
Bangor University

DOCTOR OF PHILOSOPHY

Trihalomethane Formation in Drinking Water; Impact of Drought, Treatment Wetlands
and Methods of Analysis

Ehbair, Abdassalam

Award date:
2017

Awarding institution:
Bangor University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 19. Nov. 2024

https://research.bangor.ac.uk/portal/en/theses/trihalomethane-formation-in-drinking-water-impact-of-drought-treatment-wetlands-and-methods-of-analysis(9c9289d8-cc6d-409b-8463-9e5aba236de7).html


                                                                i 
 

 
 

Trihalomethane Formation in Drinking Water; 

Impact of Drought, Treatment Wetlands  

and Methods of Analysis 

 
 
 
 
 
 

A thesis submitted to the University of Bangor by: 
 

Abdassalam Ehbair 
 
 
 
 

 

In candidature for the degree of: 
 

PHILOSOPHIAE DOCTOR 
 
 
 

 

 

June 2017 
 
 
 

 

 

School of Chemistry 

University of Bangor 

Bangor  

Wales 



ii 
 

Abstract 

In England and Wales, two-thirds of drinking water comes from surface water. Rising dissolved 

organic carbon (DOC) concentrations in surface waters have been reported in the past few 

decades, commonly attributed to climate and land use change. Peatlands have historically been 

drained to create new grazing land and this has been suggested as one of the causes of the rising 

DOC trend.  

The experimental work in this thesis was undertaken in North and West Wales catchments and 

primarily examines the variations in DOC concentrations and how these are linked with 

trihalomethane formation potential (THMFP) in different field and laboratory settings.  

Chapter 2. From July 2012 – Feb 2013 water samples were collected from three contrasting 

sites in North Wales: Llyn Conwy (“lake”) a natural oligotrophic drinking water reservoir, 

Nant-y-Brwyn (“stream”) a natural Stream outside the catchment of the reservoir but 

analogous to other upland streams within the area and four man-made drainage ditches 

(“ditches”) within the predominately peat catchment of Llyn Conwy. The results of this study 

demonstrate that the drainage ditches have the potential to contribute more carbon per unit 

volume of water to the oligotrophic Llyn Conwy than the natural stream feeding into Llyn Conwy 

(equivalent to Nant-y-Brwyn). Mean DOC values were 6.32 mg/L higher in the drainage ditches 

when compared to Llyn Conwy. However, there were no statistically significant differences in 

the propensity to form trihalomethanes between the sites (p>0.05). 

Chapter 3: From March 2014 until September 2014 monthly water sampling was performed 

to compare the effect of drought on a discontinuous peat-accumulating wetland 

experimental site in mid-Wales, UK. Porewater samplers were installed at both the 

droughted and control sites. The results demonstrated that peatland exhibited reduced 

porewater DOC and phenolics concentrations and a shift in quality to lower molecular weight 

and less aromaticity. The mean DOC concentration of the control being 14.1 ± 0.77 mg/L and 

the drought being 11.9 ± 0.45 mg/L (F=4.93, p<0.05). Despite this, a significant change in the 

mean standardised trihalomethane formation potential (THMFP) values were not observed 

(p>0.05). 

Chapter 4: Twenty peat cores were collected from two locations in North Wales in June 

2013; 10 each from Migneint bog and Cors Erddreiniog fen. The Mignent is the largest 

blanket bog in North Wales and Cors Erddreiniog is the largest area of fen on the island 
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of Anglesey. These peat cores were transferred to the laboratory and kept under 

controlled temperature and levels of water table over a period of 160 days. 

The results indicated is that artificially exposing peat cores to a drought treatment reduced 

DOC concentrations compared to control cores (DOC: mean of all controls (71.68 ± 53.30 

mg/L), mean of all droughts (39.69 ± 38.66 mg/L)). The values determined for the correlated 

THMFP values were mean drought 57.75 ± 20.33 µg CHCl3/mg DOC and mean control 54.59 

± 23.63 µg CHCl3/mg DOC, but these differences were not significant 

Chapter 5: The effect of constructed wetlands on DOC characteristics and THMFP of water 

sample from Llyn Cefni were measured twice a month from 2014 until March 2015. It was 

concluded that in the wintertime the constructed wetland is having a positive impact on 

water quality of the reservoir because it is still sequestering some nitrate and phosphate, 

but also reducing the DOC concentration of the water flowing into the reservoir by 18% on 

average. 

Chapter 6: In order to investigate the effect of storage of water samples that contain THMs after 

disinfection treatment, samples were collected from two selected surface waters; Nant-y-Brwyn 

stream (oligotrophic) and Cefni reservoir (eutrophic) in North Wales, subject to experimental 

chlorination in the laboratory and then stored at 4°C and at room temperature for an 11 week 

period. The majority of the weekly measurements of the concentrations of key DBPs showed no 

statistical differences from the initial week 0 values, regardless of water source types or storage 

temperatures (p<0.05).  
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Chapter 1: Introduction 

1. Natural Organic Matter 

1.1. Overview  

Natural organic matter (NOM) is contained within all freshwater ecosystems. It is a mixture of 

heterogeneous chemicals originating from decaying animal and plant products and its size, 

composition and characteristics are influenced principally by the Earth’s hydrological and carbon 

cycles (Schnitzer and Khan, 1972; Thurman, 1985; Murray et al., 2004). NOM is mostly in a continual 

state of decomposition, because heterotrophic microorganisms slowly break it down, altering its 

chemical properties (Pusch et al., 1998). NOM consists of a diverse pool of organic material, with 

compounds including low molecular weight short chain carbon compounds, carbohydrates and larger 

and more complex humic acids. The specific compounds that make up NOM are numerous and its 

precise nature is poorly understood. NOM is often separated into humic and non-humic compounds. 

1.2. Humic and non-humic compounds 

Humic compounds are a heterogeneous mix of compounds that together form humus, which is poorly 

soluble in water due to its overall hydrophobicity, even many of its constituents contain some polar 

functional groups (Figure 1.1). In addition humic substances are aromatic, high-molecular weight and 

black-brown in colour. They make up approximately 25–50% of freshwater NOM (Thurman, 1985; 

Zherebker et al., 2016). The solubility properties of humic compounds at different pH’s are not 

uniform, but there are trends in behaviour which allow sub-division into three sub-classes; humic 

acids, fulvic acids and humins (McDonald et al., 2004). Humic acid components are not soluble at pH 

2 or less but increase in solubility as pH increases. In general, the molecular weight of humic acids in 

stream water is between 1,500 and 5,000 Da, and between 50,000 and 500,000 in soils, whereas the 

molecular weights of fulvic acids are lower, ranging between 600 and 1000 Da in stream water and 

1000 and 5000 Da in soils (McDonald et al., 2004). Fulvic acids have higher oxygen content than humic 

acids and exhibit various colours from light yellow to yellow-brown (Kononova et al., 2013; Hope et 

al., 1994). The fulvic acid component is fully soluble between pH 1 to 14 whereas humins are insoluble 

in water at all pHs. Both humic and fulvic acids are described as hydrophilic in their natural state due 

to the strong hydrogen bonding between the molecular structures and water molecules. The major 

source of humic and fulvic acids is decaying plant material (Fukushima et al., 1996; Kelleher and Andre 

2006). The non-humic fraction is primarily consists of polysaccharides, non-polar proteins, and low-

molecular weight, hydrophilic organic acids (Schnitzer and Khan, 1972; Grasso et al., 1990). 
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Figure 1.1. Proposed a humic acid building block (adapted from McDonald et al., 2004) 

A common and basic method to characterise NOM is to filter the freshwater solution through a 0.45 

µM filter; the NOM retained on the filter is classed as particulate organic matter (POM), the NOM that 

passes through the filter and remains in solution is dissolved organic matter (DOM) (Thurman, 1985). 

Several analytical techniques can be employed to characterise NOM, including UV/Visible and 

fluorescence spectroscopies, resin fractionation, nuclear magnetic resonance (NMR) and time of flight 

mass spectrometry. Figure 1.2 shows the structure of a complex DOM molecule. Algogenic organic 

matter (AOM) may be an important non-humic DOC source, arising from passive and active exudation 

of extracellular organic matter from live algal cells and by intracellular organic matter released by algal 

cells breakage (Wetzel, 2001).  
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Figure 1.2. Structure of tannic acid (example of a complex organic compounds that exists as 
dissolved NOM). 

1.3. Dissolved organic carbon (DOC) 

1.3.1. Character and structure 

Carbon is the key constituent of NOM; therefore, NOM may frequently categorised as either dissolved 

or particulate organic carbon (DOC/POC). The analytical techniques used to quantify and characterise 

organic matter in freshwaters and usually based on measuring the carbon in NOM. DOC is the main 

form of organic carbon in freshwaters (Jones and Mulholland, 1998), usually making up 90% of total 

organic carbon. It is derived from the cycling of carbon between the upper lithosphere and the 

atmosphere. Carbon dioxide gas is taken up from the atmosphere by vegetation during 

photosynthesis, used to form plant structures during the growing season, transferred to the soil during 

the autumn as vegetation dies and partly returned to the atmosphere as the organic matter is 

decomposed. As organic carbon resides in soil it can be transferred to freshwaters during rainfall 

(allochthonous source) and globally this is generally the dominant source of DOC in rivers, streams 

and lakes (Wetzel, 2001). It is common to observe strong correlations between lake DOC 

concentrations and the size of the lake’s catchment (Schindler, 1971). DOC is also produced within 

freshwaters by algae and microorganisms (autochthonous sources). Freshwaters with a high 



4 
 

concentration of DOC will usually be coloured brown due to the presence of humic substances, which 

strongly absorb ultraviolet and visible light. 

1.3.2. Changing Trends in DOC  

In the United Kingdom, between 1988 and 2000, DOC was reported to have increased by an average 

of 65% across 22 streams and lakes (Freeman et al., 2001a; Worrall et al., 2003a). A similar rising trend 

has been measured in Central and Northern Europe and North America (Stoddard et al., 2003; 

Skjelkvåle et al., 2005; Monteith et al., 2007; Evans et al., 2006; Figure 1.3). The rising DOC trend has 

been linked to several factors, but the scientific community have yet to reach a consensus on the 

causes.  

Freeman et al. (2001b) linked the trend to the rise in global temperatures between 1970 to 2000, 

stating the mechanism as being increased microbial activity and labile DOC export from peat soils. 

During simulations in the laboratory, the extracellular enzyme phenol oxidase activity increased by 

36% for every 10°C rise in temperature (Freeman et al., 2004b). Higher temperatures increase 

microbial and invertebrate decomposition processes in soils, resulting in increased DOC formation 

(Freeman et al., 2001b; Cole et al., 2002). Changes in hydrological flow regimes and precipitation 

patterns have also been suggested to cause rising DOC (Hejzlar et al., 2003; Hongve et al., 2004) 

Drought conditions can also lead to rapid increase in DOC from the catchment transferring into surface 

waters when rainfall occurs (Evans et al., 2005). In addition, increased DOC production has been 

associated with a stimulation of plant production due to increased CO2 in the atmosphere (Freeman 

et al. 2004a) and a soil microbial response to atmospheric nitrogen deposition (Pregitzer et al., 2004; 

Findlay, 2005). Increased organic matter solubility is reported to be linked to decreased acidity and 

ionic strength of soil water (Evans et al., 2006; Monteith et al., 2007). Evans et al. (2012) demonstrated 

that pH is a key factor controlling the concentration of DOC in soils, and hypothesised that the decline 

in SO2 dry deposition observed in many regions of the northern hemisphere over the last two decades 

is principally responsible for the DOC trend. Thus, these changes may lead to increased DOC export in 

late summer and autumn (Ritson et al., 2014).  
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Figure 1.3. Trends in DOC concentration (mg/L, year) observed in Europe (a) and North America (b) for 
the period 1990-2004 (Monteith et al., 2007). 

1.3.3. Allochthonous vs. autochthonous sources 

The contribution of DOC to freshwaters from different sources is highly variable on a seasonal basis. 

Allochthonous DOC inputs are greatest during the late summer/autumn period, at the end of the 

growing season when vegetation starts to die back and decompose (Holden & Adamson, 2002). 

Autochthonous DOC production peaks in the summer months, when temperatures and light levels are 

highest (Manny and Wetzel, 1973). Therefore, freshwater DOC concentrations tend to peak in autumn 

when the contribution from both sources are high (Royer and David, 2005). Globally, allochthonous 

sources tend to dominate DOC inputs over autochthonous sources (Manny and Wetzel, 1973). DOC 

from allochthonous sources is generally in higher molecular weight, more aromatic and absorbs more 

light than DOC from autochthonous sources (Hedges et al., 1994; Gergel et al., 1999).  

 

a 

b 
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1.3.4. Phenolic Compounds in DOC 

Phenolic compounds are a specific group of organic chemicals common in nature (Ribéreau, 1972). 

They are characterised by the presence of at least one aromatic ring carrying one or more hydroxyls 

(Appel, 1993). Phenolic compounds comprise a significant part of freshwater DOC, especially in areas 

which drain organic soils. Phenolic compound concentrations in water samples can be determined 

using a colorimetric technique described by Box (1983). 

1.4. Carbon Balance 

1.4.1. Peatlands  

Peatland soils are one of the most important sources of DOC to freshwaters. Peat soils are known to 

export high concentrations of DOC, because the soil is carbon rich and precipitation tends to be high 

in areas where peat is found, so there is a continual flush of DOC-rich waters. Figure 1.4 shows the 

distribution of peatlands globally, with approximately 400 million hectares throughout the world. 

Peatlands form when the climate and topography result in a high water table; this causes anaerobic 

conditions in the soil and supresses the decomposition of organic matter. The suppression of 

decomposition has been attributed to significant lowering of activity of the enzyme phenol oxidase 

(Freeman et al., 2004b), which requires oxygen to function but this is virtually absent from peat. This 

leads to a build-up of inhibitory phenolic compounds, such as tannic acid, and these compounds are 

known to inhibit hydrolase enzymes, the main decomposers of organic material in soils. Therefore, 

organic matter builds up slowly over time such that peatlands may be many metres deep.  

Figure 1.4. Global peatland distribution (Riccardo Pravettoni, UNEPGRID-Arendal). 
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Previous studies have demonstrated the influence peatlands have on DOC concentrations in 

freshwaters. Dillon and Molot (1997) described how DOC export rates are best modelled by a simple 

linear function based on the percentage of peat coverage in the catchment. Aitkenhead et al. (1999) 

observed that Scottish rivers with the highest DOC concentrations have extensive peatlands in their 

catchments. Research by Urban et al. (1989) highlighted that the most important variable controlling 

the DOC yield from a catchment is the proportion of the area occupied by peatlands. The role of 

peatlands in influencing the DOC concentration of freshwaters is therefore critical, particularly in the 

temperate regions of the northern hemisphere where most peatlands exist. 

There are two contrasting types of peatland; bogs and fens, as defined below: 

1.4.1.1. Bogs  

Ombrotrophic (entirely rain-fed) or oligotrophic (nutrient-poor) bogs are acidic peatlands with a pH of 

4.0 to 4.8, with no significant inflow or outflow of surface water or groundwater, which support 

acidophilic vegetation, particularly mosses. Bogs are dependent on rainfall for their water and 

nutrition inputs. They are often dominated by Sphagnum, with acidity boosted by the organic acids 

that form as a result of their decomposition (Warner and Rubec, 1997). 

1.4.1.2. Fens 

A fen is a minerotrophic, meso- or eutrophic open peatland system that generally receives some 

drainage from surrounding mineral soils and is often covered by grasses, sedges or reeds (Mitsch and 

Gosselink, 2000). 

1.4.2. Wetlands as carbon reserves 

Wetlands store a large proportion of the world’s organic carbon. Bridgham et al. (2008) estimated that 

peatlands contain between 329 and 525 x 1015 Tg of C. There are a number of carbon reservoirs within 

wetlands, such as plant biomass carbon, microbial biomass carbon, particulate organic carbon, 

dissolved organic carbon, carbon dioxide and methane. Figure 1.5 illustrates the carbon cycle within 

a wetland. Worrall et al. (2009) calculated the carbon budget of a 11.4 km2 peatland catchment in 

northern England. The study included both fluvial and gaseous carbon fluxes and net ecosystem 

respiration of CO2. During the 13-year period of data collection, the carbon balance averaged 56 g 

C/km2/yr. Scaling up to the whole of the UK; this equates to a national peatland carbon balance of 

approximately 1.2 Tg ± 0.4 Pg C/year. 
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Figure 1.5. The carbon cycle within a wetland (Kayranli et al., 2010). 

1.4.3. Decomposition 

Decomposing plant materials are the main source of DOC in surface waters (Thurman, 1985). 

Peatlands provide a large pool of carbon due to the accumulation of deep layers of peat in wetland 

environments as a result of low decomposition rates (Mitsch and Gosselink, 2000; Davidson and 

Janssens, 2006). During the summer DOC accumulates in the peat matrix due to higher rates of 

decomposition and increased plant production and senescence (Tegen and Dorr, 1996). This DOC is 

then leached out later during rainfall events. Scott et al. (1998) and Clymo (1965) reported that 

microbial processes are predominantly responsible for decomposition within wetlands. Highest rates 

of decomposition of organic matter occur in at or near the surface of the wetland where fresh litter 

is present and there may be more oxygen. The anaerobic conditions lower in the peat profile result 

in the inhibition of microbial decomposition and the accumulation of organic matter (Gorham, 1991).  

1.4.4. Human disturbance of peatlands 

Peatlands store huge amounts of carbon but anthropogenic activities are releasing that carbon 

(Holden et al., 2004; Charman et al., 2013; Swindles et al., 2015). There is growing evidence that the 

peatlands of North Western Europe, South East Asia and North America are being damaged during 

drainage and harvesting of peat (Holden et al., 2004; Hooijer et al., 2010, 2012). It also appears that 
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climate change is a particular risk to UK Peatlands (Gallego-Sala et al., 2010; Li et al., 2016) and these 

areas are damaged by atmospheric pollution (Smart et al., 2010), peat extraction, drainage for 

agriculture, over-grazing, wild-fire and construction of buildings (Holden et al.,2006; Davies et al., 

2010; Wellock et al., 2011). During the 1940s, vast areas of peat were drained by excavation of ditches 

that aimed to reduce the water table level and in order to increase the proportion of land suitable for 

agricultural use (Holden et al., 2006). The excavation of ditches in peatlands leads to changes in 

ecosystem-level biodiversity, hydrology and carbon sequestration, with some studies reporting an 

increase in the flux of dissolved organic carbon (DOC) (Ramchunder et al., 2012; Parryet et al., 2014). 

To attempt to reverse these effects, ditch blocking with dams has been widely employed, with the aim 

to raise the water table and have a positive effect on carbon sequestration (Beadle et al., 2015; 

Swindles et al., 2016). 

1.4.5. Drought and carbon fluxes  

Climate change is reported to be resulting in an increased risk of drought, which may influence peat 

carbon stores. Laboratory simulations indicate that drought and the resultant lowering of the water 

table is likely to increase the release of CO2 from peat (Fenner and Freeman, 2011; Chen et al., 2012). 

In some cases, an increase in CO2 emissions is observed during rewetting (Fenner and Freeman 2011). 

During drought, oxygen ingress increases the enzymic activity of phenol oxidase leading to a correlated 

increase in degradation of phenolic compounds. This in turn stimulates hydrolase enzymes which 

break down organic matter, thereby releasing carbon (Freeman et al., 2001a). As such phenolic 

compounds are considered key to the storage and release of carbon in peatlands (Freeman et al., 

2001a). Climate change may also lead to an increased export of carbon from peatland ecosystems to 

freshwaters and increased drought events may explain why DOC concentration have been increasing 

in many northern hemisphere freshwater systems (Worrall, et al. 2004b; Evans, et al. 2005).  

1.5. Potable water treatment 

1.5.1. Potable water treatment and NOM removal 

The production of clean safe drinking water involves two main stages: reducing the concentration of 

DOC and adding a disinfectant. DOC is removed to improve the taste, colour and odour of the water 

(Lambert and Graham, 1995) and to minimise the formation of disinfection by-products (DBPs) (Rook, 

1974). DOC itself is not harmful to humans, however DBPs resulting from the reaction between DOC 

and the disinfectant may have several negative effects on human health (Bull et al., 1995; Sketchell et 

al., 1995; Nieuwenhuijsen et al., 2000; Palacios et al., 2000). In the UK, reservoirs used as sources of 

drinking water are often located in upland environments, where the catchment soils are 
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predominantly organic and may leach high concentrations of DOC to surface waters (Tang et al., 2013). 

Therefore, treatment works in the UK often have to employ several DOC removal processes to ensure 

the water is sufficiently clean for disinfection. This is commonly the most expensive stage of water 

treatment (Matilainen et al., 2010). Coagulation is the most frequently used process to remove DOC. 

It involves the addition of a positively charged Al3+ (from aluminium sulphate) or Fe3+ (from ferric 

chloride) bonds to negatively charged organic matter to form large ‘flocs’ of material which can be 

scraped off the water’s surface (Matilainen et al., 2010). DOC compounds which are more negatively 

charged form flocs most easily. See section 1.5.4 for further discussion of coagulation. Other types of 

DOC removal include rapid gravity filtration and dissolved air flotation. Chlorine is the most frequently 

used disinfectant globally (Richardson, 2003), however its addition to water containing DOC can result 

in the formation of a class of DBPs called trihalomethanes (THMs), which are generally the most 

commonly occurring DBP in chlorinated waters. 

1.5.2. Trihalomethanes (THMs) 

The most common type of DBPs are trihalomethanes (Figure 1.6). They are simple derivatives of 

methane formed when three of the hydrogen atoms are replaced by a halogen (Peterson et al., 1993) 

and include chloroform (CHCl3) bromodichloromethane (CHCl2Br), dibromochloromethane (CHClBr2) 

and bromoform (CHBr3).  

 

Figure 1.6. Structure of (left to right) chloroform, bromodichloromethane, dibromochloromethane 
and bromoform. 

These are formed during the reaction between the chlorine the aqueous organic matter (Sketchell et 

al., 1995). These compounds are collectively termed trihalomethanes and abbreviated as THM or 

TTHM (for total trihalomethanes). Chloroform (CHCl3) is the most common of these compounds and 

the most abundant organohalide in the environment. The formation of THMs that containing bromine 

are usually lower than chloroform during water treatment. The discovery that chlorinating drinking 

water produced THMs was made in the 1970s, the higher molecular weight organic compounds such 

as humic acids, are generally most reactive with chlorine (Oliver and Visser, 1980; Uyguner et al., 

2004).  
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1.5.3. THM amelioration 

WHO (2005) reported that THMs are carcinogenic. Therefore, water treatment companies work to 

minimise THM concentration in the water supply. THMs can be controlled using a number of methods 

including removal of precursors prior to disinfection, removal of THMs themselves prior to water 

supply to the public, or by reducing their formation using alternative chemical disinfectants or non-

chemical disinfection processes (WHO, 2011). The most widely used method, because of cost 

effectiveness and efficiency is removal of the precursors prior to chlorination (US EPA, 1999). This is 

discussed in more detail in section 1.5.4. Ozone is an example of alternative chemical disinfectants. 

Chloramination has also been used to minimise THM formation and is normally used as secondary 

disinfection stage (DWI, 2010). It is technically possible to remove THMs before disinfected water is 

part of the general supply, however it is not generally the preferred method. Other techniques for 

removing THMs include activated UV radiation and carbon filtration-adsorption (WHO, 2011).  

1.5.4. Coagulation and Flocculation Process Fundamentals 

Coagulation and flocculation are used principally to remove organic compounds in raw surface 

waters. These compounds are kept suspended and stabilised in the water column due to their 

surface charge. There are three mechanisms involved in coagulation: charge neutralization, 

sweeping and bridging (Li et al., 2006). Charge neutralization refers to the destabilisation of 

particulates by adding a hydrolysable metal salt, for example aluminium sulphate Al2(SO4)3 , this 

then hydrolyses to form cationic species which adsorbed onto the surface of negatively charged 

compounds. The coagulant is dispersed by mixing the solution. Collision between organic 

compounds and the coagulant result in the formation of micro-flocs. Further mixing results in the 

aggregation of micro-flocs to form larger flocs which can be easily removed by sedimentation. 

Sweep flocculation refers to the use of high concentrations of an amorphous metal hydroxide 

which precipitates as it falls through the water column, capturing the suspended particles. 

Particle bridging occurs when a colloidal particle acts as a chemical bridge between two or more 

coagulant molecules. 

1.5.5. Factors affecting THM formation 

Final THM concentrations depend on concentration of DOC and chlorine, reaction time, water 

temperature and pH (Rodrigues et al., 2007). THM formation is reported to have a positive correlation 

with temperature (Peters et al., 1980), as evidenced the summer months when higher THM 

concentrations are observed. There is a demonstrated pH effect on the reaction kinetics of THM 
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formation (Adin et al., 1991). For a related DBP haloacetic acid (HAA)there is inverse correllation 

between pH and HAA formation potential (Kim et al., 2003). In addition, there is a positive relationship 

between contact time and THM concentration. In the UK the minimum period of contact with chlorine 

is 30 min at pH < 8.0 and residual chlorine must be > 0.5 mg/ L is after that time is required before 

distribution (WHO, 2011). The reaction between chlorine and DOC also depends on the length of time 

of water spends in the distribution system. Also greater DOC concentrations in the raw water will lead 

to greater amounts of DBPs being formed. In addition, DOC type influences THM formation (Liang and 

Singer, 2003), with humic and fulvic acids generally considered to be the principal precursor to THM 

formation (Bond et al., 2009). DBPs form either by the oxidation across carbon-carbon double bonds 

or by substitution reactions (Westerhoff et al., 2004). Derivatives of chloro-bromo DBPs are formed 

when the bromide ion is present (e.g. bromoform) (Pourmoghaddas et al., 1995). Algogenic organic 

matter is a particular problem during the treatment of water as it is very difficult to remove increase 

the level of total organic carbon and hence THM formation (Gough et al., 2015). (Gough et al., 2015; 

Li et al., 2012). Furthermore, with DOC concentrations of freshwaters increasing, it will be harder for 

water companies to minimise the formation of DBPs.  

1.5.6. The health risk posed by DBPs 

Studies have reported that DBPs pose only a low-magnitude risk in treated water, although these risks 

must be considered in the context of a lifetime of exposure (Singer, 2006). Humans can be exposed to 

these compounds either through drinking water (Nazir and Khan, 2006) and bathing (Xu, et al., 2002; 

Chu and Nieuwenhuijsen, 2002). Exposure to these compounds has been associated with increased 

risk of cancer (Peterson, et al., 1993; Bull, et al., 1995; Singer, 1999). In 1974, chloroform was identified 

in chlorinated water supplies (IARC, 1991). Since then a strong relationship has been found between 

bladder cancer and exposure to THMs. THMs and HAAs have a carcinogenic effect on humans. (Chu 

and Nieuwenhuijsen, 2002). There is evidence that many of the DBPs found in chlorinated drinking 

water supplies are toxic to laboratory animals (Nieuwenhuijsen et al., 2000). Women who drank water 

containing more than 75 µg/L THMs had a miscarriage rate of 15.7%, compared to 9.5% for women 

that drink water containing low THM concentrations (Capece, 1998). The level of DBPs in drinking 

water (generally between 10 to 100 of µg/L) is considered to pose a carcinogenic risk (Waller, et al., 

1998). As a result of such research, guideline maximum THM levels have been set; in USA the 

maximum limit for THMs in drinking water is 80 µg/L (Yoon et al., 2003). In the UK is 100 µg/L in UK 

(DWI, 1998) and in Denmark is just 10-15 µg/L (DWI, 2010). 
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1.6. Constructed Wetland (CW) 

A constructed wetland (CW) is an artificial wetland created to clean a source of water. The system 

uses the natural functions of vegetation, soil, and organisms to remove contaminants from water. 

Constructed wetlands also work like filtration systems to remove sediments and pollutants such as 

heavy metals from the water. There are two types of constructed wetlands; free water surface 

wetlands and subsurface flow wetlands (reference). Free water surface flow wetlands have the water 

surface exposed to the atmosphere throughout the year and this type of constructed wetland is like a 

marsh and bog, with some emergent vegetation. Water near to the bottom of the wetlands is anoxic, 

which inhibits nitrification, while the water close to the surface is where oxygen may be available, in 

addition to microsites on living plants such as roots and rhizomes. The second type of constructed 

wetland is a subsurface flow wetland, which is where the water level is completely contained below 

the soil surface (Díaz et al., 2009). 

Wetlands tend to increase the concentrations and change characteristics of DOC (Rostad et al., 2001). 

Consequently, the impact of constructed wetlands on the potential formation of DBPs an important 

issue relating to human health, environmental hazards and wetland treatment technology. A relatively 

small number of studies have examined the impact of constructed wetlands on DOC characteristics 

and propensity to form DBPs. One of the most comprehensive was that of Rostad et al. (2000) who 

reported significantly higher DBP formation potential (DBPFP) at the outlet of a constructed wetland 

system compared to the inlet. The reason for this was an increase in the aromatic content of the DOC 

as it moved through the wetland. 

1.6.1. Eutrophic and oligotrophic waters  

In the UK, 66% of drinking water comes from surface water such as reservoirs and lakes and 34% 

comes from groundwater. In lowland reservoirs, eutrophication is a major problem, and can increase 

the DOC concentration of the water (Nixon, 1995). Eutrophication is characterized by excessive plant 

and algal growth, which can be due to a stimulation of the factors controlling the rate of 

photosynthesis (Schindler, 2006), such as sunlight, carbon dioxide concentration, and nutrient 

fertilizers. Over centuries, eutrophication naturally occurs when lakes fill in with sediments 

(Carpenter, 1981; Scholz et al., 2016). Human activities such as farming have increased the rate of 

eutrophication through discharges of nutrients, such as nitrogen and phosphorus (Carpenter et al., 

1998; Marcos et al., 2013). Eutrophication is associated with harmful algal blooms that cause water 

pollution in aquatic ecosystems (Smith and Schindler, 2009). This can increase the input of 

autochthonous DOC and increase DBP formation in treated water (Pierson et al., 2010). 
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1.7. Scope of study 

The experimental work in this thesis was undertaken in North and West Wales catchments that linked 

to their WTWs, where DOC concentrations have been increasing. This increasing trend is a concern for 

WTWs, because of the associated increase in THM levels in the finished water. This research examines 

the variations in DOC concentration and how these are linked with THMFP in different places and 

times. The main aims of this thesis are summarised below: 

Chapter 2: To assess whether man–made drainage ditches are contributing more DOC to Llyn Conwy 

than natural streams. 

Chapter 3: To determine whether peatland drought conditions, simulated in the field, change the 

characteristics of the DOC to make it more or less likely to form DBPs in a water treatment plant. 

Chapter 4: To determine whether peatland drought conditions, simulated in the laboratory, change 

the characteristics of the DOC to make it more or less likely to form DBPs in a water treatment plant. 

Chapter 5: To understand whether a constructed wetland used to remove nutrients from a stream 

flowing into a eutrophic reservoir affects the quantity and quality of DOC in the stream. 

Chapter 6: To assess long term stability of trihalomethane compounds in water samples and to test 

for differences in storage temperature (4°C vs. 25°C) and water type (nutrient poor vs. nutrient rich). 

Thesis structure 

Chapter 1: Literature review 

Chapter 2: Characteristics of dissolved organic carbon (DOC) exported from drained peat with respect 

to disinfection by-product formation. 

Chapter 3: Field experiment investigating effects of peatland drought on dissolved organic carbon 

(DOC) release and implications for trihalomethane (THM) formation.  

Chapter 4: Laboratory experiment investigating the effects of Peatland Drought on Dissolved Organic 

Carbon (DOC) and Trihalomethane (THM) Formation (submitted to ‘Scientific Reports’). 

Chapter 5: Impact of constructed wetlands on DOC characteristics and THMFP. 

 Chapter 6: Simultaneous analysis of water quality and temperature on the                                                 

stability of trihalomethanes in water samples during prolonged storage. 

Chapter 7: Final Discussion 

Each of the above chapters 2-6 has been prepared in the style of a paper that is suitable for submission 

to a peer reviewed journal.   
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Chapter 2: Characteristics of dissolved organic carbon (DOC) 

exported from drained peat with respect to disinfection by-product 

formation.  

2.1. Abstract 

For the last two decades, the freshwater concentration of dissolved organic carbon (DOC) has 

increased in many parts of the northern hemisphere, particularly in rivers and streams draining peat 

soils. This has been attributed to reduced acidic deposition and climatic and land use changes. 

Concentrations of DOC in freshwaters used as sources of drinking water must be reduced prior to the 

addition of a disinfectant to minimise the formation of potentially harmful carcinogenic compounds 

(disinfection by-products; DBPs); hence, the rising DOC trend poses a threat to human health as it may 

lead to increased DBP production. One land use change that has been linked to rising DOC, is peatland 

drainage undertaken in the UK extensively during the 1960s and 1970s to improve upland areas for 

agricultural grazing. Recent evidence has demonstrated that this can increase DOC concentration in 

drainage waters due to the increased decomposition of the peat matrix, however relatively few 

studies have examined the characteristics of this extra carbon and its likelihood to form DBPs 

compared to DOC supplied by natural Streams. In this study we present data demonstrating that the 

DOC concentration of drainage ditches is higher than a natural stream, but there are no differences in 

the propensity of DOC to form trihalomethanes. 
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2.2. Introduction 

Natural organic matter (NOM) is contained within all freshwater ecosystems. It is a mixture of 

heterogeneous compounds derived from decaying animal and plant products and the 

concentration and characteristics are influenced by the Earth’s hydrological and carbon cycles 

(Khan and Schnitzer, 1972; Marray and Parsons, 2004; Thurman, 1985). NOM is usually divided 

into two broad categories through filtration properties; that which is retained on a 0.45 µM filter 

is Particulate Organic Matter (POM) and that which passes through the filter and remains in 

solution is Dissolved Organic Matter (DOM) (Thurman, 1985). Carbon is the key constituent of 

NOM, therefore NOM is often referred to as either dissolved or particulate organic carbon 

(DOC/POC) and the analytical techniques used to quantify and characterise NOM/DOM in 

freshwaters are usually based on measuring the carbon component. DOC is the dominant form 

of organic carbon in freshwaters (Jones and Mulholland, 1998; Palmer et al., 2015), usually 

comprising 90% of total organic carbon, and is considered a dynamic, intermediate stage in the 

cycling of carbon between the terrestrial environment and the atmosphere (Jones et al., 2016). 

As organic carbon resides in soil it can be transferred to freshwaters during rainfall with this 

allochthonous source being generally the dominant origin of DOC in rivers, streams and lakes 

globally. It is common to observe strong correlations between a lake’s DOC concentration and 

the proportion of peat in its catchment (Arvola et al., 2016; Palmer et al., 2015). DOC is also 

produced within freshwaters by algae and microorganisms; i.e., the autochthonous source. 

Freshwaters with a high concentration of DOC are usually coloured brown due to the presence 

of humic substances that strongly absorb ultraviolet and visible light (Jones et al., 2016). The 

contribution from each source varies on a seasonal basis; allochthonous DOC inputs are greatest 

during the late summer/autumn period whilst autochthonous DOC production peaks in the 

summer months, when temperatures and light levels are at their highest. Therefore freshwater 

DOC concentrations tend to peak in September-October when the contribution from both 

sources are high (Jones et al., 20016). Globally, allochthonous sources tend to dominate DOC 

inputs over autochthonous sources (Manny and Wetzel, 1973). DOC from allochthonous sources 

is generally a higher molecular weight, with a tendency to have more aromatic moeties and 

absorbs more light than the DOC from autochthonous sources (Gergel et al., 1999; Hedges et al., 

1994).  

Phenolic compounds are a specific group of organic chemicals common in nature (Ribéreau, 

1972) and are characterised by the presence of one or more aromatic rings carrying at least one 
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hydroxyl group (Appel, 1993). Phenolic compounds can be a significant fraction of freshwater 

DOC, especially in areas draining organic soils such as peats.  

The presence of DOC in freshwaters may cause issues for the production of clean, safe drinking water. 

The DOC must be removed to improve the taste, odour and aesthetics of the water and to minimise 

the formation of disinfection by-products (DBPs). DBPs result from the reaction between chlorine, 

added as a disinfectant, and the NOM present in drinking water (Sketchell et al., 1995). Although 

brominated DBPs such as bromoform can also be formed (Peterson et al., 1993) in the presence of 

bromide. Halogenation of NOMs occurs either via the oxidation of carbon-carbon double bonds or by 

substitution, where a functional group is replaced by a halogen (Rodrigues et al., 2007). DBPs are 

organo-halide compounds with trihalomethanes (THMs) representing the most common sub-group. 

These are simple derivatives of methane formed when three of the hydrogen atoms are replaced by 

a halogen (Bond et al., 2009). The rate of DBP formation depends on the concentration of DOC, 

chlorine, water temperature and pH (Westerhoff et al., 2004). The humic and fulvic acids component 

of DOC has been found to be the principal reaction precursor to THMs (Williams et al., 1997). Higher 

temperatures lead to greater DBP formation, so the concentration of DBPs in summer are usually 

higher than in winter (Pourmoghaddas and Stevens, 1995).  

A concern within the water industry is that there is significant evidence that the concentration of DOC 

in many freshwater environments in the northern hemisphere is increasing. It has been reported that 

between 1988 and 2000, DOC increased by 65% in streams and lakes in the UK (Freeman et al., 2001a). 

There is also evidence of this increasing trend in other parts of Europe and North America (Evans et 

al., 2006; Monteith et al., 2007). This has been attributed to increasing temperature (Freeman et al., 

2001b) and atmospheric CO2 concentrations (Freeman et al., 2004a), more frequent droughts (Fenner 

et al., 2011) and reduced acid deposition (Evans et al., 2012). Increased temperatures (+0.66°C 

between 1970-2000) may have led to greater microbial activity and decomposition in soils, thus 

leading to greater DOC release (Freeman et al., 2001b). According to (Evans et al., 2012) pH may also 

influence the concentration of DOC in soils and they hypothesised that the decline in sulphur 

deposition observed in many regions of the northern hemisphere over the last two decades is 

connected with the rising DOC trend. However, there are likely to be several drivers influencing this 

increasing trend. One that is particularly relevant in the UK is peatland drainage (Strack et al., 2006).  

All peatlands export DOC to freshwaters, regardless of their status, typically in the range 5-40 g DOC 

m-2 yr-1 (Moor et al., 1997; Price, 2003). DOC export also tends to be related to the area of peatland 

within the catchment (Roulet et al., 1992; Tahvanainen, 2011). The export of DOC from peatland areas 

is affected by processes that lower the water table, such as climate change and drainage (Freeman et 
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al., 2004b; Laine et al., 1992; Prévost et al., 1999). Drainage of peatland areas can induce significant 

changes to hydrology (Huotari et al., 2013) with a lowering of the water table by 20–60 cm depending 

on distance from the ditch, reported in some studies (Prévost et al., 1999; Räike et al., 2012; Sarkkola 

et al., 2009). Such changes are reportedly responsible for increased riverine and pore water DOC 

concentrations in a number of areas in the northern hemisphere (Aitkenhead et al., 1999; Koprivnjak 

and Moore 1992; Moore et al., 1998; Strack et al., 2008). The increased loss of DOC from peatland 

ecosystems has important implications for their carbon budgets and will add CO2 to the atmosphere 

was a significant proportion of freshwater DOC is completely mineralised in fluvial systems (Mattsson 

et al., 2005). Peatland drainage is increasingly being recognised as having a negative impact on 

atmospheric CO2 concentration, and as a result ditch blocking has been a commonly used technique 

to restore the peatland water table and eventually reduce CO2 emission (Turner et al., 2013). 

The aim of this study was to determine whether man–made drainage ditches are contributing a 

greater quantity of DOC to Llyn Conwy than natural Streams and whether this DOC has a different 

propensity to form THMs during chlorination. The work will help inform water companies as to 

whether drainage ditches within peat-dominated reservoir catchments represent a threat to water 

quality. We hypothesise that the ditches will have a greater DOC concentration than the natural 

stream and the DOC will have a higher reactivity with chlorine. 

2.3. Methods 

2.3.1. Study Site  

Sampling was performed at three contrasting sites in north Wales (Figure 2.1 & Table 2.1); Llyn 

Conwy (“lake”) a natural oligotrophic drinking water reservoir, Nant-y-Brwyn (“stream”) a natural 

Stream outside the catchment of the reservoir but analogous to other upland streams within the 

area (Jones, unpublished data) and four man-made drainage ditches (“ditches”) within the 

predominately peat catchment of Llyn Conwy.  
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Figure 2.1. The location of Llyn Conwy in south eastern Snowdonia. White markers show locations of 
the six sampling sites 

 

 

 

 

 

 

Table 2.1. Site identity (ID), type and grid reference location. 

2.3.2. Sampling regime 

Sampling was performed approximately twice monthly from May 2013 to May 2014 (see 

supplementary data Table 2.S1 for exact dates). Data is also included for the Lake, Stream and 

some Ditches for various months from July 2012 – Feb 2013 which was collected as part of 

another project (Hughes, 2013). Approximately 250 mL of water sample was collected at each site 

in acid washed (using 3% HCl) plastic bottles. The temperature of the water was recorded in situ. 

pH and conductivity were measured in the laboratory on unfiltered samples on the day of 

Site name Site type UK grid reference 

Llyn Conwy Lake SH 78150 45586 

Nant-y-Brwyn Natural stream SH 79147 45267 

Ditch A Man-made drainage ditch SH 78367 45855 

Ditch B Man-made drainage ditch SH 78349 45873 

Ditch C Man-made drainage ditch SH 78354 45931 

Ditch D Man-made drainage ditch SH 78333 45892 



29 
 

sampling. The pH was measured using a Seven Easy pH meter (Mettler Toledo, Leicester, UK). The 

probe was calibrated using buffers of pH 4 and 7 at 25°C (Sigma, Dorset, UK). Conductivity was 

measured with a Primo 5 conductivity meter (Hanna Instruments, Bedfordshire, UK). All samples 

were filtered through 0.45 µm cellulose acetate filters and refrigerated at 4˚C until further 

analysis was undertaken. 

2.3.3. Laboratory Analyses  

2.3.3.1. Dissolved organic carbon (DOC) 

Concentrations of DOC were determined using a Thermalox TC/TN analyser (Analytical Sciences 

Ltd, Cambridge, UK), which is a combustion and infrared detection-based technique. For DOC, 

samples were acidified to pH <3 prior to analysis to remove inorganic carbon using 10 M HCl. The 

instrument was calibrated with potassium hydrogen phthalate standards. The injection volume 

was 15 µL and oven temperature 680°C. Results were corrected if standard solutions deviated by 

10% or more from the correct concentration.  

2.3.3.2. Phenolic compounds 

The phenolic component of DOC was determined using a method modified from Box (1983), 

adapted for 300 µL microplate wells. A calibration curve was generated using a series of phenol 

standard solutions ranging in concentration from 0.5 - 10 mg/L. The assay product was detected 

by measuring the absorbance at 750 nm on a Spectramax M2e spectrophotometer (Molecular 

Devices, Wokingham, UK).  

2.3.3.3. UV/visible absorption 

SUVA is used as an indicator of overall DOC quality i.e. molecular weight and aromaticity, with 

most freshwaters having values in the range 2-4 (Leenheer et al., 2003). SUVA was calculated by 

dividing the absorbance value at 254 nm (measured on the Spectramax M2e spectrophotometer) 

by the DOC concentration (mg/L). 

2.3.3.4. Trihalomethane formation potential (THMFP) 

The standard trihalomethane formation potential (THMFP) analysis was used to determine the 

concentration of trihalomethanes that can be formed per unit DOC under ideal conditions, to give 

an indication of the reactivity of DOC with chlorine and its propensity to form THMs. A modified 

version of the THMFP test detailed in Leenheer et al. (2000) was used. In this study samples were 
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diluted to 1 mg/L DOC in order to derive a standardised THMFP7d value (STHMFP7d) which 

provides a measure of DOC reactivity. A THMFP7d value was then calculated by multiplying 

STHMFP7d by DOC concentration. 97.5 mL of diluted sample was dosed with 2.0 mL of 0.5 M 

KH2PO4 to buffer the solution to pH 6.8. Samples were then dosed with 0.5 mL of NaOCl to provide 

5 mg of free Cl per mg of DOC. The solution was transferred to a 100 mL amber glass bottle and 

incubated in the dark at 25˚C for 7 days to allow the reaction between organic carbon and 

chlorine to occur. After 7 days incubation, the reaction was quenched by adding 0.4 mL of 0.8 M 

Na2SO3 to 14.6 mL of incubated sample. This solution was then transferred to a 22 mL amber 

headspace vial and analysed by the following method. The concentration of THMs was measured 

using a solid phase micro-extraction (SPME) technique similar to that described by Sarrión et al. 

(2000). The technique uses a Varian GC 450, a Restek MX 1 column (diphenyl/dimethyl 

polysiloxane phase, 30 m length, 0.53 mm i.d.), N2 carrier gas at a flow rate of 10mL/min and a 

63Ni Electron Capture Detector. The oven temperature was held at 35ºC for 9 minutes and then 

increased at a rate of 10 ºC /minute to 140ºC and held for 2 minutes and finally increased to 

180ºC and held for 3 minutes. The injector temperature was 290ºC and the detector temperature 

300ºC. 

Trihalomethane calibration solutions were made from a stock solution containing 2000 µg/mL of 

each of the 4 THMs; chloroform (CHCl3), bromodichloromethane (CHBrCl2), dibromochloromethane 

(CHBr2Cl), and bromoform (CHBr3) (Sigma). A series of standard solutions were then prepared 

ranging from 1-500 µg/L. 

2.3.4. Statistical Analysis  

The effect of site (three levels; Lake, Stream, ditch) on each measured parameter were determined 

using one-way ANOVA and Tukey HSD post-hoc tests in R v3.3.1. Pearson correlation was used to test 

for significant relationships between all dependent variables at each factor level. Most data met the 

homogeneity and normality assumptions, which were tested using the Bartlett and Shapiro Wilk tests, 

but those that did not were log-transformed. Data points were removed if they were outliers. A p 

value of 0.05 was used to determine significance. 
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2.4. Results  

All samples from the three sites were acidic throughout the sampling period (Figure 2.2a) and 

there was a significant effect of the site on pH (F=33.598, p<0.001; Figure 2.2b, Table 2.2). The 

lowest mean pH was measured in the ditches, at 4.09 ± 0.05. Both the stream and the lake had a 

significantly higher mean pH values, at 5.20 ± 0.76 and 5.26 ± 0.41 (both p<0.001), but the stream 

and the lake did not differ significantly (p>0.05). There was a large temporal variability for each 

site between the 3 sites, but no clear seasonal trend. For the lake, the highest pH was recorded 

in October 2013, at 6.8, and lowest in December 2013, at 4.4. For the stream the highest pH was 

recorded in July 2013 at 6.6 and lowest in January 2014 at 3.5. For the ditches the highest value 

was measured in March 2014 at 5.7 for ditch B and lowest in November 2013, at 3.8 for ditch C. 
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Figure 2.2 a) time series and b) mean pH of all study sites for the period July 2012 to May 2014. 
Diamond symbols are mean values, bold horizontal lines are median values, the box represents 
the interquartile range and whiskers the 5th and 95th percentiles 

 

 

 

 

Table 2.2. Results of one-way ANOVA analysis two test effect of sites on measured parameters.  

The conductivity varied significantly when comparing the mean values for the lake (34.67 ± 9.33 

µS/cm) and stream (39.3 ± 13.2 µS/cm) versus the ditches (66.68 ± 4.81 µS/cm) (F=32.580, 

p<0.001; Figure 2.3b). The lake and the stream had statistically similar mean conductivity values, 

 pH Conductivity Phenolics DOC SUVA THMs 

F value 33.5

98 

32.580 48.977 37.462 51.158 1.180 

P 

value 

<0.001 <0.001 <0.001 <0.001 <0.001 p>0.05 

b) 

a) 
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(p>0.05). The conductivity of each of the four ditch sites (A-D) varied in a very similar way over 

the period June 2013 – June 2014 (Figure 2.4a). There was a dramatic increase in the conductivity 

for the ditches from September 2013 (33 µS/cm for ditch B) to January 2014 (115 µS/cm for Ditch 

d). The lake and stream generally had much less variance in their conductivities compared to the 

ditches during the period June 2013 – June 2014 (min-max: lake, 21-59 µS/cm; stream 22-82 

µS/cm).  

 

Figure 2.3 a) time series and b) mean conductivity of all study sites for the period July 2012 to 
May 2014. Diamond symbols are mean values, bold horizontal lines are median values, the box 
represents the interquartile range and whiskers the 5th and 95th percentiles. 
 
 
 
 
 
 
 

b) 

a) 



34 
 

 

Table 2.3. Results of Tukey HSD post-hoc tests for each level of the Site factor.  

DOC concentration varied when comparing the mean values for the lake (4.53 ± 0.75 mg/L) and stream 

(12.69 ± 7.15 mg/L) versus the ditches 19.01 ± 0.43 mg/L (F=37.462, p<0.001; figure 2.4b) . The DOC 

in the ditches was on average 6.32 mg/L greater than stream and the stream 8.16mg/L greater than 

the lake. The ditches had a statistically significant higher DOC concentration than lake and the stream, 

at 19.01 ± 0.43 mg/L (p<0.001) and the mean DOC concentration of the ditches was higher than both 

the stream and lake. There was little evidence of a seasonal trend in the DOC data for the lake, but 

both the stream and ditches exhibited large variation with the season, being highest in the summer 

and autumn and lowest in the winter and spring for all years recorded. For the stream the highest 

concentration was recorded in 16th of August 2012, at 31.30 ± 0.85 mg/L, and lowest on 19th of 

February 2013, at 3.79 ± 0.08 mg/L. For the ditches the highest value was measured in May 2014, at 

40.80 ± 0.45 mg/L for Ditch A, and lowest in January 2014 at 6.34 ± 0.16 mg/L for Ditch D. 

 

  pH Conductivity Phenolics DOC SUVA THMs 

Lake Stream .577 .423  .000 .000 .000 .997 

Lake Ditch .000 .000  .000 .000 .000 .400 

Stream Ditch .000  .000 .403 .000 .000 .476 
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Figure 2.4a) time series and b) mean DOC concentration mg/L of all study sites for the period July 
2012 to May 2014. Diamond symbols are mean values, bold horizontal lines are median values, 
the box represents the interquartile range and whiskers the 5th and 95th percentiles. 

There was a significant difference in SUVA (F=51.158, p<0.001; Figure 2.5a) with respect to site. 

The lowest mean SUVA was measured for the Lake, at 3.35 ± 0.41 L/mg/m. The stream had a 

significantly higher SUVA, at 4.06 ± 0.37 L/mg/m (p<0.001), and the ditches a significantly higher 

than both, at 4.15 ± 0.06 L/mg/m (p<0.001). 

The phenolics concentration varied when comparing the mean values for the lake (0.84 ± 0.42 

mg/L) versus the stream (2.35 ± 1.33 mg/L) and ditches (2.27 ± 0.19 mg/L) (F=48.977, p<0.001; 

Figure 2.6b). The lowest mean phenolic concentration was measured for the lake, at 0.84 ± 0.42 

mg/L. Both the stream and ditches had significantly higher concentrations than the lake, at 2.35 

± 1.33 mg/L and 2.27 ± 0.19 mg/L respectively (p<0.001), but the mean stream and ditch 

concentrations did not demonstrate a significant difference (p>0.05).  
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Figure 2.5a) time series and b) mean SUVA L-mg/mg all study sites for the period July 2012 to 
May 2014. Diamond symbols are mean values, bold horizontal lines are median values, the box 
represents the interquartile range and whiskers the 5th and 95th percentiles. 
 

 

a) 

b) 
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Figure 2.6a) time series and b) mean phenolics concentration mg/L all study sites for the period 
July 2012 to May 2014. Diamond symbols are mean values, bold horizontal lines are median 
values, the box represents the interquartile range and whiskers the 5th and 95th percentiles. 

Chloroform was the dominant trihalomethane species detected (over 90%), so we have not 

presented data for the brominated THM species. There was no significant effect of site on the 

chloroform formation potential (F=1.180, p>0.05; Figure 2.7). DOC correlated significantly with 

both Phenolics (r=0.77, p<0.001; Figure 2.8) and SUVA (r=0.78, p<0.001; Figure 2.9) (Table 2.4). 
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Figure 2.7. Mean Trihalomethane Formation Potential for the three contrasting site types for 
the entire study period. 
 

 

Figure 2.8. DOC v Phenolics for all sampled time points for all six sampling sites. 
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Figure 2.9. DOC v SUVA for all sampled time points for all six sampling sites. 

 Conductivity DOC SUVA Phenolics THMs 

pH Pearson Correlation -0.603 -0.387 -0.370 -0.188 0.207 

Sig. (2-tailed) <0.001 <0.001 <0.001   

Conductivity Pearson Correlation  .036 0.236 -0.058 -0.413 

Sig. (2-tailed)   0.023  <0.001 

DOC Pearson Correlation   0.708 0.779 0.270 

Sig. (2-tailed)   <0.001 <0.001 .024 

SUVA Pearson Correlation    0.696 -0.152 

Sig. (2-tailed)    <0.001  

Phenolics Pearson Correlation     .149 

Sig. (2-tailed)      

Table 2.4. Results of Pearson correlation analysis run on all dependent variables. 
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2.5. Discussion  

The results shown in Figure 2.4b the higher mean concentration of DOC in the ditches relative to 

the lake and stream is most likely to be due to greater decomposition processes occurring in the 

peat soils around the drainage ditches. The soils within the catchment of Llyn Conwy are mostly 

peat, which is several metres deep and contains large stores of organic carbon. Streams that drain 

the soils in this region (such as the Nant-y-Brwyn sampled in this study) are high in DOC due to 

the high organic matter content of the soils. The DOC concentration is higher in the man-made 

drainage ditches than the natural stream because they were created only a few decades ago and 

are still releasing DOC due to the continued oxidation of the peat soils they are draining. They 

were excavated to a depth of approximately 1 metre, exposing a large proportion of the soil 

profile to oxygen. According to the ‘enzymic latch theory’ this will have released the main 

constraint on the enzyme phenol oxidase and enhanced the overall decomposition of the peat 

(Pourmoghaddas and Stevens, 1995). This in turn will have resulted in enhanced DOC release into 

the water draining the soil (Freeman et al., 2004) explaining our observation. The natural stream 

sampled in this study and others in the vicinity are not draining soils that have undergone a 

disturbance such as this and therefore have a lower mean DOC concentration. 

The significantly lower mean DOC concentration was observed for Llyn Conwy compared to those for 

the ditches and stream is as would be expected from earlier studies (Evans et al., 2012). Lakes are 

generally sinks for DOC due to long residence times and processes such as photochemical oxidation 

breaking down organic carbon into CO2 (Evans et al., 2012). Furthermore, the high rainfall received in 

the region and the large volume of the lake compared to the size of its catchment will quickly dilute 

any DOC inputs to the Lake. 

A consistent seasonal trend was not observed in the DOC data for Llyn Conwy, although the 

lowest DOC concentration was recorded in July 2013 and the highest in January 2014. This 

contrasts to the pattern observed for the stream and ditches, where the DOC peaked in the 

summer/autumn and was lowest in the winter. This is due to the effects of seasonal weather 

cycles on DOC cycling. During the summer growing seasonal plants take up CO2 from the 

atmosphere; a significant part of this carbon is transferred to the soil during the late 

summer/autumn period to form soil organic matter. This increases the amount of carbon able to 

be transferred to freshwater streams and rivers as DOC, hence DOC concentrations in these water 

bodies (particularly in upland environments where peat is found) are greatest at this time. 
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Results for phenolics (Figure 2.6 a and b) were similar to DOC and a strong positive relationship was 

recorded between DOC and the phenolic concentration across the three sample types (Table 2.3). 

Thus, indicating phenolic compounds are likely to be key component of DOC. The high phenolic 

concentrations are due to the peat soils from which the waters are draining, with phenolic structures 

persisting in peat due to the anaerobic conditions in the soil (Hättenschwiler and Vitousek, 2007; 

Peacock et al., 2013). In previous studies, it has been noted that there are correlations between DOC 

and phenolic concentrations (Hagedorn et al., 2007). 

2.6. Conclusions  

The overall finding of this study is that the drainage ditches have the potential to contribute more 

carbon per unit volume of water to the oligotrophic Llyn Conwy than the natural stream feeding 

into Llyn Conwy (equivalent to NYB).  

This study measured DOC in man-made drainage ditches and discovered that the concentration 

was consistently higher than in a natural stream, indicating that the water draining artificially 

drained peat generally has a much higher DOC concentration than water draining natural peat. 

Drainage ditches lower the water table in the peat soil, thus exposing the peat to oxygen and 

increasing the decomposition of soil organic matter in the soils surrounding the ditches. Despite 

the elevated DOC concentrations in the drainage ditches, this study found no significant 

difference in the propensity to form THMs; a favourable outcome from a drinking water 

perspective.  
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Table 2.S1 – Field sampling dates vs locations for this study – Part 1: July 2012 – Feb 2013, Part 2 - 
May 2013 to May 2014 (• indicate samples collected) 

 

Date Lake Stream Ditches 

(A-D) 

PART 1    

10/07/2012 • • B,C 

26/07/2012 • •  

16/08/2012 • •  

29/08/2012 • •  

12/09/2012 • •  

26/09/2012 • •  

16/10/2012 • •  

30/10/2012 • •  

11/12/2012 • •  

09/01/2013 • •  

24/01/2013 • •  

30/01/2013 • • B,C 

19/02/2013 • •  

05/03/2013 • • B,C 

02/04/2013 • •  

30/04/2013 • •  

PART 2     

22/05/2013 • •  

18/06/2013 • •  

03/07/2013 • •  

16/07/2013 • •  

30/07/2013 • •  

13/08/2013 • •  

22/08/2013 • •  

04/09/2013 • • A-D 

25/09/2013 • • A-D 

08/10/2013 • • A-D 
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Table 2.S1 - Continued  

Date Lake Stream Ditches 

(A-D) 

24/10/2013 • • A-D 

07/11/2013 • • A-D 

22/11/2013 • • A-D 

10/12/2013 • • A-D 

08/01/2014 • • A-D 

23/01/2014 • • A-D 

20/03/2014 • • A-D 

23/04/2014 • • A-D 

26/05/2014 • • A-D 
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Chapter 3: Field experiment investigating effects of peatland 

drought on dissolved organic carbon (DOC) release and implications 

for trihalomethane (THM) formation 

3.1. Abstract 

Peatland ecosystems sequester vast quantities of carbon below ground due to persistent waterlogged 

conditions and suppressed decomposition. Anthropogenic drainage has resulted in the loss of vast 

quantities of carbon on a global scale and drought resulting from climate change is a serious long-term 

risk to the ability of a peatland to continue to act as a carbon sink. The lowering of the water table can 

also affect the export of dissolved organic carbon (DOC), which has implications for freshwater biota 

and the provision of drinking water supplies.  

In this study, the effect of long-term drought on peatland DOC has been examined, observing reduced 

porewater concentrations and a shift in quality to lower molecular weight and less aromatic DOC. 

Despite this, a significant change in standardised trihalomethane formation potential (THMFP) values 

was not observed. This indicates that DOC removal efficiency during conventional water treatment 

processes may change following drought, although the decreased loading of DOC to the works would 

significantly reduce coagulant demand.  
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3.2. Introduction 

Peatlands are one of the planet’s most important terrestrial reservoirs of organic matter, occupying 

approximately 6 million km2 of the terrestrial surface (Bridgham et al., 1996). They are found in regions 

with a positive net water balance, without sustained dry periods (Moore et al., 1998) and accumulate 

organic matter as peat (Clymo, 1984). Despite only occupying 3% of the Earth’s terrestrial surface 

(Rydin and Jeglum, 2006), peatlands are estimated to have sequestered 480-610 Gt of carbon as peat 

(Page et al. 2011). The carbon sequestration ability of peatlands and their function as carbon sinks, 

retaining the carbon they have accrued over thousands of years, depends primarily on the position of 

the water table and maintenance of waterlogged conditions (Fenner and Freeman, 2011). Water 

saturation reduces oxygen concentrations in the peat, resulting in anoxic conditions that inhibit 

decomposition and allow organic matter to build up. In the UK, significant peat deposits occur in 

upland blanket bogs, which form under the warmest and wettest conditions (Wieder and Vitt, 2006), 

where the rainfall is approximately 3 times more than potential evaporation (Clark, 2010; Pearsall, 

1965). Although peatlands have had a net cooling effect on the planet, they do export large quantities 

of carbon to freshwaters as Particulate Organic Carbon (POC) and Dissolved Organic Carbon (DOC). 

DOC is generally the largest aquatic carbon flux from a peatland (Billett et al., 2006; Dinsmore et al., 

2013) and it is important to include DOC when calculating the carbon budget of a peatland (Billett et 

al., 2004; Chen et al., 2008; Freeman et al., 2001a; Limpens et al., 2008). DOC is a key component of 

the global carbon cycle (Evans et al., 2006), as it connects the terrestrial and aquatic biogeochemical 

cycles. Globally, 0.25–0.45 Gt C/year of DOC is transported from rivers to the world’s oceans (Cole et 

al., 2007; Hedges et al., 1997). The downstream export of DOC from a peatland plays a key role in the 

redistribution and balance of carbon (Arnosti et al., 2003). In aquatic ecosystems, the transfer of 

carbon from terrestrial peatlands to downstream locations has a significant influence on water quality 

(Lennon et al., 2013; Wallage et al., 2010). DOC influences visible and ultraviolet light penetration into 

freshwater systems due to colouration of the water (Evans et al., 2005), which affects the biological 

functioning of the water body.  

The discharge of surface water from a peatland is mostly dependent on the rate of water flow, seepage 

through upper peat layers and hydrological properties of peat (Holden et al., 2003; Worrall et al., 

2002). The production of DOC is greatest from decomposing vegetation at the peat surface and the 

majority of DOC exported from an undisturbed peatland is relatively ‘young’ (Billett, et al., 2007; 

Blodau et al., 2004; Schiff et al., 1998). Export of DOC from a catchment depends on concentration 

and discharge (Hope et al., 1997). High runoff results in high DOC export and vice versa (Holden et al., 

2005; Scott et al., 1998). When a peatland experiences drought conditions, which occur naturally due 
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to seasonal rainfall patterns and are expected to increase in frequency due to climate change (Roulet 

et al., 1992), decomposition of the peat matrix is stimulated to the extent that the peatland can 

become a net source of carbon (Freeman et al., 1998). When the water table falls, the peat is exposed 

to oxygen, opening the enzymic latch and stimulating decomposition of the peat matrix to carbon 

dioxide (Freeman et al., 2001b). Drought reduces surface runoff and therefore the export of DOC 

(Moore et al., 1998), but DOC production can increase in the aerated zone due to the oxidation of the 

peat matrix and can be removed by leaching during a wetter period (Blodau et al., 2004). With climate 

change, water table drawdown is expected to have a greater impact on DOC export than warming 

(Lou et al., 2014).  

In North America and Europe, long term observations show that DOC concentrations have increased 

in freshwaters in recent decades (Driscoll et al., 2003; Hejzlar et al., 2003; Monteith et al., 2007; 

Stoddard et al., 2003). Freeman et al. (2001a) estimated that in the United Kingdom from 1988-2000, 

DOC in stream and lake catchments increased by 65%. Increased DOC concentrations in rivers could 

be indicative of a translocation of terrestrial carbon in peat soils (Limpens et al., 2008) due to climate 

change. In peatlands the water table has been lowered by human activities such as drainage for 

agriculture and the effects of global climate change (Aertsde et al., 1999; Moore and Dalva et al., 1993; 

Price, et al., 2003). The lowering of the water table impairs carbon storage and ecosystem stability in 

peatlands (Pastor et al., 2003). In the UK, climate projections for the 21st century indicate an overall 

increase in temperatures and change in the distribution of rainfall with wetter winters and warmer, 

drier summers (Hulme, 2002; Jenkins, 2009). This may affect the ability of UK peatlands to retain peat 

and affect the extent to which they export aquatic DOC (Hossell et al., 2000). 

Increasing DOC concentrations are a concern for the water industry for a number of reasons. Firstly, 

the cost to produce clean drinking water will increase, as DOC removal is a key component of water 

treatment processes; secondly, disinfection by-products, principally trihalomethanes (THMs), are 

produced due to reactions between chlorine and DOC (Rook et al., 1974) and thirdly, the presence of 

extra DOC in the distribution system increases the demand for residual chlorine to protect the finished 

water from biological contamination (Hsu et al., 2001). Therefore, understanding how peatlands may 

react due to drought in terms of DOC export is currently an important area of research. This study 

measured the effect of prolonged drought in a peatland catchment on porewater DOC concentrations 

and quality and the propensity of the DOC to form THMs following chlorination. 

We hypothesise that the experimental field-scale peatland drought will a) lower the concentration of 

DOC and b) change the characteristics of DOC to make it more likely to form THMs compared to a 

control site with a natural water table. 
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3.3. Methods 

3.3.1. Study site and experimental treatment 

Sampling was performed at a long-term experimental site in mid-Wales, UK, that has been the 

location for several studies on the impacts of drought on peatland carbon cycling (Freeman et al., 

1998). The site is located within the Cerrig-yr-Wyn catchment, Plynlimon (UK Nat. Grid Ref. SN 82008 

86571). The characteristics of the site are a discontinuous series of peat-accumulating wetlands 

(length 30 m, wide 5 m) which are dominated by Sphagnum and Juncus species. In 1995, a large area 

of the catchment (30 m x 5 m) was droughted by diverting surface water flow elsewhere. An area 

roughly the same size with similar characteristics was left undisturbed to act as a control. 

Ten rhizon (10 cm) porewater samplers (Rhizosphere Research Products, Wageningen, the 

Netherlands) were installed at both the control and droughted sites, in a 10 m transect at 

approximately 1 m intervals. The first samples were taken in March 2014 and sampling continued 

monthly until September 2014. Twenty ml of pore water was extracted using syringes, capped and 

transported carefully back to the laboratory.  

pH and conductivity were measured in the laboratory on an unfiltered aliquot of the original 

sample on the day of sampling. pH was measured using a SevenEasy pH meter (Mettler Toledo, 

Leicester, UK). The device was calibrated using buffers of pH 4 and 7 at 25°C (Sigma). Conductivity 

was measured with a Primo 5 conductivity meter (Hanna Instruments, Bedfordshire, UK). All 

samples were then filtered through 0.45 µm cellulose acetate filters and refrigerated at 4˚C until 

further analysis was undertaken. 

3.3.2. Dissolved organic carbon (DOC) 

Concentrations of DOC were determined using a Thermalox TC/TN analyser (Analytical Sciences 

Ltd, Cambridge, UK), which is a combustion and infrared detection based technique. For DOC, 

samples were acidified to pH <3 prior to analysis to remove inorganic carbon using 10 M HCl. The 

instrument was calibrated with potassium hydrogen phthalate standards. The injection volume 

was 15 µL and oven temperature 680°C. Results were corrected if standard solutions deviated by 

10% or more from the correct concentration.  

3.3.3. Phenolic compounds 

The phenolic component of DOC was determined using a method modified from Box (1983), 

adapted for 300 µL microplate wells. A calibration curve was generated using a series of phenol 
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standard solutions ranging in concentration from 0.5 - 10 mg/L. The assay product was detected 

by measuring the absorbance at 750 nm on a Spectramax M2e spectrophotometer (Molecular 

Devices, Wokingham, UK).  

3.3.4. UV/visible absorption 

SUVA is used as an indicator of overall DOC quality i.e. molecular weight and aromaticity. SUVA 

was calculated by dividing the absorbance value at 254 nm (measured using a 1 cm quartz cuvette 

on the Spectramax M2e spectrophotometer) by the DOC concentration (mg/L) (Potter, 2003). High 

SUVA (more than 4 L/mg/m) indicates high humic content with hydrophobic character (aromatic) and 

low SUVA (less than 4 L/mg/m) indicates more hydrophilic content with reduced aromatic character 

(Goslan et al., 2002). 

3.3.5. Trihalomethane formation potential (THMFP) 

The standard trihalomethane formation potential (THMFP) analysis was used to determine the 

concentration of THMs that can be formed per unit DOC under ideal conditions, to give an 

indication of the reactivity of DOC with chlorine and its propensity to form THMs. A modified 

version of the THMFP test detailed in Nieuwenhuijsen et al. (2000) was used. In this study, samples 

were diluted to 1 mg/L DOC in order to derive a standardised THMFP7d value (STHMFP7d) which 

provides a measure of DOC reactivity. A THMFP7d value was then calculated by multiplying 

STHMFP7d by DOC concentration. 97.5 mL of diluted sample was dosed with 2.0 mL of 0.5 M 

KH2PO4 to buffer the solution to pH 6.8. Samples were then dosed with 0.5 mL of NaOCl to provide 

5 mg of free Cl per mg of DOC. The solution was transferred to a 100 mL amber glass bottle and 

incubated in the dark at 25˚C for 7 days to allow the reaction between organic carbon and 

chlorine to occur. After 7 days incubation, the reaction was quenched by adding 0.4 mL of 0.8 M 

Na2SO3 to 14.6 mL of incubated sample. This solution was then transferred to a 22 mL amber 

headspace vial and analysed by the following method. The concentration of THMs was measured 

using a solid phase micro-extraction (SPME) technique similar to that described by Sarrión et al. 

(2000). The technique uses a Varian GC 450, a Restek MX 1 column (diphenyl/dimethyl 

polysiloxane phase, 30m length, 0.53 mm i.d.), N2 carrier gas at a flow rate of 10 mL/min and a 

63Ni Electron Capture Detector. The oven temperature was held at 35ºC for 9 minutes and then 

increased at a rate of 10ºC /minute to 140ºC and held for 2 minutes and finally increased to 180ºC 

and held for 3 minutes. The injector temperature was 290ºC and the detector temperature 

300ºC. THM calibration solutions were made from a stock solution containing 2000 µg/mL of each 

of the 4 THMs; chloroform (CHCl3), bromodichloromethane (CHBrCl2), dibromochloromethane 
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(CHBr2Cl), and bromoform (CHBr3) (Sigma). A series of standard solutions were then prepared 

ranging from 1-500 µg/L. 

3.3.6. Statistical analyses 

The effect of one factor; Treatment (2 levels; Control and Drought) was determined on the time 

averaged data for each measured parameter using one-way ANOVA. If a significant effect was 

found for a given parameter, significant effects at each time point were tested for using t tests. 

Most data met the homogeneity and normality assumptions, which were tested using the Bartlett 

and Shapiro Wilk tests, but those that did not were log-transformed. All statistical analyses were 

run in R v3.3.1. 

3.4. Results 

All data are presented as a series of graphs (Figures 3.1-3.8), with a boxplot displaying the average, 

median and quartile data for both treatments over the entire course of the experiment and, if a 

significant treatment effect was found, a line graph showing the data as a time series. 

 

 

 

 

 

Figure 3.1. (left) – Boxplot for pH (Diamond symbols indicate mean values) and (right) – Time series 

graph for pH (Error bars are presented as ±SEM). A significant difference between the Control and 

Drought treatments is indicated by a * (p<0.05). 
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Figure 3.2. (left) – Boxplot for conductivity (Diamond symbols indicate mean values) and (right)– Time 

series graph for conductivity (Error bars are presented as ±SEM). A significant difference between the 

Control and Drought treatments is indicated by a * (p<0.05). 

 

Figure 3.3. (left) – Boxplot for DOC (Diamond symbols indicate mean values) and (right) – Time series 

graph for DOC (Error bars are presented as ±SEM). A significant difference between the Control and 

Drought treatments is indicated by a * (p<0.05). 

 

Figure 3.4. (left) – Boxplot for phenolics (Diamond symbols indicate mean values) and (right) –Time 

series graph for phenolics (Error bars are presented as ±SEM). A significant difference between the 

Control and Drought treatments is indicated by a * (p<0.05). 
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Figure 3.5. (left) – Boxplot for SUVA (Diamond symbols indicate mean values) and (right) – Time series 

graph for SUVA (Error bars are presented as ±SEM). A significant difference between the Control and 

Drought treatments is indicated by a * (p<0.05). 

 

Figure 3.6. (left) – Boxplot for CHCl3 (Diamond symbols indicate mean values) 
Figure 3.7. (right) – Boxplot for % DOC as Phenolics (Diamond symbols indicate mean values) 

 

Figure 3.8. Boxplot for Soil % water (Diamond symbols indicate mean values) 

All samples were acidic throughout the sampling period. There was a significant main effect on pH 

(F=8.29, p<0.01; Figure 3.1a), with the mean pH of the control being 5.41 ± 0.04 and the drought being 

5.10 ± 0.08. The only individual month when the treatments differed significantly was the 3rd of July, 

when the drought pH was 1.1 units lower than the control (p<0.001; Figure 3.1b). pH values were 

generally higher in the spring period before declining in summer and autumn. There was a significant 

main effect on conductivity (F=8.42, p<0.01; Figure 3.2a), with the mean of the control being 26.72 ± 
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1.78 µS/cm and the drought being 31.1 ± 1.19 µS/cm. The conductivity of the drought treatment was 

significantly higher than the control on two sampling occasions; 3rd and 16th of July (p<0.05), and 

significantly lower on the 11th of September (p<0.01; Figure 3.2b). There wasn’t a clear seasonal 

variation in the conductivity for either treatment. There was a significant main effect on DOC (F=4.93, 

p<0.05; Figure 3.3a), with the mean DOC concentration of the control being 14.1 ± 0.77 mg/L  and the 

drought being 11.9 ± 0.45 mg/L. The DOC concentration of the control treatment was significantly 

higher than the drought on four sampling occasions; 19th of April, 3rd of June, 16th of July and 11th of 

September (p<0.05; Figure 3.3b). There wasn’t a clear seasonal variation in the DOC concentration for 

either treatment. There was a significant main effect on phenolics (F=5.16, p<0.05; Figure 3.4a), with 

the mean concentration of the control being 2.00 ± 0.12 mg/L and the drought being 1.64 ± 0.09 mg/L. 

The phenolic concentration of the drought treatment was significantly lower than the control on three 

sampling occasions; 19th of May, 3rd of June and 16th of July (p<0.05; Figure 3.4b). Unlike DOC, there 

was a clear seasonal variation in phenolics; concentrations increased throughout the spring, peaked 

in late summer and declined again in September. There was a significant main effect on SUVA (F=4.69, 

p<0.05; Figure 3.5a), with the mean SUVA of the control being 2.02 ± 0.13 L/mg/m and the drought 

being 1.69 ± 0.09 L/mg/m. The SUVA of the drought treatment was significantly lower than the control 

on one sampling occasion; 3rd of June (p<0.05; Figure 3.5b). There wasn’t a clear seasonal variation in 

the SUVA for either treatment. 

Chloroform was the dominant THM species produced during the laboratory THMFP test, therefore we 

have focused on this species only. There was no significant main effect on CHCl3-FP (chloroform 

formation potential) (p>0.05; Figure 3.6). The control treatment averaged 48.6 ± 5.57 µg/mg DOC and 

the drought 42.7 ± 4.89 µg/mg DOC. There was also no significant effect on the ‘percentage of DOC as 

phenolics’ (p>0.05; Figure 3.7), with the control treatment averaging 14.0 ± 0.72 % and the drought 

13.5 ± 0.52 %. There was a significant main effect on soil water content (F=195.65, p<0.001; Figure 

3.8). The Control treatment averaged 94.1 ± 0.12 % and the Drought 85.5 ± 0.51 %. 

3.5. Discussion 

The location for this study was a long-term experimental site in the UK, where several studies 

have addressed the impact of drought conditions on peatland carbon cycling (Freeman et al., 1998; 

Freeman et al., 2004). Part of the site was droughted in the mid-1990s and the soil moisture data 

collected during 2014 for this study shows that the drought treatment is still functioning 

effectively (Figure 3.8). Soil water content averaged 94.1% for the control site and 84.1% for the 

drought site, a difference of exactly 10%. Such a difference would have important implications 

for biogeochemical and carbon cycling in the peat soil and the maintenance of drought conditions 
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for over twenty years enables the study of long-term drought of a peatland catchment. In this 

study, significant differences in porewater DOC concentration and quality were observed 

between the control and drought treatments. 

The concentration of DOC was significantly lower in the drought compared to the control treatment. 

This finding agrees with the study of (Freeman et al., 2004; Clark et al., 2012), that long-term drought 

of a peatland decreases porewater DOC. However it is important to acknowledge that some studies 

have recorded increased DOC in drought (Fenner et al., 2009; Lou et al., 2014; Strack et al., 2008; 

Worrall et al., 2004). The decrease in DOC and phenolics due to drought in this study can be 

attributed to oxygenation and improved conditions for decomposition in the soil. The reduced 

concentration of phenolic compounds in the pore water of the droughted peat will presumably 

be due to an increase in the activity of phenol oxidase (Lin et al., 2012). Oxygenated conditions in 

the drought treatment will have resulted in the complete breakdown of soil organic matter to 

CO2, rather than incomplete breakdown to DOC, due to the opening of the enzymic latch (Fenner 

and Freeman, 2011; Freeman et al., 2001b), explaining the reduction in DOC we observed. 

Another reason why we observed a decrease in DOC in the drought treatment may be related to 

temperature. A slightly higher soil temperature (data not shown) was recorded in the drought 

treatment because the soil was drier. This may be allowing microbial and enzymic decomposition 

processes to be happening at a faster rate, leading to accelerated breakdown of DOC. However, it is 

also important to consider that higher temperatures can contribute to increased DOC production by 

increasing microbial and invertebrate activity, and therefore the rate of organic matter decomposition 

in soils (Cole et al. 2002; Fenner et al. 2001; Fenner, et al. 2005; Freeman et al. 2001a; Scanlon and 

Moor, 2000: Worrall et al., 2008). The phenolics trend demonstrated an autumn flush for both 

treatments. Increasing phenolics concentrations during the autumn may be due to a combination of 

vegetation death within the catchment and increased rainfall (Dawson et al., 2008; Scott et al., 2001). 

Specific Ultra Violet Absorbance (SUVA), which indicates the relative degree of aromaticity (Leenheer 

and Croue 2003), was used as the main indicator of DOC quality in this study.  

SUVA values were significantly lower in the drought treatment. This again provides evidence that 

under drought conditions there is enhanced microbial breakdown of organic matter and DOC, 

explaining the reduced SUVA values measured in this study.  

The pH of the pore water was significantly lower in the drought treatment compared to the 

control, particularly in the summer/autumn half of the study. This could be due to greater 

oxidation of sulphides, which tend to dominate waterlogged soils (Ponnamperuma et al., 1972). 

Conductivity in the pore water was significantly higher in the drought treatment compared to the 
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control. This may be due to organic matter mineralisation under oxygenated conditions (Fierer et al., 

2007; Philipp and Schink 2012; Winsborough, 2010).  

3.6. Conclusion  

Long-term drought of a peatland has had a strong impact on porewater DOC, with reduced 

concentration and a shift in quality to lower molecular weight and aromaticity. Despite this, we did 

not observe a significant change in THMFP. Therefore, part a) of our hypothesis was correct but 

part b) was not. The observed differences are likely to be due to oxygenated conditions in the 

drought treatment. This will be leading to enhanced decomposition of both soil organic matter 

and the existing pool of DOC. 
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Chapter 4: Laboratory experiment investigating the effects of 

Peatland Drought on Dissolved Organic Carbon (DOC) and 

Trihalomethane (THM) Formation 

4.1. Abstract 

Dissolved organic carbon (DOC) present in freshwaters that are used as sources of drinking water acts 

as a precursor to potentially harmful carcinogenic compounds following disinfection treatment. The 

rising DOC trend observed in many surface waters therefore poses a threat to human health as it may 

lead to increased disinfection by-product (DBP) production if treatment processes are not improved. 

Drought conditions are known to affect the ability of peatlands to retain carbon and previous studies 

have demonstrated that drought can affect the export of DOC from peatlands to freshwaters. In this 

study, we examine the effect of drought on the porewater DOC concentrations and characteristics of 

two contrasting types of peatland, fen and bog. We observe lower DOC concentrations in the peat 

cores subject to a drought treatment, but greater trihalomethane formation potential (THMFP) values, 

indicating that the drought changes the characteristics of the DOC to make it more likely to form DBPs. 

 

  



66 
 

4.2. Introduction 

Carbon is the key constituent of natural organic matter (NOM), therefore NOM is often referred to as 

either dissolved or particulate organic carbon (DOC/POC). The analytical techniques used to quantify 

and characterise organic matter in freshwaters are usually based on measuring the carbon in NOM. 

DOC is the dominant form of organic carbon in freshwaters, usually comprising 90% of total organic 

carbon (Jones and Mulholland, 1998). It is derived from the cycling of carbon between the terrestrial 

environment and the atmosphere. Organic carbon present in soil can be transferred to freshwaters 

during rainfall and this is generally the dominant source of DOC in rivers, streams and lakes globally 

(allochthonous DOC). It is common to observe strong correlations between lake DOC concentrations 

and the size of the lake’s catchment. DOC is also produced within freshwaters by algae and 

microorganisms (autochthonous DOC). Freshwaters with a high concentration of DOC will usually be 

coloured brown due to the presence of humic substances which strongly absorb ultraviolet and visible 

light. The contribution from each source varies on a seasonal basis; allochthonous DOC inputs are 

greatest during the late summer/autumn period whilst autochthonous DOC production peaks in the 

summer months, when temperatures and light levels are greatest. Therefore freshwater DOC 

concentrations tend to peak in September-October when the contribution from both sources is high. 

On average globally, allochthonous sources tend to dominate DOC inputs over autochthonous sources 

(Manny and Wetzel, 1973). 

One of the most important factors controlling the DOC concentration of a freshwater stream, 

river or lake is the soil type within its catchment. Peatlands play a key role in influencing the DOC 

concentration of freshwaters, particularly in temperate regions of the northern hemisphere where 

most peatlands exist. Peat soils export high concentrations of DOC, because the soil is carbon rich 

and precipitation is high in areas where peat is located, so there is a continual flush of DOC rich 

waters. 

There are two main types of peatland; bog and fen, which are differentiated according to the way they 

receive water. Bogs receive all their water from precipitation and are therefore nutrient poor and 

acidic. Fens receive water from precipitation and other more nutrient rich sources, such as 

groundwater and drainage from surrounding mineral soils and therefore have a more neutral pH 

(Mitsch and Gosselink, 2000). 

There is significant evidence that the concentration of DOC in many freshwater environments in 

the northern hemisphere is increasing. Freeman et al. (2001a) reported that from 1988 to 2000 

DOC increased by 65% on average in streams and lakes in the UK. There is also evidence of this 

increasing trend in other parts of Europe and North America (Evans et al., 2006; Monteith et al., 
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2007). The rising DOC trend has been attributed to increasing temperature (Freeman et al., 

2001b), atmospheric CO2 concentrations (Freeman et al., 2004) and more frequent droughts and 

reduced acid deposition (Fenner and Freeman, 2011). These changes can lead to peatlands 

changing from carbon sinks to carbon sources (Evans et al., 2012). 

As peatlands export large amounts of DOC to freshwaters they have an important influence on the 

production of drinking water. In the UK, many catchments used to source drinking water contain peat 

and are therefore high in DOC. The presence of DOC is not harmful to humans, but when water 

containing DOC is treated with disinfectant, usually chlorine, potentially harmful disinfection by-

products (DBPs) may be produced, which can lead to cancer (Sketchell et al., 1995). The most 

common DBP’s are the trihalomethanes (THMs), which are simple derivatives of methane formed 

when 3 of the hydrogen atoms are replaced by a halogen (Peterson et al., 1993). Final DBP 

concentrations depend on concentration of DOC, chlorine concentration, water temperature and 

pH (Rodrigues et al., 2007). 

Regulatory bodies have set limits for final water DBP concentrations because of the potential 

effects on human health. In the UK, the limit for the sum of the four trihalomethane compounds 

is 100 μg/L due to the carcinogenic effect of these compounds. 

Peatlands may be affected by climate change through the lowering of the water table (Roulet et al., 

2007). A number of processes affect the export of DOC from peatlands including lowering of the water 

table which is known to destabilise peat and lead to increased release of DOC to freshwaters (Strack 

et al., 2008). However, there has been little work undertaken to investigate how a lowering of the 

water table changes the characteristics of DOC, and what the implications of this are for DBP 

production which has prompted the study described herein. 

4.3. Methods 

4.3.1. Experimental design and study sites 

This experiment used mesocosms of peat to investigate the impacts of a controlled drought on 

DOC and how readily the DOC forms THMs. Twenty peat cores were collected from two locations 

in North Wales in June 2013; 10 each from Migneint bog and Cors Erddreiniog fen. The Mignent 

(grid ref SH7795942829) is the largest blanket bog in North Wales and Cors Erddreiniog (grid ref 

SH4715882581) is the largest area of fen on the island of Anglesey. 

Each core was 20 cm wide and 50 cm deep. The cores were collected by inserting a cylindrical PVC 

drainpipe carefully into the soil to minimise disturbance of the vegetation and extracting once the 
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vegetation was just above the top surface of the core. The cores were kept in a controlled 

temperature room (9-10°C), each in separate buckets, until the experiment began. The water 

table was maintained at the same height as it was when the cores were collected. Holes were 

installed in the side of the cores for water sampling at depths 5 cm and 20 cm below the surface. 

10 cm rhizon porewater samplers (Rhizosphere Research Products, Wageningen, The 

Netherlands) were inserted into these holes for sampling soil porewaters. 

4.3.2. Treatment regime 

A roughting treatment was applied to half of the cores from each soil type by removing water 

from the external bucket to lower the water table in the cores. This was initiated on 23rd 

September 2013 (day 0). The water table steadily declined until it reached 20 cm below the 

surface on 25th of November 2013 (day 63), where it remained stable until 30th December 2013. 

It was then increased steadily back to the surface, reaching this position on 12th February 2014. 

The water table was maintained at the original height for the other half of the cores (the control 

treatment). There were 5 replicate cores for each of the 4 treatments. Soil pore water samples 

were extracted from the cores on 6 dates; 10th November 2013 and 5th December 2013 and 10th 

January, 21st January, 13th February and 22nd February 2014. Some of the 5 cm samples for the 

drought cores during the peak of the drought could not be collected as the soil was too dry.  

4.3.3. Analytical techniques 

All samples were analysed for pH and conductivity on the same day as collection, 20 ml of sample was 

filtered through 0.45 µm syringe filters (Triple Red, Buckinghamshire, UK) into acid-washed 20 ml 

plastic vials and refrigerated at 4°C until further analysis was undertaken. Samples were analysed for 

DOC, phenolics and ion concentrations, UV-Vis absorbance and trihalomethanes formation potential 

(THMFP). 

pH was measured using a Metler Toledo Seven Easy pH meter. The device calibrated using buffers 

of pH 4 and 7 at 25°C. 

4.3.4. Laboratory Analyses  

4.3.4.1. Dissolved organic carbon (DOC) 

Concentrations of DOC were determined using a Thermalox TC/TN analyser (Analytical Sciences 

Ltd, Cambridge, UK), which is a combustion and infrared detection based technique. For DOC, 

samples were acidified to pH <3 prior to analysis to remove inorganic carbon using 10 M HCl. The 

instrument was calibrated with potassium hydrogen phthalate standards. The injection volume 



69 
 

was 15 µL and oven temperature 680°C. Results were corrected if standard solutions deviated by 

10% or more from the correct concentration.  

4.3.4.2. Phenolic compounds 

The phenolic component of DOC was determined using a method modified from Box (1983), 

adapted for 300 µL microplate wells. A calibration curve was generated using a series of phenol 

standard solutions ranging in concentration from 0.5 - 10 mg/L. The assay product was detected 

by measuring the absorbance at 750 nm on a Spectramax M2e spectrophotometer (Molecular 

Devices, Wokingham, UK).  

4.3.4.3. UV/visible absorption 

Specific ultra violet absorbance (SUVA) is used as an indicator of overall DOC quality i.e. 

molecular weight and aromaticity, with most freshwaters having values in the range 2-4. SUVA 

was calculated by dividing the absorbance value at 254 nm (measured on the Spectramax M2e 

spectrophotometer) by the DOC concentration (mg/L).  

4.3.4.4. Trihalomethane formation potential (THMFP) 

The standard trihalomethane formation potential (THMFP) analysis was used to determine the 

concentration of trihalomethanes that can be formed per unit DOC under ideal conditions, to give 

an indication of the reactivity of DOC with chlorine and its propensity to form THMs. A modified 

version of the THMFP test detailed in (Nieuwenhuijsen et al., 2000) was used. In this study samples 

were diluted to 1 mg/L DOC in order to derive a standardised THMFP7d value (STHMFP7d) which 

provides a measure of DOC reactivity. A THMFP7d value was then calculated by multiplying 

STHMFP7d by DOC concentration. 97.5 mL of diluted sample was dosed with 2.0 mL of 0.5 M 

KH2PO4 to buffer the solution to pH 6.8. Samples were then dosed with 0.5 mL of NaOCl to provide 

5 mg of free Cl per mg of DOC. The solution was transferred to a 100 mL amber glass bottle and 

incubated in the dark at 25˚C for 7 days to allow the reaction between organic carbon and 

chlorine to occur. After 7 days incubation, the reaction was quenched by adding 0.4 mL of 0.8 M 

Na2SO3 to 14.6 mL of incubated sample. This solution was then transferred to a 22 mL amber 

headspace vial and analysed by the following method. The concentration of THMs was measured 

using a solid phase micro-extraction (SPME) technique similar to that described by Sarrión et al. 

(2000). The technique uses a Varian GC 450, a Restek MX 1 column (diphenyl/dimethyl 

polysiloxane phase, 30 m length, 0.53 mm i.d.), N2 carrier gas at a flow rate of 10 mL/min and a 

63Ni Electron Capture Detector. The oven temperature was held at 35ºC for 9 minutes and then 
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increased at a rate of 10 ºC /minute to 140ºC and held for 2 minutes and finally increased to 180ºC 

and held for 3 minutes. The injector temperature was 290ºC and the detector temperature 300ºC. 

Trihalomethane calibration solutions were made from a stock solution containing 2000 µg/mL of 

each of the 4 THMs; chloroform (CHCl3), bromodichloromethane (CHBrCl2), dibromochloromethane 

(CHBr2Cl), and bromoform (CHBr3) (Sigma). A series of standard solutions were then prepared 

ranging from 1-500 µg/L. 

4.3.4.5. Statistical analysis 

Most of data met the homogeneity and normality assumptions, which were tested using the Bartlett 

and Shapiro Wilk tests, but those that did not were log-transformed. Data points were removed if they 

were outliers. A four-way ANOVA was used to test effects of the factors Soil Type (two levels; bog and 

fen), Treatment (two levels; Control and Drought); Depth (two levels; 5 and 20 cm), and Date (six levels 

for each sampling date) for each measured parameter. Following this, t tests was performed to test 

the effect of Treatment on each date. All tests were run in R v3.3.1. A p value of 0.05 was used to 

determine significance. 
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4.4. Results 

Data is presented in Figures 4.1 to 4.6 as a series of graphs showing the variation in measured 

parameters over time, alongside the mean water table height measured within each mesocosm 

throughout the experiment. 

 

 

Figure 4.1. – Soil water content (%) at 5 and 20 cm and water table height for a) bog and b) fen 
mesocosms, with the water table height either maintained at the surface (Control) or reduced and 
restored (Drought). Asterisks indicate significant differences between Control and Drought treatments 
at individual time and depths (* = p<0.05, ** = p<0.01, *** = p<0.001) 
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Figure 4.2. – Soil porewater Dissolved Organic Carbon (DOC) concentrations at 5 and 20 cm and water 
table height for a) bog and b) fen mesocosms, with the water table height either maintained at the 
surface (Control) or reduced and restored (Drought). Asterisks indicate significant differences 
between Control and Drought treatments at individual time and depths (* = p<0.05, ** = p<0.01, *** 
= p<0.001). 
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Figure 4.3. – Soil porewater pH at 5 and 20 cm and water table height for a) bog and b) fen mesocosms, 
with the water table height either maintained at the surface (Control) or reduced and restored 
(Drought). Asterisks indicate significant differences between Control and Drought treatments at 
individual time and depths (* = p<0.05, ** = p<0.01, *** = p<0.001). 
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Figure 4.4. – Soil porewater phenolics concentration at 5 and 20 cm and water table height for a) bog 
and b) fen mesocosms, with the water table height either maintained at the surface (Control) or 
reduced and restored (Drought). Asterisks indicate significant differences between Control and 
Drought treatments at individual time and depths (* = p<0.05, ** = p<0.01, *** = p<0.001). 
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Figure 4.5. – Soil porewater SUVA at 5 and 20 cm and water table height for a) bog and b) fen 
mesocosms, with the water table height either maintained at the surface (Control) or reduced and 
restored (Drought). Asterisks indicate significant differences between Control and Drought treatments 
at individual time and depths (* = p<0.05, ** = p<0.01, *** = p<0.001). 
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Figure 4.6. – Soil porewater CHCl3 formation at 5 and 20 cm and water table height for a) bog and b) 
fen mesocosms, with the water table height either maintained at the surface (Control) or reduced and 
restored (Drought). Asterisks indicate significant differences between Control and Drought treatments 
at individual time and depths (* = p<0.05, ** = p<0.01, *** = p<0.001). 
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Table 4.1. Result of 4-way ANOVA to determine the effect of Soil type, Treatment, Depth and Date on 
several measured parameters.  
  
The water table manipulation succesfully lowered the soil water content of the bog mesocsosms 

but not the fen (Figure 4.1, Table 4.1). The overall results of the four-way ANOVA showed there 

was a a significant effect of soil type, treatment, date and depth on soil water content (Table 4.1). 

Overall, soil water content was higher for the bog (88.62 ± 3.56 %) compared to the fen (87.07 ± 

4.43 %), for the control (88.74 ± 3.52 %) over the drought (86.96 ± 3.42 %) treatment and for the 

5 cm (88.88 ± 3.80 %) over the 20 cm (86.83 ± 3.03 %) depth. 

For the bog, the soil water content was relatively stable for the 5 cm control throughout the 

sampling period, the drought treatment was lower % water than the control for all but the final 

time point (day 152, restored water table). The soil water content at 5cm was significantly lower 

for the drought compared to the control on days 109, 120 and 143 (p<0.01), and during the phase 

of the experiment when the water table was beginning to recover. For the bog at 20 cm, there 

was no time point when the soil water content of the drought treatment was significantly lower 

than the control treatment. 

Parameter Factor F value P value 

Water 

content 

Soil type 15.86 <0.001 

Treatment 20.40 <0.001 

Depth 26.57 <0.001 

Date 2.58 0.028 

DOC 

Soil type 104.59 <0.001 

Treatment 44.89 <0.001 

Depth   

Date 6.13 <0.001 

pH 

Soil type 512.88 <0.001 

Treatment   

Depth 4.51 0.035 

Date 5.22 <0.001 

Phenolics 

Soil type 31.78 <0.001 

Treatment 18.89 <0.001 

Depth   

Date 11.06 <0.001 

SUVA 

Soil type 15.89 <0.001 

Treatment 6.62 0.011 

Depth   

Date 4.24 <0.01 

THMFP 

Soil type 12.51 <0.001 

Treatment 5.18 0.024 

Depth   

Date 10.20 <0.001 
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For the Fen, the soil water content of the drought treatment was generally lower than the control 

treatment, but only significantly so for one time point and one depth; day 48 and 5 cm. Therefore, 

the water table manipulation did not induce consistent effects on soil water content for the fen. 

There was a significant effect of soil type, treatment and date, but not depth, on DOC 

concentrations (Table 4.1). Mean DOC was higher for the bog (83.77 ± 57.67 mg/L) compared to 

the fen (34.76 ± 26.00 mg/L) and for the control (71.68 ± 53.3 mg/L) over the drought (39.69 ± 

38.66 mg/L) treatment. For the bog at 20 cm, the control treatment was relatively stable 

throughout the sampling period but the drought treatment DOC decreased during the drought 

period and was significantly lower than the control treatment at days 109 (p<0.01) and 120 

(p<0.05), when the water table was beginning to recover. The concentrations on these dates were 

63-86% lower than the 20 cm control treatment. At 5 cm, DOC declined from 129.12 ± 40.52 mg/L 

on day 48 to 50.44 ± 10.16 mg/L on day 152 in the control treatment (-60.9%). For the drought, 

on the dates that where a sample could be collected, all drought treatment data points were 

lower than the control treatment, but not significantly so. The differences at days 120 and 143 

(recovering water table) were similar to day 48 (declining water table). 

For the fen, the 5 cm drought DOC concentrations were always lower than the control, but only 

significantly so at day 73 (57% lower, p<0.05). DOC concentrations at 20 cm were relatively stable 

for both treatments and always lower in the drought treatment but there were no significant 

differences at any time point. 

There was a significant effect of soil type, depth and date, but not treatment, on pH (Table 4.1). 

Mean pH was higher for the fen (6.30 ± 0.62) compared to the bog (4.41 ± 0.66) mesocosms and 

at 5 cm (5.49 ± 1.09) compared to 20 cm (5.40 ± 1.18). For the bog, the pH was relatively stable 

throughout the sampling period for both control and drought treatments and at both depths. 

Due to the stable values recorded for the first four dates, which included the greatest change in 

water table height, pH was not measured for the bog mesocosms on days 143 and day 153.  

For the fen, the control treatment decreased from 6.75 at day 48 to 5.08 at day 153 at 5cm, and 

from 6.74 at day 48 to 5.97 at day 153 at 20 cm. The drought treatment displayed a similar 

declining trend at both depths but the pH was generally lower than the control, however the only 

significant treatment effect was at day 73, when the drought was lower than the control 

treatment by 0.53 of a pH unit (p<0.05). 

There was a significant effect in mean phenolic concentrations of soil type, treatment and date, 

but not depth, on phenolic concentrations (Table 4.1). Mean phenolic concentrations were higher 
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for the bog (11.46 ± 7.50 mg/L) compared to the fen (7.80 ± 8.00 mg/L) and for the control (11.39 

± 8.67 mg/L) over the drought (7.19 ± 6.29 mg/L) treatment.  

For the bog, the phenolics concentration of the control treatment was very similar at both depths, 

displaying a declining trend over time, apart from a spike at day 120. The drought treatment 

phenolic concentration was almost always lower than the control at both depths, especially 

during the period when the water table was lowest, but only significantly so at days 73 and 109 

(p<0.05 and p<0.001) and for 20 cm depth. There were no time points when there was a 

significant treatment effect at 5 cm. For the fen, there was a similar trend for the control 

treatment to the bog control treatment, with a generally declining trend but a spike at day 109. 

However, for the fen, the phenolics concentrations at 20 cm were generally much lower than at 

5 cm. As for the bog, phenolics in the drought treatment were generally lower than the control, 

significantly so at day 48 for both 5 cm (p<0.01) and 20 cm (p<0.05) and day 120 at 5 cm (p<0.05). 

The phenolics concentration of the drought treatment was higher than the control treatment at 

both depths on day 152, when the water table was fully recovered. 

There was a significant effect of soil type, treatment and date, but not depth, on SUVA (Table 

4.1). Mean SUVA was higher for the fen (6.06 ± 4.19 L/mg/m) compared to the bog (3.68 ± 2.10 

L/mg/m) and for the drought (5.80 ± 4.32 L/mg/m) over the control (4.32 ± 2.73 L/mg/m) 

treatment. 

For the bog, SUVA showed a similar trend of declining slowly at both 5 cm and 20 cm for the 

control treatment. The drought treatment had a higher SUVA than the control at most time 

points, significantly so at day 143 at 5 cm (p<0.05) and day 152 at 20 cm (p<0.01).  

For the fen, there were no time points when there was a significant treatment effect, although 

the SUVA was generally higher for the drought compared to the control at both depths. 

There was a significant effect of soil type, treatment and date, but not depth, on THMFP (Table 

4.1). Mean THMFP was higher for the bog (61.87 ± 26.60 µg CHCl3/mg DOC) compared to the fen 

(50.76 ± 15.91 µg CHCl3/mg DOC) and for the drought (57.75 ± 20.33 µg CHCl3/mg DOC) over the 

control (54.59 ± 23.63 µg CHCl3/mg DOC) treatment. For the bog, the THMFP displayed a similar 

trend at both 5 and 20 cm, declining from day 48 to 109 but then increasing up to the final days 

of sampling (day 143 and 152) to finish with a value approximately 50% greater than the day 48 

value. The Drought treatment had a similar trend but at 5 cm (on the dates when it was possible 

to collect a sample) the THMFP was higher than the control and at 20 cm the THMFP was lower 

than the control. The only significant difference was at 20 cm on day 152, when the water table 



80 
 

had fully recovered, when the drought treatment THMFP was approximately 30% lower than the 

control. For the fen, the control THMFP was relatively stable at both depths, but there was more 

variation within the drought treatment data. The drought treatment THMFP was generally higher 

than the control treatment THMFP but there were no significant differences at any of the six time 

points.  

4.5. Discussion 

Overall, the results of this study indicate that applying a drought treatment to cores of peat 

dramatically reduced the concentration of DOC in the porewater. It would therefore be expected 

that if such conditions were recreated in the field then DOC export to freshwaters would be 

reduced by drought conditions in catchments where peat soils dominate. The effect was 

especially pronounced in the bog soil, where the DOC concentration was approximately 4 times 

lower during the peak of drought conditions. For the fen, the DOC concentration reduced by 30-

50% during the peak of drought conditions. During the re-wet period the DOC concentrations 

recovered so they were comparable to pre-drought values. The trend in phenolics concentrations 

followed a similar pattern to the DOC, indicating that phenolics were affected by the drought 

treatment. The loss of DOC and phenolics due to drought can be attributed to oxygenation and 

improved conditions for decomposition in the soil. This will have resulted in the complete 

breakdown of soil organic matter to CO2, rather than incomplete breakdown to DOC, due to the 

opening of the enzymic latch (Freeman et al., 2001b; Fenner and Freeman, 2011). 

Drought generally lowered pH and conductivity (data not presented), especially for the fen. This 

is because the fen receives its nutrients from groundwater so if this supply is cut off, as it was 

during the drought treatment, the effect on the peat will be dramatic.   

Phenolic concentration in pore water was lower during drought treatments in the bog and fen 

due to the much larger pool of phenolic compounds in the soil itself which changes in drought, 

which is not that easy to observe. There is previous evidence of the decline of phenolic compound 

concentration, shown in the literature (e.g. Fenner and Freeman, 2011). The mean concentration 

of phenolic compounds in pore water was lower in the fen than in the bog; this can be due to the 

greater activities of phenol oxidase in the fen (Jassey et al., 2011). However, a previous study 

mentioned that the carbon in the bog degrades less than carbon in the fen (Tfaily et al., 2013). 

Moreover, bacterial genes in the fens are higher than bogs (Ausec et al., 2011), so perhaps the 

bog conditions are not suitable for phenolic microbes, which are responsible for the breakdown 

of phenolic compounds. Some previous studies show that precipitation was one of the changes 

in the effect on fungal communities (Toberman et al., 2008). In addition, other previous studies 
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show that fungal communities control the low pH in soils. (Rousk et al., 2010) and that the 

anaerobic conditions in peatlands might prevent fungal growth (Golovchenko et al., 2013). 

Although the treatment differences are not significant, the THMFP values were higher for the 

drought treatment compared to the control during the peak of the drought and initial rise in 

water table back to the surface. This suggests that drought conditions lead to the release of 

proportionally more THM precursors from peat than if the water table was close to the surface. 

This is a finding that has not previously been published in scientific literature. 

4.6. Conclusions 

The main overall conclusion from this study is that artificially exposing peat cores to a drought 

treatment reduced DOC concentrations compared to control cores but increased THMFP values, 

although none of the effects were significant. From a water treatment perspective, the increase 

in THMFP during peatland drought suggests that for source water from reservoirs whose 

catchments are dominated by peat, during drought conditions, the DOC exported from the 

peatland to the reservoir will be proportionally more likely to form THMs, however, this effect is 

more than offset by the lower DOC concentrations.  
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Chapter 5: Impact of constructed wetlands on DOC characteristics 

and THMFP 

5.1. Abstract 

In England and Wales, two-thirds of drinking water comes from surface water such as reservoirs, lakes 

and rivers, and the main problem is the potential eutrophication of those reservoirs. In lakes and 

reservoirs, DOC originate from both internal (allochthonous) is DOC produced within the lake and 

external (autochthonous) is DOC that intend to the lake from the catchment biochemical inputs. 

Eutrophication is one of the biggest issues for drinking water production, that characterized by 

excessive plant and algal growth due to the increased availability of one or more of growth factors 

needed for photosynthesis such as sunlight, carbon dioxide, and nutrient fertilizers. Eutrophication 

also increases dissolved organic carbon (DOC) concentrations and the removal of DOC is usually the 

costliest stage of water treatment process that is because the reaction of DOC with chlorine during 

disinfection can lead to formation of carcinogenic disinfection by-products (DBPs) such as THMFP. The 

presence of DOC in water is not harmful however, when water containing DOC that reacts with 

chlorine as a disinfectant in water treatment plant, it can produce THMs that lead to cancerous 

diseases and the most common THMs is chloroform. Constructed wetlands are one solution to the 

eutrophication issue, because wetlands sequester nutrients. The objective of this study was 

determining whether a constructed wetland used for to remove nutrients from a stream, flowing into 

a eutrophic reservoir affects the quantity and quality of DOC in the stream. Inflow and outflow of the 

Free Water Surface was observed twice a week over a period of nine months. Physicochemical 

parameters (pH, conductivity), nutrients, dissolved organic carbon (DOC), Phenolics, trihalomethans 

(THMs) and greenhouse gases (CH4, CO2, N2O) concentration were measured. 
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5.2. Introduction 

In England and Wales, two-thirds of drinking water is derived from surface waters such as man-

made reservoirs, natural lakes and rivers. Such raw water supplies can contain naturally high 

concentrations of natural organic matter (NOM). Aquatic NOM is a heterogeneous mixture of 

complex organic compounds, is derived from allochthonous and autochthonous sources and plays 

important roles in several biotic and abiotic processes (Wetzel, 2001). Carbon (C) is the key constituent 

of NOM, therefore NOM in the dissolved form is often referred to and measured as dissolved organic 

carbon (DOC). Allochthonous DOC originates outside of the waterbody, from within it’s catchment, 

and is mainly derived from decaying plant material and the leaching of organic detritus from soils that 

is transported to the aquatic system by run off, streams and shallow groundwater flow (Thurman, 

1985; Aiken and Cotsaris, 1995). Autochthonous DOC is that which is produced within the water body 

itself, from macrophytes and phytoplankton. The main factors controlling the DOC concentration of 

surface waters are catchment properties (land use/soil type), hydrological characteristics and climatic 

conditions (Pacheco et al., 2013). 

Eutrophication is the enrichment of a waterbody with nutrients that leads to rapid growth of algae 

(Nixon 1995; Carpenter et al. 1998). Sunlight, carbon dioxide and nutrients are the factors that 

increase the magnitude of the eutrophication (Schindler 2006). In addition, eutrophication can lead to 

blooms of algae that are direcntly harmful to human health (Smith and Schindler, 2009). 

Eutrophication can also increase the DOC concentration of water, which is particularly an issue for 

lowland reservoirs in agricultural catchments (Gough et al., 2015; Pierson-Wickmann et al., 2011). 

During algal growth algogenic organic matter is leached from algal cells by diffusion (extracellular 

organic matter) or released from dying algal cells during cell lysis (intracellular organic matter), which 

can lead to taste and odour problems in potable water supplies (Gough et al., 2015). Some algal 

species produce toxic metabolites which can pose a serious acute public health risk (Zegura et al., 

2011; Ritson et al., 2014). The increase in dissolved organic carbon concentrations during 

eutrophication events will also increase coagulant and chlorine demand and lead to greater formation 

of potentially-harmful disinfection by-products (DBPs) such as trihalomethanes (THMs) (Nguyen et al., 

2005; Li et al., 2012).  

Allochthonous and autochthonous DOC differs in characteristics and quality. Allochthonous DOC is 

generally comprised of high-molecular weight, aromatic humic and fulvic acids whilst autochthonous 

DOC is generally much lower-molecular weight, less aromatic and comprised of much smaller 

compounds (Chupakov et al., 2017). The contribution from each source changes seasonally; 
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autochthonous production peaks in late spring, summer and early autumn due to greater sunlight and 

warmer temperatures that allow photosynthesis and primary production by algae and vegetation. The 

contribution from allochthonous sources generally peaks during late summer/autumn, when the 

weather turns cooler and wetter and the vegetation within the catchment starts to die back and 

decompose (Chupakov et al., 2017; Tremblay and Benner, 2006). 

DOC quality is a key influence on water treatability and likelihood to form DBPs. High molecular 

weight, aromatic, hydrophobic allochthonous DOC, which generally has a high Specific Ultraviolet 

Absorbance (SUVA), generally reacts more readily with chlorine to form THMs (Fang et al., 2010; 

Chow et al., 2005). SUVA used to determine the disinfection by-product formation potential and 

calculated by dividing the absorbance at 254nm by DOC concentration mg/L of a water, High SUVA 

indicates that there is a large portion of organics present in the water is aromatic, high SUVA due to 

high aromatic organics compounds that easily react with disinfectants to create DBPs, so high SUVA 

point to a high potential for the formation of DBP's. However, many studies shows that reducing the 

SUVA value by removing the NOM by coagulation (Archer and Singer, 2006). 

Constructed wetlands are increasingly being used as a natural solution for cleaning freshwaters 

impacted by pollution and suffering from poor water quality (Vymazal, 2007), sometimes with the goal 

of ensuring compliance with environmental legislation standards (Gouriveau, 2009). As water flows 

through a constructed wetland, much of the suspended sediment will settle out, whilst nutrients in 

inflow waters are either taken up by plants or processed by microbes in the soil. Constructed wetlands 

are particularly well suited to removing nitrate and phosphate from agricultural run-off, with several 

biogeochemical processes within wetlands allowing for the sequestration of nutrients and pollutants. 

This study builds on the publication of Scholz et al. (2016), which reports findings on the success of a 

newly built constructed wetland for removing nitrate and phosphate from a stream flowing into a 

lowland eutrophic lake. The paper reported net removal of nutrients but increased the DOC 

concentration of the stream, which may impact negatively in the downstream water treatment works 

at this site. The aim of this study was to assess whether the constructed wetland remained a net sink 

of nutrients but a net source of DOC in the autumn and winter time and to determine whether the 

constructed wetland changes the characteristics of the DOC flowing into the reservoir and how readily 

it reacts with chlorine.  
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5.3. Methods 

5.3.1. Study site 

The study site was Llyn Cefni (UK Grid Ref: SH443774), a man-made eutrophic reservoir on the 

Island of Anglesey, north Wales, UK. The reservoir was created in 1940 by damming the Afon 

Cefni river to produce a lake 2.3 km in length and 0.86 km² in surface area, which is now used as a 

source of drinking water. There are two main water sources feeding into Llyn Cefni reservoir; the Afon 

Frogwy on the south-west side and Afon Erddreiniog on the north-east side, the latter originating 

within Cors Erddreiniog, a National Nature Reserve and Site of Special Scientific Interest that is a rich 

fen and contains significant deposits of peat. The DOC concentration of the water can be high, partly 

due to intensive farming practices within the catchment leading to excess nutrients entering the 

lake and fuelling algal growth (Scholz et al. 2016). Management practices have been implemented 

aimed at minimising the autochthonous production of DOC, such as the installation of straw bales 

within the lake to suppress algal growth and the construction of a treatment wetland within the 

catchment to reduce nutrient inputs. This study followed on from the work presented by Scholz 

et al. (2016) at the same site and was undertaken to a) assess the ability of the constructed 

wetland to sequester nutrients outside of the growing season and b) to determine the impact of 

the constructed wetland on DOC characteristics and therefore propensity to form DBPs following 

chlorination. In total, nine sampling sites were identified and were mostly similar to those monitored 

during the Scholz et al. (2016) study. The two main inputs were sampled and identified as Main 1 and 

2 respectively. Five other smaller stream inputs were also sampled, including the inflow to the 

constructed wetland (labelled as Minor 1-4 and Constructed Wetland inflow). The outflow from the 

same constructed wetland was also sampled in addition to the reservoir at the point where the water 

discharges from the reservoir to a downstream river (Afon Cefni). Figure 5.1 is a map showing the 

reservoir, its watershed boundary and the catchments of the seven sampled inflowing rivers/streams. 

The constructed wetland was built in March 2014 on a stream previously identified as supplying high 

concentrations of nitrate and phosphate, which are the key nutrients for the algal growth. Table 5.1 

presents the catchment sizes of the seven streams and reservoir as a whole, demonstrating the larger 

sizes of the two main inflows. 
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Figure 5.1. Watershed area of sampled inflowing streams to Llyn Cefni Reservoir, and the reservoir 
itself. Map created using ArcGIS 10.4.1 software (Environmental Systems Research Institute (ESRI), 
California, USA). 
 

Stream name Catchment area (km²) 

Main 1 27.63094 

Main 1 10.27868659 

Minor 1 0.0941424 

Minor 2 0.184136973 

Minor 3 0.026807824 

Minor 4 2.993129 

Constructed Wetland Inflow 0.080882 

Reservoir 44.1606002 

Table 5.1: Catchment area (km²) of sampled streams at the Cefni Reservoir 

5.3.2. Land use analysis 

The land use of the catchment of each stream, and the reservoir as a whole, was analysed using ArcGIS 

10.4.1 software (Environmental Systems Research Institute (ESRI), California, USA), utilising digital 

map data acquired from Digimap (University of Edinburgh, UK), Catchments were delineated using the 

‘Hydrology’ function located in the ‘Spatial Analyst’ add-on, as described by Hopes et al (submitted for 

publication). 
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5.3.3. Sampling regime 

Sampling was undertaken approximately twice a month from September 2014 to March 2015 at all 

nine sampling sites. Three replicates were collected at each site in 100 ml amber glass bottles. pH and 

conductivity were measured in the laboratory on unfiltered samples on the day of sampling. The 

pH was measured using a Seven Easy pH meter (Mettler Toledo, Leicester, UK). The probe was 

calibrated using buffers of pH 4 and 7 at 25°C (Sigma, Dorset, UK). Conductivity was measured 

with a Primo 5 conductivity meter (Hanna Instruments, Bedfordshire, UK). All samples were 

filtered through 0.45 µm syringe filters (Triple Red, Buckinghamshire, UK), and refrigerated at 4˚C 

until further analysis was undertaken. 

5.3.4. Laboratory Analyses 

5.3.4.1. Dissolved organic carbon (DOC) 

Concentrations of DOC were determined using a Thermalox TC/TN analyser (Analytical Sciences 

Ltd, Cambridge, UK), which is a combustion and infrared detection based technique. For DOC, 

samples were acidified to pH <3 prior to analysis to remove inorganic carbon using 10 M HCl. The 

instrument was calibrated with potassium hydrogen phthalate standards. The injection volume 

was 15 µL and oven temperature 680°C. Results were corrected if standard solutions deviated by 

10% or more from the correct concentration. 

5.3.1.2. Phenolic compounds 

The phenolic component of DOC was determined using a method modified from Box (1983) and 

adapted for 300 µL microplate wells. A calibration curve was generated using a series of phenol 

standard solutions ranging in concentration from 0.5 - 10 mg/L. The assay product was detected 

by measuring the absorbance at 750 nm on a Spectramax M2e spectrophotometer (Molecular 

Devices, Wokingham, UK). 

5.3.1.3. Trihalomethane formation potential (THMFP) 

The standard trihalomethane formation potential (THMFP) analysis was used to determine the 

concentration of trihalomethanes that can be formed per unit DOC under ideal conditions, to give 

an indication of the reactivity of DOC with chlorine and its propensity to form THMs. A modified 

version of the THMFP test detailed in Nieuwenhuijsen, et al. (2000) was used. THMFP analysis was 

performed on only five sites; Main 1, Main 2, Constructed Wetland Inflow and Outflow, and the 

reservoir, and at each sampling site and time point the three replicates were combined into one and 

the DOC concentration re-measured. All samples were then diluted to 1 mg/L DOC in order to derive 
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a standardised THMFP7d value (STHMFP7d) which provides a measure of DOC reactivity. To a 100 

mL amber glass bottle the following solutions were added; 97.5 mL of diluted sample, 2.0 mL of 

0.5 M KH2PO4 buffer (to adjust the solution to pH 6.8) and 0.5 mL of NaOCl (to provide 5 mg of 

free Cl per mg of DOC). The bottles were incubated in the dark at 25˚C for 7 days to allow the 

reaction between organic carbon and chlorine to occur. After 7 days, 14.6 mL of sample was 

transferred to a 22 ml amber headspace vial and the reaction was quenched by adding 0.4 mL of 

0.8 M Na2SO3. The samples were then analysed using a solid phase micro-extraction (SPME) 

technique similar to that described by Sarrión, et al., (2000). The analysis used a Varian 450 GC, a 

Restek MX 1 column (diphenyl/dimethyl polysiloxane phase, 30m length, 0.53 mm i.d.), N2 carrier 

gas at a flow rate of 10mL/min and a 63Ni Electron Capture Detector. The oven temperature was 

held at 35°C for 9 minutes and then increased at a rate of 10°C /minute to 140°C and held for 2 

minutes and finally increased to 180°C and held for 3 minutes. The injector temperature was 

290°C and the detector temperature 300°C. Trihalomethane calibration solutions were made 

from a stock solution containing 2000 µg/mL of each of the 4 THMs; chloroform (CHCl3), 

bromodichloromethane (CHBrCl2), dibromochloromethane (CHBr2Cl), and bromoform (CHBr3) 

(Sigma). A series of standard solutions were then prepared ranging from 1-500 µg/L. 

5.3.5. Statistical analyses 

The effect of Site (nine levels) and Date (15 levels) on each measured parameter were determined 

using two-way ANOVA and, for the Site factor only, Tukey HSD post-hoc analyses. Further statistical 

analysis was undertaken using pearson correlation to test for significant relationships between all 

dependent variables. A p value of <0.05 was used to determine significance throughout and analysis 

was undertaken in IBM SPSS Statistics v22. 

5.4. Results 

5.4.1. Land use 

The catchment areas for the seven sampled streams and reservoir are presented in Table 5.1, showing 

the much larger catchment sizes of the Main 1 and Main 2 streams and the much smaller catchment 

sizes of streams Minor 1-4 and the Constructed Wetland inflow. The land use of each of the eight 

catchments is shown in Figure 5.2. All are dominated by “Improved grassland”, from 61.1% for Main 

2 to 99.5% for Minor 1. The next most common land use types are generally “Rough grassland” and 

“Arable Horticulture”. The catchment of Main 2 is the most unique, with 13.7% of the land comprised 

of “Fen/Marsh/Swamp”, a category not found in any of the other stream’s catchments. The represents 
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a large area of deep fen peat, Cors Erddreiniog SSSI, which may have an important influence on the 

water quality of Llyn Cefni. 

Treatments Site Date 

F P F P 

pH 126.72 <0.001 209.76 <0.001 

Conductivity 589.864 <0.001 411.574 <0.001 

Phenolic 216.673 <0.001 189.899 <0.001 

DOC 92.548 <0.001 92.423 <0.001 

Nitrate 2070.080 <0.001 165.395 <0.001 

Nitrite 8.803 <0.001 56.879 <0.001 

Phosphate 99.890 <0.001 207.384 <0.001 

Bromide 64.570 <0.001 16.485 <0.001 

CHCl3 0.480 0.751 11.901 <0.001 

CHCl2Br 3.711 0.006 16.382 <0.001 

CHClBr2 2.735 0.030 12.534 <0.001 

Table 5.2. Results of two-way ANOVA analysis two test effect of sites on measured parameters. 
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Figure 5.2. Shows the percent land use within the Cefni Catchment a) Main 1, b) Main 2, c) Minor 1, 

d) Minor 2, e) Minor 3, f) Minor 4, g) Constructed Wetland inflow, h) Reservoir 

 

5.4.2. Water quality 

The pH of all samples was almost always slightly alkaline (Figure 5.3a). The reservoir had the 

highest mean pH of all sites during the sampling period, at 7.82 ±0.04, and Minor 3 had the lowest 

at 7.31 ±0.04 (Figure 5.3b). There is evidence of some seasonal variation in pH; with the values 
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declining by approximately half a unit from autumn 2014 to spring 2015 across most sites. When 

comparing the influence of the constructed wetland, the outflow (7.41 ± 0.03) was slightly lower 

than the inflow (7.45 ± 0.04), but the difference was not significant (p>0.05.) Main 1 had a 

significantly lower pH than Main 2 and both had a significantly lower pH than the Reservoir (Table 

5.3). The highest mean conductivity was recorded for Main 2, at 358 ± 9.41 µS/cm and the lowest 

was for Main 1, at 219 ± 7.56 µS/cm (Figure 5.4b). The conductivity was generally stable throughout 

the sampling period apart from some very low values on 24th October 2014 for all sites (Figure 5.4a). 

For the constructed wetland, the outflow was slightly lower than the inflow, at 215.7 ± 7.04 µS/cm 

and 219.5 ± 8.92 µS/cm respectively, a difference that was significant (p<0.01; Table 5.3). The large 

difference between the mean conductivity of Main 1 and Main 2 were significantly different, whilst 

the conductivity of the reservoir was midway between both. 

 

Figure 5.3 a) time series for pH (±SEM) and b) mean pH (±SEM) of all study sites for the period 
September 2014 to March 2015. 
 

 

Figure 5.4 a) time series for Conductivity (±SEM) and b) mean Conductivity (±SEM) of all study sites 
for the period September 2014 to March 2015 
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Main 1 v Main 2 Constructed Wetland 

Inflow v Outflow 

Main 1 v 

Reservoir 

Main 2 v Reservoir 

pH <0.001  <0.001 0.001 

Conductivity <0.001 0.006 <0.001 <0.001 

Phenolic <0.001  0.017 0.048 

DOC  <0.001 <0.001 <0.001 

Nitrate <0.001  <0.001 <0.001 

Phosphate     

Bromide 0.002    

CHCl3     

CHCl2Br   0.026  

CHClBr2     

Table 5.3. Results of Tukey HSD post-hoc tests for each level of the Site factor  

Minor 1 had the highest mean DOC concentration of all sites, at 16.60 ± 1.26 mg/L and Minor 3 had 

the lowest, at 5.31 ± 0.51 mg/L (Figure 5.5b). There is some evidence of a seasonal variation in DOC, 

with generally higher concentrations in the autumn of 2014 compared to the spring of 2015 and 

particularly high concentrations on 10th September 2014 and 7th January 2015 (Figure 5.5a). The 

constructed wetland outflow (12.21 ± 0.73 mg/L) had a significantly lower DOC concentration 

than the inflow (14.90 ± 1.05 mg/L) (p<0.001). Main 1 and Main 2 had similar mean concentrations 

that were not significantly different and both were significantly lower than the Reservoir (Table 5.3). 

 
Figure 5.5 a) time series for DOC (±SEM) and b) mean DOC (±SEM) of all study sites for the period 
September 2014 to March 2015. 
 

The trend in the phenolics data was generally similar to DOC, indicating that phenolic compounds 

comprise a significant component of DOC (Figure 5.6a). This is confirmed by a significant positive 

relationship between DOC and phenolics for the data from all sites combined (R=0.75, p<0.01; Table 

5.4). Minor 1 had the highest mean phenolics concentration of all sites, at 1.13 ± 0.07 mg/L and Minor 

3 had the lowest, at 0.37 ± 0.03 mg/L (Figure 5.6b).  
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Figure 5.6 a) time series for phenolics (±SEM) and b) mean phenolics (±SEM) of all study sites for the 
period September 2014 to March 2015 
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    Table 5.4. Results of Pearson correlation analysis run on all dependent variables.

conductivity DOC phenolics Nitrate phosphate Bromide Nitrite ImprGrass RoughGrass AraHor Wood Fen Others CHCL3 CHCL2Br CHCLBr2 TTHMs

Pearson Correlation .437 .326 .408 -.602 -.552 -.486 .433 -.637 .264 .413 .542 .576 .469 -.845 -.960
*

-.985
* -.853

Sig. (2-tailed) .279 .430 .316 .115 .156 .222 .284 .090 .527 .309 .165 .135 .241 .155 .040 .015 .147

Pearson Correlation .073 .447 .063 .116 .143 -.351 -.322 -.052 .036 .273 .719
* .016 -.079 -.380 -.612 -.094

Sig. (2-tailed) .863 .266 .882 .785 .735 .394 .436 .903 .932 .514 .044 .971 .921 .620 .388 .906

Pearson Correlation .868
** -.704 .192 -.046 .041 .284 -.247 -.140 -.256 -.142 -.418 .052 .215 .013 .061

Sig. (2-tailed) .005 .051 .649 .915 .923 .496 .555 .740 .540 .738 .302 .948 .785 .987 .939

Pearson Correlation -.606 .248 .077 .015 .183 -.212 -.176 -.256 .100 -.277 .056 -.033 -.425 .052

Sig. (2-tailed) .112 .554 .856 .972 .664 .614 .677 .541 .814 .507 .944 .967 .575 .948

Pearson Correlation .499 .505 -.571 .267 -.115 -.386 -.246 -.048 .109 .427 .124 -.113 .412

Sig. (2-tailed) .208 .202 .139 .522 .786 .345 .558 .910 .798 .573 .876 .887 .588

Pearson Correlation .780
*

-.731
*

.759
* -.479 -.588 -.819

* -.403 -.391 .533 .701 .537 .543

Sig. (2-tailed) .023 .039 .029 .230 .125 .013 .323 .339 .467 .299 .463 .457

Pearson Correlation -.554 .708
*

-.819
* -.279 -.511 -.532 -.339 .349 .600 .833 .362

Sig. (2-tailed) .154 .049 .013 .504 .196 .175 .412 .651 .400 .167 .638

Pearson Correlation -.262 .306 .132 .296 .003 .524 -.614 -.524 -.128 -.611

Sig. (2-tailed) .531 .460 .755 .477 .994 .183 .386 .476 .872 .389

Pearson Correlation -.676 -.685 -.770
*

-.767
* -.424 .287 .569 .666 .302

Sig. (2-tailed) .066 .061 .025 .026 .295 .713 .431 .334 .698

Pearson Correlation .128 .197 .578 .519 -.029 -.290 -.255 -.043

Sig. (2-tailed) .763 .639 .133 .188 .971 .710 .745 .957

Pearson Correlation .638 .160 .008 -.229 -.462 -.371 -.241

Sig. (2-tailed) .089 .705 .986 .771 .538 .629 .759

Pearson Correlation .580 .167 -.272 -.557 -.718 -.287

Sig. (2-tailed) .132 .692 .728 .443 .282 .713

Pearson Correlation .339 -.121 -.419 -.642 -.136

Sig. (2-tailed) .411 .879 .581 .358 .864

Pearson Correlation -.898 -.904 -.654 -.901

Sig. (2-tailed) .102 .096 .346 .099

Wood

AraHor

RoughGrass

Fen

Others

Nitrite

ImprGrass

phenolics

Nitrate

phosphate

Bromide

Correlations

pH

conductivity

DOC
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For the constructed wetland, the mean phenolics concentration of the outflow (0.69 ± 0.06 mg/L) 

was slightly lower than the inflow (0.71 ± 0.06 mg/L), but the difference was not significant 

(p>0.05). Main 2 had a significantly higher concentration than Main 1 (Table 5.3). 

Minor 3 had by far the highest nitrate concentration, averaging 29.51 ± 0.53 mg/L and Minor 1 had 

the lowest, at 3.01 ± 0.28 mg/L (Figure 5.7b). There is a clear seasonal trend in the data, with lower 

concentrations in autumn 2014 (when the concentration in the reservoir was below the limit of 

detection) and rising throughout winter and spring (Figure 5.7a). The outflow of the constructed 

wetland had a mean nitrate concentration of 5.06 ± 0.55 mg/L, slightly lower than the inflow 

concentration of 5.95 ± 0.70 mg/L but this was not significant (Table 5.3). Main 2 had a significantly 

higher nitrate concentration than Main 1 and both had a significantly higher concentration than the 

reservoir (Table 5.3). 

 
Figure 5.7 a) time series for nitrate (±SEM) and b) mean nitrate (±SEM) of all study sites for the 
period September 2014 to March 2015. 

Minor 3 also had the highest mean phosphate concentration of all sites, at 0.83 ± 0.29 mg/L, with 

Minor 4 having the lowest at 0.06 ± 0.02 mg/L (Figure 5.8b). There was no consistent seasonal variation 

in phosphate concentrations, with high concentrations occurring sporadically for most streams (Figure 

5.8a). For the constructed wetland, the outflow (0.41 ± 0.21 mg/L) had a slightly lower 

concentration than the inflow (0.54 ±0.27), but the difference was not significant. There were 

also no significant differences between Main 1, Main 2 and the Reservoir (Table 5.3). 
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Figure 5.8 a) time series for phosphate (±SEM) and b) mean phosphate (±SEM) of all study sites 
for the period September 2014 to March 2015. 

Minor 3 also had the highest mean bromide concentration, at 0.16 ± 0.00 mg/L and Main 2 had the 

lowest, at 0.09 ± 0.01 mg/L (Figure 5.9b). There was no clear seasonal variation in bromide 

concentration across all sites (Figure 5.9a). For the constructed wetland there was a small but 

significant increase in bromide concentration from 0.10 ±0.01 mg/L in the inflow to 0.11 ± 0.01 in 

the outflow, but this was not significant (p>0.05; Table 5.3). 

 

Figure 5.9a) time series for bromide (±SEM) and b) mean bromide (±SEM) of all study sites for 
the period September 2014 to March 2015. 

The THMFP analysis generated chloroform as the dominant trihalomethane species; with much lower 

concentrations of dichlorobromomethane and dibromochloromethane (bromoform was not 

detected). There were only minor differences between the five sampling sites for all three THM 

species and no evidence of seasonality. For chloroform, there were no significant differences between 

any of the sites (Figure 5.10a). For the constructed wetland, the mean chloroform concentration of 

the inflow was 577.2 ± 37.0 µg/L and the outflow was 580.5 µg/L ± 36.8 µg/L (Figure 5.10b). For 

dichlorobromomethane, Main 1 had the highest mean concentration of all sites at 26.45 ± 2.6 µg/L 

(Figure 5.11b) and the reservoir had the lowest at 19.53 ± 3.0 µg/L. The constructed wetland inflow, 

at 19.9 ±2.02 µg/L, was lower than the outflow, at 25.25 ± 2.8, but the difference was not 

significant (p>0.05) (Figure 5.11a). The trend for dibromochloromethane was very similar. Main 1 

had the highest mean concentration, at 0.33 ± 0.04 µg/L, and the reservoir had the lowest, at 0.24 ± 
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0.04 µg/L (Figure 5.12b). For the constructed wetland, the outflow was higher than the inflow, at 

0.29 ± 0.04 µg/L and 0.23 ± 0.02 µg/L respectively, but this difference was not significant (p>0.05). 

 

Figure 5.10a) time series for Chloroform (±SEM) and b) mean Chloroform (±SEM) of all study 
sites for the period September 2014 to March 2015 
 

 

Figure 5.11a) time series for dichlorobromomethane (±SEM) and b) mean 
dichlorobromomethane (±SEM) of all study sites for the period September 2014 to March 2015 
 

 

Figure 5.12a) time series for dibromochloromethane (±SEM) and b) mean 
dibromochloromethane (±SEM) of all study sites for the period September 2014 to March 2015. 
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5.5. Discussion 

The pH of all streams was relatively constant, ranging from approximately 7.3 to 7.8, and are slightly 

basic because the sites are lowland and influenced by groundwater. The reservoir outlet had the 

highest pH; this is because of the eutrophic conditions leading to extensive algae which generate 

alkalinity and increase the pH of water (Scholz et al., 2016). DOC concentrations in the two main 

inflow streams were similar but the concentration in the reservoir was higher, therefore, DOC is being 

produced within the lake by phytoplankton and algal growth and senescence (Wetzel 2001). Rapid 

autochthonous production of DOC can occur within freshwaters as a result of eutrophication (Pierson-

Wickmann et al., 2011).  

For the constructed wetland, in contrast to the 12% increase in DOC reported at this site by Scholz et 

al. (2016), DOC decreased significantly from inlet to outlet by 18%. Furthermore, nitrate and 

phosphate only reduced by 9% and 21% respectively. These decreases were not significant and much 

lower than the 72% and 53% reductions in the concentration of these two key nutrients recorded by 

Scholz et al. (2016). The different removal rates can be attributed to the contrasting times of year in 

which the two studies were undertaken. This study mainly involved sampling in the late 

autumn/winter/early spring period, when primary production and vegetation biomass is much lower 

than during the summer. Nitrate and phosphate reductions within a constructed wetland system are 

partly due to plant uptake and this mechanism will be much reduced outside of the growing season. 

Reduced activity of plants would also explain why DOC did not increase through the constructed 

wetland in this study, as Scholz et al. (2016) linked the increase they recorded with greater inputs from 

plants.  

Although DOC concentration decreased, all five studied sites had very similar THMFP yields, with no 

significant differences recorded. This suggests that there were only minor changes in DOC quality or 

that any variability in DOC quality did not impact on how the DOC reacts with chlorine.  

5.6. Conclusion 

A eutrophic reservoir used for drinking water, its inflowing streams and a constructed wetland 

within the catchment were monitored for parameters including DOC, nutrients and THMFP. The 

main conclusion from the study is that there was no difference in the THMFP of the streams and 

no impact on THMFP of the constructed wetland. This indicates that there were no differences in 

DOC characteristic between streams in terms of reactivity with chlorine. However, there were 

large differences in DOC concentration between the streams and the constructed wetland, which 

reduced DOC concentration by 18% on average. The constructed wetland was less efficient at 
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sequestering nutrients than in the summer, highlighting the role of plants in a constructed 

wetland. It can be concluded that in the wintertime the constructed wetland is having a positive 

impact on water quality of the reservoir because it is still sequestering some nitrate and 

phosphate, but also reducing the DOC concentration of the treated inflow. Reducing the amount 

of nutrients going to the lake will lessen the algal growth in the lake and therefore decrease the 

amount of DOC being formed within the lake.  
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Chapter 6: Simultaneous analysis of water quality and temperature 
on the stability of trihalomethanes in water samples during 
prolonged storage  

 

6.1. Abstract 

The presence of natural dissolved organic carbon (DOC) in drinking water supplies can cause a number 

of issues during water treatment due to its effect on aesthetics such as taste and odour and its reaction 

with chlorine, resulting in the formation of disinfection by-products (DBPs). These compounds include 

haloacetic acids (HAAs) and the four trihalomethanes (THMs), trichloromethane, 

bromodichloromethane, dibromochloromethane and tribromomethane. THM compounds have 

carcinogenic properties and can potentially cause damage to the reproductive system. DBP formation 

is a complex process and depends on a number of factors such as DOC concentration, chlorine dose, 

water temperature, reaction time and pH. The two DOC reactants (humic and fulvic acid) are the 

principal THM precursors. In the UK DOC concentrations have increased by 91% in freshwater rivers 

and lakes during the last 15 years partly due to the destabilisation of peatland soils resulting from 

climate change. This rising trend represents a challenge for water companies who need to minimise 

the formation of harmful DBP compounds. This project investigated the effect of THMs storage at 4°C 

and room temperature on the formation of THMs for selected surface waters (Nant-y-Brwyn stream 

and Cefni reservoir) in north Wales. Quantitative analysis of THMs (CHCl3, CHCl2Br, CHClBr2 and CHBr3) 

was carried out using a solid phase micro extraction (SPME) technique. 
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6.2. Introduction 

During conventional water treatment processes, a disinfectant, usually chlorine, is added to 

reduce microbial contamination and the occurrence of waterborne diseases. Before widespread 

disinfection of potable water supplies was undertaken outbreaks of diseases such as typhoid and 

cholera were common throughout the world (USEPA, 1998). In developed areas of the world 

where water treatment is undertaken at an industrial scale the occurrence of such water-borne 

diseases has virtually ceased (Richardson, 2003), but contaminated water is still a big issue in the 

developing world. In chlorinated drinking water supplies, other compounds do exist which are a 

threat to human health. When water containing natural organic matter (NOM) comes into 

contact with chlorine a suite of halogenated disinfection by-products (DBPs) are formed, some of 

which are known to be carcinogenic (Jimenez et al., 1993; Sketchell et al., 1995; Palacios et al., 

2000). DBPs are organo-halide compounds and the most common are the trihalomethanes 

(THMs), which are simple derivatives of methane formed when three of the hydrogen atoms are 

replaced by a halogen (Peterson et al., 1993). DBP concentrations in final, treated water depend 

on several factors, such as the concentration and characteristics of NOM, chlorine dosing amount, 

water temperature and pH (Rodrigues et al., 2007). The humic and fulvic acids component of 

NOM is considered to be the principal type of precursor to DBP formation (Bond et al., 2009). 

DBPs form either by the oxidation of carbon-carbon double bonds or by substitution, where a 

functional group is replaced by a halogen (Westerhoff et al., 2004). Higher temperatures lead to 

higher DBP yields, so the concentration of DBPs formed at water treatment works in summer are 

usually higher than in winter (Williams et al., 1997). Derivatives of chloro-bromo DBPs are formed 

when the bromide ion is present e.g. bromoform (Pourmoghaddas and Stevens, 1995). The four 

main THM species are trichloromethane/chloroform (CHCl3), bromodichloromethane (CHCl2Br), 

dibromochloromethane (CHClBr2) and tribromomethane/bromoform (CHBr3), with chloroform 

generally being the dominant THM in most chlorinated water supplies (Sketchell et al., 1995). In 

addition, pH influences the species of THMs formed; at pH 4–6 CHCl3 tends to dominate, but 

when the pH increases then relatively more brominated THMs are produced, assuming a 

sufficient supply of bromide (Italia and Uden, 1992). Regulatory bodies have set limits for final 

water THM concentrations because of the potential effects on human health. In the UK, the safe 

limit for total THM concentration is 100 μg/L, whilst the Environmental Protection Agency in the 

United States regulates the sum of the four THMs to a limit of 80 μg/L and also regulates another 

class of DBPs, haloacetic acids (HAAs) (Goslan et al., 2009). THM formation is minimised in 

chlorinated water supplies through water companies removing as much DOC as possible prior to 

disinfection, using techniques such as coagulation and filtration. DOC removal is the costliest 
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stage of water treatment, but it is impossible to remove all DOC, therefore some THM formation 

will always occur. The standard method for THM analysis is the US EPA, Method 524.2 

(Measurement of purgeable organic compounds in water by capillary column gas 

chromatography/mass spectrometry) and states that samples for VOC analysis, including THMs, 

must be stored in the dark at 4°C and analyzed within 14 days of collection (Eichelberger et al., 

1998), although the reference does not state why. However, Pepich et al. (2004) found that HAAs, 

which are similar to THMs, will remain stable for at least 28 days. However, we are not aware of 

any studies that have assessed the effects of temperature and water quality on THM stability. 

6.3. Methods 

6.3.1. Study site and sampling 

Water samples were taken from two contrasting sites in north Wales on 4th February 2016 (Table 

6.1). They were an oligotrophic, upland stream that drains predominantly blanket bog (the 

Migneint-Arenig-Dduallt Special Area of Conservation); the Nant-y-Brwyn stream (UK grid ref SH 

79147 45267) and the outflow of a shallow, lowland, eutrophic lake, Llyn Cefni, which receives water 

that drains agricultural land (UK grid ref SH 44611 77150). One litre of sample was collected in a glass 

amber bottle at both sites. 

6.3.2. Laboratory analyses 

pH and conductivity were measured in the laboratory on unfiltered samples on the day of sample 

collection. pH was measured using a SevenEasy pH meter (Mettler Toledo, Leicester, UK), which 

was calibrated using buffers of pH 4 and 7 at 25°C (Sigma). Conductivity was measured with a 

Primo 5 conductivity meter (Hanna Instruments, Bedfordshire, UK). Both samples were then 

filtered through 0.45 µm cellulose acetate filters, acidified to pH 2.5 and refrigerated at 4˚C until 

further analysis was undertaken. 

6.3.3. Trihalomethane formation potential (THMFP) 

The samples were chlorinated using a modification of the standard THM formation potential 

(THMFP) test. Samples were diluted so they contained final concentrations of 1 mg/L DOC after 

adding the appropriate volumes of chlorine dosing solution (5 mL/L of 0.28 mM sodium hypochlorite) 

and buffer (0.5 M monopotassium phosphate) added to generate THMs under standard conditions. 

The dose of sodium hypochlorite was sufficient to provide 5 mg of free Cl per mg of DOC. The 

samples were then incubated at 25°C in the dark for 7 days and quenched with 0.4 mL of 0.8 M sodium 
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sulphite to prevent continued THM formation. Each of the 1 L samples were then divided into 66 

separate aliquots by pouring 15 mL of the sample into a 22 mL amber headspace vial. Half of the 

samples for each site were then stored in a refrigerator at 4°C and the other half in an oven at 25°C. 

At time zero, three vials were removed for each site and temperature conditions (12 samples in total) 

and analysed for their THM concentration. This process was repeated every week for four weeks and 

thereafter every two weeks until 11 weeks had passed. The concentration of THMs was measured 

using a solid phase micro-extraction (SPME) technique similar to that described by (Sarrión et al., 

2000). The technique uses a Varian GC 450, a Restek MX-1 column (diphenyl/dimethyl 

polysiloxane phase, 30 m length, 0.53 mm i.d.), N2 carrier gas at a flow rate of 10 mL/min and a 

63Ni Electron Capture Detector. The oven temperature was held at 35 °C for 9 minutes and then 

increased at a rate of 10 °C /minute to 140 °C and held for 2 minutes and finally increased to 180 

°C and held for 3 minutes. The injector temperature was 290 °C and the detector temperature 

300 °C. Trihalomethane calibration solutions were made from a stock solution containing  2000 

µg/mL of each of the 4 THM species; chloroform, bromodichloromethane, dibromochloromethane 

and bromoform (Sigma). A series of standard solutions were then prepared ranging from 1-500 

µg/L. 

6.3.4. Statistical Analysis  

The effect of water type (two levels; oligotrophic and eutrophic) and temperature (two levels; 4 °C 

and 25 °C) on each measured parameter were determined using two-way ANOVA and Tukey HSD post-

hoc tests in SPSS v22 (IBM Statistics). Most data met the homogeneity and normality assumptions, 

which tested using the Bartlett and Shapiro Wilk tests, but those that did not were log-transformed. 

A p value of 0.05 used to determine significance. 

6.4. Results  

The oligotrophic water had a lower pH, conductivity and DOC concentration compared to the 

eutrophic water (Table 6.1). The greater SUVA value of the oligotrophic water indicates that the DOC 

is comprised of proportionally more recalcitrant, aromatic and higher molecular weight moeities than 

the eutrophic water. Mean concentrations of chloroform and dichlorobromomethane for each site 

and temperature following the THMFP treatment proceedure on each sample and 11 weeks of storage 

are presented in Table 6.2 and statistical analysis in Table 6.3.  
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 Oligotrophic Eutrophic 

pH 4.57 7.01 

Conductivity (µS/cm) 39 253 

DOC (mg/L) 4.55 19.3 

SUVA (L-mg/m) 4.06 3.17 

Table 6.1. Water quality of sampling sites. 
 

Trihalomethane species Temperature 

(°C) 

Oligotrophic Eutrophic 

Chloroform (µg/L) 
4 467.8 (+56.93) 212.5 (+20.39) 

25 474.3 (+44.63) 204.6 (+18.63) 

Dichlorobromomethane 

(µg/L) 

4   9.15  (+2.36)   7.32  (+2.35) 

25   8.89  (+2.59)   6.34  (+1.64) 

Table 6.2. Average THM concentration over 11 weeks of sample storage for two contrasting water 

types and at two storage temperatures. 
 
 
 
 
 
 
 
 
 

Table 6.3. Results of one-way ANOVA analysis two test effect of sites on measured parameters  

The mean concentration of chloroform for the oligotrophic site samples was more than twice as high 

as the eutrophic site samples, with a highly significant difference for the Site factor (F=1103.6; 

p<0.000) but there was no significant temperature effect (F=0.009, p>0.05) and no significant 

interaction effect (F=0.820, p>0.05). For dichlorobromoform, the mean concentrations were more 

similar between the two sites but there was still a highly significant effect of Site (F=22.4, p<0.000), 

with the oligotrophic site having approximately 32% higher mean dichlorobromoform formation. 

There was also no significant temperature effect (F=1.82, p>0.05) or interaction effect (F=0.600, 

p>0.05) for this THM species.  

The general trend over time for chloroform for the oligotrophic water was for concentrations to 

increase during the first thee weeks of sample storage but to then decrease to week 0 levels (not 

statistically different) for the next few sample weeks (Figure 6.1). For the eutrophic water, 

concentrations showed much less variation over the 11 weeks of storage.  

For the oligotrophic water samples at 4°C, the chloroform concentration was 436.4 + 17.37 µg/L at 

week 0 and 419.6 + 31.74 µg/L after 11 weeks of storage, a difference of just 16.8 µg/L that was not 

significantly different (p>0.05). The chloroform concentration was significantly higher than the week 

0 concentration on three occasions; week 1 (504.7 + 29.45 µg/L; p<0.05), week 2 (548.9 + 8.9 µg/L; 

p<0.001) and week 3 (532.3 + 29.74 µg/L; p<0.01). Differences between weeks 5, 7 and 9 compared 

  CHCl3 CHCl2Br 

Temperature F value 0.009 1.82 

P value 0.925 0.180 

Site F value 1103 22.4 

P value 0.000 0.000 

Temperature 

x Site 

F value 0.820 0.600 

P value 0.368 0.441 
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to week 0 were not significant (p>0.05). The trend for the 25 °C treatment was very similar to the 4 °C 

treatment, but only the week 2 and week 3 samples were significantly different to week 0 (445.9 + 

35.8 µg/L for week 0 vs. 522.31 + 7.17 µg/L for week 2 and 533.6 + 20.8 µg/L for week 3; both p<0.05). 

The week 11 CHCL3 concentration was 439.5 + 18.8 µg/L, a difference of just 6.4 µg/L from week 0.  

For the eutrophic water treated samples, there was minimal variation of chloroform concentration 

over the 11 weeks of storage for either temperature. At 4°C, the week 0 chloroform concentration 

was 192.9 + 7.5 µg/L and at week 11 was 207.7 + 17.5 µg/L, a difference of just 14.8 µg/L, which was 

not significant (p<0.05). There were no significant differences between week 0 and any of the time 

points beyond week 0 for the 4 °C treatment. For the 25°C treatment, there were three occasions 

when the chloroform concentration was significantly higher than the week 0 concentration of 173.2 + 

15.6 µg/L; p<0.05; week 2 (213.1 + 10.7 µg/L; p<0.05), week 3 (220.4 + 11.1 µg/L; p<0.01) and week 7 

(222.2 + 19.8 µg/L; p<0.01). At week 11 the concentration was 199.1 + 8.5 µg/L, a difference of just 

25.9 µg/L which is not significant (p>0.05).  

For dichlorobromomethane, concentrations generally increased over the 11 week storage period for 

all four site/temperature combinations, especially over the initial 7 weeks. For the oligotrophic water 

at 4°C, the concentration was 6.02 + 0.97 µg/L at week 0 and 10.07 + 2.89 µg/L after 11 weeks of 

storage, a difference of 4.05 µg/L, but this was not significantly different (p>0.05). The 

dichlorobromomethane concentration was significantly higher than the week 0 concentration on two 

occasions; week 7 (12.67+ 0.62 µg/L; p<0.001), and week 9 (10.96 + 2.89 µg/L; p<0.05) . The trend for 

the 25°C treatment was reasonably similar to the 4 °C treatment, but only the week 7 samples were 

significantly different to week 0 (5.99 + 1.54 µg/L for week 0 vs. 13.0 + 3.47 µg/L for week 7; p<0.01). 

The week 11 dichlorobromomethane concentration was 8.07 + 1.73 µg/L, a difference of just 2.08 

µg/L from week 0, which was not significant (p>0.05).  

For the eutrophic water at 4°C, there were three occasions when the dichlorobromomethane 

concentration was significantly higher than the week 0 concentration of 5.00 + 0.39 µg/L; week 7 

(10.17 + 1.03 µg/L; p<0.01), week 9 (8.67 + 1.24 µg/L; p<0.05) and week 11 (10.7 + 1.79 µg/L; p<0.001). 

For the 25°C treatment, there were two occasions when the dichlorobromomethane concentration 

was significantly higher than the week 0 concentration of 4.33 + 0.56 µg/L; week 7 (9.23 + 2.08 µg/L; 

p<0.001) and week 9 (7.14 + 0.44 µg/L; p<0.05). At week 11 the concentration was 6.98 + 0.95 µg/L, a 

difference of 5.8 µg/L from week 0, but this was not significant (p>0.05). 
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6.5. Discussion  

The current study was designed to assess long term stability of THM compounds in water samples and 

to test for differences in storage temperature (4°C vs. 25°C) and water type (nutrient poor 

(oligotrophic) vs. nutrient rich (eutrophic)). The preservation of organic compounds in water samples 

is a complex issue due to the potential for microbiological degradation. For THMs, if samples cannot 

be analysed for some time following the 7 day incubation period it is important to quench samples to 

inhibit further THM development and because THMs are reasonably volatile it is important to consider 

how the samples are stored. 

6.5.1. Storage effects 

Over an 11 week period the majority of the weekly measurements of the concentrations of key DBPs 

showed no statistical differences from the week 0 values, regardless of water source types or storage 

temperatures (Figures 6.1 & 6.2). However, there are statistically significant higher concentrations of 

both chloroform and dichlorobromomethane for some weeks prior to week 11, especially weeks 1, 2 

and 3 for chloroform for the oligotrophic site. This suggests that there are aspects of the chemistry of 

these samples post quenching that is not well understood. From an analytical perspective these results 

suggest that to get reliable data either perform the concentration analysis immediately following the 

standard 7 day incubation period and quenching or store them for between 4 – 11 weeks.  

 
Figure 6.1. Chloroform concentrations following THMFP procedure during sample storage for two 
contrasting water types stored at two different temperatures for a total period of 11 weeks. 
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Figure 6.2. Dichlorobromomethane concentrations following THMFP procedure during sample 
storage for two contrasting water types stored at two different temperatures for a total period of 11 
weeks. 

6.5.2. Oligotrophic v Eutrophic THMFP 

The formation of chloroform and dichlorobromomethane was significantly greater for the oligotrophic 

water compared to the eutrophic water. This result was also reported by Scholz et al. (2016). The 

catchment of the sampled oligotrophic river is dominated by blanket bog peat, which is rich in organic 

carbon. Freshwaters that drain these areas tend to be high in DOC and the DOC relatively high 

molecular weight and high in aromatics. The eutrophic site is high in nutrients due to intensive farming 

practises within the catchment, occasionally leading to algal blooms within the reservoir and the 

generation of low molecular weight DOC. The differences in SUVA (an indication of DOC molecular 

weight/aromaticity) between the two sites can at least partly explain their differences in terms of 

THMFP. Related studies show that generally SUVA was lower for the eutrophic water (3.13 ± 0.04) 

(Scholz et al., 2016), suggesting a less aromatic DOC than the oligotrophic water (4.06 ± 0.37) (Chapter 

2). The oligotrophic DOC would have a higher proportion of humic compounds, which have a higher 

surface charge, compared to the more fulvic rich eutrophic water DOC (Sharp et al., 2006). However, 

studies demonstrate that THMs are also formed by non-aromatic molecular structures (Weishaar et 

al., 2003; Qunsham et al., 2008; Fram et al., 1999).  
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High SUVA (more than 4 L/mg/m) indicates the presence of humic matter due to the aromatic and 

hydrophobic compounds leading to high THMFP, while SUVA between 2 to 4 L/mg/m indicates the 

presence of a mixture of humic and non-humic matter and a mixture of hydrophobic and hydrophilic 

material, leading to relatively lower THMFP. By contrast, SUVA less than 2 indicates the presence of a 

high fraction of non-humic matter of hydrophilic character with low UVA, leading to the lowest THMFP 

(PEA 2012).  

There have been a number of studies that have examined the correlation between SUVA and 

formation of different types of DBP (Goslan et al., 2002). When studying samples from the same water 

type there is generally quite a strong correlation between SUVA and the various DBP types (Hua et al., 

2015). However a number of studies have provided evidence that this is not the case when a variety 

of water sample are tested. Different species of DBPs have been found to exhibit different 

relationships with SUVA (Hua et al., 2015). For instance, a strong positive relationship between SUVA 

and trihaloacetic acids (R2 = 0.80) was found, and between SUVA and total organic halogens (R2 = 

0.75). However, weaker correlations (R2 = 0.50) were found between SUVA and trihalomethanes, and 

between SUVA and dihaloacetic acid (R2 = 0.19), during chlorination. This work shows that, overall, 

SUVA is a good indicator for unknown total organic halogens, however, an overall average of 56% for 

unknown total organic halogens, di- and tri- halo acetic acids and trihalomethanes together is classed 

as a weak correlation (Hua et al., 2015).  

6.6. Conclusions  

The hypothesis of his study was that the trihalomethanes concentrations will not be stable after two 

weeks of storage and the change in concentration will be greater at 25°C compared to 4°C and for the 

nutrient-rich water compared to the nutrient-poor water. The data we have analysed indicates this 

hypothesis is true for all of the chloroform samples regardless of site/temperature apart from the 

eutrophic water samples stored post treatment at 4oC. However, for the dichlorobromomethane 

there is no significant difference in concentration of the samples from any site/temperature 

combination for up to 6 weeks. 
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Chapter 7: Final Discussion  

7.1. Effect of drought conditions on DOC 

Chapters 2, 3 and 4 examined the impact of drought conditions on peatland and freshwater dissolved 

organic carbon (DOC) concentrations, quality and propensity to form trihalomethanes (THMs) 

following experimental chlorination. Chapter 2 assessed the differences in water quality and DOC 

between a series of man-made drainage ditches and a natural stream in the peat-dominated 

Upper Conwy catchment over a 12-month period. Chapter 3 focused on the Plynlimon study site 

in Mid-Wales, where soil porewater was sampled for 6 months from a control area and an area 

subject to long-term drought and assessed for DOC concentration and quality. Chapter 4 involved 

the collection of peat cores from two sites (fen from Cors Eddreniog, Anglesey, and bog from 

Migneint, Conwy, both UK) and application of a drought and re-wet treatment, again with DOC 

as the main focus. These studies have addressed the impact of drained/drought conditions on 

peatland carbon (Freeman et al., 1998; Freeman et al., 2004). This section synthesises some of the 

key results from these chapters. 

7.1.1. General water chemistry 

 

Figure 7.1. mean pH of all drought/drainage experimental sites. 

The mean pH value of all the sites, shown in Figure 1, demonstrate that all sites were acidic, ranging 

from 6.39 ± 0.16, in the fen drought conditions to 4.07 ± 0.15 in Conwy ditches. The data suggests that 

the fen has the highest pH, due to the fact that fens mainly receive water from nutrient-rich 
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groundwater (Leonard et al. 2013). Conwy ditches demonstrated the lowest average pH, due to the 

site deriving it’s water from nutrient-poor precipitation and due to organic acids leaching from the 

drained peat soils. 

 

Figure 7.2. Mean specific conductivity of all drought/drainage experimental sites 

For conductivity, the greatest mean value of all sites was 594.0 ± 87.3 µS/cm for the fen drought 

conditions and the lowest was for the Plynlimon control, at 26.7 ± 1.88 µs/cm. This again reflects the 

different sources of water for the different sites. 

7.1.2. Dissolved Organic Carbon (DOC) concentrations 

 

Figure 7.3. Mean DOC concentrations of all drought/drainage experimental sites  
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The highest mean concentration of DOC of all sampling sites was measured in the bog cores under 

control conditions (97.6 ± 25.0 mg/l) and the lowest mean concentration was recorded in Plynlimon 

under drought conditions (11.89 ± 0.45 mg/l). Peatlands represent a major terrestrial store of carbon 

(Limpens et al. 2008), that has formed due to the incomplete decay of plant material in waterlogged 

conditions (Billett et al., 2010). Climate change is expected to lead to an increase in the frequency of 

drought and this will not only affect the ability of peatlands to continue to sequester carbon, but will 

also lead to the release of significant amounts of stored carbon to freshwaters (as DOC) and the 

atmosphere (as CO2) (Bates, 2008; Clark et al., 2010; Evans and Warburton, 2010; Fenner and 

Freeman, 2011; Gallego-Sala and Prentice, 2013). 

Mean DOC concentrations across the control sites over the entire period of sampling (from June 2013 

– June 2016) were as follows: Bog > Fen > Plynlimon control > Conwy Stream. The drivers of the 

observed differences between the sites could be attributed to the topography, soil type and extent of 

anthropogenic influences within the catchments, and as well as external influences such as rainfall 

and temperature (Fenner et al., 2005; Worrall et al. 2003; Wetzel et al. 1992). There were seasonal 

variations in DOC concentration of the sites, most noticeably increasing during the autumn months 

(Figure 2.4a, Chapter 2). This effect is largely driven by vegetation dieback and senescence within the 

catchments and the subsequent release of degradation products and DOC during the increasing 

autumn rainfall (Scott, 2001; Dawson et al., 2008). During drought conditions (for example, at 

Plynlimon) reduced rainfall and water table drawdown occurs, leads to an increasing influx of oxygen 

into the upper peat layers. However, rising temperatures throughout spring and summer can lead to 

increased microbial activity, which can lead to a further increase in degradation products (Freeman et 

al., 2004). For the peat core experiment, DOC concentrations were higher in the bog than in the 

fen and higher in the control than in the drought, as was previously found by Lin et al. (2012) and 

Tfaily et al. (2013).  

We observed slightly greater losses of DOC for the fen cores compared to the bog cores when 

subject to experimental drought conditions. There was a 39.4% reduction in DOC for the bog and 

a 44.8% reduction for the fen. This suggests organic matter and DOC from bogs is more resistant 

to degradation than in fens. This agrees with the findings from Corbett et al. (2013), and the reason 

for this could be due to the difference in the vegetation and therefore substrate quality. 

Sphagnum moss, much more prevalent in bogs than fens, is resistant to decomposition and bogs 

generally have higher concentrations of phenolic compounds (Lang et al., 2009). In addition, higher 

porewater sulphate concentrations in the droughted fen peat (due to higher sulphur availability from 

ground water) may have lowered pH and reduced DOC solubility (Clark et al., 2012), therefore 
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resulting in lower DOC concentrations. The decline in the concentration of DOC during drought (see 

Figure 4.2, Chapter 4 and Figure 5.3, Chapter 5), has been reported previously; Freeman et al. (2004), 

Ellis et al. (2009), Fenner and Freeman (2011) and Clark et al. (2012). However, some other 

studies have reported an increase in DOC during drought (Fenner et al., 2009; Lou et al., 2014; 

Strack et al., 2008; Worrall et al., 2004). This could be due to acidification which leads to a decrease 

in the solubility of DOC. 

 

Figure 7.4. Mean phenolic concentrations of all drought/drainage experimental sites  

The highest mean phenolic compound concentration of all sites was the bog under control conditions 

(13.3 ± 3.0 mg/l) and the lowest was Conwy ditches (1.32 ± 0.17 mg/l). 

Generally, the concentration of phenolic compounds mirrored that of DOC, indicating that phenolic 

compounds are a significant fraction of total DOC at these study sites. For all three experiments, the 

phenolic concentration was lower in the drought/drained treatment than the control. This finding 

agrees with the study of Fenner and Freeman (2011) who state that under conditions of lowered water 

table in peat, oxygen ingress results in the degradation of phenolic compounds and the pool of 

phenolic DOC can take a long time to recover after rewetting. The data from the peat core 

experiment (chapter 4) shows that the concentration of phenolic compounds in porewater was 

higher in the bog than the fen. This could be due to the greater activities of phenol oxidase in the 

fen (Jassey et al., 2011). Moreover, bacterial activity in fens have been reported to be higher than 

in bogs (Ausec et al., 2011), suggesting that the bog conditions are less suitable for phenolic-

degrading microbes.  
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Additionally, Figure 5.4 in chapter 5, demonstrates that there was a higher phenolic 

concentration in control conditions as opposed to drought conditions, presumably due to the 

increase in the activity of phenol oxidase (e.g. Fenner and Freeman, 2011), although some previous 

studies have demonstrated a weak relationship between phenol oxidase activity and phenolic 

concentration (Romanowicz et al., 2015). It is suspected that oxygenated conditions in the drought 

treatment will have resulted in the complete breakdown of soil organic matter to CO2, rather 

than incomplete breakdown to DOC, due to the opening of the enzymic latch (Fenner and 

Freeman, 2011; Freeman et al., 2001). 

Figure 2.6 (a and b) in Chapter 2 shows a higher phenolic concentration in the stream and ditches 

than Llyn Conwy. This could be due to the peat soils from which the waters are draining providing a 

higher phenolic concentration, however, it would be reasonable to assume that all water in Llyn 

Conwy would have been derived from this peat rich catchment, and therefore the phenolic 

concentration should also be high. The low phenolics concentration is likely a dilution effect taking 

place here, due to the site’s high rainfall and the large volume of the lake, and a larger surface area of 

the lake compared to the stream would result in a greater exposure to UV radiation from sunlight, 

which has been shown to degrade phenolic compounds (Jones et al. 2016). Figure 2.8 (Chapter 2) 

shows that the strong positive relationship between DOC and phenolic concentrations applies for the 

ditch and stream samples but less so for the lake, therefore indicating that the DOC within the lake 

contains proportionally less phenolics.  

7.1.3. Dissolved Organic Carbon (DOC) quality 

 

Figure 7.5. Mean Specific Ultraviolet Absorbance (SUVA) concentrations L mg m-1 of all sites during 

study period. Error bars represent variance in data. 
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The characteristics of DOC of all sites were analysed by measuring specific UV absorbance (SUVA). 

The highest mean SUVA value was in the Fen under control condition (6.63 ± 2.25 L/mg-m) and lowest 

SUVA value was in Plynlimon under drought conditions (1.69 ± 0.09 L/mg-m). 

SUVA is an important measurement in drinking water treatment because it indicates higher molecular 

weight, aromatic compounds which some previous studies have shown have a higher propensity to 

form some of the regulated DBPs upon chlorination, such as THMs (Bond et al., 2011; Volk et al., 2002; 

Kitis et al., 2002). The SUVA value is used to describe the aromaticity of DOC (Weishaar et al., 2003) 

and it is an important predictor for DOC removal during coagulation, and DBP formation in water 

treatment plants (Matilainen et al., 2011). Ritson et al. (2017) shows that high SUVA values were 

observed in peat soil. In chapter 4, SUVA was higher for the fen compared to the bog and for the 

control compared to the drought (see Figure 4.5, Chapter 4). SUVA for the drought treatment was 

significantly lower than the control for the Plynlimon experiment (Figure 5.5, Chapter 5). This could 

be due to the fact that drought conditions enhance the microbial breakdown of organic matter 

and DOC.  

The data from Chapter 2 figure 2.9 shows that there is a good relationship between DOC and SUVA254 

(R2=0.50) and this finding agrees with Chow et al., (1999), Bell-Ajy et al., (2000) and Singer and Bilyk, 

(2002) (R2=0.88). 

7.1.4. Trihalomethane Formation Potential (THMFP) 

 

Figure 7.6. Mean total THM formation potential concentrations (µg/L) of all sites. Error bars represent 
variance between data.  
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The highest mean THMFP value was observed in the Conwy Stream, at 128.51 ± 76.55 µg/L and lowest 

was in the Fen Control at 48.8 ± 4.77 µg/L. 

The THMFP for Conwy was higher in the natural stream than the man-made drainage ditches, although 

the difference was not significant (Chapter 2, figure 2.7). The trihalomethane formation potential 

(THMFP) in the porewater was generally lower during drought conditions (42.7 ± 4.89 CHCl3 µg/mg 

DOC) than control (48.6 ± 5.57 CHCl3 µg/mg DOC), but the effect was not significant (see chapter 3, 

Figure 3.6). The mean THMFP in Figure 4.6 (Chapter 4) was higher for the drought (57.75 ± 20.33 µg 

CHCl3/mg DOC) over the control (54.59 ± 23.63 µg CHCl3/mg DOC) treatment, but this effect was 

not significant. There are no previous studies examining drought effects on THMFP and the lack 

of significant drainage/drought treatment effects on THMFP was surprising, given the significant 

changes in DOC quality that were observed in chapters 2, 3 and 4. Our hypotheses all stated that 

any changes in DOC quality should affect THMFP yields. Our data shows no relationship between 

SUVA and THMFP for any chapter, a finding only found in one other paper; Weishaar, et al. (2003) 

(R2= 0.4153). Others studies show significant relationships between the two parameters, including 

Ma et al. (2013), who reported a strong relationship between SUVA254 and THMFP (R2= 0.993). High 

SUVA should indicate high THMFP because highly hydrophobic and aromatic compounds absorb 

ultraviolet radiation most strongly and also react readily with chlorine (Ma et al., 2013: Zhao et 

al., 2006).  

7.2. Effect of nutrient status on DOC 

 

Figure 7.7. mean pH of all Conwy stream and Cefni site. 
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The mean pH value of all the sites in chapters 2-4 (Figure 7.1) were acidic. By contrast, the eutrophic 

Cefni was basic with a mean pH of 7.49 ± 0.048, much higher than the oligotrophic Conwy stream, 

which was acidic (5.2 ± 0.138). The higher pH in the Cefni is due to the greater influence of 

groundwater and because algae generate alkalinity (Leonard et al. 2013).  

 

Figure 7.8. Mean specific conductivity for Conwy stream and Cefni site. 

The mean conductivity was greater at all Cefni sites (252.98 µs/cm ± 8.230) than in the Conwy stream 

(39.03 µs/cm ± 2.416). Again, this is likely to be due to the influence of groundwater.  

 

Figure 7.9. Mean phenolics concentrations of stream and Cefni experimental sites.  
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The highest mean concentration of phenolics was in Conwy stream 2.34 mg/L ± 0.24 and the lowest 

was in Cefni 0.67 mg/L ±0.05. This is likely to be due to the leaching of phenolic compounds from the 

peat substrate in the Conwy catchment. 

 

Figure 7.10. Mean DOC concentrations of stream and Cefni experimental sites.  

The highest mean concentration of DOC was in Conwy stream 12.69 mg/L ± 1.209 and the lowest was 

in the Cefni 11.09 mg/L ± 0.79. Despite this, the Cefni had the highest THMFP per mg DOC (Figure 

7.12), reflecting its higher reactivity.  

 

Figure 7.11. Mean total THM formation potential concentrations (µg/L) of stream site compared to 
Cefni site. Error bars represent variance between data. 
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Previous studies show that Llyn Cefni has consistently high DOC concentrations year round, resulting 

in higher THM formation, and published works show that compliance for THMs at this site has been 

historically poor (Balch, 2005). Our data suggest that the relationship between THMFP (µg/mg DOC) 

and DOC concentration appears to be random.  

7.3. Impact of thesis findings 

Environmental issues, most importantly climate change, are not the only concern relating to the issue 

of rising DOC in freshwaters. It can also lead to higher treatment costs in water treatment plants, 

and/or higher potential disinfection by-product formation. It is important to control or reduce the 

concentration of THMs in finished water. This can be achieved most effectively by removing DOC prior 

to chlorination. 80-100% DOC removal can be achieved using membranes (Fu et al., 1994; Lin et al., 

1999). Other studies have shown that coagulation by aluminium sulphate can remove 10-40% of DOC 

(Volk et al., 2000), 40-60% by ferric chloride (Dennett et al., 1995) and ozonation (Goel et al., 1995). 

7.4. Suggestions for future work 

It would be useful to investigate the cause of the difference in THMFP between bog and fen Cefni, 

control and drought samples. To achieve this it would be necessary to further analyse the 

characteristics of the DOC. Nuclear magnetic resonance (NMR) and Mass Spectroscopy could be used 

to identify specific functional groups. Another important variable is the relative importance of 

allochthonous and autochthonous sources of DOC. In the Cefni reservoir, algae is known to be an 

important source of THMFP. However, the amount of DOC produced by algae is not known. 

Quantification of different DOC sources could help to explain variations in THMFP between different 

sites. In this case, if the majority of the DOC in the reservoir is algae-derived, then the water companies 

can help the local farmers surrounding the reservoir to reduce the levels of nutrients entering the 

reservoir from the catchment which stimulates algal growth. However, if the DOC is largely formed 

outside the reservoir (allochthonous) then the water companies should invest in the management of 

Cors Erddreiniog fen in the Cefni catchment. 

  



126 
 

7.5. Final conclusion 

 Eutrophic reservoir and its inflowing streams were monitored for parameters including DOC, 

nutrients and THMFP. 

 Higher DOC concentrations in the lake than the 2 dominant inflowing streams, demonstrate 

that there is significant production of DOC from algae within the lake. 

 There was no difference in the THMFP between the streams and reservoir indicating no 

differences in DOC characteristic in terms of reactivity with chlorine. 

 The constructed wetland reduced DOC concentration by 18% on average representing an 

additional benefit. 

 The constructed wetland sequestered nutrients, removing 9 and 21% of nitrate and 

phosphate, which was presumably taken up by algae and plants within the constructed 

wetland, but the extent of sequestration was much lower than during the winter 

 The constructed wetland is benefiting the water quality of Llyn Cefni reservoir by reducing the 

nutrients going to the lake, and thereby reducing the amount of algae and DOC building up in 

the lake. 

 The DOC concentration in the different streams was highly variable, reflecting different 

process happening within each stream and its catchment.  

 The most important graph of this study shows the amount of THMs you would expect to form 

per mg of DOC and there is no difference between the main inflows and the outflow, so there 

is no impact of the constructed wetland in this respect. 

 The pH of all streams were relatively constant and ranged from 7.3 to approximately 7.8 

because the site is lowland and is influenced by groundwater. 

 The reservoir showed the highest pH because algae generate alkalinity. 

 Drought generally lowered pH, especially for the fen peat. This is because the fen receives its 

nutrients from groundwater, so cutting off the nutrient supply will reduce pH 

 Drought lowered concentrations of DOC and phenolics for both peat types. This will have 

resulted in the complete breakdown of soil organic matter to CO2, rather than incomplete 

breakdown to DOC, due to the opening of the enzymic latch. 

 The loss of DOC and phenolics due to drought can be attributed to oxygenation and improved 

conditions for decomposition in the soil. 

 Evidence of greater THMFP in the drought treatment shows that peatland drought changes 

the characteristics of the DOC to make it more likely to form THMs. However, this is more 

than offset by the much lower DOC concentrations. 
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 The DOC concentration of Llyn Conwy changed little throughout the study period, despite the 

DOC concentration of the streams and ditches varying throughout the year, because Llyn 

Conwy lake is a large lake and has a high volume. 

 The higher SUVA of the Ditches is most likely to be due to the release of more complex, 

humified DOC from the deep soil layers. 

 Long-term experimental drought in peatlands has a strong impact on porewater DOC 

concentration but no significant effect on THMFP. 
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