To put such prospects into practice, however, necessitates 
thorough understanding of the mechanisms of interaction between endophytes, 
their hosts and the targeted pathogens. 
 

1.2 Overview of biological control systems  

The term biological control refers to the use of naturally occurring or 
introduced microbial antagonists, so called biological control agents, to 
suppress diseases by reducing the amount or the effect of pathogens, or the use 
of host specific pathogens to control weed populations (Stirling & Stirling, 
1997; Pal & McSpadden Gardener, 2006). Natural products extracted from 
various sources can also be considered as biocontrol agents. Such products can 
be mixtures of natural ingredients with specific activities on the host or the 
target pest or pathogen (Pal & McSpadden Gardener, 2006). Biological control 
can result from many different types of interactions between organisms, 
nevertheless, in all cases, pathogens are antagonized by the presence and 
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activities of other organisms or their extracellular products (Stirling & Stirling, 
1997; Pal & McSpadden Gardener, 2006). 
 Biological control systems are based on the three following 
antagonism types: competition for nutrients or space, the production of 
antimicrobial substances, or parasitism (hyperparasitism or mycoparasitism) 
and predation. Most types of antagonism involve the synergistic action of 
several mechanisms (Stirling & Stirling, 1997). The degree of success of the 
different biocontrol agents or control systems is dependent on the type of 
pathogen that is targeted, but also the mode of dispersion of the agent and its 
distribution and survival within the host. The production of antimicrobial 
substances is common for microorganisms as most of them produce secondary 
metabolites. These compounds are often toxic to other microorganisms (e.g., 
antibiotics and mycotoxins). They may be volatile or non-volatile (Strobel & 
Daisy, 2003; Strobel et al., 2004).  Some of the most studied biocontrol agents 
are found in the genus Trichoderma, and have the ability to penetrate resting 
structures such as sclerotia or may parasitize growing hyphae by coiling around 
them. Formulations of some species are commercially available and are used to 
control fungal pathogens in the soil and on aerial plant surfaces (Stirling & 
Stirling, 1997). 
 One of the best known examples of a commercial biological control of 
a forest pathogen by an antagonistic fungus is the use of Phlebiopsis gigantea 
(Fr.) Jül in control of butt and stem rot disease of conifer trees, caused by the 
soil-borne pathogens Heterobasidion parviporum Niemelä & Korhonen and H. 
annosum sensu stricto (s.s.) (Fr.) Bref. (Korhonen, 1978). To prevent infection 
the biological agent P. gigantea (Fr.) Jül, or urea, are commonly applied to 
freshly cut stumps. The biocontrol fungus then colonises the whole stump 
faster than Heterobasidion, which is a poor competitor. Another example of 
biological control of a tree disease, not related to forestry but with importance 
to the fruit industry, involves antagonism of the fireblight pathogen Erwinia 
amylovora by a closely related bacterium Erwinia herbicola (Vanneste et al., 
1992). The pathogen overwinters in cankers and inoculum is carried to flowers 
by insects and rain splash. Blossom infection results in reduced yields because 
fruit-bearing spurs are killed. Application of E. herbicola is done as a spray 
during flowering. Initial results suggest that it may also be possible to utilise 
bees to disperse the antagonist to blossoms (Stirling & Stirling, 1997). 
 Most broadly, biological control is the suppression of damaging 
activities of one organism by one or more other organisms, often referred to as 
natural enemies. With regards to plant diseases, suppression can be 
accomplished in many ways. If growers’ activities are considered relevant, 
cultural practices such as the use of rotations and planting of disease resistant 
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cultivars (whether naturally selected or genetically engineered) would be 
included in the definition. Because the plant host responds to numerous 
biological factors, both pathogenic and non-pathogenic, induced host resistance 
might be considered as a form of biological control (Pal & McSpadden 
Gardener, 2006). 
 

 Specifics on the role endophytes could play in priming host defence 1.2.1
responses 

Endophytic fungi may activate defensive mechanisms in their hosts (Bultman 
& Murphy, 2000; Van Wees et al., 2008). Two basic forms of induced 
resistance have been described, systemic acquired resistance (SAR), linked to 
activation of salicylic acid pathway, and induced systemic resistance (ISR), in 
which jasmonate and ethylene are active (Pieterse et al., 1998; Knoester et al., 
1999; Vallad & Goodman, 2004). In both, SAR and ISR, a conditioning 
infection or other environmental stimuli activate signal transduction pathways, 
resulting in enhanced resistance or tolerance against subsequent attacks by 
pathogens or pests (Hunt & Ryals, 1996; Vallad & Goodman, 2004). Plants 
may recognize microbes on the basis of microbial surface-derived compounds, 
elicitors, which induce plant defense responses in both host and non-host 
plants (Nürnberger & Brunner, 2002). Conn et al. (2008) found that endophytic 
actinobacteria in wheat tissues were capable of suppressing wheat fungal 
pathogens by activating the hosts’ SAR and ISR pathways. A study by Rotblat 
et al. (2002) described the mechanisms by which Trichoderma spp. elicit 
resistance in their host plants by producing cellulose and xylanase. Similarly, 
the hydrophobin-like elicitor Sm1 of T. virens has been found to induce ISR in 
maize (Djonović et al., 2007). Cucumber plants preinoculated with T. 
asperellum T203 developed an ISR that was associated with potentiated gene 
expression in response to pathogen challenge (Shoresh et al., 2005). The 
apparent potential of endophytes to stimulate their hosts’ resistance has 
increased interest in exploitation of endophytic bacteria and fungi in integrated 
pest and pathogen management in agricultural and greenhouse systems (Waller 
et al., 2005). Whether such mechanisms could be utilized also in forest 
protection, remains to be investigated. 
 

1.3 Dutch elm disease 

During recent decades, the potential role of endophytes in tree diseases has 
been studied for example in the tropical tree Theobroma cacao (Arnold et al. 
2003), and in elms (Ulmus spp.) (Webber, 1981; Dvorák et al., 2006; Martín et 
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al. 2010; Martín et al., 2013). Elms are a large and important group of forest 
trees with approximately 45 species divided among six taxonomic sections. 
They grow mainly in the north temperate regions. Most elm species occur in 
Asia (25 to 28 species) and North America (9 species) as natural species 
(Wiegrefe et al., 1994; Fu & Xin, 2000; Hollingsworth et al., 2000). 
Throughout their current distribution area, elms are severely threatened by 
DED. This vascular disease has killed billions of adult elms in Europe and 
North America (Brasier & Kirk, 2010) during two large-scale pandemics.  

 The first outbreak occurred from around 1910 until 1940 in north-west 
Europe and from around 1930 in North America (Brasier, 1983b; Brasier, 
1987; Brasier, 1991; Brasier, 2000; Brasier & Kirk, 2001; Scheffer et al., 
2008). According to Heybroek et al. (1982) the first outbreak started in north-
western France or Belgium, and spread eastwards to central and southern 
Europe, and westwards to Britain and North America. It also spread later to 
southwest and central Asia (Brasier, 1991). 

 The second, current pandemic started simultaneously in Europe and 
North America, probably already in the 1940s, even though it was recorded for 
the first time in the 1970s (Brasier, 1991; Brasier, 2000). As a consequence of 
the epidemic, the importance of elms as raw material for forestry and as a 
landscape or urban tree has drastically decreased. 
 
The causal agents of DED are pathogenic fungi in the genus Ophiostoma 
(Ophiostomaceae) (Fig. 1A). These fungi do not disperse vegetatively, using 
mycelium, but are unit-restricted dispersers: the spores are carried to the 
healthy trees by vector insects, bark boring beetles (Fig. 1B) of the genus 
Scolytus spp. Geoffroy, or the species Hylurgopinus rufipes (Eichhoff) 
(Rudinsky, 1962; Webber & Brasier, 1984; Santini & Faccoli, 2014). The 
beetles emerge from the diseased trees and fly to healthy ones in spring and 
early summer (Fig. 1C). During the maturation feeding, the beetles wound the 
twig crotches and introduce pathogen spores into the phloem and vascular 
system of the tree (Fig. 1D). The twig crotches are a potential location where 
the bark beetles might get in contact with repellent biochemicals that have been 
released by the trees as an induced response to a targeted infection with 
biocontrol organisms. The pleomorphic pathogen spreads in the xylem vessels 
through a yeast-like multiplication phase (Fig. 1E) (Webber & Brasier, 1984), 
causing vessel cavitation. Endophytes could be used at this stage in the 
vascular tissues as antagonists to the growing and spreading fungus. 
Discoloration and wilting of leaves in a few branches in the crown (“flagging”) 
in the early summer is often the first external symptom of DED in elms (Fig. 
1F). The wilting spreads throughout the canopy during summer. An internal 
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disease symptom, vascular discoloration, is visible as dark stains in transverse 
cuts (Fig. 1G). Often, the tree dies within a few weeks or during one season 
(Fig. 1H) (Scheffer et al., 2008).  
 The fungus grows saprophytically and produces fruiting bodies in the 
inner bark and phloem of dying elms. It also grows into maternal galleries (Fig. 
1I) where the bark beetle larvae develop (Rudinsky, 1962; Scheffer et al., 
2008). The galleries are a place where an interaction based on the potential 
spatial and temporal co-occurrence of insects, pathogens and bark living 
endophytes could take place, counteracting the pathogen’s growth, the bark 
beetle larvae or emerging beetles. Female beetles that infest the bark may 
introduce new pathogen genotypes that can outcross with those that originate 
from maturation feeding of the original vector beetles in the host tree (Santini 

Figure 1. Disease cycle of DED. The pathogen Ophiostoma novo-ulmi (A) is transported via 
bark beetles (B) to healthy elms (C) while the beetle feeds in the tree’s twig crotches (D). Spores 
grow into a mycelium within the xylem vessels (E). Disease symptoms such as wilting in the 
tree crown (F) or the discoloration of the xylem (G) occurs. The tree dies due to the wilting (H). 
Bark beetles lay eggs in dead elms and the larvae build breeding galleries (I). The new beetle 
generation transports fungal spores, present in the breeding galleries to healthy trees for 
maturation feeding. Photos A, C and G from Kathrin Blumenstein; D, F, H and I from Johanna 
Witzell and E from Spanish elm breeding programme. The orange frames around picture D, E 
and I indicate stages in the disease cycle, where endophytes could be used as biocontrol agents. 
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& Faccoli, 2014). Endophytes could also here inhibit the establishment of the 
growth of new introduced pathogens. When the new beetle generation 
emerges, they carry fungal conidia and ascospores on their bodies (Fig. 1A+B) 
and complete the disease cycle by flying to healthy elms for maturation feeding 
(Webber & Brasier, 1984). In addition, DED also spreads through root contacts 
(Neely & Himelick, 1963).  

Table 1. Characterization of O. ulmi and O. novo-ulmi according to Brasier (1991). 

 Ophiostoma ulmi Ophiostoma novo-ulmi 
growth on malt 
extract agar (MEA) 
mm day−1 at 20 C̊ 

(1.5-) 2.0-3.1 (-3.5)  in darkness (2.8-) 3.1-4.8 (-5.7)  

growth optimum (25-) 27.5-30 C̊ 20-22 C̊ 
maximum 35 ̊C 32-33 C̊ 
pathogenicity on 2 m 
tall Ulmus procera 

weak strong  

defoliation  (2-) 10-35 (-40)% followed by 
recovery 

60-100% with rarely recovery 

habitat discoloured xylem and the bark 
of elms (Ulmus spp.); 
particularly in and around 
breeding galleries of scolytid 
vector beetles 

discoloured xylem and the bark of 
elms (Ulmus spp.); particularly in and 
around breeding galleries of vector 
scolytid beetles  

subspecies none O. novo-ulmi 
subsp. novo-
ulmi 

O. novo-ulmi subsp. 
americana 

growth rate of 
subspecies 

 (3.1-4.4 mm d−1) (3.2-4.8 mm d−1) (Brasier & Kirk, 
2001) 

 
In 1919, the Dutch researcher Marie Beatrice Schwarz isolated and identified 
the causal agent in its synnematal state (Fig. 2) as Graphium ulmi Schwarz 
(Schwarz, 1922). Somewhat later, Christina Buisman discovered the sexual 
state of the fungus and changed the name to Ceratostomella ulmi (Schwarz) 
Buisman (Buisman, 1932). Two years later, Elias Melin and Johann A. 
Nannfeld classified the fungus as Ophiostoma ulmi (Buisman) Nannf. (Melin 
& Nannfeld, 1934) (characteristics in Tab. 1). For a few decades, the fungus 
was called Ceratocystis ulmi in literature, after Claude Moreau had changed 
the name again (Moreau, 1952), but de Hoog and Scheffer (Hoog & Scheffer, 
1984) stated O. ulmi to be the correct name for the pathogen. The Graphium 
conidial state was referred to Pesotum, while the mycelial conidia have been 
described to Sporothrix (Brasier, 1991 and refs wherein). The aggressive form, 
responsible for the recent outbreak, was later introduced as a new species, O. 
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novo-ulmi (Brasier, 1991) (characteristics in Tab. 1). Ophiostoma novo-ulmi 
rapidly replaced the almost extinct O. ulmi because of their competitive 
interaction (Brasier, 1983b; Brasier, 1987). 

Figure 2. Saprophytic, anamorph (Graphium) phase of the pathogen producing synnematal 
structures (coremia) of ̴ 2 mm length with conidia-bearing sticky droplets (a-e); (f) coremia 
composed of fused dark conidiophores and (g, h) conidiophores with conidia (3-5µm length). 
Photos: Kathrin Blumenstein. 

 

 Strategies to control DED 1.3.1

Over the decades several measures, including chemical, biological or 
silvicultural methods, have been used in attempts to control DED. In principle, 
the protection can be through elimination of vectors in spreading of the disease, 
or elimination/restriction of the pathogen in trees.  

(a) (b) (c) 

(d) (e) 

(h) (g) 

(f) 
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An effective control strategy could be based on reducing the population and 
feeding by the vector insects. Chemicals like DDT1 were used during the first 
epidemic to eliminate bark beetle populations, but DDT was banned for 
environmental reasons in the 1960s (Scheffer et al., 2008). Pheromone traps 
are used as monitoring tools for beetle populations in Europe, North America 
and New Zealand (Scheffer et al., 2008). While the traps can catch millions of 
beetles, they cannot control the disease.  
 So far, the most important tool in DED management has been 
eradication, which aims to destroying the breeding material of the beetles. 
Dying and dead elms are removed or pruned, and the wood is debarked before 
the insects emerge in spring and early summer (Scheffer et al., 2008). This 
measure is difficult to apply in forest and field populations of elm, because of 
the problem of detecting and removing diseased trees in such complex 
environments (Scheffer et al., 2008). Eradicative pruning can work effectively, 
if an infection in the crown is detected at an early stage (less than 5% of 
affected crown) (Haugen, 1998). In order to locate the fungal infection, the 
bark of the infected branch needs to be removed to find the discoloration that 
indicates the fungal infection (Haugen, 1998). In practice, this is not feasible 
especially when it comes to large trees in forest environments. 

 The second control strategy is targeting the pathogen, but is also 
challenging. In the United States, benzimidazoles and sterol biosynthesis 
inhibitors have been used as fungicide treatment as systemic injections since 
1977. Thiabendazole is registered as Arbotect 20-S (Syngenta Crop Protection, 
Inc., Greensboro, NC) for control of DED as well as sycamore anthracnose. 
According to Scheffer et al. (2008), when properly adjusted and injected in a 
timely fashion, Arbotect 20-S protects elm trees for up to 3 years after 
treatment. Because elms often develop root grafts with neighbouring elms 
(Neely & Himelick, 1963), the use of above ground fungicides does not protect 
elms when the pathogen infects the tree through the root system (Scheffer et 
al., 2008). Even though fungicides with systemic actions exist and fungicides 
that can be applied to protect roots, the application is currently restricted to 
nurseries and arboriculture stands2 in Europe. Infections through root grafts are 
likely to be frequent especially in the monoculture conditions created along 
boulevards and canals in urban areas. Control treatments for root graft 
transmission focus on trenching and cutting roots between trees, but such 
treatments are labour-intensive and expensive. Experiments in the Netherlands 
with metam-sodium to kill the roots did stop root transmission, but registration 

                                                        
1 DDT = dichlorodiphenyltrichloroethane 
2 Arboriculture stands are cultivated areas for, e.g., wood production such as groves or short-
rotation forestries (Cardarelli et al., 2011). 
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of the product for this purpose was not feasible because of its ecotoxicological 
effects, especially its potential for groundwater pollution (Scheffer et al., 
2008). 
 Because of the increasing awareness of the harmful side effects of 
fungicides and pesticides in the environment, there is a growing interest in 
finding biologically sound and sustainable solutions for control of DED. A lot 
of efforts are made to breed for increased resistance (see 1.3.2), but also other 
solutions seem necessary. Biological control (see 1.2), which entails the use of 
living organisms to regulate pests, is an attractive option and a part of 
integrated pest management (IPM) strategies (Bale et al., 2008). The concept 
of biological control was reviewed by Waage and Greathead (1988). By using 
specialist enemies of the pest to be controlled (Müller-Schärer et al., 2004), the 
probability of non-targeted effects can be minimized. The main benefits of 
biocontrol include the safety to people and animals and the possibility to 
reduce the use of pesticides, such as fungicides in the environment (Pal & 
McSpadden Gardener, 2006). On the other hand, when directly applying a 
microbe to the ecosystem, one needs to be aware of the non-targeted effects 
through the introduction of a new organism to the system. In addition to the use 
of natural enemies of the target pest or pathogen, protective effect can also be 
achieved through biological stimulation of tree’s own resistance mechanisms 
(see 1.2.1) (Eyles et al., 2010).  

 Biological mechanisms have been explored also for the potential in 
control of DED. For example, it has been shown that the resistance of elms to 
O. novo-ulmi can be enhanced or induced by artificial inoculation with a 
mixture of O. ulmi and O. novo-ulmi: The treatment resulted in less symptom 
development than inoculation with only O. novo-ulmi (Scheffer et al., 1980) or 
only strains of O. ulmi (Hubbes, 2004).   

 Weakly pathogenic Verticillium sp. strains have also shown to 
enhance resistance in elms (Solla & Gil, 2003; Scheffer et al., 2008). 
Verticillium is a vascular wilt pathogen, expected to survive within the tree and 
to elicit a resistance response. The V. albo-atrum isolate WCS8503 is able to 
significantly suppress disease development in 'Commelin' elms and susceptible 
field elms (Scheffer, 1990; Scheffer et al., 2008). Scheffer et al., (2008) found 
that the fungus could only be re-isolated from injected trees around the site of 
injection in the trunk. This indicated that the translocation of the isolate was 
minimal and that direct interaction between the fungus and the pathogen was 
not likely to occur. Hence, elms respond physiologically to Verticillium, which 
leads to induction of the protection against the DED pathogen.  
                                                        
3 Verticillium albo-atrum isolate WCS850 is nonpathogenic. It does not cause wilt syndromes in 
elms and even not in Verticillium susceptible species like ash (Scheffer et al., 2008). 
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The strain WCS850 has been developed into a commercial vaccination product 
called Dutch Trig®. This product is injected to the trunk as a conidial aqueous 
suspension in late spring. The injection has to take place before infection, 
because the tree needs time to build a resistance response. The treatment must 
be repeated annually because of the short-time survival of WCS850 in the elms 
(Scheffer et al., 2008). The method has been successfully used in preventive 
treatment of valuable trees in urban areas, but it has only limited relevance in 
large-scale forestry, because of the laborious application of the repeated 
injections (Martín et al., 2015a).  

 In 1983, a virus infecting O. ulmi was discovered (Brasier, 1983a). 
The virus was characterized as a devirulence factor (d-factor) that damages the 
growth and viability of conidia, resulting in a reduced production of perithecia4 
(Brasier, 1983a). It was then suggested that the virus could be utilized in DED 
control by releasing elm bark beetles that transport virus-infected spores, 
compatible with the local pathogen clone as a biocontrol strategy (Brasier, 
1983a). Scheffer et al. (2008), however, categorized this approach as too 
radical since pathogen-infested beetles could interfere with sanitation and 
preventing biological or chemical control programs.  
 

 Breeding programs 1.3.2

The degree of DED susceptibility has been found to vary among elm species 
and genotypes. For example the Siberian elm, U. pumila, is rather tolerant to 
DED whereas U. minor is a highly susceptible species (Smalley, 1963; Solla et 
al., 2005a; Martín et al., 2008). The variation in susceptibility may depend on 
their anatomy and physiology, such as the proportion of large vessels in the 
earlywood (Elgersma, 1970; Solla & Gil, 2002), the hydraulic conductivity of 
twigs (Elgersma, 1970; Melching & Sinclair, 1975), the speed of the browning 
response of freshly exposed cambium after inoculation (Smalley et al., 1982), 
the activity of phenylalanine ammonia-lyase (Díez & Gil, 1998) and 
phytoalexin production (Duchesne et al., 1985). It has been proposed that 
resistance of U. pumila is related to specific anatomical or physiological 
adaptations to xeric environmental conditions (Brasier, 1990). Thus, earlywood 
vessels of small diameter, mostly isolated within the xylem, have been related 
with the greater resistance of U. pumila to xylem embolism caused by water-
stress or by O. novo-ulmi, in comparison to U. minor (Solla et al., 2005b). The 
enhanced levels of starch and cellulose found in U. pumila in comparison to U. 

                                                        
4 Fungi belonging to the phylum Ascomycota, such as Ophiostomataceae, produce fruiting bodies 
called ascocarps after sexual reproduction. They contain millions of asci with ascospores inside. If 
the shape  of the ascocarp is flask-like shaped, it is called perithecium (Encyclopedia Britannica). 
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minor are consistent with the higher resistance of U. pumila to water-stress and 
to O. novo-ulmi (Martín et al., 2008).  
 The genotypic variation in DED susceptibility raises the hope of 
success in breeding for DED resistance. Resistance breeding, although slow in 
its traditional form, is attractive because of its sustainability (Witzell et al., 
2014). The first program for elm resistance breeding began in the Netherlands 
in 1928 (Heybroek, 1993b). Later on, breeding programmes in several 
European countries and the United States followed. For instance, in the 1930s, 
considerable efforts were made to identify resistant individual U. americana 
trees (Smalley & Guries, 1993). The second disease pandemic in Europe, 
however, decimated many surviving native populations and some of the early 
“resistant” cultivars (e.g., ‘Commelin’) (Brasier, 2000). Asian elms, including 
U. pumila (Scheffer et al., 2008), U. chenmoui, U. davidiana var. japonica, U. 
wallichiana (Heybroek, 1993b; Smalley & Guries, 2000), U. japonica and U. 
parvifolia (Scheffer et al., 2008), have been the main sources of resistance in 
the Dutch, American and Italian elm breeding programmes. These species are 
crossed with native elms, resulting in hybrid clones of varying tolerance levels 
and genetic backgrounds (Martín et al., 2015b). About 25 elm cultivars with 
different levels of resistance to DED are already available in Europe and North 
America offering possibilities for replacement of urban elms which were lost 
(Scheffer et al., 2008). 

 More recent elm breeding efforts in Spain and Italy have emphasized 
the use of the native European species U. glabra and U. minor, while still 
relying  on the Siberian elm as a source of disease resistance genes (Solla et al., 
2000; Santini et al., 2003). 

 In 1986, a large elm breeding and conservation programme was 
launched in Spain as an agreement between the Spanish Environmental 
Administration and the Technical University of Madrid, School of Forestry 
Engineering (Solla et al. 2000). The aim was to conserve remaining genetic 
resources, to find tolerant native elm genotypes and transmit the variability of 
tolerant native elms to future generations obtained through breeding; i.e., 
hybridisation of selected progenitors (Martín et al., 2015b). As part of the 
programme, susceptibility trials on thousands of elm genotypes were 
conducted at the clonal bank of the breeding centre, Madrid (Martín et al., 
2015b). In the beginning of the programme, U. pumila was used as the main 
source of resistance, giving rise to 10 crossings tolerant to O. novo-ulmi (Solla 
et al., 2000). However, the uncontrolled spread of U. pumila in Spain and its 
extensive hybridisation with the native U. minor (Cogolludo-Agustín et al., 
2000) led to conservation concerns. Already in the 1990s, native elms, mainly 
U. minor, were included in the O. novo-ulmi susceptibility trials. In the 



26 

following decade the programme focused mainly on selecting native elms 
(Martín et al., 2015b). 
 Susceptibility tests revealed seven U. minor clones to be tolerant to O. 
novo-ulmi and these clones are already registered by the Spanish 
Environmental Administration for the use in forest environments. For the 
susceptibility tests, local strains of O. novo-ulmi were used to evaluate the 
tolerance level of the clones through artificial inoculations (Solla et al., 2005c). 
After pathogen inoculation, the seven clones showed leaf wilting values similar 
to or lower than “Sapporo Autumn Gold”5. In all tests, the susceptible control 
clone UPM089 showed wilting values above 70%, while the most tolerant 
clone (Dehesa de Amaniel) showed wilting values below 5% (Martín et al., 
2015b). Some other clones had high ornamental scores and are therefore 
promising trees for the use in urban environments and material for tree 
breeding for ornamental quality (Martín et al., 2015b). 
 Elm tolerance to O. novo-ulmi has been shown to be inheritable 
(Guries & Smalley, 2000; Townsend, 2000; Venturas et al., 2014; Solla et al., 
2014) and polygenic (quantitative) in nature (Aoun et al., 2010). Basically, it 
can be assumed that the more resistance mechanisms are gathered in the same 
genotype, the higher are the chances of overcoming an infection. Thus, it 
would be desirable to perform controlled crossings between genotypes that 
express different, and preferably complementary, defence mechanisms (Martín 
et al., 2015b). 

 
 

 

                                                        
5 “Sapporo Autumn Gold”, highly tolerant to O. novo-ulmi (Smalley & Lester 1973) 
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2 Objectives of thesis 
During recent decades, growing concerns about the state of the environment 
have increased acceptance for IPM as a strategy for sustainable crop 
production and protection (FAO, 2015). In IPM, the goal is to minimize the use 
of environmentally hazardous chemicals and instead utilize different 
management practices and natural mechanisms to promote the health of crop 
plants (ECPA, 2015; European Commission, 2004). Biological control, i.e., 
utilization of beneficial organisms in control of pests or pathogens, is a 
valuable tactic in IPM (Orr, 2009), but successful application of biological 
control necessitates knowledge about the mechanisms of interactions between 
the biological antagonists and the target pests or pathogens. Fungal endophytes 
have been identified as a group of potent biocontrol agents against crop 
diseases, including those of forest trees (Arnold et al., 2003; Newcombe, 2011; 
Albrectsen & Witzell, 2012). However, little is still known about the potential 
influence of endophytes in disease resistance of large, perennial plants such as 
forest trees. In particular, the detailed mechanisms through which the 
endophytes may influence tree pathogens are still poorly investigated. 

 
The goal of this thesis was to improve our understanding of the potential of 
fungal endophytes as a part of IPM of the vascular tree disease DED, and to 
provide new insights in the ecological interactions between endophytic and 
pathogenic fungi that share a habitat (host tree) in time and space. To 
investigate these aspects, the culturable endophytic mycoflora was studied in a 
collection of elm trees showing differential susceptibility to DED. The studies 
were focused on the culturable fraction of endophytes in order to capture 
strains that could be studied further in the laboratory and eventually be used in 
biocontrol solutions. 
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Two overarching research questions were addressed: 
 

1) Are there qualitative or quantitative differences in the cultivable fraction of 
fungal endophytes between elm trees that differ in their susceptibility to Dutch 
elm disease? (Paper I). 

 
2) What kind of mechanisms could explain the possible antagonism between 
elm endophytes and DED pathogens? (Papers II, IV) 

 
In addition, Phenotype MicroArrays (PM) was tested as a promising technique 
to study the competitive interactions between endophytes and pathogens. 
(Paper III). 
 
Some preliminary, unpublished results are presented and discussed in the 
thesis. 
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3 Material and Methods 
The studied endophytic fungi originated from four different locations in Spain, 
three of them in the vicinity of Madrid and one from Majorca Island. In order 
to associate endophytes with the resistance patterns of the elms, the endophytes 
were isolated from elms with different degrees of susceptibility. The isolations 
were done from leaves, bark and xylem (paper I) in 2008 or xylem (paper II) in 
2011. For an overview of the sampling approach and host tree materials, see 
Table 2; for the fungi and methods used in the thesis, see Table 3.  
 

3.1 Sample collection sites 

 The first site is located at the Forest Breeding Centre in Puerta de Hierro 
(hereafter referred to as breeding centre), close to Madrid, Spain (Martín et 
al., 2015b). Over 200 clonal trees of U. minor and U. pumila were planted 
in 1986 as part of the Spanish elm breeding program, e.g., Solla et al. 
(2000). Leaf, bark and wood samples of 14-year-old trees were collected for 
endophyte isolations. 

 The second site is a semi-natural riparian elm stand in the municipality of 
Rivas-Vaciamadrid, where most trees belong to the highly susceptible U. 
minor var. vulgaris (= U. procera) complex. Ophiostoma novo-ulmi has 
been isolated from the stand and Scolytus bark beetles are abundant in the 
area, but the spread of DED is abnormally slow. The trees were selected on 
the basis of their dendrometric features and good health condition. 

 The third site is a forest area close to Madrid. Sampling was done from one, 
centenary U. minor tree, selected on basis of its tolerance to DED in the 
field, despite its high susceptibility when inoculated in experimental plots.  

 The fourth site is located at the Albufera Natural Park, Majorca Island. One 
U. minor individual, symptomless despite the fact that surrounded trees 
showed symptoms of infection, was selected. 
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3.2 Isolation of endophytic fungi 

The isolation was done in a laminar flow hood, using the surface sterilisation 
protocol described in Helander et al. (2007). Small sections of surface 
sterilized leaf, bark and xylem tissues were cut, separated and placed on malt 
extract agar (MEA) in Petri dishes. Over a period of two weeks, emerging 
endophyte colonies were counted and transferred to fresh medium. The average 
number of endophyte colonies growing in each Petri dish was divided by the 
total number of tissue samples placed in the dish to get a measure for 
endophyte frequency per trees in each susceptibility group (paper I, II). The 
endophyte diversity per tree group was estimated as the average of the number 
of different morphotaxa observed in each Petri dish divided by the number of 
tissue samples placed in the dish (paper I, II).  
  

3.3 Identification and characterization of endophytes 

In order to evaluate the diversity of endophytic fungi present in the elm tissues, 
all endophytes were grouped into morphological groups (morphotypes or 
morphotaxa) (paper I, II). Macro- and microscopic examination of the 
morphological traits was used to group the isolates into morphotaxa (Fröhlich 
& Hyde, 1999; Taylor et al., 1999; Arnold et al., 2001; Guo et al., 2003). 
Criteria for the grouping were vegetative features that conventionally constitute 
species limitations (Guo et al., 1998; Arnold et al., 2000; Arnold et al., 2003). 
The main features observed were colony surface texture, colours of the 
colonies and the surrounding media and the growth rates on MEA. In addition, 
special features such as the formation of fruiting bodies or the accumulation of 
droplets or coloured spores were recorded and used in the grouping. The 
molecular identity of one representative isolate per morphotype was 
determined from the endophyte collection isolated in 2008 (paper I). From the 
xylem derived endophytes (paper II), every isolate was identified by molecular 
techniques. 
 A selection of identified isolates that were statistically related to elms 
with low susceptibility (paper I) were chosen for further experiments because 
their potential to contribute to the resistance of their host trees was evaluated to 
be high. In the further experiments, the mechanisms of chemical antagonism 
(paper II) and competitive interactions (paper IV) were explored though in 
vitro approaches, and the biocontrol (preventive) potential of endophytes was 
explored through in vivo tests (paper II). 
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a) c)b) d)

 Antagonism assays in vitro dual culture and in vivo tests 3.3.1

The antagonistic potential of selected endophytes was determined using in 
vitro dual culture tests (paper II, K. Blumenstein, unpublished results). Based 
on the results of these studies, endophytes were selected for in vivo tests where 
young elms were inoculated with endophytes before they were infected with 
the DED pathogen (paper II). 

 Prior to the dual culture tests, all fungi were cultivated on MEA and 
transferred to fresh plates to guarantee actively growing mycelium and the 
same age of the colonies in bioassays. Plugs (diam. 5 mm) from one of the 
endophytes and from the O. novo-ulmi ssp. novo-ulmi colony were placed with 
a 6 cm distance on Petri dishes containing MEA. The colonies were allowed to 
develop in an incubator (22 C̊, darkness) and the interactions were evaluated by 
measuring the colony growth at three time-points (2, 4, 7 days post 
inoculation). In paper II, the colony growth was measured in three directions: 
one direction connecting the centre of the inoculum fraction, and two at +45 ̊
and -45 ̊angles to the former, and in an unpublished study from K. Blumenstein 
the measurements were performed along two axes, i.e., the colony diameter 
and the perpendicular diameter according to Santamaria et al. (2004). A 
spherical index was applied in order to receive the relative measure of the 
colony shape: 
 
Diameter b / Diameter a = Spherical-Index. 
 
If the index equals one, the colony has a spherical shape. If the index is greater 
than one, the colony’s growth developed more along the b-axis, away from the 
opponent. If the index is smaller than one, the fungus grows more along the a-
axis, towards the opponent. 
 Based on the growth responses, the type of interaction between an 
endophyte and a DED pathogen was assessed according to Mejía et al. (2008) 
into three categories: a) antibiosis (chemical reaction) through growth 
inhibition; presence of a reaction zone (Fig 3a and Fig 2a in paper II), b) 
substrate competition by a higher growth of one fungus relative to the other 
(Fig. 3b and Fig 2b in paper II) and c) mycoparasitism, when mycelium of one      
 

Figure 3. (a) antibiosis (arrow indicates reaction zone); (b) one fungus growth faster than the 
other; (c) mycoparasitism, (d) neutral / mutually intermingling growth. 



33 

fungus growth on the other (Fig. 3c). A fourth category was added indicating 
that no obvious interaction has happened, called neutral or “mutually 
intermingling growth” after Larran et al. (2016) (Fig 3d).  
 The results from the in vitro experiment allowed the choice of four 
endophytes to be tested in further antagonism experiments in the elm trees for 
the in vivo tests (paper II), where the aim was to test the potential for 
enhancing plant resistance against DED by preventive endophyte treatments.  
 

 Nutritional profiling with Phenotype MicroArrays 3.3.2

In order to compare the competitive capacity of selected endophytes as 
compared with the DED pathogens, the ability of the fungi to utilize an array of 
285 carbon and nitrogen sources was examined using Biolog Phenotype 
MicroArrayTM technology (paper III and IV).  The carbon and nitrogen sources 
were of particular interest because of their essential importance for 
heterotrophic fungi (Deacon, 1997). Commercially available (Biolog Inc., 
Hayward, CA) pre-filled 96-well microtiter plates containing 190 different 
carbon sources and 95 different nitrogen sources were used in the studies. A 
detailed list of the compounds in the plates can be found in the Appendix 6.3.  
 The PM method was optimized and further developed for tree 
endophyte studies (paper III). In particular, a procedure for preparation of 
inoculum was optimized by culturing the fungi on a semi-permeable 
cellophane membrane to facilitate the harvest of fungal material. After 
homogenizing the fungal mass, it was pressed through cotton wool and an 
aliquot was taken for the preparation of inoculum. Moreover, an in-house 
designed PM plate was developed in order to test the sensitivity of endophytes 
to carbon sources mixed with inhibitory substrates, such as phenolic 
compounds.  
  

 Effect of single vs. dual culture conditions on nutritional phenotypes 3.3.3

Pilot experiments were carried out to test whether the nutrient utilization 
patterns of a fungal isolate differ depending on whether the fungal cells are 
collected from a single or dual culture. The hypothesis was that the enzymatic 
capacity of endophytes or pathogens change in their ability to utilize substrates 
more effectively after they have been grown in dual culture assays (as 
described above) as compared to them being cultured in single conditions. 
Biolog nitrogen PM3B plates were inoculated with the fungi O. novo-ulmi, O. 
ulmi, Monographella nivalis var. neglecta, Trichoderma harzianum and 
Aureobasidium pullulans, three isolates each, after regular single culture 
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growth (paper III) and after the pathogens had been grown in dual cultures with 
each of the endophytes (K. Blumenstein, unpublished results). 
 

 Preparation of inoculum and inoculation of the microplates 3.3.4

For the carbon-source study (paper IV), mycelium was scraped from the agar 
and transferred into a tissue grinder to gently fragment the biomass for a 
homogenous inoculum. An aliquot was transferred into an inoculating fluid 
provided by Biolog (FF-IF).  
 For the nitrogen studies, fungi were cultured on a semi-permeable 
cellophane membrane. The inoculum contained FF-IF, glucose solution, 
sodium sulphate and potassium phosphate (see Appendix, Table 5). Three 
replicate plates were prepared per plate type of the carbon plates and two 
replicates for the nitrogen plates.  
 

 Data reading and analysis 3.3.5

The optical density of the wells was measured using a spectrophotometer. 
Measurements were taken at T=0 and afterwards every 24 h for ten days (paper 
III, IV). The wavelength chosen for the carbon plates was 590 nm (paper IV) 
and 750 nm for the nitrogen plates (paper III and unpublished study). 
Hierarchical clustering was applied in order to find the time-point that best 
separated the fungal isolates according to their consumption of different 
substrates and Principal Component Analysis (PCA) was used to show the 
similarity of the three technical replicates (paper IV). The average well colour 
development (AWCD), based on the optical density (OD) values, was 
calculated for each fungal isolate and source across the replicate plates (paper 
III and IV). The carbon sources tested were divided into 14 substrate groups 
(Garland & Mills, 1991) and the nitrogen substrates into 9 groups (Grizzle & 
Zak, 2006) based on their chemical properties. The average substrate 
utilization was determined for each substrate group (paper III and IV). In study 
IV, the isolate-specific AWCD value was used to compare the carbon-
utilization patterns of the endophytes and the pathogen (Haack et al., 1995).   
 A niche overlap index (NOI) and an endophyte competitiveness index 
were calculated to compare the pathogen’s carbon-utilization patterns to those 
of the endophytes (Wilson & Lindow, 1994; Lee & Magan, 1999).  
 

 Chemical analyses of extracellular fungal products 3.3.6

A selection of elm endophytes showing strong chemical antagonism against 
DED pathogens in vitro (paper II), were chosen for a more detailed analysis of 
extracellular products. Colonies from Petri dishes were transferred to ethyl 
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acetate. After 4 hours of extraction the agar was removed by filtration through 
paper filters. After this an evaporator was applied to separate the organic 
solvent from the extracted compound. The dissolved extract was applied to 
paper disks and arranged in bioassays as in the previous described dual culture 
tests but with the paper disk replacing the endophyte used. Growth 
development was measured and reaction of the pathogen evaluated over time.  

 Based on the results from the bioassays, extracts from three endophyte 
species, five isolates each, were prepared. Two species, M. nivalis var. neglecta 
and P. cava and their isolates had shown high degrees of bioactivity (high or 
moderate) in previous antagonism assays. Alternaria alternata was included as 
a control, based on the observation that it showed no bioactivity in the 
bioassays to allow a separation of the possible bioactive from the non-bioactive 
compounds. The extracts were sent to the Swedish Metabolomics Centre for 
liquid chromatography-mass spectrometry (LC-MS) analysis to screen the 
extracts for their compounds and to attempt an identification of the single 
compounds. Data was analysed with the MassHunterTM and Mass Profiler 
ProfessionalTM software from Agilent.  

 
 

Table 3. Overview of fungi and methods used in the thesis. 

Data Endophytes 
species/strains 

Tested 
pathogen 

Experimental 
approach 

Statistical analyses 

Paper I Pyrenochaeta cava, 
Monographella 
nivalis, 
Aureobasidium 
pullulans, Alternaria 
sp., Cochliobolus 
cynodontis, 
Fusarium sp.,         
A. alternata, 
Biscogniauxia 
nummularia, Xylaria 
sp., Cladosporium 
cladosporioides, 
Phomopsis sp., 
Sordaria fimicola, 
Coniochaeta sp., 
Apiospora sp., 
Botryosphaeria 
sarmentorum, 
Leptosphaeria 
coniothyrium 

- Isolation through 
surface sterilization 
and axenic cultures of 
endophytes. 
Morphotyping. 
Molecular 
identification of 
specimen (ITS). 
HPLC analysis of 
phenolics. 
 

GLM ANOVA, 
Shapiro-Wilks 
statistic, multible 
range tests (Fisher’s 
Least Significant 
Difference (LSD) 
intervals, Linear 
regression 
Shannon-Index, 
Pielou’s index for 
evenness, 
MDS analysis 
(Jaccard’s index) 
Rarefaction curves 
DFA 
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Paper II Ascomycetes - 
Dothideomycetes:  
A. pullulans, 
Alternaria 
tenuissima and 
Neofusciccocum 
luteum; 
Sordariomycetes: 
Fusarium sp.,        
M. nivalis and 
Sordaria sp.; 
Eurotiomycetes: 
Penicillium 
crustosum,  

O. novo-
ulmi ssp. 
novo-ulmi 

Isolation through 
surface sterilization 
and axenic cultures of 
endophytes. 
Molecular 
identification of 
specimen (ITS). 
Dual culture 
bioassays. 
In vivo inoculations. 

One-way and 
repeated measures 
ANOVAs,  
Fisher’s Least 
Signifficant 
Difference (LSD), 
Shapiro-Wilks test 

Paper III M. nivalis var. 
neglecta, P. cava,   
A. pullulans, 
Trichoderma 
harzianum, two 
Sordariomycetes, 
incertae sedis, 
eleven 
Dothideomycetes: 
four Dothioraceae, 
three Pleosporaceae, 
Phaeosphaeriaceae, 
Lophiostomataceae, 
Botryosphaeriaceae, 
Davidiellacea; 
Trichoderma sp.;  
Basidiomycetes: 
Pycnoporus 
sanguineus, 
Trametes sp. 

O. novo-
ulmi,  
O. ulmi 

Phenotype 
MicroArray 
(nitrogen) 

ANOVA,  
Multivariate 
statistics, Pearson 
correlation, one-
factor ANOVA, 
Principal Component 
Analysis (PCA) 

Phenotype 
MicroArray 
(in house) 

Paper IV P. cava, M. nivalis 
var. neglecta,                 
A. pullulans 

O. novo-
ulmi ssp. 
americana 

Phenotype 
MicroArray 
(carbon) 

Hierarchial Cluster 
Analysis 
PCA 
Niche Overlap Index 

Unpublished P. cava, M. nivalis 
var. neglecta,         
A. pullulans,  
S. fimicola,              
T. harzianum 

Ophiostoma 
novo-ulmi, 
O. ulmi 

Dual culture assays. 
Phenotype 
MicroArrays 
(nitrogen) with prior 
dual cultures. 
Ethylacetate 
extraction of 
extracellular 
chemicals. 
Analysis (LC-MS) 

- 
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4 Main results 
The described results focus on the main findings from the four publications (I-
IV). Unpublished data was added to this chapter.  
 

4.1 Origin and isolation of the endophyte collection 

A total of 274 isolates were recovered from 816 plant samples (paper I). The 
endophyte frequency and diversity were significantly affected by the tree group 
[P(R), M(R), M(S) and M(F)] and the respective organ (leaf, xylem and bark), 
whereas the orientation (the four cardinal points of the compass) used for the 
isolation had no effect. Leaf-associated fungi were more diverse and frequent 
in M(F) trees than in trees from the breeding centre. Endophyte frequency and 
diversity in bark tissues was generally higher than in leaves and xylem tissues. 
No significant difference was found in the bark tissue for the frequency 
between groups, but M(S) samples had higher endophyte diversity than 
samples from the field population. The highest diversity was found for the 
M(S) group in the bark samples. In the xylem samples, different indices 
suggest the highest diversity and frequency in the M(S) group (Fig. 4). 

In the subsequent study (paper II) that aimed to gain a deeper insight 
into the potential role of elm endophytes in host defence against O. novo-ulmi, 
seven endophytic fungi were isolated from the xylem of the three selected U. 
minor trees. 
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4.2 Identification and characterization of endophytes  

Endophyte isolates were initially grouped into 16 morphotaxa (paper I). Fungi 
from six groups came solely from bark, three from bark and leaves and three 
from bark and xylem. Endophytes from four groups originated from all tissue 
types. The representatives of the three most common fungal morphotaxa were 
identified based on the internal transcribed spacer region (ITS) sequence as 
Pyrenochaeta cava, Monographella nivalis and Aureobasidium pullulans. 
Monographella nivalis was isolated from bark and xylem, mainly from 
resistant U. minor clones and trees from the field population. Pyrenochaeta 
cava came mainly from resistant U. pumila and A. pullulans from susceptible 
U. minor trees.  
 

 Antagonism assays in vitro dual culture and in vivo tests 4.2.1

Dual culture tests demonstrated that six out of seven endophytes reduced the 
growth of the pathogen in vitro (paper II). The visual evaluation of the 
interactions between endophytes and pathogen suggested that endophytes 
could antagonize the pathogen through several mechanisms (see below).  
 

Antibiosis (chemical reaction) 
In cases where a reaction barrier between endophyte and pathogen could be 
observed already before they physically met, the mode of interaction was 
classified as antibiosis (Fig. 5). In repeated tests, M. nivalis inhibited the 
growth of the pathogen through antibiosis (paper II, K. Blumenstein, 
unpublished results). This type of interaction was characterized by the 
formation of a thick reaction barrier in the pathogen colony facing the 
endophyte (Fig. 5, left plate). A similar response was induced in the pathogen 
by Penicillium crustosum (paper II), and also by Pyrenochaeta cava, although 
in the latter case the response was less pronounced (Fig. 5, right plate). 
 

 
 

Figure 5. Monographella nivalis (left plate) and Pyreonachaeta cava (right plate) growing in dual 
culture with the Dutch elm disease pathogen, Ophiostoma novo-ulmi (white colony on the right side 
of each plate). A clear reaction zone can be observed between the colonies, indicating an antibiosis 
effect of the endophyte on the pathogen. Photos: Kathrin Blumenstein. 
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(a) (b) (c)

Competition for substrate 
Neofusiccocum luteum (paper II) and Sordaria sp. (Fig. 6a) (paper II, K. 
Blumenstein, unpublished results) suffocated the expansion of the pathogen’s 
colony through a faster growth by competition for the substrate. 
Aureobasidium pullulans and A. tenuissima showed combined but weaker 
effects of antibiosis and competition for the substrate (paper II).  

Mycoparasitism 
In addition to antibiosis, M. nivalis var. neglecta also demonstrated 
mycoparasitic behaviour: it was growing on the pathogen’s colony at a late 
state of the dual culture assays (Fig. 6b) (K. Blumenstein, unpublished results).  

Neutral reaction / mutually intermingling growth 
Some of the tested fungi, such as Fusarium sp., did not show any reaction 
towards O. novo-ulmi (paper II). In some cases, the character of the interaction 
seemed to change with time. For instance, at an earlier stage of the experiment, 
A. pullulans had no effect on the pathogen and was therefore classified at 
neutral (Fig. 6c), but later on, signs of antibiosis could be observed (K. 
Blumenstein, unpublished results).  
 

Figure 6. (a) The endophyte Sordaria fimicola (grey mycelium) has almost overgrown the 
pathogen Ophiostoma novo-ulmi (white colony on the right), hindering its further growth on the 
plate. (b) The orange spots of the endophyte Monographella nivalis were found on the colony of 
the pathogenic Ophiostoma novo-ulmi in later stages of dual culture tests, indicating 
mycoparasitism by the endophyte. (c) Neutral interaction between A. pullulans (left side) and O. 
novo-ulmi (right side). Photos: Kathrin Blumenstein. 

Development of an index for the colony form responses in dual cultures 
The visual evaluation of the growth of the fungi in single and dual cultures 
demanded a mathematical value for more accurate comparisons. For this 
purpose an index was developed that allowed the calculation of a spherical 
index per setting (K. Blumenstein, unpublished results). Ophiostoma novo-ulmi 
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growing in single culture had a spherical index of 1, indicating that the colony 
grew regularly to all directions, resulting in a round (spherical) colony (Fig. 7a 
and b, black bars). When two O. novo-ulmi colonies were placed opposite to 
each other on a same Petri dish, they grew slightly to the sides, resulting in an 
index value that gradually differed from 1 over time, reaching an index of 1.8 
after 30 days (Fig. 7a and b, white bars). In dual culture with S. fimicola the 
colony of the pathogen was surrounded by the endophyte already after 3 days 
and could therefore not further expand (Fig. 7a; compare with Fig. 6a). The 
influence of the endophyte M. nivalis var. neglecta, on the pathogen’s colony 
shape was not measurable during the first 6 days. Afterwards the shape became 
more non-spherical because the formation of the reaction zone and a decreased 
growth facing towards the endophyte (Fig. 7b; compare with Fig. 5 left side). 
 

 
 

 
Figure 7. Influence of the presence (dual culture) or absence (single culture) of an opponent 
fungus on the colony shape of O. novo-ulmi (ONU). Dual culture partners were the endophyte (a) 
S. fimicola (SD) or (b) M. nivalis var. neglecta (MNVN), respectively. Black bars: ONU in single 
culture; white bars: ONU in dual culture with another ONU; grey bars: ONU in dual culture with 
an endophyte. 
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In vivo antagonism tests 
Four endophytes were selected to be tested for their potential protective effect 
against DED as preventive inoculations in an in vivo study (paper II). The 
fungi were selected because they had shown the strongest antibiotic activity or 
because they inhibited the pathogen through competition for substrate or by a 
combination of the two mechanisms. In 2011 and 2012, the trees pre-treated 
with M. nivalis or A. tenuissima injections and then challenged with ONU 
showed lower leaf wilting symptoms at the end of the season as compared to 
the control treatments (Fig. 8). However, in 2013 the measured decreased 
wilting symptoms were not significantly different compared to the control 
treatment.  
 

 
Figure 8. Significant effects on the disease symptoms for the first experiment from 2011 and the 
second experiment from 2012, each after 120 days. In the first experiment, O. novo-ulmi 
effected  ̴ 70% foliar wilting, whereas the treatment with M. nivalis prior to infection with the 
pathogen reduced the symptoms by  ̴ 20%. In the second experiment from 2012, O. novo-ulmi 
caused  ̴ 50% foliar wilting. The pre-treatment with the endophyte A. tenuissima reduced the 
wilting symptoms by  ̴ 25%. Data from paper II. 

 

 Nutritional profiling of endophytes with Phenotype MicroArrays – carbon 4.2.2
and nitrogen substrates 

When analysing the results from the nutritional profiling, differences could be 
observed in the quality (= the spectrum of utilized substrates) and the quantity 
(= the utilization effectiveness as shown by the value of AWCD) for the 
different fungi (papers III and IV). 
 The experiments described in paper III focused on the evaluation of 
the suitability of the PM method for the study of tree endophytes, the 
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O. novo-ulmi M. nivalis var neglecta 33

16 86 31

b)

O. novo-ulmi A. pullulans

63 39 2

a)

O. novo-ulmi M. nivalis var neglecta 114

7 95 40

c)

O. novo-ulmi P. cava

11 91 22

d)

improvement of selected steps in the preparation of the plates, and suggesting 
solutions for difficulties when working with endophytic fungi in PM 
technology. Part I in that paper was done with pre-configured Biolog plates 
filled with nitrogen sources. Experiences from paper IV, which was performed 
earlier in time, were applied to design and optimize this study. 
 In paper IV, the utilization of carbon sources was tested. The pathogen 
O. novo-ulmi utilized 54% of the available carbon sources (Fig. 9). The 
generalist A. pullulans used 22% (Fig. 9a). A total of 29 of these substrates 
overlapped with the ones utilized by the pathogen (Fig. 9a). The two 
endophytes M. nivalis var. neglecta 33 and 114 used 62% and 71% of the 
available substrates, respectively, (Fig. 9b and c). Only 16 and 7 sources (for 
isolates 33 and 114, respectively) were specific for the pathogen compared to 
the two endophytes. Pyrenochaeta cava used 59% of the tested carbon sources 
and also overlapped to a high extend with the pathogen (Fig. 9d): a total of 91 
substrates were used by both the pathogen and the endophyte. 
 

  
 
 
 
 

 

 

 

 

 
 
Figure 9. The venn-diagrams show the relation of shared substrates. a) the pathogen and A. 
pullulans shared most of the control fungus’ utilized substrates, b) M. nivalis var. neglecta 33 
shared 73.5% of its utilized sources with the pathogen and, c) M. nivalis var. neglecta 114 shared 
70.37% of the 135 utilized in total and d) P. cava and the pathogen shared 80.53% of the 113 the 
endophyte uses in total.  

The niche overlap index (paper IV) revealed which of the tested endophytes 
had a disadvantage compared to the pathogen in utilizing the compound group 
of interest: If the index was higher than 0.9 the pathogen had a superior 
capacity to utilize this group. The generalist A. pullulans had a comparatively 
high index for most compound groups, whereas the other endophytes had not 
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(Tab. 4). In the same line, the generalist fungus A. pullulans did not show 
specifically high values of the competitiveness index, but the three other 
endophytes did for the most substrate groups. 
 

Table 4. Niche overlap and endophyte competitiveness of the four tested endophytes [M. nivalis 
var. neglecta (Mn) isolate 33 and 114, P. cava (Pc) and A. pullulans (Ap)] in relation to the 
pathogen. A NOI value of 0.9 or higher (in bold) indicates a high degree of niche overlap and a 
competitive disadvantage for the endophyte. The competitiveness index of ≥1 (bold fields) 
indicates that the endophyte is more effective at utilizing the compound group. Table modified 
from paper IV. 

 
 
Preliminary tests were conducted to observe whether the ability of endophytes 
to utilize nitrogen compounds would be affected by the presence of an 
opponent fungus growing in the vicinity (K. Blumenstein, unpublished results). 
As an example, O. novo-ulmi (ONU) isolates 177, 178 and 179 and M. nivalis 
var. neglecta (MNVN), cultured in single cultures (SC) (Fig. 10, A) were 
compared with the cultures of the same strains that, prior to their inoculation in 
the PM plates, had been grown in dual cultures (DC) (Fig. 10, B). When the 
pathogen (ONU) had been grown in SC, the isolate 177 was clearly the 
strongest utilizer compared to the other isolates. Second most utilizer in SC 
was MNVN (Fig. 10, A). In the DC, MNVN was the most successful utilizer 
for all nitrogen compounds (Fig. 10, B). It was the only fungus that utilized 
fatty acids in the DC. Except for the miscellaneous group, ONU isolate 179 
was the weakest utilizer.  
 
 

Compound group Niche Overlap Index (NOI)2 Endophyte competitiveness index3 

Mn33 Mn114 Pc Ap Mn33 Mn114 Pc Ap 
Sugar alcohols 1.00 1.00 1.00 1.00 0.86 0.86 1.00 0.71 
Sacc. Phosphates n.a.4 n.a. 
Tri- and tetra sacc. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Polysaccharides 1.00 0.89 0.88 1.00 1.00 1.13 1.00 0.63 
Monosaccharides 0.86 1.00 0.93 1.00 1.00 0.86 1.00 0.57 
Methyl-saccharides 0.25 0.33 0.25 0,50 4.00 3.00 4.00 2.00 
Disaccharides 0.89 0.80 0.80 1.00 1.13 1.25 1.25 0.75 
Phenolics 0.75 0.60 0.60 0.75 1.33 1.67 1.67 1.33 
Amino acids 0.64 0.63 0.75 1.00 1.47 1.60 1.33 0.07 
Alcohols 0.67 0.50 1.00 1.00 1.50 2.00 1.00 1.00 
Acids 0.62 0.60 0.80 1.00 1.26 1.52 0.87 0.04 
Nucleosides n.a. n.a. 
Miscellaneous 0.89 0.92 0.86 1.00 0.64 0.93 1.00 0.21 
Surfactants 1.00 1.00 1.00 n.a. 0.67 1.00 1.00 n.a. 
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Figure 10. Mycelial production, measured as OD750 (120h post inoculation) in Phenotype 
MicroArrays with nitrogen compounds by three isolates O. novo-ulmi (ONU) 177, 178 and 179, 
and the endophyte M. nivalis var. neglecta 114, (A) grown in single culture (SC) or (B) dual 
culture (DC) before inoculations of the plates. The vertical bars show the average OD750 values 
for the nitrogen sources ordered in chemical groups. Values of each individual well (= source) 
were subtracted by control value. Negative values were set to 0; error bars show standard error. 
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 Chemical analyses of extracellular fungal products 4.2.3

The extracts from the culture medium of M. nivalis var. neglecta and P. cava 
inhibited the growth of the pathogen as can be seen in Figure 11. Because no 
living fungus was needed to prevent the pathogen’s growth, the inhibition 
through antibiosis was confirmed.  
  

 
Figure 11. Paper disk tests: In the centre grows O. novo-ulmi. The paper disk on the right side is 
the control (disk soaked with phosphate buffer); the pathogen’s growth development is not 
influenced. The disk on the left side is soaked with the extracted chemicals from M. nivalis var. 
neglecta dissolved in phosphate butter. The pathogen is inhibited to grow further towards the 
compounds on the disk. Photo: Kathrin Blumenstein. 

 
Analysis with LC-MS detected 114 components in the extracts of M. nivalis 
var. neglecta and P. cava. Many correlated with activity. So far, none of the 
individual compounds in the extract has been identified. A few compounds 
gave tentative results such as C24H42N2O6 for the peaks in Fig. 12. Further 
work is needed in this area (K. Blumenstein, unpublished results). 

 
 

 

Figure 12. MS/MS spectrum for one of the compounds that correlated with activity. A possible 
identification suggests C24H42N2O6, IUPAC name: ethyl 4-[2-[(2-methylpropan-2-yl)oxy]-1-
(1,4-oxazepan-4-yl)-2-oxo-1-pyrrolidin-1-ylethoxy]cyclohexane-1-carboxylate. 
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5 Discussion 

5.1 General discussion 

 DED complex as a system for endophyte studies 5.1.1

The overall goal of my thesis was to contribute to the knowledge about the 
mechanisms of interactions between selected endophytic fungi and the DED 
pathogen O. novo-ulmi. The DED complex was used as a model system for 
endophyte-pathogen interactions because of its well-known disease cycle and 
the access to the Spanish collection of elm trees with documented susceptibility 
level to the disease.  

Because of the extensiveness of DED, the elms are often considered as a 
“lost case” in forestry, and thus the need of further research on this study 
system can be questioned. Yet, there are many reasons for continued research 
on elms. Throughout the temperate deciduous forests, elms are an integral part 
of natural ecosystems, with high arboricultural and amenity importance. Elms 
harbour a rich biodiversity (fungi, insects, lichens) that can be endangered 
along with their hosts (Heybroek, 1993a; Höjer & Hultgren 2004). My studies 
on elm endophytes are thus highly timely, considering that we might lose some 
of elm-associated endophyte diversity in coming decades. Moreover, the 
damages that DED causes destroy valuable landscapes, e.g., the riparian forests 
that protect water quality and provide other ecosystem services and income 
opportunities for landowners (Martín et al., 2010). In southern Sweden, for 
instance, forestry is missing elms as an alternative in forest regeneration, in 
particular after another, more recent tree disease, the ash decline (Stener, 2013) 
has further reduced the regeneration alternatives for the more moist sites. 
While the future of elms in forestry seems dark, it is motivated to attempt to 
conserve the existing genetic resources and associated biodiversity. In long-
term, increased knowledge about the fungal components in the DED-system 
may also help to prevent other tree-disease epidemics. 
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 Biocontrol as an option in DED control  5.1.2

The findings of my studies indicate that certain endophytic fungi have a high 
capacity to inhibit or suppress the growth of the DED pathogens through 
different mechanisms, confirming the promise these fungi have for the 
biological control of DED. Yet, there are only few successful examples of 
biological control of tree diseases, and several practical problems can be 
foreseen in biocontrol of DED using endophytes. In practice, inclusion of these 
fungi into IPM against DED would necessitate that the trees to be protected 
should be treated with the fungi (viable spores or mycelium) or their 
extracellular metabolites, and preferably the endophyte infections should be 
established in elms for a more permanent protective effect. This could be 
feasible in nurseries, but the nursery treatment would have to be effective a 
long time after planting to be of practical importance. Currently, however, very 
little is known about the spatial scale (within the trees) or temporal longevity of 
the endophyte infections (Newcombe, 2011; Witzell et al., 2014).  
 Although the practical solutions for use of endophytes in DED control 
are still far away, more emphasis on the attempts to use a combination of 
several control measures seem warranted when fighting tree diseases such as 
DED. Employment of multiple methods seems reasonable also because even 
though biological control provides many benefits, there are also drawbacks that 
need to be mentioned. One aspect is the slowness of biological control, 
although it is not likely to be as disturbing in the long-lived trees as it can be 
for example in greenhouse environments (Bale et al., 2008). The costs of the 
production and the application of biocontrol agents are much higher as 
compared to fast and reliable / proven chemical treatments (Bale et al., 2008). 
Moreover, the potential non-targeted effects, and the difficulty in predicting 
them, are concerns in the use of any biocontrol (Witzell et al., 2014), and could 
be especially pronounced if cocktails of multiple species or strains would be 
applied. Clay (2004) suggests using endophytes in biocontrol by spraying trees 
with fungal spores or by growing inoculated trees alongside other trees that 
could serve as sources of fungal inoculum. The host specificity of endophytes 
or, rather, the lack of it would make uncontrolled host shifts by nonspecialized 
endophytes possible (Witzell et al., 2014). The interdependency between tree 
genotype and endophyte is also mentioned by Newcombe (2011), who points 
out that host shifting or invasiveness can occur if endophytes are introduced 
into new areas. Endophytes of one tree species can be pathogens for others, but 
common tree pathogens with high virulence do not occur as endophytes in 
other plant species (Sieber, 2007). A further threat to forest health is the 
dispersal of alien pathogens to forests, which increases the probability of 
hybridizations between alien and native species, possibly creating progenies 
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that are more aggressive than the parents of forest pathogens (Witzell et al., 
2014).  
 Because of its power and robustness, tree breeding is seen as a more 
reliable control measure as compared to biocontrol, especially with the current 
possibilities to enhance tree resistance using gene technologies (Harfouche et 
al., 2011). As an alternative to biocontrol methods, chemically or biologically 
induced plant responses that increase the resistance can be considered, because 
of their environmental friendliness and high potential to suppress pests and 
pathogens (Solla & Gil, 2003; Hubbes, 2004; Blodgett et al., 2007; Schiebe et 
al., 2012). However, in many cases the regulation and reliability of induction 
can be problematic.  
 

5.2 Methodological considerations 

 Culturable vs. “total” communities 5.2.1

My study focused on the work with culturable fractions of endophytic fungi 
isolated from bark, leaves and xylem tissues. Endophytic fungi with significant 
antagonistic potential in vitro and in vivo were found (paper I) and were further 
investigated for their modes of interaction (papers II and III). Working with 
endophytes that are easily culturable on artificial media allowed us to maintain 
such isolates conveniently. Similar procedure has been used in many studies 
with success (e.g., Arnold et al., 2000; Helander et al., 2007; Albrectsen et al., 
2010). However, the isolation of endophytes was not comprehensive, and 
alternative isolation procedures, such as the dilution-to-extinction technique 
(Unterseher & Schnittler, 2009) would most likely have given different results. 
In particular, the diversity and frequency of fungi inhabiting the elm tissues, 
including the non-culturable fungi, are likely to be considerably higher than 
what could be detected using the described isolation technique.  
 Varying the incubation temperature may influence the isolated 
diversity of fungi. Generally, the preferred temperature-ranges between the 
isolated fungi can be assumed to be comparatively narrow, since the 
endophytes originated from the same habitat and were therefore likely to be to 
a certain temperature range. The length between the sub-cultivating steps is a 
crucial decision, because slow growing fungi can be overgrown by fast 
growing fungi, creating a bias. The peptone rich and slightly acidic MEA is 
commonly used for the isolation and cultivation of endophytic fungi. Fungi 
basically need a sugar source as the minimum growth requirement and can 
synthesize all cellular compounds from that (Deacon, 1997). The use of water 
agar favours the growth of slow growing fungi if sub-cultivation is undertaken 
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in regular distances. Nutrients will exhaust after a while since the piece of plant 
material is the only source. Bills and Polishook (1992) have demonstrated that 
the use of different media may yield distinct species richness’s or greater or 
smaller numbers of isolates. They suggest that selective media may help to 
increase diversity of endophytes recovered from leaves or twigs. Comparative 
experiments performed with other tree species in Europe have demonstrated 
that incubation of the plant material under different drying regimes before the 
isolation of the endophytes takes place may yield distinct endophyte 
assemblages and can thus be an effective method to detect endophyte diversity 
in a given host tissue (Petrini et al., 1992). 
 The endophytes of trees are transmitted horizontally (from the 
environment) and infest the tree’s tissues locally in most cases. They may 
spread in the xylem and phloem tissues, but it can be assumed that the speed 
and success of spreading varies. A full overview about the inhabiting 
endophytic fungi across the whole tree is therefore difficult to gain with any 
currently available technique. A concern raised by Arnold and Lutzoni (2007) 
is that common endophytes such as Phomopsis, Xylaria, Colletotrichum, 
Fusarium, and Botryosphaeria often tend to be generalists in terms of broad 
host ranges, and these endophytes dominate culturable fractions, whereas more 
specialized species may be found in the slow growing or unculturable 
fractions. Despite the limitations of the isolation technique, quite a big 
collection of endophytes was managed to be isolated including the slow 
growing species Monographella nivalis and Pyrenochaeta cava that 
antagonized the pathogen (paper I, II). Thus, the isolation technique proved 
adequate for the purpose of finding endophytes with antagonistic 
characteristics, and it enabled to obtain viable isolates that could be 
investigated for their interactions with the pathogen. If, however, the goal is to 
provide a comprehensive list of the entire mycobiota in the elm trees, 
molecular techniques such as pyrosequencing should be used. 
 

 Dual cultures 5.2.2

In studies of fungus-fungus interactions, a practical and cheap method are 
antagonism assays, also called dual culture tests. Under controlled conditions, 
such as temperature, light and media concentrations, the fungal interactions can 
easily be studied over time. The dual culture experiments served as the base 
experiment of my studies, allowing a first phenotypic classification of the 
isolated endophytes. In accordance to the observed and measured results, the 
further potential of the endophytes was evaluated. This method proved its 
effectivity, because it allowed a clear distinction between the different groups 
of interactions, while being rather easy to accomplish. If there was no visible 
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interaction (“neutral” interaction), the endophyte was not investigated further 
and thus could be excluded at an early stage of the investigations. If the 
endophyte showed superiority over the pathogen by a faster growth, resulting 
in suppression of the pathogen’s growth, the next consequence for further 
investigations was to gain more information about the fungal nutritional 
preferences. The reason was that the potential of this endophyte as a biocontrol 
organism was classified as high due to its direct antagonism, and therefore 
those endophytes were included in the in vivo study (paper II) or the Phenotype 
MicroArrays (papers III and IV). If chemical antagonism was observed, the 
endophytes’ potential as a possible biocontrol organism was also classified as 
high since this group of interaction was also a direct interaction. Those 
endophytes were included in the in vivo study (paper II) and some were further 
investigated for their nutrient utilization preferences in paper III and IV. 
Though, the dual cultures are an artificial in vitro study and force the opponent 
fungi to interact with each other. In planta, however, it is not known how big 
the actual size of the fungal thallus is that might interact or compete with the 
surrounding organisms. In addition, the growth medium used to accomplish the 
dual culture assays is malt extract agar, a common fungal growth medium. In 
the trees, fungi have to cope with facing a heterogeneous chemical 
environment, with different types of substrates in varying concentrations. The 
ability of fungi to interact with their surroundings is very likely dependent on 
their ability to utilize these substrates, resulting in different growths speeds, 
among other factors. Even though the in vitro results do not necessarily 
translate directly to what occurs in planta, in vitro studies and their results are 
particularly useful for identifying likely candidates for biocontrol and for 
making educated guesses concerning the mechanisms by which they reduce 
pathogen damage (Mejía et al., 2008). Nevertheless, my studies using 
Phenotype MicroArrays to give a proxy for the in planta situation served as the 
first step to mimic the natural situation. The preliminary experiments, where 
the endophytic fungi were exposed to co-cultures with the pathogen represent 
development of the technique towards increased correspondence with the in 
planta conditions.  
 

 Possibilities in the application of genomics for the research of endophyte 5.2.3
communities 

While the focus of my work was on the cultured fraction of endophytic 
communities, more detailed information about the diversity of endophyte 
communities could be gained through genomic approaches. The opportunities 
and the range of available molecular methodologies that can be implied in 
studies with endophytic fungi are diverse. Arnold et al. (2007) raised three 



52 

main points where genomics are mainly applied for in this research field: (1) 
identification purposes, especially of sterile endophytes that cannot be 
identified with macroscopic techniques, (2) restricting functional taxonomic 
units and (3) to avoid biases executed by culturing techniques. 
 Molecular sequence data from the multi-copy nuclear ribosomal 
internal transcribed spacer region (ITS) can be used to identify fungal isolates 
and to analyse species richness (Arnold et al., 2007; Unterseher & Schnittler, 
2010). Because of the fast rate of evolution in the spacer regions, ITS data is 
useful in these purposes. It can be recovered rather easily and is highly present 
in GenBank (Arnold et al., 2007). A “biodiversity fingerprint” of a sampling 
site can be created (Promputtha et al., 2007; Jumpponen & Jones, 2009). The 
16S rRNA (ribosomal ribonucleic acid) is the genomic region to be compared 
for the study of prokaryotic endophytes, microbial communities inhabiting 
stems, roots and tubers of plants (Ryan et al., 2008). Furthermore, DNA 
(deoxyribonucelid acid) barcoding has become a standardized tool for the 
assessment of global biodiversity patterns and it can allow diagnosis of known 
species as well as unknown species to non-taxonomists. It is a fast, accurate, 
and standardized method for species level identification, by using short DNA 
sequences. The method is not yet fully established for fungi (Das & Deb, 
2015).  
 ITS data can also be used to evaluate morphotaxon boundaries. The 
morphotype concept is a rapid and reliable approach to assess species richness 
of cultivable foliar endophytic fungi, but it might not provide taxonomic 
information of the isolated community (Arnold et al., 2007). Morphotaxon 
boundaries are estimated on the basis of ITS BLAST matches to different taxa, 
comparisons of ITS sequence divergence, or phylogenetic relationships of 
endophytes and closely related species (for which ITS data can be aligned) 
(Unterseher & Schnittler, 2010). However most fungi are not represented in 
GenBank and some GenBank records are misidentified (Arnold et al., 2007). 
For testing variations in fungal endophyte communities, such as the diversity 
within individual trees, within sites, between adjacent sites that differ in 
nutrient availability, the culture-independent, high-throughput barcoded 
amplicon pyrosequencing can be used to quantify patterns of variation. This 
method is successful in detecting very high levels of diversity and can help to 
answer questions such as how the variation in endophyte diversity among sites 
reflects environmental characteristics (Zimmerman & Vitousek, 2012). In a 
study by Lamit et al. (2014), the fungal communities associated with Populus 
angustifolia James (Salicaceae; narrowleaf cottonwood) twigs were examined 
to understand how endophytes respond to genotypic differences in their host. 
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For estimating endophyte diversity and species composition, environmental 
PCR of plant material can be implied (Arnold et al., 2007). Compared to the 
culture based-method, the advantage of this method is the higher yield of 
genotypes (Sieber, 2007), to discover endophytes with obligate host 
associations, species that grow slowly or that do not grow on standard media 
and species that lose in competitive interactions during the culturing process. 
Nevertheless, it has also been reported that some commonly isolated fungi 
were never found by this method (Arnold et al., 2007).  
 As demonstrated above, many useful methodologies exist to study 
endophyte communities, to identify endophytes and to overcome biased 
conclusions of comprehension due to chosen culture techniques. Genomic tools 
can thus provide completely new insights into structures of endophyte 
communities. So far, however, even highly advanced genomic tools are still 
limited by the point-in-time nature of the analysis, and complementary 
methods are needed to decipher the functional aspects of individual 
endophytes, or endophyte communities, in trees. 
 

 Phenotype MicroArrays – possibilities and limitations 5.2.4

Modern pest and disease management is founded on a broad scientific base that 
is rapidly developing, advanced in particular by modern molecular 
technologies (Boyd et al., 2013). The analyses of genomes (genomics), 
proteins (proteomics) and metabolomes (metabolomics) have become the 
standard in investigations on the responses of cells to certain environmental 
conditions (Greetham, 2014). In general, genomics, proteomics and 
metabolomics analyses represent snapshots of the cellular physiology at the 
point of material collection (Endo et al., 2009; Grassl et al., 2009). However, 
for understanding the cellular responses in a given environment, the 
physiological state of a cell is additional useful information. This information 
can be gained by phenotyping. 
 The term ‘phenotype’ includes any cell property, including ‘molecular 
phenotypes’ such as the mRNA level of a single gene, whereas growth 
phenotypes define if and how fast a microorganism will grow (Bochner, 2009). 
Phenotype is the manifested attribute of an organism, the joint product of its 
genes and their environment during ontogeny (Atanasova & Druzhinina, 2010).  
Phenotype MicroArrays (PM) (phenomics) were originally designed for 
bacteria; the indicator system to measure the quantitative and qualitative 
utilization profiles for selected nutrients or chemicals was developed for these 
organisms (Bochner, 1989). Pre-filled PM plates are available for the analysis 
of cellular pathways of 200 different assays of carbon-source metabolisms, 400 
assays of nitrogen metabolism, 100 assays of phosphorous and sulphur 
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metabolism, 100 assays of biosynthetic pathways, 100 assays of ion effects and 
osmolality, 100 assays of pH effects and pH control with deaminases and 
decarboxylases, and 1000 assays of chemical sensitivity. In the chemical 
sensitivity assays, there are 240 diverse chemicals, each at four concentrations 
(Bochner, 2009) demonstrating the diverse set of available options to choose 
from. In my work I chose the available plates for the analysis of catabolic 
pathways for carbon-sources and one plate of the nitrogen sources. 
Macronutrients such as carbon and nitrogen sources are of essential importance 
for fungi, being the major determinant of the fungal phenotype (Atanasova & 
Druzhinina, 2010). These macronutrients are found in elm tissues where most 
nitrogen in the xylem sap is in the form of amino acids, amides, amines and 
ammonia, nitrate is usually absent and sucrose, glucose and fructose are the 
most abundant sugars (Singh & Smalley, 1969). The concentrations of the 
nutrients vary in the sap dependent on the time of the year, the available soil 
nutrient and the susceptibility status of the elm phenotype (Singh & Smalley, 
1969). It is, however, important to keep in mind that PMs do not accurately 
mimic the nutritional niche in planta. Nevertheless, the PM arrays provide a 
proxy for the enzymatic capacity of the investigated fungal strains in vitro, and 
by allowing us to bring all the tested fungi to a similar environment, it permits 
the comparison of their phenotypic reactions at a higher throughput than other 
currently available methods.  
 Clearly, fungi are capable of metabolizing a wide variety of nutrients 
(Caddick et al., 1994; Tanzer et al., 2003). Without time and financial 
restriction, testing the other available nitrogen plates and the phosphorous- and 
sulphur-plates would have been of interest as well. The three plate types 
chosen for my studies provided distinct utilization patterns for all tested fungi 
what has been the objective of such tests.   
 The evaluation of substrate utilisation using PM technology has been 
used to optimise growth media for all types of microorganisms as for instance 
filamentous fungi (Singh, 2009). PMs are attracting increasing attention due to 
their versatile applications. The investigation of the metabolic profile of cells 
through PM is not a new method though. According to Greetham (2014), the 
Dutch microbiologist Dooren de Long was the first to describe the 
identification of a microbe based on its carbon source utilisation in the 1920s. 
A further advantage of PM technology is that the target cells can be exposed to 
different conditions, which enables dynamic studies, such as investigation of 
proteins whose genes coding for pathways of secondary metabolites are often 
only turned on under a specific set of conditions for many microorganisms 
(Bochner, 2009; Greetham, 2014). Functional characteristics of cells can be 
used to complement mechanistic, biochemical and molecular, studies 
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(Bochner, 2009). Yet, the PM analysis also has limitations and cannot discover 
all cellular phenotypes. For instance, many microbial cells have phenotypes 
that involve intracellular structures that PM technology cannot measure; 
besides, the effects of certain genes might be cryptic or have a function under 
highly specific conditions (Bochner, 2003). 
 Intriguingly, while the PM technology has been used in a range of 
studies with filamentous fungi (see above), there is no standard for the 
preparation of inoculum. Despite the protocol available from Biolog, diverse 
modifications have been published and research groups seem to modify the 
procedure. According to Tanzer et al. (2003) the utilization of high-throughput 
microtiter plate growth methods has not been readily adopted for filamentous 
fungi because non-uniform growth typically leads to highly variable OD 
measurements. Thus, one of the objectives in my work was to refine an 
inoculation method for endophyte isolates, to gain reproducible optical density 
measurements for the growth of endophyte cells in microtiter wells.  
 My experiments showed that when preparing the fungal cultures, all 
fungi should be carefully adapted to the same cultural conditions before being 
transferred to the microplates. A temperature of 25 ̊C meets the average of the 
preferred fungi included in the studies. This temperature is recommended in 
the manufacturer’s protocol. In an optimal case, each fungal culture, and later 
each microplate inoculated with the cells of that fungus, should be incubated at 
that particular fungus’ optimal temperature for growth. However, this is hardly 
feasible in standard laboratory conditions. Besides, in nature, fungi do not meet 
their optimal favoured climate conditions either. In regard to fungi growing in 
elms, the active, pathogenic phase of the pathogen happens from spring until 
summer, usually meeting a temperature of 20-25 ̊C in most European countries. 
Therefore, in terms of external temperatures, the experimental conditions can 
be considered as rather close to reality.  
 In my study, the optical density for inoculum preparation was 
determined according to the manufacturer’s instructions: adjusting the density 
of the IF-FF fluid to the standard of 62% turbidity in a turbidimeter provided 
by Biolog worked well in my study and led to reproducible results.  
 There are many alternatives to analyse and display the Biolog PM 
data. A practical approach to visualize the results is via so-called “heat maps” 
where the intensity of a colour indicates the degree of utilization at a certain 
measurement time, or the mycelial growth as OD against time or against the 
tested compounds. Alternatively a heat map can be combined with a 
hierarchical clustering of the compounds (Tanzer et al., 2003; Druzhinina et 
al., 2006; Atanasova & Druzhinina, 2010).  



56 

In study IV, I present the data as a mean value between selected time-points in 
the growth development of the fungi. This is in accordance to Atanasova and 
Druzhinina (2010) who argue that contrary to endpoint assays absorbance data 
need to be collected over the incubation period to generate complete growth 
curves for the nutrients. This is necessary because, for example, different 
carbon sources result in different growth kinetics, and assessing growth only at 
a single time point would eventually be indicative of the early growth phase in 
one case and the phase of already terminated growth in another. Nevertheless, I 
suggest that a single point data can be also meaningful if it represents the 
exponential growth phase, rather than the endpoint for the studied fungi (see 
the results section, Fig. 10). 
 

5.3 Qualitative and quantitative differences in fungal 
endophytes between elm trees that differ in their 
susceptibility to Dutch elm disease 

One of the questions that was raised in my thesis work was whether the 
culturable fractions of endophyte communities would reflect the susceptibility 
patterns of the host elms. Assuming a defensive function to endophytes, one 
could expect that the most susceptible trees would harbour fewer endophytes. 
Intriguingly, however, the results presented in paper I suggest that the less 
susceptible genotypes showed a lower frequency and diversity of fungal 
endophytes in the xylem tissues. This finding was especially interesting, taking 
into consideration that the DED pathogen develops within the xylem tissue. A 
plausible explanation could be that the defensive mechanisms of the resistant 
genotypes limit the colonization of all kinds of fungi in xylem, including both 
the pathogen and the endophytes. This assumption is indirectly supported by 
the fact that based on the profile of phenolic compounds, plant metabolites that 
have been associated with defensive and stress responses in trees (Witzell & 
Martín, 2008), the least susceptible genotypes were indeed grouped together 
and separated from the most susceptible genotypes. If negative correlation 
exists between the disease tolerance of the trees and their quality for xylem 
mycoflora, an enrichment of “resistant elms” in a landscape could have 
negative effects on the fungal biodiversity in it, especially if the xylem-bound 
endophytes were rare species.  
 It is intriguing that those endophytes that showed high antagonisms 
against the pathogen (paper II and IV) by chemical and nutritional superiority 
were originally isolated from the xylem tissues of elms with low susceptibility 
(paper I), and at that  M. nivalis was most frequent in these trees. This could 
reflect a long evolution of elms and their endophytes. The communities in host 
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species of the same plant family tend to be dominated by closely related 
endophyte species, and it can be assumed that dominant endophytes have co-
evolved with their hosts for more than 300 Ma. (Sieber, 2007).  
Taken together, the findings in paper I suggest that the relation of endophytes 
to the host resistance is multifaceted. In addition, indirect support was found 
for the assumption that certain endophytes add to the trees’ tolerance. The data 
presented in this thesis support my suggestion that the solution for successful 
tree disease control should consist of a combination of several measurements 
as this seems to be the natural case for the tolerant trees. 
 

5.4 Mechanisms of antagonism between elm endophytes and 
DED pathogens  

Earlier research on endophytes’ defensive role in woody plants has been 
strongly focused on endophytes that are able to inhibit the growth of herbivores 
through mycotoxins and enzymes (e.g., Carroll, 1988; Petrini et al., 1992; 
Saikkonen et al., 2001; Albrectsen et al., 2010). My work, however, 
demonstrates that the endophytes, as a group, may counteract pathogenic fungi 
through multifaceted mechanisms. Chemical antibiosis and the endophytes’ 
ability to compete successfully with the pathogen for resources, observed in 
my studies (paper II and paper IV) may add an extra layer to the phenotypic 
resistance of host trees. The existence of multifaceted and specialized 
mechanisms to compete against co-existing pathogens seems logical, taking 
into account that woody plant endophytes are closely related to pathogenic 
fungi, and may have evolved from them via an extension of latency periods 
and a reduction of virulence (Petrini et al., 1992). This view is supported by the 
fact that the endophytes are able to infect their hosts, but remain in a quiescent 
state inside the plant. The initial steps of host infection are, however, the same 
as those for pathogens (recognition, germination and penetration) (Sieber, 
2007). Those fungi that manage to establish a symbiosis overcome preformed 
and induced plant defence mechanisms (Sieber, 2007). The inducible defences 
such as programmed cell death, papillae formation, phytoalexins, pathogenesis 
related proteins (Van Loon & Van Strien, 1999), e.g., peroxidases, chitinases, 
RNases, proteases and protease inhibitors (e.g., polygalacturonase inhibitor 
proteins) (De Lorenzo & Ferrari, 2002), might not be properly activated. 
Further, most natural populations may be mosaics of unique endophyte-host 
plant genotypic combinations that are adapted to the local biotic and abiotic 
environment (Saikkonen et al., 1998). Once living in their host plants’ tissues, 
fungi are limited by their hosts’ resources on which they depend.  
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 Extracellular chemicals produced by endophytes 5.4.1

Fungi offer an enormous potential for new pharmaceutical and agrochemical 
industry products (Schulz et al., 2002). The search for bioactive fungal 
secondary metabolites was also of interest in my study for the endophytes that 
showed chemical antagonism towards the pathogen, such as M. nivalis var. 
neglecta and P. cava. Paper disk tests proved that the ethyl acetate extracts 
from these fungi had a strong antagonistic effect on the pathogen (K. 
Blumenstein, unpublished results). In the subsequent chemical analysis, 
attempts were made to elucidate the composition of the extract. The 
preliminary results show that a huge number of bioactive compounds, majority 
of which were unknown ones, could be detected in extracts. Their 
identification requires, however, more investigations than what was feasible 
within this thesis project.  
 The extracts with antifungal effect on DED pathogen could provide 
material for a bio-based, DED-control product. On average, however, 10 000 
natural products need to be screened in order to receive one commercial 
product, and a chemical product would need to pass a rigorous testing for an 
environmental consequence analysis. Such a development process would take 
approximately 12 years (Schulz et al., 2002). Thus, more resources, time and 
the application of further techniques would bring clearer results and might 
enable a discrimination between bioactive and non-active compounds. When 
the active compounds are identified, further studies on their necessary 
concentrations and rate of degradation are needed. Further, it would be 
interesting to test if the bioactivity of the compounds is only effective in the 
mixture as the fungus produces it, or if only single compounds show the effect.  
 

 Competition between fungi – nutritional niches 5.4.2

I found evidence that endophytes may be effective utilizers of many organic 
compound groups, and that some endophytes in fact could utilize a broader 
range and higher amounts or organic compounds that the pathogen (paper IV). 
This finding leads to two hypotheses: first, endophytes might have a potential 
to utilize a considerable part of plant resources, and second, the great success 
of the pathogen might not be explained by it possessing a superior battery of 
degrading enzymes and thus winning over the mutualistic fungal flora in trees. 
Several aspects of the competitive interactions between fungi that in time and 
space share the elm tissues thus remain to be addressed in future studies. 
 The fact that more than one endophyte species can be isolated from 
the same tissue (Petrini, 1986) indicates that the plant tissues host complex 
fungal communities. Rodriguez & Redman (1997) distinguish between four 
classes of endophytic fungi as defined by their behaviour in plant tissues: (1) 
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fungi that actively grow through host tissues, resulting in extensive 
colonization; (2) fungi that actively grow through host tissues but only result in 
limited colonization; (3) fungi that are inhibited from colonization by plant 
defence responses or metabolic inhibitors, and remain metabolically quiescent 
until the host becomes senescent; and (4) fungi that are inhibited as described 
in (3) but that are metabolically active. Despite their status, most endophytic 
fungi are likely to compete with one another and with other groups of fungi 
(e.g., pathogens, saprophytes) at some stage in their life when sharing the same 
habitat, such as leaves, bark or xylem tissues in trees, in time and place. 
 According to Wicklow (1981), competition occurs when one species 
negatively affects another by consuming a common limited resource 
(exploitation) or controlling access to a limited resource (interference). 
Competition may result in species persisting on a resource at some equilibrium 
level, or it may lead to competitive exclusion where the winner is the species 
that can survive on the lowest level of a resource (e.g., Gause, 1934). The 
overall competitive ability of a species is probably attributable to a 
combination of factors including growth rates, metabolite production, niche 
overlap and interactions with environmental conditions (Lee & Megan, 1999). 
Lee & Megan (1999) suggest that environmental factors might exert selective 
pressures which influence community structure and the dominance of 
individual species. Competition between fungi has been categorized as either 
primary resource capture (colonization of unoccupied habitat) or secondary 
resource capture (colonization of habitat that is already occupied) (Rayner & 
Webber, 1984). Primary resource capture occurs at the beginning of the in vitro 
dual culture assays, when the fungal plugs are transferred to new petri dishes. 
The same situation might be found in young trees or saplings when the 
mycobiota is not fully established in a young plant or in new leaves when they 
are occupied by horizontally spreading endophytes in the beginning of the 
growth season. In the perennial parts of trees, such as bark and wood, where 
the endophyte infections are likely to accumulate, fungi might compete mainly 
in the secondary resource capture mode. It might be that the expression of 
competitive mechanisms occurs at higher rate or diversity in fungi that 
principally compete in this mode: while the colonization of unoccupied 
habitats probably demands fast and effective enzymatic capacity that enables 
the fungus to win over the plant defences, a secondary competition situation 
might demand more, and more specific, mechanisms that allow the fungus to 
combat also an array of other fungal occupants. To test this hypothesis with 
elm endophytes, more dual (and multi-) culture tests, as well as PM-analyses, 
studies should be conducted with several fungal species and strains, the tissue-
specificity of which is known.   
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5.5 Future research 

The eradication of DED as a goal seems unrealistic when considering the low 
success of eradication efforts in history and the many possible pathways for the 
distribution of the pathogen. It is rather desirable to manage the disease to an 
acceptable level (Scheffer et al., 2008) and for that goal biological control is 
one option. The comprehensive investigation of all endophytes inhabiting the 
resistant elm genotypes would be the initial step. Next-generation-sequencing 
(NGS) could be used to screen the trees’ mycobiota for all species and sub-
species. Further studies on the chemical fractions of the endophytes also seem 
warranted. Assuming all components of the extracellular compounds of an 
antagonistic endophyte were identified, a chemical product could be designed 
and applied to infected elms where it might function as a novel, specific 
fungicide. However, it can be further criticized that the use of any endophyte-
derived chemicals will bring about the same environmental concerns as any 
other chemicals (Witzell et al., 2014). Therefore, the components of a 
biocontrol product would need to be classified as harmless to the environment: 
each single compound and as a compound mixture. In vivo tests would be 
necessary to gain knowledge about the required concentrations of such a 
product and its stability.  

 Using endophytes in practical forest protection creates challenges. In 
nature it is likely that endophyte communities rather than just a single 
endophyte, may contribute to resistant phenotypes. The dynamics of microbial 
communities over time and space adds to the challenge. If IPM measures to 
control tree diseases included endophytes, the question remains on how the 
endophyte community could be engineered in forests. Micropropagated elms, 
based on the most resistant phenotypes, and inoculated with selected 
endophytes in nurseries, could be the initial step in such a trial. By this, the tree 
would be equipped with a strengthening endophyte flora, helping it to defend 
itself against invading pathogens and at the same time constantly stimulating 
its immune system, completing the tree’s defence strategies. It would be 
necessary to take into account that different climate conditions might favour 
the establishment of differing microbiota and also the phenotypic trees’ 
characters might differ in regard to drought or frost tolerance or the 
susceptibility to bark beetles (Martín et al., 2015b).  

 At the current stage, breeding programmes are the most reliable option 
for recovery of native elm populations (Martín et al., 2015b) and therefore 
breeding for trees with higher tolerance is the most applied approach to deal 
with DED. In order to promote endophytology (Unterseher, 2012) it is 
important, as stated by Newcombe (2011) and Witzell et al. (2014), to 
guarantee the information transfer from research communities to end users and 
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other relevant professional groups, e.g., arborists, landscape engineers, and 
nature conservationists. In the long run, as we learn more about endophytes as 
a functional layer of biodiversity in trees, endophytology might become a 
natural part of the forest protection agenda, and individual endophytes or their 
combinations might be developed into potential tools in tree and forest 
protection and management.  
 

5.6 Concluding remarks 

Working with endophytic fungi has fascinated me more and more over the 
years and the responses I have observed in our tests have strengthened my 
conviction about the realistic potential of these fungi as biocontrol organisms. 
The ability of endophytes to change their morphology in response to external 
conditions is intriguing. As a research object, culturable endophytes have many 
advantages, since they are relatively easy to maintain on artificial growth 
media and they grow fast enough to give results in an experiment within a few 
days. The application range for endophytes is diverse and well explored 
through scientific investigation. With my work, I aimed to contribute to the 
characterization of these organisms and their role in trees. The different 
interaction mechanisms that I discovered show the endophytes’ multiple 
“talents” in engineering their immediate surroundings, while at the same time 
living in mutualism with their host plants. The underlying hypothesis in many 
endophyte studies is that while the endophytes gain shelter and nutrients from 
their hosts, they may, at the same time, provide the hosts with ecological 
advantages, such as defence against invading pathogens. If we could better 
comprehend the spatial, temporal and mechanistic complexity of the 
interactions between the endophytic and pathogenic fungi, we would have 
stronger possibilities to use endophytes in IPM. The findings of my work 
demonstrate that certain endophytes have the ability to antagonize the DED 
pathogen through several mechanisms, such as the proposed occupation of the 
pathogen’s nutritional niche in the host plant or repellence through the 
production of extracellular chemicals. It seems possible that several 
endophytes may express their antagonistic mechanisms at the same time and in 
a same space, and thus they might synergistically influence the pathogen’s 
growth in planta. The primary question remaining unanswered is whether, and 
to what degree, tolerant tree phenotypes may gain their tolerance through an 
advantageous, endophytic microbiota.  
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6 Appendix 

6.1 Recipes 

 Fungal culture media 6.1.1

Malt extract agar 
20 g malt extract 
18 g agar 
1000 ml deionized water 

PM inoculation media 
PM 1 and PM2A 
0.05 ml of cell suspension to 23.95 ml inoculating fluid 

PM3B 
0.125 ml cell suspension to 59.875 ml inoculating fluid 

 

Table 5. Recipe for PM inoculating fluids from stock solutions. 

PM Stock solution PM1 and 2A PM 3B 

FF-IF 20.00 50.00 
D-glucose 3200 mM - 1.875 
PM additive: potassium phosphate monobasic anhydrous (pH 6.0) 
60 mM and sodium sulphate 24 mM 

- 5.00 

Cells 0.05 0.125 
Sterile water 3.95 3.00 
total 24 60.00 
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6.2 List of fungal isolates and their origins  

Table 6.  

Species name Isolate no. Origin Experiment 
M. nivalis var. 
neglecta 33 Xylem, U. minor, Rivas-

Vaciamadrid 
PM, In vitro dual cultures, 
Extractions 

M. nivalis var. 
neglecta 114 Bark, U. minor, Rivas-

Vaciamadrid 
PM, In vitro dual cultures, 
Extractions 

M. nivalis var. 
neglecta 99 Xylem, U. minor, breeding 

centre Extractions 

M. nivalis var. 
neglecta JQ809674.1 Rivas-Vaciamadrid In vitro and in vivo dual 

cultures 

P. cava 120 Xylem, U. minor, low 
susceptibility Dual cultures, Extractions 

T. harzianum a 
CBS- KNAW Fungal 
Biodiversity Centre, NL 

PM 
T. harzianum b PM 
T. harzianum c PM 

A. pullulans 27 Leaf, U. minor, Rivas-
Vaciamadrid PM, In vitro dual cultures 

A. pullulans 70 Leaf, U. minor, breeding 
centre PM, In vitro dual cultures 

A. pullulans JX462673.1 Somontes (Madrid) In vitro dual culture  
P. crustosum JX869565.1 Somontes (Madrid) In vitro and in vivo dual culture  
A. tenuissima JX860514.1 Somontes (Madrid) In vitro and in vivo dual culture  
Sordaria sp. JX298886.1 Rivas-Vaciamadrid In vitro and in vivo dual culture  
Fusarium sp. HQ637287.1 Rivas-Vaciamadrid In vitro dual culture 
N. luteum JX073038.1 Albufera de Mallorca In vitro dual culture  
O. novo-ulmi 
ssp. americana  177 2002, infected U. minor tree 

in San Sebastián de Gormaz 
(Soria, Spain, 41̊ 34’N 3̊ 
12’W) 
(Solla et al., 2008) 

PM, In vitro dual cultures 

O. novo-ulmi 
ssp. americana 178 PM, In vitro dual cultures 

O. novo-ulmi 
ssp. americana 179 PM, In vitro dual cultures 

O. novo-ulmi 
ssp. novo-ulmi ZA-RG 

infected U. minor tree, 
Riego del Camino (Zamora, 
Spain; 41̊ 05’ N 5 ̊46’ W) 
(Solla et al., 2008) 

In vitro and in vivo dual culture 

O. ulmi a CBS- KNAW Fungal 
Biodiversity Centre, NL 
CBS Netherlands 
(Solla et al., 2008) 

PM 
O. ulmi b PM 

O. ulmi c PM 
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6.3 Phenotype MicroArray Plates used in this project 
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Abstract

Efforts to introduce pathogen resistance into landscape tree species by breeding may have unintended consequences for
fungal diversity. To address this issue, we compared the frequency and diversity of endophytic fungi and defensive phenolic
metabolites in elm (Ulmus spp.) trees with genotypes known to differ in resistance to Dutch elm disease. Our results indicate
that resistant U. minor and U. pumila genotypes exhibit a lower frequency and diversity of fungal endophytes in the xylem
than susceptible U. minor genotypes. However, resistant and susceptible genotypes showed a similar frequency and
diversity of endophytes in the leaves and bark. The resistant and susceptible genotypes could be discriminated on the basis
of the phenolic profile of the xylem, but not on basis of phenolics in the leaves or bark. As the Dutch elm disease pathogen
develops within xylem tissues, the defensive chemistry of resistant elm genotypes thus appears to be one of the factors that
may limit colonization by both the pathogen and endophytes. We discuss a potential trade-off between the benefits of
breeding resistance into tree species, versus concomitant losses of fungal endophytes and the ecosystem services they
provide.
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Introduction

Fungal communities play key roles in global carbon sequestra-

tion and nutrient mineralization [1] and, for example, the

importance of mycorrhizal symbionts for the growth of forest

trees has been long established. A less well characterized group of

fungal symbionts of forest trees are the endophytic fungi that live

at least part of their lives within the aerial tissues of their hosts

without causing symptoms [2,3]. Over time, and with conditioning

from host-intrinsic and environmental factors, the nature of the

tree-endophyte interaction can change and there is a continuum,

ranging from neutral association to mutualistic, pathogenic or

saprotrophic interactions [4–6]. Given suitable conditions, certain

fungi can adopt any one of these life-styles [7], adding a further

dimension of functional complexity to this layer of biodiversity

inside plants.

Endophytes may provide their host plants with an epigenetic

mechanism of adaptation to environmental stress [8,9]. Moreover,

some fungal endophytes seem to protect plants against pathogens

[10] and herbivores [11,12]. As primary colonizers some

endophytes can be actively involved in the degradation of dead

tissues [13,14]. Endophytic fungi may thus significantly contribute

to the support and regulation of ecosystem services in forests.

However, we still lack basic knowledge about regulation and

functions of endophytic communities in forest ecosystems. For

instance, it is not known whether the resistance status of a tree

genotype against aggressive pathogens affects the establishment of

endophytic fungi within it. This is a crucial issue for sound

evaluation of the goals and approaches applied in forest

conservation, restoration and tree breeding because resistance

may then have environmental trade-off effects, potentially

cascading from individuals to trophic levels and communities.

Thus, alterations in endophytic communities in resistant trees

could lead to modifications of ecosystem services (e.g. nutrient

cycling) (cf. [15]).

In order to explore the possible trade-off between disease

resistance and endophyte diversity in forest trees, it is necessary

to study the endophytic communities in tree genotypes that

express basal resistance or susceptibility to an aggressive

pathogen. Elms (Ulmus spp.) are forest and amenity trees that

are severely affected by the Dutch elm disease (DED) pathogen,

Ophiostoma novo-ulmi Brasier, and they provide a suitable model

system to study the links between pathogen resistance and

endophyte colonization in forest trees. Ulmus minor Mill., the
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main elm species studied in this work, has usually a dominant

role in riparian forests of southern Europe. The vascular

pathogen O. novo-ulmi is introduced into healthy elms by elm

bark beetles and moves within xylem tissues, ultimately resulting

in the development of a wilt syndrome [16]. DED has killed

over 1 billion elm trees in Europe and North America. To assist

attempts to conserve elm genetic resources, elm genotypes

exhibiting high or low susceptibility to DED have been selected

and are maintained as clones [17,18]. This material allows

detailed investigations of factors, such as the endophytic flora,

that contribute to the phenotypic resistance of elms to DED.

The basal resistance of elms to DED does not follow a major-

gene pattern, but is polygenic (quantitative) in nature [19], and the

traits behind this type of resistance are still poorly understood. One

polygenic trait potentially contributing to plants’ resistance to

pathogens are phenolic compounds, defensive and signalling

metabolites [20,21]. Their involvement in DED-induced responses

has been demonstrated [22–24], but the role of constitutively

expressed phenolics in the DED-resistance of elms is still unclear,

and we do not know if the endophytic communities in elms are

affected by them. Furthermore, other polygenic traits may be

important for the DED resistance. In comparison to major-gene

resistance, polygenic resistance is often considered more durable

[25] and thus appears to be an attractive goal for resistance

breeding. However, the drawbacks of quantitative resistance

include the necessity of vegetative propagation [26], which could

lead to a risk of low genetic variability in the propagated

population. Moreover, polygenic resistance is also inevitably more

non-specific than major-gene resistance [25,27], with potential to

affect a broad spectrum of invading genotypes. Thus, it is

conceivable that efforts to breed polygenic DED resistance into

elms could have unintentional effects on the endophytic commu-

nities.

In the presented study, we hypothesized that elms with a high

tolerance to DED host a less rich endophytic community than

highly susceptible elms, due to their stronger defences, which are

conferred by multiple genes. It should be noted that this hypothesis

does not exclude the possibility that the phenotypic resistance

shown by a given elm tree might be conferred by specific

endophytes [28–30], either via direct antagonistic effects on

pathogens or indirectly via the induction of specific plant

responses, such as the production and release of defensive

metabolites. Our study system allowed us to compare the

constitutive phenolic profiles of elm genotypes with different

degrees of DED resistance, and to evaluate the importance of

tissue-specific phenolic status with respect to both pathogens and

endophytes. The significance of the results for tree breeding and

biodiversity conservation is discussed.

Methods

Ethics Statement
All necessary permits were obtained for the described field

studies. One of the study sites, the Rivas-Vaciamadrid site is

privately-owned. Oral permission for collection of samples was

obtained from the landowner, Ms. Ana Marı́a Hernández Ros.

For the activities at the Forest Tree Breeding Centre no specific

permission was required. The Centre is governmentally-owned

and the studies were conducted as part of the regular research

activities under supervision of the Head of the Center, Mr.

Salustiano Iglesias. The studies did not involve endangered or

protected species.

Sites and Plant Material
Elms from two sites in the vicinity of Madrid, Spain were

studied (Fig. 1). The first site is located at the Forest Breeding

Centre in Puerta de Hierro (40u279N, 3u469W), and comprises

205 elm clones randomly planted with a spacing of 464 m in

a conservation plot (152636 m) with uniform microclimatic

conditions. Each clone was represented by a single 14-year-old

ramet. The distance between the selected clones ranged from 16 to

100 m, without any spatial grouping among resistant and

susceptible clones. For our study, four U. minor and two U. pumila

clones with low susceptibility to DED were selected (hereafter

referred to as resistant clones), along with four U. minor clones that

are highly susceptible to DED (susceptible clones; Table 1). The

number of clones selected for study was determined by the

availability of resistant trees (U. minor and U. pumila) of the same

age and information of their different genetic background [31,32].

The soil has a sandy loam texture and was amended annually with

organic matter to enhance moisture retention. The plot was

irrigated by sprinklers during spring and summer to avoid water

stress.

The second study site is a semi-natural riparian elm stand

located in the municipality of Rivas-Vaciamadrid (40u209N,

3u339W) consisting of about 270 U. minor trees, all of which are

between 65 and 75 years old [33]. It is the best-conserved elm

stand in Madrid where U. minor is the dominant tree species. With

a distance of 30 km it is also the closest stand to the Breeding

Centre with U. minor as the dominant tree species. Most of the trees

in the Rivas-Vaciamadrid stand belong to the unique, highly

susceptible U. minor var. vulgaris clone [32]. This taxon presents

very low genetic variability, probably because it originates from

a single U. minor tree, the Atinian elm [32]. Thus, these trees are

genetically close to the U. minor var. vulgaris clone UPM171 at the

Breeding Centre. Since 2001, O. ulmi and O. novo-ulmi have been

isolated from several trees of the stand [34], and Scolytus bark

beetles are abundant in the area [33]. Despite these factors, the

spread of DED in the stand is slow, suggesting environmental

control of the disease. The Rivas-Vaciamadrid elm stand has

historically been used as cattle raising area, where disinfectant

products based on phenolic compounds (mainly phenol) were

repeatedly applied to the cattle or to the soil to prevent insect bites

and hoof infections. The same compounds have been shown to

have a strong antifungal activity against O. novo-ulmi and induce

the accumulation of suberin-like compounds in xylem tissues [35–

37]. Seven U. minor var. vulgaris trees were selected from the stand

on the basis of their similar dendrometric features (20.0063.11 m

in height; mean 6 SD), good health condition and availability of

information about their taxonomy [33].

The four tree groups were coded as follows: P (R), resistant U.

pumila clones from the Breeding Centre; M (R), resistant U. minor

clones from the Breeding Centre; M (S), susceptible U. minor

clones from the Breeding Centre; and M (F), U. minor trees from

the Rivas-Vaciamadrid field population.

Sampling of Leaves and Twigs, and Isolation and
Characterization of Endophytes

In mid May 2008, one terminal shoot (30 cm long) was cut from

the lower half of the crown (at a height of 2 - 3 m) from each of the

four cardinal points of the compass (i.e. four shoots from each elm

tree). Four leaves were detached from each shoot in order to

isolate endophytes (16 leaves per tree). Four 2-year-old twig

segments (4 cm in length) were also cut from each shoot (16 twigs

per tree) in order to isolate endophytes from bark and xylem

tissues. Samples were transported in glass vials to the laboratory.

Resistant Elm Clones Host Low Endophyte Diversity
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The leaves were surface-disinfected by dipping in 75% ethanol

(30 s), 4% Na-hypochlorite (1 min) and 75% ethanol (15 s) [38].

After air drying (4 min), a disc with a diameter of 10-mm was cut

aseptically from a randomly selected region of each leaf and placed

on 2% (w/v) malt extract agar with no added antibiotics in Petri

dishes. Twig segments (8–10 mm in diameter) were surface-

disinfected following the same procedure as used for leaves save

that they were immersed in the Na-hypochlorite solution for 5 min

rather than one. After air drying (8 min), one 464610 mm

(thickness, width, length) slice (including bark and xylem tissues)

was cut aseptically from each twig segment. The bark (about

2 mm thick) was separated from the xylem, and both tissues were

Figure 1. Location of the two study areas in central Spain.
doi:10.1371/journal.pone.0056987.g001

Table 1. Specifications of the plant material growing at Puerta de Hierro Forest Breeding Centre, Madrid, Spain [P (R) = resistant U.
pumila clones; M (R) = resistant U. minor clones; M (S) = susceptible U. minor clones].

Species Tree group Code Origin
Susceptibility to DED
(% wiltinga)

U. pumilab P (R) 201 Nanyiang, Henan, China low (7614)

203 Shangqiu, Henan, China low (24618)

U. minor M (R) UPM007c Alatoz, Albacete, Spain low (27610)

UPM072 Cazorla, Jaén, Spain low (31612)

UPM093 Dehesa de la Villa, Madrid, Spain low (25612)

UPM130 Pedrizas, Málaga, Spain low (28611)

M (S) UPM045 Ruidera, Ciudad Real, Spain high (94613)

UPM068 Huélago, Granada, Spain high (90615)

UPM158 San Nicolás, Sevilla, Spain high (80618)

UPM171d Puebla de Montalbán, Toledo, Spain high (9168)

aValues obtained from a previous susceptibility test [84].
bProvided by the Institute of Forestry and Nature Research (Wageningen, The Netherlands).
cMorphologically appears to be U. minor 6U. pumila.
dU. minor var. vulgaris ( = U. procera).
doi:10.1371/journal.pone.0056987.t001
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placed in separate Petri dishes containing 2% (w/v) malt extract

agar with no added antibiotics. The sizes of the leaf, xylem and

bark samples were selected so as to ensure that each tissue sample

had a similar weight (30–40 mg). The Petri dishes were sealed with

Parafilm. The isolation method used resulted in the growth of

endophyte colonies which were counted and sub-cultured 2 weeks

after incubation at 20uC. The efficacy of the sterilization method

was previously tested by direct comparison of the rate and number

of fungal colonies that grew from sterilized and unsterilized tissue

samples. The results from these tests indicate that in over 90% of

the cases, rapidly-growing epiphytic fungi could be removed by the

sterilization process and that the recovered isolates thus represent

mainly the tissue internal fungal communities.

The endophytes were grouped into morphotaxa on the basis of

vegetative features that conservatively reconstruct species bound-

aries [29,39]. In each tree group [P (R), M (R), M (S) or M (F)],

endophyte frequency was calculated as the average of the number of

endophytes colonies growing in each Petri dish divided by the total

number of tissue samples placed in the dish (four samples per dish;

i.e. four samples per tissue and cardinal point). Endophyte diversity of

each tree group was estimated as the average of the number of

different morphotaxa observed in each Petri dish divided by the

number of tissue samples placed in the dish [38]. To describe and

compare the fungal communities in different sample groups, we

used diversity indices [40]. First, to compare the diversity, we

calculated the Shannon-Weaver index [H9= – sum (Pi ln[Pi])

where P is the proportion of taxon i] and used it to calculate

Pielou’s index for evenness [J9= H9/H9max, where H9max = log(S)

and S = number of taxa]. Higher values of H9 indicate higher

diversity and less competition between the taxa, and higher values

of J9 indicate low variation in the distribution of taxa across the

community. Endophytic communities were also compared among

tree tissues, genotypes and sites using the classical Jaccard’s

similarity index, based on binary information (presence/absence),

as described by Anderson et al. [41]. This index allows us to

quantify the degree of overlap between the taxa in the two

communities. The Jaccard’s index (J) was calculated as J = A/

(A+B+C) where A = number of taxa common to both commu-

nities; B = the number of taxa present in community 1 but not 2;

C = the number of taxa present in community 2 but not 1. Higher

values indicate higher similarity between the two communities.

Identification of Endophytic Fungi
Macro- and microscopic examination of morphological traits

was used to tentatively assign isolates to morphotaxa. In addition,

the molecular identity of one representative isolate per morpho-

taxon was determined as described below, for more precise

information on the identity of the fungal isolates. The criterion

used when selecting isolates was that they had to clearly exhibit the

vegetative traits of the morphotaxon they exemplified.

For isolation of DNA, the fungal isolates were incubated on 2%

malt extract liquid medium (20 g l21 malt extract) at 25uC for 4–7

days. The hyphal mass was centrifuged down (10060 g, 2 min).

After washing with water, 200 ml of the lysis buffer (2% Triton X-

100, 1% SDS, 0.1 M NaCl, 0.001 M EDTA, 0.01 M pH 8 Tris

buffer ), 200 ml of a phenol:chloroform:isoamyl alcohol mixture

(25:24:1) and 100 ml of acid-washed glass beads were added to the

fungal pellet. The resulting mixture was vortexed for 10 min and

200 ml of pH 8 TE buffer (10 mM pH 7.5–8 Tris, 1 mM

pH 8 EDTA) was added. The suspension was centrifuged for

10 min at 10060 g and then 10 ml RNase A (10 mg ml21) was

added to the aqueous phase, which was incubated for 45 min at

37uC. The DNA was precipitated with 1 ml ice cold 96% ethanol

and 3 M sodium acetate (1/10 volume). The mixture was

centrifuged for 10 min at 10060 g at 4uC. The pellet was washed

with ice cold 70% ethanol, air-dried and resuspended in 40 ml TE

buffer (pH 8).

The internally transcribed spacer (ITS) region of the rDNA and

the small ribosomal subunit (SSU) were amplified using the ITS1/

ITS4 and NS5/NS6 primer pairs, respectively [42]. The poly-

merase chain reaction was run under the following conditions:

94uC, 5 min followed by 30 cycles of 95uC for 30 sec, 50uC for

45 sec and 72uC for 45 sec followed by a final ten minute

extension step at 72uC. The PCR products were purified using the

GeneJET PCR Purification kit (Fermentas, cat. no K0702) and

sequenced using PCR primers by MWG Operon (Ebersberg,

Germany). The sequences were identified by comparison with

GenBank database using nucleotide megablast search (Table 2,

Table S1) [43].

Chemical Analyses of Leaf, Bark, and Xylem Tissues
Additional leaf and twig samples were collected following the

same procedure as described for the isolation of endophytes. The

bark was separated from xylem using a knife and the samples were

allowed to dry in paper bags at room temperature. The samples

were then milled into a homogenous powder and 10 mg (leaves

and bark) or 300 mg (wood) per tree were extracted with methanol

an analysed by HPLC [44]. The peak area data was collected at

320 nm. The quantitative data is expressed as peak area

(AU61025) normalized against sample weight per injection. In

order to explore the type of phenolic compounds present in the

samples, UV-absorbance scanned at 200 to 400 nm was compared

to spectral data in an in-house standard compound library. A

more comprehensive identification of all compounds was not

deemed crucial to fulfil the objectives of this study because we were

mainly interested in screening the general patterns among the

studied trees, their resistance and endophyte status.

Statistical Analyses
Endophyte frequency and diversity were analyzed using

a generalized linear model (GLM) approach to ANOVA with

type III sum of squares, considering the effects of the group P (R),

(M (R), M (S), and M (F), the tree nested within the group, the organ

(leaf, bark, and xylem), the orientation (North, South, East and

West), and the two-fold interactions between organ and orienta-

tion. The normality of the data was confirmed using the Shapiro-

Wilks statistic [45]. The mean frequency and diversity values were

compared by means of multiple range tests using Fisher’s least

significant difference (LSD) intervals (a= 0.05). Linear regression

analyses were made between the susceptibility to DED of each elm

clone at the Breeding Centre (% leaf wilting) and the frequency

and diversity of endophytes in xylem tissues. A non-metric

multidimensional scaling (MDS) analysis based on the Jaccard

similarity index matrix of any given pair of samples was performed

to visualize any grouping in the data set.

To compare morphotaxa richness in tree groups with different

sample sizes, and to summarize the completeness of the sampling

effort, sample-based rarefaction curves [46] (hereafter referred to

as endophyte accumulation curves) of the endophyte morphotaxa

(abundance data) were constructed with EstimateS 8.2.0 software

using 100 randomizations, sampling without replacement and

default settings for upper incidence limit for infrequent species

[47].

In order to compare the phenolic profiles of leaf, bark, and

xylem samples from each tree group, the results obtained from

HPLC analysis were tested using a discriminant function analysis

(DFA). The chemical profile of each sample was defined on basis

of a characteristic pattern of chromatogram peaks (13 peaks for
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leaf and bark samples, and 10 peaks for xylem samples), whose

normalized areas were used as input variables with a priori

information about sample grouping in the data (tree groups). This

information was used to produce measures of within-group

variance and between-group variance and then to define

optimised discriminant functions (DFs) for distinguishing between

profiles originating from different groups of trees. In order to

estimate the discriminating power of the DFs, Wilks’ Lambda tests

were performed. The coefficients by which the original variables

(peak retention times) are multiplied to obtain the DFs are called

loadings. Since the numerical value of a loading of a given variable

on a DF indicates how much the variable has in common with that

DF, loadings were used to identify the peaks that were most

important in discriminating between samples. The areas of these

significant peaks were compared within groups of trees by means

of one-way ANOVA. Fisher’s least significant difference (LSD)

procedure was used to compare averages (a= 0.05). All statistical

analyses were performed using Statistica 7.0 software package

(Tulsa, OK, USA).

Results

Endophyte Frequency and Diversity
The ANOVA of the endophyte frequency revealed that the tree

group [P (R), M (R), M (S) and M (F)], the tree nested within the

group, and the organ all had significant effects on endophyte

frequency (P,0.04), but the orientation and the organ-orientation

interaction did not (P.0.70). Considering all tree groups, the

endophyte frequency in bark tissues (0.6660.03; mean 6 SE) was

higher (P,0.001) than in leaves (0.1960.04) and xylem tissues

(0.1060.03). The ANOVA of the endophyte diversity showed that

the tree group, the tree nested within the group, and the organ had

significant effects on endophyte diversity (P,0.01), but the

orientation and the organ-orientation interaction did not

(P.0.77). Considering all tree groups, the endophyte diversity in

bark tissues (0.4760.03) was higher (P,0.001) than in leaves

(0.1460.03) and in xylem tissues (0.0760.02).

The total number of fungal isolations obtained from the

different plant tissues and tree groups is specified in Table 3. A

total of 274 isolations were obtained from the 816 plant samples

incubated on MEA. The endophytic fungi were classified into 16

different morphotaxa. Six of these were isolated exclusively from

bark, three from bark and leaves, and three from bark and xylem;

the remaining four morphotaxa were isolated from all tissue types.

According to the Shannon-Weaver index (H9, Table 3), the leaf-

associated isolates showed a markedly higher diversity and

evenness in M (F) trees, as compared to those from the Breeding

Centre. For bark tissues, the differences in H9 and J9 values among

the tree groups were not as pronounced as they were for leaf or

xylem tissues, and the highest diversity and evenness were found

for the M (S) group (Table 3). Also for xylem tissues, the H9 and J9

indices suggest highest diversity and evenness, and thus lowest

competition, in the M (S) group (Table 3).

The sample-based rarefaction curves constructed for individual

tissues showed different patterns: within each tree group, the

curves for bark tissue increased at highest rate and reached the

highest end points, whereas the curves constructed for xylem and

leaf samples increased slower and remained at lower levels

throughout the empirical range of samples (Fig. 2). Within this

range, the curves constructed for bark tissues approached

asymptote in all tree groups, and those for the xylem and leaves

clearly reached a plateau in M (F) group. The highest end points of

the curves constructed for bark and xylem, as well as for all tissues,

were found in M (S) group (Fig. 2). The sample-based rarefaction

curves based on non-singletons of all tissues reached an asymptote

in all tree groups (Fig. 2). After an initial increment, the number of

singletons diminished progressively as the number of twigs

processed increased (Fig. 2). The initial level of singletons was

lowest in M (F) group, reaching zero when the number of

processed twigs was 26.

Table 2. Identification of representative isolates of the morphotaxa (1–16) on basis of the top three BLAST hits (based on
nucleotide megablast of ITS rDNA sequences) with corresponding GenBank taxa identity, characteristic morphological colony traits
and literature.

Morphotaxon Suggested taxon

1 Pyrenochaeta cava (syn. Phoma cava) [85,86]

2 Monographella nivalis (syn. Fusarium nivale, Gerlachia nivalis, Microdochium nivale) [75,87]

3 Aureobasidium pullulans [78,88]

4 Alternaria sp. (A. tenuissima)

5 Cochliobolus cynodontis (anam. Bipolaris cynodontis)

6 Fusarium sp.

7 Alternaria alternata

8 Biscogniauxia nummularia (syn. Hypoxylon nummularium)

9 Xylaria sp.

10 Cladosporium cladosporioides

11 Phomopsis sp.

12 Sordaria fimicola

13 Coniochaeta sp. (anam. Lecythophora)

14 Apiospora sp. (anam. Arthrinium)

15 Botryosphaeria sarmentorum

16 Leptosphaeria coniothyrium

doi:10.1371/journal.pone.0056987.t002
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The endophyte frequency and diversity for each group of trees

and tree organs were compared on basis of mean values and

multiple range test comparisons (Fig. 3). In leaf tissues, the M (F)

group showed a higher endophyte frequency than the other groups

(P,0.05; Fig. 3a), and a higher endophyte diversity than the M (R)

and M (S) groups (P,0.05; Fig. 3b). In bark tissues, no significant

differences in endophyte frequency were observed between the

groups (P.0.12; Fig. 3c), while M (S) showed higher diversity than

the field population (P,0.05; Fig. 3d). In xylem tissues, both

frequency and diversity values were higher in M (S) than in the rest

of tree groups (P,0.05; Fig. 3e, f).

The MSD graph obtained from the Jaccard’s similarity matrix

showed a clear distinction in leaf endophyte community between

the M (F) trees and the trees from the Breeding Centre (Fig. 4a).

The same analysis applied to the bark endophytes revealed

a higher overlap among tree groups than in leaf or xylem tissues

(Fig. 4b). However, M (F) samples were grouped in the positive

horizontal semi-axis together with a M (S) tree from the Breeding

Centre. This M (S) tree is the UPM007 clone (Table 1), belonging

to the U. minor var. vulgaris complex, which also includes the trees

studied at the field population. For the xylem-associated endo-

phyte communities (Fig. 4c), a clear distinction was again observed

Table 3. Number of tissue samples (incubated on MEA at
20uC), fungal isolates and morphotaxa obtained, and
associated diversity indices: H9= Shannon-Weaver and
J9= Pielou’s evenness index [tree groups: P (R) = resistant U.
pumila clones from Puerta de Hierro Forest Breeding Centre;
M (R) = resistant U. minor clones from Puerta de Hierro Forest
Breeding Centre; M (S) = susceptible U. minor clones from
Puerta de Hierro Forest Breeding Centre; and M (F) =U. minor
trees from Rivas-Vaciamadrid field site].

Organ Indices P (R) M (R) M (S) M (F)

Leaf Number of tissue
samples

32 64 64 112

Number of isolates 6 4 6 50

Number of morphotaxa 3 2 2 5

H9 0.56 0.26 0.34 1.44

J9 0.51 0.37 0.49 0.89

Bark Number of tissue
samples

32 64 64 112

Number of isolates 19 42 45 76

Number of morphotaxa 8 10 13 9

H9 1.65 1.96 2.31 1.8

J9 0.79 0.85 0.90 0.82

Xylem Number of tissue
samples

32 64 64 112

Number of isolates 1 2 18 5

Number of morphotaxa 1 2 7 2

H9 0.15 0.17 0.94 0.22

J9 0 0.24 0.48 0.32

All tissues Number of tissue
samples

96 192 192 336

Number of isolates 26 48 69 131

Number of morphotaxa 8 11 14 11

H9 1.81 1.95 2.28 2.18

J9 0.87 0.81 0.86 0.91

doi:10.1371/journal.pone.0056987.t003

Figure 2. Accumulation curves of elm endophytic fungi.
Accumulation curves indicating the number of endophyte morphotaxa
isolated per number of twigs processed (four twigs per tree, and four
leaf, bark and xylem samples per twig) in each tree group [P
(R) = resistant U. pumila clones from Puerta de Hierro Forest Breeding
Centre; M (R) = resistant U. minor clones from Puerta de Hierro Forest
Breeding Centre; M (S) = susceptible U. minor clones from Puerta de
Hierro Forest Breeding Centre; and M (F) =U. minor trees from Rivas-
Vaciamadrid field site].
doi:10.1371/journal.pone.0056987.g002
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between M (F) and the trees from the Breeding Centre.

Furthermore, a clear distinction in endophyte diversity was

observed between the M (R) trees on the one hand, and the M

(S) and P (R) trees on the other hand (Fig. 4c).

Morphotaxa 3, 4, and 8 were isolated from all tree groups from

the Breeding Centre, but not from the field population.

Morphotaxon 13 was only isolated from one resistant U. minor

clone (UPM007) and from one resistant U. pumila clone (201).

Morphotaxon 7 was exclusive to U. minor var. vulgaris, since it was

Figure 3. Endophyte frequency and diversity in elms. Mean values of endophyte frequency (a, c, e) and endophyte diversity (b, d, f) of leaf (a,
b), bark (c, d), and xylem (e, f) tissues from different groups of elm trees: P (R) = resistant U. pumila clones from Puerta de Hierro Forest Breeding
Centre; M (R) = resistant U. minor clones from Puerta de Hierro Forest Breeding Centre; M (S) = susceptible U. minor clones from Puerta de Hierro
Forest Breeding Centre; and M (F) =U. minor trees from Rivas-Vaciamadrid field site. Different letters indicate differences among groups of trees
(P,0.05), and bars represent standard errors.
doi:10.1371/journal.pone.0056987.g003
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only isolated from the UPM171 clone and trees from the field site.

Morphotaxon 14 was exclusively isolated from the resistant U.

minor clone UPM007, while morphotaxa 15 and 16 were only

isolated from the susceptible U. minor clones UPM045 and

UPM068. It is noteworthy that five endophytic morphotaxa (3,

4, 6, 10 and 15) were isolated from the xylem of susceptible U.

minor clones from the Breeding Centre, but not from the xylem of

other tree groups (data not shown). However, four of these

morphotaxa (3, 4, 6 and 10) were not restricted to susceptible U.

minor clones, as they were also isolated from leaf or bark tissues

from other tree groups.

The three most common fungal morphotaxa were characterized

by Pyrenochaeta cava (morphotaxon 1), Monographella nivalis (mor-

photaxon 2), and Aureobasidium pullulans (morphotaxon 3) (Table 2,

Table S1). Of these, M. nivalis, isolated mainly from bark and

occasionally from xylem, was predominantly associated with

resistant U. minor clones and U. minor trees from the field

population, P. cava was primarily associated with the resistant U.

pumila, and A. pullulans was primarily associated with susceptible U.

minor clones. According to the molecular analysis, the other

morphotaxa included species from the genera Alternaria (morpho-

taxa 4 and 7), Bipolaris (morphotaxon 5), Fusarium (morphotaxon 6),

Biscogniauxia (morphotaxon 8), Xylaria (morphotaxon 9), Cladospor-

ium (morphotaxon 10), Phomopsis (morphotaxon 11), Sordaria

(morphotaxon 12), Coniochaeta (morphotaxon 13), Apiospora (mor-

photaxon 14), Botryosphaeria (morphotaxon 15), and Leptosphaeria

(morphotaxon 16) (Table 2, Table S1). The Dutch elm disease

pathogen was not isolated from any sampled tree in this study.

In xylem tissues, the endophyte frequency and diversity of each

genotype at the Breeding Centre were directly related with their

mean susceptibility to DED (Fig. 5) (r= 0.659, P= 0.038; r= 0.727,

P= 0.017, respectively).

Chemical Discrimination of Leaf, Bark, and Xylem Tissues
Quantitative and qualitative differences between the different

tissues’ phenolic profiles were identified. Several phenolic acids

(coumaric acids and chlorogenic acids) were tentatively identified

in the leaf samples, along with flavonoids (quercetin and

kaempherol derivatives). Bark tissues contained several com-

pounds whose UV-spectra resembled those of catechins and

eriodictyol, along with quercetin and kaempherol-type flavonoids,

albeit at lower concentrations than were observed in the leaves.

The phenolic acid pool in the xylem samples was rich in

compounds identified as rosmarinic acid, vanillic acid and

chlorogenic acid.

The DFA of the chemical variables (chromatogram peaks) was

used to obtain the scatter plot of the scores from the first two DFs

(Fig. 6). For the leaf samples (Fig. 6a), DF1 was significant at

P,0.001, and could be used to distinguish between U. minor

(positive scores) and U. pumila (negative scores) samples (Fig. 6a).

DF2 (P= 0.02) could be used to distinguish between U. minor

samples from the Breeding Centre [both M (R) and M (S)] and

those from the field site [M (F)].

A similar discrimination pattern was observed with bark tissues

(Fig. 6b): DF1 (P,0.001) could be used to distinguish between U.

minor (positive scores) and U. pumila (negative scores) samples, while

DF2 (P= 0.01) separated the U. minor samples from the Breeding

Centre [both M (R) and M (S)] and those from the field site [M

(F)].

For the xylem samples (Fig. 6c), DF1 (P,0.001) could be used to

distinguish between M (S) and M (F) samples from P (R) and M (R)

samples (negative scores), while the discriminating power of DF2

was not statistically significant (P= 0.15).

The chromatogram peak at 24.47 min, identified as rosmarinic

acid derivative, was one of the most significant peaks in

discriminating between xylem samples. The area of this peak

Figure 4. Two-dimensional ordination using non-metric multi-
dimensional scaling (MDS) based on Jaccard’s similarity
measures. Each point represents the fungal endophyte community
of an individual tree. Endophytes were isolated from leaf (a), bark (b) or
xylem (c) tissues. Groups of elm trees: P (R) = resistant U. pumila clones
from Puerta de Hierro Forest Breeding Centre; M (R) = resistant U. minor
clones from Puerta de Hierro Forest Breeding Centre; M (S) = susceptible
U. minor clones from Puerta de Hierro Forest Breeding Centre; and M
(F) =U. minor trees from Rivas-Vaciamadrid field site.
doi:10.1371/journal.pone.0056987.g004
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showed higher mean values for genetically susceptible trees [M (S)

and M (F)] than for resistant trees [M (R) and P (R)] (Fig. 7).

Discussion

Our study shows that DED-susceptible U. minor clones may

harbour a greater range and higher densities of endophytic fungi

in their xylem tissues than resistant U. minor and U. pumila clones.

Since the DED pathogen develops in xylem [16], the genetic

features that increase the constitutive resistance of elms to O. novo-

ulmi may also negatively affect endophytic fungi in their xylem,

leading to a trade-off between fungal biodiversity and DED

resistance. The highest end points of the accumulation curves for

xylem in M (S) group also support the view that these trees, with

high susceptibility to DED, sustain richer endophyte communities

in their woody tissues than the more resistant trees. However, the

higher fungal diversity and evenness, which indicates an environ-

ment with lower level of competition between different fungi,

found in the xylem of susceptible trees (see the Shannon’s and

Pielou’s indices in Table 3), should not be generalized to other

tissues, as most fungal morphotypes isolated from the xylem of

susceptible trees were also isolated from bark or leaf tissues of

resistant trees. Furthermore, these results should not be general-

ized to the entire fungal community of the elm trees, as our study

was restricted to endophytic fungi isolated in malt extract agar.

This medium permits the growth of most species of fungi once they

are obtained in a pure culture. However, the initial growth and

isolation of some slow-growing fungi may have been inhibited by

the rapidly growing fungi. To achieve the isolation of the total

culturable community, isolation conditions should permit equal

expression of the entire array of fungal groups present; e.g. by

restriction of the rapidly growing fungi by means of destructive

chemical and physical procedures to support slow-growing fungi

[48]. However, despite the limitations of our isolation protocol, we

were able to find differences between susceptibility groups. The

endophyte accumulation curves suggest that the sampling effort of

16 processed twigs from four elm trees (64 tissue samples) captured

well the majority of the culturable endophytes. However, a more

exhaustive sampling of about 20 twigs (i.e. 5 trees in the sampling

design) can improve the catchment of the more rare or transient

morphotypes. For extensive comparisons of the total fungal

communities, pyrosequencing could be applied in future studies

[49,50].

Our results emphasize the strong effect of tree genotype on

endophyte communities. It is noteworthy that the UPM007 clone

from the Breeding Centre appeared in the MDS graph of bark

tissues (Fig. 4b) close to the M (F) trees. All these trees belong to the

U. minor var. vulgaris complex and therefore are genetically close to

each other. This finding underlines the importance of maintaining

the genetic diversity in tree populations. The significance of

genetic variation of trees as a factor shaping the fungal

assemblages has also been shown in the phyllosphere of European

beech (Fagus sylvatica) [51]. Moreover, although the benefit of

restoring elm stands through resistance breeding is obvious, the

putatively high importance of endophytic fungi in forest

ecosystems warrants careful consideration of the effect of resistance

breeding. Previously, non-targeted effects of improved resistance

have been studied mainly in transgenic plants. Newhouse et al.

[26] found no negative effects of transformation with a gene

encoding a synthetic antimicrobial peptide on mycorrhizal

colonization in young elms (U. americana L.). Similar results have

also been found in some other studies of plant-pathogen systems

[52], but others have found that transgenic resistance may be

accompanied by unintentional alterations in mutualistic fungal

community [53]. Thus, results of increasing resistance transgeni-

cally have been mixed in this respect. However, compared to

genetic modifications that only involve a limited number of genes,

alterations in quantitative resistance traits may potentially cause

more profound alterations in endophytic community.

In plant-endophyte interactions, immunity triggered by mi-

crobe-associated molecular patterns (MAMPs) does not ward off

the interacting endophyte, as it remains hosted by the plant.

Endophytes that have evolved closely with their host plants [54,55]

might produce MAMPs that activate signalling networks similar to

those activated by beneficial microbes [56], resulting in only a mild

induction of the plant’s immune responses [57]. Systemic re-

sistance induced by these beneficial organisms appears to be

predominantly based on priming for enhanced defence, rather

than on direct activation of defence [57]. Further studies using

Figure 5. Relation between endophytes and susceptibility to DED in elms. Relations between the mean susceptibility to DED (% leaf
wilting) of each elm genotype at the Breeding Centre and its endophyte frequency (a) and diversity (b) in xylem tissues. Solid lines are linear
regressions and dotted lines are 95% confidence limits. Wilting values were obtained from a previous susceptibility test [84].
doi:10.1371/journal.pone.0056987.g005
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in vitro model systems [58] are needed to clarify the biochemical

interactions between trees and their endophytic fungi.

Anatomical features of the xylem may play a key role in elm

resistance to DED [59,60], but the variations in host anatomy

alone cannot fully explain the variations in degrees of elm

resistance to DED [60,61]. A potentially contributory factor,

although often neglected in studies on plant quality, is that

endophytes may modify the chemical quality of plants [62]. We

found that the phenolic profiles of xylem samples from resistant U.

minor and U. pumila clones grouped together in the DFA, suggesting

a link between xylem’s chemicals and DED. Further, in xylem

tissues, some endophytic morphotaxa were exclusively found in

susceptible U. minor genotypes, which also had high xylem

concentrations of a compound identified as rosmarinic acid. It is

possible that certain endophytes stimulate the accumulation of

specific compounds in host tissues. For example, rosmarinic acid

has been found to be induced by symbiotic mutualistic fungi

(arbuscular mycorrhiza) in herbaceous plants [63]. However, other

studies have provided evidence for a negative relation between

polymeric phenolics (condensed tannins) and fungal endophyte

infections in bark [64]. Obviously, the relation between fungal

colonizers and phenolic end products can be multifaceted, because

the phenolics could both affect, and be affected, by the fungi, and

because structurally and functionally different phenolics might

have different roles in host-endophyte interactions [21]. Moreover,

some endophytes may be latent pathogens [5,28] and be

differently affected by the host chemicals at different physiological

phases of their life-style continuum. A detailed identification of the

compounds involved in the chemical discrimination of resistant

and susceptible elm clones is in progress to further explore the

relationships between these chemicals, endophytes and resistance

in elms. While the host tree’s chemical quality may be an

important factor affecting the endophytes, it should also be noted

that the diversity of endophytes can also be strongly affected by

several other factors, such as genotype or geographic differences.

In addition to highlighting the potential importance of intrinsic

factors in plant-endophyte interactions, our results underline the

significance of environmental factors for endophyte diversity in

trees. The frequency and diversity of the endophytic fungi (Fig. 3),

and the Shannon’s and Pielous’s indices (Table 3) were rather

similar in the xylem of the Rivas-Vaciamadrid elms, which are

genetically susceptible but phenotypically resistant to O. novo-ulmi,

and in the resistant genotypes growing at the Breeding Centre.

This could be because the establishment of some xylem

Figure 6. Separation of elm trees on basis of tissue specific
phenolic profiles. Discriminant function analysis score scatter plot for
the HPLC chromatogram peaks of samples taken from leaf (a), bark (b),
and xylem (c) tissues from different groups of trees: P (R) = resistant U.
pumila clones from Puerta de Hierro Forest Breeding Centre; M
(R) = resistant U. minor clones from Puerta de Hierro Forest Breeding
Centre; M (S) = susceptible U. minor clones from Puerta de Hierro Forest
Breeding Centre; and M (F) =U. minor trees from the Rivas-Vaciamadrid
site.
doi:10.1371/journal.pone.0056987.g006

Figure 7. Quantitative patterns of a rosmarinic acid derivative
in elms. Mean peak area (AU61025) of one of the HPLC chromatogram
peaks (RT = 24.47 min) of xylem samples that was important in
discriminating between tree groups: P (R) = resistant U. pumila clones
from Puerta de Hierro Forest Breeding Centre; M (R) = resistant U. minor
clones from Puerta de Hierro Forest Breeding Centre; M (S) = susceptible
U. minor clones from Puerta de Hierro Forest Breeding Centre; and M
(F) =U. minor trees from Rivas-Vaciamadrid field site. Different letters
indicate differences between groups of trees (P,0.05); bars represent
standard errors [n = 4 for M(R) and M(S), 2 for P(R) or 7 M(F)].
doi:10.1371/journal.pone.0056987.g007
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endophytes is hampered at Rivas-Vaciamadrid by the intensive

application of phenolic cattle disinfectants that also prevent O.

novo-ulmi spread there [33,35–37]. However, the trees growing in

the field at Rivas-Vaciamadrid had higher leaf endophyte

frequencies, diversity and evenness (Fig. 3, Table 3), which may

be explained by differences in the availability of fungal inocula. At

the Breeding Centre, the soil is periodically ploughed and

amended to enhance soil water retention and eliminate compe-

tition from herbaceous vegetation. This soil treatment buries plant

materials, which probably reduces the availability of fungal

inocula. Other environmental factors, such as the higher humidity

associated with the riparian habitat of the Rivas Vaciamadrid elm

stand may also favour a higher abundance of leaf endophytic fungi

[65].

The differences found between the two study sites in terms of

their fungal communities can be attributable to environmental

factors, but also to differences in tree age or even to tree age6site

interactions. It has been shown that plant age can affect the degree

of plant colonization by endophytes. For instance, the infection

density in leaves of woody plants tends to increase with leaf age

[66–68]. In Populus 6 euramericana, endophyte richness in leaves

and twigs was higher in young stands than in adult stands.

Furthermore, the differences in richness between ages depended

on the site quality [69]. In our study, it is not possible to ascertain

how the tree age affected fungal communities, because all the trees

within each location (Breeding Centre or Rivas-Vaciamadrid)

were of approximately same age. However, it is possible that the

strong ‘‘site’’ effect observed in fungal diversity (Fig. 4) was at least

partly due to differences in plant age.

The faster increment of the accumulation curve for bark

samples indicates greater richness or evenness of culturable

endophyte morphotaxa in bark tissues, as compared to leaves

and xylem. In all of the studied trees, also the frequency and

diversity of endophytic fungi in the bark tissues was substantially

greater than in the leaves, as has previously been reported [70].

This could be expected because bark tissues are colonized on

a cumulative basis, with fungi persisting from year to year, whereas

leaves are gradually colonized over the course of a single growing

season. Conversely, xylem tissues are colonized more selectively

[71].

The most abundant morphotypes were P. cava, M. nivalis and A.

pullulans. Earlier, P. cava has been reported as an endophytic

species involved in the aetiology of decline of Mediterranean

Quercus trees [72,73]. The fungus M. nivalis is a snow mold with

a temperature minimum of 25uC for growth [74]. This fungus

can cause severe damage on cereals and other grasses [75]. Its

appearance as an endophyte in elm bark could be explained by the

likely commonness of the species in the pasture lands surrounding

the studied elms. The fungus A. pullulans, on the other hand, was

an expected finding because it is a very abundant colonizer of

plant surfaces and often isolated as an endophyte in trees [76,77].

This polymorphic, yeast-like fungus is well-adapted to a broad

range of habitats and is exploited for its ability to produce the

biodegradable extracellular polysaccharide pullulan [78]. Similar-

ly, several of the other tentatively identified genera, e.g. Alternaria,

Xylaria, and Phomopsis have been reported as tree endophytes in

earlier studies [29,79–81].

The observed spatial variations in the diversity and frequency of

fungal endophytes in elms, along with their associations with the

elms’ chemical and resistance characteristics, emphasise the

potential importance of endophytic fungi as dynamic modulators

of tree phenotype. Nevertheless, it is difficult to assess whether the

endophytic fungi are significant determinants of the phenotypic

resistance observed at the Rivas-Vaciamadrid field site. We have

recently found that M. nivalis (morphotaxon 2), predominantly

associated with Rivas-Vaciamadrid trees and resistant U. minor

clones, releases extracellular metabolites that in vitro inhibit O.

novo-ulmi (K. Blumenstein et al., unpublished) and reduces the

symptoms caused by O. novo-ulmi inoculation in elm trees

previously challenged with the endophyte (Martı́n et al., un-

published). The presence of this endophyte could limit the spread

of O. novo-ulmi in the inner bark of diseased trees, the compartment

where the vector insects, elm bark beetles, become contaminated

by spores. The potential of a bark endophyte (Phomopsis oblonga) to

hamper the breeding of elm bark beetles has been previously

reported [79,80]. Our results from studies with M. nivalis indicate

the existence of multiple mechanisms whereby endophytes can

influence the DED transmission and the resistance of elms to O.

novo-ulmi in field conditions.

In conclusion, we found support for our initial hypothesis: the

resistant elm genotypes had a more limited endophytic flora in

xylem tissues than the susceptible genotypes. However, a significant

genotype effect was observed and not all susceptible genotypes

showed higher values of endophyte frequency and diversity in

xylem tissues than resistant genotypes (Fig. 5). Thus, it would be

necessary to characterize the variation of the endophytic

community of each genotype in greater detail, using 4–6 tree

replicates per genotype. Currently, however, such elm material is

not available in an adult stage, and to create it clonal propagation

of the existing single genotypes would be necessary. Despite this

reservation, our results imply that improving DED resistance in

elm trees may have non-targeted effects on fungal biodiversity, and

the re-introduction of elms to forest ecosystems with the assistance

of breeding for quantitative resistance to DED may involve a trade-

off between the goals of ecosystem restoration and fungal

biodiversity conservation. As endophyte diversity may contribute

to various ecosystem benefits from forests in a similar way than

rhizospheric diversity, this issue should be addressed in environ-

mental impact analyses of forest restoration and tree breeding

efforts (see also [82,83]). Obviously, the priority of elm breeding is

to re-establish elm populations, and the re-introduction of resistant

elms to the forests should increase potential habitats for

endophytic fungi. Moreover, other plant species in the forest

may act as reservoirs of cosmopolitan endophytes that inhabit also

the susceptible elms. However, if the susceptible elm genotypes

harbour specialist endophytes, a large-scale enrichment of resistant

elm genotypes could impede their conservation. If these specialist

endophytes are of particular relevance for wood degradation or

ecological interactions, the ecosystem processes of the forest might

change consequently. Future studies should thus explore further

the diversity and ecological functions of the endophyte commu-

nities, including the non-culturable species, in elm genotypes

differing in their resistance to DED.
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Abstract Some endophytic fungi provide their host
plants with protection against abiotic and biotic
stressors, including pathogens. Endophyte-mediated
mechanisms might be behind the environmental resis-
tance shown in the field by some adult Ulmus minor
trees to the Dutch elm disease (DED) pathogen,
Ophiostoma novo-ulmi. We isolated and characterized
seven endophyte fungi from the xylem of three adult
U. minor trees that have survived the DED epidemics
within areas in Spain ravaged by the disease. The an-
tagonism of the isolated endophytes towards O. novo-
ulmi was evaluated in vitro by means of dual culture
assays. Six of the studied endophytes hindered the path-
ogen growth through antibiosis, competition for the
substrate, or a combination of both mechanisms. Four
of these endophytes were selected for in vivo tests where
their protective effect was evaluated in field experiments
during three successive years (2011–2013). The condi-
tioning inoculation of two endophytes (Monographella
nivalis and Alternaria tennuissima) reduced DED

symptoms in 2011 and 2012, respectively. However,
the same isolates did not show any prophylactic effect
in 2013, which suggests that the repeatability of the
treatments is low. A significant treatment×clone inter-
action was found, showing that the effectiveness of the
treatments depended on the tree clone. The future use of
endophytes in biocontrol strategies might be oriented
towards taking into consideration the whole fungal
microbiome in forest breeding programs rather than
the external application of particular endophyte strains.

Keywords Endophytes . Dutch elm disease .

Ophiostoma novo-ulmi . Tree resistance .Ulmus

Introduction

Several studies have addressed the use of microorgan-
isms for biocontrol of Dutch elm disease (DED), caused
by the highly virulent vascular fungus Ophiostoma
novo-ulmi. For example, it has been shown that the
resistance of elms to O. novo-ulmi can be enhanced by
artificial inoculation of elms with weakly pathogenic
Verticillium sp. strains (Solla and Gil 2003; Scheffer
et al. 2008), or strains of Ophiostoma ulmi (Hubbes
2004), a less aggressive DED pathogen. To date, the
most successful biocontrol treatment against O. novo-
ulmi has probably been the V. albo-atrum strain
WCS850, which has been shown to significantly reduce
DED incidence in adult elms when administered as
preventive injections (Scheffer et al. 2008). However,
as a consequence of its limited spread and survival in the
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tree, injections withWCS850must be annually repeated
to be effective and the method thus has limited relevance
in large-scale forestry.

Endophytic fungi live inside plant tissues in symbio-
sis with their hosts without causing disease symptoms
(Carroll 1988). The type of symbiosis may vary among
endophyte species, but also within species throughout
their life cycles. For example, certain endophytes may
establish a mutualistic or commensalistic symbiosis
with their hosts, but after the weakening of the host by
any abiotic or biotic stressor, may shift to a parasitic
stage (Saikkonen 2007). Other endophytes, after the
death of the plant or any of its organs, change from a
dormant state to another of primary colonizers in
decomposing tissues (Promputtha et al. 2007;
Rodríguez et al. 2011). Some endophytes have been
described as competitors or antagonists to forest tree
pathogens, and therefore have an interesting potential
in biocontrol of tree diseases (e.g., Arnold et al. 2003;
Mejía et al. 2008). The development of treatments or
disease management practices that are based on utiliza-
tion of the tree’s natural microbiome could be a valuable
part of sustainable, integrated pest management strate-
gies. An example of such treatment is the rugulosin-
producing endophytes that reduce the incidence of
spruce budworm in Picea glauca (Sumarah et al. 2008).

During the past and present century, two DED pan-
demics have nearly eliminated the adult native elms in
Europe and North America (Brasier and Kirk 2010).
However, a small number of mature elms have survived
the pandemics within areas ravaged by the disease. The
clonal replicates of most of these elms show severe
disease symptoms when they are artificially inoculated
with O. novo-ulmi in experimental plots, and thus seem
to be genetically susceptible to the pathogen. The pos-
sibility that these trees are not detected by elm bark
beetles, vectors of O. novo-ulmi, has been discarded
(e.g., Martín et al. 2006). Thus, site-specific environ-
mental factors seem to explain the resistance of the
surviving elms. We hypothesize that the horizontally-
spreading endophytic fungi might be an environmental
factor that contributes to the phenotypic resistance of
these elms.

In an earlier paper, we investigated the frequency and
diversity of elm endophytes in elm trees showing low or
high susceptibility to DED (Martín et al. 2013). The
present work aims to gain a deeper insight into the
potential role of elm endophytes in host defence against
O. novo-ulmi. To accomplish this goal, the interactions

between an aggressive strain of O. novo-ulmi and seven
fungi, isolated after surface sterilization from the xylem
of three adult elms that have survived the DED epi-
demics in Spain were evaluated in vitro. Then, the
ability of a subset of endophytes to enhance tree resis-
tance was assessed in vivo during three consecutive
years of field experiments.

Materials and methods

Field sampling

Three adult U. minor individuals from Spain were sam-
pled. These trees were naturally selected as they sur-
vived the DED epidemics, despite the high disease
incidence in the area since the 1980s. Concretely, we
sampled the ancient tree known as Somontes elm, locat-
ed within a semi-natural forest area close to Madrid city
(40°29′N, 3°45′W). The tree is 155 cm in diameter at
breast height and 27 m in height, with an estimated age
of more than 140 years. A susceptibility ex situ test had
been performed with 10 clonal replicates of this tree, in
order to tests its genetic resistance level toO. novo-ulmi,
and the replicates were found to be highly susceptible to
DED (Spanish elm breeding program, unpublished re-
sults). The second studied elm individual is located at
the municipality of Rivas-Vaciamadrid (40°20′N, 3°33′
W), in the elm stand known as Casa Eulogio, a stand
that has survived the last DED epidemic in spite of the
fact several trees in the surroundings have been infected
and killed by O. novo-ulmi (Martín et al. 2006). This
tree is 87 cm in diameter at breast height and 19 m in
height, with an estimated age of around 80 years. The
genetic resistance of this tree to O. novo-ulmi was not
tested separately, because it belongs to U. minor var.
vulgaris complex which shows low genetic variability
and high susceptibility toO. novo-ulmi (Gil et al. 2004).
The third elm individual was located in Majorca Island,
at Albufera Natural Park (39°47′N, 3°6′E). The tree is
60 cm in diameter at breast height and 17 m in height,
and is symptomless in spite of being surrounded by
numerous elms affected by DED. The genetic resistance
level of this tree to O. novo-ulmi is, however, not
established in systematic tests. In 2011, four 3-year-old
twigs (around 20–30 cm length and 1–1.5 cm diameter)
were taken from each cardinal point and lower half of
the crown of each tree (48 twigs in total). Samples were
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kept in a refrigerator at 4° C and processed in the
laboratory within 72 h after the field collection.

Isolation of endophytic fungi

The isolation process took place in a laminar flow
chamber under axenic conditions. Pieces of the original
twigs (3 cm length) were surface sterilised by immersing
them in 70 % ethanol (30 s), 4 % sodium hypochlorite
(5 min) and in 70 % ethanol (15 s) (Helander et al.
2007). Then, they were allowed to dry for 15 min. After
removal of the bark, a xylem fragment (0.5×1 cm of
surface and 0.5 mm thickness) was carved from each
twig with a flame-sterilized scalpel.

To evaluate the potential role of endophytes in envi-
ronmental resistance, the isolation of fungi was restrict-
ed to xylem endophytes, given that O. novo-ulmi de-
velops in xylem tissues during its pathogenic phase
(Ouellette et al. 2004; Martín et al. 2009), and because
the xylem-associated elm endophyte assemblages have
shown the strongest linkage to the susceptibility level of
host trees (Martín et al. 2013). Xylem fragments were
cultured in Petri dishes containing 2% malt extract agar
(MEA) without added antibiotics. All plates were sealed
with Parafilm and incubated in the dark at 22° C. After 7
and 14 days of incubation, each emerged fungal colony
was subcultured into a new dish, for isolation. Once
complete isolation of endophyte strains was confirmed,
they were stored at 4° C in sterilized distilled water.

Identification of endophytes and in vitro dual culture
assays

After isolation of ca. 1 μg of total genomic DNA by the
method described by Cenis (1992) with small modifica-
tions, the ITS region of ribosomal DNA of each isolate
was amplified by Polymerase Chain Reaction (PCR)
using universal primers ITS1 and ITS4, and following a
simplified protocol based on the one described by White
et al. (1990). DNA amplification products were Sanger
sequenced. To infer strain identity, we used the algorithm
‘megablast’ (derived from the algorithm ‘BLAST’;
Altschul et al. 1990) to find the most similar sequences
available in the database Genbank (NCBI, MD, USA).

From the isolates growing on Petri dishes and under
sterile conditions, fragments of fungal mycelium (4×
4 mm) were taken from the actively growing colony
edge and subcultured into new plates containing 2 %
MEA. The dual cultures were then established by

placing a similar fragment of O. novo-ulmi ssp. novo-
ulmi on the same plate with each endophyte, with a 6 cm
distance between the fragments and with six replicate
plates per interaction. TheO. novo-ulmi isolate was ZA-
RG, isolated in 2002 from an infected U. minor tree in
Riego del Camino (Zamora, Spain; 41°05′ N 5°46′ W)
(Solla et al. 2008). The plates were incubated in dark-
ness in a growth chamber at 22 °C, and the interactions
were evaluated after 48, 96, and 168 h of incubation.
Interactions were quantified by measuring the growth of
each fungus in three directions: one connecting the
centre of the inoculum fraction, and two at +45° and -
45° angles to the former. Dual assays were also qualita-
tively evaluated by assessing the type of interaction: i)
antibiosis (growth inhibition, determined by the pres-
ence of a reaction zone), ii) substrate competition
(higher growth of one fungus relative to the other), and
3) mycoparasitism (direct mycelial parasitism of one
fungus over the other) (Mejía et al. 2008).

In vivo experiments

Taking into account the results from the in vitro exper-
iment and the availability of suitable plant material, four
endophytes were selected for subsequent in vivo tests
where their potential to enhance plant resistance against
DED was evaluated. The plants were at least 4 years-
old, the minimum age required to evaluate with scien-
tific rigour their resistance to O. novo-ulmi (Solla et al.
2005). Tests were conducted on three plots at Puerta de
Hierro Forest Breeding Centre (Madrid, Spain). Exper-
imental details of each test are summarized in Table 1.

In 2011, the effect of two selected endophytic
strains, identified as Monographella nivalis and
Sordaria sp., was tested in 6-year-old trees growing
in the same plot. The tested trees belonged to two
U. minor clones (PM-TR2 and AB-AL1) and one
U. minor×U. pumila clone (M-DV5×M-IN6.4),
with 30 replicates per clone randomly distributed
over the plot. Five treatments were applied: (i) and
(ii), trees inoculated with the endophyte M. nivalis
or Sordaria sp., respectively, on April 29 (negative
control I and II, respectively); (ii), trees inoculated
with O. novo-ulmi 15 days later (positive control);
(iii) and (iv), trees inoculated with the endophyte
M. nivalis or Sordaria sp., respectively, on April
29 and with O. novo-ulmi 15 days later. Each treat-
ment was applied to six trees per genotype and was
randomized in the plot.
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The M. nivalis and Sordaria sp. inoculum consisted
of an aqueous suspension of conidia at 106 spores/ml,
adjusted using a haemacytometer. The methodology
described by Browne and Cooke (2004) was followed
to produce M. nivalis spores. Sterilized distilled water
was poured on the surface of the MEA plates where the
Sordaria sp. grew. The mycelial surface was rubbed
with a cotton swab for 5 min and the water containing
spores was then filtered through sterile gauze to remove
mycelial fragments. The inoculum of O. novo-ulmi
(same isolate as in the in vitro experiment) consisted of
an aqueous suspension of budding cells at 106 cells/ml
that were obtained following themethodology described
by Tchernoff (1965). The endophytes were inoculated in
the trunk base (3 cm above the ground level) on the
north side, through an incision made with a sharp razor
blade to reach the xylem. Then, 0.2 ml of inoculumwere
poured on the blade surface and rapidly absorbed by the
sap flow. The pathogen was inoculated using the same
methodology, but on the opposite side and 15 cm above

the endophyte inoculation wound. Negative controls
received sterilized water instead of O. novo-ulmi 15
days after endophyte inoculation, while positive con-
trols received water instead of endophyte inoculum 15
days before pathogen inoculation. The symptom assess-
ment was performed at 30, 60 and 120 days after
O. novo-ulmi inoculation (hereafter Bdai^) by recording
the percentage of the crown affected by leaf wilting.

In 2012, the effect of two other endophytes, identi-
fied as Penicillium crustosum and Alternaria
tenuissima, was tested in 4-year-old trees growing in a
second plot of the Breeding Centre. All trees belonged
to the U. minor clone V-JR1, with 40 replicates. Five
treatments were applied: (i) trees inoculated with Peni-
cillium on May 10 (negative control I), (ii) trees inocu-
lated withA. tenuissima onMay 10 (negative control II),
(iii) trees inoculated with O. novo-ulmi 15 days later
(positive control), (iv) trees inoculated with
P. crustosum on May 10 and with O. novo-ulmi 15 days
later, and (v) trees inoculated with A. tenuissima onMay

Table 1 Experimental details of three in vivo experiments performed in Puerta de Hierro Forest Breeding Centre (Madrid, Spain) to
evaluate the protective effects of several pre-treatments with elm endophytes against challenge inoculations with O. novo-ulmi

Year Clones (species) Age of trees Total N of trees N replicates
per clone
and treatment

Inoculation treatments

Pre-treatmenta Challengeb

2011 PM-TR2 and AB-AL1 (U. minor)
M-DV5 x M-IN6.4
(U. minor x U. pumila)

6 90 6 M. nivalis H2O

6 Sordaria sp. H2O

6 H2O O. novo-ulmi

6 M. nivalis O. novo-ulmi

6 Sordaria sp. O. novo-ulmi

2012 V-JRI (U. minor) 4 40 8 P. crustosum H2O

8 A. tenuissima H2O

8 H2O O. novo-ulmi

8 P. crustosum O. novo-ulmi

8 A. tenuissima O. novo-ulmi

2013 PM-TR2 and ZA-TR5 (U. minor) 5 126 5 M. nivalis H2O

5 A. tenuissima H2O

5 M. nivalis+A. tenuissima H2O

12 H2O O. novo-ulmi

12 M. nivalis O. novo-ulmi

12 A. tenuissima O. novo-ulmi

12 M. nivalis+A. tenuissima O. novo-ulmi

a Pre-treatment dates: April 29, 2011; May 10, 2012; April 24, 2013
b Challenge dates: 15 days after pre-treatments; Symptom evaluation: 30, 60 and 120 days after challenge
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10 and withO. novo-ulmi 15 days later. Treatments were
applied randomly in the plot on eight trees per treatment.
The inoculum consisted of endophytes in an aqueous
suspension of 106 conidia/ml obtained with the same
methodology as in the case of Sordaria sp. Inoculation
of the pathogen and endophytes and symptom evalua-
tion were performed following the same methodology
described above. Here again, negative and positive con-
trols received sterilized water instead ofO. novo-ulmi or
endophyte inoculum, respectively. The delay in the in-
oculation date in comparison to the previous year was
motivated by a delayed plant phenology, since the win-
dow of peak susceptibility to O. novo-ulmi largely de-
pends on plant phenology (Ghelardini et al. 2010; Mar-
tín et al. 2010a).

In 2013, in view of the results of the former experi-
ments, the effect of two previously tested endophytes
(M. nivalis and A. tenusissima) was tested on 5-year-old
U. minor trees growing in a new plot. Two elm clones
(PM-TR2 and ZA-TR5) were present in the plot, with
63 replicates per clone randomly distributed. Seven
treatments were randomly applied on the plot: Treat-
ments (i), (ii), and (iii), corresponded to trees inoculated
with M. nivalis, A. tenuissima, and a mixture of them,
respectively, on April 24 (negative controls I, II and III,
respectively; N=5 per clone); (iv) trees inoculated with
O. novo-ulmi 15 days later (positive control; N=12 per
clone); and (v), (vi), and (vii), trees inoculated with the
endophytes M. nivalis, A. tenuissima, and a mixture of
them, respectively, on April 24 and with O. novo-ulmi
15 days later (N=12 per clone). The inoculations were
performed with the same inoculum concentration and
methodology, and using water instead of O. novo-ulmi
or endophyte inoculum in positive and negative con-
trols, as in the previous years (Table 1).

Statistical analysis

In order to evaluate endophyte-pathogen interactions
in vitro, the growth of O. novo-ulmi in the dual plate
assays was analyzed using one-way ANOVA, consider-
ing the endophyte isolate as factor. Mean values were
compared through Fisher’s Least Significant Difference
(LSD) test (α=0.05).

Wilting percentages shown by plants in in vivo tests
were analyzed by repeated measures ANOVAs. In 2011
and 2013 experiments, the treatment, elm clone and time
after inoculation were taken as factors, as well as treat-
ment×clone interactions. In 2012, only the treatment

and time factors were considered as factors, due to the
fact there was a single tree genotype. Since negative
controls did not show any disease symptoms during the
experiments, they were excluded from the ANOVAs.
The wilting values were compared among treatments
using Fisher’s LSD test (α=0.05). Normality of data
was confirmed using the Shapiro-Wilks test. All statis-
tical analyses were performed using STATISTICA pro-
gram, version 7.0 (StatSoft Inc., OK, USA).

Results and discussion

A total of seven endophytic fungi were isolated from the
xylem of the three selected U. minor trees. Their taxo-
nomic identification is shown in Table 2. All endophytes
were ascomycetes belonging to the classes
Dothideomycetes (Aureobasidium pullulans, Alternaria
tenuissima andNeofusiccocum luteum), Sordariomycetes
(Fusarium sp.,Monographella nivalis and Sordaria sp.),
and Eurotiomycetes (Penicillium crustosum).

Six out of the seven endophytes significantly reduced
the growth of the pathogen in vitro (P<0.05) (Fig. 1).
The mechanism by which this reduction occurred dif-
fered among isolates. M. nivalis and P. crustosum
inhibited pathogen growth through antibiosis, whereas
N. luteum and Sordaria sp. did so through competition
for the substrate. The endophytes A. pullulans and
A. tenuissima showed combined yet weaker effects of
antibiosis and competition for the substrate, while Fu-
sarium sp. did not display any antagonistic reaction
towards O. novo-ulmi. The results of the in vitro dual
cultures concur with previous studies in which most of
the tested fungi showed some degree of antagonism
against DED pathogens (e.g., Webber and Hedger
1986; Yang et al. 1993). The endophyte that exerted
the strongest antibiotic effect against O. novo-ulmi was
M. nivalis, which induced the formation of a thick
reaction barrier in the pathogen (Fig. 2a) in agreement
with a previous study which also confirmed that this
fungus produces extracellular metabolites that inhibit
O. novo-ulmi growth (Blumenstein 2010). The highest
inhibition of O. novo-ulmi growth, caused by Sordaria
sp. and N. luteum, occurred due to the faster endophyte
growth in MEA compared to the pathogen (competition
for the substrate), thus suffocating the expansion of
O.novo-ulmi colony (Figs. 1 and 2b).

Taking into account the results from the in vitro
experiment, four endophytes were selected to test their
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potential to inhibit O. novo-ulmi in vivo. M. nivalis and
P. crustosum isolates were selected because they
showed the strongest antibiotic activity towards
O. novo-ulmi, Sordaria sp. because it strongly inhibited
O. novo-ulmi through competition for the substrate, and
A. tenuissima because it inhibited O. novo-ulmi by two

mechanisms, competition for the substrate and
antibiosis.

In the 2011 in vivo experiment, the effect of the
treatment on wilting values was significant (ANOVA;
P<0.05; Table 3). The trees pre-treated with the
M. nivalis isolate and challenged with O. novo-ulmi

Table 2 Identification of endophyte isolates on basis of the top three BLAST hits (based on nucleotide MEGABLAST of ITS rDNA
sequences) with corresponding GenBank taxa identity

Accesion number GenBank Description Coverage / identity Tentative identification Host tree location

JX462673.1 Aureobasidium pullulans 100/99 Aureobasidium pullulans Somontes (Madrid)
JX462671.1 Aureobasidium pullulans 100/99

JX290145.1 Aureobasidium sp. 100/99

JX869565.1 Penicillium crustosum 100/99 Penicillium crustosum Somontes (Madrid)
HQ262518.1 Penicillium crustosum 100/99

HQ832993.1 Penicillium sp. 100/99

JX860514.1 Alternaria tenuissima 99/99 Alternaria tenuissima Somontes (Madrid)
JN624884.1 Alternaria tenuissima 99/99

JX648307.1 Alternaria sp. 99/99

HQ637287.1 Fusarium sp. 64/100 Fusarium sp. Rivas-Vaciamadrid
(Madrid)AB470905.1 Fusarium sp. 64/100

EF611091.1 Fusarium sp. 64/100

JQ809674.1 Fusarium sp. 98/97 Monographella nivalis a Rivas-Vaciamadrid
(Madrid)JQ693397.1 Fusarium lateritium 98/97

EU255803.1 Gibberella avenacea 98/97

JX298886.1 Sordariaceae sp. 100/100 Sordaria sp. Rivas-Vaciamadrid
(Madrid)JQ759666.1 Sordariomycetes sp. 100/100

AM262364.1 Sordaria sp. 100/100

JX073038.1 Neofusicoccum luteum 65/98 Neofusicoccum luteum Albufera de Mallorca
(Mallorca)HQ529764.1 Neofusicoccum luteum 65/98

HQ529761.1 Neofusicoccum luteum 65/98

a Identification completed by morphological methods (Martín et al. 2013)

Fig. 1 Average growth of
O. novo-ulmi in in vitro dual
cultures with different
endophytes. Lowercase letters
indicate significant differences
between treatments (P<0.05).
Capital letters indicate the effect
of the endophyte on O. novo-ulmi
in accordance with the following
code: A=antibiosis (formation of
a reaction zone without mycelial
contact), C=competition for the
substrate (higher growth rate),
N=neutral effect; letters in
parentheses=moderate effect;
letters without parentheses=
marked effect. Vertical bars show
standard errors
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showed lower leaf wilting symptoms at 60 and 120 dai,
as compared to trees inoculated only with the pathogen,
while the trees pre-treated with Sordaria sp. showed
reduced symptoms only at 120 dai (Fig. 3a). The aver-
age reduction of wilting symptoms due to pre-treatment
withM. nivalis at the end of the growing season was of
23.3% in comparison with the positive control. There
was a significant treatment×clone interaction (Table 3),
showing that the reduction of symptoms by pre-
treatment withM. nivalis or Sordaria sp. was significant
in the PM-TR2 (U. minor) and M-DV5×M-IN6.4
(U. minor×U. pumila) clones, but not in the AB-AL1
clone (U. minor) (Fig. 4a). Plants inoculated only with
endophytes (negative controls) did not show any exter-
nal symptoms.

In the 2012 experiment, the effect of the treatment
was not significant (ANOVA; P=0.068; Table 3). How-
ever, the plants conditioned with the endophyte

A. tenuissima and afterwards challenged with O. novo-
ulmi tended to exhibit lower wilting symptoms than
plants inoculated only with the pathogen, regardless of
the dai (Fig. 3b). The average reduction of wilting
symptoms at the end of the growing season was
48.3 %, in comparison with the positive control. The
P. crustosum isolate did not exert any protective effect
against the pathogen. Trees inoculated only with the
endophytes (negative controls) showed no sign of leaf
wilting or other external symptoms.

To test the repeatability of the experiments performed
in 2011 and 2012, in 2013 the effects of M. nivalis and
A. tenuissima isolates were tested again in two addition-
al U. minor clones with a higher number of replicates.
Furthermore, the protective effect of the combined in-
oculation of both endophytes into the same tree was
evaluated. However, the pre-treatments did not show
any prophylactic effect (Figs. 3c, 4b). Again, the trees

Fig. 2 Dual cultures between O. novo-ulmi (on the right side of
plates) and two elm endophyes (on the left side of plates): (a)
Monographella nivalis, showing antibiotic activity against

O. novo-ulmi; (b) Sordaria sp. inhibiting O. novo-ulmi by compe-
tition for the substrate. Photos were taken after 14 days of incuba-
tion in the dark at 22 °C

Table 3 Results of the repeated measures ANOVA of leaf wilting (repeated variable) shown by the plants 30, 60, and 120 days after
Ophiostoma novo-ulmi inoculation

Experiment: year (endophytes tested as preventive treatments) Source of variation

Time Treatment (T) Tree clone (C) T×C

2011 (M. nivalis, Sordaria sp.) <0.001 0.004 < 0.001 0.002

2012 (A. tenuissima, P. crustosum) 0.383 0.068 – –

2013 (M. nivalis, A. tenuissima) 0.936 0.154 < 0.001 0.757

Different preventive treatments with endophytes were tested each year
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inoculated with the endophytes only showed no external
symptoms.

The results show that the endophytes tested in vivo
provided a variable prophylactic effect against O. novo-
ulmi. The experiments performed in 2011 and 2012
suggest that the artificial inoculation of M. nivalis and
A. tenuissima isolates, and to a lesser extent Sordaria
sp., could reduce the elm susceptibility against O. novo-
ulmi. The experiment in 2013, however, questions the
former evidence. The influence of environmental factors
and the clone×treatment interaction detected in the 2011
experiment might explain these ambiguous results. The
different behaviour of the PM-TR2 clone depending on
the inoculation year (2011 or 2013; Fig. 4) suggests that
annual variability in environmental conditions may have
affected both plant susceptibility to O. novo-ulmi and
the efficacy of the preventive treatments. The influence
of environmental factors, such as climate and soil pa-
rameters, on elm susceptibility to DED is well docu-
mented (e.g., Kais et al. 1962; Sutherland et al. 1997;
Solla and Gil 2002) and often related to seasonal chang-
es in tree phenology (Ghelardini et al. 2009;Martín et al.

2010b). For instance, the rainfall in April 2011 was
about 50 % higher in Madrid than normal values for
this month, while in April 2013 the rainfall was lower
than normal values (AEMET 2015). This may have
affected both earlywood formation and tree susceptibil-
ity to O. novo-ulmi (Solla and Gil 2002). On the other
hand, it seemed that the clone AB-AL1was not sensitive
to the preventive treatments. A marked dependence of
the effectiveness on the elm clone was also reported in
previous experiments that used Pseudomonas bacteria
as preventive treatments against DED (e.g., Shi and
Brasier 1986; Scheffer et al. 1989).

Another important issue, not addressed in the present
study, was the spread and survival of the inoculated
endophytes within the plant. Contrary to the DED path-
ogens, which spread systemically throughout the plant,
previous studies have reported only local spread and
limited survival of inoculated fungal treatments against
DED (e.g. Bernier et al. 1996; Scheffer et al. 2008). The
monitoring of the inoculated endophytes in plant tissues
through classical methods of re-isolation and identifica-
tion would have some difficulties, as the fungal species
inoculated might be present as endophytes in different
tree parts before inoculation. The use of molecular fin-
gerprinting techniques, which allow the monitoring of
specific fungal strains, appears more adequate for this
task. Research is in progress to monitor the survival and
spread of M. nivalis and A. tenuissima within plant
tissues, by means of nested PCRs with strain-specific
primers designed from the ITS region, and PCR frag-
ment resolution on agarose gel.

O. novo-ulmi spreads through the tree vascular sys-
tem, causing cavitation of xylem vessels and alterations

Fig. 3 Temporal evolution of wilting symptoms displayed by
control plants inoculated with O. novo-ulmi, and plants condi-
tioned with endophytes and subsequently challenged with
O. novo-ulmi. (a) 2011 experiment in which conditioning treat-
ments with Monographella nivalis and Sordaria sp. were tested;
(b) 2012 experiment in which conditioning treatments with
Alternaria tenuissima and Penicillium crustosum were tested; (c)
2013 experiment in which conditioning treatments withM. nivalis,
A. tenuissima and a combination of both were tested. Different
letters indicate significant differences between treatments for the
same day (Fisher’s LSD test; α=0.05). Vertical bars show stan-
dard errors

Fig. 4 Average foliar wilting per clone and treatment displayed by
plants inoculated withO. novo-ulmi (control treatment), and plants
conditioned with endophytes and subsequently challenged with
O. novo-ulmi (conditioning treatments). (a) 2011 experiment in
which conditioning treatments with Monographella nivalis and
Sordaria sp. were tested in clones PM-TR2, AB-AL1, and M-

DV5×M-IN6.4; (b) 2013 experiment in which conditioning treat-
ments with M. nivalis, A. tenuissima and a combination of both
were tested in clones PM-TR2 and ZA-TR5. Different letters
indicate significant differences between clones (Fisher’s LSD test;
α=0.05). Vertical bars show standard errors

�
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of parenchyma cells (Ouellette et al. 2004; Martín et al.
2009). During its spread inside xylem tissues, the path-
ogen should suppress or overcome the plant defence
responses, such as the release of antifungal metabolites
or the presence of lignified or suberized barrier zones
that limit pathogen advance (Aoun et al. 2009; Martín
et al. 2008a). Also, it should interact with the endophytic
microbiome inhabiting xylem tissues. The mechanisms
by which the endophytes reduced DED symptoms in
2011 and 2012 are unknown, but at least two hypotheses
can be raised. First, the protective effect may have come
from the release of antibiotic metabolites by endophytes
against O. novo-ulmi spread, since both, M. nivalis and
A. tenuissima showed antibiotic activity in vitro. Cur-
rently, we are working to identify bioactive fractions in
M. nivalis extract using chemical and transcriptome
analysis of the reaction zone. A complementary or al-
ternative possibility is that the massive insertion of
endophyte spores within plant tissues triggered induced
resistance mechanisms (Eyles et al. 2010), a process
already described in preventive inoculations with
O. ulmi or Verticillium sp. strains (Hubbes and Jeng
1981; Scheffer et al. 2008). The fact that one of the
endophytes (P. crustosum), which showed strong anti-
biotic activity towards O. novo-ulmi, did not reduce the
DED symptoms, suggests that other mechanisms be-
sides direct antibiosis were involved.

Although an increasing number of studies have evi-
denced the possible involvement of the endophyte spe-
cies composition and abundance in tree resistance
against natural enemies (e.g. Arnold et al. 2003; Clay
2004; Mejía et al. 2008; Albrectsen et al. 2010; Martín
et al. 2013), the development of practical control strat-
egies based on endophytes would require further knowl-
edge on the functional roles of the endophytic
microbiome. For instance, the relative contribution of
endophytes and host genotypes to tree phenotypes, in-
cluding the resistance to pathogens, is still unknown
(Newcombe 2011). It would be important to explore
the possible role of endophytes in the expression of
quantitative resistance in plants. A recent study based
on next generation sequencing has revealed that elm
clones that were highly resistant to O. novo-ulmi have
a different endophyte species composition in stem tis-
sues from medium and low resistant clones of the same
species (authors, unpublished results). Thus, the future
use of endophytes in biocontrol strategies might be
oriented towards taking into consideration a larger frac-
tion of, or the whole fungal microbiome in forest

breeding programs (e.g., by selecting clones for their
ability to host a particular microbiome) rather than the
external application of particular endophyte strains.

The variable results obtained in the field experiments
impede the acceptance or refusal of the initial hypothe-
sis, concerning the involvement of xylem endophytes in
the environmental resistance to O. novo-ulmi. Other
environmental factors, such as the chemical environ-
ment (Martín et al. 2008b, 2010a, b; Vivas et al. 2012)
or the action of less aggressive Ophiostoma strains
inducing tree resistance (Hubbes and Jeng 1981; Jeng
et al. 1983) should not be discarded as factors involved
in environmental resistance. A deeper study of the fun-
gal microbiome and its spatial distribution over the tree
architecture, including seeds, could help to identify can-
didate mutualistic endophytes in elms.
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There is an increasing need to calibrate microbial community profiles obtained
through next generation sequencing (NGS) with relevant taxonomic identities of the
microbes, and to further associate these identities with phenotypic attributes. Phenotype
MicroArray (PM) techniques provide a semi-high throughput assay for characterization
and monitoring the microbial cellular phenotypes. Here, we present detailed descriptions
of two different PM protocols used in our recent studies on fungal endophytes of
forest trees, and highlight the benefits and limitations of this technique. We found that
the PM approach enables effective screening of substrate utilization by endophytes.
However, the technical limitations are multifaceted and the interpretation of the PM
data challenging. For the best result, we recommend that the growth conditions for the
fungi are carefully standardized. In addition, rigorous replication and control strategies
should be employed whether using pre-configured, commercial microwell-plates or in-
house designed PM plates for targeted substrate analyses. With these precautions, the
PM technique is a valuable tool to characterize the metabolic capabilities of individual
endophyte isolates, or successional endophyte communities identified by NGS, allowing
a functional interpretation of the taxonomic data. Thus, PM approaches can provide
valuable complementary information for NGS studies of fungal endophytes in forest
trees.

Keywords: fungal phenotype, nutrient utilization, fungus–fungus interactions, phenolic compounds, Biolog PM

Introduction

The increasing interest in endophyte communities of plants, including those of forest trees, is fueled
by the apparent potential of the endophytes to shape and modulate the stress tolerance in host
plants, directly by priming or elevating defence responses in the plant (Rodriguez and Redman,
2008; Eyles et al., 2010; Albrectsen and Witzell, 2012; Witzell et al., 2014) or indirectly through
competition for substrates (Blumenstein et al., 2015). Moreover, endophytes are explored as a
potent source of new solutions, based on metabolites and enzymes, for industrial, pharmaceutical,
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or agricultural purposes (Rodrigues et al., 2000; Schulz et al.,
2002; Rančić et al., 2006; Gaur et al., 2010). Investigations of
endophytes have traditionally been constrained by the difficulty
of deciphering the global endophyte communities that are hidden
inside the plants and capturing the target species to cultures
for functional studies at organismal level. Recent methodological
advances may solve some of these problems. For instance,
improvements in standard isolation and culturing processes
are feasible (Kaewkla and Franco, 2013), and the accumulating
information from next generation sequencing (NGS) studies is
likely to support discovery of new endophytic species (Toju et al.,
2013), and provide information about their characters (Lim et al.,
2010). However, while the genomic NGS analyses now provide
powerful tools for global high throughput analyses of endophyte
communities (Unterseher et al., 2012), they are still limited by
the need of conducting a destructive extraction procedure that
creates a snapshot of the point-in-time status in the samples
(Greetham, 2014). There is also an increasing need to calibrate
the NGS-community profiles with relevant taxonomic identities
of the microbes, and to further associate these identities with the
corresponding functional traits.

The functional traits of organisms are expressed as phenotypic
attributes, jointly defined by the genome and the environment
(cf. Houle et al., 2010). In fact, it is the phenotypic characters
that make up the desired outcome of any selection process
and also the key to understanding the biological complexity
(Houle et al., 2010; Cabrera-Bosquet et al., 2012). Adequate
and reliable phenotyping is thus a crucial task, if we want
to utilize the functional traits of endophytes for practical
applications. In general, modern strategies for high throughput
phenotyping of organisms (phenomics) include application of
computer vision, imaging of cell traits using visible light,
NIR and fluorescent imaging technology and reporter gene
expression (Houle et al., 2010), but effective application of these
methods in studies of the functional traits of endophytes is
not uncomplicated. The taxonomic and morphological diversity
and the physiological versatility of fungal endophytes further
complicate the acquirement of biologically relevant information
about their phenotypes. For instance, a major challenge in
studies of fungal phenotypes is the indeterminate growth of
the fungi, with mycelium that forms colonies and is composed
of hyphae as the basic units (Davidson, 1998; Falconer et al.,
2005). Moreover, the analysis is complicated by the fact that
the fungal hyphae may behave collectively rather than as
isolated modules, reacting to the conditions across the whole
colony (Falconer et al., 2005). In the case of endophytic fungi,
these challenges are magnified further, because the endophytes
thrive inside the tissues and are often reluctant to be cultured
on artificial media. Consequently, any phenotyping of fungal
isolates is usually done using low throughput morphological or
physiological measurements that despite their great value are
often cumbersome.

An emerging method that seems to have a realistic potential to
provide at high throughput information about the phenotypes of
microbial isolates is the Phenotype MicroArray (PM) technique.
This technique relies on microtiter-plate-based substrate
utilization assays (Bochner and Savageau, 1977; Bochner, 1989;

Bochner et al., 2001). PM technique provides (semi-)high
throughput assays for characterization and monitoring the
cellular phenotypes of pure cultures or communities in an
environmental sample (Borglin et al., 2012). The cellular
responses, i.e., respiration or growth, can be monitored over a
period of time, which makes it possible to capture some of the
metabolic dynamics of the target cells (Bochner et al., 2001).
The method thus allows construction of specific metabolic
fingerprints that can be used for identification of microbes
with desired traits, e.g., for industrial applications (Greetham,
2014). So far, however, the method has mainly been used in
studies of bacteria. For example, Dong et al. (2010) applied
PM for identification of bacterial strains with capacity for
converting a novel precursor into an anti-cholesterol drug.
Recently, however, the method has gained popularity also
in studies of fungi, including endophytes (Atanasova and
Druzhinina, 2010; Blumenstein et al., 2015). For example,
PM technology has been used to optimize growth media for
production of secondary metabolites by filamentous fungi
(Singh, 2009).

The aim of this method paper is to illustrate how PMmethods
can be applied in studies on the ecology and utilization potential
of forest tree endophytes, and validate the performance and
reliability of these methods. In particular, we report experiences
from two procedures, one where we used pre-configured,
commercially available PM arrays to evaluate nutritional niches
of endophytes and pathogens sharing the same host plant
(Procedure I; part of the results modified from Blumenstein
et al., 2015), and another where we used an in-house configured
PM array to test the sensitivity of endophytes to a set of
carbon sources and inhibitory substrates (phenolic compounds),
which were interesting for our research questions but not
available among the preconfigured, commercially available arrays
(Procedure II). Finally, we discuss the benefits and limitations
of the PM approach in studies on the ecological role of tree
endophytes and their utilization in practical applications.

Materials and Methods

Procedure I: Utilization of Pre-configured
Biolog PM Plates for Comparison of Nutritional
Niches of Endophytes and Pathogens
Selection of the Fungi for the Studies
We employed PM technique in studies where the aim was
to experimentally explore the competitive interactions between
pathogens and endophytes that co-exist in time and space
in trees. For this purpose, the carbon and nitrogen substrate
utilization patterns of two pathogens (causal agents of Dutch
elm disease, Ophiostoma novo-ulmi and O. ulmi) and four
endophyte species (see below) were studied. Three isolates per
each of the Ophiostoma-species were purchased from CBS-
KNAW Fungal Biodiversity Center, Netherlands, or originated
from the mycology library of Spanish elm breeding program
(Solla et al., 2008). Three of the studied endophytic fungi
were isolated earlier from elm trees (Ulmus sp.) (Martín et al.,
2013). Two of them, Monographella nivalis var. neglecta (three
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isolates) and Pyrenochaeta cava (two isolates) have earlier
shown chemical antagonism against the pathogenic O. novo-
ulmi. They both inhabit elm bark and xylem where interspecific
competition for the niche might occur (Martín et al., 2015).
The third fungus, Aureobasidium pullulans (three isolates),
was included in the tests as an example of a ubiquitous,
“generalist” fungus, with potentially broad nutritional niche. In
nitrogen utilization tests, also a common biocontrol fungus,
Trichoderma harzianum (MB#340299, purchased from CBS -
KNAW Fungal Biodiversity Center, Netherlands) was included
for comparison. All fungi were cultivated on malt extract agar
(MEA) and 26◦C following the recommended protocol (Biolog
Inc.). Occasional light exposure was not excluded during the
experiment period.

Preparation of Inoculum
For preparation of homogenous inoculum, we developed the
following protocol that is carried out under sterile conditions.
In order to obtain pure fungal mass and to avoid any
contamination of agar in the inoculation fluid (IF), fungi were
cultivated on semi-permeable cellophane membrane on MEA.
After incubation at 26◦C (10–15 days depending on species’
individual growth rate), the fungal mass was lifted from the
cellophane membrane with a cotton swab. Material from 2
to 5 agar plates per isolate was found to contain sufficient
fungal material for the tests. The material was transferred into
2 mL Eppendorf vials and manually homogenized with a pestle
together with 500 μL of Biolog FF-IF. When a thick suspension
was obtained, it was poured over cotton wool on a metal sieve
placed over a beaker. By adding 1–3 mL FF-IF, the material
was flushed through the cotton. The longer fungal hyphae and
bigger cell aggregates were collected into the cotton wool, and
a dense, homogenous solution containing fungal spores and
small aggregates of mycelial cells was collected underneath the
sieve. The viability of the cells in the suspension immediately
after the collection procedure was tested by spreading 200 μL
aliquots of the cell stock suspension on MEA plates. The
viability of the cells in the suspension immediately after the cell
collection procedure was tested by spreading 200 μL aliquots
of the suspension on MEA plates. After 3–4 days incubation,
outgrowing mycelium was visually checked for development and
purity.

Using a turbidimeter, the optical density of the inoculum
was adjusted to 62% by adding small amounts from the cell
suspension. Depending on the species, 400 μL−1 mL of cell
stock suspension per 17 mL FF-IF was used. Then, following
the protocol from the manufacturer, solutions of glucose, sodium
sulfate, and potassium phosphate were added. The final inoculum
was transferred into a sterile reservoir for multichannel pipettes,
and 100 μL of suspension was pipetted into each PM array well.
The suspension was added to plates on the same day than it was
prepared.

In order to count the colony forming units (CFU) of the
inoculum, an aliquot of 100 μL was pipetted into Petri dishes
containing MEA, gently tilting the dish with sterile glass beads
to evenly distribute the fluid on the agar surface. After 3–4 days
incubation, the CFU was determined.

Pre-configured Biolog Phenotype MicroArrays
The commercially available, pre-configured Biolog Phenotype
MicroArrays (Biolog Inc., Harvard, CA, USA) are composed
of microtiter plates with one negative control well and 95
wells pre-filled with a nutrient source (e.g., C,N,P,S, amino
acids) or substrates leading to inhibitory conditions (pH, NaCl,
antibiotics) in a dried state. The substrate rehydrates after the
target cell suspension, mixed with an IF at a standardized cell
density, is inserted in each well. The IF provided by Biolog
contains nutrients or chemicals (e.g., C, N, P, S, K, Na, Mg, Ca,
Fe, amino acids, purines, pyrimidines, and vitamins) at sufficient
levels to maintain cell viability. Through this combination (a
nutrient source or an inhibitory compound and IF), unique
culture conditions are created for the inoculated cells (Bochner,
2009).

The phenotypic response, i.e., how the cells respond to the
conditions, is monitored by the change of color or turbidity
in each well. The IF contains a tetrazolium salt, which is
reduced by the action of dehydrogenases and reductases of
the prokaryote and yeast cells, yielding a purple formazan
dye. This color reaction is irreversible, and thus the more
intensive the stronger the organism is able to catabolize the
provided substrate in the well. In other words, a color reaction
indicates that the inoculated cells are actively metabolizing a
substrate in the well, while the lack of color change implies
that the cells are not able to utilize the substrate. The rate and
extent of color formation in each well can be monitored at
490 nm and recorded by the OMNILOG instrument (Bochner,
2003), a specialized instrumentation provided by Biolog. Kinetic
response curves can be generated for each well and used for
cellular phenotype comparisons. Alternatively, color change can
be recorded spectrophotometrically (Atanasova and Druzhinina,
2010), or by visual observations (Bochner et al., 2001). While
the color reaction is most convenient for bacteria, the growth
response of filamentous fungi can be recorded as change in
the optical density at 750 nm (OD750) (Tanzer et al., 2003;
Druzhinina et al., 2006; Seidl et al., 2006). Measurements of
growth can also be conducted at 590 nm (Blumenstein et al.,
2015), which yield results that are comparable to 750 nm.

In our Procedure I, we examined the nutritional niche of
endophytes and pathogens with the Biolog plates: PM1 and
2A, that represent 190 carbon sources (95 on each plate)
(Blumenstein et al., 2015) and PM3B with 95 nitrogen sources.
Three (carbon-source studies, Blumenstein et al., 2015) or two
(nitrogen-source studies) replicate plates were used.

Measurements and Data-Analysis
Data for fungal activity was obtained through measurements of
OD at 590 nm (PM1 and PM 2A, Blumenstein et al., 2015)
or 750 nm (PM3B) using a spectrophotometer with microplate
format compatibility (SPECTROstar Nano BMG Labtech) every
24 h for 10 days. The first reading (T = 0) was done at
approximately 30 min after the plates were inoculated with
the fungal IF. In the PM3A (nitrogen test), the content of six
randomly chosen wells of all 30 plates was placed on MEA plates
after 360 h when the final reading was done in order to control
possible contaminations and vitality of cells. The purity of the
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developing mycelium was observed during the seven following
days.

Differences in OD for specific substrates were tested using
standard ANOVA analyses. Global differences in substrate use
were compared by implementing multivariate statistics or by
calculation of a niche overlap index (NOI) which compares the
number of substrates used and the intensity by which they are
used between two strains of fungi (Blumenstein et al., 2015). The
competitiveness of the focal fungus against another fungus, or
the effectiveness of a potential biocide chemical, may thus be
evaluated (Blumenstein et al., 2015).

Examples of the Application Potential of
Pre-configured PMs: Nutritional Niche Studies with
Elm (Ulmus sp.) Endophytes and Pathogens
Pre-configured PM plates were used to examine whether the
carbon-substrate utilization profiles of elm endophytes differ
from those of the Dutch elm disease pathogen (Blumenstein et al.,
2015). The basic hypothesis to be tested was that endophytes with
good potential as biocontrol agents should be able to effectively
compete with the pathogen for carbon, but that a successful
pathogen might also be superior competitor for nutrients against
endophytes. Here, we discuss part of the results from the earlier
study by Blumenstein et al. (2015). In ongoing studies, we
are applying preconfigures PMs to study the same aspects in
competition for nitrogen substances and present here some of the
findings from these studies.

Procedure II: In-house Configured PM Array to
Test the Sensitivity of Endophytes to a Set of
Inhibitory Substrates
Experimental Aim and Selection of the Fungi for the
Studies
In order to explore the role of fungal endophytes in the early
stages of wood degradation, we employed a combination of NGS
and PM approaches. Endophytic fungi were isolated from the
wood (including phloem and xylem, but excluding external bark)
of Eucalyptus globulus and E. camadulensis twigs, 1–2 cm in
diameter, collected in 2012 and 2013 from different provinces
across Spain (five sites in five provinces, three trees per site). The
collection was done in spring and the twigs were transported to
the laboratory and stored at 4◦C.On the same day or the day after,
the twigs were surface sterilized with subsequent immersions
(30 s in 70% ethanol, 5 min in 4% bleach and 15 s in 70%
ethanol), followed by 15 min drying at room temperature. Then,
the twigs were peeled with a sterilized scalpel to remove the
external bark and 1–2 mm thick slices were excised and placed
on 90 mm Petri dishes (four explants per dish). We used five
different culture media: MEA, potato dextrose agar, yeast extract
agar, rose Bengal chloramphenicol agar, and eucalypt sapwood
agar (10% w/v eucalypt sapwood, and 3% w/v agar). During the
following two weeks, emerging colonies were transferred into
new MEA dishes for preparation of inoculum (see below). By
DNA sequencing of the ITS region and searching for matches
in the GenBank database (NCBI, Bethesda MD, USA) through
BLAST algorithm (Martín et al., 2015) we identified the most
probable family of each strain. Fifteen eucalypt endophyte isolates

were used for test this procedure, belonging fourteen to the
phylum Ascomycota and the remaining one to the phylum
Basidiomycota. The ascomycetes were two sordariomycetes
(orders Hypocreales and Microascales), one incertae sedis and
the rest dothideomycetes. These last belonged to the families
Dothioraceae (four strains), Pleosporaceae (three strains),
Phaeosphaeriaceae (order Pleosporales), Lophiostomataceae,
Botryosphaeriaceae, and Davidiellacea. Additionally, we included
in our study Trichoderma sp., Pycnoporus sanguineus and
Trametes sp. isolates, commonly used as model fungi, from our
mycology library. The species P. sanguineus and Trametes sp. are
basidiomycetes of the order Polyporales.

Preparation of Inoculum
The selected isolates were cultured in Petri dishes on an
autoclaved cellophane sheet overMEAmedium (darkness, 25◦C).
After a week, the fungal biomass was harvested by rubbing
with a sterilized scalpel and transferring the fungal tissue into
a sterile centrifuge tube (15 mL) with a known volume of
sterile distilled water. Centrifuge tubes were weighed before and
after introduction of the tissue to calculate the weight of the
added biomass. Then, the content of the centrifuge tube was
homogenized using a sterilized tissue grinder, first with a large
clearance pestle and then with a small clearance one (∼20 strokes
with each). The homogenate was inserted back into the centrifuge
tube and stored at 4◦C until use. The concentration of fungal
tissue in the suspension was calculated and the suspension was
diluted to 1 g/L before pipetting into the PM plates.

In-house Configured PMs
Optical 96-well, round-bottom, sterile polystyrene plates
(Deltalab, Barcelona, Spain) were used in the modified PM
tests. Each well was first filled with 60 μL of liquid basal culture
media (35 μL for inhibition tests; see below), composed by
autoclaved Murashige and Skoog (MS) salts (1x; ref. n. 0926230;
MP Biochemicals; Santa Ana, CA, USA), Biolog Redox Dye E
(2x; ref. n. 74225; Biolog Inc., Hayward, CA, USA), and filtered
1-metoxy-5-methylphenazine methosulfate (1.5 mg/l; ref n.
A3799; Applichem, Darmstadt, Germany). We prepared the
plates by pouring into each well 50 μL of MS salt solution (2x;
i.e., two times as concentrated as the standard recipe; 25 μL of
MS salt solution (4x) and glucose 1 M of C atoms for inhibition
tests; see below), 10 μL of dye mix, which contained Biolog
Redox Dye E (20x; provided by the manufacturer at 100x;
this reagent’s final concentration was 2x) and of 1-metoxy-5-
methylphenazine methosulfate (15 mg/L). MS salts are normally
used to plant tissue in vitro culture, thus we expected they would
also be appropriated for endophyte fungi. Biolog Redox Dye E
is recommended by the manufacturer for assays with fungi. It
changes its color from transparent to violet when reduced, in a
similar way than the classical tetrazolium dye. The mediator 1-
methoxy-5-methylphenazine methosulfate enhances the change
of color.

After adding these components, each well was supplemented
with selected substances (see the details below). Combinations
of two groups of substances were tested: carbon sources and
inhibitors (phenolic compounds). For testing the effect of seven
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different carbon sources (cellobiose, galactose, glucose, sucrose,
xylose, pectin, and starch) on the growth of the fungi, we
supplemented the media with 20 μL of carbon source solution,
to reach a final concentration 0.25 M of C atoms in each well.
For testing the possible inhibitory effect on the fungi by 10
phenolic compounds that have been associated to tree resistance
as metabolites or external treatments (Witzell and Martín, 2008;
Martín et al., 2010): chlorogenic, tannic, and gallic acids; the
simple phenolics o-cresol, carvacrol, thymol, and phenyl alcohol,
and the flavonoids catechins, myricetin, and quercetin). We
supplemented the media with 50 μL of inhibitor solutions (2x).
Water-insoluble compounds could dissolved in 10% ethanol (v/v;
for stock solution: 2x), 25% methanol (v/v; for the stock solution:
5x), or an alkaline solution (0.01 M NaOH for the stock solution:
5x). To neutralize the alkalinity of the latter media, 10 μL of
0.02 M HCl was added into the wells before inoculation. To test
how these solvents affect fungal metabolism, solutions of glucose
and sucrose with all these three solvents were prepared to control
their possible effect (see Effect of additive solvents).

After addition of the test substances, water was added to fill the
volume in each cell to 90μL. Finally, from a suspension of 1 g/L of
homogenized fungal biomass (see above), 10 μL was added into
each well, making up a final concentration of 0.1 mg of fungal
biomass per mL.

The thermotolerant solutions (carbon sources, tannic,
salicylic, and gallic acids) were sterilized by autoclaving and the
thermolabile or volatile substances and the substances dissolved
in alcoholic solution (chlorogenic acid, flavonoids, and simple
phenols) were filtered through disposable, sterile cellulose acetate
syringe filters of 0.2 μm pore size. Water was always deionized
and autoclaved prior to use. All the operations were done under
axenic conditions in a laminar flow chamber.

The PM plates (a total of 30) were composed following four
general principles. First, each combination of carbon source
or secondary metabolite with a fungal strain was replicated
in three separate wells. Second, with few justified exceptions
(see Unintentional Chemical Interactions), all wells of a single
plate had the same concentration of inhibitory substances,
ethanol, or methanol, whenever present. Third, all the treatments
included one negative control with the relevant conditions,
but fungal inoculum substituted by water, and another
one containing inoculum, but the carbon source/secondary
metabolite substituted by water. The first was used to calculate
the net absorbance (see below), while the second was used as
a reference to compare between different endophytic strains.
Fourth, all plates were cultivated in the dark at 25◦C.

Measurements and Data-analysis
The following aspects that have relevance for the applicability of
PMs in our studies on tree endophytes were evaluated from the
in-house configurated PMs.

Stability/repeatability
To evaluate the stability and repeatability of the designed
configuration, we repeated assays with carbon sources
(cellobiose, galactose, glucose, sucrose, xylose, pectin, and
starch) with a six months interval, using the freshly prepared

inocula of five eucalypt endophyte strains and a model fungus
(Trichoderma sp.).

Unintentional chemical interactions on PM plates –
volatility and unexpected color changes in the medium
Our preliminary tests indicated that certain volatile metabolites
might affect cells in neighboring wells in a plate where no such
substance had been added. This unwanted effect was evaluated
in a plate as described above, where the first three columns
were supplemented with 1 g/L (final concentration) of the simple
phenol o-cresol, while the rest of columns were not. All wells
possessed glucose 0.25 M of carbon atoms. In each row one
different fungal strain was inoculated, except the last one that was
a negative control.

Preliminary tests also indicated that in some inhibitory
compound tests the culture media unexpectedly changed color
to orange (note that dye should change to violet) when in contact
with certain inhibitory substances and certain strains. To explore
this phenomenon, we performed a test to infer if this change
of color could be because the strains used certain phenolic
chemicals as carbon sources. We tested thirteen endophyte
strains (selected from the Spanish tree endophyte collection) and
the two Polyporales model fungi in media with chlorogenic acid,
gallic acid, and tannic acid (1 g/L final concentration, solved in
water), salicylic acid (0.02 g/L, in water) and catechins (1 g/L final
concentration, solved in ethanol) with glucose. Absorbance was
later measured at λ = 405 nm and λ = 630 nm.

Effect of additive solvents
Because some of the phenolic compounds had to be dissolved
in solvents (see above), we wanted to test if these affected
fungal activity. Thus, we tested the same set of strains as
in the preceding assay, in four solvents (ethanol, methanol,
NaOH+HCl as described above, and water) with added sugar in
the form of either glucose or sucrose (0.25 M of carbon atoms).
To the basal culture media (MS salts+dye mix) we supplemented
with glucose and 5% ethanol or water or with sucrose (0.25 M
of carbon atoms) and methanol 5%, NaOH+HCl 0.002 M (i.e.,
saline solution) or water. Growth in the media with ethanol,
methanol, and saline solution were compared to the growth in
water.

Data analysis
We defined and calculated the following parameters from the
absorbance reads: (i) gross absorbance (Aλ): the mean of the
three technical replicates (same conditions in three different
wells) for each substance tested, measured at a given λ; (ii)
net absorbance (A′

λ = Aλ−Aλneg): the difference between the
gross absorbance and its negative control (water instead of
fungal inoculum, Aλneg); (iii) cumulated growth (Ad

λ = A′
λ
d –

A′
λ
0): net absorbance at day d (A′

λ
d) minus net absorbance at

day 0 (A′
λ
0); and (iv) relative growth (ρλ): the ratio between

the cumulated growth in two different substances (Ad
λ subst1 :

Ad
λ subst2), usually one of them taken as reference (glucose or

sucrose). Comparisons between different strains were done in
terms of their relative growth, and therefore the negative control
was not considered in comparisons. Standard analyses of Pearson
correlation, one-factor ANOVA and Principal Component
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Analysis were carried out in STATISTICA V8.0 (StatSoft Inc.,
Tulsa, OK, USA).

Examples of the Application Potential of In-house
Configured PMs: Chemical Sensitivity of Eucalypt
(Eucalyptus sp.) Endophytes
Phenolic compounds have been identified as potential plant
internal defenses and as external inducers of plant defenses
(Witzell and Martín, 2008; Martín et al., 2010). However, little
is still known about the possible responses of endophytes to
these chemicals. Thus, the in-house configuration of PMs with
phenolic compounds was designed to evaluate the role of
these compounds for individual endophyte species, with the
underlying hypothesis the compounds would show inhibitory
effects on fungi, but that the effect would show strain- and
compound-specificity. Specifically, we performed an inhibition
test of four phenolic compounds (phenol, o-cresol, thymol, and
carvacrol) and two flavonoids (quercetin and myricetin) on the
same 15 strains tested above plus a negative control without
inoculum. Final concentrations were 0.1 g/L for the phenols
and 0.01 g/L for the flavonoids. Flavonoids and carvacrol were
dissolved in ethanol, whereas the other phenolics were dissolved
in water. We incorporated the results on this assay to the ones
on the test we did to research on undesired changes of color
(inhibitory substances: chlorogenic, salicylic, gallic and tannic
acids, and catechins). We only took into account measures
at λ = 630 nm to minimize interferences of undesired color
changes.

Optical densities were measured in a microplate absorbance
reader ELx808 (BIOTEK, Winooski, VT, USA). We measured at
λ = 405, 490, and 630 nm, and at 0, 1, 2, 3, 4, 5, 7, 9, and 11 days
after inoculation (dai). Wavelengths were selected in order to
detect if the absorbance shifts were due to an increase in the
turbidity, a change of color due to Biolog Redox Dye, or a change
of color by other causes. Single measurement was considered
sufficient, because variation between repeated, consecutive
measurements were found to be negligible in preliminary tests
(Macaya-Sanz, personal observation) Absorbance measurements
were stored using the software KCjunior provided by the plate
reader’s manufacturer. The plates were also photodocumented at
0, 5, and 11 dai.

The absorbance values at all the wavelengths, but especially at
shorter ones, were due to increase of turbidity of the medium
and the cumulative quantity of redox reactions (reflected in the
change of color of the Redox Dye), i.e., two interrelated processes,
and were thus considered a proxy of the catabolic activity and the
vegetative growth of the fungi.

Results

Standardization of Inoculum (Procedure I
and II)
Adequate quality inoculum for PM tests was achieved from the
studied endophytes through both procedures. In Procedure I,
the inoculum concentration was determined by transmittance,
whereas in Procedure II, the inoculum was standardized by

biomass. Standard culture conditions were used for studied fungi
in both Procedures (I and II), resulting in adequate amount of
viable fungal biomass.

In Procedure II studies, we found that fungal inocula
lost vitality after a month storage at 4◦C, showing clearly
reduced growth rate (Macaya-Sanz, personal observation).
All the inocula were, however, alive after the storage
period.

In Procedure I, the test for the CFU in the inoculum gave
varying results for the different species. For instance, CFU for
A. pullulanswas about 400 CFU per 100μL (Figure 1A), whereas
for O. ulmi the number of growing colonies was too dense to be
counted (Figure 1B). Bacterial or fungal contaminations were not
detected among the growth recovered from the randomly chosen
wells.

FIGURE 1 | Examples of fungal inoculum (100 μL, i.e., the volume
injected into one well) applied to an agar plate for testing the
development of CFU. Aureobasidium pullulans (A) and Ophiostoma ulmi
(B).

FIGURE 2 | Correlation plot of two independent assays of cumulative
growth with glucose as the only carbon source (time point 9 days after
inoculation (dai), λ = 405 nm) with 15 fungal strains, of which 13 were
isolated as endophytes (r2 = 0.485; P = 0.004). The dotted line represents
the bisector of slope b = 1. Dots close to this line produced even results in
both assays (filled dots). Empty dots indicate deviating strains.
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Technical Challenges with In-house
Configurated PMs (Procedure II)
The repeated assays showed that the precision of the in-house
configurated PMs was moderate. In the experiment which
tested 15 strains in glucose (Figure 2), the correlation was
moderate (r2 = 0.485) but significant (P = 0.004), and the
slope of the regression line was close to the unity (b = 1.17).
Nevertheless, ignoring the results of three strongly deviating
strains (marked with blank dots in Figure 2), the correlation grew
to r2 = 0.889 and the regression slope shifted slightly toward one
(b = 1.10).

The repeated assays where six strains were tested on
seven carbohydrates, the precision (measured as correlation of
cumulated growth) was extremely high (r2 > 0.9) in some of
them, whereas almost negligible in others. Intriguingly, carbon
sources where the standard deviation of the absorbance was low
(i.e., the different response to the carbon source of the tested
strains), displayed a reduced correlation. The carbon sources
with high correlation also presented high standard deviation and
values of linear regression slope close to the unity (Table 1).
However, a couple of carbon sources did not follow this pattern
(especially, xylose).

Our tests with o-cresol indicate that there is a risk that
the volatile compounds cause unintentional effects in the
neighboring wells: we found that the fungal growth was severely
reduced in the adjacent wells and visibly limited in the next
columns (Figure 3).

Our tests confirmed that unexpected color change (to
orange) occurred only in certain combinations of strain and
inhibitory substances. The combination of certain strains with
the four tested secondary metabolites (salicylic acid, tannic acid,
chlorogenic acid, gallic acid, and catechins) resulted in change of
color to yellow–orange in last three of them. Occasional change
of color was also found in tannic acid assays. This change of
color was measurable as a shift in the ratio between absorbance
at wavelength λ = 405 nm and at λ = 630 nm. In the cases were a
change of color occurred, the absorbance atλ = 405 nm increased

TABLE 1 | Correlations between the growth of six fungal strains on seven
different carbon sources at 9 days after inoculation (dai; λ = 405 nm) in
two independent assays with identical conditions.

Carbon source A9
405(1) A9

405(2) σ r2 P b

Cellobiose 1,258 0,830 0.433 0.179 0.403 0.5555

Galactose 0,747 0,849 0.165 0.002 0.940 –0.0361

Glucose 0,916 0,859 0.275 0.039 0.708 0.1372

Sucrose 0,646 0,658 0.381 0.986 0.0001 1.1845

Xylose 1,073 0,723 0.385 0.009 0.857 0.0681

Pectin 0,219 0,474 0.359 0.910 0.012 1.0413

Starch 0,860 0,341 0.441 0.977 0.001 0.6013

The second and third columns display the mean of the cumulated growth of the
six strains for the first and second assays, respectively. The fourth column shows
the standard deviation (σ) of the pooled measurements from both assays. The
fifth and sixth columns display the determination coefficient between two assays
(r2) and its level of significance (P). The last column presents the slope of the
regression line (b). Note that carbon sources with lower standard deviation have
low correlations between assays. However, not all the carbon sources with higher
standard deviation present high correlations.

abnormally, and the ratio λ = 405 to λ = 630 was not conserved
(Figure 4). Such color change did not occur when other strains
were combined with these metabolites or when the strains were
growing without these substrates.

Tests with different solvents showed that some of them
have a strong effect on the activity of the strains. Alkaline
solution, which was neutralized with an acid, did not affect
the activity of the strains (Figure 5A), while 5% methanol in
water (v/v) induced a general decrease in the growth of all the
endophytic strains (Figure 5B). Ethanol (5% in water, v/v) had
an inconsistent effect on strains, decreasing the growth in some
of them, but promoting it in others (Figure 5C).

Application of PM to Forest Tree Endophyte
Studies
Procedure I – Comparison of Nutrient Utilization
Patterns
With the goal of studying the potential of endophytes in
biocontrol, we used PM data to compare the nutritional
preferences of a pathogen and endophytes that co-colonize the
same host (Figure 6, data modified from Blumenstein et al.,
2015). The comparison showed that all tested fungi were able to
use all of the four tri-and tetrasaccharides tested (Figure 6). On
the other hand, the endophyteM. nivaliswas able to use a broader
array of available amino acids (96%) and other acids (69%) as
compared to the pathogen (56 and 49%, correspondingly) and
A. pullulans had generally low preference for acids, utilizing 15%
of the available amino acids and less than 1% of the other acids
(Figure 6).Moreover, the endophytes were able to use all available
phenolics (5 out of 5) while the pathogen could only use 60% of
them (3 out of 5).

Phenotype MicroArray technique also allowed us to observe
the effect of substrates on the morphology of the tested
fungi. In particular, nitrogen sources seemed to induce varying
morphological responses. For instance, only little fungal mass
was produced when T. harzianum grew on cytidine or cytosine
(Figure 7). Tyramine and formamide triggered production of
in green fungal mass, whereas acetamide resulted in yellow,
and adenosine yellow–green, fungal mass. Guanine induced
formation of dense, dark green fungal mass in T. harzianum.

Procedure II – Targeted Test of Chemical Sensitivity
The measurements of the inhibitory effects of eleven substances
on fifteen fungal strains (13 of them endophytes) were
analyzed by means of Principal component analysis. The two
main principal components collated the fungi following its
phylogenetic relations (Figure 8).

Discussion

Benefits of PM Approach in Endophyte Studies
Our studies demonstrate that the PM approach is a useful tool
to investigate the cellular phenotypes of forest tree endophytes at
semi-high throughput rate and in a standardized manner, and to
functionally interpret the taxonomic data generated by NGS. For
instance, in a recent study exploring the role of endophytes in the
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FIGURE 3 | Effect of volatile inhibitory substances on adjacent cells. All the wells of the plate were supplemented with the standard basal medium. In each
row, cell suspension of one endophyte strain was added, excluding the last row one where water was added. In the first three columns, the phenolic compound
o-cresol was incorporated to a final concentration of 1 g/L. Note that the fungi in the fourth and fifth columns were partially inhibited in their growth. E = endophyte;
W = water; S = standard basal medium; oC = standard basal medium supplemented with o-cresol.

FIGURE 4 | Correlation plots of the cumulative growth (measured at λ = 405 nm vs. λ = 630 nm at time point 9 dai) of 15 fungi in media
supplemented with four different phenolic compounds. (A) Chlorogenic acid (r2 = 0.683; b = 0.430); (B) Gallic acid (r2 = 0.788; b = 0.321); (C) Salicylic acid
(r2 = 0.992; b = 0.460); and (D) (+)-catechin (r2 = 0.407; b = 0.240). The dotted line represents the bisector of slope b = 1. Dots close to this line produced even
results when measured with both wavelengths (filled dots). Empty dots indicate strains in which an unexpected change of color to yellow–orange was visually
evident. Note that it is not expected that points aggregate to the bisector, because the measurements at different wavelengths need not to be alike, regardless of the
undesired color change.
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FIGURE 5 | Correlation plot reflecting the effects of different solvents
on the cumulative fungal growth (time point 9 dai, λ = 405 nm) of 15
fungal strains. Each dot represents one strain. The dotted line represents
the bisector of slope b = 1. Placement of dots under this line indicates
inhibition by the tested solvent. (A) Growth in a saline solvent (NaOH+HCl)
versus water with sucrose as carbon source (r2 = 0.634); (B) Growth in
methanol versus water with sucrose as carbon source (r2 = 0.178);
(C) Growth in ethanol or water with glucose as carbon source (r2 = 0.230).

Dutch elm disease complex, we were able to identify nutritional
niche overlap as a potential mechanism of interaction between
the pathogen and potential antagonist endophytes (Blumenstein
et al., 2015). This information will assist selection of candidate
endophytes for biocontrol purposes. Moreover, we successfully
applied PM to characterize the degradation capabilities of the
main fungal taxa operating during the first stages of eucalypt
wood decay (Macaya-Sanz et al., 2014). In that work, a succession
of the most abundant endophyte fungi present during the
first 70 days of wood degradation was monitored through
pyrosequencing fungal ITS1 region. The resulting operational
taxonomic units (OTUs) frequencies varied in time, and certain
endophyte OTUs orders were abundant at the beginning of the
degradation. Furthermore, the PM analysis showed that these
orders are able to effectively degrade lignin-like substances,
while other OTUs prevailed at the end and were favored by
presence of lignin degradation by-products. This information
may be valuable for wood processing industries, but it can
also add to the current scientific discourse about the role of
microbes as regulators of carbon balance in forest ecosystems
(Hiscox et al., 2015) and support the decision making regarding
conservation of biodiversity in our forests. Thus, PM techniques
are useful tools for both basic and applied research, and can
be successfully applied in highly different research fields, such
as plant protection, wood material research, and conservation
ecology.

Based on our experiences, we conclude that the general
benefits of PM approach include its great versatility that
allows various research questions to be addressed in a same
experiment (e.g., testing of competitive relationships between
fungal strains along with gaining information about their
sensitivity to individual chemical compounds), testing of a broad
array of different compounds and concentrations, and a higher
throughput of samples, as compared with earlier methods that
have been used in studies of fungal phenotypes (Yourman
et al., 2001; Atallah et al., 2011). A great advantage was also
that the phenotypic responses are recorded quantitatively and
stored electronically (Bochner, 2003; Bochner et al., 2010). If the
technical challenges and limitations are properly acknowledged
(see below), PM approach opens new experimental possibilities
for tree-endophyte research.

Technical Challenges with PM Method
One of the fundamental challenges when working with fungi in
the PM procedure is to prepare a representative, homogenous
and viable inoculum. Part of this challenge is because the external
growth conditions can strongly modulate the quality and quantity
of inoculum. Fungi are known to show great phenotypic plasticity
in their responses to their immediate growth environment (see,
e.g., Rohlfs, 2015, and references therein). In accordance with this
expectation, also our results from the nitrogen tests (Procedure
I, Figure 7) witness how strongly the substrate can affect fungal
morphology, which in turn is a product of the fungal metabolism.
Moreover, we found a marked loss of vitality during long term
storage, possibly because the month of storage promoted the
strains to enter latent stages, from which the fungi could not
completely recover on the MS medium. Thus, the conditions
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FIGURE 6 | Venn-diagrams show the utilization patterns of carbon sources (divided in chemical groups) of three fungi as indicated by the color
development data on BIOLOG plates Phenotype MicroArray (PM) 1 and 2A. All available substrates divided in chemical groups (number of individual
compounds after the semicolon; A). Substrate utilization pattern by the endophyte Monographella nivalis var neglecta – a strong in vitro competitor of the pathogen,
occupying the same niches in the tree and utilizing carbon sources more efficient than the pathogen (B), the pathogen causing Dutch elm disease, O. novo-ulmi (C)
and Aureobasidium pullulans (D), a ubiquitous fungus with no detected competitive relation to the pathogen in vitro (Data modified from Blumenstein et al., 2015).

before preparation of inoculum may influence the responses
of fungal cells on PM plates through metabolic carry-over
effects. As a first step when using PM approach, whether it
is in-house or pre-configured PM plates, we thus recommend
careful standardization and documentation of the pre-inoculum
growth conditions for the fungi, to ensure the repeatability of
analyses.

Standardization of growth conditions may, however, also
add bias to the analysis, given the strain-specific preferences
for optimal growth. Indeed, in both procedures (I and II),
we found evidence for strain-specificity in fungal responses.
For instance, the above mentioned conditioning effects of pre-
inoculum preparation growth environment could be highly
genotype-specific because the nutritional niches of the strains
differ (Blumenstein et al., 2015). Therefore, the possible carry-
over effect of culturing conditions may be a factor that needs
to be taken into consideration in particular when comparing

interspecific differences. In our studies, we pre-cultured all fungi
on MEA and at 26◦C even though their individual growth
preferences may differ. Ideally, the species-specific nutrient
utilization patterns detected through PM analysis should be
validated using inoculum collected from colonies of the same
isolates that have been cultured under a well-defined set of pre-
conditions that cover the realistic regimes in physicochemical
environment (light, temperature, pH, etc.). Standardization of
the pre-inoculum preparation conditions could also be done
on strain-specific basis, ensuring the strain-specific maximum
growth rate. An interesting possibility with PM could also
be to study the possible carryover effects with the goal of
gaining a better understanding of how we could better gear
the fungal phenotypes for different industrial or pharmaceutical
purposes.

Intriguingly, we also observed (Procedure II) how complex
strain-specific interactions with the chemical environment were
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FIGURE 7 | An assortment of nitrogen sources leading to clearly visible differences in optical density (750 nm) and morphology of the fungal mass of
Trichoderma harzianum. Measurement at 144 h after inoculation to the plates (bars represent the mean of readings from two plates).

FIGURE 8 | Principal Component analysis of the cumulative growth
(time point 9 dai, λ = 630 nm) of 15 fungal strains in an array of
in-house PM supplemented with 11 inhibitory substances and
glucose. Green triangles indicate three strains of the family Dothioraceae.
Orange squares represent members of the order Pleosporales (families
Pleosporaceae and Phaeosphaeriaceae). Blue diamonds for the
basidiomycetes assayed. Crosses represent a variety of ascomycetous
endophytic fungi (Davidiellaceae, Lophiostomataceae, Botryosphaeriaceae,
two sordariomycetes, and one incertae sedis). Empty circle represents the
negative control without inoculum. Principal component 1 explains 42.76%
and principal component 2 does 21.50%.

expressed as unexpected color changes in the wells (Figure 4).
The orange color is characteristic for oxidation of phenols
(Holderbaum et al., 2010) and could thus be indication of

fungal, extracellular phenolase activity. Another possibility is
that the chemical environment induced the fungi to produce
colored substances (Velmurugan et al., 2010). Thus, in order
to avoid confounding effects of such within-well processes, it is
necessary to carefully plan the positive and negative controls in
each in-house array. Moreover, new research is needed to better
understand the metabolic processes in fungal cells as they grow in
the wells.

The second essential step in use of PM approach is to establish
an inoculum preparation routine that ensures good viability and
accurate and repeatable quantification of inoculum. Our method
for preparing a homogenous inoculum (Procedure I) resulted in
dense emergence of hyphae on the Petri dishes within 2–4 days,
indicating that the process did not negatively affect the viability of
the cells. According to the manufacturer’s protocol, the density of
the IF should be set to 62% transmittance, conveniently measured
from inoculum fluid tubes with the original Biolog turbidimeter.
Bochner (2009) states that technically one cell per well would
be adequate, but recommends 100 cells per 100 μL for the
inoculum. For bacterial cells, a concentration of approximately
106 cells/mL is a common standard (e.g., Bourne et al., 2012). For
fungi, Atanasova and Druzhinina (2010) recommend an adjusted
cell density ranging from 1.25 × 105 to 5 × 105 spores/mL,
depending on the tested fungus to guarantee repeatable OD
measurements.
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Insam et al. (1996), however, suggest that instead of total
counts, viable counts for microorganisms should be used, or the
biomass should be standardized. In our Procedure II, we used
biomass standardization. This method is practical in particular
for those endophytes that do not readily sporulate in cultures.
However, the proportion of metabolically non-active biomass
(e.g., non-active hyphal segments) should ideally be controlled
as a part of the protocol, by microscopic examination or by
determining the CFU of the inoculum. For adequate repeatability
of the results, efforts should be made to guarantee that the
inoculum prepared from different isolates of a same species
contain a comparable CFU/mL and that each well contains at
least 100 cells per well (Bochner, 2009).

The third crucial step in PM analyses, in particular when
working without the OMNILOG instrumentation and software,
is to decide the time points of interest for data collection. There
is a temporal dynamic in the substrate use by the cells, which is
a fundamental to the evaluation of cell phenotypes. The reaction
in the wells is often characterized by a lag-period that can last
up to 2–4 days. After that the reaction develops and finally tends
to saturate. In the case of the fungi that we have studied the
saturation often started after 96 h from the start of the inoculation
period. Hierarchical cluster analysis proved to be a useful tool for
determination of the appropriate time for downstream analyses
of the substrate use by the fungi (Blumenstein et al., 2015).
In cases where such clear cluster separation of the replicate
measurements does not exist, the readings that represent the
highest degree of strain separation could be chosen for further
analyses. In our Procedure I studies, we found that the readings
for the studied fungi (a pathogen and three fungal endophytes)
were most reliable between 168 and 240 h after incubation.
We also found that viable cells could be recovered from the
wells even after 360 h on the plates. An intriguing option to
further utilize PM technique would be to extract the fungal
biomass in the wells in the end of an incubation period and
study, e.g., using chromatography and molecular approaches,
how growth on a single substrate might affect the capacity of
fungal cells to accumulate specific chemicals, or express certain
genes.

For the in-house configured PMs, we also identify a fourth
crucial step: Our Procedure II studies demonstrated that the
repeatability and reliability of the in-house arrays can only be
ensured through a careful design that acknowledges the specific
characters of the studied chemicals. For instance, the volatility
of a compound dispensed in a certain well could affect fungal
growth in surrounding wells (e.g., observed in adjacent wells to
inhibitory, volatile o-cresol; Figure 3). Thus, when analyzing the
chemical sensitivity of volatile substances, a preferable approach
seems to be dispensing the same concentration of the volatile
substance in question in all the wells of the microplate in order
to avoid unintentional cross-well effects.

Challenges in Interpretation of the Biolog Data
The PM technique is a powerful tool to estimate the relative speed
of substrate use for particular fungi. However, the interpretation
of the between-species difference in the speed of substrate use
is not straightforward. A change is absorbance values can be

interpreted as a proxy of metabolic activity, but it is risky to
propose narrower views. The change of color could be produced
by a shift in the tetrazolium dye due to respiration, by an
increase of turbidity through fungal body proliferation or even
by change of the medium color after production of metabolites
by the fungi. Such mélange of processes makes it challenging to
contrast different organisms in a fine scale. The inconsistency of
results in the repeated assays where six strains were tested on
seven carbohydrates (Table 1) may reflect such blended processes
that interplayed with the inherent variations in the enzymatic
activities of the fungi (e.g., van den Brink and de Vries, 2011).
Thus, until refinement, the procedure is best suited for studies on
general metabolic trends.

Despite the uncertainty, the proxy of metabolic activity can
be valuable additional information, e.g., in studies addressing
the potential endophyte-based applications (see Benefits of PM
Approach in Endophyte Studies). In our recent study (Protocol
I; Blumenstein et al., 2015), we used pre-configured PMs to
deepen our understanding of the mechanisms of antagonism
by potential biocontrol endophytes, identified on basis of field
correlations and laboratory tests. In this case, the PMdata allowed
us to nuance the emerging picture of the potential of endophytes
in biocontrol: we could conclude that the antagonistic effect
of an endophyte against a pathogen may be due to several,
simultaneous or parallel mechanisms (chemical antagonism
and competition for nutrients). PM analysis also provided
information about the possible ecological strategies of the fungi.
In particular, we found that the ubiquitous A. pullulans is a
slow substrate user with a relatively high tolerance to potentially
antifungal compounds such as phenolics (Figure 6), whereas the
biologically more specialized species M. nivalis var. neglecta and
P. cava, were capable of faster catabolism of certain substrates,
e.g., monosaccharides, polysaccharides and acids, but were less
tolerant to phenolics as compared to A. pullulans. These results
indicate that while M. nivalis var. neglecta and P. cava may
be superior competitors in sugar- and acid-rich environments,
A. pullulans may have an ecological strategy that permits it to
remain active even on nutritionally more reluctant substrates that
might cause other fungi to starve or become intoxicated. Given
that M. nivalis var. neglecta and P. cava have been identified
as potent inhibitors of a vascular pathogen of the host species,
elms (Blumenstein et al., 2015), this information might help
to set chemical quality targets for the elm trees that are most
receptive for biocontrol through these endophytes. Similarly,
the protocol II study showed that the phylogeny could be
considered as a proxy of the fungal response to plant secondary
metabolite. This kind of results, in combination with NGS
analyses, can provide novel information about the mechanisms
behind the structure and functions of endophyte communities in
trees.

The obviously artificial growth environment in PMplate wells,
and the distant resemblance of preconfigured plates with the
substrate availability under natural conditions, may obviously
obscure the interpretations. We only see the response to one
isolated substrate in each well on a PM plate. In nature, however,
fungal cells inside the plant tissues will exist in a chemical
environment that is likely to constantly and gradually change.
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This dynamicity will be caused both by the metabolism of the
plant and by the endophytic inhabitants, and the composition of
the substrate, as well as the fungal community, will continuously
be altered. Similar successions have been studied for macro-
organisms including fungi and insects in decaying leaf litter
(Hättenschwiler et al., 2005) or the succession of saprotrophic
organisms in dead woods of forests (Bader et al., 1995, Similä
et al., 2003). As one of the functions of endophytic fungi is likely
that of a decomposer (Schulz and Boyle, 2005), the conversion
from one substrate to another by the help of a fungi will likely
determine the succession of endophyte function in a plant both
during its life as well as during its after life.

In natural conditions, variations in species-specific infection
mode and presence of specific endophytes are also determining
the use of substrates by a fungus, which, in turn, will affect
the succession of endophytes (Heilmann-Clausen and Boddy,
2005). Thus, the order in which endophytic fungi enter the
host plant may also determine the activity and importance of
subsequent endophytes in that plant. It further suggests that
there is plasticity in how the fungi may make use of the plant,
in the sense that some individual species may play different
roles depending on when they enter the scene. A certain fungal
endophyte may therefore be plastic in the ecological role they
play, which may further complicate the interpretations of the
biological significance of the phenotypic responses detected in
PM plates.

Conclusion

The technical challenges of the PM method are multifaceted
and the interpretation of PM data is not straightforward. Thus,
ideally, extensive validation through carefully standardized pre-
conditions for the fungal growth and careful replication and
control well strategies are needed for successful PM analyses,
whether the studies use preconfigured or in-house designed
PM plates. However, it is evident that the PM technique
may significantly help to bridge the genotype–phenotype gaps
for the culturable fraction of endophytic fungi. Despite the
above-mentioned challenges, PM analyses can provide unique
knowledge about functional properties of individual strains and
species, and thereby contribute to the knowledge pool that
is needed for a more comprehensive understanding of the
associations between the NGS-profiles and functional fungal
biodiversity.
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Abstract Asymptomatic endophytic fungi are

often regarded as potent biocontrol agents in plants,

but the competitive interactions between endophytes

and other microbes within the same host plant are

poorly understood. We tested a hypothesis that as

compared to asymptomatic endophytes, an aggres-

sive pathogen inhabiting the same host is able to

utilize carbon substrates more efficiently. Using

phenotype microarray, we determined the carbon

utilization profiles of the highly virulent Dutch elm

disease (DED) pathogen Ophiostoma novo-ulmi, and

four asymptomatic elm (Ulmus spp.) endophyte

isolates that were selected based on their differential

association to the DED-susceptibility pattern of the

host elms. The competitive interactions between

isolates were evaluated using a niche overlap index.

In contrast to our hypothesis, the studied endophytes

exhibited extensive niche overlap with the pathogen,

suggesting that some endophyte strains might pro-

tect elms against DED-pathogen through competi-

tion for substrates and provide new tools for

biocontrol of DED.

Keywords Carbon utilization profile � Endophytic
fungi � Dutch elm disease � Biocontrol � Niche
differentiation hypothesis � Niche tradeoff
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Introduction

Plants’ internal spaces are ubiquitously colonized by

microbes, some of which are asymptomatic endophyt-

ic fungi. Several studies have shown that some

endophytes can increase their hosts’ resistance to

pathogens (Martı́n et al. 2009; Scheffer et al. 2008;

Tellenbach and Sieber 2012), and that the nature and

extent of endophyte infections may be inversely

correlated with damage caused by herbivores (Ahl-

holm et al. 2002; Albrectsen et al. 2010; Saikkonen

et al. 2001). It has been suggested that endophytes can

shape their hosts’ resistance to pathogen attacks in

various ways, including by stimulating defensive

metabolism (Hamilton et al. 2012; White and Torres

2010), competing for resources, and antagonistically

by synthesizing secondary metabolites that are toxic to

the pathogen (Arnold 2007; Rodriguez and Redman

2008). Endophytes could therefore be valuable tools

for the biocontrol of herbivorous insects and patho-

gens in plants such as forest trees (Albrectsen and

Witzell 2012; Newcombe 2011; Witzell et al. 2013).

However, before evaluating or exploring the scope for

such applications, we need to better understand how

endophytes interact with other consumers that co-

inhabit the host plants.

One way of studying endophyte interactions with

other organisms in planta is to investigate niche

partitioning. Endophytic fungi share their host plants

with an array of pathogenic fungi that also inhabit the

plant’s internal tissues (Mejı́a et al. 2008; Saikkonen

et al. 1998), and interactions between these fungi are

therefore likely to occur on multiple temporal and

spatial scales. The principle of competitive exclusion

states that two species cannot occupy the same

ecological niche: only species with sufficiently differ-

entiated niches can coexist in a given ecological

community (Chase and Leibold 2003; Mikkelson

2005; Tilman 2004). Niche partitioning is regarded as

a fundamental factor that dictates the assembly,

dynamics, and structures of plant endophyte communi-

ties (Ernst et al. 2011). The niche partitioning hy-

pothesis explains cohabitation patterns using trade-off

based mechanisms of coexistence, and also suggests

that antagonistic interactions are molded by species-

specific needs for abiotic and biotic factors. This idea is

consistent with the endophyte continuum hypothesis

(Saikkonen et al. 1998, 2004). An alternative explana-

tion is the neutral hypothesis (Hubbell 2001), which

states that niche differences cannot explain why certain

competitors can coexist whereas others cannot. Instead,

it is contended that diversity is due to speciation,

dispersal, and ‘‘random ecological drift’’ in population

sizes (Mikkelson 2005; Tilman 2004).

A recent study (Ernst et al. 2011) investigated the

coexistence of two related endophyte species in the

common reed (Phragmites australis (Cav.) Trin. ex

Steudel) in light of these two hypotheses. It was

concluded that niche partitioning was consistent with

the observed differential colonization of the common

reed by two endophytes,Microdochium bolleyi and M.

phragmitis, and that the neutral model was unable to

explain the assembly of the mycoflora in this plant.

However, we still know little about the dynamics of the

fungal assemblages in large and long-lived trees.

Importantly, the long lifetimes of trees and the

accumulation and growth of horizontal infections in

their woody parts over time might enhance the impor-

tance of the processes on which the viability of neutral

hypothesis is based.

In the work reported herein, we investigated the niche

partitioning of endophytic and pathogenic fungi in elm

trees (Ulmus sp.) by studying the fungal utilization of

different carbon substrates. The global elm population

has been severely affected by a vascular disease, Dutch

elm disease (DED), which is one of themost devastating

tree diseases described so far (Martı́n et al. 2010; Santini

and Faccoli 2015; Scheffer et al. 2008). The pathogenic

fungusOphiostoma novo-ulmi Brasier is responsible for

the ongoing outbreak of this disease, whereas an earlier

DED outbreak in the 1920s was caused by the less

aggressive speciesO.ulmi (Buisman)Nannfeldt (Brasier

1991). The complex cycle of DED comprises spreading

of the pathogen into healthy trees with vector insects,

maturing beetles of the genus Scolytus spp. Geoffroy or

Hylurgopinus rufipes (Eichhoff) (Rudinsky 1962;
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Santini and Faccoli 2015;Webber andBrasier 1984) that

feed in the tree crown and introduce pathogen spores into

the phloem and vascular system of the tree through the

wounds in the twig crotches. The pleomorphic pathogen

spreads in the xylem vessels through a yeast-like

multiplication phase of the pathogen (Webber and

Brasier 1984) causing vessel cavitation and the appear-

ance of wilting symptoms. The fungus grows sapro-

phytically and produces fruiting bodies in the inner bark

and phloem of dying elms into maternal galleries where

the bark beetle larvae develop (Rudinsky 1962; Scheffer

et al. 2008). Female beetles that infest the bark may

introduce new pathogen genotypes that can outcross

with those that originate from maturation feeding of the

original vector beetles in the host tree (Santini and

Faccoli 2015).When the newbeetle generation emerges,

they carry fungal conidia and ascospores on their bodies

and complete the disease cycle when flying to healthy

elms for maturation feeding (Webber and Brasier 1984).

In addition, DED also spreads through root contacts

(Neely and Himelick 1963).

The effective spreading of DED makes it challeng-

ing to control. In addition to eradication and chemical

treatments (Martı́n et al. 2010; Scheffer et al. 2008),

fungal communities found within elms have been

explored as potential sources of resistance inducers or

biocontrol agents against DED (Dvorák et al. 2006;

Martı́n et al. 2010; Webber 1981). Hubbes and Jeng

(1981) showed in their study that inoculating DED

sensitive elms with low concentrations of O. ulmi

spores induces resistance against a later O. novo-ulmi

infection. A study by Bernier et al. (1996) demon-

strated that inoculating DED sensitive elms with the

endophyte Phaeotheca dimorphospora protected them

against subsequent infections by the less aggressiveO.

ulmi, but not by O. novo-ulmi. Recent studies have

shown that certain endophytic fungi found in elms are

associated with a low susceptibility to DED (Martı́n

et al. 2013). However, little is known about the

mechanisms of protection that fungal endophytes

provide against DED.

We hypothesized that fungal endophytes with po-

tential applications as biocontrol agents against DED

would out-compete O. novo-ulmi within its nutritional

niche. To test this hypothesis, we studied the carbon

(C) substrate utilization profiles of an aggressive O.

novo-ulmi isolate and a selection of endophytic isolates

from elm trees. Specifically, the carbon utilization

patterns of three endophyte isolates representing two

species that have been strongly linked to low DED-

susceptibility in their host treeswere compared to that of

the pathogen. For comparative purposes, the study also

included an additional isolate from a collection of elm

endophytes (Martı́n et al. 2013), representing a ubiqui-

tous, leaf-associated endophyte species with no obvious

connection to the resistance phenotype of the host trees.

The carbon utilization patterns of the isolates were

studied using the phenotype microarray (PM) tech-

nique, which enables the metabolic profiling of cells.

The resulting datawere used to compute a niche overlap

index (NOI) (Lee and Magan 1999). Specifically, we

tested the following hypotheses: (1) the C-substrate

niche of an aggressively pathogenic strain will be larger

than those of typical endophytes, and (2) endophytes

that have previously been linked to low phenotypic

susceptibility to DED (Martı́n et al. 2013) will compete

effectively with the pathogen for substrates, i.e. they

will exhibit niche overlap with the pathogen. The

obtained results were used to evaluate the antagonistic

potential of endophytes against the DED pathogen. In

addition, the applicability of the trade-off based niche

partitioning hypothesis and the neutral hypothesis as

models for the cohabitation patterns of endophytes and

pathogens in trees is discussed briefly.

Materials and methods

Fungal strains

In 2008, around 220 fungal endophytes were isolated

from the leaves, bark and xylem of elm trees with

different degrees of susceptibility to DED. The initial

isolations were conducted at the Forest Breeding

Centre in Puerta de Hierro (Madrid, Spain, 40�270N,
3�460W) from healthy U. minor trees that differed in

their susceptibility to DED, and from healthy U.

pumila trees that are tolerant to DED (Martı́n et al.

2013). Additionally, branches were collected from U.

minor trees in Rivas-Vaciamadrid elm stand (Madrid,

40�200N, 3�330W). The progress of DED has been

slow in this semi-natural habitat despite the apparent

availability of DED inocula and insect vectors in the

area (Martı́n et al. 2008).

For sampling and endophyte isolation, leaves were

detached from the collected elm shoots. The leaves’
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surfaces were disinfected by immersing them in

ethanol (75 %) for 30 s, followed by aqueous sodium

hypochlorite (4 %) for one minute and then ethanol

(75 %) again for 15 s. Finally, the leaves were air-

dried under a laminar flow for four minutes, and a disc

with a diameter of 10 mm was cut aseptically from a

randomly selected region of each leaf. The discs were

placed on 2 % (w/v) malt extract agar (MEA) in Petri

dishes without added antibiotics. Two-year-old twig

segments (4 cm in length and 8–10 mm in diameter)

were surface disinfected in the same way as the leaves

save that they were immersed in the sodium hypochlo-

rite solution for 5 min rather than 1 min. After air

drying (8 min), the twigs were cut into 4-mm-thick

and 10-mm-long sections (measured in axial direc-

tion) and the bark was separated from the xylem. The

separated tissue samples were then placed in Petri

dishes containing 2 % (w/v) MEA without added

antibiotics as was done for the leaf samples. The

dishes were then sealed with Parafilm and incubated at

25 �C. After two weeks, hyphae had developed

around most segments. Outgrowing hyphae were

sub-cultured on new MEA-dishes. Once in pure

culture, the isolates were maintained on MEA.

One hundred and forty of the initial isolates are

currently being maintained in a stock collection. The

isolates were initially classified into 16 morphological

groups (e.g., Arnold et al. 2000) based on macromor-

phological traits such as colony surface texture, the

colors of the colonies and the surrounding media, and

their growth rates on MEA. Special characters such as

fruiting body formation and the accumulation of

droplets or colored spores were also recorded. Repre-

sentative isolates of the morphological groups have

been sequenced, and phylogenetic analyses of the

internal transcribed spacer (ITS) regions of their

ribosomal genes have been conducted (Martı́n et al.

2013).

This work focused on endophytic isolates repre-

senting two species that are frequently found in elms

with low DED susceptibility (Martı́n et al. 2013):

Pyrenochaeta cava (Schulzer) Gruyter, Aveskamp &

Verkley [MB#514652] (growth rate 1.5 mm day-1),

which was isolated from xylem samples, and Mono-

graphella nivalis var. neglecta (Krampe) Gerlach

[MB#113869], which was represented by two isolates,

one originating from xylem (isolate 33; growth rate

1.2 mm day-1) and the other from bark (isolate 114;

growth rate 1 mm day-1), i.e. the tissues occupied by

the DED pathogen. M. nivalis var. neglecta is the

teleomorph of Microdochium majus (Wollenw.)

Glynn & S. G. Edwards which is the current name of

Fusarium nivale var. majus Wollenw. (Glynn et al.

2005). This fungus is mainly known as a snow mold

and endophyte of grasses and cereals (Dahl 1934;

Sieber et al. 1988) but was recently reported to cause

symptomless endophytic infections in elms (Martı́n

et al. 2013). According to our hypothesis, these

isolates should represent endophyte species with the

potential to antagonize the DED pathogen in planta,

and we anticipated that they would exhibit extensive

niche overlap with the pathogen. To validate the

proposed relationship between the C-utilization pat-

terns of these endophytes and their effects on the host

tree’s DED susceptibility, we also studied a third

endophyte isolate as a negative control. A single

Aureobasidium pullulans (de Bary) G. Arnaud

[MB#101 771] (growth rate 3.2 mm day-1) isolate

originating from a leaf sample was used for this

purpose. This species’ presence has been shown to

have no relation to the host elm’s susceptibility to

DED (Martı́n et al. 2013). This species is a ubiquitous

endophyte and epiphyte (Albrectsen et al. 2010; Zalar

et al. 2008). We therefore expected it to be flexible in

its C-utilization preferences and anticipated that it

would probably deviate from the pathogen’s C-uti-

lization profile. As a representative pathogenic fungus,

we selected the aggressive O. novo-ulmi subsp.

americana Brasier & S. A. Kirk isolate SO-SE (Solla

et al. 2008). This strain was isolated in 2002 from a

DED-infected U. minor tree in San Sebastián de

Gormaz (Soria, Spain, 41�340N 3�120W), and has an

in vitro growth rate of 5 mm day-1 at 20 �C in MEA.

Phenotype microarrays

We used phenotype microarrays (PMs; Biolog Pheno-

type MicroArraysTM) to assess the competitive ca-

pacity of the selected fungi and determine their carbon

(C) utilization profiles. Carbon substrates were con-

sidered as particularly interesting in this context

because of the essential importance of carbon sub-

strates for heterotrophic fungi.

Phenotype microarray experiments were performed

using PM1 and PM2A Biolog MicroArrayTM plates in

order to cover a broad spectrum of carbon substrates.
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Every microarray plate has 96 micro-wells, 95 of

which are filled with a pre-determined set of different

C-sources, the remaining micro-well contains no

substrate and serves as a control. Both the PM1 and

PM2A plates have wells containing a wide range of C

sources including mono-, di-, tri-, tetra-, and methyl

saccharides, saccharide phosphates, phenolic com-

pounds, amino acids, and carboxylic acids. In addi-

tion, PM1 plates have wells containing alcohols,

nucleosides, and surfactants, while PM2A plates have

polysaccharide-containing wells. Each well on a plate

also contains a redox dye (tetrazolium violet) as an

indicator. If the substrate in a particular well is

metabolized by the fungus, the tetrazolium violet is

reduced to formazan, resulting in a change in that

well’s absorbance. The colour change in each well of

the microtiter plates is recorded by a reader at user-

specified time-intervals (Garland and Mills 1991).

Prior to inoculation on the plates, the fungi were

cultivated on MEA for at least one week at 25 �C in

the dark in order to obtain adequate amount of fungal

material from the mycelial growth phase. The super-

ficial layer of the mycelial mat was scraped with a

sterile cotton swab to transfer fungal biomass from the

colonies (a mixture of spores and mycelial cells) into

sterile glass tubes containing 12 ml of an inoculating

fluid provided by Biolog. A tissue grinder (Kontes�

Duall� 21, Kimble Chase) was used to gently disrupt

the fungal biomass to make the inoculum more

homogenous. The transmittance of each inoculum

was adjusted to 62 % by adding more fungal biomass

or inoculation fluid as required. For each isolate, an

aliquot of 0.05 ml of the final inoculum was mixed

with 23.95 ml of inoculating fluid in a sterile plastic

vial, and 100 ll of the resulting mixture was pipetted

into the wells. Three replicate plates were prepared for

each isolate. The inoculated plates were kept at 20 �C
for 30 min to enable gelatinization, after which they

were sealed and incubated at 25 �C in darkness

between readings. Substrate absorbance at 590 nm

was recorded using a microreader (Dogoscan, Asys,

Linz, Austria; software: Digiwin). Readings were

performed every 24 h for ten days. Absorbances were

calibrated relative to the empty well on each plate and

the calibrated absorbances (Ac; range -0.345–2.019)

were used in all subsequent analyses. In cases where a

negative absorbance was recorded, a value of zero was

assumed for analytical purposes (Garland and Mills

1991).

Data analysis

Time point selection

Hierarchical clustering (Ward) was used to identify

the time period that best separated the fungal isolates

according to their consumption of different substrates.

All statistical analyses were performed using JMP

Version 7.0.

There was no or poor separation of the isolates

during the first four time points (0–72 h) (Fig. 1a), but

a higher level of clustering by species was observed

subsequently. The greatest separation of the different

species based on their C-utilization patterns occurred

at 168, 192 and 216 h (Fig. 1b). We therefore focused

on data collected between the 168 and 240 h time-

points in our analyses (192–240 h for PM 1 plates and

168–240 h for PM 2A plates).

Determination of isolate-specific C-use profiles

Principal component analysis (PCA) revealed that the

technical replicates for individual isolates clustered

strongly with one-another with respect to the average

well color development (AWCD), which represents

the isolate’s ability to utilize specific carbon sources

(data not shown). Therefore, average AC values (ĀC)

were calculated for each fungal isolate and C-source

across the three replicate plates. ĀC-values above 0.1

were considered to indicate utilization of the corre-

sponding carbon source. The tested substrates were

divided into 14 substrate groups (Table 1) based on

their chemical properties (Garland and Mills 1991).

The average substrate utilization was then determined

for each substrate group across all wells using the

following equation: AWCDchemical group = RĀC/N

(number of substrates in a specific group). The

isolate-specific AWCDchemical group value was then

used to compare the C-utilization patterns of the

endophytes and the pathogen as described previously

(Haack et al. 1995).

Competition for resources among fungal isolates

To compare the pathogen’s C-utilization patterns to

those of the endophytes, a NOI was calculated

according to Eq. 1 (Lee and Magan 1999; Wilson

and Lindow 1994), in which the endophyte of interest

is referred to as the target fungus:
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ANOI value of 0.9 or above indicates a high degree

of niche overlap and a competitive disadvantage for

the target fungus (Lee and Magan 1999). We also

developed a function to quantify each endophyte’s

ability to compete with the pathogen (Eq. 2). If the

value of this function is greater than 1.0, the endophyte

exhibits competitive superiority relative to the

pathogen.

Endophyte competitiveness ¼ NOIpathogen

NOIendophyte
ð2Þ

Results

Isolate-specific niche sizes

The niche size, i.e. the total number of C-sources

utilized by the fungus of interest, varied among the

endophytic isolates. The endophytic isolateM. nivalis

var. neglecta 114 had the largest niche and used 71 %

of the 190 tested substrates. Its conspecific isolate M.

nivalis var. neglecta 33 utilized 62 %, while P. cava

utilized 60 % of the 190 tested substrates. The

pathogenic O. novo-ulmi isolate utilized 54 % of the

tested 190 substrates, and the endophytic A. pullulans

had the smallest niche size, utilizing only 22 % of the

tested substrates (Table 1).

Isolate-specific selectivity in C-substrate

utilization (preferred and non-preferred substrates)

All of the tested fungi had a high capacity for the

utilization of tri- and tetrasaccharides (Table 1). The

pathogen O. novo-ulmi and endophytesM. nivalis var.

neglecta 114 and P. cava also utilized all of the tested

surfactants. The pathogen and all of the endophytes

other than A. pullulans were able to utilize a high

proportion (over 80 %) of the individual disaccharide

compounds. All four of the endophyte isolates were

able to utilize 80–100 % of the phenolic compounds,

but the pathogen was only able to metabolize 60 % of

these substances.

The potentially antagonistic endophyte isolates

were also highly capable utilizers of C-substrates in

several other compound groups. This was particularly

true forM. nivalis var. neglecta 114, which was able to

Fig. 1 Representative dendrograms generated via hierarchical

clustering analyses of the responses during the early and

intermediate stages of the utilization measurements. The highest

degree of consistency between replicate analyses of individual

fungal isolates was observed at intermediate time points (shown

in subfigure b, ‘‘Median range’’). Numbers at the left side stand

for the studied isolates [Aureobasidium pullulans (70), Mono-

graphella nivalis var. neglecta (33 and 114), Pyrenochaeta cava

(120), and Ophiostoma novo-ulmi (178)] and for each of the

three replicates

NOI ¼ number of C - sources shared by both pathogen and endophyte

total no C - sources utilized by target fungus
ð1Þ
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utilize more than 80 % of the individual compounds in

five additional groups: polysaccharides, amino acids,

alcohols, nucleosides and surfactants (Table 1). The

two M. nivalis var. neglecta isolates and P. cava

utilized over 80 and 74 %, respectively, of the tested

amino acids, while M. nivalis var. neglecta 33 and P.

cava utilized over 80 % of the methyl-saccharides.

Some of the compound groups were clearly less

preferred by the tested isolates. For instance, only M.

nivalis var. neglecta 114 utilized saccharide phos-

phates (Table 1). The endophyte A. pullulans was the

most selective, utilizing at most 10 % of the amino

acids, acids, and miscellaneous compounds, and none

of the saccharide phosphates, nucleosides, or surfac-

tants (Table 1). The potentially antagonistic

endophyte isolates M. nivalis var. neglecta 114 and

33 and P. cava utilized most of the substrate groups

effectively, including more than 30 % of the substrate

groups for which the extent of their competition with

the pathogen could be determined (Table 1).

Isolate-specific rates of C-utilization

Compared to the endophytes, the pathogen, O. novo-

ulmi, utilized most of the tested C-substrates at an

intermediate level, with AWCD values ranging from

0.01 to 0.44 (Fig. 2). The two M. nivalis var. neglecta

isolates (especially no. 114) and P. cava utilized C

sources at a higher intensity than the pathogen and A.

pullulans, which had AWCD values ranging from

Table 1 Utilization of and competition for different carbon sources by the pathogenic fungus Ophiostoma novo-ulmi (On) and the

endophytic fungi Monographella nivalis var. neglecta (Mn 33 and 114), Pyrenochaeta cava (Pc), and Aureobasidium pullulans (Ap)

Compound group Total

(nr)a
Substrates utilized (% from total

nr)

Niche overlap index (NOI)b Endophyte competitiveness

indexc

On Mn33 Mn114 Pc Ap Mn33 Mn114 Pc Ap Mn33 Mn114 Pc Ap

Sugar alcohols 9 78 67 67 78 56 1.00 1.00 1.00 1.00 0.86 0.86 1.00 0.71

Sacc. phosphates 4 0 0 50 0 0 n.a. n.a.

Tri-and tetra sacc. 4 100 100 100 100 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Polysaccharides 11 73 73 82 73 45 1.00 0.89 0.88 1.00 1.00 1.13 1.00 0.63

Monosaccharides 19 74 74 63 74 42 0.86 1.00 0.93 1.00 1.00 0.86 1.00 0.57

Methyl-saccharides 5 20 80 60 80 40 0.25 0.33 0.25 0.50 4.00 3.00 4.00 2.00

Disaccharides 10 80 90 100 100 60 0.89 0.80 0.80 1.00 1.13 1.25 1.25 0.75

Phenolics 5 60 80 100 100 80 0.75 0.60 0.60 0.75 1.33 1.67 1.67 1.33

Amino acids 27 56 81 89 74 4 0.64 0.63 0.75 1.00 1.47 1.60 1.33 0.07

Alcohols 5 40 60 80 40 40 0.67 0.50 1.00 1.00 1.50 2.00 1.00 1.00

Acids 54 43 54 65 37 2 0.62 0.60 0.80 1.00 1.26 1.52 0.87 0.04

Nucleosides 5 0 60 100 40 0 n.a. n.a.

Miscellaneous 29 48 31 45 48 10 0.89 0.92 0.86 1.00 0.64 0.93 1.00 0.21

Surfactants 3 100 67 100 100 0 1.00 1.00 1.00 n.a. 0.67 1.00 1.00 n.a.

R (nr) or Average

(%)

190 54 62 71 59 22

n.a. not available
a Number of substrates on the Biolog PM1 and PM2 plates utilized at an AWCD rate of C0.1. Substrates were classified into

different chemical groups as described by Garland and Mills (1991) and Lee and Magan (1999)
b The niche overlap index (NOI; Lee and Magan 1999) compares the number of substrates utilized by both the pathogen and the

endophyte to the total number of substrates utilized by the endophyte. A value of 0.9 or higher (in bold) indicates a high degree of

niche overlap and a competitive disadvantage for the endophyte in question (see Eq. 1 in the Materials and Methods section)
c Endophyte competitiveness indicates the relative rate of substrate use by the pathogen compared to that of a given endophyte. A

value of C1 (bold letters) indicates that the endophyte is more effective at utilizing the compound type in question (see Eq. 2 in the

Materials and Methods section)
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0.003 to 0.39. The isolate A. pullulans utilized most

substrates at a low intensity with the exception of

phenolics, for which it had an AWCD value of 0.39

(Fig. 2).

Competition for C-substrates between endophytes

and the pathogen

There was extensive overlap between the four endo-

phyte isolates and the pathogen with respect to the

compound groups they utilized, particularly among

the sugar alcohols, monosaccharides and surfactants

(Table 1). Two substrate groups were not considered

when evaluating the potential competition between the

pathogen and the endophytes: the saccharide phos-

phates, which were generally not utilized, and the

nucleosides, which were only utilized by the potential

antagonists M. nivalis var. neglecta and P. cava. A.

pullulans did not utilize surfactants at all.

The pathogen was competitive with or as proficient

as the endophytes with respect to the utilization of

sugar alcohols, tri- and tetra-saccharides, monosac-

charides, surfactants and miscellaneous compounds as

demonstrated by the high NOI values and low

endophyte competitiveness values (Table 1). All of

the endophytes, including the unlikely antagonist A.

pullulans, were highly competitive with the pathogen

for methyl-saccharides and phenolics, as indicated by

the low NOI values and high competitiveness values

for these substrate groups (Table 1). In addition, the

pathogen was found to have a high degree of niche

overlap and to be at a competitive disadvantage

relative to the twoM. nivalis var. neglecta isolates and

P. cavawith respect to several other compound groups

(Table 1). The isolateM. nivalis var. neglecta 114 was

the strongest competitor against the pathogen: in

addition to methyl-saccharides and phenolics, this

isolate effectively competed with O. novo-ulmi for

Fig. 2 Utilization of 14 carbon-substrate groups by four

species of microfungi found in elm trees (Ulmus spp.): the

pathogenic Ophiostoma novo-ulmi (On) and the endophytic

fungi Monographella nivalis var. neglecta (Mn 33 and 114),

Pyrenochaeta cava (Pc), and Aureobasidium pullulans (Ap).

The figure shows the average well color development values

(AWCD) for each isolate, as determined using Biolog Pheno-

type MicroArraysTM (PM 1 and PM 2A plates, n = 3). The

error bars indicate SE
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polysaccharides, disaccharides, amino acids, alcohols

and acids (Table 1). The isolate M. nivalis var.

neglecta 33 was competitive for four additional groups

of compounds (disaccharides, amino acids, alcohols

and acids), while P. cava outcompeted the pathogen

for two additional groups—disaccharides and amino

acids (Table 1).

Discussion

In contrast to our initial hypothesis, the DED

pathogen, represented by O. novo-ulmi strain 178,

was not the most effective utilizer of carbon sub-

strates, either in terms of the range of substrates it

utilized or the rate at which it utilized them. Some

previous studies of Ophiostoma-species (Brasier

1991) and other necrotrophic pathogens have indicat-

ed the existence of positive correlations between

growth rates and pathogenicity or virulence (Brasier

and Webber 1987; Meyer et al. 2010; Pagán et al.

2007; Solheim and Krokene 1998), and between

virulence and the production of extracellular enzymes

(Annis and Goodwin 1997; Kaur and Padmaja 2009;

Tonukari 2003). For example, O. ulmi has slower

mycelium growth than the more virulent O. novo-ulmi

at 20 �C (Brasier 1991). We therefore expected the

fast-growing, highly virulent pathogen to use a

broader array of substrates or to catabolize them at

higher rates compared to the less virulent endophytic

fungi. Our results show that the slow growing

endophytes P. cava and M. nivalis var. neglecta

exhibited the most aggressive substrate utilization

patterns, and that the generalist fungus A. pullulans

had the lowest intensity of substrate use and the

narrowest niche. This suggests that the relationships

between virulence, growth rate and substrate utiliza-

tion efficiency among microfungi are highly complex.

Similar conclusions were drawn from a previous study

(Klepzig 1998), in which it was demonstrated that

slower growing fungi were more efficient at defending

their colonized habitats from invading pathogens.

Further information about the relation between growth

rate, virulence and exoenzyme production could also

be gained through phenotype microarray comparisons

of the slow growing, less virulent O. ulmi and the

highly virulent O. novo-ulmi isolates (Brasier 1991).

Our results support our second hypothesis: the

endophytes M. nivalis var. neglecta and P. cava,

which were both identified as potential DED biocon-

trol agents in a previous study (Martı́n et al. 2013), had

substrate utilization patterns that overlapped exten-

sively with that of the pathogen. This was particularly

true for some substrates that are central to carbon

metabolism, such as sugar alcohols, tri- and tetra-

saccharides, and monosaccharides, and for fatty acids

(surfactants). While the P. cava isolate had the highest

utilization rates for sugars (monosaccharides, disac-

charides, tri- and tetra-saccharides, polysaccharides

and sugar alcohols), the M. nivalis var. neglecta 114

isolate had the broadest niche in terms of C-substrate

utilization. The ability of this endophyte to catabolize

most of the tested carbon sources suggests that it has a

complex arsenal of catabolic enzymes, which may

compensate for its rather slow growth. Interestingly, it

was recently found that this endophyte also secretes

bioactive chemicals into its growth medium and that

these chemicals halt the growth of O. novo-ulmi

colonies in dual cultures (K. Blumenstein et al.

unpublished data). These results suggest that endo-

phytes may use multiple tools to compete with other

fungi, and that the different components of their

arsenals may be deployed sequentially or simultane-

ously. Fungi that can antagonize pathogen growth in

multiple ways can be expected to have considerable

potential as biocontrol agents since their antagonism

should be both stable and highly effective.

The finding that the generalist fungus A. pullulans

had a low intensity of substrate use and a narrow

spectrum of acceptable substrates was unexpected. As

a pleiomorphic fungus, A. pullulans (like O. novo-

ulmi) is known to switch between yeast and mycelial

forms in response to its environmental conditions.

Because of the industrial interest in the polysaccharide

pullulan that A. pullulans produces, it is a well-studied

fungus (Slepecky and Starmer 2009). Strains of A.

pullulans produce a variety of enzymes, including

amylase, xylanase, and 13-glucosidase (Gaur et al.

2010) and given that this species is omnipresent in

environmental samples (Gaur et al. 2010; Slepecky

and Starmer 2009; Zalar et al. 2008), we expected it to

utilize a broad range of different carbon sources at a

high rate. Instead, the generally narrow substrate range

and low substrate utilization rate of A. pullulans in our

tests suggest that this species is adapted to a small

number of nutritional sources and that its establish-

ment and survival in diverse environments is instead

due to a highly efficient metabolic system. Preliminary
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results (data not shown) indicate that at least one other

A. pullulans isolate has a similar C-utilization pattern,

so the narrow substrate range and low intensity

C-utilization observed in this work may be character-

istic of the species as a whole rather than an isolate-

specific phenomenon. However, we cannot exclude

the possibility that some other compound or com-

pound class that was not considered in this work might

be utilized more extensively by this fungus. In

addition to C utilization, it would also be interesting

to compare the nitrogen (N)-utilization patterns of

endophytes and pathogens, in particular as it has been

suggested that the N content differs between resistant

and susceptible elms (Singh and Smalley 1969) and

because it is known that different N sources influence

the pleomorphism in DED fungi (Kulkarni and

Nickerson 1981).

We found that all four endophyte isolates utilized

phenolic substrates more effectively than the patho-

gen, suggesting that the efficient metabolization of

these compounds may be important for the life

strategies of endophytes in general. This result is

consistent with the suggested role of phenolic com-

pounds as defensive metabolites that are synthesized

to counteract pathogen infections (Witzell and Martin

2008). Notably, such responses have been proposed to

occur in elms (Martı́n et al. 2013). However, the

phenolics were the only compound class for which

there was a readily apparent pathogen- or endophyte-

specific C substrate utilization pattern. Instead, the C

substrate utilization profiles seemed to be highly

specific for each fungal isolate.

The two conspecific M. nivalis var. neglecta

isolates differed somewhat in their C-utilization

patterns, indicating that there is appreciable functional

variation within the species and emphasizing the

importance of including several isolates of the same

species in phenotype microarray screens when seeking

species-level information. The intraspecific variation

of morphological and physiological traits is well

documented also for O. novo-ulmi (Brasier 1991) and

should thus be accounted for in future microarray-

based studies. Only four endophyte isolates were

considered in this work, all of which were selected

based on their potential effects on the host tree’s DED-

susceptibility (Martı́n et al. 2013). While this small

number of isolates was sufficient to test our hy-

pothesis, it is clear that a larger number of pathogen

and endophyte species and isolates will have to be

tested in order to draw general conclusions about the

characteristic C-utilization profiles for different fungal

life strategies and to more accurately quantify the

extent of within-species variation. A deeper under-

standing of within- and between-species variation in

substrate utilization patterns among endophytes could

be particularly important for biodiversity conservation

efforts. In particular, if there is substantial intraspecific

variation in endophytes’ functional traits, and if these

traits contribute significantly to the ability of a given

species to perform ecosystem services (e.g. the

degradation of wood), then it may be desirable to

take measures in order to maintain endophyte diversity

as discussed elsewhere (Brasier 1991; Martı́n et al.

2013).

The niche concept posits that niches are defined by

the requirements and impacts of the species that are

present, which in turn determine whether a given set of

species can coexist in a given ecological community

(Chase and Leibold 2003). Our current understanding

of the requirements and effects of most endophytic

fungi in trees, including the species studied in this

work, is either rudimentary or completely lacking.

This presents significant difficulties when analyzing

competitive interactions within the in planta myco-

biome. However, we know that carbon assimilation is

essential for all fungi, and the quality and quantity of

carbon sources available within the host are widely

acknowledged to influence the composition of the

fungal communities in plants (Ernst et al. 2011 and

refs. within). Moreover, although an array of C

substrates on a microtiter plate cannot accurately

mimic the in planta chemical environment inside the

host trees, it can be used to assess the exoenzymatic

capacity of the tested fungi and was therefore chosen

to be efficient in testing our hypothesis. The observed

overlap in the C-utilization profiles of the different

fungal isolates examined in this work suggests that at

least some of the M. nivalis var. neglecta isolates and

P. cava resemble the pathogen O. novo-ulmi in terms

of their carbon use profiles and are therefore likely to

compete with it for C substrates in planta. This is

important because C is an essential resource for fungi,

hence the presence of these endophytes in the

pathogen’s habitats (i.e. the bark and xylem of elms)

may hinder its growth. These habitats are colonized

horizontally by endophytes that originate from the

tree’s external environment, and the invasions accu-

mulate over the tree’s long life span (Helander et al.
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1994). Established endophytic infections in the bark

could be in good position to compete with an

additional infestation of the pathogen by conidia that,

according to Santini and Faccoli (2015), can be

transmitted to the bark by mature beetles.

Stochastic events can therefore be expected to play

a major role in the formation of fungal communities

inside trees, in keeping with the neutral hypothesis

(Hubbell 2001). However, our results provide evi-

dence for the existence of physiological mechanisms

that potentiate niche differentiation among members

of the tree-associated mycobiome. Future studies on

the cohabitant patterns of tree endophytes and

pathogens might therefore benefit from the application

of the stochastic niche hypothesis (Tilman 2004),

which modifies the competitive trade-off hypothesis

by including stochastic processes such as those

proposed by the neutral theory. Future analyses of

cohabitant patterns would also benefit from systematic

studies on the spatial and temporal distributions of

endophyte communities in trees.
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challenges. In: Pirttilä AM, Frank AC (eds) Endophytes in

forest trees: biology and applications. Springer, Dordrecht,

pp 251–262

Pagán I, Alonso-Blanco C, Garcı́a-Arenal F (2007) The rela-

tionship of within-host multiplication and virulence in a

plant-virus system. PLoS ONE 2:e786

Rodriguez R, Redman R (2008) More than 400 million years of

evolution and some plants still can’t make it on their own:

plant stress tolerance via fungal symbiosis. J Exp Bot

59:1109–1114

Rudinsky JA (1962) Ecology of Scolytidae. Annu Rev of En-

tomol 7:327–348

Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal

endophytes: a continuum of interactions with host plants.

Annu Rev Ecol Syst 29:319–343

Saikkonen K, Ahlholm J, Helander M, Poteri M, Tuominen J

(2001) Experimental testing of rust fungus-mediated her-

bivory resistance in Betula pendula. Forest Pathol

31:321–329
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