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SUMMARY 
The EU landfill directive has imposed a challenging set of targets for the UK to reduce 
the amount of waste sent to landfill. This has resulted in an increased realisation that 

wastes can be recycled and reprocessed into valuable products. One such area that is 

undergoing significant development is the composting of biodegradable waste products. 
The primary or secondary treatment of wastes by earthworms (vermicomposting) has 
been proposed as a mechanism to enhance the commercial value of composts. The 

commercialization of these technologies, however, requires the development of stable 
markets and consumer confidence in the end products. Currently, in the scientific 
literature, there are several reports that vermicomposts enhance plant growth; however 
the mechanism for this enhancement is poorly understood. The first experimental 
chapter of this thesis presents data from an experiment into the in-vessel co-composting 
of Green Wastes (GW), Green waste with Paper Pulp (GW/PP), and Green waste with 
Biosolids (GW/SS) using Ecopod® composting process. It aimed to determine whether 
compost chemistry and end-use was affected by feedstock quality. Consequently, three 
feedstock were made by mixing green waste with paper pulp or biosolids (paper I). 
Vermicomposts were subsequently produced from the three Ecopod® composts. In three 
separate plant growth trials the presence of vermicompost significantly affected plant 
growth. However, not all plant species responded in the positive manner previously 
reported (paper II). In cereal growth, substituting inorganic fertiliser with vermicompost 
did not decrease yield as long as some inorganic fertiliser was present in the feeding 
regime. This is true for wheat and maize (paper III, appendix 2). Similarly silage grass 
responded much better to applications of vermicompost than to conventional composts 
applied at the same rate (appendix 2). Tomatoes grown in commercial growth media 
substituted with vermicompost did not respond in the same way as reported in previous 
studies; no significant yield increases were observed. Few studies report on the effect of 
growing medium/ fertilising regime on vitamin content of foods. With increasing 
interest in organic food production systems in particular, it is becoming increasingly 
important that we understand the effects that growing conditions have on the nutritional 
properties of foods. In this case there was no effect of growing medium on ascorbic acid 
(vitamin C) content of tomatoes (paper IV). The final chapter (paper V) was a 
collaborative work with A. P. Williams and investigates the effect of earthworm 
digestion on the survival and proliferation of E. coli 0157 in composts and soil. Litter 
dwelling earthworms (e. g. Dendrobaena veneta) significantly aided the lateral 
movement of E. coli 0157 within compost. Our results imply that whilst long-term 
persistence of E. coli 0157 in soil and compost may be unaffected by the presence of 
earthworms, digestion from worms may aid proliferation of the pathogen during initial 
stages of soil or compost contamination. In summary, this thesis shows that feedstock 
can be used to manipulate compost product quality. After vermicomposting the plant 
growth response is often species specific. Our failure to replicate US studies suggests 
that vermicompost production methods and process management may also affect end 
product quality. This will hinder commercialisation of the technology. Significant 
further work is required to identify the method by which plant growth enhancement is 
facilitated by vermicomposts and to what extent this is specific to a particular 
vermicompost production method. 

ii 



ACKNOWLEDGEMENTS. 

I would like to acknowledge the guidance and assistance of my supervisors, Dr. Davey 

Jones and Prof. Gareth Edwards-Jones whose help and guidance were invaluable, also to 

Prof. Clive Edwards for his expertise and guidance. 

I would like to acknowledge Organic Resource Management plc who funded this 

research. Mrs Philippa Stanley, Mr Brian Williams and Mr David Wynne from Organic 

Resource Management plc for their advice, assistance and participation. 

I would also like to acknowledge the assistance and guidance of the following: 

Mrs Llinos Hughes, Mr Mark Hughes, Dr Edward Dickin at Henfaes, the University's 

Research Farm, for their assistance and invaluable advice when conducting growth 
trials; also Mr Jonathan P. Roberts and Mr John Evans for general technical support. 

I would also like to thank my husband Gwynfor Roberts whose support and 

encouragement was invaluable throughout my period of study. 

Thanks also to friends, family and colleagues, particularly in the Environmental Science 
Research Group, School of Agriculture and Forest Science. 

111 



Table of Contents 

EVALUATION OF VERMICOMPOST FROM COMPOSTS FOR 

AGRICULTURAL AND HORTICULTURAL USES ........................................... i 

ACKNOWLEDGEMENTS. iii ................................................................................ iii 

List of Figures ..................................................................................................... xiv 

List of Tables .................................................................................................... xviii 

List of Abbreviations ............................................................................................ xx 

CHAPTER 1: INTRODUCTION .......................................................................... 1 

1.1 

1.2 

1.3 

General introduction and the need for research ......................................... 1 

Plan of thesis .............................................................................................. 2 

Aims and Objectives 
.................................................................................. 4 

CHAPTER 2: LITERATURE REVIEW ............................................................... 6 

2.1 

2.1.1 

2.2 

2.2.1 

2.2.2 

2.2.3 

2.2.3.1 

2.2.3.2 

2.2.3.3 

INTRODUCTION 
..................................................................................... 7 

The Composting Process ........................................................................ 9 

THERMOPHILIC COMPOSTING 
......................................................... 10 

Experimental Equipment ......................................................................... 10 

Microbiology ........................................................................................ Il 

Pathogen Reduction ................................................................................. 15 

Sources ............................................................................................. 16 

Human pathogens ............................................................................. 16 

Animal Pathogens 
............................................................................ 18 

iv 



2.2.4 Chemical and Physical Changes .......................................... 

2.2.4.1 Nitrogen ........................................................................................... 21 

2.2.4.2 Phosphate ......................................................................................... 23 

2.2.4.3 Pollutants .......................................................................................... 24 

2.2.4.3.1 Heavy metals .................................................................................... 24 

2.2.4.3.2 Organic Pollutants 
...................................................................... 25 

2.3 VERMICOMPOSTING 
........................................................................... 26 

2.3.1 Effect of ingestion on organic matter ................................................... 27 

2.3.2 Microbiological 
.................................................................................... 27 

2.3.2.1 Pathogen reduction ........................................................................... 28 

2.3.3 Chemical and Physical changes ........................................................... 29 

2.3.3.1 Nitrogen ........................................................................................... 30 

2.3.3.2 Phosphorus ....................................................................................... 32 

2.3.4 Pollutants .............................................................................................. 33 

2.3.4.1 Heavy Metals ................................................................................... 33 

2.3.4.2 Organic Pollutants ............................................................................ 34 

2.4.1 Soil ....................................................................................................... 35 

2.4.1.1 Physical ............................................................................................ 35 

2.4.1.2 Chemical and Biological .................................................................. 36 

2.4.2 Plant growth ......................................................................................... 39 

2.4.3 Plant health 
........................................................................................... 42 

2.5 SUMMARY 
............................................................................................. 44 

2.6 REFERENCES: 
....................................................................................... 45 

V 



CHAPTER 3: BACKGROUND MATERIAL AND EXPERIMENTAL 

METHODS ........................................................................................................... 
65 

3.1 ARTICLE 1. IN-VESSEL CO-COMPOSTING OF GREEN WASTE 

WITH BIOSOLIDS AND PAPER WASTE ............................................................... 
66 

3.1.1 Experimental Design ............................................................................ 66 

3.1.2 Sampling strategy ................................................................................. 67 

3.1.3 The EcoPOD® Composting System ..................................................... 67 

3.2 ARTICLE II. RESPONSE OF COMMON POT GROWN FLOWER 

SPECIES TO PLANT GROWTH MEDIA SUBSTITUTED WITH 

VERMICOMPOST ...................................................................................................... 70 

3.2.1 Vermicompost production ................................................................... 70 

3.2.2 Choosing Flower Species ..................................................................... 71 

3.3 ARTICLE III YIELD RESPONSES OF WHEAT (Triticum aestivum) 

TO VERMICOMPOST APPLICATION .................................................................... 73 

3.4 ARTICLE IV. YIELD AND VITAMIN CONTENT OF TOMATOES 

(Lycopersicon esculentum) GROWN IN VERMICOMPSTED MANURES ............. 74 

3.4.1 Identifying marketable fruits ................................................................ 74 

3.5 ARTICLE V. EARTHWORMS AS VECTORS OF ESCHERICHIA 

COLI 0157: H7 IN SOIL AND VERMICOMPOST ................................................... 76 

3.5.1 Keeping earthworms in experimental beds .......................................... 76 

3.6 EXPERIMENTAL METHODS 
............................................................... 78 

3.6.1 Moisture Content ................................................................................. 78 

vi 



3.6.2 Ph and Electrical Conductivity (EC) .................................................... 
78 

3.6.3 Extractions ........................................................................................... 
78 

3.6.5 Total Dissolved Organic and Inorganic Carbon .................................. 
79 

3.6.5.1 Total Dissolved Carbon: ........................................................................... 
79 

3.6.5.2 Inorganic Carbon (IC) .............................................................................. 
79 

3.6.5.3 Total Organic Carbon ............................................................................... 80 

3.6.6 Total Dissolved Nitrogen (Tdn), Inorganic Nitrogen (Din) and 

Dissolved Organic Nitrogen (Don) ...................................................................... 80 

3.6.6.1 Total Nitrogen (TN) ................................................................................. 80 

3.6.6.2 Total Inorganic Nitrogen (TIN) ................................................................ 81 

3.6.6.3 UV-Visible Spectroscopy ......................................................................... 
81 

3.6.6.4 Nitrate N03 .............................................................................................. 
81 

Automated method ............................................................................................... 81 

Manual method ..................................................................................................... 82 

3.6.6.5 Ammonium NH4. ..................................................................................... 83 

Automated method ............................................................................................... 83 

Manual method ..................................................................................................... 84 

Dissolved Organic Nitrogen ................................................................................ 85 

3.6.7 Phosphate .................................................................................................... 85 

3.6.8 Potassium, Sodium and Calcium 
......................................................... 86 

3.6.9 Statistical Analyses ..................................................................................... 87 

3.6.9.1 One way Analysis of Variance (ANOVA) ............................................... 88 

3.6.9.2 Two way ANOVA .................................................................................... 88 

vi' 



3.6.9.3 Experimental Design ................................................................................ 
89 

3.6.10 REFERENCES ................................................................................................. 
90 

CHAPTER 4: In-vessel Co-composting of Green Waste with Biosolid and Paper 

Waste 
.................................................................................................................... 92 

4.1 ABSTRACT ............................................................................................. 94 

4.2 INTRODUCTION ................................................................................... 94 

4.3 MATERIALS AND METHODS 4.3.1 Composting Process .................. 98 

4.3.2 Feedstocks 
............................................................................................ 99 

4.3.3 Sampling Strategy .............................................................................. 101 

4.3.4 Chemical Analysis ............................................................................. 101 

4.3.5 Statistical Analysis ............................................................................. 102 

4.4 RESULTS 
.............................................................................................. 103 

4.4.1 Visual Observations 
........................................................................... 103 

4.4.2 Spatial Variability During Active Composting 
.................................. 104 

4.4.3 Soluble Inorganic N ........................................................................... 109 

4.4.4 Compost Maturation 
.......................................................................... 110 

4.4.5 Leachate Production During Maturation 
........................................... 111 

4.4.6 Spatial and Temporal Dynamics of Other Nutrients and Metals....... 113 

4.5 DISCUSSION ........................................................................................ 117 

4.5.1 Success of Mixed Waste Composting 
................................................ 117 

4.5.2 Nitrogen Dynamics ............................................................................ 118 

4.5.3 Covering Maturing Composts 
............................................................ 119 

vii' 



4.5.4 Potentially Toxic Elements (PTEs) .................................................... 
120 

4.6 CONCLUSIONS .................................................................................... 
121 

4.7 REFERENCES ...................................................................................... 122 

CHAPTER 5: Responses of Common Pot Grown Flower Species to Commercial Plant 

Growth Media Substituted with Vermicomposts. 

.......... .................................................................................................................. 127 

5.1 ABSTRACT ........................................................................................... 129 

5.2 INTRODUCTION ................................................................................. 130 

5.3 MATERIALS AND METHODS ........................................................... 133 

5.3.1 Composts ............................................................................................ 133 

5.3.2 Growing media ................................................................................... 133 

5.3.3 Germination experiment .................................................................... 134 

5.3.4 Plant growth experiment .................................................................... 135 

5.3.5 Compost analyses ............................................................................... 135 

5.3.6 Statistical analysis .............................................................................. 136 

5.4 RESULTS .............................................................................................. 137 

5.4.1 Germination ....................................................................................... 137 

5.4.2 Plant Growth ..................................................................................... . 13 8 

5.4.3 Flowering and Seed Production ........................................................ . 141 

5.5 DISCUSSION ....................................................................................... . 142 

5.6 CONCLUSION ..................................................................................... . 145 

5.7 REFERENCES ..................................................................................... . 145 

1X 



CHAPTER 6: Yield Responses of Wheat (Triticum aestivum) to Vermicompost 

Applications ....................................................................................................... 
151 

6.1 ABSTRACT ........................................................................................... 
153 

6.2 INTRODUCTION ................................................................................. 153 

6.3 MATERIALS and METHODS .................................... .......................... 156 

6.3.1 Site and Vermicompost Production ......................... .......................... 156 

6.3.2 Glasshouse Experiments .......................................... .......................... 157 

6.3.3 Winter Wheat Field Experiment .............................. .......................... 158 

6.3.4 Chemical Analyses ................................................... .......................... 160 

6.3.5 Cost benefit analysis .......................................................................... 160 

6.3.6 Statistical Analysis ............................................................................. 161 

6.4 RESULTS .............................................................................................. 161 

6.4.1 Climate .................................................................... ........................... 161 

6.4.2 Glasshouse Lysimeter Experiments 
........................ ........................... 162 

6.4.3 Wheat Yield in Glasshouse Lysimeters .................. ........................... 165 

6.4.4 Field Experiments ................................................... ........................... 167 

6.4.5 Wheat Yield in Field Experiments .......................... ........................... 168 

6.5 DISCUSSION ........................................................................................ 174 

6.6 CONCLUSION ...................................................................................... 177 

6.7 REFERENCES ...................................................................................... 178 

X 



CHAPTER 7: Yield and Vitamin Content of Tomatoes (Lycopersicon 

esculentum) Grown in Vermicomposted Wastes ............................................... 
186 

7.1 ABSTRACT ........................................................................................... 
18 8 

7.2 INTRODUCTION ................................................................................. 
18 9 

7.3 MATERIAL AND METHODS ............................................................. 
191 

7.3.1 Growing media .................................................................................. . 191 

7.3.2 Germination experiment ................................................................... . 191 

7.3.3 Plant growth experiment ................................................................... . 192 

7.3.4 Compost Analysis .............................................................................. 
192 

7.3.5 Vitamin analysis ................................................................................. 
193 

7.3.6. Statistical analysis .................................................................................. .. 196 

7.4. RESULTS ............................................................................................ .. 196 

7.4.1 Germination and plant growth ......................................................... .. 196 

7.4.2 Fruit yield and quality ........................................................................ 
197 

7.5 DISCUSSION ........................................................................................ 
200 

7.6 CONCLUSIONS ................................................................................. ... 205 

7.7 REFERENCES ................................................................................... ... 206 

CHAPTER 8: Earthworms as Vectors of Escherichia coli 0157: H7 in Soil and 

Vermicomposts ................................................................................................... 
211 

8.1 DECLARATION ................................................................................... 
212 

8.2 ABSTRACT ........................................................................................... 
214 

8.3 INTRODUCTION ................................................................................. 
215 

Xi 



8.4 

8.4.3 

8.4.4 

8.4.5 

8.4.6 

8.4.7 

MATERIALS AND METHODS ........................................................... 
217 

Preparation of boxes and cores .......................................................... 
220 

Preparation of E. coli 0157: H7 inoculum ......................................... 221 

Preparation and application of spiked manure ................................... 221 

Harvests .............................................................................................. 222 

Determination of E. coli 0157: H7 numbers on and within earthworm 

tissue 224 

8.4.8 Total microbial activity ...................................................................... 225 

................................ 8.4.9 Data analysis ......... :....................... ..................... 225 

8.5 RESULTS .............................................................................................. 226 

8.5.2 Survival and lateral movement of E. coli 0157: H7 .................................. 227 

8.5.2.2 Compost .................................................................................................. 227 

8.5.3 Survival and vertical movement of E. coli 0157: H7 in soil ..................... 230 

8.5.4 E. coli 0157: H7 numbers on and within earthworm tissue ............... 233 

8.5.5 Total microbial activity ............................................................................. 234 

8.6 

8.7 

DISCUSSION ........................................................................................ 236 

REFERENCES ...................................................................................... 240 

CHAPTER 9 ....................................................................................................... 249 

GENERAL DISCUSSION ........................................................................................ 249 

9.1 

9.2 

Discussion of Results ............................................................................. 249 

Further work ........................................................................................... 254 

APPENDICES .................................................................................................... 259 

X11 



APPENDIX I ...................................................................................................... 
260 

I. I COMPOSTING in UK WASTE MANAGEMENT POLICY ............... 260 

III Commercial Composting Methods .................................................... 
261 

I. I. I. I Windrow ........................................................................................ 262 

I. I. I. II Static Pile ....................................................................................... 262 

I. I. I. III In-Vessel ........................................................................................ 263 

I. I. II Vermicomposting methods ................................................................ 264 

I. I. II. I Feeding rates and stöcking densities .............................................. 265 

I. II COMPOST APPLICATIONS and USES .............................................. 265 

I. II. I Other uses ........................................................................................... 266 

I. III ENVIRONMENTAL BENEFITS ......................................................... 266 

I. IV CURRENT PRACTICES and FUTURE TARGETS ............................ 268 

I. IV. I Current state of waste management ................................................... 268 

I. V MATERIALS, OPERATORS and SITES 
............................................. 270 

I. V. I Sources ............................................................................................... 270 

I. V. II Collection methods ............................................................................ 271 

I. V. III Sites .................................................................................................... 271 

I. VI PROCESS TYPES IN USE IN THE UK .............................................. 272 

I. VII RECENT TRENDS ............................................................................... 275 

I. VIII FUTURE TARGETS ............................................................................. 278 

I. VIII. II Assuring end product quality ............................................................. 280 

Appendix 2 ......................................................................................................... 285 

X111 



List of Figures 

Figure 2.1 Schematic of the composting process 10 

Figure 2.2 Basic processes of the composting process 13 

Figure 2.3 Diagramatic representation of the role of composting in N cycling 22 

Figure 2.4 Detail of upper digestive tract of earthworms 27 

Figure 2.5 Changes to concentrations of total nitrogen of vermicomposts 31 

and composts 

Figure 2.6a CO2 evolution rates during incubation at 10 °C of unamended soil 37 

soil amended with anaerobically stabilized sludge and compost 
Figure 2.6b Inorganic N during incubation at ambient temperature c 37 

unamended 
soil, soil and anaerobically digested sludge, and compost. 

Figure 2.7 Yield and size of tomato fruits produced in a standard commercial 40 

potting medium substituted with different concentrations of pig 

manure vermicomposts. 
Figure 2.8 Shoot weight and height of marigold seedlings grown in Metro-Mi 41 

360 substituted with different concentrations of pig manui 

vermicompost 
Figure 2.9 Pest suppression by vermicompost 44 
Figure 3.1 Experimental design of EcoPOD 66 

Figure 3.2 Filling the CTS with green waste 69 
Figure 3.3 Experimental EcoPOD at Henfaes research centre 69 

Figure 3.4 Covered, maturing green waste 70 

Figure 3.5A Experimental worm bed 71 
Figure 3.5B Hand-sorting earthworms from vermicompost 71 

Figure 3.6 Sunflowers (Helianthus annua) 72 
Figure 3.7 Cosmos (Cosmos bipinnatus) 72 

Figure 3.8 Californian Poppy (eschscholzia californica) 73 

Figure 3.9 Wheat growth trials at Henfaes Research Station (Spring 2005 74 

showing vermicompost application plots. Darkest plots are 30t ha 

equivalent of vermicompost application. 

xlv 



Figure 3.10 Common physiological fruit disorders of tomato, A. Blossom End 75 

Rot; B. Cat Facing; C. Cracking 

www. uga. edu/vegetabl/tomato. html). 

Figure 3.11 A. Experimental vermicomposting beds showing feeding strip of 
77 

manure and several D. veneta earthworms. B. Opened soil core 

prior to sampling, earthworms were fed from the top of the core 

(top of the picture). 

Figure 3.12 Identifying outliers in final Helianthus length using Box Plots. 88 

Outlier is highlighted by red circle 

Figure 3.13 Temperature gradients within greenhouse 
89 

Figure 4.1 Temperature profiles during the in-vessel composting of different 105 

waste mixtures. 

Figure 4.2 pH profiles during the in-vessel composting of different wasi 106 

mixtures 

Figure 4.3 Changes in N03" and NH4+ during the in-vessel composting of 110 

different waste mixtures 

Figure 4.4 NO3 in leachate from maturing compost piles derived from 113 

different waste mixtures 

Figure 4.5 Available Zn concentration in the composts derived from different 115 

waste mixtures during the active and maturation composting phase: 
Figure 4.6 Changes in total heavy metals concentrations (Zn, Cu and Pb) in 116 

composts derived from different waste mixtures during the active 

and maturation composting phases. 
Figure 5.1 Percentage germination of Helianthus annuus, Cosmos bipinnatus 137 

and Eschscholzia californica grown in commercial peat based 

potting compost substituted with vermicomposted green waste. 

xv 



Figure 5.2 Plant growth rates measured at 31 days after transplanting, and 83 139 

days after transplanting into commercial peat based compo: 

substituted with green waste derived vermicompost for Helianth& 

annuus 

and Cosmos bipinnatus. 

Figure 5.3 Final shoot lengths and above ground biomass of Helianthus 140 

annuus, Cosmos bipinnatus and Eschscholzia californica grown 
in commercial potting compost substituted with green waste 

derived vermicompost 
Figure 5.4 Flowering responses of Cosmos bipinnatus and Eschscholzia 142 

californica to commercial peat based potting composts substituted 

with green waste derived vermicompost 
Figure 6.1A Height and chlorophyll pigment development of field grown wheat 164 

Figure 6.1B Height and chlorophyll pigment development of glasshouse grown 164 

Wheat 

Figure 6.2 Yield (Mg ha') of glasshouse grown wheat 165 

Figure 6.3 Regression analysis of glasshouse grown winter wheat properties 167 

Figure 6.4 Yield (Mg hä 1) of field grown winter wheat 169 

Figure 6.5 Regression analysis of field grown winter wheat properties 171 

Figure 7.1 Germination of tomato seeds grown in a commercial growth 196 

medium substituted with four different vermicomposts at rates 
Figure 7.2 Mean fruit yield of tomatoes grown in a commercial peat-based 197 

growth medium substituted with four different vermicomposts 

rates 

Figure 7.3 Percentage of marketable tomato fruit after growth in a commercial 198 

peat-based growth medium substituted with four differei 

vermicomposts 

Figure 7.4 Ascorbic acid content of tomatoes grown in a commercial 199 

peat-based growth medium substituted with vermicompost 
Figure 8.1 Experimental design of vermicomposting and soil boxes. 222 

xvi 



Figure 8.2 Experimental design of soil cores. 223 

Figure 8.3 Lateral movement of E. coli 0157: H7 by the earthworm D. veneta 229 

in actively vermicomposting cattle manure 

Figure 8.4 Vertical movement of E. coli 0157: H7 by the earthworm 232 

L. terrestris in soil 

Figure 8.5 Distribution of E. coif 0157: H7 in the earthworm D. veneta after 233 

feeding on contaminated cattle manure 

Figure 8.6 Mineralization of 14C-Glucose in soil, compost, manure, 235 

L. terrestris earthworm-digested soil, and D. veneta 

earthworm-digested compost 
Figure 8.7 Mean survival of E. coli 0157: H7 over 21 d in soil cores and in 236 

compost boxes 

Figure I Schematic of the overall composting process 262 

Figure II Static pile composting 263 

Figure III In-vessel composting process 264 

Figure IV Distribution of composted products 2003/2004 266 

Figure V Greenhouse gas fluxes from composting and AD of putresci b] 267 

wastes 
Figure VI Distribution of waste produced per capita in the UK 269 

Figure VII UK waste composted per capita 269 

Figure VIII Percentage of centralised composting schemes by authority type 273 

Figure IX The increase in composting sites in the UK 275 

Figure X Growth in material composted in the UK 276 

Figure XI Municipal waste management in England: 1996/97 to 2000/01 277 

Figure XII Household waste and recycling in England: 1983/84 - 2000/01 277 

Figure XIII Grassland biomass response to vermicompost application. 285 

Figure XIV Yield of Maize (Zea mais) in response to vermicompost applicatior. 286 

Figure XV Radish root weight in response to compost and 288 

vermicompost application. 

xvii 



List of Tables 

Table 2.1 Comparison of the heavy metal content in the four main fractions 25 

of biowaste 

Table 2.2 Changes in sludge properties before and after vermidigestion 30 

Table 2.3 Changes in the amounts of organic and inorganic P in municipal 32 

waste subjected to windrow composting and vermicomposting. 

Table 2.4 Comparison of metal concentrations found in un-digested 34 

and vermidigested sewage 

Table 2.5 Effects of compost application on selected soil chemical and 38 

biological properties in long term field experiment 

Table 4.1 Characteristics of the raw feedstock mixes used in the composting 100 

Trials 

Table 4.2 Chemical properties of the covered and uncovered 108 

waste-derived composts at the end of their maturation phase 

Table 5.1 Chemical properties of the conventional peat-based compost 134 

(Humax(g), the green waste derived vermicompost and the sand 

Table 5.2 Plant growth responses of Eschscholzia to a commercial peat 141 

based compost (Humax®) substituted with different amounts 

of vermicomposted green waste 
Table 6.1 Chemical properties of green waste/ biosolids derived 157 

vermicompost, lysimeters and field soil 

Table 6.2 Monthly averages of temperature, rainfall and sunlight hours with 162 

comparison of long-term means for the field site at 

Henfaes Research Station, Gwynedd, UK 

Table 6.3a Summary budget of fixed costs, variable costs, gross crop value 172 

and relative net economic benefit of vermicompost application 

excluding fertilizer application to winter wheat 

Table 6.31 Summary budget of fixed costs, variable costs, gross crop value 172 

and relative net economic benefit of vermicompost application 

including fertilizer application to winter wheat 
Table 7.1 Chemical properties of the commercial peat-based growth medium 194 

xviii 



and four vermicomposts prior to planting 
Table 8.1 Chemical and microbiological properties of soil, compost and manure 218 

Table 8.2 Statistical comparisons of E. cola 0157: H7 numbers (loglo CFU g 1) 230 

in earthworm-digested compost in comparison with control 
Table 8.3 Statistical comparisons of E. coli 0157: H7 numbers (logio CFU g 1) 231 

in earthworm digested soil in comparison with control 
Table 8.4 Variability of microbial mineralization of 14C-Glucose 235 

Table I Management of BMW in selected EU countries 260 
Table II Compostable waste collected through different schemes for 270 

household wastes 
Table III Composting site types, 1999 272 
Table IV Type of composting process, all site types 274 

xix I 



List of Abbreviations 

ABPO Animal Byproducts Order 

BS Biosolid 

BSE Bovine Spongiform Encephalopathy (Mad Cow Disease) 

DEFRA Dept. of the Environment, Food and Rural Affairs (UK) 

DIN Dissolved Inorganic Nitrogen 

DON Dissolved Organic Nitrogen 

EA Environment Agency (UK) 

EPA Environmental Protection Agency (USA) 

EU European Union 

FMDV Foot and Mouth Disease Virus 

GW Green Waste 

GW/BS Green Waste and Biosolid 

GW/PP Green Waste and Paper Pulp 

IC Inorganic Carbon 

NAW National Assembly for Wales 

PP Paper Pulp 

PTE Potentially Toxic Elements 

TC Total Carbon 

TDN Total Dissolved Nitrogen 

TN Total Nitrogen 

TSE Transmittable Spongiform Encephalopathic Organisms 

UK United Kingdom 

USA United States ofAmerica 

xx 



introaucuon 

CHAPTER 1: INTRODUCTION 

1.1 GENERAL INTRODUCTION AND THE NEED FOR RESEARCH 

The UK has traditionally relied on landfill as the primary method of waste 

disposal. However, recent introduction of EU legislation (EC/31/1999) sets 

challenging targets for reducing the amount of waste the UK sends to landfill. 

Composting of biodegradable waste is increasingly recognized as playing a key role 

in attaining these targets. Although the Composting Association has shown that the 

number of composting facilities in the UK has risen by nearly 50% since 2002, the 

1.97 million tonnes of garden waste composted in 2003/2004 represents only 20% of 

the estimated total of UK household garden waste. At present, the composting 

industry is focused on the recycling of green waste, however, as yet there is almost no 

composting of the estimated 6 million tonnes of kitchen waste and this remains an 

untapped resource (Slater et al., 2005; Spencer 2005). 

The basic characteristics of the thermophilic composting processes are well 

understood. It is known to be an aerobic process mediated by a suite of 

microorganisms, the community dynamics of which change with increasing and 

decreasing temperature. Plant nutrient dynamics, in particular losses of nitrogen (N) is 

of concern. N is primarily lost during the thermophilic stage when high temperatures 

and somewhat alkaline conditions encourage the proliferation of ammonifying 

microorganisms and NH3 volatilization. There is a need to identify strategies for 

minimising N losses either by manipulating the feedstock or * the composting 

conditions. 
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Much less is understood regarding the processes involved in the breakdown of 

organic materials by earthworms (vermicomposting). Until recently this has been a 

process adopted, on a small scale, by many householders to recycle organic wastes. In 

the near future, it is likely to become a secondary process for adding value to 

conventional composts; moreover, increasing volumes of vermicompost originating 

from the earthworm breeding process are being sold to amateur gardeners and 

professional horticulturalists. Much of the research is industry driven and concentrates 

on the development of end uses in order to consolidate an emerging market. 

Vermicompost induced plant growth and yield enhancement have been reported 

by scientists in the USA. It is often used as a marketing tool but sometimes 

misreported outside of the scientific community. However, in order to maintain 

consumer confidence and allow industry expansion, there is a need to further our 

understanding of plant growth responses to vermicompost and to do this in a rigorous 

scientific manner. In a similar vein, only one study to date reports on pathogen 

reduction in vermicomposts. There is an urgent need to elaborate on this and report on 

more specific human pathogenic species. 

1.2 PLAN OF THESIS 

This research was funded by the company Organic Resource Management Ltd. 

(ORM). The company is active in two key areas namely, selling commercial 

composting equipment namely a static pile, forced aeration in-vessel system Ecopod® 

and providing an advice and consultancy service for those setting up Ecopod® 

composting sites. ORM have also developed a network of earthworm breeders. The 
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company acts as a hub for these breeders, providing advice and support and marketing 

earthworms on the breeder's behalf. 

The remainder of this thesis is divided into eight chapters; it starts with a 

literature review of the current position of compost and vermicompost research. This 

illustrates current understanding of the composting and vermicomposting process; the 

response of soil to compost amendment and to plant growth responses both in small 

pot scale and larger field scale environments. 

The thesis is presented as 5 separate scientific papers, some repetition of 

introductory material occurs but unavoidable when preparing a thesis of this type. 

Chapter 3 introduces some background material that is not included in the five 

research papers 

Chapter 4 describes an investigation into producing composts of differing 

nutrient status by manipulating initial feedstock proportions. Three compost types 

were produced; low N status green waste and paper pulp (GW/PP), high N status 

green waste and biosolid (GW/SS) and medium N status green waste (GW). Compost 

nutrient changes were monitored during active composting and a comparison of 

compost management options during maturation was made. 

These composts were subjected to earthworm ingestion, and chapter 5 reports on 

growth responses of three flower species to vermicompost addition. 

Chapter 6 reports on responses of wheat (Triticum aestivum) to applications of 

vermicomposted GW/SS both in greenhouse and field scale trials. The potential for 

substitution of inorganic with vermicompost was investigated. 
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The public are increasingly concerned about large scale food production. 

Consumption of organically produced food is increasingly popular. Previous US 

studies have reported enhanced plant growth and yield of tomatoes when grown in 

growing media containing low percentages of vermicomposts. Chapter 7 was 

designed to study the effect of UK produced vermicomposts on tomatoes. In addition, 

we also studied tomato vitamin C content in response to changes in growth media. 

The final experiment reported here is a collaborative study which reports on the 

persistence and dispersal of E. coli 0157: H7 by earthworms in soil and 

vermicompost. 

Chapter 9 includes a general discussion of results from previous experimental 

chapters. Conclusions are drawn and areas of further work identified. Appendices 

include a review of the role of composting in UK waste management policy; a more 

in depth explanation of common experimental methods adopted in the experimental 

chapters. Finally, appendix 2 consists of a presentation of a selection of results that 

are not included in the experimental chapters. 

1.3 AIMS AND OBJECTIVES 

The aims and objectives of this research were agreed with the funding company 

prior to the commencement of the study period. These were: 

" To assess the potential of customising compost nutrient content to 

satisfy a range of uses and to identify any potential spatial variability 

that might occur in the Ecopod composting system (Chapter 4). 
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" Identify plant growth responses of a broad range of agricultural and 

horticultural crops to waste derived vermicomposts (Chapter 5,6,7). 

9 Determine to what extent inorganic fertiliser can be replaced by 

vermicomposts without reducing final yield (Chapter 6). 

9 Confirm that reported plant growth responses to US produced 

vermicomposts is attributable to similar products produced by different 

methods in the UK (Chapter 7) 

" Examine the potential for human pathogen dispersal during the 

vermicomposting process (Chapter 8). 
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CHAPTER 2 LITERATURE REVIEW 



L1 LGI aLul tr J%rr 1V vv 

2.1 INTRODUCTION 

In the UK today, waste management has an unrivalled political profile (Read, 

2001), with increasing pressure on waste management bodies to reduce the volume of 

wastes sent to landfill sites from both public and legal domains. New legislation in 

the form of the European Landfill directive (1999/31/EC, 1999), and a commitment to 

reduce greenhouse gas emissions is now forcing waste management bodies 

throughout Europe to consider alternative methods of managing biodegradable 

wastes. 

Each person in the UK generates about 0.42 tonnes of waste p. a., with an 

estimated growth of 3% p. a., this quantity is expected to double in 20 years (Read, 

2001). In order to achieve landfill reduction targets set by the EU landfill directive*, 

large volumes of waste will need to be diverted from landfill to recycling or 

composting for treatment or recovery in other ways. "Assuming 60% of municipal 

waste is biodegradable, the UK needs to divert at least: 3.2 million tonnes of 

biodegradable municipal waste each year to meet the first target; 7.5 million tonnes of 

biodegradable municipal waste each year to meet the second target; and 10.1 million 

tonnes of biodegradable municipal waste each year to meet the third target", 

(Letsrecycle undated). In addition alternative routes need to be cost effective and the 

end product marketable in order to be a realistic proposition for both local authorities 

and commercial waste management companies alike. 

* EU landfill directive targets: reduce waste sent to landfill to 75% of total waste produced in 1995 by 

2010,50% of total waste produced in 1995 by 2013 and 35% of total waste produced in 1995 by 2020 
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Composting can be an important element of sustainable waste management 

for the UK and will have a significant role to play in meeting the UK's landfill 

directive obligations, (Slater and Frederickson, 2001). The Composting Association 

survey and compile an annual report on "The State of Composting in the UK" (Slater 

et al, 2005). In summary, for the period 2003/4, a total of 2Mt of wastes were 

composted and 87% of this was in centralised sites; although significant growth in 

on-farm composting was recorded in the same period. 95% of centralised sites are 

operated by waste management companies, processing 2000 - 5000 tonnes per year, 

and dedicated composting companies, processing 5000 - 10,000 tonnes annually. 

Increasingly common in rural areas are small on-farm sites, 85% of which are run by 

agricultural operators, these process on average < 1000 tonnes. Since food waste 

composting is tightly regulated; at the time of writing, no licensed sites exist in the 

UK, although there are several engaged in the licensing process; the industry is 

largely dependent on green waste composting. However, the industry is in its infancy 

and it will be some time before its presence will influence the data presented in 

reports such as this. For the UK to meet its EU Landfill directive targets, this sector of 

the industry needs rapid development. At present, regulatory requirements are 

hampering this growth and unless this is addressed it is probable that the UK will fail 

to meet its Landfill Directive obligations. 

Agriculture is the largest and fastest growing market sector for composted 

products (40%) followed by landscape restoration and landfill engineering, (24%). 

The remainder is sold to professional and amateur gardeners, landscaping and 

grounds maintenance. 

Digestion by earthworms (vermicomposting) is increasingly seen as a low cost 

method of treating organic wastes; although at present, it is conducted on a much 
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smaller scale than thermophilic methods. Most vermicompost that is marketed in the 

UK today is a by-product of earthworm breeding. In comparison to conventional 

composts it is marketed at the high value, amateur and professional horticulture 

sector. 

An in depth review of the development and adoption of composting as a waste 

management strategy in the UK is included in Appendix 1. 

2.1.1 The Composting Process. 

Composting is a biological, aerobic process that uses naturally occurring micro- 

organisms to convert biodegradable organic matter into a humus like product 

(Imbeah, 1998). Its primary use in waste management is as an alternative to 

landfilling, producing a valuable product that can be reused as a slow release fertiliser 

on agricultural, horticultural land and amenity sites. The emphasis on aerobic 

composting of organic wastes has led to an increasing interest in understanding the 

microbial processes that result in the conversion of wastes into organic manure rich in 

humic substances and plant nutrients (Sharma et al., 1999). The microbial process 

changes many of the fundamental properties of the wastes and many studies have 

reported on these changes and the general processes are well understood. In contrast, 

studies into the changes occurring during the vermicomposting of wastes has only 

recently begun with several speculative reports on overall processes and the fate of 

waste contaminants. 
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2.2 THERMOPHILIC COMPOSTING 

2.2.1 Experimental Equipment 

The study of thermophilic composting is done in one of three ways 

" Using composts from large scale compost producers 

" Obtaining raw feed stocks and composting outdoors using windrow or static 

pile techniques 

" Smaller, laboratory scale bioreactors. 

Laboratory scale bioreactors are most often used to gain a deeper insight into the 

composting processes they allow manipulation of critical parameters. More 

importantly with food waste compost they allow the study of human and other 

commercially important pathogens although some researchers have studied pathogen 

reduction in windrow systems (Garcia-Siera et al., 2001). Arguably, using 

commercially produced composts gives a more accurate representation of composts in 

general use than those produced under optimum conditions. Many bench scale 

bioreactors are described in the literature (Ashbolt and Line, 1982; Sikora et al., 1983; 

Clarc et al., 1977; Mote and Griffis, 1979; Miller et al., 1990; Nakasaki et al., 1990; 

Deschamps et al., 1979; Schultze, 1960; Hogan et al., 1989, Jeris and Regan, 1973; 

Magalhaes et al., 1993; Smars et al., 2001 Körner et al., 2003), and a further 

discussion on designs and processes is given in Smärs et al., (2001) 
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Microorganisms 

Humus 

Oxygen 

Biodegradable Waste 

CO, Heat Water 

Figure 2.1 Schematic of the composting process 

2.2.2 Microbiology 

The composting process is complex but the main characteristics are well 

understood. Gray and Biddlestone (1981) identified four main categories; 

" Mesophilic: Microbiological breakdown commences and heat is generated; 

temperatures increase; organic acids are produced and pH falls. 

" Thermophilic: Thermophilic organisms, primarily actinomycetes and spore 

forming bacteria take over the breakdown process. High temperatures 

neutralise pathogenic organisms and weed contaminants. Ammonia is 

liberated from proteins and pH rises. 

" Cooling: The temperature falls as the reaction rate drops, Mesophilic 

organisms reinvade, polymers breakdown. 
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" Maturing: After the initial stages, there follows a long period where the 

compost matures, microorganisms deplete the readily available nutrients, 

antibiotics and humic acids are formed. 

Recently there has been much interest in identifying microbial community 

succession and species characterisation during the composting process. Bacterial 

community changes have been studied by Phospholipid Fatty Acid (PLFA) analysis 

(Herrmann and Shann 1997, Carpenter-Bloggs et al., 1998; Klamer and Bääth 1998; 

Sundh and Rönn, 2002; Cahyani et al., 2002; Cooper et al., 2002; Lei and Van der 

Gheynst, 2000). Highest microbial diversity is found in the initial mesophilic stage. 

Communities are dominated by fungi and gram-negative bacteria in the initial 

mesophilic stage. These are replaced by gram-positive bacteria and actinomycetes in 

the thermophilic stage; (Cahyani et al., 2002; Hermann and Shann, 1997). Sundh and 

Rönn (2002) also found actinomycetes fatty acid after the initial thermophilic stage. 

Actinomycetes persist into the curing stage alongside re-colonisation by gram 

negative and eukariotic bacteria (Cahyani et al., 2002). Hermann and Shann, (1997) 

reported reappearance of fungal PLFA during the curing stage. Full characterisation 

of microbiological species has been undertaken using terminal restriction fragment 

length polymorphisms (T-RFLP) of PCR-amplified 16s rRNA genes (Michel et al., 

2002; Tiquia and Michel et al., 2002). 

Considerable amounts of carbon and nitrogen are lost from compost in gaseous 

form. Most carbon is lost as CO2 losses but CH4 production can account for 1.9 g kg", 

of organic C loss (Fukumoto et al., 2003). For the majority of composting 

environments, CO2 generation and oxygen consumption peaks at periods of high 

temperature during early stages of the composting process, (Robertson, 2002). In 

windrow composting turning induces a temporary drop in temperature, this results in 
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a decrease in C02 production and oxygen consumption (Hao et al., 2004). All 

composting matrices develop small anaerobic microsites and the emission of very low 

levels of CH4, H2S and N20 is regularly measured (e. g. Robertson, 2002; Beck-Friis 

et al., 2001; Hao et al, 2004). 

Quantity and speciation of gaseous emissions from compost environments is 

largely determined by physical and chemical properties of the matrix (Sommer and 

Moller, 2000). Elevated moisture content and high proportions of dense materials 

such as wet sludges, manures and food waste decreases the degree to which oxygen 

diffuses through the compost mass allowing anaerobic conditions to develop and 

inhibiting the development of higher temperature. The development of anaerobic sites 

is responsible for reductive environments encouraging production and emissions of 

gases such as CH4, H2S and N20 by microorganisms. In poorly managed composts 

that develop significant anaerobic areas, the emission of larger volumes of CH4 H2S 

and N20 can be a major environmental hazard and levels of 5g CH4 m2 h'1,0.5 mg 

N20 m2 h"1 have been measured (Beck-Friis et al., 2000; Hobson et al., 2005). It 

seems that compost production method also influences gaseous emissions and that 

composting with large windrows encourages the development of anaerobic sites and 

CH4 and N20 emission (Fukumoto et al., 2003). Little work exists on the production 

and emission of H2S from the composting process although initial studies report 

levels of 3 parts per million (ppm) during the thermophilic sage of aerobic compost. 

Higher levels (> 50 ppm) have been recovered from composts that have been 

managed to mimic anaerobic conditions (Robertson 2002). Much of the work on 

gaseous emissions of the composting process is conducted using bench-scale 

composting bioreactors to impose a temperature regime on the degrading matrix. The 

imposition of a temperature regime on a degrading mass has been shown to adversely 
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influence results (Sundh and Rönn, 2002). Similarly, microbial biomass shows no 

increase in externally heated composts while increasing 3-4 fold in self-heating 

composts, (Rönn, 1999). A discussion of NH3 loss and its implications for final 

compost nitrogen content is included in section 2.2.4.1. Compost research typically 

uses a wide range of feedstock and often incorporates some degree of co-composting 

of different wastes. This makes identifying common biological chemical and physical 

characteristics of the composting process very difficult since such properties are often 

dependent on initial feed stock characteristics. 

Peak temp > 60°C 

Soluble elements degrade 

T 
6o-- 

e 
m Thermophiles 
p 

oc 

Spore forming bacteria and actinomycetes 

Polymer decomposition 

Antibiotic formation 

Macro-organisms invade 

Mesophilic organisms 

Time 

Figure 2.2 Basic processes of the composting process 
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2.2.3 Pathogen Reduction 

High temperatures during the composting process are known to kill most 

pathogens that are of concern. Green wastes are not thought to be of particular 

concern; however, since food wastes and in particular, meat in kitchen wastes are 

potential reservoirs of serious human and animal diseases, the EU and individual 

member states have introduced strict requirements on the management of the 

composting process where feed stocks contain kitchen/ catering wastes. 

The Animal By-products Order, 1999/ 2003 (ABPO) (EU 2003) was introduced 

in order to ensure the removal of human and animal pathogens during the 

management of wastes containing meat or other products of animal origin. Prior to 1 

July 2003, the Animal By-products Order 1999 banned the use of composted wastes 

that contained meat, or of composted catering waste, which originated from premises 

in which meat or products of animal origin was handled, on land even when it was 

treated. This was due to a requirement in the legislation to ban access to treated and 

untreated wastes by livestock including wild birds, (DEFRA 2003). The new ABPO 

((EC) No. 1774/2002) permits the composting of low risk catering wastes and animal 

by-products under strict conditions. Domestic householders are exempt from these 

conditions, they may compost their own kitchen scraps provided that they do not keep 

ruminants, pigs or poultry on the premises. On premises where poultry are kept, 

composting of kitchen waste is only allowed in enclosed containers; where pigs or pet 

ruminants are kept, composting of kitchen scraps is not allowed. It is questionable 

whether this part of the legislation is enforceable; in addition it is unlikely that 

compost produced in domestic households attains temperatures to kill potential 

pathogens that might be present. Although it is recommended that meat should not be 
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composted as it attracts vermin, some compost bin manufacturers advertise their 

product as vermin proof and suitable for composting meat scraps. 

2.2.3.1 Sources 

Pathogen sources in MSW have been identified as, (Gale 2002): 

Uncooked meat in kitchen and catering wastes. Primarily from domestic kitchens, 

" Pet food 

" Dog and cat faeces (cat litter) 

" Dead pets 

" Nappies 

" Poultry 

2.2.3.2 Human pathogens 

The sanitization effect of thermophilic composting of sewage sludges and 

manure feed stocks is well documented and since the processes are similar, it is 

considered to be a good model for the behaviour of human pathogens in food waste 

composting. The primary human pathogens that are known to proliferate in food 

wastes are Salmonella spp, Shigella spp, Staphylococcus spp, Listeria, and 

Escherichia coll. 

The composting process is known to successfully eliminate Salmonella spp, E. 

coli and other enteric viruses (Watanabe et al., 1997; Hassen et al., 2001; Lung et al., 

2001; Garcia-Siera et al., 2001; Ranalli et al., 2001; Turner, 2002; Sidhu et al., 2001). 

Composting has also been reported as being more effective than anaerobic and 

aerobic digestion at eliminating human pathogens (Ponugoti et al,. 1997). However, 
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improperly managed composts can encourage the proliferation and dispersal of 

potentially pathogenic organisms (Hassen et al., 2001; Beffa et al., 1996; Miliner, 

1995). 

Droffner and Brinton, (1996) has reported concerns regarding the behaviour of 

Listeria spp during the composting process. They found that false negative results 

were obtained using the standard Listeria Selective Medium (UVM-1) suggesting that 

heat stressed Listeria organisms were unable to survive in this but were recorded 

when using other media. Some researchers have reported slight re-infection of 

composts by human pathogens during the cooling and maturation stage, although 

there is some evidence that indigenous microflora suppresses this re-infection but this 

effect diminishes with time (Hassen et al., 2001; Sidhu et al., 2001). Tiquia et al., 

(1998) has questioned the efficacy of windrows in eliminating faecal streptococci. In 

particular, the cooler areas at the outer edges of the windrows can potentially reduce 

the sanitisation properties of the process. However, in most well managed windrow 

compost sites regular mixing ensures that virtually all material is subjected to 

temperatures above 55°C. Stenbro-Olsen et al., (1995); Joshua et al., (1998) and 

Deportes et al., (1998) have reported significant reductions of faecal coliforms in 

MSW composts. Similar concerns regarding the edge cooling effects in "in-vessel" 

systems have also been expressed, (Gale, 2002), and legislation now requires 

composting kitchen/ catering wastes be carried out in enclosed systems and 

maintained at a minimum of 60°C for 2 days. 

Although composting is an aerobic process, anaerobic microenvironments exist. 

This allows the development of anaerobic microbial communities within the compost 

mass. In recent investigations, Böhnel and Lube (2000) detected Clostridium. 

botulinum in more than 50% of sampled composts in Germany. It is thought that the 
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spores of Clostridia may survive adverse conditions (Mitscherlich and Marth 1984) 

and that the sanitisation of substrates that occurs during composting might not destroy 

all Clostridia spores, (Böhnel et al., 2002). Determination of C. botulinum is difficult 

and few scientific groups are known to work with them and according to De, Groot 

and Steenhof, (1997) this probably results in the underestimation of botulism in 

European countries. However, spore levels predicted in composts are no higher than 

reported in some soils, (Gale, 2002). 

Workers on composting sites are potentially exposed to a range of pathogenic 

organisms. Of particular concern, is the volume of potentially pathogenic Aspergillus 

spores that workers on composting sites are exposed. In a recent study of source 

separated kitchen wastes in Finland, concentrations of endotoxins in the cabin of the 

wheel loader exceeded all recommended limits, particularly of some thermotolerant 

Aspergillus spp, (Hassen et al., 2001, Koivula et al., 2000; Beffa et al., 1996). The 

adverse health effects resulting from exposure to such organisms far outweighs 

likelihood of disease transfer resulting from incomplete sanitisation of the composting 

matrix. 

2.2.3.3 Animal Pathogens 

Since the major proportion of food waste composts will be used in the 

agricultural sector, the fate of animal pathogens is also of concern. To date there has 

been no study into the fate of Transmittable Spongiform Encephalopathic (TSE) 

organisms in the composting process, however, it is thought that composting will 

have no effect on BSE agents, (Gale 2002), nor will there be any subsequent decay in 

soil (Gale and Stansfield, 2001). The restrictions placed on composting catering 
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wastes by the Animal By-Products Order (EU 2003) should mean that no infected 

cattle carcasses should enter the composting process within the EU. This diversion of 

potentially infected material from the composting process results in a lower 

likelihood of re-infection of cattle grazing on land where composted kitchen waste is 

applied than where sewage sludge is applied (Gale and Stansfield, 2001). The 

position of Ovine TSE, i. e. Scrapie poses a more complex problem; the BSE agent is 

present in the inedible part of cattle whereas the Scrapie agent is found in muscle 

tissue of sheep and will enter the composting process. Cooking kills most Scrapie 

agents but questions exist regarding its behaviour in soil. Brown and Gajdusek (1991) 

noted a three year decline in Scrapie infectivity in soil but were unsure whether thus 

was due to decay or adsorption to soil particles. 

The recent outbreak of Foot and Mouth virus (FMDV) in the UK and its 

potential spread by food waste is also of concern. The virus is known to be present in 

milk before external symptoms of the disease are seen but is believed to be denatured 

when exposed to temperatures above: 

" 80 -100°C for 2-3 min 

" 70°C for 25 minutes (MacDarmid, 1991) 

Turner et al., (2000) found that FMDV was deactivated at temperatures above 

55°C. In an earlier study, however Turner and Burton, (1997) found that FMDV was 

inactivated in pig slurry at 50°C if maintained at pH 8 for 48 hours. 
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Composting is known to deactivate several other animal viruses: 

Classical Swine Fever is inactivated at temperatures above 55°C, (Turner et 

al., 2000). 

9 African Swine Fever undergoes rapid initial destruction at 56°C, (Plowright 

and Parker, 1967). 

9 Swine Vesicular Disease is reduced to below detectable levels above 50°C at 

alkaline pH, (Turner and Williams, 1999), or at 40°C when maintained for 48 

hours, (Turner and Burton, 1997) 

9 Aujeszky's disease at 40°C for 5 hours, (Turner and Burton, 1997). 

" Avian Influenza Virus, Newcastle Disease and Infectious Bursal Disease, 

(Senne et al., 1994) 

2.2.4 Chemical and Physical Changes 

Micro-organisms play a key role in converting wastes into composts. Major 

components of green waste and MSW are cellulose and lignin. Since these are known 

to be resistant to microbial breakdown, they can slow the composting process 

considerably. Singh and Sharma (2001) found that inoculating lignocellulosic wastes 

with a microbial combination of known lignin and cellulose degraders (Pleurotus 

sajor-caju, Trichoderma harzianum, Aspergillus niger and Azobacter chroococcum) 

reduced the cellulose, hemicellulose and lignin content and composting times 

significantly. In addition, N, P, K content in the final product was shown to be 

enhanced. Senesi and Brunetti (1996) reported that in comparison with soil; the 

humic and fulvic fractions in composts generally have a high degree of molecular 

heterogeneity and a lower degree of aromatic compounds. 
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2.2.4.1 Nitrogen 

Nitrogen plays an important part both in the composting process and in the 

subsequent value of the finished compost as a soil additive. Its fixation, 

transformation and recycling by microorganisms is of great interest in environmental 

sciences. Current concerns include gaseous emissions of nitrous oxides and their 

contribution to atmospheric changes and climate change, and their high 

concentrations in ground and surface waters in relation to drinking water quality and 

eutrophication. 

There is general agreement about N dynamics during the composting process, 

(Tiquia, 2002; Körner and Stegman, 2002). Most N is in an organic form and is only 

slowly converted to inorganic N pools. Nitrification is limited by temperatures above 

30°C and concentrations are low during the thermophilic stage. Nitrification is only 

seen during the cooler maturation stage as the populations of nitrifying bacteria re- 

infect the composting matrix. Denitrification occurs during the initial stage of the 

composting process and populations of denitrifying bacteria decline during the 

composting process. In feed stocks rich in kitchen wastes, up to 50% of the initial N 

was lost as gaseous NH3. Korner et al. (2003) in their study of N dynamics in a 

mixture of kitchen wastes and green wastes have reported that between 40 - 70% of 

N is ammonified. It was hypothesised that these high levels of gaseous N loss was as 

a result of differences in biochemical components; (i. e. cellulose, hemicellulose and 

lignin in green waste and starch, carbohydrates and proteins in kitchen wastes). Since 

food waste contains high quantities of water, it is more likely that increased moisture 

content influenced oxygen diffusion and it was the development of anaerobic 

conditions leading to increased ammonification that led to the high losses reported. 
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N immobilisation has to occur since microbial proteins are formed during the 

composting process in order to maintain the microbial population. However, since it 

can only be detected by measuring an increase in the organic N pool, it can only be 

visualised when the immobilisation rate is higher than ammonification (Körner and 

Stegman, 2002). In their study, Körner and Stegman, (2002), conclude that 

immobilisation of the inorganic fraction is due to chemical-physical processes and not 

by the microbial biomass i. e., it was bound up with the humic - lignin complex. 

Parkinson et. al. (2004) suggest that there is a close link between nutrient losses and 

turning frequency with increased NH4- N losses with each turn. A similar pattern was 

seen in leachate content with increased NO3- N losses in leachate collected from 

frequently turned composts compared with static compost piles. Nitrogen dynamics 

and its place in larger scale N cycling is summarised in figure 2.3 
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Figure 2.3 Composting and the Nitrogen cycle 

2.2.4.2 Phosphate 

Most research is focused on changes in P availability in soil after compost 

application and its effect on plant growth and yield (Mkhabela, and Warman, 2005; 

Speir et al., 2004) whereas studies into P dynamics during active composting are 

scarce. Moreover, results from the few that exist are inconclusive and suggest that 

change in P speciation is dependent on feedstock (Traore et al. 1999; Felton et al., 

2004). A common conclusion is that total P concentrations increase; however, studies 

into levels of plant available P were inconsistent. Parkinson et al., (2004) found that 

leachate originating from composting of animal manures contain in excess of 
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40mg P 1" 1 throughout the composting process and increased with increased compost 

turning. This is contradicted by Felton et al. (2004) who report higher concentrations 

of water soluble P in compost that had lowest turning frequency. 

2.2.4.3 Pollutants 

2.2.4.3.1 Heavy metals 

The composted organic fraction of municipal solid waste can be reused for soil 

conditioning. However, heavy metal concentrations are known to increase during the 

composting process even when initial pre-treatment concentrations are similar to 

background levels (Table 2.1). Frequent application of composts to soil systems may 

lead to the accumulation of heavy metals in soils. Concentrations of Cu, Pb and Zn 

are shown to increase significantly during the composting process. Intense microbial 

activity results in significant gaseous losses of C as C02, reducing total volume 

considerably (Veeken and Hamelers, 2002). There is some evidence that heavy metal 

bioavailability decreases during the composting of process (Amir et al., 2005); the 

degree to which metals become bound to organic fraction is likely to be metal 

dependent and more work is required to further elucidate with the likely impact of 

long term application. The heavy metal content of biowaste-composts frequently 

exceeds the legal standards, and thus raises a conflict between two governmental 

policies: the recycling of solid waste on the one hand, and the protection of natural 

ecosystems and public health on the other (Veeken and Hamelers 2002). 
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Table 2.1 Comparison of the heavy metal content in the four main fractions of biowaste (in italics) and 

the natural background content of the original biowaste constituents, (Veeken and Hamelers, 2002). 

Fraction Heavy petal content (mg k DM) 
Cd Cu Pb Zn 

Organicli-action > mm 0.24±0.10 -t 7± 
Indoor oiganic waste 0.3±0.4 7±8 1-±4 45±35 
Outdoor organic waste 0.4±0.2 8±5 5±7 60±100 

Organic , 'action 0.05-1 O. 61±0.28 28±7 9.9±17 196±49 
mm 
Humus layer 2±1 30±9 100± M 150±80 

Inorganic firaction0,05-05 0.05±0.01 3.1±1.5 26 ± 10 24±3 
mm 
Soil sand 0.2±0.3 12±8 15±11 35±42 

Organo-mrrrwral fraction 1.0±0.5 63±? 6 157±30 338_±58 
<0,05 mm 
Humus laycr 2±1 20±9 100-{-64 150±110 
Soil loess 0.2 25±34 20±5 30±12 
Soil clay 0.4 30±25 55±17 70±42 

2.2.4.3.2 Organic Pollutants 

In addition to metal enrichment of the soil, other organic pollutants that 

accumulate in treated sewage sludges are known to accumulate in soils. Secondary 

composting of contaminated sludges results in further volume reduction and potential 

concentration of contaminants. A number of organic pollutants, such as hydrophobic, 

organic contaminants and surfactants, some of which have hormone mimicking 

properties, are known to accumulate in organic wastes (During and Gath 2002, ). 

Compost feedstocks also contain significant levels and variety of polynuclear 

aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) (McGowin et al., 

2001; Rogers, 1996; Moreda et al., 1998). Increased microbial activity in soil 

increases the degradation rates for most pollutants, phthalic acid esther pesticides 

such as organophosphates and carbamate pesticides are rarely seen in the end product, 
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whereas organochlorines such as chlordane can persist through the composting 

process and is measured in some mature composts, (Amir et al., 2005; Lee et al., 

2003; Büyüksönmez et al., 1999). Concentrations of PAHs and PCBs are known to 

persist or increase in composts to such an extent that they can be released back into 

the environment and significant contamination of finished composts has been 

reported (Lazzari et al., 1999; Büyüksönmez et al., 2000; McGowin et al., 2001; 

Moeller and Reehu, 2003). Fricke et at. (1996) concluded that concentrations of lower 

chlorinated polychlorinated dibenzo-p dioxin and dibenzo furans (PCDD, PCDF), 

decrease during the composting process with furans being more susceptible to 

degradation; but concentrations of hepta- and octa - PCDD can increase; however, 

since these are not considered to be particularly toxic, it is not thought to increase the 

overall toxicity of the compost. The nature of the organic compound, specific 

composting conditions and procedures, the microbial communities present, and the 

duration of composting affect the extent and the mechanism of degradation 

(Büyüksönmez 1999). Of recent concern in the USA is the persistence of chlordane. 

Lee et al. (2003) concluded that some composts contribute to anthropogenic cycling 

of POPs through the biosphere. 

2.3 VERMICOMPOSTING 

Charles Darwin was the first person to document the ability of earthworms to 

breakdown a range of organic wastes (Darwin, 1881). However, it is only recently 

with increasing awareness of the environmental effect of landfilling wastes that 

scientists have investigated the potential of using earthworms to process organic 

wastes. 
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2.3.1 Effect of ingestion on organic matter. 

Vermicomposting in its basic form it is a low-cost method of treating organic 

wastes (Hand et al., 1988) by exploiting the ability of some earthworms to fragment 

the organic matter in a grinding gizzard (Fig 2.4). They consume and excrete organic 

matter rapidly; living off the micro-organisms in these materials. These casts contain 

significant quantities of polysaccharides which stimulate microbial activity resulting 

in rapid stabilisation of the feed stock. 

2.3.2 Microbiological 

The casts excreted by earthworms are more microbially active than the source 

material consumed, thus increasing the speed of stabilisation (Edwards and Bolhen 

1996; Vinceslas-Akpa and Loquet, 1996). Several studies have shown that 

vermicomposting wastes accelerated the stabilisation of sewage sludge wastes three 

times faster than non-ingested sludge (Hartenstein 1978; Neuhauser et al., 1988; 

Frederickson et al., 1997; Singh and Sharma 2002). Some worms however, require 

pre-composted waste. For example Singh and Sharma (2002) found that pre- 

composting wheat straw with known lignocellulose degrading micro organisms 

followed by vermicomposting produced a compost rich in N and P and could 

potentially reduce composting times by up to 40 days. 

PLFA profiles show that the most common microorganisms present in 

vermicomposts are Pseudomonas (27%), Bacillus (37%), Aeromonas and Vibrio. 

There is some evidence to suggest that microbial communities in vermicomposts 

reflect its source with some common rumen microorganisms found in cow manure 

vermicomposts (Verkhotseva et at., 2002). 
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Figure 2.4 Detail of upper digestive system of earthworms (Gillis and 
Garo. undated) 

2.3.2.1 Pathogen reduction 

Since worms will not tolerate temperatures in excess of 35°C the process must 

be maintained at temperatures below this. The resulting product will not meet UK 

Environment Agency (EA) rules on pathogen reduction and some form of pre- 

composting is required in order that the product meets national guidelines. 

Researchers in the USA however, have reported pathogen reduction sufficient to meet 

EA guidelines during the vermicomposting of biosolids (Eastman, 1999; Dominguez 

et al., 1997). Work by Ndegwa and Thompson (2001) concluded that when studying 

vermicomposting of biosolids, in order for the final product to comply with the US 

Environmental Protection Agency (EPA) standards then a combination of composting 

followed by vermicomposting was the only method that resulted in satisfactory 
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pathogen reduction. In addition, Smith (2001) has noted the presence of Listeria spp 

and Legionella monocytogenes in the liquor produced in household vermicomposting 

units. 

Most vermicompost retailers target the high value end of compost market, i. e. 

amateur gardeners and horticulturalists that use the compost for growing fruit and 

vegetable. Given that some of this produce will be eaten raw, the potential exists for 

human infection from consuming food grown on such contaminated wastes. More 

recently pre-harvest contamination of vegetables with E. coli 0157: H7-infected 

compost is known to be responsible for enterohemorrhagic food poisoning outbreaks 

(Islam et al., 2005). There is a significant need for further work on vermicomposting 

and pathogen reduction. Little is known of human pathogen fate but no workers have 

reported on animal pathogen removal. This lack of information will retard the 

adoption of vermicomposting as a waste management method given the current strict 

requirements currently imposed on thermophilic composting methods. 

2.3.3 Chemical and Physical changes 

Several researchers have reported on the physical and chemical changes that 

occur as a result of ingestion and excretion by earthworms. The grinding action in the 

gizzard increases the surface area of the material (Shi-wei and Fu-zhen 1991) as well 

as increasing its cation exchange capacity (CEC), decreasing its pH and increasing 

aeration status (Hartenstein and Hartenstein, 1981; Bemal et al., 1996); (Table 2.2). 
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Table 2.2 Changes in sludge properties before and after vermidigestion (adapted from Hartenstein and 
Hartenstein 1981) 

Sludge Castings 

pH 6.84 6.2 

Eh 182.5 397.25 

(mV) 

CEC 19.55 22.1 

2.3.3.1 Nitrogen 

Studies into the changes in nitrogen content of vermicomposted substrates do 

not give consistent results; however, these studies have been conducted on a range of 

feedstock presumably with variable initial N content. Vinceslas-Akpa and Loquet 

(1997) concluded that vermicomposting of lignocellulosic maple wastes resulted in a 

weight loss of 35% in the first seven months of the vermicomposting process. In 

addition the C: N ratio decreased from 62: 1 to 27: 1 in vermicomposted samples 

primarily due to C decrease "and a higher proportion of total N content in the 

vermicompost" (Fig 2.5). 
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Figure 2.5 Changes to total nitrogen contents of vermicomposts and composts, (Vinceslas-Akpa and 
Loquet M. 1997) 

Similar initial changes in C: N have been reported by Bernal et al., (1996); 

however this was considered being due solely to a decrease in carbon content rather 

than an any increase in nitrogen. In contrast, Singh and Sharma (2002) reported a 

decrease in nitrogen content during vermicomposting of pre-composted wheat straw 

which may have been due to ammonification, NH3 volatilisation, and denitrification 

(Martins and Dewes, 1992; Bernal et al., 1996). Since Singh and Sharma's study only 

lasted 30 days it is possible that what they are reporting is the initial decrease in N 

content seen by Vinceslas-Akpa and Loquet, (Fig 2.5) although Benitez et al., (1999) 

reported a loss of 31 % of total N during an 18 week vermicomposting trial of sewage 

sludges. 
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2.3.3.2 Phosphorus 

Changes in P speciation from organic to inorganic forms have been 

documented (Ghosh et al., 1999). Wastes treated with earthworms showed a faster 

reduction in organic P content than those without and several workers report increases 

in concentrations of total P (Singh and Sharma, 2002; Kaushik and Garg, 2004; 

Ghosh et al., 1999). The amount of total inorganic P (Pi) increased with incubation 

period; those wastes treated with earthworms showed the highest rates of 

mineralisation, however, changes in total Pi did not follow the same trend as 

mineralisation of organic P possibly due to variations in growth and multiplication of 

worms in different waste streams, (Table 2.3). 

Table 2.3 Changes in the amounts of organic and inorganic P in municipal waste subjected to windrow 

composting and vermicomposting. (adapted from Ghosh et al., 1999) 

Weeks incubation 

Composted Vermicomposted 

1717 

Municipal Waste 

Organic P (mg kg-1) 2962 2466 2358 1086 

Inorganic P (mg kg-1) 2193 1619 135 1464 

Easily extractable P (mg kg'') 369 497 410 1389 

Studies into concentrations of plant available P are contradictory and seem to 

be feedstock specific. Bhattacharya and Chattopadhyay (2002) and Ghosh et al. 

(1999) report increases in plant available P when vermicomposting fly ash and 

manure. They hypothesise that phosphate solubilizing bacteria increased in 
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vermicomposted waste thus transforming insoluble P into plant available forms; 

however, it has been suggested that earthworms stimulate microbial metabolism and 

cause an immobilisation of free P04 3 into worm and microbial tissue (Benitez et al., 

1999). Benitez et al. (1999) reported such reductions in water extracted P04 3 over 18 

week period of their study from an initial concentration of 1302 mg kg" to 0 mg kg" 

by the 6th week. 

2.3.4 Pollutants 

2.3.4.1 Heavy Metals 

Earthworms from base metal mining areas are known to accumulate, excrete 

and change available metal concentrations (Gish and Christensen, 1973; Van Hook 

1974; Ireland, 1975 a; b; Helmke et al., 1979). Increases in concentrations of heavy 

metals in vermicomposted sludges has also been reported (Table 2.4) but this could 

be as a result of increased mineralisation rates in vermidigesting processes and that 

given sufficient time, similar concentrations would be seen in thermophillic 

composting processes (Hartenstein and Hartenstein, 1981). 
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Table 2.4 Comparison of metal concentrations found in un-digested and vermidigested sewage sludges 
after 10 days (adapted from Hartenstein and Hartenstein, 1981). 

Element Sludge (mg kg') Castings (mg kg") Change (%) 

Fe 13300 13630 +10.0 

Mn 339 377 +11.2 

Cu 431 448 +3.9 

Zn 1780 1890 +8.4 

Al 8833 9480 +7.3 

Cd 8.5 9.6 +12.9 

Pb 170 200 +17.6 

2.3.4.2 Organic Pollutants 

To date, only one study reports on pollutant degradation by vermicompost 

(Forouzangohar et al, 2005). This concentrates on the use of vermicompost as a 

remediation strategy on contaminated soil and not on degradation during the 

vermicomposting process. The extent to which utilizing vermidigestion as a primary 

or secondary treatment might affect organic pollutant concentrations in contaminated 

composts has yet to be determined. 
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2.4. PROPERTIES OF COMPOSTS AND VERMICOMPOSTS, THEIR 

EFFECT ON SOIL AND PLANT GROWTH. 

2.4.1 Soil 

Composted soil amendments have consistently been shown to change soil 

physical and chemical characteristics consistent with improved soil fertility. 

However, whereas physical characteristics improve over the long term; chemical 

changes can appear in the first few weeks after application but some changes are only 

seen after several years of regular compost application . Overall effects are moderate 

with only N and P availability being significantly influenced by compost application. 

No comprehensive studies have targeted the effects of vermicompost on soil 

properties. It is thought that these products will predominantly be used in smaller 

scale "pot" type situations 

2.4.1.1 Physical 

Soil organic matter has been identified as one of the key components of 

structural stability, and regular addition of composted materials may increase overall 

organic matter content thus increasing soil stability (Albiach et al., 2001; Debosz et 

al., 2002) However, due to the variable nature of residues, results from studies into 

aggregate stability and organic matter components from organic residues are 

inconclusive. Pagliai et al. (1981) reported slight increases in soil stability following 

application of sewage sludge applied at 50 t ha 1 and composted MSW applied at 150 

t hat. Guidi et al. (1988) found no changes in soil stability following application of 

300kg N ha' as compost from sewage sludge and MSW. It was suggested that 
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variability is due to climatic differences but could also result from differences in soil 

characteristics prior to compost application. 

In situ vermicomposting of biological sludges in laboratory studies designed for 

optimum worm activity increases soil polysaccharide concentration which act as 

aggregating cements, subsequently increasing the formation of small soil pores 

(<500µm), (Masciandaro et al., 2000) and therefore enhancing water retention, 

oxygen diffusion and nutrient availability. Additions of both organic and inorganic 

soil amendments improve soil porosity (Marinari et al., 2000), inorganic fertilisers 

increase the number of rounded pores to a greater degree than organic amendments, 

whereas organic additives increase the frequency of large, irregular and long pores 

(Marinari et al., 2000). 

2.4.1.2 Chemical and Biological 

Changes in soil organic matter composition after the application of composts 

show the ongoing decay of the easily degraded fraction, primarily polysaccharides 

and microbial biomass. The more recalcitrant components such as lignin remained 

unchanged after 18 months (Liefeld et al., 2002). Compost addition to soil resulted in 

increases in polysaccharide concentration and a decrease in reactive olefinic 

compounds, however levels are restored to normal when humification of composts is 

complete (Giggliotti et al., 1997). 

Biomass carbon levels are stimulated briefly with compost addition and the 

evolution of CO2 shows a pronounced but short lived peak, (Fig 2.6a). A peak in 

levels of inorganic N is seen two months after application followed by subsequent 

depletion during the following autumn by soil microbial population, (Fig 2.6b), 
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(Debozs et al., 2002). In longer-term trials (three years) by the same author, the 

addition of compost increased extractable P, total N, biomass C and soil respiration, 

(Table 2.5). 
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Figure 2.6a CO2 evolution rates during incubation 

at 10 °C of unamended soil (0), soil amended with 
anaerobically stabilized sludge(&) and compost 
(o). Vertical bars represent standard deviations. 
(Debosz et al., 2002) 
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Figure 2.6b Inorganic N during incubation at 
ambient temperature of unamended soil (0), soil 
and anaerobically digested sludge (A), and 
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deviations. (Debosz et al., 2002) 
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Table 2.5 Effects of compost application on selected soil chemical and biological properties in long 
term field experiment on sandy loam soil, (adapted from Debosz et al., 2002). 

No amendment Compost amendment 

Extractable P (mg P kg'' dry wt. 32.6 41.4 

soil) 

Total N (mg N kg"' dry wt. soil d'') 2.6 4.4 

Biomass C (mg C kg'' dry wt. soil) 282.1 329.9 

Soil respiration (CO2 as mg C kg" 0.1 0.2 

dry wt. soil h'') 

Albiach et al., (2000) have reported increases in soil microbial biomass and 

enzymatic activities following the application of several organic amendements. 24t 

ha; -ly'1 of MSW compost increased biomass and enzyme activity significantly 

whereas soils amended with the manufacturer's recommended rate of 2.4t ha'ly'l of 

vermicompost remained unchanged. Vermicompost is expensive to purchase and it 

was suggested by the authors that this influences the manufacturers recommended 

application rates. So little scientific work reports on the use of vermicompost on land 

that it is difficult to see how the manufacturers could conclude that such small 

amounts (2.4t ha' y'1), was sufficient to instigate any changes in soil properties. 

Compost application usually increases soil pH, (Bulluck et al., 2002, Leifeld 

et al., 2002; Zheljazkov and Warman 2003). In one instance Leifeld reports increases 

in pH from 4.5 to 6.5 in a compost amended dystric cambisol. Increases in soil EC are 

also reported, (Zheljazkov and Warman, 2003) and CEC (Bernal et al., 1996). These 

increases are logical since most composts have higher pH, EC and CEC than most 

soil. Summarising the effect of composts on metal concentrations is difficult. It 
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usually reported that adding compost to metal contaminated soil reduces the 

bioavailability of the contaminant (Nachtegaal et al., 2005; Garrido et al., 2005). 

However, the process is influenced by physico-chemical characteristics of soil, 

compost and metal and the decrease in bioavailable concentrations is not always 

observed. Some reports conclude that concentrations of some metals, (Ca, K, Mg, Mn 

P, Na Pb and B) increase on application of organic soil amendments (Bulluck III, et 

al., 2002), this is not surprising since most composts will contain elevated 

concentrations of plant macro and micro nutrients. The increased level of Pb in this 

case is surprising. Applications of composts containing elevated concentrations of Pb 

may initiate this response but in this case the composts applied originated from 

farmyard. This does not explain the increased level of Pb observed in this study. The 

same studies report no change in HNO3 extractable Cd, Co, Cr, Mo, Ni, Se. (Bulluck 

III, et al., 2002; Zheljazkov and Warman, 2003). 

2.4.2 Plant growth 

Vermicomposts have consistently been shown to increase plant growth rates 

in pot and field trials, whether used as a soil additive or in soilless media (Fig 2.8) 

(Atiyeh et al., 2000,2001,2002). In recent studies Atiyeh et al., (2002) found that 

applying 50-500 mg/ kg of vermicompost derived humic acids to tomatoes and 

cucumbers increased growth rates significantly whereas a significant decrease was 

reported in application rates of 500-1000mg/ kg and suggests that it is the hormone- 

like action of humic acids that is responsible for the increase in growth rates 

observed. Substitution of 20 - 40% of commercial growth medium (Metro-Mix 360) 

with vermicomposts has been shown to increase plant growth and yield (Fig 2.7 and 

2.8), (Atiyeh et al., 2002a; Atiyeh et al., 2000; Arancon et al., 2003a, b, 2004a, b, 
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2005b; Acevedo and Pire, 2004; ). Canellas et al., (2002) have reported enhanced root 

growth and increase in lateral root emergence sites in maize plants exposed to humic 

acids derived from vermicomposted cattle manure. In addition, Arancon et al. (2003b) 

have extracted several plant growth hormones from vermicomposts. Canellas et al., 

(2002) have confirmed their presence within the humic structure. 
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Figure 2.7 Yield and weight of tomato fruits produced in a standard commercial potting medium 
(Metro-Mix 360) substituted with different concentrations of pig manure vermicomposts. 
Columns marked * are significantly different from Metro-Mix 360 control (0% vermicompost) 
(Atiyeh et at., 2000) 
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Figure 2.8 Shoot weight and height of marigold seedlings grown in Metro-Mix 360 substituted with 
different concentrations of pig manure vermicompost, 28 days after seeding (Atiyeh et al., 
2002) 

Most studies have reported beneficial effects of vermicompost on 

germination, plant growth and yield with substitutions of 20 to 40% of vermicompost 

into a commercial growth medium. The potential for yield enhancement is not unique 

to vermicompost; Maynard et al., (1993,1995) also demonstrated increases in tomato 

yield when grown in municipal solid waste derived compost. However, not all plant 

growth experiments have produced such positive results (e. g. Gardener, 2004; 

Cavender et al., 2003), and it may be that plant responses to vermicompost are more 

species specific than previously reported. There is also some evidence that 

vermicomposts enhance rates of mycorrhizal inoculation (Cavender et al., 2003). This 

enhanced extra radical mycorrhizal network development coupled with root growth 
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stimulation may increase the plants' ability to exploit added inorganic nutrients thus 

maintaining or enhancing yield. 

Conventional composts and inorganic composts decreases trophic groups of 

soil arthropods whereas vermicompost application results in increase of the same 

groups, although the mechanisms responsible for this change are not understood, 

(Gunadi et al., 2002). 

2.4.3 Plant health 

In addition to increased plant growth, the suppression of plant diseases by 

composts and vermicomposts is widely reported. Composted MSW is less effective 

than conventional pesticides at suppressing a broad range of plant pathogens, 

however in contrast to chemical pesticides, composts enhance plant-beneficial soil 

microorganisms (Pascual et al., 2002). In addition, composts are known to suppress a 

range of turf grass pathogens (Boulter et al., 2002 a, b, c.; Nelson and Boehm, 2002); 

Fusarium wilt of Flax (Serra-Wittling et al., 1996); Fusarium oxysporum in sweet 

basil (Reuveni et al., 2002); soil borne pathogens in cereal production, namely 

Gaeumannomyces, Phoma and Plasmodiophora (Tilston et al., 2002). 

Two mechanisms of pathogen control have been described, (Hoitink et. al., 

1996 Amir and Alabouvette, 1993; Toyota and Kimura, 1993; Toyota et al., 1995); 

" General suppression of Pythium and Phytophthora spp. The high microbial 

activity prevents germination of the spores. 

" Specific antagonistic suppression of Rhizoctonia solani and Sclerotium rolfsii 

by Trichoderma spp and Peniciliium spp respectively 

The suppressive effect of the compost and vermicomposts appears to be dose 

dependent and increased with an increase compost application rates and 
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vermicomposts contains twice as many antagonistic bacterial as peat (Szczeck, 1999). 

There is broad agreement that it is microbial antagonism that is responsible for the 

Fusarium suppression observed, (Serra-Wittling et al., 1996; Toyota et al., 1995) 

however, suppressing agent of other pathogens is not known. 

Pot experiments with pathogenic fungi (Phytophthora nicotianae var. nicotianae, 

Fusarium oxysporum f. sp. lycopersici, Plasmodiophora brassicae and nematodes, 

Heterodera schachtii and Meloidogyne hapla on tomato and cabbage revealed a 

suppressive effect of commercial earthworm compost toward the pathogenic fungi but 

not toward the parasitic nematodes (Szczech et al., 1993). 

Subsequent comparative studies of vermicomposted sewage sludge and animal 

manures have shown that sewage sludge derived composts do not protect tomatoes 

from Phytophthora nicotianae and significantly reduces their growth rate whereas 

manure derived compost reduced infection and increased growth rates. The sewage 

sludge compost inhibited the growth of P. nicotianae and the growth of plants, 

(Szczech and Smolinska, 2001). 
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Figure 2.9 Pest suppression by vermicomposts. 
A) Aphid suppression in peppers planted in soil-less medium (MM360) substituted with 

vermicompost presented as number of aphids in pepper plant. B) Mealy bug suppression in peppers 
planted in soil-less medium (MM360) substituted with vermicompost presented as number of mealy 
bugs per pepper plant. Columns followed by the same letter do not differ significantly at P <_ 0.05. 
Adapted from Arancon et at., (2005a). 

Only one study reports on the ability of vermicompost to reduce infestations 

of common insect pests such as aphids (Myzus persicae Sulz. ), mealy buds 

(Pseudococcus spp. ) and cabbage white caterpillars (Pieris brassicae L. ) in 

greenhouse experiments. In all plants studied in this case, infestation was 

significantly reduced by the presence of 20%-40% v/v vermicompost in the growing 

medium (Arancon et al., 2005a), (Fig 2.9a, b). 

2.5 SUMMARY 

The UK is facing major challenges in order to achieve our EU landfill 

directive targets and composting is rapidly becoming a key method by which we are 

reducing the volume of waste we send to landfill. Many of the very basic physical and 

chemical processes of thermophilic composting are well understood. Current research 

is targeted at more complex processes of nutrient losses, heavy meatal speciation 
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during active composting and after application onto contaminated soils and worker 

health and safety implications resulting from emission of bioaerosols (fungal spores 

and bacteria) and gaseous losses. 

In complete contrast, vermicomposting as a primary and secondary treatment 

of food wastes has received little attention. The understanding of their plant growth 

potential is being studied by a few researchers but needs further work to develop a 

broader picture. Sanitation properties have also been studied but this also requires 

further work for this to become more widely accepted. In addition, if 

vermicomposting is to be adopted on a broader scale it becomes likely that these 

composts will be applied to agricultural land although the most lucrative markets will 

be in the amateur gardening and horticulture sectors. Although the physical, chemical 

and microbiological changes that occur in soil following application of 

vermicomposts has received some attention, neither their potential for growth and 

yield enhancing properties or optimum application rates have been determined. 
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Materials and Methods 

Included in this chapter are further details of specific methods, and experimental 

considerations that presenting a thesis as a series of papers does not allow. Also included 

are further details of analytical materials and methods which are common to each of the 

experiments outlined in this thesis. 

3.1 ARTICLE 1. IN-VESSEL CO-COMPOSTING OF GREEN WASTE WITH 

BIOSOLIDS AND PAPER WASTE 

3.1.1 Experimental Design 

When studying several different feed stock as in this study, for both process 

management and statistical rigour it would be desirable to do this in replicated, 

separate EcoPOW''s; however, restrictions, both financial and regulatory meant that 

we were restricted to one EcoPOD"'. It therefore has to be assumed that aeration 

regimes adopted here could not be fully adapted to a particular feedstock and were 

managed so as to ensure that the wettest mixture composted fully. It was also for this 

reason that the Green waste/ Biosolid mixture was located nearest the fan in order to 

maximise aeration, the EcoPOD® was therefore set up as in fig 3.4 with buffering 

strips in between each feedstock and at each end to minimise edge effects. 

Figure 3.1 Experimantal design of EcoPOD®. 
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3.1.2 Sampling strategy 

Although the feed stocks were well mixed, heterogeneity on a smaller scale is 

inevitable. In order to produce a representative sample, the Composting Association 

recommend pooling sub samples before analysis; however, in an experimental setup 

such as this it is preferable to report the variability, therefore the samples were not 

pooled. EN 12579: 1999 recommends a minimum of 12 samples for growing media. In 

this experiment we considered each feedstock type as a separate unit and as such 

considered 12 samples from each feedstock type to be sufficient to give a 

representative sample. Although sampling from the same location might suggest the 

use of a Repeated Measures ANOVA. This statistical test assumes that the factor 

being measured will be identical at each sampling time, this statistical method 

attributes more of the variance to the between groups part of the ANOVA thus 

increasing the power of the test. However, since one of the objectives was to measure 

variability, it was decided that this was not desirable and we decided to use a 

conventional one way ANOVA for statistical analysis of these results 

3.1.3 The EcoPOD® Composting System 

This is a low-cost, forced aeration, in-vessel composting system. It is essentially 

a plastic tube that is filled with compostable material using either a CT 5® or CT 10® 

depending on the bag diameter. The CT 5® used in this experiment is in essence a 

hopper that incorporated a hydraulic ram that pushes the material into the EcoPOD®, 

simultaneously inserting a perforated plastic pipe in the base. This pipe is attached to 

a timed fan which allows aeration of the system (Fig 3.2). One complete CT 5® 

EcoPOD® can hold 75 tonnes of composting material. The experimental EcoPOD® in 

this study contained 30 tonnes of material and was approximately 30 m long, (Fig 
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3.3). When composting is complete, the bag is opened and the compost removed, 

stored and allowed to mature. The plastic is either recycled or landfilled but cannot be 

reused for composting. In this study the plastic was used as a cover for the maturing 

composts, (Fig 3.4). 
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Figure 3.4 Covered, maturing greenwaste compost. 
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3.2 ARTICLE II. RESPONSE OF COMMON POT GROWN FLOWER 

SPECIES TO PLANT GROWTH MEDIA SUBSTITUTED WITH 

VERMICOMPOST. 

3.2.1 Vermicompost production 

To produce vermicompost for future experiments, six worm beds were set up. 

Since earthworms are less active during the winter months when this was set up and in 

order to preserve nutrient content, these experimental worm beds were located in a 

heated outbuilding (Fig 3.5). Each bed was covered in black, gas permeable 

membrane and the room maintained at an average temperature of 20°C. Each 

wormbed initially contained 5 kg m-2 of the earthworm Dendrobaena veneta. These 

were fed semi-mature compost in thin layers as required (2 weekly). Moisture, pH and 
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EC were monitored weekly and adjusted if required. After approximately two months 

and every 6 weeks thereafter, the beds required emptying, this was done by hand- 

sorting half of the worm bed, separating and removing the vermicompost from the 

earthworms. The earthworms were weighed and returned to the worm bed on each 

occasion. The vermicompost was retained for growth trials. On average, the 

earthworms processed 1.3 kg m2 d"1. Although some breeding and cocoons were 

observed, this was insufficient to maintain original population numbers and 

earthworm numbers declined throughout the vermicomposting period. When 

sufficient vermicompost had been produced, the remaining earthworms were 

transferred to an outdoor bed. Vermicomposted green waste was used for studying 

flower responses (Chapter 5) and vermicomposted green waste and biosolid for 

studying wheat yield responses (Chapter 6). 

3rd party copyright material excluded from digitised thesis. 

Please refer to the original text to see this material. 

Figure 3.5 A Experimental worm bed. B Hand-sorting earthworms from vermicompost 

3.2.2 Choosing Flower Species 

The main objective of this experiment was to study growth responses of flower species 

that a) represented wide range nutrient requirements, b) developed single and multiple 

flowers, c) produced seeds in a form that was easy to measure and, d) commonly grown 

in the UK and were likely to perform well in greenhouse conditions. 
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It was decided to use Sunflowers (fig 3.6), Cosmos (fig 3.7) and Californian poppy (fig 

3.8) 

" Easy to grow 

9 Large nutrient 

demanding plant 

9 Single flower 

" Good seed producer 

Figure 3.6 Sunflowers (Helianthus annua) 

" Easy to grow 

" Grows in low nutrient 

growth media 

" Multiple flowers 

" Good seed producer 

Figure 3.7 Cosmos (Cosmos hipinnatus) 
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" Easy to grow 

" Grows in medium nutrient 

growth media 

" Multiple flowers 

" Good seed producer 

Figure 3.8 Californian Poppy (Eschscholzia californica). 

3.3 ARTICLE III YIELD RESPONSES OF WHEAT (Triticum aestivum) TO 

VERMICOMPOST APPLICATION 

The fields at Henfaes Research Station have, in the past, been used for a wide 

range of growth trials and it is likely that at some point the fields used for this 

experiment had received various fertilizer treatments. However, for several years prior 

to this experiment the fields had been used as grazing for the farms sheep flock. For 

this experiment we assumed that no previous inorganic N treatments were likely to 

influence our results. The experimental area was planted as four drill strips, 

subsequently blocked and treatments applied (fig 3.9). 
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Figure 3.9 Wheat growth trials at Henfaes Research Station (Spring 2005), showing vermicompost 
application plots. Darkest plots are 30t ha-' equivalent of vermicompost application. 

3.4 ARTICLE IV. YIELD AND VITAMIN CONTENT OF TOMATOES 

(Lycopersicon esculentum) GROWN IN VERMICOMPSTED MANURES 

3.4.1 Identifying marketable fruits 

Providing supermarkets with fruit that is of acceptable quality often results in 

high levels of rejected fruits. For this reason, the production of a high proportion of 

marketable fruits from a crop is of primary importance. As well as measuring total 

tomato yield, we decided that it was equally important to determine the effect of 

growth medium on the production of marketable fruits. However no definitive 

guidelines exist on determining what is a marketable fruit, we therefore decided on a 

strategy for determining marketable fruit. All fruits had to be completely free of skin 

blemishes and disease free. No fruits displaying any of the physiological conditions 

described below were accepted, neither were any fruit below 4cm diameter. 
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In a large growth trial such as this it was inevitable that some proportion of the 

fruits harvested will be unmarketable. Of primary concern were a range of 

physiological disorders that are common in tomatoes. It became obvious at the 

beginning of the fruit development stage that some of the first fruits were developing 

a physiological condition known as Blossom End Rot (fig 3.1OA), this is a common 

response to calcium deficiency usually induced by water stress. Similarly a few fruits 

became misshapen, a disorder known as "cat facing" (fig 3.1OC), this is primarily a 

response to cold. Toward the end of cropping period, some fruits developed radial 

cracks (fig 3.1 OC). This is a response to swings in moisture content and although great 

care was taken to minimise this several fruits became severely cracked. One plant 

developed verticillium wilt at the very end of the cropping period; this did not affect 

our results. 

Fig 3.10 Common physiological fruit disorders of tomato, A. Blossom End Rot; B. Cat Facing; C. 
Cracking (www. uga. edu/vegetabl/tomato. htmi). 
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3.5 ARTICLE V. EARTHWORMS AS VECTORS OF ESCHERICHIA COLI 

0157: H7 IN SOIL AND VERMICOMPOST 

3.5.1 Keeping earthworms in experimental beds 

Maintaining a healthy and active earthworm population in small indoor beds is never 

easy. Earthworms are very sensitive to external factors such as moisture content, pH 

and electrical conductivity of the bedding material and these factors are sometimes 

overlooked in an experimental environment. Since this experiment was conducted 

indoors we were particularly concerned that the bedding material would dry out and 

moisture content was monitored and adjusted regularly in compost boxes (fig 3.11A). 

It was also for this reason that we chose a mixture of compost and paper pulp as the 

initial bedding material for the compost part of the experiment thus giving the grey 

appearance in fig 3.11A. Since we did not want to perpetuate any vertical movement 

of E. coli in the soil cores by watering from above, the moisture content was 

maintained by standing the cores in water in a large basin and the water level 

replenished as required. The lowest portion of the soil did become waterlogged and 

developed a slight gleyed appearance (fig 3.11B). In both experiments earthworms 

were fed with cattle manure as required. 
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li 

aý x 

iok 
Fig 3.11A. Experimental vermicomposting beds showing feeding strip of manure and several D. veneta 

earthworms. B. Opened soil core prior to sampling, earthworms were fed from the top of the 
core (top of the picture). 

77 



Materials and Methods 

3.6 EXPERIMENTAL METHODS 

3.6.1 Moisture Content 

Approximately 10 g of compost or soil was weighed out into a ceramic crucible 

and placed in an oven at 105°C for 24 hours. Moisture content was calculated as the 

weight difference before and after weighing and expressed as a percentage of dry 

weight. Some slight loss of volatile organic compounds may occur at this temperature, 

however, at the beginning of analytical work, an oven set at lower temperature was 

unavailable. The same method was then adopted throughout the remainder of the 

analytical work. 

3.6.2 Ph and Electrical Conductivity (EC) 

Equal volumes of compost and distilled water (1: 1 v/v) were mixed thoroughly 

and allowed to equilibrate for 30 min. The pH and EC was determined from the same 

compost/ water suspension using a pH (Orion 410A pH meter), or EC electrode (Jenway 

4010 meter) according to the method of Smith and Doran (1996). 

3.6.3 Extractions 

All composts/ soils were extracted with 1M KCl (1: 5 w/v compost-to-KC1 ratio) 

for 1h on a reciprocating shaker at 250 rev min-'. The extracts were then centrifuged for 

10 min at 10000 g, the supernatant filtered through Whatman 40 filter paper and the 

samples stored in polypropylene bottles at -20°C to await analysis. These extracts were 

used for all analyses with the exception of K, Na and Ca. For K, Na and Ca analyses, the 

samples were extracted with 0.5 M CH3COOH (1: 5 w/v compost-to-CH3000H ratio) as 

described above. 
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3.6.4 Total Carbon and Nitrogen 

Total C and N were measured by combustion analysis on oven-dried composts 

using a LECO CHN 2000 analyser. Weighed samples are combusted in a furnace at 

930°C under a constant flow of oxygen. The resulting CO2 is then passed through an 

infrared cell and its concentration measured. NO,, gases are passed through a copper 

catalyst where it reduced them to N2. This is measured by thermal conductivity once the 

gases have been scrubbed of CO2 and H2O. C and N are given as percentages of total 

weight and C-to-N ratio (C: N) calculated by division. 

3.6.5 Total Dissolved Organic and Inorganic Carbon 

Dissolved organic C (DOC) and Inorganic C (IC) were measured using a 

Shimadzu TOCV-TN analyzer (Shimadzu Corp., Kyoto, Japan) as described in Jones et 

al. (2002). 

3.6.5.1 Total Dissolved Carbon: 

The sample is burned in a combustion tube at 720°C to form C02, this is cooled 

and dehydrated, passed through a halogen scrubber and analysed by a Non-Dispersive 

Infra Red gas analyser, (NDIR). 

3.6.5.2 Inorganic Carbon (IC) 

IC analysis involves acidifying the sample to a pH of less than 3 with HC1, this 

converts all carbonates to CO2. Both the CO2 and the dissolved CO2 are volatilised by 

sparging with air and measured by NDIR. 
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3.6.5.3 Total Organic Carbon 

Two methods can be used for determining Dissolved Organic Carbon (DOC), 

1. TC- IC = TOC. This includes errors associated with both TC and IC analyses. 

2. Non-purgeable organic carbon (NPOC). This involves acidifying and 

sparging the sample to eliminate the IC component, the TC remaining is 

referred to as NPOC to distinguish between the two methods. NPOC is 

generally used when a sample contains more IC than TOC. 

The first method was used throughout this study although both methods are in 

essence the same and give similar results except when there is a significant amount of 

purgeable organic component present in the TOC. The relationship between TOC 

concentration and peak area is determined using a TOC standard (potassium hydrogen 

phthalate). 

3.6.6 Total Dissolved Nitrogen (Tdn), Inorganic Nitrogen (Din) and Dissolved 

Organic Nitrogen (Don) 

Total soluble N (TSN) were determined using a Shimadzu TOCV-TN analyzer 

(Shimadzu Corp., Kyoto, Japan). 

3.6.6.1 Total Nitrogen (TN) 

The sample is introduced into a combustion tube at 720°C. The nitrogen in the 

sample is decomposed to NO. The carrier gas (N2) containing the NO is cooled and 

dehumidified and enters the chemiluminescence gas analyser. The gas analyser detects 

the TN concentration. 
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3.6.6.2 Total Inorganic Nitrogen (TIN) 

Measuring concentrations of inorganic nitrogen species in compost extractions 

requires the addition of several reactants to the extract to produce a coloured 

chromophore. Measuring the intensity of colour development enables the determination 

of concentration. This is done by UV-Visible Spectroscopy 

3.6.6.3 UV-Visible Spectroscopy 

Ultraviolet-Visible spectroscopy measures the transmission of light through a 

substance. When light is absorbed, the radiant power of the light is decreased. The light 

passes through a monochromator in order to select one wavelength; this light with a 

known radiant power strikes the sample and the decrease in radiant power is measured. 

Beer's law tells us that absorption is proportional to concentration of absorbing 

molecules. Lambert's law says that the fraction of absorbed light is independent of the 

intensity of the radiation. Combining Beer's and Lambert's laws enables a calculation of 

concentration from absorbance. 

3.6.6.4 Nitrate NO3 

Automated method 

All analysis in chapter 3 was performed on a Skalar San++ segmented flow 

autoanalyser (Skalar Inc., Norcorss, GA). The reaction is based on the reduction of N03 

to N02 by passing the sample through an activated Cadmium/ Copper column. The 

resulting N02 is reacted with a primary aromatic amine (sulphanilamide) then coupled 

with a-napthyl-ethylenediamine dihydrochloride to form a coloured azo dye. There is a 

potential for interference from Fe, Cu and other metals that can give negative N03 

results. 
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Reagents 

1. Ammonium Chloride Buffer: 50 g NH4Cl in 1 litre distilled water, pH 

adjusted to 8.2 with ammonia solution, add 1 ml Brij 

2. Colour Reagent: 

150 ml o-phosphoric acid in 700 ml distilled water, add 10 g 

sulphanilamide C6H8N202S and 0.5 g a-napthyl-ethylenediamine 

dihydrochloride C12H16C12N2 and make up to 1 litre. 

Standards 

3.034 g NaNO3 in 500 ml distilled water gives a 1000 ppm stock and was diluted 

to the following concentrations for calibration: 0,2,4,6,8, and 10 mg N03 -N 

1'1 

Manual method 

In the remainder of the thesis, the same reaction is used but the analysis was 

done manually using a microplate reader using the hydrazine, N 1- 

napthylethylenediamine assay, (Downes 1978). This method is sensitive between 0-2.5 

mg N03 -N 1"1 and most samples required dilution to bring them within the calibration 

range. 

Reagents 

1. Catalyst Solution. 0.0354 g A. R. CuSO4.5H20 plus 0.9 g ZnSO4.7H20 in 

1 litre of distilled water. 

2.1 M NaOH (0.8 gin 20 ml of distilled water) 

3. Hydrazine sulphate solution (0.0342 g in 20 ml of distilled water) 
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4. N-1-napthylethylenediamine dihydrochloride (NED; 0.1 g in 100 ml of 

distilled water) 

Method 

Into each well of a microplate: 

1. Add 114 µl sample or standard 

2. Add 20 µl catalyst, mix 

3. Add 20 µl NaOH, mix 

4. Add 20 µl hydrazine, mix 

5. Incubate for 7.5 min at 33 °C 

6. Add 60 µl sulphanilamide 

7. Mix for 4.5 minutes 

8. Add 20 µl NED 

9. Mix for 4.5 minutes 

10. Read at 540 nm 

3.6.6.5 Ammonium NH4+ 

Automated method 

In chapter 4 all NI-14' analyses were done using a Skalar San++ segmented flow 

autoanalyser using the Berthelot or Indophenol Blue reaction to give the coloured 

indophenol blue dye, the intensity of which can then be measured by absorbance at 667 

nm. This reaction is not specific to NH4+ since a variety of organic compounds having a 

free amino group are known to develop the same blue colour (Mulvaney, 1996). 
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Reagents 

1. Buffer: 33 g Potassium Sodium Tartate (C4H4O6KNa3.2H20) and 24 g 

sodium citrate (C6H8O7Na3 2H20 ) in 1 litre distilled water, adjust pH to 

5.2 with HC1, add 1 ml Brij 

2. Sodium Salicilate: Add 25 g Sodium Hydroxide (NaOH) and 80 g 

Sodium Salicilate (C7H5NaO3) to 1 litre distilled water (stable for 1 week) 

3. Sodium Nitroprusside: 1g Sodium Nitroprusside, 

(Na2[Fe(CN)5NO]. 2H20), in 1 litre distilled water, (stable for 1 week in 

dark bottle) 

4. Sodium Dichloroisocyanurate: 2g Sodium Dichloroisocyanurate 

(C3H4C12N3NaO5) in 1 litre of distilled water, (stable for 1 week) 

Standard 

0.19095 g Ammonium Chloride (NH4 Cl) in 500m1 gives a 100 mg N 1.1 stock 

solution and were made up into the following concentrations for calibration 0,2, 

4,6,8, and 10 mg NH4+ -N 1'1 

Manual method 

In the remainder of the thesis, the same reaction is used but the analysis was 

done manually using a microplate reader (Mulvaney 1996). 

Reagents 

1. Sodium Salicilate- Sodium Nitroprusside : Dissolve 0.78 g Sodium Salicilate 

(C7H5NaO3) and 0.0125 g Sodium Nitroprusside, (Na2[Fe(CN)5NO]. 2H20) 

in 10 ml distilled water. 

2. Buffered Hypochlorite Reagent: Dissolve 0.296 g Sodium Hydroxide 

(NaOH), 0.996 g Sodium Monohydrogen Phosphate Heptahydrate 
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(Na2HPO4.7H20)in approx 8 ml distilled water, add 1 ml Sodium 

Hypochlorite (NaOC1). Adjust pH to 13 with NaOH and make up to 10 ml 

with distilled water. 

3. Ethylenediaminetertaacetic acid (Na2EDTA). Dissolve 0.6 g of Na2EDTA in 

10 ml distilled water. 

The same 100 mg NH4C1- N 1'' standard stock solution was used for both methods. 

Method 

Into each 0.3 ml microplate well: 

1. Add 25 µ1 of sample or standard 

2. Add 15 µ1 EDTA, mix 

3. Add 60 t1 Na salicylate - nitroprusside reagent, mix 

4. Add 134 µl distilled water, mix 

S. Add 30 µl of hypochlorite reagent, mix 

6. Put in an incubator at 37 °C for 30 min (or at room temperature, 20 - 25 °C 

for 2 hours) 

7. Read at an absorbance value of 667 nm 

Dissolved Organic Nitrogen 

Dissolved Organic Nitrogen is calculated by TDN - TIN = DON 

3.6.7 Phosphate 

Phosphate was determined colourimetrically using the method of Murphy and 

Riley (1962). Under acidic conditions, phosphate reacts with ammonium molybdate to 

85 



Materials and Methods 

form an ammonium phosphomolybdate complex which is then reduced by ascorbic acid 

to produce molybdenum blue. The absorbance can be measured at 820 nm. 

P043' + 12(NH4)2MoO4 + 24H+ --º (NH4)3PO4.12MoO3 + 21NH4+ + 12H20 

Reagents 

1.0.42% ammonium molybdate in 1N H2SO4 

2.10% ascorbic acid in distilled water 

Method 

1. Pipette 80 µl standard or sample into a well of a microplate. 

2. Add 30 µl of Ascorbic acid. 

3.180 µ1 ammonium molybdate reagent. 

4. leave for 30 minutes for the colour to develop and read on a microplate 

reader at 820 nm. 

3.6.8 Potassium, Sodium and Calcium 

K, Na and Ca were measured using a Sherwood 410 flame photometer 

(Sherwood Scientific, Cambridge, UK). CH3COOH extracts were always diluted with 

distilled water for K analysis. Compost is invariably rich in K and a 10 fold dilution is 

always necessary. In composts that are particularly high in K, a dilution of 100 fold was 

sometimes required in order to bring the concentration to within the calibration range. 

Na and Ca were analysed in the same 10 fold dilution to bring the samples to within the 

calibration range. Flame photometry exploits the ability of hot atoms to emit light when 

their electrons have been promoted to excited states, in this case by a flame. Comparing 
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emission of the unknown with a standard calibration curve enables a determination of 

concentration to be made. 

3.6.9 Statistical Analyses 

All statistical analyses were conducted using SPSS (v 11.5), (SPSS Inc. 

Headquarters, 233S. Wacker Drive, Chicago, Illinois 60606 USA). 

All statistical methods used in this thesis assume that the data is normally distributed 

around the mean. In all cases, data was tested for normality by using the Kolmogorov- 

Smirnov test for normality, (Pallant 2001). Where data was found not to be normally 

distributed, the data set was transformed. If data presented is a transformed data set, the 

method of transformation is quoted separately in each chapter. Outliers were identified 

using SPSS "Normality plots with test" command (Figure 3.12). Outliers are defined by 

SPSS as values that are 1.5 box lengths from the edge of the box; each box length is the 

interquartile range for that particular variable. These were further analysed by aQ test 

and if confirmed as outliers they were removed from the data set before continuing with 

the analysis. This was only necessary for a small number of values in greenhouse flower 

trials and not for any other study in this thesis. 
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Figure 3.12 Identifying outliers in final Helianthus length using Box Plots. Outlier is highlighted by 
red circle 

3.6.9.1 One way Analysis of Variance (ANOVA) 

All results in chapter 4 were analysed using a One Way Analysis of Variance 

(ANOVA) with Post Hoc Tukey test to identify significantly different treatments. 

Significance is defined as p: 5- 0.05 unless otherwise stated. 

3.6.9.2 Two way ANOVA 

Two Way ANOVA allows an analysis of two individual factors and the joint 

effect of both these factors. The greenhouse used for both lysimeter experiments and all 

pot experiments in this thesis is known to have two distinct temperature gradients 

(Figure 3.13). It becomes necessary to test for the effect of temperature on the 

experimental result as well as the effect of treatment. This is done by adopting a 
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Randomised Block Design for treatment allocation, and analysing the results by Two 

Way ANOVA to test for the effect of the secondary variable, i. e. temperature in this 

case. In addition it enables us to test for the more ambiguous interaction effect of both 

temperature and treatment. Where an interaction effect is determined as statistically 

significant, then no definitive conclusion about the effect of either treatment or 

temperature can be made. 

Figure 3.13 Temperature gradients within greenhouse 

3.6.9.3 Experimental Design 

A fully randomised design runs the risk of having all the replicates of one 

treatment together in one temperature regime. In circumstances such as the greenhouse 

experiment it is necessary to overcome this by blocking the experimental design and 
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assigning treatments randomly within each block. Therefore it is guaranteed that there is 

an equal number of treatment replicates within each temperature block. This enables us 

to test for the effect of the second variable as treatment on the result. In this thesis, none 

of the growth studies were large enough to require an analysis of both temperature 

gradients shown in figure 3.13 simultaneously. 

Similar patterns can be seen in field experiments although the temperature 

variable is usually replaced by other factors such as aspect, soil drainage etc. The 

principle for experimental design and statistical analysis is the same randomised block 

design with Multiple Factor ANOVA. Both field scale experiments in this thesis were 

designed using a Randomised Block Design and analysed by Two Way ANOVA with 

block and treatment, (vermicompost/ fertiliser application rates), as dependent variable 

and the measurable variable (i. e. yield, flower number etc) as the independent variable. 

Significant differences were identified using either a Post Hoc Tukey Test or Least 

Significant Differences Test, (LSD) with significance defined as p <_ 0.05 unless 

otherwise stated. 
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General Discussion 

CHAPTER 9 

GENERAL DISCUSSION 

9.1 Discussion of Results 

This thesis has attempted to achieve two objectives. 

1. Further the current understanding of nutrient dynamics within the thermophilic 

composting process in particular when adopting Ecopodo system of composting. 

Evaluate the potential for producing composts of a particular nutrient loading by 

manipulating the initial feedstock, either by diluting with paper pulp or biosolids. 

2. Extend understanding of plant growth responses of manure and compost 

derived vermicomposts. 

Spatial variability within the EcoPOD® composting vessel was minimal 

ensuring the production of a uniform compost end product. We were successful in 

manipulating the final compost nutrient content to target different end-uses by 

selecting appropriate waste feedstocks (paper 1). We also showed that despite the 

often negative public perception of the use of biosolids and industrial wastes for land 

application co-composted, sanitized wastes is likely to pose little environmental risk 

assuming that they are spread to land in an environmentally compliant manner. 
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Prior to this thesis most vermicompost research originated from Ohio State 

University, USA and focused on the plant growth enhancing properties of 

vermicomposts. These previous studies have shown that plant responses to 

vermicompost addition have always caused a positive stimulation of growth with one 

exception (Cavender et al., 2003). In the US, vermicomposting is an indoor process 

using the earthworm E. foetida. In the UK at present, most vermicompost is produced 

as a by product of the earthworm D. veneta breeding process. The major part of the 

breeding process, which produces the vermicompost, is conducted outdoors with only 

the final fattening of adult worms being done in indoor heated environments. The 

objectives of papers 11 - IV were to determine whether the same growth enhancing 

properties of E. foetida produced vermicomposts was also true of those produced by 

D. veneta. 

From results of an initial study into the growth of radish, (Raphanus sativus 

var. Scarlet globe L. ) (results, appendix 2) it was clear that the enhancement response 

was species specific. Radish dry weight was significantly decreased by vermicompost 

addition at most percentage substitution rates. It was decided to expand into common 

garden flowers to explore the species specificity of the growth enhancing response. 

Flower species were chosen to represent three broad classes: 

A. Sunflower, Helianthus annuus, a large, single stemmed, mycorrhizal, 

nutrient demanding plant with rapid stem elongation that should respond to the 

presence of plant growth regulators in early growth stages. 

B. Aster, Cosmos bipinnatus. A medium sized, multi stemmed, mycorrhizal, 

low nutrient demanding plant 
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C. Californian poppy, Eschscholzia californica. A small plant that develops a 

bulbous tap root. Is unclear whether this plant develops mycorrhizal associations, at 

best it is only develops weak associations. 

These plants were all grown in various proportions of vermicompost produced 

from composted material from paper I. We confirmed from that study that indeed, 

plant response to vermicompost addition was species specific. 

Paper III investigates plant responses on a much larger scale. Whilst there is 

some work investigating the role of vermicomposts in field scale production of some 

salad vegetables namely tomato (Lycopersicon esculentum) and pepper (Capsicum 

annuum), no work reports on growth responses of arable crops. We were interested in 

determining the potential that vermicompost might enhance nutrient uptake by wheat, 

thus enabling farmers to reduce inorganic nutrient input without compromising yield. 

Our results confirmed our hypothesis that when vermicompost is mixed with small 

amounts of inorganic fertilizer, wheat yield is not compromised; however, 

vermicompost addition on its own did result in significant reduction in yield when 

compared to NPK additions. Similar results were also observed in an identical 

greenhouse experiment with maize (result appendix 2). 

Having succeeded in inducing a plant growth response from our own 

vermicomposts produced on an experimental scale from pre-composted material; we 

wanted to confirm the results of Atiyeh et al. (2000) using commercially available, 

manure-derived, vermicompost that originates from the UK earthworm breeding 

process; Paper IV aimed to do that. In a small preliminary study on tomato growth the 

previous summer, using our own vermicompost, we observed similar results to Atiyeh 
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et al. (2000). Consequently, we were expecting to see a similar yield response using 

commercial UK vermicompost. This did not happen. Not only was plant response to 

vermicompost addition dependent on plant species it also seemed to depend on 

individual compost type. 

It has been hypothesised that the presence of plant growth regulators (PGR) 

within vermicompost are major factors which influence plant growth responses to 

vermicomposts. PGRs have been isolated from vermicomposts and soils supporting 

high earthworm densities and shown to stimulate root elongation, lateral root 

emergence (indole acetic acid; Canellas et al., 2002; cytokinins and auxins; 

Krishnamoorthy and Vajranabhaiah, 1986). 

PGRs and plant growth promoting rhizobacteria (PGPR) are ubiquitous in 

soils and other organic soil amendments (Arshad and Frankenburger, 1998), yet rarely 

have they been shown to actually cause a yield enhancement under commercial 

conditions; moreover high numbers of IAA producing PGPRs have been isolated 

from conventional growing media and shown to actively suppress tomato, lettuce and 

beet seedling growth (de Brito Alvarez et al., 1995; Gamliel et al., 1993; Loper and 

Schroth, 1986). It is expected that PGRs are rapidly degraded in soil, subjected to 

leaching or adsorbed on to the solid phase (Arshad and Frankenburger, 1998), and 

that the concentrations are insufficient in some composts to initiate a response. 

Cavender et al. (2003) reported an enhancement of mycorrhizal associations in 

plants grown with vermicompost. The potential exists that this root growth 

stimulation coupled with enhanced extra radical mycorrhizal network development 

may increase the plants' ability to exploit available nutrients. 
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Without detailed information on mycorrhizas and PGPRs it will remain 

difficult to formulate effective quality standards that may be used by the 

vermicompost industry to ensure product quality and maintain consumer confidence. 

Given the claims surrounding the plant growth promoting potential of vermicomposts, 

more work is required to elucidate the factors that govern plant growth enhancement 

of some vermicomposts. 

Several thousand tones of vermicompost are being sold in the UK at present. 

Considering that most of this will eventually be used to grow salad vegetables that are 

often eaten raw sanitization of compost is essential. This coupled with increased 

amounts of vermicompost produced from cattle manure, it became clear that a study 

into the potential spread of the human pathogen E. cola 0157 by earthworms in 

vermicompost and soil was needed. Paper V presents the results of such a study. We 

concluded that the direction of E. coli 0157 movement by earthworms was dependent 

on earthworm species. There was an initial increase in pathogen numbers where 

earthworms were present followed by a sharp decline to levels similar to substrates 

not containing earthworms. Cattle are asymptomatic carriers when infected with E. 

coli 0157 and as such are rarely tested for E. coli 0157 infection. In the light of this, 

there is little a worm breeder/ vermicompost producer can do to reduce the risk of E. 

coli 0157. Although the likelihood of human infection resulting from consuming food 

grown on E. coli 0157 contaminated compost is very low it has been documented 

(Islam et al., 2005). It is necessary for vermicompost producers to be aware of the 

potential that E. coli 0157 may be present in their product. 
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9.2 Further work 

We now know that plants respond to vermicomposts in different ways. What 

is unknown is why. Plant growth by similar species is enhanced by some 

vermicomposts but not by others; similarly vermicomposts induce a positive plant 

growth response in some plant species but not in others. 

9.2.1 Vermicomposts vary significantly in their ability to enhance plant growth. It is 

likely that some of this variability arises from compost process management 

and storage conditions. In order to further develop and maintain consumer 

confidence in vermicomposts, there is a need to identify the processes 

responsible for this variability. Furthermore, the mechanism of growth 

promotion needs further work. 

9.2.2 Vermicomposts appear more "soil like" than their thermophilic compost 

counterparts. The ingestion process changes the particle size distribution and 

increases their moisture holding capacity. It is possible that some of the 

growth enhancement properties of vermicomposts are directly linked to their 

physical properties. There is a need to investigate the potential that plant 

growth responses may be attributed to physical changes in peat based growing 

media induced by the addition of vermicompost. Physical changes may induce 

changes in plant nutrient availability. There is also a need to determine to what 

extent physical changes in the growing medium, changes the bioavailability of 

plant nutrients, particularly of micronutrients. 
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9.2.3 The presence of Plant Growth Promoting Rhizobacteria (PGPRs) significantly 

affects plant growth. No attempt has yet been made to identify numbers and 

species in either composts or vermicomposts. 

9.2.4 Since plant growth enhancement is typically attributed to the presence of Plant 

Growth Regulator's (PGRs) in vermicompost, a comprehensive study of the 

presence and concentrations of these chemicals in a wide range of growing 

media is required. Furthermore, PGRs can be expected to undergo a number of 

fates in compost (e. g. leaching, biotic and abiotic transformation, sorption etc; 

Arshad and Frankenburger, 1998). Further work is required to characterize 

their dynamics in vermicomposts and conventional composts. 

9.2.5 The behaviour and lifestyle of D. veneta and E. foetida are very similar and it 

is unlikely that earthworm speciation induces different plant growth responses 

from vermicomposts. However, this factor cannot be discounted and merits 

further research. 

9.2.6 We measured plant growth responses in fresh vermicomposts (paper II) but 

failed to do so in older vermicomposts, (paper IV). Some vermicomposts are 

stored for a considerable time before being sold. The potential exists that a 

lengthy storage time degrades the product and this needs addressing. However, 

until the mechanism for growth enhancement is identified, it will be difficult 

to determine which parameters to measure. 

9.2.7 In view of the fact that the non-mycorrhizal plant species studied in this thesis 

(e. g. Radish) performed less well than those known to develop mycorrhizal 
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associations, it is necessary to identify the mechanisms that led to this growth 

suppression. 

9.2.8 There is growing interest in the ability of vermicomposts to suppress 

infestations of pests. However, if vermicomposting of waste is to be seriously 

considered as an alternative to thermophilic composting, there is a need to 

develop our understanding of human and animal pathogen responses to 

earthworm digestion. 
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APPENDIX I 

Id COMPOSTING in UK WASTE MANAGEMENT POLICY. 

Composting can be an important element of sustainable waste management for the 

UK and will have a significant role to play in meeting the UK's landfill directive 

obligations, (Slater and Frederickson, 2001), however, in comparison to other EU 

countries, the UK has been slow in adopting alternative waste management strategies 

such as composting of biodegradable municipal waste (Table I). 

Table I Management of BMW in selected EU countries (% of total BMW produced), (adapted from 

Crowe et al., 2002) 

Landfill Central 

composting 
Netherlands (1998) 13.1 33.3 

France (1998) 

UK (1998) 

40.3 8.9 

86.2 3.0 

Composting is a process by which the organic component of the waste is 
biologically decomposed in controlled aerobic conditions. Micro-organisms oxidise 
biodegradable wastes to CO2 and water vapour using atmospheric oxygen as the 

oxidising agent. The heat produced in the process destroys many human pathogens that 

would otherwise survive other treatment methods (Pepper et al. 1996). The result is 
humus like residue that can safely be used as a soil conditioner, for land reclamation or 
as a growing medium in horticulture. 

Many wastes contain considerable amounts of pathogenic organisms, inorganic 

and organic contaminants such as pesticide residues, aromatic hydrocarbons, and heavy 

metals (Edwards and Bohlen, 1996). Composting will reduce pathogen levels, 

encourages degradation of some pesticide residues and aromatic hydrocarbons, but 
heavy metal concentration increases relative volume (Veeken and Hamelers, 2002). 
Since 1978 there has been increasing interest in earthworm digestion of metal 
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contaminated wastes; a process known as vermicomposting. Subsequent research of 

uncontaminated wastes has highlighted the potential of adopting this process as an 

alternative to conventional methods. Although it is still a process that is very much in 

the development stage, there is an increasing acceptance that worms do stabilise organic 

wastes, rendering them innocuous about 3 times faster than noningested sludge, 
(Edwards and Bohlen, 1996). However some questions still remain about their ability to 

remove metals and neutralise pathogenic organisms. Some researchers have suggested 

that all materials should be composted before worms are applied, (Giggliotti et al. 1997) 

in order to reduce pathogen levels. Others suggest that "in situ " vermicomposting may 
be as effective in incorporating organic matter into the soil (Masciandaro et al. 2000); 

however, it is unclear whether either of these methods reduces pathogenic organisms to 

acceptable levels. 

I. I. I Commercial Composting Methods 

Many small garden sized bins exist for the composting of small volumes of 
household waste but their effectiveness in reducing volumes of waste to landfill sites 
depends on voluntary participation. The waste produced by those households without the 

space or the inclination to participate in household composting schemes along with 

putrescible wastes from non household sources will also require treatment, to this end 
large scale composting systems have been developed. These are generally divided into 

three categories: Windrow, Static pile and In-vessel; however, the initial stage of 
removing large debris and recyclable materials is the same for all treatment categories. 
The general process are outlined in fig I 
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1.1.1.1 Windrow 

Wastes are composted in long rows (windrows), the mixture is turned 

mechanically to expose organic matter to ambient oxygen (Pepper et al. 1996), 

windrows can be open or contained and covered. 

Entry 

Oversized 

material 

Processing 

Composting 

Curing 

Screening 

Bagging Application 

Figure I Schematic of the overall composting process 

I. I. I. II Static Pile 

Static pile systems are forcefully aerated by perforated pipes installed under the 
piles to maintain a minimum oxygen level throughout the compost mass. 
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Figure II Static pile composting (Ohio State University undated) 

The composting process takes approximately 21 days. It is then dried, screened 

stored or cured for approximately 30 days and sold or distributed. The large fraction 

recovered by the screening process and returned to the composting process as a bulking 

agent (fig II). 

1. I. I. II1In-Vessel 

This process takes place in either fully or partially enclosed systems. 
Environmental parameters such as oxygen levels, moisture and temperature can be 

controlled. The size and cost of the reactors will depend on individual requirements. A 

schematic of the overall process is shown in fig III 
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Figure III In-vessel composting process (Ohio State University undated) 

I. I. II Vermicomposting methods 

Vermicomposting is an "aerobic, bioxidation and stabilisation, non-thermophilic 

process of organic waste decomposition" (Gunadi et al. 2002). It is a low-cost method of 

treating organic wastes exploiting the ability of some earthworms to fragment waste 

residuals in their grinding gizzards (Edwards and Neuhauser, 1988; Edwards and 

Arancon, 2004; Hand et al., 1988). The digestion process fragments the waste substrate; 

accelerate rates of decomposition, increases plant available nutrient content (Atyieh et 

al., 2002; Orozco et al., 1996; Chaoui et al., 2003; Singh and Sharma, 2002). Compared 

to conventional composts, vermicomposts are richer in microbial diversity, populations 

and activity, (Gunadi et al., 2002; Subler et al., 1998). 

Methods employed when vermicomposting will depend on the feed stock; wet 

slurry type wastes either need separating or drying to reduce the water content. With 

other manure type wastes, worms will begin processing cattle solids a few days after 

collection whereas pig solids may take two weeks. Poultry manures pose a greater 

problem; the ammonia concentration will have to fall below 0.5mg/ g before earthworms 

will enter (Edwards and Bohlen, 1996). Industrial wastes are often pre-processed before 

being exposed to worms; this may involve mixing with a bulking material such as 

woodchip or paper waste. 

Several techniques are available for processing organic wastes with worms: 
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Lowcost floor beds; Gantry fed beds; containers or boxes; raised gantry fed beds 

and complete recycling systems. (Edwards and Bohlen 1996). Several epigeic 

earthworm species are commonly used for vermicomposting are Eisina fetida (Tiger 

worm) Eudrilus eugieni, Dendrobaena veneta, Perionyx excavatus, Polypheretima 

elongata. 

1.1.11.1 Feeding rates and stocking densities 

Ndegwa (2000) have assessed stocking densities and feeding rates using E. andrei. 
Optimum stocking density of 1.60 kg worms m"2 and optimum feeding rates of 0.75kg- 

feed/ kg worm/ day resulting in highest conversion of feed into vermicompost. Other 

studies have reported that the optimum feeding rate will depend on the feed and its pre- 

treatment (Wright 1972) and that feeding rates will depend on earthworm species and 
feed type (Edwards and Bohlen 1996). Neuhauser et al. (1980) reported that ingested 

volume depended on the total amount of organic matter available, similar results were 
later obtained by Edwards and Bohlen (1996). 

I. II COMPOSTAPPLICATIONS and USES 

The decline in organic matter in agricultural soil as a result of intensive 

management has stimulated interest in restorative methods. Several organic wastes are 
currently used as soil amendments and with increasing political pressure to divert the 
disposal of organic wastes from landfill then it is likely that increasing quantities will 
find their way onto agricultural land as a method of improving soil quality by reversing 
the loss of organic matter. Composts are typically used instead of peat as a soil 
conditioner and growing medium and common uses are given in fig IV 
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Figure IV Distribution of composted products in the UK 2003/2004 (Slater et al., 2005) 

I. II. I Other uses 
Compost is a key component of biofilters; these are commonly used for the 

removal of volatile hydrocarbons, nitrate, ammonia, and other nitrogen based gases from 

a variety of sources such as landfill leachate, flue gases odours from waste treatment 

plants (Jokela et al., 2002; Flanagan et al., 2002). Harvesting and subsequent 

vermicomposting has been shown to be an effective method of managing water-hyacinth 

(Echhornia crassipes, Mart. Solms) for which there is no known conventional control 

method (Gajalakshmi et al., 2001). 

1.111 ENVIRONMENTAL BENEFITS 

Methane, (CH4) is a recognised greenhouse gas and its global 'greenhouse' effect is 

62 times that of carbon dioxide (Hutchings, 1999). It is a natural product of microbial 

fermentation and is naturally emitted into the atmosphere from many sources e. g. 

wetlands; however, recent increases in atmospheric concentrations originates from 
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anthropogenic sources, (Nebel and Wright, 2000). Landfill sites are recognised as a 

significant source of methane and emissions from landfills were estimated to have 

responsible for 28% of total EU emission in 1995, (Hutchings D., 1999) and 10% of 

annual global contribution (Borjesson, 1999). In a report to the EU, Smith et al., (2001) 

concluded that one of the most effective method of reducing methane emissions from 

landfill was by source segregating of MSW and composting (of any type) of putrescible 
fraction although anaerobic digestion (AD) with combined heat and power (CHP) 

generation gave the highest net greenhouse gas flux. (fig V). However it must be noted 

that the net negative greenhouse flux of composting and AD is very small compared to 

recycling, but together, they offer the lowest greenhouse gas fluxes of all waste 

management option discussed by Smith et al., (2001). 
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Figure V. Greenhouse gas fluxes from composting and AD of putrescible wastes, assuming average 
EU electricity replaced. Kg CO2 eq/ tonne MSW (adapted from Smith et al., 2001). 

The contribution that landfill sites make to atmospheric greenhouse gas levels in 
broadly recognised by all devolved and central governments in the UK and all have set 
targets for reduction of which increasing composting levels of putrescible wastes plays a 
key role (NAW 2002). 
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I. IV CURRENT PRACTICES and FUTURE TARGETS. 

I. IV. I Current state of waste management 

Overall, waste management employs between 200,000 and 400,000 people in the 
EU and the trend is toward fewer employees but in higher quality jobs. Currently, 

England and Wales produces 400 million tonnes of waste every year; of this 106 million 
tonnes are from commercial, industrial and household sources (DEFRA, 2000). Of the 

29.3 million tonnes of municipal wastes collected in England and Wales in 1999/ 2000, 

83% is sent to landfill (DEFRA, 2000). The trend for fewer employees per tonne of 

waste produced may be offset by the growth in waste quantities and increased control 

and processing of the waste stream (Vernon and George, 2001) 

Overall per capita waste generation in the UK 2000 was approximately 0.6 

tonnes y'1. N. Ireland produces more waste per capita than any other region (fig VI). 

England recycles or composts just 12 percent of its household waste, one of the lowest 

rates in EU but accounts for 92% of the UK total, (Hogg et al., 2002). England and N. 
Ireland have begun to adopt composting as a waste management strategy, however much 
more work needs to be done in order to approach European levels. Overall tonnes 

composted per capita is seen in fig VII. 
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Figure VI Distribution of waste produced per capita in the UK. (adapted from Hogg et al 2002, 

National Statistics online (2001) 

Figure VII UK waste composted per capita (adapted from Hogg et al 2002, National Statistics online 
(2001) 
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The government estimated portion of biodegradable wastes found in British MSW 

(BMSW); (53%) and kitchen and garden wastes (20%) are out of date and widely 

disputed. Other published figures range from 53% to 61% for BMSW and ranged from 

25.7% to 32% for organic wastes (Coggins 1999; Gandy 1993; Robinson and Stentiford 

1993; Naseratnam et al., 1997; MEL Research 1994 Slater and Frederickson 2001), 

garden waste could account for up to 15% of MSW. However, much of the BMSW will 

consist of paper and cardboard, the BPEO for such wastes is to incinerate combined with 

energy recovery and that composting efforts should be aimed at the vegetable, food and 

garden (VFG) wastes, (Slater and Frederickson, 2001). 

According to Gale and Stansfield (2002), the total UK household meat 

consumption is 3.77 Mt y"1,12% by weight of household refuse consists of cooked meat 

1% being raw meat. Assuming a total of 20 million households in the UK and an 

average of 4kg of putrescible waste per refuse sack, the estimated total of meat discarded 

is 540,800 t y'1 (499,200 t Y-1 cooked; 41,600 t y"I uncooked). Other studies quoted by 

Gale and Stansfield (2002) suggest that this is an underestimation and that uncooked 

meats constitute 3.4% of household refuse. Catering establishments discard very little 

uncooked meat in their catering waste. Since the 2000 foot and mouth outbreak, there 

has been considerable concern that the adoption of poor composting practices may result 

in similar future outbreaks accelerated by the spread of contaminated waste to 

agricultural land. To this end, the UK government has introduced strict requirement on 

all food waste composters to ensure adequate sanitisation during active composting and 

to eliminate recontamination of composted wastes by fresh feed stock (DEFRA 1999). 

LV MATERIALS, OPERATORS and SITES 

I. V. I Sources 

According to Hogg et al., (2002), in 1999,74% of the total tonnage of waste 

materials composted came from municipal sources. Of the 618517 tonnes, 72% was 

garden wastes from bring sites, 17% was local authority sourced green waste from parks 

and gardens; kerbside collection accounted for 7.5%, the remainder came from other 

non-domestic sources. 
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I. VII Collection methods 

At present, no requirement exists for separate collection of putrescible waste 

materials in the UK. Many local authorities are faced with recycling and composting 
targets that can only be met if separate waste collections are initiated. The NAW in their 

draft waste strategy have specifically stated that "compost"; as far as the waste strategy 

targets are concerned will only qualify as such, if it is separately collected. (NAW 2001). 

Collecting methods and quantities are outlined in table II 

Table II Compostable waste collected through different schemes for household wastes (DEFRA 2002) 

Collection Route Mt Percent 

Household waste recycling centre 0.93 68% 

Kerbside 0.39 29% 

Other 0.04 3% 

I. V. III Sites 

In 1999,197 sites were identified and divided into three main groups (table III). Of 

the 833,044 tonnes of materials processed, 765,155 were in centralised sites, 66,401 
tonnes in on-farm sites and 1,488 tonnes in community sites. By 2003/ 2004 the number 
of composting sites had increased to 322, and 1.97 Mt of green waste was processed. For 
the first time, the on farm site numbers has exceeded centralised site types (Slater et al., 
2005). The distribution of existing and proposed centralised composting sites in England 
is shown in fig VIII. The high level of non respondents to the annual Composting 
Association survey study make it difficult to make any valued judgements on the 

adoption and distribution of composting within the study area but if it does accurately 
represent the current position it is non-metropolitan districts that have developed and 
established composting as a waste management strategy. It has not been determined 

whether lack of space or disinterest and inertia is why metropolitan districts lag behind 
in adopting and implementing such programmes. 
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Table III Composting site types, 1999 (adapted from Hogg et al., 2002) 

Centralised On farm Community 

Total 80 65 53 

England 67 63 52 

Wales 2 1 1 

Scotland 4 1 

N. Ireland 5 

Jersey 2 
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13 Have not costed sheme 

113 Nonresponse 

Figure VIII Percentage of centralised composting schemes by authority type; England 2000/ 2001 

(DEFRA 2002). 

I. VI PROCESS TYPES IN USE IN THE UK 

From table IV it can be seen that the recent expansion in composting is based on 

simple technology of the open-air mechanically turned windrow which accounts for 88% 

total materials processed. 

Since no licensed catering waste composting sites exist in the UK to date, the 

available data concentrates primarily on green waste and municipal solid wastes (MSW). 
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Of the 1,663852 tonnes of materials processed, 1,523 101 were in centralised sites, 
130,402 tonnes in on-farm sites and 10,349 tonnes in other site types with a higher 

emphasis on on-farm composting in Wales and Scotland. Most composting of green 

waste is done using simple windrow technology; however, under current regulations this 

is not suitable for the composting of food wastes and the cost of managing composting 

premises suitable for treating catering wastes is likely to exclude smaller operators. This 

is likely to result in development of larger centralised sites in urban areas where higher 

population densities will attract private business but there is a need to develop approved 

small-scale units that will attract smaller scale composters in rural areas. 
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Table IV Type of composting process, all site types, (Hogg et al., 2002) 

Process type Number of sites Tonnage Percentage c 

throughput 

Open-air mechanically 121 736,52! 88% 

turned windrow 
Covered/ contained 5 35,124 4% 

mechanically turned windrow 
In vessel 7 32,717 4.5% 

Open air static pile with 5 15,967 2% 

no aeration - centralised 
Open air static pile with 3 630 <1% 

no aeration - on-farm 
Open air static pile with 23 751 <1% 

no aeration - community 
Vermicompost 1 250 <1% 
Other centralised -1 mixed, 2 9,889 1% 

unknown 
Other -2 not known, 2 30 1,187 <1% 

community mixed 
Total 197 833,04' 100% 
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I. VII RECENT TRENDS 

The growth in the number of composting sites and in tonnage composted is 

recorded annually by the Composting Association; latest trends are presented in fig IX, 

X (Slater et al., 2005). 
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Figure IX The increase in composting sites in the UK (Slater et al., 2005) 
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Figure X Growth in material composted in the UK. (Slater et al., 2005) 

An increase in recycling and composting levels of municipal wastes (kg/ 

household/ week) has also been noted by DEFRA (2002) (fig XI). Between 1996 and 

2001, the increase in the recycled/ composted portion has compensated for the total 

increase in waste produced and resulted in only a small decline in overall wastes sent for 

landfilling. 
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Figure XI Municipal waste management in England: 1996/97 to 2000/01 (DEFRA 2002) 

A similar trend was noted in household waste levels, overall tonnage has increased 

but the increase in the fraction recycled/ composted has largely offset the amount 

needing alternative treatment. (Fig XII) 

gkgmmaa par trued pw ymr Engr N 

Figure XII Household waste and recycling in England: 1983/84 - 2000/01 (DEFRA 2002) 
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I. VIII FUTURE TARGETS 

In recent years, the political profile of waste management in the UK has increased 

significantly. This is primarily in response to the European Landfill Directive (EC 

1999). This directive places strict limits on the amount of waste that can be disposed of 

by landfill. For the UK the amount of biodegradable solid waste (BSMW) disposed of in 

this way must be reduced to: 

75% of the amount produced in 1995, by 2010 

50% of the amount produced in 1995, by 2013 

35% of the amount produced in 1995, by 2020 

(Slater and Frederickson, 2001) 

The directive requires that a minimum of 25% of household wastes be recycled or 

composted by 2005 rising to 33% by 2015. The National Assembly for Wales (NAW) 

have set higher targets and intend that 40% of MSW be composted or recycled by 

2009/10 with a minimum of 15% source segregated composting. Considering the current 

low levels of municipal composting in Wales; 2% of the UK total in 2000 (Hogg et al., 

2002), this is an ambitious target. Achievement of these targets will require separate 

collection and composting of kitchen waste by local authorities. The British government 
has introduced "two major acts, three waste strategy consultation documents, two waste 

strategies", (Read 2001). However, these strategies failed to recognise the scale of 

change required to meet their own targets for recycling and recovery (Environment, 

Transport and Regional Affairs Committee, 1998). This report went on to record its 

disappointment with waste management in the UK and states that waste management in 

the UK is still "characterised by inertia, careless administration and ad hoc as opposed to 

science based decisions. " 
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I. VIII. I Maintaining standards, legal regulations 
No legal definition of compost exists in the UK. The DETR (1998) definition 

states that compost is: 

"Biodegradable municipal waste which has been aerobically processed to form a 

stable granular material containing valuable organic matter and plant nutrients which, 

when applied to land, can improve soil structure, enrich the nutrient content of soil and 

enhance biological activity. " 

Whereas the Composting Association defines compost as a "material that has been 

subjected to controlled, self heating biodegradation under aerobic conditions and 

stabilised such that it is not attractive to vermin, does not have an obnoxious odour and 
does not support the regrowth of pathogens and their indicator species. Compost that has 

been subject to a screening process may be classified in terms of its particle size grade 
from fine to coarse". 

According to Hogg et al. (2002) there is a lack of distinction between those 

composts that meet the CA standards and those composted materials defined as 

composts by DETR that do not meet the CA standard. Both define a recognised process 
but there is still a need to distinguish marketable products from wastes without which, 

concerns about which material can be applied safely to land will arise. This issue is 

further complicated by the ambiguity as to whether composts are regarded as wastes 

under other UK legal regulations (e. g. the Waste management licensing regulation 1994, 

and the Animal By-product order, 1999), (Hogg et al., 2002). 

In response to recent outbreaks of foot and mouth, classical swine fever, BSE 

scrapie and E. coli and Salmonella the UK government has proposed and amendment to 

the Animal By-product order, (1999). The intention is to allow composting of kitchen 

waste, however, in the proposed measures are adopted it will impose much tighter 

restrictions on large scale composting methods and materials where meat or food waste 
that has been on the same premises as meat is present. The composting association 
maintain that the "prescriptive techniques proposed in the consultation go much further 

than is seen necessary in mainland Europe and will make the composting of these wastes 
prohibitively expensive", (Bretton 2002). These requirements will restrict the 
composting of such wastes to expensive in vessel systems and imposes strict limits on 
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pathogen numbers. Home composting will not be affected by these restrictions as long 

as the household does not have a pet pig or ruminant animal. 

I. VIII. II Assuring end product quality 

The sustainability of this new industry depends on developing high quality 

products. Moreover, maintaining consumer confidence requires a consistent high 

standard. Due to the range of wastes that are potentially compostable, the CA has 

introduced a certification scheme that attempts to guarantee a product of known quality. 

The CA standards apply to the whole composting process; there is an emphasis on 

traceability of sources and the composting process; details are required of feedstock 

sources and pre-preparation Strict monitoring of temperatures within the composting 

mass is required in order to minimise pathogenic organisms. Recording of the 

monitoring regime is required as well as identifying actions to be taken is these 

conditions are not met. Compliance with the CA regime and subsequent CA approval 

allows the producer to show the CA symbol on their certified products. According to 

Hogg et al. (2002) the level of uptake of certification to date has been low but recognises 

that the scheme is new. More recent numbers of compost producers is more encouraging 

with 42 certified producers. It is a costly procedure, it is estimated that it costs small 

producers in excess of £2000 pa and larger producers in excess of £3000 pa to register 

and maintain registration in scheme. 
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Appendix 2 

Additional Material 

Grassland biomass 
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Figure XIII Grassland biomass response to vermicompost application. Where VC - vermicompost, 
GW - Green Waste. Bars with different letters are significantly different at the P <- 0.05 
level. Figures represent mean ± SE, (n = 3). 
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Maize Grain Yield 
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Figure XIV Yield of Maize (Zea mais) in response to vermicompost application, where control (no 
fertilizer amendements); VC surface (25t hat vermicompost, surface applied); VC ploughed 
(25t ha" vermicompost, ploughed in at seeding); NPK (150 kg ha' 20: 10: 10 NPK fertiliser); 
NPK/ VC surf. (25t ha" vermicompost plus NPK, surface applied ,N content normalised to 
NPK equivalent); NPK/ VC plough. (25t ha l vermicompost plus NPK, ploughed in at 
seeding, N content normalised to NPK equivalent); Compost (25 t ha' non vermicomposted 
green waste, surface applied). Asterisk denoted treatments significantly different to the NPK 
control at the P: 5 0.05 level. Figures represent mean ± SE, (n = 3). 
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I A) Radish weight in GW compost and vermicompost 
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I B) Radish weight in GW/PP compost and vermicompost 
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C) Radish growth in GW/SS compost and vermicompost 
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Figure XV Radish root weight in response to compost (comp) and vermicompost (VC) application. 
Percentage value represents the rate of substitution of peat based growing medium with 
compost or vermicompost. Plants were grown in three separte wastes, Fig A: GW (green 
waste only derived compost and vermicompost); Fig. B: GW/PP (green waste and paperpulp 
derived compost and vermicompost) and Fig. C: GW/SS (green waste and biosolid derived 
compost and vermicompost). Asterisk denoted treatments significantly different to the peat 
based growing medium control at the P: 5 0.05 level. Figures represent mean ± SE, (n = 5). 
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