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Abstract 

Early diagnosis of notifiable diseases in the veterinary domain is important with regard to 

agriculture, the health sector and the economy. With no diagnostic test in the live animal 
for either BSE or Scrapie many cases may be mis-diagnosed. 

Traditionally, data for pattern recognition is stored as recorded cases of interest either 
labelled with their outcome (suitable for supervised classification) or unlabelled. Each 

case is described by a collection of symptoms, recorded as present / absent. These are 

called "binary features". In the case of medical data, the amount of cases recorded in this 

way may be limited for many reasons. To overcome this lack of data expert-estimated 
probability tables have been proposed as a substitute. These "non-traditional" tables con- 
tain the estimated percentage frequencies of clinical symptoms in various diseases. The 

construction of the tables assumed that the clinical signs (features) were independent 

given the diseases (classes). 
Given the "non-traditional" data, various feature selection techniques were applied 

and compared in this study in order to select a reduced subset of features (symptoms). The 

potential, limitations and stability of Sequential Forward Selection (SFS) in particular, 
were investigated. 

Decision trees and NaYve Bayes classifier models were applied for the diagnosis task. 
The apparent success and stability of NaYve Bayes in the medical domain led to an in- 

depth investigation of the effects of this type of data and its inherent assumptions on the 

model. NaTve Bayes is known to be optimal in the case of independent features, which 
is the condition assumed by the estimated probability tables in the "non-traditional" data. 
Various proposed adaptations to the NSive Bayes model were investigated with regard 
to their optimality when the independence assumption is violated. Finally, the perfor- 
mance of NaYve Bayes with regard to traditionally stored medical data with binary fea- 

tures was assessed. NaYve Bayes and its adaptations performed well with the traditional 
data. Since the effect of assuming independence when it is not true is minimal, using 
the "non-traditional" data with the NaYve Bayes classifier can be a practical solution for 

veterinary diagnosis. 
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1.1. WHAT IS PATTERN RECOGNITION? CHAPTER 1. INTRODUCTION 

1.1 What is Pattern Recognition? 

Informally, the pattern recognition process can be likened to a game of twenty ques- 
tions or Animal, Vegetable, Mineral. More formally pattern recognition is an area of 
mathematics based on identifying and classifying objects. The area has undergone much 
development since the 1960's. 

An object, x can be described by n different characteristics. In pattern recognition lit- 

erature the descriptive characteristics of an object are termed features or variables. There- 
fore x= [xi, 

..., Xn]T where each xj is an individual feature. 
The classification methods of pattern recognition can take one of two forms, unsuper- 

vised or supervised. Within unsupervised pattern recognition clustering techniques are 
applied in order to find natural groupings within a given set of objects. Supervised pat- 
tern recognition assumes that the class (group) of each object is known during training. 
Let 0= Jwl, 

..., wJ be a set of mutually exclusive classes. Supervised classification 
builds a classifier, D using the labelled objects in the training set. 

R' --+ 9. (1.1) 

A discriminant function, gi(x), is used to denote the support for an object x in class 
wi given by D. The discriminant function with the maximal value determines the class 
assigned to the object x. The classifier training can be governed by making the least error 
or minimising a cost function on a training data set. 

The output of a stable classifier will not be greatly affected by small alterations in 

the training data. Classifiers for which the alteration of even a single training point can 
lead to radically different overall decisions are termed unstable. The required stability of a 
classifier model may affect the choices made during the process of classifier construction. 

The posterior probability, which is the probability of class wi given the a particular 
object x, can be calculated using Bayes formula, 

P(wilx) - 
P(wi)p(xlwi) 

P(X) 

where P(wi) is the prior probability of class wi, (the frequency of class wi amongst the 
N training set objects), p(xlwi) is the class-conditional probability mass function, (the 
probability of x occurring in class wi) and p(x) is the unconditional probability of x. The 
minimal possible error is guaranteed by selecting the class with the maximal posterior 
probability. 

Given an infinite training set the estimates used in equation 1.2 will be accurate. This 
will mean that the posterior probability estimates given by the Bayes formula will be 
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1.2. VETERINARY SCIENCE CHAPTER 1. INTRODUCTION 

accurate. By selecting the class with the maximal posterior probability estimate the min- 
imal possible error is guaranteed. Thus, in this case the Bayes formula will provide the 

optimal method of classification. However, with only finite training sets the estimates be- 

come less reliable. Part of applying pattern recognition methods to real world situations 
is to find the classifier that best fits the problem. There is no optimal classifier for every 
situation. 

1.2 Where does Veterinary Science fit in? 

The joining of two seemingly unrelated areas of science can be intriguing and challeng- 
ing. For the improvement in knowledge in all areas of science, knowledge from various 
areas need to be combined and applied. Using classifiers and pattern recognition in vet- 
erinary science is not a new idea [21,22,50,100,136,140]. The data collected by domain 

experts may not be typical of that used by pattern recognition methods. The data collec- 
tion process may lead to inherent assumptions. Tliere is a need to know what effects and 
differences could be endured by accepting any inherent assumptions. What are the best 

classifiers and processes to use with untypical possibly assumption-bound data. 

1.3 What are BSE and Scrapic? 

BSE and Scrapie are both forms of transmissible spongiforrn encephalopathies (TSE), 

that are fatal neurodegenerative diseases with no known cure. TSE's can be characterised 
by a long incubation period, a clinical course of between two to six months and a lack of 
immune response despite the disease not actively suppressing the immune system. This 

section gives an overview of the two forms of TSE looked at in this study. 

1.3.1 Scrapie 

Scrapie was first diagnosed in Great Britain in 1732 [89]. It is a non-febrile fatal chronic 
disease of sheep and goats. There are around 15 different strains of Scrapie currently 
identified. The long incubation period is followed by the clinical onset in sheep between 
2 and 5 years old. The early signs of the disease are transient and unspecific. They include 

weight loss and subtle behaviour changes. 
Affected sheep may disassociate themselves from their flock and appear to be hyper- 

alert to anything differing from the normal routine. When left alone the sheep may stand 
with a vacant gaze and lowered head. Scrapie may cause a sheep to appear inactive and 
lazy in comparison to other sheep in the flock. 

3 



1.3. WHAT ARE BSE AND SCRAPIE? CHAPTER 1. INTRODUCTION 

Weight loss can occur despite a normal appetite. Mastication and bolus regurgitation 
may be reduced, which can result in emaciation. Early on in the clinical presentation of 
the disease there may be abnormal drinking patterns, such as taking water little and often. 
This can be matched by abnormal "little and often7' urination. Increased teeth grinding 
(Bruxism) and lip licking may also be witnessed. 

Licking may also be attributed to the increased grooming noted in affected sheep. 
Most cases of Scrapie demonstrate pruritic symptoms, such as rubbing against objects, 
scratching, licking and self-nibbling. Intense rubbing may induce discolouration or loss 

of wool and eventually hyper-pigmentation or lesions of the skin. Discolouration of fleece 

around the mouth can be due to excessive flow of saliva (Ptyalism) as a result of swal- 
lowing difficulties. 

The "scratch tesf 'is performed by rubbing a sheep on its back. A positive result would 
be seen as a "nibble reflex" shown each time the test is repeated. The "nibble reflex" 
can be described as licking and smacking of the lips giving the sheep an expression of 
"satisfaction". In more advanced cases touching the back can be enough to elicit a nibble 
reflex. Spontaneous nibbling reflexes may also be seen in advanced cases. A positive 

result to the scratch test on its own is not indicative of Scrapie and must be considered in 

conjunction with other clinical symptoms. 
Infected sheep can present a wide-based stance or stand with a crouching position 

of the hindquarters. Gait abnormalities (Ataxia) usually occur as the disease progresses, 
initially the gait appears stiff. Bunny hopping of the hind limbs when the sheep is made 
to run or a high stepping gait (Hypermetria) may be seen. These gait deficits win even- 
tually lead to difficulty in getting up and recumbency, (lying with hind legs stretched out 
behind). 

Head tremors can progress into whole body tremors. These can be exaggerated by ex- 

citement or handling. This can eventually lead to collapse and seizures in more advanced 
cases. Ocular abnormalities are rarer in Scrapie but can occur as Nystagmus or visual 
impairment. 

Biochemical markers for Scrapie have been found in blood neurotransmitters, hor- 

mones, metabolites and immunoglobulin. These have not resulted in a ante-mortem test 
for the presence of the disease as yet. There is also the possibility of using electro- 
encephalographic tests (EEG) to aid in diagnosis [ 13 11. 

Various diseases can be considered as differential diagnoses these include Mange, 
Bacterial dermatitis, Pregnancy toxaemia, hepatic encephalopathy, various toxins and 
parasite migration. 
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1.3. WHAT ARE BSE AND SCRAPIE? CHAPTER 1. INTRODUCTION 

1.3.2 BSE 

Bovine Spongiform. Encephalopathy (BSE) was first described in Great Britain in 1986. It 

is an afebrile neurological disease that results in fatality. BSE remains a sporadic disease 

and as such the awareness of the clinical signs is low. The early signs are unspecific 
in nature and so many cases get presented when the case is acute [28]. BSE naturally 

progresses slowly with a long incubation period of 21 to 8 years, [ 1151. The usual onset 2 
of the disease is in cattle between 4 and 6 years of age. The clinical signs of BSE are 
variable from day to day but progressive over time. The risk of missing early signs can 
be reduced if the animals with early non-specific signs are challenged in such a way as to 
exaggerate the suspected signs. In stressed cows the signs tend to become more apparent. 
Weight loss or loss of condition can be the first apparent signs but these can be attributed 
to many other diseases and events. 

Some of the more common signs are changes in behaviour and movement. Affected 

cows may become apprehensive of herd mates, human visitors to the herd, changes to its 

environment and being restrained. Some cases present an intense stare, known as "the 
BSE look" which can affect the ocular structures. Affected cows may become unpre- 
dictable kicking out during handling or milking. This change in behaviour has led many 
cows to be sent to slaughter as they become more difficult to handle. This in turn led to 
many cases going undiagnosed. 

Hyperaesthesia, a hyper reactivity to certain environmental cues or external stimuli 
may be induced by touching the head or neck, thus inducing an exaggerated reaction. 
Unaffected cattle will normally react the first few times but then become used to the stim- 
ulus. However, repeated stimulation in extremely affected cases can result in collapse 
or seizure. Touching the top of the tail may induce a calming effect. Other changes in 
behaviour can be demonstrated by head bobbing, body tremors, excessive nose licking, 
bruxism, nose wrinkling or yawning. Self inflicted skin lesions (Pruritus) can also oc- 
cur but are less common than in cases of Scrapie. During the periods of apprehension/ 
excitement the heart rate of the cow may remain low despite its apparent agitated state. 

In early cases of BSE the change in movement may present as a reftisal to walk or 
run and any movement appearing "stiff". In more advanced cases this progresses to a 
wide based stance, low head carriage, and standing with the rear limbs placed under the 
abdomen. There could also be difficulty in getting up from lying with a period of sitting 
like a dog in the process. Ataxia is normally first noticed in the hindquarters. As the 
disease progresses this becomes more severe resulting in stumbling, slipping and falling. 
Knuckling of fetlocks may also be seen but is rarer. These progressive gait deficits may 
lead to recumbency. DEFRA states that unless another cause for the recumbency can be 
clearly established the case should be considered as BSE [281. 
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1.3. WHAT ARE BSE AND SCRAPIE? CHAPTER 1. INTRODUCTION 

BSE cases may also have a lower milk yield, another cause of early slaughter before 

confirmed diagnosis. There is the possibility that there will be a decreased reaction to 
Xylazine, a drug that normally induces sedation in unaffected cattle. 

There are certain differential diagnoses that have to be considered when these clin- 
ical signs are present. These can be extraneural or neural. The extraneural. diseases 
include Ectoparasitism, Slow wasting diseases, Ocular disease, Ovarian cysts. The neu- 

ral diseases include Hypomagnesaemia, Rabies, Lead poisoning, Listeriosis and Hepatic 

encephalopathy. 
A normal temperature will normally be recorded. Respiration rates may be slightly 

increased. There are no reported changes in the haernatology, biochemistry or cytology 

of the blood, urine or cerebrospinal fluid. It has been noted that there may be changes in 

energy metabolism and levels of lactic acid or amino acids in the blood. As with Scrapie, 

abnormal EEG recordings can be reported. 
There is as yet no specific ante-mortem test. Diagnosis is confirmed by testing for 

detection of the active agent in brain tissue post mortem. 

1.3.3 The spread and effects of BSE and Scrapie. 

The true incidence of Scrapie in Great Britain is unknown but a survey suggested that 

around 1 of flocks have been affected [115]. It became a notifiable disease in Great 
3 

Britain in 1991. It is believed that Scrapie was introduced to the USA in 1947. Between 

1947 and 1992 657 flocks were affected in 39 states. 
The prion protein PrPSc is the infective agent associated with Scrapie. It is thought 

that the incubation period may be determined by genetics of the host. Introducing pre- 

clinically infected sheep to the flock is thought to spread the disease. The placenta, foetal 

fluids, intestine and nasal mucous membranes are known to harbour the disease. Inges- 

tion of infected materials can induce the spread of the disease. Hay mites have also been 

shown to harbour the infective agent. The agent is very resistant to heat and UV. Infected 
brain homogenates buried in soil remain infective for three years [ 115 ]. Fields that in- 
fected sheep have grazed on may also remain infective for three years. The importance 

of vertical spread from parent to larnb still remains to be determined. If both parents are 
infected then the risk to the lamb of infection seems to be greater but this may due to 
horizontal transmission at birth. 

Countries in which Scrapie was not enzootic but introduced by import have had some 
success with eradication schemes. Eradication schemes have not been so successful in 

countries where Scrapie is enzootic. 
The origin of BSE is generally regarded to be transformation from Scrapie. BSE was 

first reported in Great Britain in 1986 but it may have been a sporadic disease before 
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1.3. WHAT ARE BSE AND SCRAPIE? CHAPTER 1. INTRODUCTION 

this with mis-diagnosis occurring. Prior to this 1986 case the rendering process for the 

processing of meat and bone meal had undergone a change. Sheep-derived protein was 
being used in feed for cattle. This mass exposure of the infective Scrapie agent to cattle 
is thought to have caused the BSE epizootic in the late 1980's and early 1990's in Great 
Britain. 

In 1988 BSE was declared a notifiable disease. There was also a statutory ban on the 
feeding of ruminant-derived protein to ruminants. The annual incidence of BSE peaked 
in 1992 and has fallen every year since. This has been attributed to feed ban. By 1996, 
59.3% of dairy herds in Great Britain had experienced at least one case. 15.3% of beef 
herds had experienced a case. This difference is mainly due to the differences in feeding 

practices and life span of the two types of herd. 
By 1998 there had been 170,000 cases of BSE in Great Britain. At the peak of the 

outbreak there were 1000 new cases being submitted each week. Today there are around 
ten new cases submitted each week. The first case of BSE in the USA was diagnosed in 
December 2003. 

The risk of BSE increases as the size of the herd increases but the horizontal and ver- 
tical transmission of the disease is not thought to be of major importance. This is because 

the within herd incidence of the disease is low. 'Mis meant the economic importance to 
the individual fanner of the outbreak was not great. Compensation payments were made 
for all cows that were slaughtered. In 1989 certain beef products were banned from en- 
tering the human food chain. The national cost in Great Britain was felt by the measures 
needed for detection, control, compensation, disposal and the loss of the export market. 
British beef is still banned in about 100 countries including the USA and Australia, [271. 

One of the biggest costs was the fear of the link between BSE and a human TSE, 

variant-Creutzfeldt-Jakob disease, (vCJD). CJD was first discovered in 1920 in Germany. 
CJD generally has a long incubation period with clinical onset between 50 and 75 years 
of age. The clinical symptoms include a rapid onset of dementia. The majority of cases 
are sporadic but there are cases of familial occurrence due to genetic mutation and also 
a very small percentage due to man to man transmission during surgery. In 1996 there 
was the discovery of a different form of CJD. This form of CJD differed from the already 
present strains due to the early onset of the clinical symptoms; in patients under the age 
of 50. This strain was named vCJD and was attributed to eating beef products before the 
ban was introduced in 1989. As yet there has been no link between Scrapie and human 
TSE's. 

BSE has been found in other species especially zoo animals that were fed fallen stock. 
Domestic cats were found to have the disease in 1990 [115]. In 2004 it was reported that 
BSE had been found in a goat that had been diagnosed with Scrapie 15 years ago. As yet 
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BSE has not been found in sheep. Sheep that have been experimentally infected with BSE 
have had a more rapid progression of the disease. The clinical signs have been similar to 
that of Scrapie but with less frequent occurrences of pruritus and a greater incidence of 
ataxia. 

Other current research into BSE and Scrapie includes looking at the role of the PtP 

genotype in susceptibility to the disease, studies of epidemiology and into the modes of 
transmission and diagnosis. 

1.4 Cross - referencing: Pattern recognition to veteri- 
nary domain 

Here the terminology used in pattern recognition literature is paired to that used in the 
veterinary domain. Table 1.1 shows the parallel between the notions from the two areas 
and also the notations used throughout this study. 

Table 1.1: A cross reference of pattern recognition notation to veterinary terminology. 
Pattern Recognition 

context 
I Notation I Veterinary 

context 
Features X3 Symptoms / Clinical signs 
Classes Q Diseases 

Prior Probability P(Wj) Prevalence / Pre-test probability 
A feature set X The set of all signs 

A feature vector X collection of signs for a particular animal 
The training set N The set of recorded cases 

Classification algorithm 
(Classifier) 

D: R' --+ Q Diagnostic process 
Stored template / Standard / Pattern matching 

Discriminant function g. (X) Diagnostic evidence for a disease 
Posterior probability P(WiIX) Probability of a disease explaining a set of signs. 

Hypothetical probability / Post-test probability 
Class conditional probability 

mass function 
AXIWO Frequency of occurrence of a set 

of clinical signs observed within a disease 

1.5 BSE and Scrapie data 

Traditionally data for supervised classification tasks is held as a set of recorded cases each 
labelled with their outcome class. These cases are then used to train the classifier, D. The 
more training data there is available the more accurate the resulting classifier. However, 
for medical data there are many reasons as to why traditional data sets for diseases are not 
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Table 1.2: Structure of the non-traditional probability table data. 
Wl ... Wi ... WC 

x, P(xl lw, ) ... P(xllwi) ... P(xilg, ) 

xj P(Xjlwl) ... P(Xjlwi) ... P(Xjlwr-) 

Xn P(Xn1W1) ... P(Xn1Wi) ... P(XniWc) 

plentiM. These reasons include not many cases being recorded for rare diseases, uncer- 
tainty about which symptoms to record, data collection not being performed uniformly 
across the population and recorded cases generally being suspected cases of a particular 
disease leading to low variability in the symptoms recorded overall in the data. 

1.5.1 Non-traditional data - ProbabilitY Tables 

A method to overcome the problems with traditionally stored data is to use what we 
will refer to as non-traditional data. For BSE and Scrapie there exists expert-estimated 
probability tables. An example of the probability table structure is shown in Table 1.2. 
Entry (j, i) is the estimated probability of symptom (feature) xj being present given the 

presence of a certain disease (class) wi. Three domain experts were asked to estimate 
these probabilities. The three estimates were then averaged to give the estimates in the 
probability tables. 

Construction of the probability tables using the experts' estimates led to two assump- 
tions, 

1. Assumption of independence. As no consideration was given to groups of fea- 

tures indicating specific diseases it must be assumed that the features are class- 
conditionally independent. 

2. Reliability of the probability estimates. Since there is no way to validate or calibrate 
the expert estimates, it must be assumed that the probabilities represent the true 

values or very close estimates thereof 

The BSE probability table contains the conditional probabilities for 242 features given 
57 diseases (BSE and 56 alternative diagnoses). The Scrapie probability table contains 
the conditional probabilities of 285 features given 63 classes (Scrapie and 62 altema- 
tive diagnoses). Both tables were provided courtesy of Dr. Peter Cockcroft, Cambridge 

veterinary School, University of Cambridge, UK. 
The classification task has various perspectives here. For example, we may wish to 

separate the main disease of interest (BSE or Scrapie) from any other disease, this will 
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be called "the two-class problem". This problem is constructed by taking the average 

probability estimate of the alternative diseases. The prior probabilities are taken to be 

equivalent for the two classes, i. e., P(BSE) = P(Non-BSE) = 0.5. The probability of 

a feature xj given class BSE can be taken from the probability tables, P (xj =1 IBSE) is 

the value taken directly from the table while P(xj = OIBSE) =1- P(xj = 11BSE). The 

probability for feature xj in the second class, Non-BSE, is calculated from the probability 

tables by taking the average of the remaining alternative diseases, P(xjlNon-BSE) 

T-11 Ewjý4BSEP(xj1Wi)* 

Alternatively, we may seek to separate any of the diseases from the remaining dis- 

eases, "the multi-class problenf '. In this task we would seek to use the probability tables 

as they are. As there is no other information about prevalence, it must be assumed that 

the prior probabilities are equal, P (wi) = 1, i=1, ..., C. C 

1.5.2 Traditional data - Recorded Cases. 

Traditional data sets of recorded cases of BSE and Scrapie have been sourced from DE- 

FRA (Department for Environment, Food and Rural Affairs). These traditional datasets 

contained recorded cases described by various symptoms. Unfortunately, the symptoms 
in the traditional data and the ones in the probability table data were not the same. 

The BSE data contained 204,354 cases described by 31 features courtesy of Judi 

Ryan, Veterinary Laboratories Agency. The set was divided into 173,759 BSE positive 
cases and 30,595 BSE negative cases. This gives estimates of the prior probabilities 
of 85% class BSE positive and 15% class BSE negative among the cases reported to 
DEFRA. 

The Scrapie data contained 3676 cases described by 41 features courtesy of Dr. Victor 
Del Rio Vilas, Veterinary Laboratories Agency. This was split into 2987 cases of Scrapie 

positive and 689 cases of Scrapie negative. The prior probabilities for the two classes 
are 81% for class Scrapie positive and 19% for class Scrapie negative among the cases 
reported to DEFRA. 

The high imbalance of the prior probabilities for the two classes in both data sets is 

caused by all the cases being suspected of the disease. Also because of this the probability 
estimates of the feature frequencies would not be representative of the entire population. 
IMe scope of the task is therefore reduced to diagnosis of a disease within a set of suspects 
rather than an entire population. 
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1.5.3 Error estimation: sensitivity and specificity. 

In medicine there are two special types of probabilities, Sensitivity and Specificity [221. 
Sensitivity is defined to be the likelihood of a positive result in the patients known to 
have the disease. Specificity is defined to be the likelihood of a negative result in patients 
known to be free of the disease. Sensitivity and specificity are inversely related to one 
another [231. High specificity means the test being used rarely gives a positive result for 

the disease of interest in its absence. However, high specificity comes at the expense of 
low sensitivity which means that the same test would produce a lot of false negatives. 
There is a need to decide on the balance between sensitivity and specificity. A high 

specificity / low sensitivity test means fewer animals will be slaughtered unnecessarily 
but a high number of cases of BSE and Scrapie will be mis-diagnosed. A high sensitivity 
/ low specificity test could result in an unacceptably high number of animals destroyed 
due to false positives. 

Brenner and Gefeller [14] note that sensitivity and specificity of binary diagnostic 

tests are dependent on disease prevalence contrary to many practioners' beliefs. As dis- 

ease prevalence increases sensitivity increases and specificity naturally decreases. For 

example, a diagnostic test used in a clinical environment among patients suspected to 
have a certain disease will typically have lower sensitivity and higher specificity when 
applied as a screening tool in the general population where the disease prevalence would 
be lower. 

Sensitivity and specificity may be expressed in the following way, 

Sensitivity = 
Detected Positive 

All Positive 

Specificity = 
Detected Negative 

All Negative 

For a hypothetical data set with N= tp + fp + fn + tn elements, the table below 

shows the numbers of Guessed positive cases and Guessed negative cases with respect to 
the actual true values of positive and negative cases Qp, fp, fn, ME Z+). 

True + True - 
Guessed + tp fp 
Guessed - fn tn 

where tp is a true positive case, a BSE case diagnosed as BSE, fp is a false positive, a 
non-BSE case diagnosed as BSE, fn is a false negative, a BSE case diagnosed as non- 
BSE and tn is a true negative case, a non-BSE case diagnosed as such. Then, 

Sensitivity = 
tp 

tp + fn 
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and 
Specificity = 

fn 
fp + tn 

The classification error of the diagnostics test that can be calculated as 

Error 
fp + fn 

tp + fp + fn + tn 
fp 

+ 
fn 

tp+fp+fn+tn tp+fp+fn+tn 
error+ + error- 

where error+ is the proportion of false positives and error- is the proportion of false 

negatives. In our case false positives are cases diagnosed as the disease of interest (BSE 

or Scrapie) when in fact they are something different. False negatives are cases diagnosed 

as something else when they are actually BSE or Scrapie. 

1.6 The NaYve Bayes Classifier 

As the Nalve Bayes classifier is optimal for the case when features are class-conditional 
independent it is suitable for non-traditional data. The NaYve Bayes classifier is employed 
throughout this study with a deeper analysis undertaken from Chapter 3 onwards. A brief 
introduction to the model is given here and will be expanded upon in later sections. 

Let x= [xj, 
..., x,, ]' be a vector in the feature space RI. We assume that xj, ..., X. 

are mutually class-conditionally independent. Then the class conditional probability mass 
function for class wi, i=1, ..., c, becomes 

n 
P(xluji) =H P(xiluji). 

j=l 

The discriminant functions of the classifier guaranteeing the minimum classification 
error can be taken to be gi(x) = P(wj)P(xjwj). When there are only two classes only 
one discriminant function is needed; the ratio of gi(x) and g2(x) can be used. If the 
logarithm of this ratio is positive, then gi (x) > g2 (x), and we should label x in class 
wl. If the logarithm is negative then 92 (X) > gi (x), and class w2 should be assigned. If 

91 (X) = 92 (X) 
, then the logarithm of the ratio is 0, so any of the two class labels can be 

assigned. 
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1.7 Aims of the thesis 

* To apply pattern recognition methods to the non-traditional probability table data. 

* To select a possible feature set for data collection on BSE and Scrapie. 

To analyse various classifiers and their performance with regard to non-traditional 
data. 

9 To analyse the effect of the assumption of class-conditional independence on the 
NaYve Bayes classifier 

The main aim of the thesis is to investigate pattern recognition processes with re- 
gard to the non-traditional estimated probability table data. We want to discover what 
is possible with such data. The traditional recorded case data from DEFRA allows the 

supplementary investigation of the possibilities available. In general, the investigations 
focus on the ideas of using the non-traditional data in place of the traditional data. 

1.8 Organisation of the thesis 

To achieve the aims outlined above the thesis is structured as follows: 

* Chapter 2 studies the effects on various feature selection methods by using non- 
traditional probability table data. 

* Chapter 3 looks at the classification of non-traditional probability table data using 
decision trees. It also looks at the structure of the NaYve Bayes classifier. 

9 Chapter 4 gives an insight into the theoretical errors made by NaYve Bayes on non- 
traditional data due to using the independence assumption. 

e Chapter 5 provides an empirical analysis of the performance of various classifiers 
when using data with binary features. 

* Chapter 6 gives the summary and conclusions that can be drawn overall fi-orn this 

study. It also indicates the possibility of future work in this area. 

Table 1.3 gives an outline of the type of data the investigations are based on in each 
section. 

Figure 1.1 gives an idea of the structure of the thesis and the links between the chap- 
ters. The relevant literature is reviewed at the beginning of the relevant section due to the 
wide variety of literature that has been needed for this study. 
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Table 1.3: Indication of the type of data used in each investigation 
Chapter Investigation Data type 

2 Feature Selection Non-traditional probability tables 
3 Classification Non-traditional probability tables 
4 Errors made by NaYve Bayes Non-traditional probability tables 
5 Performance of NaYve Bayes Traditional recorded case 

Figure LI: Chart indicating the structure of the thesis. 
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Feature Selection for probability table data 

15 



Z 1. WHAT IS rEATURE SELECTION? CHAPTER 2. FEATURE SELECTION 

2.1 What is Feature Selection? 

Feature selection is one of the earliest ideas discussed in pattern recognition literature. 
The aim of feature selection using traditional data is to reduce the dimensionality of the 
data with a view to reduce the complexity of the problem. 

A feature selection algorithm chooses a subset of cardinality d from the original n 
features, where d<n. The methods try to find the most important or relevant d features 
for each problem. 

A study by Dash and Liu [261 separates the feature selection process into 4 steps. 
First is a generation step, where the next candidate subset is created. Second is an eval- 
uation step, where the generated subset is evaluated using the criterion function. Tbird 
is a stopping stage, where the decision is made to either terminate the process with the 
current subset or continue the generation of feature subsets. Finally, a validation of the 
chosen subset is made. The stages of the feature selection process, subset generation and 
evaluation may be broken down as follows, 

1. Choose a criterion function, J(S). 

2. Pick a subset S of the original set of features X. 

3. Build a classifier with the candidate subset S. 

4. Calculate J(S). 

5. Repeat with various subsets SCX. 

6. Select S* which minimises J(S). 

Generation procedures are used to create the candidate feature subsets. The search meth- 
ods for the candidate subsets fall into three categories 

1. Complete methods - Exhaustive search, Branch and Bound. Every possible can- 
didate subset is generated and checked or eliminated. These methods are the only 
guaranteed way of finding an optimal subset. 

2. Heuristic methods - Sequential search methods. These algorithms use the most 
appropriate solution found in previous steps to guide the next subset selection. 
Heuristic methods cannot guarantee to find the optimal set. 

3. Random methods - Genetic Algorithms. As the name suggests, the methods gener- 
ate the candidate subsets randomly. The methods can have an element of guidance 
but allow "jumps" (mutation) in the logic to search alternative areas of the feature 

space. Tle random approach cannot guarantee the discovery of the optimal subset. 
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Though the complete methods guarantee the desirable result of discovery of the opti- 
mal subset, the computational complexity required to implement such methods is usually 

much too high a price to pay. Heuristic and random methods are not as computationally 
expensive and thus implemented much more frequently, despite not having the guarantee 
of optimality. 

Evaluation of the subsets is performed by the criterion function. Good evaluation of 
the subsets will aid in the generation procedure especially in the case of heuristic selec- 
tion methods. The proposed subset with the "best" score for the chosen criterion function 
is the subset retained at the end of the process. The type of evaluation function used 
splits feature selection methods into two approaches, Wrapper or Filter. Wrapper meth- 
ods use a direct measure of the chosen classifier performance with the candidate subset. 
The use of the classifier directly assesses the subset for the particular problem. Filter 

methods use an indirect measure for the evaluation of a candidate subset. This could 
be a measure of the dependency of the features within the subset or a separability mea- 
sure of the classes given the candidate features. Dash and Liu [26] describe the criterion 
function or evaluation function as being one of five types - distance measure, informa- 

tion measure, dependency measure, consistency measures and finally classifier error. The 
first four measures can be considered as filter feature selection whilst classifier error is 

wrapper feature selection. Filter methods can be simpler and quicker to implement than 

wrapper methods. A study by Aha and Bankert, [2] focuses on the differences and effects 
of wrapper feature selection methods compared to filter feature selection methods. The 

study offers evidence for and concludes that wrapper methods are generally more suc- 
cessful than filter methods. This is attributed to wrapper methods using a direct measure 
of the performance of the characteristic of interest, whilst filter methods utilise an indi- 

rect measure. Blum and Langley [12] also discuss wrapper and filter methods at length. 
The computational cost of a wrapper method is outlined as a "major disadvantage" to the 

methods. Filter methods are highlighted to allow the selection of minimal combinations 
of features that can discriminate perfectly amongst the classes. 

A study by Pudil and Novovicova [ 1141 looked to present some guidelines on the 

method of feature selection to choose based on the knowledge of the problem needing 
to be solved. A preliminary flowchart is built indicating the methods of feature selection 
to choose based on the characteristics of the problem. For example, if the total num- 
ber of features is greater than 30 sequential feature selection methods are recommended 
otherwise a branch and bound search is suggested. 

Jain and Zongker [621 evaluate different feature selection methods, looking specif- 
ically at their advantages and disadvantages for particular problems. The experiments 
conducted in the study demonstrated the existence of the curse of dimensionality, also 
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known as Hughes paradox or the peaking phenomenon. For a feature selection algorithm 
there appears to be an optimal number of features that can be selected. Adding more fea- 

tures causes the classification error to rise. This effect seems counterintuitive. The more 
information about a problem is used, fewer mistakes should be expected. This effect has 
been attributed to the fact that traditional data sets are finite in size and, as such, only 
imperfect estimates of probability distributions may be found. 

Kudo and Sklansky [75] also compare feature selection algorithms for classifiers. The 

study incorporates a comparison of branch and bound methods, sequential algorithms and 
genetic algorithms on a variety of small, medium and large data sets. In conclusion it is 

seen that the sequential algorithms can give better results than the other methods for the 

small and medium sized data sets. 
An optimal feature selection method cannot be improved in terms of accuracy but 

the time complexity leaves a lot to be desired. An improved branch and bound method, 
(IBAB) proposed by Chen, [19] aims to reduce the search time that the conventional 
branch and bound method usually requires. Partial paths, which are subpaths of branch 

and bound paths, are searched for. If a partial path is found such that its criterion function 

value is less than the current stored best for partial paths then all full paths containing this 

partial path are ignored. However, by reducing the time taken to perform the branch and 
bound search optimality is compromised. 

The balance between time, complexity and accuracy is difficult to observe. Many 

problems naturally prevent the use of optimal methods. The improvement of non-optimal 
methods in terms of accuracy is therefore paramount. 

Feature selection literature abounds with novel attempts at new and modified ap- 
proaches of feature selection. Attempts have been made at removing all noise and irrele- 

vant features [851, new measures of discrimination [651, assessing the relevance of each 
feature with regard to each class [1381, redefining the problem by changing the formu- 
lation into a linear programming problem [5], or redefining the concept of classifiability 
based on the overlap of the patterns of opposite classes [34]. 

Combination of current feature selection methods to exploit their perceived strengths 
has also been used. An approach proposed by Murphey and Guo [103], uses a hybrid 

statistical algorithm. The method has two major steps; the first is to rank all the features 
based on statistics found from the data sample. The second step selects features based 

on their rank and their performance with a Bayesian expectation-maximisation classifier. 
Another hybrid statistical method proposed by Bins and Draper, [10] is based on the 
strengths of three steps. Step one removes all the irrelevant features (features that do not 
contribute anything to the task), step two removes all the redundant features (features 
that duplicate information given by other features) and step three selects the subset of the 
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required size from the remaining features. 
If feature selection is based directly on the classification error and not on an auxiliary 

measure such as correlation then an algorithm must base its decisions on estimates of 
the error. For large data sets the obtained error estimates are expected to be good thus 

reducing this problem. However, for small sample data sets the error estimation can be 

problematic and so the performance of the error estimator will have an impact on the 
feature selection algorithm. The choice of the error estimator for feature selection in this 

small sample situation can make more of a difference than the choice of feature selection 
algorithm according to a study by Sima et aL, [1351. 

As there can be no one optimal method of feature selection for every problem, the 

quest is to find the method that applies best to the problem at hand. A new addition to the 
large feature selection family may be required in response to a particular problem. 

2.2 Independent binary features in feature selection 
Bressan and Vitria look at the ideas behind the selection and classification of independent 
features [16]. The study looks at using statistically independent features and their effect 
on classification. 

For n independent binary features the class conditional probability mass function for 

class wj, j=1, ..., c becomes 

n 
P(XIL, )i) = rl P(xj IWO 

j=l 

The discriminant functions of a classifier, gi(x) = P(Wi)P(xJWi), guarantees the 
minimum possible classification error. With only two classes in a problem, only one dis- 

criminant function is needed as the ratio of the two discriminant functions may be taken 
into account. If the logarithm of the ratio is positive then g, (x) > 92 (x), and so the object 
will be classified to class wi. A negative logarithm indicates the classification of x into 

class LJ2. A logarithm of zero indicates that the discriminant functions have equal value 
and therefore the case may be classified into either class with equal classification error. 
Let pj denote P(xj =1 1wi) and qj denote P(xj =1 JW2). The class conditional p. m. f for 
feature xj in class w, will then take the form P (xj 1wi) = pjxj (1 - pj) (1 -xi). Similarly the 
class-conditional p. m. f for feature xj in class W2 becomes P(Xj JW2) = qjxj (1 - qj) (1-1j) 

Then a discriminant function for a two class problem with binary features can be formu- 
lated as 

g (x) = log gl(x) 
92(X) 
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So 

where 

= log 
[(P(WI» (P(XIW, »] 

P(W2) P(X1W2) 

= log 
P(W1) 

+ log 
P(xiwl) 

P(W2) P(X1W2) 

= log 
p(W1) [n( xj) 

+log pj I' 
«l_ )(, _x», pj j 

P(W2) qjxj pj)(1-Xj) 
P(W1) 

= log 
, 

n 

+zxj og 
LI n pj 

xj) log 
P(W2) 

j=, qj 

= log 
p(W1) 

+n log -pi) +n xj log pj qj) (2.2) 
P(W2) qj j=i qj pj) j=i 

n 
g(x) = WO +Z lvjxj (2.3) 

j=i 

IVO = log 
p(W1) 

+n log pi) r 
-d P (W2) qj 

and 
Tvj = log pj qj) j 

(qj(l 

- pj)) 
If there are c classes in the problem then there will be c discrin-ýinant functions gi(x), 

i=1,2,..., c, of the fonn 

gi(x) = log p(wi)p(xlwi) 

with 

Then 

n 
P(xlwi) =H P(xj 1U)i) 

j=l 

n 

gi(x) = log P(wi) +E log [P(xj = 11wiYj (1 - P(xj 
j=I 

nn 

= log P(wi) + I: Xjlogp(xj=llwi)+E(l-xj)log(l-P(xjlwi)) 
j=1 j=I 

nn 
log P(wi) + Elog('-P(xj=llwi))+Exjlog P(xj=llwi) 

1ý P(xj = 11L,; ; 
1.4) 
i j=1 j=1 
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Equation (2.4) can be rewritten as 

n 

gi(x) =E Wi, jxj + Wo, i (2.5) 
j=l 

where 
Tvij = log 

P(xj = 11WO 
1- P(xj = 11wi) 

and n 
Wo, i = log P(wi) +E log(' - P(xj =1 IWO) 

j=1 
In both cases the linear discriminant functions (2.3) and (2.5) guarantee the minimum 
possible error across the whole feature space 10,1}1. 

A study by Elashoff et at [39], showed that the best set of d independent binary 
features did not always consist of the best d single features. This result is expanded 
upon by Toussaint, [144]. Toussaint gives an example where the best pair of independent 
binary features need not contain the best single feature. 

These two results are compounded by a further result by Cover, [251. This result 
shows that two independent copies of the "worst" event may provide better results than 
that of the individually best event. 

Elashoff et at [391 indicate that using a stepwise selection rule is always at least 

as good as choosing the two best single features, leading us to look in the direction of 
sequential feature selection. 

2.3 Sequential feature selection from probability data 

Classical feature selection techniques assume the use of a traditional data set. A study 
by Sima et A [1351 demonstrates that sequential feature selection can perform close 
to optimal when true error is employed as the evaluation criterion. It is well known 

that knowledge of the true error in reality is impossible. However, larger samples will 
provide better error estimation and therefore allow better performances. Schulerud and 
Albregtsen [130] indicate that medical data is often represented with a large number of 
features but only a small collection of cases, thus affecting the knowledge of the true 

error. 
The choice of the error estimator and the amount of data will greatly affect the chances 

of success or failure. However, with probability table data the problem of sample size 
is avoided as we work directly with the estimated probabilities that are provided. The 
assumption is now that the probabilities provided are correct. 
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By using non-traditional probability data we already have a model of the probability 
distribution for the features across the given classes and as such have to accept this as 
true. Tle optimal set of features in this case would be the complete set of features and as 
such feature selection for non-traditional data has a different motivation. 

In our case the motivation for feature selection is set by outside factors determined 
by the domain experts. The non-traditional data contains probability estimates for more 
than 200 clinical symptoms. It would be unrealistic to collect traditional data over such 
a large number of features out in the field. Feature selection is employed to reduce the 
number of features to a "reasonable" figure. "Reasonable" may be defined by considering 
that the collection of data on each feature costs a given amount. If there is only limited 
funds allowing data collection across five features then we would want the five most 
discriminating features for the task. 

Sequential forward selection (SFS) and sequential backward selection (SBS) are non- 
optimal heuristic methods of feature selection. SFS starts with an empty subset. The 

value of the criterion function is calculated for each individual feature; the feature with the 
best value is added to the subset. The next step adds each remaining feature temporarily 
into the subset, the criterion function is calculated for the subset before the feature is 

removed and the next feature tried. Once all remaining features have been tried the feature 

with the best value for the criterion function is added to the subset. This procedure is 

repeated until d features have been selected. Sequential Backward Selection (SBS) starts 
with all the features in the subset and tries to remove one at a time to find the best subset 
at each step. This removal is repeated until d features are left. The time complexity of 
SBS is much greater than SFS, especially with large n and small d, and is therefore not 
always preferable despite indications that it can be more successful [2,31]. 

One of the main drawbacks of the sequential selection processes is that it creates 
nested sets. Once a feature has been added or removed it is not considered again. 

At the first step of SFS the individually best feature is placed into the subset. This 

choice is never reconsidered, but from the result by Toussaint [144] it is known that this 
feature may not occur in the best pair of features. In SFS the features are selected purely 
in conjunction with those features already selected. So even during the first few steps of 
the algorithm we are running the risk of stepping away from the optimal subset. Thus 

sequential methods do not guarantee to find the optimal feature subset. 
In this thesis the potentials, limitations and stability of SFS for non-traditional data 

are considered. The following questions need to be answered 

1. Is SFS monotone on the number of features? That is, if subset S contains k features 
then can it be claimed that by adding feature Xk+1 to the subset the value of the 
criterion function will be equal to or better than the value of the criterion function 
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for the subset with k features. 

2. Is the error reduction monotone? Is the largest drop in error seen by adding in the 
first feature, followed by successively smaller error drops as each feature is added 
in? 

3. How reliable are the results? Is the set of features sensitive to small changes in the 

probability estimates given by the experts? 

2.3.1 Is SFS monotone on the number of features? 

This question is equivalent to the following question: Does the peaking phenomenon oc- 
cur also for non-traditional data? For the non-traditional data the finite data is replaced 
by estimates of the probability distributions of the features, assuming class-conditional 
independence. The following proposition is accepted as "folklore" within pattern recog- 
nition texts and as such holds for non-traditional data as well. A novel proof is given for 

completeness. 

Proposition 1 7he theoretical error of the Bayes classifier does not increase when the 
feature set is augmented. 

ProoC We show that this holds for the case of independent binary features and two 

classes. Suppose that k features have already been selected, creating a feature space F 

with 2k elements. Let x(k) be the feature vector with the k features selected so far. Denote 

a P(w, )P(x(')Iwl) 

b P(W2)p(X(k) JW2) 

C P(Xk+l=llWl) 

d P(Xk+l = 11W2) 

Ile error for X(k) is e(X(k)) = minla, b}. By adding in a new feature, Xk+I, every 

x(k) EF is replaced by two new elements, [X(k), O]T and [X(k), 1]T 
, thereby doubling the 

number of elements in F. The error for x('+') is 

e(x (k+l) )= minfac, bd} + minja(l - c), b(l - d)}. (2.6) 

The reduction of the error for X(k) iS 

A(Xk+l) =e (X(k)) 
- e(X(k+l)) (2.7) 

= minla, b} - (minfac, bd} + minja(l - c), b(l - d)}) (2.8) 
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Using the representation min1f, g} 1 (f +g- If - gj), the following expression is 2 

arrived at 

A(xk+l) 1 La-b)-ý, ac-bd)j-ja-bj+jac-bdj (2.9) 
2 

ABAB 

Noticing that JAI = JA -B+ BI :5 JA - BI + JBI, hence JA - BI > JAI - JBI, then 

e(x (k) )-e ([X(k) 
s -Tk+ll) ý-- A(Xk+1) > 0- 

This holds for every X(k) C- F. N 
For the case of the non-traditional data SFS is indeed monotone on the number of 

features. 
Duin et al [371 derive the conditions under which the addition of a new feature does 

not decrease the error. A threshold of the probability ratio of class wl to Class w2, 

a(X(k)) =A is used. If ýc and ' arc simultaneously bigger or smaller than a then ad 1-d 

there will be no improvement by using the feature. Duin et al illustrate this result by 

plotting the equations E=a and 1-c =a as lines in the plane (c, d). These lines define d 1-d 

the region of no improvement. A new feature, -Tk+l is represented by a point on the plane 
(c, d). Feature x('+') will not contribute to the error if and only if (c, d) falls in the no- 
improvements region for all elements of the current feature space F. The contribution of 
a particular X(k+l) to the error is not only a function of (c, d) but involves a and b too. A 
feature therefore cannot be considered in isolation. Subsequent features to be added to 
the subset have to be estimated with respect to the previously selected features. 

2.3.2 Is the sequence of error reductions monotone? 
It is reasonable to expect that the largest drop in error is at the beginning of the search 
followed by smaller drops in error. 'Me example below shows that the error reduction 
does not occur monotonically as expected. 

Let the prior probabilities of a two class problem be P(wi) = 0.35 and P(W2) = 0.65. 
Consider two feature x, and X2 such that P(xl = 11wl) = 0.2, P(xl = 1IW2) = 0.7, 
P(X2 = 1jW1) = 0.9 and P(X2 = 11w2) = 0.4. If nothing but the prior probabilities are 
used then the Bayes error takes the value 0.35 = min(O. 35,0.65). Now consider what 
would happen to the error if one of the features was selected. 

The error for using only feature xj becomes 

e(xj) minIP(wi)P(xj lwi)), 
i 

xi 
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Tahle 2-1. - Examnle of the error reductions in SFS 

P(xl = llwi) P(xl = Ol wi) 
P(w1) 
P(w2) 

0.35 x 0.2 = 0.070 0.35 x 0.8 = 0.0 
0.65 x 0.7 = 0.455 0.65 x 0.3 = 0.195 

P(X2 =l lWi) P(X2 =0 1Wi) 

P(w1) 
P(W2) 

0.35 x 0.9 = 0.315 0.35 x 0.1 = 0.00035 
0.65 x 0.4 = 0.260 0.65 x 0.6 = 0.390 

where the summation is over xj =0 and xj = 1. Using equation 2.11 and the terms from 

Table 2.1 the error that would be incurred by using either x, or X2 in conjunction with the 

prior probabilities can be calculated as follows 

e(xi) = j"'minjP(wj)P(xjjwj)j 
,i 

XI 
= minlO. 070,0.455} + minjO. 280,0.195} 

= 0.070 + 0.195 

e(xi) = 0.265 

e(X2) 
EminIP(Wi)P(X2lWi)} 

i 
X2 

minjO. 315,0.260} + min{0.035,0.390} 
0.260 + 0.035 

e(12) = 0.295 

(2.12) 

(2.13) 

As e(xi) < e(X2) feature x, would be selected to add to the subset. The reduction in 

error is 0.35 - 0.265 = 0.085. The next step would be to add 12 to the subset. 

P(WI)P(Xl: --" llWl)P(X2 llWl) 

P(W2)P(Xl 1IW2)P(X2 1IW2) 

P(WI)P(Xl 1jWI)P(X2: ` OIWI) 

P(W2)P(Xl 1IW2)P(X2 -` OIW2) 

P(Wl)P(Xl OlWl)P(X2: -- 11WI) 

P(L02)P(Xl OIW2)P(X2 1IW2) 

P(LLYI)P(Xl OIWI)P(X2 OlWl) 

P(W2)P(Xl OIW2)P(X2 OIW2) 

0.070 x 0.9 = 0.063 

0.455 x 0.4 = 0.182 

0.070 x 0.1 = 0.007 

0.455 x 0.6 = 0.273 

0.280 x 0.9 = 0.252 

0.195 x 0.4 = 0.078 

0.280 x 0.1 = 0.028 

0.195 x 0.6 = 0.117 

(2.14) 
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Using the set of probabilities calculated from equations 2.14 the error created by using 
both features is 

e(XI, X2) = EminIP(wi)P(xjlwi)} (2.15) 
i 

xj 
= minIP(xl = li X2 = llwi)} + minIP(xi = li X2 = OlWi)} 

+min[P(x, =O, X2=llwi)}+min[P(x, =O, X2=OlWi)} 

= miniO. 063,0.182} + minjO. 007,0.273} 

+ minjO. 252,0.078} + minjO. 028,0.117} 

= 0.063 + 0.007 + 0.078 + 0.028 

e(xj, X2) = 0.176 

Ile reduction in the error this time is 0.265 - 0.176 = 0.089. The second error step 
is larger than the first one. This indicates that the sequence of error reductions is not 

monotonic. 
Further to this, the following example shows that even if there are no features that 

will reduce the Bayes error, by randomly selecting one of them, the following feature can 

make a further error reduction. Consider P(wj) = 0.4 and P(W2) = 0.6. Let feature x, 
have the probabilities for being present (0.3,0.42) for class w, and class w2 respectively. 
Similarly let the probabilities for feature X2 be (0.6,0.73). The Bayes error using only the 

prior probabilities would be 0.4. Adding in either of the features will bring no reduction 
in the error. 

e (x, ) = 0.12 + 0.28 = 0.4 (2.16) 

e(X2) = 0.24 + 0.16 = 0.4 (2.17) 

However if feature x, is selected anyway then by adding feature X2 an error reduction of 
0.01804 is obtained. 

e([Xl, X21) = 0.072 + 0.048 + 0.168 + 0.09396 = 0.3816 (2.18) 

This is curious as this means a seemingly redundant feature can be added that enables 
further reduction in the error by subsequent features. The explanation is that the features 

are considered in conjunction with others. The importance of individual features changes 
as more features enter the subset. This effect indicates that the size of the error reduction 

should not be considered as a stopping criterion for the feature selection procedure. 
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2.3.3 The SFS procedure with probability data. 

The theoretical Bayes error for a problem with non-traditional data is monotonic, adding 
in more features will not increase the error. As we have a model of the probability dis- 

tribution given by the non-traditional probability tables we know that the optimal set of 
features is the entire set, (assuming that the probability estimates are correct). Feature 

selection in this case will not suffer from the peaking effect. It seems that we could keep 

selecting features until we reach a plateau of error reduction, if the computational ability 
of the processor allows. However, this is not the case as we have shown that the sequence 
of error reductions is not monotonic, a plateau of error may be reached but we cannot 
guarantee that another feature would not reduce the error further without checking first. 
That is, we may select k features in succession that do not cause any reduction in the 

error while feature (k + 1) could cause a drop in the error. 
The standard procedure of selecting one feature at a time was used for the simulations. 

Recall that a= p(LO1)p(X(k)Jw1) and b= p(LO2)p(X(k) JW2). then the fastest way to 

calculate the error is to maintain a list with the elements of the current feature space with 
the corresponding a and b values. The list starts with just one element containing the 

prior probabilities. To check a new feature Xk+l, the list is expanded by creating two 
elements in the place of each single element of the feature space. The new elements have 

the parameters (ac, bd) and a(l - c), b(l - d). This implementation is fast but space- 
consuming as the list contains 21ý elements and needs to store two values for each. 

The criterion function used for the evaluation of each subset at each stage is the er- 
ror rate of the NSive Bayes classifier, which under the assumption of class-conditional 
independence is the true Bayes classifier. 

2.3.4 Combination of the remaining classes 
Finding features important for determining BSE versus Non-BSE or Scrapie versus Non- 
Scrapie can be seen as one task. However, with this task there is a need to combine all 
"Non-disease" into a single class. This combination will create the reduced "two-class" 

problem. 
Consider a problem with c classes, 0= {wil, i=1, ..., c. Suppose that class c is 

the class of interest and comes with prior probability I. Let all the remaining classes 
wig ... I wc-1 have equal prior probabilities, P(wi) The original multi-class problem 

C 
C 

can be reduced to a two-class problem, Q={, (I), W(c)} by combining c-1 classes into 

a single class w(l). Using set theory, the following proposition holds. 

27 



2.3. SFS FOR PROBABILITY DATA CHAPTER 2. FEATUFE SELECTION 

Proposition 2 The probability of the variable x having the value 1 given class w(') is 

P(x = ilw(, )) = ýc 
C-1 

P(x = l1wi) 

Proot Suppose that A, B1, ..., B, 1 are events so that Bi n Bj =0Vi, j, i =/- j. Thus 

events (A n Bj) and (A n Bj) are mutually exclusive. From set theory, 

An (Bi U B2 U ... U B, 
--l) = (A n BI) U (A n B2) U 

... U (A n B,, -, 
) (2.19) 

Taking the probabilities of (2.19), 

P An(Biu ... u B, -, 
)) = P(A n Bi) +... + P(A n Bc-ý) (2.20) 

Taking the combination of the classes w(l) LIOI U W2 U ... U w, -,, and the set (event) A 

as x=1, the probability of x=1 given class w(l), using equation (2.20) becomes 

P(x =i jw(l)) P(x = 1, w(l)) 
P(w(l)) 

P(X= 1, Wl)+P(X= liW2)+---+P(X = liWC-1) 
P(w(l)) . 

Looking at each term in (2.21) separately, 

P(x = 1, wi) = P(x =1 lwi)P(wi). 

Equation (2.21) becomes, 

P(x = 11u)(1)) = 
P(LOJ)P(X = l1wi) +... + P(ui. 

-, 
)P(x 

(2.22) 
40(1)) 

The prior probability of wi, P(wi) 1 (all classes are equiprobable). P(W(')) 
C 

C'. 
Substitute in (2.22) to get 

lp(x = ilwi) +... + ! P(x = llw, -, 
) 

P(x = 11L, 0(1)) c C-1 c 
c 1 C-1 

P(x = 11u)(1)) =c P(x = ilwi) (2.23) 

Equation (2.23) is the average of the c-1 conditional probabilities. 0 
The average value of all the remaining class conditional probabilities can be taken to 

create the second class for the two-class problem. 
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Table 2.2: The 15 Scrapie signs selected by SFS and the cumulative effor, sensitivity and speci- 
ficity (in %) 

# Feature Error Sensitivity 
-Specificity 1 Hyperaesthia 9.87 86.7 93.6 

2 Weight Loss 7.47 86.7 98.4 
3 Pruritus 2.93 97.3 96.8 
21 Increased respiratory rate 2.63 97.3 97.4 
4 Abnormal behaviour 2.21 99.3 96.3 
5 Underweight 1.37 98.3 98.9 
9 Tremor 1.18 99.3 98.3 
22 Sudden death 1.02 99.3 98.6 
6 Dysmetria 0.92 99.3 98.9 
7 Ataxia 0.67 99.3 99.3 
8 Grinding Teeth 0.55 99.5 99.4 
10 Trembling 0.45 99.6 99.5 
11 Alopecia 0.36 99.6 99.7 
12 Seizures or syncope 0.32 99.7 99.7 
13 1 Rumen hypornotility 1 0.29 1 99.7 1 99.7 

2.3.5 Application to Scrapie and BSE probability tables 

Using the reduced two class version of the probability data for Scrapie and BSE with 

equal prior probabilities, SFS was applied to select the "best" 15 features for each data 

set that would discriminate best between the disease of interest and any other disease. 
The subset size of 15 was chosen in consultation with the domain experts as a feasible 

number of features for possible collection of "traditional" recorded case data. 

Scrapie 

The 15 signs selected by SFS for Scrapie are given in Table 2.2. The first column of the 
table gives the importance rank of the individual feature. Feature numbered 1 (Hyper- 

aesthia) in this column has the greatest absolute difference between P(xi == 1IScrapie) 

and P(xl == 1INon - Scrapie) among all 285 features. The features are shown in the 
table in the order they were selected by SFS into the subset. The subset of 15 features 

selected by SFS has a calculated error of 0.29%. 13 of the individually best features 

are contained within the subset of 15 and they are selected in an order similar to their 
importance rank. By choosing the individually best 15 features based solely on their im- 

portance rank an error of 0.33% is obtained. This is slightly higher than the set selected 
through SFS. However this difference is too small to claim that SFS has selected a better 

subset. 
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Table 2.3: The 15 BSE signs selected by SFS and the cumulative error, sensitivity and specificity 
(in %) 

# Feature Error Sensitivity Specificity 
1 Gait uncoordinated 17.17 78.0 87.66 
7 Aggression 12.62 88.78 85.98 
4 Feed intake <50% normal 8.52 88.78 94.18 
9 Teeth Grinding 6.76 93.6 92.88 
11 Hypo-responsive to external stimuli 5.62 93.6 95.16 
13 Posture of paired limbs abnormal 4.92 95.52 94.64 
19 Dyspnoea, unspecified 4.32 95.52 95.82 
20 Convulsions, unspecified 3.87 95.52 96.74 
14 Back arched 3.39 96.86 96.36 
21 Heart rate >I 00 bprn 3.01 96.86 97.12 
23 Restlessness 2.74 96.86 97.66 
2 Gait stumbling 2.33 99.38 95.98 
3 Hyper-responsive to external stimuli 1.61 98.16 98.62 
5 Tremor 1.35 99.40 97.90 
6 1 Body weight less than normal 1.14 98.76 98.96 

BSE 

From Table 2.3 the variation of the order of the signs from the individually best order 
is more substantial than that for Scrapie. Still II of the 15 individually best features 
have been selected among the 15 best. The inclusion of features not in the subset of 
individually best 15 indicates their relative importance when considered in conjunction 
with other features. Unfortunately, it is not possible to access any information about the 

potential dependencies in the real data. 
Our experiments showed that the predicted reduction in error using features selected 

by SFS was quite substantial. For using just 12 features selected by SFS for Scrapie the 

error rate has been pushed down to less than half a percent. Using the 15 features selected 
for BSE by SFS reduces the error rate to less than two percent. Although SFS does not 
guarantee finding an optimal subset it does provide a good practical solution in this case, 
within the limits of the two assumptions. 

2.3.6 How reliable are the results? 
The adequacy of the SFS with respect to the validity of the assumptions needs to be 

considered. The proposed feature selection cannot be easily tested with regards to the 
independence assumed. This is because there is no indication of what the real-life de- 

pendencies between the features may be. Therefore imposing a model of dependencies 
between the features will not give us any insight into the effects on feature selection 
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related to the real-life problem. 
The entries in the probability tables were constructed as the average estimate of three 

domain experts. The original estimates produced by each expert would provide a valu- 
able insight into the variance of the averaged estimate. This would give an indication of 
the variance of the estimates in the probability table. Ultimately, we would be able to 

run an analysis using each individual experts estimates to assess the agreement between 

the selected feature subsets. Unfortunately, we do not have access to these individual 

estimates only the averaged value provided in the probability table. Therefore, we have 

no information on the variation of the estimates, i. e. the disagreement / agreement of the 

experts with regard to these probability estimates. 
The selection of a subset using SFS can be tested on perturbed values of the estimated 

frequencies though. This will give us an insight into how robust SFS is with regard to the 

averaged experts estimates that are used in the non-traditional data set. 
Consider normal distributions for each frequency with mean equal to the expert esti- 

mate and standard deviations, o, = 10.1,0.2,0.31. SFS was run 1000 times to select 10 
features on each of the perturbed frequencies to find out how similar the selected subsets 
were. The procedure ran as follows, 

* For each value of a repeat 1000 times: - 

1. For every P(xj 1wi) in the probability table apply a random adjustment within 
a normal distribution such that the mean of the distribution is P(xjlwi) with 
standard dcviation cqual to a 

2. Select 10 features using SFS from this perturbed probability table 

3. Store the 10 features 

For each variation of a we have 1000 subsets of 10 features selected by SFS. To 

evaluate the similarity of the subsets the features were ranked. A feature receives rank 10 
if it is selected first, reducing to 1 for the feature selected last. All features not selected are 
given a rank of zero. The sum of the ranks of each feature across the 1000 subsets gives 
an idea of that feature's importance. A rank of 10,000 would indicate that the feature has 
been selected first in every single subset. If the features total rank is below 1000 then it 
is not present in all 1000 sets. A ranked list can be compiled for each value of a. A high 

match between these lists would indicate a robust feature selection procedure. Features 
that are worth a second look or those that may not be too reliable may be brought to 
our attention. Tlese may be features that were not originally selected by the first run of 
SFS but appear high on the ranked list or features that were selected by the original SFS 

selection that do not appear in the ranked list. 
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Table 2.4: The subsets using the perturbed probability estimates (a) Scrapie data (b) BSE data 

a=0.1 a=0.2 a=0.3 a=0.1 t7 = 0.2 a=0.3 
# Score # Score # Score 
1 5734 1 3025 1 1236 
2 5301 2 2561 3 1160 
3 4479 3 2509 2 1063 
5 3642 5 2093 4 1000 
4 3562 4 2048 5 902 
6 2066 8 1628 7 796 
10 1985 7 1605 10 779 
7 1894 6 1454 8 769 
9 1892 9 1354 6 766 
8 1853 10 1244 9 709 
11 1511 11 1084 11 655 
12 828 12 730 143 569 
13 752 13 718 12 454 
15 621 14 454 16 409 
17 621 1143 441 1 13 402 1 

(a) 

# Score # Score # Score 
1 4333 1 2485 1 1111 
4 3893 3 1930 3 1032 
2 3458 2 1911 2 885 
3 3227 5 1827 5 770 
7 2689 4 1663 4 759 
5 2047 6 1577 7 748 
6 2041 7 1264 8 607 
9 1737 8 1256 6 569 
8 1440 10 754 10 544 
10 1111 9 663 9 544 
14 959 12 650 15 443 
13 880 13 513 13 397 
15 868 14 494 26 377 
16 755 11 442 63 373 

1 18 737 115 430 117 372 
(b) 

Tables 2.4(a) and (b) give the top 15 features according to their rank scores for Scrapie 

and BSE respectively. 
The sensitivity analysis revealed that the top 10 ranked features for all three lists were 

the top ten individual features in a slightly different order, for all three values of o, and 
both Scrapie and BSE data sets. 

Note that features 21 and 22 are present in the original Scrapie SFS selection (Table 
2.2) but absent from all three of the perturbed sets, Table 2.4(a). This means that "In- 

creased respiratory rate" (21) and "Sudden death" (22) are not as reliable as first thought. 
In fact, these two features do not appear in the first 20 ranked features for any of the per- 
turbed subsets. These two features are replaced by Abnormal proprioceptive positioning 
(15) and Tetraparesis (17) for a=0.1, Constipation (14) and Abdominal distension (143) 
for a=0.2, and Abdominal distension (143) and Excitement (16) for a=0.3. This re- 
sult suggests that these six features, replacing those removed, warrant addition into any 
proposed subset for data collection. 

Table 2.4(b) gives the features selected for perturbing the probability estimates of the 
BSE data. 'Me variation in features selected is slightly greater than for the Scrapie data. 

There are four features from the original subset that are not selected at all in the three 

perturbed subsets. These features may not be as reliable as first indicated by the SFS se- 
lection. The features are Convulsions, unspecified (20), Heart rate >I 00bpm (2 1), Rest- 
lessness (23) and Dyspnoea, unspecified (19). These are the four features in the original 
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SFS subset that do not occur in the top 15 individually best features (i. e. importance rank 
greater than 15). Hypo-responsive to external stimuli (11) is also absent when Cr = 0.1 

and o, = 0.3. For a=0.3, Back arched (14) is ornitted. 
There are three features that appear as replacements in all three perturbed subsets. 

They are Gait abnormal all 4 legs (8), Licking, rubbing or chewing of self (10) and Frenzy 
(15). These are joined by various features for the varying values of or. When a=0.1 
the added features include Body weight very low (16) and Rising difficulty (IS). When 

a=0.2 the added feature is Gait abnormal, unspecified (12). In the final perturbed subset 
when a=0.3 there are three added features. These are Milk yield less than normal (26), 
Joint(s) fetlocks knuckling (63) and Gait falls easily (17). 

These nine added features all need to be taken into consideration when proposing a 
subset of features for data collection. The variation of the feature lists also indicate to the 
domain experts what happens if the probability estimates given in the non-traditional data 

vary. For example, if the non-traditional data is precise, which we have to assume is the 

case, then we would obtain the feature sets given in Tables 2.2 and 2.3. However, if the 
true estimates vary from those given by a standard deviation of a (assuming the estimates 
vary along a normal distribution) the subsets achieved would be those given in Table 2.4. 

2.4 Comparison of feature selection methods 
This section studies a comparison of five feature selection methods on the multiclass 
probability data. Ihe feature sets are evaluated by the classification error of the NaYve 
Bayes classifier. The complexity of a feature selection method is measured by the num- 
ber of calculations of the classification error needed to select d out of n features. The 

classification task for the multi-class data is to discriminate between all the featured dis- 

eases. Features can either indicate the presence of a disease or the definite absence of a 
disease. 

2.4.1 Single Best (SB) 

Select the best d features from the original n based on their individual criterion scores. 
This method does not guarantee the optimal subset but is quick and sometimes surpris- 
ingly efficient. The classification error for each feature is calculated once, the list of 
errors is then ordered and the best d features are selected to make up the subset. Thus SB 

needs only n evaluations to select the subset regardless of the value of d. 
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2.4.2 Genetic Algorithm (GA) 

Genetic algorithms follow the ideas of biological evolution, using natural selection, mat- 
ing and mutation. The process evolves a population of m chromosomes. A chromosome 
is an individual feature subset. 

The GA used in this study goes through the following steps, 

1. (a) Generate a random population PO of m chromosomes 

(b) Evaluate PO using a fitness function 

2. Take all of Pi to be the mating set 

3. Pick two parent chromosomes with replacement from Pi. Perform crossover: pick 
a point inside the chromosome and switch the end parts of the two chromosomes 
to create two new children 

4. Put the two children chromosomes into the offspring set, 0. 

5. Continue crossover until 0 contains m children chromosomes. 

6. Mutate the offspring set. Randomly add or remove a feature with a prespecified 
mutation probability, p,,, = 0.2 

7. Evaluate the chromosomes in 0 using the fitness function 

8. Form the next population, Pj+j by selecting the best m chromosomes from Pi U0 

9. Repeat from step 2 for a pre-selected number of generations, T= 50. 

The fitness function is the classification accuracy of the NB classifier using the particular 
chromosome. To ensure that the selection does not run towards selecting all the available 
features a cost parameter, a. was used. The fitness function, f, limits the amount of 
features selected. 

Accuracy -ax Ichromosomel. (2.24) 

Genetic algorithms have a number of parameters that are preselected :- probability of 
crossover, p, the probability of mutation, p,,,, the cost parameter, a, and the number of 
generations, T. For the implementation here p, = 0.5, p,,, = 0.2, a=0.05 and T= 50. 
The method needs Tm +m evaluations of the NB accuracy. 

Many improvements to GA in the literature are aimed at the fitness and cost functions, 
18,84,1341. A comparative study by Ferri et al [44] suggested that as more features are 

added into a problem the performance of a GA worsens. 
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Table 2.5: The class-pairs method for feature selection (Ji and Bang (2000) [65]) 

Cii 
xk ... 

Pij (Xk) 
... 

Tk 

Eij 

2.4.3 Class-Pairs (CP) 

The class-pairs method proposed by Ji and Bang [65] is aimed at reducing the number 
of features in a multiclass problem. The main concept of the method is to select a single 
feature that best discriminates between each pair of classes. A table is constructed (Table 
2.5), where Cij is the class pair (Wi 

i Wj) 9 Xk is the k-th feature and Pij (xA: ) is the discrim- 
inatory power of feature k for class pair (wi, wj). This is calculated as the probability of 

correct classification between class wi and wj for feature xk. 
Ejj denotes the relative ease of classifying the pair Cij and Tk is the relative discrim- 

inatory power of feature Xk, where 

Eij = 
1: Pij (Xk) (2.25) 

k 

Tk = Pij (Xk) (2-26) 

The selection procedure starts with an empty set. T'he smallest value of Ejj identifies the 

class pairq,, (column in Table 2.5) that is hardest to discriminate. For this class pair 
the feature with the highest discriminatory value Pij (Xk) is added to the subset, if it has 

not already been selected. If more than one feature has the highest Pij (Xk) for the chosen 
column, then the one with the highest Tk value is added. Column Cij is removed from the 
table and the process continues with the next hardest pair to discriminate. The method 
stops when all class pairs have been covered. 

The maximum number of features the algorithm will select is min( (c(c - 1)) /2, nj. 
Ji and Bang claim that the number of features selected will be much less than this. If 
d> minj (c(c - 1)) /2, n} then the method will select as many features as it allows for. 
If d< minj (c(c - 1)) /2, nj then the method can be restricted to select only d features 

although this may mean that not all class pairs will be covered. 
The complexity of the method measured by the number of evaluations of Pij (k) is 

2 
*'. This reflects the preparation phase of setting up Table 2.5, and does not take into 

account the subsequent selection procedure. 
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2.4.4 Feature pairs (FP) 

Feature-pairs (FP) method starts with an empty set. All pairs of features are evaluated and 
the best pair added to the subset. While the desired number of features d is not reached 
add the features from the next best pair that are not already among the selected features. 
If a state is reached where there are d-1 features selected then either select both of the 
features from the next pair and create a subset with d+1 features or randomly select one 
member of the pair of features to make d features in the subset. The complexity of the 
Feature-pairs method is 2LZ-12 2 

2.4.5 Small-scale simulation 

For the small scale simulation the total number of features n was limited to 20. 

* For c=3 to 10 

- Generate a probability matrix of size 20 xc 

- Select a subset of features using each of the feature selection methods 

- Generate 100 "traditional" binary style data points for each of the c classes 

- Label the data points using the NB classifier a with each of the subsets 

The error is estimated as the percentage mismatch between the generated label and the 
true class label. 

Preselected d 

Feature selection methods may either select a predefined d number of features or automat- 
ically define the size of the subset. In this first simulation d was pre-defined. 50 random 
20 xc matrices for each pair of classes and subset size, (c, d), where c=3,4, .. .' 10, d= 
2,3, .. .' 10 were generated, i. e. the above procedure was replicated 50 times for each d. 

In the results in Table 2.6(a) it can be seen that the algorithm with the lowest error 
rates for all c is the feature-pairs method (FP). The performance of class-pairs (CP) is 
gradually worsening due to the effect of only being able to select two features and not 
covering all the classes as the algorithm is designed to. As d and c are increased CP 
begins to perform more in line with the other algorithms. When d is increased it can be 
seen that SFS provides the best solution, Table 2.6(b) 

For CP with a small number of classes, the subset may contain fewer than d features. 
This is due to the maximum number of features that algorithm can possibly select is 

So if d> then the subset will contain fewer than d features. The CP 22 
algorithm may also naturally select less than max I EL2 11, n} features by design. This 
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Table 2.6- Classification error (in %) with c=3,..., 10 classes for (a) d=2 features and (b) 
d= 10 features for the four feature selection methods 

c CP SB FP SFS 
3 18.41 22.49 17.09 17.98 
4 37.80 36.84 29.63 31.40 
5 49.07 48.00 40.55 43.45 
6 55.97 54.15 48.69 50.47 
7 62.97 60.83 55.04 56.93 
8 67.40 64.23 60.20 61.76 
9 70.05 67.87 64.06 64.66 
10 1 72.38 170.84 167.17 1 67.97 

c CP SB FP SFS 
3 15.20 5.06 5.17 4.95 
4 15.65 7.72 7.67 7.01 
5 16.23 10-90 11.53 10.05 
6 15.52 13.62 13.72 12.38 
7 16.86 16.89 16.87 15.59 
8 19.38 19-56 19.56 18.06 
9 22.57 23.01 22.83 20.84 
10 124.84 123.98 123.89 122.42 

(a) (b) 

means that the algorithm can naturally select less than d features. There is no user control 
over this effect. To compare CP fairly to other the algorithms the method has to be 

allowed to run fully, utilising the covering concept that it exploits. This is done by the 

simulations in the next section. 

No preselection of d 

The size of the subset was not pre-defined. The number, n of features to select from was 
kept at 20. The simulation procedure was replicated 50 times allowing CP to select as 
many features as it required. The FP and SB algorithms were set to run to select the same 
amount of features as CP. SFS was not used for computational time reasons. 

Table 2.7 gives the comparison of CP to SB and FP. The second column of the table 
denotes the average number of features selected by CP over the 50 runs for each c. For 

all the values of c, CP gives a lower error rate than either SB or FP. These results indicate 

that when CP is not restricted to select a pre-determined d features then the method can 
perform well. With a large number of classes though there is the risk of selecting a 
large number of features. The method would not work for a two-class problem, as the 

maximum number of features it would select in this instance would be 1, the best feature 

to discriminate between class 1 and class 2. 
Experiments were also carried out with the GA. The subset with the best value for the 

fitness function after the T= 50 generations was taken to be the selected one. SFS, FP 

and CP were run each time to select the same number of features. Here SFS was used as 
the Genetic Algorithm seemed to select fewer features than CP. 

The results for the comparison to GA are given in Table 2.8. Again the second column 
gives the average number of features selected for each subset in the 50 runs. Whilst the 
performance of GA, SB and FP are fairly in line with one another, SFS is achieving a 
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Table 2.7: Comparison of the classification error (in %) of CP, FP and SB 
c Features d CP SB FP 
3 2.66 14.93 18.66 15.02 
4 4.60 16.28 17.56 17.52 
5 6.44 15.36 17.25 16.66 
6 8.24 16.42 17.32 17A8 
7 11.04 14.92 15.96 16A8 
8 12.26 14.90 15.50 15.32 
9 13.66 15.01 15.40 15.34 
10 14.80 14.86 1 15.00 1 15.34 

Table 2.8: Comparison of the classification error (in %) of GA, FP, SFS, and SB 
c Features d GA SB FP SFS 
3 3.52 14.87 15.73 12.94 12.43 
4 4.52 19.03 19.26 18.30 16.19 
5 5.10 22.50 22.16 21.14 18.96 
6 5.18 27.61 28.19 27.29 25.10 
7 5.80 30.60 31.90 30.94 28.52 
8 6.04 32.38 34-44 32.46 30.43 
9 6.02 36.74 37.77 36.51 34.93 
10 , 6.54 35.93 1 38.03 1 36.89 1 34.87 

lower error rate for each value of c. This again indicates the practicality of using SFS to 
select a subset for this type of problem 

2.4.6 Larger-scale simulation 
The simulation was run so that 50 matrices were generated for each of the values of d. 
The number of classes, c was set at 50. SFS and GA were excluded from the large scale 
simulation due to their larger computational times. The total number of features was 
increased from n= 20 to n= 100. The number of selected features d was varied from 5 
to 50 in increments of 5. 

The results in Table 2.9 show that FP produces consistently lower error rates than CP 
and SB. However, the performance of CP begins to fall more in line with the performance 
of FP and SB as the number of features selected is increased. This may be due to the 
method exploiting more of the potential of its covering concept. 
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Table 2.9: Classification errors (in %) of CP. SB and FP for the case where c= 50. 
Features d CP SB FP 

5 81.79 81.73 77.43 
10 60.18 59.63 55.30 
15 40.09 39.50 36.33 
20 25.17 24.53 22.98 
25 14.81 14.73 13.32 
30 8.70 8.73 7.84 
35 4.78 4.77 4.26 
40 2.77 2.66 2.50 
45 1.50 1.56 1.42 
50 1 0.79 1 0.84 1 0.78 

2.4.7 Application to BSE and Scrapie probability tables 

All the methods were applied to the multiclass versions of the BSE and Scrapie proba- 
bility data. The Scrapie problem having 62 classes and 285 features. The BSE problem 
having 57 classes and 242 features. The task for this data is to find the "best" subset of 
size d using the non-traditional probability table data as it is. 

Scrapie 

The first trial ran SFS, CP, FP and SB to select 12 features. The second trial allowed CP 

to run to select as many features as it needed to take advantage of its covering concept. FP 

and SB were set to match the total number of features ultimately selected by CP Finally, 
GA was allowed to select the number of features that it deemed fit. FP, CP and SB were 
set to select the same number of features for comparison. 

Table 2.10 gives the results of each of the methods and the number of features they se- 
lected. The table shows that once again SFS performs well, if a small number of features 

are to be selected. The only disadvantage is the time needed to run the algorithm. 
The results also show that if CP is allowed to run all the way, then the subset selected 

performs well. In this case the subset selected by CP outperforms the subset of the same 
size selected by SB or FP. Admittedly the difference in performance of the FP and CP 

subsets is so small that it cannot be said that the subset selected by CP is any better than 
that selected by FR 

For GA to try and select a better subset the parameters were adjusted to p,, = 0.8, 

p,,,, = 0.01 and a=0.005. Varying the parameters seemed to have little effect on the 
success of the method as the subset selected by the GA did not perform as well as any of 
the other subsets selected by the other methods. The GA was allowed to select the best 

performing subset of the size it wished. In comparison to the GA subset it was shown 
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Table 2.10: Error rates (in %) for the feature selection methods using the multiclass probability 
tables for Scrapie 

Method (d) Effor 
SFS (12) 59.75 
SB (12) 76.35 
CP (12) 69.30 
FP (12) 66.10 
CP (77) 6.25 
SB (77) 9.92 
FP (77) 6.49 
GA (67) 16.44 
CP (67) 7.41 
SB (67) 13.76 
FP (67) 722 

All (242) 

that the other methods could find a better subset of the same size. This was surprising 
to some extent in the light of previous successes reported in the literature [134]. The 

main advantage of GA is that they can discover good subsets of dependent features by 

chance. In the experiments, the simpler selection methods may have performed better as 
the features were treated as independent in all experiments. This meant the advantage of 
the GA was left unexploited. Experiments performed in a study by Ferri et al [44] also 
suggested that the performance of GA decreases as the number of features increased. It 
is suggested that this is due to the fact that the region of feature space being searched 
increases quickly as the number of features increases. 

BSE 

SFS, CP, FP and SB were run to select ten features. CP was then run to select as many 
features as it wished. FP and SB were run to select the same amount of features. The error 
rates achieved by the selected subsets are given in Table 2.4.7. The error rates associated 
with using all the available features are also given. 

The best performing method when selecting a small set of features is again SFS. 
When CP is allowed to run fully then the method does well once again, selecting a subset 
of features that can outperform the sets selected by FP and SB. 

As it happened the GA also selected 58 features. The resulting error rates for the 58 
features selected by the GA are worse than the errors for the 58 features selected by the 
three other methods. 

As expected none of the subsets get close to the error rates when using all the features 
for either Scrapie or BSE. However, with over 200 signs in each set the vet is not likely 
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Table 2.11: Error rates (in %) for the feature selection using the multiclass. probability tables for 
BSE 

Method (d) Error 
SFS (10) 42.58 
SB (10) 64.32 
CP (10) 58.65 
FP (10) 54.82 1 
CP (58) 1.72 
SB (58) 3.09 
FP (58) 2.56 
GA (58) 904 
All (242) 

". 
49 

to record all of the signs that are present or absent in every sheep or cow. Checking a 

smaller selection of signs would seem a much more feasible task. Selecting such a set 
by SFS would be sensible. The main difference between CP and FP is whether or not d 

is pre-determined. CP performs well but may select too many features, as to exploit the 
benefit of its covering concept d is not pre-determined 

2.5 Chapter summary 
This chapter has investigated feature selection techniques being applied to the "non- 

traditional" probability table data. 
The potentials, limitations and stability of SFS for the non-traditional data were in- 

vestigated resulting in the following conclusions: - 

* SFS is monotone on the number of features. 

* The sequence of error reductions produced by SFS is not monotone. 

The SFS procedure in relation to non-traditional probability table data was explained 
and applied to the BSE and Scrapie tables. A set of 15 "importanf' features for each 
disease was found. By "important" features we mean features that are best to discrim- 
inate between the disease of interest (BSE or Scrapie) and the combined remainder of 
differential diagnoses that were provided. 

The stability of this SFS procedure with regard to the reliability of the experts' es- 
timates was tested. The majority of the selected features remained undisturbed by this 

simulation. However, it was indicated that a few of the selected features may not be as 
reliable as first thought. A few features that had not been included in the selected subset 
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were also brought to our attention. These features would also need to be considered in 

any future work- For the two class task SFS provides a good practical solution. 
Finally, a collection of feature selection methods were applied to the multi-class ver- 

sion of the BSE and Scrapie probability tables. This time to find features that would be 
helpful to distinguish between all types of disease. 

In this situation SFS still performed well for a small subset. However, SFS is restricted 
by its time complexity. For a larger subset selection CP and FP provided reasonable and 
practical alternatives with a much lower time complexity. 

Smaller subsets of features selected from the probability tables may be considered as 
an aid in the collection of "traditional" data. Data collection based on smaller subsets of 
the more discriminating features is a more feasible task. In the absence of "traditional" 
data collected uniformly across the population, the next question would be how to handle 

probability table data with regard to designing classifier models for the classification of 

new cases. 
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There is a need to be able to handle the situation where only limited "traditional" data 

exists but "non-traditional" data is readily available. Given the classifier requirements 
of simplicity, efficiency and comprehensibility the next step is to consider the standard 
classifier models and their processes with regard to the "non-traditional" data. 

There are two types of learning associated with classification problems, supervised 
and unsupervised. Supervised learning or discrimination takes a set of example cases with 
class labels. These labelled cases are used to design an automatic process of classifying 
future data -a classifier. Unsupervised leaming is applied to a set of example cases that 
are not labelled. Clustering techniques can be used to find natural clusters or groupings 
within the data. 

The BSE and Scrapie probability data presents a supervised learning problem. How- 

ever, in place of the set of labelled cases there are subjectively estimated probabilities 
P(xj = 11wi) where xj is the jth binary feature, wi is the ith class and value 1 of xj 
means that xj is present. The nature of the problem dictates that any classifier used needs 
to be easy to understand. If the domain experts understand the decision making process 
of the classifier they are far more likely to trust any decision it makes [133]. 

Decision trees and NSive Bayes are simple classifiers that have been effective for 

many types of problems. They both allow a domain expert to follow the decision making 
process. 

3.1 Decision Tree Classifiers 

A decision tree is a directed acyclic graph. A decision tree, such as the one depicted 
in Figure 3.1, is made up of a single non-terminal root node, non-terminal child nodes, 
terminal child nodes and branches (arrows) describing the paths in the tree. Terminal 

nodes (or leaves) are marked with a class label. To classify a new case, a path through the 
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tree to a terminal node is created by following decisions made at each non-tem-linal node. 
Upon reaching a terminal node the case will be given the class label marking that node. 

The process of decision tree design is summarised by Safavian and Landgrebe into 
four main objectives, [122] : 1) classify correctly as much as possible of the training 

sample, 2) generalise beyond the training sample, 3) be easy to update when more training 

sample becomes available and 4) have simple structure. 
Descriptions of decision tree construction are given in depth by [36,77,108,150]. 

One of the most widely used methods of construction is the top-down approach. The top 
down design starts at the root node and proceeds by splitting the training data down until 
terminal nodes are created. Webb, [150] divides top-down construction into three phases: 
1) finding a splitting rule, 2) deciding on the terminal nodes and 3) assigning class labels 

to the terminal nodes. 
The splitting rule or criterion dictates the structure of the whole tree. The criterion is 

used to partition the data at each level of the tree. The choice of the criterion involves 
how many partitions the data can be split into at each level of the tree and what type of 
features the criterion will accept. The overall complexity and comprehensibility of the 
tree depends on the selection of the criterion. Most criteria in top down decision tree 
design depend upon some greedy heuristic. These heuristics are not easily understood 
by the non-expert user. Berzal et at [91 support easy to understand splitting rules. The 

authors develop understandable rules based on the probability of the most common class 
in each subtree. A subtree is a portion of a tree that can be viewed as a complete tree 
in itself. The subtree corresponding to the root node is the entire tree while a subtree 
corresponding to any other node is called a proper subtree. 

The classical decision tree model uses a single feature at each non-terminal node to 
determine the split. Another decision tree design uses a subset of features as a discrimi- 

nant function at each non-terminal node to determine the split. This "feature-based" tree 
loses some of the simplicity of the standard tree. "Feature-based7' decision trees entail 
the use of a selection method to establish the features to use at the non-terminal nodes. 
The feature selection problem at a non-terminal node is to find the subset that gives the 
best possible partition of the data reaching this node, rather than reducing the dimension- 

ality of the initial problem. The number of features that should be chosen to represent 
each split is crucial. The more features used at a node implies the better discrimination 

achieved. However, the use of more features at a node increases the complexity and 
the computational running time of the tree. Studies by Brown et al [17] and Sethi and 
Yoo [132] have indicated that the performance of the trees is improved by the use of 
multi-feature splits rather than single feature splits at a node. Brown et al note the lack 

of available mechanisms for creating the multi-feature splits. 
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A study by Mingers in 1989 [1021 claimed that random feature selection methods 
provide results as good as using orthodox feature selection methods. Empirical results 
due to Liu and White [921 show that orthodox methods do in fact outperform the random 
attempts. Safavian and Landgrebe [1221 argue that an advantage of the decision tree 

structure is the occurrence of different subsets of features at non-terminal nodes. 
Phase two of construction involves determining which nodes will become terminal 

nodes. This involves considering the purity of the candidate nodes, the overall size of 
the tree and whether pruning methods are to be used. The design of a decision tree 

aims to achieve terminal nodes that are as pure as possible, i. e. all data arriving at a 
terminal node will have the same class label. However, achieving pure nodes may result 
in unnecessarily large trees with only a small number of example cases reaching terminal 

nodes. Safavian and Landgrebe [1221 indicate that smaller trees are less sensitive to 

statistical irregularities in the training data and can therefore be preferable to larger trees. 
Many decision tree methods now adopt pruning methods to avoid the effects of overfitting 
the training data [42,43,102,1541. Pruning is a method of "cutting bacle' a tree to reduce 
its size while maintaining as much accuracy as possible. 

The final phase of assigning class labels to the terminal nodes could be considered 
the simplest phase of construction. The majority of construction methods assign the class 
label to the terminal node that will minimise any misclassification cost, e. g. the label of 
the majority class amongst the labelled examples at the terminal node. 

There are many proposed alterations to decision tree design in the literature [55,77, 
97,109]. Lim et al [881 give an empirical comparison of decision trees and other clas- 
sification methods. The study suggests that the error rates of the majority of classifiers 
were not significantly different but their computational times varied widely. This implies 

that the choices made in designing a decision tree can be influenced by desirable resultant 
properties such as comprehensibility and complexity. 

Multi-class problems may be decomposed into multiple two class problems in a va- 

riety of ways. Masulli and Valentini [961 and Tax and Duin [1411 both consider using 
two-class classifiers for multi-class classification tasks. The two class tasks may be either 

created as pitting one class against another thus requiring a total of ! 4Z-11 classifiers for a 2 
c class problem or use a class-modular approach requiring only c classifiers. 

The class modular approach for ac class problem is to create c two-class classifiers 
whose individual problems are class wi versus class w(l), where wi, i=1... c, is the 
class of interest for the problem and w(l) is the remaining c-1 classes combined. 

Binary tree classifiers are a special type of decision tree classifier where every non- 
terminal node has exactly two child nodes. It is reasonable to consider binary trees as any 
node with multiple answers can be equivalently represented with binary nodes. The sim- 
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plicity of a binary tree is attractive. Berzal et al [91 indicate that using a binary structure 
makes a tree larger with fewer leaves. The larger the tree the longer the implied training 
time and any subsequent classification will be. It has been shown that to construct a truly 

optimal binary decision tree would be an NP complete problem [61]. 
A modification to binary trees studied by Lee and Oh [86] in order to decrease the 

overall computation time is a class-modular approach to the splitting criterion. Lee and 
Oh propose that at each node of the tree the class group is partitioned into two distinct 

subgroups. Tle choice of the partition is optimised by a GA procedure. The class- 
modular approach is adopted for implementing classification at a node. At a node the c 
class-modular two-class classifiers classify a test case, x. A class is identified according 
to a majority voting from the c classifiers. 

Cascade classifiers are a special subset of the binary decision tree classifiers which 
can be integrated with the class-modular design approach. 

3.2 Cascade Decision Tree Classifiers 

Definition. A cascade classifier is a binary decision tree such that at each level there is at 
least one tenrninal node. TWo terminal nodes mark the end of the tree. 

For ac class problem a cascade tree will need to have c-1 non-terminal nodes. At 

each non-terminal node a decision is made between a single class and the combination of 
the remaining classes, the class-modular approach. The design of a cascade tree involves 
deciding which single class to separate to the terminal node at each level. Once a class is 

chosen for a terminal node, this class is removed from all further calculations in the tree. 

3.2.1 Application to non-traditional probability data 

The cascade decision tree can be considered for probability table data due mainly to the 
simplicity of the tree design. The design of the cascade tree allows domain experts to 
follow the logic of the decision making processes. The model lends itself to the case with 
a large number of classes. In the probability tables there are 57 classes to distinguish 
between for the BSE set and 63 classes for the Scrapie set. Using a single feature to 
determine the split between a single class and the remaining classes would be of interest 
to the veterinary domain due to the ease of interpretation. Due to the binary nature of the 
features, once a feature has been used to distinguish between a class and the combined 
remainder then this feature can not be used to determine another split further down the 
tree. 'Me presence or absence of a particular feature appearing at a node will have already 
been determined and so will not have a different value later on down the tree. 
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Figure 3.2: A simple cascade classifier (c =3 classes, n=2 features). 

There are two major design aspects of this type of tree classifier to be considered. 1) 
A two class problem needs to be created at each non-terminal where one class is set apart 
and the remainder of classes are combined into a single class. 2) A feature or feature 

subset needs to be selected to determine the split at each non-terminal node. 
The two class problem at each node may be created in the same way as the creation of 

the two class problem in Proposition 2, Section 2.3.4. The average value of all remaining 
class-conditional probabilities can be taken to create the second class. The next section 
looks at ways the feature selection for the non-terminal nodes may be considered. 

3.2.2 Error Calculation 

Consider the example given in Figure 3.2. This is a single-feature-split cascade tree 
with three classes. Without loss of generality accuracy may be considered in place of 
error as P(correct) + P(error) = 1. Equation (3.1) gives the probability of correct 
classification for the whole tree. 

P(correct) = P(W1)P(Xl =1 1W1) + P(W2)P(XI = 01 X2 =1 1W2) (3.1) 

+P(W3)P(Xl : -- Os X2 ---: 
01W3)- 

This can be extended to the general case with c classes. The features and the classes 
can be relabelled so that they appear in increasing order and all the children to the left 

take xk = 1. 

P(correct) --": P(Wl)P(-'rl: --11WI)+P(W2)P(Xl: --O, X2--": 11LIJ2)+--- 

(3.2) 

A dependency issue arises from equations (3.1) and (3.2). Equation (3.2) takes de- 

pendence into account by using P(xi = 0, ..., xi = 11 wi). 
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A much simpler form of (3.2) is obtained by assuming independence of the selected 
features. The joint probability is 

P(xl=Olwi) ... (3.3) 

P(xj-l = olwi)p(xi = l1wi). 

During the design of the tree either method of calculation can be chosen. Equation 
(3.2) will be restrictive when handling larger cascades. Equation (3.3) loses information 

on the dependence between the features and this may be unacceptable. 

3.2.3 Methods of design for probability table data 

The choice of the splitting function influences the whole design of the tree. To design 

a cascade tree with one feature at each split five functions were tried. These included 

an independent misclassification. cost (IND), a dependent misclassification cost (DEP), 

a Gini impurity function (GINI), an Information gain function (INFO) and a random 
function (RAND). 

Ile data available to train these cascades is the estimated probability matrices. Each 

entry in the matrix is the probability that feature xj is present given class wi, P(xj = 
11wi). At initialisation of each of the trees the classes are assumed to be equiprobable 
thus all having a prior probability of P(wi) 

C. 
All the cascades are generated using 

top-down approaches. 
The two cascades using the misclassification error criterion, (IND) and (DEP), use the 

class modular approach to choosing a single class to separate off at each level of the tree. 
The main difference between the two types of cascade with misclassification. functions is 

the way the error is calculated. 
Cascade IND. This cascade uses the class-modular approach by separating a single 

class wi from all remaining classes, w(l). The feature probabilities for class w(l) are 
calculated as the mean of all class conditional feature probabilities for the classes that 
have not already been separated off as a leaf of the tree. The tree is designed using a 
top-down procedure. At each node the class to separate off and the feature to label the 
node are chosen by calculating the error for every feature-class paiL (xj, wi), 

e(xj, wi) = min 
IP(wi)(1 

- P(xj = 11WO) + P(w"))P(xj = l1w (1) )l 

P(wi)p(xj =1 IWO + P(w(')) (1 - P(xj =1 lw(')))] (3.4) 

where P(wj) is the prior probability of class i. The first term in Equation 3.4 is equivalent 
to calculating the probability of error for feature xj having the value 0 to separate off 
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class wi. The second term is the probability of using feature xj with value 1 to separate 

off the class. 
The feature-class pair giving the lowest error at each stage are selected and are then 

removed from all further calculations. 
Cascade DER The cascade utilises the class modular approach selecting a single fea- 

ture at each non-terminal node to separate a class. The difference to the independent 

cascade is the calculation of the error for each feature-class pair is influenced by the fea- 

tures already selected. At each non-terminal node the error is calculated for each available 
feature-class pair (xj, wi), 

e(xj, wi) = min 
IP(wi)(i 

- P(xj = llwXtj + P(W('))P(xj = 11L"(, ))t(l), 

P(Wi)P(Xi = 11LOOti + P(LO(l))(l - P(xj = llw('))t(l)] (3.5) 

where tj and t(j) contain the probability knowledge about the previously selected features 

given class wi and w(l) respectively. The feature-class pair minimising the error at each 

stage label the level of the tree. The feature-class conditional probabilities are stored in 

the knowledge using the t parameters. 
Cascades using impurity functions. An impurity function for a decision tree measures 

how pure a sample of the training examples are at a given node. A "pure node" would in- 

dicate that all examples at the node originate from the same class. A completely impure 

node would mean that all examples at that node are from different classes. The impu- 

rity functions measure the scale of impurity between these two extremes. In practice a 
decision tree with pure nodes would give good results across the training data but may 
not be adaptive enough to cope with any new test data. A trade-off between purity and 
overfitting is looked for. These two cascade designs use the Gini criterion and the Infor- 

mation Gain criterion respectively. As we have binary features then we are looking for 

the feature that creates the best improvement in the respective impurity measure. With 

continuous-valued features we would also have to look for the best threshold level to split 
a particular feature on. 

The Gini impurity index measures the error rate committed if a class label was drawn 

randomly from the distribution of labels present at the current node. That is the measure 
looks the purity of the predicted "child" nodes created by using a particular feature. The 
best assessed feature will be selected to create the next level of the tree. The Information 
Gain criterion is an estimate measure of the amount of useful information that is gained 
about x by using feature xj. By looking at the possible predicted child nodes of the 
tree created by using feature, xj the measure assesses its effectiveness. The processes 
described here enable the calculations of the impurities given non-traditional probability 
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table data. 
Both trees update their stored knowledge of the preceding feature-value pairs within 

the construction of the tree. At initialisation the only knowledge held is the prior prob- 
abilities of the classes and so Pr is initialised as a vector of size c containing the prior 
probabilities of each class. In other words Pr(i) = P(wi) at initialisation. For each 
split the impurity functions are calculated for each available feature across all available 
classes, 
Cascade Gini (GINI). 

c r 
Impur'tYGiW(Xj, Wi): --Pjl l-E(Pjleft(i))2 + Pjo 1- E(Pjright(i)2) 

(3.6) 

where c is the number of remaining classes. 
Cascade Info (INFO). Using the negative in equation (3.7) allows the feature and class 
selected to be those minimising the function at each stage. 

c 
Impurityj, f, (xj, wi) = -Pjl (Pj left (i) log Pjleft(i)) 

c 
-Pjo 

E(Pjright(i) log Pjright(i)) (3.7) 

where vectors PjIef t and Pjright are constantly updated after each selection, 

Pjleft = 
Pr(i)P(xj = llLoi) 

(3.8) 
pi 1 

Aright = 
Pr(i)(1 - P(xj = llwi)) (3.9) 

Pio 
where Pr(i) is the prior knowledge for the ill class, initially all entries are P(wj). Pjj 

and PjO are values calculated from this knowledge vector Pr(i) where 

c 
pil = Ep(xj=llwi)Pr(i) (3.10) 

i=l 
Pio =I- pjl (3.11) 

The feature-class pair minimising the impurity function at each non-terminal node are 
selected to label that level of the tree. Once the feature and class have been selected Pr 
is updated by replacing it with either Pjlef t when the selected feature has a value of 1 or 
Pjright when the selected feature has a value of 0. 

Cascade Random (RAND). Both the classes and features were selected randomly at 
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the non-terminal nodes of the tree. 

3.2.4 Simulated data 

The aim of the simulation was to establish the ability of the various cascade designs on 
different types of probability data. This would give an indication of splitting functions 

that were robust or successful with particular types of the probability data. 

Random probability matrices with a varying number of classes and number of features 

were generated. The number of classes, c, ranged from three to fifteen. The number of 
features, f, ranged from c-1 to 20. For each of the pairs (c, f ), 

* Repeat 100 times, 

- Generate a random probability matrix A with c classes and f features. 

- Build the five cascade classifiers using A, by the described procedures. 

- Generate 100 binary test vectors for each class, I to c. 

- Classify each of these vectors using each cascade classifier. 

- Store the accuracy as the percentage match between the generated labels and 

the true class labels 

The accuracy of the NaYve Bayes classifier employing all features was calculated in 

each trial as a comparison. The accuracy given in the results for each cascade is the 

average of the 100 trials. There were four experimental variants for the generation of the 

probability matrix, A. For the first experiment probabilities in A ranged from 0 to 1. The 

second experiment used probabilities generated in the range from 0.2 to 0.8. The third 

simulated experiment used probabilities generated in the probability tails, 0 to 0.2 and 
0.8 to 1. Finally, probabilities were generated with a skewed distribution. 90% of the 

probabilities were generated to lie in the range 0 to 0.1 with the remaining 10% spread 

across the range 0.1 to 1. 

Probabilities in the range 0 to I 

Figures 3.3 (a) to (f) display the results of each of the classifiers across the range of 
classes and features. 

Figure 33(a) shows the accuracies achieved by using the NB model taking all avail- 
able features into account simultaneously. As expected, as the number of features is 
increased the accuracy also increase (trend in the Features-axis). This is due to the in- 

crease in the information available from the extra features. It is also evident that as more 
classes are added into the task the accuracy begins to drop (trend in the Classes-axis). 
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(c) Independent cascade 

Figure 3.3: Results in the 0-I probability range. 
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Figures 3.3(c) to (f) present similar results to one another. The trend in the Classes- 

axis showing a decrease in accuracy as more classes are added is more evident than for 

the NB model, Fig 3.3(a). The increase in accuracy achieved by adding in more features 

is less obvious than for the NB model. A cascade model will select at most c-I features, 

so while NB can benefit from more features the effect will only be limited for a cascade 

classifier. None of the cascade models can be singled out as the best. When there are 15 

classes all the cascade models have low accuracy compared to the NB model. 
The random cascade, Figure 3.3(b) shows much lower accuracy than all the other 

models. Employing some logical method of features selection within the design of the 

cascade classifier does improve performance, this is in agreement with [921. 

Probabilities in the range from 0.2 to 0.8 

Figures 3.4(a) to (f) display the accuracies achieved by the classifiers in the 0.2 - 0.8 

probability range. Overall, the accuracies for all models are lower than for those in the 0 

-I probability range. This indicates that when the probabilities are more closely grouped 
the task becomes harder. 

The NB model, figure 3.4(a) is affected to a greater extent by the addition of more 

classes than in the previous simulation; the accuracy is seen to decrease greatly in the 
Features-axis. The addition of more features to the task allows an increase in accuracy 
for NB. 

By adding more features the cascade models (figures 3.4(c) to (f)) endure a limited 

increase in accuracy due to only using c-I of the available features. The decrease in 

accuracy caused by the addition of more classes to the task for the cascade models is 

similar to that for the previous simulation. 

Probabilities in the tails, 0 to 0.2 and 0.8 to 1. 

With the probabilities separated into the tails of the 0-I range the NB model achieves 

a high level of accuracy for all combinations of features and classes. Adding in more 
classes does not appear to detrimentally affect the accuracy achieved by NB, figure 3.5(a). 
Again in comparison to all classifier models the random cascade performs poorly across 

all pairings of features and classes. 
The independent and dependent cascades, figures 3.5(c) and (d) achieve overall higher 

accuracies than the Gini and Info gain designed cascades, figures 3.5 (e) and (f). How- 

ever, adding more classes to the task causes a large drop in accuracy for all four cascade 
models. With 15 classes in the task the accuracy achieved by the cascade models is much 
lower than that achieved by the NB model. 
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Figure 3.4: Results in the 0.2 - 0.8 probability range. 
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(c) Independent cascade 

Figure 3.5: Results in the 0-0.2 and 0.8 -I probability tails. 
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Skewed probabilities 

Having the probabilities in skewed distributions causes a reduction in the accuracies 
achieved by NB using all the available features, Figure 3.6(a). Figures 3.6(c) and (d) for 

the independent and dependent cascade appear similar to the NB model, Figure 3.6(a). 
The accuracies achieved by NB are not much greater than that of the independent and 
dependent cascades, this is despite NB using all n available features while the cascades 
only use c-1 of the n features. 

Both the Gini and Info Gain cascades, figures 3.6(e) and (f), appear to achieve lower 

accuracies then the independent and dependent cascades. For the case with a skewed 
probability distribution the independent or dependently generated cascade provide better 

results than either the Gini or Info Gain models, as well as accuracy possibly comparable 
to the NB model. 

In summary, for the first three probability ranges sampled (0 to 1,0.2 to 0.8 and 0- 
0.2 with 0.8 - 1), the four cascades, IND, DEP, GINI and INFO produced very similar 
results. For last probability range sampled, the skewed distribution, the independent and 
dependent cascades achieved results more comparable to those of the all features model. 
This suggests that selecting features independently or dependently for use on the cascade 
tree has an advantage over using the Gini or Information Gain criteria for this type of 
probability distribution. 

The results also showed that for all four types of probability distribution using some 
type of selection method for the features and classes produces a better performance than 

a random selection method. 
The NB model using all the available features simultaneously produced good results 

for all of the cases. The decrease in accuracy caused by adding in more classes was 
smaller than for the cascade models. This is due mainly to the design of the cascades 
using only e-I of the available features. 

3.2.5 Application to BSE and Scrapie probability table data 

The one feature per node cascade designs were applied to the multi-class BSE and Scrapie 

non-traditional probability data. The BSE probability data contains 57 classes and 242 
features. The Scrapie probability data contains 63 classes and 285 features. The exper- 
iment was conducted as for the simulated data but with the BSE and Scrapie matrices 
replacing the generated matrices. Using the probability tables a cascade decision trees 

were constructed for the two problems. Binary vectors representative of the probability 
distributions given for class were generated as the test cases to give the accuracy of the 

procedures. 
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Figure 3.6: Results in the skewed probability distribution. 
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" Build the five cascade classifiers using the BSE / Scrapie matrix 

" Generate 100 binary test vectors for each class, I to c 

" Classify each of these vectors using each of the cascade classifiers 

The results of this experiment are shown in Table 3.1. The "All features" result is the 
accuracy achieved by using all of the features in conjunction with the NB model. The 

results show that the IND and DEP cascade models perform better than the Gini, Info 

and Random models. The probabilities for the multi-class problem lie with a skewed 
probability distribution as seen in the final simulated experiment. In the BSE probability 
matrix around 93% of the probabilities are less than or equal to 0.1. The Scrapie data 

shows a similar structure with about 94% of the probabilities less than or equal to 0.1. 
The results for using NB model with all the features are better than for any of the 

cascades. However, the cascades only use about 20% of the available features. 

Table 3.1: Accuracies (in %) of the various cascade classifiers for the multi-class BSE and Scrapie 
probability data. 

All IND DEP Gini Info Random 
BSE 

Scrapie 
99.30 
97.35 

72.98 
63.21 

73.00 
63.51 

33.79 
29.62 

11.70 
8.37 

1.75 
1.59 

3.3 The NaYve Bayes Classifier (NB) 

The NaYve Bayes classifier (NB) has been shown many times to be a very effective classi- 
fier. The simplicity and stability of NB allows the domain experts to follow the decision 

making process thus making it preferable to complex classifiers that can disguise the 
decisions made. 

The discriminant function for a particular x for the Bayes classifier may be taken to 
be 

gi(x) = P(wi)p(xlwi), i=1... c (3.12) 

where P(wi) is the prior probability of class wi and p(xlwi) is the class conditional pdf of 
x. The class, wi that gives the maximal value to the discriminant function will be assigned 
to X. 

If the n features of a problem are considered to be class-conditionally independent, 
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the class-conditional pdf may be calculated as a product of n individual pdfs, 

n 

P(Xlwi) =H P(xj IWO, i=1... c (3.13) 
j=l 

By using this function in the discrimýinant the classifier becomes the Na"ive Bayes model, 

n 

gi(x) = P(wi) Il P(xj IWO, i=1... C. (3.14) 
j=l 

Under the condition of class-conditionally independent features the classifier of choice 
would be the NB. In the probability table data the probabilities for the presence of a 
feature (symptom) given a particular class (disease) were considered independently. In 

other words, no other features were considered when the probability was calculated mak- 
ing the features class-conditionally independent of one another. In this case it is sensible 
to consider NB, despite the knowledge that the assumption of the probabilities being 
independent of one another is likely, in reality, false. 

3.3.1 Applications of NB 

NB has been applied widely across classification tasks. The simplicity, efficiency, ease 
of implementation and interpretability have all led to its widespread use. 

The ease of interpretation of the model is especially evident in applications to the 

medical domain [50,143]. Kononenko [73] states the preference of medical specialists to 

use NB as their model of choice due to its logical decision making process. 
A review by Lewis [871 states that, over 40 years of literature, NB methods account 

for most applications of supervised leaming to information retrieval. The success of 
NB in this domain is surprising as the assumptions of NB almost never hold for textual 
domains. Lewis notes three ways in which adapting NB has been attempted, 1) relax the 
independence assumption - this has not had great success in the text domain, 2) modify 
the feature set to make the assumption true - results so far have shown that it is hard to 
correlate the impact of any modifications, 3) reason as to why the assumptions are not 
needed - such as for the two class case allowing a weaker "dependence" assumption. 

McCallum and Nigarn [981, Bennett [8] and Forman and Cohen [45] all agree that NB 
is amongst the top competitors for classification tasks in text domains. Forman and Cohen 

go on to show that NB tends to be insensitive to the distribution of prior probabilities in 

the training data. This is good for text domains where the class of interest may only have 

a few examples compared to the class of non-interest. This characteristic has also been 

put to good use for web searches, [1241 and image analysis [661. 
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As NB does not guarantee accurate probability estimates it seems an unlikely candi- 
date to use in ranking tasks. However, studies have used the model successfully in this 
domain [ 159,163]. Whilst it may be true that accurate probability estimation of NB would 
improve the performance for ranking, the converse is not true. Improving performance 
for ranking does not necessarily improve the accuracy of the probability estimation. 

3.3.2 A Meta-analysis of NB adaptations 
The possible inaccuracy of the probability estimates of NB leading to imprecision of the 

entire model has given rise to an abundance of proposed adaptations to the model in the 
literature. Adaptations to NB could compromise the models elegance and computational 
simplicity [541. 

Meta-analysis is a technique for comparing various studies to try and draw out a con- 
sensus of opinion amongst the research. The technique is mainly used in social sciences, 
biology and psychology [24,60,90]. The review of scientific studies can be done in an 
unscientific way using traditional literature review methods. Meta-analysis is a more sci- 
entific method of reviewing various related studies [1551. As the analysis is structured 
any bias imposed by the authors own personal views is avoided. The interpretations of 
the studies findings are effectively translated in relation to one another avoiding possi- 
ble misinterpretations. Studies that have used meta-analysis in pattern recognition have 

covered classification algorithms [ 137], face recognition algorithms [ 1121 and clustering 
algorithms [63]. These studies have carried out a quantitative analysis of the performance 
of the group of algorithms. 'Me meta-analytic procedure consists of a series of five steps. 

1. Create an encoding scheme to apply to the raw data (Published studies). This in- 

volves formulating the question that needs to be answered by the analysis and a 

method of how to code characteristics from the data. 

2. Select a sample of studies. The choices of why the selections were made should be 

explained here. 

3. Encode each sample study with the scheme created at step 1. This involves taking 
the studies and transforming them into data that can be analysed 

4. Analyse the encoded data by statistical techniques (adapted where necessary). The 

chosen statistics will produce a summary of the studies under review 

5. Output any patterns or structures found. This will be the answers to the questions, 
and possibly the discovery of other pattems. 
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In place of a traditional survey of the various adaptations made to NB a meta-analytic 

study can be formulated. This will give a more structured view of the alterations that have 

been tried. 

3.3.3 Formulating an encoding scheme 
To create an encoding scheme the questions that the analysis is aiming to answer need to 
be formulated. The questions for this analysis are 

1. Which methods are structurally similar? 

2. What relationships, if any, are there between the adaptations? 

3. What techniques have been used to try and optimise upon the original NB model? 

To be able to answer these questions important characteristics of the adapted algo- 

rithms need to be identified. These characteristics should be related to the structural 
differences of the model compared to the original NB. The 19 chosen characteristics are 
listed in Table 3.2. All characteristics are binary questions with "Yes" encoded as 1 and 
"No" encoded as 0. Each method can then be described by a binary vector of length 

19 relating to the characteristics. For those characteristics that are not self-explanatory a 
small explanation is included here. 

Characteristic 2, "Was the NB formula (equation 3.14) adaptedT' indicates whether 
a variation of the original NB formula is used, (for example, equation 3.15 of Bayesian 

networks). 
Characteristic 7, "Were eager learning methods used? " Machine learning distin- 

guishes between two types of supervised learning, eager and lazy. Eager learning takes 
the labelled training data and trains a classifier model on it. Lazy learning, on the other 
hand, stores all the training data until the time of classification. Eager learning takes less 

storage space than lazy learning as only the classification model need be stored rather 
than the whole training set. New cases can be easily added to the lazy model without a 
need for re-training. Labour intensity may be the deciding aspect on which method to 

use, with eager learning being intensive at training and lazy learning being intensive at 
the time of classification. A special issue of Artificial Intelligence Review contains a com- 
prehensive set of studies that review and investigate the lazy/eager learning distinction. 
Aha provides a concise overview of the area of lazy learning in the introductory editorial 
for this special issue [I]. 

Characteristic 8, "Were Bayesian networks used? ". Bayesian networks originate from 

work done by Pearl in 1988 [1111. A Bayesian network is an annotated directed acyclic 
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Table 3.2: The 19 binarv features used in the description of the NB adapted methods. 
I Was the data discretised initially 
2 Was the NB formula (equation 3.14) adapted 
3 Was there any feature selection prior to using NB 
4 Were ensembles of classifiers used 
5 Were 111 order dependencies considered 
6 Were dependencies greater than PI order considered 
7 Were eager learning methods used 
8 Were Bayesian networks used 
9 Were Decision Trees used 
10 Was Clustering used 
II Were Fuzzy classification methods used 
12 Was Sequential ForZid Selection used 
13 Was Sequential Backward Selection used 
14 Were Genetic algorithms used 
15 Was Boosting used 
16 Was Feature extraction used 
17 Did the method update the probability table produced by NB 
18 Was the method tested on a wide range of data sets (10+) 
19 Was the method using any type of randomness in its calculations 

graph, G, where vertices represent the features and the edges represent direct dependen- 

cies between the two vertices (features). By direct dependencies we mean that if there 
is a directed edge from xi to xj it may be read as feature xi "causes" xj. The Bayesian 

network defines a unique joint probability distribution over the set of features given by 

n 

p(x) p(xilParents of xi in G). (3.15) 

When all the nodes have the same parent corresponding to a class, the pdf is conditioned 
by this class. For example, the pdf in Figure 3.7(a) models the case of conditionally 
independent features, as assumed by NB 

P(XlWl) I-- 

In this case each feature node has the class node as its only parent. The general Bayesian 

network in Figure 3.7(b) corresponds to the following class-conditional pdf, 

P(XJWI)'ý2 P(XIIWI)P(-C21XIi Wl)P(-C31XIi Wl)- 
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LJI 

X1 
X2 X3 

(a) 

Figure 3.7: A Bayesian network for (a) conditionally independent features, (b) a general model. 

A Bayesian network encodes that "each feature is independent of its non-descendants 
in the graph given its parents". These independencies are used to reduce the number of 
parameters needed to characterise a probability distribution. The idea is to induce the 
best network that models the probability distribution given by the training data. This 
is generally done in practice using a heuristic search to find the best candidate over the 
space of networks. This process relies on a scoring function that assess the merits of each 
candidate network. 

The maximum number of edges from one feature to other features is called the level 

of dependency of the network. Figure 3.7(a) shows a zero dependency network meaning 
that no dependencies between the features are taken into account. The network in Figure 
3.7(b) has a dependency level of one, as both X2 and X3 depend on x1. If we were to add 
another edge in Figure 3.7(b) directed from X2 to X3 then we would achieve a network of 
level two dependency, (x3 would be "caused" by x, and -T2)- 

Characteristic 15, "Was boosting usedT' Boosting is a machine leaming technique 
that focuses the learning of a model on the cases that are hard to classify. The first 

polynomial time boosting algorithm was proposed by Schapire in 1990 [127]. This was 
improved upon by Freund in 1995 to make it more efficient [461. This improvement was 
optimal in many cases but had practical drawbacks. Adaboost proposed by Freund and 
Schapire [471 solved many of the practical difficulties of boosting and is widely used 
today. An introduction to boosting algorithms is given by Schapire in [128]. The boost- 
ing procedure successively classifies weighted versions of the training data. The data is 

reweighted after each classifier is built. The reweighting depends upon how successful 
the previous classification was. This ensures that the hard to classify cases are brought to 
the attention of the classifier. Direct application of boosting does not generally improve 
the performance of NB due to the fact that NB classifiers are very stable. 

Characteristic 17, " Did the method update the probability table produced by NBT' 
NB naturally produces an estimate of &Jwi), some of the methods adjust this estimate 
once it has been calculated. This is different to characteristic 2 due to the NB formula 
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(equation 3.14) remaining untouched. An adaptation to the NB formula affects all esti- 

mates uniformly. Allowing a method to update the estimates afterward allows selective 

updating; not every estimate will necessarily be updated. 
With the encoding scheme in place, the selection of the adaptations to include in the 

analysis must start. 

3.3.4 Selection of sample studies 
A total of 37 studies were selected from a variety of peer-reviewed journals and confer- 

ence proceedings. The studies were selected retrospectively. A Google search using the 
keywords "Improve Naive Bayes" produced the majority of the more popular, well cited 
studies. The references of these studies were checked to find other studies they cited. 
In turn the references of these papers were also checked. This was continued until the 
37 studies were found. This gave coverage within the bounds of these 37 studies that 

are all linked by the Google search and their references. The aim was to give coverage 

of the selected studies looking at the adaptations applied to the general NB model. Any 

domain-specific adaptation was excluded as these methods may have different aims and 

problems to solve with regard to NB. A comparison study by Lewis [87] demonstrates 

this by concentrating on the particular issues that arise in applying NB to textual data. 

The methods are listed in Table 3.3 in an order which will aid their explanation. The 

earliest reference in this table is Kononenko's Semi-NaYve Bayesian classifier, 1991, [72]. 

As the papers have been published in peer-reviewed journals and conference proceedings 
this does bias the study toward those models that have had success (although in some 

cases only marginal) over NB. This biasing is justified as these models are likely to be 

tried on new data sets as a "straw man". 'Me rest of this section comprises of a brief 

description of each of the NB adapted methods. 
1 NaYve Bayes, (NB). One of earliest references of NB is by Minsky and Papert in 

Perreptrons, Chapter 12. The reference used in the table is for the one of the most widely 
used reference of NB, by Duda and Hart, [361 (reference is the second edition of this 
book). The "original" NaYve Bayes model we refer to uses discriminant function in the 
form of equation 3.14, to model the distribution given by the training data. 

2 Decision Tree NaYve Bayes hybrid, (NBTree), Kohavi, 1996 [69]. A standard deci- 

sion tree is grown with a NB deployed at the leaves, creating a penultimate layer of the 
tree. These classifier leaves output a class label when a new case is submitted to them, 

acting as the final decision of the tree. The NB at the classifier leaves is grown using 
the training data that arrives at the leaf after being processed by the tree. The design is 

an attempt to approximate whether the generalisation accuracy for a NB at each leaf is 
higher than a single NB at the current node. 
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Table 3.3: The selected adapted NB methods. 
Number Name (Abbreviation used in this study) Year ReL 

I Original Nalve Bayes (NB) 1969 [36] 
2 Decision Tree NB Ilybrid (NBTree) 1996 [69] 
3 Iterative Bayes (113) 2003 [49] 
4 Ensemble Feature Selection NB (EFSNB) 2002 [1461 
5 Sequential Forward Selection NB (SFSNB) 2003 [1451 
6 Sequential Backward Selection NB (SBSNB) 2003 [1451 
7 Genetic Algorithm NB (GANB) 2003 [1451 
8 Tree augmented Bayesian Network (TAN) 1997 [481 
9 Probability Dependence Tree 2 (PDT2) 1999 [67] 
10 SFS then NB (SFS to Bayes) 1994 [821 
11 Sequential Forward Selection & Joining (SFSJ) 1996 [1101 
12 Sequential Backward Selection & Joining (SBSJ) 1996 [1101 
13 K-Dependence Bayesian Network (KdepBN) 1996 [123] 
14 Aggregating One Dependence Estimators (AODE) 2005 [1511 
15 Lazy Bayesian Rules (LBR) 2000 [1651 
16 Conditional Independence Tree (CITree) 2004 [162] 
17 Selective Neighbourhood NB (SNNB) 2002 [1561 
18 Independent Component Analysis NB (ICABayes) 2002 [151 
19 Improved NB Classification (INBC) 2001 [911 
20 Lazy version of TAN (LazyTAN) 2002 [1491 
21 Interval Estimation NB (IENB) 2003 [120] 
22 Random TAN (RTAN) 2004 [93] 
23 Adapted Boosting for NB (ActiveBoost) 2004 [1481 
24 Adjusted Probability NB Classifier (APNBC) 1998 [1521 
25 Homologous NB (HNB) 2002 [59] 
26 Fuzzy NB (FNB) 2002 [1391 
27 Interpretable Boosted NB (IBNB) 1998 [117] 
28 Large Bayes (LB) 1999 [99] 
29 Semi-NB (SNB) 1991 [721 
30 Kernel-based & Joining NB (KJNB) 2004 [29] 
31 NB Committees (NBC) 1998 [164] 
32 Boosted NB (BNB) 2002 [301 
33 Clustered NB (CNB) 2003 [1471 
34 Neuro-Fuzzy NB (NFNB) 1999 [105] 
35 Minimum Description Length Principle in NB (MNB) 2000 [681 
36 Selective Bayesian Classifier (SBC) 2002 [1161 
37 Boosted Levelled NB Trees (BLNBT) 1999 [142] 
38 Extended Bayes (EB) 2004 [1211 
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3 Iterative Bayes, (IB), Gama, 2003 [49]. IB begins with a contingency table built by 
the standard NB, an iterative procedure then updates these tables by cycling through all 
the training examples. 

4 Ensemble Feature Selection Naive Bayes, (EFSNB), Tsymbal and Puuronen, 2002 
[146]. An ensemble of NB classifiers is created. Each NB is trained on a randomly 
sampled subset of the original set of features. Various methods of ensemble integration 

are considered. 
5,6,7 Sequential Forward Selection NaYve Bayes, (SFSNB), Sequential Backward 

Selection NaYve Bayes (SBSNB), Genetic Algorithm Naive Bayes, (GANB), Tsymbal et 
at, 2003 [145]. In each of these methods an ensemble of NB classifiers is created. Each 
NB is trained on a subset of the original features. The selection of the feature subsets is 

sequential forward selection, sequential backward selection and genetic algorithm respec- 
tively. SFS and SBS are iteratively applied to obtain the base classifiers. GA operations 
of mutation and crossover are iteratively applied to provide the subsets of features for the 
base classifiers. Again, various methods of ensemble integration are considered. 

8 Tree Augmented Bayesian Network, (TAN), Friedman et at, 1997 [48]. A network 
is grown in which the class variable has no parents. Each feature has as parents the class 
variable and at most one other feature, making it a one-dependency network. The tree 
structured Bayesian network is constructed by the Chow and Liu procedure that finds the 
maximal weighted spanning tree in a graph. This is done using the conditional mutual 
information between the two features given the class variable. 

9 Probability Dependence Tree 2, (PDT2), Keogh and Pazzani, 1999 [671. The net- 
work is initialised to NB, Figure 33(a). Each node is considered for Superparent in turn 
by extending edges to every node without a parent, other than the class node. The node 
that increases accuracy the most is chosen as Superparent. The accuracy of extending an 
edge from Superparent to each available node is calculated. (An available node has only 
the class node as a parent). The edge giving the best accuracy is kept and the search for 

the next Superparent is started. The process stops when no significant gains in accuracy 
are made by introducing any more Superparents. 

10 Sequential Forward Selection and NaYve Bayes, (SFS to Bayes), Langley and Sage, 
1994 [821. A subset of the original features is chosen by sequential forward selection. A 
NB is then trained using only these selected features. 

11,12 Sequential Forward Selection and Joining, (SFSJ), Sequential Backward se- 
lection and Joining, (SBSJ), Pazzani, 1996, [1101. Subsets of features are selected for 
the NB classifier. At each step of the feature selection, one of the features may be added 
to (SFS), or removed from (SBS) the subset, or a feature may be joined to another one 
already present in the subset. The Joining operation creates a new compound feature 
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to replace the original features. For example, consider feature set JX 11 X2, x3} and an- 

other feature set where x, and x2 are joined as a single new feature, X1,2, to replace 
the pair. In the first case, the approximation of the class-conditional pmf for class Lok is 

P(XlWk) P(X1 lWk)P(X2 lWk)P(X3 JWk), while in the second case, this approximation is 

P(XlWk) P([XliX2 ]T JWk)P(X3JWk). As more features are joined the probability esti- 

mates of the compound feature becomes less reliable than that of the individual features 

and this must be taken into account. More than two features may be joined by succes- 

sive applications of the joining operation. Each step is only taken if the improvement in 

accuracy made by the change exceeds a pre-defined threshold. 

13 K-Dependence Bayesian Network, (KdepBN), Saharni, 1996 [123]. The space of 
k dependencies is searched for the most appropriate Bayesian network for the problem. 
The value of k is decided by the user. 

14 Aggregating One Dependence Estimators, (AODE), Webb, Boughton and Wang, 
2005 [1511. The class-conditional pdf, P(XlWk) is approximated as the average of n 
"mini"-pdfs, one for each feature. Each such "mini"-pdf is calculated from a one depen- 
dence Bayesian network, where the respective feature is the parent of all nodes (the other 
parent being the class label). In other words, a "mini"-pdf for feature xi given class wk 
is rln=l P(Xj JWk, Xi)- The term for xi is only taken in the summation for approximating 
P(XlWk) if the number of objects in the training set with value xi exceeds a predefined 
threshold. 

15 Lazy Bayesian Rules, (LBR), Zheng and Webb, 2000 [165]. For each test case 
LBR generates an appropriate rule with a conjunction of feature-value pairs as its an- 
tecedent and a local NB as its consequent. The local NB is built using the subset of 
training cases that satisfy the antecedent of the rule. This NB is then used to classify the 
test case. 

16 Conditional Independence Tree, (CITree), Zhang and Su, 2004 [162]. CITree 

represents a joint distribution over all features explicitly defining the conditional depen- 
dencies among them. In growing the tree the feature, given which all the other features 
has the maximum conditional independence, should be selected at each step. In other 
words, the feature with the greatest influence on all other features should be selected. 

17 Selective Neighbourhood NaYve Bayes, (SNNB), Xie et al, 2002, [156]. SNNB is 

a lazy method proposed for discrete features. The Hamming distance from the submitted 
test case, x, to all training examples is calculated and stored. Let n be the number of fea- 
tures and therefore the maximum possible Hamming distance. A NB classifier is trained 
for k=1, ..., n using the examples within distance k from x. The accuracy of each such 
NB is estimated using leave-one-out. The most accurate NB is selected to label the test 
case x. 
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18 Independent Component Analysis Naive Bayes, (ICABayes), Bressan and VitriA, 
2002 [15]. The independent component analysis (ICA) of an n-dimensional random 
vector is the linear transform which minimises the statistical dependence between its 

components. The class-conditional pdf in the new transformed space is the true product 
of the marginals. Feature selection is applied in the transformed space by keeping the first 
d components and discarding the rest. This amounts to a feature extraction with respect 
to the original space. 

19 Improved Naive Bayes Classification, (INBC), Liu et al, 2001 [91]. A genetic 
algorithm is used for feature selection prior to applying NB. The method also uses past 
classified test data without verified labels by introducing it into the training set. 

20 Lazy version of Tree Augmented Networký (LazyTAN), Wang and Webb, 2002, 
[149]. This is the lazy variant of the Superparent algorithm PDT2, [671. The network 
is grown based on the specific values of the test instance x. Each feature only has two 
values, equal or not equal to the test case. This reflects the specific dependencies between 

the feature values of the current test case not the joint probability distribution for all of 
the features. 

21 Interval Estimation Naive Bayes, (IENB), Robles et al, 2003 [120]. The model 
calculates confidence intervals for the NB point estimations of P(xilwj). Combinations 

of values from each interval are found by an heuristic search. Each combination is eval- 
uated using a devised measure of predictive accuracy. The combination of values with 
highest predictive accuracy is selected. 

22 Random Tree Augmented Network, (RTAN), Ma and Shi, 2004 [93]. An ensemble 
of TAN classifiers is grown. Each TAN is trained on a bootstrap sample of the training 
data. The ensemble is integrated using the majority voting method. 

23 Adapted Boosting for Naive Bayes, (ActiveBoost), Wang et al, 2004 [148]. A new 
test case is labelled and then added into the training set. The updated data set is then used 
to train another NB. The new cases in the training set are down-weighted accordingly to 
reflect the lower confidence in their label. 

24 Adjusted Probability Naive Bayes Classifier, (APNBC), Webb and Pazzani, 1998, 
[152]. The method uses the probability distributions produced by NB. The method at- 
tempts to identify linear adjustments to apply to the class probabilities. These linear 

adjustments are not to make the estimate more accurate but to push the rank in the right 
direction. An adjustment factor is associated with each class. The inferred probability for 

a class is multiplied by the corresponding factor. Adjustments are tuned so as to maximise 
the resubstitution accuracy. 

25 Homologous Naive Bayes, (HNB), Huang and Hsu, 2002 [59]. The model takes 
advantage of the knowledge that multiple cases submitted for labelling come from the 
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same unknown class. Such problems occur in speaker verification where there are many 

examples known to be from one speaker but it is not known which speaker in particular. 
26 Fuzzy Naive Bayes, (FNB), St8rr, 2002 [139]. Each feature value of x is accom- 

panied by a degree of membership in the interval [0,11. The case, x, also belongs to 

each class with a degree of membership in the interval [0,1]. The NB formula has been 

adjusted accordingly to accept this representation but reverts back to NB if the extreme 
degrees of 0 and I are used throughout. 

27 Interpretable Boosted Naive Bayes, (IBNB), Ridgeway et al, 1998 [117]. The 

method aims to improve NB by boosting yet still have an end product that is interpretable 
by the user. 

28 Large Bayes, (LB), Meretakis and WOthrich, 1999 [99]. The concept of itemset 

is introduced as a feature subset where the features have particular values. For example, 

an itemset Of J-Ili X2s X31 X4} (binary) is JX2 ý_- 01 X4 --` 1}- Most frequent itemsets 

are stored, along with information about their contribution towards class labels (class 

support). When a new case is submitted, itemsets within the case are identified that 

correspond to the stored ones. The class supports for these itemsets are used to compute 

the probability that the case belongs to a particular class. The model reduces to NB when 

the itemsets are all of size one. 
29 Semi-NaYve Bayes, (SNB), Kononenko, 1991 [721. SNB partitions the features 

into groups using statistical tests of independence. The model takes the form 

P(wi, x): -- P(wi)P(A, Jwi) ... 
P(w4kIWi)i 

where Ak are the disjoint groups of features. It is taken that xi is conditionally indepen- 
dent of xj if and only if they are in different groups. 

30 Kernel-based and Joining Naive Bayes, (KJNB), Denton and Perrizo, 2004 [291. 
Features are joined if they are highly correlated. To store the training data effectively, a 
structure called a P-Tree is used. 

31 NaYve Bayes Committees, (NBC), Zheng, 1998 [164]. A set of NB classifiers is 

generated in sequential trials. NB-Base is generated as founder of the committee using all 
of the features. To generate the next classifier, NB -1, a subset of features, F, is randomly 
generated. The subset is generated to contain approximately half the number of original 
features. If the error produced by NBA is less than NB-Base then NBA is added to the 
overall set of classifiers else it is discarded. If NB-l is added to the set of classifiers then 

the probability of selecting the features in F is increased. If NB-1 was discarded then 
the probability of selecting the features in F is decreased. A new subset of features, F, 
is randon-fly generated taking into account the adjustments in each features probability of 
selection. This new subset of features P is used to generate NB -2. The subset of features 
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at each stage contains approximately half the available features. This heuristic search 
creates a set of NB classifiers based on different subsets of features. This set of classifiers 
is then used as a committee (ensemble). 

32 Boosted NaIve Bayes, (BNB), Diao et al, 2002 [30]. Boosting strategy is applied 
to NB. The training samples are selected by the bootstrap method. 

33 Clustered NaYve Bayes, (CNB), Vilalta and Rish, 2003 [1471. The examples from 

each class are clustered. The training data is then relabelled using the cluster labels. 
Suppose that each class is clustered into 3 clusters. If there were c original clusters, there 
will be 3xc new class labels. A NB is trained on the data with the new labels. When 

a new case is classified it is assigned to one of the new labels by NB. As there is one- 
to-one correspondence between the new (overproduced) and the original class labels, the 
corresponding original label is recovered for x. This method aims to avoid the problem 
of classes spread out over the feature space. 

34 Neuro-Fuzzy NaYve Bayes, (NFNB), NUmberger, et al 1999 [105]. Neuro-fuzzy 

classification systems derive fuZZY classifiers from data using neural-network inspired 
learning. The method maps NB to a neuro-fuzzy classifier. 

35 MDL Principle in NaYve Bayes, (MNB), Kleiner and Sharp, 2000 [68]. This 

method starts with a Bayesian network representing class-conditional independence, as 
the one in Figure 3.7(a). Dependencies are subsequently modelled by adding directed 

edges to the network. Minimum Description Length (MDL) score is used in seeking a 
trade-off between the mutual information gain and increase in the network complexity 
due to adding an edge. 

36 Selective Bayesian Classifier, (SBC), Ratanamahatana and Gunopulos, 2002 [1161. 
SBC runs the decision tree algorithm, C4.5 on 10% of the training set. The features on 
the first three levels of the decision tree are selected. This is repeated five times on a 
different 10% selections of the training data. The feature set is the union of all of the 
features selected from the five runs of C4.5. This union set is then used to train NB. 

37 Boosted Levelled NaYve Bayes Trees, (BLNBT), Ting and Zheng, 1999 [142]. A 

standard decision tree of user defined depth is grown as in the NBTree [69] method. The 
NB at the leaf is trained using all cases that fall at that leaf. Features that appear on 
the path leading to the leaf are not used by NB. Boosting is then applied to improve the 
performance of the tree structure. It is anticipated that the NB classifiers have become 

unstable due to the introduction of the tree structure. 
38 Extended Bayes, (EB), Rosell and Hellerstein, 2004 [1211. EB finds sets of de- 

pendent features using an information gain measure. These features are joined and stored 
as a new feature set, P. A new case is labelled once by NB on the original feature set 
and once by NB on F'. This produces two predictions for the test case. If the two labels 
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Table 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

i NB I () 0 0 0 0 1 0 () 0 0 0 0 0 0 0 0 1 0 
2 NBTmo 1 0 0 a 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 
31B 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 
4 EFSNB 1 0 1 1 0 0 1 0 0 0 0 a 0 0 0 0 0 1 0 
5 SFSNB 1 0 1 1 0 0 1 0 a 0 0 1 0 0 0 0 0 0 0 
6SBSNB 1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 
7 GANB 1 0 1 1 0 0 1 0 0 0 0 0 0 1 a 0 0 0 0 
9 TAN I I a 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 
9 PDTZ I 1 0 0 1 1 1 1 0 0 0 0 0 0 0 () 0 1 0 
10 SFS to Baym 1 0 1 0 0 0 1 0 0 a 0 1 0 0 0 0 0 0 0 
11 SFSJ I I 1 0 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 
12 SBSJ I I 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 
13 KdcpBN I 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 
14 AODE I 1 0 1 1 0 1 1 a 0 0 0 0 0 () 0 0 1 () 
15 LBR 1 0 1) 0 1 1 0 0 0 0 0 0 0 0 0 0 a 1 0 
16 Crrrco 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0 
17 SNNB 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
18 TCABoyco I 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 () 0 0 
19 INBC 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 
20 ljmyTAN I 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 
21 IENB I 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 
22 RrAN I 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 
23 AcbveBoost I a 0 1 0 0 1 0 0 0 0 a 0 0 1 0 0 1 0 
24 APNBC 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 
25 HNB I 1 0 0 0 0 1 0 0 0 0 0 0 0 0 () 0 0 a 
26 FNB I 1 1) 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 
27 TBNB 1 0 0 0 a 0 1 0 0 0 0 0 0 a 1 0 1 0 0 
28 LB I I 1 0 1 1 1 a 0 0 0 0 0 0 0 0 0 1 0 
29 SNB I 1 0 0 1 1 1 0 0 a 0 0 0 0 a 0 0 () 0 
30 KJNB 0 1 0 0 1 1 0 0 Q 0 0 0 0 0 0 0 0 0 0 
31 NBC 1 0 1 1 0 0 1 0 0 0 0 0 0 () 1 0 0 1 0 
32 BNB 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 
33 CNB 1 0 0 0 0 a 1 0 1 1 a 0 0 0 0 0 0 1 0 
34 NFKB I 1 0 0 () 0 1 0 1 0 1 0 0 0 0 0 1 0 0 
35 MNB I 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 () 0 0 
36 SBC 1 0 1 0 0 0 1 0 1 0 0 0 0 a 0 0 0 1 a 
37 BLNBT 1 0 1 a 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 
38 EB I I () I I I I n () () 0 0 0 0 0 0 0 1 0 

3.4: The data matrix of the 38 selected studies encoded by the 19 characteristic feat ires. 

match then the case is labeled with the prediction. If the two labels differ then a further 

analysis is carried out to arrive at a class label. 

3.3.5 Encoding of the selected studies 
The encoding of the studies involved applying the 19 characteristic questions to each 
method. Thus, each method is expressed as a binary vector of length 19. Together these 
vectors create a 38 x 19 binary data matrix, Table 3.4. A 38 x 38 matrix of the pairwise 
Hamming distances between methods can then be created. This matrix of distances is 
hard to visualise and so the techniques of multi-dimensional scaling can be used. 

3.3.6 Analysis of the studies - Multi-Dimensional Scaling 

Multi-Dimensional Scaling methods reduce high dimensional feature spaces into lower 
dimensional ones 194,1291. Usually two or three dimensions are derived so that the data 

can be easily visualised. The idea is to map the data to the lower-dimensional space 
aiming to preserve all interpoint distances. 
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Principal Components Analysis (PCA) 

Principal Components Analysis (PCA) is a method used to reduce the dimensionality of 
data. New variables are derived as linear combinations of the original variables. The 

components are ranked by importance so that the first component "explains" most of the 

variability of the data. The plane spanned by the first two principal components is used 
to plot the 38 data points, Figure 3.9(a). 

Sammon mapping 

Sammon mapping was proposed in 1969 by Sammon [126]. Sammon mapping starts by 

projecting the k objects (the 38 methods) onto 2 random dimensions. This mapping is 

then refined by using a stress function so as to preserve as much as possible of the original 
distances between the objects. The stress function is a gauge of the error of the current 
mapping. The stress is calculated using the distance between two points, dij, in the m- 
dimensional space, (in our case m= 19), and the distance between the two corresponding 
points, bij in the 2-dimensional space. 

k-1 k-d. 
j)2 

(bij 
Stress Function k-1 I: k 

i+- 
(3.19) 

Ei=l 
j= Ij ij ij 

The Sammon mapping implementation used for this study was a Matlab code taken from 
the SOM Toolbox [3]. The input to the routine was the pairwise distance matrix calcu- 
lated from the 19 features, producing the Sammon mapping shown in Figure 3.9(b). To 

terminate the algorithm the limit on the stress function was chosen to be 0.65 (multiple 

runs of the algorithm indicated that this was the minimum achievable stress). 

Self-Organising Maps 

Self-Organising maps (SOM) are a neural network method of reducing high-dimensional 
data into two dimensions for easy visualisation, [7 11. The 2d-map is typically structured 
as a rectangular or hexagonal grid. The goal of the learning in the SOM is to get different 

parts (neurons) of the 2d-map to respond similarly to certain input patterns. 
Let M be the total number of neurons, where M is defined by the user. Each neuron i 

on the 2d grid has an associated vector si = [Sil 
i Si2 i ... ý sim], where m is the dimension 

of the original data and i=1, 
..., 

M. A similarity measure between si and the input, 

x is calculated. The similarity measure identifies the best matching neuron (BMU) and 

as such the input x will be associated with that particular neuron. As attachment of the 
inputs is made using a similarity measure then similar inputs will be attached to (activate) 

the same neurons. A SOM is initialised using 3 steps. 
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Figure 3.8: The Hamming distance of each adapted method from the original NB model. 

1. Initialisation of si, i=1, ..., 

2. Training. In each step one case x from the input data is selected and a similarity 
measure is calculated between it and each si. The best matching unit (BMU) is 
found. 

3. Updating. The vectors corresponding to BMU and its neighbourhood are updated. 

The implementation of the SOM algorithm used for this study was taken from the SOM 
Toolbox. It was used with all the default settings, linear initialisation and batch training. 
In linear initialisation the values of s are ordered and taken from the linear subspace 
spanned by the two principal eigenvectors of the input data. Batch training means that 
updating takes place after the whole training data has been processed. To do this, at step 
2, all updates of BMU for the training data are stored and then the resultant updates are 
applied at step 3. The resultant mapping shows the inputs on the neuron they activated, 
Figure 3.12. 

3.3.7 Landscapes of the NB methods 
Figure 3.8 shows the Hamming distance of each adapted method from the original NB 

method (1) according to the 19 features. All 37 adaptations are within a distance of 6 from 
NB. To move further away may compromise the simplicity that NB has. Two methods 
only differ from NB by I feature, 3 IB [49] and 24 APNBC [1521. Both methods differ 
from NB by feature 17 - "Did the method update the probability table produced by NBT 
Both methods allow NB to run untouched with small updates of p(xjWj). Methods 13 
KdepBN [123] and 30 KJNB [29] rate as the furthest placed methods from NB. Both 

methods consider high order feature dependencies. The techniques used to capture the 
dependencies complicate the process so some of the NB simplicity is sacrificed. 

Whilst Figure 3.8 gives the distance of the adaptations from the original NB model, 
it provides little insight about the relationships between the individual methods. The 

74 



3.3. THE NAIVE BAYES CLASSIMER (NB) CHAPTER 3. CLASSIFICATION 

38 37 

15 

33 4 31 

17 219 208 3.24 gý 

30 29 
ät 

13 
2?? 

34 
-03» 1 aß 

21 

-03 0 05 
(a) 

10 37 

12 4 
28 

2 
33 

15 23 

0 17 1 32 

an 29 27 
25 

8, 
la 26 

14 21 
34 

22 

6 -2 04 

(b) 

Figure 3.9: Landscape representations of the 38 NB adapted methods (a) PCA representation (b) 
Sammon mapping. 

Sammon mapping and PCA representation shown in Figure 3.9 begin to show the rela- 
tionships between the methods. They are designed to give a visual insight rather than 

an accurate diagram. IB and APNBC are represented by 3+ 24 as these characteristic 
features do not separate the two methods. The dashed line on both diagrams divides the 

methods into two groups. Method 2 NBTree [69] is the only method to "swap" groups 
between the two representations. The group on the right-hand side of both representa- 
tions contain methods that are not looking for explicit dependencies but rather features 

that work well together (feature selection) and natural tendencies of the data (clustering 

and focusing of resources on the hard to distinguish data areas (boosting)). The methods 
on the left of the visualisations look for feature dependencies more explicitly. The meth- 
ods in this group try to model dependencies, combine dependent features or use feature 
dependencies as guidance for the model construction. 

Further attempts to cluster the methods result in the groups depicted in Figure 3.10. 
The methods contained in each group are listed in Table 3.5. Cluster A, shown on the 
right-hand side of both diagrams, consists of 5 methods. All the methods in this cluster 
adjust the feature space ain-iing to add more information to the data on which NB is 

trained. 
The ten methods contained in Cluster B are all the methods that specifically use 

Bayesian networks. The group contains the two methods placed furthest away from NB, 
13 KdepBN and 30 KJNB. The consideration of the feature dependencies in the explicit 
way of Bayesian networks complicates the methods thus distancing them from the origi- 
nal NB model in terms of simplicity and possibly efficiency. 
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Figure 3.10: Landscape representations of the 38 NB adapted methods (a) PCA representation (b) 
Sammon mapping, with respective clusterings. 

Ile final coherent cluster, C, seen in both representations contains four methods that 

all join features. These methods aim to uphold the independence assumption by combin- 
ing dependent features into single "new" features. These methods differ from the group of 
Bayesian networks as they create "new" features from dependent ones rather than model 
the dependency within a network. 

There are no clear clusters in the remaining part of Figure 3.10. However, it is possible 
to detect regions as shown in Figure 3.11. This illustration depicts clusters A, B and C 

as well as two more regions, using their relative geometric location on the plots. Tree 

structures can be seen to branch across the top of both Sammon and PCA representations. 
These methods (2 NBTree [69], 16 CITree [ 162], 36 SBC [ 116], 37 BLNBT [ 142]) can 
be seen as providing a link between joining and selecting features. Tree methods select 
a feature or group of features for each split in the tree. The features on a path of a 
tree can then be considered to be joined. The difference between tree structures and 
feature selection methods cannot be clearly stated. Methods in the feature selection area 
try to find features that work well together. Tree structures methods also try to find 

complementary features to label a path. The "space transformation" group, cluster A, 

contains feature extraction methods which are the natural "partner" to feature selection 
methods and so the areas sit naturally adjacent to one another in the visual representation 

The consistency of these regions is also demonstrated by the SOM representation in 
Figure 3.12. Each rectangle corresponds to a neuron. All the neurons are drawn with 
uniform size. The tone of neuron indicates the size; the darker the tone of the neuron 
the larger it is. The methods are displayed on the neuron they activated when submitted 
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Table 3.5: The adapted methods in the three clusters shown on Figure 3.10. 
Cluster Number Method and Reference 

A 18 Independent Component Analysis NB (ICAB ayes) [ 15] 
A 21 Interval Estimation NB; (IENB) [120] 
A 25 Homologous NB (HNB) [59] 
A 26 Fuzzy NB (FNB) [139] 
A 34 Neuro-Fuzzy NB; (NFNB) [1051 
B 8 Tree Augmented Bayesian Network (TAN) [48] 
B 9 Probability Dependence Tree 2 (PDT2) [671 
B 13 K-Dependence Bayesian Network (KdepBN) [1231 
B 14 Aggregating One-Dependence Estimators (AODE) [1511 
B 20 Lazy version of TAN (LazyTAN) [149] 
B 22 Random TAN (RTAN) 1931 
B 29 Semi-NB (SNB) [72] 
B 30 Kernel-based & Joining NB (KJNB) [29] 
B 35 MDL principle in NB; (MNB) [681 
B 38 Extended Bayes (EB) [ 1211 
C 11 Sequential Forward selection & Joining (SFSJ) [I 10] 
C 12 Sequential Backward Selection & Joining (SBSJ) [ 1101 
C 15 Lazy Bayesian Rules (LBR) [ 165] 
C 28 Large Bayes (LB) [99] 

T truc ures 

Joint Features Feature election 

Bayesian networks Space Transformation 
B A 

Figure 3.11: Breakdown of the landscape areas of adaptations to NB from the representations. 
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Figure 3.12: SOM of the 38 NB methods. 

to the trained SOM. The darker horizontal line of neurons in the middle defines two 

groups. Again methods 2 and 16 appear close to this border. The SOM confirms the 
intact appearance of clusters A and C. Cluster B has not been invaded by other methods 
but rather split into three smaller neighboufing clusters. The regions depicted in Figure 
3.11 can still be traced in the SOM. 

The time span of the adaptation publications can be separated into two eras - early 
(1991 - 1997) and recent (1998 - 2005). The years of publication for each of the methods 
are shown on Figure 3.13. The earlier methods appear mainly in the Bayesian network 
area of the landscape, cluster B. Many of the earlier methods considered using knowledge 

of the feature dependencies as the key to improvement. The only method on the "feature 

space" side (lower half of the SOM) from the early methods is 10 SFS to Bayes by 
Langley and Sage 1821 in 1994. 

Cluster A depicts the latest area, taking the adaptations to a more complex level. It 

appears that there are recent studies in all areas. This means that, over the 15 years of 
research, there is no agreed single way of improving upon the NB model. 

To study the effect that an adaptation could have on NB (1) each feature in turn was 
added or removed from the NB descriptor vector. The "new" method was then submitted 
to the SOM in order to see which neuron of the map it activated. The results are given in 
Figure 3.14. The arrows depict where the method would move to and are labelled by the 
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Figure 3.13: SOM of the 38 NB methods depicted by the relevant year of publication. 

feature that would cause the move. For example, if either feature 5 or 6 (considerations 

of feature dependencies) were added to NB the model makes a move towards cluster B 

- the Bayesian network cluster. NB also moves towards the Bayesian network cluster if 

the NB formula is adapted (feature 2) or Bayesian Networks are directly incorporated 

(feature 8). 
Updating the probability table (feature 17) or using fuzzy classification methods (fea- 

ture 11) moved NB towards cluster A- Space transformation. Using decision trees (fea- 

ture 9) moved NB towards the decision tree area of the SOM. However the unexpected 
move was made by adding feature 3, using feature selection prior to using NB. Adding 

this feature in also moved NB towards the decision tree area of the SOM. This is unex- 
pected as the methods using feature selection appear in a neuron directly below NB in the 
SOM (5 SFSNB, 6 SBSNB, 7 GANB, 10 SFS to Bayes, 19 INBC). By adding in feature 

selection we would expect to move to this group. The reason behind this may be due 

to feature 18 (testing of the method on a wide range of data), according to the original 

studies these "feature selection" methods were tried on less than 10 datasets, whereas NB 

has been tested on many types of data. 
By conducting the meta-analysis we have gained answers to the analysis questions: - 

1. Which methods are structurally similar? 
The landscapes are built using the selected structural features of the methods. The 
distance between the methods placed on the landscapes indicates the similarities 
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Figure 3.14: The effects of aqjusting the characteristic structural features of NB by one. 

between them when described by these characteristics. 

2. What relationships, if any, are there between the adaptations" 
The relationships between the methods can be expanded upon by the adjustments 
carried out in Figure 3.14. The addition or removal of structural features from 

particular methods may lead to a closer relationship with nearby methods. 

3. What techniques have been used to try and optimise upon the original NB model? 
The techniques used to adapt NB in the selected studies have been separated into 

the five general areas shown by Figure 3.11. Many adaptations have been kept 

simple in order to enjoy the benctits of NB, with fewer adaptations ranging into the 

perceived complex areas such as space transformation. 

The landscapes presented in this study show where any new variant of NB can be 

fitted. These landscapes provide the nearest neighbours of the variants which would be 

good to use in comparison studies as "straw men". 
Both the PCA and SOM visualisations, (Figures 3.9 and 3.12) suggest that there is 

space for new variations of the methods. The largest gap which can be seen in ail the rep- 

resentations lies between "Bayesian networks" , cluster B and "Space Transformation", 

cluster A. This would suggest the fon-nation of a hybrid method combining feature ex- 

traction and Bayesian networks. The popularity of hybrid methods to combine the good 

aspects of various models could possibly be exploited to achieve success here. 
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The landscapes have also provided us with an idea of what variants to NB would be 

suitable to try on various types of data. For example, if we have no knowledge of the 
feature relationships in our data then the models in the "Joint Features" or "Bayesian 

networks" areas would not be used to their full potential. However, the "Tree structures" 
and "Feature selection" models while not giving any insight into feature relationships 
would expose features in the data that work well together. 

On the other hand, if we had data that required that the feature space and features 

remain interpretable to the domain experts then "Joint features" and "Feature space trans- 
formation" models would be of little use. The remaining areas all result in easily inter- 

pretable classifiers which provide good insight of the data for domain experts. 
From the SOM landscape we can also indicate what effect adjusting the describing 

features would have on a particular method. Adapting the structural features within a 
method will allow more control over the exact make-up of the methods and their "dis- 

tance" from NB. We are cautious to draw any deeper conclusions from the landscapes as 
they would only be applicable to the features we have selected for this study. While the 
analysis is subjective as to the features selected it still produces an interesting insight into 

the methods selected. 
While an empirical evaluation would generate concrete results about the types of 

data a particular method is good for, the study would still be limited to the data used. 
By providing the landscapes this study has grouped the variants into "bitesize" areas of 
adaptations. 'Mis provides an uncomplicated view of the structural changes that have 
been applied, lessening the need to trawl through many piles of literature to find similar 
NB variants. 

It is worth noting that across the 38 methods studied and those considered in the 
application of NB none were adapted to handle probability table data. 

3.4 Chapter Summary 

The requirements of a classifier set out by the veterinary domain specify a need for sim- 
plicity and comprehensibility. Domain experts like to be able to follow the logic of any 
decisions made by a classifier. 

This chapter began by applying a cascade tree model to probability table data for 

solving the multi-class problem. This model was seen to cope well with the skewed 
probability data, as is held in the BSE and Scrapie tables. 

NaYve Bayes has also attracted attention in the medical domain partly due to its 

simplicity and efficiency. As NB is known to be optimal when the features are class- 
conditionally independent it made sense to apply it to the probability table data where 
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one of the assumptions was that the features were class-conditionally independent. Ile 

second part of this chapter was dedicated to a survey of the adaptations applied to NB 

in attempts to improve upon the original model. The survey was conducted via a meta- 
analysis of the structural differences of the models resulting in landscapes of the relation- 
ships between the various models. From the literature surveyed no NB model had been 

specifically adapted to cope with probability table data. 
The adaptations to improve NB invariably led to an interest in the apparent optimal- 

ity or good performance of the model even when the assumption of class-conditionally 
independent features is clearly violated. 
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Adapting NB to improve its performance led to an abundance of literature and a large 

number of new models that have achieved varying degrees of success. However, without 
any alterations NB has been seen to be successful for many types of data over the years. 
Studies have emerged that begin to piece together the puzzle as to why NB can give such 
good performance even in cases when the class-conditional independence of features 

clearly does not hold. 
In 1992 Langley et al carried out an analysis of Bayesian classifiers [81]. The study 

concluded that it should not be assumed that simple algorithms like NB would not per- 
form as well as more complex methods. The study also noted that no studies had previ- 
ously examined the extent to which violation of the conditional independence assumption 
of NB affected performance. 

Through two studies in 1996 and 1997 Domingos and Pazzani showed that the inde- 

pendence assumption is a sufficient but not a necessary condition for the optimality of 
NB [32,331. This was an insight as to why NB could perform well even when the inde- 

pendence assumption was violated. They also demonstrated that NB can not recognise 
all linearly separable functions. NB is unable to recognise the 8-of-25 concept, where the 
concept is true if at least 8 of the 25 Boolean variables are true. 

Langley and Sage [831 analysed NB behaviour on large training sets with large num- 
bers of features. The study looks at the effects of irrelevant features and noise in the 
training data. These characteristics did not have the sizable effect expected on the perfor- 
mance of NB. 

Zhang et al [161] shows how the sampling of the training (or testing) sets affect NB. 
Some classifiers, such as Perceptrons, can represent any linearly separable function no 
matter how the training and testing sets are sampled. This is shown not to be true for 
NB. A linearly separable function that can be recognised by NB by sampling uniformly 
may become unrecognisable to NB when sampling of the training set is not performed 
uniformly. 

In 2001 Rish et al attempted to find characteristics of data that affected the perfor- 
mance of NB [ 118,119]. It has been seen that the strength of feature dependencies 

within the data is not a good predictor of the performance of NB [33]. The character- 
istic that actually appeared as a better predictor of the performance was the entropy of 
the class-conditional marginal distributions, P (xj I wi). The monotone increase of NB er- 
ror is related to the monotone increase of the entropy of the class conditional marginal 
distributions. 

Hand and Yu present a review of NB and an argument as to why the model should 
not be ignored [54]. Suggestions as to why NB performs so well are that: - 1) as NB re- 
quires the estimation of fewer parameters compared to other models, the estimates of the 
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pdfs have lower variance, 2) feature selection used in previous studies may have falsely 
favoured NB as highly correlated features may have been eliminated and 3) the estima- 
tion of the probabilities given by NB need not be accurate for the correct classification to 
be given. 

Zhang and Ling [1601 suggest that it is the distribution of the feature dependencies 

and not the dependencies themselves that are important to the performance of NB. By 

using the conditional mutual information, I(Xi 7 Xj ILok) of the features xi and xj across 
the two class problem they begin to explain this effect, 

I(Xii Xj lWk) ýE P(xi, xj, Lt;, ) In 
P(xilxj, wl) + P(Xi 

i Xj i L02) In 
P(XilXj9W2) 

xi)xj 
P(xilwl) P(XiIL02) 

P(x - Ix - L01) P(XilXj, W2) When 
pý-', IýL, ) x, 

>1 and P(XiIW2) <1 the dependence between xi and xj in both 

class w, and W2 support classifying x into class wi. The information association between 

xi and xj should be the sum of them, but in equation 4.1 they cancel each other out. 
When the evidence supports classification into different classes (i. e. P(x'lxj'-') >1 and P(XjjWj) P(X'IX' 'U72) > 1) they should cancel each other out but equation 4.1 reflects the opposite P 

ýX 
i 1-2) 

occurring. From this information Zhang and Ling construct a classifier based on the 
dependence distribution of the features. 

In 2004 Zhang [158] further explains this effect by developing a dependence distribu- 
tion factor. When this factor has a value of one, NB will give the same classification as a 
model that accounts for all dependencies between the features. It is shown that this dis- 
tribution factor takes the value one in three cases, 1) when no dependence exists between 
the features, 2) the dependence of each feature is the same in both classes and 3) opposite 
influences of dependencies act to cancel each other out. The support some dependencies 

give for classifying x into class w, is cancelled out by the support that other dependencies 

give for classifying x into class W2. 
These studies from 1992 until the present day are all looking to answer the question - 

"When can the NB classifier be optimal? " There have been various attempts to improve 

upon the list of necessary and sufficient conditions for the optimality of NB but this 
list still remains incomplete. The advantages of NB in its learning speed, classification 
speed, storage space and incrementality all generate the interest in when the model will 
be optimal. 

4.1 Errors of NB 

Consider the two feature, two class problem outlined in Table 4.1. The two features 

are binary-valued, the features may be present, having the value 1, or absent having the 
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value 0. The entries in the table are the class-conditional probabilities for the respective 
combination of signs. For example, a= P(xi = 01 X2 = Ojwj). The Bayes error for this 
problem is 

EB = minIP(wl)a, P(W2)el+min(P(wl)b, P(W2)f} (4.2) 

min(P(wl)c, P(W2)9} + minIP(wl)d, P(W2)h} 

where P(Loj) is the prior probability of class wi 

Table 4.1: The dependent distribution of two binary features in a two class problem. 
Wl 1 xi 01 

X2 =0 b 
X2=11 C Id 

W2 xl=O xl=l 

X2 =0 e f 

X2 =1 9 h 

Table 4.1 is termed the "dependent" distribution because x, and X2 are not assumed to 
be independent given either of the two classes. If x, and X2 are considered to be indepen- 
dent their joint distribution will be as shown in Table 4.2. The independent distribution 

can be calculated from the dependent distribution but there is no way of recovering the 
dependent distribution from the independent distribution. 

Assuming that Table 4.2 gives the true distribution the estimate of the Bayes error 
will be 

EIND = min(P(w, )A, P(W2)E} + minIP(w, )B, P(W2)Fl (4.3) 

MinIP(WI)C, P(W2)GI + min(P(w, )D, P(W2)HI 

Table 4.2: The independent distribution of two binary features in a two class problem. 
X, =o X, =l 

X2=O A=(a+b)(a+c) B=(a+b)(b+d) 
X2=1 C=(a+c)(c+d) D=(b+d)(c+d) 

W2 Xl 0 X, =1 
X2=O E=(e+f)(e+g) F=(e+f)(f+h) 
X2=1 G=(e+g)(g+h) - H=(f+h)(g+h) 

Denote by ENB the error made by the NB classifier (assuming Table 4.2) while the 
true distribution is the one in Table 4.1. There is no easy way of expressing ENB because 
it will depend on whether or not the Bayes classifier and NB make the same decisions. 
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For example, let P(wj) --: P(W2) ý 1, then if (a >e and A> E) or (a <e and A< E), 2 
ENB will have minla, e} as the first error term in the brackets in Equation 4.3. If the 
opposite holds, ENB will have max(a, e} as the first error term. 

The best way to see the difference between EB, ENB and EIND is with an example. 
Consider the problem outlined in Tables 4.3 and 4.4. Let P(wi) == PP2) 1- Let 

2 
X= [0, O]T be the case submitted for classification. 

Table 4.3: An exarnDle deDendent distribution. 
Wl x =o xl=l 

X2 ý0 0.4 0.2 
X2 =1 0.1 0.3 

W2 X1 ý-- 0 XI ý1 
X2 ý0 0.3 0.1 
X2 ý1 0.5 0.1 

Table 4.4: The related independent distribution calculated from Table 4.3. 
Wl X, =OI X, =l 

X2 =0 0.3 0.3 
X2 =1 0.2 1 0.2 

W2 xl=O xl=l 

X2 =0 0.32 0.08 
X2 =1 0.48 0.12 

In the dependent distribution x= [0,0] 1 would be classified as class w, with the error 
of this decision being PB (error, x= [0, O]T) = minjO. 4,0.3} x1=0.15. 2 

However, looking at the independent distribution modelled from the dependent dis- 

tribution x= [0 
1 
O]T would be classified as class LV2. According to the independent 

distribution PIND (error, x= [0, O]T) = minjO. 3,0.321 x1=0.15. However, there is a 2 
mistake according to the true distribution, i. e., PNB (error, x= [0,0] T) 

= 0.4 x 0.2, 2 

so ENB is larger than EB. 

Table 4.5 represents the form of the non-traditional probability tables for the two 
class problem. The tables depict the probability of each symptom, (feature xj) being 

present in the case of each disease (class wi). Class w, can be thought of as the class 
of interest, BSE or Scrapie, and class w2 can be thought of as the combined class of 
all other diseases. Table 4.5 can be used to construct the joint distribution of (X1, x2), 
assuming class-conditional independence. This will result in Table 4.2. In other words, 
Tables 4.2 and 4.5 are equivalent, and they represent the information accessible in the 
"non-traditional" data sets. 

With the non-traditional data on BSE and Scrapie the only error that can be calculated 
is EIND, the error related to Table 4.2. This chapter looks at the relationships between 

the three errors, EB, ENB and EIND where 

9 EB is the Bayes error committed on a given "true" probability distribution. 
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Table 4.5: The form of the probability data in the relevant notation. 
Wl W2 

P(xl=l) b+d f+h 
P(X2=1) c+d lg+h 

9 EIND is the Naive Bayes effor committed on the assumed "independene'probabil- 
ity distribution calculated from the original distribution. 

ENB is the Naive Bayes error made using the "independent' 'distribution to make 
classification and relating this choice back to the "true" probability distribution. 

4.2 Optimality of NB 

For binary features NB can only learn linearly separable functions [36]. For functions 

such as the exclusive Or problem (XOR) NB will always be suboptimal, although it has 
been shown that boosting can help NB solve the "XOR+noise" problem but not the basic 
XOR problem [40]. NB classifier performance may still be close to optimality even for 

these problems. If ENB or EIND are equivalent to EB then the NB classifier is optimal. 
If the binary values "0" and 'T' are treated as numbers then the covariance between 

two binary features can be calculated separately for each class. The mean for x, given 
class w, is M, =0x (a + b) +1x (c + d) =c+d. The mean for X2 is A2 = (b + d). 
The covariance is the expectation of (xl - Al)(X2 - A2) summed across the four values 
and weighted by the respective probability. 

COV(XI, X2lWl) = a((O-(c+d))(O-(b+d)))+b((O-(c+d))(l-(b+d))) 
+c«1 - (c + d» (0 - (b + d») +d «1 - (c + d» (1 - (b + d») 

= ad-be (4.4) 

Kuncheva [78] shows that NB will be optimal for a two-class two feature problem 

where COV(X1, X21W1) ---: COV(X1, X21W2). This only holds when the prior probabilities of 
the two classes are equal. It is shown that for 3 features if all pairwise covariances are 

equal across the three classes then this no longer holds. 

4.3 Empirical bounds 

With the non-traditional data the only error that can be calculated is EIND. The question 
is how EIND is related to EB, the Bayes error or ENB, NB error for the actual dependent 
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distribution of features? The following experiments were devised in order to gain an 
understanding of the relationship between ENB and EIND- 

4.3.1 Simulated data 

10,000 pairs of random matrices of dependent features, as in Table 4.1, were generated. 
The independent distributions, (Table 4.2) were then calculated from these. The measure 
of dependence of the features was taken to be Yules Q statistic. Yules Q statistic varies 
from -1 to 1. A value of -1 implies the two features always take the opposite value 
(negatively dependent) and a value of I indicates the features always take the same value 
(positively dependent). A Q-value of zero means that the features are independent. Q, 

expresses the level of dependency in class w, and is calculated as 

Ql = 
ad - bc 
ad + bc 

Restrictive simulation 

(4.5) 

The distribution of class W2 was restricted so that the two features were independent given 

class W2, meaning that Q2 ý 'eh-fg = 0. The classes are also assumed to be equiprobable, h+fg 
P(WI) = P(W2) = 12* 

The 10, OW points, (Qj, EIND - ENB) are plotted in Figure 4.1. The figure shows 
that the difference between ENB and EIND can be positive or negative. It is not clear 

as to when the error is over or underestimated. When Q, is zero so is the difference 

between the two errors. This is because the features are independent in both classes. All 

generated matrices become equivalent to those in Table 4.1. The NB classifier is known 

to be optimal in this situation. As the level of dependency reaches ±1 the maximal 
difference is increased. However, the difference between the two errors can still be zero 

and so the level of dependency does not really indicate the size of the difference. This is 

in agreement with previous studies that the level of dependency of the features does not 
influence the error incurred [33,119]. The shape of the plotted differences is symmetrical 

and pronounced. The symmetry is due to the encoding of the features being arbitrary, 
the values of zero and one for the features can be interchanged. The pronounced shape 
indicates the possibility of a bound being found. 

Two empirical bounds were found that fit onto the differences depicted in Figure 4.1. 
Both bounds are depicted in Figure 4.1. Enclosing 95 % of the points shown is bound 1 

B, -- ±Ql + Ql 3 

(4-6) 20 

The second bound actually encompasses 100% of the 10,000 error differences shown in 
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Figure 4.1: Scatterplot of the 10,000 randomly generated data points (Q1, ETND - ENB)- 
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15 
(4.7) 

These bounds indicate that if the two features are independent in one class and the value 
of the dependency in the other class is known then EIND is likely to be within ±B2 of 
the error committed on the "true dependenf' distribution. 

4.3.2 Real data - traditional recorded case data 

By the way the non-traditional probability tables are constructed we have no knowledge 

of any underlying dependencies between the features and therefore cannot obtain the 

value of Q. However, using traditional case data will give an indication of the possible 
distribution of error differences. Four traditional data sets of recorded cases were taken 
from the UCI data repository [ 111, SPEC17, Wine, Thyroid and Glass. 

SPECE Separate cardiac SPEC17 images into normal or abnormal classes based on 
22 binary features. The set contains 267 cases. 

Wine. The 178 cases are made up from the chemical analysis of wines grown in the 
same region of Italy but derived from three different cultivars. A decision is made 
between these three classes using 13 continuously valued features. 

Thyroid. The 215 cases described by five continuously valued features are the 

results of lab tests to predict the condition of a patient's thyroid into one of three 
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classes. 

Glass. Glass left at crime scenes may be used as evidence if correctly identified. 
The types of glass are separated into six different classes. The 214 cases are de- 

scribed by nine continuously valued features. 

None of the data sets contained any missing values. For this simulation any data that 

was not binary was converted by using the Gini criterion to split the continuously valued 
features. If a data set contained more than two classes only the first two classes were used. 
This reduced Wine, Thyroid and Glass to 130 cases, 185 cases and 146 cases respectively. 

The data was converted into 2-feature probability problems. This was done by con- 
sidering each pair of features from the data and generating the "dependenf 'distribution 
(Table 4.1). From this the "independent" distribution (Table 4.2) for the two features 

could be calculated. The Q-value for the two features in the two classes was also cal- 

culated. The feature pairs that had a Q-value of exactly zero in at least one of the two 

classes were then selected, i. e. the two features were independent in at least one of the 
two classes. 

The 22 features in the SPECT data gave 231 feature pairs to consider. From these 231 

pairs 42 had a Q-value of zero in at least one class. The Wine data generated 78 2-feature 

problems. From this there were 57 pairs that had a Q-value of zero in at least one class. 
The Thyroid data generated 10 2-feature problems with its 5 features. The 10 generated 
pair problems gave 7 feature pairs with a Q-value of zero in at least one class. The Glass 
data contained 9 features which allowed the generation of 36 2-feature problems. Out of 
the 36 feature pairs there were 15 that had a Q-value of zero in at least one class. 

For each of the selected feature pairs the value (Q, EIND - ENB) was plotted where 
Q is the Q-value of the class which was not equal to zero. The results together with bound 

B2 are plotted in Figure 4.2. All of the plotted points, (Q. EIND - ENB) fall within the 

bound B2. The points generated by the real data imply that the maximum difference is not 

as large as the bound allows. For example, Q varies between -1 and 1 so at the extremes 

the bound B2 allows a difference between EIND and ENB of ±-!. In reality the points 15 
generated here suggest that in fact the difference between the two errors will be smaller 
than the suggested bound. 

4.4 Theoretical bounds 

For the empirical bounds the restrictions on the data were that the bounds only held for 

the case with two binary features in a two class problem with dependence between the 
features allowed in only one class. The restrictions on allowing dependency between the 
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Figure 4.2: Scatterplot of the pairings that fit the requirements. SPECT - e, Wine - X, Thyroid - 
0, Glass -* 

features in only one class and having equal prior probabilities are removed in proposition 
3. 

Proposition 3 Let x= [XI 
9 272]T where X1 i X2 E {O, 1} and let w, and W2 be the classes 

of interest with P(wi) =p and P(w2) = (1 - p), then EIND - ENB will either take 

the value 0 or ±(pCov, - (1 - P)COV2), where Covi is the covariance between the 

two binary features given class wi. COV1 = COV (X1 
i X2 I WI) = ad - bc and COV2 = 

COV (XI 
i X2 I W2) = eh - fg. 

ProoE There are 4 possible values Of (-111 X2), and each one can be labelled in one of 
two classes. Therefore, there are 24= 16 possible ways of labelling, including the two 
trivial cases where all four values are labelled in the same class. The proof of this lemma 
is done by considering all possible labellings. 

Consider Table 4.6 rows 1-4. Without loss of generality just one of these rows 

may be considered. Row 1 shows that [0,0] T and [1, O]T have been assigned to class 

w, while [0,1]T and [1,1]T have been assigned to class W2- This indicates that A> 

E, B > FC < GandD < H, sothatEIND = (1-p)(E+F) +p(C+D) and 
ENB = (1 - p) (e +f)+ p(c + d). Expanding out EIND using values from Table 4.2, 

gives 

EIND 
---: (1-p)(E+F)+p(C+D) 
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Table 4.6: The possible assigmnents of the class labels and the resulting differences of (EIND - 
ENB)- 

(010) (011) (110) (1,1) Difference 
1 W, W2 W1 W2 0 

2 W2 W1 W2 W1 0 

3 W, W1 W2 W2 0 

4 W2 L02 L01 WI 0 

5 W, W2 W2 W2 PWCý01) - 
(1 

- P) (COV2) 

6 W2 W2 W2 W1 P(COV1) - 
(1 

- P)(COV2) 

7 W, W2 W1 LLY1 P (COV1) - (1 - P) (COV2) 

8 W, W1 W2 W1 P(COV1) - (1 - P)(COV2) 
9 LL72 W1 L01 W1 P) (COV2) - P(COV1) 
10 W, W1 W1 L4)2 P) (COV2) - P(COV1) 
11 W2 W1 W2 W2 P) (COV2) -P (COV1) 

12 LJ2 L402 W1 W2 (1 P)(COV2) - P(COV1) 
13 W, W1 W1 W1 Class of max. prior 
14 1 W2 L02 L402 LA)2 

_Class 
of max. prior 

15 1 WI L02 W2 L401 

16 1 W2 W1 W1 L4J2 

(1 - p) ((e + f)(e + g) + (e + f)(f + h)) + 

p((c+d)(c+ a)+ (d+b)(d+c)) 

('-P)(e(e+f +g+h)+f(e+f +g+h)) + 

p(c(a+b+c+d) +d(a+b+c+d)) 

(1-p)(e+f)+p(c+d) =ENB (4.8) 

Consider the assignments given by Table 4.6 rows 5-8. Row 5, Table 4.6 indicates 

that A>E, B<F, C<G, D<H, so EIND = (1 - p)E + p(B +C+ D) and 
ENB = (1 - p)e + p(b +c+ d). Expanding EIND to obtain 

EIND 
= p(B +C+ D) + (1 - p)E 

= p((b+a)(b+d)+(c+d)(c+a)+(d+b)(d+c))+ 
(1-p)(e+f)(e+g) 

p(bLa+b+d)+ad+c(a+b+c+d)+d(a+b+c+d) + 
1-C 

P)(eLe +f+ g) +fg) 
1-h 
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= p(bZbc+ad+c+d)+(l-p)(e ZLý+ýIg 
COVI -COV2 

= p(b+c+d+Covl)+(l-p)(e-COV2) 

= ENB + PCOVI - (1 - P)COV2 (4.9) 

Assignments in Table 4.6, rows 9- 12 lead to the final possible value of difference be- 

tween EIND and ENB 
. In row 9, Table 4.6, ENB = pa + (1 - p) (f +g+ h). 

EIND : -- (1 - p) (F +G+ H) + pA 

= (1 - p)((e + f)(f + h) + (e + g)(g + h) + (f + h)(g + h)) 

p(a + b)(a + c) 

(1-p)(fLe+f+h)+eh+g(e+f+g+h)+h(e+f+g+h) + 

p(a (a +b+ c) +bc) 

I-d 
(1-p)(f, +eh-fg+g+h)+p(a; ý-ad, +bc 

COV2 -COV1 

P)(f +g+h+ COV2) + p(a - Covi) 

= ENB + (1 - P)COV2 - PCOV1 (4.10) 

Consider the assignments in rows 13 - 16 of Table 4.6. In the case of rows 13 and 14 of 
Table 4.6, row 13 shows that A>E, B>F, C>G and D>H. Leading to 

p(A+B+C+D) > (1-p)(E+F+G+H) 

p> (1 - P) (4.12) 

When the features are giving no information then the cases are assigned to the class with 

the largest prior probability. In the case of row 13 this is class wi. For row 14 this becomes 

class w2. For the case when p= (1 - p), that is when P(wi) = P(W2) =1 equation 2 
(4.12) becomes a contradiction. This assignment of classes can not be achieved with the 
NB classifier, in the case with equal prior probabilities. The assignment of class labels to 

the cases would become random. 
Consider finally rows 15 and 16 of Table 4.6. The assignment in row 15 indicates that 

pA > (1 - p)E, pB < (1 - p)F, pC < (1 - p)G and pD > (1 - p)H. As the tables are 
independent then pAD = pBC and (1 - p)EH = (1 - p)FG, 

pAD > (1 - p)EH (4.13) 

(1 - p)FG > pBC (4.14) 
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pAD>(l-p)EH = (1-p)FG>pBC (4.15) 

Equation 4.15 implies that pAD > pBC but this is not true and so this assignment can 
not be obtained by the NB classifier. This is due to NB being a linear classifier and can 
therefore not recognise exclusive OR problems. The difference of EIND and ENB Will 
therefore take one of three values. 

EIND - ENB 
--` (4.16) 

EIND - ENB PCOV1 - 
(1 

- P)COV2 (4.17) 
EIND - ENB (1 

- P)COV2 - PCOV1 (4.18) 

Thus EIND 
- 

ENB will either take the value 0 or ±1 - COV2)- 
2 

(COVI 

4.4.1 Empirical analysis 

Simulated data 

0 

Without access to the values of Table 4.1, it is impossible to calculate the value of the 
difference from equations 4.17and 4.18. By generating 10,000 matrices of the form of 
Table 4.1 with random prior probabilities, p, the aim is to give an outline of the differences 

that can occur. 
From the 10,000 pairs of matrices only 1949 gave a difference in ENB and EIND- 

Figure 4.3 shows the histogram of the non-zero differences. About 55% have a differ- 

ence between -0.05 and 0.05 while 94% have a difference between -0.1 and 0.1. This 

simulation implies that even when the error values differ, the majority of the time the 
difference has an absolute value below 0.1. 

Real data - traditional recorded cases. 

Traditional recorded case data allows us to calculate the dependent probability distribu- 

tion (Table 4.1) and the associated independent distribution (Table 4.2). SPECT data 

taken from the UCI repository [11 ] has 22 binary features. This gives 231 pairs of fea- 

tures to look at. From these 231 pairs of features, 229 pairs had non-zero differences 
between ENB and EIND. These 229 differences are plotted in the histogram in Figure 
4.4. Of these differences 100% fall within the range -0.1 to 0.1. 

The difference in the errors caused by assuming features are class-conditionally inde- 

pendent when they are not, is in reality seen to be small in the majority of cases. We have 
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EM-E.. 

Figure 4.3: Histogram of the values of EIND - ENB 00 for the simulated data. 
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Figure 4.4: Histogram of the values of EIND - ENB =34 0 for SPECT data. 
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Figure 4.5: Histogram of the values of EIND - ENB 7ý 0 for the DEFRA data (a) BSE data (b) 
Scrapie data. 

looked at the difference between the error made by assuming independence and the error 

made by relating the same choices back to the true distribution. 

4.4.2 Application to traditional BSE and Scrapie data 

The traditional DEFRA data sets for BSE and Scrapie both give real two-class problems. 
From this recorded case data we may calculate the dependent and independent distribu- 

tions required. The BSE data contains 30 features which gives 435 feature pairs. Out of 
these 435,218 pairs gave a difference where tile difference between EIND and ENB Was 

non-zero. The non-zero differences are plotted in histogram form in Figure 4.5(a). The 

maximal difference achieved here is 0.0234. 
DEFRA provided a reduced version of the Scrapie data which is described by 14 

features giving 91 feature pairs. 61 of the feature pairs gave a non-zero difference of 
EIND and ENB- These are plotted in the histogram in Figure 4.5(b). The maximal 
difference achieved is 0.0104. 

For both sets of data the histograms show that if the difference for the two errors was 

non-zero then it would fall within the range -0.05 and 0.05. 
In summary the difference between the error committed by assuming that the features 

are conditionally independent when they are not and the error committed when indepen- 

dence is not assumed is in reality minimal in the two feature two class case. This has 
been supported by the calculation of this difference from "traditionally stored7' data. 
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ED z LU 

7 
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Figure 4.6: Scatterplot of the values of ENB versus EIND, (black n=2, magenta n=3, blue 
n-4, red ?i-5, green n, = 6, cyan n= 7) 

4.5 Increasing the number of features 

Until now only the two feature case has been considered. When more features are added 
into the problem the structure of the errors becomes more complex. Proving this in the 

way that Proposition 3 was proved would be inefficient. For 3 features the number of 
representative binary vectors, x is 8. For a two class problem this allows 256 possible 
combinations of class assignments. A new insight would seem to be needed in order to 

attempt a proof. 

4.5.1 Simulation 1- Relationships of EB, ENBand EIND 

To study the relationships between the errors as the number of features n increases, ran- 
dom matrices as in Table 4.1 were generated as before allowing the calculation and stor- 
age of EB, ENB and EIND- 10,000 sets of matrices were generated for each n., where 
n=2,... 7. 

The 10,000 points (EIND, ENB) for each n. are plotted in Figure 4.6. The diagonal 

trend of the points indicates a positive relationship between the two types of error. EIND 

can over and under estimate ENB, demonstrated by the points above and below the diag- 

onal. However, as n increases the cloud of points becomes more concentrated around the 
diagonal. This indicates that as more features are added to the problem the differences 
between the error that can be calculated from the assumed "independent distribution", 
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Figure 4.7: Scatterplot of the values of ENB - EIND, (black n=2, magenta n=3, blue n=4, 
red n-5, green n, = 6, cyan n- 7) 

FIND becomes closer to the error actually committed by NB on the true "dependent" dis- 

tribution. This effect is better seen in Figure 4.7 with the vertical spread of EIND - ENB 
becoming smaller as n increases. 

Figure 4.8 (a) and (b) show (ENB, EB) and (EIND, EB) plotted respectively. EB and 
ENB are both calculated from the true distribution, (Table 4.1 for n=2). EB is the minimal 

possible error and therefore ENB > EB. This inequality is demonstrated in Figure 4.8(a) 

where every point lies on or below the diagonal line. In Figure 4.8 it can be seen that 
EIND can underestimate EB, i. e. EIND < EB, by the points plotted above the diagonal. 

In Figure 4.9(b) it can be seen that EIND only underestimates EB in the cases of two and 
three features, denoted by the black and magenta points plotted below the zero line. The 

tendency of ENB and EIND to overestimate as n increases is shown by the arc given to 

the points that sit below the diagonal in Figures 4.8(a) and (b) 

Figures 4.9 (a) and (b) show that by the case of n=5 the size of the maximal 
difference between either ENB or EIND and EB does not decrease. ENB and EIND can 
both match the error of EB but it is still unclear exactly when this can happen. 
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Figure 4.8: Scatterplot of the values of ENB versus EB, (black n-2, magenta n=3, blue 

n-4, red n=5, green n=6, cyan n= 7) 
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Figure 4.9: Scatterplot of the values of ENB - EB, (black n=2, magenta n=3, blue n=4, 
red it = 5, green it = 6, cyan n= 7) 
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4.5.2 Simulation 2- How are the differences structured? 

Case n=2 features. 

Recall that for the case of a two class, two binary feature problem the difference of EIND 

and ENB is either zero or from equations 4.17 and 4.18, ±(p(COVI) - (1 - P)(COV2)) 

where p=P (wi), (1 - p) = P(L02) 
. 
COV1 = ad - bc and COV2 = eh - fg. 

From the structure of Tables 4.1 and 4.2 it is known that 

a+b = A+B (4.19) 

a+c = A+C (4.20) 

b+d = B+D (4.21) 

c+d = C+D (4.22) 

Using the above equivalence expressions, 

Cov, = ad - bc 

= C-ac-c 2 -dc-A+a2+ab+ac 

= C-A-c(C+D)+a(A+B) 

= C-A-c(C+D)+(l-b-c-d)(A+B) 

= C-A-c(C+D)+(l-c-(B+D))(A+B) 

= C-A-c(A+B+C+D)+A+B-C(A+B)-(B+D)(A+B) 

= C-A-c+A+B-(b+d)(a+b) 
%0 B 

= C-A-c+A+B-B 

= C-C (4.23) 

It can be shown that lad -bcl = IA-al = IB-bl = IC-cl = ID-dl for the case of two 
binary features. This is also true for leh - fgl = JE - el = IF -fI= IG - gl = IH - hl 
The equation EIND 

- 
ENB =± (P(COV1) 

- 
(1 

- P) (COV2)) becomes 

EIND - ENB = ±(p(A - a) - (1 - p)(E - e)) (4.24) 

Therefore the difference between EIND and ENB will be zero or equation (4.24). Recall 

that A= P(xi = OlWl)P(X2 = 01wi), a= P(xi = OiX2 = 01wi), E= P(xi 

OIW2)P(X2 = OIL02) and e= P(xi = 07 X2 = OIL02)-'Iben 

EIND-ENB 
= ±(p(A-a)±(l-p)(E-e)) 
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= ±(P(P(Xl=OIWI)P(X2=()1W1)-P(X1=0iX2=01W1»- 

(1 - P)(P(Xl = 01W2)P(X2 = 01W2) - P(Xl = 01 X2 = 01W2») 

(425) 

Let vk be the value of feature Xk for a particular x where Vk E 10,1}. A particular x 
with n features is represented as x= [vi, 

... i VnI T. Let di (x) be the difference between 

the class conditional probability of a particular x using the n features independently and 
dependently for class wi. 

di(x) = P(w, )P(xl=vllwl)x... xP(x,, =v,, Iwl)-P(w, )P(xlwl) 
n 

= P(Wl) IIP(Xk=VkIU-71) P(xlwl) (4.26) 
[ (k=l I 

Let d2 (x) be the equivalent for the same x in class W2 

d2 (x) 
--.: 

P (W2) 11 P(Xk 
---2 Vk 1W2) P(X1W2) (4.27) 

[ (k=l 1 

For x= [X1 =OiX2 = O]T 
, dj(x) = JA- al which in turn is equivalent to lCov, I. So 

EIND - ENB 
= ±(Idl(x)l ± ld2(x)l) (4.28) 

To simplify the structure of this difference let D(x) = ±(Idl(x)l ± ld2(X)I) then 
EIND - ENB = D(x). As lad - bcl = JA - al = IB - bl = IC - cl = ID - dl 

and leh - fgl = JE - el = IF -fI= IG - gl = IH - hl for the case of two binary 
features, equation (4.28) is equivalent for any x= [xl = V1i 12 = V2]T . An example of 
the structure of this difference for the case when n=2 is given in Figure 4.10. 

Simulation n=3 features 

For n=3, x= ['Vli X21 13 IT where xi can take the values vi, v2, v3 E 10,11 respectively. 
Equation 4.28 is no longer equivalent for any given x, i. e. the difference between P(x, = 
VllWl)P(X2 = V21LO1)P(X3 = v3lwl) and P(x = 

[VliV27 V3 ]TIW, ) is no longer the same 
for all x. 

Consider the two class problem posed in Figure 4.11 with three binary features. '17he 

prior probabilities of the two classes are P(wj) = 0.5158 and P(L02) = 0.4842. The 

entries in the "dependent' ' distribution (Fig 4.11, tables (a) to (d)) are P(wi) P(x = [xi = 
VI v X2 = V2 i X3 = V31 1wi). The entries in the "independent" tables (Fig 4.11, tables (e) 
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The tables shown include the prior probabilities of the classes, P(WI) = 0.4513 
and P(W2) = 0.5487. Let x= [0, O]T and x' = [0,1]T. 

Tables for the "dependent distribution". 
WI X, =oi x, +II: ] 

X2 =0 0.1431-1 0.1012 
X2 =1 0.08711 0.1 

W2 xl=O xl=l 

X2 =0 0.0888 0.4532 
X2 =1 0.0009 0.0057 

Tables for "independent distribution" 
Wl XJ=O Xl=l 

X2 =0 0.1246 0.1197 
X2 =1 0.1056 0.1014 

W2 xl=O xl=l 

X2 =0 0.0886 0.4534 
X2 =1 0-0011 

EIND 0.0886 + 0.0011 + 0.1197 + 0.0055 0.2149 
ENB 0.0888 + 0.0009 + 0.0057 + 0.1012 0.1966. 

EIND 
- 

ENB 
= 0.2149 - 0.1966 = 0.0183 

di(x)=0.1431-0.1246=0.0185, dl(3e)=0.0871-0.1056=-0.0185 
d2(x)=0.0888-0.0886=0.0002, d2(Xý)=-0.0009+0.0011=0.0002 

di(x) - 
d2(X) 

= 0.0185 - 0.0002 = 0.0183 = -dl(x, -) - 
d2(X-'I) 

If x is taken to be any x then it can be seen that EIND-ENB = ±ldl(x) I ±ld2(x) I 

Figure 4.10: Example of error differences when n=2 
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Tables for dependent distribution 
Class 1. 

11 0 X2 ý0 X2 ý-- 1 Xlýl X2ýO X2ý1 

X3 0 0.0862 0.0546 273 0 0.0740 0.0674 

X3 1 0.0179 0.0477 X3 1 0.0991 0.0690 
(a) (b) 

Class L02 

Xl' 0 X2 ý 01 X2 
7--111 

11 X2 =0 X2 =1 

X3 0 0.1006 0.0537 0.0650 0.0396 
X3 1 0.0583 0.0281 0.0874 0.0514 

(c) (d) 

Tables for independent distribution. 
Class Lo, 

XI 0 X2 = 01 X2 ; 
-; 

1] XI =1 X2 =0 X2 =1 

X3 0 0.0607 10.0522 X3 =0 10-0909 0.0783 

X3 1 0.0502 10.0433 1 X3 = 110.0753 0.0648 
(e) W 

Class LL12 
Xl--"7 0 X2 =0 X2 =1 X2 =0 X2 =1 

X3 =00.0827 0.0460 0.0837 0.0465 
X3 =10.0720 0.0400 0.0728 0.0404 

(g) (h) 

Figure 4.11: Probability tables for n=3 features example. 

271 0 X2 ý0 X2 =-- 1 

X3 0 0.0862 0.0546 
x3 1 0.0179 0.0477 

'Z71 0 'Z72 ý0 -E2 ý1 

x3 0 0.1006 0.0537 
X3 1 0.0583 0.0281 

'El ý0 -12 ý0 -12 
1 

x3 =00.0607 0.0522 

X3 =10.0502 0.0433 

0 '1ý2 =- 0 
-', r 21 

x3 =00.0827 0.0460 

X3 =10.0720 0.0400 

'171 ý1 -'-V2 ý0 X2 ý1 

'173 0 0.0740 0.0674 
X3 1 0.0991 0.0690 

'El 1 
-'162 ý-- 0 X2 ý-- 1 

X3 0 0.0650 0.0396 

'E3 1 0.0874 
. 

51 

-11 ý1 X62 ý0 272 1 

"3 ý0 0.0909 0.0783 
273 ý1 0.0753 0.0648 

'ýl ý1 -Z72 ý0 X2 ý1 

X3 ý00.0837 0.0465 
X3 ý10.0728 
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to (h)) may be calculated from the "dependent" ones. The entries in the "independent" 

tables are P(wi)P(xi ý VllWi)P(X3 -= V3lWi)P(X3 = v3ju)j). From the tables from 

Figure 4.11, 

EIND = 0.0607 + 0.0502 + 0.0460 + 0.0400 + 0.0837 + 0.0465 + 0.0728 + 0.0404 

= 0.4403 (4.29) 

ENB = 0.0862 + 0.0179 + 0.0537 + 0.0281 + 0.0650 + 0.0396 + 0.0874 + 0.0514 

= 0.4293 (4.30) 

Therefore, EIND 
- 

ENB 
= 0.0109. Consider x= [0,0, O]T and x-' = 

[0,0,1]T. Then 

di(x) P(WI) (P(Xl ý-- 01WI)P(-12 OlWl)P(-C3 ý-- Olwl) - P(Xlwl)) 

0.0607 - 0.0862 

= -0.0255 (4.31) 

d2(X) P(W2)(P(-'ý'lýOIW2)P(-'172ýOIW2)P(X3: --OIW2)-P(XIW2)) 
0.0827 - 0.1006 

= -0.0178 (4.32) 

D(x) = -0.0255 + 0.0178 = -0.0077. Similarly, dj(xý) = -0.0323 and d&ý) 

-0.0137. Giving D(3e) = 0.0323 - 0.0137 = 0.0186 Then 

EIND - ENB 
= -D(x) + D(3e) 

= -0.0077 + 0.0186 

= 0.0109 (4.33) 

It is suggested that EIND - ENB can take the value zero, ±D(x) or ±D(x) ± D(X') 

where x and ie are particular cases of length n=3. 
As a theoretical proof of the possible differences at this stage is impractical without 

new insight, 10,000 sets of probability matrices were randomly generated in the form 

of Figure 4.11 (a) to (d). From these the probability tables figure 4.11(e) to (h) were 
calculated. The values of EIND - ENB for each of the 10,000 sets was calculated and 
stored. The 8 values of D(x) for all x were also stored. 
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The 10,000 differences took one of the values, 

EIND - ENB 0 (4.34) 
EIND - ENB ±D(x) (4.35) 
EIND 

- 
ENB ±D(X) ± D(ie) (4.36) 

The differences were separated as follows, 7139 took the value zero. 1528 took the value 
of equation 4.35 and the remaining 1333 took the value of equation 4.36. 

Case n=4 features 

The number of possible x is now increased to 16. Therefore in a two class problem there 
are 65,536 possible different labellings of the classes. 

When 10,000 sets of probability matrices were generated with four features, the num- 
ber of possible differences increased. The simulated matrices indicated that EIND - ENB 
could take one of six values. 

EIND - ENB 0 (4.37) 
EIND - ENB D(x) (4.38) 
EIND 

- 
ENB D(x) ± D(3e) (4.39) 

EIND 
- 

ENB D(x) ± D(ie) ± D(x") (4.40) 
EIND 

- 
ENB D(x) ± D(3e) ± D(k") ± D(x) (4.41) 

EIND 
- 

ENB D(x) ± D(x-) ± D(k") ± D(x) ± D(3e) (4.42) 

Equation 4.42 shows that EIND - ENB can be equivalent to the difference using five 

of the possible 16 representative x. Figure 4.12 shows that out of the 10,000 generated 
data points 7044 gave a difference of zero between ENB and EIND. The remaining 2956 

points are spread between the differences of equation 4.38 to equation 4.42 

55.1 7044 11 596 
Eq. 4 421 Eq. 4.37 Eq. 4.38 

10,000 

755 1 646 11 904 
Eq. 4.411 Eq. 4.40 Eq. 4.39 

Figure 4.12: The possible errors for n=4 features 
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However, as there are 65,536 possible class assignments the 10,000 generated prob- 

ability tables will not cover all possibilities. As such it can not be guaranteed that the 
differences found are complete. This simulation has given an insight into the structure of 
the difference between EIND, the error made by assuming conditional independence of 
the features and ENB, the error relating to the choices made in the independent distribu- 

tion to the true "dependenf' distribution. At this stage no theoretical proof seems likely 

without a new approach but theses simulations have suggested the possible differences of 
ENB and EIND- 

4.6 Chapter Summary 

This chapter investigated the effects of the errors made by NB when class-conditional 
independence of the features was assumed despite it being untrue. This is precisely the 
situation given by the assumption made in the probability tables. The NB error calculable 
from the probability tables, EIND was compared to the error made by NB on the related 
true distribution that incorporated all feature dependencies, ENB- 

Empirical bounds were found for the difference between EIND and ENB in the case 
of two classes and two features where the features were independent in one class and 
the level of dependency between the two features (Q measured by Yules Q-statistic) in 

the second class was known. It was shown that 100% of the differences fell within ±B2 

where 
±B2 ý 

Q+Q5 
15 

Removing the restrictions on the levels of dependencies allowed between the features 

and the requirement for equiprobable classes led to the theoretical result of the actual 
difference between EIND and ENB for the case of two classes and two features, 

EIND - ENB ý-- ý: (PCOV1 
- 

(1 
- P)COV2) 

where Covi is the covariance of the two features in class wi and p is the prior probability 
of class wl. 

The final sections of this chapter began to give an insight into how the difference 
between EIND and ENB would vary in the two-class case where the number of features 
increased above two. 

The results suggested that assuming class conditional independence when it is not true 
resulted in a minimal difference between the errors made by NB. Ultimately, NB appears 
to be a sensible and practical option when using non-traditional probability tables. 
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5.1 The traditional data 

There is an interest in the performance of NB in relation to other classifiers when using 
medical data with binary features. The two DEFRA data sets are stored with binary 
features and may be used for such a comparison. 

5.1.1 Medical data 

An overview of machine learning methods for medical diagnosis is given by Kononenko 
[74]. The methods can be used to assist specialists in specific diagnostic problems or to 
train students and non-specialist clinicians in a specialist area. The methods can be used 
either to predict the outcome of a case or to aid in the diagnosis of a case. An early study 
applying pattern recognition methods to complex medical data was a study in 1981 by 
Titterington et al [1431. The requirements needed for a learning system to be effective in 

the medical domain include good performance, an ability to cope with missing or noisy 
data, a transparency of the diagnostic knowledge, an ability to explain the decisions made 
and to ultimately reduce the number of tests required to obtain a reliable diagnosis. 

Traditional data of recorded labelled cases is not always abundant for the case of 
medical diagnostics. This can be attributed to many factors, some of which include: - 

* In the case of rare diseases there may not be many recorded cases. 

9 There is uncertainty about which features (symptoms) to collect data on. 

The collection of data may not be performed uniformly across the available popu- 
lation. 

* Recorded cases are generally already suspects of the disease in question leading to 
low variability in the overall data 

In 1993 Kononenko [731 noted that despite learning systems being successful with 
regard to medical diagnostic problems they were not widely accepted. Some of the rea- 
sons as to why learning systems are not widely accepted are that 1) the set of symptoms 
describing the diseases are fixed leaving little room for the accommodation of natural 
variability in the disease presentation, 2) apparent sensitivity of the models to missing 
data, 3) generated learning rules containing too few features limiting the ability of expla- 
nation, and 4) a subjective resistance by specialists. 

In the analysis by Kononenko NB outperforms the specialists; this is taken as an indi- 

cation of how well NB performs, rather than an indication of inability of the specialists. 
It is noted that the specialists were prepared to use NB with an incorporated facility of ex- 
planation of the model and its decisions. Medical research can often run in parallel with 
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the classifier design so there is an element of uncertainty in the expert knowledge which 

may not always be handled well by the classifiers. For example, a study by Marshall et 

al [95] looks to examine the relationship between the dietary intake of a mother and the 
birth weight of her baby. The collection of the data was run at the same time as design- 
ing the classifier (a neural network). The classifier was needed to express the evidence 
already contained in the evolving study to the medical experts as well as exploring the 
data as it was gathered for new knowledge. More complex decision making models have 
been proposed and implemented with varying degrees of success [20,104,113,145,1461. 

The veterinary medical domain experiences many of the same problems as the human 

domain. A study by Geenan et al [50] proposed a method with the ability to build clas- 
sifier models from literature for Classical Swine Fever because of a lack of "traditional" 

recorded case data. 
A survey of pattern recognition methods in veterinary diagnosis was carried out by 

Cockcroft, [221. The levels of the use of pattern matching, statistical probabilities and 

pathophysiological reasoning were investigated. Pattern matching refers to comparing in- 

put data (a case) to stored templates for the diseases. The differential diagnosis list is then 

constructed of the profiles that closely match the input case. Statistical probabilities are 
computed using the prevalence of the diseases and the frequency of the occurrence of the 

symptoms observed within those diseases. Pathophysiological reasoning uses the symp- 
toms to identify the abnormalities. A list of differential diagnoses is then constructed us- 
ing diseases that may explain the symptoms. The results of the study indicated that more 
experienced clinicians use pattern matching and recalled previous case presentations. The 

pathophysiological reasoning was used more by the novice clinicians. However, all three 

methods were used to some extent by the clinicians and students. Many clinicians were 

ready to accept the pattern recognition methods that explained their decision making 

process. The formalising of these diagnostic procedures as pattern recognition methods 
demonstrated that many clinicians already used some form of pattern recognition. 

Cockcroft has proposed four pattern-matching models for the diagnosis of BSE [21, 
231. The studies suggest giving a weighting to a diagnosis based on the confidence in the 
decision. A low confidence score would indicate that the case needs to re-examined for 

other possible diagnoses. The four pattern matching models were tested on a small data 

set of 100 recorded cases (50 BSE, 50 Non-BSE) reporting a top accuracy of 72%. Pattern 

matching models base decisions on feature comparisons which limits their discrimination 

capabilities. 
Medical problems are often recorded with binary features representing the presence 

and absence of symptoms. Asparoukhov et al look specifically at the case of using binary 
features in such problems in a selection of studies, [5-71. These studies indicate that the 
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most well-developed methods for handling binary features are currently statistically based 

ones. However, the traditional statistical classifiers, which include NB, do not appear to 

cope well with small sample (sparse) data, being more suited to cases with many features 

or problems with large sample sizes. 
A proposed alternative method to using statistical processes is to transform the bi- 

nary feature problem into a max/min linear programming problem [5,71 to minindse the 

misclassification cost. The results for the method are at least as good as that of the sta- 
tistical classifiers but at the cost of losing some of the transparency that NB has at the 
decision-making level. This means that for some cases the linear programming method 
can outperform NB but the decision-making process is not as clear cut. 

5.1.2 Traditional DEFRA data 

The two "traditional" data sets obtained from DEFRA for BSE and Scrapie contained 
recorded cases described by the presence and absence of symptoms (features). After dis- 

cussion with the domain experts any missing values were taken to mean that the particular 
symptom was absent. The datasets contained recorded cases that were suspects of BSE 

or Scrapie. This leads to a concern about the variability of the data. All the recorded 
cases were sent in as suspects of the disease of interest (BSE or Scrapie). Each case was 
then diagnosed post-mortem giving it a positive or a negative label. 71fis means that even 
if the case was eventually labelled negative the presentation of symptoms must have been 

similar to that of a positive case for it to be submitted as a suspect. The classification task 

within this data is rather diagnosing BSE/ Scrapie within a set of suspects than diagno- 

sis within the general population. This task is more difficult than the task with a wider 
variety of symptoms for the negative cases. 

The Scrapie dataset contained 3676 cases described by 41 features. Of these, 2987 

cases were positive for Scrapie while the remaining 689 cases were Scrapie negative. 
The BSE dataset contained 204,354 cases described by 31 features. The cases were 

split into 173,759 BSE positive and 30,595 BSE negative cases. 

5.1.3 UCI data 

To analyse the performance of various classifiers when working with binary features a 
variety of datasets are needed. The most widely used data sets are held in the UCI ma- 
chine learning repository [ 111. The number of these datasets that are described purely by 
binary features is small, but those containing continuous features may be discretised to 
represent binary data. 
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Discretisation 

A study by Dougherty, Kohavi and Sahami [351 stated that despite the fact that discretisa- 

tion has often been applied, up until that point no study had considered how discretisation 

affected the leaming processes. The conclusions of their analysis showed that discretisa- 

tion of continuous features can significantly improve accuracy. For NB all discretisation 

methods sampled led to a large increase in accuracy. This seems counterintuitive as dis- 

cretisation means a loss of information. However, discretisation of a continuous feature 

may approximate the class distribution of the feature better than assuming an inappro- 

priate Gaussian or normal distribution on continuous features. Kohavi and Sahami [70] 

noted that discretisation methods that make use of the case labels (supervised discreti- 

sation) worked better and so were analysed in their study. Static discretisation methods 
use one discretisation. pass through the data for each feature, independent of the other 
features. Dynamic discretisation methods search the space of all features simultaneously, 
therefore capturing interdependencies among the features. The study found that was no 
significant improvement in using dynamic discretisation over static methods. A compari- 
son of effor-based discretisation methods and entropy-based methods was also considered 
in the study. Effor-based methods apply a learner to the discretised data and select inter- 

vals that minimise the error on the training data. Entropy-based methods assess the en- 
tropy regarding the relationship between the intervals of the feature and the class. While 

error-based techniques always find the optimal partition to reduce the training set error 
for each feature individually, entropy-based methods include the feature interactions that 
are present. As a result of including these interactions the entropy methods may fare 
better in practice. 

Hsu, Huang and Wong [58] looked at the effect of the discretisation of continuous 
features on the performance of NB. It is suggested that a discretisation method may ap- 
proximate a distribution more accurately than a NB that assumes the distributions of 
continuous features to be normal. As NB takes all features into account simultaneously 
the impact of a wrong discretisation for one feature may easily be absorbed by the others 
under an error performance measure. 

Classification error is made up of three parts, a bias term due to the systematic error 
of the learning system, a variance term due to random variation in the training data and 
an irreducible term due to noise in the data. Yang and Webb [ 157] note that if a feature is 
discretised with large intervals then it is likely that the intervals will contain the decision 
boundaries. 'Mis in turn will affect the bias term in the error. Smaller intervals can relate 
to there being a smaller number of cases contained within the interval thus affecting the 
variance term. With a fixed number of cases there has to be a trade off between the interval 

size and number of intervals. The study concludes that an optimal universal discretisation 
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Table 5.1: A summarv of the statistics of the UCI datasets used in the comparison study. 
Dataset Features, n Classes, c Cases, N 
Contraceptive Method Choice (CMC) 9 3 1473 
Ecoli (ECOL) 7 5 327 
Glass Identification (GLAS) 9 6 214 
Haberman's Survival data (HABE) 3 2 306 
Iris plant identification (IRIS) 4 3 150 
Pima Indians Diabetes (DIAB) 8 2 768 
SPEC17 Heart (SPEC) 22 2 267 
Thyroid disease (TRY) 5 3 215 
Waveform Data Generator (WAVE) 21 3 5000 
Wisconsin Diagnostic Breast Cancer (WDBC) 30 2 569 
Wine Recognition (WINE) 13 3 178 
Yeast (YEST) 18 19 1 1479 

strategy for NB is unobtainable. 
The discretisation processes used for the UCI data adopted in this study were static 

ones. Each feature was examined individually to find the best split. The continuous 
features were converted to binary using two different criteria. 

1. Median. The median value of each feature was found. Any feature value under the 

median was converted to zero while any feature value over the median value was 

converted to one. 

2. Gini criterion. The gini criterion can be used as an impurity function. The criterion 
is the error rate that results if a case was randomly drawn and classified given the 

split. The split that minimises the criterion is chosen. 

By using discretisation into binary features the intervals may be large and as such 
contain the decision boundaries for the features thus affecting the bias term in the error. 
As this term is due to the systematic error of the classifier all classifiers should be using 
the same discretised data and will be affected equally. 

The UCI datasets selected for the comparison are outlined below. All but one of them 
(SPECT) required discretisation into binary data first. A summary of their statistics is 

given in Table 5.1. 

Contraceptive Method Choice (CMC) 

This dataset is a subset of the 1987 National Indonesia Contraceptive Prevalence Survey. 
The cases held are married women who were either not pregnant or do not know if they 
were at the time of interview. The task is to predict the current contraceptive method 
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choice (no use, long-term methods, or short-term methods) of a woman based on her 
demographic and socio-econornic characteristics. As well as the four continuous features, 

the dataset contained 4 categorical features, each with four categories. Each categorical 
feature was converted into four binary features, giving a total of 21 binary features. 

Ecoli Database (ECOL) 

The problem is to determine the cellular localisation sites of proteins. Classes omL, iml, 

and ims were represented by 5,2,2 cases respectively. These classes have been removed 

giving 327 cases from the original 336 cases. 

Glass Identification Database (GLAS) 

A task motivated by criminological investigation - glass left at crime scenes can be used 
as evidence if correctly identified. Class 4 contains no example cases and therefore was 
removed. 

Haberman's Survival Data (HABE) 

A dataset of cases from a study conducted between 1958 and 1970 at the University 

of Chicago Billings Hospital on the survival of patients who had undergone surgery for 
breast cancer. Classify into two classes, Survived 5 years+ or Died within 5 years. 

Iris Plant Database (IRIS) 

The task is to predict which of three classes an iris plant belongs to based on structural 
measurements. One class is linearly separable from the other two. This is the best known 
database to be found in the pattern recognition literature. 

Pima Indians Diabetes Database (DIAB) 

The diagnosis of diabetes in patients who are females of at least 21 years of age who are 
of Pima Indian heritage. This set is a selection of cases take from a larger database. 

SPECT Heart Database (SPEC) 

The task is to diagnose cardiac Single Proton Emission Computed Tomography (SPECT) 
images into one of two classes, normal or abnormal. 
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Thyroid Disease Database (THY) 

Results of laboratory tests are used to predict the condition of a patients thyroid into one 
of three classes, euthyroidism, hypothyroidism or hyperthyroidism. The dataset used is 

entitled new-thyroid in the UCI directory. 

Waveform Data Generator (WAVE) 

Each class is generated from a combination of 2 of 3 base waves. The waves are gener- 
ated with added noise in each feature. These classes of waves are known to be difficult 
concepts to learn. 

Wisconsin Diagnostic Breast Cancer Data (WDBC) 

A prediction of whether an image contains benign or malignant tissue. Features are com- 
puted from a digitised image of a fine needle aspirate of a breast mass. The features 
describe the characteristics of the cell nuclei present in the image. The diagnostic dataset 
is used from the UCI repository. 

Wine Recognition Database (WINE) 

Chemical analysis results of wines grown in the same region of Italy but derived from 

three different cultivars. The task is to recognise which cultivars a wine comes from. 
This data set is described as being good for first testing a new classifier but overall not 
very challenging. 

Yeast Database (YEST) 

Predicting the cellular localisation sites of proteins. A comparable problem to the ECOLI 
data. Class ERL contained only 5 examples and was therefore removed reducing the case 
number from 1484 to 1479. 

5.2 The comparison models 
As there can be no single optimal classifier design for every type of data, it has become 

standard to compare as many different classifiers as possible on the data type. Compar- 
isons of various classifiers abound in the literature since classifiers emerged. NB has 
been used in many comparison studies as a benchmark against new methods. A study by 
Holte [56] indicated that very simple classification rules perform well on most commonly 

115 



5.2. THE COMPARISON MODELS CHAPTER 5. NB PERFORMANCE 

used datasets. It is known that NB can be successful in many situations. In fact on many 

real world data sets NB gives better test set accuracy than any other known method [411. 

Care must be taken when conducting a comparison study as the analysis can easily 

result in statistically invalid conclusions [125] or misconceptions that can propagate into 

mistakes in further studies [64]. Salzberg [125] looks at several phenomena that if ig- 

nored can invalidate the comparison conducted. These phenomena include tuning of the 

algorithms after the test data has been used or generalising the datasets, held in the UCI 

repository as a representative population. If a method works well on a particular dataset 
from the UCI repository it should not be assumed that this is representative of the results 

achievable on all data of this type. 
The possibility of mistakes in a comparison study is highlighted in a study by Jamain 

and Hand [64]. The study demonstrates how misreporting of the NB method can propa- 

gate into a mistake in further studies. 'Me authors unravel a confusion over the apparent 
disagreement in performance of NB in two particular past studies. 

5.2.1 Classifiers 

This subsection gives a description of the classifiers that are to be used in the comparison. 

Nalve Bayes (NB) 

NB considers all features to be class-conditionally independent. Therefore no feature 
dependencies are taken into account when calculating this model from the data. 

1. Training. 

(a) Estimate prior probabilities P(wi) from the training set 

(b) Estimate P(xj = 11wi) - construction of the conditional probability table 

2. Testing. For each case x, 

(a) Calculate the support for x in each class, gi (x) =P (Loi) rlj'=, p(xj = vj 1wi), 

where g is a vector whose entries are the level of support for the case x in 

each class wi, and vj is the value of the jth feature (either 0 or 1). 

(b) Select and output the class with the maximal support as the label for x 

Exact Match (EM) 

The exact match model stores all the training cases together with their class labels. When 

a new case is submitted for classifying the model retrieves all cases from the stored train- 
ing ones that exactly match the input one. From these selected matching cases the class 
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label that occurs most frequently is used to label the input case. If there are no matching 
cases stored the input case is labelled by the class with the largest prior probability. 

Using the cases that match the feature values exactly allows the exact match classifier 
to specifically model any feature interactions that are present, i. e. it takes all feature 
dependencies into account. 

1. Training. 

(a) Calculate the prior probabilities of each class from the training set. 

2. Testing. 

(a) Select equivalent x from the training set 

(b) The case is labeled with the class that occurs most frequently in the cases 
selected from the training set. 

(c) If there are no equivalent cases in the training set the case is labelled to the 
class with the largest prior probability 

Exact Match with confidences (EMwc) 

The exact match with confidences model works on the same principles as exact match 
but with a correction when there are no or few representative cases stored in the training 
data. In place of reverting to labelling the case with the largest prior probability when 
there are no representative cases the test case is classified using the NB classifier. The 
NB classifier is also used when the difference in the class estimates is not significant 
using the Z-statistic, 

17 b, - 
b2 

Z= 
bi (1-bl)+b2(1-b2) 

r 

(5.1) 

where b, is the proportion of matched cases from the most represented class, b2 is the 
proportion of matched cases from the second most represented class and r is the total 
number of matched cases. If this calculated Z is greater than 1.65 the difference between 
the two proportions is significant at the 95% confidence level and so the best represented 
class label may be assigned. If the difference is not significant then the case is labelled 

using NB. 
For example, for a two class problem where x= [1,0,1]T is submitted. In the training 

set there are 25 cases of [1,0,1]T labelled by w, and 26 [1,0,1]T cases labelled by W2- 
The calculated Z for this would be 0.1981. As this is less than 1.65 the difference is 

not statistically significant and so the case x= [1,0,1]T would be classified by the NB 

model. 
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1. Training. 

(a) Calculate the prior probabilities of each class from the training set. 

2. Testing. 

(a) Select equivalent x from the training set 

(b) If there are less than 5 equivalent cases in the training set revert to classifying 
the case with NB. 

(c) Else 

Calculate the number of equivalent cases in each class from those se- 
lected. 

Calculate the Z value for the two best represented classes using equation 
5.1. 

If Z>1.65 assign the best represented class label to the case 
Else revert to classifying the case using NB 

Probability dependence tree (PDT) 

This classifier is a form of Bayesian network where each feature can depend on only the 

class and at most one other feature. The network approximates the class-conditional pmf 
of the joint distribution in the form of n-1 first order dependencies where n is the total 

number of features. For a problem with n features the discriminant function is calculated 
as 

"7f(M2)? Wi) P(Xnln lxf("Ln) 
Iw (5.2) gi(x) --": 

P(WMJP('ý*f(MI)IL4ji)P(XM21' 
i) 

where ml,..., m,, is a permutation of n and f (mj) E n} \ lmj}. Features 

are conditioned by the class label and at most one other feature. 
The dependency between two features is calculated as the pairwise mutual informa- 

tion between them. This dependency network allows a selection of the feature dependen- 

cies to be taken into account. 

Normal Linear Classifier (NLC) 

Calculation of the linear discriminant between the classes of the labelled data assum- 
ing normal densities with equal covariance matrices. The joint covariance matrix is the 

weighted average of the class covariance matrices (weighted by the prior probabilities). 
This classifier implementation is taken from the Matlab toolbox PRTbols [38]. 
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Figure 5.1: Atypical classifier ensemble 

Logistic Linear Classifier (LOGLC) 

Computation of the linear classifier for labeled data by maximising the likelihood crite- 
rion using the logistic (sigmoid) function. This implementation is also taken from the 
Matlab toolbox PRTbols [38]. 

5.2.2 Ensembles 

Classifier ensembles follow the logic of "two heads are better than one". An ensemble 
is a group of classifiers whose outcomes are combined to give an overall decision [51,771. 
The performance of an ensemble is rarely worse than the least accurate of its composite 
members, in many cases better than the average member; and ideally better than the best 

member. 
The ability of an ensemble to improve upon the performance of an individual classifier 

can be partly attributed to the diversity of the ensemble members. If all the classifiers were 
identical then there would be no point in combining their results. Diversity may be added 
to an ensemble by using different classifier models as ensemble members. Perturbing the 
training data will also increase the diversity of the members. This can be done by bagging 
(sampling the training set with replacement) or boosting (combining the training set cases 
with a weighted vote based on the success of previously constructed classifiers) [153]. 
Another way to increase diversity among the members is to apply feature selection to the 
original feature set, allowing each classifier member to be trained on a different feature 

subset. Opitz [ 1071 argues the case for using feature selection with ensembles. The results 
of the proposed feature selection method created more diversity among the classifiers 
than either bagging or boosting. GA's produce a population of feature subsets. This 
"population" of subsets can be used as bases for classifiers to create an ensemble [76]. 

Figure 5.1 illustrates how an ensemble classifies new input cases. Each of the k classi- 
fiers outputs a label for the case. These labels are then combined to give the final decision. 
The simplest way to combine the results is to use majority voting where the class appear- 
ing most frequently among the k classifier outputs is assigned to the case. Kuncheva et 
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al [791 and Oh [1061 suggest that the majority vote accuracy of an ensemble will increase 
if the members are negatively dependent of one another rather than independent. Nega- 

tive dependency of classifiers mean the tendency of one classifier not to follow the other 
classifiers will be stronger as the number of classifiers increases. Ensembles may also be 

combined using statistical techniques, belief functions, naYve Bayesian fusion and other 
schemes [4,52]. Altincay [4] showed that independence of the base classifiers may not 
be as important when using some fusion schemes such as Nalve Bayesian fusion (also 
known as the product rule). 

Classifier ensembles have been applied in an attempt to improve NB; and Bayesian 

networks in a variety of ways [93,123,15 11. NB is seen as a favourable base classifier for 

an ensemble due to its simplicity and good performance. As NB is a stable classifier it 
lacks the diversity required to create a good ensemble. Attempts to tackle this lack of di- 

versity between NB models during construction of the ensemble members have included 

using feature selection [121,145,146,164], boosting [30,148], estimation of confidence 
intervals around the point estimations of p(xjlwi) [1201 and adjustments of class proba- 
bilities [571. For a Bayesian network based classifier Kurgan and Cios [801 achieved a 
significant increase in accuracy at the cost of generating only three to four classifiers in 

place of a single one. 
Ensembles may also be generated to improve performance in a difficult problem area. 

For example, the recognition rate of a free handwriting recognition system is generally 
low. GUnter and Bunke [53] demonstrate that by selecting well performing feature subsets 
for the ensemble members an improvement in performance is achieved. A simple classi- 
fier ensemble generation procedure can be implemented for comparison to the individual 

models. 
Multiple classifiers 

The feature subset is split randomly with replacement to create k subsets, i. e. the subsets 
are not mutually exclusive. Each of the k subsets are then used to train an individual 

member of the ensemble. The final decision is made by majority voting of the ensemble 
members. Ensembles of NB, EM and EMwc have been used with k=5 and k= 11. 

1. Training 

(a) Randon-fly select with replacement k subsets of features 

(b) Train k classifiers using each of the subsets of features 

2. Testing 

(a) Submit each case to each of the ensemble members to generate a class label 

120 



5.2. THE COMPARISON MODELS CHAPTER 5 NB PERFORMANCE 

(b) The class with the most votes from the ensemble members is selected as the 

case label. Ties are broken randomly 

Mixed multiple classifiers 

The feature subset is split randon-fly with replacement to create k subsets. When the 

subset contains less than half the original features use Exact match as the classifier else 
use NB as the classifier. This was generated with k=5 classifier members and k= 11 

classifier members. Fusion of the ensemble decision is again made by majority voting. 

1. Training 

(a) Randon-Ay select k subsets of features with replacement 

(b) If the subset contains less than half the original number of features then train 
EM with the subset 

(c) Else train NB with the subset of features 

2. Testing 

(a) Submit each case to each of the ensemble members to generate a class label 

(b) The class with the most votes from the ensemble members is selected as the 
case label. Ties are broken randomly 

5.2.3 Experimental setup 
As the classes are not represented equally in the datasets, the sampling of the data was 

stratified. Stratified sampling splits a dataset into training and testing elements ensuring 
that the two have approximately the same class proportions as the original data set. 

* Submit binary data set 

e For 100 trials 

- Using stratified sampling, split the data set in 90% for training and 10% for 

testing. 

- Train each of the 14 classifiers on the 90% training split 

1. NaYve Bayes (NB) 
2. Exact Match (EM) 

3. Exact Match with confidences (EMwc) 

4. Probability Dependence Tree (PDT) 
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5. Normal Linear Classifier (NLC) 
6. Logistic Linear Classifier (LOGLC) 

7. Ensemble of 5 NaYve Bayes (5 NB) 

8. Ensemble of 11 NaYve Bayes (11 NB) 

9. Ensemble of 5 Exact Match (5 EM) 

10. Ensemble of II Exact Match (11 EM) 

11. Ensemble of 5 Exact Match with confidences (5 EMwc) 

12. Ensemble of 11 Exact Match with confidences (I I EMwc) 

13. Mixed ensemble of 5 Exact Match and NaYve Bayes (5 EMNB) 

14. Mixed ensemble of II Exact Match and NaYve Bayes (11 EMNB) 

- Test the classifiers on the 90% training data split 

- Test the classifiers on the 10% testing split of the data 

- Store the training and testing errors 

9 Output the averages of the training and testing errors across the 100 trials. 

5.3 The comparison results and analysis 

5.3.1 Accuracy results 
Figure 5.2 shows the spread of the test accuracies achieved by the classifiers on each of the 
12 datasets. The squares are centred on the accuracy achieved by the NB classifier. Figure 
5.2(a) shows the accuracies achieved when the data was discretised using the median 
value as the threshold while Figure 5.2(b) shows the results when the split was made 
using the Gini criterion. 

None of the methods appear to perform well for the Contraceptive Method Choice (1) 

or Yeast (12) datasets with accuracies struggling to reach 60% for both the median split 
and Gini split versions of the data. 

The classifier that has the lower accuracy in Waveform (9) and Wisconsin Diagnostic 
Breast Cancer (10) for both data split and in the Wine dataset (11) for the median split 
data is the Exact Match model (EM). This is unexpected especially for the Waveform 
data as the exact match should perform better with the more training examples that are 
available. The waveform data has the largest number of training cases available. For 

the Wine data set (11) exact match appears to achieve lower accuracy when the data has 
been split using the median threshold but improves to the level of the other classifiers 
for this data when it is split using the Gini criterion. In fact for the Wine data (11) all 
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Figure 5.2: The test accuracy for the 14 classifiers on each of the 12 datasets (a) Median split data 
(b) Gini split data. 

the classifier models appear to respond better to the data being discretised by the Gini 

criterion rather then by the median. This is seen by the rise in the spread of the accuracies 
between Figures 5.2(a) and (b). 

NB does not achieve the top performance for any of the given data sets. However, NB 

appears close to the top performing classifiers for the majority of the data sets. The only 
dataset the model appears to struggle with is in the median split version of the Ids data 
(5). Here the poor performance is intriguing as two of the classes are known to be linearly 

separable, a concept that can be recognised by NB. However, this may be explained by 

the discretisation as the process results in an adjustment of the feature space thus possibly 
affecting the linear separability of the classes. 

This analysis leads to the question as to whether the performances of the 14 classifier 
models are significantly different? 

5.3.2 Significance of the accuracy results 
Each classifier was assigned a rank for each dataset. The classifier achieving the highest 

mean accuracy was given the highest rank. The ranks for each classifier across the 12 
datasets were then summed to give the total rank of each of the classifiers. These total 
ranks are given in Table 5.2 

NB ranks an overall fifth in the data split using the median and an overall of fourth 

when the data is split using the Gini criterion. The positions of the majority of the clas- 
sifiers only change at the most by one overall position. However, the probability depen- 
dence tree (PDT) moves from third ranked position with the data split using the median 
down to sixth when the data is split using the Gini criterion. The discretisation process 
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Table 5.2: Total ranks of the 14 classifiers performance over the 12 discretised data sets. 
Median Gini 

Classifier Rank Overall Position Rank Overall Position 
NB 107 5 109.5 4 

EMwc 108.5 4 127.5 3 
PDT 125 3 98 6 
NLC 137 2 139 2 

LOGLC 141 1 140 1 
EM 84 9 72 10 

5 NB 41.5 14 37 14 
11 NB 56 13 57 13 
5 EM 62 12 65 12 
11 EM 85 8 87 7 

5 EMwc 68.5 10 74 9 
11 E wc 91 6 103 5 
5 EMNB 11 37.5 11 
11 EMNB 7 82.5 8 

used may have an effect on the performances of this classifier. 
To find out if the performances of the 14 classifiers on the 12 datasets are different 

Friedmans two-way ANOVA can be used. 

Friedman's two-way ANOVA 

Friedmans analysis uses the rank Rj of classifier j in dataset i to calculate a chi-squared 
statistic, 

2= 
12 n )21 

x Tk-(k+ 1) 
3n(k + 1) (5.3) 

where n is the number of datasets, 12, and k is the number of classifiers, 14. If the 

classifier performances are similar then their ranks would be close to random for the 
different datasets. 

Differences of the classifiers - median split 

Take the rankings when the data is split using the median as the discretisation criterion. 
Comparing all the classifiers the calculated XI value is 57.0405. The degrees of freedom, 
df for the test are k-1= 13. The tabulated XI value at the 5% significance level is 
22.3620. As calculated XI > tabulated XI there are significant differences between the 

classifiers. 
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There is an interest in the performance of the NB classifier. NB is fifth overall in 

the rank order. The top five ranked classifiers (LOGLC, NLC, PDT, EMwc and NB) 

can be compared by calculating the X2 statistic. The calculated X2 value for these five 

classifiers is 8.2167. The tabulated X2 value is 9.4877, df=4, at the 5% significance level. 
This result indicates that when the data is split using the median for discretisation the 
top five performing classifiers are not significantly different from one another at the 5% 

significance level. 

Differences of the classifiers - Gini split 

Using the ranks of the 14 classifiers calculated on the Gini discretised data the calcu- 
lated X2 value is 60.2786. At the significance level of 5% the tabulated X2 is 22.3620, 
df=13. As the calculated X2 > tabulated k2 there are significant differences between the 

performances of the 14 classifiers when the data is split using the Gini criterion. 
Consider the four classifiers ranked the highest (LOGLC, NLC, EMwc: and NB). The 

calculated X2 values is 7.5750. The tabulated X2 is 7.8147 at the 5% significance level, 
df=3. As the calculated X2 value is less than the tabulated X2 value these four classifiers 
are not significantly different at the 5% significance level. 

Multiple comparisons test for Friedman 

As the Friedman two-way ANOVA indicated that there are differences between the classi- 
fiers multiple comparison testing will indicate which classifiers are different from which 
others, [101]. 

As there are 14 different classifiers there will be 14(14-1) 
= 91 possible comparisons 2 

to make. For the comparison test two classifiers are significantly different at the 5% 

significance level if 
TR., - TRj 

> 3.4 (5.4) SD 

where TR, - TRj is the absolute difference in the total rank of classifier i and classifier 
j and SD = Vý12 x 14 x 20.4939. The value of 3.4 comes from the Z-tables 

"'9' for the two tail significance at the 5% significance level, 1- 9=1 = 0.999725 giving a 
Z-table value of 3.4. 

Tables 5.3 and 5.4 give the results of the classifiers that are significantly different from 

one another. In the Gini discretised data, Table 5.4, NB performs significantly better than 
the ensemble of 5 NB. This result seems counterintuitive as an ensemble is expected to 
perform no worse than its least accurate member -a single NB. However, this may be 

explained by the feature sets that the NB models use. For the individual model all the 
available features are considered simultaneously. This is not the case for the NB that are 
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Table 5.3: Classifiers that are significantly different using the median discretised data 
Classifier Significantly better than 
LOGLC 5NB, 11NB, 5EM, 5EMNB, 5EMwc 

NLC 5 NB, 11 NB, 5 EM, 5 EMNB 
PDT 5NB 

Table 5A Classifiers that are significantly different using the Gini discretised data 
Classifier Significantly better than 
LOGLC 5 NB, 11 NB, 5 EM, 5 EMNB 

NLC 5 NB, 11 NB, 5 EM, 5 EMNB 
EMwc 5 NB, 11 NB 

I NB 15 NB 

members of the ensemble as they get a randomly selected subset of features thus possibly 
lowering the minimum achievable accuracy of the individual model. 

The results of the multiple comparisons of both types of discretised data indicate the 

significant differences are only minimal, occurring between the "best" ranked and the 
"worst' 'ranked classifiers. For the median data only 10 of the possible 91 comparisons 

proved to be significant. For the Gini data this only increased to 11 significant differences 

from the possible 9 1. 
This analysis has allowed an insight into the differences between the classifiers but 

whether the method of discretisation has affected the performance of the classifiers is still 

unknown. 

5.3.3 Testing the main effects and interactions between the classifiers 
and the discretisation process used 

A procedure detailed by Bradley [131 allows a series of Friedman analyses to be per- 
formed to test the main effects and interactions in the case where observations are taken 

under combinations of levels (discretisation processes) involving several different vari- 

ables (datasets and classifiers). Table 5.5 shows the set-up of the accuracy results to allow 
the multiple Friedman analyses, where GAjJ is the accuracy of classifier j on dataset i 

discretised using the Gini criterion and MAjj is the accuracy of classifier j on dataset 

i discretised using the median threshold. Only 11 datasets are shown as SPECT did not 
require any prior discretisation and therefore is not affected by these processes. 
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Table 5.5: Table for the comparison of the main effects and interactions among several variables 
Classifier 

Discretisation Dataset 1 ... 14 
1 GAI, j ... 

GA1,14 

Gini GAj, j 
11 GAII, j ... 

GAII, 14 
I MAj, j ... 

MA1,14 

Median AfAij 
11 1 MAII, j ... 

MA11,14 
I 

Multiple Friedman 1- Main effect of the classifiers. 

To test the main effect of the classifiers Table 5.6 is constructed from Table 5.5. Each 

entry is the sum of the mean accuracies of classifier j on the gini discretised data and the 

median discretised data. The ranks of the classifiers on each dataset are then calculated. 
These ranks then allow the calculation of the X2 -statistic as in Equation 5.3 to perform 
the standard Friedman analysis. 

The calculated X2 = 73.9429. As the tabulated X2 = 22.3620, (5% significance level, 
df=13). The effect of the 14 classifiers are significantly different at the 5% level. This 

result agrees with the previous Friedman analysis that the classifiers performances are 
significantly different. 

Table 5-6- Table to allow a Friedman test of the main effect of the classifiers 
Classifier 

Dataset ... 14 
1 GAI, j + MAI, j ... 

GA1,14 + MA1,14 

GAj, j + MAj, j 
11 GAjj, j + MA11,1 GA11,14 + MA11,14 

Multiple Friedman 2- Main effect of the discretisation process. 

To study the main effect of the discretisation process Table 5.7 is calculated where each 
entry is the sum of a row from Table 5.5. The rank for Gini versus median is produced 
for each datasets. AX2 -statistic may be calculated from these ranks to give the Friedman 

analysis. 
The calculated X2 = 4.4545. The tabulated X2 = 3.8415, df=l at the 5% significance 

level. This indicates that the discretisation process does effect the performance of the 

classifiers on the datasets. However, at the 2.5% significance level X2 = 5.0239 the effect 
of the discretisation performance on the accuracies is no longer significant. The support 
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Table 5.7: Table to allow a Friedman's test of the main effect of the discretisation process 
Discretisation 

Dataset Gini Median 
I 

11 

Ej GA,, j MA,, j 

, 
1:, GA, l, j F., MAII, j, 

for the hypothesis that the effect of the discretisation process is significant is weaker than 

the hypothesis that the effect of the classifier model, (the effect of the classifier model is 

still significant at the 0.01% significance level). 

Multiple Friedman 3- Effect of the discretisation process and classifier interaction 

The final analysis looks at the effect of the interaction between the classifier models 
and the discretisation process on the accuracies achieved on the datasets. Table 5.8 is 

calculated from Table 5.5 by calculating the difference in the accuracies of each classifier 
model on each dataset. These differences are then used to calculate the XI-statistic for 

the Friedman analysis. 

Table 5.8: Table to allow the Friedman test of interaction of the classifier and discretisation pro- 
cess. 

Classifier 
Dataset 1 14 

1 GAI, j - MAj, j ... 
GAI, 14 - MA1,14 

GAj, j - AfAij 
11 GAIL, - MA11,1 ... 

GA11,14 
- 

MA11,14 

In this case X1 = 17.2519. As the tabulated X1 = 22.3620, df=13 at the 5% signifi- 
cance level, it can be concluded that the effect of the interaction between the discretisation 

process and the classifier on the accuracies achieved on the datasets is not significant. 

Summary of the multiple Friedman analyses 

It has been shown that the main effect of the discretisation process on the accuracies 
achieved on the datasets is not significant at the 2.5% significance level. The effect of the 
interaction between the discretisation process and the classifiers models is not significant 
on the accuracies achieved on the dataset. This means that the effect of the classifiers is 
the main contributing factor to the differences in the accuracies achieved on the datasets. 
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Table 5.9: Test accuracies (in %) for the 14 classifiers on the DEFRA Scrapie data 
Classifier Average Test Accuracy Classifier Average Test Accuracy 

1) NB 81.43 8) 11 NB 81.31 
2) EMwc 81.45 9) 5 EM 81.19 
3) PDT 76.71 10) 11 EM 81.17 
4) NLC 81.20 11) 5EMwc 81.29 

5) LOGLC 81.53 12) 11 EMwc 81.18 
6) EM 79.71 13) 5 EMNB 81.37 

7)5NB 1 81.20 14) 11 EMNB 81.32 

The Friedman analysis has shown that on average NB performs no worse than any 

of the top performing models across the datasets used. Despite NB not achieving the 
best performance for any of the data sets individually it still gave accuracies comparable 
with those top performing classifiers. This simulation has again indicated the good per- 
formance of NB in comparison to more complex classifiers, despite NB not taking any 
feature dependencies into account. 

5.4 Application to traditional BSE and Scrapie data 

The two "traditional" DEFRA data sets may be used to make the comparison for the 

performance of the classifiers. 

5.4.1 Scrapie recorded case data 

The "traditional" Scrapie, data contains 3676 cases described by a total of 41 binary fea- 

tures. Each case is labelled into Scrapie or Non-Scrapie classes. The prior probabilities of 
the two classes are 81% and 19% respectively. As the classes are not represented equally 
the sampling of the data was stratified ensuring the 81% Scrapie 19% Non-Scrapie class 
distribution in both the testing and training sets. The random stratified 90% training 10% 

testing split was replicated 50 times. The average test accuracies for these 50 runs are 
given in Table 5.9. 

A Friedman analysis of the 14 classifiers over the 50 trials gives X2= 187.7960. The 

calculated X2 > tabulated X2 (22.3620) indicating differences between the performances 
of the classifiers. 

NB ranks in third place for the Scrapie data beaten only by LOGLC and EMwc. By 

using only the top three classifiers a Friedman analysis shows that there are no significant 
differences between NB, LOGLC and EMwc (Calculated X2 = 0.8100, tabulated X2 
5.9915, df=2,5% significance level). 
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8ý 

Figure 5.3: Accuracies achieved by the 14 classifiers on the DEFRA Scrapie data, together with 
their confidence intervals. 

Figure 5.3 shows the average test accuracies plotted with their 95% confidence inter- 

vals, calculated as 
[Aj 

- 1.96-EL, Aj + 1.96 0, j (5.5) 
ý, F5 0- -vf5-0-1 

where Aj is the mean accuracy of classifier j and crj is the standard deviation of classifier 
j across the 50 runs. 

The performance of two classifiers on a particular dataset, i. e. Scrapie, are said to be 
significantly different if their respective confidence intervals do not intersect. 

From Figure 5.3 it can be seen that the confidence intervals of the majority of the 
classifiers intersect indicating no significant differences. PDT (3) and EM (6) both give 
lower accuracies and are as such significantly different to the other classifier models for 
the Scrapie data. 

5.4.2 BSE recorded case data 

The "traditional" BSE dataset from DEFRA held 204,354 cases with 173,759 cases of 
BSE (prevalence of 85%) and 30,595 cases of Non-BSE (prevalence of 15%). Due to the 
size of this dataset classifier testing was handled as follows 

9 Split data into 50 sets each of 4000 cases (3400 BSE, 600 Non-BSE). 

9 For each of the 50 datasets 
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Table 5.10: Test accuracies (in %) for the 14 classifiers on the DEFRA BSE data 
Classifier Average Test Accuracy Classifier Average Test Accuracy 

1) NB 81.15 8) 11 NB 83.92 
2) EMwc 81.16 9) 5 EM 84.72 
3) PDT 78.73 10) 11 EM 84.92 
4) NLC 85.25 11) 5EMwc 84.12 

5) LOGLC 85.42 12) 11 EMwc 84.30 
6) EM 84.76 13) 5 EMNB 84.27 

7) 5 NB 83.95 14) 11 EMNB $4.57 

- Split into 90% training and 10% testing used stratified sampling. 

- Train the 14 classifier models on the 90% training. 

- Test the 14 classifier models on the 10% testing data. 

- Store the test accuracies. 

9 Output the mean of the 50 test accuracies for each of the 14 models. 

The mean accuracy of each of the classifiers was calculated as the average across 
these 50 sets and are shown in Table 5.10. 

A Friedman analysis indicates that the 14 classifiers are significantly different (Cal- 

culated X1 = 345.2823 > Tabulated X2 = 22.3620, df=13,5% significance level). This 

time NB ranks 13th over the 14 classifier models. Looking at the mean accuracies plotted 
with the 95% confidence intervals in Figure 5.4 it can be seen that NB (1) appears lower 

than the majority of the other classifiers. Here the ensemble models manage to perform 

well (7) - (14). The top two performing classifiers are NLC (4) and LOGLC (5) appearing 
significantly better than the other models. These results are surprising with the relative 
"poor" performance of NB. It is worth noting here that none of the models achieve an 
accuracy much higher than the 85% prior. This indicates that the classifier models can 
not perform any better than the clinicians using this data to determine BSE cases within 
a set of suspects. 

'I'lie results in Table 5.10 show that NB does not perform as well with the BSE data 

as all the other data. The LOGLC and NLC perform better than NB. The EM (6) ranks 
up near the accuracies of these classifiers. In this case the ensembles of classifiers have 

also performed well especially the ensembles of EM classifiers (9) and (10). 
The lack of overlaps in the confidence intervals of the classifiers indicates that the 

performances of the classifiers are significantly different. 
It is worth noting that for both the BSE and Scrapie data the recognition rate of the 

diseases is around 85% and 8 1% respectively. This matches the prevalence of the positive 
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8ý 

Figure 5.4: Accuracies achieved by the 14 classifiers on the DEFRA BSE data, together with their 
confidence intervals. 

cases in the data. The recognition rate of the classifiers matches the recognition rate of 
the domain experts within a set of disease suspects. 

Classifier models may have more success on the recognition of diseases with data 

collected across the entire population rather than the narrower set of suspects. 

5.5 Chapter Summary 

It was shown that the discretisation process or the effect of the interaction between the 
discretisation and the classifier model on the level of performance was not significant. 
Tlierefore, any differences in the accuracies achieved can be mainly attributed to the 
classifier model. 

For the majority of datasets tested NB performed as well as the other "top" performing 
models (NLC, LOGLQ. Due to its performance with the binary data sets NB proved to be 

a sensible and practical option to consider along with NLC and LOGLC. The explanation 
ability of the NB model also endears it to practitioners. 

For both the BSE and Scrapie data the classifier models were not able to produce 
accuracies with any great improvement over the prior probabilities. The classifiers can 
perform no better than the domain experts when classifying within a set of suspects. This 

again indicates a need for data to be collected across a more general population of cases 
to fully exploit the advantages of pattern recognition methods. 
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6.1. MAIN INVESTIGATIONS AND HNDINGS. CHAPTER 6. CONCLUSION 

Early diagnosis of notifiable diseases like BSE and Scrapie would have an impact 

on many areas including agriculture, health and the economy. An early diagnosis may 
prevent transmission to other animals, reduce costs to the farmer and government. There 

could also be a reduction in the fear of transmission of the disease via British food stock 
allowing a re-emergence of the export market. 

Government agencies like DEFRA collect data on notifiable diseases. However, cases 
are only reported to such agencies once there is a suspicion of the presence of such a dis- 

ease. The cases recorded by DEFRA are all therefore suspects of the diseases resulting in 
low variability across the set of recorded symptoms (features). This makes any classifi- 
cation task from this data harder because the population is reduced to the set of suspects. 

As notifiable diseases become rarer within a population (BSE case reporting declining 

since 1992) there is also a risk of only limited data being available. 
The creation of the "non-traditional" expert-estimated probability tables avoids both 

the above problems. These tables do not come without their own costs though. The class- 
conditional independence of features is assumed during the expert-estimation phase of 
the table construction. The estimates represent the conditional probability of a feature 

within a disease (class). These conditional probabilities may be estimated from a finite 

traditional data set of recorded cases. As the data set is finite the estimates are known to 
be imprecise. Accurate probability estimates can only be gained from traditional data if 

that data is infinite. It is assumed that the experts estimates of the conditional probabilities 
are reliable. 

Domain experts would require that any classifier applied to solve a diagnostic problem 
would be simple, effective and accurate. Due to the nature of the data it would also be 

preferable to have a classifier that is stable, meaning that small alterations to the data 

would not affect the decisions of the model greatly. 
The main aim of this study was to investigate the effects and potentials of the the use 

of the "non-traditional"' data in relation to BSE and Scrapie. 

6.1 Main investigations and findings. 

1. The potentials, limitations and stability of SFS was investigated widi regard to 
selecting a feature subset from the two-class probability table data. 

Proposition 1 The theoretical error of the Bayes classifier does not increase 

when thefeature set is augmente& Proved for the case of independent binary 
features with two classes. 
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Proposition 2 The probability of the variable x having the value I given class 
W(I) is 

C-1 
P(x =1 jwj) P(x = llw(')) = ý-- 

2. Investigation of various feature selection methods for the multi-class probability 
table data. 

3. Investigation of the cascade decision tree classifier performance for classification 
with multi-class probability data. 

4. The implementation of a meta-analysis study of NSive Bayes and 37 various adap- 
tations of the model to produce landscapes of structural similarity. 

5. Investigation into the difference in the errors made by assuming that features are 

conditionally independent when they are not using the NaYve Bayes classifier, see 
Table 6.1. 

Proposition 3 Let x= [XI 
i X2] T 

where X1 7 T2 E 10,1 } and let w, and L02 be 

the classes of interest with P(wi) =p and P(W2) = (1 - p), then EIND - 
ENB will either take the value 0 or =L(pCov, - (1 - p)Cov2) where Covi 
is the covariance between the two binaryfeatures given class Wi. Cov, 
COV (X1 

i T2 IL101) 
= ad - bc and COV2 = COV(X1 

, X2 JW2) 
= eh - fg. 

6. Comparison investigation of various classifier models on "traditional" data with 
binary features. 

Table 6.1: Links between Er rr n and Evp 
EIND - ENB Assumptions 

- Two binary features 
Q+Ql" 

15 Two equiprobable classes 
Features independent in one class 

0 or Two binary features 
±(P'COVI - 

(1 
- P)COV2) - TWo class task 

6.2 Future considerations 
There are a number of possibilities for future and continued work on this subject: - 
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6.3. PUBLICATIONS CHAPTER 6. CONCLUSION 

1. The investigations with NB are ongoing. The search for the reasons for the opti- 
mality of the model are still not complete. Further to this study investigations into 

the differences of EB, ENB and EIND would give further insight into the structures 
of the errors. 

2. Further investigations may lead to a feasible way of extending the theoretical work 
of the difference between EIND and ENB to include more features. Current simu- 
lations have given an insight into the possible structure. Another route of investi- 

gation would be to increase the number of classes included in the task. 

3. The meta-analytic study of the NB adaptations could lead to many investigations 
in this area. Studies may be selected by many methods, other than the retrospective 
process, for inclusion in such a meta-analytic study. For example, by time coverage 
(uniformly distributed through time), by citation analysis or by model performance 
to name a few. Formal concept analysis may also be used as another method of 
visualising natural clusters within the input data in addition to Sammon mapping, 
PCA analysis and SOM mapping. More meta-analytic studies of this nature would 
allow a deeper understanding of the produced results allowing stronger recommen- 
dations to be made on the basis of such analysis. 

6.3 Publications 

Pre-selection of independent binary features: An application to diagnosing Scrapie 
in sheep. L. I. Kuncheva, C. J. Whitaker, P. D. Cockcroft and Z. S. J. Hoare. In Pro- 

ceedings ofthe 20th Conference on Uncertainty in Artificial Intelligence, pages 325 

-332.2004 
Selection of independent features using probabilities: An example from veterinary 
medicine. L. I. Kuncheva, Z. S. J Hoare and P. D. Cockcroft. Joumal of Modem 
Applied Statistical Methods, Vol. 4(2), pages 528 - 537,2005 

Empirical bounds on error differences when using Naive Bayes. Z. Hoare. In Pro- 

ceedings of the 3rd International Conference on Advances in Pattern Recognition, 

pages 28 - 34,2005 

NaYve Bayes classifier: True and estimated errors for 2-class 2-features case. Z. 
Hoare. In Proceedings of the 3rd IEEE Conference on Intelligent Systems, pages 
566 - 570,2006 

Submitted. Landscapes of NSive Bayes Classifiers. Z. Hoare. Under second 
review after a major revisionfor Pattern Analysis and Applications journal. 
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