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Abstract 

Abstract 

The intention of this study was to investigate the two most significant sources of dissolved 

organic carbon (DOC) to drinking water supplies; peatlands and algae. For two drinking 

water reservoirs in north Wales, Llyn Cefni and Llyn Alaw, markedly different seasonal 

trends were recorded, and these were linked to contrasting aspects of the lake's catchment 

and the meteorological conditions experienced during the two surveys. For Llyn Cefni, the 

DOC signatures for the inflowing streams and lakes correlated significantly, Afon 

Erddreiniog (R2=0.585, p<0.01) and Afon Cefni (R2=0.784, p<0.001), indicating a strong 

flux of terrestrial DOC into the lake from a nearby peatland. Much less of a seasonal trend in 

DOC was recorded at Llyn Alaw, with concentrations averaging 10.7 mg L 1, reflecting the 

absence of a peaty catchment. DOC derived from autochthonous production was also 

shown to be influential. Both lakes experienced nitrate depletion during the summer of the 

surveys, falling from 12.7 mg L-1 in Llyn Cefni and 6.5 mg L"' in L lyn Alaw to undetectable 

levels, suggesting extreme eutrophy, although the lack of detectable phosphate at Llyn Alaw 

may be why the growth of algal blooms was much less prevalent than at Llyn Cefni. A new 

type of floating constructed wetlands (FCW) was shown to Offer a potential solution 'to the 

production of algal blooms in the reservoirs, whereby over a four-week period, the FCWs 

were able to reduce algal growth by 80%, through sequestration of the key nutrients nitrate 

and phosphate and possibly due to the direct inhibitory properties of phenolic compounds 

on the algae. Furthermore, it was discovered that 8 Phragmites aus/ralis plants is the ideal 

number to maximise nutrient uptake and minimise algal growth in 70 litres of water. 

Studies in Finland and Malaysia were undertaken to highlight the importance of peatland 

management practices, as' vast areas of the world's boreal and tropical peatlands have been 

drained for agricultural purposes. The study in Finland showed that although there was no 
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Abstract 

consistent response in DOC export potential with drainage across the sites of contrasting 

nutrient status, a significant correlation was observed between DOC and the water content 

of the soil, R2 = 0.59 (p< 0.001), indicating that as the water-table height falls the DOC 

export potential of the soil increases. It was also considered that the trend in DOC is driven 

by changes in soil pH and the resulting suppression of the key carbon regulating enzyme 

phenol oxidase; where acidity has increased following drainage phenol oxidase activity has 

declined and the concentration of DOC released has increased, conforming the view that 

phenol oxidase acts as an `enzymic latch' in peatlands. The study in Malaysia recorded a 40% 

greater export potential of DOC from the oil palm soil and more than twice the DOC 

concentration in drainage waters compared to the undisturbed peat soil. The activity of the 

key hydrolytic enzyme ß-glucosidase was 25% higher in the oil palm soil than the 

undisturbed peat. This may be due to an improved soil organic matter quality at the oil palm 

site and suggests that increased activity of this enzyme may have been crucial for mobilising 

DOC from the soil matrix. The repercussions of these studies are discussed with emphasis 

on the potential impacts of a changing climate. 
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1.1 Introduction 

1.1 Introduction 

The act of turning on a tap and using the water it dispenses has become a natural and everyday 

occurrence in developed countries with the assumption taken that the water is safe for human 

consumption. However, there are many `issues' that affect the quality of potable drinking water 

and water treatment works often face an uphill struggle to providing drinking water of the 

highest quality. One of the most important issues centres on the presence of natural organic 

matter (NOM) in freshwaters. During the disinfection stage of water treatment, NOM reacts 

with the disinfectant to produce a class of undesirable, harmful compounds known as 

disinfectant by-products (DBPs) (Kits et al., 2002). 

The principal aim of water treatment is to remove the harmful microbiological diseases that exist 

in untreated waters. A variety of disinfection methods are utilised worldwide to do this, however, 

the use of chlorine has emerged at the forefront due to the relative simplicity and low costs 

associated with the process (Schoenen, 2002). It is a process that has saved millions of lives 

(Craun et al., 1994) However, when chlorine reacts with naturally occurring organic matter it 

produces a suite of DBPs, the principal type of by-product compound usually being 

trihalomethanes (THMs) (Villanueva et al., 2006). 

Thus, whilst the application of chlorine during the disinfection process mitigates the problem of 

pathogens in potable drinking water and improves the biological quality of the water, water 

companies must implement ways of minimising DBP formation to maximise the final water's 

chemical quality. This is best achieved by improving treatment facilities and reducing the 

concentration of organic matter in the water that is to be treated. The high costs of improving 

water treatment works mean this is not always viable, therefore water companies need to 

improve their understanding of processes occurring within the catchment of source waters that 

impact on the concentration of organic matter in the water and, if necessary, implement 
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1.1 Introduction 

appropriate management strategies. Observations that NOM concentrations in freshwaters are 

increasing (Freeman et al., 2001b) and that this may be linked to the destabilisation of organic- 

rich peatlands, which are found with the catchments of many sources of drinking water in the 

UK, are placing an even greater emphasis on the need to improve the efficiency of water 

treatment processes. 
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1.2 Natural organic matter 

1.2 Natural organic matter ' 

Freshwaters throughout the world contain NOM, its existence a consequence of interactions 

between the hydrological cycle, the biosphere and the hydrosphere (Murray, 2003). Once NOM 

enters water systems from terrestrial sources, heterotrophic microorganisms, especially bacteria, 

are quantitatively the most important initial consumers of it, slowly altering its structure and 

chemical reactivity (Pusch et al., 1998). Variations in sources denote a significant difference in the 

organic composition and physical forms of NOM among water types (Hedges et al., 1994). NOM 

has been shown to be a complex mixture of organic material and to consist of quite diverse 

organic compounds ranging in size and structure from simple sugars to complex humic 

compounds. Humic compounds constitute approximately 25-50 % of the total NOM found in 

freshwater (Thruman, 1985), while the remaining non-humic fractions are composed of proteins, 

polysaccharides, and hydrophilic organic acids (Grasso, 1990). As the key constituent of NOM is 

carbon, and because it mostly exists in freshwaters in the dissolved form rather than particulate 

form (i. e. below 0.45 µ, M), NOM is more commonly referred to as dissolved organic carbon 

(DOC) and therefore DOC will be the term most frequently used to describe organic matter in 

freshwater in this study. 

Within the DOC fraction humic compounds are principally coloured, non-polar, hydrophobic 

and have a high molecular weight. They are more stable than non-humic compounds and remain 

unchanged in the environment for thousands of years (Vaughan and Malcolm, 1985), due to 

their relative resistance to microbial degradation (Fukushima et al., 1996). Furthermore, humic 

compounds are able to complex with metal ions and can interact with clay minerals and organic 

chemicals (Schnitzer and Khan, 1972). Conversely, non-humic compounds comprise 

uncoloured, polar, hydrophilic and low molecular weight structures. These compounds are more 

labile and may be easily broken down by microbes, therefore exhibiting rapid flux rates in lakes 



1.2 Natural organic matter 
0 

(Schnitzer and Khan, 1972). Humic substances are generally more commonly occurring than 

non-humic substances in freshwaters. 

Furthermore DOC in freshwaters can be divided into two distinct groups based on its origin. 

DOC derived from terrestrial sources is called allochthonous, whereas DOC generated directly 

by processes within the lake is termed autochthonous (Wetzel, 2001). Allochthonous organic 

matter is derived principally from the decay of dead plant matter within the terrestrial catchment 

of a freshwater body. It also arises from the eroding of topsoil during times of high wind and 

rain (Wetzel, 2001). DOC has been described as being a major source of energy and material for 

freshwaters and is consequently subject to significant microbial transformation as it is 

transported in waters (Wetzel, 1975). Autochthonous organic matter derives from 

photosynthetic inputs and the bacterial decomposition of organic matter leading to the 

subsequent release of DOC (Fukushima et al., 1996). This difference in origin brings about a 

variance in the chemical characteristics of the DOC. In the case of allochthonous organic matter, 

it is generally nitrogen poor, optically dense, highly coloured, rich in aromatics and has a high 

molecular weight. Autochthonous organic matter is said to be rich in nitrogen, relatively 

transparent, low in aromatics and has a lower molecular weight (Curtis and Schindler, 1997; 

Gergel et al., 1999). The concentration of lake water DOC depends on in-lake production and 

the influx from the lake's catchment. However, in the main DOC is composed of high molecular 

weight compounds such as humic and fulvic acids, with the more labile fractions, such as 

polysaccharides and low molecular weight acids, rapidly metabolised by bacteria (Wu, 1999). 



1.3 Treatment of drinking water 

1.3 Treatment of drinking water 

The presence of DOC in surface waters is one of the most critical factors affecting the 

disinfection of drinking water. Disinfectants used to remove pathogens consist of highly reactive 

molecules that generate undesired compounds, known as DBPs, upon reaction with DOC. The 

existence of DBPs is an important public health matter with some compounds being identified 

as carcinogenic (Bull et al., 1995) and more recent epidemiological studies indicating that they can 

also be associated with reproductive and development problems (Niewenhuijsen, 2000). The 

short-term health risk posed by DBPs is of relatively low magnitude when compared to the 

bacteriological risks of drinking untreated water. However, DBPs pose a much more long-term 

health risk due to continuous exposure to the compounds not only through drinking water but 

also through bathing (Xu et al., 2002; Singer, 2006). They are considered to pose the greatest 

health risk to consumers of treated water. 

Among the various disinfectants available to water companies, chlorine is the most frequently 

used (Richardson, 2003). This is largely due to its effectiveness against water borne pathogens, 

relative low cost and its ability to provide a residual protection against contamination in the 

distribution system (Rodriguez and Serodes, 2001). However, the use of chlorine as a 

disinfectant gives rise to THMs upon reaction with DOC. In the United Kingdom concerns 

about health risks resulting from exposure to THMs led to drinking water quality regulations 

which state that the concentration of THMs in drinking water must not exceed 100 tg L'' (DWI, 

1998). 

THMs are a class of diverse, naturally occurring compounds called organohalides (Gribble, 2003) 

and are made up of four compounds similar in structure to methane. During the reaction with 

chlorine the hydrogen atoms of methyl groups found within DOC compounds are substituted 

with chloride and bromide ions or a combination of the two to form chloroform (CHCI), 

dichlorobromomethane (CHCI2Br), chlorodibromomethane (CHC1Br) and bromoform (CHBr) 
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(Baytak et al., 2008). Chloroform is the most frequently detected compound (Rodriguez et al., 

2003), however depending on the bromide content of the raw water, the concentration of 

bromoform may be greater than chloroform (Westerhoffa et al., 2004). 

Whilst THMs are often the dominant type of DBP formed, drinking water may in fact contain a 

complex cocktail of DBPs. More than 500 DBP compounds have been reported in the literature 

for the major disinfectants currently used (Richardson, 2003), with each having their own 

chemical and toxicological properties (Villanueva et al., 2003). Woo et al. (2002) divided the DBPs 

into seven different classes, and in addition to THMs it was reported that haloacitic acids, 

halonitriles, halokeytones and aldehydes may be present in final waters. It was noted that the 

variation in DOC composition and the use of different disinfectants and dose bring about the 

different types of DBPs. The formation of DBPs is also affected by several other factors 

including water temperature and pH, and the residence time of the water in the distribution 

system (Baytak et al., 2008). 

Obtaining an understanding of the composition of DOC in source waters is critical in 

understanding the potential formation of DBPs and for improving the efficiency of drinking 

water treatment processes (Leenheer et al., 2003). Traditionally, the humic fractions of DOC 

consisting of compounds high in aromaticity have been considered the dominant precursors in 

THM formation (Imai, 2003). Effective removal of humic substances in DOC therefore emerged 

as a critical issue in the production of high quality drinking water from surface water (Qin et at, 

2006). The removal of DOC from the raw water is facilitated during the coagulation/ 

flocculation step, using an inorganic coagulant such as ferric chloride or aluminium chloride. The 

process removes DOC by adsorption onto "flocs" and can typically achieve 50 - 80% removal 

of DOC (Murray and Parsons, 2003). It is possible to increase the efficiency of DOC removal by 

increasing the coagulant dose, however, this will inevitably lead to an accompanying increase in 

the amount of chemical residuals generated and associated increases in costs and operators time 
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(Murray and Parsons, 2003). The incomplete removal of DOC by treatment works ensures 

DBPs are present in virtually all chlorinated water supplies throughout the world (Capece, 1998). 

It also means that DOC is present in the final water, which can lead to problems such as 

bacterial re-growth in the distribution system (Lehtola et al., 2001). 

Humic substances are principally derived from allochthonous, i. e. terrestrial sources. However, 

autochthonous DOC can be generated in large quantities and over short time scales during algal 

bloom formation associated with lake eutrophication. Such blooms can be extremely deleterious 

for lake water quality, as they can release toxic compounds, cause the blockage of treatment 

filters and produce non-humic DOC compounds which are virtually untreatable (Van Dolah et 

al., 2001; Cheng and Chi, 2003; Knappe et al., 2004). The reactivity of non-humic fractions has 

been shown to be comparable to that of humic fractions in relation to THM formation and 

should therefore also be considered when attempting to manage its production (Owen et al., 

1995). However, water treatment works have no real measure in place to facilitate their removal 

(Cheng and Chi, 2003) and therefore cannot truly control over their production of THMs. 
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1.4 Characterisation of dissolved organic carbon 

The characterisation of DOC is fundamental in understanding its origin and structure. The 

structural characteristics may be regarded as fingerprints of DOC,, reflecting their sources and 

formation history (Lu et ah, 2004). The complex and varied structure of DOC compounds can 

make this process complicated and challenging, although some of these obstacles have been 

overcome and reasonable success has been achieved in the isolation and fractionation of DOC 

into more homogeneous components (Kitts et ah, 2002). In the context of DBP formation, the 

specific precursor compounds involved in the reaction with chlorine are not well documented. 

Historically, a variety of methods have been employed to isolate the organic fractions of DOC 

some, including precipitation, ultrafiltration, solvent extraction, resin adsorption chromatography 

and freeze drying (Thurman and Malcolm, 1981). Ultrafiltration for example is used to 

fractionate DOC into different molecular weight fractions. It is a pressure-driven membrane 

process where solutes are separated according to their molecular size. Ultrafiltration membranes 

are typically characterised by molecular weight cut-off values established by manufactures, who 

calibrated the membranes by measuring membrane rejection of macromolecules having known 

molecular weights (Benner et al., 1997). There is however a disadvantage to this process in the 

fact that the macromolecules often have structural characteristics significantly different than 

DOC (Kits et al., 2002). It is therefore unrealistic to directly relate the molecular weight of DOC 

fractions to manufacture-specific molecular weight cut-off values. 

The development of macroporous resins for adsorption chromatography simplified the analytical 

technique to isolate and concentrate the fractions of DOC (Thurman and Malcolm, 1981). Resin 

fractionation of DOC in water is a technique which concentrates and categorises the water 

organic complex into structurally more specific, physiochemically more analogous subgroups. 

Various XAD resins have been used to isolate organic solutes (Thurman and Malcolm, 1981), 

the fractionation based on differences in DOC sorption efficiencies on these resins under acid or 
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base conditions (Chow et ah, 2005). The DOC is adsorbed onto a series of resins and eluted with 

a solvent, which isolates the DOC into three major operationally defined fractions; hydrophobic, 

transphilic and hydrophilic (Chow et a1., 2005) 

Whilst ultrafiltration and fractionation allow the separation of DOC into individual groups based 

on their molecular weight and sorption efficiencies, it is preferable to analyse DOC as one entity 

so that characteristics that exist due to interactions between individual compounds are not 

excluded. The ideal method for analytical characterisation of DOC therefore examines the 

sample as a whole, allowing information on a molecular level to be obtained (Cook, 2004). The 

structural characteristics of DOC are most commonly examined by spectroscopic analysis, such 

as ultraviolet/visible absorbance (UV/VIS), infrared and fluorescence spectroscopy and nuclear 

magnetic resonance (NMR). The determination of UV/VIS absorbance provides an insight into 

the characteristics of DOM and its potential to form THMs (Chow et al., 2005). The absorbance 

of UV (200-400 nm) and visible (400-800 nm) radiation by organic matter is caused by atomic 

electrometric vibrations, involving electrons in the s-, p- and h- orbitals. Absorbance at 254 nm 

is typically used as a surrogate parameter to estimate concentrations of DOC (Dobbs et al., 1972; 

Jones, 2006), particularly when the aromatic content of the DOC is high (Chow et al., 2005). 

NMR is one of the most promising techniques, providing useful recognition of the chemical 

structure of DOC compounds because, unlike many other techniques, its signal is directly related 

to chemical functional groups (Lu et al., 2004). The method of choice for rapid screening of 

dilute DOC samples is proton ('H) NMR (Cook, 2004). It can be used for qualitatively 

estimating the relative abundance of various humic substance functional groups and is especially 

useful for characterising their aromatic and aliphatic components. Typical 'H-NMR spectra for 

DOC are complex and typified by broad signals with fine structures related to specific 

methylene, methyne and aromatic hydrogens (Cardoza, 2004). 'H-NMR does have an 

undesirable limitation in that any resonance close to the water resonance will be affected, 

however, this can be overcome by using a deuterated solvent such as D20 (Cook, 2004). 
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Whilst 'H-NMR spectroscopy has been used for humic substance functional group 

characterisation, analysis by "C-NMR is generally preferred when sufficient sample quantities are 

available. "C-NMR produces greater chemical shift dispersion, allowing identification of ketone 

and carboxylate functional group and yielding a quantitative spectrum. Unfortunately, due to the 

low natural abundance of13C (1.1%), 13C-NMR spectra is inherently insensitive and this problem 

coupled with limited sample solubility is a significant barrier to performing the measurements 

(Cordoza, 2004). 
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1.5 Agricultural practices and eutrophication 

Modern agricultural practices can have a significant impact on environmental pollution. Nitrogen 

(N) and phosphorus (P) are frequently used in fertilisers to achieve sufficient yields of crops on 

agricultural land, however, the application of excess fertiliser can lead to surplus N and P being 

transferred to water bodies through runoff and leaching (Feng et al., 2005). Freshwater systems 

receiving excess nutrients may experience a dramatic deterioration in water quality, due to 

enhanced eutrophication and the formation of algal blooms (Herath, 1997; Codd, 2000). 

Global inorganic fertiliser use coupled with agroecosystem contributions, make up 75% (120 Tg 

N per year) of all anthropogenic inputs to the global nitrogen budget (Howarth, 2004). This has 

a dramatic effect on atmospheric N concentrations; it is estimated that roughly 85% of NH3, 

81% of N20 and 35% of NO+NO2 entering the atmosphere originates from agricultural 

activities. Moreover, agricultural contributions to N loads in watersheds are of great concern for 

the contamination of aquatic ecosystems and the regional effect of N loads on nutrient balances 

in water bodies (Bao et al., 2006). Over time, the efficiency of N fertilizer as a crop nutrient has 

been shown to decrease while the transportation of N into water bodies increases (Bao et al., 

2006). This suggests that enhanced agricultural activity is increasing the amount of N leaching 

into the ground water and ultimately the surrounding water bodies (Feng et al., 2005). A direct 

linear relationship between N03 concentration in surface waters and the percentage of land 

devoted to crop agriculture within the watershed had been reported in some studies (e. g. Schiling 

and Libra, 2000). 

Similarly to N, human activities are also having important effects on the fluxes of P to the 

environment. Large quantities of P-containing minerals are mined and processed to create 

fertilizers. These fertilizers are used extensively worldwide and in many cases the soil already 

contains adequate P reserves. As is true of N, substantial quantities of P are also added to the 

land in the form of animal manures (Smith et al., 1999). In many areas, P inputs from fertilizers 
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and manures greatly exceed its outputs in farm produce and consequently P is accumulating in 

the soil (Foy and Withers, 1995). The total amount of P exported in runoff from the landscape 

to surface waters has been shown to increase linearly with the soil P content (Sharpley et al., 

1996). In an example from Northern Ireland, soil P reserves have accumulated at a rate of 

roughly 1000 kg P km"2 year 1 over the past 50 years, and these increases have been accompanied 

by increases in the loss rates of inorganic P in runoff of roughly 2 mg m-3 year-' (Foy et al., 1995). 

Although small, this rate of change in P runoff is ecologically significant when continued over 

periods of decades or more (Foy et al., 1995). 

Therefore, in the event of N and P being applied in excess of plant requirements for growth, 

surplus N and P may accumulate in soils, leach from the land into surface waters, compromise 

ground waters or enter the atmosphere via NH3 volatilization and N2 and N20 production 

(Smith et al, 1999). 

The leaching of N and P into aquatic ecosystems stimulates the growth of algae and vascular 

plants in freshwater systems. In the event of excess nutrient loading a state of eutrophication 

may be induced, where the water body becomes nutrient enriched (Smith et al., 1999). Waters 

having relatively large supplies of nutrients are termed eutrophic (well nourished), and those 

having poor nutrient supplies are termed oligotrophic (poorly nourished). Those waters having 

intermediate nutrient supplies are termed mesotrophic (Nurnberg, 1996). Table 1.1 summarises 

the variation in N and P concentration into freshwaters. 
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Table 1. lAverage characteristics of the different trophic states of lakes based on N and P concentrations (Nurnberg 1996): 

Trophic state TN(mg m3) TP(mg m3) 

Oligotrophic <350 <10 

Mesotrophic 350 - 650 10 - 30 

Eutrophic 650 -1200 30-100 

The concept of nutrient limitation may be considered to be a keystone of eutrophication, where 

the lack of one key nutrient is the primary limiting factor for plant growth in a given ecosystem. 

In lakes and reservoirs, P is considered to be the key limiting nutrient (Schindler, 1997) and the 

growth of plants in a given freshwater ecosystem should be proportional to the rate of supply of 

this nutrient. To minimise eutrophication, management practices within the catchment of rivers 

and lakes should therefore focus on ways of minimising the leaching of P. 

N and P enrichment of freshwaters is typically accompanied by increases in the biomass of 

suspended and/or benthic algae. The nutrient enrichment of freshwaters can cause a variety of 

water quality problems through increased algal growth (Nurnberg, 1996; Johnk et al., 2008): 

" Increased biomass and changes in species composition of suspended algae and 

periphyton (algal concentrations may reach millions of cells per millilitre) 

" Reduced water clarity 

"A deterioration in the water's taste and odour quality 

" Blockage of intake screens and filters 

" Fouling of submerged lines and nets 

" Disruption of flocculation and chlorination processes at water treatment plants 

" Restriction of swimming and other water-based recreation 
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" In extreme cases, near complete depletion of dissolved oxygen concentrations, which can 

lead to mass mortalities of plant and fish life 

From a water treatment perspective, it is actually when the algal bloom begins to die away that it 

poses the greatest problems for water treatment. As the algal bloom begins to senesce and 

decomposes, it releases low molecular weight carbon (LAW) that is `virtually untreatable' (Cheng 

and Chi, 2003). The occurrence of freshwater algal blooms has increased over the last few 

decades in a number of locations around the world (Van Dolah et al., 2001; Moore et al., 2008) 

although the specific reasons for this are not well understood. Climate change may increase the 

formation of algal blooms through warmer temperatures, therefore greater emphasis should be 

made to minimise their formation. Some experiments have shown promise in reducing algal 

growth using barley straw (Welch et al., 1990, Ridge and Pillinger, 1994). The anti-algal properties 

of barley straw are not fully understood, however it has been suggested that the algal growth 

inhibitors are derived from oxidised lignin (Ridge and Pillinger, 1994). An alternative hypothesis 

suggests that the fungi responsible for degrading the barley straw also produce anti-algal 

compounds. However, the general anti-algal effects of decomposing barley straw are unlikely to 

be explained by anti-algal properties of specific fungi (Pillinger et al., 1992). Despite the possible 

benefits, the use of barley straw requires considerable management effort and the long term 

ecological safety is not known (Ball et al., 2001; Martin and Ridge, 1999). 

Wetlands offer an alternative approach for the prevention of algal blooms. A consequence of the 

high levels of biological productivity within wetlands is that pollutants which enter through run 

off are easily broken down into substrates for the plants and microorganisms (Mitsch and 

Gosslink, 2000). In addition to this they are also able to act as chemical sinks, storing vast 

amounts of carbon (Jenkinson et al., 1991) and nutrients in the water (Vymazal, 2007). The 

characteristic of storing vast amounts of carbon is largely attributed to waterlogging of the soil, 

creating anaerobic conditions and inhibiting enzymic decomposition of organic matter through 
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an `enzymic latch mechanism' (Freeman et al., 2001a and 2004b). The enzymic latch mechanism 

is dependent upon the presence of plant derived enzyme-inhibitory phenolic material (Wetzel, 

1992). Phenolic compounds are also a defence mechanism against microbial infection (Codignola 

et al., 1989) and several studies have been undertaken to exploit these compounds to suppress 

algal blooms (Everall and Lees, 1997; Pillinger et al, 1994; Ferrier et al., 2005). 
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1.6 Peatland characteristics and properties 

Peatlands are a unique wetland ecosystem, which are characterised by having soils of very high 

organic matter content but with large variations in hydrology, biogeochemistry and vegetation 

composition (Laiho, 2006). They are found principally in the boreal zone of the world, where 

precipitation is high, but there are also significant areas of peatland in the tropical region of 

south-east Asia. They play a key role in the global terrestrial carbon cycle (Matthews and Fung, 

1987); whilst they occupy approximately 3% of the world's land surface they contain up to 455 

Pg of C, equating to approximately 1/3 of the world's store of soil carbon (Gotham, 1991). In a 

natural and pristine state, peatlands are considered to be largely stable ecosystems, slowly 

sequestering carbon due to impaired decomposition within the soil. Although this means that 

they do not release CO2 in large quantities to the atmosphere, they can be very important and 

unique sources of methane to the atmosphere and DOC to freshwaters (Clair et al., 1999; Billett 

et al., 2004). 

The most important property of peat soil above all others is that the soil is waterlogged. This 

means that the soil is largely anaerobic, and as the decomposition of organic matter is much 

slower in the absence of oxygen (Moore and Bellamy, 1974; Clymo, 1983), there is a build up of 

organic material. Decomposition is also hampered by the pH of the soil, which is often low due 

to the build up or organic acids and the cation exchange properties of Sphagnum (Kuhry et al., 

1993), and low temperatures, which are characteristic of the boreal zone in which most of the 

world's peatlands are found. These characteristics also mean that the soil is of poor quality for 

plant growth and the productivity of peatlands is often low. However, it is the fact that 

decomposition of senescing vegetation is even lower that means there is a continuous build up of 

organic matter in the soil (Gore, 1983). 

Peatlands have been separated into two distinct groups; fens and bogs. Bogs are an example of 

an entirely rain fed peatland, which is isolated from surface waters. Consequently bogs are 

17 



1.6 Peatland characteristics and properties 

nutrient poor and acidic (usually below pH 4.5) and are only able to support the growth of acid- 

tolerant mosses. Conversely fens are a more open type of peatland that receive drainage from 

surrounding mineral soils and are comparatively more nutrient enriched than bogs, have a higher 

pH (usually greater than 4.5) and are able to support grasses, sedges and reeds (Mitch and 

Gosselink, 2000). This difference in the hydrology of bogs and fens and the resulting 

biogeochemical differences affect rates of decomposition within each type. The isolation of bogs 

from surface waters lowers the nutrient content of the soil and ultimately their potential to 

decompose 
organic matter (Mitch and Gosselink, 2000). The accumulation of organic matter 

lowers the soil pH further. The capacity of fens to receive nutrients from ground-waters enables 

a faster rate of decomposition within the soil and therefore a more productive environment 

(Parrish 
and Grigal, 1988). 

The carbon storage capacity of peatlands is thought to be controlled by the activity of one type 

of enzyme, phenol oxidase, which has been described as an enzymic `latch'. Phenol oxidase is the 

only enzyme capable of degrading phenolic compounds (Sinsabaugh et al., 1991) which are a high 

molecular weight, recalcitrant organic compound derived from the decay of lignin and cellulose 

(Dickinson, 1983). However, the activity of phenol oxidase in peat soils is extremely low due to 

the absence of oxygen, for which it has a fundamental requirement (McLatchey and Reddy, 

1998) therefore the concentration of phenolic compounds in peat soils is high. Phenolic 

compounds have been shown to be inhibitory to hydrolytic enzymes. This suite of enzymes are 

the dominant decomposers of organic matter in soils (Burns, 1978) and determination of their 

activity can generate information into the overall rates of decomposition in soil (Marx et al., 

2001). Therefore, inhibition of hydrolase enzymes, which occurs indirectly through the lack of 

phenol oxidase activity, is the reason why peat soils have traditionally sequestered such large 

amounts of C. 
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In the anaerobic environment of peat soil, decomposition of organic matter proceeds mostly to 

DOC and the porewaters of peatland soils therefore contain high concentrations of DOC (as 

high as 60 mg L"'). As peatlands are found in areas of high precipitation, DOC effluxes to 

freshwaters can be high (Grieve, 1990), although the extent of this process varies dramatically 

throughout the year and is dependent to a large extent on the local hydrological flow regime 

(Worrall et al., 2002). The release of C from peat is often considered to be largely controlled by 

water table depth (Holden, 2005). The majority of DOC production from peatlands occurs 

during the summer, when rates of decomposition are at their greatest (Tegan and Dorr, 1996). 

With rainfall typically low during the summer, this leads to a build up of DOC which is then 

washed out during the heavy rainfall that is characteristic of the autumn season (Scott et al., 

1998). 

The extent of peatlands within the catchment is often the most influential determinant on the 

size of the allochthonous input of DOC to source waters. For example, Urban et al. (1989) 

reported that the single most important variable controlling the DOC yield from a catchment is 

the proportion of the area occupied by peatlands. The role of peatlands in contributing to the 

DOC concentration of source waters is therefore critical, particularly in the UK where they 

dominate the headwaters of many water supply catchments (Evans et al., 1999). 

Tropical peatlands cover an area of approximately 30-45 million ha (Verwer et al., 2008) under 

waterlogged and acidic substrate conditions (Hirano et al., 2007). They have traditionally been 

one of Earth's most efficient ecosystems for sequestering C due to high rates of above-ground 

biomass productivity and suppressed decomposition of organic matter in the anoxic soil 

Qauhiainen et al., 2008). Unlike boreal and temperate peatlands, those in the tropics are mostly 

forested and therefore contain significant C stocks above ground in addition to below ground. 

Peat deposits are usually thicker in tropical regions than those that exist in colder climates. The 

majority of the world's tropical peatlands are found in south-east Asia (67.1%; 27.1 million ha); 
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principally Indonesia (55%; 22.5 million ha) and Malaysia (7%; 2 million ha) (Hooijer et al., 2006; 

Page et al., 2008). Tropical peatlands are considered to be sites of high biological activity and play 

a significant role in the consumption of greenhouse gases (Bouwman, 1990). 
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1.7 Anthropogenic impacts on peatlands 

Peatlands have traditionally sequestered large stocks of soil carbon. They have therefore acted to 

naturally reduce the concentration of CO2 in the atmosphere. As the balance between low 

productivity and decomposition is small (Päiviinen and Vasander, 1994), peatlands are an 

ecosystem particularly prone to climate change and environmental degradation (Gorham, 1991; 

Weltzin, 2003). Concern recently has focused on observations of rising concentrations of DOC 

in freshwaters. Originally reported by Freeman et al. (2001b) as a 65% increase in DOC over a 12 

year period for 22 sites in the UK, observations of rising DOC have now been reported for 

many sites in the northern hemisphere (Evans et al., 2005; Monteith et al., 2007). As the greatest 

increases have been reported at sites with the most peat dominated catchments, it has been 

postulated that peatlands may be destabilising and starting to release some of the C they have 

sequestered since the end of the last ice age. The consequences of rising freshwater DOC 

concentrations for the quality of drinking water are of great concern for the water industry, given 

the potential for increases in DBP formation and the fact that DOC removal is already the 

costliest stage of the treatment process. 

There has been much debate into the possible causes of this rising trend in DOC, with rising 

temperature and atmospheric CO2. decreasing acid deposition and changes in land use and 

hydrology hypothesised to be causing the changes (Freeman et al., 2001b; Tranvik and Jansson, 

2002; Freeman et al., 2004b; Worrall et al., 2004a; Worrall et al., 2006a; Monteith et al., 2007). 

There is yet to be general consensus on the most likely driving mechanism, however. 

Perhaps the most important anthropogenic impact to have occurred in peatlands worldwide has 

been land use change, which has often been preceded by drainage of the peat soil. As it is the 

waterlogged condition of the soil that is deemed to be responsible for maintaining the stability of 

peatlands (Freeman et al., 1996), drainage has the potential to seriously unstabilise the C balance 

of a peatland. Peatland drainage by open cut channels has been a common land management 

21 



1.7 Anthropogenic impacts on peatlands 

technique in many European countries and was undertaken in the hope of increasing agricultural 

productivity (Worrall et al., 2007a). Due to basic scientific principles, such as that decomposition 

is much more rapid in aerobic than anaerobic soils, it was widely thought that the lowering of the 

water table in peatlands and a transition to more aerated conditions results in increased levels of 

microbial activity within the peat profile and enhanced decomposition, potentially changed 

peatlands from net C sinks into net C sources (Laiho, 2006). However, results from studies 

assessing the impact of drainage on decomposition in peatlands are mixed (e. g. Alm et al., 1999; 

Minkkinen et al., 2002), with decreases in pH, temperature and substrate quality potentially 

offsetting increases in oxygen content. In terms of DOC, there have been comparatively fewer 

studies compared to the assessment of changes in CO2 release, but it is generally thought that 

peatland drainage will enhance DOC export to freshwaters. For example, Mitchell and 

McDonald (1995) observed a greater discolouration of freshwaters flowing from drained areas of 

a peatland catchment in northern England. In an effort to try and restore peatlands and reverse 

upland degradation many agencies in the UK have begun to block peat drains. However, water 

companies fear that drain-blocking could in fact increase DOC leaching in the short term; 

potentially to a level the water treatment works cannot process (Worrall et al., 2007a). The 

waterlogged nature of peatlands may also be compromised in the future by lowering of the water 

table through processes associated with climate change (Mitchell and Warrilow, 1987). Roulet et 

al. (2006) have predicted a decrease of 14-22 cm in the height of the water-table in boreal fens 

for a doubling of the atmospheric CO2 concentrations. This is similar to the water-table 

drawdown induced by forestry drainage in many European countries, so sites that have been 

drained for forestry could be used as a proxy for gaining insights into the effects of climate 

change. 

Interest in tropical peatlands has intensified in the last few years due to the widespread 

environmental degradation that these ecosystems have undergone. Since the 1970's vast areas 

have been developed for large-scale agricultural plantations (Melling et al., 2006), principally for 
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the growth of oil palm. Indonesia and Malaysia have been the countries most affected; Malaysia 

is now the largest producer and exporter of oil palm and its products (Yousoff and Hansen, 

2007) and in 2007 more than 4.3 million ha were under oil palm cultivation occupying over one 

third of total cultivated area in Malaysia (MPOB, 2008). This has had serious repercussions for 

CO2 emissions; drainage has lead to enhanced peat decomposition, whilst clearing the land of 

vegetation eliminates the strong C sequestering potential of the ecosystem. Peat fires have also 

had a devastating impact on tropical peatlands, especially in Indonesia (Jaenicke et al., 2008) and 

the drainage of peatlands makes them particularly susceptible to fire damage. As a result, many 

degraded tropical peatlands have switched from strong C sinks to C sources through the release 

of thousands of tonnes of CO2 (Page et al., 2002). The C emissions from degraded peatlands in 

Indonesia alone accounts for 4% of the total global anthropogenic emission of greenhouse gases 

(Hooijer et al, 2006) and sharp increases in atmospheric CO2 concentrations have been 

associated with the burning of vast swathes of SE Asian peatlands (Page et al., 2002). There is 

very little information'as to the impact of converting pristine peatlands into agricultural land on 

the concentration and fluxes of DOC into freshwaters. 
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1.8 Overall summary 

Providing safe drinking water for human consumption is becoming more of a challenge for 

water companies due to rising concentrations of DOC in freshwaters. This is because DOC 

reacts with disinfectants such as chlorine to produce undesirable and harmful compounds known 

as DBPs. The most common DBPs formed are THMs, which are known to be carcinogenic to 

humans. 

A greater understanding is needed of processes occurring within the catchment of water bodies 

that influence the concentration of DOC in the water. Identifying the origin of DOC provides 

an insight into the potential formation of DBPs and to do this more thorough methods of DOC 

characterisation are needed. Peatlands are known to be one of the principle sources of DOC to 

rivers and lakes; traditionally these ecosystems have been responsible for locking up C but recent 

evidence suggests that they may be destabilising and beginning to release C back into the 

atmosphere and into freshwaters. Changes in land management in boreal and tropical peatlands 

have had perhaps the most devastating effects on peadands as vast areas have been drained for 

the establishment of agricultural crop plantations. There is evidence that this has increased the 

export of DOC to freshwaters, but the effect has not been studies in great detail compared to 

impacts on the release of CO2. issue is of great significance to water companies as DOC 

removal is one of the principal stages of water treatment. 

Agricultural practices also pose additional problems to water quality as the application of excess 

fertilisers may cause eutrophication of water bodies through the leaching of N and P into water 

sources. The enhanced level of nutrients can aid the development and growth of algal blooms 

which can cause problems for water treatment due to dramatically increased concentrations of 

organic matter, which can lead to the blockage of filters, an increase in the concentration of 

LMW DOC (which is virtually untreatable and leads to bacterial re-growth in the distribution 

system) and a greater formation of DBPs. As the formation of algal blooms may increase with 
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climate change, water companies need to improve ways of minimising their formation, 

principally through reducing the build up of N and P in the water. 
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1.9 " Aims of the project 

The aim of the project is ultimately to examine some of the most important processes that are 

known to influence the concentration of DOC in freshwaters, i. e. those occurring within both 

the catchment and the lake. This will be initiated by performing surveys of two drinking water 

reservoirs on the island of Anglesey, north Wales, where the treatment of water can, at times, be 

difficult. It is hoped that the survey will aid in the detection of dominant sources of DOC into 

the reservoirs and to what extent each is influenced by allochthonous and autochthonous inputs. 

The work will expand on that of Jones (2006) and will use various techniques to better 

characterise DOC ('H-NMR and fractionation which will be cross-referenced against THM FP) 

and to generate an assessment of the flux of DOC from key inflows to each lake. 

As each of these reservoirs is known to succumb to algal blooms, a new type of constructed 

wetland will be developed with the intention of reducing algal bloom growth. It is hoped that the 

installation of a floating structure that is able to sequester N and P would aid in the reduction of 

algal bloom densities and ultimately a reduction in LMW C generated in the water body. 

Peatlands in the boreal and tropical zone have been subject to environmental degradation 

through drainage and relatively little is known about the impacts on. DOC export to freshwaters 

over long time scale. This will be examined by sampling peatlands in Finland and Malaysia that 

have been subject to long-term drainage for the establishment of forestry and oil palm 

plantations respectively, facilitating the comparison of the effects of drainage on these two 

contrasting peatlands. In addition to assessments of DOC export potential and the repercussions 

for water quality, the activity of soil enzymes will also be determined due to their key role in the 

decomposition of organic matter and potential mobilising impact on DOC. It is hoped that 

findings from these experiments will also provide an insight into changes in DOC export that 

may occur with water-table drawdown caused by climate change. 
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Chapter 2 

Contrasting influences on the biogeochemical 

characteristics of two shallow, eutrophic Welsh 

drinking water reservoirs 
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2.1 Abstract 

Excess dissolved organic carbon (DOC) and inorganic nitrogen and phosphorus can be 

considered major pollutants in freshwater ecosystems, particularly those used as sources of 

drinking water. DOC reacts with chlorine used during water treatment to produce a suite of 

disinfection by-products (DBPs), some of which are known to be harmful to human health. 

Concern has arisen recently that rising DOC concentrations in freshwaters, linked to climate 

change, changes in soil acidity and peatland destabilisation, may increase the occurrence of DBPs 

in drinking water. This chapter describes the seasonal dynamics of DOC, nitrate and phosphate 

in two shallow, lowland, eutrophic drinking water reservoirs (Llyn Cefni and Llyn Alaw) in north 

Wales, UK with respect to drinking water quality. Markedly different seasonal trends were 

recorded, and these were linked to contrasting aspects of the lake's catchment and the 

meteorological conditions experienced during the two surveys. The presence of a large peatland 

within the catchment of Llyn Cefni led to a large flux of DOC to the lake during the autumn, 

16.2 mg L"' in October 2005 and 15.0 mg L"1 in October 2006, and provided a source of DBP 

precursor compounds. The greater size of Llyn Alaw is suggested to be the reason for the lack of 

a strong seasonal DOC trend, with concentrations averaging 10.7 mg L'. Both lakes experienced 

nitrate depletion during the summer of the surveys, falling from 12.7 mg L'' in Llyn Cefni and 

6.5 mg L"' in I1yn Alaw to undetectable levels, suggesting extreme eutrophy, although the lack of 

detectable phosphate at Llyn Alaw may be why the growth of algal blooms was much less 

prevalent that at Llyn Cefni. Despite the high input of allochthonous DOC and growth of algal 

blooms at the Cefni, the thorough treatment processes employed at this works were sufficient to 

minimise trihalomethane (Fl-1M) concentrations to below 65 . tg L'' and lower than the 

maximum permissible limit. 
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2.2 Introduction 

The presence of natural organic matter (NOM) in drinking water reservoirs poses a problem to 

water treatment plants that endeavour to provide clean, safe drinking water, due to its reactivity 

with disinfectants and the formation of harmful by-products. Disinfection is a vital stage in the 

treatment of water, ensuring the elimination of harmful microbes. The most commonly used 

disinfectant is chlorine, due to the relative simplicity and low cost associated with its 

implementation (Schoenen, 2002) and its effectiveness against a broad range of bacterial, viral 

and protozoan pathogens (Nazir and Khan, 2005). However, the presence of NOM in raw water 

supplies is a matter of concern because it is a potentially large source of carbon (C) compounds 

that contain methyl groups. These groups react with chlorine to produce a suite of disinfection 

by products (DBPs), many of which are known to be detrimental to human health in the long 

term (Singer, 2006). The most commonly occurring and well known class of DBPs are 

trihalomethanes (THMs) (Villanueva et al, 2006), which ate suspected to be carcinogenic to 

humans (Kits et al., 2002). Chloroform is usually the dominant type of THM formed, although 

the presence of bromide ions in the raw water can induce the formation of predominately 

brominated THMs (Rodriguez and Serodes, 2001). 

A key constituent of NOM in freshwater is C (Wetzel, 1975). Dissolved organic carbon (DOC) 

is generally recognised as the principle fraction of NOM (Yu et at, 2003) and comprises particles 

less than 0.45 µm in size (Thurman, 1985). DOC is composed of recalcitrant high molecular 

weight compounds such as humic and fulvic acids, in addition to more labile polysaccharides and 

low molecular weight acids, which can be rapidly metabolised by bacteria (Wu, 1999). A number 

of factors affect the DOC concentration of freshwater lakes and rivers and one of the most 

important is the amount of organic rich soil, principally found in peatlands, that is present within 

the catchment (Urban et al., 1989). Since the end of the last ice age, northern hemisphere 

peatland ecosystems have sequestered vast stores of C and are estimated to contain a third of the 
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world's soil C stock Qenkinson et al., 1991). This characteristic is largely attributed to 

waterlogging of the soil, creating anaerobic conditions and inhibiting enzymic decomposition of 

organic matter (Freeman et al., 2004b). Recent evidence suggests that climate change may be 

reducing the C sink strength of peatlands, leading to an increase in the flux of DOC into 

freshwaters (Freeman et al., 2001b). This may therefore impact upon drinking water quality 

through increased THM formation. 

Freshwater DOC is complex and poorly understood; it is comprised of a virtually limitless 

number of different C compounds, all of varying molecular size, weight and structure. Methods 

to measure quality of DOC have tended to focus on determining basic structural information 

from measuring the sample as a whole, such as through UV-Visible and fluorescence 

spectroscopy (Her et al., 2003; Uyguner et al., 2004; Chow et al., 2005). To better understand the 

sources and characteristics of DOC compounds, and how they might affect drinking water 

quality, it is essential to separate or isolate DOC and perform more complex analyses, such as 

nuclear magnetic resonance (NMR) and pyrolysis GC-MS (Kitis et al., 2002). The development 

of macroporous resins enabled the separation of DOC into `fractions', by isolating and 

concentrating DOC into structurally more specific and physiochemical more analogous 

subgroups (Thurman and Malcom, 1981). It has allowed for DOC to be separated into 

hydrophobic (fulvic and humic acid) and hydrophilic (carbohydrates with low molecular weight 

proteins and amino acids) groups. An additional class of compounds may also be identified 

based on their intermediate polarity between hydrophobic and hydrophilic compounds; these 

compounds are described as transphilic (Marhaba et ah, 2003). 

In addition to DOC, the presence of nitrogen (N) and phosphorus (P) plays a key role in 

influencing the biogeochemical characteristics, and ultimately water quality, of freshwater 

ecosystems. N and P are frequently used in fertilisers to achieve sufficient yields of crops on 

agricultural land, however, the application of excess fertiliser can lead to surplus N and P being 
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transferred to water bodies through runoff and leaching (Feng et al., 2005). Freshwater systems 

receiving excess nutrients may experience a dramatic deterioration in water quality, due to 

enhanced eutrophication and the formation of algal blooms (Herath, 1997; Codd, 2000). These 

blooms can turn freshwaters anoxic and dramatically increase dissolved organic matter (DOM) 

concentrations within the lake, whilst the algae themselves may be directly harmful to human 

health (Smith et al.., 1999). 

Understanding processes affecting the dynamics of DOC, N and P is therefore critical for 

determining influences on THM formation during water treatment. This chapter reports 

measurements of seasonal changes in the chemistry of two drinking water reservoirs in north 

Wales, I1yn Cefni and Llyn Alaw, and describes potential implications to drinking water quality. 

The presence of a peatland ecosystem within the catchment of Ilyn Cefni is expected to lead to a 

greater flux of allochthonous DOC to this lake, whilst large areas of agricultural land within the 

catchment of both lakes are expected to be significant sources of N and P. 
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2.3 Materials and Methods 

2.3.1 Study area 

The two study sites are shown in figure 2.1. Llyn Cefni (UK grid ref. SH4450077100) is a small 

reservoir in the centre of the island of Anglesey, north Wales, which was formed in 1950 by 

damming the river Afon Cefni and Cots Erddreiniog, a nearby peatland. It has a maximum 

depth of 4 in, a total surface area of 0.86 km2, a maximum length of 2.3 km and a catchment area 

of 46.9 km2. Two inflowing streams have previously been identified as important sources of 

allochthonous DOC to the lake, Afon Cefni to the south and Afon Erddreiniog to the north 

(Jones, 2006). Afon Cefni flows through a series of agricultural fields before entering the 

reservoir, while Afon Erddreiniog drains Cots Erddreiniog, a fen peatland north of the reservoir. 

Llyn Alaw (UK grid ref. SH392866) is also a man-made reservoir on the island of Anglesey. It 

was formed in 1966 by flooding a peatland, Cors y Bol, to provide drinking water for the 

northern half of the island. It has a maximum depth of 5.2 m, a total surface area of 3.6 ktn2, a 

maximum length of 4.3 km and a catchment area of 33.6 km2. A few small streams feed into the 

lake, the largest being Afon Alaw. The lake's catchment is largely agricultural, and Afon Alaw 

flows through a succession of fields before entering the reservoir. There is an additional source 

of water to the lake; the Cors y Bol inflow. This is a subsidiary dam that mostly serves as an 

overflow from the reservoir, although infrequently some water is pumped back into the lake to 

prevent flooding of the catchment. A small peatland is present in the catchment of the Cors y 

Bol inflow. A summary of the limmological properties of both lakes can be seen in Table 2.1. 

32 



2.3 Materials and Methods 

Table 2.1 - Summary of the limmological properties of I1yn Alaw and I1yn Cefni 

Llyn Alaw Llyn Cefni 

Mean annual temperature 12 °C 13 °C 

Mean annual precipitation 85.5 mm 108.8 mm 

Maximum lake depth 5.2 m 4m 

Maximum lake length 4.3 m 2.3 km 

Lake surface area 3.6 km2 0.86 km2 

Watershed 33.6 km2 46.9 km2 

Figure 2.1- The two study rite ; I1yn Cefni and Llyn fl law, on the island of /1 ngle ry, Wale r, UK 
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2.3.2 Sample collection 

A twelve month survey of Llyn Cefni and Llyn Alaw was undertaken between October 2005 and 

October 2006 and January 2007 and December 2007 respectively. Seasonal changes in the DOC, 

nitrate and phosphate concentrations of inflowing streams to the lakes were measured, whilst the 

DOC flux was calculated for the inflowing streams. For the Llyn Cefni survey, routine samples 

(n=5) were collected every six weeks from four sampling points: Afon Erddreiniog and Afon 

Cefni, the raw lake water and the final treated water. For the Llyn Alaw survey, routine samples 

(n=5) were collected every four weeks from four sampling points: the Afon Alaw and Cors y Bol 

inflows, the raw lake water and the final treated water. The flow rate of the inflowing streams 

was measured to enable the calculation of their individual discharge into the reservoirs and, 

following collection, all samples were filtered through sterilised 0.45 µm filters membranes and 

stored at 4 °C in a refrigerator. Raw water temperature was also measured on each sampling visit. 

An additional 2.5 L of water was collected during the Llyn Alaw survey in winter (February), 

spring (April), summer (July) and autumn (November) to determine seasonal changes in the 

`fractions' of DOC in the lake. 

2.3.3 Experimental and statistical analysis 

Analysis of the filtered water samples included determination of DOC using a Shimadzu TOC- 

5000 and nitrate and phosphate using a Dionex DX-120 Ion Chromatograph. Final water THM 

concentrations and rainfall data were provided by Dwr Cymru Welsh Water. 

DOC was separated in the extra Llyn Alaw samples using. the method described by Kim et al., 

(2006a). The pH of the water was lowered to pH 2 through the addition of hydrochloric acid. 

The sample was then sequentially passed through DAX-8 (Surpelco) resin followed by XAD-4 

(Amberlite) resin at a flow rate of 1.5 ml minute', to isolate the DOC into three fractions; 

hydrophobic, transphilic and hydrophilic. The concentration of each fraction was calculated 

using the following equations: 
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Hydrophobic = [DOC] DAX-8 in - [DOG] DAX-8 out 

Transphilic = [DOC] DAX-8 out - (DOC] XAD-4 out 

Hydrophilic = [DOC] XAD-4 out 

A series of correlations were performed on the datasets using Pearson correlation in SPSS 

(version 11). The correlations considered the interactions between rainfall and subsequent DOC 

concentrations entering both lakes and the effect of temperature and DOC on THM production. 

The standard error of each data point was calculated by dividing the standard deviation of the 

sample by the square root of the sample size. 
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2.4 Results 

2.4.1 Llyn Cefni survey 

The general trend of DOC at all four sampling sites was a minimum during the spring followed 

by a maximum during the autumn (Figure 2.2). Peaks in DOC concentration were also recorded 

in January and March. Afon Erddreiniog had a greater DOC concentration that Afon Cefni 

during all but one month (August), where its concentration fell to a minimum of 3.81 mg L'. 

The treated water consistently had lower DOC concentrations than the raw lake water, between 

65% and 70%, however, it always followed the same seasonal trend. The calculated discharge of 

DOC from both inflows to the reservoir was almost identical throughout the year (Figure 2.3). 

Low levels of discharge were recorded during the summer and peaked during spring, to a 

maximum of 19 g s"' and 22g s' for Afon Erddreiniog and Afon Cefni respectively. 

The concentration of nitrate (Figure 2.4) had a general trend of peaking during early spring and 

steadily declining throughout the summer, however, peak in concentration was recorded in Afon 

Erddreiniog in August (15.02 mg L''). The concentration of phosphate (Figure 2.5) in Llyn Cefni 

was highest during late autumn and early winter (0.26 mg L'' and 0.13 mg L'') and undetectable 

levels were recorded for the remainder of the year. Low concentrations of phosphate, below 0.12 

mg L'' were recorded in both Afon Erddreiniog and Afon Cefni with levels peaking in March 

and steadily declining during the summer. 

THM concentrations (Figure 2.7) of the final treated lake water showed peaks both in October 

05 and October 06, which were65 µg L'1 and 61 µg L '1, respectively. Concentrations were at 

their lowest during the winter, corresponding to the coldest temperatures. 

2.4.2 Llyn Alaw survey 

Neither one of the four sampling sites displayed an obvious trend of DOC (Figure 2.2). Both 

inflows, Afon Alaw and Cots y Bol, produced a minimum in DOC concentration during late 
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winter and early spring, whilst early summer and late autumn produced the greatest DOC 

concentrations. The rate of DOC discharge from Afon Alaw (Figure 2.3) was generally low 

throughout the year, with the greatest rate being recorded during November, 111 g s"', and 

January 59 g s"'. Llyn Alaw followed a similar but slightly dampened trend to that displayed by 

the Cors y Bol inflow, whilst the final treated water showed very little fluctuation and was largely 

constant, continuingly producing concentrations of below 8.22 mg C' regardless of the season. 

Fractionation of the DOC in Llyn Alaw (Figure 2.6) revealed that during the summer hydrophilic 

compounds dominated the DOC structure (76%) and hydrophobic compounds were shown to 

dominate during the autumn (55%). During the winter and spring, no one fraction was much 

more prevalent than the other. 

Nitrate concentrations (Figure 2.4) were slightly higher in the Cots y Bol inflow when compared 

to the Afon Alaw inflow. The general trend exhibited by all four sites showed concentrations at 

their lowest during the summer and highest in the winter. However, both the Cots y Bol and 

Afon Alaw inflow produced peaks in concentrations in September before following the same 

trend as the raw and final treated lake water for the remainder of the year. 

THM concentrations for the treated lake water (Figure 2.7) produced peaks both in April and 

August (67 pg L' and 57 µg L'1), corresponding to warm lake water temperatures. As the 

temperature decreased so too did the total THM concentration, with concentrations below 30 

57 µg L'1 recorded in January and February. 

2.4.3 Correlations between measured parameters 

The total volume of rainfall received in the 4 days prior to sampling correlated weakly but not 

significantly with the concentration of DOC in Llyn Cefni (R2=0.115, p>0.05; Figure 2.8). 

Rainfall 4 days prior to sampling was considered as statistical tests showed this number of days 

correlated best with DOC concentrations. 
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The formation of THMs correlated significantly with the lake water temperature at both Llyn 

Cefni (R2=0.444, p<0.05) and Alaw (R2=0.479, p<0.05; Figure 2.9). 

The formation of THMs correlated significantly with the raw water DOC concentration for Llyn 

Cefni (R2=0.483, p<0.05; Figure 2.10) but not for Llyn Alaw (p>0.05). 

The concentration of DOC in Llyn Cefni correlated significantly with the DOC concentration in 

both Afon Erddreiniog (R2=0.585, p<0.01) and Afon Cefni (R2=0.784, p<0.001; Figure 2.11). 

For Llyn Alaw, no significant correlations were recorded when comparing the concentration of 

the lake water DOC with that in Afon Alaw and the Cors y Bol inflow (p>0.05; Figure 2.12). 
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2.5 Discussion 

Llyn Cefni and Llyn Alaw are both shallow, lowland lakes and, as is often typical for such 

ecosystems, both are occasionally subject to high inputs of C, N and P, which have detrimental 

impacts on their water quality. These inputs have entirely different origins (natural vs. 

anthropogenic), but both necessitate thorough and complex water treatment processes to ensure 

that drinking water from these lakes is fit for human consumption. Analysis of the data collected 

during the two surveys highlights the major influences on biogeochemical properties of Ilyn 

Cefni and Llyn Alaw. The seasonal dynamics of DOM in both lakes varied markedly and can 

largely be attributed to differences in properties of the lake's catchments and meteorological 

conditions experienced throughout 2006 and 2007. 

Concerning DOC, a strong seasonal trend was evident for Llyn Cefni, with higher maximum and 

lower minimum DOC concentrations than Llyn Alaw and the greatest concentrations measured 

in the autumn. These differences may reflect contrasting aspects of their size and catchment 

characteristics. Firstly, Llyn Cefni has a surface area four times smaller than that of Llyn Alaw. 

Lake size is known to be of great influence on hydrological and biogeochemical processes 

(Hanson et al., 2007), and, it has previously been reported that lake area can correlate inversely 

with DOC concentration (Xenopoulos et al., 2003). Secondly, Llyn Cefni contains within its 

catchment Cors Erddreiniog, a 289 hectare peatland. It is well known that the proportion of 

peatlands within the catchment of temperate lakes is one of the most influential determinants on 

the size of the allochthonous C input (Dillon and Molot, 1997) and previous work has 

demonstrated Cors Erddreiniog to be an important source of DOC to Llyn Cefni (Jones, 2006). 

These attributes may explain why Llyn Cefni has a higher maximum DOC concentration, 

particularly during the autumn when temperate lakes typically experience a flush of peatland- 

derived DOC (Scott et al., 1998; Mash et al., 2004). The high concentrations of DOC in October 

2005 and 2006 in Afon Erddreiniog, the stream draining the peatland, provide evidence of an 
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autumn time pulse of DOC into Llyn Cefni. The concentration of DOC in Afon Erddreiniog 

was almost always higher than Afon Cefni, reflecting the peatland influence, although the 

concentration would be higher were it not for breakdown of the DOC occurring within Afon 

Erddreiniog once it is mobilised from the peatland (Jones, 2006). The concentration of DOC in 

Llyn Cefni correlated significantly with the DOC concentration in both Afon Erddreiniog and 

Afon Cefni, indicating the influence of these streams as point sources of DOC to the lake. Once 

corrected for the discharge volumes of each stream, it is apparent that Afon Cefni and Afon 

Erddreiniog both contribute almost equal quantities of DOC to Llyn Cefni. Jones (2006) also 

reported that DOC from Afon Erddreiniog has a higher SUVA (Specific Ultra Violet 

Absorbance) than DOC from Afon Cefni, again due to the peatland origin. Such a characteristic 

will make the DOC more amenable to removal during treatment, but will also make it more 

liable to form DBPs during water treatment (Archer and Singer, 2006; Fabris et ah 2008). 

For Llyn Alaw, the major inflowing stream, Afon Alaw, does not appear to contribute 

significantly to the DOC concentration of the lake and there was no significant correlation 

between the lake and stream water DOC concentrations. Most noticeably, the relatively large flux 

of DOC in November 2007 did not significantly increase the concentration measured in the lake 

in November or December 2007. Although the stream drains a relatively large area of land, its 

small size in relation to the volume of the lake and the lack of a peatland within its catchment is 

perhaps the reason why it is not an influential source of allochthonous-DOC. This also explains 

the absence of an autumn-time pulse of DOC in both Afon Alaw and Llyn Alaw. Moreover, the 

concentration of DOC in the Cots y Bol inflow does not correlate significantly with the lake's 

DOC concentration. This is also probably due to its small size relative to the lake and because it 

is only intermittently used to pump water back into the reservoir to prevent flooding of the 

catchment. While the inflow flows through a small area of peatland, this is unlikely to contribute 

a significant amount of DOC to I1yn Alaw given that the water initially derives from Llyn Alaw 

and has only minimal contact with the peatland before being pumped back into the lake. Overall, 
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the data suggests that the dominant source of allochthonous DOC to Llyn Alaw is from run-off, 

rather than riverine point sources. The large volume of Llyn Alaw in relation to Llyn Cefni (at 

least 4 times greater) will significantly dilute large fluxes of terrestrial DOC and consequently 

dampen any seasonal trends. It may be possible that a significant source of DOC to Llyn Alaw 

derives from the lake bed due to its original construction taking place on a peatland. Although 

lake bed sediments are generally considered as significant sinks of organic C in boreal systems 

(Wachenfeldt, et al. 2008), this may be an important source in Llyn Alaw due to the lake's shallow 

depth which could allow wind-induced mixing to cause upwelling of organic C from the lake 

bed. 

Perhaps the greatest influence on the seasonal dynamics of biogeochemical properties of 

freshwater lakes is fluctuating weather conditions, and there is ample evidence of its influence in 

the data obtained, particularly for Ilyn Cefni. Rainfall is known to highly influence the amount 

of DOM in lakes due to increased allochthonous input associated with run-off (Li et al., 2008). 

Therefore, it would be expected that an increase to the total amount of DOM in Llyn Cefni 

would occur soon after a rainfall event. This is evident in the seasonal trend for Llyn Cefni, with 

the three peaks in DOC concentration coinciding, but not correlating, with high rainfall totals in 

the days prior to sampling. The lack of a significant correlation may be due to the seasonal 

variability of the availability of DOC that can potentially be released from soils during rainfall. As 

highlighted on figure 2.8, there are two distinct regions, one of high DOC and intermediate 

rainfall (Group 1), and one of intermediate DOC and high rainfall (Group 2). The former is for 

October 2005 and 2006 and represents the typical autumn-time pulse for temperate lakes. The 

latter is for January and March 2006, demonstrating that even when rainfall is high, there is less 

potentially leachable DOC in catchment soils at this time of the year. This can be ascribed to the 

seasonal variation of decomposition processes occurring with the soil; during late summer and 

early autumn, soil temperatures and consequently microbial and enzymic organic matter 

decomposition are at their highest (Tate, 1987; Kang and Freeman, 1999). Coupled with the high 
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input of C from senescing vegetation, this creates a 
. 
large pool of potentially leachable C in soils 

during this time of the year. During the winter, this pool of relatively labile C has been depleted, 

and there is less available to wash out of the soil (Freeman et ah, 2001a). 

Periods of low rainfall lead to a reduction in the flux of terrestrially-derived DOC to lakes and 

there is evidence of this for Llyn Cefni. The period May to August 2006 was notably dry, with 

the total volume of rainfall recorded at the lake approximately half the long-term average. As a 

result, the flux of DOC from both Afon Erddreiniog and Afon Cefni did not exceed 0.9 g/s, 

over ten times less than the flux recorded after a rainfall event. This offers a reason for why the 

concentration of DOC in Llyn. Cefni in the summer was two-thirds lower than during the 

autumn. During 2007, Llyn Alaw had a higher summertime concentration of DOC than Llyn 

Cefni in 2006. The summer of 2007 was much cooler and wetter than 2006; this will have 

increased the allochthonous input of DOC to Llyn Alaw during 2007 and suppressed 

decomposition of existing DOC within the lake. The sunny weather and high lake water 

temperature at Llyn Cefni during the summer of 2006 led to the formation of extensive toxic 

algal blooms. This can be seen in the measured concentrations of nitrate and phosphate, which 

both become undetectable in August 2006, an indication of extreme eutrophy (Wetzel, 2001). In 

terms of DOC, it has been described by Tittle and Kamjunke (2004) how a mixotrophic algal 

bloom may initially deplete DOC concentrations during early summer as the bloom develops. 

However, during late summer the algae become a source of DOC as the blooms die away due to 

a lack of nutrients and falling temperatures and sunlight levels. In the case of Llyn Cefni, this 

may have provided an additional source of DOC during autumn 2006, supplementing the 

autumn pulse of terrestrially-derived DOC. The data for nitrate in Afon Erddreiniog also 

confirms the trend reported by Jones (2006); this stream contributes more nitrate to Llyn Cefni 

than Afon Cefni, probably due to greater use of fertiliser in the fields within the stream's 

catchment. For Llyn Alaw, the depletion of nitrate during the summer also suggests the growth 

of algae. However, data from Dwr Cymru Welsh Water indicate that there was no growth of 
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significant algal blooms at the lake during 2007. This may have been due to phosphate limitation; 

none was recorded for the lake or the two inflowing streams and P has recently been identified 

as the key nutrient for algal growth (Schindler et al., 2008). 

Although there was little variation in DOC concentrations in Llyn Alaw throughout the year, 

fractionation revealed marked seasonal variations in DOC quality. The seasons showing the 

greatest contrasts in DOC characteristics were summer and autumn. During the summer the 

hydrophilic (76 %) fraction dominated, with relatively little hydrophobic material (18 %), 

however, in the autumn the opposite was true, with-14 % hydrophilic and 55 % hydrophobic. 

These findings appear to corroborate the suggestions of allochthonous and autochthonous 

influences on the lake. The autumn flush of terrestrially-derived DOC will contain high- 

molecular weight compounds leached from soil and consequently will contain mostly 

hydrophobic compounds (Imai et al., 2001). The proliferation of algal blooms during the summer 

will lead to a large input of lower molecular weight, hydrophilic structures (Kritzberg et al., 2006). 

A reduction in the percentage of hydrophobic material in the lake would occur during the winter 

and spring as the supply of senescing sources of C within the catchment diminishes, whilst the 

formation of algal blooms would be expected to proceed rapidly during spring as water 

temperature and sunlight increase. The winter and spring seasons appear to act as transitional 

stages between these opposing scenarios. 

The formation of THMs correlated strongly with the lake water temperature at both Llyn Cefni 

and Alaw, which agrees with previous studies reporting that the formation of DBPs is 

temperature dependent (Rodrigues et al., 2007). At Uyn Cefni, the formation of THMs correlated 

slightly more strongly with the raw water DOC concentration, with the peaks in THMs in 

October 2005 and 2006 coinciding with the highest DOC concentrations. This emphasises the 

importance of the autumn-time pulse in DOC and the influence of peatlands in negatively 

affecting the quality of drinking water through leaching excess C to freshwaters. For Llyn Alaw, 
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the lake water DOC concentration did not correlate with the formation of THMs. This 

emphasises the lack of significant fluxes of terrestrially derived DOC to this lake and suggests 

that understanding processes affecting DOC dynamics within, this lake is not important for 

minimising THM formation. Due to the thorough treatment processes employed at both 

treatment works, THM concentrations were always below the current limit of 100 . tg L' set in 

the UK (DWI, 1998). 

The seasonal variations of treated water DOC concentrations mirrored the raw water DOC for 

both lakes. At times of high lake water DOC, it would therefore be expected that, in addition to 

THMs, high concentrations of DOC would also exist in the final water. This may lead to 

opportunistic bacterial re-growth of organisms such as Serratia fonticolain in the distribution 

system and may contribute to degradation of the drinking water through the occurrence of taste 

and discolouration problems (Niquette et al., 2001). The removal of DOC was generally much 

more efficient at the Cefni than the Alaw water treatment works and this is due to the use of 

different treatment regimes. Whilst both treatment works use coagulation as a means of 

removing DOC there is some variation in the actual application and removal of the flocs. Llyn 

Cefni treatment work employs dissolved air floatation, whereby small bubbles of air are pushed 

up through the water causing the flocs to rise up the surface before being scrapped off by 

mechanical means. Conversely Llyn Alaw adopts a method of clarification, whereby the flocs are 

left to settle to the bottom, a method commonly adopted to treat river sources as it is better 

adapted to the flashy nature of rivers. However, this study has demonstrated that Llyn Alaw 

shows very little seasonal variation, therefore clarification is not the most appropriate. 
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2.6 Conclusions 

This study demonstrates the influence of climate, lake size and catchment properties on 

biogeochemical characteristics of two similar lowland, eutrophic lakes in Wales, UK. The 

concentration of DOC in the two major inflowing streams to Llyn Cefni correlated with the 

DOC concentration in the lake, suggesting they are major point-sources of DOC. Conversely, 

neither of the major inflows to I1yn Alaw are influential sources of DOC. It was demonstrated 

that the presence of a peatland within the catchment of Llyn Cefni led to a large autumn-time 

flux of DOC to the lake; the absence of a peatland within the catchment of Llyn Alaw meant 

there is a low input of allochthonous DOC to this reservoir. The concentrations of THMs 

correlated significantly with lake water temperature for both sites and for Llyn Cefni the 

formation of THMs also correlated with the lake water DOC, suggesting that the inflowing 

streams are important sources of THM precursors. Llyn Cefni frequently experiences toxic algal 

blooms, which together with undetectable concentrations of nitrate and phosphate during the 

summer of 2006 suggests extreme eutrophy. The absence of P in the catchment of Llyn Alaw 

may be why this lake does not experience algal growths to a similar extent. 
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Chapter 3 
Identification of disinfection by-product precursors 

and their potential to form trihalomethanes in 

drinking water 
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3.1 Abstract 

3.1 Abstract 

The presence of dissolved organic carbon (DOC) creates problems during water treatment 

processes due to the formation of potentially harmful disinfection by-products (DBPs). Water 

treatment companies need to better understand the sources of DOC to reservoirs in order to 

understand seasonal variations in its characteristics and implications for its `treatability'. 'H-NMR 

spectroscopy has shown promise in gaining basic structural information of natural DOC and for 

fingerprinting signatures from different sources. In this study, DOC isolated from a eutrophic 

reservoir and its two major inflows was characterised. The signatures for the streams and lakes 

correlated significantly with the greatest correlation occurring in December, R2 = 1.00 between 

Afon Cefni and Llyn Cefni and R2 = 0.95 between Afon Alaw and Llyn Alaw, indicating a strong 

flux of terrestrial DOC into the lake, except when DOC derived from autochthonous 

production was recorded in the lake. The inflow draining a major peatland was also shown to be 

an important source of aromatic compounds for three of the four months, which consequently 

has implications for the formation of DBPs. 

57 



3.2 Introduction 

3.2 Introduction 

Dissolved organic carbon (DOC) is a large and dynamic global reservoir of carbon and it plays a 

critical role in many aspects of biogeochemical cycling. Its ubiquitous presence in freshwaters has 

important implications for water treatment processes and ultimately affects the quality of 

drinking water. Disinfectants used to remove potentially harmful microorganisms contain highly 

reactive molecules that can generate disinfection by-products (DBPs) upon reaction with 

compounds of DOC. Some DBP species have been identified as carcinogens (Villanueva et al., 

2006) and some have been associated with reproductive problems (Nieuwenhuijsen et al., 2000). 

The most effective way of reducing the formation of DBPs and, concurrently, treatment costs is 

to minimise DOC concentrations in source waters. To achieve this, water treatment works need 

to gain a greater understanding of the origins of DOC within the drinking water reservoir's 

watershed, its structural attributes and the characteristics that affect its `treatability' and reactivity. 

Freshwater DOC is composed of a mixture of complex organic compounds and determining its 

chemical structure can be a time-consuming process. It is often separated into broad groups 

based on hydrophobicity, aromaticity or molecular weight. Humic substances, which constitute 

approximately. 25-50% of DOC typically found in freshwaters (Thurman, 1985), are large, 

hydrophobic, aromatic compounds and have been identified as the principal precursors in the 

formation of DBPs (Liang et al., 2003). 

The basic structural characteristics of DOC may be characterised without the need for isolation 

and separation of DOC by spectroscopic analysis, such as ultraviolet/visible absorbance, infrared 

and fluorescence spectroscopy, and nuclear magnetic resonance (NMR). NMR is one of the 

most promising techniques, as it provides a useful recognition of the chemical structure within 

DOC because its signal is directly related to specific chemical functional groups (Lu, 2004). It 

has been argued that NMR has proved the most useful technique for investigating the structure 

of DOC (Lam and Simpson, 2008). The method of choice for rapid screening of dilute samples 
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of DOC is 'H-NMR (Cook, 2004). It is used for qualitatively estimating the relative abundance 

of various functional groups and especially for characterising their aromatic and aliphatic 

components. Typical 'H-NMR spectra for humic substances are complex and typified by broad 

signals with fine structures related to specific methylene, methyne and aromatic hydrogens 

(Cardoza, 2004). The chemical composition and structural nature of DOC varies with its origin 

and usually carries structural signatures related to the characteristics of its parental material. 

These characteristics may be regarded as `fingerprints' of DOC, reflecting their sources and 

formation history, thus potentially enabling identification of one source of DOC from another 

(Lu, 2004). Fingerprinting DOC from different sources is where 'H-NMR has become 

particularly useful Na et al., 2001; Lu et al., 2004). 

This chapter describes how 'H-NMR spectroscopy was used to characterise DOC isolated from 

two streams flowing into a eutrophic drinking water reservoir in north Wales. The aim was to 

identify if any streams made dominant contributions of DBP precursor compounds. Water 

samples were collected from the two principal inflows entering the reservoir, in addition to the 

raw lake water. 'H-NMR spectra was obtained for each sampling point in conjunction with 

establishing their trihalomethane formation potential (FHMFP). It was expected that the inflow 

draining from a nearby peatland would contain the greatest abundance of aromatic compounds 

and would consequently have the highest THM formation potential. The other inflow drains 

mostly agricultural land and is therefore expected to have a lower aromatic DOC content and 

THM formation potential. 

59 



3.3 Materials and Methods 

3.3 Materials and Methods 

3.3.1 Study Area 

The focus of this study was Llyn Cefni, a small reservoir in the centre of the island of Anglesey, 

north Wales, UK. Detailed site information is presented in Chapter 2. Two inflowing streams 

have previously been identified as important sources of allochthonous DOC to the lake; Afon 

Erddreiniog to the north and Afon Cefni to the south (Jones, 2006). Afon Erddreiniog drains 

Cors Erddreiniog, a fen peatland north of the reservoir, whilst Afon Cefni flows through a series 

of agricultural fields before entering the reservoir. 

3.3.2 Sample collection 

Samples were taken from Llyn Cefni and the two inflowing streams during the four months 

from October 2005 to February 2006, to identify the structural composition of the DOC and to 

determine if either inflow made a more significant contribution to the potential to form THMs at 

Llyn Cefni. ' Two litres of water were collected in glassware prewashed with Milli-Q grade 

deionised water. All samples were filtered through sterilised 0.45 µm filter membranes and 

refrigerated at 4 °C in the laboratory. Daily rainfall data for the sampling period was provided by 

Dwr Cymru Welsh Water. 

3.3.3 'H-NMR spectroscopy 

DOC was analysed by 'H-NMR similar to the methods described by Gillam and Wilson (1985) 

and Ma et al. (2001). DOC was isolated by freeze-drying 1 litre of the sampled water and the 

extract dissolved in 0.5 ml NaOD. The sample was then centrifuged at 10,000 rpm for 5 minutes 

and the supernatant transferred to an NMR tube. Spectra were recorded on a Bruker 500 MHz 

superconducting NMR spectrophotometer, each one run for 512 scans to ensure a sufficiently, 

high signal: noise ratio. A line broadening of 0.3 Hz was applied during the data processing and 

the chemical shifts were integrated using the D20 signal as a reference. The 'H-NMR spectra 
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were quantitatively analysed based on the general chemical shift assignments used by Ma et al. 

(2001); Kim and Yu (2005), and divided into four distinct regions (Table 3.1). 

Table 3.1-'H NMR chemical shift regions and the types of compounds detected 

Region Chemical Shift (ppm) Nature of bound protons 

I 0.0-1.6 Aliphatic methyl and methylene protons. 

II 1.6-3.2 Protons of the methyl and methylene groups a to 

aromatic rings, protons on carbons in a position to 

carbonyl, carboxylic acid, ester or amino acids. 

III 3.2-4.3 Protons on carbon of hydroxyl, ester and ether, and 
protons on methyl, methylene and methyne carbons 
directly bonded to oxygen and nitrogen. 

IV 6.0-8.5 Protons bound to aromatic rings. 

3.3.4 Trihalomethane formation potential and Specific Ultraviolet Absorbance 

THM concentrations were measured using an adaptation of procedure 5710 in `Standard 

Methods for the Examination of Water and Wastewater' (American Public Health Association, 

1992) and the method used by Goslan (2003). Samples were chlorinated using a volume of 

sodium hyporchlorite solution adjusted to the amount of DOC previously measured in each 

sample using a Shimadzu TOC-5000. Phosphate buffer was added to the samples to ensure pH 

compatibility and they were left to incubate for 7 days at 25°C. THM concentrations were then 

determined using a Hewlett Packard 5890 Gas Chromatograph fitted with a Restck MXT-1 

crossband ® 10090 dimethyl polysiloxane column (30 m length, 0.53 mm i. d., 7.0 µm d. f. ). The 

concentrations of THMs were calculated using a standard curve with concentrations of 1,10, 

100 and 1,000 µg L'1 of the four individual THMs (CHC13, CHC12Br, CHC1Br2 and CHBr). 
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Absorbance of each sample at 254 nm was measured on a Camspec M330 UV-Visible 

spectrophotometer and used with DOC concentrations to determine values of Specific 

Ultraviolet Absorbance (SUVA). 

3.3.5 Statistical analysis 

A series of correlations were performed on the datasets using Pearson correlation in SPSS 

(version 11). The correlations considered the interactions between the two significant inflows 

into the lake, Afon Erddreiniog and Afon Cefni, and DOC concentrations and the effect rainfall 

had on the abundance of region IV DOC in the lake. 
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3.4 Results 

3.4.1 'H-NMR spectroscopy 

The 'H-NMR spectra obtained for all samples were similar in their overall shape to previously 

published spectra of DOC (e. g. Figure 3.1), with broad peaks in the upfield region representing 

complex mixtures of organic structures interspersed with sharp peaks indicating specific 

functional groups Na et al., 2001). The large peak at 4.9 ppm is the HOD peak from the D20 

solvent, whilst that at 8.4 ppm is formate, a decomposition product of humic acids dissolved in 

NaOH (Gillam and Wilson, 1985). For all samples and for each month, the dominant fraction of 

DOC was found in region I (Figure 3.2). Some subtle differences between the samples were 

observed for the other regions of the spectra, however. For three out of the four months, Afon 

Erddreiniog had the highest composition of aromatic compounds (region IV), especially for the 

samples taken in October and December. In these two months this stream also had the highest 

composition of region II compounds, which can also indicate aromaticity. When comparing the 

two streams, in addition to the greater aromaticity of Afon Erddreiniog, the stream generally 

contained less DOC compounds from region I than the DOC isolated from Afon Cefni. 

For three out of the four months, compounds resonating in region III were most commonly 

found in the sample taken from Llyn Cefni. The contribution of region III compounds for ilyn 

Cefni was particularly high in October 2005. Another notable aspect of the spectra was the high 

percentage of region I compounds for the two streams in February 2006. 

3.4.2 SUVA and THMFP values 

Averaged over the four months of sampling, DOC in Afon Erddreiniog had the largest 

contribution to the SUVA of the three samples, followed by Afon Cefni and Llyn Cefni (Figure 

3.3). The same trend was recorded for THMFP values (Figure 3.4), with the difference between 

Afon Erddreiniog and Llyn Cefni greater than that for SUVA. 
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3.4.3 Correlations of DOC compositions for Llyn Cefni with Mon Erddreiniog and 

Mon Cefni 

When comparing the structure of the DOC isolated from Llyn Cefni with that from the two 

inflowing streams, significant correlations (p<0.05) were observed for three out of the four 

months for Afon Cefni and two of the four for Afon Erddreiniog (Figure 3.5). The strongest 

correlation between the structures of DOC isolated from Afon Cefni and Llyn Cefni occurred in 

December 2005 (R2=1.00), followed by February 2006 (R2=0.94) and January 2006 (R2=0.92). A 

correlation for October produced a strong correlation (R2=0.64) however it was not significant. 

The strongest correlation between the DOC of Afon Erddreiniog and Llyn Cefni also occurred 

in December (R2 =0.95) followed by February (R2=0.92). The correlations in October (R2=0.90) 

" and January (R2=0.86) were strong but not significant atp>0.05. 

3.4.4 Correlations of total rainfall and percentage abundance of region IV DOC. 

A strong, positive correlation (R2=0.74) was observed between total rainfall 4 days prior to 

sampling and the percentage of region IV DOC for Llyn Cefni, however it was not significant at 

p>0.05 (Figure 3.6). Similar correlations for DOC from Afon Erddreiniog and Afon Cefni were 

weak and insignificant. Rainfall 4 days prior to sampling was considered as statistical tests 

showed this number of days correlated best with DOC concentrations. 

3.4.5 Correlations of DOC structures with THMFP values . 

No significant correlations were recorded between any of the DOC regions and the sample's 

overall THMFP value (Table 3.2). The only notable correlation was for Afon Erddreiniog 

THMFP vs. region II DOC, which was very strong (R2=0.88). It is worth highlighting that the 

correlations of THMFP values with region IV DOC produced only very weak correlations for all 

samples. 
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Figure 3.1 -' (1-NMR spectra of DOC extracted, f inm I1yn Cefni in October 2005 

0 ppm 

Table 3.2- Correlations between sample THMFP values and the 'II-NMR determined DOC structures 

I II III IV 

f i 
Correlation 0.001 -0.311 0.754 -0.289 

n Llyn Ce 
Significance 0.999 0.611 0.141 0.637 

i i E dd Af 
Correlation -0.914 0.935 0.569 0.397 

n re og on r 
Signflcance 0.086 0.065 0.431 0.603 

f i Af C 
Correlation -0.722 0.795 0.710 0.157 

n on e 
Significance 0.278 0.205 0.290 0.843 
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Figure 3.2 - Structural composition of the DOC isolated from the three f rshwater samples, as analysed by 'f I- 

NMR spectroscopy. Values shown indicate the percentage of -DOC found in each region. 
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Figure 3.3 - Four-month average contribution of each freshwater sample to the overall SUVA 

Afon Cefr 
35% 

Llyn Cc 
25% 

: fni 

fon Erddreiniog 
40% 

Figure 3.4 - Four-month average contribution of each freshwater sample to the overall 1 THMFP 
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Figure 3.5 - Relationship between the 'H-NMR determined DOC structures of Lon Cefni and Afon 

Erddreiniog (a-d) and Afon Cefni (e-h) for the four sampled months. Signicant linear relationships are indicated 

by slope lines and R2 values are presented in the data. 
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3.5 Discussion 

According to 'H-NMR spectroscopy, the most commonly occurring DOC compounds for all 

samples during the four months were those found in region I i. e. mostly aliphatic. This is 

consistent with other studies of the 'H-NMR characterisation of DOC, which show compounds 

typically contain a molecular skeleton dominated by aliphatics (Malcolm, 1990; Lu et al., 2004). In 

terms of water quality and the potential to form disinfection by-products, the aromatic region is 

potentially of most interest given the numerous studies that have shown compounds with such 

structures to be significant DBP precursors (e. g. Reckhow et al., 1990; Singer, 1999; Kim and Yu, 

2005; Fabris et al., 2008). In this study, the recorded percentages of aromatic compounds in the 

samples analysed were of a similar magnitude to those measured by Hatcher et al. (1980) for 

aquatic humic acids and for DOC isolated from rainwater (Santos et al., 2009), but lower than 

that recorded for standard humic substances by Kim et al. (2006b). The latter may have been due 

to the use of a greater number of scans during the spectroscopic analysis. In all but one month, 

Afon Erddreiniog was found to have the highest percentage of aromatic compounds. It also had 

the highest SUVA and THMFP of the three samples; this reflects the influence of the peatland, 

Cors Erddreiniog, at the source of the stream. Chapter 2 previously demonstrated that this 

peatland is a significant source of DOC to Llyn Cefni via Afon Erddreiniog, and, given that the 

DOC is more aromatic and higher molecular weight than that isolated from Afon Cefni, 

indicates the peatland is an important source of THM precursors. In addition to region IV, DOC 

from Afon Erddreiniog also had the highest percentage of DOC compounds from region II 

during October and December and a strong correlation was recorded between the abundance of 

DOC from this region and the THMFP of Afon Erddreiniog. The resonance in region II can be 

associated with carbons adjacent to aromatic, double bonds or carbonyls (Grasso et at, 1990); 

therefore this may support Afon Erddreiniog as a source of aromatic, peatland-derived carbon 

compounds. 
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Although aromatics have been implicated as the principal structures of THM precursor 

compounds, we recorded no significant correlations between the percentage abundance of 

region IV DOC and the THMFP of any of the three samples. This represents the inherent 

difficulty of characterising DOC accurately, particularly the compounds which are large in 

molecular size and weight and which contain molecules that can react readily with chlorine and 

highlights the lack of knowledge concerning the specific chemical structures associated with 

DBP formation following chlorination of natural waters (Hua and Reckhow, 2007). 

A particular weakness of 'H-NMR spectroscopy may be why no significant correlations were 

observed. The aromatic region was consistently the lowest contributor to the structure of the 

DOC for all the samples analysed; however, it is likely that the recorded percentages are 

somewhat of an underestimation. Specifically, a masking effect can occur, where sites on the 

aromatic structure can be substituted by elements other than hydrogen, for example halogens or 

larger functional groups (Grasso et al., 1990). This can mean large portions of the aromatics 

contained within a sample do not resonate and remain invisible using this method. To allow 

better characterisation of the aromatic region, analysis by "C-NMR spectroscopy is 

recommended (Cordoza, 2004), although it is often unsuitable due to the extremely long run 

times involved to obtain meaningful spectra. Despite this limitation of 'H-NMR, is extremely 

useful in gaining basic information on the general structure of DOC and comparing the 

signatures of samples from different sources. 

The highest concentration of aromatic compounds in Afon Erddreiniog was recorded in 

October and is typical of the autumn flush of DOC into freshwaters that typically occurs when 

peatlands are present within the catchment (Scott et al., 1998; Mash et al., 2004). Chapter 2 

described two distinct periods of potential DOC release from Cots Erddreiniog during periods 

of heavy rainfall; a high quantity of DOC leached in the autumn during moderate rainfall and a 

lower leaching of DOC during the winter, even during high rainfall. Data from this study is 
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consistent with that observation, as the Afon Erddreiniog DOC composition had 2% less 

aromaticity in January 2006 compared to October 2005, despite the much higher rainfall 

experienced in January. The occurrence of vegetation senescence within the catchments of 

freshwaters during the autumn mobilises a large reservoir of coloured, aromatic DOC, and the 

principal transport route for this to water bodies is rainfall. It was interesting that a strong 

correlation, albeit insignificant atp>0.05, was recorded between the total amount of rainfall four 

days prior to sampling and the percentage of region IV DOC in Llyn Cefni, but not for the two 

inflowing streams. Figure 3.6 appears to suggest that even during low rainfall the amount of 

aromatic compounds in the streams is similar to when rainfall is high, but during times of low 

rainfall, there are much less aromatic compounds in the lake than during high rainfall 

(approximately -50%). As aromatic DOC is recalcitrant and not readily decomposed in lakes 

(Wetzel, 2001), it is unlikely that the aromatic DOC in Llyn Cefni will have been decomposed, so 

this cannot explain the observed reduction during times of low flow. It is likely to be simply due 

to the reduced flux of terrestrially-derived organic matter into the lake during low rainfall. In a 

shallow, eutrophic lake such as Llyn Cefni, a reduced flux may be insufficient to maintain the 

heightened terrestrial DOC signature induced in the lake following heavy rainfall against a 

background DOC composition dominated by autochthonous compounds. DOC in rivers and 

streams tends to be much more allochthonous (Imai et al., 2001), as it flows directly from soils 

and the continual mixing minimises algal growth. This may explain the difference in the 

percentage of aromatic DOC in the lake and the streams flowing into it with changes in rainfall. 

Another important observation from the 1H-NMR spectra was that during October 2005 there 

was a much larger presence of region III DOC in Llyn Cefni than for any other month of 

sample. Llyn Cefni is a eutrophic lake and often experiences algal bloom formations during the 

summer months; 2005 was no exception. The presence of a significant amount of region III 

DOC in October appears to coincide with the senescence phase of the algal bloom cycle. Grasso 

et al. (1990), Biber et al. (1996) and Giroldo et al. (2007) described how DOC released by 

73 



3.5 Discussion 

phytoplanktonic organisms is principally composed of amino acids, peptides, proteins and 

carbohydrates. These types of compounds are typically found in region III in 'H-NMR spectra. 

Therefore, DOC deriving from senescing algal blooms significantly impacts upon the total DOC 

pool in Llyn Cefni during this period. This type of DOC is relatively labile, explaining the lower 

abundance of region III from December onwards. Llyn Cefni had the lowest SUVA and 

THMFP of the three samples. This probably'reflects the greater contribution of autochthonous 

DOC; it is well known that this type of DOC is lower in molecular weight and aromaticity than 

terrestrially-derived DOC and studies have shown it to have a much lower THMFP per unit 

carbon (Nguyen et al., 2005) 

When comparing the DOC signatures of the inflowing streams with that of the lake, the 

correlations were always positive (RZ>0.64). The correlations were significant for two months for 

Afon Erddreiniog and three months for Afon Cefni. The lack of a correlation in October may be 

because of the large amount of algal-derived region III DOC in Llyn Cefni, and the lack of such 

an autochthonous DOC production in the streams. This data confirms the observations in 

Chapter 2, that the two streams are significant sources of DOC to the lake and substantiates that 

view that 'H-NMR spectroscopy can be used for `fingerprinting' the chemical structures of 

different sources of DOC. Although there were stronger correlations of Llyn Cefni DOC with 

Afon Cefni DOC, the similar signatures of both the streams DOC, coupled with the flux 

measurements reported in Chapter 2, suggest that neither of the streams is a dominate source of 

DOC to Ilyn Cefni. It is worth noting that the percentage of region I (i. e. aliphatic) DOC in 

both streams was higher in February than any other month. This month was characterised by 

much lower rainfall than any of the previous three months and the increase in region I is likely to 

be due to a reduced flux of terrestrially-derived DOC. 
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3.6 Conclusions 

This study emphasised the potential for 1H-NMR spectroscopy to be used as a tool for 

`fingerprinting' samples of DOC and for distinguishing different structural characteristics for 

samples from diverse sources. Whilst aliphatic compounds were identified as the dominant 

component of DOC in all the samples analysed, there was a greater abundance of aromatic 

compounds in the stream draining into the reservoir from a nearby peatland. However, the lack 

of a correlation with THM formation potentials for the aromatic region and previously reported 

work on allochthonous fluxes of DOC into Llyn Cefni, suggest that this inflow does not 

necessarily dominate as a source of THM precursors to the reservoir. Spectra obtained by 'H- 

NMR also identified compounds associated with autochthonous DOC production, further 

highlighting the status of Llyn Cefni as a eutrophic lake. 
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Chapter 4 
The potential use of floating constructed wetlands to 

reduce freshwater algal bloom formation 
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4.1 Abstract 

4.1 Abstract 

The formation of algal blooms in freshwaters can be extremely detrimental to the overall health 

of an ecosystem and in reservoirs used as sources of drinking water they can be difficult to 

remove during water treatment processes. With the frequency of algal bloom formations 

increasing, possibly due to climate change, the need to minimise excess algal growth has never 

been greater. This study incorporates theories of peatland carbon (C) sequestration (the `enzymic 

latch'), nutrient sequestration and algal inhibition to create a floating constructed wetland (FCW) 

capable of reducing the growth of algae. Over a four-week period, the FCWs were able to reduce 

algal growth by 80%, through sequestration of the key nutrients nitrate and phosphate and 

possibly due to the direct inhibitory properties of phenolic compounds on the algae. 

Furthermore, it was discovered that 8 Phragmites australis plants is the ideal number to maximise 

nutrient uptake and minimise algal growth in 70 litres of water. Although there are concerns 

about the leaching of dissolved organic carbon (DOC) from the FCWs, this may be more than 

offset by the beneficial suppression of algal growth and the resulting reduced input of 

`untreatable' low molecular weight DOC. 
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4.2 Introduction 

The physical and chemical treatment of drinking water is vital to ensure it is safe for human 

consumption. With rising populations, particularly in developing countries, the demand for water 

has never been greater and providing access to clean, safe sources to an ever expanding global 

population is likely to be one of the greatest challenges of the 21" century. In developed 

countries, the majority of water treatment works use a multi-step process of chemical addition, 

coagulation, flocculation, sedimentation and disinfection, usually with chlorine (Xia et al., 2004). 

However, the effectiveness of water treatment processes can vary with changes in the chemistry 

and biology of the source waters and consequently the procedure can be costly. Freshwaters 

throughout the world contain dissolved organic carbon (DOC), its existence a consequence of 

interactions between the hydrological cycle, the biosphere and the hydrosphere (Murray and 

Parsons, 2003). Effective removal of DOC has emerged as a critical issue in the treatment of 

surface waters (Qin et al., 2006), which can be prone to high inputs of autochthonous and 

allochthonous DOC. The source of organic components responsible for the composition of 

DOC often varies substantially throughout the year, resulting in differences in the ease with 

which DOC can be removed from water and how ii reacts with chemical disinfectants (Goslan et 

al., 2002). 

The relative size and structure of the individual compounds comprising DOC is crucial in 

understanding its removal efficiency. Whilst coagulation and flocculation is reasonably successful 

in removing the high molecular weight (HMW) DOC, the fraction responsible for the 

production of most disinfection by-products (DBPs), it has been shown to be less than adequate 

in the removal of low molecular weight (LMW) carbon (C) (Matilainen et aL, 2002, Volk et aL, 

2000). The presence of this fraction of DOC in treated water is thought to aid undesirable 

microbial re-growth in the water distribution system (Qin et al., 2005). 
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HMW DOC is principally terrestrially derived (allochthonous), whilst LMW DOC is considered 

to primarily originate from within lake (autochthonous) processes (Kritzberg et al., 2006). The 

most significant autochthonous source of DOC is generally considered to be algae (Cheng and 

Chi, 2003). The presence of algae is a crucial component of food webs within freshwater 

ecosystems; however, `excessive' algal growth can become a problem. Algal `blooms' are 

primarily caused by excess nutrients (eutrophication), particularly phosphate and sometimes 

nitrate (Herath, 1997). The extent of eutrophication is also dependent on physical factors such as 

the size of the water body, extent of mixing, depth of light penetration and water temperature 

(Herath, 1997). 

The occurrence of algal blooms in lakes and reservoirs is potentially hazardous as it can cause a 

severe decline in the level of dissolved oxygen within the lake water, which may lead to mass 

mortalities of fish and present a serious health threat to animals and humans Qohnk et al., 2008). 

Eutrophication can often lead to blooms of cyanobacteria and eukaryotic phytoplankton (Davies 

and Koop, 2006); these can have a significant effect on human health and may cause acute 

intoxication (Van Dolah et al., 2001). They can also severely hamper water treatment processes 

and the quality of drinking water by clogging filters, raising coagulant and chlorine demand, 

increasing disinfection by-product (DBP) formation, producing undesirable taste and odours and 

increasing microbial re-growth potential in distribution systems (Knappe et al., 2004). 

It is when the algal bloom begins to die away that it poses the greatest problems for water 

treatment. As the algae enter the senescence phase, the decomposing cells release LMW C which 

is virtually untreatable (Cheng and Chi, 2003). Therefore, minimising the growth of algal blooms 

is essential in reducing the amount of LMW C in sources of drinking water. 

The occurrence of freshwater algal blooms has increased over the last few decades (Van Dolah et 

al., 2001; Moore et al., 2008) although the specific reasons for this are not well understood. 

Climate change may increase the formation of algal blooms, therefore it is important that efforts 
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should be made to minimise their formation. Some experiments have shown promise in reducing 

algal growth using barley straw (Welch et aL, 1990; Ridge and Pillinger, 1994). The anti-algal 

properties of barley straw are not fully understood, but it has been suggested that the algal 

growth inhibitors are derived from oxidised lignin (Ridge and Pillinger, 1996). An alternative 

hypothesis suggests that the fungi responsible for degrading the barley straw produce and-algal 

compounds. However, the general anti-algal effects of decomposing barley straw are unlikely to 

be explained by anti-algal properties of specific fungi (Pillinger et al., 1992). Despite the possible 

benefits, the use of barley straw requires considerable management effort and the long term 

ecological safety is not known (Ball et al., 2001, Martin and Ridge 1999). 

Wetlands offer an alternative approach for the prevention of algal blooms. A consequence of the 

high levels of biological productivity within wetlands is that pollutants which enter through run 

off are easily broken down into substrates for the plants and microorganisms (Mitsch and 

Gosslink, 2000). In addition to this they are also able to act as chemical sinks, storing vast 

amounts of C Qenkinson et al., 1991) and nutrients in the water (Vymazal, 2007). The 

characteristic of storing vast amounts of C is largely attributed to waterlogging of the soil, 

creating anaerobic conditions and inhibiting enzymic decomposition of organic matter through 

an `enzymic latch mechanism' (Freeman et al., 2001a; 2004b). An additional benefit of wetland 

soil is the presence of plant derived phenolic material (Wetzel, 1992). Phenolic compounds arc a 

defence mechanism against microbial infection (Codignola et aL, 1989) and several studies have 

been undertaken to exploit these compounds to suppress algal blooms (Everall and Lees, 1997; 

Pi hinger et al.., 1994; Ferrier et al., 2005). 

It is therefore possible that the nutrient absorbing capabilities of wetland plants and microbes in 

conjunction with their ability to store large amounts of soil phenolic C may provide a unique 

method for controlling algal blooms. While a static constructed weiland would offer initial 

respite from algal blooms, in the long term it may well pose an additional threat to water quality 
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by leaching previously used substrates. Therefore, a floating wetland may be more practical; a 

structure that could easily be removed once nutrients have been sequestered, thus preventing 

them from leaching back into the water during plant senescence outside the growing season. 

Furthermore, a floating wetland can be placed in the lake exactly when and where it is required 

and, compared to traditional constructed wetland used for water treatment, would not need to 

have water diverted to it from the reservoir. 

This chapter describes how a small-scale pilot experiment was carried out using floating 

constructed wetlands (FCWs) as a means of controlling algal blooms in artificially eutrophic 

ponds. The FCWs were designed to create an ecosystem that would help reduce algal bloom 

densities based on the combination of several different theories, plant selection, growth medium 

and phenolic supply. 
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4.3 * Materials and Methods 

4.3.1 Phase 1 

A small-scale pilot experiment was undertaken for five weeks during the summer of 2007, in an 

attempt to gauge the effectiveness of FCWs in reducing algal growth in freshwater. The 

experiment comprised five control and five treatment ponds, each filled to 40 L capacity with de- 

chlorinated tap water. The water was then artificially altered to a eutrophic state through the 

addition of "Long Ashton nutrient solution", with concentrations taken from Wetzel (2001) and 

scaled up to generate an extremely eutrophic environment. Algae was then added to the 10 

ponds in equal quantities following its culture from water collected from Llyn Penthyn on 

Anglesey, Wales, a naturally eutrophic lake' One FCW was placed in each treatment pond, with 

each FCW consisting of two parts; a growth medium, comprising coya, peat and shredded 

heather litter, and several Phragmites australis plants. Phragmites australis was the chosen plant 

species due to its ability to sequester nitrate and phosphate and its common use in remediation 

wetlands (Massacci et al., 2001). The planted FCWs were conditioned prior to use; they were 

prepared two weeks before the experiment commenced to allow the plants to grow and washed 

daily with water to minimise the build-up of C, nitrogen (N) and phosphorus (P) that could 

potentially leach from the FCWs once they were placed in the ponds. In the control ponds, 

FCWs without growth medium and plants were used. The ponds were placed in an elevated 

position on the roof of the Memorial Building, Bangor, Gwynedd, UK, where they could receive 

full sun, for a period of four weeks. 

Water samples were collected weekly from the day the FCWs were placed in the ponds. From 

each pond, 250ml was extracted and all samples were filtered through a 0.45 µm Whatman 

cellulose acetate filter and stored at 4°C until analysis. Water in the ponds was mixed daily to 

mimic natural conditions, whilst additional water was added to replace that which had 

evaporated. Additional nutrients were added to each pond on the third week to replenish those 
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nutrients which had been utilised. The analyses carried out on each sample included the 

determination of DOC concentrations using a thermalox TOC analyser. The concentration of 

phenolic compounds was determined according to the method of Box (1983). A Unikon 943 

double beam UV/ VIS spectrometer was used to measure the absorbance at 254,665 and 750 

nm. Specific ultraviolet absorbance (SUVA) (L mg' m) was calculated as a ratio of UV 

absorbance at 254 nm (m) to DOC (mg L"'), the higher the value the more aromatic and higher 

molecular weight the DOC (Volk et al., 2002). The concentrations of nitrate and phosphate were 

measured using a Dionex DX-120 ion chromatograph. Algal densities were measured using a 

method adapted from Golterman (1978), using chlorophyll a as an indicator. 

4.3.2 Phase 2 

The second experiment, carried out in the summer of 2008, involved the determination of the 

appropriate number of plants required to achieve a reduction in algal bloom densities in a given 

volume of water. The experiment comprised six ponds; one control (no plants) and five 

treatment (planted) ponds, each filled to 70 L capacity and altered to a eutrophic state as 

described for phase 1. In the planted ponds, each had a different number of Phragmite. r australis 

plants (2,4,6,8 and 10) grown hydroponically in the water. This experiment was run for five 

weeks in the same location. Water samples were collected weekly from the day the plants were 

placed in the ponds. All other methodological approaches were identical to those described for 

phase 1. 

4.3.3 Statistical analysis 

A series of t tests were performed on the datasets to enable the comparison of the means for all 

the analyses at each sampling time point between the different treatments. Pearson correlation 

was used to determine the relationship between the number of plant and corresponding 

chlorophyll concentration in the Phase 2 experiment. Both statistical tests were performed SPSS 
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(version 11). The standard error of each data point was calculated by dividing the standard 

deviation of the sample by the square root of the sample size. 
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4.4 Results 

4.4.1 Phase 1 

In all of the analyses undertaken, significantly different trends were recorded for the control and 

planted treatments. For chlorophyll (Figure 4.2), the mean concentration in the control ponds 

increased significantly, from 9.5 µg L"' in week 0 to 128.1 µg L1 in week 4 (p<0.001). In the 

planted ponds, the mean concentration increased significantly from 9.4 µg L-' in week 0 to 29.1 

µg L'1 in week 1 (p<0.001), but then did not change significantly for the remaining three weeks 

(p>0.05). After having almost identical concentrations of chlorophyll in week 0, the planted 

ponds had approximately 80% less chlorophyll than the control ponds by week 4 (Figure 4.1a 

and 4.1b). 

The mean concentration of DOC (Figure 4.3) within each pond also increased over the 4-week 

period. The rise was greatest for the planted ponds, increasing significantly from 6.5 mg L'' in 

week 0 to 16.0 mg L'' in week 4 (p<0.001), an average rise of 2.4 mg L'' per week. DOC in the 

control ponds increased significantly from 4.7 mg L"' in week 0 to 10.0 mg L'' in week 4 

(p<0.001), a rise of 1.3 mg L"' per week. 

The mean concentrations of phenolic compounds (Figure 4.4) followed a similar trend to DOC, 

increasing from week 0 to week 4 and at a greater rate for the planted ponds. In the control 

ponds, the concentration rose significantly from 0.54 mg L'' in week 0 to 2.13 mg I; ' in week 4 

(p<0.001); in the planted pond from 0.73 mg L'' in week 0 to 3.76 mg L"' in week 4 (p<0.001). 

Values of SUVA (Figure 4.5) showed markedly different trends for each treatment. For the 

control ponds, SUVA declined from 2.71 L mg' m1 in week 0 to 0.42 L mg 1 rn' in week 3 

(p<0.001) and did not change significantly in week four (p>0.05). In the planted pond, the SUVA 

did not change significantly throughout the experiment ( , 
p>0.05), although the mean value 

declined slightly from 3.20 L mgg' m1 in week 0 to 2.37 L mg'' m' in week 4. 
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The mean concentrations of nitrate (Figure 4.6) measured in the both treatments varied 

significantly from week to week (p<0.001). In the control ponds, after an initial increase from 

week 0 to week 1, the concentration fell to 4.6 mg L"' in week 2, rose to 17.2 mg L"' following 

nutrient replenishment in week 3 and fell to undetectable levels in week 4. In the planted pond, 

the concentration of nitrate fell from 11.6 mg L1 in week 0 to below the detection limit in weeks 

1 and 2. It then increased to 15.0 mg L'1 in week 3 following replenishment and then back to an 

undetectable level in week 4. 

The mean concentration of phosphate (Figure 4.7) in both treatments declined from 2.6 mg L' 

to below the limit of detection over the 4 weeks, only increasing when the nutrient was added in 

week 3. The decline in phosphate was greatest for the planted pond, falling to undetectable levels 

by week 2. 

4.4.2 Phase 2 

The chlorophyll concentrations (Figure 4.8) measured for the control and each of the planted 

treatments displayed similar trends, increasing from week 0 to week 3 and then declining in week 

4. The greatest increase in chlorophyll was recorded for the control system, in which the 

concentration rose from 7 µg'; ' in week 0 to 133 µg I; ' in week 3. The systems containing 8 

and 10 plants contained the lowest concentrations of chlorophyll; 35 and 32 µg L'' respectively. 

For week 3, when the greatest differences in chlorophyll concentrations between the 6 

treatments was recorded, there was a strong and significant negative correlation between the 

number of plants in the pond and the measured chlorophyll concentration (Figure 4.9; R2=0.83, 

p<0.05). The pond with 8 plants had approximately 74% less chlorophyll than the control pond 

by week 3. 

The concentration of DOC (Figure 4.10) within each pond increased over the 4 week-long 

experiment. Initially each of the planted systems showed similar trends; the DOC concentrations 

declined from week 0 (average 4.8 mg L'') to week 1 (average 3.7 mg L') and increased in week 2 
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(average 8.4 mg L''). By week 3 there was more divergence between treatments, with the control 

having the highest concentration (10.0 mg L''). For the planted treatments, a strong but not quite 

significant negative correlation was recorded between the DOC concentration and the number 

of plants (R2=0.74, p<0.1), with the treatment with 10 plants having the highest DOC 

concentration. By week 4, the treatment effect was less clear, with the 6 plant treatment having 

the highest DOC concentration (9.32 mg L''), the 4 plant treatment having the lowest (6.60 mg 

L"'), and the control being in the middle (7.7 mg L'). 

The trend for phenolic compound concentrations (Figure 4.11) largely mirrored that for DOC, 

with an increase from week 0 to week 3 and no further increase by week 4. Similarly to DOC, by 

week 3 the control had the highest concentration (2.48 mg L"') and out of the planted treatments, 

that with 10 plants had the highest concentration (2.28 mg L") whilst that with 2 had the lowest 

(1.41 mg L''). 
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4.5 Discussion 

The FCWs used in this study proved very successful at reducing the growth of algae in small- 

scale freshwater ponds. The use of Phragmites australis, in combination with a peat-based growth 

medium, efficiently reduced nitrate and phosphate concentrations to levels that inhibited the 

growth of algae. Data from the phase 1 experiment shows that there was initially no effect of the 

FCWs, but once the systems had become established after a week, they reduced chlorophyll 

concentrations to 80% below the control treatment. Although not significant, there was a small 

decrease in the chlorophyll concentration in week 3 for the control system; this can be attributed 

to nutrient limitation and some algal senescence. Once nutrient levels were replenished following 

sampling in week three, chlorophyll concentrations rose sharply again in the control, but 

continued to be suppressed in the planted treatment. Overall, this data suggests that if these 

systems are to be used to combat algal blooms in real freshwater lakes, the initial period of FCW 

establishment needs to be factored into predictions of the length of time required to reduce 

nutrient concentrations and algal densities. 

Although the FCWs proved efficient at reducing algal bloom formation, this benefit must be 

balanced against the negative aspect of additional DOC leaching from the systems. This DOC 

would principally originate from the peat. Using phase 1, week 4 experimental data, algal growth 

contributed approximately 5.3 mg L"' of DOC in the control ponds, whilst the FCWs 

contributed 9.5 mg L'' of DOC in the planted ponds. Therefore the FCWs contributed 

approximately an extra 4.2 mg L1 of DOC. If it is assumed that this experiment achieved the 

maximum reduction in nutrient and algal concentrations possible from an FCW set-up, this 

suggests that the use of these systems in a real freshwater lake should not contribute more than 5 

mg L"' of extra DOC. The occurrence of algal blooms in freshwater lakes or reservoirs typically 

occurs during the summer months, when water temperatures and sunlight levels are highest 

Qohnk et al., 2008). This is also a time of year when DOC concentrations in lakes tend to be low, 
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due partly to a reduction in the flux of allochthonous DOC as demonstrated in Chapter 2. This 

can be attributed to lower rainfall, lower availability of leachable C and greater water usage by 

vegetation in the lake's catchment (Roberts, 1998). The increased input of DOC from the FCWs 

may therefore occur at a time when DOC concentrations of the lake in which they are utilised 

are naturally low. Chapter 2 described that when algal concentrations were elevated, the DOC 

concentration of Llyn Cefni was low, about 6 mg L"'. A FCW set-up in Llyn Cefni may therefore 

raise the summertime DOC concentration to approximately 11 mg L'', still significantly lower 

than the 16 mg L' recorded in the lake during the autumn, when there is usually a flux of DOC 

from a nearby peatland. The water treatment works at Llyn Cefni is able to efficiently treat the 

water during this autumn peak; therefore the FCWs would not be expected to compromise 

treatment processes during the summet. In a real situation, the amount of DOC released by the 

FCWs is likely to be much lower than 5 mg L''; this experiment was designed to test the 

efficiency of FCWs to reduce nutrient concentrations in a small volume of water over a short 

period of time. Based on their success, in a lake or reservoir the FCWs would have a longer time 

period over which to sequester nutrients and could therefore be used at a much lower 

FCW: water volume ratio. This would minimise the total amount of DOC they release. 

Although the FCWs would cause a greater increase in the total concentration of DOC in a 

freshwater lake compared to one where algal blooms are allowed to form, analysis of the 

structure of this DOC suggests this change in the source of the DOC would actually favour its 

removal during water treatment processes. In the planted treatment, although there was a 

significant increase in phenolic compound concentrations, there was no significant change in the 

SUVA of the DOC. This suggests the overall molecular weight and size of the DOC pool 

changed little over the course of the experiment and that the FCWs would not alter the quality of 

DOC present in a freshwater lake. In the control treatment, a large decrease in SUVA was 

recorded. This is indicative of the growth of algae and coupled with the increase in DOC 

recorded for this treatment by week 4, confirms that algae can input large quantities of LMW 
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DOC into freshwater lakes. This type of DOC is more difficult to remove during the physical 

and chemical treatment of water (Cheng and Chi, 2003), therefore is likely to persist in the final 

water that is distributed to consumers. In the distribution phase, LMW C is a substrate for 

harmful bacterial growth (Volk et al., 2000). 

The aim of the phase 2 experiment was to establish whether there are an. optimal number of 

plants for an individual FCW system and to determine whether the plants make a significant 

contribution of DOC to the water. If the number of plants can be minimised, the amount of 

plant derived C leaching into the water and the costs of an FCW system will be reduced. 

Focusing on the data from week 0 and week 3 only, the latter being when the chlorophyll 

concentrations were highest, it is apparent that, in terms of reducing chlorophyll concentrations, 

eight plants are optimal for 70 L of water, with 10 offering no additional benefit. The DOC 

concentration of the ponds increased from week 0 to week 3, due to both C derived from algal 

growth and C leached from the Phragmites australis. The most significant source appears to have 

been from the algae, as the control pond had the highest DOC concentration. For the planted 

ponds, there was a general trend of less plants equating to lower DOC concentrations in the 

water. The plants do therefore contribute some DOC to the water, however, it is still less than if 

algal blooms are allowed to form. Furthermore, it is likely that most of the DOC originating as 

root exudates from the Phragmites aurtralis would be utilised as substrate DOC by microorganisms 

living in the peat of the growth medium (Bonkowski et ah, 2000). The concentration of phenolic 

compounds also increased from week 0 to week 3, and, proportionally, to a greater extent than 

the total DOC concentration. This suggests that both algae and the plants can be important 

sources of phenolic compounds. The leaching of phenolics by the plants may be of additional 

benefit to reducing algal growth; these compounds have been demonstrated to have inhibitory 

properties towards algae (pillinger et ah, 1994; Ferrier et ah, 2005). 
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This experiment has demonstrated that the FCW setup we employed was capable of minimising 

the growth of algae in freshwater, but it is important to ensure that the individual FCWs are 

removed from the lake at the end of the growing season. Further algal growth outside the 

growing season is unlikely, due to unfavourable temperatures and levels of sunlight. However, if 

the FCWs were left in situ throughout the winter, the senescence of the Phragmites australis 

vegetation would likely input large amounts of C, N and P into the lake (Polomski et al., 2009). 

There is also potential for these systems to also have value outside of the lake, when they are not 

in use. Once removed from the lake, the vegetation could be cut back and used to create 

environmentally sustainable products (Kiviat and Hamilton, 2001). As Phragmites australis is a 

perennial plant, it could be used in an FCW over a number of years without needing to be 

replaced. Another additional benefit could be as a source of nutrients. The movement of the 

FCWs out of submerged conditions would created an aerobic environment in the peat substrate, 

initiating the `enzymic latch' (Freeman et al., 2001a), stimulating decomposition and causing the 

release of sequestered inorganic nutrients at a site where they would have value as a fertiliser. 
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4.6 Conclusions 

This study demonstrated the potential of a FCW to sequester nitrate and phosphate in a small- 

scale freshwater pond and it was therefore effective at reducing the growth of algae. Over a 

period of 4 weeks; the concentration of chlorophyll, an indicator of algal growth, increased to 

128.1 . tg L1 in the unplanted control treatment, whilst in the treatment that contained FCWs the 

chlorophyll concentration only reached 29.1 µg L"'. Furthermore, it was discovered that 8 

Phragmites australis plants is the ideal number to maximise nutrient uptake and minimise algal 

growth in 70 litres of water. 

If the FCW set-up employed in this pilot study is to be scaled up for use in freshwater lakes 

which are prone to algal bloom formation, the issue of C leaching from the systems needs to be 

addressed further. The release of C from the growth medium into the water will increase DOC 

concentrations in the lake, somewhat offsetting the beneficial inhibition of algal growth. 

However, we have shown that the type of C leached from these systems in much more `treatable' 

than algal-derived DOC, so may not be completely undesirable. The benefits of algal suppression 

against changes in the DOC concentrations and characteristics could be assessed better in a 

larger scale study. 
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Chapter 5 
Long-term drainage of a boreal peatland; Impacts on 

soil enzymes and the release of DOC across a 

nutrient gradient 
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5.1 Abstract 

5.1 Abstract 

The drainage of peatland ecosystems has been widespread in many northern hemisphere 

countries. In Finland, only 38% of peatlands can still be classified as pristine, with the majority of 

disturbed peatlands having been drained for the establishment of forestry plantations. The 

implications of this for the overall carbon (C) balance are not well understood, especially 

regarding the flux of dissolved organic carbon (DOC) to freshwaters. Therefore, a study was 

carried out at Lakkasuo peatland in southern Finland, where areas of ombrotrophic, oligotrophic 

and mesotrophic peat were drained 9 and 48 years ago, in addition to areas that have been left 

undisturbed, to assess the effect of drainage on DOC export potential. Although no consistent 

response in DOC export potential with drainage was recorded across the sites of contrasting 

nutrient status, a significant correlation was observed between DOC and the water content of 

the soil (80 µg cm 3 increase in DOC for a 5% decrease in soil water content), presumably 

because increased aeration stimulates decomposition of the peat matrix. An alternative 

explanation is that the trend in DOC is driven by changes in soil pH and the resulting 

suppression of the key C regulating enzyme phenol oxidase; where acidity has increased 

following drainage phenol oxidase activity has declined and the concentration of DOC released 

has increased, conforming the view that phenol oxidase acts as an `enzymic latch' in peatlands. In 

addition to leading to an increase in DOC concentrations, measurements of SUVA 

demonstrated that the overall molecular weight of the leachable DOC also increased (SUVA 

increased on average by 1.117 L mg'' m' due to drainage across the 3 sites). The results of this 

study have implications for both C storage in drained peatlands and for the quality of 

freshwaters; for the latter it is likely that the treatment of drinking water will be more difficult 

and enhanced disinfection by-product (DBP) formation will occur if source waters contain 

drained peatlands within their catchments. 
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5.2 Introduction 

Peadand ecosystems have traditionally sequestered vast stores of carbon (C) and play a key role 

in the global C cycle. They are characterised by having soils that are mostly waterlogged and 

anoxic; this suppresses the decomposition of organic matter leading to net C accumulation. 

Despite only occupying approximately 3% of the Earth's land surface area, peatlands are 

estimated to contain up to 455 Pg C as peat, or 30% of the world's global soil C store and the 

equivalent of half of the amount of atmospheric C02-C (Gorham et al., 1991). 

As the imbalance between net primary production and decomposition is relatively small 

(päivänen and Vasander, 1994), peatlands are particularly sensitive to environmental changes that 

may affect their ability to continue sequestering C. Probably the greatest environmental 

disturbance to have affected peatlands worldwide has been land use change. Peatlands are 

`economically poor' and many millions of hectares in the boreal and temperate zones have been 

converted to areas of agriculture and forestry. Drainage of the peat is usually the first stage of 

this process; it is achieved with the installation of open cut drainage ditches and the resulting 

reduction in the height of the water table seriously undermines the ability of the peatland to 

continue to sequester C. As the waterlogged conditions of peatlands are deemed to be 

responsible for maintaining their stability (Freeman et al., 1996), a persistent lowering of the 

water table has the potential to destabilise the vast reservoir of C that peatlands contain (Laiho, 

2006) given that aerobic decomposition of organic matter is about 50 times faster than anaerobic 

decomposition (Clymo, 1983). The enzymic `latch' has been proposed as a regulator of C storage 

in peatlands due to the absence of oxygen inhibiting the key enzyme phenol oxidase (Freeman et 

al., 2004b); water-table drawdown therefore has the potential to activate 'this enzyme through 

increased oxygenation of the soil, which will ultimately increase organic matter decomposition. 

Despite this, laboratory and field studies on the effects of water-table lowering on changes in C 

dynamics of peatlands suggest the issue is not so straightforward. Whilst a number of published 
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studies have demonstrated net losses of C following water-table drawdown (e. g. Glenn et al., 

1993; Alm et al., 1999; Jaatinen et al., 2008), some have actually reported increases in C storage in 

peat (e. g. Minkkinen and Laine, 1998; Minkkinen et al., 2002; Laiho et al., 2004). Laiho (2006) 

provided an excellent synthesis of contrasting results concerning the impact of a lowered water- 

table on peat decomposition. It is apparent that whilst water-table drawdown increases oxygen 

content which ultimately favours decomposition, this can be offset by decreases in pH (Laine et 

al.., 1995), soil temperature (Minkkinen et al.., 1999) and substrate quality (Laiho and Laine, 1996). 

Domish et al. (1998) suggested that increased organic C flows from tree stands can account for 

increased below-ground C storage following drainage for forestry. The balance between peat 

decomposition (C outflow) and litter input (C inflow) is therefore crucial for determining C 

storage in peat following water-table drawdown (Nlinkkinen and Laine, 1998) and the response 

of different peatlands to water-table drawdown ultimately depends on their nutrient status, local 

climatic conditions and hydrology. 

In comparison to gaseous forms of C (principally CO2 and CH4), dissolved organic carbon 

(DOC) is an often overlooked component of the terrestrial C cycle, despite its importance in the 

overall C balance of peatland catchments in the world's temperate and boreal zones (Billett et al., 

2004). DOC is released from peatlands due to the incomplete decomposition of organic matter 

under anaerobic conditions and in many catchments the concentration of DOC in streams and 

rivers can be explained by a simple linear relationship with the percentage of peatlands in the 

catchment (Dillon and Molot, 1997). DOC is an important flux of C between terrestrial and 

aquatic systems, with an average 0.1 to I Tg C year t ultimately transported to the world's oceans 

via streams and rivers (Hope et al., 1994). As a large proportion of riverine DOC is decomposed 

once it reaches the ocean (Hedges et al., 1997), ultimately increasing atmospheric CO2 

concentrations, it is important to understand processes influencing the flux of DOC from 

terrestrial systems. Widespread observations of rising freshwater DOC concentrations during the 
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past two decades (Evans et al., 2006; Monteith et al., 2007) are placing a greater emphasis the 

DOC component of the terrestrial C cycle. Increasing DOC in freshwaters has been linked to 

peatland destabilisation due to, for example, increasing temperature (Freeman et al., 2001b), 

atmospheric CO2 concentrations (Freeman et al., 2004a), precipitation (Tranvik and Jansson, 

2002) and decreasing sulphate deposition (Monteith et al., 2007). 

Compared to gaseous forms of C (CO2 and CH4 there have been fewer studies into the 

influence of water-table drawdown on the production of DOC in peatlands, especially in the 

long-term, Laboratory experiments with peat cores have demonstrated that a lowering of the 

water-table can lead to increased DOC release (e. g. Mitchell and McDonald, 1992; Freeman et al., 

1993a), assumed to be due to the increased aerobic breakdown of soil organic matter. Clark et al. 

(2009) reported that water-table drawdown led to a highly significant increase in DOC 

production between 1 and 40 cm below the soil surface. They also highlight the role of 

secondary biogeochemical changes, most notably falling pH driven by increasing sulphate, in 

masking effects on DOC that are driven by climatic changes. Sulphate driven acidity is known to 

have a strong influence on DOC solubility in peatlands, particularly during and after periods of 

drought (Clark et al., 2005). Data from a limited number of field studies have reported that 

peadand drainage increases the flux of DOC to freshwaters. For example, Mitchell and 

McDonald (1995) observed a greater discolouration of freshwaters flowing from drained areas of 

a peatland catchment in northern England. Wallage et al. (2006) recorded significantly higher 

DOC concentrations in the porewaters of artificially drained peat compared to intact peat. 

Wortall et al. (2007b) have modelled the effects of peat drainage on DOC export and reported 

DOC flux values more than twice as high from drained peat compared to pristine peat. 

Drought/re-wetting events are known to cause large episodic increases in DOC export, as 

carbon compounds mobilised through aerobic decomposition during periods of drought 

accumulate and can be washed out of the soil during periods of high flow. For example, at a site 
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of experimental hydrological manipulation, Plynlimon, mid-Wales, UK, it was reported that 

concentrations of DOC leaching from a drained peatland were 20 times higher under rewetting 

conditions (Fenner et al., 2001). 

In Finland, peatlands occupy approximately 30% (30.5 million ha) of the country's land area 

(Tomppo and Henttonen, 1996), but a large proportion can no longer be classified as pristine. 

Turunen (2008) presented a comprehensive review of C storage in Finnish peatlands. The study 

showed that drainage for forestry has been the most dominant land use activity to take place, 

with 55% of mires having undergone this change as of 2000. Only 38% of peatlands are now 

regarded as pristine. The sites where drainage of peatland for forestry have occurred have 

enabled studies into the impacts of the long term water-table draw down on peatland C storage 

and some of the most detailed studies on the impact of peat drainage on the dynamics of C have 

been performed in Finland. Turunen (2008) reported that 5304 Tg of C was stored in peat in 

2000, a decrease of 73 Tg from 1950. Given the extensive and widespread drainage that has 

occurred on Finnish peatlands since 1950 this could be considered a relatively small loss of C. 

Few studies have addressed the effects of water-table drawdown on DOC production in a 

Finnish peatland. The only known study is that of Sallantaus (1992), who reported fluxes of 8.0 

and 14.1 gmZ a-1 for pristine and drained fen catchments and 12.4 and 16.6 gm2 a' for pristine 

and drained bog catchments, indicating a greater magnitude of DOC release for the drainage of 

more nutrient poor sites. Drainage of peadands for forestry in Finland has typically occurred to a 

depth of 10-40 cm (Laine et al., 2004). According to Wallage et a!. (2006), this is the zone of 

greatest DOC production in a peatland, therefore past peatland management practises in Finland 

have potentially mobilised a large store of leachable C. 

This chapter describes the implications of long-term drainage on the export potential of DOC 

from pristine and artificially drained peatlands in Finland. The study took place across a nutrient 

gradient and in areas of peatland drained 9 and 48 years ago. Thus, we have addressed DOC 

104 



5.2 Introduction 

release due to long-term anthropogenically caused water-table drawdown, which has been 

achieved through an extensive network of drainage channels to enable forest growth. Climate 

change is expected to lower soil water-tables in northern hemisphere peatlands due to increased 

evaporation and reduced precipitation (Mitchell and Warrilow, 1987; Gitay et al., 2001), although 

predictions of the potential magnitude of this change are limited. Roulet et al. (2006) have 

predicted a decrease of 14-22 cm in the height of the water-table in boreal fens for a doubling of 

the atmospheric C02' concentrations. This is similar to the water-table drawdown induced by 

forestry drainage, therefore sites that have been drained for forestry could be used as a proxy for 

gaining insights into the effects of climate change. In addition to measurements of DOC export 

potential, analyses of soil enzymes were also undertaken given their role as key regulators of 

organic matter decomposition and their potential to mobilise DOC from the organic matrix of 

peat soils (Fenner et al., 2005). 

105 



5.3 Materials and Methods 

5.3 Materials and Methods 

5.3.1 Study site and sampling regime 

The study was carried out at Lakkasuo mire (61°48'N, 24 °19'E, ca. 150m a. s. l), a raised bog 

complex in central southern Finland. Detailed site descriptions are given in Turunen and Moore 

(2003) and Jaatinen et al. (2007). Lakkasuo is an eccentric, `raised', bog which exists on a nutrient 

gradient from ombrotrophy to mineratrophy; 56% of the mire is ombrotrophic bog, the 

remainder is minerotrophic fen. Within the fen exists both oligotrophic and mesotrophic areas 

of peat. Half of the peatland was drained in 1961 to promote forest growth, which has reduced 

the water-table height by 10 cm (bog) to 40 cm (fen) below that for the pristine part Qaatinen et 

al., 2007). In the undrained part, a series of experimental water-table manipulations took place in 

2001 to mimic water-table drawdown that is predicted for peatlands this century due to climate 

change (Laine et al., 2004). Drainage ditches 40 cm deep have lowered the water table by 

approximately 10 cm (bog) to 20 cm (fen) at these sites Qaatinen et al., 2007). 

This study therefore compared pristine (P) mires from each of the three nutrient types; 

ombrotrophic bog (OM), oligotrophic fen (OL) and mesotrophic fen (ME) and assessed the 

impact of 9 years and 48 years of drainage. Sampling was undertaken for 3 days in April 2007. 

At each site, 4 replicate soil samples were collected from a depth of 12 cm, the top 10 cm was 

discarded and the remaining 2 cm (approximately 100 ml) was sealed in plastic bags. All samples 

were transported back to the UK, where they were stored at field temperature until further 

analysis. Water homogenates of each soil sample were prepared within one week of sample 

collection by adding 27 ml of ultra-pure water to 3 cm3 of soil, homogenising the sample in a 

stomacher and centrifuging at 10,000 rpm for 5 minutes. The pH of an aliquot of the soil waters 

was determined before the remaining supernatant was filtered through 0.45 µm filters. 
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5.3.2 DOC characteristics and ion concentrations 

DOC concentrations, UV absorbance and Specific UV absorbance (SUVA) were determined on 

the water-extractable solutions. DOC was measured using an Analytical Sciences Ltd Thermalox 

TOC analyser. UV absorbance (UV-254) was measured at 254 nm through a1 cm quartz cell on 

a Uvikon 943 UV/Vis spectrophotometer, with ultra-pure water used to zero the baseline. 

SUVA was calculated as (UV-254 X 100)/DOC, with the units L mg"' m 1. Nitrate and total base 

cation (Na', K+, Mg2+ and Cat+) concentrations were determined on a Dionex DX-120 ion 

chromatograph, using AS14A and CS12 columns. 

5.3.3 Soil enzyme activities 

The activities of five extracellular hydrolase enzymes ((3-glucosidase, arylsulphatase, phosphatase, 

ß-xylosidase and N-acetyl-ß-glucosaminidase) were assayed using a modified version of the 

methods developed by Freeman et al. (1995) and Kang and Freeman (1999). MUF-free acid (4- 

Methylumbelliferone) and MUF enzyme substrates (400 pM MUF-ß-glucopyranoside, MUF- 

sulphate, MUF-ß-xylopyranoside, MUF N-acetyl-ß-glucosaminide and 200 p. M MUF-phosphate) 

were dissolved in methyl cellosolve (ethylene glycol monomethyl ether) overnight and diluted in 

deionised water. For each sample, 1 cm3 samples of peat were prepared into two separate 

stomacher bags and 7 mL of deionised water added to one (standard) and 7 mL of enzyme 

substrate added to the other. The samples were then homogenised for 60 seconds (Seward 

Colworth model 400) and left to incubate at field temperature for 1 hour (45 minutes for 

phosphatase). Following incubation, 1.5 mL of solution from stomacher bag was centrifuged at 

10,000 rpm for 5 minutes. For the standards, a standard curve was prepared by transferring 250 

µL of the supernatant from each vial into six separate wells on a black fluorescence microplate. 

Fifty pL of varying concentrations of MUF free acid solution were added to the supernatant to 

create a concentration curve of 0-100 pM, from which the enzyme activity was determined. For 

the samples with added substrate, 300 µL of supernatant was transferred to the microplate. The 
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fluorescence of the samples was measured at 450 nm emission and 330 nm excitation, with a slit 

setting of 2.5, on a BMG Fluostar Galaxy fluorimeter. Values of enzyme activity were 

automatically calculated from the standard curve by the software program. Enzyme activities 

were expressed as MUF produced (µM g' min'), normalising to the dry weight of the soil. Soil 

dry weight, gravimetric water content and soil organic matter (loss on ignition) were determined 

by heating replicates of 1 cm3 of peat at 105°C and 550°C for 24 hours each in a Carbolite 

muffle furnace and calculating the weight loss. 
. 

Phenol 
oxidase was assayed using a modified version of the method developed by Pind et al. 

(1994). For each sample, 1 cm' of peat were placed in six separate stomacher bags, 9 ml of 

deionised 
water was added and the contents homogenised for 60 seconds. Of this homogenate, 

300 µL was transferred to separate centrifuge vials and 750 tL of deionised water was added to 3 

(blanks) 
and 750 µL of 10 mM LDOPA (dihydroxyphenylalanine) solution was added to the 

other 3 (substrate). The samples were incubated at field temperature for 9 minutes and then all 

vials were centrifuged at 10,000 rpm for 5 minutes. Of the supernatant, 300 µL was transferred 

to wells of a clear microplate, and the absorbance read at 460 nm. The activity of phenol oxidase 

was calculated by subtracting the mean blank value from the mean substrate value and using 

Beers Law, the molar absorbency coefficient for the L-DOPA product 3-dihydroindole-5,6- 

quinone-2-carboxylate (dicq) (3.7 x 104) and the dry weight of each sample. Phenol oxidase 

activity is expressed as µmol dicq g' min"'. 

5.3.4 Statistical analyses 

The data was tested for significant differences between a) the pristine mires from the three 

contrasting nutrient types, to determine the effects of nutrient content, and between b) the 

"drained mires and those subject to 9 year and 48 year drainage for each nutrient type, to 

determine the effects of drainage. Significant differences between nutrient types for 9 and 48 years 

of drainage were not considered. One-way ANOVA with Tukey post-hoc was used to test for 
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differences between soil types, with p values of <0.05 deemed statistically significant. Pearson 

correlation was used to test for significant relationships between various soil parameters. Both 

statistical tests were performed using SPSS (versionl1). The standard error of each data point 

was calculated by dividing the standard deviation of the sample by the square root of the sample 

size. 
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5.4 Results 

5.4.1 A comparison of soil parameters for pristine mires across an increasing nutrient 

Table 5.1 provides a statistical summary of the results described below, with a number of 

significant differences recorded. 

The pH of the water extracts differed substantially and increased significantly from 4.29 (OM) to 

5.03 (OL) to 5.44 (ME) (p<0.001 across the three types), consistent with the increasing nutrient 

status of the soils (Figure 5.1). 

The concentration of water-extractable DOC declined with increasing nutrient status, from 120 

(OM) to 104 (OL) to 72 µg cm' (ME), although differences were not significant (Figure 5.2). 

The calculated SUVA (indicator of the aromaticity of the DOC) was greatest in both the OM 

and ME sites (approx. 1.5 L mg"' m 1), compared to 1.1 L mg' m-' for the OL site (Figure 5.3). 

However, differences were not significant. 

The activity of five hydrolase enzymes, ß-glucosidase, arylsulphatase, ß-xylosidase, N-acetyl-ß- 

glucosaminidase and phosphatase, all displayed contrasting trends for each site. For ß- 

glucosidase the greatest activity was measured in the OL and OM sites (16.0 and 16.2 . tmol g'1 

min' respectively) (Figure 5.4). In the OM site the activity was approximately 50% lower, at 8.3 

µmol g' miri', but this was not significantly lower than the other sites. 

The activity of arylsulphatase was greatest in the OL site at 20.1 µmol g1 miri 1, which was not 

significantly greater than the ME site (15.8 µmol g'1 min'), but was compared to the OM site (7.5 

µmol g' miri') (Figure 5.5). 

For ß-xylosidase, the greatest activity was recorded in the OM site (4.0 µmol g"' miti'), followed 

by the ME site (3.5 µmol g' miri'), with the activity lowest in the OL site (2.7 µmol g' min'), 

although differences were not significant (Figure 5.6). 
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The activity of N-acetyl-ß-glucosaminidase was greatest in the OL site (10.1 µmol g'' min-') 

(Figure 5.7). This was not significantly higher than the ME site (6.1 Vmol g, miff'), but was 

compared to the OM site (4.3 µmol g"' min') 

For phosphatase, the activity increased significantly with increasing nutrient status (p<0.01) 

(Figure 5.8), from 24.3 to 34.5 to 87.3 µmol g' min*' for the OM, OL and ME sites respectively. 

The activity of phenol oxidase was greatest in the ME and OL sites (0.4 µmol dicq g'' miri'), 

both being significantly higher than the OM site (less than 0- undetectable) (p<0.01) (Figure 

5.9). 

Concentrations of nitrate were greatest in the OM site (24.5 µg cm ), followed by the ME site 

(15.5 µg cm ) and the OL site (4.9 µg cm ), however, differences were not significant (Figure 

5.10). 

The concentration of base cations increased with increasing nutrient status, with mean values of 

9.3,15.6 and 10.3 µg cm' for the OM, OL and ME sites respectively (Figure 5.11). 

5.4.2 The effect of 9 and 48 year drainage on soil parameters 

Table 5.2 provides a statistical summary of the results described below, with a number of 

significant differences recorded. The pH of the OM peat did not change significantly with 

drainage for either site compared to the pristine mire. For the OL and ME peat, 9 year drainage 

significantly reduced the pH by approximately 0.2 and 1.0 units respectively. 48 year drainage of 

the ME peat did not change the pH significantly, but for the OL peat the pH was 0.8 lower than 

the pristine. 

The concentration of water-extractable DOC from the OM site also did not change significantly 

with drainage. For the OL site, there was no effect of 9 year drainage, however, 48 year drainage 

significantly increased the DOC concentration to 373.5 Vg cm', compared to 104.3 µg cm 3 for 

the pristine, an almost 4-fold increase. Conversely, for the ME site, there was no effect of 48 year 
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drainage, but 9 year drainage significantly increased the DOC concentration to 272.8 µg cm-3 

compared to the pristine peat, 72.1 . Lg cm 3, also a near 4-fold increase. 

For the OM site, the SUVA was not significantly different for the 9 year drained site compared 

to the pristine, but was significantly greater for the 48 year drained site (2.2 L mg' m'). The 

SUVA of the OL peat was significantly higher for the 9 year drained site (2.3 L mg' m) 

compared to the pristine and significantly higher again for the 48 year drained site (3.2 L mg' m 

'). In the ME site the SUVA of the 9 and 48 years sites were both significantly higher than the 

pristine site, at 2.8 L mg"' m' and 2.2 L mg"' m' respectively. 

The activity of the five hydrolase enzymes again displayed contrasting trends for each site. For [3- 

glucosidase in the OM site, the activity in the 48 year drained site was significantly greater 

(+85%) than in the pristine and 9 year drained sites. In the OL and ME sites the opposite was 

true, with the activity in the 48 year drained site being significantly lower than that in the pristine 

peat (50% and 60% respectively). The 9 year drained site also had a significantly lower activity 

compared to the pristine for the ME peat. 

Drainage of the OM site significantly reduced the activity of arylsulphatase for 9 year drainage 

compared to the pristine peat (28%0), but not for the 48 year site. Both 9 and 48 year drainage 

significantly reduced the activity for the OL and ME sites (approximately -75%), although there 

were no significant effect of 48 over 9 years of drainage. 

The only significant effect of drainage on the activity of ß-xylosidase was for the OM site, where 

48 years of drainage significantly increased the enzyme's activity compared to the pristine and 9 

year drained peat (+65%). 

For N-acetyl-ß-glucosaminidase, there was no effect of drainage on the activity in the OM site. 

However, for the OL and ME sites, both 9 and 48 year drainage significantly reduced the 

enzyme's activity by approximately 50%. 
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The activity of phosphatase showed the greatest variance amongst drainage regimes and nutrient 

availability. For the OM site, there was no significant effect of drainage. For the OL site, 9 year 

and 48 year drainage significantly reduced the activity of phosphatase by approximately 60%. 

The activity in the ME site was significantly reduced by 70% and 93% in the 9 and 48 year 

drainage sites respectively. 

The activity of phenol oxidase in the OM site did not change significantly with drainage, with the 

enzyme generally being undetectable. In OL site, the enzyme was strongly affected by drainage, 

but only significantly for the 48 year drained site (approximate 95% reduction). There was no 

significant effect of drainage on phenol oxidase activity in the ME site. 

For all three sites the concentration of nitrate decreased with the increasing length of drainage, 

but none of the effects were significant. In the case of the OM and ME sites, the concentration 

of nitrate decreased by approximately 50-80%. For the OL site, the decrease was a little greater 

overall, at 65-90%. 

The total concentration of base cations decreased by approximately 45-50% for the OM and ME 

sites with 9 year drainage; the decrease was approximately 20% for the OL site. Drainage for 48 

years reduced the base cation concentration by approximately 45% for the OM site and 30% for 

the ME site, with little overall change for the OL site. 

5.4.3 Correlations between soil parameters 

The soil parameter that best explained the variation in DOC export potential across all soil types 

was the water content of the soil (Figure 5.12). Pearson correlation gave a correlation coefficient 

of R2=-0.587 (p<0.001). There was also a significant relationship between the soil water content 

and the SUVA of the water-extractable solution (Figure 5.13; R2=-0.630; p<0.001). In addition 

to the soil water content, soil pH also correlated significantly, but weakly, with the DOC 

concentration of the extracted solution (Figure 5.14), with an R2=-0.305 (p<0.001). Although 
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there was a lot of variability in the replicate data, especially for the more acidic pH values, the 

25% highest DOC concentrations were recorded for a pH below 4.5. Soil pH also correlated 

significantly with the activity of phenol oxidase (Figure 5.15); with an R2=0.533 (p<0.001). There 

was no significant correlation between the water content of the soil and the activity of phenol 

oxidase, although the enzyme appears to be most active between 85-90% water content (Figure 

5.16). 

Table 5.1 - Statistical comparison of the pristine Ombrotmphic (OM), Oligotrophic (OL) and Me rotrophic 
(ME) peat sites for a variety of soil parameters 

Soil parameter Nutrient status comparison Significant? Significance level 

OM v OL Y <0.001 
pH OM v ME Y <0.001 

OL v ME Y <0.01 
OM v OL N 

DOC OM v ME N 
OL v ME N 
OM v OL N 

SUVA OMvME N 
OL v ME N 
OM v OL N 

ß-glucosidase OM v ME N 
OL v ME N 
OM v OL Y <0.05 

Arylsulphatase OM v ME N 
OL v ME N 
OMvOL N 

P-xylosidase OM v ME N 
OLvME N 

l-ß- t N 
OM v OL Y <0.05 

-ace y 
lucosaminidase OM v ME N 

g OL v ME N 
OM v OL N 

Phosphatase OM v ME Y <0.001 
OL v ME Y <0.01 
OM v OL Y <0.01 

Phenol oxidase OM v ME y <0.01 
OL v ME N 
OM v OL N 

Nitrate OM v ME N 
OLvME N 
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Table 5.2 - Statistical comparison of 9 and 48 year drainage with pristine peat for Ombmtmphic (OM), 
Oligotmphic (OL) and Mesotrophic (ME) peat sites for a variety of soil parameterr. 

Soil parameter 
Nutrient 
status 

Drainage history 
comparison (vs pristine) 

Significant? Significance 
level 

OM 
9 year N 
48 year N 
9 year Y <0.05 

pH OL 48 year Y <0.001 

ME 9 year Y <0.001 
48 year N 

OM 9 year N 
48 year N 

DOC OL 9 year N 
48 year Y <0.001 

ME 9 year Y <0.01 
48 year N 

OM 9 year N 
48 year Y <0.05 

SUVA 
9 year Y <0.001 OL 
48 year Y <0.001 

ME 9 year Y <0.05 
48 year Y <0.05 

OM 
9 year N 
48 year Y <0.01 

id 
9 year N ß-glucos ase OL 
48 year Y <0.05 

ME 9 year Y <0.05 
48 year Y <0.05 

OM 9 year Y <0.05 
48 year N 

l h t l A 
9 year Y <0.01 p a se ry sy OL 
48 year Y <0.05 

ME 9 year Y <0.001 
48 year Y <0.001 

OM 9 year N 
48 ear Y <0.01 

id l OL 
9 year N 

ase ß-xy os 48 year N 

ME 9 ear N 
48 year N 
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Table 5.2 (cont... ) - Statistical comparison of 9 and 48 year drainage with pristine peat for Ombrotrophic 
(OM), Oligotmphie (OL) and Mesotrop hie (ME) peat sites for a variety of soil parameters. 

OM 
9 year N 
48 year N 

N-acetyl-p- 9 year y <0.01 
glucosaminidase 

OL 48 year y <0.05 
9 year y <0.001 ME 
48 year y <0.01 

OM 
9 year N 
48 year N 
9 year y <0.01 Phosphatase OL 48 year y <0.05 

ME 9 year y <0.001 
48 year y <0.01 

OM 9 year N 
48 year N 

id l 
9 year N 

ox ase Pheno OL 48 year y <0.01 

ME 
9 year N 
48 year N 

OM 9 year N 
48 year N 

Ni 
9 year N 

trate OL 48 year N 

ME 9 year N 
48 year N 
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Figure 5.1 - Comparison of the water-extractable pH from the three contrasting nutrient and drainage regimes. 
Values are means of the samples for each site ± standard error (n = 4) 
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Figure 5.2 - Comparison of the water-extractable DOC concentrations from the three contrasting nutrient and 
drainage regimes. Values are means of the samples for each site ± standard error (n = 4) 
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Figure 5.3 - Comparison of the SUVA of the water-extractable solutions from the three contrasting nutrient and 
drainage regime-. Values are means of the samples for each site ± standard error (n = 4) 
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Figure 5.4 - Comparison of ß glucosidase activity at 10 cm depth in the three contrasting nutrient and drainage 

regimes. Values are means of the samples for each site ± standard error (n = 4) 
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Pigun 5 .5- Comparison of aglsu phatase activity at 10 cm depth in the three contrasting nutrient and drainage 

regimes. Values are means of the samples far each site ± standard error (n = 4) 
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Figure 5.6 - Comparison of ß-acylosidase activity at 10 cm depth in the three contrasting nutrient and drainage 

regimes. Values are means of the samples for each site ± standard error (n = 4) 
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Figure 5.7 - Comparison of N-acetyl-#glucosaminidase activity at 10 cm depth in the three contrasting nutrient 

and drainage regimes. Values are means of the samples for each site ± standard error (n = 4) 

0 Pristine Q9 year drained 0 48 year drained 

100 

90 

80 

70 

60 

50 
-ri jE 

10 

0 

Figure 5.8 - Comparison of phosphatase activity at 10 cm depth in the three contrasting nutrient and drainage 

regimes. Values are means of the samples for each site ± standard error (n = 4) 
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Figure 5.9 - Comparison of phenol oxidase activity at 10 cm depth in the three contrasting nutrient and drainage 

regimes. Values are means of the sampler for each site ± standard error (n = 4) 

40 

35 

30 

25 

20 
p 

15 

10 

5 

0 

*==x-, 
, Oligotrophic 

Figure 5.10 - Comparison of water-extractable nitrate concentrations from the three contrasting nutrient and 
drainage regimes. Values are means of the samples for each site ± standard error (n = 4) 
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Figure 5.11 - Comparison of water-extractable base cation concentrations from the three contrasting nutrient and 
drainage regimes. Values are means of the samples for each site ± standard error (n = 4) 
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Figure 5.13 - Linear relationship between soil water content and SUVA (n=35) 
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Figure 5.14 - Relationship between soil pH and DOC concentration (n=35) 
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Figure 5.15 - Linear relationship between soil pH and phenol oxidase activity (n=35) 
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Figure 5.16 - Relationship between soil water content and phenol oxidase activity (n=35) 
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5.5 Discussion 

The principle aim of this study was to determine the impact of long-term drainage on the 

potential export of DOC from a typical boreal peatland across a nutrient gradient. Despite the 

widespread occurrence of peatland drainage in many northern hemisphere countries, relatively 

few studies have addressed the issue of DOC release over long time scales. As peatlands in a 

natural state are. known to be significant sources of DOC to freshwaters (e. g. Mattsson et al., 

2005); a greater understanding of processes influencing DOC export from drained peatlands is 

needed. No significant difference in the DOC export potential of the pristine mires across the 

nutrient gradient was recorded, suggesting the availability of nutrients, and resulting influences 

on other soil characteristics (such as pH), did not influence processes which release DOC at this 

study site. The greatest DOC export potential was found in the OL 48 year drained site, with a 

high value also recorded for the ME 9 year drained site. This suggests that the forestry and 

experimental drainage that has been undertaken in Lakkasuo peatland has increased the leaching 

of DOC to freshwaters, but the effect has not been consistent with nutrient status or drainage 

history (i. e. there was no significant effect on DOC export potential in the OL 9 year and ME 48 

year sites). Rather, the parameter of greatest influence on DOC export potential suggested by 

this study was the water content of the soil, i. e. the lower the water-table, the greater the 

potential for, DOC release from the peat matrix. Lowered watered-tables have been directly 

associated with increased CO2 release due to a stimulation of peat decomposition (e. g. Moore 

and Knowles, 1989; Freeman et al., 1993c, Dinsmore et al., 2009), but there is less evidence of the 

impacts on DOC release. This study has demonstrated that the lower the water-table the greater 

the potential for DOC release and confirms the findings of Sallantaus (1992) that the drained 

peadands at Lakkasuo are releasing more DOC than the areas of the peatiand that have been left 

undisturbed. A 5% drop in the water content of the soil lead to an approximate 80 Vg cm' 

increase in the DOC export potential of the soil. Increased release of DOC with reduced water 
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content of the soil is entirely plausible given water-table drawdown should also lead to increased 

aeration of the soil, a reduction in anoxia and stimulated decomposition of the peat matrix. The 

activity of enzymes were measured to assess rates of decomposition in the soil; the hydrolytic 

enzymes are the main mediators of organic matter degradation in soils and control the rate of 

both decomposition and the release of substances that can become available for microbial and 

plant uptake (Marx et al., 2001), whilst phenol oxidase has been proposed as a regulator of C 

storage in peatlands (Freeman et al., 2004b). Freeman et al. (2001a) proposed that phenol oxidase 

acts as an `enzymic latch' in peat soil, whereby a lack of oxygen inhibits the enzyme, leading to a 

build up of inhibitory phenolic C compounds, which suppress the hydrolytic enzymes that can 

mobilise C from the peat matrix (Fenner et al., 2005). 

Regarding phenol oxidase, the enzyme's activity was influenced more by soil pH than the water 

content of the soil, confirming previous findings that low pH inhibits the activity of this enzyme 

(Ruggiero and Radogna, 1984; Pind et al., 1994) and that of Williams et al. (2000), who reported 

pH to be a more important regulator of phenol oxidase activity than changes in aeration 

associated with change in water-table in a North American field site. Therefore, at locations 

where drainage has occurred and the pH has fallen, the enzymic latch is likely to operate by 

suppressing organic matter decomposition through acidity constraints, rather than by stimulating 

decomposition due to increased aeration. Previous studies have reported that drainage of 

peatlands can reduce the soil pH (Laine et al., 1995), due to a reduction in inflowing groundwater, 

oxidation of organic and inorganic compounds and enhanced base cation uptake by trees (Laiho 

et a1., 2006). We did not observe a reduction in pH with drainage in the OM peat, but did for the 

more nutrient-rich sites, similar to that reported by Laine et al. (2005). The three mechanisms 

given above could explain this difference, as i) the OM sites are, by definition, influenced less by 

groundwater than the OL and ME sites, so a reduction in groundwater inflow due to drainage 

would not be as relevant at this site; ii) oxidation may be greater in more nutrient-rich sites if 
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nutrients stimulate decomposition (Verhoeven and Toth, 1995); iii) tree growth in the drained 

areas of the peatland has been greater at the more nutrient rich sites at Lakkasuo (Lain et al., 

2004). The large fall in pH with 48 year drainage at the OL site and 9 year drainage at the ME 

site could therefore explain the suppression of phenol oxidase, whereas the lack of a pH change 

at the 48 year drained ME site could explain the absence of phenol oxidase suppression. The 

sites of phenol oxidase suppression correspond to the sites where the DOC export potential is 

highest, whilst a weak but significant relationship between soil pH and DOC export potential 

was observed. This supports suggestions that phenol oxidase plays a critical role in C storage in 

peatlands and that changes in pH with drainage are critical. When phenol oxidase activity is 

suppressed by acidity, it is hypothesised that overall decomposition will be inhibited, leading to a 

net release of C. 

Despite this suggestion of a key role for phenol oxidase, we did not observe a consistent 

response for any of the hydrolase enzyme activities at the drained sites that corroborates with the 

activity of phenol oxidase. This demonstrates the difficulty in isolating specific soil parameters 

that are associated with the activity of soil enzymes. Previous lab experiments investigating 

water-table drawdown on peatland C cycling, such as that by Freeman et al. (1996), have shown 

hydrolase enzyme activities to increase following water-table drawdown, but this was a short 

term experiment and the results probably reflect the initial rapid degradation of a small pool of 

easily decomposable organic compounds. This study suggests that over longer time scales, 

hydrolase enzyme activities tend to decrease following drainage. A plausible mechanism for this 

may be a decrease in substrate quality, which is a key factor in controlling rates of organic matter 

decomposition (Laiho, 2006). Substrate quality is known to decrease following drainage as more 

recalcitrant organic compounds exist in the deeper layers of peat (Hogg et al., 1992). 

This study confirms previous findings of the influence of nutrients on rates of organic matter 

decomposition and highlights their role in determining whether a peatland can continue to 
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accumulate C following drainage. Microbes responsible for decomposition in soil require 

nutrients to function (Swift et al., 1979) so it would be expected that greater rates of organic 

matter decomposition would occur in the more nutrient-rich peat. For example, Verhoeven and 

Toth (1995) state that decomposition tends to be greater in base-rich compared to base-poor 

fens due to more favourable litter quality and water chemistry. Tolonen et al. (1992) reported up 

to 6 times greater C accumulation in Finnish ombrotrophic compared to minerotrophic 

peatlands, indicating impaired decomposition in the former. Thomas and Pearce (2004) 

presented data demonstrating that the strong cation exchange capacity of peat, especially where 

Sphagnum is the dominant vegetation species, reduces the availability of cations for microbial 

uptake and is therefore an important constraint on decomposition in peatlands. The nutrient 

content of the three sampled areas of peat in this study may explain differences in soil enzyme 

activities, at least for the pristine peatlands. Activities were generally lowest for the OM site, 

especially for phenol oxidase, (3-glucosidase and arylsulphatase. The difference in activities 

between the three sites were similar to the measured base cation concentrations, with the greatest 

difference being between the OM and OL site, and less of a difference between the OL and ME 

sites. Previous studies at Lakkasuo have shown that the drainage undertaken at the site has 

increased CO2 fluxes from the soil at a greater rate in the OL and ME sites compared to the OM, 

with the ME site being converted to a net C source and net C accumulation occurring in the OM 

site (Laine, 2004). 

It is likely that contrasting results from the 9 and 48 year drained sites are not due to the `extra' 

39 years of drainage. In terms of C cycling, the greatest changes occur in the short term due to 

the decomposition of readily utilisable C; within 9 years it is likely that this pool will have been 

depleted. For example, Hargreaves et al. (2003) reported that drained Scottish peat acted as a 

source of CO2 for 2-4 years following drainage, but after 4-8 years they reverted back to a sink 

again. In this study, any differences between the 9 and 48 year drained sites are likely to be due to 
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changes in vegetation composition. Probably the greatest change to occur on a drained peatland 

is the growth of new plant species and an increase in biomass (Lain et al., 1995; Weltzin et al., 

2003). Tree growth can be rapid following drainage and greatest on the most nutrient rich peat 

(Laine et al., 1995). At Lakkasuo, drainage has resulted in stark contrasts in the growth of new 

vegetation across the nutrient gradient (Minkkinen, et al.., 1999). At the OM site, where nutrients 

are in short supply, the vegetation type, which is dominated by Sphagnum mosses, has remained 

virtually unchanged since the onset of experimental drainage 9 years ago. At the OM site of 48 

year drainage there is a small but significant presence of tree species, compared to the undrained 

portion where trees are absent. An example of how this could have been relevant is shown in the 

enzyme activity data; the only significant increase in hydrolase enzyme activities with drainage 

was for ß-glucosidase and ß-xylosidase in the 48 year drained OM site. These enzymes degrade 

cellulose and the more recalcitrant hemicellulose respectively. The increase in activity may be due 

to the growth of new tree stands. On the pristine OM site there will be an absence of root 

exudates due to the dominance of Sphagnum. The growth of trees in the drained portion will have 

generated an inflow of root exudates to the soil. These are a source of easily metabolised C for 

microbes and can lead to enhanced organic matter decomposition through a `priming' effect 

(Kuzyakov, 2002; Fontaine et'al., 2007). At the OL and ME sites, the growth'of sedges, shrubs 

and trees is much more prevalent, especially for the 48 year drained peat but also to a lesser 

extent at the 9 year drained peat. The growth of such plant types will generate important new 

carbon flux pathways between the vegetation and the soil. 

The dominance of Sphagnum at the OM site also has an important influence on decomposition 

through the release of phenolic compounds into the soil matrix. These compounds have been 

shown to inhibit decomposition in freshwaters and soils (Freeman et al, 1990; Wetzel, 1992) and 

to play a part in suppressing the decomposition of organic matter in peatlands (Freeman et al, 

2001a). The presence of Sphagnum and the resulting release of phenolic compounds at the OM 
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site, together with the extremely low activity of the phenolic-degrading enzyme phenol oxidase, 

suggest a mechanism for suppression of organic matter linked to the above ground vegetation. 

In accordance with the enzymic latch, (3-glucosidase, the key enzyme for cellulose degradation in 

soil, was approximately half as active in the pristine OM site compared to the OL and ME sites. 

This offers an explanation for why the OM portion of Lakkasuo may have continued to 

accumulate C following drainage. Another reason why the OL and ME sites appeared to respond 

to water-table drawdown more might be due to changes in dissolved oxygen. Lower water-tables 

mean less of a continuous flush of oxygenated waters (Freeman et al., 1996). In their natural 

state, the more nutrient rich areas of the peatland receive more water from lateral flow, so they 

will also be receiving more of a flush of oxygen-rich waters. With drainage, the more nutrient 

rich sites may therefore experience a greater change in oxygen concentration due to drainage. 

In addition to the soil pH and abundance of nutrients, it is apparent that the soil water content 

may also significantly influence the activity of phenol oxidase. Toberman et al. (2008) 

demonstrated that phenol oxidase is sensitive to water content and proposed an optimal value 

for the enzyme of approximately 85%. Above this value, low oxygenation may inhibit activity, 

and below it, moisture limitation may be a major stress factor. In this study, a similar trend was 

observed, with an optimal water content of approximately 85-90%. The lack of a stimulation of 

phenol oxidase activity in the drained peat may therefore be due to moisture limitation in 

addition to increased acidity, whilst the low values observed for the OM site may be due to the 

soils exceptionally high water content (92-95%). 

As well as leading to an increase in DOC, we also observed that, compared to the pristine peat, 

drainage significantly increased the SUVA of the DOC for all but the OM 9 year site, with the 

highest SUVA values associated with the lowest soil water contents. SUVA correlates well with 

the molecular weight and aromaticity of DOC (Volk et at, 20Q2), indicating that drainage 

increases the leaching of the more complex C compounds, presumably suggesting mobilisation 
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of the peat matrix. This is a concern for freshwaters receiving run off from drained peatlands, 

particular where the water may form part of a source of drinking water. SUVA has been shown 

to be correlated well with the formation of disinfection by-products (DBPs), such as 

trihalomethanes (THMs) during water treatment (Reckhow et al., 1990; Kitis et al., 2001). Kitis et 

al. (2002) demonstrated that a doubling of SUVA values can lead to a 50-100% increase in DBP 

formation. In this study it was observed that drainage increased the SUVA by 2 to 3 times. This 

finding is supported by some previous studies. For example, Moore and Clarkson (2007) 

recorded 35% higher SUVA values for waters leaching from a drained peatland compared to an 

undrained site. Jaatinen et al. (2008) showed that an increase in the oxygen content in peatlands 

may preferentially stimulate fungal communities that degrade simple organic compounds, leading 

to an increase in the overall molecular weight of the DOC available for leaching. 

Although the data was not significant, for all three peatland types, drainage has resulted in 

reduced concentrations of leachable nitrate. In a laboratory mesocosm experiment, Freeman et al. 

(1993a) showed that short-term water-table drawdown can increase nitrate concentrations 

through the mineralisation of nitrogenous organic compounds. This study showed that over 

much longer time periods available nitrate will decrease due to drainage. The most likely 

explanation for this is the increase in above-ground biomass and the resulting increase in the 

uptake of nitrate from the soil by the vegetation. From a water quality perspective, this data 

suggests that long-term drainage of peatlands decrease nitrate leaching to freshwaters. 
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5.6 Conclusions 

Our results suggest that the leaching of DOC from peadands generally increases with drainage 

for oligotrophic and mesotrophic peat, but not for ombrotrophic peat, with the molecular weight 

of the leached DOC (indicated by measurements of SUVA) also increasing. This has 

implications for the quality of freshwaters with drained peadands in their catchments and 

suggests the treatment of drinking water might be more difficult and also lead to enhanced DBP 

production. The most influential soil parameter affecting DOC concentrations was the water 

content of the soil, with DOC export potential being higher the lower the water content of the 

soil. Assuming water content decreases and aeration of the soil increases as the water-table falls, 

the increase in DOC can be explained by a stimulation of organic matter decomposition in a 

more oxic environment. The lack of a significant increase in the DOC export potential of the 

OL 9 year and the ME 48 year drained sites may therefore be due to the fact that we did not 

observe a reduction in the water content of the soil. As the water-table at these sites is known to 

have fallen (Laine, 2004), it suggests spatial heterogeneity of the hydrology of the soils and a 

more thorough sampling regime is needed to determine DOC export potential across a more 

expansive area of the drained portion of the Lakkasuo. 

An alternative explanation for the observed trends in DOC export potential is linked to the 

`enzymic latch' mechanism. Soil pH correlated significantly with the activity of phenol oxidase 

and DOC, suggesting that at sites where drainage has induced an increase in acidity there has 

been an inhibition of phenol oxidase activity. As phenol oxidase is a regulator of C storage in 

peatlands (Freeman et al., 2004b), suppression of this enzyme may lead to enhanced DOC release 

due to impaired rates of organic matter decomposition. 

Phenol oxidase also displayed an optimal activity at a soil water content of 85-90%, 

corroborating the findings of Toberman et al. (2008) and offering a reason as to why the activity 

of the enzyme was virtually undetectable at the OM site. 
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In addition to demonstrating that the drainage of peatlands for the growth of forestry leads to 

increased leaching of DOC even decades after initial drainage of the soil, this study also 

highlights the potential for water-table drawdown driven by climate change to lead to increased 

DOC leaching in the long-term. 
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Chapter 6 
Conversion of tropical peatland to oil palm 

plantation; Impacts on the activity of soil enzymes 

and release of DOC 
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6.1 Abstract 

6.1 Abstract 

Tropical peatlands cover 30-45 million hectares and are one of Earth's most efficient ecosystems 

for sequestering carbon (C). In the last two decades many of the world's tropical peatlands have 

undergone significant environmental degradation, mainly through drainage and conversion to 

agricultural land. The establishment of oil palm plantations has been one of the commonest land 

use changes that tropical peatlands have undergone. Drainage causes rapid peat decomposition 

and has converted many peatlands in the tropics from C sinks to C sources due to the release of 

thousands of tonnes of CO2. The loss of C in fluvial form, as dissolved organic carbon (DOC), 

has received very little attention. The aim of this study was to compare the DOC export 

potential of soils from a peatland and an oil palm plantation in Malaysia. For the oil palm soil, we 

recorded a 40% greater export potential of DOC and more than twice the DOC concentration in 

drainage waters compared to the peat soil. Activity of the key C cycling enzyme, ß-glucosidase, 

was 25% higher in the oil palm soil. Given that this enzyme can mobilise C from the soil matrix, 

it may be critical in regulating- C leaching from these soils. This study demonstrates that the 

conversion of peatlands to oil palm plantation will increase DOC leaching, typically from 233.7 

µg cm' to 372.5 µg cm', which will have detrimental consequences for water quality. 

Measurements of changes in DOC flux resulting from the conversion of peatlands to oil palm 

plantation are now needed to enable greater quantification of this important C loss pathway. 
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6.2 Introduction 

Peatland ecosystems cover just 3% of the Earth's land surface area but contain 20-30% of the 

global reservoir of soil carbon (C) and the equivalent of 70 times the current annual global C 

emissions from fossil fuel usage (Gorham, 1991; Hooijer et al., 2006). Tropical peatlands cover 

an area of approximately 30-45 million ha (Verwer et al., 2008) and have traditionally been one of 

Earth's most efficient ecosystems for sequestering C, due to both high rates of above-ground 

biomass productivity and suppressed decomposition of organic matter in the anoxic soil 

(Jauhiainen et al., 2008). Unlike boreal and temperate peadands, those in the tropics are mostly 

forested and therefore contain significant C stocks above ground in addition to below ground. 

Estimates of the total surface area and C storage capacity of tropical peatlands are subject to 

great uncertainty, but recent estimates suggest they constitute 9-14% of the global peat C store 

and 3.7% of the global soil C pool (Page et al., 2008). The majority of the world's tropical 

peatlands are found in south-east Asia (67.1%; 27.1 million ha); principally Indonesia (55%; 22.5 

million ha) and Malaysia (7%; 2 million ha) (Hooijer et al, 2006; Page et al., 2008). 

The world's peatlands are of critical importance to climate change, as they have built up a vast 

store of terrestrial C and can continue to naturally sequester atmospheric C, but they are 

particularly vulnerable to environmental degradation. Whilst boreal peatlands have been the 

subject of numerous studies into the potential destabilisation of their C sequestering properties 

(e. g. Freeman et al., 2001 b; Worrall et al., 2004), much less attention has traditionally been paid to 

tropical peatlands. Interest has intensified in the last few years, largely due to the widespread 

environmental degradation that these ecosystems have undergone. The most pervasive impacts 

have been logging and drainage, principally for the establishment of crop plantations. This has 

had serious repercussions for carbon dioxide (CO) emissions; drainage leads to enhanced peat 

decomposition, whilst clearing the land of vegetation eliminates the strong C sequestering 

potential of the ecosystem. Peat fires have also had a devastating impact on tropical peatlands, 
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especially in Indonesia Qaenicke et al., 2008) and the drainage of peadands makes them 

particularly susceptible to fire damage. As a result, many degraded tropical peatlands have 

switched from strong C sinks to C sources through the release of thousands of tonnes of CO2 

(Page et al., 2002). The C emissions from degraded peatlands in Indonesia alone accounts for 4% 

of the total global anthropogenic emission of greenhouse gases (Hooijer et al, 2006) and sharp 

increases in atmospheric CO2 concentrations have been associated with the burning of vast 

swathes of SE Asian peatlands (Page et al., 2002). 

Perhaps the most rapid land use change to have occurred on tropical peatlands in recent years 

has been the planting of oil palm (Elaeisguineenris), a raw material used in the biofuel, vegetable 

oil, pulp and paper industries (Rieley and Page, 2008). In Malaysia, oil palm plantations have 

grown rapidly and the country is now the largest producer and exporter of palm oil and its 

products (Yusoff and Hansen, 2007). The total area of oil palm plantation has increased from 

300,000 to 2,500,000 ha in the last 3 decades and oil palm now occupies over one third of total 

cultivated land area (Germer and Sauerborn, 2008). As of 2004,58% of the country's peat 

swamp forest had been converted to agricultural cultivation (Lee, 2004), of which approximately 

half was for the growth of oil palms (Hooijer et al., 2006). Oil palm production is expected to 

expand in the next few years for use'as a biofuel, which is considered a sustainable means of 

directly offsetting fossil fuel consumption. 

Peatland must be drained before plantations can begin as oil palms cannot survive in 

waterlogged conditions. The optimum water table depth for oil palm cultivation is approximately 

60-80 cm below the surface (Rieley and Page, 2005); this represents a significant deepening of 

the aerobic zone in previously waterlogged, anoxic peat soil. In theory this should dramatically 

increase the emissions of CO2 from the soil through improved oxygenation of the soil 

stimulating decomposition of organic matter. A recent review of soil efflux studies on tropical 

peatlands that have undergone various land use changes suggests this is the case (Hooijer et al, 
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2006). The limited number of published studies addressing this issue, and the high variability of 

the data gathered has however made it difficult to quantify the impact of converting peatland to 

oil palm with respect to C emissions. An example of the variability can be seen in two studies 

published in 2005. Furukawa et al. (2005) made monthly chamber measurements of soil 

respiration and found emissions were 3 times higher in a drained tropical peatland forest 

compared to an undrained site, whilst Melling et al. (2005) measured soil CO2 emissions of an oil 

palm plantation that were 25% lower compared to an intact forested peat swamp. However, 

variability such as this can usually be explained by a more thorough assessment of the sites 

sampled in each of the studies; for example, subsequent aerial land surveys of the intact forested 

peat swamp sampled by Melling et al. (2005) showed that it may have undergone some 

disturbance and drainage that would have increased peat decomposition and given higher values 

of CO2 emissions from the soil than a truly pristine tropical peatland (Hooijer et al., 2006). The 

study by Hooijer et al. (2006) and more recent data, such as that reported by Reijnders and 

Huijbregts (2008) showing that the emission of CO2 from the drainage of tropical peat soils for 

oil palm plantations results in CO2 emissions two orders of magnitude greater than the drainage 

of non-peaty soils, is convincing in suggesting that the use of peatlands for oil palm growth is 

extremely detrimental to the storage of C in tropical peatlands and, consequently, has important 

repercussions for atmospheric CO2 concentrations. During a year of good yield, a plantation can 

generate 3-6 tonnes of palm oil per hectare, which prevents 9-18 tonnes of CO2 emissions from 

fossil fuels (Hooijer et al., 2006). However, the emissions from drained peatlands due to peat 

decomposition is around 70-100 tonnes of Co. per hectare per year, or 10-30 tonnes of CO2 per 

tonne of palm oil. It has been calculated that when oil palm is grown on previously undisturbed 

peatlands, it would take more than 420 years to repay the C debt caused by the enhanced CO2 

emissions caused by the drainage of the peat soil (Fargione et al., 2008). 

Measurements of CO2 emissions from decomposing peat can quantify a large C flux, however in 

order to estimate the overall C balance, i. e. the change in Net Ecosystem Production (NEP) of a 
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peatland conversion to oil palm plantation, it is necessary to measure more of the carbon fluxes 

affected by the change in habitat (Verwer et al., 2008). One component that has received almost 

no attention is the potential loss of C in fluvial form, as dissolved organic carbon (DOC). DOC 

is a critical and often overlooked component of the global C cycle. As a large proportion of 

riverine DOC is decomposed once it reaches the ocean (Hedges et al., 1997), ultimately 

increasing atmospheric CO2 concentrations, it is important to understand processes influencing 

the flux of DOC from terrestrial systems into freshwaters. An understanding of processes 

influencing DOC is also critical for assessing water quality, especially concerning water used for 

human consumption, given the role of DOC in leading to the formation of carcinogenic 

trihalomethanes (THMs) following water treatment (Singer, 2006). In the tropics, water derived 

from peadands is often used as a source of raw water to supply households with drinking water. 

For example, in the Sarawak region of Malaysia, approximately 7700 mega litres of raw peat 

water serves as the water source for a population of 140,000 people (Sim and Murtedza, 2007). 

Concentrations and fluxes of DOC within boreal peatlands and the streams that drain them are 

frequently reported (e. g. Urban et al., 1989; Freeman et al., 2001 b) and studies have emphasised 

that DOC makes up a significant fraction of total C losses from these ecosystems (Billett et al., 

2004). However, equivalent data for tropical peadands is much 'scarcer, particularly those that 

have undergone drainage for oil palm plantation (Verwer et al., 2008). It was recently reported 

that a major river in Indonesia, the Siak, contains high concentrations of DOC due to effective 

leaching from tropical peat swamps within the river's catchment (Baum et al., 2007). The flux of 

DOC was reported to be higher in catchments with a greater percentage of peat cover, and to 

increase with precipitation, indicating the DOC within the peatlands is relatively mobile. Another 

study has demonstrated that there are large losses of dissolved CO2 and methane (CH4) from 

rivers draining tropical peatlands (Ueda et al., 2000). Sim and Murtedza (2007) characterised the 

chemical composition of samples of tropical peat and reported lower overall molecular sizes of 

isolated humic acids compared to temperate peat, which may be attributable to greater aerobic 
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decomposition in tropical soils. They also recorded higher THM formation potential of humic 

acids in rivers draining tropical peatlands, compared to examples published for temperate 

regions. The potential for the drainage of peatlands to mobilise THM-forming DOC therefore 

needs to be addressed. It is also relevant to point out that long-term monitoring data in boreal 

ecosystems have shown that DOC concentrations in freshwaters have been rising for the last 

two decades in large parts of Europe and North America (Monteith et al., 2007), with changes in 

land use having been postulated as a possible driving mechanism (Worrall et al., 2003). 

This chapter reports data from a study focussing on the impact of converting tropical peatland 

to oil palm plantation on the release of DOC into freshwaters. In addition to measurements of 

the DOC export potential of different soil types and concentrations of DOC in drainage waters, 

we also report activities of soil enzymes. Measurements of enzyme activities can yield important 

information on the biological quality, fertility and productivity of soil (Dick, 1994) and are 

intrinsically linked to environmental conditions. As such, they are sensitive to disturbance and 

changes in land use (Shi et al., 2006). Hydrolytic enzymes are the main mediators of organic 

matter degradation in soils and control the rate of both decomposition and the release of 

substances that can become available for microbial and plant uptake (Marx et al., 2001). In peat 

soils in temperate regions, enzyme activities have' been shown to correlate with DOC 

concentrations due to organic matter degradation (Fenner et al., 2005). Consequently enzyme 

activities may be critical in controlling rates of DOC release to freshwaters. 
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6.3 Materials and Methods 

6.3.1. Field sites and sample collection 

The study was carried out at three separate sites located within a 10 km radius in the Selangor 

region of Malaysia (2°56'N, 101°37'E), representative of different land use types relating to the 

conversion of tropical peatland to oil palm. The separate soil types sampled during this study 

were peat, oil palm plantation and, for comparative purposes, a non-peaty forest. The peat site 

was a failed oil palm plantation, where drainage channels were dug through an area of peat in 

1999 and the site was deforested, but the drainage was insufficient and the water table too high 

for the oil palms to grow. As a result, little decomposition of peat occurred and the soil is highly 

organic. This site was chosen to represent conditions similar to a tropical peat swamp, although 

cannot be considered as a truly pristine peatland. The oil palm plantation was established in 2000 

on a successfully drained peatland. The water table at this site was approximately 75 cm below 

the surface at the time of sampling, with the oil palms on average about 4m tall and planted at a 

density of approximately 50 palms hä'. The forest site was a dipterocarp forest on mineral soil 

that had undergone drainage but not deforestation. Sampling was undertaken for 3 days in June 

2008, during the dry season. At each site, 5 replicate soil samples were collected from a depth of 

10cm and sealed in plastic bags. For each drainage ditch, five 250ml samples of water were 

extracted directly into acid-washed polypropylene bottles at 5 points along a 20 m length of each 

ditch. All samples were transported back to the UK, where the soil samples were stored at field 

temperature until further analysis. The pH of the drainage water samples was determined and the 

samples filtered through 0.45 µm filters. Water homogenates of each soil sample were prepared 

within one week of sample collection by adding 27 ml of ultra-pure water to 3 cm' of soil, 

homogenising the sample in a stomacher and centrifuging at 10,000rpm for 5 minutes. The pH 

of an aliquot of the soil waters was determined before the remaining supernatant was filtered 

through 0.45 µm filters. A summary of the basic soil properties for each site is given in Table 6.1 
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Table 6.7 - Basic chemical and phy ical characteristics of the 3 ram pled soil types (Mean ± SD) 

Forest Peat Oil Palm 

Water-table depth (cm) 60 5 75 

pH 5.00 (0.14) 4.07 (0.08) 4.19 (0.10) 

Conductivity (µS cm) 22.3 (7.5) 70.8 (6.1) 113.4 (25.5) 

% moisture 32.4 (5.6) 79.4 (2.8) 31.6 (8.2) 

% soil organic matter 14.3 (2.5) 75.1 (9.2) 43.7 (13.9) 

6.3.2 DOC and phenolics 

Total DOC and phenolic compound concentrations were determined on the water-extractable 

and drainage water solutions. DOC was measured using an Analytical Sciences Thermalox TOC 

analyser. Phenolic compound concentrations were measured using a method similar to that 

described by Box (1983). For the soil samples, concentrations of total DOC and phenolics were 

expressed in µg cm3 wet soil and for the waters as mg L'1. The water-extractable method was 

chosen for determining dissolved C concentrations because it gives an indication of the potential 

losses of C from soils during rainfall, which in the tropics is frequent and often intense. 

Furthermore, a recent study has demonstrated that yields of DOC mobilised from tropical peat 

soils are highly influenced by rates of precipitation (Baum et al., 2007). 

6.3.3 Soil enzyme activities 

The activities of three extracellular hydrolase enzymes (ß-glucosidase, arylsulphatase and 

phosphatase) and phenol oxidase were assayed using a modified version of the methods 

developed by Freeman et al., (1995) and Pind et at, (1994). MUF enzyme substrates were used to 

detect hydrolase enzyme activities by measuring changes in fluorescence of samples at 450 nm 
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emission and 330 nm excitation on a BMG Fluostar Galaxy fluorimeter. The activity of the 

hydrolase enzymes is expressed in µmol g' miri 1. 

Phenol oxidase was assayed using 10 mM L-DOPA (dihydroxyphenylalanine) solution as the 

enzyme substrate and detecting changes in absorbance at 460 nm. The activity of phenol oxidase 

is expressed in gmol dicq g' min. 

Soil bulk density (dry weight), gravimetric water content and soil organic matter (loss on ignition) 

were determined by drying replicates of 1 cm' of peat at 105°C and 550°C for 24 hours each in a 

Carbolite muffle furnace and calculating the weight loss. 

Soil (basal) respiration is commonly used to assess microbial activity in soils (Vanhala, 2002). It 

was measured using a method similar to that described in Bonnett et al. (2006). One cm3 of wet 

soil was placed into a darkened 30 ml bottle, sealed and stored at field temperature. After 2 hours 

of incubation, 5 ml of gas was withdrawn from each bottle and CO2 concentrations were 

measured on an Ai Cambridge model 92 gas chromatograph, with a Porapak QS column at 

350°C and N2 carrier gas at a flow rate of 30 ml miri 1. 

6.3.4 Statistical analysis 

One-way ANOVA with Tukey post-hoc was used to test for differences between soil types. 

Pearson correlation was used to test for significant relationships between the analyses 

undertaken. Both statistical tests were performed SPSS (version 11). The standard error of each 

data point was calculated by dividing the standard deviation of the sample by the square root of 

the sample size. 

143 



6.4 Results 

6.4 Results 

6.4.1 Dissolved organic carbon 

Total concentrations of water-extractable DOC were significantly higher in the soil sampled 

from the oil palm plantation (p<0.05), with 372.5 µg cm' of DOC compared to 233.7 jig cm3 for 

the peat and 84.9 µg cm3 for the forest soils (Figure 6.1). The concentration of DOC in the 

drainage channels was also significantly highest in the water draining the oil palm plantation at 

13.3 mg L; ' (Figure 6.2). In the peat and forest drainage channels the concentrations were 6.0 

and 4.0 mg L-', respectively. 

The concentration of phenolic compounds displayed a somewhat different trend to total DOC 

(Figure 6.3), with the peat soil having the highest concentration at 29.2 µg cm3, although this was 

not significantly higher (atp<0.05) than the phenolics in the oil palm (26.5 µg cm). The amount 

of phenolics in the forest soil was significantly lowest, at 14.3 µg cm3 (p<0.05). The 

phenolics: DOC can indicate the overall molecular weight of the DOC. The forest, peat and oil 

palm soils had values of 0.169,0.125 and 0.071 respectively. 

6.4.2 Soil enzymes and CO2 emissions 

The activity of three major hydrolytic enzymes, ß-glucosidase, arylsulphatase and phosphatase, all 

displayed contrasting trends for each soil analysed. The activity of ß-glucosidase correlated 

positively and significantly with the soil organic matter (SOM) content of the soil (R2=0.757, 

p<0.001; Figure 6.4), suggesting SOM is critical in regulating ß-glucosidase activity. The activity 

of ß-glucosidase, arylsulphatase and phosphatase were normalised to dry weight. The highest 

activities of ß-glucosidase were in the peat and oil palm soils, at 1.18 and 1.01 µmol g' min t 

respectively, both being significantly higher than the forest soil, 0.46 . tmol g' min"' (p<0.001 and 

p<0.01 respectively) (Figure 6.5). 
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The activity of arylsulphatase was lower for all samples compared to activities of ß-glucosidase 

(Figure 6.6). The activity of arylsulphatase in the forest soil was significantly higher than in any of 

the other samples, at 0.37 µmol g' mit 1 (p<0.05) Much lower values were recorded in the peat 

(0.18 µmol g"' min 1) and oil palm soils (0.08 µmol gg' min') 

Activities of phosphatase were higher than ß-glucosidase for all samples, however it is worth 

noting that the phosphatase activity in the oil palm, 0.86 µmol g1 miri was significantly lower 

than the other soils (p<0.01; Figure 6.7) The peat sample had by far the highest phosphatase 

activity, at 26.48 µmol g71 mit 1, which was significantly higher than both the forest and oil palm 

soils (p<0.001). 

The activity of phenol oxidase was highest in the peat soil and lowest in the oil palm soil, 

although differences between soil types were not significant at p<0.05 (Figure 6.8). This was 

probably due to the high variability of the replicate data. 

The efflux of CO2 from the soil, measured as basal respiration, also had high variability and 

consequently was not significantly different between soil types at p<0.05 (Figure 6.9). The peat 

soil had the highest CO2 efflux, with the mean emission from the oil palm approximately 85% 

lower. A significant but weak positive correlation was recorded between the efflux of CO2 and 

the percentage water content of the soils sampled (R2=0.352, p<0.05). 
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Figure 6.3 - Water-extractable phenolic concentrations of the forest, peat and oil palm soils 
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Figure 6.7 - Phosphatase activity of the forest, peat and oil palm soils 
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Figure 6.9 - Basal respiration of the forest, peat and oil palm soils 
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6.5 Discussion 

The data obtained in this study demonstrates that the drainage of a tropical peatland and its 

conversion to an oil palm plantation can have important repercussions for soil C cycling 

processes and the leaching of DOC. The establishment of an oil palm plantation on a drained 

peatland will almost certainly convert the land from a net C sink to a net C source, certainly in 

terms of CO2 emissions (Hooijer et al., 2006) but until now there has been virtually no data 

available for the impact of such a land use conversion with respect to the flux of C in fluvial 

form. Although there was high variability in the data, a 40% greater concentration of leachable 

DOC was recorded in the oil palm plantation soil than the less disturbed peat soil, despite the 

much higher SOM content in the latter. Furthermore, the drainage channel within the oil palm 

plantation contained more than twice the concentration of DOC than the channel draining the 

peat. This suggests that DOC is an important pathway for the loss of C from oil palm 

cultivations grown on former peatlands. The initial drainage of a tropical peatland will probably 

lead to extremely high rates of DOC release. Dissolved organic matter (DOM) is the most 

mobile portion of organic matter in peat (Glatzel et al., 2003) and in the tropics high 

temperatures can ensure high rates of organic matter decomposition (Rieley and Page, 2005), 

which can lead to mobilisation of the peat matrix. However, the oil palm sampled in this study 

was 8 years old and the high concentrations of DOC in the drainage ditch dissecting the 

plantation demonstrates the potential for long-term DOC releases following initial peatland 

drainage. 

This may simply be due to the vast reservoir of C in tropical peat soils. A water-table drawdown 

of tens of centimetres to a metre in a formerly waterlogged peatland can create a large source of 

potentially leachable C. The peat site 'sampled had a high organic C content, measured at 0.13 g 

C cm3. Assuming this is uniform with depth, this can mean that the drainage of a peadand to a 

depth of 70cm could potentially result in approximately 91 kg C m2 becoming available for 
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aerobic decomposition. As the oil palm plantation sampled in this study was established on a 

former peatland, the much lower SOM content of the soil compared to the peat site indicates 

that a large loss of SOM will have occurred following drainage of the peatland due to enhanced 

decomposition in a less anoxic soil. The magnitude of the loss of SOM was similar to that 

reported by Detwiler (1986) for the conversion of tropical forests to agricultural land. 

Enzymic degradation of SOM can lead to DOC release from peatlands through mobilisation of 

C from the soil matrix (Fenner et al., 2005). In this study, the activity of ß-glucosidase, an enzyme 

involved in degrading cellulose to glucose (Sinsaburgh, 1991), had equivalent activities in the peat 

and oil palm soils, therefore the activity of this enzyme cannot explain the higher DOC export 

potential of the oil palm soil. However, we observed a significant positive correlation between ß- 

glucosidase activity and the SOM content of the soil, highlighting the role of SOM in acting as a 

substrate for enzymes that mediate organic C decomposition. Similar observations have been 

reported previously (e. g. Eivazi and Tabatabai, 1990; Waldrop et al., 2000). Shi et ah (2006) 

measured, a significant correlation between soil organic C and (3-glucosidase, although not for 

different soil types, indicating other factors influence rates of enzymic decomposition e. g. 

microbial community composition. The phenolic: DOC ratio gives an indication of SOM 

composition with respect to enzyme activities. Phenolic compounds are known inhibitors of 

hydrolytic enzymes (Freeman et ah, 1990; Wetzel, 1992) and therefore suppress organic matter 

degradation (Freeman et ah, 2001a). The peat soil had a phenolic: DOC ratio twice that of the oil 

palm, consistent with the build up of phenolics in anoxic soil. The lower phenolics: DOC of the 

oil palm soil therefore suggest the SOM quality make it more favourable for decomposition, 

perhaps explaining the greater DOC export potential. 

The differences in CO2 effluxes between a peatland and an oil palm plantation recorded in this 

study agreed with those of Melling et at (2005), who recorded lower fluxes from oil palm soil 

compared to a peat swamp. The high CO2 flux in that study was later attributed to disturbance of 

152 



6.5 Discussion 

the `pristine' peatland (Hooijer et al., 2006) and the known disturbance of the peatland sampled 

in this study would also seem to be responsible for the high CO2 emissions. Whilst the CO2 flux 

from the peat site is not completely reliable for this reason, the emission of CO2 from the oil 

palm soil was certainly low. Melling et al. (2005) stated the reason for the low CO2 flux from the 

oil palm they studied was due to a lack of surface litter and the prevalence of recalcitrant peat 

(i. e. poor substrate quality). However, we have shown that the soil from the oil palm is rich in 

water-soluble C substrates which should aid microbial metabolism (Linn and Doran, 1984). 

Instead, the low effluxes in this and the Melling et al. (2005) study may be due to low water 

content of the soil. A significant correlation between soil water content and CO2 respiration was 

observed in this study and has been published previously (e. g. Davidson et ah, 2000 and Vanhala, 

2002). The dry weather experienced around the time of sampling may have lowered the soil 

water content sufficiently to suppress soil respiration. 

The soil sampled from the forest had the lowest rate of DOC export potential, consistent with 

its non-peaty classification and low SOM content. The most distinguishing feature of the forest 

soil data was the high arylsulphatase activity. Arylsulphatase catalyses the release of sulphur 

bound to organic molecules. The high activity of this enzyme in the forest soil may be due to 

both a high sulphur demand from the above-ground vegetation and the soil pH. Previous work 

in a boreal forest has demonstrated the optimum pH for arylsulphatase to be 4-5, similar to that 

recorded for this forest soil (Wittmann et at, 2004). For comparison, the same study found the 

pH optimum for ß-glucosidase to be 3-4, perhaps helping to explain why the activity of this 

enzyme was more than 50% lower for the forest soil than the peat and oil palm soils (when 

normalised to soil dry weight). 

There were also some interesting trends for phenol oxidase and phosphatase activities. The 

activity of phenol oxidase was generally lower than that reported for boreal peatlands (e. g. 

Fenner et al.., 2005). This can probably be attributed to the lower pH of the tropical peat soil, as 
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pH is known to be an important regulator of phenol oxidase activity (Williams et al., 2000). 

Given the role of phenol oxidase in degrading recalcitrant and inhibitory phenolic compounds 

(Freeman et al, 2004b), the enzyme may therefore be important in influencing SOM quality in 

tropical soils, which we have shown ultimately influences the activity of the key enzyme ß- 

glucosidase (although we did not observe a negative correlation between phenolics and ß- 

glucosidase). The activity of phosphatase was much higher in the peat than the oil palm soil. 

Phosphatase activity is typically high in wetland soils (e. g. Kang and Freeman, 1999) as 

phosphate is a key nutrient for microbes and plants and concentrations are low in waterlogged 

soils due to minimal release of phosphate from the mineralization of organic matter. The very 

low activity of phosphatase in the oil palm soil is probably due to the use of fertilisers providing 

sufficient phosphate. The amount of fertiliser typically applied to oil palm plantations is high and 

has been reported to be between 500 and 1000 kg ha' (Caliman, 2002). The use of fertiliser may 

offer an alternative explanation for the higher DOC export potential. Although the role of 

fertilisers in affecting the leaching of DOC from soils is unclear (Chantigny, 2003), some studies 

have reported increases in the leaching of organic matter with fertilizer use (e. g. Cambell et al., 

1999). The use of fertilisers and its possible impacts on the dynamics of SOM in oil palm 

plantations therefore warrants further investigation. 

154 



6.6 Conclusions 

6.6 Conclusions 

The data obtained in this study suggests that the planting of oil palm on tropical peatland can 

increase the leaching of DOC into freshwaters. This has important consequences for the global 

C cycle and for freshwaters, particularly for water quality and the provision of safe drinking 

water for human consumption. Although more studies are needed to elucidate the causes of the 

increased DOC export potential, the quality of SOM and its influence on enzyme activities may 

be crucial. A greater knowledge of the flux of C from peatlands converted to oil palm plantations 

is now needed to quantify the loss of C into freshwaters and how this compares to pristine 

peatlands. This study provides further evidence that the planting of oil palms on peatlands 

converts an ecosystem capable of naturally sequestering large quantities of C into one that 

becomes a major source of C. 
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7.1 Drinking Water Quality 

The production of safe drinking water is a multi-faceted process and one of the most critical 

aspects are the quality of the raw water and processes occurring within the catchment of the 

water body. In the past, water companies largely disregarded the quality of raw water, providing 

that the final water was considered safe. However, with stricter guidelines and regulations being 

introduced this is no longer the case and water companies now have a duty to look at the quality 

of raw water and any hazards identified within its catchment that may be affecting it. 

Llyn Cefni and Llyn Alaw are two shallow, lowland lakes on the island of Anglesey, north Wales, 

used as drinking water reservoirs that serve the island's population of nearly 70,000. Both 

reservoirs are subject to high inputs of carbon (C), nitrogen (N) and phosphorus (P) and each 

have been shown to have a detrimental impact on quality at certain times of the year (Chapter 2 

and 3). Analysis of the data collected during the two surveys revealed how the biogeochemical 

properties of both reservoirs varied not only by the origin and nature of the contaminant but 

also by season. 

There are a multitude of processes that can occur within a freshwater catchment which can be 

detrimental to water quality and the most important, certainly in terms of disinfection by-product 

(DBP) formation, are those that influence the concentration and characteristics of dissolved 

organic carbon (DOC). DOC poses perhaps one of the greatest problems for water treatment 

and its removal from the water is often the most costly part of the treatment (in terms of 

chemical usage, labour and waste removal). Unless the removal of DOC is fully effective, any 

remaining DOC can react with the disinfectant to produce harmful DBPs (Kits et al., 2002) and 

can also stimulate microbial re-growth in the distribution system (Niquette et aL, 2001). Both 

lakes displayed very different DOC characteristics. A strong seasonal trend was evident for Llyn 

Cefni (Figure 2.2, p 39), with the greatest concentrations recorded in the autumn, whilst for Llyn 

Alaw there was no obvious seasonal trend in DOC concentrations and no autumn time flux into 
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the lake (Figure 2.2, p . 39). These differences reflect properties of the lakes themselves and 

contrasting characteristics of their catchments. One of the most important reasons for the 

observed differences between Llyn Cefni and Llyn Alaw is the presence of a peatland within the 

catchment of Llyn Cefni. The peatland, Cots Erddreiniog, was shown to influence the 

concentration and characteristics of DOC in the reservoir and to ultimately affect the water 

quality. This is in agreement with previously reported studies that the proportion of peatlands 

within the catchment of temperate lakes is one of the most influential determinants of the size of 

the allochthonous C input (Dillon and Molot, 1997). Jones (2006) reported that DOC entering 

Llyn Cefni via the Afon Erddreiniog inflow has a higher SUVA (Specific UV Absorbance) than 

that in Afon Cefni, which can be directly related to the leaching of higher molecular weight 

(MW) DOC from the organic-rich, anaerobic peat soils of Cots Erddreiniog. In Chapter 3, 

higher SUVA values were also recorded for the Afon Erddreiniog inflow and through 'H-NMR 

spectroscopy it was also shown that the DOC has a greater proportion of aromatic compounds 

compared to the DOC isolated from Afon Cefni (Figure 3.2, p 66,67). These characteristics 

meant that the DOC from Afon Erddreiniog had a greater THM formation potential (Figure 3.4, 

p 68). 

Rainfall is known to highly influence the' amount of DOC in lakes as increased allochthonous 

input occurs during run-off (Li et al., 2008) and there is ample evidence of this being an 

important process, particularly for Llyn Cefni. It was demonstrated that the timing of heavy 

rainfall events on a seasonal basis is of particular importance as the availability of DOC 

throughout the seasons is different. It is highest during the late summer/early autumn period as 

rates of microbial and enzymic decomposition of organic matter are at their greatest and there is 

fresh input of C to the soil from senescing vegetation above ground (Tate, 1987; Kang and 

Freeman, 1999). During the winter, there is less DOC export from catchment soils as the pool of 

potentially leachable DOC has been depleted (Freeman- et al., 2001a). Thus, there is a much 
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greater potential for large influxes of DOC to freshwaters during the autumn and this was 

demonstrated for Llyn Cefni (Figures 2.3 and 2.8, p 40,44). Taken together, these data 

emphasise that Cors Erddreiniog is of critical importance in influencing the DOC characteristics 

of Llyn Cefni. 

Whilst Llyn Alaw also has a small peatland within its catchment, due to its relative size it did not 

appear to influence the raw water quality to the extent exhibited by Cots Erddreiniog for Uyn 

Cefni. It is hypothesised that a significant source of DOC to Llyn Alaw derives from the lake 

bed. This is due to its original construction taking place on a peatland and due to the lake's 

shallow depth; this would allow wind-induced mixing to cause upwelling of organic C from the 

lake bed. Although there was no real seasonal trend in the total DOC concentration of Llyn 

Alaw, further investigations into the structure of DOC within the lake did reveal a marked 

seasonal variation. The seasons showing the greatest contrasts in DOC characteristics were 

summer and autumn. During the summer, the hydrophilic (76%) fraction dominated, with 

relatively little hydrophobic material (18%), but in the autumn the opposite was true, with 14% 

hydrophilic and 55% hydrophobic material (Figure 2.6, p 42). These findings demonstrate that 

the lake was influenced by both allochthonous and autochthonous DOC. The autumn peak in 

hydrophobic DOC is most likely to be due to the leaching of terrestrially-derived high NIW 

DOC, principally originating from soil (Imai et al., 2001). During the summer the proliferation of 

algal blooms will lead to a large input of lower MW, hydrophilic structures (Kritzberg et al., 

2006). Despite this evidence of seasonality in the DOC characteristics, the processes causing 

these changes do not appear to be large enough to make significant impacts on total DOC 

concentrations in Llyn Alaw. 

Autochthonous DOC production was also shown to be very important at Llyn Cefni. Algal 

growth in the lake during the summer and early autumn is known to be intense and visible mats 

of green algae can frequently be seen. Grasso et ad (1990), Biber et at (1996) and Giroldo et ah 
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(2007) described how DOC released by phytoplanktonic organisms is principally composed of 

amino acids, peptides, proteins and carbohydrates. In Chapter 3, 'H-NMR spectra demonstrated 

the presence of these compounds in the lake water. Indeed, the signal for autochthonous DOC 

in the NMR spectra was greater than the terrestrial aromatic signal in October, which is thought 

to be due to decomposing algal cells from the previous summer. Although the growth of algae 

does also occur in Llyn Alaw, it is not as intense as that which takes place in Llyn Cefni. This 

may be due to the absence of significant quantities of P in the lake's catchment (Figure 2.5, p 42), 

as phosphate is considered to be the key nutrient for algal growth (Schindler et al., 2007). 

In addition to the influences of peatlands and algal DOC, the differences between Llyn Cefni 

and Llyn Alaw can also be explained simply by their size. Lake size is known to affect the extent 

to which hydrological and biogeochemical process can be influential (Hanson et al., 2007). It has 

been reported that lake area can correlate inversely with DOC concentrations (Xenopoulos et al., 

2003) and with the surface area of Llyn Alaw being four times larger than that of Llyn Cefni 

(Chapter 2, p 49), this offers an explanation as to why it was difficult to detect dominant 

processes affecting DOC concentrations at Llyn Alaw. 

Although THM concentrations in the final water from Llyn Cefni and Llyn Alaw water treatment 

works were always below the current UK limit of 100 µg L' (DWI, 1998), strong seasonal 

variations in the extent of allochthonous and autochthonous inputs ensure constantly shifting 

DOC characteristics of the raw waters. This makes treating the water difficult and necessitates 

regular alterations to the coagulant and chlorine dose. In terms of DOC removal, the higher MW 

and more aromatic compounds, i. e. those from terrestrial sources such as peatlands (Curtis and 

Schindler, 1997), are generally more easily removed (Murray and Parsons, 2003), but also have a 

greater propensity to form DBPs (Archer and Singer, 2006; Fabris et al., 2008). Water treatment 

facilities at Llyn Cefni must therefore always be operated efficiently due to lake's greater 

terrestrial DOC influence. DOC derived from algae is lower in MW and aromaticity (Jones, 
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2006). Although these characteristics ensure it is generally less reactive with chlorine, it is much 

more difficult to remove by conventional water treatment processes (Knappe et al., 2004) and 

because it may pass through treatment works it can ultimately provide a substrate for microbial 

re-growth in the distribution system (Lehtola et al., 2001) 

The most successful treatment process for DOC removal is coagulation and this is in place at 

both treatment works. Based on differences between the raw and final water DOC 

concentrations, treatment processes at the Cefni works were shown to be more successful than 

those at the Alaw. This may be because of the greater relative contribution of terrestrially-derived 

(i. e. more easily removable) DOC at this lake. Although DOC removal was more efficient at the 

Llyn Cefni treatment works there was a greater formation of THMs when the lake water DOC 

concentration was high in the autumn; this emphasises the importance of the pulse in DOC at 

this time of year. 

Both lakes were shown to have high concentrations of DOC during the summer. This is when 

lake water temperatures are highest and as the reaction between organic matter and chlorine is 

strongly temperature dependent (Knocke et al., 1986), it is unfortunate that the two most 

influential factors affecting DBP formation peak at almost identical times. This places great 

emphasis on the need to minimise DOC concentrations during the late summer/early autumn 

period. 
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7.2 Influential sources of DOC 

The remainder of this thesis focused on the most influential sources of DOC that lead to high 

lake water concentrations; peatlands and algae. 

7.2.1 Peatlands 

The health of many of the world's peatlands is one of the most important considerations for 

water companies in the next few decades, especially given that climate change may be causing 

destabilisation of peatlands and increased release of DOC to freshwaters (Freeman et al., 2001b). 

Of all anthropogenic impacts on the world's peatlands, changes in land use have had the most 

widespread and severest impacts. This is because, for mainly economic reasons, vast areas have 

been drained for the growth of crops. In the two countries where experiments were undertaken, 

Finland and Malaysia, large proportions of the country's landmasses are occupied by boreal and 

tropical peatlands respectively, and the extent of drainage has been particularly pronounced. In 

Finland, it is estimated that 62% of the countries peatlands have been drained, principally for the 

growth of forests (Turunen, 2008), whilst in Malaysia, 58% of the countries tropical pcatland has 

been intensively drained mainly for the growth of oil palm (Lee, 2004). The studies undertaken in 

both countries revealed that even many years after the peadands had, been drained, the soils. 

continued to have a comparatively greater DOC export potential than undisturbed sites (Chapter 

5 and 6). 

In Finland, peatlands have been shown to highly influence freshwater DOC concentrations 

(Mattsson et al., 2005) and the extensive drainage of peatlands in this country will have enhanced 

this effect. It may, therefore, have partly been the cause of observed increases in freshwater 

DOC concentrations reported in this country ([Monteith et al., 2007). However, the effect we 

observed was not consistent with nutrient status or drainage history, rather, the parameter of 
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greatest influence on DOC export potential was the water content of the soil. This suggests that 

the lower the water-table, the greater the potential for DOC release from the peat matrix. 

We are living in a time of unprecedented importance in terms of the global environment. There 

is constant discussion about climate change and the consequences of a warming planet. As it 

seems unlikely that a `quick fix' solution will be found for rapidly rising concentrations of C02, 

increased soil temperatures and a lowering of the water-table, for many peatlands is likely to 

occur to some degree in the next few decades. The repercussions for the C store of peatlands 

and for DOC export to freshwaters is certainly worrying and there is little that can be done to 

counteract this `natural' drying. However, there is a lot that can be done about the artificial 

drainage of peatlands. This is certainly imperative in Malaysia and other countries with significant 

areas of tropical peatland. The draining of tropical peatlands in Malaysia to facilitate the 

production of oil palm is 'entirely a consequence of human development and the desire for 

economic growth. But it is happening at an alarming rate and at great environmental cost. For 

example, CO2 emissions from degraded peadands in neighbouring Indonesia alone accounts for 

4% of the total global anthropogenic emission of greenhouse gases (Hooijer et al., 2006). The 

data presented in Chapter 6 has demonstrated that as well as leading to increased CO2 release, 

the conversion of tropical peatlands to oil palm plantations increases the leaching of DOC to 

freshwaters. This is the first known study to report such findings. The extent to which peatlands 

influence freshwaters in the tropics is not as well known compared to boreal and temperate 

ecosystems, therefore the results of this study cannot be interpreted in the context of known 

examples of drinking water sources in Malaysia. However, similar to the results obtained in the 

Finnish study, treatment of water for the purposes of drinking will become more difficult if 

drained peadands are present in the catchment of the source water. 

Regarding the role of soil enzymes, for the Finnish site pH correlated with the activity of phenol 

oxidase, which in turn was suppressed in the sites where significant increases in DOC export 
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potential was recorded. This emphasises the key role of phenol oxidase in peatlands and suggests 

that pH may be more important than aeration in controlling its activity at certain sites. This has 

been reported previously for a peat bog in north America (Williams et al. 2000). In Malaysia, the 

activity of phenol oxidase was lower when comparing activities in the pristine sites for both 

countries (Figures 5.9, p 121 and 6.8, p 149). This can probably be attributed to the lower pH of 

the tropical peat soil. In Malaysia, the drained peat (i. e. the site of oil palm growth), which had 

the highest DOC export potential of the three sampled soil types, also had suppressed activities 

of phenol oxidase compared to the undisturbed peat soil. Unlike for the Finnish site, this was 

not caused by an increase in acidity, as no significant change in pH was recorded (Table 6.1, p 

142). Instead, the lower activity of the enzyme may have reflected the much lower water content 

of the soil. Data from Chapter 5 for the Finnish site suggested that phenol oxidase activity is 

highest when the soil water content is approximately 85-90% (Figure 5.16, p 124). This agrees 

closely with previous findings (Toberman et al., 2008) and suggests that phenol oxidase activity 

may not always increase during drought as moisture limitation effects may prevent a response to 

increased oxygen. 

In the Malaysian sites the activity of ß-glucosidase was shown to be significantly influenced by 

the soil organic matter' (SOM) content (Figure 6.4, p 147), demonstrating the importance of 

SOM as a substrate for hydrolytic enzymes. The peat soil had a phenolic: DOC twice as high as 

the oil palm soil, whilst the ß-glucosidase activity was 25% lower. The phenolic: DOC ratio has 

also been reported to influence ß-glucosidase in rivers (Freeman et at, 2000) As it has been 

demonstrated that ß-glucosidase can mobilise DOC from the soil matrix (Fenner et al., 2005), the 

SOM quality may have been critical in controlling this effect at the Malaysian sites. It may be that 

the SOM quality was higher for the oil palm soil due to either the preferential past leaching of 

higher MW DOC, or the greater input of C from above-ground by the oil palm vegetation. The 

oil palm soil is known be fertilised, this may influence the mobility of DOC and requires further 
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investigation. For the Finnish study, a decrease in enzyme activities was generally recorded 

following drainage and it was suggested that, in direct contrast to the Malaysian soil, this may be 

due to a decrease in SOM quality. Further work is needed to assess the differences in this 

important soil parameter between boreal and tropical peat to determine its influence on key 

enzyme activities. It was interesting to note that the change in vegetation and the growth of trees 

caused an increase in ß-glucosidase and (3-xylosidase activity in the 48 year drained OM site, 

possibly due to a stimulation of decomposition caused by previously absent, easily metabolised 

root exudates. This represents an improvement in SOM quality and emphasises that the 

dominance of Sphagnum in pristine ombrotrophic peatlands can be critical for inhibiting 

decomposition via the enzymic latch (Freeman et al. 2001a) due to the release of phenolic 

compounds and a lack of root exudates. 

The data from these two studies emphasise the importance of preserving peatlands located 

within the catchments of water sources and highlight the need to maintain current management 

practices at Cots Erddreiniog. In Chapters 2 and 3, the peatland was demonstrated to be 

enhancing the concentration of DBP-forming DOC in Llyn Cefni. If this effect was to intensify 

due to deterioration in the processes currently locking up C in the peadand, it could seriously 

undermine the ability of the I1yn Cefni treatment works to produce drinking water that meets 

current regulations. Due to the SSSI designation given to Cors Erddreiniog, it is unlikely that it 

will ever be artificially drained. However, a lowering of the water table due to climate change is 

entirely plausible. Roulet et al. (2006) have predicted a decrease of 14-22 cm in the height of the 

water-table in boreal fens for a doubling of the atmospheric CO2 concentrations. This is similar 

to the level of water-table drawdown induced by the forestry and experimentally drained sites at 

Lakkasuo peatland in Finland. As reported in Chapter 5, water table drawdown led to a 

significant increase in DOC export potential and the effect was most pronounced the lower the 

water content of the soil. The effect was observed for the oligotrophic and mesotrophic areas of 
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peat, and as Cors Erddreiniog is oligotrophic, it suggests that if climate change lowers the water- 

table of this peatland the export of DOC to Llyn Cefni may increase. 

7.2.2 Algal Blooms 

Whilst the management of peatlands is deemed to be crucial for minimising the input of 

terrestrially-derived DOC to freshwaters, agricultural practises within a water body's catchment 

are crucial for determining the production of DOC within the water. The application of fertiliser 

to arable land to stimulate crop growth is a common agricultural practice; however, if it is poorly 

managed, excess nutrients (principally N and P) can leach from the soil into freshwaters. This 

may be severe enough to induce a state of eutrophication in the water and to lead to the growth 

of potentially toxic algal blooms. From a drinking water perspective, these blooms can severely 

hamper treatment processes and diminish the quality of drinking water by clogging filters, raising 

coagulant and chlorine demand, increasing DBP formation, producing undesirable taste and 

odours and increasing microbial re-growth potential in distribution systems (Knappe et al., 2004). 

The aim of Chapter 4 was to assess the feasibility of a floating constructed wetland (FC' to 

reduce the potential formation of algal blooms. The intention was for the system to sequester N 

and P, depriving the algae of the key nutrients needed for growth and therefore inhibiting their 

formation. This was achieved through the use of Phragmiter australis in combination with a peat- 

based growth medium. The results from this pilot study were encouraging as the FCWs reduced 

nitrate and phosphate concentrations to undetectable levels (Figure 4.6 and 4.7, p 91) and 

reduced chlorophyll concentrations in the water to 80% below that of the control system (Figure 

4.3, p 89). FCWs may therefore offer an interesting and promising new technique for controlling 

algal bloom formation, and would have advantages over both traditional fixed constructed 

wetlands, which are prone to leaching organic matter and nutrients outside of the growing 

season, and barley straw bales, for which only limited success has been reported (Ball et al., 2001). 

In order to gain a complete assessment of the potential success of FCW systems in reducing algal 
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growth formation, the experiment must be up-scaled and tested in a real freshwater lake prone to 

nitrate and phosphate inputs. This will answer the most important unknown regarding the 

systems; the potential for increased DOC release. Overall, algae contributed approximately 5.3 

mg L"' of DOC to the control ponds, whilst the FCWs contributed 9.5 mg L"' of DOC to the 

planted ponds; the FCWs therefore contributed approximately an additional 4.2 mg L"' of DOC 

(Figure 4.3, p 89). If it is assumed that this experiment achieved the maximum reduction in 

nutrient and algal concentrations possible from an FCW setup, this suggests that the use of these 

systems in a real freshwater lake should not contribute more than 5 mg L'' of additional DOC. 

Both Llyn Cefni and Llyn Alaw were shown to be significantly influenced by DOC derived from 

algal blooms, as they are lowland lakes surround extensively by farmland. The FCWs have the 

potential to offer a solution to this problem. Algal blooms typically occur during the summer 

when water temperatures and sunlight levels are at their highest Qohnk et al., 2008) and when 

terrestrial inputs of DOC concentrations tend to be low due to a reduction in the flux of 

allochthonous DOC (Chapter 2). However, during late summer/early autumn, as sunlight levels 

and water temperatures start to decrease, the algae start to die away and release large amounts of 

DOC, coinciding with the time of year when terrestrial inputs of DOC generally are at their 

highest. The increased input of DOC from the installation of the FCW would therefore occur at 

a time when DOC concentrations of the lake are not usually high, and will reduce the input of 

DOC from algal sources at a time when they are high. The DOC concentration measured in 

Llyn Cefni during the summer was approximately 6 mg L'' (Figure 2.2, p 39). If a FCW system 

was to be introduced into Llyn Cefni the concentration of DOC may increase to 11 mg L'', 

which is still significantly lower than the peak concentration recorded during the autumn, 16 mg 

L''. The water treatment works was able to treat the water during the autumn efficiently, 

therefore any extra DOC added to the water by the FCWs would not be expected to hamper 

treatment processes. Furthermore, the amount of DOC released from the FCWs in a real life 

situation is anticipated to be much lower than 5 mg L' as the original experiment was carried out 
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in a small volume of water over a short period of time. In a real situation, the FCWs could be 

installed at a much lower density (i. e. a lower FCW: water volume ratio) and allowed to sequester 

nutrients over longer time periods, therefore minimising any DOC release from the systems. A 

further point to recognise is that although the FCWs may contribute additional DOC into the 

reservoirs, analysis of the structure of the DOC arising from these systems revealed that it 

actually favours removal during the treatment process. An increase in the amount of phenolic 

compounds was measured in the planted system and these high MW structures are more easily 

removed during water treatment. The DOC characteristics of the control system was indicative 

of a much lower MW, consistent with the growth of algae, and this type of DOC is more 

difficult to remove during the physical and chemical treatment of water (Cheng and Chi, 2003). 

On a per unit of C basis therefore, the systems would improve the efficiency with which the 

treatment works were able to treat the water. 
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7.3 Conclusions 

Overall, the work presented in this thesis has highlighted the importance of the key 

allochthonous and autochthonous sources of DOC to freshwaters; peatlands and algae. Central 

to the issue and critical for minimising DOC concentrations in freshwaters are the 

implementation of good catchment management practices. Imperative is the preservation of 

peatlands; they contain vast stocks of C and any disturbance to their ability to hold on to these C 

stocks could render some sources of freshwater untreatable. Perhaps the most important 

disturbance to avoid is drainage, as this was shown to increase DOC export potential even over 

long time scales (Chapters 5& 6). Also of great importance is for the leaching of excess fertiliser 

from agricultural land to be minimised in order to prevent algal blooms. In a very recent paper, 

Oulehle and Hruska (2009) conclude that observed freshwater DOC increases in the last two 

decades have been due to recovery from acidification and they suggest that catchment 

management should therefore not be given such great emphasis by water companies. This is a 

potentially dangerous recommendation. Although the case for recovery from acid deposition 

driving recent DOC increases is relatively strong (Monteith et crl, 2007) the debate is far from 

settled and there are recent publications that demonstrate that acidity is not the only influence 

(Worrall et al., 2007a). Numerous past studies demonstrating that aspects of climate change, such 

as drought (Freeman et al.., 2001 a), elevated CO2 (Freeman et al., 2004a), temperature (Fenner et 

al., 2005) should not be discounted. The variation in water quality in Uyn Ccfni and I lyn Alaw 

reported in Chapter 2 can largely be attributed to the differing catchments, the influence of more 

than one source of DOC and nutrients and the effect of seasonal changes in climatic conditions. 

Climate change is expected to alter average temperatures and precipitation patterns, which may 

lead to even more intense and frequent floods and droughts (IPCC, 2001). In fact changes in the 

frequencies of extreme events, such as floods and droughts, may be one of the most significant 

consequences of climate change (Lenker, 2006). Consequently, it is considered that climate 
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change will affect the availability of water, as well as its quality, distribution, the complex 

infrastructure, and systems in place to manage water and existing climate variability (Sen, 2008). 

General future trends in Europe suggest that increases in average precipitation and its variability 

are expected for northern regions, suggesting higher flood risks, while less rainfall, prolonged dry 

spells and increased evaporation may increase the frequency of droughts in southern areas 

(Lenher, 2006). 

This emphasises the importance of processes occurring within the catchment of freshwaters that 

influence the water quality. As many sources of drinking water contain significant quantities of 

peadand and agricultural land within their catchments, it would be prudent for water companies 

to make even greater efforts to improve catchment management and to keep abreast of ongoing 

research into the potential impacts of climate change. 
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7.4 Further work 

A greater understanding is required of the potential to form DBPs with varying water quality. 

Whilst we were able to show that the presence of the peatland, Cots Erddreiniog, did lead to a 

large autumn flux of DOC into Llyn Cefni, which coincided with elevated THM concentrations, 

we did not explore the potential to form DBPs of varying reservoirs, from upland lakes to 

boreholes and aquifers. By combining assessments of the characterisation of DOC from varying 

water types by fractionation and 'H-NMR, it may aid water companies when forecasting 

predictions of DBP formation. This should also provide a useful insight when deciding on the 

best type of treatment processes a water treatment works should employ to maximise organic 

matter removal. 

Perhaps the most interesting future experiment is to determine the feasibility of an FCW setup 

for minimising algal growth in freshwaters. An ideal site in which to up-scale the experiment 

would be Llyn Cefni, as it is naturally divided into two narrowly linked sections. A series of 

FCWs could be added to one side and the other left as a control to enable accurate 

determination of the ability of the systems to sequester nitrate and phosphate and their potential 

to release DOC. 

In Chapters 5 and 6 it was demonstrated that drainage of peatlands in Finland and Malaysia 

increased the DOC export potential of the soil. However, this is only important if it can be 

shown that the drained sites actually have a greater rate of DOC export to freshwaters. In order 

to determine this it is therefore vital to measure the DOC flux occurring from these drained 

peatlands. Additionally, further work is necessary to determine the age of the C being released 

from the peatlands. This would provide a valuable insight as to whether the additional C being 

released from these systems due to drainage is a consequence of increased plant productivity 

(`new' carbon) or the degradation of C stocks (`old' carbon). 
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