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Abstract

Information visualization is a process of transforming data, information and knowl-

edge to the geometric representation in order to see unseen information. Dimensional-

ity reduction (DR) is one of the strategies used to visualize high-dimensional data sets

by projecting them onto low-dimensional space where they can be visualized directly.

The problem of DR is that the straightforward relationship between the original high-

dimensional data sets and low-dimensional space is lost, which causes the colours of

visualization to have no meaning.

A new nonlinear DR method which is called faithful stochastic proximity embed-

ding (FSPE) is proposed in this thesis to visualize more complex data sets. The pro-

posed method depends on the low-dimensional space rather than the high-dimensional

data sets to overcome the main shortcomings of the DR by overcoming the false neigh-

bour points, and preserving the neighbourhood relation to the true neighbours. The

visualization by our proposed method displays the faithful, useful and meaningful

colours, where the objects of the image can be easily distinguished. The experiments

that were conducted indicated that the FSPE is higher in accuracy than many dimen-

sion reduction methods because it prevents as much as possible the false neighbour-

hood errors to occur in the results.

In addition, in the results of other methods, we have demonstrated that the FSPE

has an important role in enhancing the low-dimensional space which are carried by

other DR methods. Choosing the worst efficient points to update the rest of the points

has helped in improving the visualization information. The results showed the pro-

posed method has an impacting role in increasing the trustworthiness of the visualiza-

tion by retrieving most of the local neighbourhood points, which they missed during

the projection process.

The sequential dimensionality reduction (SDR) method is the second proposed

method in this thesis. It redefines the problem of DR as a sequence of multiple DR

problems, each of which reduces the dimensionality by a small amount. It maintains

and preserves the relations among neighbour points in low-dimensional space. The

results showed the accuracy of the proposed SDR, which leads to a better visualiza-

tion with minimum false colours compared to the direct projection of the DR method,

where those results are confirmed by comparing our method with 21 other methods.
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Although there are many measurement metrics, our proposed point-wise correla-

tion metric is the better. In this metric, we evaluate the efficiency of each point in

the visualization to generate a grey-scale efficiency image. This type of image gives

more details instead of representing the evaluation in one single value. The user can

recognize the location of both the false and the true points.

We compared the results of our proposed methods (FSPE and SDR) and many other

dimension reduction methods when applied to four scenarios: (1) the unfolding curved

cylinder data sets; (2) projecting a human face data sets into two dimensions; (3) clas-

sifing connected networks and (4) visualizing a remote sensing imagery data sets. The

results showed that our methods are able to produce good visualization by preserving

the corresponding colour distances between the visualization and the original data sets.

The proposed methods are implemented on the graphic processing unit (GPU) to

visualize different data sets. The benefit of a parallel implementation is to obtain the

results in as short a time as possible. The results showed that compute unified device

architecture (CUDA) implementation of FSPE and SDR are faster than their sequential

codes on the central processing unit (CPU) in calculating floating-point operations,

especially for a large data sets. The GPU is also more suited to the implementation of

the metric measurement methods because they do a large computation. We illustrated

that this massive speed-up requires a parallel structure to be suitable for running on a

GPU.
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Chapter 1

Introduction

Information visualization can be considered a process of transforming similarity re-

lationships between data points to a geometric representation in order to see unseen

information. Results are analysed for the following questions: Does this visualization

help to make new discoveries when analysing large quantities of data? What is the

relationship between original data points and transformed data points? How can the

original information be preserved in projected space?

A high-dimensional data set is one of the main problems of information visual-

ization. Dimensionality reduction (DR) is therefore a useful strategy to project high-

dimensional data sets onto low-dimensional space, which can be visualized directly.

The application of this technique has two benefits:

1. DR can minimize the amount of storage needed by reducing the size of the data

sets.

2. DR helps to understand the data sets by discarding any irrelevant features, and

to focus on the main important features.

DR can enable the discovery of rich information, which assists the task of data

analysis. Visualization of a high-dimensional data sets is widely used in many fields,

such as remote sensing imagery, biology, computer vision, and computer graphics.

The colour of each pixel in the visualization should somehow be a compendium

of information contained in the original data at the corresponding data point at which

their most salient features are captured. The visualization is a simple way to understand

1
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the high-dimensional data sets because the relationship between original data points is

incomprehensible.

Therefore, DR might face the following questions: Has DR the ability to preserve

all pairwise relationships between data points? Can people observe the proximity re-

lationships amongst data points in a projected space? This has led to the introduction

and development of a large number of DR methods that attempt to minimize the loss

of original information. However, preserving original information is becoming more

and more difficult, as we will see in the next section.

1.1 Problems of Dimensionality Reduction (DR)

Using DR in the visualization of data sets can cause two kinds of errors to occur;

namely, continuity errors and false neighbourhood errors. In continuity errors, the

nearby neighbourhood data points in the original space can be projected further away

in the projected space. On the other hand, false neighbourhood errors cause the farther

away data points in the original space to be projected nearby in the projected space.

Although many methods have been introduced to overcome the above problems, a

fully optimal method does not exist. Thus, the colours of visualization typically have

no meaning because the straightforward relationship with the original high-dimensional

data sets is lost.

1.2 Hypothesis and Research Goals

This section explains the main purpose of this research by proposing some hypotheses.

Useful information exists in low-dimensional space despite transforming the data

from a higher dimensional space. Thus, the DR problems can be overcome. This

statement is very important, and it represents the main point for this research. The

methodologies in this dissertation have been dedicated to improving and developing

methods for deriving conclusions and have satisfied this hypothesis. Quantitative and

qualitative measurements are the good ways to prove the efficiency of our method.

Using many well-known measurement methods are necessary to give a good concept

about what the visualization will be. Massive dimensionality of data sets is handled in

2
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order to make almost certain that our methods have minimized as much as possible the

error of losing information.

If we suppose that such information does exist in low-dimensional manifold, the

missing neighbourhood points can be retrieved. While this hypothesis might be

simple to address, it is yet to be proven. Indeed, several methods including ours at-

tempt to prove this statement.

If the projected space has been transferred to the appropriate competent colour

space, the derived information will be accurate and richly represented. Several DR

methods mapped their results to the CIE Lab colour space to get high quality colours.

The important thing in this dissertation is to define a simple, efficient and direct way

to achieve what was imposed.

The way of applying DR can be redefined to increase the efficiency of the pro-

jected space. Due to the difference between the topological structures of data points

in high-dimensional data sets with the topological structure of projected space, it is

difficult to preserve the neighbourhood relations between data points. One of our pro-

posed methodologies is trying to redefine the DR as sequential DR, which can lead to

preserving the original information as much as possible.

The users role is important in evaluating the efficiency of the visualization. If

there is a mechanism to give him a chance to see the site of strengths and weak-

nesses, that can help in the analysis of those data sets. Most traditional measurement

methods compute numerical value to reflect the efficiency of the projected space. This

way is important, but the user wants the easier way. In this project, this hypothesis

has been studied with interest, and we were able to achieve convergence between the

results and the user.

1.3 Contributions

Below is a list of contributions used in our project:

1. The faithful dimension reduction method, called Faithful Stochastic Proximity

3
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Embedding (FSPE), is proposed to visualize data sets. FSPE can overcome the

false neighbourhood points as much as possible to derive higher quality colours

in its visualization.

2. A new technique called Sequential Dimensionality Reduction (SDR) is also in-

troduced in this thesis. Unlike DR, our proposed new technique redefines the

problem of DR as a sequence of multiple DR problems, each of which reduces

the dimensionality by a small amount. The efficiency of the visualization is in-

creased when applying it.

3. We have visualized very complex data sets, such as remote sensing imagery and

human faces. In addition, we have classified connected networks and unfolded

curved cylinder.

4. We propose the point-wise metric of “good” visualization. Unlike the existing

metrics, which only provide a global measure of the whole visualization with

a single number, the proposed metric provides a quantitative measure for each

pixel of the data sets, and tells us how reliable the colour is per pixel. This

measure is a more stringent criterion to estimate the quality of the projection.

5. FSPE is used after a dimension reduction method as a supplementary stage for

enhancing the final results by retrieving the missing neighbourhood points. This

system has succeeded in enhancing the visualization and overcoming the false

neighbourhood errors that might happen through projection.

6. The computational speed of our methods are improved by using the graphics pro-

cessing unit (GPU) as the computation engine rather than the central processing

unit (CPU).

List of Publications

1. Najim S., Lim I. and Saeed M. (2013). Trustworthy Enhancing the Visualiza-

tion of Remote Sensing Imagery Dataset on GPU. In Proceedings of 6th Inter-

national Conference on Developments in eSystems Engineering (DESE 2013),

Abu Dhabi, UAE, 16-18 December.
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2. Najim S. and Lim I. (2014). Visualization of Remote Sensing Imagery by Se-

quential Dimensionality Reduction on Graphics Processing Unit. In Proceed-

ings of the 5th International Conference on Information Visualization Theory

and Applications (IVAPP 2014), , pages 71-79, Lisbon, Portugal, 5-8 January.

3. S.A. Najim, I.S. Lim, Trustworthy dimension reduction for visualization differ-

ent data sets, Inform. Sci. (2014), http://dx.doi.org/10.1016/j.ins.2014.03.048.

4. Najim S., Lim I, Wittek P. and Jones M. FSPE: Visualisation of Hyperspectral

Imagery Using Faithful Stochastic Proximity Embedding. Accepted for publica-

tion in IEEE Geoscience and Remote Science Letters 25/3/2014.

1.4 Thesis Organization

The organization of the dissertation is as follows. Chapter 2 gives an overview of DR,

where different categories are explained together with their advantages and limitations.

The methodology of the first proposed method, FSPE, is explained in Chapter 3. In

this chapter, we use FSPE in the visualization of a remote sensing imagery data sets,

and compare its results with well-known methods to demonstrate the ability of our

method. Chapter 4 explains the second new method, SDR, and this is compared with

other methods. In Chapter 5, we compare our proposed methods (FSPE and SDR)

and 19 DR methods by using three data sets: unfolding curved cylinder data sets, pro-

jecting human face data sets into 2-dimensional space and classifying two connected

networks. The primary aim of this chapter is to evaluate the efficiency of our meth-

ods in neighbourhood preservation. Chapter 6 illustrates the parallel processing in the

GPU, where a parallel method to visualize data sets and measure its efficiency on the

GPU are presented. In Chapter 7, we use FSPE as a supplementary stage after a di-

mension reduction method for enhancing the final results. Finally, Chapter 8 concludes

the dissertation.
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Chapter 2

Dimensionality Reduction

In this chapter we will address the following topics:

1. Formal definition of dimensionality reduction.

2. Overviews of dimensionality reduction methods with advantages and disadvan-

tage of each one.

3. Measurement metrics to evaluate the result of dimensionality reduction

2.1 Introduction

Visualisation of high-dimensional data sets is widely used to analyse data in many

fields of study, including remote sensing imagery, biology, computer vision, and com-

puter graphics. Its purpose is to provide rich information to assist with data analy-

sis [Zhang, 2008]. Dimensionality reduction (DR) is an important step for data pre-

processing in visualisation and knowledge discovery, and it is used for different pur-

poses, such as information visualisation, noise reduction, and imaging applications

[Borg and Groenen, 2005] [France and Carroll, 2011] [Nishisato, 2006]. Formally, for

a set of n input points X ⊂ R
D, φ(X) is used to project the D dimensional data points

xi ∈ X to d dimensional data points yi ∈ Y , where d≪ D.

φ : RD→ R
d (2.1)

xi 7→ yi ∀ 1≤ i≤ n (2.2)
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2. Dimensionality Reduction

xi x j

ri j = ||xi− x j||

y jyi

di j = ||yi− y j||

Un f olded

to

Figure 2.1: Three dimensional spiral data sets are unfolded to a one dimensional straight

string line. The neighbourhood relations between points in the unfolding space are preserved

with their correspoinding relations in the high-dimensional data sets.

In Equation 2.1, φ attempts to approximate the output pairwise distance d(xi,x j) with

their corresponding in input space r(yi,y j), i.e, r(xi,x j) ≈ d(yi,y j) ∀ 1 ≤ i ≤ n to

project X’s data point correctly in Y space.

The high-dimensional data sets have several features; however, some might not

be relevant to specific data analysis. DR is used to discover the main and important

features by which to make analysis and visualisation possible. The fundamental in-

formation in the original data sets is reflected in the distances between pairs of data

points, and this information should be preserved by using a gradient step and fitting

the input distances ri j to output distances di j. Thus, the goal of preserving the distance

7



2. Dimensionality Reduction

is to represent the original data sets in a projectec space [Meng et al., 2011] [Lee and

Verleysen, 2007]. A simple example of applying DR is shown in Figure 2.1, where

the spiral data sets are unfolded to the straight string. Each point in the straight string

preserves its local neighbourhood relations, and preserving neighbourhood relations

between points indicates the efficiency of the low-dimensional space.

In reality, reducing dimensionality of large data sets to a low-dimensional space

without losing information might be impossible. In general, DR attempts to minimize

as in the following equation:

φ =

√

n

∑
i, j=1

(ri j−di j)2 (2.3)

where ri j = ||xi− x j|| and di j = ||yi− y j|| for the four points xi, x j, yi and y j. The

cost function in Equation 2.3 measures the difference between the distances in the

input space and the corresponding distances in the projected space, and the final values

should be minimized according to the data in a projected space.

Unfolding a complex high-dimensional data sets into low-dimensional representa-

tion should focus on preserving the nearby neighbourhood relationship between points

rather than on creating additional points. There are two ways by which to define neigh-

bouring points for a point. The first supposes that all points are neighbours for a point,

but the nearest k points are strong neighbours [Yang, 2011]. Each point has a fixed

number of neighbours and this number will not change through the projection process.

The second method uses a fixed circular radius rc, where the neighbouring points are

inside this domain for a point [Agrafiotis, 2003]. Thus, the number of neighbours is

not the same for all points in the space.

2.2 Types of Dimensionality Reduction

A variety of strategies has resulted in the development of many different DR methods,

which can be classified as being either linear or nonlinear. Most of the linear methods

are non-iterative, which assumes that the data are distributed close to a hyperplane

of original space to reflect their uniqueness [Borg and Groenen, 2005] [Agarwal et al.,
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2007]; therefore, they are constrained in many applications. To overcome this problem,

most nonlinear methods adopt iterative optimisation to get more flexibility in searching

for a representation of data points in a projected space. Iterative methods start with

a random configuration of low-dimensional space, and iteratively refine it until the

error measure of low-dimensional space is minimised to the defined threshold or the

specified number of iterations has been sapped. Local and trustworthiness methods

are two other types of DR. The codes of 34 DR methods have been programmed in a

Matlab toolbox and can be found in [Maaten, 2013].

Preservation of high-dimensional data sets distances depends on the distance sim-

ilarity measure. Distance, in nature, is used to measure the dissimilarity between two

data points in a space. Euclidean and geodesic distances are usually used in this matter.

The notion of Euclidean distance was originally defined as the distance of a straight

line between two points, but the efficiency of Euclidean distance depends on the type

of area. For example, the distance between two nearby points is computed exactly by

Euclidean distance; however, in nonlinear space, Euclidean distance cannot measure

the correct distance. For this, the concept of geodesic distance is suitable for com-

puting the shortest path between two points that lie on a surface, as in Figure 2.2.

Although both ideas are used for distance preserving DR, many methods are enhanced

when geodesic distance is used because it provides a better measurement of distance

between pairs of data points than Euclidean distance.

Figure 2.2: Geodesic distance idea. The geodesic distance between the two red points is the

length of the geodesic path, which is the shortest path between the points that lie on the surface.
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2.2.1 Linear Dimension Reduction Methods

The well-known methods of linear DR are principle component analysis (PCA), mul-

tidimensional scaling (MDS), and linear discriminant analysis (LDA). The benefits of

these methods are that their results are simple and can be easily interpreted.

PCA is the oldest of the three methods, and has been used in different applications

because of its simplicity. PCA supposes the linear projection between original data and

projected space [Jolliffe, 2002], but this principle does not work well with nonlinear

data sets. The neighbourhood relationships between points are lost in projected space

and do not preserve their nonlinear relationships of original data. Figure 2.4(a) shows

PCA cannot unfold Swiss Roll data sets. PCA uses orthogonal linear combination to

find linear transformation space of data sets X ⊂ R
D. The steps of applying it are:

1. Compute the centroid of original data sets:

µ =
1

n

n

∑
i=1

xi (2.4)

and subtract it from xi to generate new origin

zi = xi−µ (2.5)

2. Compute the covariance matrix

cov =
1

n

n

∑
i=1

zi zT
i (2.6)

where zT
i is the transpose of the zi

3. According to the target dimension of low dimension space, PCA computes eigen-

vectors u1,u2, ...,ud and eigenvalues λ1,λ2, ...,λd of covariance matrix cov.

4. Compute principal component transformation :

y = PT z (2.7)

where P = [u1,u2, ...,ud] and its transpose is PT .

10



2. Dimensionality Reduction

MDS is a method used for fitting a set of data points in a space corresponding to

a given set of objects. The distances between data points of high-dimensional data

sets are known, and the coordinates of data points in projected space are generated

according to these distances [Borg and Groenen, 2005] [Forero and Giannakis, 2012]

[Lee and Verleysen, 2007]. There are two types of MDS methods: iterative and clas-

sical. Iterative MDS can be classified into two types, which are metric and non-metric

scaling. Metric MDS uses the actual distance values between data points, and non-

metric uses only their rank. The input can be coordinates rather than a distance matrix,

and, in this case, MDS generates a distance matrix among points by computing pair-

wise distance di j between points yi and y j. The distance matrix should be symmetrical

where di j = d ji and di j = 0. The iterative MDS attempts to minimize the Kruskal stress

function in 2.8 which indicates to the goodness of fit value by minimizing the differ-

ence between pairwise Euclidean data points di j = ||yi− y j|| distances in projected

space with their corresponding Euclidean distances in original space ri j = ||xi− x j||.

∑n
i, j=1(di j)

2 in Equation 2.8 is used to normalize the results to fall in the range [0, 1]:

S =

√

∑n
i, j=1(ri j−di j)2

∑n
i, j=1(di j)2

. (2.8)

Classical MDS is a non-iterative method and uses linear algebra to solve a problem.

It calculates the eigenvalues and eigenvectors of a covariance matrix. Classical MDS

is identical to PCA, except MDS input should be pairwise similarity. The only differ-

ence between iterative and classical MDS is the way they are applied. As with PCA,

MDS is not efficient enough to find appropriate projected space of a nonlinear data

sets where there are big differences between di j and ri j Euclidean distance measure-

ments cause incorrect adjustments of the locations of data points in projected space.

Although iterative MDS has more flexibility than classical MDS, it suffers from heavy

computations, and it is a purely global method that cannot work with local structure.

Figure 2.4(b) shows the limitation of MDS in unfolding Swiss Roll data sets.

The objective of linear discriminant analysis (LDA) is to perform DR while pre-

serving discriminatory information [Martinez and Zhu, 2005] [Kim et al., 2011]. As

with PCA, it seeks to find direction along with the classes that are good separated, but

unlike PCA, LDA does classify data. LDA is a supervised method whereby class labels
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x1

x2

x3

Figure 2.3: 1000 points of three dimension Swiss Roll data sets. The data sets generated by

{x1 = θcos(θ), x2 = θsin(θ), x3}, where θ and x3 are random numbers in the ranges [5, 14]

and [0, 30], respectively. The colours have been added to describe the relationship between

points.

should be available, which leads it to be more effective than unsupervised PCA [Ji and

Ye, 2008]. It preserves the location of the original data sets when projected to different

space dimensions with increasing class linear separability among them. LDA classifies

separability into within-class scatter (Sw) and between-class scatter (Sb), where LDA

transformation maximises Sb but minimises Sw, where their matrix are defined as

Sw =
C

∑
i=1

Mi

∑
j=1

(y j−µi)(y j−µi)
T (2.9)

Sb =
C

∑
i=1

(µi−µ)(µi−µ)T (2.10)

where C is the number of classes, Mi is the number of samples within class i, µi is mean

vector of class i, and µ is mean of entire data sets defines as µ = 1
C ∑C

i=1(µi). The class

separability is done while reducing the variation; however, when dimensionality of

data is larger than the sample size, LDA cannot be applied because all scatter matrices

will be singular [Ji and Ye, 2008]. LDA can be applied when the data sets have many

classes, therefore, it is not suitable to unfold the Swiss Roll data sets, in Figure 2.3

because it consist from one class.
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y1

y2

(a) PCA

y1

y2

(b) MDS

Figure 2.4: Linear DR methods (PCA and MDS) cannot unfold the Swiss Roll data sets, in

Figure 2.3, in two dimension representation, where overlap in neighbourhood relation is the

predominate status of these unfolded representations.

2.2.2 Nonlinear Dimension Reduction Methods

Nonlinear DR uses nonlinear mapping to preserve the nonlinear properties of the orig-

inal data. Isometric feature mapping (Isomap), stochastic proximity embedding (SPE),

and stochastic neighbour embedding (SNE) are the more general methods that have

been used to reduce dimensionality of nonlinear data.

Isomap is a well-known global nonlinear DR method; it was produced to overcome
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y1

y2

(a) Isomap

y1

y2

(b) SPE

y1

y2

(c) SNE

Figure 2.5: Efficiency of nonlinear projection is clear in unfolding Swiss Roll data sets in

Figure 2.3. Two dimension representations by Isomap and SPE preserve as well as the neigh-

bourhood relation of original space data points. SNE preserves most of the points, and some of

them are overlapped with the others. 14
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the limitations of MDS. Isomap attempts to preserve and hold the global structure of

the original high-dimensional data sets [Tenenbaum et al., 2000] by computing the

geodesic distance ri j = ||xi−x j|| between two high-dimensional pairs of data points xi

and x j. Geodesic distance is better than Euclidean distance in recognizing distances be-

tween neighbours near and far. Isomap is a continuity method that attempts to preserve

the geodesic distance ri j in the original space with its corresponding linear distance di j

in the projected space. The algorithm of Isomap can be summarized in the following

steps:

1. If the data sets are very large, select n random data points. Otherwise, all data

points are selected.

2. Constructing the neighbourhood graph by connecting each data points to its k

nearest neighnours.

3. The shortest paths among data points are computed by using Dijkstra’s algorithm

[Clark and Holton, 2005] to construct a geodesic distance matrix.

4. Applying MDS to find low-dimensional space by minimizing the following stress

function:

φ(Y ) =
√

∑
i< j

(ri j−di j)2 (2.11)

5. If step 1 is applied, the interpolation is applied on the remaining data points to

generate final projected space.

Isomap has been used in different applications by reducing the high-dimensional

data sets into two or three dimensions [Samko et al., 2006] [Hamarneh et al., 2011]

[Verma et al., 2007] [Geng et al., 2005]. It has the ability to deal with nonlinear data

sets and can discover the information and details that were hidden on MDS. For exam-

ple, Figure 2.5(a) shows an Isomap unfolded Swiss Roll data sets in a two-dimensional

space, where the neighbourhood distances between original data points are preserved

with their corresponding points in projected space; however, an extensive time com-

mitment and storage requirements make Isomap inappropriate for use on large data

sets. In addition, Isomap fails to generate a projected space when some points are not

connected to a graph, where the number of points in the projected and original spaces
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are not equal [Akkucuk and Carroll, 2010]. Another method, PARAMAP [Akkucuk

and Carroll, 2006], attempts to overcome the Isomap problems and gives better results

than Isomap on circular shapes, although its efficiency decreases with large data sets.

To accelerate the projection process, it is better to use Isomap first and use PARAMAP

to complete the process [Akkucuk and Carroll, 2010].

Stochastic proximity embedding (SPE) is a nonlinear method that proceeds by

calculating Euclidean distance for global neighbourhood points within a fixed radius

[Agrafiotis and Xu, 2002] [Agrafiotis, 2003]. SPE is an enormous step in computa-

tional efficiency over MDS, and is faster than Isomap. SPE is used in different ap-

plications and has succeeded in getting satisfactory results [Agrafiotis et al., 2010]

[Ameer and Jacob, 2012]. The objective of SPE is to find representation that has points

distances that are identical to their corresponding distances in high-dimensional data

sets. The method starts by selecting a random point from original data, in time t, to be

projected in the low-dimensional space.

Projected space starts with initial coordinates, and is updated iteratively by placing

yi and y j onto the projected space in such a way that their Euclidean distance (di j =

||yi− y j||) is close to the corresponding distance (ri j = ||xi− x j||) in original high-

dimensional data sets. Thus, SPE minimizes the following Equation:

Stress =

√

∑i< j(di j− ri j)2/ri j

∑i< j ri j
. (2.12)

The points in projected space are updated according to the following constraint:

i f (ri j ≤ rc) or ((ri j > rc) and (di j < ri j))

yi← yi +λ(t)
ri j−di j

di j + ε
(yi− y j)

y j← y j +λ(t)
ri j−di j

di j + ε
(y j− yi)

(2.13)

where λ(t) is learning rate at t time, and rc is a fixed circular radius of neighbourhood

points.

In order to increase the efficiency of SPE, its modified version [Rassokhin and
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Agrafiotis, 2003] selects one random point yi to update all the remaining points, which

are satisfy the following:

i f (ri j ≤ rc) or ((ri j > rc) and (di j < ri j))

y j← y j +λ(t)
ri j−di j

di j + ε
(y j− yi)

(2.14)

Figure 2.5(b) showed how the SPE unfolds the Swiss Roll data sets, where the dis-

tances among projected space points are preserved with their corresponding distances

in the original data sets. However, the difficulty with using SPE is in determining the

value of rc. The results will be torn and very bad if rc is very small, and SPE will be

equivalent to MDS when rc is very large.

The stochastic neighbour embedding (SNE) method is an iterative nonlinear method

that attempts to preserve structural properties between low-dimensional space pair-

wise data points with their corresponding distance in high-dimensional data sets. It

computes asymmetric probability pi j between two neighbour points xi and x j in high-

dimensional data sets.

pi j =
e−||xi−x j||

2/2σ2
i

∑k 6=i e−||xi−xk||2/2σ2
i

(2.15)

where pii = 0, and σi is variance of Gaussian centered around xi set by user.

Asymmetric probability qi j of the corresponding points in low-dimensional space

yi and y j of original high-dimensional points xi and x j are computed by:

qi j =
e−||xi−x j||

2

∑k 6=i e−||xi−xk||2
(2.16)

where qii = 0.

SNE attempts to find low-dimensional space by matching pi j and qi j as much as

possible by minimizing stress function in Equation 2.17 instead of using squared dif-

ferences between pi j and qi j:

S = ∑
i

∑
j

pi j log
pi j

qi j
(2.17)

and S can be minimizing by using a gradient descent method. Figure 2.5(c) showed
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the ability of SNE in unfolding Swiss Roll data sets in a satisfactory projected space.

However, some of the points are overlapped with others that causes to loss some infor-

mation.

2.2.3 Local Nonlinear Methods

Locally linear embedding (LLE) is a nonlinear dimension reduction method that at-

tempts to project the nearby neighbourhood points to a locally linear projected space.

LLE uses three steps to do this task; first, it finds k nearest neighbourhood points for

each point in high-dimensional data sets. Second, it computes a weight matrix among

neighbours W by minimizing Equation 2.18. Weights among neighbours represent a

value of strength relation among them.

ε(W ) =
n

∑
i

‖xi−∑
j 6=i

wi jx j‖
2 (2.18)

where wi j = 0, if x j 6= xi. ∀i,∑ j wi j = 1. In the final step, LLE lies the D dimensions

of original data into d dimensions space, where d ≪ D. It uses weight matrix W to

find the coordinates representation of low-dimensional space in order to preserve the

topology properties of the original data. Based on locally linear reconstruction, LLE

minimizes the following equation to find the projected space

Φ(Y ) =
n

∑
i

‖yi−∑
j 6=i

wi jy j‖
2 (2.19)

subject to 1
N ∑i yi = 0, and 1

N
Y TY = I.

As an example, Figure 2.6(a) shows that LLE can unfold the three dimension of the

Swiss Roll data sets. However, in many applications, LLE has poor generalization

because it is not dynamic [Zeng and Luo, 2008]; it forces projected space to have a

representation according to the weight matrix of high-dimensional data sets. Thus,

LLE is poor in dealing with more complex data sets.

The Laplacian Eigenmaps (LE) method is similar to LLE and finds low-dimensional

space by preserving the local properties of the original data [Belkin and Niyogi, 2003]

[Tu et al., 2012]. Low-dimensional space is generated by preserving the distance
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y1

y2

(a) LLE

y1

y2

(b) Laplacian

Figure 2.6: LLE and Laplacian methods can unfold the Swiss Roll data sets, in Figure 2.3, in

a satisfactory low-dimensional manifold.

among k nearest neighbouring data points. Each data point gives weight to their neigh-

bours, where the weight of first nearest neighbour is higher than second neighbour

weight. That means large weight wi j indicates the distance between yi and y j is very

small. The steps of applying the Laplacian Eigenmaps method are:

1. It constructs a neighborhood graph G by connecting each data point y j is con-

nected to k nearest neighbors.

2. The weights between neighbors are computed by using Gaussian kernel func-
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tion:

wi j = e
−
||yi−y j ||

2

2∗σ2 (2.20)

where σ is the variance of the Gaussian.

3. The low dimension space is constructed. First computes diagonal weight matrix

Dii =∑ j wi j, then laplacian matrix is computed L=D−W . Thus, low dimension

space is computed by minimizing the following cost function:

∑
i, j

(yi− y j)
2 wi j (2.21)

In order to ensure the projected data points are close to their corresponding data

points in the original space, the following equation should be satisfied [Belkin

and Niyogi, 2003]:

∑
i, j

(yi− y j)
2 wi j = 2yT Ly (2.22)

2.2.4 Trustworthiness Methods

The curvilinear component analysis (CCA) method preserves the pairwise distances in

the low-dimensional space with their corresponding pairwise distance in the original

high-dimensional data sets by minimizing the following cost function:

φ(Y ) = ∑
i< j

(ri j−di j)
2F(di j,λt) (2.23)

where ri j = ||xi− x j|| and di j = ||yi− y j|| are the Euclidean distances between data

points i and j in original high-dimensional and low-dimensional spaces, respectively.

F is a bounded decreasing function, and allows CCA to preserve the distances on

different scales depending on the time dependent value of λt which is started with large

value to cover all data points, and then gradually decreased throughout processing. It

is defined as:
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Figure 2.7: Trustworthiness methods, CCA and CDA, can unfold the Swiss Roll data sets.

CDA is better than CCA because the last one generates tearing low dimension manifold.

F(di j,λt) =







1, if di j ≤ λt

0, Otherwise
(2.24)

CCA can find the projected space of some nonlinear data sets, but it fails with well-

known nonlinear data sets, as in the unfolding Swiss Roll data sets in Figure 2.7(a).

Thus, preserving the neighbours distance is not guaranteed by CCA.

The curvilinear distance analysis (CDA) method is a version of CCA, and attempts
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to preserve the pairwise distances in the low-dimensional space with their correspond-

ing pairwise distance in the original high-dimensional data sets [Lee et al., 2004]. Like

Isomap, CDA uses geodesic distance to keep the preservation between two distances.

CDA uses the same CCA Equations in 2.23 and 2.24, but ri j is the geodesic distance

between data points i and j in the original high-dimensional data sets, and di j is the

Euclidean distance between data points in the low-dimensional space. The general

steps of applying CDA are:

1. If the data sets are very large, select n random data points. Otherwise, all data

points are selected.

2. Constructing the neighbourhood graph by connecting each data-point to its k

nearest neighnours.

3. The shortest paths among data points are computed by using Dijkstra’s algorithm

[Clark and Holton, 2005] to construct geodesic distance matrix.

4. Applying CCA algorithm using processed geodesic distances.

5. If step 1 is applied, the interpolation is applied on the remaining data points to

generate final projected space.

CDA can find unfolded space of traditional nonlinear data sets, such as Swiss Roll

in Figure 2.7(b). The preserving original information by CDA is better than other

nonlinear dimension reduction methods, especially with complex data sets. It prevents

points in the projected space from overlapping [Li, 2004]. Thus, geodesic distance

with the efficiency of CCA gives the CDA more performance. However, the low-

dimensional manifold might be torn when the neighbourhood relation of the original

high-dimensional data sets are lost.

2.3 Information Visualization

Information visualization is a way to present the information in a way that allows

people to see things that were unseen before. It makes the information easy to share

among the people by asking each other, “Do you see this thing?” In addition, it leads

to more enhancement, such as, “If we made an enhancement to that area, what would
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happen?” Recently, information visualization has become the art of science, where

there are many methods that can be used to help the people understand the meaning

of the data by observing the proximity relationship among data points in a projected

space. The colour of each pixel in the visualization is a compendium of information in

the original data in which their most salient features are captured [Kaski and Peltonen,

2011] [Peltonen, 2009] [Lespinats et al., 2007].

Modern visualization tools have improved our ability to study many things directly

from data. While there are different types of data, the way in which we visualize them

are also different [Telea, 2008]. Visualizing scalar data is a popular way that is used in

different sciences, where colours are mapped to the points. The visualization uses the

same geometry as the original scale data, which can be 1D, 2D or 3D. The main advan-

tage of this method is its simplicity and its ease of understanding. The visualization of

vector field data sets has become more interesting in recent years. Vector data is scalar

data with description. For example, to visualize fluid data sets, arrows, streamlines or

animation are used to represent the direction. The visualization of vector field data

sets is based on the dimensionality of the data sets. Three-dimensional vector data sets

are a much more challenging problem, and the challenge increases when adding more

descriptions (dimensions). The reconstruction of a three-dimensional volume model

from a sequence of two-dimensional image slices of the human body is an example of

volume rendering, which is helps in planning treatment or surgery.

Information visualization faces many challenge. For example, the visualization of

flow data is difficult. Its visualization requires us to use different things to imitate

the fluidity of the flow. In addition, the visualization of a connected network requires

us to represent the relationships between nodes. However, finding a good represen-

tation containing all the information is a challenge. Many visualizations of data sets

are pretty, but they do not show the important information. More powerful tools are

required to meet the users needs. For example, the parallel coordinates method is used

to represent high-dimensional data points into 2-dimensional space by using parallel

axes. Although this method allows us to view the useful information, it is limited

when it comes to representing large data sets. Information visualization can be used

for different purposes:

1. Explanation: The data sets are visualized to explain something. For example, it

is used to convince the viewer that one solution is better than another.
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2. Exploration: The visualization of scientific data sets helps the researcher to ex-

plore the relationship between data sets.

3. Expression: Visualization is a way to represent data sets in a pretty way without

giving more detail, in that we are focusing on the aesthetics.

The DR method is a strategy used to visualize a high-dimensional data sets by

projecting a high-dimensional data set onto a low-dimensional space where it can be

visualized directly [Schreck et al., 2010]. The problem of DR methods arises in dis-

covering the low-dimensional space in the high-dimensional complex data sets. In

general, there are two types of DR methods: continuity and trustworthiness. Conti-

nuity methods, such as Isomap and SPE, attempt to inherit the relations among global

neighbourhood points to local corresponding points in projected space. Although this

procedure has advantages in strengthening the coherence of local corresponding points,

continuity errors may occur in low-dimensional manifold. Continuity errors mean

the nearby neighbourhood data points in the original space can be projected further

away in the projected space; they cause projected space to tear. On the other hand,

trustworthiness methods, such as CCA and CDA, depend on the point relations in

low-dimensional manifold, rather than those relations in original space, to find low-

dimensional manifold. The points coordinates can be updated through a projection

process in low-dimensional manifold in a flexible way without constraints to preserve

the structure of original space. CCA and CDA might face false neighbourhoods in

their low-dimensional manifold [Lespinats and Aupetit, 2009] [Lespinats and Aupetit,

2011].

In false neighbourhoods, the farther away data points in original space can be pro-

jected nearby in the projected space; they cause the projected space to be overlapping,

as in Figure 2.8. Some techniques, as in [Kaski et al., 2003] and [Venna and Kaski,

2005], are used to overcome the false neighbourhood problems by focusing on the pro-

jected space distance to preserve the original distance. The researchers in [Kaski et al.,

2003] fixed the false neighbourhoods by sending some of them away to improve the

trustworthiness of projected space. Although some regions of their projected space are

improved by this method, the final visualization might be tearing because the discarded

data points left holes in their location when sending them away. In visualization, the

false neighbourhoods are more dangerous than the continuity errors because of the
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High−dimensional space Low−dimensional mani f old

Local neighborhood

False neighbors

xi yi

Figure 2.8: DR might cause the points which are outside local neighborhood in high dimension

space to be inside local neighborhood in low dimension manifold. These points are called false

neighborhood.

points that take the incorrect colours are unrelated to the original information. Thus,

the colours of visualization have no meaning because the straightforward relationship

with original high-dimensional data sets is lost [Bachmann et al., 2005].

Remote sensing imagery is a well-known technique to observe the earth and urban

scenes by producing a large number of spectral bands [Smith, 2012]. However, the

challenge is how to display the abundant information contained in these images in a

way that is more interactive and easy to analyse, in a 3-D image cube, for example, by

a user [Tyo et al., 2003]. Due to the difficulty of using these bands which are greater

than 100, several DR algorithms are produced to overcome this problem by finding

the better relationships among colour values in three colour channels after applying

complex formulas to shrink the dimensionality of the original space. The precision of

the results depends on the type of algorithm used, which should preserve and gather

the relation among neighbours in the original space [Venna and Kaski, 2001], [On-

clinx et al., 2009]. DR provides a good way to visualize remote sensing imagery by

generating its colour image [Du et al., 2008] [Cui et al., 2009] [Bachmann et al., 2006]

[Kotwal and Chaudhuri, 2010] [Mahmood and Scheunders, 2011] [Chen and Zhang,

2011] [Mohan et al., 2007].

The visualization of connected networks is a sub-field of information visualization
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that is used to visualize a set of nodes with their edges. A connected network is a sim-

ple model that directly explains the features without more interpretation. It has been

used in various fields such as computer science, biology, art, and psychology, because

of its ability to represent a system in a simple structure with a set of nodes and edges.

Recently, the size of data has grown exponentially, and representing this large data in a

network is essential in order to present the idea to the viewer in an easy way. However,

the study and visualization of large connected networks is difficult, and the analysis

of large connected networks might not be feasible where the time complexity might

be greater than O(n3). The understanding of a large connected network is essential;

therefore, embedding it into a simple representation is necessary. The challenge in-

volving an embedded connected network is: what is an optimum projected space that

can represent this network in different tasks in such a way as to effectively deliver

information to the viewers? Many DR methods have been introduced for connected

network visualization in order to discover meaningful representations that will aid the

reader to see and easily explore the relationship among items [Hu, 2006][Dwyer et al.,

2007][Harel and Koren, 2002].

2.4 Quality of Visualization

When measuring the quality of visualization for a given data sets, it is important to

know which DR method is suitable for the task at hand. Furthermore, the user cannot

compare the quality of a given visualization with the original data by visual inspec-

tion due to its high-dimensionality. Thus, the formal measurements should evaluate

the amount of the preserving neighbourhood colour distances in the visualization with

their corresponding distance in original data. Residual variance (Stress), correlation

(γ) and local continuity (LC) are the well-known metrics used in this matter. If we

suppose X is a vector of all points of the data sets in original space and Y is a vector of

all the corresponding points in projected space. A and B are the vectors of all pairwise

distance of X and Y , respectively, then:

Residual Variance (Stress) is a metric used to compute the standard error of differ-

ence between visualization and original space [Tenenbaum et al., 2000]. It calculates

the sum of squares of differences between original data point distances and projected
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colour distances, as in the following equation:

Stress =

√

∑N
i=1(ai−bi)2

N−2
(2.25)

where ai ∈ A, bi ∈ B ∀ 1≤ i≤ N.

Small stress value indicates that visualization has very little error and higher effi-

ciency in preserving the original information.

Correlation function (γ): this metric computes the linear correlation between original

input distances and colour distances in visualization [Mignotte, 2012]. The value of

correlation is equal to 1 when all distances are perfect preserved, where positive slope

between two vectors with perfect linear. In the other hand, the value equal to -1 if the

two vectors have prefect linear relationship with negative slope. The correlation metric

is defined as the follow:

γ =
AT B/|A|−A B

σA σB
(2.26)

where |A| is the number of components in A, and A and σA are the mean and standard

deviation of A, respectively.

Local Continuity (LC) computes the degree of similarity between two correspond-

ing nearest neighbours sets in projected and original spaces [Chen and Buja, 2009].

The average of all cases represents the efficiency measurement of a projected space.

Formally, let k nearest neighbours set in original space to data point i is N
X
k (i) =

{ j1, j2, ..., jk }, and the k nearest neighbours set to i in projected space is N
Y
k (i) =

{ l1, l2, ..., lk }. The measurement of overlapping between two sets is evaluated by

Nk(i) = |N
X
k (i)∩N

Y
k (i)| (2.27)

Nk(i) is normalized to the [0,1] interval in order to compute the faithfulness measure

of i:

Faith f ulnessk(i) =
1

k
Nk(i) (2.28)

27



2. Dimensionality Reduction

In this case the faithfulness value of projected space will be :

Faith f ulnessk =
1

N

N

∑
i=1

Faith f ulnessk(i) (2.29)

where N is total number of data points in data sets.

2.5 Conclusion

The objective of using DR is to transfer the high-dimensional data sets to the low-

dimensional space so that it is maintaining the essential original information. The

simplest approach is to use linear methods, but the complexity of the recent data sets

make these methods useless. Thus, the nonlinear versions of those linear methods

were introduced to overcome their limitations. Nonlinear transformations can be used

to project a high-dimensional data sets in a low-dimensional space. Although this

method succeeded in solving some problems, some nonlinear DR methods perform

poorly on complex data sets, such as LLE. Nonlinear DR methods, such as Isomap

and CDA, which are used in geodesic distance have proven their ability to deal with

different complex data sets. The consuming time and storage when using geodesic

distance reduces their efficiency. The SPE is a good method that can be used with

large data sets because of its ability to converge the results in a short time. Most

of the DR methods suffer from false neighbourhood and continuity errors, especially

with large dimensionality of data sets where stopping the loss of original information

becomes impossible. Thus, the future methods for DR should overcome these errors

as much as possible, as we will show in the next chapter.
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Chapter 3

Visualization of Remote Sensing

Imagery Data Sets Using Faithful

Stochastic Proximity Embedding

In this chapter we will address the following topics:

1. Limitation of DR methods with large data sets, as remote sensing imagery.

2. Methodology of Faithful Stochastic Proximity Embedding (FSPE).

3. Point-wise metric to show efficiency of visualisation as gray image.

4. Experimental results of FSPE application on remote sensing imagery.

5. Conclusion.

Here we present a new nonlinear DR method which is called Faithful Stochastic

Proximity Embedding (FSPE) to visualize remote sensing imagery data sets. FSPE

overcomes the main shortcomings of the DR by sending the false neighbour points

away, and preserving the neighbourhood relation to the true neighbours points, which

are inside the local neighbourhood. The visualization of our proposed method dis-

plays the faithful, useful and meaningful colours, where the objects of the image can

be easily distinguished. Moreover, a point-wise metric is introduced to measure the

quality of each pixel in the visualization. The performances of FSPE and PCA, SPE,
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Isomap, CDA and LLE are compared, and the efficiency of the proposed method in

both visualization accuracy and computational cost is shown.

3.1 Introduction

A variety of DR methods are used in the visualization of remote sensing imagery data

sets. Although linear methods, such as PCA [Cui et al., 2009] [Tyo et al., 2003] and

MDS [Steyvers, 2002], are widely used, their ability has been reported only for lin-

ear data sets and they perform poorly on nonlinear data sets because of their non-

linear structure [Dianat and Kasaei, 2010] [Bachmann et al., 2006]. The problem of

modelling a nonlinear data sets have been addressed by nonlinear methods, as Isomap

[Tenenbaum et al., 2000] [Bachmann et al., 2005] [Bachmann et al., 2006]), CDA [Lee

et al., 2004], LLE [Mohan et al., 2007] [Roweis and Saul, 2000] and SPE [Rassokhin

and Agrafiotis, 2003], in which they attempt to preserve the intrinsic geometry of the

nonlinear data sets.

The relationship between the amount of reduction and efficiency is inverse, where

the efficiency is reduced when the dimensionality of low-dimensional space is very

low, and vice versa. Inefficiency indicates the inability of the DR method to preserve

the original information in low-dimensional space. Although, in general, visualiza-

tion of a remote sensing imagery data sets requires that the dimensionality of low-

dimensional space is equal to three [Cui et al., 2009], [Du et al., 2008], the efficiency

of visualization is reduce because the relationship between the neighbours are loose,

as in Figure 3.1. Thus, some of the colours in the visualization of a remote sens-

ing imagery data sets do not represent the correct relations derived from the original

system, and, therefore, those colours are false colours. On the other hand, in Figure

3.1, we noted that the preservation of the original information is increased when the

dimensionality of low-dimensional space is increased.

The goal of this chapter is to introduce a faithful version of SPE which shows faith-

ful behaviour; we call it FSPE, which maintains the main advantages of original SPE

and overcomes false neighbourhoods as much as possible. FSPE is a general method

and can be used to visualize the remote sensing imagery data sets in a higher quality

visualization. The main idea of our approach is to use projected space as a key ele-

ment in guiding projection by specifying the local neighbourhoods rather than a global
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Figure 3.1: Distortions cannot be overcome when the amount of reduction is equal to 3 or less.

Six dimension reduction methods are used to reduce the size of data from 224 to 10, 9, ... , 3,

2, or 1. By using correlation measurement [Cui et al., 2009] [Jacobson and Gupta, 2005], we

note that when the amount of reduction is few (3 or less), the efficiency of the solution will be

much lower than when the reduction is greater than 3. This indicates that the preserving of the

relation among bands of remote sensing imagery data sets (of AVIRIS Moffet Field data sets

from the southern end of San Francisco Bay, California, done in 1997) becomes very difficult

when the dimensionality of low dimension space is very low.

neighbourhood. We use a decreasing local neighbourhood radius to incorporate the

convergence of projected space, where the calculating distances are reduced through

projection. In addition, a new point-wise metric is introduced to measure the faith-

fulness of each pixel in the visualization, rather than other metrics that give one mea-

surement value [Cui et al., 2009] [Jacobson and Gupta, 2005]. Our measurement will

be helpful to the user in locating the unfaithful locations in the visualization, thereby

identifying the pixels whose colours are not representative of the corresponding points’

relationships in the original dimension space.
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3.2 Visualization of Remote Sensing Imagery Data Sets

by Dimensionality Reduction

The goal of DR is to find a visualization that has pixel distances that are identical

to their corresponding points in the multi-bands of the remote sensing imagery data

sets. Let us suppose there is an image with h bands denoted as X = {x1,x2, ...,xh };

each band has m pixels, and DR goal is to find a projected space has l bands l ≪ h

and l = 3. DR attempts to place y j onto the projected space in such away that their

euclidean distance di j = ||yi− y j|| is closed to the corresponding distance ri j = ||xi−

x j|| in original high dimensions space. That means, DR will minimize the following

stress function:

f = ∑
i

∑
j 6=i

(ri j−di j)
2 W (ϕ) (3.1)

where ϕ is ri j or di j. In general, there are two assumptions of a weight function

W (ϕ) [France and Carroll, 2011]. The first assumption is supposed by the continuity

method, which is W (ri j) = 1. Linear continuity DR methods, such as PCA and MDS,

use Euclidean distance ri j to measure the dissimilarity between two data points in a

space [Cox and Cox, 2000]. While Euclidean distance cannot measure the correct

distance on a nonlinear data sets, nonlinear continuity methods, such as Isomap, use

the concept of geodesic distance ri j, which is suitable to compute the shortest path

between two points that lie on a surface [Tenenbaum et al., 2000].

On the other hand, the trustworthiness methods suppose W (di j) = 1 if di j ≤ dc and

W (di j) = 0 if di j > dc for a decreasing neighbour radius dc. In CCA [Demartines and

Hrault, 1997], the distance ri j is the Euclidean distance between data points i and j in

original high-dimensional and low-dimensional spaces. CDA uses the same idea, but

ri j is the geodesic distance between points [Lee et al., 2004].

3.3 Faithful Stochastic Proximity Embedding

3.3.1 Stochastic Proximity Embedding (SPE)

Geodesic distance is better than Euclidean distance in recognizing the difference be-

tween near and far away neighbours, and it has good approximation to their distances.
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Isomap attempts to preserve the geodesic distance ri j in the original space with their

corresponding linear distance in the projected space [Bachmann et al., 2006] [Silva and

Tenenbaum, 2003]. However, geodesic distance is not always a benefit; a long con-

suming time and storage requirement make Isomap inappropriate for large data sets

[Cui et al., 2009].

SPE is a nonlinear method that proceeds by calculating Euclidean distance for

global neighbourhood points ri j within a fixed neighbourhood radius rc. Although

the original version of SPE is faster than Isomap [Agrafiotis and Xu, 2002], it takes

time to get acceptable results. It requires to call the random number generator twice

for every stage of improving the coordinates [Rassokhin and Agrafiotis, 2003]. The

modified version of SPE has been able to speed up the projection process by reduc-

ing the random selection. This new structure of SPE has become more convenient for

implementation within the GPU.

The modified version of SPE algorithm iteratively refines the embedding by repeat-

edly selecting a point i randomly and using it to update the coordinates of every point

j 6= i in a manner similar to a stochastic gradient descent [Rassokhin and Agrafiotis,

2003] as follows:

y j← y j +λ(t) S(ri j)
ri j−di j

di j + ε
(y j− yi) (3.2)

S(ri j) =







1 i f (ri j ≤ rc) ∨ ((ri j > rc) ∧ (di j < ri j))

0 Otherwise

(3.3)

where λ(t) is learning rate at time t, which is decreased over the time, ε is a tiny number

used to avoid division by zero. As it happens in the other DR methods, the visualization

by SPE might encounter DR problems, which make it distorted [Bachmann et al.,

2005].

3.3.2 FSPE

Our method uses the faithfulness idea with SPE instead of its continuity to generate

a faithful SPE (FSPE) method, which is able to deal with such complex problems as

33



3. Visualization of Remote Sensing Imagery Data Sets Using FSPE

remote sensing imagery data sets. The points in projected space are updated depending

on their relation, as follows:

y j← y j +λ(t) T (di j)
ri j−di j

di j + ε
(y j− yi) (3.4)

T (di j) =







1 i f (di j ≤ dc(t)) ∨ ((di j > dc(t)) ∧ (di j < ri j))

0 Otherwise

(3.5)

where dc(t) is a decreased neighbourhood radius over time. FSPE starts iteratively,

on the projected space, with selecting a random point in time t, which updates all the

local neighbourhood points in a sufficient region within local neighbourhood radius

dc(t), so the coherent structure will be constructed by sending false neighbours away;

according to Equation 3.4. The local neighbourhood radius dc starts with large value

at t0 to include all points, and then gradually this value is decreased through times by

dc(t0)/(t +1) to keep neighbourhood points with the improvement of projected space.

The differences between SPE and FSPE have concentrated on the inputs to their

weight functions. The input of the S(ri j), in the Equation 3.2, indicates the original

space is used to compute the distance ri j within a fixed neighbourhood radius rc. On

the other hand, FSPE uses projected space and a decreasing neighbourhood radius

dc(t) in the definition of T (di j), in Equation 3.4, which makes the proposed method

overcomes the DR problems, as we will see when we answer the following question:

How does the FSPE method work?

Let us suppose the point p1 ∈ Y is selected at step t of the projection iteration, and the

radius of local neighbourhood of p1 at this step is dc(t), as in Figure 3.2. While the

false neighbourhoods are the farther away data points in original space are projected

nearby in the projected space, according to the Equation 3.4, there are two main tasks

of p1 to overcome these errors. It sends the false neighbour points away, and preserves

the neighbourhood relation to the true neighbours, which are inside the local neigh-

bourhood. If some true points are missed, p1 will not try to search for them because

they will be returned back during the projection process.

To illustrate further, let us suppose there are another three points p2, p3, p4 ∈ Y ,
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p1

p2

p3

p4

dc(t)

Local neighbourhood
o f point p1 at step t

Figure 3.2: The main idea of FSPE. At step t of iteration process. p1 preserves its distance

with true neighbours, as with p2, and pushes away the false neighbour points, as with p3. The

points which are outside the local neighbourhood, which their (di j < ri j), as with p4, are pushed

further away.

where d12 & d13 < dc(t), and d14 > dc(t). On the first hand, if d12 ≥ r12, p2 is a true

neighbour point because r12−d12
d12+ε will be less or equal to zero. The coordinates of p2 are

updated by pulling p2 to p1, or leaving it without change, in order to preserve di j with

ri j as much as possible. Thus, if (di j < dc(t))∧ (di j ≥ ri j), the FSPE does the pulling

process.

On the second hand, if d13 < r13, the value of r13−d13

d13+ε will be positive, which causes

to push p3 away because it is a false neighbour. While p3 might be missing a true

neighbour of another point, the updating of its coordinate causes to send it to the correct

location. Therefore, if (di j < dc(t))∧ (di j < ri j), the FSPE does the pushing process.

The last possibility, which could face FSPE, is if d14 > r14, the point p4 is pushed

further away because r14−d14
d14+ε will be greater than zero. Thus, if (di j > dc(t))∧ (di j <

ri j), the FSPE does the pushing process.
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3.4 Point-wise Quality Metric

While measuring the quality of visualization is important, the formal measurements

should evaluate the amount of preserving neighbourhood colour distances in the visu-

alization with their corresponding ones in the original data sets. The correlation co-

efficient metric, in Equation 2.26 is a well-known method used to compute the linear

correlation between remote sensing imagery data sets distances and colour distances

in visualization [Cui et al., 2009] [Jacobson and Gupta, 2005]. While this metric gives

one measurement value ∈ [−1,1], it is not enough to know the efficiency of the colour

of each pixel in the visualization.

For the purpose overcome this weakness, our suggestion is to compute the correla-

tion for each point through the following equation:

γ(i) =
AT

i Ai/|Ai|−Ai Bi

σAi
σBi

(3.6)

where Ai is a vector of all pairwise distance of the data point i to the all other points in

original space and Bi is a vector of its corresponding pairwise colour distances in the

visualization. The result of this point-wise metric, in Equation 3.6, is a faithful image,

which represents the degree of matching the colour distances in visualization with their

corresponding distances in the bands of a remote sensing imagery data sets. It identifies

the weak and strong faithful pixels, where the very dark pixels have the lowest faithful

values, and the white pixels have the highest faithful values. The number of faithful

colours will be very high in faithful images when the colour distances among pixels

in visualization and their corresponding distance in original spaces are preserved. On

the other hand, the faithful image has a lot of points that have low faithful values to

indicate when the visualization has false colours, because their colour distances among

pixels are not preserved with their corresponding pixels in the original space.

3.5 Experimental Results

All the methods are run on Intel(R) i7-930 2.80 GHz CPU with 12 GB memory on

Windows 7. We ran our proposed method in Microsoft Visual Studio C++ 2008 with

CUDA 4.2 and NVIDIA GeForce GTX 480 graphics card with a buffer size of 1 GB.
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Figure 3.3: The visualizations of 12 regions of VIRIS Moffet Field data sets from the southern

end of San Francisco Bay, California, done in 1997 [AVIRIS, 2013]. The visualizations were

done by FSPE (the proposed method).
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We used the AVIRIS Moffet Field data sets from the southern end of San Francisco

Bay, California, done in 1997 [AVIRIS, 2013].

Because some methods cannot work with large data sets, we divided this data sets

into twelve small regions, each one with 300x300x224 pixels (see Figure 3.3). For

FSPE, the low dimension space is initialized randomly within [0,1] and ε = 1x10−8.

Learning rates λ and dc are decreasing linearly and nonlinearly, respectively, through

projection process, as in the following Equations:

λ(i) = λ(0)−λ(0)
i

ncycles
(3.7)

dc(i) =
dc(0)

1+ i
(3.8)

where ncycles=1x103 is the maximum number of iterations, i= 1,2, ...,ncycles, λ(0)=

1.0 and dc(0)=1 x103.

We compared FSPE with five methods: PCA, SPE, Isomap, CDA and LLE for

all 12 regions. In the following experiments, the three channels of projected spaces,

which are carried by PCA, SPE, Isomap, CDA, LLE and FSPE, are mapped in CIE Lab

colour space. The generated colour image represents all information in 3D projected

space in a manner that is suitable with the human vision system, and we will explain

that in Section 3.5.2. The comparisons of FSPE versus PCA, SPE, Isomap, CDA and

LLE are evaluated in quantitative and visual manners.

3.5.1 Quantitative Comparison

We used two measurement methods, which are correlation metric and LC, to measure

the efficiency of the projected spaces of PCA, SPE, Isomap, CDA, LLE and FSPE. To

give a clear analysis, the results of each method will be explained individually. Some

methods depend on the parameters to get their results; for example, Isomap and LLE

use the number of neighbours k, and SPE uses the neighbour radius rc. Figure 3.4

shows the efficiency of methods by using different values of neighbourhood points,

where k = rc for all values, and, in general, the best results when the size of neighbour-

hood points is equal to 50.
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Figure 3.4: The DR methods have different efficiency when using different values of neigh-

bourhood points for Region 0.

Correlation Metric:

We measured the efficiency of the visualizations by FSPE and five other methods by

using the correlation metric. FSPE achieves better preserving the colour distance of

visualization when compared with other methods. The order of the efficiency of the

proposed method is the first in 5 regions and the second in 3 regions, as in Table 3.1.

Moreover, the average efficiency of all 12 regions indicates that our proposed method

is the better. When using the geodesic distance to compute the distance between points

in the original space, FSPE has maintained its ability in preserving the original infor-

mation, as in Table 3.2.

LC metric:

Table 3.3 shows the measurement of the results of PCA, SPE, Isomap, CDA, LLE and

FSPE, where each value in it represents the best among 10 runs. FSPE achieved a

better preserving of neighbourhood distances, where its visualizations were the better
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3. Visualization of Remote Sensing Imagery Data Sets Using FSPE

Table 3.1: By using Euclidean distance, correlation measurement values of the comparison

between FSPE and PCA, SPE, Isomap, CDA and LLE for 12 regions. The higher, the better.

PCA SPE Isomap CDA LLE FSPE

Mean 0.599 0.641 0.602 0.604 0.409 0.717

Region 0 0.691 0.696 0.525 0.550 0.325 0.863

Region 1 0.901 0.809 0.550 0.557 0.712 0.862

Region 2 0.469 0.994 0.817 0.900 0.136 0.904

Region 3 0.579 0.620 0.800 0.766 0.707 0.584

Region 4 0.673 0.641 0.646 0.648 0.368 0.794

Region 5 0.591 0.813 0.809 0.753 0.885 0.532

Region 6 0.653 0.504 0.562 0.715 0.516 0.620

Region 7 0.760 0.662 0.549 0.588 0.142 0.809

Region 8 0.442 0.671 0.414 0.128 0.277 0.619

Region 9 0.217 0.141 0.546 0.608 0.141 0.867

Region 10 0.520 0.684 0.560 0.487 0.324 0.360

Region 11 0.695 0.462 0.448 0.551 0.374 0.786

Table 3.2: By using geodesic distance, correlation measurement values of the comparison

between FSPE and PCA, SPE, Isomap, CDA and LLE for 12 regions. The higher, the better.

PCA SPE Isomap CDA LLE FSPE

Mean 0.506 0.609 0.540 0.517 0.402 0.719

Region 0 0.535 0.575 0.640 0.643 0.780 0.994

Region 1 0.900 0.811 0.544 0.630 0.714 0.863

Region 2 0.410 0.953 0.740 0.428 0.147 0.857

Region 3 0.486 0.640 0.894 0.777 0.721 0.583

Region 4 0.672 0.636 0.642 0.374 0.390 0.785

Region 5 0.211 0.486 0.225 0.426 0.539 0.464

Region 6 0.648 0.514 0.405 0.672 0.167 0.634

Region 7 0.583 0.670 0.560 0.595 0.130 0.815

Region 8 0.480 0.655 0.477 0.427 0.331 0.637

Region 9 0.119 0.153 0.375 0.318 0.153 0.890

Region 10 0.500 0.700 0.389 0.375 0.414 0.396

Region 11 0.528 0.515 0.592 0.536 0.337 0.716
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Table 3.3: Performance of DR projections measured according to the LC. The higher, the

better.

PCA SPE Isomap CDA LLE FSPE

Mean 0.249 0.293 0.205 0.214 0.095 0.347

Region 0 0.203 0.288 0.262 0.206 0.108 0.319

Region 1 0.121 0.214 0.172 0.186 0.128 0.311

Region 2 0.591 0.580 0.180 0.160 0.110 0.295

Region 3 0.106 0.115 0.161 0.242 0.100 0.239

Region 4 0.381 0.445 0.144 0.230 0.118 0.440

Region 5 0.071 0.140 0.166 0.193 0.110 0.334

Region 6 0.176 0.196 0.182 0.233 0.126 0.438

Region 7 0.193 0.193 0.255 0.285 0.040 0.227

Region 8 0.061 0.082 0.182 0.196 0.046 0.370

Region 9 0.082 0.191 0.146 0.258 0.131 0.497

Region 10 0.500 0.564 0.300 0.187 0.052 0.342

Region 11 0.503 0.504 0.311 0.186 0.068 0.347

in 6 regions, and it got the highest mean of all 12 regions. For Region 0, Table 3.4

showed FSPE has fewer false neighbourhood points and a greater number of the true

neighbourhood points, which are 2959 and 28,725, respectively. Table 3.5 explains the

summation of the false neighbourhood points and also the true neighbourhood points

in all regions. In this table, we can see the same scenario, where the better in all cases

is FSPE.

FSPE has few number of false neighbourhood points, which have zero measure-

ments; that is, PCA, SPE, Isomap, CDA and LLE in Region 0 because most of the

data points by FSPE preserve their neighbourhood relation. Thus, FSPE gets a higher

number of true neighbourhood and their mean of trustworthy measurement.

LC measurement showed that the FSPE achieves better visualization, when com-

pared with the reset of other methods, because it preserves the distance among pixels

in the original high-dimensional data sets with their corresponding colour distance in

visualization as well. In general, the drawback of other methods is that having a high

number of false colours leads to a reduction in their efficiency. In brief, we can see

that our method generates a more robust coherence structure by preserving the colour

distances of original space, whereas PCA, SPE, Isomap, CDA and LLE lose some of

that distance preserving in their visualizations.
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Figure 3.5: FSPE’s projected space of Region 0 is projected into CIE Lab colour space. The

largest standard deviation among three channels of FSPE’s projected space is chosen to be L∗

component, and the other channels are assigned to the a∗ and b∗ components.
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(a) PCA (b) SPE (c) Isomap

(d) CDA (e) LLE (f) FSPE

(g) PCA (h) SPE (i) Isomap

(j) CDA (k) LLE (l) FSPE

Figure 3.6: Gray-scale images of point-wise correlation values. The top two rows show the

colour display of a remote sensing imagery by PCA, SPE, Isomap, CDA, LLE and FSPE,

respectively. The bottom two rows presents the corresponding gray-scale display of point-wise

correlation values; the brighter, the better (i.e., higher).
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Table 3.4: LC metric. FSPE has a few number of false neighbourhood points (the fewer is the

better), which have zero measurements; that is, PCA, SPE, Isomap, CDA and LLE in Region 0

because most of the data points by FSPE preserve their neighbourhood relation. Thus, FSPE

gets a higher number of true neighbourhood.

Method
Mean of faithfulness

(Standard deviation)

No. of true

neighbour points

No. of false

neighbour point

PCA 0.109 (0.130) 7164 45405

SPE 0.203 (0.187) 17927 12134

Isomap 0.240 (0.114) 12801 9643

CDA 0.219 (0.119) 9552 12080

LLE 0.107 (0.069) 13831 7779

FSPE 0.259 (0.167) 28725 2959

Table 3.5: For all Regions: by using LC metric, comparison among methods by using the num-

ber of false neighbourhood points (the fewer is the better), and the number of true neighbour

points. Percentages of these points to other points are also shown, where the total number of

points is 12 90000.

Method True neighbour False neighbour

No. Percent No. Percent

PCA 130821 12% 443713 41%

SPE 444179 41% 151133 13%

Isomap 130882 12% 239832 22%

CDA 105031 9% 191800 17%

LLE 18336 1% 273766 25%

FSPE 488657 45% 17662 1%

3.5.2 Faithful Visualization

For visualization of data sets, we use the CIE Lab colour space that is perceptually uni-

form [Mignotte, 2012] [Lawrence et al., 2011]. However, there are many possibilities

for choosing the channels corresponding to the L∗, a∗ and b∗ components. Therefore,

we chose the most varying one for the L∗ component and the remaining two for the a∗

and b∗ components, followed by a simple linear stretching such that L∗ ∈ [0, 100] and

both a∗ and b∗ have a zero mean. In order to result in a high contrast, the L∗ component

shifts its values to fill the entire brightness range, where a small percentage (1%) of

the brightest and darkest pixels are ignored. The relations among channels are kept

through scaling a∗ and b∗ by using the scaling parameter which were used to scale
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3. Visualization of Remote Sensing Imagery Data Sets Using FSPE

L∗. Figure 3.5 shows the channels’ histogram of FSPE’s projected space with their

corresponding components of L∗a∗b∗ colour space.

As well as providing a quantitative measure of the projected space, the faithful grey

scale image by point-wise correlation metric is important to examine the reliability of

the colours in the visualization of the remote sensing imagery data sets. Figure 3.6

shows the grey scale images of the six methods. A bright pixel means that pixel i has

higher correlation γ(i), which helps to distinguish the reliable pixels of its correspond-

ing pixels in the visualization. The resulting grey scale efficiency images show that by

FSPE being brighter than those by other methods. This proves the reliability of the

colours in the resulting visualization for Region 0 of remote sensing imagery by our

proposed method.

Detection the visualization errors through a rigid body transformation:

To complete the comparison, we need to know the amount of similarities and dif-

ferences between the aforementioned methods. Rigid body transformation [Golub

and Loan, 1989] takes into consideration any differences between two visualizations.

We assumed the visualization by FSPE is a reference image (remaining stationary),

whereas visualizations by PCA, SPE, Isomap, CDA and LLE are transformed to match

the stationary image. The displacements of each point in the transformed visualization

is relative to its corresponding points in visualization by FSPE. In this case, the trans-

formed visualizations which have the best possible colour values fit to visualization by

FSPE.

Figure 3.7 shows the rigid body transformation from the SPE’s visualization to the

FSPE’s visualization for Region 0. The visual comparison between them showed that

there are several pixels in SPE’s visualization which did not match their corresponding

in visualization of FSPE.

For example, p1 and p2 have different colours in SPE’s visualization, although their

corresponding pixels in FSPE’s visualization have approximately the same colours. In

addition, p2 and p3 have approximately the same colours in SPE’s visualization, but

their corresponding pixels in FSPE’s visualization have different colours. The reasons

for that can be analysed by computing and comparing among their distances in the

original and projected spaces.

Table 3.6 shows that p1 and p2 are neighbours in original space and they are far
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SPE † FSPE

p1 p2 p3 p1 p2 p3

Figure 3.7: p1 and p2 are neighbours in the original space and they are far from p3 (see Table

3.6. SPE cannot preserve the distance between p1 and p2 in the visualization, where p2 has

false colours by getting the same colour of p3, and their colours are different than those in

p1, as in the second column in Table 3.6. FSPE preserves the distances between points by

preserving the neighbourhood relation between p1 and p2, where they obtained approximately

the same colours. p3 obtained different colours because they are projected from far away from

them.

†
Result of rigid body transformation from the SPE’s visualization to the FSPE’s visualization

Table 3.6: The distances among the three points p1, p2 and p3 in the original space and their

corresponding distance in the projected spaces of SPE and FSPE.

Original Space

(ri j)

SPE’s Projected

Space (di j)

FSPE’s Projected

Space (di j)

distance 12 0.7887 1.4278 0.3701

distance 23 1.7565 0.3133 0.5381

distance 13 1.0316 1.1276 0.8605

from p3, where (r12 < r23) and (r12 < r13). These relationships are lost in the projected

space of SPE, which projected p2 and p3 to be neighbours, and p1 was far from them.

In other words, SPE satisfied the (d12 > d23) and (d12 > d13), which means p2 is a

false neighbour to p3, and continuity error causes p1 and p2 were far away in projected
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PCA † FSPE

p1 p2 p3 p1 p2 p3

Figure 3.8: PCA versus FSPE in visualizing the Region 0. The distance between p1 and p2

was not preserved in the PCA’s visualization, (see Table 3.7). p2 has false colour by being

neighbour to p3, although they are far away in the original space. p3 is projected far away of

p1 and p2 in the FSPE’s visualization, and the projected space’s distance between p1 and p2 is

preserved with its corresponding distance in the original space.

†
Result of rigid body transformation from the PCA’s visualization to the FSPE’s visualization

Table 3.7: The distances among the three points p1, p2 and p3 in the original space and their

corresponding distance in the projected spaces of PCA and FSPE.

Original Space

(ri j)

PCA’s Projected

Space (di j)

FSPE’s Projected

Space (di j)

distance 12 0.4242 1.5473 0.6165

distance 23 1.5087 0.0066 1.2677

distance 13 1.3727 1.5407 0.8049

space.

On the other hand, FSPE is able to overcome the false neighbourhood and con-

tinuity errors. The colours in FSPE’s visualization reflect the correct relationships

between the points. For example, p1 and p2 have approximately the same colours

to indicate that they are neighbours in original space and projected space. In addi-
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CDA † FSPE

p1 p2 p3 p1 p2 p3

Figure 3.9: Colour distance between p1 and p2 is not preserved in the CDA’s visualization,

although they are neighbours in the original space (see Table 3.8). Moreover, p2 and p3 have

the convergent colours, although they are far away in the original space, therefore, p2 has false

colour. FSPE succeeded in preserving the neighbour relation between p1 and p2 with their

original space distance, and p3 are projected far away of them as in the original space.

†
Result of rigid body transformation from the CDA’s visualization to the FSPE’s visualization

Table 3.8: The distances among the three points p1, p2 and p3 in the original space and their

corresponding distance in the projected spaces of CDA and FSPE.

Original Space

(ri j)

CDA’s Projected

Space (di j)

FSPE’s Projected

Space (di j)

distance 12 0.3757 1.2342 0.2834

distance 23 1.7420 0.8527 0.8630

distance 13 1.9742 1.4842 0.6834

tion, their colours are completely different than this in p3, which satisfies the relation

(d12 < d23) and (d12 < d13).

The visual comparison between PCA’s visualization and FSPE’s visualization of

Region 0, in Figure 3.8, illustrate that many pixels in PCA’s visualization did not match

the corresponding one in the visualization of FSPE. For example, p2 and p3 have the
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Isomap † FSPE

p1 p2 p3 p1 p2 p3

Figure 3.10: Colour distance between p1 and p2 is not preserved in the Isomap’s visualization,

although they are neighbours in the original space (see Table 3.9). Moreover, p2 and p3 have

the same colours, although they are far away in the original space. Thus, p2 has false colour.

FSPE succeeded in preserving the neighbour relation between p1 and p2 with their original

space distance, and p3 are projected far away of them as in the original space.

†
Result of rigid body transformation from the Isomap’s visualization to the FSPE’s visualization

Table 3.9: The distances among the three points p1, p2 and p3 in the original space and their

corresponding distance in the projected spaces of Isomap and FSPE.

Original Space

(ri j)

Isomap’s Projected

Space (di j)

FSPE’s Projected

Space (di j)

distance 12 0.1157 1.8365 0.0315

distance 23 1.4496 0.3601 1.7107

distance 13 1.4346 2.1777 1.7059

same colours in PCA’s visualization, which are different to those of p3. Although the

colours of p1 and p3 are true, p2 obtained false colour. Table 3.7 shows the distances

among points p1, p2 and p3 in the original space were not preserved as well as in

the projected space of PCA. The distance between p2 and p3 in the projected space

(d23=0.0066) is less than their distance in the original space (r23=1.5087), which leads
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LLE † FSPE

p1 p2 p3 p1 p2 p3

Figure 3.11: LLE lets non-neighbour regions (as in p2 and p3) in the original space to be

neighbours in the visualization, and neighbour regions (as in p1 and p2) in the original space

to be non-neighbour in the visualization (see Table 3.10). FSPE preserves the neighbourhood

relation between p1 and p2 in its visualization, where they have the same colours. The non-

neighbourhood relation between them and p3 is also preserved in the visualization by giving

p3 different colour.

†
Result of rigid body transformation from the LLE’s visualization to the FSPE’s visualization

Table 3.10: The distances among the three points p1, p2 and p3 in the original space and their

corresponding distance in the projected spaces of LLE and FSPE.

Original Space

(ri j)

LLE’s Projected

Space (di j)

FSPE’s Projected

Space (di j)

distance 12 0.8688 1.9729 0.0518

distance 23 1.0139 0.6765 0.8539

distance 13 1.8755 2.4668 0.8846

p2 to be a false neighbour to p3.

In addition, the projected space of PCA was affected by a continuity error, which

caused the neighbourhood points p1 and p2 to be projected far away (r12 < d12). On

the other hand, the colours in FSPE’s visualization reflect the correct relationships
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among the points. The converged colours of p1 and p2 are completely different to this

in p3, which proves that the preserving neighbourhood distances are done as well by

FSPE.

Using CDA causes the projection of the neighbourhood points in original space as

non-neighbourhood points in projected space, and vice versa. Table 3.8 shows p1 and

p2 are neighbours in the original space and they are projected by CDA far away in the

projected space. FSPE is better in comparison with CDA because it is able to preserve

the distance between points in the projected space. Figure 3.9 shows that neighbour-

hood points p1 and p2 have approximately the same colours in FSPE’s visualization,

and their colours are different to p3’s colour. Thus, we can say the colours in FSPE

represent the correct relationships between points. In the visualization of CDA, p2 ac-

quired false colour, which is similar to p3, and the colour differences between p1 and

p2 indicate the loss of the original neighbourhood relation between them.

Figure 3.10 showed p2 has colour very close to p3, in the Isomap’s visualization,

although they are not neighbours in the original space. The difference in their distances

in the original space and the projected space, as in Table 3.9, indicates p2 was projected

to be a false neighbour to p3. In addition, the continuity error causes the neighbourhood

points p1 and p2 in the original space to be far away in the projected space, and they

obtained different colours in the visualization according to that. The DR problems are

overcome in FSPE, as in the third column in Table 3.9. In the FSPE’s visualization,

the colours of p1, p2 and p3 indicate p1 and p2 are neighbours in the original space

and the projected space, and p3 is far from them in both spaces.

LLE has false colours in some regions, for example, in Figure 3.11 where the colour

of p2 in the visualization is very close to the colour value of p3, although their distance

in the original space indicated that they did not have this type of relationship. p1 and p2

should be neighbours in the projected space, but LLE did not preserve that. Therefore,

different colours in the visualization were obtained. Table 3.10 showed that the LLE

do not preserve the original distances in its projected space, whilst FSPE achieved that

by preserving the original distance r12, r23 and r13 as well as with their corresponding

distance d12, d23 and d13 in the projected space. The colours of p1, p2, and p3 also

confirm the ability of FSPE is preserving the original information.

The visual comparison demonstrates that although the aforementioned methods

might generate satisfactory colour display for remote sensing imagery, FSPE visual-
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ization is preferable for revealing that colour display overcomes the false neighbour-

hood errors. In Chapter 6, we will apply FSPE on the GPU in order to speed up the

projection process.

Visualization of Large data sets

Figures 3.12, 3.13 and 3.14 show the comparison between the qualitative CIE Lab

visualizations of large data sets, which has dimension 1800x600x224, by PCA, CCA,

SPE and FSPE. Our method is the better among them where it is able to reveal faithful

colour variations.

3.6 Discussion

In this chapter, we showed that FSPE has the ability to visualize difficult data sets.

Therefore, in terms of visualization, our proposed method gives satisfactory results.

This ability comes from dealing adequately with the projected space. In general, a

projected space is improved through projection process, consequently, we decided to

focus on this state by using decreasing neighbourhood size in order to continue this

improvement. In each step of the projection process, the neighbourhood size is reduced

in order to keep pace with improvements in the projected space. In addition, the space

optimization is reduced gradually, with FSPE focusing, to begin with, on maintaining

a distant relationship between the points and then maintaining the nearby relationships.

Although the results in this chapter are convincing, our method cannot fully over-

come the presence of false neighbourhoods. The source of this limitation is the big

difference between the topological structures of high-dimensional data sets and of low-

dimensional space. The direct projection between them makes it impossible to preserve

all the distances between the points between two spaces. Thus, in order to overcome

this limitation, we will re-define the way of applying the DR in Chapter 4. In Chapter

5, we will show another limitation of the FSPE when using it in the classification task,

in that its results are not the best when compared with other DR methods. Thus, we

can say the best application with regard to FSPE is related to visualization.
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(a) SPE, γ = 0.801 (b) FSPE, γ = 0.923

Figure 3.12: Qualitative CIE Lab visualization of data sets with 1800x600x224 dimension.

FSPE’s visualization reveals different colour variations, and its correlation value is higher than

SPE’s visualization.
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(a) CCA, γ = 0.823 (b) FSPE, γ = 0.923

Figure 3.13: Visualizing the large data sets (1800x600x224) by FSPE is better when compared

with CCA, where the correction measurement of FSPE’s visualization is higher than CCA’s

visualization.
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(a) PCA, γ = 0.795 (b) FSPE, γ = 0.923

Figure 3.14: Linear projection for large data sets (1800x600x224) by PCA caused to lose more

information, and nonlinear projection by FSPE preserved most of the remote sensing imagery

data sets information.
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3.7 Conclusion

A new faithful dimension reduction method, called FSPE, was proposed in this chapter

to visualize a remote sensing imagery data sets. The benefit of visualizing by FSPE

is that it is able to recognize the features by preserving their colour distances between

visualization and the bands of the original data sets. The results showed FSPE can

overcome many of the problems introduced by false colours by deriving higher quality

colours in its visualization. Experiments indicated that the proposed method is better

than continuity methods such as PCA, SPE, and Isomap. In addition, the experiments

demonstrated that the proposed trustworthy method is better than traditional trustwor-

thy methods such as CDA, because the FSPE prevents false neighbourhood errors to

occur in the results. Moreover, the results proved the FSPE is better than SPE, where

the error projection is minimized with focusing on the low-dimensional space rather

than the original space. Although, FSPE succeeds in overcoming the false neighbour-

hood in many places in its visualization, it might suffer from this problem. In the next

chapter, we will redefine the DR in order to increase the efficiency of the visualization.

The main ideas presented in this chapter is accepted for publication in: Najim S.,

Lim I, Wittek P. and Jones M. FSPE: Visualisation of Hyperspectral Imagery Using

Faithful Stochastic Proximity Embedding. IEEE Geoscience and Remote Science Let-

ters. 25/3/2014.
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Chapter 4

Visualization of High-dimensional

Data Sets by Sequential

Dimensionality Reduction

In this chapter we will address the following topics:

1. Problems of the dimensionality reduction.

2. Methodology of Sequential Dimensionality Reduction (SDR),

3. Experimental results of SDR application on hyperspectral imagery.

This chapter introduces a new technique called Sequential Dimensionality Re-

duction (SDR), to visualize high-dimensional data sets, as remote sensing imagery.

The SDR is introduced to directly project the high-dimensional data sets into a low-

dimensional space. Although this idea works very well when the dimensionality of

the original data sets is small, its visualization is not efficient enough with large input

dimensions. Unlike DR, SDR redefines the problem of DR as a sequence of multiple

DR problems, each of which reduces the dimensionality by a small amount. The SDR

can be considered as a generalized idea that can be applied to any method. The SPE,

CCA and FSPE methods are chosen in this chapter because of their speed and effi-

ciency compared to other methods. The superiority of SDR over DR is demonstrated

experimentally by using correlation, LC and stress metrics. Moreover, as most DR

methods also employ DR ideas in their projection, the performance of SDR and 20 DR
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4. Visualization of High-dimensional Data Sets by SDR

methods are compared. The GPU is the best way to speed up the SDR method, where

the speed of execution has been increased by 74 times in comparison to when it was

run on the CPU.

4.1 Introduction

Due to the difference between the topological structures of data points in the high-

dimensional data sets with the topological structure of the projected space, it is difficult

to preserve the neighbourhood relations between data points. Loss of any neighbour

point could lead to an increase in the amount of error because the missing neighbour

point will occupy a place of another point in the lower space. Therefore, the amount of

error could be growing explosively when increasing the false neighbourhood. Overlap

between points is the dominate thing when direct projection from high-dimensional

data sets to low-dimensional space is still used.

This work proposes SDR to redefine the DR by a sequence of multiple DR prob-

lems, each of which reduces the dimensionality by a small amount. In contrast to the

DR method, SDR preserves the neighbourhood relations between data points of mul-

tiple reduced consecutive spaces. Thus, false neighbourhoods are reduced as much as

possible and the quality of the visualization is optimized.

4.2 Methodology: Sequential Dimensionality Reduction

The goal of the proposed method is to solve the DR by finding a representation of

N points in d space, where its neighbourhood relationships are preserved with their

corresponding relations in original space. To do that, we redefine the problem of DR

as a sequence of multiple DR problems, each of which reduces the dimensionality by

a small amount. We call this SDR.

More specifically, given X = x1,x2, ...,xn be a data with instances X ⊂ R
D. SDR

attempts to do the transformation in the following equation :

G : RD G1−→ R
D−S G2−→ R

D−2S G3−→ R
D−3S ...

Gk−→ R
d (4.1)

where d ≪ D, and S is the step of dimensionality reduction can be in the range

[1,D−1]. The transformation (Gi) attempts to project N points of (D− (i−1)S) space
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4. Visualization of High-dimensional Data Sets by SDR

into (D− i S) space. The transformation between two spaces is reasonably as close

as possible because of the similarity of dimensionality between two spaces. Thus, the

problem for (D− i S) space is solved. Efficiency of transformation permits to recur-

sively apply it until the target dimension is obtained. Therefore, the neighbourhood

relations between original points are kept carefully through a sequence of transforma-

tions until it obtains d space.

To explain the general idea of the SDR when S = 1, let’s suppose the point p j in

the v space. It is able to preserve its neighbourhood relationships when it is projected

to the v− 1 space. Thus, the amount of false neighbourhood when Gv : Rv → R
v−1

is very small because the difference between the two spaces is just one dimension. A

complete transformation from D space to d spaces is obtained by applying Equation

4.1.

The point that should be discussed is how to choose S. As we defined before, S can

be in the range [1, D−1]. For higher efficiency S = 1, where the intermediate transfor-

mation problem will be between very close topology spaces. The error is minimized,

and the problem is defined as a D− 1 DR problem. The efficiency is reduced when

S > 1, and the worst case when S = D−1 , which is defined as one DR problem.

SDR accepts as input set of N points in D space, a transformation function G, and

the amount of dimensionality reduction S. d is the dimension of lower space which

should be given. SDR algorithm recursively reduces the dimensionality of a space until

obtaining the target space, and the following steps describe that:

1. Let v = D.

2. If v ≤ d

{Stop}

3. If (v−S) < d then S = v−d

4. N points of v space is projected in next lower space ( v−S ) space by applying

G : Rv→ R
v−S.

5. let v = v−S, and go to step 2.

Briefly, SDR put the projected points in the correct location in low-dimensional

space, which leads to a reduction in the amount of error and an increase in the degree
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4. Visualization of High-dimensional Data Sets by SDR

of compliance with original space. The efficiency of SDR is clearer when the input

dimension is very high and the target dimension is very low. The length of the execu-

tion time is one of the limitations that is encountered with the SDR; therefore, using

the GPU is the most appropriate way to overcome this problem. While SPE, CCA and

FSPE methods have more advantages than other methods, we chose them to be used

with the SDR idea to generate sequential SPE (SSPE), sequential CCA (SCCA) and

sequential FSPE (SFSPE), respectively.

Sequential Stochastic Proximity Embedding (SSPE)

SPE is a nonlinear method and proceeds by calculating Euclidean distance for global

neighbourhood points. SDR with SPE generates a new method, which is SSPE, which

uses the idea of SDR and SPE’s cost function. While SPE’s cost function is as a

minimized function [Agrafiotis et al., 2010] when transforming D space to d space

(d≪D), SSPE will be minimizing for the same reasons because nothing is changed in

relation between D and d spaces. Thus, through SSPE’s projection process, the points

in the next space are updated according to Equation 4.2 when they are projected from

v space:

y j(v)← y j(v)+λ(t) S(ri j(v))
ri j(v)−di j(v)

di j(v)+ ε
(y j(v)− yi(v)) (4.2)

S(ri j(v)) =







1 i f (ri j(v) ≤ rc) ∨ ((ri j(v)> rc) ∧ (di j(v)< ri j(v)))

0 Otherwise

(4.3)

where λ(t) is learning rate at t time, and ε a tiny number used to avoid division by zero

(we used ε = 1x10−8). ri j(v) = ||xi(v)− x j(v)|| and di j(v) = ||yi(v)− y j(v)||.

Sequential Curvilinear Component Analysis (SCCA)

CCA attempts to preserve the pairwise distances in low-dimensional space with their

corresponding pairwise distance in original high-dimensional data sets. SCCA is gen-

erated when CCA is applied to the SDR idea. SCCA uses the same equation of CCA
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4. Visualization of High-dimensional Data Sets by SDR

when v space is projected to next space, as in equation below:

φ(Y (v)) = ∑
i< j

(ri j(v)−di j(v))
2 F(di j(v),λt) (4.4)

where ri j(v) = ||xi(v)−x j(v)|| and di j(v) = ||yi(v)−y j(v)|| are the Euclidean distances

between data points i and j in v and next spaces, respectively. F is a bounded decreasing

function, and allows SCCA to preserve the distances on different scales depending on

the time-dependent value of λt , which is started with a large value to cover all data

points, and then gradually decreased throughout processing. It is defined as:

F(di j(v),λt) =







1 i f di j(v)≤ λt

0 Otherwise
(4.5)

Sequential Faithful Stochastic Proximity Embedding (SFSPE)

The benefit of visualizing by FSPE, which is proposed in the previous chapter, is that

it is able to recognize the features by preserving their colour distances between visu-

alization and the original data sets. FSPE can overcome the false colours as much as

possible to derive reliable colours in its visualization, as we conducted in the previous

chapter. Although FSPE is a good method, applying it with SDR to generate SFSPE

gives the method extra power to overcome the false neighbourhood errors. The SF-

SPE method uses the same function of FSPE, as in Equation 4.6, when projecting next

space from v space.

y j(v)← y j(v)+λ(t) T (di j(v))
ri j(v)−di j(v)

di j(v)+ ε
(y j(v)− yi(v)) (4.6)

T (di j(v)) =



















1 i f (di j(v) ≤ dc(t)) ∨ ((di j(v)> dc(t)) ∧

(di j(v)< ri j(v)))

0 Otherwise

(4.7)

where dc(t) is a neighbour radius that decreases over time. ri j(v) = ||xi(v)− x j(v)||

and di j(v) = ||yi(v)− y j(v)||.
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4. Visualization of High-dimensional Data Sets by SDR

Table 4.1: Methods employed in comparison. The first column contains the name of methods,

second column shows the type of method (linear (L) or nonlinear (NL)), third column shows

the source of reference and the symbol X in the fourth column indicates the original codes have

been used.

Method Type Source Originality

PCA L [Jolliffe, 2002] X

CCA L [Demartines and Hrault, 1997]

CDA NL [Lee et al., 2004] X

Factor analysis NL [Darlington, 1999]

Fast MVU NL [Weinberger and Saul, 2006]

Hessian LLE NL [Donoho and Grimes, 2005]

Isomap NL [Tenenbaum et al., 2000] X

Kernel PCA NL [Taylor and Christianini, 2004]

Laplacian NL [Belkin and Niyogi, 2003]

LLC NL [Shi and Malik, 2000]

LLE NL [Roweis and Saul, 2000] X

LLTSA NL [Zhang et al., 2007]

LPP L [Zhi and Ruan, 2008]

LTSA NL [Zhang and Zha, 2004]

NPE NL [He et al., 2005] X

Prob PCA NL [Tipping and Bishop, 1999]

SPE NL [Rassokhin and Agrafiotis, 2003] X

SNE NL [Bunte et al., 2012] X

tSNE NL [Maaten and Hinton, 2008] X

FSPE NL In the previous chapter X

4.3 Experimental Results

In this section, SDR and DR are evaluated in quantitative and qualitative manners. The

performance of the proposed method is analysed using the remote sensing imagery

data sets. The SDR idea is implemented on SPE, CCA and FSPE, which are called

SSPE, SCCA and SFSPE, respectively, and compared with their original DR version.

The comparison SDR with 20 DR methods is also included, and Table 4.1 shows infor-

mation about those methods.

We implemented our method in Microsoft Visual Studio C++ 2008 with CUDA 4.2

in Windows 7. The hardware included Intel(R) i7-930 CPU clocked at 2.80 GHz, with

12 GBytes of main memory. The graphics processor was an NVIDIA GeForce GTX

480 with a buffer size of 1 GByte. We used the AVIRIS Moffet Field data sets from
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4. Visualization of High-dimensional Data Sets by SDR

the southern end of San Francisco Bay, California, done in 1997 [AVIRIS, 2013]. We

divided this data sets into small regions, each one with 300x300x224 pixels.

Tables 4.2, 4.3 and 4.4 shows that SSPE, SCCA and SFSPE, respectively, achieve

good values with correlation, LC and stress metrics, where, for all regions, the corre-

lation and LC values by our proposed method are highest, and the same is also true for

stress values in which it has given lesser values.

Table 4.2: Results of comparison the SDR method (represented by SSPE), when S = 1, with

the DR method (represented by SPE). The proposed method got the highest correlation and

LC, and less stress values in all regions. (Correlation and LC: the highest is a bester, Stress:

the lowest is a better).

Correlation LC Stress

SPE SSPE SPE SSPE SPE SSPE

Mean 0.641 0.948 0.293 0.440 0.099 0.018

Region 0 0.696 0.998 0.288 0.421 0.158 0.002

Region 1 0.809 0.837 0.214 0.238 0.254 0.035

Region 2 0.994 0.936 0.580 0.613 0.011 0.007

Region 3 0.620 0.788 0.115 0.312 0.060 0.006

Region 4 0.641 0.966 0.445 0.485 0.150 0.066

Region 5 0.813 0.989 0.140 0.277 0.110 0.016

Region 6 0.504 0.998 0.196 0.450 0.001 0.001

Region 7 0.662 0.984 0.193 0.382 0.080 0.006

Region 8 0.671 0.994 0.082 0.408 0.006 0.004

Region 9 0.141 0.991 0.191 0.544 0.289 0.045

Region 10 0.684 0.893 0.564 0.578 0.030 0.016

Region 11 0.462 0.996 0.504 0.576 0.190 0.014

To compare the SDR and DR methods in a qualitative manner, the visualizations

of the DR methods are compared with their corresponding visualizations of the SDR

methods. In this chapter, Region 0, Region 4 and Region 5 are chosen to show the

comparison SPE with SSPE, CCA with SCCA and FSPE with SFSPE.. In Figure 4.1,

we can see the performances of the proposed methods in previous tables for Region 0

are confirmed here. The SSPE, SCCA and SFSPE show more details than SPE, CCA

and FSPE, where the SDR methods overcome the false colours as well as possible.

We can explain the quality of SDR by using point-wise correlation images, which

was proposed in the previous chapter. For Region 0, in Figure 4.1, the correlation

images of visualizations by SPE and CCA show they have many false colours which
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4. Visualization of High-dimensional Data Sets by SDR

(a) Visualizations by Dimensionality Reduction Methods

SPE CCA FSPE

(b) Visualizations by Sequential Dimensionality Reduction Methods

SSPE SCCA SFSPE

(c) Correlation of Dimensionality Reduction Methods’ Visualization

SPE CCA FSPE

(d) Correlation of Sequential Dimensionality Reduction Methods’ Visualization

SSPE SCCA SFSPE

Figure 4.1: a) Visualizations of regions 0 by using DR methods (SPE, CCA and FSPE); b) Vi-

sualizations by SDR methods (SSPE, SCCA and SFSPE); c) Correlation images of DR meth-

ods’ visualizations; and d) Correlation images of SDR’s methods. The SDR’s visualizations

show more details than the DR’s visualizations and their correlation images show the quality

of the points in the corresponding visualization colours.
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Table 4.3: Results of comparison the SDR method (represented by SCCA), when S = 1, with

the DR method (represented by CCA). The proposed method got the highest correlation and

LC, and less stress values in all regions. (Correlation and LC: the highest is a bester, Stress:

the lowest is a better).

Correlation LC Stress

CCA SCCA CCA SCCA CCA SCCA

Mean 0.654 0.904 0.308 0.379 0.195 0.014

Region 0 0.873 0.896 0.308 0.419 0.011 0.002

Region 1 0.754 0.909 0.215 0.226 0.334 0.021

Region 2 0.501 0.894 0.083 0.253 0.869 0.012

Region 3 0.679 0.994 0.329 0.412 0.038 0.002

Region 4 0.551 0.865 0.384 0.406 0.012 0.002

Region 5 0.514 0.765 0.192 0.262 0.097 0.032

Region 6 0.545 0.897 0.349 0.460 0.002 0.002

Region 7 0.642 0.894 0.474 0.413 0.103 0.008

Region 8 0.699 0.898 0.311 0.414 0.057 0.018

Region 9 0.798 0.921 0.421 0.536 0.213 0.006

Region 10 0.598 0.989 0.306 0.376 0.284 0.019

Region 11 0.698 0.921 0.318 0.375 0.319 0.047

Table 4.4: Results of comparison the SDR method (represented by SFSPE), when S = 1, with

the DR method (represented by FSPE). The proposed method got the highest correlation and

LC, and less stress values in all regions. (Correlation and LC: the highest is a bester, Stress:

the lowest is a better).

Correlation LC Stress

FSPE SFSPE FSPE SFSPE FSPE SFSPE

Mean 0.717 0.981 0.347 0.443 0.031 0.004

Region 0 0.863 0.998 0.319 0.433 0.001 0.001

Region 1 0.862 0.905 0.311 0.313 0.033 0.011

Region 2 0.904 0.999 0.295 0.356 0.028 0.017

Region 3 0.584 0.997 0.239 0.435 0.036 0.003

Region 4 0.794 0.977 0.440 0.437 0.012 0.004

Region 5 0.532 0.958 0.334 0.387 0.010 0.009

Region 6 0.620 0.993 0.438 0.512 0.052 0.001

Region 7 0.809 0.997 0.227 0.451 0.036 0.005

Region 8 0.619 0.995 0.370 0.468 0.036 0.000

Region 9 0.867 0.976 0.497 0.541 0.019 0.001

Region 10 0.360 0.984 0.342 0.437 0.047 0.001

Region 11 0.786 0.997 0.347 0.543 0.058 0.000
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they are incorrectly visualized. The point-wise correlation image of visualizations by

SSPE and SCCA show the false colours have been successfully overcome. Although

FSPE’s point-wise correlation image has higher quality, the SFSPE’s point-wise corre-

lation images are better. The same scenarios are achieved for Region 4 and Region 5

in Figures 4.2 and 4.3, respectively, where SSPE, SCCA and SFSPE were proven to

show the correct colours.

The results of comparisons between 20 DR methods and 3 SDR methods for Re-

gion 0, Region 4 and Region 5 as shown in Table 4.5, and Figure 4.4 show the vi-

sualizations of Region 0 by these methods. The results confirmed and supported our

aforementioned discussion about the quality of the proposed method. Although SPE

and CCA are not the best among the other methods, SSPE and SCCA are much better

in correlation, LC and stress measurement values. Moreover, FSPE is one of the better

among 20 DR methods in preserving neighbourhood relationships, but SFSPE is bet-

ter than that. Figure 4.5 shows average of correction and stress metrics values, for all

regions. The highest correlation and less stress values are achieved by SDR methods

(SSPE, SCCA and SFSPE).

Speed is the next important item that should be addressed. The DR idea is much

faster than our proposed method. Thus, the GPU is the best way to speed up the SDR

method; that is, where the speed of execution has been increased by 74 times than

when it ran on the CPU, as in Table 4.6 and Figure 4.6. Thus, the speed problem

that occurs in SDR is solved. Figure 4.7 shows that the efficiency of the DR methods

(represented by SPE, CCA and FSPE) are not affected by increasing their iteration

number to be equal to the SDR methods (SSPE, SCCA and SFSPE). The SDR methods

are decreasing through the projection process.

Even though our method gave good results when the sequences of multiple DR

were reduced by amount (S = 1), this amount can be larger than one. However, the

efficiency of SDR is reduced when S is increased, as in Figure 4.8.

4.4 Conclusions

A new method called SDR has been proposed in this chapter to visualize remote sens-

ing imagery. Theoretically, we illustrated that SDR maintains and preserves the re-

lations among neighbour points in low-dimensional space. The results showed the

accuracy of the proposed SDR, which leads to a better visualization with minimum
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(a) Visualizations by Dimensionality Reduction Methods

SPE CCA FSPE

(b) Visualizations by Sequential Dimensionality Reduction Methods

SSPE SCCA SFSPE

(c) Correlation of Dimensionality Reduction Methods’ Visualization

SPE CCA FSPE

(d) Correlation of Sequential Dimensionality Reduction Methods’ Visualization

SSPE SCCA SFSPE

Figure 4.2: Visualization of Region 4 in remote sensing imagery data sets by SDR methods are

better than their corresponding DR methods. Gray-scale efficiency image by point-wise corre-

lation metric showed that the preserving original information is very high with SDR methods,

especially with SFSPE method.
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(a) Visualizations by Dimensionality Reduction Methods

SPE CCA FSPE

(b) Visualizations by Sequential Dimensionality Reduction Methods

SSPE SCCA SFSPE

(c) Correlation of Dimensionality Reduction Methods’ Visualization

SPE CCA FSPE

(d) Correlation of Sequential Dimensionality Reduction Methods’ Visualization

SSPE SCCA SFSPE

Figure 4.3: SDR methods generate higher quality visualizations of Region 5, and SFSPE

is better than SSPE and SCCA. More details appeared in their visualizations because their

ability in preserving original information. The grey-scale efficiency images showed that the

DR methods lost more information, which caused some of the colours in their visualizations

not to be true. 68
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Table 4.5: Correlation, LC and stress values of comparisons among 23 methods for three

regions (Region 0, Region 4 and Region 5). SSPE, SCCA and SFSPE , when S = 1, are the

best in all cases, where they have higher correlation and lesser stress values than other methods.

(Correlation: the highest is a bester, LC: the highest is a best, Stress: the lowest is a better).

Correlation LC Stress

Method R 0 R 4 R 5 R 0 R 4 R 5 R 0 R 4 R 5

PCA 0.691 0.673 0.695 0.091 0.125 0.072 0.071 0.137 0.430

CCA 0.873 0.551 0.514 0.308 0.384 0.192 0.011 0.127 0.097

CDA 0.550 0.748 0.751 0.251 0.052 0.057 0.570 0.118 0.221

Fact analysis 0.827 0.420 0.653 0.232 0.188 0.218 0.090 0.388 0.032

Fast MVU 0.336 0.399 0.003 0.013 0.028 0.009 0.350 0.568 0.303

Hessian LLE 0.265 0.291 0.003 0.011 0.010 0.009 0.072 0.543 0.213

Isomap 0.525 0.656 0.448 0.213 0.070 0.055 0.072 0.113 0.144

Kernel PCA 0.697 0.768 0.594 0.054 0.071 0.039 0.044 0.096 0.046

Laplacian 0.240 0.619 0.581 0.015 0.021 0.036 0.108 0.177 0.097

LLC 0.243 0.339 0.320 0.010 0.017 0.010 0.242 0.184 0.352

LLE 0.325 0.368 0.374 0.078 0.039 0.010 0.071 0.145 0.286

LLTSA 0.324 0.428 0.208 0.013 0.010 0.006 0.108 0.175 0.097

LPP 0.752 0.605 0.660 0.077 0.119 0.077 0.112 0.178 0.097

LTSA 0.282 0.284 0.217 0.012 0.008 0.006 0.112 0.161 0.097

NPE 0.398 0.314 0.334 0.027 0.008 0.007 0.108 0.175 0.094

Prob PCA 0.474 0.641 0.716 0.137 0.157 0.136 0.076 0.130 0.180

SPE 0.696 0.641 0.810 0.288 0.445 0.140 0.158 0.150 0.110

SNE 0.395 0.642 0.730 0.030 0.031 0.023 0.256 0.156 0.123

tSNE 0.581 0.437 0.648 0.037 0.027 0.024 0.387 0.118 0.256

FSPE 0.863 0.794 0.532 0.319 0.440 0.334 0.001 0.012 0.010

SSPE 0.997 0.966 0.989 0.421 0.485 0.277 0.002 0.066 0.016

SCCA 0.896 0.865 0.765 0.419 0.406 0.262 0.002 0.002 0.032

SFSPE 0.998 0.977 0.958 0.433 0.437 0.387 0.001 0.004 0.009

Table 4.6: The computation time, in seconds, of the SDR methods in the CPU and the GPU.

the GPU is the best way to speed up the SDR methods; that is, where the speed of execution

has been increased by approximately 74 times than when it ran on the CPU.

CCA SCCA SPE SSPE FSPE SFSPE

CPU 15.519 3857.907 12.416 3107.147 12.416 3107.147

GPU 52.210 42.050 42.050
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(a) PCA (b) CCA (c) CDA (d) Fact ana (e) F MVU

(f) HLLE (g) Isomap (h) KPCA (i) Laplacian (j) LLC

(k) LLE (l) LLTSA (m) LPP (n) LTSA (o) NPE

(p) Prob PCA (q) SPE (r) SNE (s) tSNE (t) FSPE

(u) SSPE (v) SCCA (w) SFSPE

Figure 4.4: Visualization of Region 0 by using 20 DR methods and 3 SDR methods. Ac-

cording to Table 4.5, the worst visualization is achieved by the Laplacian method, and the

visualizations’ quality of SSPE, SCCA and SFSPE are the better among them.
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Figure 4.5: The average of comparisons, in the Table 4.5, of 3 SDR methods (SSPE, SCCA

and SFSPE) and 20 DR methods. SDR methods get the highest correlation and the lowest

stress values.
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Figure 4.6: The execution times of SDR methods in CPU (SCCA c, SSPE c and SFSPE c) are

very high, and the role of using GPU was very positive in increasing the speed of SDR methods

(SCCA g, SSPE g and SFSPE g), as in the Table 4.6. Thus, for Region 0, the execution speed

of SDR methods are acceptable when comparing that with those of DR methods.
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Figure 4.7: DR and SDR use the same number of iterations. In DR, there is no significant

impact on the change in DR’s efficiency through iterations, but the stress is gradually reduced

with SDR.
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Figure 4.8: The correlation measurement value of SSPE is very high (which is equal to 0.991

for region 9) when S (amount of DR) is equal to 1. The efficiency of SSPE is reduced when

this reduction amount is greater than 1, and the lowest correlation value is 0.141 when the

reduction amount is equal to 223.

false colours compared to the direct projection of DR method, where those results

were confirmed by comparisons of our method with 20 other methods. It has been also

demonstrated that the speed of SDR on the GPU is much faster than it is on the CPU.

The main ideas presented in this chapter have been published in: Najim S. and Lim

I. (2014). Visualization of Remote Sensing Imagery by Sequential Dimensionality

Reduction on Graphics Processing Unit. In Proceedings of the 5th International Con-

ference on Information Visualization Theory and Applications (IVAPP 2014), , pages

71-79, Lisbon, Portugal, 5-8 January.
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Chapter 5

Faithful Visualization of Different

Data Sets

In this chapter we will address the following topics:

1. Unfolding the 3 dimensions of a curved cylinder data sets.

2. Projecting the 560 dimensions of a human face data sets into two dimensions.

3. Representing and classifying the two networks into two dimension space.

4. Conclusion.

5.1 Introduction

Many well-known and promising DR methods are used in visualisation. However, the

results might face the problem of a false neighbourhood, which could lead to incorrect

analysis. Our suggested methods, FSPE and SDR, can be used to overcome these errors

as far as possible. FSPE and SDR are able to produce visualisations by preserving the

corresponding point distances between the projected space and the original data sets

as much as possible.

In this chapter, we will apply our proposed methods, FSPE and SDR, to reduce

the dimensionality of the experimental and real data sets. The comparison of 20 DR

methods will be based on the three measurement metrics: correlation, LC and stress.
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5. Faithful Visualization of Different Data Sets

To apply SDR, we will select SFSPE. The GPU application was applied in this chap-

ter to accelerate the projection process. More details about GPU application will be

provided in Chapter 6.

The results show the ability of our methods to preserve neighbourhood relation-

ships, and to reveal much interesting information. The large dimensions of the human

face data sets were reduced to two dimensions by our method, and they are better

when compared with the results of other methods. The comparison with the experi-

mental data sets, as three dimensions of a curved cylinder, show the ability of FSPE to

unfold these complex data sets and, at the same time, to preserve most of the informa-

tion of the original data sets. In the network classification, our methods are not always

the best, but their classifications are acceptable.

(a) Curved cylinder data sets (b) Frey face data sets

Figure 5.1: a) Three dimension of curved cylinder is described by x = (7 +
2 cos(u)) cos(v), y = (7+ 2 cos(u)) sin(v), z = 2 sin(u), where u and v are two dimension

random numbers in the interval [0, 12.5664] and [0, 4.7124], respectively. The total number of

points is 3200. b) Sample images of Frey face data sets. These data sets consist of 1965 images

(each image in 20 x 28 gray scale pixels) of a single person face extracted from a digital movie.

These data sets in the dimension 560.
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5. Faithful Visualization of Different Data Sets

5.2 Data Sets

1. Curved cylinder data sets: Figure 5.1(a) shows these data sets. The goal is to

unfold these data sets into two dimensions. The colours are added to the points

to show their locations in the unfolded space.

2. Human face data sets: Figure 5.1(b) shows a sample of the images in the Fray

face data sets. These data sets are a short video for Frey with different facial

expressions. They have 1965 images, and the size of each one is 20x28. The

images of these data sets will be projected into two dimensions to put them in a

sequence close to that in the video clip. these data sets are available at

http://www.cs.nyu.edu/ roweis/data.html.

3. Network: Two networks will be classified by DR. The first network, American

College Football, is formed by teams in nodes, and the two teams are connected

by edge if they have played each other that season. This network has 115 nodes

(teams) and 613 edges (games). The goal is to find a two-dimensional represen-

tation to classify these data sets. It is available at

https://Networkdata.ics.uci.edu/data.php?id=5.

The Primary School Network is the second data sets and represents the relation-

ship between students in different classes. This network has 10 classes, with

nine of them being student classes and one being a teacher class. This network

is available at

http://www.sociopatterns.org/datasets/primary-school-cumulative-Networks/.

5.3 Unfolding The Curved Cylinder Data Sets

Figure 5.2 shows the unfolded space of the three dimensions of the curved cylinder

data sets which are carried by the PCA, CCA, CDA, Isomap, LLE, SPE, tSNE and

FSPE methods, and the results of the other methods are in Appendix A (in the Figures

1 and 2). Many methods cannot unfold these data sets, for example, Factor analysis,

FastMVU, Hessian LLE, Laplacian, LLC and LLTSA. Other methods can unfold these

data sets, but the results are not as efficient as they should be. For example, the linearity

of PCA causes a compression of the projected space rather than its unfolding. Curved
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PCA CCA

y1 y1

CDA Isomap

y1 y1

LLE SPE

y1 y1

tSNE FSPE

y1 y1

Figure 5.2: Unfolded space of a three-dimensional curved cylinder by PCA, CCA, CDA,

Isomap, LLE, SPE and tSNE and FSPE. The best unfolded space is the one that preserves

the neighbourhood relations between points. The colour of each point is the same colour of

its corresponding point in the original data sets, as shown in Figure 5.1(a). Therefore, these

colours help us to see how FSPE’s unfolded spaces are consistent and do not have any type of

tearing or flattening.
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PCA CCA

CDA Isomap

LLE SPE

tSNE FSPE

Figure 5.3: The grey-scale efficiency images by the point-wise correlation metric of the un-

folded space of curved cylinder in Figure 5.2. The bright white of most points in the FSPE’s

result indicates that the neighbourhood relations of these points are preserved.
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Table 5.1: Unfolded spaces, in Figure 5.2, of the curved cylinder data sets by using 20 meth-

ods are measured by correlation, LC and stress metrics. The measurement results show that our

method (FSPE) gets satisfactory results, where it got the highest correlation and LC measure-

ment values, and the lowest stress error. (Correlation and LC: the highest is a bester, Stress:

the lowest is better)

Method Correlation LC Stress

PCA 0.9189 0.5311 0.2405

CCA 0.7848 0.8850 0.1935

CDA 0.7190 0.8760 0.2046

Factor analysis 0.8621 0.1586 0.1893

FastMVU 0.2683 0.1709 0.3260

Hessian LLE 0.8474 0.2530 0.2170

Isomap 0.9799 0.5092 0.0489

Kernel PCA 0.9149 0.5254 0.2663

Laplacian 0.8389 0.2355 0.3542

LLC 0.0423 0.1705 0.4866

LLE 0.8665 0.5185 0.2007

LLTSA 0.9189 0.5311 0.2405

LPP 0.5901 0.3892 0.2612

LTSA 0.8472 0.2539 0.2386

NPE 0.4630 0.3900 0.2896

Prob PCA 0.8457 0.5218 0.2100

SPE 0.9779 0.6308 0.0716

SNE 0.9431 0.5706 0.0977

tSNE 0.8768 0.8230 0.1909

FSPE 0.9870 0.8855 0.0161

cylinder properties can be seen in LPP, NPE and SNE, but they could not unfold the

data. Unfolding shapes by SPE is different because neighbourhood relations among

points are preserved in some regions, but they overlap in other locations of its unfolded

space.

Among the 20 methods, four CCA, CDA, tSNE and FSPE can unfold the curved

cylinder data sets into two dimensions. The projected spaces by CCA and CDA are torn

into four and three parts, respectively. Thus, the cohesion properties of the unfolded

spaces are lost. The best unfolded space by tSNE is worse than that of CCA and CDA,

because it is torn into several parts. The unfolded space is done by FSPE, where the

cohesion of its unfolded shape is kept. Preserving neighbourhood relations by FSPE
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5. Faithful Visualization of Different Data Sets

overcomes the problems of tearing and overlapping.

In a quantitative comparison, Table 5.1 shows the results of the comparisons among

the 20 methods by using correlation, LC and stress metric measurements. FSPE got

fewer errors in stress measurement, which is 0.0161, and got higher degrees of pre-

serving faithfulness distance in correlation and LC measurements, which are 0.9870

and 0.8855, respectively. The worst results were obtained by LLC, in correlation and

stress metrics, and Factor analysis, in the LC metric. The grey-scale efficiency images

by point-wise correlation in Figure 5.3, and in the Appendix A (in the Figures 3 and

4) for other methods, show the locations of the high- and low-efficiency points in the

unfolded space. They prove what has been achieved by our method, where FSPE can

overcome the false neighbourhood errors as well. Most of its points are bright white to

show their ability to preserve the neighbourhood distances of the curved cylinder data

sets.

5.4 Projecting The Frey Face Data Sets into Two di-

mensional Space

In Figures 5.4 and 5.5, the 560 dimensions of the Frey face data sets are projected

into a two-dimensional space by using our proposed methods (FSPE and SFSPE). The

results of the other 19 methods are in Appendix A (in the Figures 5 and 6). Table 5.2

shows that the SFSPE method is better than the other methods because that method got

the highest values in the correlation and LC measurement metrics, which are 0.8296

and 0.5858, respectively, and lowest error in the stress metrics, which is 0.1089. The

FSPE method is the second-best method. The worst methods used to reduce the Frey

face data sets into two dimensions are Kernel PCA, Hessian LLE and Laplacian, de-

pending, respectively, on the correlation, LC and stress metrics.

In Figure 5.4, we show that FSPE was able to classify images based on the amount

of similarity. Images that show a person as he looks to the left side are projected at

the top of the projected space. They are, in turn, classified into two classes: The left

represents the state of happiness, and the right represents the state of unhappiness.

We also note that showing the tongue occurred in the circumference of the state of

unhappiness. Images that show a person as he looks to the right side are projected
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5. Faithful Visualization of Different Data Sets

Table 5.2: The results of reducing the dimensionality of the Frey face data sets into two di-

mensions, which are carried by 21 dimension reduction methods, are measured by using the

correlation, LC and stress metrics. The measurement results show that our methods (FSPE and

SFSPE) got the highest values in the correlation and LC measurements, and the lowest errors

in stress measurement. (Correlation and LC: the highest is better, Stress: the lowest is better)

Method Correlation LC Stress

PCA 0.7656 0.2216 0.2773

CCA 0.7719 0.3854 0.1246

CDA 0.7166 0.4159 0.1241

Factor analysis 0.7462 0.2304 0.1757

FastMVU 0.3634 0.0772 0.9978

Hessian LLE 0.0130 0.0125 0.9969

Isomap 0.7805 0.2522 0.2436

Kernel PCA 0.0030 0.0535 1.0000

Laplacian 0.6956 0.3103 1.0000

LLC 0.1059 0.2527 0.9965

LLE 0.4424 0.1111 0.9999

LLTSA 0.0130 0.0125 0.9999

LPP 0.3422 0.0869 1.0000

LTSA 0.0037 0.0130 0.9999

NPE 0.6990 0.1161 0.9999

Prob PCA 0.7609 0.2350 0.9937

SPE 0.6242 0.0762 0.9984

SNE 0.0059 0.0138 0.7547

tSNE 0.6591 0.5779 0.8527

FSPE 0.8105 0.5740 0.1193

SFSPE 0.8296 0.5858 0.1089

in the lower part of the projected space. These images, in turn, separate the states of

happiness from those of unhappiness, as the images of the first and second states are

put in the left and the right of the projected space, respectively. The last thing that can

be observed, when a person looks forward, is that the images are placed in the middle

of the projected space.

SFSPE, in Figure 5.5, has maintained a relationship between the images, where

they are divided into three classes. In the first class, when a person looks to the right,

the images have been projected in the left side of the projected space. In the second

class, when a person looks to the right, the images have been projected in the left of

the projected space. The state of happiness in the images of first and second classes
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5. Faithful Visualization of Different Data Sets

Figure 5.4: Projecting the Frey face data sets into 2-dimensional space by using FSPE.
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Figure 5.5: Projecting the Frey face data sets into 2-dimensional space by using SFSPE.
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5. Faithful Visualization of Different Data Sets

a) FSPE

b) SFSPE

Figure 5.6: Grey-scale efficiency image by the point-wise correlation metrics of results in

Figures 5.4 and 5.5 by our suggested methods. The number of dark points in the projected

space of FSPE and SFSPE is fewer than those by other methods, which are in Appendix A (in

Figure 3 and 4).

85
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was at the top, and the state of unhappiness at the bottom. In the centre of the projected

space, the images of a person as he looks forward were projected.

Figure 5.6 shows the grey-scale efficiency images by the point-wise correlation

metrics of the results in Figures 5.4 and 5.5, and the grey-scale efficiency images of

other methods, in the Appendix A (in the Figures 7 and 8). We can see that the number

of dark points in the results of FSPE and SFSPE is less than those in other methods,

which indicates that the proposed methods are minimising false neighbourhood error

as much as possible.

5.5 Network Classification

Classifying a network is a very important step in developing a better understanding,

recognition and clarification of the relationship between datapoints so as to allow a

good analysis. In addition, classification might be important as a means of reducing

the number of comparisons and focusing on the regions of interest.

First Network

The American College Football Network considers the games played between 115

teams in the year 2000. There is a priori knowledge about gathering these teams into

groups. DR methods can classify this network by reducing its dimensionality into a

small number of dimensions where most of the information is concentrated. In this

section, we will evaluate the performance of FSPE and SFSPE in classifying this net-

work, and compare them with 19 DR methods.

Figure 5.7 shows six of the low-dimensional representations, which are carried by

PCA, Prob PCA, SNE, tSNE, FSPE and SFSPE, of the American College Football

Network. The classification of this network is clear in this figure. We can see the

classification by SNE, tSNE, FSPE and SFSPE is better than by PCA and Prob PCA.

We measured the efficiency of 21 results by using correlation, LC and stress metrics,

as shown in Table 5.3. Although FSPE and SFSPE have got higher correction and

lower stress values, SNE is better when using the LC metric. Thus, in classification,

we cannot say that our methods are the best, because some other methods are better.

However, our methods obtained an acceptable classification for this network, while
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PCA Prob PCA

SNE tSNE

FSPE SFSPE

Figure 5.7: Low-dimensional representation of the American College Football Network by

PCA, Prob PCA, SNE, tSNE, FSPE and SFSPE. The best representation is the one that pre-

serves neighbourhood relations between points. The points which have the same colours are

teams belonging to the same group.
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PCA Prob PCA

SNE tSNE

FSPE SFSPE

Figure 5.8: The grey-scale efficiency images by the point-wise correlation metric of the low-

dimensional representations of the American College Football Network in Figure 5.7. The

bright white points indicate that the neighbourhood relations of these points are preserved.
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Table 5.3: Measuring the low-dimensional representation of the American College Football

Network, which was carried out by 21 methods, by using correlation, LC and stress metrics.

(Correlation and LC: the highest is better, Stress: the lowest is better)

Method Correlation LC Stress

PCA 0.673 0.579 0.429

CCA 0.640 0.529 0.543

CDA 0.591 0.594 0.176

Factor analysis 0.462 0.515 0.616

FastMVE 0.312 0.362 9.363

Hessian LLE 0.294 0.417 0.579

Isomap 0.582 0.512 0.836

Kernel PCA 0.156 0.356 0.948

Laplacian 0.613 0.598 0.976

LLC 0.189 0.246 0.880

LLE 0.568 0.545 0.926

LLTSA 0.306 0.575 0.941

LPP 0.449 0.499 0.983

LTSA 0.306 0.575 0.946

NPE 0.463 0.493 0.952

Prob PCA 0.670 0.577 0.327

SPE 0.638 0.567 0.290

SNE 0.705 0.638 0.285

tSNE 0.667 0.571 1.693

FSPE 0.731 0.602 0.153

SFSPE 0.766 0.585 0.083

some methods failed in this task. The relationship between correlation and stress met-

rics is shown in Figure 5.9, which shows that the efficiency of some visualisations is

not good, in that these visualisations generate a large amount of error, as in the case

of Kernel PCA, LLC, FastMVU, LTSA, LLTSA and Hess LLE. In addition, we can

show that some methods have a high degree of efficiency using the correlation metric

and, at the same time, a very large error, as in the case of the tSNE and the Laplacian

method. Other methods have remained in the middle in that they are not as efficient

as expected for their results to be relied on, but their results are not so bad that they

cannot be rejected at all.

When we compare the representation of these data sets, as shown in Figure 5.7, to

determine the amount of false neighbourhood nodes, we show that the grey-scale effi-
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Figure 5.9: The results of the comparisons, in Table 5.3, of our methods (FSPE and SFSPE)

get the highest correlation and the lowest stress values.

ciency image as measured by the point-wise correlation metric, gives a full explanation

of this subject. In Figure 5.8, the dark points refer to the lost neighbourhood relation-

ships with their neighbours. The evaluation of the representation of PCA, Prob PCA,

SNE and tSNE methods indicates that many nodes are false nodes. Grey-scale effi-

ciency images of our proposed methods show that most of the points are the brighter

white ones, which prove that the points could maintain their neighbourhood relation-

ships as they were in the original space.

Second Network

The dimension of the Primary School Network is 236. The DR will be used to reduce

this high degree of dimensionality into a 2-dimensional space. This network consist of
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Table 5.4: Measuring the low-dimensional representation of the second network, which was

carried out by 21 methods, by using correlation, LC and stress metrics. (Correlation and LC:

the highest is better, Stress: the lowest is better)

Method Correlation LC Stress

PCA 0.745 0.596 0.046

CCA 0.821 0.538 0.368

CDA 0.796 0.612 0.487

Factor analysis 0.712 0.566 1.035

FastMVE 0.386 0.240 0.115

Hessian LLE 0.107 0.103 0.117

Isomap 0.540 0.702 0.914

Kernel PCA 0.048 0.108 0.117

Laplacian 0.503 0.716 0.117

LLC 0.268 0.178 0.100

LLE 0.347 0.521 0.118

LLTSA 0.590 0.393 0.118

LPP 0.414 0.708 0.117

LTSA 0.132 0.104 0.117

NPE 0.380 0.433 0.118

Prob PCA 0.743 0.545 0.117

SPE 0.376 0.200 0.676

SNE 0.103 0.106 0.053

tSNE 0.635 0.760 0.112

FSPE 0.839 0.654 0.039

SFSPE 0.841 0.662 0.040

10 classes, and the low-dimensional space should allow the user to show these classes.

Our methods (FSPE and SFSPE) will be compared with 19 DR methods in the classi-

fication of this network.

Figure 5.10 shows the six representations of the Primary-School Network by using

PCA, CCA, CDA, Prob PCA, FSPE and SFSPE. We used three metrics to measure

the efficiency of the results. These are correlation, LC and stress, and Table 5.4 shows

the details. The results show that our methods (FSPE and SFSPE), CCA and CDA,

have higher correction values, with our methods the highest. By using LC metric, we

find tSNE, Laplacian, LPP and Isomap have good accuracy, and the efficiency of our

methods are inferior to them. Using the stress metric, the amount of error resulting

from SFSPE, FSPE, PCA and SNE, are the less than the 21 DR methods.
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CDA Prob PCA

FSPE SFSPE

Figure 5.10: Low-dimensional representation of the second network by PCA, CCA, CDA,

Prob PCA, FSPE and SFSPE. The best representation is the one that preserves neighbourhood

relations between points. The points which have the same colours belong to the same class.
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PCA CCA

CDA Prob PCA

FSPE SFSPE

Figure 5.11: The grey-scale efficiency images by the point-wise correlation metric of the low-

dimensional representations of the second network in Figure 5.10. The bright white points

indicate that the neighbourhood relations of these points are preserved.
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For the purpose to clarifying the efficiency of each point in the visualization, we use

the point-wise correction metric. Figure 5.11 shows that preserving the neighbourhood

relationships using SFSPE and FSPE is better than the rest of the DR methods.

5.6 Conclusion

We compared the results of our proposed methods (FSPE and SFSPE) and 19 other

DR methods when applied to three scenarios: the unfolding Curved Cylinder data sets;

projecting human face data sets onto two dimensions; and classifying the two net-

works. The primary aim of this chapter is to evaluate the efficiency of our methods in

terms of neighbourhood preservation. The results showed the ability of FSPE to unfold

the complex data sets, such as in the case of the curved cylinder. FSPE and SFSPE led

to good, two-dimensional representations of the Frey face data sets. Our methods in

terms of network classification are not always the best, in that other methods are some-

times better. However, the measurements found that visualisation by other methods

lost more information by having many false neighbourhoods, and the visualisations by

FSPE and SFSPE overcame the DR problem as much as possible. We have demon-

strated that the two proposed methods can provide an insight into what was missed

by the other methods, and have found that they are better in terms of preserving per-

centages of the neighbourhood distances. We believe that these results will stimulate

others to adopt our visualisation approach.

The main ideas presented in this chapter is published in: S.A. Najim, I.S. Lim,

Trustworthy dimension reduction for visualization different data sets, Inform. Sci.

(2014), http://dx.doi.org/10.1016/j.ins.2014.03.048.

94



Chapter 6

Speed-up The Processing by Using

Graphics Processing Unit

In this chapter we will address the following topics

1. Introduction of the graphics processing unit (GPU),

2. Our contributions in GPU application,

3. Experimental results,

4. Conclusion.

This chapter illustrates parallel processing in the graphics processing unit (GPU).

In addition, we present a parallel method to visualize a remote sensing imagery data

sets and measure its efficiency on the GPU. Visualization of a remote sensing imagery

data sets is a common challenge task in DR. The requirement to accelerate the projec-

tion process and efficiency measurement of the visualization comes from the large size

of the data sets. We have implemented the FSPE method on GPUs to speed up its pro-

jection process. To measure the efficiency of the visualization, the parallel codes of the

two well-known metrics in this field namely, correlation and residual variance are in-

troduced. The results showed that the high computational efficiency of the GPU helped

to reduce the time spent on processing the results and computing their efficiency.
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6.1 Introduction

Nowadays, the implementation time has become a key factor for the success of the

software. Not too long ago, the focus was on the CPU in order to speed the computa-

tion, where it was required to wait at least 12 months for minor changes to the current

speed. Although multiple CPUs have been introduced instead of a single CPU to im-

plement the tasks in parallel, the efficiency of the speed has been limited to simple

applications because of the vast amount of data.

Figure 6.1: The performance of the GPU has increased exponentially in recent years,

which makes it deliver superior performance in parallel computation compared with the CPU

[NVIDIA, 2013].

Over the past few years, the processing power and memory bandwidth of the new

generation of graphics cards have become significantly better than the CPU. In addi-

tion to their capability of displaying graphics, the GPUs can accelerate general purpose

computations. It is useful for information extraction, in visualization, in telecommu-

nications, and in many scientific fields, including biology and chemistry, and because

its computational power goes far when compared with the CPU [Buatois et al., 2009]

[Sanders and Kandrot, 2011]. Figure 6.1 shows that the exponential increase in the

performance of the GPU in the last nine years is better than that of the CPU.
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The tendency to use the GPU is due to the following reasons: Firstly, the tech-

nology of the CPU is not capable of managing a large scale of computations, and we

can say that the improvement in the CPU technology has reached a stable scale. That

means that the CPU alone in a computer system cannot provide what people demand.

Secondly, the GPU’s speed is 10-100 times faster than CPU, which makes it suitable to

implement the challenge computational problems. Thirdly, complex computation tasks

can be sent to the GPU by dividing them into several smaller subtasks that process at

the same time. Finally, the GPU provides a chance to solve the impractical tasks that

the CPU cannot because of its limited technology.

The GPU has been developed independently to have hundreds of cores, as in Figure

6.2. The GPU depends on the phenomenon “single instruction multiple data (SIMD)”

to execute the same instruction on different shared processors by using different data.

The GPU requires a parallel structure of a method in order to implement it, otherwise

the execution would be very poor.

(a) CPU (b) GPU

Figure 6.2: The general structure of the CPU and the GPU. a) The CPU contains very few

cores that can work in parallel. b) The GPU contains hundreds of small cores that can work in

parallel.

Compute unified device architecture (CUDA) is the hardware and software NVIDIA

parallel computing architecture that integrates with the environment, such as Microsoft

Visual Studio C++, to provide a way to write the CUDA C++ (or CUDA C) program.
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Figure 6.3: GPU consist of many threads which are grouped into blocks, which are then

grouped into grids of blocks. Three types of memory (private memory for a thread, shared

memory for a block, and global memory for all threads) with more cores lead GPU to execute

the parallel program independently, and in less time.

It has two types of functions: host and kernel. Host functions are responsible for the

execution of the sequential codes on the CPU, and the computing control is given to

the GPU by calling the kernel function in order to execute the parallel codes. The GPU

consists of a large set of threads that are grouped into blocks, and many blocks can be

grouped into grids. Each thread has a small private memory, and each block has mem-

ory to share their threads together [NVIDIA, 2009]. Threads in a block synchronize

their cooperation in accessing shared memory. Figure 6.3 shows the architecture of

CUDA.

According to size of the data sets (N), the number of threads in a block can be
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specified [Sanders and Kandrot, 2011]. For example, in the following CUDA C++

codes, the block is declared as one dimension vector has (M = 256) threads:

int T hreadsPerBlock = 256;

int BlocksNeeded = (N +T hreadsPerBlock−1)/T hreadsPerBlock;

dim3 dimBlock(T hreadsPerBlock);

dim3 dimGrid(BlocksNeeded);

Another possibility is the block can be declared as two dimension matrix has 16 ∗ 16

threads, as in the following codes:

int Bx = 16;

int By = 16;

dim3 block(Bx, By);

dim3 grid(N/Bx, N/By);

Each thread in a block has unique index, threadIdx, and index of each block in a grid

is blockIdx. Thus, thread index in a grid is done by:

Index x = blockIdx.x ∗ blockDim.x + threadIdx.x

or

Index y = blockIdx.y∗ blockDim.y + threadIdx.y

where blockDim.x or blockDim.y is used to provide number of blocks in a grid.

The GPU and the CPU are working together to achieve higher performance [Kirk

and Hwu, 2010]. However, the relation between them is not direct because they cannot

access each other’s memories directly, as in Figure 6.4. To call the GPU, that data

should be copied from the CPU memory to the GPU memory by using the cudaMem-

cpy function under cudaMemcpyHostToDevice mode. The same thing is happening

when results are returned back from the GPU to the CPU: the data are copied from the

GPU to the CPU by using the cudaMemcpy function under cudaMemcpyDeviceToHost

mode. The number of the GPU threads should be greater or equal to the size of the

moved data sets to it. The GPU parallelism benefits more by a large scale data sets,

because the CPU computation speed is enough to execute simple computations.

The main strong point of the GPU is its highly parallel computations, which solve
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Figure 6.4: CPU and GPU are cooperative together in executing CUDA program. Data should

be copied from CPU memory to GPU memory for parallel execution because the GPU cannot

access directly the CPU memory, and vice versa.

the common problem encountered by many different applications. The GPU is used

in different applications to achieve high performance. Some of the applications are

[NVIDIA, 2013]:

• Visualization: The GPU is a significant advancement for the visualization field

because an enormous amount of computations are often required. It can be used

to speed up processing large-scale data sets to find their colour image.

• Medical image: Using the GPU in this field is important in order to speed up

results to do extra processing or treatments according to the analysis [Scherl

et al., 2007] [Stone et al., 2007].

• Video enhancement: The techniques used in video enhancement are always slow.

Thus, the GPU has a more powerful computation engine that can be applied to

these techniques rather than the CPU [Bachoo, 2010].

• Bioinformation and life science: Analysing protein and DNA sequences are

more general subjects that use the GPU because of its better performance [Schatz

et al., 2007] [Trapnell and Schatz, 2009].

• Data mining and neural networks: The GPU is used to find useful information

among large size of databases and train the artificial neural network on a lot of
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information in order to reduce computation time [Ma and Agrawal, 2009].

• Softwares development: The GPU is very advantageous in developing software.

For example, using the GPU with Matlab and Labview increases the computation

speed [Buatois et al., 2009].

In this chapter, we will visualize a remote sensing imagery data sets by the DR

method on the GPU to speed up the projection process. In addition, the measurement

of the efficiency by correlation and residual variance metrics of the visualization are

also done on the GPU. The comparison with the CPU implementation will be done in

order to see the efficiency of the parallel codes.

Copy data from

CPU to GPU

Execute on
GPU

Total time

Copy the results from

GPU to CPU

Figure 6.5: Evaluation of one point requires to move N points from CPU to GPU. These points

are processing in parallel to evaluate their relation with point in the hand.

6.2 Our Contributions in GPU Application

Evaluating the efficiency of each point with the remaining points in the data sets in

a general way has been used by most methods, where the final efficiency of the data

sets represents the average of efficiencies from all those points. According to this

premise, the principle of divide and conquer is the best way to speed up processing.

The evaluation of each point is computed by computing the value of its neighbourhood

relationship with all other points in parallel. If we suppose that there are N points in

the data sets, the processing requires the sending of that point with all other points (N)

to the GPU, as in Figure 6.5. The N points in the GPU are processed in parallel to

measure the efficiency of that point. Parallel implementation helps a lot in reducing

the execution time, especially if the size of the data sets is very large. We will use this

idea to implement FSPE, correlation and residual variance metrics on the GPU.
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6.2.1 Parallel FSPE

The FSPE can be implemented directly on the GPU because the method equation, in

Section 3.3.2, is a parallel equation. Figure 6.6 showed that the kernel FSPE GPU

updates the coordinates of all points in the data sets in parallel depending on the se-

lected point i. In the host, a point is selected each time and sent to the GPU through

kernel FSPE GPU to do a parallel task of updating the other points according to the

FSPE equation. The result of applying FSPE, which is projected space and has three

dimensions, is projected into CIE Lab colour space, as we explained in section 3.5.2.

global void FSPE GPU(float i, float *Y, float *X, float lambda, float dc, int

Dimension, int LDimension, int N){
int j = blockIdx.x * blockDim.x + threadIdx.x;

if (j < N)

{ float sum = 0.0;

for (int k=0; k<LDimension; k++)

sum += (float) ((Y[i+ N*k] - Y[j+ N*k]) * (Y[i+N*k] - Y[j+N*k]));

float dij = sqrt(sum);

sum = 0.0;

for (int k=0; k<Dimension; k++)

sum += (float) ((X[i+ N*k] - X[j+ N*k]) * (X[i+N*k] - X[j+N*k]));

float rij = sqrt(sum);

if ((dij<=dc) || ((dij > dc) && (dij<rij)))

{ float T = (float) (lambda * (rij - dij) / (dij + 1e-8));

for (int k=0; k<LDimension; k++)

Y[j+N*k] += (float) (T * (Y[j+N*k] - Y[i+N*k]));

}
}

syncthreads();

}

Figure 6.6: FSPE is implemented on the GPU by using CUDA C++ codes. This kernel at-

tempts to update the coordinates of all points in the data sets according to their relationship of

the point i. Dimension is the dimension of the original space X , LDimension is the dimension

of the projected space Y . N is the size of the data sets.
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global void step one(float i, float *B, float *A, int Dimension, int LDimension,

float *S a, float *S b, float *S ab, int N){
int j = blockIdx.x * blockDim.x + threadIdx.x;

if (j < N)

{ float sum = 0.0;

for (int k=0; k<LDimension; k++)

sum += (float) ((B[i+ N*k] - B[j+ N*k]) * (B[i+N*k] - B[j+N*k]));

float dij = sqrt(sum);

sum = 0.0;

for (int k=0; k<Dimension; k++)

sum += (float) ((A[i+ N*k] - A[j+ N*k]) * (A[i+N*k] - A[j+N*k]));

float rij = sqrt(sum);

S a[j] += rij / N;

S b[j] += dij / N;

S ab[j] += (dij * rij) / N;

}
syncthreads();

}

Figure 6.7: First step to compute correlation metric on the GPU (CUDA C++). This kernel

attempts to compute the A, B and AT B/|A| for the point i. The results are assigned to the vari-

ables S a, S b and S ab, respectively. Dimension is the dimension of the vector A, LDimension

is the dimension of the vector B. The projected and original spaces have the same size of data

points, which are N.

6.2.2 Parallel Correlation Metric

The visualization of remote sensing imagery data sets by FSPE should be measured

to see how it preserves the original information. Although the implementation time

of the correlation metric needs to be long in the CPU because of the large volume

of remote sensing imagery data sets, parallel implementation of it can overcome this

limitation. To implement Equation 2.26 on the GPU, one kernel is not enough because

the standard deviations (σA and σB) depend on the mean values (A and B, respectively).

To implement it, we will use two stages to construct CUDA C++ codes. In the first

stage, we compute the values of the variables A, B and AT B/|A| of each data point in

the data sets. Figure 6.7 shows that the kernel (step one) computes the vectors of these

values in parallel on the GPU. The final values for these variables represent the average

of the total sum of their values of all points, which have been computed on the CPU.
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In the second stage, we compute the variables for each point in the data sets, σA and

σB. The kernel (step two), in Figure 6.8, is responsible for implementing this task on

the GPU. In the CPU, the overall average is computed to get the sum of all their values

and to know the final value of the data sets. Therefore, all variables of Equation 2.26

are ready for application directly to get the final correlation value of the visualization

by FSPE.

global void step two(float i, float *B, float *A, int Dimension, int LDimension,

int N, float Mean a, float Mean b, float *Std a, float *Std b){
int j = blockIdx.x * blockDim.x + threadIdx.x;

if (j < N)

{ float sum = 0.0;

for (int k=0; k<LDimension; k++)

sum += (float) ((B[i+ N*k] - B[j+ N*k]) * (B[i+N*k] - B[j+N*k]));

float dij = sqrt(sum);

sum = 0.0;

for (int k=0; k<Dimension; k++)

sum += (float) ((A[i+ N*k] - A[j+ N*k]) * (A[i+N*k] - A[j+N*k]));

float rij = sqrt(sum);

Std a[j] += (rij - Mean a) * (rij - Mean a) / N;

Std b[j] += (dij - Mean b) * (dij - Mean b) / N;

}
syncthreads();

}

Figure 6.8: Second step to compute correlation metric on the GPU (CUDA C++). This kernel

attempt to compute the σA and σB for the point i. The results are assigned to the variables

Std a and Std b, respectively. Dimension is the dimension of the vector A, LDimension is the

dimension of the vector B. The projected and original spaces have the same size of datapoints,

which are N. Mean a and Mean b represent the A and B, respectively, of all data sets.

6.2.3 Parallel Residual Variance Metric

Residual variance is also important to measure the stress error of the visualization by

FSPE, but it needs to be implemented on the CPU for a long time. Equation 2.25 is

much simpler than Equation 2.26, where implementation of the residual variance on

the GPU requires just one kernel, as in Figure 6.9. This kernel attempts to compute
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global void Residual variance(float i, float *B, float *A, int Dimension, int

LDimension, int N, float *Stress i){
int j = blockIdx.x * blockDim.x + threadIdx.x;

if (j < N)

{ float sum = 0.0;

for (int k=0; k<LDimension; k++)

sum += (float) ((B[i+ N*k] - B[j+ N*k]) * (B[i+N*k] - B[j+N*k]));

float dij = sqrt(sum);

sum = 0.0;

for (int k=0; k<Dimension; k++)

sum += (float) ((A[i+ N*k] - A[j+ N*k]) * (A[i+N*k] - A[j+N*k]));

float rij = sqrt(sum);

Stress i[j] += (rij - dij) * (rij - dij) / (N-2);

}
syncthreads();

}

Figure 6.9: CUDA C++ codes of residual variance. This kernel computes the stress error

(Stress i) for the point “i”.

the stress error (Stress i) for a point i. Dimension is the dimension of the vector A,

LDimension is the dimension of the vector B and N is the size of data sets.

6.3 Experimental Results

In this section, the implementation on Intel(R) i7-930 2.80 GHz CPU with 12 GB

memory on Windows 7. We ran our proposed method in Microsoft Visual Studio C++

2008 with CUDA 4.2 and NVIDIA GeForce GTX 480 graphics card with a buffer size

of 1 GB. We used the AVIRIS Moffet Field data sets from the southern end of San

Francisco Bay, California, done in 1997 [AVIRIS, 2013]. The data sets contain 224

bands, where each band has 1800x600 points.

In Chapter 3, we showed the ability of FSPE in visualizing remote sensing im-

agery data sets. Although the results of parallel implementation on GPU have exactly

the same results as sequential results on the CPU, execution time by the GPU achieves

a higher speed-up than the CPU. Table 6.1 and Figure 6.10 show the comparison be-

tween CUDA C++ (GPU) and the CPU codes in time execution for different data sizes.
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Table 6.1: FSPE speed performance comparisons between the CPU codes and the CUDA C++

codes with different size of remote sensing imagery data sets. (Time unit is minutes.)

Data Size CPU GPU Times GPU faster than CPU

1x300x300 26.80 0.021 1276

2x300x300 104.044 0.040 2601

3x300x300 238.06 0.060 3967

4x300x300 468.751 0.076 6167

5x300x300 716.511 0.096 7463

6x300x300 1205.302 0.113 10666

7x300x300 1961.032 1.300 1508

8x300x300 2090.713 3.389 616

9x300x300 2497.094 6.054 412

10x300x300 3755.885 9.037 415

11x300x300 5633.828 12.864 437

12x300x300 8450.741 15.034 562

The computation time of FSPE is further reduced because the CPU and the GPU are

working together, where the CPU uses one (or very few) core(s) to execute host func-

tion, and the GPU is called to execute kernel function in parallel.

Table 6.2: Performance comparisons of the CPU codes and CUDA C++ codes in small data

sets (300x300x224). Correlation or Stress computation has about 10 times speed-up whereas

FSPE has over 1000 times speed-up because FSPE is not required to run on all points, where

random selected points are enough to update the other points. (Time unit is minutes.)

GPU CPU Times GPU faster than CPU

FSPE 0.021 26.80 1276

Correlation 7.698 111.126 14

Stress 3.771 47.374 13

In order to measure the efficiency of the visualization, we have to use correlation

and residual variance measurements metrics. These metrics are implemented on the

GPU by using CUDA C++. Table 6.2 shows the comparison between CUDA C++ and

the CPU codes in time execution for data sets have N=300x300 points. The CPU and

the GPU are working together, where the CPU uses very few cores to execute the host

function, and the GPU is called to execute the kernel function in parallel. It should

be noted that the moving of information from host to device, and from device to host,

takes a lot of time, as in Figure 6.11. Therefore, we move long the vector of high-
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Figure 6.10: The computation time of the FSPE algorithm for different data sets size. The GPU

implementation is able to speed up the execution of FSPE compared to its implementation on

CPU.

dimensional data sets and the vector of low-dimensional space just one time from host

to device through the projection before starting the FSPE in order to avoid losing more

time.

When the GPU receives the computation control, N threads work parallel. Thus,

the GPU parallelism is more beneficial with a large remote sensing imagery data sets

because the CPU computation speed is enough to execute simple computation.

6.4 Conclusion

In this chapter, DR was implemented on the GPU to visualize remote sensing imagery

data sets. The benefit of a parallel implementation is to obtain the results in as short

a time as possible. The results showed that CUDA implementation of FSPE is faster

than their sequential codes on the CPU in calculating floating-point operations, espe-

cially for a large data sets, such as remote sensing imagery. The GPU is more suitable
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Figure 6.11: Time of moving data from the CPU to the GPU is greater than pure execution in

the GPU. Moving the results back to the CPU is also greater than pure execution in the GPU.

In this experiment, the time of moving data from the CPU to the GPU is greater than moving

them from the GPU to the CPU because of the large size of input data.

to the implementation of the correlation and residual variance measurement methods

because they do a large computation. We illustrated that this massive speed-up requires

a parallel structure to be suitable for running on the GPU. Large data sets, such as re-

mote sensing imagery, is a better candidate data sets to be implemented on the GPU to

accelerate the computation time, which will be one hundred times speed-up over the

CPU.
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Chapter 7

Enhancing The Visualization by Using

Faithful Stochastic Proximity

Embedding

In this chapter we will address two ideas, which are:

1. Introduction

2. Enhancement Methodology.

3. Experimental Results.

4. Conclusion.

7.1 Introduction

In this chapter, we will prove the validity of our hypothesis “If we suppose that such

information does exist in low-dimensional space, the missing neighbourhood points

can be retrieved”. In the previous chapters, we showed the ability of our proposed

method FSPE in overcoming the false neighbourhood when it is implemented alone.

Therefore, FSPE can be used as a supplementary stage for enhancing the final results

of other methods.

In this chapter, a new method will be proposed to investigate a good visualization of

remote sensing imagery data sets on the GPUs. The main shortcoming of classical DR
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methods is that their visualizations inevitably lose a significant amount of information

in remote sensing imagery. Our proposed method preserves the colour distance as

noticeably as possible for high-dimensional data sets by defining extra steps to enhance

the quality of visualization. It classifies the visualization colours into false and true,

and focuses on the worst false colours to improve them. Although the method can be

implemented as unsupervised, it is supervised when a user selects the interested points

to enhance. The proposed method is a general enhancement step, which can be used to

enhance any visualization; for example, visualization of remote sensing imagery data

sets, which are carried by CDA, SPE and Isomap methods. The results showed the

ability of our method to overcome the false colours and return the more reliable true

colours. The colours of visualization showed more details, which represent the real

neighbourhood relation in the original data sets.

7.2 Enhancement Method

The main idea of our method is to select the worst false neiughbourhood points in

the low-dimensional space and enhance them by applying a good DR method, such as

FSPE, to retrieve the true neighbourhood points. There are two possibilities to select

these points:

1. The enhancement starts by selecting the worst area in the visualization, I =

{i1, i2, ..., ip}, where p < N and N is a size of whole visualization pixels. FSPE

on the GPU is used to enhance the efficiency of the selecting points by re-

projecting them. While this process enhances the selected points and might

update the other points, the whole visualization is enhanced. The final visu-

alization shows the selected area is enhanced and most of the false colours are

overcome. Selecting the area this way might have different colours, and FSPE

makes those colours more faithful.

2. Another way to apply enhancement is to select the worst area in the colour space

of the visualization. Any two-dimensional colour space can be chosen to apply

this way, and we selected CIE Yxy because it is well known and easy to under-

stand [Kerr and E., 2005] [Schanda, 2007]. The selection depends on the colour

relationship between points instead of their locations in the visualization. The

steps are:
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(a) The input visualization is mapped into CIE Yxy colour space, where the

locations of the visualization colours are shown in an understandable way

which makes selecting from it very easy. To do this, the visualization is

mapped into CIE XYZ and then the chromaticity coordinates x and y of

CIE Yxy are computed by using the following equations:

x =
X

X +Y +Z
(7.1)

y =
Y

X +Y +Z
(7.2)

(b) As long as the location of each colour in the CIE Yxy colour space is deter-

mined and the efficiency of each point can be computed by using point-wise

correlation metric, the points’ efficiencies are displayed in CIE Yxy colour

space to clarify the true and false colours. The points’ efficiencies in CIE

Yxy colour space are represented by values in the range [0,1], where 0’s

value indicates that this point has worst efficiency in preserving its neigh-

bourhood, and 1’s value indicates the colour at this point is true.

(c) In CIE Yxy colour space, the worst efficiency area is selected to enhance

its points’ colours.

(d) FSPE on the GPU is applied on the selected points in the previous step.

FSPE attempts to place falsely colour point y j in such a way that its Eu-

clidean distance di j = ||yi− y j|| is close to corresponding distance ri j =

||xi− x j|| in the original high-dimensional data sets. Finally, the colours of

the visualization are enhanced.

7.3 Experimental Results and Discussion

In Figure 7.1, the first way of enhancement method was applied by selecting the up-

per right area of the visualization, which was carried by CDA. The corresponding

grey-scale efficiency image of this visualization, which is computed by a point-wise

correlation metric, shows the selected area has very low efficiency. After the applica-

tion of FSPE to this area, we note the efficiency of this area has improved and lot of

information has been explored. The colours of this area have become more faithful to
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(a) Before, 0.036 (b) After, 0.890

Figure 7.1: a) The gray-scale image shows the upper right area of the visualization of remote

sensing imagery, which was carried by CDA, has very little point-wise correlation (γ = 0.036).
b) Application local enhancement by FSPE helped to increase the correlation of this area into

(γ = 0.890). The local enhancement process has helped in the discovery of more effective

colours. Moreover, the efficiency of the whole visualization is increased from 0.753 to 0.911.

their corresponding ones in original bands of the remote sensing imagery data sets. In

addition, overcoming the problems of false colours also helped to improve the rest of

the colours in the visualization. The efficiency of the whole visualization is increased

from 0.753 to 0.911.

In Figure 7.2(a), the second way of the enhancement method was applied on the

CDA’s visualization. The grey efficiency image showed there were many false colours.

The colours of visualization are mapped into CIE Yxy colour space. While the loca-

tion of each point was specified, the efficiency of each point is displayed in the CIE

Yxy colour space. The low efficiency points can be recognized in the colour space,

and the worst area can be selected. FSPE was applied to enhance the faithfulness of
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CDA visualization Gray efficiency (0.753)

CIE Yxy

(a) Before applying FSPE

Enhanced visualization Gray efficiency (0.982)

CIE Yxy

(b) After applying FSPE

Figure 7.2: Visual comparison between traditional and enhanced visualizations. a) The gray

efficiency image shows there are many points in the CDA visualization that have low efficiency

in preserving their neighbourhood. CIE Yxy colour space shows the locations of the truth and

false colours in the visualization. b) Most of the false colours are overcome in the enhanced

visualization by using FSPE, and CIE Yxy colour space shows that, too. The efficiency of the

visualization is increased from 0.753 to 0.982.
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the selected area, where the efficiency is increased from 0.753 to 0.982, as in Fig-

ure 7.2(b). This enhancement means the false colours are overcome by getting their

true colours. The differences in the visualization before and after the enhancement

are clear, where we note a lot of information has been shown, which is hidden in the

original visualization.

Both ways of the enhancement method are good in reducing the effect of the false

colours, but the second way is the best. Therefore, we will use the second way in the

rest of the experiments in enhancing the visualizations by SPE and Isomap.

Table 7.1: The enhanced visualization got the highest correlation and least stress values. (Cor-

relation: the highest is better, Stress: the lowest is better).

Correlation Stress

Before Enhan. After Enhan. Before Enhan. After Enhan.

CDA 0.7530 0.9820 0.0662 0.0210

SPE 0.6958 0.9960 0.1583 0.0026

Isomap 0.5251 0.9955 0.0723 0.0016

Figure 7.3(a) showed that the visualization by SPE has false colours, where its

efficiency is 0.696. The lowest efficiency colours are shown clearly when the visual-

ization and its grey efficiency are mapped into CIE Yxy colour space. By applying

FSPE on the worst efficiency colours point, most of the false colours are overcome,

and the efficiency of the visualization is increased to 0.996. Figure 7.3(b) showed the

visualization has faithful colours, where its grey efficiency image and CIE Yxy colour

space displayed high efficiency values of the most points.

Isomap can visualize the remote sensing imagery data sets, but many false colours

show in the visualization, as in Figure 7.4(a). The grey efficiency image and the CIE

Yxy colour space of the visualization clearly illustrate that. When the worst area in

CIE Yxy colour space is selected and FSPE is applied to them, the efficiency of the

enhanced visualization is increased from 0.525 to 0.995. In enhanced visualization, as

in Figure 7.4(b), most of the false colours are overcome, and more accurate colours

appeared to represent the retrieved information.
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SPE visualization Gray efficiency (0.696)
CIE Yxy

(a) Before applying FSPE

Enhanced visualization Gray efficiency (0.996)
CIE Yxy

(b) After applying FSPE

Figure 7.3: . a) The grey efficiency image shows that many colours have low efficiency in the

SPE’s visualization. CIE Yxy colour space of this visualization showed which colours are false

and which were true. b) Applying FSPE on the points that have the lowest colour efficiency

causes an increase in the efficiency of all the visualization colours from 0.696 to 0.996. CIE

Yxy colour space of enhanced visualization shows that most colours have high efficiency.

7.4 Conclusion

We can conclude by saying that this new enhancement method is proposed to enhance

the visualization of remote sensing imagery. Our approach can work automatically

to overcome the false colours in visualization and reveal the reliable colours, but we

prefer to take a user opinion in this matter because he can choose the most interested

region according to his analysis. The results showed, by using our method, the trust-

worthiness of the visualization is increased by overcoming most of the false neigh-

bourhood points that are generated during the projection process.

In this chapter, we noticed that the FSPE has an important role in overcoming the

false neighbourhood points in the results of other methods. The enormous dimen-

sionality size and complexity of the remote sensing imagery data sets were a good

application in demonstrating the ability of the proposed method in preserving original
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Isomap visualization Gray efficiency (0.525)
CIE Yxy

(a) Before applying FSPE

Enhanced visualization Gray efficiency (0.995)
CIE Yxy

(b) After applying FSPE

Figure 7.4: a) The visualization by Isomap has several false colours. b) The enhancement

visualization when FSPE is applied on the selected worst efficiency colours.

information. Choosing the worst efficient points, regardless of the method of selection,

to update the rest of the points has helped in improving the visualization information.

Thus, the validity of the hypothesis, in the beginning of the section 7.1, has been

proved.

The main ideas presented in this chapter have been published in: Najim S., Lim

I. and Saeed M. (2013). Trustworthy Enhancing the Visualization of Remote Sensing

Imagery Dataset on GPU. In Proceedings of 6th International Conference on Devel-

opments in eSystems Engineering (DESE 2013), Abu Dhabi, UAE, 16-18 December.
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Chapter 8

Final General Conclusion

8.1 Conclusion

In this dissertation, some hypotheses have been introduced to support the idea of DR to

get faithful results. They focused on the most important problem, which is false neigh-

bourhood errors in a low-dimensional manifold, and attempted to overcome them as

much as possible. Here, we will discuss our hypotheses, which was proposed in the

first chapter, to assess the validity of the proposal:

Useful information exists in low-dimensional space despite transforming the data

from a higher dimensional space. Thus, the DR problems can be overcome.

In Chapter 3, we proposed the “Faithful Stochastic Proximity Embedding (FSPE)”

method, which focuses on low-dimensional space in reducing the dimensionality of

high-dimensional data sets. FSPE can recognize the difference between false and true

neighbourhood points through the projection process. The false neighbourhoods are

sent away and the true neighbourhoods are strengthened with their neighbourhood.

FSPE makes its low-dimensional space in the case of continuous enhancement be-

cause the false neighbourhood points are under control. The results showed that FSPE

is better than other dimension reduction methods when it was used to visualize three

real data sets, namely remote sensing imagery and human faces. Its visualization is

better than 19 DR methods, where the points of visualization are reliable and almost

free from false neighbourhood. In addition, it is able to unfold complex data sets,

such as curved cylinders. FSPE can be used in the classification task, such network
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classification, but its results are not the best when compared with other DR methods.

Therefore we can say that our proposed method (FSPE) has demonstrated the validity

of this hypothesis.

If we suppose that such information does exist in low-dimensional manifold, the

missing neighbourhood points can be retrieved. According to the previous hypoth-

esis, FSPE has the ability to overcome the false neighbourhood in low-dimensional

manifold, which is carried by any DR method. In Chapter 7, FSPE was used as a sup-

plementary stage for enhancing the final results of other methods. The focus was on

the false neighbourhoods, where their enhancement had a positive impact on the other

points. The dependence on a low-dimensional manifold by using FSPE maintains the

original information. Therefore the validity of this hypothesis has been proved.

If the projected space has been transferred to the appropriate competent colour

space, the derived information will be accurate and richly represented. Although

many papers have used CIE Lab colour space in the visualization, the quality of the

colours needs to be more accurate in order to satisfy what a user wants. Our method

chose the most varying one for the L∗ component and the remaining two for the a∗

and b∗ components, followed by a simple linear stretching such that L∗ ∈ [0, 100] and

both of a∗ and b∗ have a zero mean. In order to attain a high contrast result, the L∗

component shifts its values to fill the entire brightness range, where a small percentage

(1%) of the brightest and darkest pixels are ignored. The relations among channels are

kept through scaling a∗ and b∗ by using the scaling parameter that was used to scale

L∗. The results showed that this way generates higher quality visualization, where its

colours show more details. Therefore, the validity of this hypothesis is satisfied.

The way of applying DR can be redefined to increase the efficiency of the projected

space. We pointed out in Chapter 4, that the direct projection of the high-dimensional

data sets to the low-dimensional space does not guarantee the preservation of the orig-

inal neighbourhood relation. The difference between the topological structures of two

spaces causes a loss of information. Our proposed method of SDR redefines the prob-

lem of DR as a sequence of multiple DR problems, each of which reduces the dimen-

sionality by a small amount. The transformation from one dimension to the next lower

one gives a great opportunity to preserve the neighbourhood relations between the

118



8. Final General Conclusion

points because of the similarity of the topological structures between two consecutive

spaces. The applications of SDR on the remote sensing imagery and human face data

sets gave better results than 20 traditional dimension reduction methods, as in Chapter

5. We can conclude that the success of the SDR in preserving original information

represents the proof of the validity of this hypothesis.

The users role is important in evaluating the efficiency of the visualization. If

there is a mechanism to give him a chance to see the site of strengths and weak-

nesses, that can help in the analysis of those data sets. In Chapter 7, we allowed

the user to participate in the enhancement method to satisfy this hypothesis. He can

select the points of interest to be enhanced rather than allowing the method to work

automatically

The role of the GPU was important to speed up the results, especially when we

were dealing with large-scale data sets. The parallel processing idea on the GPU was

used in the implementation of the proposed hypotheses and measurement methods.

Although we used the four measurement metrics (stress, local continuity, correla-

tion and point-wise correlation) for evaluating the results, the point-wise correlation

metric method (which is proposed in Chapter 3) was better. Evaluating each point in

the visualization, the grey-scale efficiency image is formed, which shows the user the

location of the false and true points. A grey-scale efficiency image gives more detail

instead of representing the evaluation in one single value.

8.2 Future Work

1. Visualization by DR is important in studying the data sets, but the colours are not

enough to get an integrated analysis, especially in a complex data sets, such as

remote sensing imagery. Therefore, our future work will concentrate on getting

a three-dimensional visualization. This method helps to distinguish between the

mountains and the plains, water and land, and high and low buildings.

2. One of the weakness in DR is to think in one direction; namely, the transforma-

tion of high-dimensional data sets to low-dimensional space. This is an impor-

tant thing, but it faces definite problems, one of which is the inability of some
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of the data-points to rely on a new space. In order to validate the efficiency of

the result, transferring a low-dimensional space to an original space should be

possible and correct. In the future, we will try to achieve this goal.

3. Many DR methods initialize the low-dimensional space with random values.

There is no relationship between the generated values and the data sets that is to

be processed. Because of the importance of this step in obtaining good progress

during the projection process, one of our future goals is to generate ideal initial

values that depend on the quality of the data sets.

4. The general idea of the LLE method is to use the same basic principles of neural

networks. This method is unable to deal with complex problems due to the

weakness of its structure, which prefers linear neural networks. Our future goal

is to develop this algorithm by using nonlinear structures of neural networks to

be a powerful method.

5. Although the role of the GPU was important in speeding up the work, sometimes

the speed did not meet the intention of getting the results in a shorter time. Thus,

we will try to develop the GPU CUDA codes by using the principle of CUDA

streams, which will speed up the process.
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Factor Analysis FastMVU

y1 y1

Hessian LLE Kernel PCA

y1 y1

Laplacian

y1

LLC LT SA

y1 y1

Figure 1: Unfolded space of three dimension curved cylinder by many methods. The colour

of each point in the unfolded space is the same colour of its corresponding point in original

dataset, as in the Figure 5.1(a).
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LPP LLT SA

y1 y1

NPE Prop PCA

y1 y1

SNE

y1

Figure 2: Unfolded space of three dimension curved cylinder by many methods. The colour

of each point in the unfolded space is the same colour of its corresponding point in original

dataset, as in the Figure 5.1(a).
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Factor Analysis FastMVU

Hessian LLE Kernel PCA

Laplacian

LLC LT SA

Figure 3: The gray-scale efficiency images by point-wise correlation metric of the unfolded

shapes of curved cylinder in the Figure 1. The bright white points indicate they have efficiency

in preserving its neighbourhood relation, and the dark points refer they have low efficiency in

preserving its neighbourhood relation.
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LPP LLT SA

NPE Prop PCA

SNE

Figure 4: The gray-scale efficiency images by point-wise correlation metric of the unfolded

shapes of curved cylinder in the Figure 2. The bright white points indicate they have efficiency

in preserving its neighbourhood relation, and the dark points refer they have low efficiency in

preserving its neighbourhood relation.
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PCA CCA

CDA Fact Analysis

FastMVU Hessian LLE

Isomap Kernal PCA

Laplacian

Figure 5: Projecting the Frey face dataset into 2-dimensional space by many dimension reduc-

tion methods.
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LLC LLE

LT SA LPP

LLT SA NPE

ProbPCA SPE

SNE tSNE

Figure 6: Projecting the Frey face dataset into 2-dimensional space by many dimension reduc-

tion methods.
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PCA CCA

CDA Fact Analysis

FastMVU Hessian LLE

Isomap Kernal PCA

Laplacian

Figure 7: Gray-scale effiency image by point-wise correlation metric of results in the Figure

5.
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LLC LLE

LT SA LPP

LLT SA NPE

ProbPCA SPE

SNE tSNE

Figure 8: Gray-scale effiency image by point-wise correlation metrics of results in the Figure

6.
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