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SUMMARY

Gene-flow has been studied in this research from an analytical, theoretical,

and practical angle. While simple models of restricted gene-flow are tractable
analytically and can produce very accurate predictions when compared with

the results of computer simulations, models of discrete populations with

geographical structure and models of continuous populations need further
research. In particular, models of isolation by distance in a continuum are

very difficult to relate to concepts familiar to the population geneticist since
the basic concept linking continuous populations to discrete ones, the

neighbourhood size, is shown to be flawed.

Inferring gene-flow from indirect methods implies obtaining unbiased

estimators of quantities such as F-statistics. The framework for estimation

presented in this research can be used to derive unbiased estimators in

different situations, and can also help to clarify the underlying assumptions
made when making these estimates. In particular the conditions are specified

under which Nei and Chesser's (1983) and Weir and Cockerham's (1984)
estimators are most appropriate.

While analytical treatment of geographically structured populations is

difficult, F-statistics can be used to unravel levels of genetic structuring in

these populations. Methods are presented which yield ways of discriminating
between samples taken within and among breeding units, a necessary

distinction if levels of gene-flow are to be inferred. Calculations of pairwise

Fat, even in continuous populations, provide a picture of the geography of

gene-flow in the population investigated.

The methods are applied to data sets of three species, Brassica oleracea ssp.

oleracea, Beta vulgaris ssp. maritima and Nucella lapillus and lead to new

insights in the population biology of these species.
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Chapter 1

General introduction

At the onset of the century, the two scientists Hardy (1908) and Weinberg (1908)

discovered independently the basic law, or principle, of population genetics, which

predicts the fate of genotypic and allelic frequencies in idealised populations. This

principle states that, in an infinite sized Mendelian population, allele and genotype

frequencies stay constant over time and therefore, the population does not evolve.

This principle defined the basis of population genetics theory and opened the way

for the first generation of theoretical population geneticists, Wright, Fisher and

Haldane. While these three workers prepared the ground for many investigations of

known and unknown evolutionary problems, their work was difficult to follow by

biologists and was described as

'As technical a body of research as that in statistical mechanics, say, and

requiring as detailed a study' Bartlett (1955)

and

'Brilliant intuitions, daring approximations, arguments set out so briefly

that one was not always sure precisely what was being argued, however

much diluted by passages of limpid lucidity, posed a formidable task for

the reader.' Gale (1990)

Following this early work, scientists such as Kimura and Feller, in the fifties, started

a systematic examination of the writings of the founders of the subject, and have

clarified many arguments by setting them out in detail and discussing them in a

more rigorous manner (Gale, 1990).

12
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The problematic of population genetics at this time was the description and

explanation of genetic variation within and among populations. It remains its

problematic some forty years later (Lewontin, 1991).

Before the development of biochemical and molecular techniques, genetic variation

was difficult to measure since genes could only be perceived through the conspicuous

phenotype of the individuals. Despite these difficulties, Wright (1943) used

theoretical predictions to explain the genetic polymorphism of flower colour in the

desert snow Linanthus parryae, while others were focusing on the shell colour

polymorphism of the land snail Cepaea nemoralis (Lamotte, 1951,1959; Cain St

Sheppard, 1950, 1954).

The independent discovery of the application of protein gel electrophoresis to genetic

studies by Harris (1966) and Lewontin & Hubby (1966) provided direct access to an

astonishingly large quantity of variability (Lewontin, 1991) whilst it opened

passionate discussions about the evolutionary basis of this polymorphism (Lewontin,

1974; Kimura, 1983), it also provided robust data sets to which statistical methods

could be applied.

The rapid progress made by molecular biologists at the onset of the eighties opened

the doors to yet more information on the genetic make-up of species.

Genetic variation within and among populations can be described in terms of allele

and genotypic frequencies. As Wright (1931) pointed out, the proportion of

heterozygotes in the total population is a good indicator of this variation. He

developed statistics, called fixation indices or F-statistics, that partition the

proportion of heterozygotes into within and among population components. These

quantities, however, need to be estimated, since they are only based on samples of

the total population. Even if the whole set of populations were to be sampled, the

genetic sampling of gametes would still be occurring every generation. The work

that Nei (1973, 1975, 1977) and Cockerham (1969, 1973) have initiated on the

estimation of these quantities is very useful but has laid a trap for the unwary

because comparisons between quantities estimated by one or the other approach are

not valid, as will be shown in Chapter 3.

Since describing the fate of genes within and among populations is the main area of

interest, it would be of interest to define what a population is. This task was

undertaken by Crawford (1984), but a definite answer was not found. Since a

reference population is one where mating occurs at random, developing tools that
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detect such units, if they exist, could lead to dramatic improvements in the

understanding of the genetic structure of populations, as will be shown in

Chapters 4 and 5.

While of great evolutionary interest, the description and understanding of the

processes maintaining genetic variation remained for a long time the preoccupation

of relatively few biologists. The increasing awareness in contemporary society

regarding ethical questions posed by ecology and genetics makes the problem of

interest to a much wider audience. The issues raised by conservation biology have

helped to place the subject of genetic variation and its maintenance firmly in

'limelight'. Population geneticists are requested to help in understanding the risks

associated with the release into the environment of Genetically Modified Organisms.

Forensic science, particularily DNA finger-printing, is part of the apparatus used in

courts of law to determine innocence or guilt. These three examples should be

sufficient to emphasize how crucial it is that population geneticists state clearly

what can be inferred from their studies, as well as to highlight areas in which they

feel unable to make definite statements. To this end, it seems important to develop

theoretical models of structured populations, to test their predictions with

Monte-Carlo simulations using tools of an appropriate nature, and to apply these

tools to biological models of relevance to the problem.



Chapter 2

Population genetic models and

analytical solutions

2.1 Introduction

The understanding of the genetical structure of natural populations has been greatly

enhanced by the modelling of population structure. The pioneer of this approach

was Wright (1931) with his island model of population. He considered a monoecious,

diploid population with discrete (non-overlapping) generations, subdivided into an

infinite number of finite sized islands (named sub-populations, gamodemes, demes or

local populations). He focussed his attention on a one locus, two allele system. Each

island exchanges migrants at a rate m, with migrants coming from any of the other

islands. With an infinite number of islands, the allele frequencies of the total

population do not change from one generation to the next and therefore, the allele

frequencies in the migrant pool also stay constant. Migration could be haploid

(gametes) or diploid (individuals). Nagylaki (1983) showed that the type of

migration has little influence on the general outcome of the model. The island model

has been enhanced by Latter (1973), who considered a finite set of finite sized

islands. Slatkin (1985a) called this second version the n-island model. The main

difference between the n-island model and Wright's version is that allele frequencies

fluctuate in the former, leading to somewhat more complex analytical solutions than

the latter.

Kimura (1955) introduced the first geographically structured model, the

stepping-stone. Each deme can exchange migrants only with its closest neighbours.

15
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The number of neighbouring demes available for exchanges of migrants is called

connectedness in the rest of this work. A connectedness of two represents a

one-dimensional stepping-stone model and would correspond to a species living in a

linear habitat like a river bank, a sea shore, or a road edge. Increasing the

connectedness leads to two- (connectedness 4) or three-dimensional (connectedness

6/8) stepping-stone models. The higher the connectedness, the closer the model is to

an island model, which could be described as a stepping-stone of connectedness

(D — 1), D being the number of islands. Restricting migration to the nearest demes

is as unrealistic as hyper-connectedness, and an intermediate model is developed

here, called a pseudo-neighbourhood, where the probability of migrants arriving at a

deme is a decreasing function of distance from that deme.

There remains the possibility that, in reality, no truly panmictic unit (deme) may

exist. To take account of this type of population structure, another set of models

has been developed, in which no panmictic unit is assumed: the isolation by

distance, or neighbourhood model, of Wright (1943). In this model, each individual

disperses its genes according to a decreasing function of distance (the

pseudo-neighbourhood described above could be defined as a model in which demes

disperse their genes according to a decreasing function of distance). No discrete

structure is assumed, but a useful device, the neighbourhood size, can be defined: it

consists of the area from which the parents of the central individual could be

considered as if drawn at random (Wright, 1943). This area is defined as a circle of

radius 2a centred on the individual under investigation, providing that the

distribution of dispersed particles (gametes or individuals) is normal, where a is the

parent to offspring dispersal standard deviation. To implement this model, one must

make very restrictive assumptions about growth rate (Poisson distribution of the

numbers of offspring) and spatial distribution of individuals (if individuals are not

constrained to occupy intersections of a lattice grid, the population will eventually

collapse into a biological black-hole (Felsenstein, 1975)).

2.2 Necessary prerequisites.

The first step in modelling is the definition of the goals. The aim of this research is

to understand the behaviour of F-statistics as a function of biological and genetical

parameters. It is therefore useful to have a model with the maximum possible
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information. Maximum possible information in population genetics is given by the

probability of identity by descent (Malecot, 1948). The probability of identity by

descent is the probability that two alleles are descended from the same common

ancestral allele. It is usually contrasted with the probability of identity in state,

which is the probability that the two alleles cannot be distinguished by the observer.

This last probability is dependent on the devices used to detect genetic variation

(Cockerham, 1984; Cockerham & Weir, 1987).

2.2.1 Identity by descent versus identity in state.

To implement a computer program that will display the identity by descent, it is

necessary and sufficient to have all the alleles in the starting generation with a

different label. That is, if the diploid population consists of D demes and N

individuals per deme, the starting generation will contain 2DN different alleles.

All alleles in subsequent generations bearing the same label will therefore be

descended from the same unique allele of the starting generation. Mutation can be

included in this model, providing that each new mutant allele possesses a new label.

This model without mutation could be called the 2DN state model. With mutation

it is the infinite allele model (e.g. Hartl & Clark, 1989). To relate this model to

biological reality and quantify the disparity between identity by descent and identity

in state, it is possible to implement a procedure that will reduce the number of

alleles (labels) present in the starting generation. The procedure consists of

assigning at random one of k allelic states to the 2DN allele array (Figure 2.1). An

equivalence relation or mapping R(k) (Figure 2.2) between the infinite and the k

alleles is therefore defined. The mapping R(k) is then applied to subsequent

generations. It is worth noticing that this mapping is independent of population

structure, migration pattern and selfing proportion.

2.2.2 Efficient procedure to build generations.

Drawing random numbers is time consuming and should be avoided if the quality of

the results is not to be affected. Gliddon (pers. comm.) suggested that it is only

necessary to apply the genetic sampling rules to the first generation. The subsequent

generations can then be built from replicates of the first. The 2DN ordered labels of

the starting generations can also be considered as location markers. The procedure
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Figure 2.1: Reduction of the number of alleles
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Figure 2.2: The equivalence relation between identity by descent and identity in state
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Figure 2.3: location of allele prior to mating

can be described as follows (Figures 2.3 & 2.4) : the leftmost column of Figure 2.4

represents the genotypic array prior to mating. Each allele is positioned according

to Figure 2.3. The middle column of Figure 2.4 represents the genetic sampling

between generation T — 1 and T. This genetic sampling is also equivalent to a

transition matrix from a Markov chain (Hartl Sz Clark, 1989). Focussing on the top

row of Figure 2.4, position 5 and 7 (position refers to number in Figure 2.3) of

generation 1 (filled circles) are occupied by the allele in position 4 in generation 0.

The allele in position 4 at generation 0 is D, hence the presence of D at position 5

and 7 in generation 1. The same process is applied to subsequent generations. The

middle row of Figure 2.4 focusses on the outcomes of allele D: the transition matrix

between generations 1 and 2 shows that this allele could be picked either via

position 5 or position 7. Empty circles are for position 7 whilst black circles are for

position 5. Mutation can be added to this procedure, after the genetic sampling

stage. To model a multi-locus system with this procedure (with or without

recombination), a position is given to individuals rather than alleles.

The obvious advantage of the procedure described is the avoidance of at least 2DN

draws in a random number generator each generation (more if there is migration and

selfing). A rough estimate of the number of possible states of the transition matrix

is 2DN2DN (each 2DN location can be occupied by one of 2DN alleles). How many
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Figure 2.4: Equivalence between genetic sampling and transition matrix

transition matrix states one needs to generate to be sure of the reliability of the

results is still unknown, but simulations with as A ui as 5 transition matrix states

for an island model gave results similar after 100 generations to simulations where

draws were made in the random number generator each generation. Caution is

needed however for stepping-stone models: since migration is restricted to adjacent

demes, if migration is low, it is quite likely that some pairs of demes will not

exchange migrants if the number of replicates is too low. In the case of the

one-dimensional stepping-stone model, if no migration occurs between two adjacent

demes in all replicates, then the demes lying on each side of these two demes will be

effectively completely isolated. The number of replicated first generations needs

therefore to be higher for low migration and geographically structured populations.

As a result of the consideration given above, the results displayed are based on data

sets built from either 20, 50 or 100 replicates of the transition matrix.

2.2.3 Random number generators.

One of the stumbling-blocks of stochastic computer modelling is due to the

generation of random numbers. In fact, it is nearly impossible to generate a true

random sequence on a digital computer (one way would be connection to a truly
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random phenomenon such as the noise of an electronic diode, but the procedure is

not simple (Ripley, 1987)). Random number generators are in fact pseudo random,

that is, they are based on a deterministic equation that produces a random-like

sequence as output. One of the equations that has proved to be fairly reliable is the

Multiplicative Linear Congruential Generator (MLCG):

Xn+1 = (aX c) mod m, n > 0	 (2.1)

where m, the modulus, is a positive integer, a and c are both positive and less than

m and X0 is a positive integer between 0 and m (Knuth, 1981). Depending on the

choice of a, c and m, one will obtain a more or less random sequence. Figures 2.5 to

2.8 give examples of such MLCGs extracted from the literature.
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Figure 2.5: Example of a bad random

number (Park & Miller, 1988). Phase plot

Ui+1 . X-axis from 0 to 1 (total phase

space). This generator is a 16 bit version

of the infamous RANDU

Figure 2.7: Minimum standard RND ad-

vocated by Park and Miller (1988). X-axis

from 0 to 0.001. The period is long (of the

order of the modulus), but the fine grain

scale shows obvious interleaving.

2
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, 

Figure 2.6: Random number generator of

early version of Turbo Pascal (Park &

Miller, 1988). Although not as bad as

above, the lattice structure can easily be

seen. X-axis from 0 to 0.1.

Figure 2.8: Random number generator

proposed by L'Ecuyer (1988). X-axis from

0 to 0.001. This generator combines two

of the best MLGC's known.
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Figure 2.9: The result of 50000 draws in the integer random function of Turbo Pascal.

A good random number generator?

Testing the quality of random number generators is still a matter of investigation

and no less than 20 empirical tests exist. For a generator to be good, it should pass

all the tests. Figures 2.5 to 2.8 provide an empirical picture of the quality of random

number generators (L'Ecuyer, 1988). Only Figure 2.8 provides a random-like

pattern. This generator consists of the combination of two of the best 16-bit MLCG

according to L'Ecuyer (1988). The period of this generator is larger than 210 18 and

it passed all 21 empirical tests described in L'Ecuyer (1988). The Pascal code for it

is found in L'Ecuyer (1988) and is reproduced in Annex A.1.1. The generator in

Figure 2.7, advocated by Park and Miller (1988) as a minimal standard, scores quite

badly in the spectral test (L'Ecuyer, 1988), shows a fairly coarse lattice structure

and possesses a period of only 21010.

Another warning needs to be made about random number generators provided by

commercial packages: Figure 2.9 shows the results of 50000 draws in the integer

random function of Turbo Pascal Version 6.00 using 10000 as a maximum. The

results are sorted and stored in 50 classes (each of width 200). Figure 2.9 shows a

strong bias favouring low integer values. This pattern, however, is not found when

using the integer part of the real random number generator multiplied by 10000.

To generate normal and exponential deviates, the following algorithms were
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implemented (Ripley, 1987):

Exponential deviate:

1. Draw a random number between 0 and 1 from a uniform distribution.

2. The exponential deviate is the absolute value of the natural logarithm of the

random number drawn in (1). If the exponential distribution has a mean A

different from one, multiply the result of (2) by A.

Normal deviate

1. Draw two random numbers x 1 and x2 between -1 and 1 from a uniform

distribution.

2. Repeat step (1) until x 1 and x2 belong to the unit circle, that is, until the sum

of their squares .s, is less than 1.

3. Let 1 = /-21n(s)/s

4. The two normal deviates are given by x 1 1 and x21

The algorithm for the exponential deviate consists of an inversion of the exponential

function, whereas the algorithm for the normal deviate consists of drawing two

independent uniform deviates from the unit circle (polar algorithm). Although more

efficient algorithms exist (e.g Marsaglia, 1964 for a random normal deviate), the two

chosen prove satisfactory for our purposes.

2.2.4 Independence between migration and selfing

The two evolutionary forces to be dealt with in this research are migration and

selling. Migration is chosen to be gametic rather than zygotic, primarily because the

early population genetic models of population structure were based on gametic

migration. Gametic migration is found very often in nature, either in plants (via

pollen dispersal) or in animals (via exchanges of one sex between herds as in

monkeys (Chesser,1991) and whales (Amos, Barrettand Dover, 1991)).

Gametic migration means that dispersal takes place prior to mating. Under this

condition, selfed individuals could only be non-migrants, a feature that would

introduce dependence between selfing proportion and migration proportion in the
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Figure 2.10: Algorithm for independence between migration and selfing

model. The approach is therefore to implement a mixed mating model, in which

reproduction occurs first if the individual is selfed, with a probability of migration of

m/2 (because 2 alleles instead of 1 will migrate), and dispersal occurs first if the

individual is not selfed. Figure 2.10 summarises the algorithm.

2.3 Implementation of the models

The goal of this section is to describe a computer program, MODEL42, that was

developed during this research. This program integrates the different gene-flow

patterns described in the introduction and more in a single package (option 1 from

the main menu). Once the gene-flow patterns have been built and saved into a file, a

number of further options exist:

• Estimation of the average dispersal distance between parents and offspring.

This option is useful for checking that the neighbourhood size is as intended.

It will then calculate the one-way dispersal variance and give the distribution

of the different distances of dispersal. More details about this option are given

in the section on isolation by distance.
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• Building of generations following the procedure described in the previous

section. A graphical output of the number of alleles left in the population is

also given.

• Graph of the distribution of allelic frequencies per generation. Up to 5

different generations can be pictured on the screen, the x-axis representing the

frequency class and the y-axis the number of alleles in each class. This option

could be used in conjunction with the Ewens-Watterson test for neutrality

(Ewens, 1972; Watterson, 1978) to test for the effect of subdivision and

geographical structuring.

• Reduction of the number of alleles (identity by descent 	 identity in state),

using the procedure described in the previous section.

• Sampling at random the modelled population.

• Estimation of Wright's F-statistics on the samples or the total population.

• Visualisation of the genotypic composition of the population after the number

of alleles has been reduced to 2 (with more alleles, the number of colours

necessary to distinguish between genotypes becomes too large, as the number

of genotypes for k alleles is k(k + 1)/2).

As the name of the program suggests, it intends to do almost anything that can be

done in the framework of neutral models in population genetics. Hopefully, the

answers to the questions will not be as obscure as that given by the computer in The

Hitchhiker's Guide to the Galaxy, but MODEL42 lacks flexibility. It is therefore a

useful tool for demonstration or teaching purposes, but it has to be 'disintegrated'

for research purposes. In particular, the sampling procedure and the estimation of

F-statistics are better used as standalone programs.

2.3.1 Constants and variables required to construct the

first generation.

The first item that needs defining is the size of the total population. It will be a

constant over the whole program and is called MaxInd for maximum number of

individuals. The equivalent for the number of alleles is DMaxInd, twice the number

of individuals. MaxInd has to be a power of 4. In most simulations it will be 4096,
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46 . Individual genotypes are stored in a two-dimensional array of size MaxInd*2

called a field of genotypes. Two Boolean arrays also need defining, one for the

migrants and one for the selfed individuals. These arrays will be one-dimensional

and of size DMaxInd and MaxInd respectively. Population size then needs to be

entered and is called PopSize. MaxInd divided by PopSize is the number of

subpopulations NumbSp. PopSize is a power of 4, with its exponent between 0 and 6.

Other parameters that need to be entered are the migration proportion MigProp and

the selfing proportion Self Prop, both real numbers between 0 and 1. Once all these

parameters have been entered, the field of genotypes for generation 0 needs to be

initialised according to Figure 2.3. Initialisation of the two Boolean arrays for

migration and selfing is then achieved by comparing the outcome of a draw in the

random number generator to the input value of either migration or selfing. If the

random number is less than MigProp or Self Prop, the corresponding Boolean value

in the array is set to true, otherwise it is set to false. The following steps depend on

the gene-flow patterns.

2.3.2 The island model

Two different forms of the island model of populations (Figure 2.11) can be

modelled. The first is the infinite-size-continent island model, the second the

gametic-cloud island model. The difference between the two lies in the migration

pattern: in the infinite-size-continent migrants come from all the islands, including

the recipient, whereas in the gametic-cloud, migrants come from all islands but the

recipient. Both are finite island models because the number of islands is finite.

These two types of island models are compared in Takahata SE Nei (1984): the

migration proportion in the infinite-sized-continent island model is related to the

gametic cloud as follows:

rni,c
D — 1

where D is the number of demes, m i.c is the migration proportion in the

infinite-sized-continent and m lic is the migration proportion in the gametic cloud.

We can see readily that, with a large number of demes, these two proportions will be

essentially the same.

In terms of programming, the difference between the two models is that in the

infinite-sized-continent, a random number between 1 and MaxInd is drawn if the

individual is a migrant, but we repeat the procedure of drawing a random number
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Figure 2.11: The gametic-cloud finite island model of population structure

until it does not belong to the original deme in the gametic-cloud island model. For

non-migrants, a random number between 1 and PopSize is drawn and if i is the

identifier of the deme, we add to this random number (i — 1)*PopSize. The Pascal

code for the gametic-cloud island model is given below:

x:=0;

for i:=1 to NumbSp Do

For k:=1 to PopSize Do

Begin

it:=x+1;

Temp1:=Drandom(PopSize)+1;

Temp2:=Orandom(PopSize)+1;

If Not Ser[z]

Then begin

It Nielx]

Then Begin

Repeat

ilhere1:=Grandom(NaxInd)+1

Until ((liherel<=(i-1)0opSize)

or (Where1>i*Popsize));

End

Else Vherel:=(i-1)*PopSize+Temp1;

It Nie[x+NaxInd]

Then Begin

Repeat

Where2:=Grandom(taxInd)+1

Until ((iihere2(=(i-1)*PopSize)
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or (Where2>i*Popsize));

End

Else lihere2:=(i-1)*PopSize+Temp2;

End

Else Begin

If Mig-[x]

Then Begin

Repeat

Vherei:=Grandom(MaxInd)+1

Until ((Vhere1<m(i-1)*PopSize)

or (Wherel>i*Popsize));

End

Else Wherel:=(i-1)*PopSize+Templ;

Vhere2:=Whersi;

End;

Chemp2 Ex,1]:=ParChamp2 [Wherei,Grandom(2)+0;

Champ2"[x,2]:=ParChamp2 [Where2,Grandom(2)+1];

end;

in which GRandom is the random number generator, Mig" and Sel" are the Boolean

arrays of migrants and selfers, ParChamp" is the field of genotypes at generation 0

and Champ" is the field of genotypes at generation 1. The complete code for these

two procedures can be found in appendices A.4 and A.5.

The infinite-size-continent island model is intended to mimic constant allelic

frequencies over generations in the migrant pool. However, this is in conflict with

the fast procedure to build generations: as each allele in the offspring field is

determined by a random location in the parent field and allele frequencies fluctuate

over time, the allele frequencies in the migrant pool will also fluctuate. A way to

implement the infinite-sized-continent island model would be to replace migration by

mutation: each generation, a proportion PropMig of the DMaxInd alleles mutates

(migrates) to one of the DMaxInd possible allelic states. This will ensure constancy

of allelic frequencies in the migrant pool.

2.3.3 The stepping-stone model

As we have seen in the introduction, migration occurs only between adjacent demes

in the true stepping-stone model. A graphical representation of a one-dimensional

stepping-stone is given in Figure 2.12 and of a two-dimensional stepping-stone in

Figure 2.13. The initialisation procedure, as well as filling the Boolean arrays for

migration and selfmg, is done as for the island model. The difference lies in the

provenance of migrants. In a 2-dimensional stepping-stone model, we need to lay the
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Figure 2.12: 1-dimensional stepping-stone model
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field of genotypes on a 2-dimensional surface. This is done by specifying a number of

rows and columns as a function of NumbSp:

Case IumbSp of

4096 :begin numbrow:=64;numbcol:=64;end;

1024 :begin numbrow:=32;numbcol:=32;end;

266 :begin IumbRov:=16;lumbCo1:=16;end;

84	 :begin IumbRow:=8;IumbCol:=6;end;

16	 :begin NumbRow:=4;lumbCo1:=4;end;

4	 :begin IumbRov:=2;IumbCo1:=2;ond;

1	 :begin NumbRow:=1;IumbCol:=1;end;

end;

The i loop in the island model needs to be replaced by two nested loops,

corresponding to the number of rows and columns respectively. If the gamete is a

migrant, we call a procedure that randomly picks one of the 4 possible provenances:

Procedure OetOfset(Var OfsVer,OfsHor:Shortint);

var

temp, dist:byte;

begin

OfsHor:=0;

OfsVer:=0;

temp:=ORandom(4);

case temp of

0 : OfsHor:•-1;

1 : OfsHor:=1;

2 : OfsVer:=-1;

3 : DfsVer:=1;

end;

end; {Of Proc OetOfe}

However, a problem arises if the deme under consideration is on one of the field sides

and the offset causes the migrant to come from outside the field. One solution would

be to make the 2-dimensional surface a torus, so that there are no edges.

Alternatively, one could decide that if the migrant is coming from outside the field,

it is not a migrant, which will reduce the migration proportion for demes on the

edges. An option in MODEL42 lets us choose between these two options and

assign the value true or false to the Boolean Tor. The function GetNewCoord then

returns the appropriate horizontal and vertical coordinates:

Function OetIevCoord(Tor:boolean;a,Ii:integer;Ofsa:ShortInt):integer;

var Res : integer;

Begin

If Tor

Then Res: •(a+Ii-1+01sa) mod Ii
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Else Begin

IT ((a+02sa)<1)

Then Res:=Ohandou(a)

Else If ((a+Ofsa)>Ii)

Then Res:=a+Grandom(Ii-a)-1

Else Res:oa+Ofsa-1;

end;

GetIewCoord:=Res;

End; {Of Function BetIewCoord}

where a is the row or column identifier of the recipient deme, Ni is the number of

rows or columns and Ofsa is the offset obtained from the previous procedure. The

complete code for this procedure is found in appendix A.6.

Migration need not to be restricted to the nearest deme. Indeed, it is more realistic

to consider that the distribution of migrants is some decreasing function of distance

such as a negative exponential. Then, for a given proportion of migration, the

largest proportion will come from the nearest neighbour, the next largest from the

second nearest and so on so forth. The shape of the distribution can be altered by

use of the mean for the negative exponential. To allow migration to be a decreasing

function of distance, two extra parameters are required: the average of the negative

exponential Aver and the maximum distance of dispersal Dist. If we want to model

a true stepping-stone model, it is sufficient to input a large average dispersal

distance and to set Dist to 1. MODEL42 implements a 1-dimensional

stepping-stone with a negative exponential distribution of migrants, as well as a

3-dimensional stepping-stone (migrants can come from 8 directions ) with either a

half-normal distribution or a negative exponential. The procedure for 3-dimensions,

while slightly more complicated, uses the same logic as in two-dimensions. Pascal

code for these procedures can be found in appendix A.7,A.8 and A.9.

2.3.4 The isolation by distance model (IBD)

In the models of population structure considered so far, individuals have been

packaged in discrete structures called demes, within which mating occurred at

random apart from a defined proportion Self Prop of selfing. It is likely, however,

that individuals are distributed in a continuum, with a dispersal of gametes

following some decreasing function of distance. This is the isolation by distance, or

neighbourhood model in which the parameters to be specified are the male and

female standard deviations of the dispersal distance, the distribution in use being
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the normal distribution. The field of parents at generation 0 is initialised in the

same way as for the other gene-flow patterns. Different variants are then considered:

a 'true Wright' Neighbourhood model, in which coordinates of the male and female

gametes are picked from the location of the offspring, or a plant neighbourhood

model, where the coordinates of the female gamete is picked from the location of the

offspring and the coordinate of the male gamete is picked from the location of the

female gamete. Selfing could be random, that is, a function of the dispersal distance,

or fixed. If it is fixed, a female gamete is picked at random and the male gamete is

drawn from the same location if a random number is less than the proportion of

fixed selfing. The continuum can be on a toroidal or a flat surface. To avoid the

biological black-hole phenomenon (Felsenstein, 1975), individuals are located at a

fixed position on the intersection of a grid. Clumping can also be avoided with

density dependence: the denser the surrounding, the less likely it is that a seed can

germinate. Obviously, fixing individuals on the intersection of a grid is a form of

density dependence, but this limits the number of parameters required by the model.

The Pascal code for this gene-flow pattern is found in appendix A.10.

2.3.5 The pseudo-neighbourhood model

Rather than having one single individual at the intersection of a grid, we could have

a deme. This model, intermediate between the 3-dimensional stepping-stone model

with migration following a decreasing function of distance and the IBD model, has

been named a pseudo-neighbourhood model. It is equivalent to the addition of an

extra parameter, density, to the IBD model: the larger the deme, the denser the

population. As with the IBD model,. migration is not a parameter, but is deduced

from the underlying dispersal distribution of gametes: with a negative exponential

distribution of dispersal distance f (x) = A exp(—Ax), the proportion of gametes

migrating is 1 — exp(—A).

This gene-flow pattern can be implemented through sub-option 6 of option 1 in

MODEL42. The Pascal code can be found in appendix A.11.
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Table 2.1: Genotype frequencies in subdivided populations
Genotypes

AA
	

Aa	 aa

7.k

letting pi — 411 PI and adding the variable F leads to:

pooled	 p2(1 — F)	 2pv(1 —F)	 v(1 — F) -F-qF

2.4 Analytic solutions

2.4.1 The Island model of a population

Consider an infinite set of finite sized islands each composed of N diploid

monoecious individuals. Individuals within each of these islands breed at random,

apart from a proportion m of migrants drawn at random from the whole (Wright,

1943). The number of islands being infinite, the overall allele frequency is constant,

generation after generation, as is the allele frequency in the migrant pool. On the

other hand, the allele frequency in each island will be dictated by the opposing

effects of genetic drift and migration.

The overall effect of this structuring will be an alteration of the composition of the

genotypic array leading to an apparent deficit of heterozygotes in the whole

population (Waihund, 1928): consider k isolated populations of diploid, monoecious

individuals. Focussing our attention on one locus with two allelic states a and A, it

is possible to derive the expected frequencies of the three genotypes in each

subpopulation (Table 2.1).

Now suppose that the k populations are grouped together and that individuals mate
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at random. One generation is sufficient to restore panmixia and therefore, the

expected frequency of each genotype is 2 , 2TV and -e for AA, Aa and aa

respectively. The ratio of the two heterozygote proportions before and after pooling

is (1 — F). If F is equal to zero, there is no difference in Aa genotype frequencies

between the 2 generations, if F is positive, the population before pooling showed a

deficit in heterozygotes. The expression for F can be derived from the above table

by taking, for example, the frequency of AA genotypes:

Ell —1 14 p-2 ( 1 F) pF
	

(2.2)

solving for F leads to:

0.2
F = —	 (2.3)

pq
F is therefore always positive and zero only when p1 = p2 = . . . = p = . . . = Pk . As

soon as two or more isolated populations show unequal allele frequencies, the

populations considered as a whole will present a deficit in heterozygotes.

Measures of gene diversity often found in the literature are fo and Ii , the identity by

descent within and among populations respectively (Nei, 1973; Felsenstein, 1976;

Slatkin, 1985a; Slatkin 1993). The overall identity by descent, 7 is then defined as

*fo + (1 — i÷,)fi, where D is the number of demes in the population. If there is

random mating within populations, the expression for fo is simply:
D k

E 14i	 (2.4)
j.1 i=1

whereas the expression for 7 is:
k D'
= pair _ T,2
	

(2.5)
i.1 j=1

combining these results in (2.3) leads to:

F = 
fo — 7
1 — f

Structuring leads to heterozygote deficit, but in a different way from selfing. To

quantify the extent of these two deficits, the F-statistics described in Chapter 3 are

often used. Focussing first on the within-population deficit due to selfing, the

expected value of Z. at generation t can be expressed as a function of the

proportion of selfing and the value of F 3 at generation (t — 1) as follow:

Fi,	 +
2	

+ (1 — s)0
2 

(2.6)
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that is, a proportion 5/2 of individuals will carry two alleles descending from the

same allele of the preceding generation, a proportion 5/2 will carry two alleles

descending from different alleles of the preceding generation but which where copies

of a single allele in a previous generation and a proportion (1 — 5) will remain in

random mating proportions (one generation of random mating restores

Hardy-Weinberg equilibrium). Equation 2.6 can be rewritten:

= '1(1
2

(2.7)

at equilibrium, F 3  =	 and therefore

2— s
(2.8)

(Crow & Kimura, 1970).

One important feature of the above equations is that they are independent of

population size, providing that F13 is unbiased. Therefore, selfing affects the breeding

structure of the population at the genotypic level rather than the allelic level.

I shall turn now to the between-population heterozygote deficit which is due to

genetic drift. This can be expressed as a function of the variance effective size of the

sub-population, Are (see next section), the migration proportion, m and the

heterozygote deficit of the preceding generation, Fg, as follows:

1 \
= (1 — m) 2 (—1 (

2Ne s1 2Ne "t-1)	
(2.9)

(Wright, 1943). Contributions to Fat come only from non-migrants. A proportion

1/2Ne of individuals will carry two alleles descending from the same ancestral allele

of the preceding generation, whereas a proportion (2Nd — 1)/2Ne will be descended

from different alleles of the preceding generation, but which are copies of a single

allele in a previous generation in proportion Ztt_1 . An interesting feature of this last

expression appears for Ne = 1. Substituting 1 for Ne in (2.9) leads to:

Feytt = (1 — m )2 (1+ ( 1 — 1)Fatt-i)

=	 2 ( 1 + F8tt -1 )

In Comparing this with (2.7), it can be seen that (1 — m) 2 .9, at least formally.

Indeed, (1 — m)2 is the proportion of gametes 'staying' in the population and if the

population contains only one individual, this is the proportion of selfing.
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At equilibrium, Fe, = Fe,_„ which leads to:

(1 — m)2 
fiSt =	 (2.10)

2/Ve — (2N, — 1)(1 — m)2

(Wright, 1943; Crow Sz Kimura, 1970; Hartl & Clark, 1989). If terms involving m,

m2 and N em2 are considered to be small, (2.10) reduces to:

1 
Est =

	

	 (2.11)
4Nem + 1

The above approximation was made by Wright (1951) at a time when computers

were not commonplace. However, the simplicity of the expression of this

approximation made it very popular and it has been widely adopted by population

geneticists.

The concept of population effective size, Are

The notion of effective population size traces back to Wright (1931). This is a very

useful concept for comparative purposes and a practical necessity when dealing with

natural populations (Wright, 1969, p 211). Indeed, when one wishes to compare two

populations, it is necessary to define an `idealised'system, in which both populations

could be compared. This system is defined as follows (Hartl and Clark, 1989, p64):

1. diploid organism

2. sexual reproduction

3. non-overlapping generations

4. many independent sub-populations, each of constant size N

5. random mating within each sub-population

6. no migration between sub-populations

7. no mutation

8. no selection.

Any departure from these very restrictive hypotheses will lead to different

expectations for the rate of changes in homozygosity and/or the rate of allele

frequency drift. The effective size of a population is then defined as the size of an

idealised population that would show the same changes in homozygosity (inbreeding

effective size, Ni), or the same changes in allele frequencies (variance effective size,

N:) as the population under investigation. A third effective size has been defined by



1
1 — Ft = —	 ‘( — rt_1)

2N
(2.12)
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Haldane (1939) and Ewens (1979), the eigenvalue effective size (N:), where N: is

defined as a function of the largest non-unit eigenvalue of the transition matrix of

the Wright- Fisher model (Crow and Denniston, 1988).

The three effective sizes are equivalent most of the time (Crow and Kimura, 1970,

carry out an extensive comparative analysis of N! and N: and show that most of the

time they lead to the same estimate of Ne). The inbreeding effective size of a

population is defined as whatever must be substituted for N in the following formula:

where Ft is the rate of change in homozygosity of the population at time t. However,

this formula leads to an indetermination (0/0) when the rate of change of

homozygosity reaches 0 (F = 1), when the population is at equilibrium. This

equation could be rewritten in term of heterozygosity:

ii	 1 TT
= —nt 12N -

with the same problem (H = 0 at equilibrium with no mutation nor migration).

A more useful formula, that of the variance effective size of a population, is defined

as whatever must be substituted for N in the following formula:

c.2	 P(1	 /3) 

= 2N

where alp is the sampling variance of gametes over generations of the population

(Wright, 1969, p 211). Replacing N by N: in the previous equation and rearranging

leads to:
2

CrAp
=, 	 	 (2.14)

e 2p(1 — p)

This result is valid for a one generation time interval. For more than one generation,

multiplying the right hand side of this last equation by the time interval in

generations, t, has been suggested (Nei 8.z Tajima 1981; Pollak, 1983; Waples, 1989).

Waples (1989) also defined parameters, Fc and Fk, that lead to appropriate

(unbiased) measurements of N: for two sampling schemes, corresponding to

sampling before and after reproduction. The estimate of Fc given by Waples (1989)

is:

-  
K (Xi v'

K	 (xi + yi )/2 — xiyi

where xi and yi represents estimates of the frequency of allele i in the two

generations and K the number of segregating alleles. It has been found that a better

(2.13)



11 F) + P(1 —P) F0.2	 P(1 
= 2N	 .N

= = 
1 + F

(2.18)
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estimate of Fc is:
Efi (xi — Yi)2F"cw = 	 —
((se + yi)/2 — xiyi)

where F. stands for weighted F. When all the population is sampled, an estimate

of N: is:

Nv =	 (2.15)
e 2F,,

because the sampling correction in both generations cancels the covariance term (c.f.

Waples, 1989, equation 12, p 382). Computer simulations showed that this last

formula is in very close agreement with (2.14), whereas the non-weighted Fc often

leads to negative estimate (Infinite effective size), as mentioned by Waples (1989).

Expression for Ne under specific breeding systems can now be sought.

The sampling variance in an inbred population through selfing could be expressed as

follows:

(2.16)

That is, the inbred population is divided in two components, one non inbred, with a

sampling variance of p(1 — p)/2N and the other, inbred, with a sampling variance of

p(1 — p)/N. Equation 2.13 reduces to:

2	 p(1 — p)(1 + F) 
crAp == 2N

We can now use these two definitions to derive the variance effective size of a

partially self-fertilising population. The same result could be obtained from a

inbreeding effective size perspective (e.g Pollak, 1987, 1988). Substituting (2.17) into

(2.13) leads to:

(2.17)

(Wright, 1943; Li, 1955, p323) where F is an Fis , the within-population heterozygote

deficit. Under a 100% self-fertilisation regime, F 3 will be equal to 1 and the effective

population size will be half the real population size, as expected.

Inbreeding could be due to mating between relatives rather than selfing. This

problem has been researched by Pollak (1987,1988) and Caballero Sz Hill (1992).

They arrived at the following results:

If partial full-sib mating occurs:

N 

2D 

= ` = 1 + 3F

where D is the number of families.

(2.19)



DN
N` = 1— F

(2.24)
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If partial half-sib mating occurs:

N: = N!= e 1 +7F

The preceding results could be generalised to:

(2.20)

DN 

	

N: = N! =	 (2.21)
1 + (2N —1)F

where N is the family size and D the number of families. This result was given in a

slightly different form in Pollak (1988). That is, if groups are considered as families

(this is not true for the first few generations in an island model where individuals at

generation 0 are unrelated, as in the model described in the preceding section, but

this becomes true as time goes on), the effective size of a population made of D

families of size N is given by (2.21).

The effective size of a subdivided population can also be derived, following Wright

(1943) and Li (1955). If a population is subdivided into D breeding groups of equal

size N, the sampling variance in each group is pi (1 — p)/2N, where pi is the allele

frequency in group i. The average value of alp over the D groups is:

2 1 D pi (1 — pi )	 2 Eal pi (1 — pi)

	

CIA = —	 (2.22)

	

P D	 2N	 4DN

Now, 2 EP_i pi (1 —pi )ID is the proportion of heterozygotes in the total population

(providing that there is random mating within each subpopulation) and is thus

equal to 2T)V(1 — F), where F is Fa. Substituting into the last equation leads to:

,r 2	 15V(1 — F) 
2N

substituting (2.23) into (2.13) and remembering that the population is made of DN

individuals leads to:

(2.23)

This last formula, however, does not hold true from an inbreeding effective size

perspective. The inbreeding effective size of a subdivided population is given by

(2.21).

Combination of these results in a single formula seems to be a daunting task: which

one is appropriate to specific cases, how to combine them to obtain the effective size

of a population undergoing inbreeding through selfing, together with mating with

relatives and subdivisions, with the added complication that the number of



Ne.s. —
ra' 2N Fe + (1 -1- Fi8)(1 — Fe)

(2.28)
DN
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successful gametes may not have a Poisson (binomial) distribution and the sex ratio

may be different from 1: 1.

Suggestions on how to deal with the last points (Poisson distribution of successful

gametes and sex-ratio) are made in Pollak (1987, 1988). N in the previous

expressions should be replaced with N', where N' is defined as the reciprocal of the

probability that two gametes contributing to random separate adults come from the

same parent. Namely, in the case of unequal sex ratio, N should be replaced by

4Nni N1 l(N„, N1) where Nw, and N1 are respectively the number of males and

females in the population. In the case of non-Poisson distribution of the number of

successful gametes, N becomes 1,1"-=-1 where al is the variance of the number of
crk +2

successful gametes (e.g. Li, 1955, p 322).

The effective size of a selfed, subdivided population can now be considered. The

effective size of each group is given by (2.18) and the global effective size is given by

(2.24). Combining the two leads to:

Ne 	 1+F1 3 
9 J. — Fat

which can be rearranged into:

(2.25)

DN 
Neg =

	

	 	 (2.26)
(1 + Fi9 )(1 — Fe)

This formula is valid if (i) all the different levels of structuring have been properly

identified, (ii) the effect of mutation is considered negligible and (iii) there is

territoriality. Such a situation may occur in conservation, where all the members of

the species are sampled and the time scale does not exceed a few generations,

therefore allowing mutation to be neglected.

On the other hand, if only a small range of the species has been surveyed, or

mutation is considered important, or the aim of the study is to compare two

(subdivided) populations of the same species at different locations, or there is no

correlation between the parent and offspring spatial location (no territoriality), or

we are interested in inbreeding effective size rather than variance effective size to

quantify the effect of inbreeding depression, (2.21) should be used instead of (2.24)

and we obtain:

(2.27)

which rearranges to:

D N
N	

1+Fis
N7,9-

1 + (2 Ni+Fie	 1)F8t



2A8 
=

1+ F18
(2.31)

and
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One can readily see that levels can be added, providing that conditions of validity

me met and that each new effect (sex-ratio, unequal number of successful gametes,

selfing, inbreeding, subdivisions) is incorporated at the appropriate level. The

combined effect of unequal number of successful gametes with inbreeding due to

mating with relatives is dealt with in Caballero Sz Hill (1992). More on the topic of

effective size can be found in Chapter 3.

Mixed breeding patterns

An application of the results of the preceding section permits the derivation of the

equilibrium for Ili in an infinite island model, when there is partial selfing.

Equation 2.10 can be rewritten:

(1 +1)(1 m)2 
=

2N — (2N — 1 —	 — m)2

combining with (2.8) leads to:

(1 — m)2 
= N(2 — s) — (N(2 — s) — 1)(1 — m)2

that is, the magnitude of drift changes from 1/2N to 1/2N(1 — s).

(2.29)

(2.30)

Biological inference

Now the equilibrium values of both Fie and Fe have been established, the problem

can be reversed: given F13 and Fe, is it possible to infer what the proportion of

selfing and migration in the population tinder investigation are? If the assumptions

of the infinite island model stand, it is sufficient to reverse the results of equation 2.8

and equation 2.10, which leads to:

2Nest= 1	 ,\1 .FI	 (2.32)
(2N. — 1)F.t + 1

The utility of this equation will be discussed in Chapter 4, but it should be noted

that Ne refers to the effective sample size. The effective population size follows only

if the whole population is sampled, or if experiments, such as



1=1
Bt-1 = Bt —1

B — 1
(2.35)
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mark-release-recapture, lead to estimates of the census local population size. If

(2.11) is used instead of (2.10), one can extract the product Nem:

1 — Pitt 
Nem =

4Fe

(e.g. Slatkin, 1985a). That is, the effective number of migrants per local population

can be extracted. Providing that the conditions leading to equation 2.11 are met

and that the estimate of Fe is independent of both sample size and number of

demes sampled, this expected number of migrants will estimate the actual number

of migrants, regardless of the sampling strategy.

Non-equilibrium situation

It may be of interest to predict values of Fe and F18 in situations where equilibrium

is not reached, either because the process has not been going on for long enough, or

because a disturbance has modified the conditions. It has been shown that it is only

necessary to derive equations for Fe, solutions for Fie can be readily found by

replacing N by 1 and (1 — m) 2 by .s. Consider equation 2.9, it is possible to express

Fe as a function of time and Fo:

(2.33)

= A + BF0

F2 = A + B = A + AB + B2Fo

Ft = 13' Fo + A E
1=1

where A = 4kr Ln 2 and B = (1 — m) 2 (1 — e) (A = B = s/2 for Fie). The

over-braced sum in the last equation can be rewritten:

(2.34)

leading to:

A	 A
Ft = Bt(F° -1-7-.T3 )+ 1 — B	

(2.36)

It is worth noticing that A is the equilibrium value of Fe (F18). The over-braced

part of last equation tends to 0 as t tends to oo, because B is less than 1. The larger

B is, the longer it will take for Fee to reach its equilibrium value. For B to be large,

N needs to be large and m small, conditions necessary to apply equation 2.11 for
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the estimation of the product Ne me . This means that the approximation will only

be useful in cases where the equilibrium value takes a long time to be reached and

is, therefore, unlikely to ever be attained. Time to equilibrium can be assessed with

the following treatment: consider the time t it will take for Fet to reach x% of its

equilibrium value:

A	 A	 A 
Bt(F° 1-6? ) + 1 — B . X( 1 B)

(x — 1)A
Bt

If F0 is 0, this last expression reduces to:

ln(1 — x)
t =

ln(B)

(2.37)

(2.38)

—
F0 (1 — B)— A

in (--i—F0(1:131 )A-A)
t— 	

ln(B)

As x tends to 1-, the numerator tends to —oo. If both m < 1 and N>> 1, the

denominator will be close to 0- and the population will take a very long time to

reach an equilibrium. For Fie , the cases of interest are for large .s and we therefore
ed

see that equilibrium will be read:livery quickly.

Figure 2.14 shows the time it takes for Fat to reach 95% of its equilibrium under

different combinations of migration and local population sizes, F0 being set to 0. We

can see that what determines time to equilibrium is the greater of m or 1/N. The

larger they are, the faster equilibrium is reached. As few as 20 generations are

sufficient for equilibrium to be reached if 'm is close to 0.1 or N is close to 10.

2.4.2 The stepping-stone model of population

The island model of population we have just been investigating is the simplest

among the models dealing with subdivision of populations because it does not have

any geographical structure. The stepping-stone model, introduced by Kimura (1955)

is a half way house between the very realistic but intractable isolation by distance,

or neighbourhood model (Felsenstein, 1975) and the island model of populations.

Solutions for the island model are straightforward because of the equal relationship

between each deme. As soon as geographical structure is added to the model, the

mathematical treatment has to be different. In particular, the correlation of gametes
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Figure 2.14: Number of generations before Fid reaches 95% of its equilibrium value

belonging to different sub-populations has to be expressed as some function of the

distance between these sub-populations.

Approximate solutions for the correlation of gene frequencies of populations k steps

apart are given in Kimura and Weiss (1964) and Weiss and Kimura (1965) for the

one- two- and three-dimensional stepping-stone. For the infinite one-, two- and

three-dimensional stepping-stone, the correlation between populations k steps apart

is:

r(k) = exp	 \e/	 k)	 39)(2.
ml

r(p)	
exp (—‘1717;-9-

(2.40)

1 exP (— 
(2.41)r(p)

(Kimura Sz Weiss, 1964) where m1 is the short range migration and moo is the long

range migration, p is defined asIN/T---F 1c3 in two dimensions and \ k? + 1c + kg in

three.

We can see that the correlation of gene frequencies falls off more rapidly in three

dimensions than in two dimensions, which in turn falls off quicker than in a

one-dimensional stepping stone model. Figure 2.15 displays the changes in the

correlation as a function of distance, with moo = 10' and m1 = 0.1. A peculiarity
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m. = 10 6 ,m1 = 0.1

10 20 30 40 50 60 70 80 90 100

Figure 2.15: Correlation between populations k steps apart in 1-, 2- and 3-dimensions.

of the three-dimensional stepping-stone is that, even if the long range migration (or

mutation) is 0, the correlation does not go to 1, but its maximum is

Subsequent work on stepping-stone models has been done by Marayuma (1970,

1971a,b,c, 1972a,b,c, 1974). An interesting finding is that a quantity akin to Fet , the

ratio (1 — fk)/(1 — fo),where fk is the coefficient of inbreeding between genes drawn

from individuals k colonies apart and fo is the coefficient of inbreeding between

genes drawn from individuals in the same colony, tends to stabilise even thought the

individual fk 's approach 1.

A computer simulation of stepping-stone models is described in Kimura and

Marayuma (1971). They investigated a toroidal two-dimensional stepping-stone, and

a circular one-dimensional stepping-stone. They found that if the product Nem is

larger than 4, no local differentiation occurs and the whole population behaves as if

panmictic. On the other hand, when Nem is less than 1, marked differentiation

between random breeding units occurs. They also show that in a one-dimensional

stepping-stone model, differentiation occurs for higher values of Nem than in the

two-dimensional case, which is to be expected just by looking at the prediction of

the correlation of gene frequencies with distance.

Another point stressed in this paper is that the appropriate measurement of genetic

differentiation will be dependent on the level of mutation or, more accurately, on the

product of the total population size and the mutation rate Ntu. If Nu is small, then

(1 — fo)/(1 — 7), where 7 is the average of the different fk 's, is the appropriate



2.4. Analytic solutions	 47

measure of genetic differentiation. However, if this product is large (larger than two)

then the appropriate measurement is foil because both fo and 7 will be small.

Crow and Aoki (1984) derived exact solutions for Ge =. 1-12:4 in an island-model

under migration and mutation. They showed that in both an island and a

stepping-stone model, the equilibrium value of Ge is independent of the mutation

rate, but that Ge is linearly related to the logarithm of the number of demes in a

stepping-stone. They also showed that the shape of the habitat (the connectedness)

has a large influence on the equilibrium values of Ge, a result to be expected given

the findings of Kimura Sz Weiss (1964) (Figure 2.15). Slatkin (1993) considered

non-equilibrium situations, and showed that in some cases, structuring can be

detected. However, no analytical treatment of the time to equilibrium of the

different Fixation indices in a stepping-stone model seems to exist. As Felsenstein

(1976) puts it:

'Wright's quantities are of great biological interest and hopefully future

work will resume their use.'

2.4.3 Isolation by distance.

Malecot (1948) and Wright (1943) pioneered analytical work on the isolation by

distance, or neighbourhood, model. As was pointed out by Felsenstein, Malecot's

results are wrong because of an incompatibity between the assumptions of the model:

1. Random distribution of individuals

2. Poisson distribution of the number of offspring

3. Independence of migration among offspring

Felsenstein (1975) showed that assumption (1) is incompatible with assumptions (2)

and (3): (2) Sz (3) lead to clumping of individuals.

Although his results are in general agreement with other models, Wright's isolation

by distance model involves a complex set of assumptions, most of which are

inexplicit (Felsenstein, 1976).

To compare isolation by distance with other discrete models, there is a need to

define the equivalent of a random mating unit. This is the so-called neighbourhood

of Wright, presented in the introduction of this chapter. The size of the

neighbourhood will be dependent on the mating systems and the distribution of
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parent-offspring dispersal among others things. Formulae for this unit are given in

Wright (1969) and a review paper by Crawford (1984). If individuals are distributed

along a linear habitat and the parent-offspring dispersal distribution is normal,the

neighbourhood length, NL is defined as:

NL = 2\lia

where a is the standard deviation of the parent-offspring dispersal distances.

In a two-dimensional habitat, with the dispersal distances following a bivariate,

zero-mean, normal distribution with equal variances a.2 along two orthogonal axes,

the neighbourhood area, NA, is defined as:

NA = 42

and is circular. As we are interested in the number of individuals within the

neighbourhood area, it is sufficient to multiply the neighbourhood area with a

density parameter, d (in MODEL42 the density is kept constant at 1, making the

number of individuals in the neighbourhood area equal to the neighbourhood area

itself). Providing everything else is kept constant, the expression for a in the above

equations will change as a function of the mating system. For a true Wright model,

this is just the average of the male and female dispersal, (1 "--- 2-' , but for a plant

model, the neighbourhood area is (Crawford, 1984):
0.2

glant = 47 ( m 01)

2

If selfing occurs, the male dispersal variance needs multiplying by (1 —

Extra-components can be added to take account, for example, of the effect of

vegetative growth (Gliddon Saleem, 1985).

When measuring these quantities in nature, data are usually projected on one axis

to give the axial dispersal variance, which is half the absolute dispersal variance.

This projection leads to a change in the underlying distribution of dispersal. If it is

a circular bivariate normal, then its projection on one dimension gives a Rayleigh

distribution (Parzen, 1960, p 320):

(x) = exp	 (:)2)

For bivariate distributions other than the normal, there is no such simple solution.

Whittaker (pers. comm.) gives a solution for distributions of the form

y = —K exp ( 1.-(f-)1+0)
a	 2 a
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known as the exponential power family distribution, defined for —1 < < 1 (this

reduces to the bivariate normal if /3 = 0). The solution for the projection of these

distributions on one axis takes the form:

X 

f (X) = cr 22Pr(2 + 13) exP

and it can be readily seen that for # = 0, this expression reduces to the Rayleigh

distribution.

Wright devoted thirty pages in volume 2 of his masterpiece (Wright, 1969, pp

295-324) to the expectation of F-statistics in a continuum. Consider an individual,

I. Consider a circular area of radius r (r is equal to twice the standard deviation of

the dispersal distance of parents to offspring, considered to be normal) centred on /,

containing N uniformly distributed, with a density of 1 per area unit, individuals, all

equally likely to be the parents of individual I. The area is rr2 = 47-a2 . There is

therefore N 47. (72 equally likely parents. If the grandparents are considered, the

variance will be twice as large and the standard deviation	 times as large. The

area from which grandparents could be considered as if drawn at random is therefore

r(2/ 7) 2 = 87-02 . As the distribution of individuals is uniform, the number of

equally likely grandparents is 2N. For any generation K in the past, the area of

equally likely ancestors has a radius of V7Kr and effective population size KN. The

inbreeding of individual / relative to an area SN can be expressed as:

1 (1-1 1F/L I	 N-1 pi
N 2	 N '23

18 (1-FEL\ j_ 2N-1 pit
28	 2Nk 2 i1 2N 38

(2.42)
is 	 3N-1 pm

33	 3Nk 2	 -1 3N 44g

where ' denotes number of generations in the past and subscripts the size of the area

concerned. It is tempting to consider FL, in the previous system to be an Fit),

because it is the inbreeding of one individual relative to a subset SN of the global

population, which is supposed to be infinite. I suggest however that this is a

peculiar type of Fid and will delay the discussion and justification of this statement

until later.
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System (2.42) has (S — 1) equations and S unknown F., if the primes are dropped.

However, F„ can be considered as zero. By sequentially replacing the different F.,

and letting the process go on for long enough so that the primes can be dropped, the

following expression emerges:

EZ.:1 tk	(k —1)N — 1,
F1. -= n	 A tk =	 t(k-1)	 (2.43)

— Ldk_i Lk  

(Wright, 1943). It has been shown that:

1
Etk =1— S Nts, S Nts = H(1— 

kN
)

k=1	 k=1

(Wright, 1969, p 297, equation 12.24 with Nx = XN, as is the case for an area).

The product can be written:

sfpi i	 r(s - kr) 
kN ) r(s)r(1 - k)k=1

where r(x) is Euler's gamma function. The expression for F1 , becomes:

r(1 - Ni)r(s)-r(s - z+)	
244)F = 	 	 (.18 ro. - kr )r(s) + r(s - /4)

and the expression for the total inbreeding, Flt can be found by taking the limit as

S	 oo.

Calculations of this expression are tedious, with the numerator and denominator

growing to huge quantities as the number of neighbourhoods S increases. The time

to equilibrium is very long, of the order of tens of thousands of neighbourhoods (and

therefore generations).

Wright proposed approximating the sum ,EN tk by an integral. He suggested using

(2.43) for the first 40 or 50 terms, for there is a large discrepancy between the exact

value of F1, and the continuous approximation and then to use the continuous

approximation (Wright, 1969, equation 12.33, p300).

The same treatment has been applied to populations located on a linear continuum.

The number of individuals to consider this time after S generations is NrS'N and tk is

expressed as:
Ni(k —1)N — 1

tk =	 t(k_i)
N/TcN

The expression for F1, becomes:

(2.45)

1 — fa:1 (1 —
F18 = 	 S-1 /1

1 +11k=1k 1—	)kN

(2.46)
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For estimation of this quantity, the same procedure as for area is followed

(approximation of the sum with an integral), but the number of times (2.45) needs

to be calculated has to be much larger than for an area. Wright then provides an

approximation for higher terms (equations 12.28 and 12.29 p298).

The basic conclusion of this work is that FL, increases as the area surveyed

increases. The increase is faster when the original neighbourhood size is small. This

effect is stronger in one-dimension than in two dimensions, as can be seen from

Figures 12.2 & 12.3 (p 299 & 301 respectively in Wright, 1969). Indeed, with an

original neighbourhood size of 5 in two-dimensions, even with 10 7 neighbourhoods,

F13 has not reached 1.

Wright points out that a more interesting quantity is the amount of differentiation

among areas of any given effective population number within some constant large

total considered to be infinite, Fe. Although it cannot be calculated directly,

making use of the relationship between the different F's and providing that Flt can

be calculated, it is easy to derive Fe. Behaviour of Fe in the one-dimensional case

shows some very interesting features (Fig 12.2 in Wright, 1969). Even when the

length compared to the total contains many neighbourhoods, Fe stays constant (for

N = 103 , Fst starts decreasing for a length corresponding to 300 neighbourhoods, for

a total of 3000). [It should be pointed out here that there is a misprint in the book:

Fit in the third line of text, p 299, should read Fi.]. On the other hand, in the

two-dimensional case, Fe decreases from the start.

Formulae are also given for non-normal distribution of parent-offspring dispersal

distances (an effect similar to increasing the neighbourhood size,

Figures 12.5 & 12.7), long range migration (it lowers Fe, Figure 12.9). The effect of

selling leads to equations 12.57 & 12.58 (Wright, 1969, p312).

Wright suggested that the quantity F13 described above is akin to an F13 . I have to

disagree, at least partially, with him there. First of all, there do not seem to be any

conditions that will lead to a negative value of F13 in (2.43), since tk is always

positive and less than 1. One could say that selfing does not lead to negative values

either, but avoidance of mating with relatives could be pictured as a negative rate of

selling, or a rate of outcrossing larger than 1. Furthermore, we saw in the subsection

on the island model that Fi, is the heterozygote deficit due to evolutionary pressures

independent of population size. The expressions derived above (2.42) are typically

dependent on population size. In his treatment of selfing in populations distributed



6, (t+1 ) = (1 — m ) 2 ( 11k + — 1:4)et)1 

f(t+i) 
= (1 + ft)f

(2.49)

2.4. Analytic solutions 	 52

in a continuum (p 311, 1969), Wright had to introduce another quantity, that he

called E13 , for the correlation between random gametes from neighbourhoods

relative to an array of S neighbourhoods. The definition he gives for F18

(equation 12.55, p 312, 1969) is essentially the same as (2.6).

In fact, if we consider the second equation in system (1) of Pollak (1987),

F(t+i) = (1 - m)2 [1Ft ± (1 - Det]
(2.47)

0 (t+1) = (1 - m)2 [2-(l + Ft) + (1 - k)Oti

the coefficients of F and 19 in the second equation are the same as those of FL and

FL in (2.42).

The solution of (2.47) can be easily found for equilibrium (F(t+ i) = Ft = F and

9(t+1) = Ot	 0):

(1 -2m + M2)(1+2mNs -2m + m2 m2N8
_4772 2 + 4ma _ m4 _ 2m 2N 5m1+4mN-2mNa	 2 Ns -4m3Ns-Fm4Ns

(1 -2m + m2) 
1-F4rnN-2mNs -4m 2 + 4rn3 - m4 - 2m2N 5m2Ns-4m3N3+m4Ns

(2.48)

On the other hand, the following system,which we have encountered in the

subsection for an island model (this is the system leading to equation 2.30) can be

written:

When equilibrium is reached, we have:

0 — 	 (1-2m + M2) 

1+4mN-2mNs -2m + m2 - 2m2N + m2N.s
(2.50)

f= 8
2-8

(2.51)

under the usual simplifying conditions, over- and under-braced elements of the

solutions (2.48) and (2.50) can be neglected leading respectively to:

1 F 1-1-2mN8 
1-1-4mN-2mN8

0 1 
- 1-1-4mN-2mNa



1
1+4mN-2mNs

(2.52)

2—s

and:
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that is, 9 is the same in both cases, confirming the view that FL, in (2.43) is akin to

F. However, f and F are different since it can be shown that F is an Fit , whereas

f in the second system is an

On the other hand, it is true that Fla in equation 2.43 is the lowest possible in the

hierarchy of F's. It would therefore be useful (following Wright's notation) to keep

the notation F13 , rather than associating with either Fi, or Fe. The problem may

seem semantic, but we will see in the next two chapters that there are fundamental

differences between Fi, and Fe, in terms of biases and of variance effective sizes.

2.5 Comparison of the different models.

2.5.1 Materials and methods

In order to compare the effects of different gene-flow patterns on genetic variability,

MODEL42 was used. Three levels of migration and two population sizes were used

with the gametic cloud island model, and the 1-, 2- and 3-dimensional stepping

stone model. For the 1- and 3-dimensional stepping stone, dispersal was limited to

the nearest neighbours. Ten replicates were run over 10000 generations and Fe was

used as a measure of the level of genetic variability. The three levels of migration

were 0.1%, 1% and 10% for deme sizes of 16 and 64 and a total number of

individuals of 4096. Fe was calculated every generation for the first 100, then every

10 until the 1000th generation and every 100 generations after that. Curvilinear

regressions were applied to each of the 24 sets of parameters (3 levels of migration, 2

deme sizes and 4 gene-flow patterns) using the statistical package Genstat.

Equation (2.36), with F0 set to 0 gives:

(1 — m) 2	 1
Ft = 

2N — (2N — 1)(1 — m)2 (1 (1 _ rr)zto. _	 )t)
2N

and was used for the curvilinear regression. This equation should fit well with the

data from the island model. Discrepancies with other gene-flow patterns should give

some insights into how geographical structuring affects the genetic drift process.
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2.5.2 Results

Figures 2.16 Sz 2.17 display the results. Each point on these graphs represents the

average of Fat over the 10 replicates for the given generation. The generations are

displayed on a logarithmic scale.

Fe increases with time, as expected and reaches higher values with low migration

than with high migration. Equilibrium for Fe is reached in most of the cases after

ten thousand generations. Time to equilibrium for Fe in the island model is

determined by which of m or 1IN is the largest (Figure 2.14). In the last graph of

Figures 2.16 Sz 2.17, time to equilibrium for the island model is essentially the same,

because m in both cases is larger than 1IN.

The effect of connectedness is also as expected: as connectedness decreases, Fe

increases, but only after a certain number of generations. This behaviour, as far as I

am aware, has never been observed and is best seen in the middle graph of

Figure 2.16. We can see that Fe up to around the 50th generation is the same for

all gene-flow patterns and diverges thereafter. The same observation can be made

for all the figures, with divergence time occurring earlier (as in the case for high

migration), or later (as in the case for low migration). Fe increases at the same rate

in stepping-stone as in island models until it levels off in the island model, whilst

still increasing in stepping-stones. Two- and three-dimensional stepping stones seem

to reach a plateau after some time (top graph of Figure 2.17 and middle graph of

Figure 2.16 are exceptions), whereas 1-dimensional stepping stone models never

seem to plateau before reaching 1 (bottom graph of Figure 2.17 is an exception, but

I suspect that this is due to the small number of demes).

The first graph in Figure 2.16 shows that, when migration is very low (1 migrant

every 60 generations) there is no difference between the gene-flow patterns. When

migration is so low that the plateau occurs at very high value of Fe, there is

virtually no effect of connectedness. This is not surprising, since very low rates of

migration ensure that even neighbouring demes will display large variances in allelic

frequencies (low correlation). If there is no migration at all, the different populations

are not connected and all the models behave in the same manner. A rule of the

thumb could be that with Nm < 0.025, the effect of geographical structuring is

virtually non-existent. As migration increases, the different gene-flow patterns start

to differentiate. The difference between 2- and 3-dimensional stepping-stones being

much smaller than the difference between 2- and 1-dimensional. It seems that for



N=16, D=256, m=0.001
1

island •
fitted --
ss3d +
fitted —
ss2d

fitted------
ss ld x
fitted ---

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1000 10000

11%;•
0.1

1	 10	 100
Generations

N=16, D=256, m=0.1

10	 100
	

1000
	

10000
Generations

1000 10000

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

. . .
island
fitted
ss3d

fitted
ss2d

fitted
ss id

fitted

2.5. Comparison of the different models. 	 55

10
	

100
Generations

N=16, D=256, m=0.01
1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2 -

•	 I

island •
fitted
ss3d +

fitted
ss2d 0

fitted
ssld x

fitted

Figure 2.16: Changes in Fe over generations for different gene-flow patterns with the

same sets of parameters



1000 10000

N=64, D=64, m=0.01

island •
fitted --
ss3d +
fitted —
ss2d D

fitted
ssld x

fitted

100
Generations

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
1 10

N=64, D=64, m=0.1

1000 10000

2.5. Comparison of the different models.	 56

N=64, D=64, m=0.001
1

0.9

0.8

0.7

0.6

0.5ra.
0.4

0.3

0.2

0.1

0
1

island •
fitted ---
ss3d

fitted
ss2d

fitted
ssld

fitted

100
Generations

10

	

0.6 	
island •

	

0.5	 fitted ----
ss3d +
fitted —

	

0.4	 ss2d 0
fitted
ssld x

	

0.3	 fitted — —

0.2

0.1

0
1	 10
	

100
	

1000
	

10000
Generations

Figure 2.17: Changes in Fe over generations for different gene-flow patterns with the

same sets of parameters



2.5. Comparison of the different models.	 57

Table 2.2: Estimated m and N from curvilinear regression.Standard error in paren-

thesis.

m = 0.001 in = 0.01 m = 0.1

Island, N = 64

/ix( x 100) 0.084(0.0007) 0.922(0.009) 10.2(0.36)

N 65.9(0.3) 68.3(0.6) 70.0(2.5)

N = 16

in( x 100) 0.1(0.0) 0.9(0.0) 10.7(0.5)

N 18(0.097) 16(0.15) 17(0.86)

Step. sto. 3D, N = 64

in( x 100) 0.055(0.001) 0.42(0.009) 2.28(0.08)

N 66.5(0.5) 87(1.6) 175(5.7)

N = 16

in( x 100) 0.1(0.0) 0.4(0.0) 1.5(0.1)

N 18(0.1) 23(0.5) 57(3.5)

Step. sto. 2D, N = 64

rh( x 100) 0.047(0.001) 0.294(0.008) 1.34(0.04)

ICI 68.8(0.7) 93.4(2.1) 202X(5.8)

N = 16

rh(x100) 0.1(0.0) 0.3(0.0) 0.8(0.0)

g 17(0.1) 24(0.5) 70(3.3)

Step. sto. 1D, N = 64

in( x 100) 0.034(0.001) 0.056(0.003) 0.040(0.002)

fir 72.2(0.8) 161.9(6.0) 784.3(24.9)

N = 16

in( x100) 0(0) 0.1(0) 0.1(0)

g 17(0.1) 26(0.5) 116(4.8)
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values of Nm larger than 5, the disparities between island models and 2- and

3-dimensional stepping-stones lessen, but this may be due to the small number of

demes in the population.

Estimated migration and deme size from the curvilinear regressions are given in

table 2.2. Estimates of both N and m for the island model are very close to the

input parameters, whereas m is always lower and N larger for stepping-stones.

Within the stepping-stones, the 1-dimensional always leads to the lowest estimates

of migration and largest estimates of deme sizes, followed by the 2-dimensional and

the 3-dimensional stepping-stone. The fit of the curvilinear regression to the data is

however rather bad, showing a tendency to underestimate Fe in the early phases

and to overestimate it in the late phases (Figures 2.16 & 2.17). Therefore, unless

migration is so low that the equilibrium value of Fe is very close to 1 (top graph in

Figure 2.16), equation 2.36 is a bad predictor of Fa in stepping stone models.

We can, however, gain some information on what the equation should be like for

stepping-stone models from the Egures: it is only when Fe reaches a plateau in the

island model that its value diverges for stepping-stone models. This is the time

necessary for correlation of allelic frequencies between adjacent groups to develop.

As these correlations developed, it makes the panmictic unit larger and decreases

the migration, because these larger units of random mating exchange, on average,

less migrants than the smaller units of the early process. By making N and m

dependent on time, it should be possible to get a better fit of the curvilinear

regression to the data in a stepping-stone model.

2.6 Discussion and conclusion

2.6.1 Pros and cons of MODEL42.

MODEL42 was developed on a DOS platform, using Borland's Turbo-Pascal

version IV, V and VI. In these implementations of a Pascal compiler under MS-DOS,

the maximum size of an array is 64 kilobytes, allowing for a maximum of 16384

individuals if identity by descent is to be measured. Moving to a UNIX platform, or

using the new version of the Pascal compiler from Borland, Borland-Pascal VII,

would solve this problem. Translation of the code into C is also currently being done.

Only single locus systems can be modelled. Replicates are often considered as

equivalent to different independent loci (Slatkin, 1985a), but they are not, since the
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pedigrees of independent loci from the same individual are the same, whereas the

pedigree of independent replicates are different. This may have some important

consequences in term of variance between loci. Indeed, Feldman & Christiansen

(1975) have shown that migration among a set of semi-isolated populations could

result in a cline of linkage disequilibria and Ohta (1982) proposed to measure the

extent of isolation between populations with Do, an Fat-like statistic based on

linkage disequilibrium. A solution to this problem has already been suggested.

Rather than giving a location to alleles in the initial generation, locations are

specified for individuals and each generation, after the sampling of parents, the

sampling of alleles within parents is carried out as many times as there is loci. This

will also allow the modelling of certain types of selection, such as meiotic drive.

Other types of selection, however, seem much more complicated to implement.

2.6.2 State of analytical work.

As we have seen, the theory for island models of populations is rather accurate and

the discrepancies between the different types of island models are very small.

Predictions of the values of Fa at equilibrium, as well as in non-equilibrium

situations can be made, and seem accurate (Figures 2.16 & 2.17). The time to

equilibrium is dependent on which of the two quantities m or 1IN is the largest and

value at equilibrium is essentially dependent on the effective number of migrants,

Nm. Although results are not shown, predictions in an island model with a

proportion s of selfing are also accurate for equilibrium as well as non-equilibrium

situations.

Equations for prediction of the effective sizes of both local and global population are

also given. The effect of subdivisions and of selfing, although similar in terms of F

are opposite in terms of variance effective sizes: subdivision leads to larger effective.

than census sizes, whereas selfing leads to smaller effective than census sizes.

The situation is quite different for stepping-stone models. The only quantity that

has been derived analytically is the correlation of allele frequencies at equilibrium

for demes k steps apart, when the number of demes is infinite and with a proportion

of long range migration ensuring that variability is still present in the total array.

Relating the correlations of allele frequencies to Fa has yet to be done. Wright

derived equilibrium values for Fi, in a model of randomly distributed clusters, which

bears only some resemblances to the stepping-stone models (Wright, 1969,



1 1000

•0'1
•n••n

••••\
.1nn

10000

1000

100

10

1

0.1

0.01

0.001
10	 100

Generations

2.6. Discussion and conclusion	 60

Figure 2.18: Typical behaviour of the functions N(t) and m(t).

p 320-323). The finding of Crow & Aoki (1984) that equilibrium values of Gid in

stepping-stone models are dependent on the shape of the habitat are confirmed here.

It would, however, be of interest to obtain a relation similar to (2.36) for

stepping-stone models. I suggest that this could be achieved if N and m are made

time dependent. Expressions for N(t) and m(t) have yet to be found for the relation:

(1 — m(oo))2
--F(t +1) = 	 	 )

2N(oo) — (2N(oo) —1) (1	
(1— (1— m(t))2t(1

— m(oo))2	 2N1(t) 't)

However, they should be constant until equilibrium is reached in an island model

and then N(t) should increase while m(t) should decrease. A possible form could be:

N(t) = N(1 + Al exp(t/C1)),

m(t) = m(1 — A2 exp(—C2/t))

where Cl and C2 are constants of the order of the number of generations it takes for

equilibrium to be reached in an island model and Al and A2 are coefficients taking

into account the dimension of the habitat. Figure 2.18 shows what the typical

behaviour of these functions should be.

The situation is even more complex for the isolation by distance model. As

mentioned before, the neighbourhood size is supposed to be equivalent to a random

mating unit and depends on the distribution of parent-offspring dispersal. The

assumption that individuals within a neighbourhood mate at random is, however, a
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gross simplification: individuals at the centre of the neighbourhood are more likely to

be the parents of the central individual than individuals at the edges. Furthermore,

the proportion of selfing in the population is given by the distribution of

parent-offspring dispersal distances since it is the proportion of the parent-offspring

dispersal distances that fall in the unit square. The smaller the neighbourhood, the

larger this quantity (which is always larger than 1IN, c.f. table 1 in Rolhf & Schnell,

1971, p 297). Rolhf & Schnell (1971) looked at the effect of the dispersal

distribution of parent-offspring and showed that a uniform rather than a conical

(mimicking a normal) distribution decreases F drastically (Figure 14, p 316). They

then attempted to derive exact solutions for F's under different parent-offspring

dispersal patterns, obtained good agreement of the theory with their simulated data

set and found discrepancies with Wright's results for the uniform distribution.

However,they could calculate F only up to the second generation. As they put it:

'Unfortunately, it does not appear feasible to work out the expected F's

for later generations using our approach.'

They also showed that, as time goes on and even with a uniform distribution of

parent-offspring dispersal, the distribution of ancestors after only 2 generations is no

longer uniform (Table 2,p 313).

In this work, no attempt was made to follow the change of Fe in isolation by

distance models for the reasons stated above. Furthermore, we will see in the next

chapters that it is not possible to detect a random breeding unit in isolation by

distance models.



• Chapter 3

F- Statistics

3.1 Introduction

Prior to 1966, the amount and distribution of genetic variability within species was

largely unknown. The phenotypic markers available were frequently under polygenic

control or were likely to be unrepresentative of the whole genome (eg. lethal alleles).

The discovery of protein gel electrophoresis independently by Harris (Harris, 1966)

and Lewontin & Hubby (Hubby SZ Lewontin, 1966; Lewontin & Hubby, 1966)

initiated twenty five years of intensive investigation of protein variation in natural

populations by hundreds of laboratories (Lewontin, 1991). This polymorphism was

shown to segregate in a Mendelian manner. The amount of variability detected was

astonishing: about one third of the loci surveyed over a wide range of species (Nevo

et al. (1984) carried out a literature survey and found studies of intraspecific

variation in 1111 species, with an average, of 23 loci and 200 individuals per species

examined) were polymorphic and the average heterozygosity per individual was 10

percent (Lewontin, 1991). These observations generated a debate between the

adherents of a selectionist (balancing) view led by Mayr, Cain and Dobzhansky on

the one hand and the adherents of a neutralist (neoclassical) view, led by Kimura on

the other. Although still unresolved, the tenants of both schools are now aware that

nothing is as clear cut as they first thought, due mainly to the fact that their

hypotheses were based on very simplistic population genetic models with no

population structuring or specific reproductive system. Fortunately, another

outcome of the discovery of gel electrophoresis was the possibility of using this

information to get a better understanding of the genetic structure of natural

populations, providing that the loci under scrutiny are not undergoing too strong a

62
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selection. Measurements of gene-flow are discussed in the next sections and the

statistical robustness of these measurements are discussed.

3.2 Measuring gene-flow

Gene-flow is a collective term that embodies all mechanisms resulting in the

movement of genes from one group of individuals to another (Slatkin, 1985a). The

word population will not be used here, because, as we will see in Chapter 4, they are

extremely difficult to characterise. Measuring gene-flow implies estimating a

quantity that will provide information about movement of genes. This may be

achieved by using two distinct approaches:

1. Dispersal of individuals or of gametes. These types of measurements will give

some information about gene dispersal, providing that the individual

reproduces or that the gamete is successful in producing an individual. These

types of measurements are direct methods of estimating gene-flow.

2. Inferences of gene-flow by observing the frequency distribution of alleles and

genotypes. These are indirect methods of estimating gene-flow. The actual

movement of genes will not be observed, but the distribution of allele and

genotype frequencies should give us some indication of how much gene-flow

occurs in the surveyed species.

The respective advantages and inconveniences of both types of measurement are

discussed below.

3.2.1 Direct methods

The principle behind this technique is to identify visible (conspicuous) markers and

to follow their movement. The first study to answer an evolutionary question using

this type of marker is that of Dobzhansky St Wright (1943). They used an orange

marker gene on Drosophila pseudoobscura that was known to have no effect on

dispersal and released homozygous individuals from a source point. They collected

the flies in traps 10 or 20 metres apart laid out in a crossed pattern. They used the

information obtained to get a temporal estimate of the neighbourhood effective size,

which was of the order of 500-1000 individuals. However, another study by

Crumpacker St Williams (1973) gave an estimate of the order of 10000, an order of
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magnitude larger than Dobzhansky & Wright's estimate. Further studies showed

that the condition under which the flies are released will have a drastic influence on

the neighbourhood size estimate. A study by Jones et al. (1981) was carried out in

Death Valley, California, where flies can only be found in discrete oases separated by

several kilometres. The marked flies were released in a clearly unsuitable habitat.

The following day, flies were trapped not only in the closest oasis, 2 km away, but

also in the farthest one, 8 km away. The average dispersal distance was found to be

400-500m, three times as much as that found by Dobzhansky and Wright. It was

shown (Coyne et al., 1982) that, even where the flies were released in an oasis, some

were trapped as far as 5 km away in the desert and at an oasis 14.6 km away.

Other examples of direct measurement of gene-flow can be found in Endler (1977),

Wright (1978, chapter 2) and Slatkin (1985a) but the above example is sufficient to

indicate what can and what cannot be done using this type of measurement. At

best, direct measurement can only indicate the gene-flow occurring under the

conditions when the experiment is conducted. Experiments tend to be carried out

under normal or natural environmental conditions. If the sampling strategy does not

disturb the dispersal pattern (but see Johnston & Heed, 1975) and is adequate,

direct measurement will provide good estimates of common movements. In a

suitable environment, D. pseudoobscura has an average daily displacement of 200

metres but, when conditions get more difficult, the average daily displacement

increases. Unfortunately, one aspect of the dynamics of movement is not taken into

account by direct measurement: its stochasticity. Although flies may move an

average of 200 meters a day, a drought, or the local extinction of a population, may

lead to drastic shift in the dispersal pattern over a very short period of time. These

type of movement are very unlikely to be recorded by direct measurement, but will

affect the genetic make-up of the population.

3.2.2 Indirect methods

'An indirect method is one that uses observed spatial distribution of

alleles, chromosomal segment or phenotypic traits to draw inferences

about the level or pattern of gene-flow and other mechanism of genetic

evolution.' (Slatkin, 1985a)

The methods for making these inferences has been discussed in the previous chapter.

It is sufficient to say here that the allelic and genotypic distribution in a population
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are a function of the evolutionary forces acting on it, such as selfing and migration. If

many independent loci show a similar pattern of allelic and genotypic distributions,

it is possible to relate these to distributions obtained from population genetic

models. Many different techniques have been developed, and are reviewed below.

The 'private allele' method of Slatkin(1985b)

The 'private allele' method of estimating gene-flow is one of the most intuitive ways

of approaching the problem. When surveying a population by gel electrophoresis,

one obtains a distribution of allele frequencies. If the survey encompasses many

samples, the distribution of allele frequencies can be obtained for each sample. The

idea behind the 'private allele' technique is that if an allele is present in only one of

the samples, then its frequency in this sample will be some function of the migration

rate. However, when private alleles are at very low frequencies, they could come

from a newly arisen mutant in the population, but, if they reach a high frequency in

only one of the samples, then this suggests that very little genetic material is

exchanged between the different samples. The inference of migration level can then

be done by running computer simulations and relating the frequencies of private

alleles to the migration proportion. Slatkin (1985b) provides the relationship

between 'private allele' frequencies and the effective number of migrants, Neme:

log /W = a log Neme + b,	 (3.1)

where a and b are found by computer simulation and depend on the sample size and

the number of demes sampled (Slatkin, 1985a; Slatkin & Takahata, 1986).

Applications of this technique to natural, data is found in Slatkin (1985a) and gives

an estimate of Nem, consistent with other indirect methods. As pointed out in the

paper, more work is needed to identify sources of bias, but the technique seems to be

quite insensitive to weak selection (Slatkin, 1985a) and mutation rate (Barton &

Slatldn, 1986).

Although appealing in its simplicity, this technique has several drawbacks. Slatkin Sz

Barton (1989) showed that the 'private allele' technique is not as robust as other

existing techniques, such as those based on F-statistics. Indeed, most of the

information collected in an experiment is not used, because only few alleles will be

private. Another drawback of the technique is that the genotypic composition of the

population is ignored and it is therefore impossible to know if each sample belongs

to one or more breeding units.
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Spatial autocorrelation analysis

Spatial autocorrelation is a technique derived from the field of ecology. If locations

close to each other tend to exchange more genetic material than locations further

apart, then calculating the correlation coefficients of allelic frequencies with distance

should give a good overview of the amount of gene-flow occurring in the population.

For each allele, the correlation coefficient is calculated over all pairs of locations that

are a specified distance apart and used to generate a correlogram. To date, this

technique only describes the genetic correlations between samples, without making

any genetical inferences from it (Slatkin, 1985a). To carry out a spatial

autocorrelation analysis, samples from different locations need to be taken. It is

then necessary to find a measure of the distance between these locations, either

geographic distance, or nearest neighbour (Slatkin & Arter, 1991). Figure 1 in

Slatkin Sz Arter (1991) shows a variety of such possible distances measures,

depending on the assumptions made a priori about dispersal pathways. The final

step is to compute the spatial autocorrelation for each variable in each distance

class. Moran's I (Cliff & Ord, 1981) is often used:

n Eioi wi(jk) (xi — T)(x i — 7)
Ik =

Eioj Wi(jk) Ei(x i — 7)2 	
(3.2)

where n is the number of locations sampled, 7 is the average value of xi, the sample

frequency of the allele under scrutiny, k is the distance class and tvg5) = 1 if i and j

are both in the same class and 0 otherwise. For each class of distance, .ik can be

estimated. This set of values can then be plotted on a correlogram. A flat

correlogram would be an indication that geographical structure is non existent, as in

an island model, whereas a decaying one would indicate restricted gene-flow between

locations. The statistical significance can then be tested using techniques such as

those described in Cliff & Ord (1981).

With reference to what biological inferences can be made using this method, there is

a vigourous debate between Slatkin and co-workers on the one hand (Slatkin &

Arter, 1991) and Sokal and co-workers on the other (Sokal & Oden, 1991). As

mentioned already, drawing inferences about levels of gene-flow using this technique

seems difficult because a genetical theory to support these estimates does not exist.

As with the 'private allele' technique, only allelic frequencies are used and all the

information contained by genotype distributions is lost. On the other hand, this is

the only technique that explicitly takes into account geographical distance and it



3.2. Measuring gene-flow	 67

may be the best method of analysing populations living on a continuum, as pointed

out by Heywood (1991).

Lethal alleles

The first estimates of Neme were based on the frequency of lethal alleles. Because of

the strong selection against the allele, any two lethals could be assumed to have

descended from the same mutation in the recent past. Simple models predict the

way in which effective population size, heterozygote fitness and immigration rate

affect the probability of allelism of lethal from the same and different populations

(Slatkin, 1985a). This technique, however, has been used mainly to infer population

size and heterozygote fitness, but should be mentioned as one of the first methods to

attempt to estimate gene-flow.

Dobzhansky Wright(1941) used observations of lethal alleles in D. pseudoobscura

from isolated populations to measure several populations parameters and found

Ne m, to be 54. In their discussion they tempered the estimate down due to biases,

but concluded that Ne m e is certainly larger than 5 in this species, indicating that

genetic drift is not a strong enough force to allow differentiation between

populations of this species.

Wallace(1966) used lethal alleles to measure the decrease in frequency with

geographical distance and found that in D. melanogaster, the frequency of lethal

alleles would decrease approximately 50% at a distance of 150 meters.

Genetic distances

Genetic distances were first used in population genetics to provide a single

quantitative measure of differences in two or more sets of allele frequencies.

Differences in gene frequencies between populations provide such a measure,

although there exist other ways of estimating genetic distances, such as differences

in a quantitative character, or number of nucleotide substitutions.

The first study involving genetic distances as measured with differential gene

frequencies is that of Cavalli-Sforza & Edwards (1967), where the authors obtained

an evolutionary tree of human races.

Nei (1987) distinguishes two classes of genetic distances: the first is used for

population classification and includes Pearson's coefficient of racial likeness

(Pearson, 1926), Rogers' distance (Rogers, 1972) and Mahalanobis' D2 statistic
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(Malialanobis, 1936). They are geometric distances, in the sense that the population

could be represented as a point in a v-dimensional space on the basis of the

frequencies of the v alleles at a locus. All populations then lie on the hyper-plane

defined by Euv =1 pi, = 1. With two populations, X and Y, with respective allele

frequencies pi and p2 = 1 — p1 and q1 , q2 , the Euclidean distance between the

populations, based on that diallelic locus, is

dXY V(101 — q1) 2 + (P2 — 42) 2 	(3.3)

and, if there are v alleles

\I 
v

dXY = E (p. — q.)2
u=i

Geometric distances based on the square-root of allelic frequencies have also been

used, so that instead of lying on the hyper-plane, populations lie on a hyper-sphere

with radius 1. A measure of the genetic distance is then simply the angle between

the two radii joining the centre of the hyper-sphere to the location of the

populations on its surface. It can be shown that the distance between two

populations can be expressed as

1 v.1  (pu — q.)21

tk2 =	 p. + qu j	 (3.5)

where is the angle between the radius of the two populations (Weir, 1990).

Cavaili-Sforza Bodmer (1971) used the chord length, d, between population X

and Y as a measure of genetic distance, where

d = V[2 — 2 cos (0)1	 (3.6)

A second class of genetic distances is used for evolutionary studies and can be

related to Wright's F-statistics. This second class includes Fe itself (cf. next

subsection) and Nei's standard genetic distance, D, (Nei, 1972):

D = — (  JXY 
N/J,Ty

where elx = EPL Jy = E q and JxY = EPu qu . This last equation is used very

often to assess genetic distances.

Slatkin (1985a) proposed another classification following Latter's idea (Latter,

1973), using genetic distances based on heterozygosity, and another based on

homozygosity. He pointed out that the type of information extracted from each class

(3.4)

(3.7)
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is quite different. While Nem can be extracted from Fe (cf. Chapter 2), it seems

possible to extract me directly from D as proposed by Nei (1975, p. 194).

Although promising, the statistical problems associated with estimations and

inferences of this last category of distances remain largely unexplored.

The F-statistics of population structure

The F-statistics are tools devised by Wright(1921,1951) that measure the

heterozygote deficit relative to its expectation under the Hardy-Weinberg

equilibrium (H.W.E.). Although reminiscent of the 'beanbag genetics' of Mayr

(1959), the Hardy-Weinberg equilibrium remains the reproductive regime of

reference for two reasons: it is the best understood and, whatever the genotypic

make up of the population, one generation of panmixia restores the equilibrium.

A measure of the heterozygote deficit is simply the ratio of the difference between

expected and observed heterozygosity to the expected heterozygosity:

HE	 — HObs	 HObs
F =	 = 1	 (3.8)

HExp	 HExp

The symbol F stands for Fixation index. If individuals are to be more homozygous

than predicted by H.W.E., F will be positive, with a maximum of 1, when all

individuals are homozygous. On the other hand, if individuals tend to be less

homozygous than predicted by H.W.E., then F will be negative, with a minimum of

-1. A very nice feature of this parameter is that it can be related to both the

inbreeding coefficient and the probability of identity by descent as shown in

Chapter 2. Wright preferred to define F as the correlation of the presence or

absence of an allele in uniting gametes, because a probability cannot be negative. As

he puts it (Wright, 1969):

'In a panmictic population, there is no correlation between

homologous genes of uniting gametes relative to the gene frequencies in

the whole population. On splitting up into small lines which breed within

themselves, a correlation between uniting gametes is to be expected. This

suggests a description of population structure in general and the effects

of inbreeding in particular by means of the correlations expected under

Mendelian heredity. The concept of correlation of homologous genes of a

certain class is required from the broader standpoint of a group of

parameters useful for the description of population structure in general.'
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Table 3.1: Proportional frequencies of the different genotypes in the case of multiple

alleles under any reproductive regime

A1 A2 ... Ak Total

A1 (1 — F)p? + Fpi (1 — F)PiP2 ... (1 — F)pok P1

A2 (1 — F)p2pi (1— F)pi + Fp2 ... (1 — F)p2pk P2

: ... ... ... ... . ..

Ak (1 — F)pkpi (1 — F)pkp2 ... (1 — F)pi2c + Fpk Pk

Total Pi P2 • • • Plc 1

First, let us demonstrate that F is a correlation coefficient by considering a diploid

population with a single, multi-allelic, segregating locus. If allele A i is opposed to all

others, frequency of homozygote AAi is given by (1 — F)p? + Fpi where pi is the

frequency of allele Ai in the population and the frequency of heterozygote

j 0 i is 2p(1 — pi )F. To show that the fixation index F is the same as the

correlation between uniting gametes, let 14, V2, ... , Vk be arbitrary values assigned

to the alleles and w, with suitable subscripts, describes the proportional frequencies

of the different alleles and genotypes as shown in Table 3.1. The formula of

Pearson's correlation coefficient's , p, is

Cov(x,y)	 Ty — Y-g
P	

I-2—
=	 = 	

N cr a	 V (x2 _ y2)(y2 _ g2)x y

The different components of this expression are defined, in the context of correlation

between alleles as follows: the mean genetic value of the population and the variance

are given by
k	 k

Y = E Vi Wi = E Vipi

and
k	 k,...2 = \--• vi2pi _ (E Vipi)2,

which leads to
0.....N".....

k k

E E ViViwii — (V ViPi)2

P = 	 2az
The wii are derived from Table 3.1 with: w ii = (1 — F)pipi if i 0 j and

= (1 — F)p? + Fpi if i = j. Thus the over-braced part of (3.9) can be written

(3.9)

0nnn,....n•n

kk	 k ,—......—.,—.,	 k

E E vivi tvii = E Vi2 [(1 —F)74 +FA] + E Vi (1 — F)pi itVipi
i	 i	 i	 i	 Joi

(3.10)
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Using Newton's expansion on the over-braced part of (3.10) and rearranging, we

obtain

(1 — F)E[Vi2g Vipi 17; = (1 — F)(EVipi ) 2 	 (3.11)
jOi

This is valid only if F is the same for all alleles and their combinations, such as

when there is no selection affecting the locus under scrutiny. This problem is not

mentioned in Wright (1969) but has been pointed out by different authors

(Roughgarden, 1979; Golding St Strobeck, 1983). In the fourth volume of his

masterpiece, Wright (1978, p. 60) came back to this problem by highlighting the

differences between the inbreeding coefficient, f, to which the demonstration applies

and F-statistics, to which the demonstration applies only under the hypothesis that

the locus under scrutiny is neutral. Bearing in mind that the evolutionary forces we

are interested in affect alleles in the same way, this 'mathematical trick' should not

affect the proof and equation 3.10 can now be rewritten
k k

E E	 Vi2P1 — F(E ViPi) 2 (E ViPi) 2 	 (3.12)

Substituting (3.12) into (3.9) leads to:

Fa2
(3.13)P	 F

This completes the proof that the fixation index F is the same as the correlation

coefficient between uniting gametes and that it is independent of the genetic values

assigned to the different alleles.

The success of fixation indices compared to other indirect methods come from their

ability to partition the heterozygote deficit into two components (which could be

extended to many more, e.g. Wright, 1978). If we sample randomly in natural

populations, samples are taken from different locations. These samples may or may

not belong to the same panmictic unit. Fixation indices allow the measurement of

the heterozygote deficit within sampled locations and provide an estimate of F due

to evolutionary forces such as selfing. This fixation index is called Fi,, i for

individual and s for subpopulation. The fixation index could also be measured for

the whole sample, leading to Fit , t for total population. If Fit, and Fit differ, then

another source of heterozygote deficit must exist: it is known as the Walhund effect

(Walhund, 1928) and is quantified by Fa. In terms of correlation we define:

• Fit as the correlation between gametes that unite to produce the individuals

relative to the gametes of the total population
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(3.16)

(3.17)
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• Fi, as the average over all subdivisions of the correlation between uniting

gametes relative to those of their own subdivisions

• Fe as the correlation between random gametes within subdivisions, relative to

gametes of the total population.

The relationship between these three F's can now be derived. Within a single

population, s, the heterozygote deficit, Fi,,, for allele Ai can be written as a function

of the allele frequency in that subpopulation, p,, and the observed number of

heterozygotes:

where 1101,8 , i is the observed heterozygosity in the sth subpopulation. Fi, is then

defined as the average over all subpopulations of Fi„,. This average will not be an

unweighted average, because allelic frequencies between subpopulations will differ

and therefore, the contribution of each subpopulation to the global Fi, will be

different. If the average was not weighted, the contribution to Fi, of a subpopulation

with only one copy of allele Ai would be the same as the contribution of a

subpopulation with N copies of allele Ai. This point has been stressed by some

authors (eg. Nei, 1973), but did not appear in the demonstration of Wright (1969,

pp. 294— 295), although it is explicitly taken into account in Wright (1978, p. 80).

The expression of the weight is simply p8 (1 — p„) [dropping the subscript i for

simplicity], leading to:

F,,— S

a'Pa(1 — p8)	
(3.15)

where D is the number of subpopulations sampled. The total heterozygosity can

now be written

Hob,, = 2 {i (1 _p') (1 EP, P8( 1 — P8)Fi8)1

P8	 8

	

E8 p,( 1 pd)	 '

which leads to
2 D

Hobs, = EMI - p3)(1

Since Fia is the same for all subpopulations, it can therefore be taken out of the

summation sign. Rearranging then leads to

1 v—%D 2
Hob„ = 2(1 —7:) (pt -	 p.)

where pt is the frequency of A i over all subpopulations.

(3.18)
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Therefore the
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Table 3.2: Values of the different F's under extreme reproductive regimes. Cases 1

and 2 affect all loci equally, whereas cases 3 and 4 affect only the loci tightly linked

to the locus under oin disassortive mating.
Breeding system Fis Fe Fit

1. Random mating

•	 a. large migration between subpopulations 0 0 0

•	 b. no migration between subpopulations 0 1 1

2. Total selfing

•	 a. large migration between subpopulations 1 0 1

•	 b. no migration between subpopulations 1 1 1

3. Disassortative mating, 2 alleles

•	 a. large migration between subpopulations -1 <0 -1

•	 b. no migration between subpopulations -1 <0 -1

4. Disassortative mating, large number of alleles

•	 a. large migration between subpopulations -1 ? -1

•	 b. no migration between subpopulations -1 ? -1

Bearing in mind that the variance of the frequency of Ai , o, over subpopulation is

1/D ED, p! — p? we obtain

Hob„ = 2(1 -:p ) [pt(1 — Pt)- 4} .

Dividing both sides of the equation by 2p t (1 — Pt) leads to

2

t	 = 0. F.,) 	'	 (1 F28).
2pt (1 — Pt)	 Pt(1 — Pt)

In the left-hand side of the equation, we can recognise the expression 1 — Fit (e.g,

equation 3.8). Rewriting (3.20) then gives

Hobs	 a

n.2

1 — Fit = (1 — Fis)(1	 „-P° J.
pt(i —pt)

The over-braced part of the last equation is the formula for Fe.

general relationship between the three F's is:

(1 — Fit ) = (1 — r;,)(1 — Fat)	 (3.22)

Now that the relation between the three F's is established, we need to
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Figure 3.1: Fit as a function of Fi. and Zt. The same Fit value can arise from different

combination of Z. and Fat.

focus on their respective meanings. Table 3.2 provides examples of the values taken

by these three statistics under different extreme reproductive regimes. The first

thing to notice is that different reproductive regimes lead to the same value for Fit,

as shown by cases lb, 2a and 2b. The outcome of these reproductive regimes is that

no heterozygotes are left in the population, but the statistic Fit is unable to

discriminate between the forces that caus'ed this deficit. The same conclusions apply

to any value of the statistic Fit as shown in figure 3.1.

On the other hand, F, and Fa quantify the respective contributions of inbreeding

and structuring to the heterozygote deficit, providing that the sampling strategy is

adequate.

Fa can be interpreted as a measure of the amount of differentiation among

subpopulations, relative to the limiting amount under complete fixation within each

sub-population, in contrast to a p2, which measures this differentiation in absolute

terms (Wright, 1978). Indeed, the denominator of F,,t , pt qt , is the expression of the

maximum possible variance in allelic frequency in the population, which would occur

if a proportion pi of the populations were fixed for one allele and the remaining



3.3. On estimating F-statistics 	 75

populations for the other, in the simple case of two alleles segregating at a locus.

Wright(1978) pointed out that observations of Fe alone could be misleading, because

different patterns of allelic frequencies could lead to the same Fe. For example,

consider a sample of twenty populations. In one instance, one population is fixed for

allele A1 and the remaining nineteen fixed for A2. Another set of twenty populations

has ten populations fixed for A1 and the remainder for A2. The Fat obtained from

both samples will be the same, but the numerator and denominator will be different.

The extent of differentiation seems larger in the second than in the first case and, if

many loci where to show the same pattern, one could suspect that the nineteen

populations fixed for the same allele are isolated from the twentieth, but not isolated

from each other. On the other hand, if such a pattern is displayed by only one locus,

the hypothesis that the pattern had arisen by chance would be difficult to reject.

Another interesting example is one where only two populations are sampled and the

locus under scrutiny has four alleles, with alleles A1 and A2 equi-frequent in

population 1 and allele A3 and A4 equi-frequent in population 2. Although it seems

that little if any genetic exchanges occur between these populations, Fe will only be

1/3, because complete fixation of four alleles could not occur in a sample of only two

populations. Fe therefore measures the extent to which the process of fixation has

gone toward completion (Wright, 1978).

To overcome the problems highlighted in the above examples, Wright advocates the

use of not only Fe, but also of crp2. and pt qt to assess population differentiation. If a

great deal of allele replacement seems to have occurred, so that the populations

under scrutiny seem very differentiated, as in different species within a genus, the

quantity of interest will be a p2  whereas if there is little differentiation, Fe will be of

interest in assessing population structure.

3.3 On estimating F-statistics

In the preceding section, F-statistics were defined in terms of population gene and

genotype frequencies. These, however, cannot be readily obtained, even if the whole

population is sampled, due to two sources of error: the first due to genetic sampling

occurring in each generation (sampling of gametes from the parental array to

produce the next generation); and the second, statistical sampling. Another source

of sampling error exists, namely the parametric sampling, due to different mutation
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rate at different loci (Slatkin Arter, 1991). In the model developed here, however,

mutation is not of interest, because of the time scale at which we are working.

Information about this third source of variation and its influence on the estimators

of F-statistics can be found in Cockerham & Weir (1987) and Weir Sz Basten (1990).

Estimation of the population gene and genotype frequencies traces back to Levene

(1949). Since then, a lot of progress has been made and I will present two families of

estimators that are widely used in the literature. The first was developed by

Cockerham (1969, 1973) and Weir & Cockerham (1984) and takes account of the

two sources of biases mentioned in the previous paragraph. The other, developed by

Nei (1973, 1978) and Nei & Chesser (1983) takes only account of the statistical

sampling. If our interest lies only on the population from which the sample was

taken, Nei's approach could be justified, but if the intention is to use the F-

statistics to compare structuring in the sample with other populations of the same

species or with different species, the first method is to be preferred.

Measuring F-statistics is of little interest if no population parameter can be

extracted. A third method for seeking appropriate estimators is developed which

leads to an estimate of both the local and global effective size of the samples. This is

an interesting parameter which may help in coming to an understanding of the level

at which selection is acting in the framework of Wright's shifting balance theory

(Wright, 1977, Chapter 13).

3.3.1 Cockerham's method (1969, 1973)

Coc erham(1969, 1973) approaches the problem of the estimation of the different

F-statistics by mean of a hierarchical analysis of variance (ANOVA). The

observational unit used is the gene (each and every gene, Cockerham, 1973). Let akii

index the jth allele in the ith individual in the kth population. xkii is defined as a

measure of frequency such that Xkij = 1 if aki; = A, and Xkij = 0 if akij = A A

(1969). Let the population frequency of A be P(akii = A) = p. The following model

can be written (Cockerham, 1969)

where the effects, all random, are a for groups, b for individuals and w for within

individuals and have variances aa2 , 0.1 and al, respectively. The expectations of
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quadratics over classes of genes are:

E(XkijX1ciiVi) =

P2 +p(1 — p) =p2 + cr2
p2 +r(1 — p) =p2 + Covab

P2 -F -01)( 1 — 1)) = p2 + Cova

p2 +Covg

if k = le,i = i' ,j = j'

if k = k',i = i',j 0 j'

if k = k', i 0 i'

if k 0 le.

Therefore, r and 0 are simply defined as a function of the covariances. f is the ratio

(F — 0)1(1 — 0). For uncorrelated groups, Covg = 0. Otherwise, it is the covariance

between the least related genes, in the sense that they are furthest apart in the

hierarchy (Cockerham, 1973). If this correlation is not zero, all the estimated

statistics will be relative to it and could be redefined as p' q' = (1 — 0 g )pq = (7 2 ,

0' = (0 —0g )1(1— 9.9) and F' = (F — 0g)1(1— 9 g). This point stresses the importance

of properly identifying the different level of structuring. A discussion of the problem

is found in Cockerham(1973) and is developed further in Chapter 4. It is sufficient

to say here that, without modification of the basic model (equation 3.23), if there

are isolates within subpopulations, F and 0 can be estimated, but not f, whereas if

there are subpopulations within areas and areas within populations, F and 0 cannot

be estimated but f can. Parametrically we have in terms of correlations

(Cockerham,1973)

2a	 = P(1 — A

COVab = -7P( 1— P)

C OVa = , .4( 1 —1)).

The correlations are related to the components of variance as follows:

(1 —7)p(1 — p)

(7 —3-)P(1— p)

3•p(1 — p)

and

2	 2 _i_	 2 i	 2
Cr = Crw 1- crb 1- ace

It is now necessary to estimate Fit (F), F8 (0) and F 5 (f) respectively from a

hierarchical analysis of variance design. To do this, we simply need to construct the
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different sums of squares for the analysis of variance (e.g. Solcal and Rohlf,1982):

where N2 stands for the number of homozygotes AA and N1 stands for the number

of heterozygotes AA. The differences of sums of squares follow is given by:

550-3 =

adding and subtracting 2DNp52 to 550-2 leads to:

SS0-2 =

50-1

551-2 =

552-3 =

2DN(Tic- Tc — c•p2,)
Ek 

2

2DN(Pic—g crp20	 k11 

2DNcr2
Pk•

2

where crp2k is the population variance of the allele frequency. This parameterisation of

Cockerham's equations will allow to find the relation between Wright's F-statistics

and Cockerham's estimators.

The set of equations leads to Table 3.3 if for simplicity, we rewrite p for TT and cr 2 for

cr2 ' The expressions for F, 9 and f can be readily extracted from this table and give
Pk

On the other hand, if only allelic frequencies are available, one has to make the

assumption that each of the samples are in Hardy-Weinberg equilibrium, and the

only statistic that can be estimated is 0. The layout of the analysis of variance for

this case is shown in Table 3.4. It is also the table that would be used in the case of

data from haploids with Nhap = 2Nd . In this case the expression for 0 will be

These two tables are for 1 allele only. To get an estimate over alleles at a locus and

over loci, one simply sums numerators and denominators.
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Table 3.3: Hierarchical analysis of variance on allele frequencies when genotypic fre-

uencies are available
Source of

variation

Degrees of

freedom

Sum of

Squares

Mean

Squares

Expected

Mean Squares

Among Demes D — 1 2DNcr2 2DNa2 o,+ 24 + 2Ncr?,-Li

Among individuals

within demes

D(N — 1) 2DN(pq— cr2)

_ a
2

2DN(pq-a2) crw2 + 24
D(N-1)

N_____u_
2D(N-1)

Within individuals DN a
2

TA_
WN cr2

w

Total 2DN — 1 2DNpq
2DNpq
2D1V--1

If u indexes alleles and r loci:

where o2•ru stands for the sum of the three variance components,

Er,U alru 
f — 

Er,u(otu + alru).
(3.30)

These estimates will be unbiased in the sense that they are ratios of unbiased

estimators. Other methods of averaging over alleles and loci have been investigated,

but gave worse results than this simple weighted average (Weir & Cockerham, 1984).

It should be noted that, although the relation between the three Fs stands for each

allele, it does not for the combined estimators.

Confidence intervals for these estimates can be readily obtained by means of

re-sampling techniques such as Jackknife and Bootstrap (Weir, 1990, pp. 137-143).

The advantage of such techniques is that they do not depend on the assumption of
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Table 3.4: Analysis of variance on allele frequencies when genotypic frequencies are

not available
Source of

variation

Degrees of

freedom

Sum of

Squares

Mean

Squares

Expected

Mean Squares

Among Demes D — 1 2DN cr2 2DNcr2
CTI2 + 2Ncr?,D-1

Within demes D(2N — 1) 2DN(pq— 0'2)
2DN(pq—a2 ) 2

crw2D(2N-1)

Total 2DN — 1 2DNpq 2DNyq
2DN-1

normality and are easily implemented on a computer (cf. algorithms and Fortran

source code in Weir, 1990). Randomisation tests (permutations of alleles within

samples, between samples and permutations of multi-locus genotypes) can be carried

out to test if f, F and 6 respectively are significantly different from zero. These

tests also allow to generate an empirical distribution of the different estimators

under the null hypothesis. Weir's program (1990) has been translated in Pascal and

C and the code is given in appendix D. These randomisation tests will be further

discussed in Chapter 4

Long (1986) refined Cockerham's approach by extending the diallelic system to a

multi-allelic system by mean of multiple analysis of variance (MANOVA) rather

than ANOVA and proposes an approximate test based on Wilk's A distribution.

3.3.2 Nei & Chesser's methods (1983)

Let pki be the frequency of allele A i in the kth population and Pkij be the frequency

of genotype AA inin the kth population. Nei (1977) defined the fixation indices in

the following way:

	

Fia = 1 — HO/ H,,	 (3.31)

	

Fit = 1 — H0/ H,	 (3.32)

	

= 1 — Hal&	 (3.33)
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where Ho = 1 — Ei Pii , H, = 1 — Ei pl and Ht = 1 — Ei W. Pii , p? and T)72 are the

respective weighted averages over populations if they are of different sizes. The

problem is then to estimate Ho , H. and Ht from the samples (Nei & Chesser, 1983).

Let Xki and Xkii be the sample frequency of allele A i and genotype iliAi respectively.

It should be stressed that —although it is not mentioned anywhere in Nei 6 Chesser

(1988)— even if the total population is sampled, it is still only one of the possible

states of the genotypic array and therefore, estimators are to be used. An account of

the question of fixed versus random effect can be found in Weir (1990, pp. 136, 145).

An unbiased estimate fto of Ho is just the number of homozygotes:

flo = 1 —E Xkii/D.	 (3.34)
k,i

where D is the number of samples. 4, however, is not an unbiased estimate of pL.

Under the multinomial sampling of genotypes, we have (subscript k is dropped for

brevity):

E(x) = Var(x i ) + [E(x i ) ] 2 = E[X4+ X 1 (X 1 )Xii ) + (E Xij /2) 2 ]	 (3.35)
jOi	 jOi

because

4 . (xJJ +Ex-J.0)2

ioi

Equaticn3.35 becomes:

E(X1) = Pil + Pii (1 — Pii)/N

+Pii (Etoi Pi1) — Pii(Eioi Pii)iN

+(Ei01 P13 ) 2 /4 + Ejoi Pi1 I4N — (Eioi P)2/4N

. 74 + Pii IN + Eioj P1j I4N —141N.

where N is the sample size, presumed constant over samples. This leads to:

118 = 17—N [1 — E —1	 i t 2N

where fio is given by (3.34).

Similarly for the estimate of Ht , we get:

(3.36)

flo
fit = 1 — E 2 + A.

i	 ND 2ND

where fis and flo are given by (3.36) and (3.34) respectively.

(3.37)



ti. = 1 — EVA.

t.t = 1 —14/11t

pit = 1 — 1-10/flt.

(3.38)

(3.39)

(3.40)
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Now the different estimates of the fixation indices are:

3.3.3 A population genetics view

So far, we have been dealing with a statistical approach of the problem of estimating

F-statistics. Biologists, however, often find it difficult to understand statistical

papers, and I will attempt here to derive unbiased estimators of the F-statistics

using concepts more familiar to the population geneticist and, more generally, to the

population biologist.

When a sample is taken from a natural population (and I stress again here that the

sample could consist of the whole population under investigation), two measures of

genetic variability are to be estimated: the allelic frequency and the genotypic

frequency. These two measures will be estimated from the same sample. For

example, either allozyme methods or RFLP techniques are used to obtain genotypic

frequencies, from which allelic frequencies will be inferred. This corresponds to

sampling without replacement, that is, once one allele of the individual under

scrutiny is known, there are only 2N — 1 possible alleles for the second if we are

dealing with a diploid population. This simple fact means that instead of sampling

from a binomial distribution, we are sampling from a hyper-geometric distribution.

This point was stressed by Levene(1949), Haldane (1954) and Gouyon (pers.

comm.). Consider a sample of N individuals and, therefore, 2N alleles, where p is

the frequency of allele A and q = 1 — p is the frequency of allele A. The sample will

consist of 2Np copies of allele A and 2Nq of allele X. The probability of a

heterozygote is the probability of obtaining A once and only once from two draws:

Prob(Aq) = Prob(X = 1) = (livp)(iNg) .
(3N)

This can be rewritten:

4N2pq 
Prob(X =1 ) = N(2N — =  

4Npq 
1) 2N —1.



liellzu + (21+0
2Npq 

1 + (11n1171)

(3.42)

F,30 =

Fi8 1 =

Fiat

1
2Npq

F190 — Xo
1 — .X0

F190 — X(1-1) 

1 — X(t-i)

Hetobs
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Replacing Hetobs with this last quantity into the equation of Fi, leads to:

= 1 	
4Npq	 —1 

(2N — 1)2pq 2N — 1'

That is, the expected value of Fi, is negative, a point already stressed by

Kirby(1973) and Cockerham(1973). To obtain an unbiased estimate, we need to

subtract this quantity from the definition of Fi, to give:

(3.41)

The denominator of this last equation is necessary to standardise the estimate over

the range —1 to +1. If we consider that the uncorrected F18 , named F190 in the

following, consists of two components, F139 (the value toward which F180 converges

when N tends to oo) and —1/(2N — 1), the expected value of Fi. when N is finite.

This leads to:

(1 — F180 ) = (1 — 
Fi.g)(1 + 2N

1
— 1)
	

(3.43)

which can be rearranged to give equation 3.42.

This correction would be sufficient if the sample size N was to be equal to the

sample effective size Are (the size of an idealised population that would lose

heterozygote or drift at the same rate as the observed one). If it is not the case, N

needs to be replaced by N.

We have seen in Chapter 2 that the effective size of a population undergoing partial

selfing is NI(1+ F18 ). Replacing N by this last expression leads to a converging

recursive formula:

Putting Xt = —1/(1+2713t

1 — Fi.0
Fist =1	 •1 1 + 2N 

1+ Fie(t-1) 1

1) leads to the following sets of equations:

(3.44)

At equilibrium Fia t Fidt—i and we obtain:

Fie0 

1 — X



Nei Nesgelf.	 N

+ (3.46)
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Replacing isC by its value and rearranging leads to:

(2N — 1)Fin + 1
IS	 2N — 1 + Fin

If N = 1, F150 = —1 unless there is no heterozygotes in the population, when it is

undefined. Substituting 1 for N and —1 for F150 into the expression for 1113 leads to

an undefined expression.

Equation 3.45 is the same as both Cockerham and Nei's estimator. It leads to the

effective local sample size (both inbreeding and variance), which can be expressed as:

(3.45)

as was found in Chapter 2, equation 2.18. As expected, if there is 100% selfing in the

population, N01 will be half the census size, because the rate of allele frequency drift,

as well as the rate of loss of heterozygosity, will be twice as large as in a random

mating population. In the absence of homozygotes, as in the case of overdominance

with homozygotes being lethal, the local effective size will be infinite, a result to be

expected, since there is no loss of heterozygotes or changes in allelic frequencies over

generations.

The effects of the recursive correction are shown in Figure 3.2. Samples of different

sizes were taken from a 2-dimensional stepping stone model composed of 64 demes

of size 64,with 20% migration and 70% selfing. The different Fi3 are calculated for

each sample size.

The effect of the corrections is obvious. Fin within a deme (for sample sizes below

64) increases as sample size increases, whereas tia stays constant, with the other

estimates being intermediate. This plotting technique will be used in Chapter 4 as a

way of inferring the level of population structure.

When estimating Fe, as was the case for Fi., the sampling distribution of the

variance of allele frequencies over populations will follow a hyper-geometric and not

a binomial distribution. Once again two parameters will be estimated from the

samples, the local allelic frequencies, pk where k refers to the kth sample and N, the

global allelic frequency. The distribution will be the outcome of 2N draws without

replacement in a sample of size 2DN. The variance of such a distribution is given by

the following equation:

D — 1 
Var(1-1(2DN,2N,2DNp))

2DN —113q.	
(3.47)



D — 1
= 	

2D N — 1
(3.48)

.73.4

Fes;	 p k q k	 2DN -1 
( D-1

2DN -11

(3.49)
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Figure 3.2: Behaviour of the family of Fit,. Equilibrium is reached after only 3 itera-

tions of the recursion. See text for details.

Replacing the numerator in the definition of Fe by this last expression leads to:

An unbiased measure of F,t , if the subdivisions were to be arbitrary subdivisions of a

single panrnictic unit is given by:

However, if they are not, it is necessary once again to correct the sample sizes to

obtain an unbiased estimator. But we face a new problem because, under partial

selling, rates of allele frequencies drift and loss of heterozygosity are the same,

providing that selfers are not territorial (the location in space of offspring is

uncorrelated with that of the parents). However, in a subdivided population, these

two parameters are different since subdivisions will lead to a faster rate of loss of

heterozygosity, because individuals within populations are more related than

individuals from the total, but to a slower rate of allele frequency drift, as is shown

in Chapter 2 (equations (2.21) and (2.24)). We therefore need to consider these two

approaches and we will see that the outcomes lead respectively to 9 and Ge.



Fato

Fah

Fat,
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Correction for rate of loss of heterozygosity

We can calculate the global inbreeding effective size using (2.21) given in Chapter 2

(the global variance effective size if there is no territoriality). What needs to be

corrected, however, is not N but D, the number of families (demes). As D appears

twice in the expectation of Fat (3.48), we will have, putting

11A-(2Nei--1)Fatt 
Xt =	 2DNei 

11-1-(2Nei-1)Fat,

the following expressions:

1 — Xo
Fe° — X(t-1)

1 — X(t-1)

At equilibrium, Fait = Fst(t_i) , leading to:

Fot 
tat =	 °	 .

1 — x

Replacing IC by its value and rearranging leads to:

= 	 (2DNd —1)F„to — (D — 1) 
(3.50)a

t (D —1)(2Ner — 1) -I- (2Nd —1)Fato

which is the same as Cockerham's O. This leads to the global inbreeding effective

size of the population, Neig , as well as the global variance effective size if families

(demes) are not territorial:

ArSubd i = NRelv = 	 DNelDN 
(3.51)eg 1 -I- (2DN 1 —Oa = 2N FS  + (1+ As)(1 — Fat)

which is also expression (2.28). When both ii,, and tat are 0, IV!! j reduces to DN,

whereas when tat = 1, N 	 We can see here the analogy with Fi9 : when N = 1,

14i, is undefined and the last expression reduces to the expression of the effective size

when there is partial selfing.

Correction for rate of allelic frequency drift

In this case, the global variance effective size is used to correct the expected value of

F. Using (2.24) of Chapter 2, applying it to both occurrences of D in (3.48) and



Fe°

Fel

Fah

(3.53)
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using the now usual substitution:

1—DF,t	 1Xt -
1—F.t

we get:
2aPk

NT;
Fatc, - Xo
1 - Xo

Fat, - X(t-i) 
1 - X(-i)

At equilibrium, Fate = Fat(e_i) , leading to:

F.t 
tat =	 ° A •

1 - X

Replacing .k by its value and rearranging leads to:

_ (2D	 - 1).Fato - (D - 1) 
(3.52)

D(2Nal - 1) + (1 - Fsto)

which is the same as Nei's (1983) estimate, but different from that of Cockerham

(1973). The expression of the global variance effective size can now be written:

ArSubd v =
eg

DN

(1 + Fia)(1 - Fe)

which is the same as (2.26).

This last formula allows us to compare two systems that will lead to a similar

genotypic composition of the total population, that is no heterozygotes: the first is

100% selfing in a single, non subdivided population of size N, the second is a

'random mating subdivided population', with each sub-population of size 1 and no

migration between them. In the first case the effective global population size will be

N/2, in the second, it will be infinite. This could be understood in terms of the

variance of number of successful gametes: in the first case, the number of successful

gametes is Poisson-distributed, whereas in the second case, this variance is 0, that is,

every individual has one and only one offspring.

Figure 3.3 describes a similar situation. The different curves were obtained as

follows:

• Neself is the average variance effective size estimated over 50 replicates

—using (2.15)— of a population with the following parameters:

D = 1, N = 4096, s = 0.9.
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Figure 3.3: Comparison of selfing and subdivisions

• NSubdv is the average variance effective size estimated over 50 replicates of a

population with the following parameters: D = 4096, N = 1, m = 0.05.

• N 1 (x) = 4096
1-1-1-7trj•

• NSubd (x) = 14:17sts.

F(x) is calculated using:

1 \
F,t (s) = (1— m) 2 (-1 -4-

— 2N jj.

with N = 1 and m = 0.05. F13 (x) could have been used instead of Fa (x), with

Fi,(s) =	 Fio(x — 1))

and s = 0.9.

3.3.4 Summary of estimation procedures

Three different methods to obtain estimators of Wright's fixation indices have been

derived, one based on an analysis of variance design, one based on the expectation of

variances and one which gives a population genetics interpretation to the bias,

leading to the effective size of both the local and global population. We need now to

compare the two estimates of Fat , G Ed and 60 and find out if they are independent of

both sample size and number of samples.
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Table 3.5: Estimation procedures.

Fis Fe

Infinite pop. Fin = 1	 11—gte-
Cr 2

Fat() = 77,7

Finite pop.

R.M., no subd.

No R.M., subd.

Eff. size

IC

i'

1
Fis0

.
. n=

D-1F• t 0	 y in	7"..F139
=	 1+

F39 --= 1	 D-12	 -1 27/5-

N (D) needs to be replaced by Ne(De)

No territoriality Territoriality

Nei DeNT	 D DT	 D= 1+NFi. =
11-(2Net-i)At =C	 1—Fat

lig
,ArT _	

D.TN1
NT _i

ŷ T	 1' — 1

2N=	 e11-1 A a	 — 2Dee1—
___

at-"'	 — 2Dp.r et-1

-	 F.	 —Y.g_.1= ...Lf
' 

Fkl. — Fato—x,' ^	 F t
F T	 l' 

—IT=	 —2—at-
Fis

1— X is ' a t	 —	 i—xgT at	 i—xl;

L.4.	 _ (2N 1)F 3s o +1 a _ (2D Ner-1)Fa t 0 —(D —1) ,-,	 = (2D A r . 1 -1)Fato —(D-1)
413 —	 2N-1+Fs-s0 v —	 (D .-1+F4t0 )(2Nei—i) t-Tat	 D(2Net-1)+1—Fato

Global elf. size NNel = 7—f-1: NNTDN NT —	 DN=
eg	 2N 0-1-(1+FL)(1-0) eg — (1+1la)(1-Gat)



(3.58)

(3.59)

(3.60)
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Before doing so, it will be useful to have formulae relating these different estimators

to each other. From now on, Cockerham's estimates will be called respectively f and

, Nei's G, and Ga. The formula for Fe before recursion (equation (3.49)) will be

called Fe, because three of us, P.H. Gouyon, C.J. Gliddon and myself, originated it.

Wright's basic formulae will keep their names. Table 3.5 summarises the results.

For Fi„:

	

f =	 = 	 	 (3.54)
(2N —1)1119 + 1

2N — 1 + Fis

For more than 2 alleles, Fe is the weighted average of the different Fe., where the

weight is puqu.	
(2DNe1 — 1)Fai — (D — 1) 	

(3.55)	Fat, —	
D(2Nei — 1)

(2DNe1 —1)Fe — (D — 1)	
(3.56)ust — D(2Nei — 1) + (1 — Fe)

(2DNd — 1)Fst — (D — 1) 	
(3.57)

(D —1)(2Nei —1) + (2Nei — 1)Fst

where Nei is defined as NI(1+ f). The expression of each as a function of each other

is also of interest:

9 = Fat'D-1-EFe

e =Gat
D-1+Gat
Feg (D — 1) 

=
D —1+ —

3.4 Comparison of 0 and Gst

3.4.1 The functions 118 (Fis) 9(F8 ) and G g(F8t)

A first step in understanding the differences between 8 and Ga and their relation to

Fe consists in studying them as a function of Fe. Plots as a function of Fe for

different combinations of sample size N and number of samples D are found in

Figure 3.5-3.8. For completeness, a plot of E as a function of Wright's Fi, is given

in Figure 3.4. Table 3.6 summarises the functional analysis of IL, 8 and Ge. The

three functions are continuously increasing over their domain of definition, V

(positive derivative). They cross the x-axis when x is equal to its expectation in a

finite sample, under random-mating and no subdivisions. The three functions
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N = 2

Figure 3.4:	 as a function of Wright's

Table 3.6: Functional analysis of A., 9 and G

tia 0 G o

V For x E [-1, 1], N > 1

F (x) E [-1,1]

For x E [0, 1], D > 1

F (x) E [27÷1111

For x E [0, 1], D > 1

F (x) E [D(-2N(D:11))+1) 11

2/:(-1"N-71)—(-D421)+12,>0VxF' (x) (2N-1)2-1	 0 V p_i_T--/D-1,>0Vx

-	 x

>(2N -1+ x)2 	x
D-1

2N —1 < 2DN-1

Sign 0	 -1 0	 x = D-1=. x = 2N-1 2DN —1

+	 x > 2N-11
+	 x ..., D-1

' 2DN —1

niN —+ coliDxx xD-1+x

limp-..0 2Nx-1 1
2N-1 X — 2N
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converge to Wright's F-statistics when N and D tend to oo. More interesting is the

behaviour of 9 and Ge when either D or N tends to oo. As N tends to oo, Ge tends

to Wright's FaVD, whereas the expression of 0 still depends on D (Table 3.6). As D

tends to oo, both the expression of 0 and Ge depend on N, the only difference

between the two being a —1 in the denominator for O. Other observations can be

made:

• Both estimators differ from Fe for low sample sizes and number of demes

sampled.

• Both can be negative (this needs stressing, Weir & Cockerham's estimator is

not the only one leading to negative estimates of F.t).

• They are equal to Fe when Fa = 1.

• Increasing the sample size will lower the intersection with the x-axis, because

the allelic frequencies per sample is more accurate with an increased number of

individuals per sample. On the other hand, increasing the number of samples

without increasing their size has no effect on the individual p'ks. Therefore, if

negative values of either estimator are to be avoided, increasing the sample

size is needed. What is meant by a negative estimate of either 9 or Gg is that

the population under investigation display less variation in allelic frequencies

between samples than that which is expected just by chance.

• An increase in the number of samples lessens the difference between Ge and

(Table 3.6 & Figure 3.7).

• Increasing the sample size is sufficient to reduce the discrepancy between Ge

and Fre, (Table 3.6 Sz Figure 3.6), whereas it has little effect on 0.

• Ge < F,t ,VD,N. If (D — 1) > (2N — 1), 0 < F. The latter may be found

when expansive molecular techniques (sequences...) are used.

• 9 is defined in the interval [-1, 1] when N = 1, the interval for F 3 . As A, is

undefined for N = 1, we see that the only fixation index that can be estimated

in this case is O.

• The absolute value of 9 is always larger than the absolute value of G.t.
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Figure 3.5: Estimators of Fe as a function Figure 3.7: Estimators of Fe as a function

of Fat	 of Fat
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3.4.2 Experimental design

In order to assess the quality of the two estimators in respect of their behaviour

under different sampling strategies, I will consider an adaptation of the experimental

design described in Slatkin Sz Barton (1989). The different population structures

were simulated using the model described in Chapter 2. The difference between this

model and Slaticin's is that at generation 0, rather than having a completely

monomorphic population, the population is as polymorphic as possible (2DN

unique alleles if there is DN individuals). There is therefore no need for mutation as

long as the number of generations is not too large (< 10000 depending on the

amount of migration and the variance effective size, DeAre).

Samples of varying sizes and of varying number were taken at random from an

island model of population (gametic cloud) and a 2-dimensional stepping stone

model. In Slatkin 86 Barton (1989), sampling was at random with respect to

individuals and demes for the island model, but was a function of a parameter k

representing the spacing between demes for the stepping stone model. In this design,

sampling is at random over the total population for the stepping-stone model to

allow an investigation of the dependance of 9 and Go on sampling strategy. That is,

do the estimates of 9 and Go differ if 5,10,20 or 50 demes are sampled, at random,

from the total population. As there is geographical structuring in a stepping-stone

model, sampling for different k values will lead to different estimates (cf. section on

the stepping-stone model in Chapter 2).

For each model of population structure, deme size and number of demes were fixed

at 64, for a grand total of 4096 individuals. Three levels of migration were

considered, 0.005, 0.05 and 0.1, leading to an Nm product of 0.32, 3.2 and 6.4

respectively. These values for migration were chosen so that the product Nm lies on

each side of the threshold 1 (If Nm > 1, the population behaves as effectively

panmictic). Two levels of selling were considered, 0% and 90%, corresponding to a

typical outcrosser and a typical selfer. Fifty replicates were run until they reached
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equilibrium and the following sampling strategy was adopted:

Number of samples

Numb. of Ind. per sample 5 10 20 50

5 50 50 50 50

10 50 50 50 50

20 50 50 50 50

50 50 50 50 50

Figures 3.9-3.12 show the results of the effect of the number of samples. Each

point corresponds to the average of 200 data points. The error bars are the 95%

confidence interval (CI) of the mean. In each case we can see that 0 seems to be the

same for all sampling schemes, whereas Ge increases asymptotically toward 0 as the

number of samples increases. In fact, leaving out the case of 5 samples — in the

third graph of figure 3.10 and the first graph of figure 3.12, the 95% CI of 0 for 5

samples do not overlap with the other CI — there is no difference in all estimates for

0 (overlapping CI), whereas 95% CI of the mean for 10 and 20 samples never

overlaps for G. Therefore Ge is not an unbiased estimator of Fa with respect to

the number of samples. We can also see that 95% CI of Ge and 0 do not overlap.

To test if 0 is an unbiased estimator of Fe, we need to compute the expected value

of F. For the island model, it can be calculated using (2.29):

Model Fia Fat

m = 0.005,3 = 0.0 0.0 0.437

m = 0.005,8 = 0.9 0.82 0.585

m = 0.05,s = 0.0 0.0 0.067

m = 0.05,3 = 0.9 0.82 0.116

M = 0.1,3 = 0.0 0.0 0.032

m = 0.1,s = 0.9 0.82 0.053

The graphed results for 0 fit very well with the values in the table and, as the

number of sample increases, Gat converges toward the values in the above table.
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Figures 3.13-3.16 focus on the effect of the number of individuals per sample.

There is no sign of convergence of 9 and Gat with an increasing number of

individuals per sample, but both estimators remain fairly constant. The 95% CI of

the means of 0 and Ge do not overlap. Once again, the values for 0 are in close

agreement with the data in the table of expected values of Fe in an island model,

but Ge is consistently lower. This could have been guessed from Table 3.6, where

we saw that Ge converges toward Fa when N tends to oo, for all D. The 95% CI of

the mean does not seem to decrease significantly as the number of individuals per

sample increases. For a given migration and selling level, the values in a

stepping-stone model of 0 and Ge are higher than in an island model. This is to be

expected, the input migration in a stepping-stone model being larger than the

effective migration. This trend is stronger for large migration and is enhanced by

selling (which reduces the local effective size).
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Up to now, the focus has been on each effect separately. However, the number of

samples and the number of individuals per sample may strongly interact. It is

therefore necessary to carry out a statistical analysis that takes the interaction into

account, to check that the preceding results are not flawed.

A first analysis is aimed at examining whether taking different numbers of samples

and numbers of individuals per sample from the same population affect estimates of

A., 9 and G. This experiment is designed to eliminate the variance due to genetic

sampling, which adds an unnecessary level of noise.

Fifty replicates of each set of the parameters described below were run, and each of

these replicates were then independently sampled using the 16 different sampling

strategies. The number of individuals per sample and the number of samples are

fixed effects, but the effect of replicates — which has to be taken into account

because each replicate is used for all treatments — is random (Sokal Rohlf, 1981).

In summary, we have a 3-way mixed factorial design with no repetitions. We have to

assume that the 3-way interaction is non-significant (additivity of the different

effects) and will test the three 2-way interactions against the 3-way interaction, and

the two fixed effects, number of samples and number of individuals per sample,

against [number of samples*replicate] and [number of individuals*replicate]

respectively. The effect of replicates is of no interest and could not be tested (no

exact F-test can be calculated). The codes in the first column of table 3.7 have the

following meanings:

• IS: Island model, SS: stepping-stone model

• LM: 1% migration, HM: 10% migration

• NS: no selfing, S, 90% selfing

• EG: generation 25, LG: generation 150

The early and late generation were chosen to mimic a non-equilibrium (half-way to

equilibrium) and an equilibrium situation. Using (2.38) on an island model with 1%

migration and no selfing, generation 25 correspond to the half-way, whereas

generation 150 is at equilibrium. For the other island model patterns, equilibrium is

reached faster (selfing and high migration speed up the process). Although it is

impossible to predict analytically the time to equilibrium in a stepping-stone, it can
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6,66
Table 3.7: 3-way mixed factorial design for the effect of number of sample, number

of individuals per sampCleN an replicates (random). 	 Kir = In{ era e-1,:e...n3

Population type ti. e G.

NSP NIND INT NSP NIND INT NSP NIND INT

IS,LM,NS,EG NS NS NS NS NS NS *** NS NS

IS,LM,NS,LG NS NS NS NS NS NS *** NS NS

IS,LM, S,EG NS NS NS NS NS *** *** NS ***

IS,LM, S,LG NS NS NS NS NS NS *** NS NS

IS,HM,NS,EG NS NS NS ** NS ** *** NS **

IS,HM,NS,LG NS NS NS NS NS NS *** NS NS

IS,HM, S,EG NS NS NS NS NS NS *** NS NS

IS,HM, S,LG NS NS NS NS NS NS *** NS NS

SS,LM,NS,EG NS NS NS NS NS NS *** NS NS

SS,LM,NS,LG NS NS NS NS NS NS *** NS NS

SS,LM, S,EG NS NS NS NS NS NS *** NS NS

SS,LM, S,LG NS * ** NS NS NS *** NS NS

SS,HM,NS,EG NS NS NS NS NS *** *** NS ***

SS,HM,NS,LG NS NS NS NS NS NS *** NS NS

SS,HM, S,EG NS NS ** NS NS NS *** NS NS

SS,HM, S,LG NS NS NS NS NS * *** NS *

be done graphically and it was checked that values of the estimators of Fa had

reached a plateau.

As we are not interested in the effect of replicates or the two-way interaction

containing it (most of the 2-way interactions with replicates were non significant,

appendix B), only the effects of number of individuals per sample, number of

samples and their interactions are summarised in Table 3.7. The proportion of the

variance explained by the model (R 2) ranges from 41% to 60% (appendix B),

showing quite a good fit with the model. The first striking feature of this table is

that there is always a highly significant effect of the number of samples on Ge

(P < 0.001). Ge is therefore not an unbiased estimator of Fg, confirming the results

of the graphical analysis. The second feature is that the interaction, while not

significant in the majority of the cases, is significant in 25% of the cases for

estimators of Fo and 12.5% of the cases for E. One could suspect that the 3-way



3.4. Comparison of 0 and Ge	 103

1-er(icit4es Cree)

interaction and the 2 two-ways containing	 [could be pooled together, as they are

not significant (Sokal & Rohlf, 1981), but a quick look at the ANOVA in appendix B

tells us that it is not necessary, the 3 MS [nsp*rep, nind*rep, Error] being of the

same order of magnitude. We cannot, however, conclude that there is no additivity

of the individual effects, for the interaction is not significant in the majority of the

cases. The simplest explanation is that the data are heteroscedastic and not

normally distributed, rendering theType I error (the probability of rejecting the null

hypothesis when it is true) larger than it should be.

The effect of the number of individuals per sample for both estimators of Fa is

never significant, nor the effect of the number of samples for

The effect of number of individuals per sample is significant in one case for 4, and

the effect of the number of samples in one case for 0, leading to an acceptableType I

error of 6.25%.

Last, but not least, the 3 estimators are not affected by equilibrium or non

equilibrium situations, levels of selfing or levels of migration.

We can now turn to a design that includes the effect of genetic sampling, for this

effect will always be there when estimating F-statistics from natural populations.

Figures 3.9 to 3.12 showed us that the 95% confidence interval for either estimator

decreases as the number of samples increases. This will render the analysis of the

data set using conventional parametric test such as the analysis of variance

(ANOVA) very difficult, because one of the condition of application of ANOVA is

homoscedasticity (Sokal & Rohlf, 1981). This condition is obviously not met here

and we need to find a non parametric equivalent: for a one way ANOVA, this test is

the Kruskall-Wallis test (Kruskall & Wallis,1952). In such a test, instead of working

with the raw data, the data are ranked and the analysis of variance is carried out on

the ranked data. In our case, we have two crossed factors (the number of individuals

per sample and the number of samples), both being fixed effects. Friedman's test

deals with two factors, but one of them is random. We therefore need a

generalisation of the Kruskall-Wallis test for two fixed crossed factors and it can be

found in Scheirer, Ray & Hare (1976) where the partitioning of the variance

components is applied to rank rather than sum of squares. Contrasts could even be

applied, but this is not the purpose of this experiment, as we are not really

interested in comparing the effect of having 5 samples against the effect of having

50, but we want a general idea about the effect of increasing the number of samples.
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Table 3.8: 2-way Kruskall-Wallis with 40 repetitions per treatment.
Population type Pi a 0 Gat

NSP NIND INT NSP NIND INT NSP NIND INT

IS,LM,NS,EG NS NS NS NS NS NS *** NS NS

IS,LM,NS,LG NS NS NS ** NS NS *** NS NS

IS,LM, S,EG NS NS NS NS NS NS *** NS NS

IS,LM, S,LG NS NS NS NS NS NS *** NS NS

IS,HM,NS,EG * NS NS * NS NS *** NS NS

IS,HM,NS,LG NS NS NS NS NS NS *** NS NS

IS,HM, S,EG NS NS NS NS NS NS *** NS NS

IS,HM, S,LG NS NS NS NS NS NS *** NS NS

SS,LM,NS,EG NS NS NS NS NS NS *** NS NS

SS,LM,NS,LG NS NS NS NS NS NS *** NS NS

SS,LM, S,EG NS NS NS NS NS NS *** NS NS

SS,LM, S,LG NS NS NS NS NS NS *** NS NS

SS,HM,NS,EG NS NS NS NS NS NS *** NS NS

SS,HM,NS,LG NS NS NS NS NS NS *** NS NS

SS,HM, S,EG NS NS NS NS NS NS *** NS NS

SS,HM, S,LG NS NS NS NS NS NS *** NS NS

640 replicated populations for each set of parameters were generated, and subsets of

40 were assigned at random to each sampling strategy. A MINITAB macro was

written (Appendix C) and the results are presented in Table 3.8.

The results are self-explanatory: in most instances, A. and 0 are unbiased (non

significance of the effects of number of samples, number of individuals and

interaction), whereas the effect of the number of samples on Ge is always highly

significant (P < 0.001), confirming the two previous analyses. The interaction in all

cases is non significant, as is the effect of the number of individuals per samples.

TheType I error seems however, to be slightly higher than 5%. This means that,

when comparing two samples, we will find them significantly different one from

another when they are not, with a higher probability than 5%.

The added effect of genetic sampling does not impair the results of the previous

analysis, Ai, and 9 are unbiased estimators of Z. and Fe respectively, whereas Ge is

biased by the number of samples.
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3.5 Discussion and conclusions

A quick survey of the literature in population biology will show how widely the tools

described in this chapter are used. It is astonishing to see how much has been

written on the subject of F-statistics, without the reaching of a consensus on which

sets of estimators are to be used to provide true, unbiased estimates. The ongoing

polemic between Nei on the one hand (Nei, 1977, 1986, 1987; Nei & Chesser, 1983)

and Cockerham and Weir on the other (Cockerham, 1969, 1973; Weir and

Cockerham, 1984; Cockerham & Weir, 1986, 1987; Weir, 1990 ) does not seem to

help the researcher in population biology to find the appropriate set of tools for his

or her problem (0 and Gat are found in equal proportion in the literature, with no

statements in general as to why one set of estimators has been chosen rather than

the other). Even more surprising is the number of scientific publications using

computer packages such as BIOSYS-1 (Swofford 8.z Selander, 1981), which do not

provide unbiased estimators of F-statistics. BIOSYS-1, in particular, uses the

definitions of F-statistics of Nei (1977), which are not corrected for small sample

sizes (estimation of Ho , H. and lit are not considered in this paper, but are

presented in Nei 8z Chesser (1983)).

In their comparison of indirect estimators of gene-flow, Slaticin Sz Barton (1989)

used the definition of Ge given in Nei's (1973) paper (Slatkin Sz Barton, 1989,

p1356, equations 9a,b,c), while using Weir & Cockerham's (1984) definitions. This is

slightly unfair, since Nei's paper does not address the question of estimation and a

more appropriate analysis would have compared Weir Sz Cockerham (1984) with Nei

Sz Chesser (1983). The relationship between Ge and 0 given in Slatkin & Barton

(1989) is for the estimators given in Weir & Cockerham (1984) and Nei & Chesser

(1983) (in this relationship, if 0 is negative, then Ge is negative, whereas Slatkin Sz

Barton claim that Ge is always positive. This is true for the definition of Ge in Nei

(1973, 1977), but not for Nei Sz Chesser (1983)).

Slatkin Sz Barton (1989) also find that 0 gives an overestimate of Nm when Nm is

large and suggest that this is so because 9 is unbiased (Ge, on the other hand,

always gives underestimates). This discrepancy between estimated and true Nm is

more likely to come from the relation between Fe and Nm: it has been shown

(Chapter 2) that the expression Fit = 1/(4Nm + 1) is only an approximation, that

relies on m being small and N being large. These assumptions do not seem to hold

true for 4Nm > 30, as is shown on Figure 3.17, where both the exact and
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Figure 3.17: Discrepancies between the approximate and the exact estimation formula

for Nm.

approximate formulae for the estimation of Nm from Fe are shown, for N = 25, as

in Slatkin & Barton (1989). It is then possible to calculate what will be the

approximate Nm value when the exact Nm is 51.2 and this gives 160

Cat = 0.0062125). This is still lower that the estimate found by Slatkin & Barton

(289 for the infinite allele model, Table 1, p 1360), but of the right order of

magnitude (the coefficient of variation of 9 is very large).

and Gig seem to behave similarly for low Nm values. This is not surprising, since

the number of samples as well as the sample size are quite large. Indeed Figure 3.8

shows that there is little differences between 0, Gat and Wright's Fe with 10 samples

of 10 individuals. For migration of 0.001 and 0.01, the inferred Nm is always slightly

larger than its expectation, for 0 as well as Ge. Figure 3.17 shows that the

approximate estimation is always larger than the exact estimation, a finding that

corroborates the results of Slatkin Sz Barton (1989). It should also be noted that, as

there is an inverse relation between Fe and Nm, the closer the estimators of Fit are

to 0, the larger will be the differences in Nm.

The differences between Nei's approach and Weir & Cockerham's revolves around

models of fixed versus random effects. Nei considers that the species being surveyed

is unique and that there is therefore no need to estimate the global allele frequencies

(Nei, 1986; Cockerham & Weir, 1987; Weir, 1990). On the other hand, Weir Sz
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Cockerham (1984) point out that the observed allelic frequencies are the results of

genetical sampling over generations as well as statistical sampling. That is, even if

the total population is sampled, it is still necessary to estimate the global allele

frequencies, because it is only one of the possible outcomes of the genetic sampling

process that the species is undergoing.

An important finding in this work is that Ge depends upon the number of samples,

whereas 0 does not. This finding means that comparison of gene-flow estimates

based on Ge from different samples is not reasonable. The number of samples used

here is of the order of that which is found in the literature (5 to 50). Althought Nei

(1986) suggested to use a correction on Ge to account for the effect of the number of

samples, this estimator of Fe is very seldom found in the literature, probably

because Nei (1986) does not give an explicit formula (the correction is given for De,

one component of Ge).

Another point of interest concerns the value that should be assigned to the

estimators of Fe when the samples are completely monomorphic. Nei Sz Chakravarti

(1977) and Nei (1986) prefer to define the estimator as 0, while Weir & Cockerham

(1984) suggest that it be left undefined. As the amount of polymorphism detected

depends on the technique used (gel electrophoresis of isosymes, Random Fragment

Length Polymorphism, Variable Number of Tandem Repeats such as minisatellites

and microsatellites, Randomly Amplified Polymorphic DNA), one could find an

of 0 using a technique with a low power of resolution such as gel electrophoresis of

isozymes, whereas another technique could give a completely different result

(Cockerham, 1984; Cockerham Sz Weir, 1987). For this very reason, it seems logical

to follow Weir Sz Cockerham rather than Nei.

The approach used here for deriving unbiased estimates of Wright's F-statistics

should help to clarify the circumstances in which it is preferable to use one or the

other estimators. As Nei (1986) pointed out, he is interested in the degree of gene

differentiation among populations rather than in the coefficient of inbreeding or

coancestry within populations in which Weir & Cockerham (1984, p 1358) are

interested. The two families of estimators can be derived from a unified approach

that properly identifies the distribution generated by the sampling strategy as an

hyper-geometric rather than a binomial. This finding allows the derivation of

unbiased estimators of Fia and Fe providing that the null hypotheses are true

(random mating and no subdivisions) and leads to the estimators F 39 and Far In
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no circumstances, however, should these estimators be used, since there is no reason,

a priori, to accept the null hypotheses. To obtain unbiased estimators if the null

hypotheses are not true, it is necessary to formulate alternative hypotheses. The

alternative hypothesis for random mating within sub-populations is that some

selling occurs, in which case N, the sample size, has to be replaced by the variance

effective size due to selling. This leads to equation 3.45, which is the same as both

Nei & Chesser's G8 and Weir Sz Cockerham's f. For Fe, the alternative hypotheses

formulated by Nei & Chesser (1983) and Weir Sz Cockerham (1984) are different:

Nei & Chesser (1983) consider that the sampled population is unique, so that the

global allelic frequency does not need estimating. This brings an alternative

hypothesis which is cast in terms of allelic frequencies and the implicit assumption

that there is homing: offspring will tend to stay where their parents lived. Using the

variance effective size of a subdivided population, equation 3.52 is obtained. On the

other hand, Weir Sz Cockerham (1984) consider that there is an extra level in the

hierarchy: it could be other populations not sampled, or even non existing

populations, but statistical outcomes of the genetic drift process. In this case, the

global allelic frequency has to be estimated and the different correlations are relative

to the highest level in the hierarchy, that is, the correlation between the least related

genes (Cockerham, 1969, 1973). In this framework, the alternative hypothesis is cast

in terms of rate of loss of heterozygosity, because rate of allele frequency drift could

be affected by external inputs (migrants from populations not sampled, mutation

etc...). The effective size to use to obtain an unbiased estimator of Fe is the

variance effective size of a population where mating between relatives occurs and

leads to equation 3.50. It should be stressed that the rate of loss of heterozygosity

will be the same for both Nei & Chesser's and Weir & Cockerham's alternative

hypotheses, whereas the rate of allele frequency drift will be different. These

differences stem from the implicit assumption of homing in Nei 1{c Chesser, whereas

there is an implicit assumption of no homing in Weir 8z Cockerharn. These two

different perspectives will help to answer different questions. Weir Sz Cockerham's

estimators are appropriately used to compare estimates of gene-flow from different

samples, either within a species or across species boundaries and will give unbiased

answers to questions of the type: does species X at location A have the same

breeding pattern as species X at location B. It has been shown that this type of

questions cannot be answered with Nei's estimators, because of their dependance on
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the number of samples. On the other hand, Nei's estimators will be useful tools for

the manager of a conservation reserve, who may be interested in measuring the

extent of gene differentiation. It has been demonstrated, in particular, that Gid is an

appropriate statistic to measure the variance effective size of a subdivided

population. This measurement of the variance effective size not only does not

require temporal data, which is always difficult to obtain, but seems also to be less

subject to the large variations suffered by temporal estimates.

The framework described here to obtain unbiased estimators of F-statistics has other

advantages: as long as an alternative hypothesis is clearly stated, it is possible to

derive estimators for any type of evolutionary pressures. In particular, biased

sex-ratio, unequal contribution of parents to the gametic pool and fluctuations in

population sizes could be accounted for by including the effects in the formula for

the effective size, as discussed in Chapter 2.



Chapter 4

Theoretico-realistic

considerations?

4.1 Introduction

The aim of this chapter is to describe a series of techniques that have been

developed to unravel levels of structuring in natural populations. This problem is

very seldom addressed in the scientific literature and estimates of gene-flow are

measured at a scale that is decided a priori by the researcher. No attempt is made

in general to test if this scale is appropriate or not. This is unfortunate, since the

behaviour of F-statistics, used to infer levels of gene-flow, are highly dependent on

the underlying structure of the population (Chapter 3; Cockerham, 1969, 1973).

One of the reasons why so little care is given to this problem is that natural

populations live in general on a continuum (Wright, 1978), in which case discerning

the boundaries of a sub-unit such as a deme will be a daunting task. To overcome

this difficulty, researchers often use the concept of neighbourhood area, defined in

Chapter 2. It was shown, however, that this concept is far from perfect, often

misleading and, moreover, relies on the estimation of parent to offspring dispersal

distance, which may well be highly variable in time and space. It is therefore

necessary to outline a reasonably robust general strategy, tested on known models of

population structure and, most importantly, transferable to the field.

Since F-statistics are designed to partition the heterozygote deficit into its different

components and since unbiased estimators can be obtained, it is logical to start with

them. Wright (1978, p. 115, Figure 4.2) used data of Dobzhansky Epling (1944)

110
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on Drosophila pseudoobsura to plot the changes in Fie, and Fe measured at different

scales and showed that Fie, increases with the size (area) of the sampling unit,

whereas Fe decreases. He also applied this technique to the analysis of a data set

from Epling Dobzhansky (1942) on the desert snow Linanthus parryae (Wright,

1978, p. 203, Figure 6.3) and a data set collected by Lamotte (1951) on the land

snail, Cepaea nemoralis (Wright, 1978, p. 231, Figure 6.16). These three surveys

showed an increase in the value of Fi„ as the sampled area increases and a

concurrent decrease in the value of Fe, an indication that gene-flow is somewhat

restricted. However, the estimators of Fi, and Fe used in these analyses are not

unbiased and would show an increase in the value of Fi, even if samples belonged to

the same breeding unit, as is shown on Figure 3.2, Chapter 3. Since the objective is

to identify correctly levels of structuring in natural populations, use will be made of

the unbiased estimators derived in Chapter 3.

4.2 Raiders of the lost deme.

The smallest unit that one can possibly sample is the individual itself. We have seen

in the Chapter 3 that at this level, F-statistics are not defined. One can start to

look at a way of grouping these individuals in small units. From this level of

grouping, F, and F„t can be estimated. Grouping can then be made at a slightly

larger scale and F-statistics recalculated. This procedure is repeated until all

individuals are grouped into one single unit. Experiments such as these are widely

used in ecology as a way to asses species richness at different scales (e.g. May, 1992).

Values of Fi, and Fe can be plotted on a graph where the x-axis represents the

different levels of grouping, and the y-axis the values of the F-statistics. As long as

individuals belong to the same breeding unit, there is no changes in the values of

either statistic, but F1, starts increasing (Fe decreasing) as soon as samples (groups)

consist of more than one breeding unit. In Figure 3.2, unbiased Fi, stays constant

until groups are made of 64 individuals and then starts increasing, because the

source of bias has changed from one due to selfing within a random-breeding unit to

one due to partial isolation between breeding units. It is therefore possible to

conclude that groups of 64 individuals constitute a random-breeding unit, or deme.

Note in this case that Nem is 64/1.54 *0.2 = 8.32. This graphical method therefore

seems to be able to detect structuring for Nm values larger than 4, in contradiction
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with what is generally reported in the literature (e.g. Slatkin, 1985, 1987; Crow &

Kimura, 1970; Nunney & Campbell, 1993): if Nm is larger than 4, then the

population behaves as if effectively panmictic.

The behaviour of F-statistics calculated at different levels of grouping have been

investigated using data sets generated with MODEL42 described in Chapter 2. As

the expected distribution of F-statistics is unknown (Weir, 1990), use will be made

of re-sampling techniques such as the jackknife and the bootstrap in significance

testing.

4.2.1 Re-sampling techniques

The generalisation of personal computers in the office has allowed the development

of new statistical techniques, known under the generic name of re-sampling

techniques, or randomisation tests. These techniques are not subjected to the

limitations suffered by parametric tests, such as normal distribution of the data, or

homogeneity of the variances (Manly, 1991; Crowley, 1992).

The Jackknife

In ordinary usage, this word describes a large pocket knife, with a multitude of small

pull-out tools, so that the owner is able to tackle many small tasks without having

to look for something better. While this statistical technique was first described by

Quenouille (1956), its name was given by Tukey (1958), who outlined that this

method can be used where no better one can easily be.

Given a parameter, 0 and a series of observations, Xi , X2 , ... , Xn, one can obtain an

estimate, 0̂ , of 0. The jackknife procedure consists of obtaining n new estimates of

cb, (ki by omitting each observation in turn. The mean of all these estimates is then

just the average of all 0 i , 00 and a new estimator of 0, which should be less biased

is:

4T = ni¢ — (n — 1)4)

(Weir, 1990) and an estimate of the variance of i 'k is:

V ar(ii.).7 =
n 

n
— 1 z ( iski _ ho 2

 .	 ks

Taking Fi, for example, if n populations have been sampled, we can obtain an

estimate of the variance of Fi3 by omitting each of the samples in turn. This will be
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the procedure to follow if one wants to find the confidence interval of Fi, measured

at a given locus. This would be a way to identify samples behaving oddly. On the

other hand, if many loci are scored, each one can be omitted in turn, to give the

confidence interval of F, over loci. Comparisons of confidence intervals over

populations and over loci would be a way to identify loci with peculiar behaviours

(Goudet et al, In Press) and to eliminate them from subsequent analyses.

This technique, however, suffers some drawbacks. In particular, it is very sensitive

to outliers, under which case, the jackknife variance is too large (Efron, 1982; Manly,

1991).

The Bootstrap

This method was first described by Efron (1979), who pointed out that the

Jackknife can be regarded as an approximation to a more primitive method that he

named the bootstrap, to reflect the fact that its use is analogous to someone pulling

themselves up by their boot-laces. If there are n observational units, it consists of

sampling with replacement a large number of times (1000) n observational units and

to recalculate the statistics from this sample. For F-statistics, it would be sampling

n loci from n with replacement and recalculating the F-statistics. This technique

does not need to be applied with less than 5 observations, since it is possible to

enumerate all combinations (there is 4(2 2 ) possible values with two loci, 27 with

three loci, 256 with four). The different bootstrap estimates can then be sorted in

ascending order and the inner 95% provide the bootstrap confidence interval. It

should be noted that bootstrapping Fe or Fit values over populations would be

meaningless, since the same population can be sampled many times.

Randomisation testing: the method of permutations.

The two techniques described above provide a confidence interval of the observed

statistics. It is then possible to assess if the statistic is different from 0 by checking

if 0 is included in the confidence interval. However, this relies on the assumption

that the loci under scrutiny are neutral and also that they are a random sample of

all possible loci.

A technique that proves useful in relaxing the above assumptions consists of

permuting alleles within samples, alleles within the total and multi-locus genotypes

among samples to test Zs , Fit and Fe respectively. This way, the distribution of the
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null hypothesis is obtained (e.g. alleles within samples are associated at random,

therefore, there is random mating and F, is not different from 0). Generating 4999

such permutations plus the observed value and sorting the data in ascending order

will give the probability that the observed combination of alleles within individuals

is due to random mating. If this probability is <0.05, then the null hypothesis can

be rejected at the 5% level.

Some problems arise as to how to generate the null distribution for Fe: if there is

random mating within sub-populations, then permuting alleles or multi-locus

genotypes will give essentially the same results, because each allele can be considered

as being independent of the other allele present at the locus. However, if there is a

certain amount of selling, or mating with relatives, alleles within individuals are not

independent one from another and testing Fe using the permutation of alleles within

the total will lead to erroneous results, by increasing the probability of Type I error.

This last set of techniques are a special case of more general computer-intensive

methods, known as Monte-Carlo tests (Manly, 1991). Permutation methods test the

null-hypothesis that the observed distribution is random. In Monte-Carlo tests, the

null hypothesis is more specific. In our case, it could be 'The observed samples

behave in the same manner as an island model of populations, with 10% migration

between samples and 70% selfing'. Testing this hypothesis could be achieved using

MODEL42, through the generation of many replicates with the parameters of the

null hypothesis.

4.2.2 The island model

To assert if measuring F-statistics at different scales is able to unravel levels of

structuring, the island model was used first. Twenty replicates of the gametic cloud

island model described in Chapter 2 were simulated and run for one thousand

generations. The genotypic array at the thousandth generation was saved. Each

replicate was considered as an independent locus, from which f, 0 and Ge were

estimated using the program FSTAT, whose listing can be found in Appendix D.

Confidence intervals on each point were obtained by jackknifing over loci. The

confidence interval displayed on the graphs are the 95% confidence intervals,

calculated as ±1.96a. All the individuals in the population were sampled.

Figure 4.1 was obtained from an island model with 64 islands and 64 individuals on

each island. Selfing occured at random (1/64) and migration between islands was set
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Figure 4.1: Changes in F-statistics with mesh size.

at 1%. Figure 4.1 displays the effect of grouping of samples on f (solid line), 0 and

Gat (dashed lines). Focusing on f, we see that it stays constant below the deme size,

with a value of 0 (this is the expected value of f when there is random mating). As

soon as more than one deme are pooled together, f increases suddenly to a value

near its maximum (Fit). The differences between f as measured below deme size

and above deme size is statistically significant (confidence intervals do not overlap).

and Gat behave exactly in the opposite way: there is a decrease in their value after

grouping of more than 1 deme.

Because we are using data generated by computer simulations, we expect each locus

to behave in a similar manner to the others. As was mentioned in the previous

section, this can be tested using jackknifing over population for each locus, while a

jackknife (or bootstrap) over loci is also calculated. A confidence interval per locus

is then obtained, as well as the overall confidence interval. If one or more loci have a

confidence interval that does not overlap the over-loci confidence interval, it is

discarded for the next analysis. Figures 4.2 to 4.4 display these confidence interval

calculated at different mesh sizes: if natural populations are sampled, the sampling

will operate either below or above the true deme size, if only because sampling is not

exhaustive. We can see in these figures that as long as sampling is below the deme

size (Figures 4.2 and 4.3), confidence intervals are very small, they all overlap and

no locus displays an f significantly different from 0. One can however notice that



0 5 15 20

4.2. Raiders of the lost deme.	 116

Island model, 1% mig, N=D=64,no seffing, Mesh=16

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

5 I: 2 2

10
replicates

Figure 4.2: Detecting outlier loci at mesh=16

there is variation among loci, although never enough to lead to the elimination of

one of them. Figure 4.4 shows that when samples contain more than one random

breeding unit, confidence intervals widen, the values of f are shifted upwards and no

locus has a confidence interval overlapping with the zero axis. Although all the

over-population confidence intervals overlap with the over-loci confidence interval,

some of the loci are at the limit of being excluded.

To answer the question of how much migration is necessary before the subdivided

population behaves as effectively panmictic, a data set was generated with 30%

migration, deme size of 64 and 16 demes,, with no selfing. This leads to a Nm of

19.2. The results are displayed on Figure 4.5.

The first striking feature is how large the confidence interval on f is. This is because

of the scale on the y-axis, which only covers the range [-0.005:0.03]. On the other

hand, 0 is encompassed in the confidence interval for samples within deme, but

excluded from it when samples are made of more than one deme. Furthermore,

although not significant using the jackknife confidence interval of f, it is noticeable

that f increases between sample mesh of 64 and sample mesh of 256. However, for

this set of parameters, it seems that 0 is a more appropriate statistics to use, since

the decrease in its value between sample mesh 64 and 256 is statistically significant.

When the estimators are very close to 0, as in the present case, use can be made of

the permutation procedure described above. The probabilities that the observed f,0
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Figure 4.3: Detecting outlier loci at mesh=64

Island model, 1% mig, N=D=64,no selfing, Mesh=256

Figure 4.4: Detecting outlier loci at mesh=256
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Figure 4.5: Changes in F-statistics with mesh size

and F come from a single large, random mating population are given below:

Mesh 0

4 0.0672 <0.0002 0.002

16 0.0426 <0.0002 0.0024

64 0.0672 <0.0002 0.002

256 0.00720 <0.0002 0.0028

1024 0.00160 nla nla

In all cases, 9 is highly significant (the observed 0 is the highest of 5000 estimates

generated by permutations). With regard to f, although the probability Les not

allow the rejection of the null hypothesis for sample sizes 4 and 64, it is rejected for

sample size 16 and is very close to the rejection level for 4 and 64. This remains

unexplained. The non-availability of the probability levels of 9 and F for a sample

size of 1024 is because there is only one sample, in which case 0 and F cannot be

calculated. One could wonder if these tests would accept the null-hypothesis when it

is true since all probability levels in the above table are very low. To test this, a

single large, random breeding unit was modelled. The simulation was run until the

thousandth generation and, as in the previous cases, 20 replicates were run to mimic

20 independent loci. This population was exhaustively sampled for mesh sizes of 64

and 256 and the probability that the observed f,0 and F come from a single large,
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Figure 4.6: Changes in F-statistics with mesh size

random mating population are given below:

Mesh f	 0	 F

64 0.493 0.911 0.555

256 0.520 0.888 0.556

Obviously from the above table, the null hypothesis is accepted when it is true.

Next, it is of interest to see the effect of selfing on the behaviour of the different

F-statistics. Figure 4.6 shows the changes in f (solid line) , 0 and Ge (dashed lines)

for an island model with 90% selfing and 1% migration. Although there is still a

statistically significant increase in the value for f after pooling together more than 1

deme, it is much more difficult to discern, because f is near its maximum value of 1.

On this graph, structuring is better inferred from 0 and Ge. Figure 4.7 also shows

that with selfing, even when loci are independent, it is possible to get outliers, since

one of the loci CI does not overlap with the over-loci CI.

4.2.3 One-dimensional stepping-stone models

Since the two extremes of population structures with finite deme size are the island

model and the one-dimensional stepping-stone model, with the two- and

three-dimensional stepping-stone models being intermediate (cf. Chapter 2), only

one-dimensional stepping-stone models will be treated here. For a given migration,
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Figure 4.7: Detecting outlier loci at mesh size 64.

population size, selfing proportion and number of demes, what differences are there

between an island model and a 1-dimensional stepping stone model? Analysis of the

behaviour of Fe over time was carried out in Chapter 2 and it was shown that

models with geographical structuring take longer to reach equilibrium. One can

therefore wonder if the technique presented above will work for stepping-stone

models. A first step in understanding the differences between models with and

without geographical structure is to keep all parameters (migration, deme size,

selling level, number of demes) constant and to follow the changes in F-statistics as

a function of the mesh size.

Figure 4.8 shows this comparison. The first striking feature is that 0 is much larger

in a stepping-stone than in an island. This is an indication that equilibrium has

been reached for the island model, since Fat values in island and stepping-stones

start diverging after equilibrium has been reached in the island model. There are no

differences in f as long as it is measured below the deme size, a sign that f is not

affected by geographical structuring as long as it is measured at an appropriate

scale. However, as demes are pooled together, f in the stepping-stone model keeps

increasing, whereas it stabilises very quickly in the island model. Most of the

changes in the value of f occurs in a single step in island models (the curve is

horizontal from deme size 2 to 64 and then from deme size 128 to 2048 — the same

observation could be made from Figure 4.1). It is also remarkable that the amount
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Figure 4.8: Comparison of a one dimensional stepping-stone model with an island

model of population structure

of increase in f between deme size 64 and 128 is the same for both models. This is

because neighbouring demes in a one-dimensional stepping stone model exchange

the same number of migrants as any demes in the island model.

Figures 4.9, 4.10 and 4.11 display the changes in F-statistics for a 1-dimensional

stepping-stone model. The percentage of migration in Figure 4.9 is 10%, which

makes the product Nm 6.4. Structuring can still be detected, but two important

changes can be seen. First, the increase in f when grouping more than 1 deme does

not look as sharp as in the island model., This is because the range of the y-axis is

much larger here since 0 is larger. Second, the confidence interval on 0 is much

larger than in the island model. The first point can be understood as follows: in the

island model, the different demes share the same 'level' of relatedness, whereas in

the stepping-stone model, individuals in demes close one to another are likely to be

more related than individuals in demes further apart. The second point emphasizes

a facet of stepping stone versus island structure: a wider range of Fat values are

obtained with a given set of parameters in a stepping stone model than in an island

model, because the genetic sampling process is restricted in space.

Figure 4.10 displays essentially the same information, but the level of selfing this

time is 90% instead of 0%. The increase in f is much more difficult to perceive, for

the same reason as in the island model, namely, f is always near its maximum. It is
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Figure 4.9: Changes in F-statistics as a function of mesh size

Stepping stone 1D, N=D=64, m=10%, s=90%
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Figure 4.10: Changes in F-statistics as a function of mesh size
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noteworthy that f below and above deme size are not statistically different anymore.

This is also the case for 0. In this case, it is not possible to detect the deme size,

whereas it was possible to do so in the island model. And, just as a classic film

requires a good ending, one cannot fail to be disappointed by this negative result.

The values of 0 when samplesare taken within a deme is higher than in the case with

no selfing: selfing accelerates the process of random genetic drift and therefore will

increase the amount of differentiation between patches. The reverse is true when

there is avoidance of mating between relatives, a negative f is obtained and 0 will be

lower than if mating was at random, because avoidance of mating with relatives will

slow down the process of random genetic drift.

Figure 4.11 is another example with a deme size of 16 and migration of 20%, which

give a Nm of 3.2. f below and above deme size are statistically different, whereas 0

values are not.

The migration levels used in these investigations give Nm products larger than one,

a level of gene-flow at which the population is supposed to behave as effectively

panmictic. It has been possible, however, to detect structuring in most cases. Even

when the deme size was not identifiable, as in Figure 4.10, there was a statistically

significant difference between f calculated at the deme size and f calculated at the

highest level of pooling.

A difference in behaviour of f as a function of pooling levels is also shown. While f
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Figure 4.12: Behaviour of F-statistics when the sex-ratio is biased (1% of males in

the total population)

in island models tends to level off quickly after pooling of more than one deme, it

keeps increasing in one-dimensional stepping-stone models. It is therefore suggested

that the technique presented here could also be used as a first appraisal of the

presence of geographical structuring.

4.2.4 Effect of a biased sex ratio

Before closing this section, some consideration needs to be made as to how the

different estimators behave when some of the assumptions of the applications are

relaxed. In particular, few species are monoecious, and a biased sex ratio is often

found in social and domesticated animals, or in plants with peculiar reproductive

systems, such as gynodioecy (presence of female and hermaphrodite plants in the

same species). If the sex ratio is biased, the effective size of local population of the

species is considerably lowered.

Figure 4.12 displays the changes in F-statistics for a single large population (4096

individuals), but with a very strong biased sex ratio (1% males in the population,

which gives a IV, of 162). The expected value of both f and 0 is zero and it is shown

on Figure 4.12 that the observed values, at different levels of sampling, are not

statistically different from 0.
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Fis as a function of selling rate
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Figure 4.13: F13 (s) = 2118

Note also that a biased sex ratio implies a large variance in reproductive success

(because males are producing more offspring than females). It is therefore likely that

there will be no effect of differential reproductive success on the behaviour of

unbiased F-statistics.

4.3 Estimation of Nm or N and m?

Since unbiased F-statistics have proved useful for identifying levels of structuring, it

is possible to turn to the problem of biological inferences, namely inferring levels of

selling and migration from random breeding units. The case of selfing is

straightforward: the relation between f and s was given in Chapter 2, equation 2.8

and does not depend on a combination of parameters. In all cases where selfing is 0,

it has been shown that when f is measured below the deme size, it is not

significantly different from 0, the expected value with no selfing. When selling

occurs, the expected value of f is given by equation 2.8 and is plotted in

Figure 4.13. With 70% selfmg, the expected value of f is 0.538 which is the observed

value of f in Figure 3.2 and with 90% selfing, it is 0.82, the observed value in

Figures 4.6 and 4.10.

Although this method of estimating s can be considered as 'rough and ready'
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compared to other methods, such as those of Ritland (1990), it gives accurate

estimates when f is estimated at an appropriate scale.

The case for m is different. It has been shown in Chapter 2 that Fe relate both to

Ne and m, and that, under the assumptions that 771 is small and Ne is large, it is a

simple function of the product of these two parameters. On the other hand, when

these assumptions are not met, an exact relationship between 0 and Ne and m was

given (equation 2.10). The discrepancy between these two relations was given in

Chapter 3, Figure 3.17 for N = 25. Figure 4.14 displays the same relationship but

for a wide range of values of N, between 2 and 10, 000. Here N refers to the effective

sample size, since 0 is estimated from samples. The first observation is that the

approximation always leads to an overestimation of the number of migrants. This

trend is stronger for small sample sizes than large ones, but still hold true for sample

sizes of 10,000 individuals when 0 is small (0.0001). Noteworthy in Figure 4.14 is

the independence of the approximate formula with regard to N (all inherent

characteristic), which leads to some aberrant results, such as a number of effective

migrants larger than the sample size (as an example, with samples of size 10 and an

observed 9 of 0.0001, 4Nm would be equal to 9999). On the other hand, the exact

formula for 4Nm may look artificial, since it consists of multiplying by 4N both the

right hand-side and the left hand-side of equation 2.10, which gives m. However, it

gives results that look a priori sensible, since the inferred 4Nm is never larger than

4N. A major inconvenience of this formula, for comparative purposes, is that it is

not independent of sample size. 4Nm will increase as the sample size increases for a

given 0. The only appropriate measurement to compare different populations cannot

be cast in term of biological parameters, such as Nm, but has to be achieved through

an estimator independent of the sampling strategy, 0. Unless 0 is large, use of the

approximation could give rise to highly erroneous results, an order of magnitude

larger than the real parameters.

Bearing these considerations in mind, use can still be made of unbiased estimators of

F-statistics to infer biological parameters, as long as the conditions of application

are understood. It was shown that when the sample size is 25 individuals, the

approximate formula holds when 0 is larger than 0.1. 25 individuals is a sample size

commonly found in the population biology literature. When molecular techniques

are used (RFLP, VNTR, sequence), sample sizes tend to be smaller, because these

techniques are more costly and time-consuming. In this case, even higher values of 0
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Approximate and exact estimates of Nm from Fst and N

4Nm approximate —
4Nm exact -----

Figure 4.14: Approximate and exact relation between Fa, Nm and N.
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Table 4.1: Results of biological inferences carried out on the data sets reviewed above

Model a m N N. Nem D f e 1 Ne ;I, app .lqe niez Ne;Thex

I M1 0 0.01 64 64 0.64 64 -0.002 0.285 -0.004 0.63 64 0.010 0.62
1M2 0.9 0.01 64 35 0.35 64 0.816 0.425 0.898 0.33 35 0.009 0.33
1M3 0 0.3 64 64 19.20 16 0.007 0.006 0.014 38.81 64 0.329 20.91

551 0 0.1 64 64 6.40 64 0.002 0.450 0.004 0.31 64 0.005 0.30
552 0.9 0.1 64 35 3.52 64 0.818 0.606 0.900 0.16 35 0.005 0.16
553 0 0.2 16 16 3.20 256 -0.002 0.756 -0.005 0.08 16 0.005 0.08

must be found before use can be made of the approximation. In cases where 9 is less

than 0.1, it is suggested that m be estimated from the exact relation rather than

Nm from the approximate relation and to multiply the estimated m by the average

effective sample size, to get an estimator of Nm. One also needs to bear in mind

that the relation between m, Nm and Fat is based on the assumption that in the

populations under investigation, equilibrium between the opposing forces of random

genetic drift and migration has been reached, an equilibrium that may well take a

very long time to be achieved (cf. Chapter 2).

Table 4.1 summarises the results of biological inferences made on the data sets

presented above. Focussing on S first, we see that the estimate is in very good

agreement with the parameter entered in the model, both in the island model and

the stepping-stone model. NeA app is a good estimator of Ne m in island models and

when the proportion of migration is small. When m is large, the discrepancy

between Nem̂opp, and the real value can tie quite large (twice as large for IM3),

whereas Nemez is in very good agreement with the real value. Noteworthy also is

the agreement between the inferred migration and the real value, even for large

migration, as is the case for IM3. As was noted in Chapter 2, the effect of selfing is

to diminish the local effective size and this is confirmed when comparison is made of

./nTe in IM1 and IM2.

Stepping-stone models show a different pattern: estimations of selfing rate and local

effective size are in close agreement with the real values, but migration estimates,

either on their own or in combination with the effective size, are very different from

the input values. In this case, because 0 values are quite high, there is a close

agreement between the approximate and exact estimation of Nem.
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4.4 The isolation by distance model: a new

scenario

While F-statistics are useful and accurate to measure the extent of isolation in

structured populations with no overlapping demes, one needs to investigate their

behaviour in isolation by distance models, to test:

• If the concept of neighbourhood size is meaningful

• If structuring can be detected, even though the biases on F-statistics for these

models are not known.

To answer these questions, linear patterns of isolation by distance are modelled

using an exponential decay for the parent-offspring dispersal distances. Selfing is not

random, but fixed at 10% in all cases. The population consists of 1024 individuals,

the simulations were run for one thousand generations. Twenty replicates,

simulating twenty independent loci, were recorded at the thousandth generation. An

exponential distribution of parent-offspring dispersal was used. Seven different

standard deviation of dispersal, A are discussed, ranging from very restricted

dispersal (A = 1) to very large dispersal (A = 99). The distribution of dispersal

distances generated is shown in Figure 4.15. A point of importance is the

discontinuity between 0 and 1. This is due to the fixed proportion of selfing, or

'homing': only 10% of the gametes for all distributions stay at the location of their

progenitor. This is the proportion that would be expected with a A of 10, but would

be higher for smaller A and smaller for larger A.

The changes in F-statistics as a function of mesh size are given in Figures 4.16 to

4.22. The behaviour of the changes in f and 9 bears some resemblance to that of a

linear stepping stone model: changes in values of f and 9 are smooth, compared to

an island model. However, a discontinuity is noticeable in linear stepping stone

models, whereas it is not in isolation by distance.

A sharp increase in f occurs from the smallest mesh size (2) with very restricted

dispersal (Figure 4.16), whereas f stays constant for all mesh sizes with A = 99

(Figure 4.22). With an average dispersal of 2, no differences in the values of f could

be detected for samples of sizes 2,4 and 8. As dispersal distance increases, changes

in the values of f occur later. Note however, that even with an average dispersal of

99, 0 is significantly different from 0. For a A of 5 (Figure 4.18), structuring is only
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Figure 4.15: Distribution of dispersal distances in a linear isolation by distance model,

with an exponential decay of dispersal distances, for seven different parameters of

scale.

significantly detected for a mesh size of 64. It is 256 for a A of 20 (Figure 4.20) and

no differentiation between units could be detected for larger values, although a trend

toward an increase in the value of f exists for A = 20 and to a (much) lesser extant,

40 (Figure 4.21.

Further interpretation of these graphs seems difficult. Detection of units that are

isolated will be dependent on the number of levels of grouping: should one consider

the overlapping of confidence interval of 2 successive points on the graphs, or should

one consider absolute differences? In Figure 4.16, the first statistical difference

between adjacent points occurs between levels 8 and 16, while if absolute differences

are considered, level 8 is different from level 2. The definition of the neighbourhood

size is given in Chapter 2: the area from which the parent of the central individual

could be considered as if drawn at random. Taking the inner 95% of the exponential

distribution provides us with some measure of the neighbourhood size. On the other

hand, Figures 4.16 to 4.22 could be used to infer neighbourhood sizes by considering

non-overlapping of 2 neighbouring points (1) or non-overlapping with the first point

on the graph (2). Table 4.2 gives the different values for the neighbourhood size.

Although these three measures increase with an increase in A, little more can be said

and the relations between these three sets of data do not seem straightforward.
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Figure 4.16: IBD model (1D) 10% selfing. A = 1
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Figure 4.17: IBD model (1D) 10% selfing. A = 2
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Figure 4.19: IBD model (1D) 10% selfing. A = 10
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Figure 4.20: IBD model (1D) 10% selfing. A = 20
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Figure 4.21: IBD model (1D) 10% selfing. A = 40
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Figure 4.22: IBD model (1D) 10% selfing. A = 99

Table 4.2: Possible estimates of neighbourhood size. (1) is for two consecutive points

with non-overlapping CI. (2) is for non-overlapping CI with the first point. (3) is based

on Wright's neighbourhood definition, adapted for a exponential parent to offspring

dispersal

A )log(-5)(3) (1) (2) (1)/(3) (2)/(3)

1 4 8 8 2 2

2 7 16 16 2.29 2.29

5 18 64 32 3.56 1.78

10 37 128 64 3.46 1.73

20 74 ? 256 ? 3.46

40 148 ? ? ?

99 365 ? ? ?
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Figure 4.23: log—log regression of Nm on distance

It is therefore possible to detect isolation by distance using the changes in

F-statistics with mesh size, but it seem difficult to find a structure that would bear

resemblance to a neighbourhood size.

Other ways of detecting geographical structuring have been described in the

scientific literature. In particular, Slatkin (1993), developed a method for detecting

isolation by distance in equilibrium and non-equilibrium populations. It consists of

calculating Nm per pair of samples using the relation Fe = 1/(4Nm + 1), derived in

Chapter 2, Equation 2.11. A linear regression of log(Nm) on log(Distance) is then

applied. If the slope is significantly different from zero, then there is isolation by

distance. This method has been applied to two levels of migration in a

one-dimensional stepping-stone model. The results are displayed in Figure 4.23 and

4.24. Both regressions (for 10 and 50% migration, with 16 demes made of 16

individuals) are highly significant. As migration increases, both the constant and

the regression coefficient increase.

This method was also applied to the one dimensional isolation by distance model, on

the data sets used for the previous analyses. For the following, F-statistics were

calculated for samples of size 16. There are therefore 64 samples and the largest

distance between samples is 64. Table 4.3 gives the regression equations, together

with their R2.
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Figure 4.24: log—log regression of N m on distance

Table 4.3: log—log regression of N m on distances and le

A Regression equation R2	 Neigbourhood size(4)

1 log (N m) = —1.73 — 0.44 log (d) 0.47 0.18

2 log(Nm) = —0.80 — 0.61log(d) 0.67 0.45

5 log(Nm) = 1.30 — 0.92 log (d) 0.90 3.67

10 log(Nm) = 2.84 — 1.12 log (d) 0.94 17.12

20 log(Nm) = 4.03 — 1.03 log (d) 0.86 56.26

40 log(Nm) = 4.73— 0.93 log (d) 0.68 113.30

99 log (Nm) = 5.25— 0.95 log (d) 0.59 190.57
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Figure 4.25: Comparison of the 4 estimators of neighbourhood size. Wright's is the

expected.

The constants and the regression coefficients are highly significant in all cases

(P < 0.0001). The percentage of the variance explained by the regression is also

high, between 47 and 90%. This percentage is maximised for intermediate values of

A and decreases for very small or very large As.

While no real trend is shown by the regression coefficients, the constant of the

regression increases as A increases. Slatkin suggested using the constant (the

intercept of the regression line with the y-axis) as a measure of the neighbourhood

size. The results are displayed in the riglit most column. The neighbourhood size

increases with increasing A, as expected. Comparison of the different estimates of

neighbourhood sizes is given in Figure 4.25. While (2) and (3) are at best mythical,

there is a good agreement between Slatkin's estimate and the expectation (Wright's

estimate).

To explain the values of the regression coefficient and the percentage of the variance

explained, it is useful to plot the data. Figures 4.26 to 4.32 show that the regression

hides part of the story. Figures 4.26 and 4.27 show a decrease in the estimated Nm

with distance for small distances, but no differences in the estimate of Nm for larger

distances (> 10) (0 is the same between samples 10 units apart or 64 units apart).

The relationship is truly linear in Figures 4.28 and 4.29. For Figures 4.30 to 4.32, no

differences in the value of Nm can be detected for small distances (which means that
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Estimated Nm as a function of distance in an IBD model

Figure 4.26: log—log plot of Nm on distance

there is no differences in 0 for samples one unit apart or 10 units apart), whereas

Nm diminishes for larger distances (> 10 for Figure 4.32). These behaviours

emphasize the problem of scale: for very low dispersal distances, sampling locations

far apart will not lead to any detection of isolation by distance and one would be

tempted to conclude that the investigated population behaves as if it was an island

model. The reverse is true for species with large dispersal distances.

One of the drawback of this technique is that a log—log linear relationship between

migration and distance has to be assumed. This relationship, however, is not

necessarily linear, even in a 1-dimensional habitat. One of the suggestions of Slatkin

(1993) is that when the regression line is not statistically significant, it could be an

indication that the population is not at equilibrium under the opposing forces of

migration and random genetic drift. For large A's, however, it has been checked that

Fe reached a plateau. If only short distances are considered in these simulations,

one would conclude that the population is not at equilibrium, whereas it is.

Since the log—log regressions of Nm values on distances seem to detect only some

of the information present, other ways of presenting the data have been devised.

Once the matrix of Nm values between samples has been calculated, it is possible to

represent it on a three-dimensional graph, where the sample numbers are indexed

along the x and the y-axes and the z-axis represents the migration. The picture

generated will be symmetrical, by construction, with respect to the main diagonal.
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Nm as a function of distance in a 1-dimensional isolation by distance model
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Figure 4.27: log—log plot of Nm on distance

Nm as a function of distance in a 1-dimensional isolation by distance model
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Figure 4.28: log—log plot of Nm on distance
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Nm as a function of distance in a 1-dimensional isolation by distance model

Figure 4.29: log—log plot of Nm on distance

Nm as a function of distance in a 1-dimensional isolation by distance model

Figure 4.30: log—log plot of Nm on distance
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Nm as a function of distance in a 1-dimensional isolation by distance model

Figure 4.31: log—log plot of Nm on distance

Nm as a function of distance in a 1-dimensional isolation by distance model
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Figure 4.32: log—log plot of Nm on distance
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One expects on such a graph to see high values on the main diagonal for isolation by

distance in a one dimensional habitat, since the main diagonal represents samples

close one to each others and to see decreasing values as one moves away from this

main diagonal. The picture created will therefore look like the crest or the ridge of a

mountain landscape. On the other hand, if there is no isolation by distance, no

distinctive patterns should emerge from the graph. Figures 4.33 to 4.35 show this

graph for an island model of population structure, a two-dimensional, and

one-dimensional stepping-stone. The graphs display the expected patterns: 'chaos'

for the island model, whereas the main diagonal contains the highest migration

values for the one-dimensional stepping-stone model. The pattern observed for the

two-dimensional stepping-stone (Figure 4.34) is interesting: first of all, the effect of

the ordering of the sample can be seen: the stepping stone was a 4*4 (16 demes) and

it is noticeable that values of Nm follow the spatial arrangement (eg. sample 2 and

8). The other interesting feature displayed by this graph is the large variance of

migration levels encountered: samples 12 to 16 display higher levels of migration

than the others.

Enhancement of these figures is achieved through interpolation of the data using the

computer package UNIRAS. The data are then transform logarithmically. The

outcome is presented in Figures 4.36 and 4.37. The lower left picture represents the

untransformed matrix of migration, the lower right the interpolated data and the

upper figure the logarithmic transform of the interpolated data. For the

one-dimensional stepping-stone model, the upper figure describes perfectly the

gene-flow pattern: high migration occurs along the main diagonal and decreases as

samples get further apart. Note however the edge effect, characterised by higher

migration at the limit of the sampling range and the irregularity of the migration

estimate between adjacent samples. This point is important and was already noted

by Endler (1977): isolation by distance leads to the occurrence of clines of

gene-frequencies that can persist for a long time, even in the absence of selection.

This effect is also perceived in two-dimensional gene-flow patterns (Figure 4.37),

where some adjacent samples seem to exchange more genetic material than others.

The same treatment has been applied to the isolation by distance model. Results are

only given for A = 20. F-statistics, from which the migration matrix was inferred,

were calculated at a mesh size of 64. The results are presented in Figure 4.38. Note

the similarity between the isolation by distance and the one-dimensional
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Figure 4.33: Estimated N m between pairs of samples, island model
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Figure 4.34: Estimated Nm between pairs of samples, two-dimensional stepping-stone

model.
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Figure 4.35: Estimated Nm between pairs of samples, one-dimensional stepping-stone

model.
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Figure 4.36: Nm between pairs of samples.



iirlIZEREMI

MONEEMEll

LOOM:El:2 El

4.4. The isolation by distance model: a new scenario	 147

Figure 4.37: Nm between pairs of samples.
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stepping-stone model. Once again, distinguishing between these two types of

patterns of gene-flow will be quite difficult. If F-statistics are calculated at a smaller

mesh size, the observed pattern is more rugged, but the main feature remains: high

migration on the main diagonal, which decreases as demes get further apart.

4.5 The variance effective size, yet again!

It was shown in Chapters 2 and 3 that F-statistics could be useful tools to estimate

the variance effective size of a population, since temporal data are not required for

these estimations. It would therefore be of interest to compare estimates of the

variance effective size measured with temporal data with those obtained from

F-statistics. Criticisms could be made regarding the usefulness of estimates of N:
based on F-statistics, since they require an estimation of the census size, but Waples

(1988) has shown that the estimate based on temporal data is also dependent on the

census size. If no estimate of the census population size exists, at least the ratio of

the census size to the effective size can be given.

To compare estimators of the variance effective size based on F-statistics (labelled

NF on the graphs) and those based on temporal changes in allelic frequencies

(labelled Ne Var), different patterns of gene-flow were modelled using MODEL42

and calculation of the two estimators of variance effective sizes were carried out

every 200 generations, for 10000 generations for 50 independant replicates.

Figure 4.39 gives the results for an island model of population structure, with 1%

migration and no selling, with a deme size of 16 and 256 demes. The two estimators

give similar results, namely an effective size which is more than twice as large as the

census size of 4096 individuals. As was discussed in Chapter 2, the variance effective

size of a subdivided population is larger than the census size, a feature that needs

stressing, since emphases on effective population sizes generally state that they are

lower than the census size (Crow & Denniston, 1988; Gale, 1990; Gilpin, 1991;

Ballou, 1992).

The other striking feature of this figure is the stability of NeF, compared with

Ne Var. The former is always between 10500 and 10800 whereas the latter ranges

from less than 7000 to 13000. This is not surprising, since F-statistics measure the

amount of differentiation that has been going on in the population from its

foundation, whereas temporal data only take into account the variation that
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Figure 4.39: Estimates of variance effective sizes.

occurred between the two sampled generations.

Also noteworthy is the increase in fluctuation of the variance effective size as time

goes on. This is because there is an erosion of the genetic variability through time.

Next the effect of selfing is investigated (Figure 4.40). The trends are similar to the

previous case. The variance effective size is still larger than the census number, even

though selling is present in the population. Fluctuations are larger for Ne Var than

NeF, but the two estimators stay in good agreement. The question as to how much

selling is necessary before its effect anhihilates that of structuring can be found in

terms of Fe and Fi,: if Fat < 17-5,,T then the variance effective size is smaller than

the census size.

This is the situation displayed in Figure 4.41. The average effective size in this case

is less than 3000, compared to a census number of 4096. NF is still subject to less

variation than Ne Var and again the two estimators stay in very good agreement.

The effect of geographical structuring on the variance effective size can be seen in

Figure 4.42. The modeled population is a linear stepping-stone model, with 50%

migration between adjacent demes. The first characteristic of this graph, compared

to populations with no geographical structuring, is the time necessary for

equilibrium of the variance effective size to be reached. Values of the effective size do

not level off before the 8000th generation. Apart from this, the two estimators are in

very good agreement and for the first 2000 generations, they are nearly identical.
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Figure 4.42: Estimates of variance effective sizes

The amount of migration between adjacent demes (50%) is very large, but after

10000 generations, the variance effective size is 3.5 times the census size.

NeF stays a better estimator of /V: since its fluctuations are much smaller than

those of Ne Var after the two thousandth generation.

NF and Ne Var are both good estimators of the variance effective size. Since the

latter does not require spatial information such as the location and size of the demes

but only temporal estimates of the changes in allele frequencies, it seems appropriate

to use the concept of variance effective size to unmask what has been elusive so far:

the neighbourhood size. Measurements of F-statistics were taken at mesh sizes 1, 4,

16 and 64 and NeF calculated from it. The appropriate neighbourhood size

corresponds to the best agreement between Ne Var and NSF. Figure 4.43 gives the

results for a 2-dimensional isolation by distance model, where the input

parent-offspring dispersal distances should have led to a neighbourhood of size 4. It

is obvious from Figure 4.43 that 4 is not the appropriate neighbourhood size and the

best fit is for a sample size of 1. In other words, all the heterozygote deficit in the

population is due to structuring and not to selling or inbreeding. The equilibrium

value of the variance effective size in this case is around 8000, twice the census

number. This is surprisingly low since a neighbourhood of 4 corresponds to highly

restricted gene-flow (a 2 = 7r 1 , where al is the variance of the parent to offspring

dispersal distance).
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Figure 4.43: Estimates of variance effective sizes. N5 1,4,16 and 64 are fore mesh sizes

of 1, 4, 16 an 64 respectively.

A similar pattern is observed in Figure 4.44. The input parent-offspring dispersal

distance was such that the neighbourhood size should have been 16. It is clear from

the figure that it is not the case and, once again, the best fit of NeV ar and Ne F is

for samples of 1 individual. The average variance effective size this time is 5200,

slightly larger than the census size. The scale of the x-axis of Figure 4.44 is different

from the other graphs, since the number of generations looked at is only 1000.

4.6 Discussion and conclusions.

Unravelling the structure of natural populations remains one of the main

preoccupations of population biologists. They have at their disposal a series of tools

that are not necessarily designed to answer the questions they are asking, but which

can nevertheless be adapted to meet their needs. It is of crucial importance that the

capabilities of each of these tools is clarified and the conditions of application stated.

The large number of new techniques to decipher the hidden variability render this

task even more difficult and one only needs to read the type of questions being asked

in internet news groups such as bionet.general, bionet.molbio.rapds,

bionet.population-bio to appreciate the problems faced by researchers. The first

problem is often one of scale, that is, to ensure that the samples taken are made of a
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single random breeding unit. For some species, the limit may be obvious, such as a

barn in some species of mice, or the troupe in monkeys. In other cases, however, the

limits are not easy to find and are often based on previous ecological studies, which

measured dispersal of individuals or of gametes (eg. Lamotte 1951, 1959 for the

snail Cepaea nemoralis; Dice Sz Howard (1951) for the prairie deer mouse

Peromyscus maniculatus bairdi; Blair (1960) for the rusty lizard Sceloropus

olivaceus; Levin & Kerster (1968) for a perennial, insect-pollinated plant Phlox

pilosa). However, it has been shown in this study that even when samples are taken

in an area of the size of the neighbourhood, the deficit of heterozygotes measured

within neighbourhood may well still be due to structuring (Figure 4.43 8.c 4.44). If

samples are taken within a random mating area, then detection of its limit can be

achieved by pooling recursively samples until an increase in the value of f is seen.

This point is important, since, if samples are larger than a random breeding unit,

then estimates of Fat will be lower than the correct value and, therefore, estimates of

migration will be larger than the actuality. To demonstrate this property, Nm was

inferred from 0 using the approximate relation for the island model, with 1%

migration and no selling and a deme size of 64 (Nm = 0.64). The results are given

in the following table:
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Mesh 0 Nm

4 0.2818 0.64

16 0.2823 0.64

64 0.2846 0.63

256 0.0692 3.36

1024 0.0211 11.60

As long as 0 is measured below the deme size, the estimate of Nm is accurate, while

it increases dramatically as soon as more than one deme is pooled together.

To test if the changes in the value of f are significant, statistical resampling

methods were used. The usual test for significance of F-statistics are based on x2 (Li

& Horvitz, 1953) and suffers from its limitations. In particular, the numbers of

expected genotypes in each class have to be larger than five (Sokal isz Rohlf, 1981).

As the distribution of allele frequencies in natural populations tends to be U-shaped

(Chakraborty et al., 1980; Latter, 1975; Ohta, 1976; Nei, 1987), it is likely that

grouping of classes of genotypes will be necessary. On the other hand, resampling

tests do not require these assumptions. It was shown that they prove useful for

identifying levels of structuring, although jackknife and bootstrap methods seem to

provide conservative estimates. Others resampling methods can be used instead, not

to provide confidence intervals, but to test if the observed statistic is different from

zero and it was shown that stucturing could be detected this way, even when the

effective number of migrants per deme is as large as 20 in an island model.

Investigation of stepping stone models showed interesting patterns. It is still

possible to detect structuring and to find the limit of the random breeding unit, but

the changes in f after the pooling of more than one deme are not as apparent as in

the island model. It was also noted that the confidence interval of 0 is much larger

than in island models, meaning that fluctuations in allelic frequencies from one

replicate to the next are larger in the former than the latter.

Since estimates of Fat are often used to infer migration levels, it seemed necessary to

review the suitabilty of application of the relationship between these two factors. It

was shown that the usual approximation Fid =11(4Nm + 1) is valid only for large

values of Fe and was further contingent upon large sample sizes. Attention was

drawn to this problem, with the increasing cost and time needed to unravel genetic

variability when using new molecular techniques such as RFLPs and VNTRs, data
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sets are tending to become much smaller.

Since f changed as a function of the grouping of the samples and displayed a

discontinuity at the level of the breeding unit, isolation by distance models in a one

dimensional habitat were generated to assess if it was possible to measure indirectly

the size of the neighbourhood area. These investigations showed that although f

increased with the size of the sampled area, one could not perceive any

discontinuities in these changes and that statistically significant differences between

f's were not an appropriate measure of Wright's neighbourhood size whereas a

method developed by Slatkin (1993), based on the log—log regression of estimates of

Nm on distances, gave a good estimate of the neighboorhood size, apart for very

large dispersal distances. On the other hand, this method assumes a linear

relationship between log(Nm) and log(Distance). This linear relation was shown to

exist in only certain cases, for intermediate values of the dispersal distances.

A graphical representation of the migration matrix looks to be a promising way of

displaying the information and should allow the discrimation of species undergoing

isolation by distances from species where there is no isolation by distance. The same

graphical representation also allowed the discrimination between habitat structure of

different dimensions.

Comparisons of estimates of the variance effective sizes, made using temporal data

and spatial data, were carried out. Both estimates were in good agreement and

displayed a trend seldom emphasized in the literature: the variance effective size of

a subdivided population can be larger than the census size. It was, however, obvious

that estimates based on temporal data are less accurate than those based on spatial

data. On the other hand, to get an accurate estimate from spatial data, one needs

to know the population structure of the species investigated. This knowledge is not

required for temporal data. As deme size cannot be detected in isolation by distance

models, then if only spatial data were available and if an estimate of effective

population size were needed, this leads to a `Catch22' situation. Comparisons of

estimates of the variance effective size based on temporal data with those based on

spatial data measured at different scales demonstrate that the concept of

neighbourhood size is flawed. It may be a useful measure of parent to offspring

dispersal distance but this should not be considered as a random breeding unit, that

is, in any way, comparable to a deme in island or stepping-stone models.



Chapter 5

Applications to data from natural

populations

5.1 Introduction

Investigation of the genetic structure of natural populations has monopolised the

interest of population biologists for fifty years since the early work of Wright on the

desert snow Linanthus parryae. The number of these studies has grown

exponentially after the discovery of protein gel electrophoresis in 1966. These studies

are usually intended to answer an evolutionary question but have been referred to as

the Tind'em and grind'em' school of population genetics by some (Lewontin, 1991).

The work presented here belongs to another category of population genetics studies

that could be called the Tind'em and scrounge'em' school, as I did not myself collect

any of the data presented here. I am indebted to Amanda Day for the dogwhelk

data and to Alan Raybould and Alan Gray for the data on beet and cabbage.

Natural populations possess many very undesirable properties for the population

geneticist, because they never seem to comply with the requirements of theoretical

models. The population geneticist's task is therefore to find means of getting

samples from natural populations to conform with the assumptions of one or the

other of these models. Chapter 4 presented methods for assessing population

structuring which were tested on computer generated data-sets corresponding to

known structure of populations. The results of these investigations generally takes

the form of an expected behaviour of some statistic when measured in a population

with given parameters (increase in f when more than one breeding unit is pooled

157
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together, significant regression between log(Nm) and log(distance) when there is

isolation by distance, chaotic pattern in the migration matrix for an island model of

population structure). These processes were inductive. In the following, a deductive

process will be presented: given the behaviour of a particular statistic, can biological

parameters be deduced or inferred? (Chalmers, 1976).

5.2 Brassica oleracea ssp. oleracea

Known by the common name of wild cabbage, it is native to the coast of

northwestern Europe as well as the Mediterranean (Thompson, 1976). Usually

disliked by most children, probably because of a French legend which says that little

boys are found under their leaves (as opposed to little girls, who are found under

roses), the origin of its name stems from the old Norman French word, caboche

(Collins, 1992), which meant head. This also explains the expression 'Cabbage head'

describing somebody who is rather simple-minded.

Brassica oleracea is a polymorphic diploid species, containing many cultivars, such

as B. cauliflora, the cauliflower, B. oleracea var. gemmifera, the Brussel sprout, B.

oleracea var. italica, the broccoli and B. oleracea var. capitata, the cabbage

(Thompson, 1976). However, it is doubtful whether the many cultivated species of

B. oleracea evolved solely from the wild cabbage and several other wild diploid

relatives such as B. cretica, B. insularis and B. rupestris may have contributed

(Yarnell, 1956).

This species complex displays a. strong self-incompatibility (Thompson & Taylor,

1966) which only tends to disappear in lines that have achieved greater uniformity

through intense selection.

Since this polymorphic species i) is a typical outcrosser, ii) exists in cultivated as

well as wild forms, iii) is likely to undergo genetic manipulation for crop

improvement (Raybould & Gray, 1993), it would seem to be a judicious choice for

use as a biological model of gene-flow between crops and their wild relatives.

5.2.1 Material and methods

A core population of 400 individuals divided into 20 patches of potentially

interbreeding individuals was sampled from a more or less linear habitat on a stretch

of the coastline of Dorset, Southern England. All patches were located on cliff-tops
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Figure 5.1: Samples location of Brassica oleracea ssp. oleracea

along a 30 km section of coastline between the Foreland (SZ 055824, east of

Swanage) and Durdle Door (SY 805803, west of Lulworth Cove) (Figure 5.1). At

Windspit and St Aldhelm's Head, five patches were taken from more or less

continuous populations. The remaining ten patches were taken at Durdle Door (2

samples), Old Harry (3 samples), Dancing Ledge, West Man and Kirameridge (3

samples). For each patch, samples of leaf tissue were taken from 20 adult flowering

plants (Gray et al., 1992). In this species pollination is insect mediated, the main

pollinators being, in this location, the bumble bee species Bombus lap idarius and B.

terrestris and the bee Anthophora plumipes and Apis mellifera. It was noted (Gray

et al., 1992) that little competition for pollinators exists, since Brassica flowers

before most species, but that there may well be a scarcity of pollinators. Also, the

behaviour of pollinators appears to be strongly influenced by flower density, bees

generally preferring high density patches.

Three out of 11 electrophoretic loci were found to be suitable for analysis

(polymorphic), SDH-2, PGI-1 and APH-2 (Gray et al, 1992). The genotypic

distribution in each population at these 3 loci can be found in Appendix E in a form
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Table 5.1: The eight levels of pooling of samples for Brassica oleracea ssp. oleracea.

Pooling distance Pooled samples

1 <4m

2 <10m

3 <25m WSS-1	 SA1-2

4 <100m WSS-3, WS4-5	 SA5-1 DD1-2

5 <500m WSS-5	 WSA-SA1 KR3-2 DD1-2

6 <2km OH1-2	 DL-WS5	 WSA-SA1 KR3-1 DD1-2

7 <4km 0111-2	 DL-SA1 KR3-1 DD1-2

8 >4km ALL SAMPLES TOGETHER

suitable for input into the program FSTAT (Appendix D).

To assess whether samples corresponded to random breeding units, each was

subdivided into 4 subsamples, with subsamples grouping together the closest

individuals, according to a per-sample map provided by Alan Gray and Alan

Raybould. The different fixation indices were calculated for this group of 80

samples. Fixation indices were then calculated for the 20 original samples. Samples

were subsequently pooled as a function of distance, with the third pooling level for

samples less than 25 metres apart, the fourth for samples less than 100 meters apart

and so on. The different pooling stages are summarised in Table 5.1 (from right to

left on the map). OH stands for Old Harry, DL for Dancing Ledge, WS for Wind

Spit, SA for St Alban, KR for KimmeRidge and DD for Durdle Door. Populations

at St Alban and WindSpit were more or less continuous, with the different samples

at these locations being somewhat arbitrary. Pooling of these two groups occurs

between stages 3 and 5 (25m < x < 500m).

5.2.2 Results

Appendix F gives the raw output of the program FSTAT (Appendix D). It can be

detailed as follows:

• The allele frequencies per sample, as well as the size of each sample, for each

allele at each locus. The observed and the expected heterozygosity per allele,

for each sample and locus is then given (The expected heterozygosity is
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calculated using a hyper-geometric distribution, that is, instead of being

2Np(1 — p), it is 4Np(1 — p)/(2N — 1)).

• f per allele per sample. If the allele is not present in the sample, the table

contains question marks, as f is undefined.

• Estimates of F, 0 and f per allele and locus.

• The overall F, 0 and f.

• The jackknife mean and standard deviation over samples, per locus.

• The jackknife mean and standard deviation over loci.

• The bootstrap over-loci confidence interval at 95% and 99%.

• The Pairwise 0 estimates per locus.

• 95% and 99% confidence intervals for the null hypothesis that f is equal to

zero (against the alternative hypothesis that f is larger than zero). The

probability that the observed f is equal to zero.

• 95% and 99% confidence intervals for the null hypothesis that F is equal to

zero (one sided test). The probability that the observed F is zero.

• 95% and 99% confidence intervals for the null hypothesis that 0 is equal to

zero (one sided test). The probability that the observed 0 is zero.

The estimate over loci of the pairwise 9 is used to calculate the pairwise Nm,

written into another file. 	 •

The overall estimates of F = 0.328, 9 = 0.178 and f = 0.232 show that there is a

deficit of heterozygotes both within and among samples.

Within sample heterozygote deficit, as measured by f, is positive at the three loci

(Figure 5.2). Jackknifing over samples lead to large confidence intervals (CI), an

indication of the large variance of heterozygote deficit within samples. The largest is

for SDH-2, with sample DL displaying an f of 0.8, while sample SA5 has an f of

—0.15. Bearing in mind that there is a self-incompatibility system in Brassica

(which should lead to an excess of heterozygotes and therefore, a negative f), this is

a first indication that samples are larger than the random breeding unit.
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Figure 5.2: Jackknife CI over populations and over loci for B. oleracea

Figure 5.3 displays the effect on f and 0 of the pooling strategy. A sharp increase in

f (decrease in 0) occurs up to 100m and then levels out. This is an indication of

strong population structuring with gene-flow being restricted even at the level of

samples (note the increase between level 1 and 2, i.e. sub-samples vs samples.).

Comparison with the investigation of one-dimensional stepping stone and

one-dimensional isolation by distance models (cf. Chapter 4) suggests that the

average distance of dispersal must be very restricted (the rate of increase in f is

similar to the shape for a ) of 1 in the isolation by distance model, Figure 4.16).

Also, no real plateau is reached (slight increage of f up to the last point), an

indication that isolation by distance occurs even for long distances. Focussing now

on the Jackknife CI of f, there are no statistical differences among f's measured

below 25m, but f measured for samples covering 100m is different from f estimated

from the original samples.

Subsequently, Slatkin's method (1993), described and applied to isolation by

distance models in Chapter 4, was used: 0 was calculated for each pair of samples

and the distance between samples was recorded. Nm was inferred from the pairwise

0 values. A linear regression was carried out after a log—log transform of the data

(Figure 5.4). The regression equation obtained for Brassica was:

log(Nm) = 0.84 — 0.17 log(distance)
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Figure 5.3: Changes in f and 0 with the grouping of samples

Brassica olemcea ssp oleracea

Figure 5.4: log—log regression of Nm on distance. Brassica oleracea
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where the distances are expressed in metres. Although the regression coefficient is

significantly different from zero, the percentage of the variance explained by the

regression is very low (R 2 = 0.05). We would expect to obtain a graph similar to

Figure 4.26 but there are not enough points representing short distances to build up

such a picture. Furthermore, the data set is based on only three loci and is much

more variable than a data set obtained from computer simulations. This analysis

therefore falls short of a satisfactory explanation for the patterns of gene-flow

occurring in Brassica.

Figure 5.5 displays a 3-dimensional plot of estimated migration per pair of samples.

Ordering of samples along the x- and y-axes goes from right to left on the map,

starting at OH1 and ending at DD2. The lower left graph gives the estimated

migration, while the lower right graph displays a surface generated by interpolation

of the data set with the computer package UNIRAS. The top graph represents a

log transform of the bottom right. The emerging pattern looks quite dissimilar to

the modelled one-dimensional gene-flow patterns. One main peak can be observed,

which corresponds to one of the continuous populations sampled, Windspit. The

amount of gene-flow between patches in this continuum is very high. Surprisingly,

however, high levels of gene-flow are not observed in the other continuum, St

Aldhem's Head. For the rest of the samples, distance between samples does not

seem to be a very good predictor of the amount of gene-flow. The observed

migration landscape appears to correspond to a species living in a habitat made of

more than one dimension.

5.3 Beta vulgaris ssp. maritima

Known by the common name of sea beet, this subspecies is thought to be an

ancestor of most, if not all, cultivars. Most of these cultivars belong to the

sub-species B. vulgaris ssp. vulgaris and include sugar beets, beetroots, mangolds

and fodder beets (Campbell, 1976). Beta is an old world genus virtually confined to

Europe. Its use probably dates from prehistoric times. The Romans used Beta

vulgaris ssp. maritima as feed for animals and man. It was taken from Italy to

northern Europe by the barbarian invaders. Because the British blockaded the

French ports, thereby creating a shortage of cane sugar from the West Indies,

Napoleon published (in 1811) a series of decrees requiring beet to be grown and
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studied in schools. This led to a rapid improvement in sugar content through mass

selection on multilines (twenty to thirty parental stocks, Campbell, 1976).

B. vulgaris ssp. maritima is diploid (2n = 2x = 18), largely anemophilous and

outbred (Dark, 1971). It has, however, been classified as both anemophilous and

insect pollinated by Raybould & Gray (1993). Its clifftop habitat is very similar to

that of wild cabbage but it also occurs along driftlines in bays. The habitat could be

characterised as linear as far as cliff-tops are concerned but not for driftlines. Its

usefulness as a biological model stems from the same considerations as for Brassica:

Beta vulgaris is outcrossed, exists in cultivated as well as wild form and is likely to

undergo genetic transformation (Raybould & Gray, 1993). Evidence for gene

exchanges between wild and cultivated forms has already been published (Santoni,

1993; Santoni & Berville, 1992). A thorough appraisal of gene-flow patterns in this

species complex seems, therefore, of prime interest.

5.3.1 Material and methods

Sampling took place along the Dorset coastline, Southern England. Its exact

location overlaps that of Brassica. A core population of 400 individuals was divided

into two major groups, ten patches from driftline populations and ten from cliff-top

populations (Figure 5.6).

The first group comprised five patches from a stone embankment and the upper

levels of saltmarshes around Holes Bay, a small bay on the northern edge of Poole

Harbour and five patches at greater distance from one another around the shores of

Poole Harbour on shingle banks and tide lines (two on Furzey Island, one at Rockley

Sands and two in Brand's Bay). The cliff-top patches, scattered from St Aldhem's

Head to the Foreland included five populations at Windspit. Leaf samples from

adult plants were taken for electrophoresis.

Six loci out of 13 showed polymorphism. The first 3, Got-3, APH and SDH were

described in Gray et al. (1992). The last 3 PGI, PER-1 and MDH were not because

of difficulties in the interpretation of the gels. These problems now seem to have

been resolved (Raybould, pers. comm.). Loci PGI and PER-1 are included,

although some sampled patches are missing (FB,HW,H0 and RW for PGI and FB,

FW and ST for PER-1). Results for thwe. loci should be treated with caution because

of the missing populations and also because of difficulties in interpreting the gels.

The pooling procedure was similar to that adopted for Brassica oleracea ssp.
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Figure 5.6: Samples location of Beta vulgaris ssp. maritima

oleracea and is summarised in the Table 5.2 (from left to right on the map). Pooling

of the samples at WindSpit occurred between level 3 and 5, while pooling of the

samples of Poole Harbour occurred between level 5 and 7.

5.3.2 Results

The raw results are presented in Appendix G, in the same format as for Brassica.

The overall F was —0.08, 0 was 0.167 and f was —0.295. Thus, there was a

significant excess of heterozygotes within samples, whereas there was a significant

deficit of heterozygotes between samples. f and 0 cancel out for the global

heterozygote deficit F. This can be better understood by looking at Figure 5.7,

which displays values of f per locus, together with over-samples Jackknife CI and

over-loci bootstrapped CI.

GOT-3 and APH-2 are not significantly different from zero, whereas SDH presents a

significant heterozygote deficit and PGI, PER-1 and MDH a significant excess. As

already mentioned, the three loci displaying excess heterozygosity need to be treated

cautiously because gel interpretation was difficult (A. Raybould, pers. comm.), and
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Table 5.2: The eight levels of pooling of samples for Beta vulgaris ssp. maritima.

Pooling distance Pooled samples

1 <4m

2 <10m

3 <25m WE-WF DP-LI

4 <80m WM-WL DP-LI	 PN-OH

5 <500m WW-WL DP-LI PN-OH	 FB-FW OH-RW

6 <2km SA-WL DP-LI	 PN-OH	 BE-BB	 FB-FW RS-HW, ST-RW

7 <4km SA-WL DP-LI PN-OH	 BE-FW RS-RW

8 >4km ALL SAMPLES TOGETHER

Beta vuigaris ssp maritirna

GOT-3 APH	 SDH	 PGI	 PER-1 MDH
loci

Figure 5.7: Jackknife CI over populations and over loci for B. maritima
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Figure 5.8: Changes in f with levels of grouping for all loci.

because some samples gave uninterpretable results. The 3 loci displaying an excess

of heterozygotes may be linked to the self-incompatibility system found in Beta.

SDH shows a strong deficit of heterozygotes and the (confidence intervals do not

overlap (Jackknife over population and Bootstrap over loci). Furthermore, one

sample (FB) at this locus was fixed for an allele at very low frequency in all other

samples. This explains the structure of the matrix of pairwise 0 for this locus

(Appendix G) where most rows and columns are empty because the same allele is

fixed in most populations. For this reason, the strategy for pooling samples together

is divided into four steps: first of all, we analyse the six loci together. This leads to

Egure 5.8. Notice first that f increases from the leftmost point, an indication that

the population structure follows an isolation by distance model and that gene-flow is

very restricted. f is negative for all the pooling levels, that is, even when samples

more than 4km apart are pooled together there is still a deficit of heterozygotes.

From the stand point of detecting random breeding units, confidence intervals for

samples more than 4km apart with subsamples of the original are not statistically

different. A negative f will also have some influence on 0 by lowering it. Figure 5.9

displays the same analysis after removal of SDH. The behaviour of the changes in f

is essentially similar to the previous graph, which is not surprising since SDH is

nearly monomorphic (absent in most samples, apart from FB where its frequency

reaches 0.89). It should also be noted that the Jackknife mean and standard
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Figure 5.9: Changes in f with levels of pooling, SDH excluded.

deviation of 0 and F are out of the domain of definition of these two statistics (cf.

Appendix G). This is because sample FB behaves as an outlier and it has been

pointed out in Chapter 4 that Jackknife statistics are very sensitive to outliers.

Figure 5.10 displays the results for the 3 loci displaying negative f.

Ozzce again, the general trend is the same, although the values for 9 are smaller.

Figure 5.11, at last, displays the results for the two 'well-behaved' loci. The changes

in f follow the same trends as previously but are emphasised. The confidence

interval displayed on this graph should not be taken too seriously because they are

based on only two measures.

Even though a high level of heterogeneity exists among these loci, all graphs showed

the same trends. f is increasing with the pooling level, a sign that there is some

isolation by distance. This increase starts from the first point, which corresponds to

f measured within samples (an area of four metres squared). It is tempting to

conclude from this analysis that there is no such entity as a random breeding unit

in Beta vulgaris ssp. maritima.

Slatkin's method (1993) was applied and the results are displayed in Figure 5.12.

The slope of the regression is not significant and the percentage of the variance

explained by the model is very small (R2 <0.01). Also, data for very short distances

were very scarce, as was the case for Brassica.
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Beta vulgaris asp maritima. Loci PGI, PER-1, MDH
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Figure 5.10: Changes in f with levels of pooling for PGI, PER-1 and MDH
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Figure 5.11: Changes in f with levels of pooling for GOT-3 and APH-2
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Beta vulgaris ssp maritima
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Figure 5.12: log—log regression of Nm on distance. Beta vulgaris ssp. maritima

The equation for the regression is:

log(Nm) = 0.51 — 0.09 log(distance)

For this species too, it seems that detection of isolation by distance with Slatkin's

method (103) is compromised, whereas the technique of grouping samples and

recalculating f for each level of grouping provides some evidence that isolation by

distance is occurring.

The sampling strategy was designed to allow a comparison of samples from the bay

(driftline populations) and from the cliff-tops. The two methods used above are not

particularly well suited to this type of analysis, although it would have been possible

to divide the samples into two groups and to carry out an analysis on each group.

The graphical method presented first in Chapter 4 and used on Brassica seems a

more appropriate way of distinguishing between these two groups. This is illustrated

in (Figure 5.13). The cliff-top samples (1 to 10) on this figure do not seem to

correspond to a one-dimensional habitat since there is no sign of increased migration

along the main diagonal (neighbouring samples) for the first part of these graphs

(Figure 5.13). However, these samples are easily distinguished from the driftlines

populations which display much higher levels of gene-flow (samples 11 to 20). For

this wind pollinated species, it therefore seems that gene-flow occurs mainly through

a process of extinction and recolonisation which would be more frequent in bays
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(e.g. storms) than on the less disturbed habitat of a cliff-top. A consequence of this

observation is that gene-flow occurs probably more through seed migration than

through pollen dispersal.

5.4 The dogwhelk, Nucella lapillus

The dogwhelk Nucella lapillus is a widely distributed predatory intertidal gastropod,

feeding on mussels and barnacles. It is ubiquitous on rocky substrates around the

coasts of Great Britain and Ireland and extends from Iceland to Portugal (Berry and

Crothers, 1974). The main reason for choosing this species rather than any others

resides in its dispersal behaviour: restriction in adult movement to only a few metres

only (Hughes, 1972), associated with the absence of a dispersed planktonic stage, are

likely to result in pronounced local differentiation of subpopulations. Furthermore,

since Nucella lapillus is restricted to the intertidal zone, it seems a very good

biological model to test for the levels of connectidness in this habitat.

Shell shape is different in exposed and sheltered sites: whelks from exposed sites

have a thinner, shorter shell than whelks from sheltered sites and a larger aperture

that allows them to resist wave action. On the other hand, a thicker shell allows

whelks from sheltered sites to resist the action of predatory crabs during their

growth (Currey & Hughes, 1982).

Chromosome number has been found to vary between sheltered and exposed sites,

with 2n = 26 for exposed sites and 2n = 36 for sheltered sites. This polymorphism is

due to Robertsonian translocations (Bantock Cockayne, 1976). However, when no

chromosome number polymorphism can be found, the number of chromosomes is

2n = 26 and this is the case in most of the British Isles apart from the English

Channel (Bantock & Cockayne, 1976).

5.4.1 Material and methods

Allozyme data were obtained by A.J. Day (1990) on dogwhelks from 15 sites 50m to

21 km apart in S. Devon, S.W. England (Figure 5.14).

Sites 1 to 5 (between Blackpool and Start Point) are very exposed to wave action

and are quite distant from each other (0.8-6.7 km). All sites with whelk populations

on this stretch of coastline were sampled. These populations were usually dense,

with easily identified breeding aggregations in crevices. Each sample consisted of all
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Figure 5.14: Sample locations of Nucella lapillus
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the whelks within a single aggregation (Day,1990). To the south of Start Point, the

coastline is mainly sheltered. Ten sites were sampled along this strip of coast, one at

Start Point itself (6 individuals), three around Lannacombe Bay, and six to the east

of Prawle Point. At both Prawle and Lannacombe, the samples came from a 0.5Icm

stretch of coastline and the distance between samples was 50-150m at the former

and 150-300m at the latter (Day, 1990). Whelks were dispersed and no aggregations

could be found so samples were taken within foraging areas of less than 4m2

(following estimates of maximum distance travelled by whelks (Hughes, 1972)) in an

attempt to ensure that individuals would be part of the same breeding unit. The

size of the sampled areas in the sheltered sites meant that no more than 21 whelks

were found at a single sample location (Day, 1990).

Samples were analysed for allozyme variation at eight soluble enzyme loci Est-3,

Lap-I, Lap-2, Mdh-1, Pep-I, Pep-2, Pgm-1 and Pgm-2. Nomenclature,

electrophoresis buffers and staining methods follow those of Day & Bayne (1988)

modified by Day (1990).

Raw data were presented in Day (1990) and are given in Appendix H. All loci were

polymorphic and the number of alleles per locus ranged from two for Pep-I, Pgm-1,

Est-3, Pep-2 to four for Pgm-2, Lap-2.

Since differences in morphology as well as genetic variability were noticed in the

previous analysis, the strategy for grouping samples was divided into two parts.

First, when all sites were considered, the following groupings were made:

1. all samples independently

2. 8-9, 10-11, 14-15 pooled together

3. 7-9, 10-12, 13-15 pooled together

4. 7-9, 10-15 pooled together

5. 1-2, 4-5, 7-9, 10-15 pooled together

6. 1-2, 3-5, 7-9, 10-15 pooled together

7. 1-5, 6-9, 10-15 pooled together

8. 1-5 and 6-15 pooled together

9. all sites together

The curves following changes in f will therefore be made of nine data points.

For the study of sheltered sites only, the pooling strategy was:
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1. all sheltered samples independently

2. 8-9, 10-11, 14-15 pooled together

3. 8-9, 10-11, 12-13, 14-15 pooled together

4. 7-9, 10-12, 13-15 pooled together

5. 7-9, 10-15 pooled together

6. 6-9, 10-15 pooled together

7. all sheltered sites together

An extra level of pooling between level 2 and 4 (8-9 , 10-11, 12-13, 14-15) was added

to check for the effect of the pooling strategy on the behaviour of the changes in f.

There will therefore be 7 data points.

In a previous analysis, Day (1990) found that, in the whole sample, high Fa values

resulted from a high degree of heterogeneity from exposed (quite monomorphic) to

sheltered sites (rather polymorphic). Some evidence of a smaller scale of population

structuring came from the analysis of some of the eight loci studied but without the

opportunity of calculating confidence intervals or, consequently, the precise scale at

which such structuring might take place.

5.4.2 Results

Overall F-statistics were 0.328 for F, 0.3327 for 0 and —0.007 for f. There is a

strong heterozygote deficit due to differences in allele frequencies among samples,

whereas no heterozygote deficit or excess is detected at the scale of samples

(P=0.573, according to the permutation test of alleles within samples, Appendix H).

On the other hand, the probability that the observed 0 is obtained by chance is less

than 0.0002.

Analysis per site and per locus

The number of monomorphic loci per site was given in Goudet et al. (In Press). It is

a good indicator of the amount of variability present in sheltered and exposed sites.

For the exposed sites, an average of 60% of the loci within sites are monomorphic,

whereas this number falls to 25% for the sheltered sites. These differences in levels

of polymorphism among sampled areas led Goudet et al. (In Press) to reanalyse the

data. Their results can be summarised as follows:
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Figure 5.15: Jackknife CI per locus over samples and bootstrap CI over loci.

Exposed sites The f value (0.02) and confidence interval ([-0.11,0.09]) are similar

to the analysis encompassing all three areas. Pep-1 gives the highest deficit (0.11)

and Lap-1 and Mdh-1 the greatest excess (-0.10 and -0.13 respectively). Pep-1 is the

only locus that shows more variability in the exposed than in the sheltered area.

Sheltered, Prawle Point The estimated f from Prawle Point is -0.08, with 95%

CI [- 0.20,0.05], again similar to the three areas together, although slightly more

negative. Lap-1 shows a large deficit of heterozygotes (0.20) and Lap-2 an excess

(-0.34).

Sheltered, Lannacombe Bay Lannacombe Bay gives unexpected results in that

the estimated f is 0.09, but the 95% CI is [0.02,0.18], implying that there is a

heterozygote deficit in this area. This is also the area where allelic frequencies at 4

loci are most variable (allele 9 for Lap-2, Est-3, Mdh-1 and allele 11 for Pep-2) as

shown in Day (1990, Figure 2).

The variability between loci in terms of f is summarised in Figure 5.15.

Recurrent pooling of sites

All sites Results for the effect of recurrent pooling of sites on f are displayed in

Figure 5.16.

0.4
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Figure 5.16: Changes in f with pooling stage in Nucella lapillus, all sites, all loci.

Pooling levels 2 and 3 lead to a slight increase in the value of f, but the first major

discontinuity occurs at pooling level 4, when all sheltered Prawle sites are grouped

together. This could be considered as a first level of structuring, although confidence

intervals of the mean (Jackknifing over loci) between level 3 and 4 overlap. The next

3 pooling levels consist in grouping of exposed populations, and the f values

obtained are constant. We have already mentioned that the exposed area was fairly

monomorphic so it is not surprising to see that these pooling stages do not provide

any new information. If there is structuring in this area, the data set is unable to

detect it. Level 7 also adds the Start Point samples (only 6 individuals) to those of

Lannacombe without changing the f value.

The next discontinuity on the graph occurs between level 7 and 8, when pooling

together Lannacombe Bay samples with Prawle Point samples. Here, the difference

in f value is large enough for the two CI not to overlap. This is the second level of

structuring. Pooling all samples together reveals the third level of structuring,

highlighting the difference in genetic make-up of exposed and sheltered sites.

Sheltered sites only Figure 5.17 describes the change of f in sheltered sites only.

The graph shows a similar behaviour to that for all sites (Figure 5.16). The extra

pooling level 3 (pooling of sites 12 and 13 together) leads to a slight increase in f,
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Figure 5.17: Changes in f with pooling stages in Nucella lapillus, sheltered sites, all

loci.

followed by a decrease when pooling 10-12 and 13-15. Although the difference is not

significant, it suggests that sites 12 and 13, only 50 m apart, belong to different

breeding units and confirms that the pooling strategy adopted is appropriate.

The observation that Lap-2 is significantly different from all other loci (Figure 5.15)

led to a reanalysis of sheltered sites excluding this locus. Results are given in

Figure 5.18.

The graph shows essentially the same behaviour but confidence intervals of the

mean are much narrower. This allows discrimination between pooling levels 4 and 5,

the third level of structuring, which corresponds to the pooling together of all

Prawle Point samples. The pooling of all sheltered sites (level 7) remains highly

significant.

A matrix of pairwise estimates of Nm was calculated from over-loci pairwise 0. The

results are shown on Figure 5.19.

The first striking feature of this figure is its similarity with the figure obtained for a

one-dimensional stepping-stone model (Figure 4.35) and a one-dimensional isolation

by distance model (Figure 4.38). Gene-flow is highest along the main diagonal, and

decreases as samples get further apart. The lowest genetic exchange occurs between

samples at Prawle Point and those at exposed sites. The number of migrants is

highest for Prawle Point and it is clear that this area is made up of two groups. This
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Sheltered sites, Locus Lap-2 excluded

Figure 5.18: Changes in f with pooling stages in Nucella lapillus, sheltered sites,

Lap-2 excluded.

is in agreement with what had been detected using the changes in f with pooling

stages. The number of migrants between exposed sites seems lower but more spread

out. The 'bottom of the saddle' is at Lannacombe Bay where dines of gene

frequencies are steepest (Day, 1990). Although it may seem naively inductivist

(Chalmers, 1976), one may be tempted to conclude that Nucella lapillus lives in a

one dimensional habitat. A falsificationist would say that gene-flow patterns in

dogwhelks do not follow those of an island model or of a two-dimensional

stepping-stone model.

The main points from this analysis are:

• There is a wide variation in polymorphism between sheltered and exposed

sites. Exposed sites are more monomorphic and polymorphism is expressed at

different loci from sheltered sites (Goudet et al., In Press). Start Point seems

to be a barrier to effective gene-flow.

• Lannacombe Bay and Prawle Point, separated by 3.3 km, correspond to 2

different populations with little genetic exchange.

• Prawle Point seems to be divided into two isolated breeding groups.

• Even though there seem to be two breeding groups at Prawle Point and one at
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Figure 5.19: Estimated Nm between samples of Nucella lapillus.
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Lannacombe Bay, these groups do not seem to be random breeding units.

• Gene-flow in Nucella lap illus seems to be restricted to one dimension.

5.5 Discussion and conclusions

Cabbage and beet are likely candidates for genetic improvement by means of genetic

manipulation (Raybould Sz Gray, 1993). The possible effects of genes from

genetically modified organisms (GMO's) escaping into the environment, either

because the individual bearing the modification escapes or because there is

hybridisation with a wild relative, remain largely unknown and will most certainly

be dependent on particular genes and organisms. However, it seems more than likely

that it will occur since crops could be thought of as an infinitely large pool of genetic

material, constantly reimplanted into the environment. This is an effect very similar

to that of recurrent mutation or migration (Gliddon, 1993) and well documented in

the scientific literature (eg. Crow 8z Kimura, 1970). To delay the escape, minimum

confinement distances of genetically modified crops are likely to be imposed and are

documented in Raybould & Gray (1993), after Levin Sz Kerster (1974). Isolation

requirements for Brassica is 900 m, whereas it is 3200 m in Beta. Although 0 was

higher in Brassica (0.328) than in Beta (0.167), it would be very difficult to compare

the two species, since f values are so different. It was shown in Chapter 2 that the

breeding system will affect measurements of 0, since selfing will lower the local

effective size, whereas disassortive mating will enhance it (thereby speeding up or

slowing down the process of random genetic drift). Brassica is insect pollinated and

insect flight distances seem to be strongly influenced by flower density (Gray et al.,

1992). It was shown (Figure 5.5) that the amount of gene-flow is higher in the large

continuous patches than in the rest of the samples, suggesting that pollen is the

principal component of dispersal in this species. If this is the case, confinement

distances have little meaning, since the length of the flight will be a function of the

density of flowers encountered and a bee may well fly hundreds of metres to find a

suitable plant. A better idea than confinement distances would be to surround the

field of modified crop with a pollen donor that cannot hybridise with the crop.

Beta, on the other hand, is predominantly wind pollinated. Two different habitats

were analysed and Figure 5.13 showed that levels of gene-flow are much higher in

driftline than in cliff-top populations. If dispersal was to be mainly pollen mediated,
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one would expect to see either no differences or more gene-flow on cliff-tops where

the wind is stronger. It seems, therefore, that seeds are the main element of dispersal

in this species, at least for long distance migration. A study on the distribution and

dispersal of Beta vulgaris spp. maritima germplasm in England, Wales and Ireland

(Doney et al., 1990) found that seed dispersal was mediated by tides, winds, animals

and man. From the analysis carried out here, it seems that tides and/or storms are

likely to be the main factor in the long distance dispersal of beet. One cannot fail to

feel that lowering the probability of escape of modified Beta genes in the

environment is difficult (Eijlander, 1989; Boudry et al. (In Press)) and that other

solutions such as genes engineered to trigger death under environmental conditions

alien to those of the crop (Ellstrand & Hoffman, 1990) should be looked into.

There are no proposals yet to genetically modify dogwhelks, (although a garlic

butter flavouring gene would please the Mediterranean cooks) but this species is of

interest in another evolutionary domain. Questions have been raised in order to

explain the genetic polymorphism observed in Nucella lap illus. The polymorphism

observed at many electrophoretic loci seems to be linked to environmental

conditions. In particular Lap-2 was shown to be correlated with many ecological

factors such as exposure to wave action, shell shape and chromosome polymorphism

(Day, 1990). The same questions have been raised for other gastropods, in particular

Cepaea nemoralis, the land snail, which displays a polymorphism of the colour and

banding patterns of the shell. Many different selectionist arguments have been

advanced to explain this trait ranging from predatory action (Cain & Sheppard,

1951) to effect the of temperature and albedo (Jones et al., 1981). Nonetheless

dispersal is extremely limited in this species (Lamotte, 1951), which would allow for

differentiation to take place through the effect of random genetic drift. Figure 5.19

shows lower migration in the Lannacombe Bay area than elsewhere in the studied

area. Since this is also where Robertsonian polymorphism is found (which may well

be a partial fertility barrier and therefore, prevent or diminish gene-flow), one could

be tempted to conclude that differences in environmental conditions (high exposure

against low exposure) have favoured genetic differentiation of whelks each side of this

bay. However, when comparing the picture obtained for whelks with those obtained

via modelling of populations living in a one-dimensional habitat (Figure 4.38 &

4.36), the patterns are essentially similar. One is tempted to invoke the principle of

parsimony (Occam's razor) to conclude that mere random genetic drift is sufficient
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to explain the observed pattern. Evidence for selection in this case would be better

sought in laboratory experiments and it should always be remembered that it is

rather too easy to commit suicide with Occam's razor (Gliddon Sz Gouyon, 1989).



Chapter 6

General discussion and conclusions

6.1 New developments in F-statistics.

A recent paper by Cockerham & Weir (1993) examines the estimation of gene-flow

from F-statistics. The main thrust of this paper is

'to clarify the behaviour of FsT and GsT based estimators of gene-flow'.

Some remarks are necessary here to clarify what Cockerham tgz Weir (1993) mean by

FsT and GsT statistics. FsT based statistics, in their terms, are the correlation of

genes within groups within populations. It is what has been called 0 in this research,

and what they call 0. The difference between 0 and 0 is that i) the model for # does

not take the genotypes into consideration; ii) there is no mutation in the model used

for 0 whereas there is in the model for #. They state:

'the model under consideration is the standard island model, with a

finite set of islands, each of size N. Individuals are monoecious, and

mating is at random including a random amount of selfing.

[•••]

Even though we generally assume the mutation rate to be much less than

the migration rate, we cannot address questions about migration for a

finite number of populations at equilibrium unless there is some

mutation maintaining variation.'

Indeed, the quantities that they are estimating, X and Y, are the within-population

and overall allelic frequencies respectively (as well as the expectation of fa and 7,
the probabilities of identity by descent within and among populations respectively).

186
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Another quantity would need to be estimated if they were to consider departure

from random-mating within groups. As far as reaching equilibrium is concerned, it

was shown in this research that, with the 2N-allele model with no mutation (cf.

Chapter 2), simulations can be run for long enough to attain equilibrium without

losing polymorphism (see below).

Cockerham & Weir (1993) also consider two GsT based statistics, GCA and GST.

The first refers to a paper by Crow 8z Aoki (1984), and corresponds to what has

been called G e in this research. This quantity (equation 3 in Cockerham Sz Weir

(1993)) is the same as the estimator of Ge derived in Nei & Chesser (1983). The

second (equation 4 in Cockerham & Weir (1993)) is what has been called Fe in this

research, namely, the weighted average of the different Fe., where u designates

alleles and the weight is pu (1 —pu ). The equivalence between the Cockerham & Weir

(1993) estimators and mine is easily checked by comparing equations (3) and (4) in

Cockerham & Weir (1993) with equations 3.59 and 3.57 here, respectively.

Mutation, it, is considered in Cockerham & Weir (1993), as it was in the model of

Crow Sz Aoki (1984) but has not been considered in this research. This added

complication seems unnecessary since i) polymorphism is maintained for a long

enough period in the 2N-allele model with no mutation; ii) it occurs in the

equilibrium formula for 0 only as a product with the migration term (pd in

Cockerham & Weir (1993), equation 1). Figure 6.1 shows the changes of # as a

function of migration and mutation rates. The striking feature of this figure is the

independence between migration and mutation rates on /3 (additivity). If we replace

migration in expression 2.10 by the sum of migration and mutation

(m (Dm! (D — 1) + p)), there is no difference between the two expressions apart

from very high mutation and migration rates (Figure 6.2). Although mutation rates

of the order of 10% have been found in some hyper variable and repetitive DNA, it

is more often considered to be in the range of 10- 7 to 10-5 per locus per generation

(Maynard Smith, 1989). For these values, there is no differences between the two

formulae.

Cockerham Sz Weir (1993) point out the differences between 0 and GcA as being one

of definition. First of all, they give the relation between identity by descent and

identity in state, then derive unbiased estimators of the two identities in state to
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CVV(1993) beta as a function of migration and mutation rate

Figure 6.1: P(m, ii) (Cockerham & Weir, 1993, equation 1), with r = 10 and M = 25.

Difference between CW(1993) equation 1 and equation 2.10

Figure 6.2: Differences between ig(m, iz) and equation 2.10 when migration in the

latter is replaced by the sum of migration and mutation rates
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and P1 , and point out that, GCA is defined as

Po —

'

where F is the probability that two genes drawn at random from the entire

population are identical. This is the definition of F that was given in Chapter 2. On

the other hand, # is defined as

Cockerham Sz Weir (1993) say:

'3 is preferable to GcA for quantifying the relation between genes in this -

model. The argument is based on # not depending on the unknown

quantity n [D here], on the use of each level of differentiation rather than

the use of averages over levels, and on the use of intra-class correlations.'

While these remarks explain the discrepancies between the two estimators, in

particular the dependence of GcA on the number of samples, it does not lead to a

clear statement about the underlying hypotheses needed to take estimators. It was

pointed out in this work that the hypothesis behind the Weir & Cockerham

estimators is one of rate of loss of heterozygosity, whereas that behind Crow & Aoki

is one of rate of allele frequency drift. The two explanations are complementary but

the latter provides a framework in which to include further complexity in the model.

The analysis carried out on estimation of gene-flow focussed on the inverse

relationship R(z) = 1/z — 1, where z is one of the estimators of Wright's Fe, and

R(z) an estimator of 4Nm. Note that there is a misprint and that the formula for

R(dsT) (p. 858) should read:

R(GST) = 2(2NN( —I. )1n) • • •

Cockerham & Weir (1993) state:

'Considerable simplification occurs for R(G sT ) when all individuals in all

groups of a population at equilibrium are sampled.

[•••]

[R(GST)] provides a fairly close approximation to 4Nm for

p <	 m < 0.1 and n large.
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[. • •

The percentage of discrepancy depends on m, and in the case of R(GST),

on the sampling dimensions. When m = 0.1, censusing the population is
0

far better than drawing a sample for R(GsT).'

A complete census of the population does not alter the problem of estimation, as

was pointed out in Chapter 3, since the genetical sampling is still present with a

complete census. The simplifications for R(Gs) are also valid for large sample size

and large number of demes sampled. Indeed, if the total population comprises few

populations and few individuals per population, the total census will still provide a

highly biased estimator of Fe.

Table 1 in Cockerham St Weir (1993) points out the independence of the parameter

13, with regard to M and r (the number of individuals per sample and the number of

samples, respectively) and shows that the parameter GsT (Fe here) is dependent on

M and r. This is not surprising since GsT is a statistic and not an estimator. As

was pointed out in Chapter 3, a more appropriate comparison would be that of #

and GcA, a comparison that was carried out in Chapter 3 and which showed that,

while independent of M Gc A depends on r as expected from the relationship

between p and GCA•

Table 2 in Cockerham St Weir (1993) compares theoretical values of R(z) with those

obtained in Slatkin St Barton (1989). Note that superscripts 1 St 2 in the second and

third column should read * and t respectively. They point out that the bias is

always positive and sometimes very large, a finding that corroborates what has been

found in this research (Figures 3.17 and 4.14).

Table 3 in Cockerham St Weir (1993) presents the results of their own simulation,

where estimators were taken after the 101, 000th generation, since the calculations

are based on X and Y which take a very long time to reach equilibrium. However, IS

reaches equilibrium much faster (Crow St Aoki, 1984; Chesser, 1991). This last

feature is shown in Figure 6.3.

In this research, time to equilibrium was checked using expression 2.38 for the island

model and by ensuring that estimators of Fid had reached a plateau for the

stepping-stone models so that there was no need to run unnecessarily lengthy

simulations.

Cockerham St Weir (1993) focus only on an island model at equilibrium with 10%

migration. The results of Chapter 3 were for a much wider set of situations, since
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Figure 6.3: Changes over time of 024 ,03 ,t and Pt (fo, fi and beta on the graph re-

spectively), following Cockerham & Weir (1987). The parameters are A = 0.0001,

m = 0.1, N = 128, n = 100. 0 2 ,0 = 03 ,0 = 1, as in Slatkin & Barton (1989). Note that

equilibrium is reached faster for than for the identity by descent coefficients.
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equilibrium as well as non-equilibrium situations, random and partial selfing, and

island as well as stepping-stone models were investigated. The results here

generalised those of Cockerham & Weir (1993), showing that 0 is unbiased in all the

situations examined. It was pointed out in this research that seeking estimators of

Nm is valid only when 0 is large, and that comparisons of different populations

should be carried out using 9 rather than Nm (cf. Chapter 4).

An interesting feature of Table 3 in Cockerham & Weir (1993) is that they consider

two types of starting conditions: one which corresponds to the simulation of Slatkin

& Barton (1989) where the entire population is monomorphic (labelled 'fixed' in

Table 3), and one where they sampled 1000 unique alleles at random to create the

genotypic array of the first generation.

'Instead of an infinite-allele model, we used one with 1000 alleles and

equal mutation rate among all the alleles to make the simulations more

manageable.' Cockerham & Weir (1993)

This last situation is similar to what has been implemented here but the

infinite-allele model was made manageable by using the method presented in

Chapter 2.

I have to disagree with the statement of Cockerham & Weir (1993) about source of

the errors in Slaticin & Barton (1989).

'We do not know, of course, what contributed to the errors in the

simulations of Slatkin & Barton (1989), but one possibility is that the

populations were not at equilibrium.' Cockerham & Weir (1993)

Figure 6.3 pictures the exact changes in identity by descent coefficients and 0, with

the parameters and starting values used by Slatkin & Barton (1989). It is obvious

from this figure that equilibrium for 3 is reached much faster than that for the

identity by descent coefficients. Figure 6.3 also corroborates the finding that time to

equilibrium depends on the larger of m and 1/N. In the present case, m is much

larger than 1/N, and is the sole determinant of time to equilibrium. Although

equation 2.38 could not be used here to assess time to equilibrium (since F0 is

undefined), the equation can be rewritten in terms of F1:

A	 A
Ft = -134-1 (F1	 B) + 1 —
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from which

t — 1 =
ln(B)

In the present case, 3i = 0 (02,1 = 03 ,1 = 0.9998) and this expression reduces to

ln(1 — x)
t = 	 + 1

ln B

where B = (1 — (A +)) 2 (1 — 1/2N), to give 43.4 generations as the time

necessary for fl to reach 99.99% of its equilibrium value. Even if this result is an

approximation, since the starting population is monomorphic, Slatkin Sz Barton

(1989) must have allowed for mutation to create enough polymorphism which would

have meant running the simulations for a large number of generations. The

inaccuracy of Slatkin Sz Barton's results must be due to a different factor.

In their conclusions, Cockerham & Weir (1993) write:

'Finally, we note that there are conditions under which functions of

F-statistics can provide gene-flow estimates with low bias. We must agree

with a reviewer of this paper, however, and acknowledge a deficiency in

the approaches discussed in this paper for providing such estimates. The

problem is that these approaches are based on measures of population

differentiation presumed to have been caused by gene-flow. No direct

observations on gene-flow are used, and inferences are necessarily limited

by the assumptions of the model, including neutral alleles and

attainment of equilibrium. There is no basis for distinguishing between

the events of the migration model assumed and any other evolutionary

scenario that could lead to the same pattern of gene frequencies within

and between groups. Unless the various assumptions of a model such as

the island model are verified by direct observations, there must continue

to be doubts about analyses based on assumption-laden

theories—whether or not theses analyses rest on simulations.'

Unfortunately, as was pointed out in this research (cf. Chapter 3), direct

measurements of gene-flow are likely to be even more inacurate than indirect

measurement and could therefore mislead the researcher. Examples of such

discrepancies have been found in many species and are likely to have arisen because

of the large variance of dispersal over time. Methods presented in Chapter 4 and 5

should help to discriminate between the hypotheses of selective pressure and

gene-flow. As Slatkin (1985a) stated:
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'Estimates based on data from one or two loci 'should be suspect, but if

estimates are based on data from numerous loci and there is consistency

in the estimates using different methods, it is reasonable to have some

confidence in the conclusions.'

One of the findings in Chapter 5 is that the behaviour of the changes in f, when

pooling samples together, is very robust in situation which depart from random

mating (eg. graphs for Beta vulgaris ssp. maritima). Even when loci present obvious

signs of selection, such as Lap-2 in Numlla lap illus, we have been able to identify

them. Unless all loci are submitted to the same type of selection, it seems that the

methods presented here are a step forward in the identification of selection acting at

some loci.

Similarly, distinguishing between breeding patterns was made possible by plotting

the matrix of pairwise Nm values. Some doubts may be cast as to the accuracy of

such measurements, doubts with which I would agree. In particular, better estimates

would be obtained by using the exact relationship between 0 and Nm given in

Chapter 3 and 4, rather than using the approximation. Another solution would be

to portray the pairwise O's themselves, but the outcome is likely to be difficult to

interpret, since 0 is constrained between [-1/(2N — 1) : 1], whereas exact Nm can

vary between [0 : N] and approximate Nm between [0 : co]. However, the outcome

of this graphical representation should give a good indication of the underlying

patterns of gene-flow. Even when the populations are not at equilibrium between

the opposing forces of random genetic drift and migration, one would expect to see

larger values of migration between adjacent populations than between populations

further apart if isolation by distance (in a discrete or continuous form) is occurring.

On the other hand a chaotic pattern would be a strong indication that there is no

geographical structuring, whether at equilibrium or not.

The last remark concerns the quality of data. As pointed out by Slatkin (1985a), it

is necessary to obtain many independent loci displaying a similar behaviour before

estimates of gene-flow can be made. Of the three data sets presented here, only the

dogwhelk data could be considered as potentially sufficient to quantify gene-flow but

because there was no clear indication of the limit of the breeding unit, this

quantification was avoided. This point is likely to be most constraining on the

accurate inferences of levels of gene-flow since, without a notional breeding unit, one

can never be sure that sampling was carried out at the appropriate scale.
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In this research, results of simulations were always compared to those obtained from

analytical theory, when available, and were in good agreement. When the analytical

theory was unavailable or too complex to be solved even by numerical methods, at

least the results followed expected patterns. Simulations were not considered on a

par with analytical theory but were used to analyse otherwise intractable models.

Great care has been taken in verifying the results and ensuring that all the elements

of the simulations were correct. In particular, great care was taken to choose truly

random number generators, an aspect of stochastic simulations that, to my

knowledge, is too often ignored.

6.2 Conservation genetics

The main scope of conservation biology is to identify the rules for maintaining the

fitness of individuals and populations, and to understand the biological principles

upon which these rules are based (Soule, 1986). In a review called 'Conservation

genetics and conservation biology: a troubled marriage' Soule (46 Mills (1992) write:

'Until the middle 1970s, most of the people in charge of conservation

ignored genetics, and most of the people in charge of genetics ignored

conservation. But beginning around 1970, plant geneticists started to

become alarmed about the disappearance of primitive or traditional crop

varieties and tlaeir replacement by modern, genetically uniform, cultivars.

Geneticists suspected then as they do today that the seeds of the green

revolution contained the agents of their own ultimate collapse, namely,

genetic uniformity.'

Since those days, an international system of gene banks was endorsed by the United

Nations Conference on the Human Environment in Stockholm (1972) and the

International Board of Plant Genetic Resources (IBPGR) was established, in order

to further the collection, conservation, documentation and use of germplasm crop

species (Williams, 1988).

Genetics, however, remains a minor component of conservation biology for many

reasons:

• It is usually accepted that the maintenance of genetic variability will affect the

long-term survival of the species but does little for the short term (Goodman,

1987; Belovsky, 1987; Schwartz et al., 1986; Dawson et al. 1987; Lande (1988)).
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• Genetic variability on its own has little meaning and needs qualifiers such as

electrophoretic, DNA, neutral, selected (Brown & Schoen, 1992)

• Depending on the type of variability being considered, the effects of

bottlenecks are different: electrophoretic variability, and inbreeding effective

size are reduced (increased homozygosity) (McComas & Bryant, 1990),

whereas additive genetic variance seems to increase (Goodnight, 1987,1988;

Carson, 1990; Lewin, 1990).

• Genetic variability may well be enhanced at the level of the total population

through processes of local extinction and recolonisation (Ewens, 1990; Gliddon

Goudet, In Press).

• Moreover, genetics is an arcane field, in part because of its difficult jargon, and

in part because it is quantitative (Soule & Mills, 1992).

The first point seems to be dated now, and the latest reviews seem to emphasize the

growing need for genetics to be taken into account in assessing chances of survival of

a species (Soule Sz Mills, 1992).

The second point is of more interest, since the body of data obtained through

studies of DNA polymorphism is growing and tends to replace electrophoretic work

in the scientific reviews. The prime advantage of DNA techniques compared to

protein electrophoresis resides in the amount of polymorphism detected. Species

that appeared essentially monomorphic when screened for electrophoretic variants of

proteins may reveal polymorphism with one or the other molecular tools now

available to population geneticists. Questions arise as to how much polymorphism is

necessary in order to estimate population structuring. It was shown in Chapter 3

that F-statistics are undefined when the locus is monomorphic. Similarly, when 2N

alleles are obtained from a sample of N individuals, it is impossible to estimate

Wright's Fixation indices. Total monomorphism is as bad as total polymorphism

and one might wonder what the optimum amount of variability at a locus is in terms

of the estimation of population structure. The information that one can extract

from a locus should follow a parabola, crossing the zero-axis at 1 and 2N alleles, and

with a maximum somewhere in between. For such systems, looking at a phylogeny

of alleles has been proposed (e.g. Slatkin & Maddison, 1989, 1990, Excoffier et al.,

1992), but requires expensive sequencing techniques and may be difficult to apply
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since phylogeny can only safely be inferred in the absence of recombination (SlatIcin

8.1 Maddison, 1989, 1990).

It was pointed out in Chapter 3 that the collection of genotypic data is crucial to

obtain unbiased estimators of F-statistics. Randomly Amplified Polymorphic DNA

(RAPD) are being used in population genetics and are often described as a cheap

and easy technique to detect polymorphism. However, the technique suffers many

drawbacks since markers are dominant, lack repeatability, have been shown to follow

non-Mendelian modes of inheritance (Riedy et al., 1992), and give results highly

dependent on the experimental conditions (McPherson et al., 1993).

It is clear that, from a conservation point of view, an assessment of all types of

variability is required, until some correlations can be found between the different

sources. Neutral markers, however, can, under the conditions discussed in this

research, provide information about gene-flow patterns in the past. This information

could prove useful for the conservationist.

Studies of the effect of bottlenecks on populations have shown that while

electrophoretic variability is reduced, additive variance seems to increase (Bryant et

a(., 1986; McCommas & Bryant, 1990). This increase in additive genetic variance is

due to the conversion of epistatic and dominant terms to additive terms (Templeton,

1991). This is a whole new facet of the field of population genetics and conservation

and it is in line with the predictions of Wright's shifting balance theory (Wright,

1977). Most experimental studies of bottlenecks, however, have been carried out on

laboratory organisms, such as Drosophila melanogaster, which tend to have a r-type

life-history. Unfortunately, endangered species [that we want to preserve] tend to be

of the K-type, and are more likely to suffer the effect of inbreeding-depression

and/or outbreeding-depression (Templeton & Read, 1983; Templeton, et al. 1986).

Indeed, `r-species' such as the mosquito Culex pip iens goes through bottlenecks

every year during the winter and therefore experience frequent local extinctions and

recolonisations. Evolution must have favoured a genotypic make-up for these species

insensitive or less-sensitive to these fluctuations than species with little fluctuation

in population size. Furthermore, one can foresee an uproar if scientists were allowed

to experiment with the endangered 'cute and cuddly' species, experiments that are

necessary if better conservation strategies are to be defined and applied by

conservationists.
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The question of a Single Large Or Several Small (SLOSS) populations remains a

classic conservation dilemma. From a pure demographic perspective, a single large

population seems better since the probability of extinction of a patch is a convex

increasing function of decline in patch size (this consideration needs moderating

however, since a single catastrophe could wipe out the single large population). On

the other hand several small populations would be the best way to maximise the

maintenance of genetic variability at the level of the total population, if inbreeding

depression were not a problem. This dilemma would have to be understood in the

framework of metapopulations: a set of local populations which are established by

colonists, survive for a while, send out migrants and eventually disappear (Levins,

1970). MODEL42, presented in this research, does not include this demographic

feature of metapopulations but could still be considered as a reference for such

studies. One of the criticisms that can be made of existing metapopulation models

(see Olivieri et al. (1990) for notable specific exceptions) is that demography and

genetics are usually uncoupled: some metapopulations models (eg. Wade &

McCauley, 1988; Marayuma & Kimura, 1980) have no real dynamics locally since

the local populations, after foundation by a specified numbers of individuals, grow

instantly to their carrying capacity. Models in the same category have fixed r and K

values, independent of the genotypes and, therefore, focus only on short term

ecological effects rather than long term evolutionary consequences. A second

category of models considers a constant fitness (independent of density and/or

frequency). Possible ecological effects are therefore ignored to allow evolutionary

consequences to be studied. As was pointed out by Gliddon & Goudet (In Press),

given the relative lack of incorporation of genotypic effects on parameters of clear

importance for colonisation such as colonising ability and extinction probability, it

should come as no surprise that the majority of the models predict that demographic

(genotype independent) effects are of major concern in designing conservation

strategies. In a neutralist framework, a measure that may be more appropriate than

the census size is the effective population size. We have seen throughout this work

that many different, often contradictory, definitions of effective size exist. While

inbreeding effective size is a measure of the rate of loss of heterozygosity, the variance

effective size is a measure of the rate of loss of genetic variability from a population,

or a measure of the rate of allele frequency drift. Crow & Denniston (1988) stated:
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'If one is interested in conserving genetic variance,..., it [variance

effective size] is the most appropriate effective number.'

A survey of the scientific literature will show at least three other types of effective

sizes emerging:

• The extinction effective size of Haldane (1939), also called eigenvalue effective

size, since it can be calculated by measuring the largest non-unit eigenvalue of

the transition matrix of the Wright-Fisher model (Ewens, 1979, 1982).

• The mutation effective size, introduced by Marayuma Sz Kimura (1980), stems

from the infinite allele model and is defined as a function of the probability

that two individuals chosen at random from the entire population are of the

same allelic type, the function being:

(1 — u)2
P =

2N — (2N — 1)(1 — u)2

(we recognise here equation 2.10, with the mutation rate u replacing the

migration rate m). Providing that P and u can be estimated, and that the

infinite allele model holds true, then solving for N would lead to the mutation

effective size of the population (Ewens, 1989).

• The diversity effective size (Gregorius, 1991) , 'which accounts for the rate of

loss of allelic variation, and not merely the rate of loss of heterozygosity' and is

similar in concept to the variance effective size.

It has been shown in Chapter 4 that restricted gene-flow enhances the variance

effective size of the population compared to the census size and therefore, maintains

more genetic variability. Similar findings were described in metapopulation models.

Wade tgz McCauley (1988, 1991) considered two different types of founders: a

Propagule Pool' in which there is one large source population from which the

migrants originate; and a 'Migrant Pool' in which migrants are drawn at random

from the extant local populations. The Propagule Pool' confirms the results of a

verbal model of Wright (1940), namely, that Fe was increased, relative to a no

extinction control and, therefore, the variance effective size was increased providing

that the number of founders was less than the carrying capacity. In the 'Migrant

Pool' model, Fe was increased and, hence, variance effective size, providing that

4Nm + 1 was larger than twice the number of founders, where N is the local

carrying capacity and m the rate at which local populations exchange migrants.
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This view was expressed by Ewens in 1989:

'It is usually accepted that a subdivided population subject to extinction

of subpopulations will lose genetic variation more rapidly than an equally

large random mating population, or equivalently that it has a smaller

eigenvalue effective population size. The above shows that it is not

necessarily true. [...] We will see later than when mutation exists, the

subdivided population can maintain more genetic variation, on the

average, than a random mating population of the same size, again

against accepted views.'

However in 1990 Ewens states:

'Except in extreme cases involving very many subpopulations each of

small size, the rate of loss of genetic variation is greater than that for a

single random mating population [...] and the implication for MVPS

(Minimum Viable Population Size) is that a larger [global] population

size is needed in the substructured case if the rate of loss of genetic

variation is to be kept at the same value as that of an undivided

population.'

In both quotations, reference is made to maintenance of genetic variation but no

mention is made of the level at which this variation is maintained. Conclusions from

the present research are that if variation is to be maintained within subpopulations,

in order to avoid inbreeding depression, then maximisation of the inbreeding

effective size is the goal, and a single large would be better than several small

populations. On the other hand, if variation is to be maintained globally, then

maximising the variance effective size is in order, and several small is better than a

single large population. Note that the lengtk of time over which this variation has to

be maintained has not yet entered the argument but it is obvious from my results

that, if genetic variation is to be maintained in the long term then several small is

also better than a single large.

This discussion of effective sizes is a typical example of what Soule Sz Mills (1992)

meant when they mentioned the difficult jargon of population genetics. One might

wonder whether the terminology of effective sizes, confusing even for geneticists,

should not abandoned altogether and replaced by clear definitions such as rate of

allele frequency drift (variance effective size), rate of loss of heterozygosity
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(inbreeding effective size), variance in the number of successful gametes (extinction

effective size). Although these definitions have less impact than the catch-words

'effective sizes', they would avoid misuse since many conservationists have ignored

the differences between census and effective size and used the latter as an estimate

of MVPS (Harris & Allendorf, 1989; Ewens, 1990).

6.3 Risk assessment: releasing GMO's

It was pointed out in Chapter 5 that population genetics theory can be used to try

and predict the effect of releasing Genetically Modified Organisms (GMO's) in the

environment. Direct measurement of escapes of modified crops, or of their gametes,

into the wild proves difficult since what needs to be measured are the long distance

events. As was pointed out by Gliddon (pers. comm.), virtually all of the sampling

methods and monitoring protocols described in the literature fail to describe the

-minimum levels of detection which could be achieved using their particular protocol.

This problem is exacerbated by the design of the experiments— in the vast majority

of cases using higher plants, the marked organisms are in a small minority of total

organisms in the design. This results in the experimental design making it difficult

to detect the spread of the marker in relation to the probability of recovering the

non-marked gene. For example, if a marker is represented by 1% of the total

organisms, even if it is distributed uniformly across the entire experimental area, it

will only be recovered in 1% of the samples. This fault of experimental design could

well account for the very small distances that have been reported for the spread of

GMO's. Darmency & Renard (1992) referred to one experiment with transgenic

oil-seed rape in which a small plot (10m x 10m) of recipient plants was situated at

800 m from a large plot (100m x 100m). The recipient plot consisted of 50%

male-sterile and 50% hermaphrodite plants. On average, 1.5% of the seeds recovered

from the male-steriles in the small plot had been pollinated by plants from the large

plot, which was 800m distant. This should be compared with results (Darmency &

Renard, 1992) in which no pollen was detected at 100m from a small source of

transgenic rape located in the centre of a 1 hectare field.

A second point that needs emphasising is the crucial need to fit a distribution to the

data collected. It was mentioned in Chapter 4 that the projection of bivariate

distributions of the exponential family in one-dimension gives rise to a power
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function. Kareiva et al. (1993) and Manasse (1992) came to similar conclusions.

Note that most reported results are expressed in terms of marker genes at a given

distance as a percentage of total genes sampled. This is inappropriate as it is scale

dependent, the correct form being of marker genes at a given distance as a

percentage of the total number of marker genes recovered. This last method removes

the dependence on size of the source of marker genes and correctly emphasizes the

rate of decrease of marker genes recovered with distance (Kareiva et al., 1993).

While the above considerations will improve direct measurements of gene-flow, the

space-time variability intrinsic to direct measurements remains. Furthermore, only

part of the gene-flow occurring is measured, since what is followed are marker genes

and there seems to be no need for a transgenic crop in these experiments because

the foreign DNA is used merely as a marker. The debate then returns to the

usefulness of direct versus indirect methods. While data sets provided for the study

of Beta and Brassica in Chapter 5 were not sufficient for quantitative predictions to

be made, I have been able to show that levels of gene-flow are higly dependent on

environmental conditions. One is therefore tempted to regard direct estimations as

an attempt to characterise levels of gene-flow in a given, monitored environment.

For predictions to be of any use, the experiment would need to be repeated in many

different environments and indirect methods should be used concurrently in a close

wild relative (if it exists) on a large scale to assess how variable gene-flow could be

and how much long distance migration occurs because this last category will be

extremely difficult to measure with direct methods.

Risk to conservation should not be neglected. One possible effect of the escape of a

large number of genetically uniform organisms (with wild relatives), be it a GMO or

not, will certainly be to diminish the diversity of the wild relatives. Examples, sadly,

already exist: supportive breeding of salmonid populations (releasing captive-bred

animals into the wild to support weak and endangered populations), in an attempt

to enhance wild stocks, results a in dramatic increase in the rate of loss of genetic

heterozygosity of the wild population, as well as an increase allele frequency drift,

thereby reducing both the inbreeding and the variance effective size of the wild

population (Ryman Laikre, 1991).
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6.4 General conclusions

Gene-flow has been studied in this research from an analytical, theoretical and

practical angle. While simple models of restricted gene-flow are tractable

analytically and can produce very accurate predictions when compared with the

results of computer simulations, models of discrete populations with geographical

structure models of continuous populations need further research. Basic

requirements for models of discrete populations and analytical models are

highlighted. However it should be kept in mind that models of isolation by distance

in a continuum are very difficult to relate to concepts familiar to the population

geneticist since the basic concept linking continuous populations to discrete ones,

the neighbourhood size, has been shown to be flawed.

Inferring gene-flow from indirect methods implies obtaining unbiased estimates of

quantities such as F-statistics. The framework for estimation presented, which uses

the concept of variance effective size to derive unbiased estimates in different

situations, does help to clarify the underlying assumptions. In particular, the

conditions under which the estimates of Nei & Chesser (1983) and Weir 8z

Cockerham (1984) are best suited have been highlighted.

While analytical treatment of geographically structured populations is difficult,,
F-statistics can be used to unravel levels of genetic structuring when the ideal

conditions of an island model are not met. Methods presented here yield ways of

discriminating between samples taken within and among breeding units, a necessary

distinction if levels of gene-flow are to be inferred. Calculation of pairwise Fe's

provides a picture of the geography of gene-flow in the population investigated, even

in continuous populations.

Emergent properties are inherent in biological systems since they are hierarchical.

Gliddon & Gouyon (1989) pointed out that the outcome of selection at any level of a

hierarchy (molecule, individual, group..) must be the result of a successful selection

at all underlying levels. In this research, individual and molecular levels were

amalgamated because individuals were represented by a collection of independent

(diploid) loci. It was pointed out that effects such as those of bottlenecks have a

different outcome on electrophoretic and quantitative variation. Small interactions

in systems with few components can be ignored but as the the number of

components in the system increases, interactions, even if very small, take precedence

over separate effects (Cohen & Stewart, 1991). The question 'why all this
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polymorphism?' is as bad a question as 'why sex?' or 'what is the unit of

selection?'. Indeed one might be tempted to answer '42' and apply for funding to

build a new computer!
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Appendix A

Listing of MODEL42

A.1 STEPINF.PAS
Unit stepinf;
( 	 )
(+	 0
(a	WARNING HI All the declarations within INTERFACE are	 0
(a	 global;---> you can use them in all the programs 	 0
(a	using The unit StepInf	 0
(a	 0
( 	 )

Interface

uses
crt,Graph,dos,Drivers{,Fonts};

const

MaxInd	 a 4098;
-64;

DMaxInd	 m 8192;

OFP_Mes : Array[0..9] of string[40]m
(,p,
'ISLAND MODEL WITH INF. CONTINENT',
'ISLAND MODEL WITH GAMETIC CLOUD',
'STEP. STO. MODEL 1 DIM. EXP. DISTR.',
'STEP. STO. 2 DIM. CON. 4),
'STEP. STO. 2 DIM. CON. 8 EXP. DISTR.),
'STEP. STO. 2 DIM. COI. 8 TOR. DISTR.),
'STEPPING STONED NEIGHBOURHOOD',
'PLANT LATTICE MODEL',
'TRUE WRIGHT LATTICE MODEL));

type

Nimes	 m String [40]
Ext	 m string[3];

Struct	 m array[1..3] of word;

V_Coord	 m array[1..4] of word;

Point	 m record

	

x.y	 :integer;
end;

ExistsPtr	 m'Exists;
Exists	 • Array[1..DMaxInd] of Boolean;

AliveGenPtr •'AliveGen;
AliveGen	 m Array[1..DMaxInd] of Word;

IntFldPtr	 m'IntFld;
IntFld	 m Array[1..MaxInd,1..2] of Word;

Descr_GFP1

Descr_GFP4

m record
kind	 : char;
self	 :single;
mig	 :single;
popsize	 :word;
unused	 :array[1..5] of byte;

end;
• record

kind	 : char;
self	 :single;

219
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mig	 :single;
popsize	 :word;
tor	 :boolean;
unused	 :array[1..4] of byte;

Descr_OFP3
end;

• record
kind	 : char;
self	 :single;
mig	 :single;
popsize	 :word;
tor	 :boolean;
dist	 :byte;
Aver	 :Byte;
unused	 :array[1..2] of byte;

end;
Descr_GFP7	 = record

kind	 : char;
self	 :single;
popsize	 :word;
tor	 :boolean;
aver	 :SIIGLE;
unused	 :array[1..4] of byte;

end;
Descr_GFP8	 • record

kind	 : char;
self :single;
dispm,dispf:single;
tor t plant :boolean;
unused	 :array[1..1] of byte;

end;
DescrRec	 = record

FilIam	 :names;
NewData	 :array[1..16] of byte;

end;

IntFldFile	 = File Of IntFld;
AliveGenFile = File Of AliveGen;
ExistsFile	 = File Of Exists;
DescrRecFile = File of DescrRec;

const
V_Size_Small : V_Coord=(5,16,78,24);
V_Size_Big	 : V_Coord=(6,3,79124);

var

FilIamDat,lame,FillamPar 	 : lames;
FiliamRed,FilIamTxt,FilIamFre	 : Names;
GrDriver,GrMode	 : integer;
Graphics	 : boolean;
ErrCode	 : Byte;
FileDat,FileRed	 : IntfldFile;
ThisDescrRec	 : DescrRec;
FileDescrRec	 : DescrRecFile;
FileTxt,File8,Filepar,FScreen	 : Text;
FileFre	 AlivsGenFile;
MaxAll	 : Word;
Exti	 : ext;
51,92	 : LongInt;

DirStr;
la	 : lameStr;

: ExtStr;
(******************* *********** **mess*** **************** ********************)
Function lintrange(low,high:longint) : longint;
Function range(low,high:real):real;
Procedure FileList(extl:ext);
Function Uniform : Double;
Function Grandom( I :LongInt) : Longint;
Procedure Vindow2(X : V_Coord);
Procedure Ini(var Fld:IntFldPtr);
Procedure FillBoolArray(Param:Single;var Arbool:ExistsPtr);
Function FileExist(Iame :Iames):Boolean;
Procedure Erase_File(var Name:Names);
Function Affirmed(Default,Ingraph:boolean):Boolean;
Procedure Message_Ind;
Procedure Vrite_Descr_GFP(ss:char;var FantFldFile);
Procedure Read_Descr_GFP(var ff:text;var FantFldFile);
Procedure UpDate_FileRec(Var IewRec:DescrRec);
Procedure InitTxt(Iame:Names);
Function GetlewCoord(Tor:boolean;a,I:integer;Ofsa:ShortInt):integer;

IMPLEMEITATIOI
******** esoommetesCHECE REAL AID IITEGER VALUES

function licheck : longint;
var x : longint;
begin

(8I-}
readln(x);
'DI+)
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if IoResult<>0 then
repeat

writeln;
write( 9 Input not in correct form- Please retype
(II-)
readln(x);

untitTResultm0;
licheck:mx;

end;	 (*licheck*)

function lintrange(low,high:longint) : longint;
var x : longint;
begin

x:mlicheck;
while (x(low) or (x>high) do
begin

write( 9 0ut of range, Please retype: ? 1);
x:mlicheck;
writeln;

end;
lintrange:mx;

end; (*lintrange*)

function rcheck : real;
var x : real;
begin

{SI-}
readln(x);
f$I41.
if IoResult<>0 then

repeat
writeln;
write(Input not in correct form- Please retype 9);

readln(x);
{SI+)

until IoResultm0;
rcheck:•x;

end; (*rcheck*)

function range(low,high:real) : real;
vat x : real;
begin

x:mrcheck;
while (x<lov) or (x>high) do
begin

write( 9 0ut of range, Please retype: ? 0:
x:mrcheck;
writeln;

end;
range:mx;

end; (*ranger.)
( ************ ee********FILES II DIRECTORY 	
procedure FileList(Ext1:ext);
var
DirInfo	 : Searchrec;
Xpos,YPos	 :Byte;

:PathStr;
D.	 :DirStr;

:IameStr;
:ExtStr;

begin
XPos:m1;
TextBackOround(Black);
Vindow(5,3,79,12):
clrscr;
TextBackOround(LightOray);TextColor(Yellow);
Vindow(3,2,77,11);
ClrScr;
OotoXY(23,1);write( 9LIST OF FILES II DIRECTORY:');
TextColor(Blue);
FindFirst( 9 *. 9 +ext1,Anyfile, DirInfo);
while DosError . m 0 do

begin
FSplit(Dirinfo.lame,D,I,E);
If ((Bm")
or (Eml.SA09
or (Eml.FIQ9)
or (Em9.DATI)
or (Em9.RED9))
Then Begin

If iihereY+10Hi(VindMax))
Then OoToXY(Xpos,WhereY+1)
Else Begin

Xpos:mXPos+14;
YPos:m2;
OoToXY(XPos,YPos);

End;
write(dirinfo.name);

end;
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findnext(dirinfo);
end;

GoToXY(60,Hi(VindMax));TextColor(YELLOV);
WriteePRESS AZT KEY TO PROCEED.');
Repeat Until ReadKey>*1;
GotoXY(60,Hi(WindRax));ClrEol;
end;
	 GET AISWER Y,1 OR DEFAULT AID PASS IT BACK

function affirmed(default,ingraph:boolean):boolean;
(* Waits for yes or no or default for return only s)
war

gotit,yesno : boolean;
ans,dans : char;

begin
repeat
gotitostrue;
if default then
begin

if ingraph then outtext(' [Yes]
else write(' [Yes]

dans:=0)0
end

else
begin

if ingraph than outtext(' [10
else write(' [1o]

dans:monl;
end;

if ingraph then outtext(' Y or 17 9
else write(' Y or I? 9;

repeat
ans:=ReadKey;

until ans>=*13;
if ans=*13 then ans:=dans;
if Upcase(ans) in I'Y','1 , 3 then
case ans of

,
InIp/12:

end (s ans s)
else
begin

it ingraph the

yesno:=true;
yesno:=Ialse;

n begin
SetFillStyle(SolidFill,GetBkColor);
Bar(0,GetY-10,640,GetY):
MoweTo(6,GetY);
outtext('Please answer 9;

end else begin
vriteln;
write( 'Please answer

end;
gotit:=false;

end;
until gotit;

affirmed:=yesno;
it ingraph then outText(Upcase(ans)) else writeln(Upcase(ans));
end (s affirmed *)
	 RESSAGE_E1D 	

Procedure Ressage_End;
Begin

SetTextStyle(defaultFont,HorizDir,1);
SetTextJustify(LeftText,CenterText);
SetColor(getcolor);
OutTextXY(6,GetNaxY-6, , PRESS AIY KEY TO PROCEED.');
Repeat Until ReadKey>*1;
cleardewice;
setBkColor(Blue);
RestoreCrtMode;
Graphics :False;

End; (Of Proc Ressage_End)

A.1.1 UNIFORM.PAS
	 nun)! FURC*****.wookemmoosseseest ****** *.00mmo*********)

Function Uniform : Double;
Var
Z,k	 : LongInt;
Begin

k: •S1 diw 63888;
Sl:=40014*(81-k*63888)-k*12211;
It Si < 0 Then 81:=S1+2147483663;
k:=S2 diw 62774;
82:=4098924(S2-1062774)-k+3791;
It 82<0 Then 82:= 82+2147483399;
Z:= sl-s2;
It Z<1 Then Z: • z+2147483682;
Uniform:14.04.866813E-10;
end; (Of Func Uniform)

Function °random( 1: Longint) : LongInt;
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Begin
Orandom:raTrunc(UniForm0);
end; {Of Func Orandom)

	 2nd WIDOW 	 )
Procedure Window2( X:W_Coord);
Begin

TextBackOround(black);
Window(x[1],x(2],x[3],x[4]);ClrScr;
TextBackOround(Blue);TextColor(10;
Window(x[1]-2,x(2]-1,x[3]-2,x(47-1);
ClrScr;

End;
(.********4 .1m.4444mIIITIALISITIOI PROCEDURE 	 )
Procedure Ini(Var Fld:IntFldPtr);
var i: word;
Begin

NaxAll:raDlaxInd;
For i: ra1 to NaxInd do
Begin

Fld'Ei,1]:rai;
F1rli,2]:=NaxInd+i;

end;
end;
	 FILL_BOOLEAI_ARRAY PROCEDURE 	 )

Procedure FillBoolArray(Param : Single;var ArBool :ExistsPtr);
var i : integer;
Begin

For i: rai to DlaxInd Do arbool-[i]:=Uniform<Param;
End;{Of Proc FillBoolArray)
	 FILEEXIST FUIC	 )

Function FileExist(Iame :lames) :Boolean;
var f : File;
Begin
Assign(f,Iame);

{$I-}
reset(f);
close(f);

{SI+1
FilsExist:=I0Resultra0;

End; { Of Function FileExist}
	 ERASE_FILE PROC 	 )

Procedure Erase_File(Var lame:Iames);
Var f :File;
begin

ClrScr;
graphics:rafalse;
Window2(W_Size_Big);
Write('Input File lame for Output (Without ext.): /);
Readln(Iame);
If FinExist(nams)
Then Begin

Writs('WARIII0H. File Already exists. Do you want to Erase it?,);
If Affirmed(False,Oraphics)
Then Begin

assign(f,Iame);
Erase(f);
If FileExistalame+/.DATO
Then Begin

assign(f,lame+2.DATO;
erase(f);

End;
If FileExist(lame+0.RED1)
Then Begin

assign(f,lame+/.RED');
•rase(f);

End;
End

Else Begin
repeat

writeCInput File lame For OutPut : 9);

readln(lame);
Until (lot FilsExist(Iame));

End;
End;

end;
0.0444.******44.*..*********WRITE_DESCR_OFP PROC 	
Procedure Write_Descr_OFP(ss:char;var F:IntFldFile);
var
ans	 : boolean;
NewIame	 : names;

: word;
Begin

ClrScr;
Window2(V_Size_Big);
OotoXY(10,2);
Writeln(' lame of File is :',lame);
case is of

/1 P , 1 2 1	:begin
With FileRec(F) Do
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Begin

24'

Prf

Descr_OFP1(UserData).kind:.ss;
write(' Input Proportion of selling [0.0..1.0]
Descr_OFP1(UserData).self:urange(0.0,1.0);
write(' Input Migration proportion [0.0..1.0] : 3);
Descr_GFP1(UserData).mig:.range(0.0,1.0);
repeat

write(' Input dome size [1,4,16,64,266,1024] : 3);
P:=LintRange(1,1024);

until ((Poi) or (P•4) or
(P.16) or (P.64) or (P.266) or (P.1024));

Descr_GFP1(UserData).PopSize:=P;
End;

end;
:begin

With FileRec(F) Do
Begin

Descr_OFP4(UserData).kind:.ss;
write( 3 Input Proportion of Belting [0.0..1.0] : 2);
Descr_OFP4(UserData).self:mrange(0.0,1.0);
write(' Input Migration proportion [0.0..1.0] : 0);
Descr_GFP4(UserData).mig:mrange(0.0,1.0);
repeat

write(' Input dame size [1,4,16,64,266,1024]
P:.LintRange(1,1024);

until ((P=1) or (P=4) or
(P.16) or (P.64) or (P=266) or (P.1024));

Descr_OFP4(UserData).PopSize:=P;
write(' Do you want the pattern to be toroidal ? 0);
Descr_OFP4(UserData).tor:.affirmed(False,graphics);

End;

With FileRec(F) Do
Begin

Descr_OFP3(UserData).kind:.ss;
write('Input Proportion of selling [0.0..1.0] : °);
Descr_GFP3(UserData).self:mgrange(0.0,1.0);
write(' Input Migration proportion [0.0..1.0] : 0);
Descr_OFP3(UserData).mig:.range(0.0,1.0);
repeat

write(' Input dome size [1,4,16,64,266,1024] : 0);
P:=LintRange(1,1024);

until (().1) or (P=4)
or (P.16) or (P.64)
or (P=266) or (P=1024));

Descr_OFP3(UserData).PopSize:=P;
write(' Do you want the pattern to be toroidal ? 3);
Descr_OFP3(UserData).tor
:.affirmed(False,graphics);
If Descr_GFP3(userdata).mig.0.0
Then Descr_OFP3(userdata).dist:=0
Else Begin

write(' How tar do you allow dispersal [1..99] ? 0);
Descr_OFP3(UserData).dist:=lintrange(1,99);
write(' Average distance of dispersal [1..99] ?
Descr_OFP3(userdata).Aver:=LintRange(1,99);

end;
end;

end;
:begin

With FileRec(F) Do
Begin

Descr_OFP7(UserData).kind:.ss;
write( 0 Input Proportion of selfing [0.0..1.0]
Descr_OFP7(UserData).self:=range(0.0,1.0):
repeat

write(' Input demo size [1,4,16,64,266,1024]
P:=LintRange(1,1024);

until ((P.1) or (P.4) or
(P.16) or (P.64) or (P.266) or (P=1024));

Descr_OFPT(UserData).PopSize:.P;
write(' Do you want the pattern to be toroidal ? 0);
Descr_OFP7(UserData).tor:.affirmed(False,graphics);
write(' Average distance of dispersal [0..99.0] ? 3);
Descr_OFP7(userdata).Aver:=Range(0.0,99.0);

End;

end;
'6' :begin

{
1E0,191

end;

:begin
With FileRec(F) Do Descr_OFP8(UserData)
write( 2 Input Proportion of self ing [0.0
with FileRec(F) Do Descr_OFP8(UserData)
With FileRec(F) Do Descr_GFP8(UserData)
With FileRec(F) Do Descr_OFP6(UserData)
With FileRec(F) Do Descr_OFP6(UserData)
With FileRec(F) Do Descr_OFP8(UserData)

end;

.kind :mss;

..1.0] : 2);

.self:mrange(0.0,1.0);

.dispm:=sdm;

.dispf:..sdf;

.tor:.neibtor;

.plant :plant;

end;
end; (Of Proc Write_Doscr_OFP}
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	 READ_DESCR_GFP PROC
Procedure READ_DESCRAFP(var ff:text;var F:IntFldFile);
var
x	 :byte;
ss :string[80];
Begin

ClrScr;
Window2(V_Size_Big);

gotoxy(2,1); writeln("):
gotoxy(2,2); writeln('
gotoxy(2,3); writeln('
gotoxy(2,4); writeln(1
gotoxy(2,6); writeln('
gotoxy(2,8); writeln('
gotoxy(2,7); writeln('
gotoxy(2,8); writeln(");

with filerec(F) do
Begin

gotoxy(16,2);
write (ff,'IAME OF FILE: /);
x:=0;
repeat

write(ff,Upcase(name(4));
x:=x+1;

until name[x]=i0;
writeln(ff);
x:=ord(Descr_GFP1(UserData).kind)-48;
ss:=GFP_MesExl;
ss:=concat(TYPE of GFP: 0,ss);
GotoXY(20,3);
Writeln(ff,ss):
gotoxy(6,4);
writeln(ff,'SELFING= ',Descr_GFP1(UserData).Self:8:4)

end;
CRIS chr(FileRec(F).userdata[1]) of

:begin
With FileRec(F) do
Begin

gotoXY(80,4);
Writeln(ff,'MIGRATIOI= ',Descr_GFP1(UserData).Mig:8:4):
gotoxy(6,6);
Writeln(ff,'DEME SIZE IS: /,Descr_GFP1(userdata).PopSize:6);

14'

132,252,262

271

end;
end;
:begin

With FileRec(F) do
Begin

gotoXY(60,4);
Writeln(ff,'MIGRATIOI= ',Descr_GFP4(UserData).Mig:6:4);
gotoxy(6,6);
Writeln(ff,'DEME SIZE IS: ',Descr_GFP4(userdata).PopSize:6);
gotoxy(6,6);
Writeln(ff,'TORDIDAL IS: ',Descr_GFP4(userdata).tor):

end;
end;
:begin

With FileRec(F) do
Begin

gotoXY(60,4);
Vriteln(ff, I MIGRATIOI= ',Descr_GFP3(UserData).Mig:8:4):
gotoxy(6,6);
Writeln(ff,'DEME SIZE IS: !,Descr_GFP3(userdata).PopSize:6);
gotoxy(6,8);
Writeln(ff, , TORDIDAL IS: ',Descr_GFP3(userdata).tor);
gotoxy(60,8);
writeln(ff,'MAX DIST OF DISP= ',Descr_GFP3(userData).Dist:3);
gotoxy(60,6);
writeln(ff,'AVER DIST Of DISP= 1,Descr_GFP3(userdata).Aver:3);

end;

With FileRec(F) do
Begin

gotoxy(6,6):
Writeln(ff,/DEME SIZE IS: 1,Descr_GFP7(userdata).PopSize:8);
gotoxy(60,6);
writeln(ff,'AVER DIST Of DISP = ',Descr_GFP7(userdata).Aver:6:3);
gotoxy(6,6);
Writeln(ff,'TOROIDAL IS: ',Doscr_GFP7(userdata).tor);

end;
:begin

end;
end;

)8,,,91	 :begin
end;

end;
End;
(* ******** *********IIITTXT PROC
Procedure InitTxt(Iame:Names);
var
i:word;
Begin

for i:=1 to Length(lame) do Jame[i]:Upcase(Iame[i]);
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FillaaTxt:=Iame+$ 	 TXT$;
It FileExist(Fillaext)
Then Begin

Assign(FileTxt,FillasTxt);
reset(FileTxt);
Append(FileTxt);

End
Else Begin

Assign(FileTxt,FillamTxt);
rewrite(FileTxt);

End;
writeln(FileTxt,
	 DESCRIPTION OF THE POPULATION

Read_Descr_OFP(FileTxt,FileDat);
writeln(FileTxt,
	 I).

close(FileTxt);
End; (Of InitTxt Procl
	 UPDATE FILEREC PROCEDURE 	

Procedure UpDate_FileRec(Var NewRec:DescrRec);
var

:word;
Poe	 :word;
DuemayRec	 :DescrRoc;
Found_1	 :Boolean;
begin

Found_1:-False;

Repeat

NewRec.Fillam[i]:=Upcase(NewRec.FilIaa[i]);
Until IevRec.Fillam[i]=110;
For i:i to Length(NewRec.Fillam) do NewRec.Fillam[i]:1010;
Reset(FileDescrRec);
It FileSize(FileDescrlac)<>0
Then
Repeat

Pos:=FilePos(FileDescrRec);
read(FileDescrRec,DummyRec);
If DummyRec.Fillaa•IewRec.Fillam
Then Begin

Seek(FileDescrRec,Pos);
write(FileDescrRec,NewRec);
Found_1:=True;

End;
Until ((Found_1) or (Eof(FileDescrRec)));
If Not Found_l
Then Begin

Seek(FileDescrlec,FileSize(FileDescrRec));
Vrite(FileDescrRec,NewRec);

End;
Close(FileDescrRec);

End;{0f Update_FileRec Proc}
	 OETIEWOOID FUNCTION 	

Function OetIewCoord(Tor:boolean;a,1:integer;Ofsa:ShortInt):integer;
var Res : integer;
Begin

.	 If Tor
Then Begin

Res:(a+I*60-1+Ofsa) mod N;
end

Else Begin
If ((a+Ofsa)<1)
Then Res:m0Random(a)
Else If ((a+Ofsa)>N)

Then Res:•a+Grandom(I-a)-1
Else Res:ma+Ofsa-1;

end;
CletNesCoord:=Res;

End; (Of Function SetIewCoord)
(******************m. ********** **sums* ***** .14.1.** ******************* ***** )

Begin (+Hain body0
TextBackGround(Blue);TextColor(Vhite);
Vindow(1,1,80,26);ClrScr;
If FileExistCHODEL42.III9
then begin

Assign(File8,,HODEL42.INI9;
reset(File8);
read(file6011,s2);
Close(File6);

end
else Begin

Assign(File6,410DEL42.IIII);
rewrite(Fi1e8);
Close(File6);
write( qnput first seed [1..2147483662] : $);
61:slintrange(1,2147483662);
write('Input second seed [1..2147483398] : 1);



var
choix • : h ar ;

MENU

List contents of files
Build Gene Flow Patterns
Estimate dispersal
Build Generations
Plot Distr. of All. Freq.
Reduction of allele number
Sampling
Calculation of F_Stat
Picture Of the Field Of GenoTypes
End Session
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81:lintrange(1,2147483398);
end;

If FileExist(IMODEL42.RECO
Then Begin

Assign(FileDescrRec,,MODEL42.RECO;
Reset(FileDescrRec);
Close(FileDescrRec);

End
Else Begin

Assign(FileDescrRec,,MODEL42.RECO;
Rewrite(FileDescrRec);
Close(FileDescrRec);

End;
AssignCrt(FScreen);Rewrite(FScreen);

End.(Of Unit StepInf)

A.2 MODEL42.PAS
Program Mode142;

(* THIS PROGRAM IS JUST THE MENU FOR ALL THE OTHER BITS. FROM IT CALLS ARE
MADE TO

-PROGRAM BLDGFPAT	 (REPLICATES OF EITHER:
-ISLAND MODEL	 (TO BUILD) .
-STEPPING STONE MODEL	 ETC...
-NEIGHBOURHOOD MODEL	 (EXPO OR NORMAL)

-PROGRAM BUILDGEI
-PROGRAM PLOTFREQ
-PROGRAM SHFIELD
-PROGRAM DISPERSAL	 (CALCULATION OF THE AV. DISP. II A NEIB)
-PROGRAM REM	 (FOR USE OF SAMPLING WITH A IEIB MODEL)
-PROGRAM SAMPLING	 (FOR 101 IEIB MODEL)
-PROGRAM CALCFSST	 (CALCULATION OF FSTAT FOR ION IEIB MODEL)

PLENTY OF COMMENTS TO HAD, BUT I CAN'T BE BOTHER.
OH YES, SIZE OF FIELD=MAXIND IS DEFINED II UNIT STEPINF.

USES
STEPIIF,DOS,CRT,GRAPH,DRIVers,FONTs,GRAPH2D,STATS_1,STATS_2;

BLDGFPAT.PAS}
DISPLIN.PAS1

{SI BUILDGEI.PAS}
(SI PLOTFREQ.PAS)
(SI REDUC.PAS)
(SI SHFIELD.PAS)

	 MENU

FUNCTION menu : char;

begin
TextBackGround(cyan);
Window(1,1,80,26);ClrScr;
TextBackGround(Black);
Window(6,3,79,24);ClrScr;
TextBackGround(Blue);textcolor(16);
Window(3,2,77,23);ClrScr;
gotoxy(27,1);writeln("):
gotoxy(27,2);writeln0
gotoxy(27,3);writeln(");
textcolor(16);
gotoxy(17,4); writeln(");
gotoxy(17,6); writelne 0
gotoxy(17,8); writeln(' 1
gotoxy(17,7); writeln(' 2
gotoxy(17,8); writeln0 3
gotoxy(17,9); writeln( 1 4

gotoxy(17,10); writeln(' 6
gotoxy(17,11); writeln(' 8
gotoxy(17,12); writeln(' 7
gotoxy(17,13); writelne 8
gotoxy(17,14); writeln0 9
gotoxy(17,16); writeln(");
{gotoxy(17,19); writeln(");)

textcolor(16);
gotoxy(46,18); writeln("):
gotoxy(46,17); write(");
textcolor(128+16);write(' Your Choice);textcolor(16);
write(' :
gotoxy(46,18); writeln(");

textcolor(16);
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repeat
gotoxy(64,17);
choix:s.readkey;
if not (choix in [202..292])
then begin

gotoxy(64,17);
textcolor(16);
write(choix,/ 2);
gotoxy(44,20);
textcolor(blink+Yellow);
writeln( Incorrect Answer);
Delay(800);
gotoxy(64,17);
textcolor(16);
write(");
gotoxy(44,20);c1reol;

end;
until choix in [202..292];
gotoxy(64,17);
write(choix);
delay(100);
wenu:=choix;
TextBackOround(Blue);
textcolor(16)

end;

(sem ******** MAXI BODY	

grdriver:=EGA; frwode:EGAHi; name:.'';
	 Check and initialise graphic ***** ono)

If RegisterBOIDriver(CEGAVOADriverProc)<0 then Halt(1);
If RegisterBOIFont(4TriplexFontProc)<0 then Halt(1);
If RegisterBOIFont(CSmallFontProc)<0 then Halt(1);
InitOraph(grdriver,grmode,22);
ErrCode: nOraphResult;
if ErrCode<>grOk
Then begin

writeln('Oraphics Init. Error2,ErrCode);
lirite1n( 2 0rHode= 2 ,0rHode, 2 OrDriverm 2,0rDriver);
Halt(1);

end
Else begin

SetOraphmode(grmode);
Graphics:-true;

end;
SetBkColor(Blue);
SetTextStyle(TriplexFont,HorizDir,4);
SetTextJustify(CenterText,CenterText);
SetColor(Yellow);
OutTextXY(GetHazX div 2,0etHaxY-4*(GetHaxY div 6),

'MODEL 42 or 2);
OutTextXY(OetHaxX div 2,0etNazY-34 . (GetHazY div 6),

20EIE FLOW PATTERIS AID F-STATS2);
OutTextXY(OetHaxX div 2,0etHaxY-24 . (0etliaxY div 6),

'by');
OutTextXY(GetHaxI div 2,00tHaxY-(0etHaxY div 6),

'JEROME 0OUDET2);
SetTextStyle(DefaultFont,HorizDir,1);
SetTextJustify(LeftText,LeftText):
OutTextXY(6,0etHaxY-6,

'PRESS All' KEY TO PROCEED 2);
repeat until ReadIey>$1;
Oraphics:mFalse;
RastoreCrtHode;
repeat
ClrScr;
choix:smenu;
case choix of

/0 2 : begin
gotoXY(20,22);
write( 2 Iot available yet. Press a key');
repeat until readkey>$1;

end;
9 1 1 : begin

BLDGFPAT;
End;

/2 2 : Begin
DISPERSAL;

end;
23 2 : Begin

BUILDGEN;
End;

2 4 0 :Begin
PLOTFREQ;

End;
: Begin

REDUC;
End;

/6/ : Begin
gotoXY(20,22);

begin
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write('Iot available yet. Press a
repeat until readkey>*1;

end;
0 7 0 : Begin

gotoXY(20,22);
write('lot available yet. Press a key');
repeat until readkey>$1;

End;
'8' : Begin

SHFIELD;
end;

end;

until (choixm'91);
SetOraphMode(OrHode):
SetBkColor(Blue);
SetTextStyle(TriplexFont,HorizDir,4);
SetTextJustify(CenterText,CenterText);
SetColor(Yellow);
OutTextXY(OetRaxX Div 2,0etNaxY div 3, 0 BYE FOR NOV);
OutTextXY(OetHaxX div 2,2*(OetHaxY div 3), , TARA Y RWAV);
Delay (800);
rewrite(File8);
write(File6,s1, 0 0,22);

(Orandom(2147483582)+1 is ono of 211
{ORandom(2147483398)+1 is one of 22}

close(File6);
CloseOraph;
TextBackOround(0);TextColor(7);
Vindow(1,1,80,25);
clrscr;
Close(FScreen);
end.

A.3 BLDGFPAT.PAS
Procedure bldgfpat;
var
choix	 :char;

{*I OFISIICO.PAS}
(*I GFISCLOU.PAS)
{*I OFSS1DEX.PAS}
{$I OFSS2DC4.PAS}
{6I OFSS8EXP.PAS}
(*I OFSSNEIB.PAS)
(*I INTRECS.PAS)
Function HenuRep:char;

Begin
TextBackOround(cya2):
Vindow(1,1,80,26);ClrScr;
TextBackOround(Black);
Window(6,3,79,24);ClrScr;
TextBackOround(Blue);textcolor(16);
Vindow(3,2,77,23);ClrScr;
gotoxy(27,1);writeln(");
gotoxy(27,2);writeln( 1	MENU
gotoxy(27,3);writeln(");
textcolor(16);
gotoxy(17,6); writeln(");
gotoxy(17,6); writeln( 0 1
gotoxy(17,7); writeln( 0 2
gotoxy(17,8); writeln( / 3
gotoxy(17,9); writeln( 0 4

gotoxy(17,10); writeln( 0 S
gotoxy(17,11); writelne 6
gotoxy(17,12); writelne 7
gotoxy(17,13); writeln( 0 8
gotoxy(17,14); writeln0 9
gotoxy(17,16); writeln(");

(gotoxy(17,19); writeln(");}

textcolor(16);
gotoxy(45,16); writeln(");
gotoxy(46,17); write("):
textcolor(128+16);write( 0 Your Choice') ;textcolor(16);
write(' :
gotoxy(45,18); writeln(");

textcolor(15);
repeat

gotoxy(64,17);
choix:mreadkey;
if not (choix in [01/../9q)
then begin

I);

Island model with inf. continent	 I);
Island model with gametic cloud	 I);
Stop. sto. model 1 dim. exp. distr. 0);
Step. sto. 2 dim. con. 4 I);
Step. sto. 2 dim. con. 8 exp. distr.');
Step. sto. 2 dim. con. 8 nor. distr.');
Stepping stoned Neighbourhood	 :);
Plant Lattice model	 p);
True Wright Lattice model 	 ;);
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gotoxy(64,17);
textcolor(15);
write(choix,' ');
gotoxy(44,20);
textcolor(blink+Yellow);
writ•ln( Incorrect Answer');
Delay (800)
gotoxy(84,17);
textcolor(16);
write(' ');
gotoxy(44,20);c1reol;

end;
until choix in (110..'91];
gotoxy(64,17);
write(choix);
delay(100):
menurep:mchoix;
TextBackOround(Blue);
textcolor(16)

End; {Of Func MenuRep}

Begin
clrscr;
choix:mmenurep;
case choix of
2 1 2 : OFISIICO;
'2' : OFISCLOU;
'3' : OFSS1DEX;
'4' : OFSS2DC4;
2 6 2 : OFSS8EXP;
2 6 2 : Begin

OoToXY(30,22);
write('lot Available yet.');
write('Press a key.');
repeat until readkey>91;
exit;

End;
'7' : OFSSIEIB;
'8' : Begin

OoToXY(30,22);
write('lot Available yet.');
write('Press a key.');
repeat until readkey>$1;
exit;

end;
'9' : IITRECS
End;

End; {Of BLDOFPAT Proc)

A.4 GFISINCO.PAS
Procedure OFISIICO;

var
Champ	 : IntFldPtr;
a,i,x	 : Integer;
Mig,Self	 : ExistsPtr;
t,Reps	 : byte;
Proplig,SelfProp	 : single;
NumbSP,PopSize	 : Integer;

(am** ********* *****MIO PROC 	 )
Procedure Migr	 (PopSize,lumbSp	 : integer;

Mig,Sel	 : ExistsPtr;
var ParChamp2	 : IntFldPir);

var
Champ2	 :IntFldPtr;
Temp1,Temp2	 :Integer;
i,j,k,1,x	 :integer;
wherelothere2	 :integer;

Oetlem(Champ2,SizeOf(Champ2'));
x:m0;
for i:m1 to NumbSp Do
For k: m1 to PopSize Do
Begin

x:mx+1;
Temp1:mOrandom(PopSize)+1;
Temp2:mOrandom(PopSize)+1;
If lot Ser[x]
Then begin

If Mie[x]
Then Wherel:mOrandom(MaxInd)+1

begin



else Vherel:m(i-1)*PopSize+Templ;
If Mielx+MaxInd]
Then Where2:mGrandom(MaxInd)+1
else Vhere2:m(i-1)*PopSize+Temp2;

End
Else Begin

It Mie[x]
Then Where1:mGrandom(MaxInd)+1
Else Vhere1:m(i-1)*PopSize+Temp1;
Vhere2:24herel;

End;
Champ2'Ex,1]:mParChamp2'[Where1,Grandom(2)+1];
Champ2'Ex,2]:=ParChamp2 [Where2,Grandom(2)+1];

end;
FroeMem(ParChamp2,SizeOf(ParChamp2-));
ParChamp2:mChamp2;

end;{0f Proc Mgr}
	 MAII PROGRAM 	
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Begin
clrscr;
Vindow2(V_Size_Big);
Erase_File(Iame);
FilIamDat:mIame;
Assign(FileDat,FillamDat);
Write_Descr_GFP('1',FileDat);
With FileRec(FileDat) Do
Begin

SeltProp:mDescr_GFP1(userdata).self;
PropMig:mDescr_GFP1(userdata).mig;
PopSize:mDescr_GFP1(userdata).Popsize;
With ThisDescrRec Do
Begin

FilIam:mIame;
For i: •1 to 18 do
IewData[i]:muserdata[i];

End;
End;
Update_Filerec(ThisDescrlec);
t:m0;Reps:m10;
InitTxt(Iame);
Read_Descr_GFP(FScreen,FileDat);
GotoXy(16,10);
Vrite('How many replicates do you want [10..603 :
Reps:mLintlange(10,60);
Rewrite(FileDat);close(FileDat);
NumbSp: mMaxInd div PopSize;
GoToXY(16,12):
write('Replicate no: 	 completed');
While t<Reps Do
Begin

t:mt+1;
GetMem(Champ,SizeDt(Champft));
Ini(Champ);
GetMem(Mig,SizeOf(Mie));GetMem(Self,SizeOf(Selt'));
FillBoolArray(PropMig,Mig);
FillBoolArray(SeltProp,Self);
Migr	 (PopSize,iumbSp,

Mig,Self,
Champ);

reset(FileDat);seek(FileDat,FileSize(FileDat));
Vrite(FileDat,Champ.);
Close(FileDat);
FreeMem(Champ,SizeOf(Champ'));
FreeMem(Mig,SizeOf(Mig"));
FreeMem(Self,Sizeff(Selt-)):
GoToXY(29,12);Vrite(t:4);

End; {Of while t<Reps}
End;{0f Proc OFISIICO}

A.5 GFISCLOU.PAS
	 BUILDREP PRO 	

Procedure GFISCLOU;

war
Champ	 : IntFldPtr;
api,x	 : Integer;
Mig,Self	 : ExistsPtr;
t ,Reps	 : byte;
PropMig,SeltProp 	 : Double;
NumbSP,PopSize	 : Integer;

(ewe* ********** ***OM PROC 	 )
Procedure Migr	 (PopSize,NumbSp	 : integer;

Mig,Sel	 : ExistsPtr;
war ParChamp2	 : IntFldPtr);

var
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Champ2	 :IntFldPtr;
Templ,Temp2	 :Integer;
i,j,k,1,x	 :integer;
wherel,where2	 :integer;

begin
Getlem(Champ2,SizeOf(Champ2));
x:=0;
for i:1 to NumbSp Do
For k: e1 to PopSize Do
Begin

x:x+1;
Templ:=Grandom(PopSize)+1;
Temp2:2•Grandom(PopSize)+1;
If lot S.1[x]
Then begin

If Mig-[x]
Then Begin

Repeat
Where1:wirandom(MaxInd)+1

Until ((lhere1<=(i-1)0opSize)
or (Where1>i+Popsizo));

End
Else Vhere1:m(i-1)*PopSize+Temp1;
If Mig-[x+MaxInd]
Then Begin

Repeat
Where2:mGrandom(MaxInd)+1

Until ((lhere2<=(i-1)*PopSize)
or (Where2>i*Popsize));

End
Else Vhere2:=(i-1)+PopSize+Temp2;

End
Else Begin

If Mig-[x]
Then Begin

Repeat
Where1:aGrandom(MaxInd)+1

Until ((lherel<m(i-1)*PopSize)
or (Vherel>i*Popsize));

End
Else Wherel:=(i-1)*PopSize+Templ;
Where2:Affiere1;

End;
Champ2[x,1]:OarChamp2"[Where1,Grandom(2)+1]:
Champ2-lx,2]:=ParChamp2-[Wnere2,Grandom(2)+1];

end;
Freelem(ParChamp2,SizeOf(ParChamp2"));
ParChamp2:=Champ2;

end;(0f Proc Mgr)
	 MAII PROGRAM 	

Begin
clrscr;
Graphics:mfalse;
Window2(W_Size_Big);
Erase_File(lame);
FilIamDat:-Iame;
Assign(FileDat,FillamDat);
Vrite_Descr_GFP(221,FileDat);
With FileRec(FileDat) Do
Begin

SelfProp:Descr_OFP1(userdata).self;
Proplig:wDescr_GFP1(userdata).mig;
PopSize:Descr_GFP1(userdata).Popsize;
With ThisDescrRec Do
Begin

FillawmIame;
For i: ma l to 16 do
NewData[0:mmserdata[i];

End;
End;
Update_Filerec(ThisDescrRec);
t:=0;Reps:=10;
InitTxt(lame);
Read_Descr_UP(FScreen,FileDat);
GotoXy(16,10);
Write( l How many replicates do you want [10..60]
Reps:=LintRange(10,50);
Rewrite(FileDat);close(FileDat);
lumbSp: =MaxInd div PopSize;
GoToXY(16,12); 	 •
write('Replicate no:	 completed');
While t<Reps Do
Begin

t:et+1;
Getlem(Champ,SizeOf(Champ-));
Ini(Champ);
Gotlem(Mig,SizeOf(Mig'));Getlem(Self,SizeOf(Self));
FillBoolArray(Proplig,Mig);
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FillBoolArray(SelfProp,Self);
Nigr	 (PopSize,IumbSp,

Nig,Self,
Champ);

reset(FileDat);seek(FileDat,FileSize(FileDat));
Vrite(FileDat,Champ');
Close(FileDat);
FreeNem(Champ,SizeOf(Champ'));
FroeNem(Nig,SizeOf(Mig-));
FreeMem(Self,SizeOf(Se1f));
OoToXY(29,12);Write(t:4);

End; Of while t<Reps}

End;{01 Proc OFISCLO}

A.6 GFSS2DC4.PAS
Procedure OFSS2DC4;

var
Champ	 : IntFldPtr;
a,i,x	 : Integer;
Nig,Self	 : ExistePtr;
t,Reps	 : byte;
PropMig,SelfProp	 : Double;
lumbSP,PopSize	 : Integer;
IumbRow,lumbCol	 : Integer;
Tor	 : boolean;

	 GET THE HOP. AID VERT OFFSET OF NIOR

Procedure GetOfset(Var OfsVer,OfsHor:Shortint);
var
temp, dist:byte;

begin
OfsHor:m0;
OfsVer:m0;
temp:m0Random(4);
case temp of	 •

0 : DfsHor:m-1;
1 : OfsHor:m1;
2 : OfsVer:m-1;
3 : DfsVer:•1;

end;
end; (Of Proc GetOfs)

( 	 MIG PROC	 )
Procedure Nigr	 (Tor	 :boolean;

IumbCol,IumbRow,PopSize : integer;
Nig,Sel	 : ExistsPir;
var ParChamp2	 : IntFldPtr);

var
Champ2	 :IntFldPtr;
Templ,Temp2	 :Integer;
i,j,k,1,A111,A112,x	 :integer;
Horl,Hor2,Vertl,Vert2	 :integer;
wherel,where2	 :integer;
OfsHor,OfsVer •	 :ShortInt;

begin
OetNem(Champ2,SizeDf(Champ2'));
x:00;

for i: m1 to lumbRow Do
For j: ml to IumbCol Do
For k: m1 to PopSize Do
Begin

x:mx+1;
Templ:mOrandom(PopSize)+1;
Temp2:mGrandom(PopSize)+1;
hor1:mj-1;
vertl:mi-1;
hor2:mj-1;
vert2:mi-1;
It lot sel-[x]
Then begin

If Nir[x]
Then Begin

GetOfset(OfsVer,OfsHor);
horl:mGetIewCoord(Tor,j,lumbCol,OfsHor);
vertl:mGetIewCoord(Tor,1,IumbRow,OfsVer);

End;
Vhere1:mPopSizesHorl+PopSizeslumbColeVertl+Templ;
It Nie[x+MaxInd]
Then Begin

GetOfset(OfsVer,OfsHor);
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hor2:mGetiewCoord(Tor,j,lumbCol,OfsHor);
vert2:m1etlewCoord(Tor,i,Iumblow,OfsVer);

End;
Vhere2:mPopSizemHor2+PopSize*IumbColeVert2+Temp2;

End
Else Begin

If Mig-[z]
Then Begin

GetOfset(OfeVer,OfsHor);
hor1:mGetlewCoord(Tor,j,IumbCol,OfeHor);
vert1:mGetIewCoord(Tor,i,IumbRow,OfsVer);

End;
Where1 :mPopSize*Horl+PopSizemlumbCol*Vert1+Templ;
Where2:milhere1;

End;
Chemp2'[x,1]:=ParChamp2'[Where1,Grandom(2)+1];
Champ2qx,2]:=ParChamp2"[Vhere2,Grandom(2)+1]:

end;
FreeMem(ParChemp2,SizeOf(ParChamp2-));
ParChamp2:mChamp2;

end;{0f Proc Mgr}
	 MAIN PROGRAM 	

Begin
clrscr;
Graphics:mFalse;
Window2(W_Size_Big);
Erase_File(Iame);
FillamDat:mIame;
Assign(FileDat,FilIamDat);
Vrite_Descr_OFP('4',FileDat);
With FileRec(FileDat) Do
Begin

SelfProp:mDescr_GFP4(userdata).self;
PropMig:mDescr_GFP4(userdata).mig;
PopSize:mDescr_GFP4(userdata).Popsize;
Tor:mDescr_GFP4(userdata).tor;
With ThieDescrRec Do
Begin

Filiam:mlame;
For i: m1 to 16 do
NewData[i]:muserdata[1];

End;
End;
Update_Filerec(ThisDescrlec);
t:m0;Repe:m10;
InitTxt(Name);
Read_Descr_GFP(FScreen,FileDat);
GotoXy(16,10);
Write('How many replicates do you want
Reps:mLintlange(10,60);
Rawrite(FileDat);close(FileDat);
NumbSp: mMaxInd div PopSize;
Case lumbSp of

4096 :begin
1024 :begin
266 :begin
64	 :begin
16	 :begin
4	 :begin
1	 :begin

[10..60] : ');

numbrow:m64;numbcol:m64;end;
numbrow:m32;numbcol:m32;end;
IumbRow:m16;IumbCol:m16;end;
IumbRow:m8;lumbCol:m8;end;
lumbRow:m4;lumbCol:m4;end;
lumbRow:m2;IumbCol:m2;end;
lumbRow:m1;NumbCol:m1;end;

end;
GoToXY(16,12);
write('Replicate no:	 completed');
While t<Reps Do
Begin

t:mt+1;
GetMem(Champ,Size0f(Champ'));
Ini(Champ);
GetMem(Mig,SizeOf(Mig'));GetMem(Self,SizeOf(Self-));
FillBoolArray(PropMig,Mig);
FillBoolArray(SelfProp,Self);
Migr	 (Tor,lumbCol,lumbRow,PopSize,

Mig,Self,
Champ);

reset(FileDat);seek(FileDat,FileSize(FileDat));
Write(FileDat,Champ');
Close(FileDat);
FreeMem(Champ,SizeOf(Champ'));
FreeMem(Mig,SizeOf(Mig"));
FreeMem(Self,SizeOf(Self"));
GoToXY(29,12);Write(t:4);

End; (Of while t(Reps)

End;{0f Proc BuildField}

A.7 GFSS1DEX.PAS
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Procedure OFSS1DEX;

var
Champ	 : IntFldPtr;
a,i,x	 : Integer;
Mig,Self	 : ExistsPtr;
t,Reps	 : byte;
PropMig,SelfProp	 : Double;
NumbSP,PopSize	 : Integer;
Distance ,Average	 : Byte;
Tor	 : boolean;

(**RETURN Al INTEGER FROM A NEGATIVE EXPONENTIAL 	

Function IntExpo(Dist,Av:byte) :Byte;

Var Temp :Single;

begin
repeat

TempoUniform;
Until Temp>Exp(-1.0*Dist);
Temp:m-1.0*av*Ln(Temp);
IntExpo:mTrunc(Temp)+1;

End; (Of Function IntExpo)

***** *********GET THE HOR AID VERT OFFSET OF MIGR******* ********** **mom)

Function GetOfset :mhortint;
var
temp, dist:byte;
offs	 :shortint;
begin

Offs :-99;
Dist:mIntExpo(Distance,average);
temp:mGRandom(2);
case temp of

0 : Offs:.-dist;
1 : Offs:•dist;

end;
Get0fSet:m0ffs
end; (Of Proc GetOfs)

	 MIG PROC
Procedure Migr	 (Tor	 : boolean;

PopSize,IumbSp	 : integer;
Mig,Sel	 : ExistsPtr;
var ParChamp2	 : IntFldPtr);

Tar
Champ2	 :IntFldPtr;
Templ,Temp2	 :Integer;
i,j,k,1,x	 :integer;
Horl,Hor2	 :integer;
wherel,where2	 :integer;
OfsHor	 :ShortInt;

begin
GetMem(Champ2,SizeOf(Champ2'));
x:m0;

for i: m1 to lumbSp Do
For k: ml to PopSize Do
Begin

x:mx+1;
Templ:mGrandom(PopSize)+1;
Temp2:mGrandom(PopSixe)+1:
horl:m1-1;
hor2:mi-1;
If Not Sel"[x]
Then begin

If Mir[x]
Then Begin

OfsHor:mGetOfset;
horl:mGetNewCoord(Tor,i,IumbSp,OfsHor);

End;
iihere1:mPopSize*Hor1+Templ;
If Mielx+MaxInd)
Then Begin

OfsHor:mGetOfset;
hor2:mGetIewCoord(Tor,i,NumbSp,OfsHor);

end;
nere2:mPopSize*Hor2+Temp2;

End
Else Begin

If Mie[x]
Then Begin

OfsHor:•GetOfset;
horl:mGetlewCoord(Tor,iplumbSp,DfsHor);

End;
Vhere1:mPopSize*Hor1+Templ;
Vhere2:milherel;
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End;
Champ21Ex,1]:mParChamp2"[Where1,Grandom(2)+1];
Champ2'[x,2]:=ParChamp2"[Where2,Grandom(2)+1];

end;
FreeMem(ParChamp2,SizeOf(ParChamp2'));
ParChamp2:mChamp2;

•nd;{01 Proc Migr}
	 MAIN PROGRAM 	

Begin
clrscr;
Graphics -False;
Vindow2(V_Size_Big);
Erase_File(Iame);
FilIamDat:mlame;
Assign(FileDat,FilIamDat);
Write_Descr_GFP( '3',FileDat);
With FileRec(FileDat) Do
Begin

SelfProp:mDescr_GFP3(userdata).self;
PropMig:mDescr_GFP3(userdata).mig;
PopSize:mDescrAFP3(userdata).Popsize;
Tor:mDescr_GFP3(userdata).tor;
distance:mDescr_GFP3(userdata).dist;
Average:mDescr_GFP3(userdata).Aver;
With ThisDescrRec Do
Begin

Fillam:mName;
For i: m1 to 18 do
NewDataEthmuserdataEil:

End;
End;
Update_Filerec(ThisDescrRec);
t:m0;Reps:m10;
InitTxt(Name);
Read_Descr_OFP(FScreen,FileDat);
GotoXy(15,10);
VriteeHow many replicates do you want [10..50] :
Reps:mLintRange(10,60);
Rewrite(FileDat);close(FileDat);
NumbSp: mMaxInd div PopSize;
GoToXY(16,12);
write('Replicate no:	 completed');
While t<Reps Do
Begin

t:mt+1;
GetMem(Champ,Size0f(Champ"));
Ini(Champ);
GetMem(Mig,SizeOf(Mig'));GetMem(Self,SizeOf(Self')):
FillBoolArray(PropMig,Mig);
FillBoolArray(SelfProp,Self);
Migr	 (tor,PopSize,NumbSp,

Mig,Self,
Champ);

reset(FileDat);seek(FileDat,FileSize(FileDat));
Vrite(FileDat,Champ");
Close(FileDat);
FreeMem(Champ,SizeOf(Champ"));
FreeMem(Mig,SizeOf(Mie));
FreeMem(Self,SizeDf(Self"));
GoToXY(29,12);Vrite(t:4);

End; (Of while t<Reps}
End;(0f Proc GFSS1DEX)

A.8 GFSS8NOR.PAS
(004.*********GEIE FLOW PATTERN : STEPPING STOIE 8 COI LIP DISP.404 .1.01.0 ***** 44)
Procedure OFSSUOR;

var
Champ	 : IntFldPtr;
a,i,x	 : Integer;
Mig,Self	 : ExistsPtr;
t,keps	 : byte;
PropMig,SelfProp 	 : Double;
NumbSP,PopSize	 : Integer;
IumbRow,NumbCol	 : Integer;
Distance,Average	 : Byte;
Tor	 : boolean;

(4.+RETURI Al IITEGER FROM A NEGATIVE EXPONENTIAL 	

function Iorm(var b:byte) : single;
var
x,y,s,l,d1 : single;

begin
if bm0 then norm: a° else
begin
s:0.0;
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repeat
x: m2.0*Uniform-1.0; y:m2.0*Uniform-1.0;
s:msqr(x)+sqr(y);
until 1<1.0;

1:msqrt(-2.04.1n(s)/s);
if Uniform<0.6 then dl: mx*1 else dl:my*1;
norm:md1eb;
end; (*if b*)
end (* norm *) ;

(****** ********* GET THE HOR AID VERT OFFSET OF MGR 	

Procedure GetOfset(Var OfsVer,OfsHor:Shortint);
Tar
temp, dist:byte;

begin
OfsHor:m-99;
OfsVer:m-99;
Dist:mtrunc(norm(Distance));
temp:mGRandom(4):
case temp of

0 : OfsHor:m-dist;
1 : OfsHor:mdist;
2 : OfsVer:0-dist;
3 : DfsVer:mdist;

end;
If Temp<ml
Then OfsVor:m0random(2*Dist+1)-Dist
Else OfsHor:m0Random(2+Dist+1)-Dist;

end; {Of Proc GetOfsl

( 	 NIG PROC	 )
Procedure Mgr	 (Tor	 :boolean;

NumbCol,IumbRow,PopSize : integer;
Hig,Sel	 : ExistePtr;
var ParChamp2	 : IntFldPtr);

WM'
Champ2	 :IntFldPtr;
Templ,Temp2	 :Integer;
i,j,k,1,A111,A112,x	 :integer;
Horl,Hor2,Vertl,Vert2	 :integer;
wherel,where2	 :integer;
OfsHor,OfsVer	 :ShortInt;

GetHem(Champ2,SizeOf(Champ2'));
x:m0;

for i: m1 to lumbRov Do
For j: ml to IumbCol Do
For k: ml to PopSize Do

Begin
x:mx+1;
Temp1:mOrandom(PopSize)+1;
Temp2:mGrandom(PopSize)+1;
hor1:mj-1;
vert1:mi-1;
hor2:mj-1;
vert2:mi-1;
If lot Serlx]
Then begin

It Hie[x]
Then Begin

GetOfset(OfsVer,OfsHor);
hor1:mGetIevCoord(Tor,j,IumbCol,OfsHor);
vertl:mGetNesCoord(Tor,i,lumbRow,OfsVer);

End;
Vherel:mPopSize*Horl+PopSize*IumbCol*Vert1+Templ;
It Hig'[x+HaxIndJ
Then Begin

GetOfset(OfsVer,OfsHor);
hor2:mGetlesCoord(Tor,j,NumbCol,OfsHor);
vert2:mGetlewCoord(Tor,i,IumbRow,OfsVer);

End;
nere2:0PopSize*Hor2+PopSize*IumbCol*Vert2+Temp2;

End
Else Begin

If Milr[x]
Then Begin

GetOfset(OfsVer,OfsHor);
horl:mGetIesCoord(Tor,j,IumbCol,OfsHor);
vertl:mGetIewCoord(Tor,i,IumbRov,OfsVer);

End;
ilherel:mPopSize*Horl+PopSize*NumbCol*Vertl+Templ;
Where2:miiherel;

End;
Champ2'[x,1]:mParChamp2[Vherel,Grandom(2)+1];
Champ2lx,2]:=ParChamp2[Vhere2,0random(2)+1];

end;
FreeHem(PazChamp2,SizeOf(ParChamp2"));

begin
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ParChamp2:=Champ2;
end;{02 Proc Mgr}
	 MAIN PROGRAM 	

Begin
clrscr;
Graphics:J.False;
Vindow2(V_Size_Big);
Erase_File(Name);
FilIamDat:mlame;
Assign(FileDat,FilNamDat);
Write_Descr_GFP('8',FileDat);
With FileRec(FileDat) Do
Begin

SelfProp:=Descr_GFP3(userdata).self;
PropMigomDescr_GFP3(userdata).mig;
PopSize:Descr_OFP3(userdata).Popsize;
Tor:=Descr_OFP3(userdata).tor;
Distance:=Descr_GFP3(userdata).Dist;
AveragevmDescr_GFP3(Userdata).Aver;
With ThisDescrRec Do
Begin

FilIam:=Rame;
For i:=1 to 18 do
RevData[i]:=userdata[i];

End;
End;
Update_Filerec(ThisDescrRec);
t:=0;Reps:=10;
InitTxt(Rame);
Read_Descr_GFP(FScreen,FileDat);
GotoXy(16,10);
Write('How many replicates do you want [10..60] : ');
Reps:=LintRange(10,60);
Rewrite(FileDat);close(FileDat);
NumbSp:MaxInd div PopSize;
Case lumbSp of

4098 :begin numbrow:=84;numbco1:084;end;
1024 :begin numbrow:=32;numbcol:=32;ond;
268 :begin lumbRow:=16;lumbCol:=16;end;
84	 :begin lumbRow:s8;NumbCol:=8;end;
18	 :begin lumbRow:m4;IumbCol:•4;end;
4	 :begin NumbRow:•2;NumbCol:=2;end;
1	 :begin lumbRow:m1;IumbCol:=1;end;

end;
GoToXY(16,12);
write('Replicate no: 	 completed');
While t<Reps Do
Begin

t:•t+1;
GetMem(Champ,SizeOf(Champ-));
Ini(Champ);
GetMem(Mig,SizeOf(Mig-));GetMem(Self,SizeOf(Self-));
FillBoolArray(PropMig,Mig);
FillBoolArray(SelfProp,Self);
Migr	 (Tor,NumbCol,lumbRow,PopSizo,

Mig,Self,
Champ);

reset(FileDat);seek(FileDat,FileSize(FileDat));
Write(FileDat,Champ');
Close(FileDat);
FreeMem(Champ,SizeOf(Champ'));
FreeMem(Mig,SizeOf(Mig-));
FreeMem(Self,SizeOf(Self-));
GoToXY(29,12);Vrite(t:4);

End; (Of while t<Reps)
End;(0f Proc OFSS8NOR)

A.9 GFSS8EXP.PAS
	 GENE FLOW PATTERN : STEPPING STOVE 8 COI EXP DISPA . ********* *see)

Procedure OFSS810R;

var
Champ	 : IntFldPtr;
a,i,x	 : Integer;
Mig,Self	 : ExistsPtr;
t,Reps	 : byte;
PropMig,SelfProp	 : Double;
IumbSP,PopSize	 : Integer;
NumbRow,NumbCol	 : Integer;
Distance Average	 : Byte;
Tor	 : boolean;

(44RETURI Al INTEGER FROM A NEGATIVE EXPONENTIAL 	

function Norm(var b:byte) : single;
var
x,y,s,1,d1 : single;

4
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begin
if b=0 then norm:=0 else
begin
s:=0.0;
repeat
x:=2.0eUniform-1.0; y:=2.0eUniform-1.0;
s:=sqr(x)+sqr(y):
until •<1.0;
1:=sqrt(-2.0eln(s)/z):
if Uniform<0.6 then dl: uxel else d1:=yel;
norm:mdleb;
end; (*if be)
end (e norm *)

	 GET THE HOB AID VERT OFFSET OF MGR 	

Procedure GetOfset(Var OfsVer,OfsHor:Shortint);
var
temp, dist:byte;

begin
OfsHor:=-99;
OfsVer:=-99;
Dist:ftrunc(norm(Distance));
temp:=0Random(4);
case temp of

'0 : OfsHor:=-dist;
1 : OfsHor:=dist;
2 : OfsVer:=-diet;
3 : OfsVer:=dist;

end;
If Temp<=1
Then OfsVer:=Grandom(2eDist+1)-Dist
Else OfsHor:=GRandom(2*Dist+1)-Dist;

end; (Of Proc GetOfs}

(********************RIO pROC 	
Procedure Nigr	 (Tor	 :boolean;

lumbCol,lumbRov,PopSize : integer;
Nig,Sel	 : ExistsPtr;
var ParChamp2	 : IntFldPtr);

var
Champ2	 :IntFldPtr;
Templ,Temp2	 :Integer;
i,j,k,1,A111,A112,x	 :integer;
Hor1,Hor2,Vertl,Vert2	 :integer;
where1,where2	 :integer;
DfsHor,OfsVer	 :ShortInt;

GetMem(Champ2,SizeOf(Champ2'));
x:=0;

for i:=1 to IumbRow Do
For j:=1 to lumbCol Do
For k:=1 to PopSize Do
Begin

x:sx+1;
Tempi:Grandom(PopSize)+1;
Temp2:=Grandom(PopSize)+1;
hor1:=J-1;
vertl:=i-1;
hor2:=J-1;
vert2:24-1;
If Not 5e1[x]
Then begin

It Migm[x]
Then Begin

GetOfset(OfsVer,OfsHor);
horl:=GetIesCoord(Tor,j,IumbCol,OfsHor);
vert1:=GetNewCoord(Tor,i,lumbRow,OfsVer);

End;
Vhere1:=PopSize*Hor1+PopSize*IumbColeVert1+Templ;
If Mielx+RaxInd]
Then Begin

OetOfset(OfsVer,OfsHor);
hor2:=GetIevCoord(Tor,j,IumbCol,OfsHor);
vert2:=GetlewCoord(Tor,i,IumbRos,OfsVer);

End;
Vhere2:=PopSize*Hor2+PopSizeslumbColeVert2+Temp2;

End
Else Begin

It Mig-rx3
Then Begin

GetOfset(OfsVer,OfsHor);
hor1:=GetleirCoord(Tor,j,IumbCol,OfsHor);
vertl:=GetlesCoord(Tor,i,lumbRow,OfsVer);

End;
Vherel:=PopSize*Horl+PopSizeelumbCol*Vertl+Templ;
Where2:=Vherel;

End;

begin
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Champ2 Lx,1]:=ParChamp2-[Where1,Grandom(2)+1];
Champ2[x,2]:mParChemp2"[Where2,Grandom(2)+1]:

end;
FreeMem(ParChamp2,SizeOf(ParChamp2));
ParChamp2:mChamp2;

•nd;{0f Proc Migr}
	 MAIN PROGRAM 	

clrscr;
Graphics :False;
Vindow2(W_Size_Big);
Erase_File(Namo);
FilIamDat:mIame;
Assign(FileDat,FilIamDat);
Write_Descr_OFP('6',FileDat);
With FileRec(FileDat) Do
Begin

SelfProp:=Descr_OFP3(userdata).self;
PropMig:mDescr_OFP3(userdata).mig;
PopSize:mDescr_OFP3(userdata).Popsize;
Tor:mDescr_GFP3(userdata).tor;
Distance:=Descr_GFP3(userdata).Dist;
Average:mDescr_GFP3(Userdata).Aver;
With ThisDescrRec Do
Begin

FilIam:=Name;
For 1: •1 to 16 do
NewData[i]:=userdata[i];

End;
End;
Update_Filerec(ThisDescrlec);
t:=0;Reps:=10;
InitTxt(Name);
Read_Descr_GFP(FScreen,FileDat);
GotoXy(16,10);
Vrite('Now many replicates do you want [10..60] :
Reps:=LintRange(10,60);
Rewrite(FileDat);close(FileDat);
NumbSp:=MaxInd div PopSize;
Case NumbSp of

4096 :begin numbrow:m64;numbcol:m64;end;
1024 :begin numbrow:m32;numbcol:=32;end;
266 :begin NumbRow:=16;NumbCol:m16;end;
64	 :begin NumbRow:=8;lumbCol8;ond;
16	 :begin NumbRow:=4;NumbCol:=4;end;
4	 :begin lumbRow:=2;NumbCol:=2;end;
1	 :begin NumbRow:m1;NumbCol:m1;end;

end;
GoToXY(16,12);
write('Replicate no:	 completed');
While t<Reps Do
Begin

t:mt+1;
GetMem(Chemp,SizeOf(Champ-));
Ini(Champ);
GetMem(Mig,SizeOf(Mig-));GetMem(Self,SizeOf(Self-));
FillBoolArray(PropMig,Mig);
FillBoolArray(SelfProp,Self);
Migr	 (Tor,NumbCol,NumbRow,PopSize,

Mig,Self,
Champ);

reset(FileDat);seek(FileDat,FileSize(FileDat));
Vrite(FileDat,Champ-);
Close(FileDat);
FreeMem(Champ,SizeOf(Champ'));
FreeMem(Mig,SizeOf(Mig-));
FreeMem(Self,SizeOf(Self-));
GoToXY(29,12);Vrite(t:4);

End; (Of while t<Reps1
End;(0f Proc OFSS8I00

A.10 INTRECS.PAS
procedure intrecs;

Model for plants on a torus	 tams ***** w********)
const
maxplants (m1464104096;

= (4,121064;
type

genratns S	 1..2;
sexes	 m	 1..2;
fields	 record

genos: array[1..maxplants,genratns] of byte;
end;

field2s •	 record
geno2s: array[1..n,1..n] of byte;

end;
intflds	 record

Begin
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gamete: array[1..maxplants,sexes] of word;
end;

var
intfld	 :	 intflds;
filei	 :	 file of intflds;
IAME1	 :	 names;
rep,reps	 integer;
sdm,sdf,s	 single;
selfing,plant	 boolean;
SeibSize	 Single;
ch,chr,chc,answer	 char;

procedure self;
begin
write('"Sandom" selfing?');
if Affirmed(True,Oraphics) then begin selfing: mtrue;s: m0.0; end

else
begin

selfing:mfalse;
write('Input golfing rate [0..0? ');
s:mSange(0.04.0);
writeln;

end;
end;(* Procedure Self*)

(* ***** ******* ***** ***** ***************** ******************** ********* ******)
function lorm(var a,b:single) : single;
var
x,y,s,l,d1 : single;
begin
if b<0.00000001 then norm: ma else
begin
8:00.0;
repeat
x: m2.0*Uniform-1.0; y:m2.0*Uniform-1.0;
somsqr(x)+sqr(y);
until s<1.0;

1:msqrt(-2.0*ln(s)/s);
it Uniform<0.5 then di: mx*1 else di:my*1;
norm:ma+dleb;
end; (*if b*)
end (* norm *)

function sqdispersed(var a:integer; sd:single): integer;
(*using meanm0 and std. dev., sd, generates new location from as)
(*on a toroidal surface of n * n 	 *)

var
: single;

x

▪

 ,y	 : integer;

begin
• : -0.0;
y: m (a-1) div n;	 {ordinate}
x: m (a-1) mod n;	 {abcissa}
x:mx+round(Norm(m,sd)):
y:my+round(lorm(m,sd));

mWhile < 0 dm x: mn+x;	 {0 < x}
While y < 0 do y: mn+y;	 (0 <m y}
x: mx mod n;	 (0 <m x <m n-0

(0 Cm y Cm n-0y: my mod n;
sqdispersed: m 1 + x + n • y; (1 Cm SqDisPersed Cm n*(n-1)+n-1+1 m n*n)
end (*function sqdispersed*);

Function dispersed(var a:integer; sd:single):integer;
var

:single;
x,y	 :integer;

begin

a: -0.0;
repeat
x: m((a-l) mod n) +1;
y: m((a-1) div n) +1;
x:mx+round(nome(m,sd));
y:my+round(norm(m,sd));
until ((x>0) and (y>0) and (x<mn) and (y<./)):
dispersed: mx + n * (y-1);
end; (*Function dispersed*)

(************************ ********* ************* ************* * ******** *******)
procedure intseeds(sdl,sd2:single);

var
i,j,id	 • integer;
male,female,who:	 integer;
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begin

with intfld do
for i:s1 to maxplants do
begin

if Uniform<0.6 then id:=0 else id:smaxplants;
female:mdispersed(i,sd2);
gamets[1,2]:=femalesid;
if plant then who: sfomale else who:si;
if 'siting then male:sdispersed(who,sdl)
else if Uniform4s than male:sfemale

else
repeat

male:sdispersed(who,sd1);
until male<>who;

if Uniform<0.6 than id:=0 else id:smaxplants;
gamets[1,1]:=malesid;

end; (Si loop *)

end;	 OP integer seedling for true & torus -plant models)

Procedure BuildRep;
var
rep	 : integer;
Begin

Rewrite(file1):
Graphics :.False;
plant :true;
repeat
writeln(' Do you want a plant model? 0);
Plant:sAffirmed(False,graphics);
write(' Input Neighbourhood size : 0);readln(IeibSize);
It Plant
then begin

write(Input female dispersal variance- /);
readln(sdf);
self;
sdm:=2*(IeibSize/4/PI-sdf)/(1-s);
writeln (/ The calculated male dispersal variance is : /,sdm:10:7);
write (' Do you want to alter it ?/);
If Affirmed(True,graphics)
than begin	 •

write0Input male dispersal variance- 0;
readln(sdm);
leibSize:=4*Pi*(sdm*(1-0/2+sdf);
writeln (' The law Neighbourhood size is : /dieibSize:10:0);

end;
end

else begin
self;
sdf:sleibsize/pi/(1-s);
sdm:sleibSize/pi/(1-s);
writeln (/ Dispersal is : 31sdm:10:7);
write 0 Do you want to alter it ?/);
If Affirmed(True,Graphics)
then begin

vrite('Input dispersal variance- /);
readln(sdm);
sdf:ssdm;
NeibSize:sPi*(1-s)*(sdm+sdf)/2;

• end;
end;

writeln;
write0You are currently modeling /);
if plant then writeln('a plant neighbourhood model')
else writeln0a true 'right neighbourhood model');
writeln( 1	male disp var : ,,sdm:10:7,/ 	 female disp var : 3,sdf:10:7);
It not melting then writeln(/ The proportion of selling individuals is : 1,s:10:7)
else writeln(/ Salting is random 0);

writeln( 1 The expected neighbourhood size is : 1,leibsize:10:0);
write( 'is everything to your satisfaction?: 9;

until affirmed(true,graphics);

sdm:ssqrt(sdm)/2;
mdfoisqrt(sdf)/2;

write(/Input no. of replicates- 1);readln(reps);
for rep: s1 to reps do

begin
intseeds(sdm,sdf);
write(file1,intfld);
writeln0Completed rep ',rep:3);

end;
close(File1);
End;{0f Procedure BuildReps}

begin (*MAII PROGRAMS)
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clrscr;
NAHE1:moresul.dat';
write('Input filename for Output fields- ');
readlnCIAMEO;
Assign(filel,NAHE1);
Buildrep;

end;

A.11 GFSSNEIB.PAS
	 GENE FLOW PATTERN : STEPPING STONE 8 COI EXP DISP.***** ********* )

Procedure OFSSEEIB;

var
Champ	 : IntFldPtr;
a,i,x	 : Integer;
Self	 : ExistsPtr;
t,Reps	 : byte;
PropHig,SelfProp	 : Double;
NumbSP,PopSize	 : Integer;
NumbRow,IumbCol 	 : Integer;
Distance	 : BYTE;
average	 : SINGLE;
Tor

	

	 : boolean;
•

(**RETURN Al INTEGER FROM A NEGATIVE EXPONENTIAL 	

Function IntExpo(Dist:BYTE;av:SIIGLE) :Byte;

Var Temp :Single;
Res	 :Byte;

begin
Repeat

Temp:m-1.0*av*Ln(Uniform);
Res:mTrunc(Temp);

Until Res<=127;
IntExpo:mres;

End; {Of Function IntExpo}

( ******** *******GET THE HOR AND VERT OFFSET OF HIOR 	

Function GetOfset :shortint;
Val"
temp, dist:byte;
offs	 :shortint;
begin

Offs:.-99;
Dist:mIntExpo(Distance,average);
temp:m0Random(2);
case temp of

0 : Offs:m-dist;
1 : Offs:mdist;

end;
Get0fSet:m0ffs
end; {Of Proc OetOfs}

(****** ******* *******MIG PROC******* ******* * ********** ** ****** ****** ******* ***)
Procedure Mgr(Tor	 :boolean;

IumbCol,IumbRow,PopSize : integer;
Sol	 : ExistsPtr;
var ParChamp2	 : IntFldPtr);

var
Champ2	 :IntFldPtr;
Templ,Temp2	 :Integer;
i,j,k,1,A111,A112,x	 :integer;
Hor1,Hor2,Vertl,Vert2	 :integer;
vhere1,where2	 :integer;
OfsHor,OfsVer	 :ShortInt;

begin
GetHem(Champ2,SizeOf(Champ2-));
x:m0;

for 1: m1 to NumbRov Do
For 3: m1 to NumbCol Do
For k: m1 to PopSize Do
Begin

x:mx+1;
Tempi:Grandom(PopSize)+1;
Temp2:mGrandom(PopSize)+1;
horl:mj-1;
vertl:mi-1;
hor2:mj-1;
vert2:m1-1;
If Not Sel'[x]
Then begin

OfsHor:mGetOfset;
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horl:mGetlevCoord(Tor,j,NumbCol,OfsHor);
OfsVer:mGetOfset;
vertl:m0atiewCoord(Tor,i,IumbRow,OfsVer);
Where1:mPopSize*Horl+PopSizesIumbCol+Vertl+Templ;
OfsHor:mGetOiset;
hor2:mGetIewCoord(Tor,j,IumbCol,OfsHor);
OfsVer:mGetOfset;
vert2:mGetlesCoord(Tor,i,IumbRow,OfsVer);
Where2:mPopSize*Hor2+PopSizeeIumbCol*Vert2+Temp2;

OiShor:mGetOtset;
horl:mGetlewCoord(Tor,j,NumbCol,OisHor);
OfsVer:mGetOtset;
vert1:mGetlewCoord(Tor,i,IumbRow,OfsVer);
Where1:mPopSize.PHorl+PopSize*NumbCol*Vertl+Temp1;
Where2:=Wherel;

End;
Champ2-[x,1]:=ParChamp2'[Wherel,Grandom(2)+1];
Champ2qx,2]:=ParChamp2'[Where2,Grandom(2)+1];

end;
FreeMem(ParChamp2,Size02(ParChamp2-));
ParChamp2:mChamp2;

end;(0f Proc Migr)
	 MAII PROGRAM 	

Begin
clrscr;
Graphics:mFalse;
Window2(W_Size_Big);
Erase_File(Name);
FiliamDat:mlame;
Assign(FileDat,FillamDat);
Write_Descr_GFP( '7,,FileDat);
With FileRec(FileDat) Do
Begin

Sel2Prop:mDescr_OFP7(userdata).self;
PopSize:mDescr_GFP7(userdata).Popsize;
Tor:mDescr_GFP7(userdata).tor;
Average:mDescr_OFP7(userdata).Aver;
With ThisDescrRec Do
Begin

FilIam:mIame;
For i: m1 to 18 do
IewData[i]:muserdata[i];

End;
End;
Update_Filerec(ThisDescrRec);
t:m0;Reps:m10;
InitTxt(Name);
Read_Descr_GFP(FScreen,FileDat);
GotoXy(16,10);
WriteeHow many replicates do you want [10..60] : ));
Reps:mLintRange(10,60);
Rewrite(FileDat);close(FileDat);
IumbSp: •MaxInd div PopSize;
Case IumbSp of

4098 :begin numbrow:m64;numbcol:m64;end;
1024 :begin numbrow:m32;numbcol:m32;end;
268 :begin IumbRow:m18;NumbCol:m18;end;
84	 :begin NumbRow:m8;IumbCol:m8;end;
18	 :begin NumbRow:m4;lumbCol:m4;end;
4	 :begin IumbRow:m2;NumbCol:m2;end;
1	 :begin IumbRow:m1;NumbCol:m1;end;

end;
GoToXY(15,12);
write( I Replicate no:	 completed');
While t<Reps Do
Begin

t:mt+1;
GetMem(Champ,SizeOf(Champ-));
Ini(Champ);
GetMem(Self,Size0r(Self-));
FillBoolArray(SelfProp,Self);
Migr	 (Tor,IumbCol,NumbRow,PopSize,

Self,
Champ);

reset(FileDat);seek(FileDat,FileSize(Filaat));
Write(FileDat,Champ");
Close(FileDat);
FreeMem(Champ,Size01(Champ"));
FreeMem(Self,Size0f(Self-));
GoToXY(29,12);Write(t:4);

End; (Of while t<Reps)
End;{0i Proc (IFSSIEIB}

A.12 DISPERSAL.PAS
Procedure dispersal;

End
Else Begin
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type
Square_FieldPtr	 m-Square_Field;
Square_Field	 m array[0..(n-1),0..(n-1),1..2]of integer;

var
name,filnaml,filnam3
filol

SqField
Field
ThisOne,Dispx,Dispy,IDispxy
histo
AveDisp,VarDisp,Thisdisp
avedispx,avedispy,Dispxy,absdisp
x,y,k,x0,y0,1

:names;
:IntFldFile;
:text;
:Square_FieldPtr;
:IntFldPtr;

:integer;
:array [0..200] of longint;
:Extended;

,axdisp
:integer;

:Extended;

Function Max(x,y:integer) integer;
Begin

If x>y Then Max: mx Else Max:my;
end; (Of Function Max)
	 MAII PROGRAM 	
begin

clrscr;
ext1:10';
FileList(Ext1);
Vindow2(V_Size_Small);
Repeat

writeln (/ Input filnam for output
write(' Return to Exit. ');
readln(name);
If name'' then Exit;

Until FileExist(lame);
filnami:mname;
filnam3:mname40.TTT/
for 1: 00 to 200 do histo[i]:m0;
assign(File3,FilIam3);rewrite(File3);
append(file3);
writeln(File3,
2	 rep	 avg.abs.disp	 var.disp	 avg.Axdisp');
Close(File3);
assign(file1,filnam1);reset(file1);
GetMem(Field,SizeOf(Field"));
GetMem(SqField,SizeOf(SqField-));
while not eof(filel) do
begin

read(file1,field");
i:m0;
for y:m0 to (n-1) do
for x:m0 to (n-1) do
begin

1:01+1;
sqfielely,x,1]:mfield[i,1];
sqfield"4,x,2]:mfield'U,2];

end;
absDisp:m0.0;AxDisp:m0.0;VarDisp:m0.0;AveDispx:m0.0;AveDispy:m0.0;Thisdisp:m0.0;
for y: m0 to (n-1) do
for x:m0 to (n-1) do
for k: ml to 2 do
begin

ThisOne:msqfield'[y,x,k];
If ThisOne>MaxInd then ThisOne:mThisOne-MaxInd;
x0: 2 ((ThisOne-1) mod n); (provides a figure between 0 and (n-1))
yO: m((ThisOne-1) div n); (provides a figure between 0 and (n-1))
dispx:mabs(x0-x);
dispy:mabs(y0-y);
If dispx>(n div 2) then dispx:mn-dispx;
If dispy>(n div 2) then dispy:mn-dispy;
DispXy:msqr(Dispx)+Sqr(Dispy);
Dispxy:•1.0esqrt(Dispxy);
IDispXY:mtrunc(DispXy);
Histo[IDispxy]:mhisto[IDispxy]+1;
ThisDisp:mThisdisp+Dispxy;
absDisp:mabsDisp+Dispx+Dispy;
VarDisp:mVarDisp+Sqr(Dispxy);

end;
axDisp:mThisdisp/DMaxInd;
absDisp:mabsDisp/DMaxInd/2;
VarDisp:mVarDisp/DMaxInd-sqr(axDisp);
writeln(FilePos(File1):6,absDisp:8:4,/ /,VarDisp:8:4,' ',axDisp:8:4);
append(File3);
writeln(File3,
FilePos(File1):8,'	 1,AbsDisp:8:4,1	 1,VarDisp:8:4,1 ',axDisp:8:4);
close(File3);

end;
append(File3):
writeln(file3);
for i: •0 to 200 do
if histo[i]<>0 then writeln(file3,i+0.6:8:2,' 0,histo[i]);
close(file3);
Freemem(Field,SizeOf(Field-));
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end;
Freellem(SciField,SizeOf(SciField'));

A.13 BUILGEN.PAS
Procedure buildgen;

var
Filel,File2
IMMO
Reuel.
CountAll
Pres
ThisGen,NumbUfGen
RaxInFile
name2,name3
field,prev_field
temp,i,j,count
jj,rep,MaxRep
col
Write_It,Print
TEMPI

:IntFldFile;
:array [1..6] of names;
:names;
:Real;
:Exists;
:word;
:word;
:names;
:intfldptr;
:word;
:byte;
:array[1..6]of word;
:Boolean;
:BYTE;

begin
ClrScr;
Graphics:mFalse;
Ext1:m/1;
FileList(Ext1);
Window2(W_Size_Small);
Write( 1 Do you want to write results to a file : ?/);
Vrite_It:mAffirmed(True,Graphics);
Write(' Input number of generations [2..10000]: 2);
Iumb0fGen:mLintRange(2,10000);
writeln (You can give up to five names
rep:m0;

repeat
Repeat

rep:mrep+1;
Write('Input one of the above (without ext.) 1);
Write( 1 (Return to Exit.) :1);
readln(Iame[rep]);
If ((rep-1) and (lame[rep] 1 ')) then Exit;

Until (FileExist(lame[rep]));
Until ((lame[rep] m11 ) or (repm6));

If lame[rep]/' then MaxRep: mRep-1 else MaxRep:mrep;
write(' Print the graph? : 1);
Print:mAffirmed(False,Graphics);

rep:m0;
SetGraphMode(OrMode);
It Print
Then Begin

for i: m1 to 6 do col[i]:mwhite;
SetBkColor(Black);

End
Else Begin

col[i]:yellow;
col[2]:mred;
col[3]:mwhite;
col[4]:mgreen;
col[6]:=Iightcyan;
SetBkColor(Blue);

End;

Graphics :True;
axex:m1Generations.);
axey: m1 Iumber of extant Alleles.;
Axes;
settextstyle(defaultfont,horixdir,1);

(*graduation axe des ye)
outtextxy(zoi-2,yfi+1,,-1);
outtextxy(zoi-30,yfi+1,/100');
outtextxy(xoi-2,yfi+y4+1,1-$);
outtextxy(zoi-30,yfi+y4+1,1751);
outtextxy(xoi-2,yfi+2*y4+1,1-1);
outtextxy(zoi-30,yfi+2*y4+1,2601);
outtextxy(xoi-2,yfi+3*y4+1,1-));
outtextxy(xoi-30,yfi+3*y4+1,2262);
outtextxy(xoi-2,yoi+2,1-1);
outtextxy(xoi-30,yoi+2,202);

(*graduation axe des x*)
outtextxy(xfi-3*x4-3,yoi+2,1+1);
outtextxy(xfi-2*x4-3,yoi+2,)+1);
outtextxy(xfi-x4-3,yoi+2,1+1);
outtextxy(xfi-3,yoi+2,140);

Repeat
rep:mrep+1;
Name1:mlame[rep]:
Namo2:mname1+1.DATI;
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assign(File1,1ame1);Reset(Filel);
It Write_it
Then Begin

assign(File2,Iame2);
It FileExist(Iame2)
Then Reset(File2) else revrite(Fi1e2);
Assign(FileTxt,Iame140.TXT');
If FileExist(Iame1+/.TXTO
Then reset(FileTxt)
Else Revrite(FileTxt);
Close(FileTxt);
Append(FileTxt);
Writeln(Filext,
	 )),

Vriteln(FileTxt,
'UMBER OF ALLELES EXTANT II POPULATION AT GEE. XP);
Close(FileTxt);

End;
GetMem(prev_Field,SizeOf(Prev_Field"));

TEMP1:=ORAIDOM(FILESIZE(FILE1));
seek(Filel,TEMP1);
Read(Filel,Prev_field');
Count :1;
MaxInFile:=1;
If Write_It
Then If Iumb0fGen<=MaxInFile

Then Count:=1
else Count: . Iumb0fGen div MaxInFile;

MoveTo(xo,-dy+yo);
For ThisGen:=1 to lumb0fGen do
Begin

If Print
Then SetLineStyle(((rep-1) mod 4),0,((rep-1) div 4)*2+1)
Else SetLineStyle(SolidLn,O,IormVidth);
SetColor(col[rep]);
GetMem(Field,SizeOf(Field'));
TEMPI:=GRAIDOM(FILESIZE(FILE1));
seek(File1,TEMP1);
Read(File1,Field');
It ThisOen=1
Then Begin

For i:=1 to MaxInd do
For j:=1 to 2 do
Field'Ei,j):=Prev_Field"Ei,j];

end
Else Begin

For i:=1 to MaxInd do
For j:=/ to 2 do
Begin

Temp:=Field'ii,j];
It ((Temp>DMaxInd) or (Temp<1))
Then Begin

OutTextXY(5,10,
) I found an unexisting Allele. Program Stopped!');
Halt(1);

End;
It Temp>MaxInd
Then Begin

jj:=2;
Temp:=Temp-MaxInd;

end
Else _jj:=1;
Field-Cid]:=Prev_Field'[Temp,jj];

End;
End;

It Write_it
Then It (ThisOen MOD COUIT)=0
Then Begin

Seek(File2,FileSize(File2));
Write(Fi1e2,Field');

End;
CountAll:=0.0;
For i:=1 to DMaxInd Do Pres[i]:=False;
For i:=1 to MaxInd do
For j:=1 to 2 do Pres[Fiele[i,j]]:=True;
For i:=1 To DMaxInd Do
It Pres[i] Then CountAll:=CountA11+1.0;
It Write_It
Then It (ThisGen MOD COUIT)=0

Then Begin
Append(FileTxt);
Writeln(FileTxt,thisgen:4, 1 1,Countall:6:0);
Close(FileTxt);

End;
01y:=CountA11/100{DMaxInd};
glx:=(ThisGen+1)/(Iumb0fOon+1);
Px1:=Round(dx•glx)+xo;
Py1:=-Round(dy*g1y)+yo;
LineTo(pxl,py1);
FreeMem(Prev_Field,SizeOf(Prev_Field"));Prev_Field:=I11;

•



var
i,j,Temp
IClass

: integer;
: integer;
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Prev_Field:Field;
End;
MoveTo(GetMaxX-260,10+10eRep);
LineTo(GetMaxX-200,10+10*Rep);
SetTextStyle(DefaultFont,HorizDir,1);
SetTextJustify(LeftText,CenterText);
OutTextXy(GetMaxX-180,10+10srep,name1);
close(Filel);
It Vrite_It Then Close(File2);
FreeMem(Field,SizeOf(Field-));

Until Rep=MaxRep;
Nessage_End;
End;

A.14 PLOTFREQ.PAS
Procedure plotfreq;

type

histo• array [0..DMaxInd] of Word;

var

filnaml	 : Eames;
filel	 : IntFldfile;
id,k,numbclass,AllIumb	 : integer;
Max,Incr	 : integer;
Goner	 : array[1..6] of Byte;
yoRep,dyRep	 : array[1..6] of integer;
Rep,MaxRep	 : Byte;
MaxHisto	 : Hord;
print	 : boolean;
histoAll	 : Histo;
Field	 : IntFldPtr;
Freq0fAll	 : AliveGenPtr;
Col	 : array[1..6] of word;
sl,s2	 : string[18];
( 	 CATEGORISE 	

	

procedure categorise ( Freq0fAll	 : AliveGenPtr;
: integer;Max,incr

	

NumbClass	 :Integer;
var histos	 : histo);

begin
for IClass:=0 to IumbClass do histos[IClass]:=0;
for i:=1 to dmaxind do
begin

temp:=Freq0fAll'[1];
If Temp•O
Then Histos[0]:mHistos[0]+1
Else Begin

j:=0;
For IClass:1 to IumbClass do
begin

If (Temp)j) and (Temp<=(j+incr))
Then Histos[IClass]:=Histos[IClass]+1;
j:mj+incr;

end;
MaxHisto:=0;
For IClass: m1 to IumbClass do
If Histos[IClass]>MaxHisto
Then MaxHisto:sHistos[lClass];

End;
End;

end; Of Categorise}

begin	 (s, MAIN PROGRAMS)

ClrScr;
Graphics:mFalse;
For i:=1 to 6 do
Begin

yorep[i]:=0;
dyRep[i]:00;

End;
Ext1:0DAT0;
FileList(Ext1);
Vindow2(V_Size_Small);
Repeat

write ( / Input FilIame (Without Ext.): 1);
write ( 0 Return to exit. 1);
readln(Fillam0;
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If FilIam1= II then Exit;
Until FileExist(FilIaml+I.DATI);
assign(Filel,Filnam1+0.DATI);reset(Filei);
OetMem(Freq0fAll,SizeOf(Freq0fAll-));
Vriteln0You can give up to 6 different generations.');
Rep:=0;
Repeat

Rep:=Rep+1;
firite('Which generations do you want to look at ? : I);
Write(/(0 to exit).');
Gener[rep]:=Lintlange(0,FileSize(File1));

Until ((Oener[Rep] =0) or (Rep=6));
If Oener(Rep] =0 Then MaxIsp:=Rep-1 Else MaxRep:=Rep;
write('Print Output? I);
Print:=Affirmed(false,Oraphics);
If not print
Then For i:=1 to 6 do colEi]:=yellow
Else For i:=1 to 6 do col[1]:=white;
Close(File1);

rep:=0;
SetOraphMode(OrMode);
If Print Then SetBkColor(Black) else SetBkColor(Blue);
Oraphics:=True;
axex:= I CLASS OF HUMBER OF COPIES';
axey:= I NUMBER OF ALLELES II CLASS X.I;
axe.;
SetColor(col[1]);
SetTextStyle(SmallFont,HorizDir,4);
SetTextJustify(LeftText,CenterText);
OutTextlY(xo-70,yo-dy+10,I0enerationI);
For i:=1 to MaxRep do
Begin

yoRep[i]:=yo-trunc((i-1)*(dy div MaxRep));
dyRep[1]:=dy div MaxRep;

End;
Repeat

Rep:=Rep+1;
Max:=0;
A11lumb:=0;
Reset(Filel);
Seek(Filel,Gener[rep]-1);
OetMem(Field,SizeOf(Field-));
read(Filel,Field');
close(Filel);
for i:=1 to dmaxind do
Freq0fAll'[0:=0;
For i:=1 to MaxInd do
For J:=1 to 2 do
Freq0fAll'EFieleli,j)]:=Freq0fAll-EField^[1,j]]+1;
FreeMem(Field,SizeDf(Field-));
For i:=1 to DMaxInd do
if Freq0fAll'W>Max
then Max:=Freq0fAlr[i];
IumbClass:=Max;
incr:•1;
Categorise(FreqDfAll,Max,Incr,IumbClass,HistoAll);
Oly:=HistoAll[0]/MaxHisto(DMaxInd);
01y:=1.0;
Olx:=0;
Pxlvwxo;
pyl:=-Round(dyRep[rep]*g1y)+yoRep[rep];
If Rep<MaxRep
Then Begin

MoveTo(px1,pyl);
SetLineStyle(SolidLn,O,Wormilidth);
setColor(White);
LineTo(pxl+dx+10,PY1);

End;
MoveTo(pxl,pyl);
SetColor(Col[Rep]);
SetTextStyle(SmallFont,HorizDir,4);
SetTextJustify(LeftText,CenterText);
Str(MaxHisto,s1);
s2:=Concat(/Highest is: /,s1);
OutTextXY(xo+dx+10,yoregrep]-(dyRep[rep] div 3),s2);
Str(Max,s1);
s2:=Concat(lumb. Class: 1,51);
OutTextXY(xo+dx+10,yorepErep]-(2*(dyRep[rep] div 3)),s2);
Str(Oener[rep],s1);
OutTextXY(xo-20,yoRep[Rep7-(dyRep[rep] div 2),s1);
For 1: •1 to IumbClass Do
Begin

01y:=HistoAll[i]/MaxHisto{DMaxInd};
If Glyn.° Then Oly:=1.0;
Olx:=1/Max;
Px1:=Round(dx+01x)+xo;
Pyl:=-Round(dyRepErep]*gly)+yolagrep];
MoveTo(px1,yoRegre0);
LineTo(px1,Py/);

End;
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Until repmMaxitep;
Message_End;
FreeMem(Freq0fAll,SizeOf(Freq0fAll"));

end; {Of Procedure PlotFreq}

A.15 REDUC.PAS
	REDUC PRO

Procedure reduc;

var

Champ,ParChamp	 : IntFldPtr;
{Freq0fAll	 : Alive0enPtra
i,j,L,1	 : lord;
Temp,jj,REP,Compta	 : word;

begin
ClrScr;
Oraphics:mFalse;
extl:•0DAT';
FileList(ext1);
Vindow2(V_Size_Sma11);
Repeat

Vrite( 0 Input One Of the above 0);
Vrite( 0 (Return to Exit.) : ');
Readln(lame);
If name•00 then Exit;

Until FileExist(Namego.DAT');
FillamDat:mlame+0.DAT0;
FillamRed:mlame+I.RED0;
assign(FileRed,FillamRed);rewrite(FileRed);close(FileRed);
assign(FileDat,FillamDat);reset(FileDat);
MaxAll:m2;
write ('Input the lumber Of Alleles you want [2..50): 0);
MaxAll:mLintRange(2,60);
REP:m1;Compt:m0;
While Comptcrep Do *
Begin

reset(FileDat);
getmem(ParChamp,SizeOf(ParChamp-));
X:00;
for 1: •1 to MaxInd do
for j: ml to 2 do Parchamp"DX:m0Random(MaxA11)+1;
For i: •l to MaxAll Do Freq0fAll'Ei]:=0;
for i: m1 to MaxInd do
for j:m1 to 2 do
Freq0fAll"[ParChamp'[i,j]]:=Freq0fAll"[ParChamp"[ij]]+1;
reset(FileFre);seek(FileFre,FileSize(FileFre));
Vrite(FileFre,Freq0fAll");
Close(FileFre);
	 (Freq0fAll,SizeOf(Freq0fAll'));Freq0fA11:1411;

getmem(Champ,SizeOf(Champ'));
While not sof(Filaat) Do
Begin

Tead(FileDat,Champ");
For i:m1 to MaxInd do
For j:ml to 2 do
Begin

Temp:mChamp"Ei,j]i
It Temp>MaxInd
Then Begin

jj:m2;
Temp:mTemp-MaxInd;

end
Else Jj:m1;
Champ"Li,j]:mParChamp"[Temp,jj]:

End;
reset(FileRed) n
seek(FileRed,FileSize(FileRed));
write(FileRed,Champ');
close(FileRed);

End; { Of While lot Eof(FileDat)}
	 (champ,SizeOf(Champ));

Freemem(ParChamp,SizeOf(ParChamp"));ParChamp:mlil;
compt:mcompt+1;

End;
Close(FileDat);

End; { Of Proc Reduc}

A.16 SHFIELD.PAS
Procedure shfield;
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coast
FieldSide :Vordmin;
SpSidel	 :Word=1;
SpSide2	 mord=1;

type
PicF1dPtr •-PicF1d;
picfld	 array[1..MaxInd,1..3] of byte;
Oeno	 array(0..(n-1),0..(n-1)] of byte;
colour = array[0..16] of byte;
Sentence string[80];
VOX

XTitOutp
filet
File2
fld,Fldb
Changes
tall
Freq0fAll
genos
freq
XScale,YScale,X0ri
zwidth,ywidth
YOri
x,Gen,LastXPos,Xpos,Iumb,i,j,k,ii,jj
al,a2,aa
countchange,temp,countgen
Iame,FilIami,Fillam2,s,Fillam3
Titre
Colours
InfEdge,SupEdge,Posmin,PosHax,Dif
PC01,GraphCard,Homl,Hom2,Het
chc,Ans,ansb,choix,bb
DrawOrid,Reduc,Print
file3

: integer;
: intfldfile;
: alivegenfile;
: intildPtr;
: picfldPtr;
: word;
: AliveGenPtr;
: geno;
: array[0..n] of integer;
: integer;
: word;
: integer;
: longint;
: word;
: word;
: names;
: sentence;
: colour;
: integer;
: Byte;
: char;
: boolean;
: text;

Procedure initialize;

begin
colours [8] :=DarkGray;
colours [9] :=LightBlue;
colours [10] :=LightOreen;
colours [ii] :=LightCyan;
colours [12] :=LightRed;
colours [13] :=LightHagenta;
colours [14] :=Yellow;
colours [16] :=White;

Colours to] :=Black;
Colours [1] :=Blue;
Colours [2] :-Green;
Colours[3] :=Cyan;
Colours[4] :=Red;
Colours [6] :.Magenta;
Colours[6] :•Brown;
Colours [7] :=LightGray;
SetGraphMode(OrMode);
Graphics :True;
XScale:=2*(0etMaxX Div 6)-1;
YScale: =2*(GetHaxY div 3)-1;
Xori:=OetHaxX div 6; {160}
Yori:=GetHaxY-6*(0etMaxY div 6);
XScale:=340;
YScale:=220;
xwidth:=XScale div n;
ywidth:=YScale div n;
XScale:=XWidthen;
YScale:=YWidthen;

{80}

End;{of proc initialize}

Procedure Title(titre:sentence);
var
YPos,ZPos
xl,y1,x2,y2
i,j,Stap,I
zwidth,ywidth
s,w,t

begin

: integer;
: word;
: longint;
: word;
: string[40];
: real;

SetFillStyle(SolidFill,PCol);
SetLineStyle(SolidLn,O,NormWidth);

(*ALL THE SCREEN.)
Bar(0,0,0etHaxX,GetNaxY);
SetTextStyle(TriplexFont,HorizDir,2);
SetTextJustiFy(centertext,CenterText);
SetColor(16);
SetLineStyle(SolidLn,O,ThickWidth);

(*DEFIIE BOX*)
Rectangle(80,30,0etHaxX-80,0etHaxY-30);
OutTextXY(GetHaxX div 2,40,titre);
SetFillStyle(SolidFil1,0);
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SetLineStyle(SolidLn,O,NormVidth);
(*LEOEID COMMANDO

Rectangle(OstMaxX-160,100,0stMaxX-80,140);
SetTextStyle(SmallFont,HorizDir,4);
SetTextJustiFy(lefttext,centertext);
SetFillStyle(SolidFill,Hom1);
bar(OstMaxX-140,110,0stMaxX-136,116);
rectangle(OstMaxX-140,110,GetMaxX-136,116);
OutTextXY(OstMaxX-130,112,'HOM10;
SetFillStyle(SolidFill,Hom2);
bar(GetMaxX-140,120,0etMaxX-136,126);
rectangle(GetMaxX-140,120,0stMaxX-136,126);
OutTextXY(GetMaxX-130,122,'H0M2));
SetFillStyle(SolidFill,Het);
bar(OetMaxX-140,130,0stMaxX-136436);
rectangle(GetMaxX-140,130,0stMaxX-136,136);
OutTextXY(GetMaxX-130,132,'HET));
SetTextStyle(SmallFont,HorizDir,4);
SetTextJustify(CenterText,CenterText);
OutTextXY(GetMaxX div 2,0etMaxY-16,
'PRESS AIY LEY FOR NEXT GENERATION, Q TO !MT.));

end;(01 proc title)

Function DrawField(Newgenos :picfldPtr; countind,countgen :word):char;

var
i,XL,YL	 :word;
PopSize	 :word;

xx,77
1,11,02

begin
str(countind,s1);str(Countgen,s2);
s: mconcat(' GENERATION
SetFillStyle(SolidFill,PCol);
SetLineStyle(SolidLn,O,NoraVidth);
SetTextStyle(SmallFont,HorizDir,6);
SetTextJustiFy(centertext,CenterText);
bar(100,0stMaxY-60,0stMaxX-100,0etMaxY-33);
setcolor(16);
OutTextXY(round(GstMaxX div 2),OstMaxY-40, ․ );
i:m1;
While i<•CountInd do
begin

SetFillStyle(SolidFill,colours[NewGenos-U,3]]);
YL:=YOri+(lsw0enos^[1,1])*ywidth;
XL:mX0ri+(New0enoe[i,2])*xwidth;
bar(XL,YL,XL+xwidth-1,YL+ywidth-1);
i:m1+1;

end;
if not print then setcolor(0);
If DrawOrid
then for xx: m0 to n do
begin

it (xx mod a2)=0 then
line(X0ri+xx*xwidth-1,YOri-1,X0ri+xx*xwidth-1,YOri+yscale-1);
if (xx mod al) m0 then
line(X0ri-1,YOri+xxsywidth-1,X0ri+xscals-1,YOri+xxsywidth-1);

end
else rectangle(X0ri-1,YOri-1,X0ri+xscale,YOri+yscals);
DrawField:mreadkey;

end;
(*** ***** ************ ***** *** ***** ************** *********** **** ***** *******)
(1}Begin

clrscr;
DrawOrid:mTrue;
Graphics -False;
Extl:m1RED);
FileList(Ext1):
Window2(V_Size_Small);
Writeln

(/ WARNING!! This procedure will only map a reduced field with 2 alleles!));
writeln

( 1 If you did not build it, just press return when asked for the file meas.));
writeln

(' Otherwise, allele n 1 will be mapped against all the others!!!!));
Repeat
Write('Input one of the above (without ext.) 0;
Write()(Return to Exit.) :));
readln(lame);
If name• )) then Exit;
Until (FileExist(Name+).REDO) (or (FileExist(Iame+).DAT)))));
REDUC: •trus(not Affirmed(Falso,Graphics));
Write ()Input Title (<80 Char) : 0);Readln(Titre);
writs()Do you want to print the graph? : 0!
print:mAffirmed(False,Graphics);
It lot Print
Then begin

Homl:•3;
Hom2:m1;

:word;
:string[40];
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Het :=11;
Pcol:=7;

end
else begin

Hom1:=0;
Hom2:=16;
Het:=7;
Pcol:=0;

End;
GetMem(Fld,SizeGf(F1d"));GetMem(Fldb,SizeOf(F10"));
GetMem(Changes,SizeOf(Changes"));
if Leduc
then begin

FilIam1:=Name+P.REDI;
Fall:=1;
assign(FileDat,name);
write(' Input Deme size(1 for lattice model): /);
readln(SPSidsi):
SpSide1:=Trunc(Sqrt(SPSide1));
SpSide2:=SpSidel;
FieldSide: on div SpSidel;
write0Do you want do draw a grid ?(Y/I) :
DravOrid:=Affirmed(True,False);
Al:=SpSidel;
£2:=SpSide2;
for i:=1 to maxInd do
begin

Changes[i1]:=0;
Changes"[1,2]:=0;
Changes-11,33:110;

end;
assign(Filel,Filnaml);Reset(File1);
read(File1,Fldb');
CountGen:=FilePos(Filel);
For i:=1 to maxind do

{2}	 begin
if Fldb"(1,1]=Fall Then F1d"[i,1]:=1 else Fld"[1,1]:=2;
if Fldb'[1,2] =Fall Then F1d'[1,2]:=1 else F1d'[1,2]:=2;

{2}	 end;
close(File1);
For i: •0 to FieldSide-1 do
For j:=0 to FieldSide-1 do
for ii:=0 to SpSide1-1 do
for jj:=0 to SpSide2-1 do

(2)	 Begin
temp:=1+jj
+ii*SpSide2
+ j*SpSide2*SpSide1
+ i*SpSide2*SpSidel*FieldSide;
if ((Fld"[Temp,11 01) xor (F1d'[Temp,2]=1))
then genos[i*SpSidel+ii,j*SpSide2+jj]:=Het
else If (F1d'[temp,1]=1)

then Genos[i*SpSide1+ii,j*SpSide2+jj]:=Hom1
else Genos[i*SpSide1+ii,j*SpSide2+jj]:=Hom2;

changes'[temp,1]:=1*SpSide1+ii;
changes"[temp,2]:=j*SpSide2+jj;
changeeltemp,3]:=genos[i*SpSidel+ii,j*SpSide2+jj];

(2}	 end;
for i:=0 to n-1 do
begin

freq[i]:=0;
for j:=0 to n-1 do
if genos(id]mhom2
then freq[i]:=freg[i]+2
else if genos[i,D=het

then freq[i]:=freq[i]+1;
end;
Initialize;
Title (titre);
choix:=DrawField(changesmaxind,CountGen);
If Upcase(choix)=1181
Then Begin

RestoreCrtMode;
Graphics :=False;
exit;

End;
reset(File1);
Seek(File1,1);
While not Eof(File1) Do

(2)	 Begin
countchange:=0;
read(File1,Fldb");
CountGen:•FilePos(File1);
For i:=1 to maxind do

(3)	 begin
if Fldb"[J.,1]=Fall Then F1d"[i,1]:=1 else Fl4'[i,1]:=2;
if Fldb"(1,2]=Fall Then Fld'[1,2]:=1 else F1d"[I.,2]:=2;

(3)	 end;
For i: =0 to FieldSide-1 do
For j:=0 to FieldSide-1 do
For ii:=0 to SpSide1-1 do
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For jj:=0 to SpSide2-1 do
(3)	 Begin

temp:*1+jj
+ii*SpSide2
+ j*SpSide2*SpSidel
+ ieSpSide2sSpSideleFieldSide;
If (Fle[temp,1]*Fleltemp,2])
then Begin

If ((F1er[temp,1]=1)
and (genos[ieSpSidel+ii,j+SpSide2+jj]
<>Hom1))

then Begin
CountChange:mCountChange+1;
Changee[CountChange,thmieSpSidel+ii;
Changes'[CountChange,2]:*j*SpSide2+jj;
Changee[CountChange,3]:*Hom1;

end;
If ((F1e[temp,1]=2)

and (genos[ieSpSidel+ii,j*SpSide2+jj]
<>Hom2))

then begin
CountChange:-ConntChange+1;
Changes-[CountChange,1]:=i+SpSide1+ii;
Changee[CountChange,2]:mj*SpSide2+jj;
Changes'[CountChange,3]:=Hom2;

end;
end

else If ((F1d"[Temp,1]<>Fle[Temp,2])
and (Genos[isSpSide1+ii,j*SpSide2+jj]
(>Het))

then begin
CountChange:*CountChangs+1;
Changes-[CountChange,1]:=i*SpSide1+ii;
Changee[CountChange,2]:=jeSpSide2+jj;
Changes-[CountChange,3]:=Het;

end;
(3)	 end;(01 ij loop)

for i:=1 to countchange do
genos[changes-[i,1],changes-U,2n:mchanges-[i,3];
for i:=0 to n-1 do
begin

freq[i]:=0;
for j:=0 to n-1 do
it genos[id]*hom2
then freq[i]:=Iregi]+2
else it genos[id]=het

then freq[iJoefreq[0+1;
end;
choix:=DravField(changes,countchange,Countaen);
If Upcase(choix)**81
Then Begin

RestoreCrtMode;
Graphics:-False;
close(filel);
exit;

End;
(2)	 End;(1ihile not Eof(File1))

end;
FreeMem(Changes,SizeOf(Changes'));
FreeMem(Fld,Size0F(F1d'));FreeMem(FldB,SizeOf(F1dF));
close (fuel);
Message_End;

{1}End;
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Island model, m = 0.01, s = 0.0, 25th generation.

Analysis of Variance for tis

Source DF SS MS F P R2

nap 3 0.003154 0.001051 1.01 0.391 0.467

nind 3 0.000634 0.000211 0.15 0.931

nap * nind 9 0.002648 0.000294 0.25 0.986

rep 49 0.077907 0.001590 *

nap * rep 147 0.153260 0.001043 0.90 0.769

nind * rep 147 0.209261 0.001424 1.23 0.055

Error 441 0.509644 0.001156

Total 799 0.956508

Analysis of Variance for 0

Source DF SS MS F P R2

nap 3 0.0005019 0.0001673 0.59 0.622 0.497

nind 3 0.0007509 0.0002503 0.61 0.609

nap * nind 9 0.0019107 0.0002123 0.63 0.775

rep 49 0.0425860 0.0008691 *

nap * rep 147 0.0416334 0.0002832 0.84 0.902

nind * rep 147 0.0602207 0.0004097 1.21 0.074

Error 441 0.1495081 0.0003390

Total 799 0.2971117

Analysis of Variance for Ga

Source DF SS MS F P R2

nap 3 0.0580782 0.0193594 85.63 0.000 0.599

nind 3 0.0006707 0.0002236 0.68 0.563

nsp * nind 9 0.0015447 0.0001716 0.64 0.764

rep 49 0.0356708 0.0007280 *

nap* rep 147 0.0332347 0.0002261 0.84 0.892

nind * rep 147 0.0480452 0.0003268 1.22 0.067

Error 441 0.1184957 0.0002687

Total 799 0.2957400
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Island model, m = 0.01, s = 0.9, 25th generation.

Analysis of Variance for tia

Source DF SS MS F P R2

nap 3 0.0007322 0.0002441 0.79 0.502 0.493

nind 3 0.0002148 0.0000716 0.22 0.881

nsp*nind 9 0.0041677 0.0004631 1.66 0.097

rep 49 0.0218950 0.0004468 *

nsp*rep 147 0.0454585 0.0003092 1.11 0.217

nind * rep 147 0.0473871 0.0003224 1.15 0.136

Error 441 0.1231933 0.0002793

Total 799 0.2430487

Analysis of Variance for 0

Source DF SS MS F P R2

nap 3 0.0001908 0.0000636 1.42 0.240 0.520

nind 3 0.0000338 0.0000113 0.30 0.827

nsp*nind 9 0.0017721 0.0001969 5.28 0.000

rep 49 0.0036807 0.0000751 *

nsp * rep 147 0.0065878 0.0000448 1.20 0.079

nind *rep 147 0.0055704 0.0000379 1.02 0.442

Error 441 0.0164354 0.0000373

Total 799 0.0342710

Analysis of Variance for Ge

Source DF SS MS F P R2

nap 3 0.0041815 0.0013938 40.73 0.000 0.587

nind 3 0.0000201 0.0000067 0.23 0.876

nap* nind 9 0.0013746 0.0001527 5.38 0.000

rep 49 0.0028792 0.0000588 *

nsp* rep 147 0.0050307 0.0000342 1.21 0.075

nind * rep 147 0.0042956 0.0000292 1.03 0.404

Error 441 0.0125086 0.0000284

Total 799 0.0302903
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Island model, m = 0.1, s = 0.0, 25th generation.

Analysis of Variance for ti,

Source DF SS MS F P R2

nsp 3 0.000173 0.000058 0.04 0.988 0.447

mind 3 0.008703 0.002901 2.39 0.071

nsp * mind 9 0.013732 0.001526 1.08 0.377

rep 49 0.112286 0.002292 *

nsp * rep 147 0.191729 0.001304 0.92 0.718

mind * rep 147 0.178288 0.001213 0.86 0.865

Error 441 0.623820 0.001415

Total 799 1.128731

Analysis of Variance for 0

Source DF SS MS F P R2

nsp 3 0.0025341 0.0008447 4.83 0.003 0.490

mind 3 0.0007483 0.0002494 1.00 0.393

nsp * mind 9 0.0059394 0.0006599 3.29 0.001

rep 49 0.0134302 0.0002741 *

nsp * rep 147 0.0257211 0.0001750 0.87 0.836

nind * rep 147 0.0365568 0.0002487 1.24 0.050

Error 441 0.0884503 0.0002006

Total 799 0.1733801

Analysis of Variance for Ga

Source DF SS MS F P R2

nsp 3 0.0199270 0.0066423 47.47 0.000 0.554

mind 3 0.0004122 0.0001374 0.70 0.555

nsp * nind 9 0.0041490 0.0004610 2.96 0.002

rep 49 0.0110689 0.0002259 *

nsp * rep 147 0.0205701 0.0001399 0.90 0.775

nind * rep 147 0.0289360 0.0001968 1.27 0.036

Error 441 0.0685836 0.0001555

Total 799 0.1536468
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Island model, m = 0.1, s = 0.9, 25th generation.

Analysis of Variance for A,

Source
	

DF	 SS	 MS F P R2

nsp

nind

nsp* nind

rep

nsp* rep

nind* rep

Error

Total

3 0.005418 0.001806 1.09 0.355 0.434

3 0.001614 0.000538 0.26 0.852

9 0.012895 0.001433 0.73 0.685

49 0.102261 0.002087	 *

147 0.243295 0.001655 0.84 0.897

147 0.301282 0.002050 1.04 0.382

441 0.870647 0.001974

799 1.537413

Analysis of Variance for 0

Source
	

DF	 SS	 MS F	 P 112

0.11 0.955 0.470

0.20 0.894

0.38 0.946

*

0.96 0.618

0.99 0.507

nsp

nind

nsp* nind

rep

nsp* rep

nind * rep

Error

Total

3 0.000474

3 0.000919

9 0.005129

49 0.151878

147 0.212513

147 0.220807

441 0.666050

799 1.257770

0.000158

0.000306

0.000570

0.003100

0.001446

0.001502

0.001510

Analysis of Variance for Gst

Source DF	 SS	 MS F P R2

36.22 0.000 0.528

0.15 0.929

0.35 0.958

*

0.94 0.662

0.99 0.520

nsp

nind

nsp* nind

rep

nsp* rep

nind * rep

Error

Total

3 0.131069

3 0.000572

9 0.004021

49 0.133018

147 0.177325

147 0.186370

441 0.564583

799 1.196958

0.043690

0.000191

0.000447

0.002715

0.001206

0.001268

0.001280
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Island model, m = 0.01, s = 0.0, 150th generation.

Analysis of Variance for ti,

Source
	

DF	 SS	 MS F P R2

nap

nind

nsp * nind

rep

nap * rep

mind * rep

Error

Total

3 0.009739 0.003246 1.48 0.221 0.523

3 0.000566 0.000189 0.08 0.973

9 0.016045 0.001783 0.93 0.497

49 0.214204 0.004372	 *

147 0.321601 0.002188 1.14 0.152

147 0.361902 0.002462 1.29 0.027

441 0.843927 0.001914

799 1.767984

Analysis of Variance for 0

Source
	

DF	 SS	 MS F P R2

nap

mind

nap * nind

rep

nsp* rep

nind * rep

Error

Total

3 0.001801 0.000600 0.37 0.774 0.466

3 0.001001 0.000334 0.21 0.889

9 0.011431 0.001270 0.67 0.741

49 0.248972 0.005081	 *

147 0.237420 0.001615 0.85 0.885

147 0.233683 0.001590 0.83 0.906

441 0.842168 0.001910

799 1.576476

Analysis of Variance for G.t

Source DF	 SS	 MS F P R2

31.44 0.000 0.515

0.19 0.902

0.67 0.733

*

0.84 0.889

0.83 0.912

nap

nind

nsp* nind

rep

nap * rep

nind* rep

Error

Total

3 0.130200

3 0.000777

9- 0.009927

49 0.222666

147 0.202925

147 0.199361

441 0.721903

799 1.487757

0.043400

0.000259

0.001103

0.004544

0.001380

0.001356

0.001637
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Island model, in = 0.01, s = 0.9, 150th generation.

Analysis of Variance for .Fli a

Source DF	 SS MS F P R2

nsp 3	 0.020299 0.006766 3.06 0.030 0.452

nind 3	 0.003256 0.001085 0.45 0.720

nsp * nind 9	 0.029542 0.003282 1.25 0.262

rep 49	 0.220294 0.004496 *

nsp * rep 147	 0.325201 0.002212 0.84 0.891

nind * rep 147	 0.356786 0.002427 0.92 0.711

Error 441	 1.157906 0.002626

Total 799	 2.113284

Analysis of Variance for 0

Source DF	 SS MS F P R2

nsp 3	 0.021257 0.007086 1.53 0.209 0.551

nind 3	 0.007505 0.002502 0.55 0.647

nsp * nind 9	 0.019666 0.002185 0.55 0.834

rep 49	 0.740714 0.015117 *

nsp * rep 147	 0.680023 0.004626 1.17 0.110

nind * rep 147	 0.665752 0.004529 1.15 0.143

Error 441	 1.737598 0.003940

Total 799	 3.872514

Analysis of Variance for Gat

Source DF	 SS MS F P R2

nap 3	 0.134474 0.044825 10.27 0.000 0.567

nind 3	 0.008420 0.002807 0.65 0.583

nap * nind 9	 0.020528 0.002281 0.61 0.786

rep 49	 0.708612 0.014461 *

nsp * rep 147	 0.641636 0.004365 1.17 0.111

nind * rep 147	 0.632287 0.004301 1.16 0.133

Error 441	 1.640922 0.003721

Total 799	 3.786880
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Island model, m = 0.1, s = 0.0, 150th generation.

Analysis of Variance for ti„

Source DF 55 MS F P R2

nap 3 0.0007358 0.0002453 0.49 0.692 0.481

nind 3 0.0008862 0.0002954 0.65 0.583

nap * nind 9 0.0030408 0.0003379 0.74 0.676

rep 49 0.0424588 0.0008665 *

nsp * rep 147 0.0741282 0.0005043 1.10 0.234

nind * rep 147 0.0666915 0.0004537 0.99 0.525

Error 441 0.2024102 0.0004590

Total 799 0.3903517

Analysis of Variance for 0

Source DF SS MS F P R2

nap 3 0.0003442 0.0001147 1.87 0.137 0.490

nind 3 0.0001397 0.0000466 0.78 0.506

nap * nind 9 0.0005833 0.0000648 1.23 0.276

rep 49 0.0035752 0.0000730 *

nap * rep 147 0.0090137 0.0000613 1.16 0.127

nind * rep 147 0.0087517 0.0000595 1.13 0.180

Error 441 0.0233000 0.0000528

Total 799 0.0457080

Analysis of Variance for G82

Source DF SS MS F P R2

nap 3 0.0052936 0.0017645 38.08 0.000 0.557

nind 3 0.0000914 0.0000305 0.67 0.570

nap * nind 9 0.0004158 0.0000462 1.16 0.320

rep 49 0.0028325 0.0000578 *

nsp * rep 147 0.0068109 0.0000463 1.16 0.125

nind * rep 147 0.0066571 0.0000453 1.14 0.165

Error 441 0.0175880 0.0000399

Total 799 0.0396892
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Island model, m = 0.1, s = 0.9, 150th generation.

Analysis of Variance for As

Source DF	 SS	 MS F P R2

nsp	 3 0.003271 0.001090 0.65 0.581 0.484

nind	 3 0.001802 0.000601 0.43 0.729

nsp * nind	 9 0.019724 0.002192 1.58 0.119

rep	 49 0.101976 0.002081 	 *

nsp * rep	 147 0.244760 0.001665 1.20 0.082

nind * rep 147 0.203304 0.001383 1.00 0.503

Error	 441 0.612401 0.001389

Total	 799 1.187238

Analysis of Variance for 0

Source	 DF	 SS	 MS F P R2

nsp	 3 0.0011029 0.0003676 1.02 0.386 0.431

nind	 3 0.0015081 0.0005027 1.58 0.197

nsp * nind	 9 0.0032322 0.0003591 0.98 0.452

rep	 49 0.0164057 0.0003348 	 *

nsp * rep	 147 0.0529951 0.0003605 0.99 0.526

nind * rep 147 0.0467987 0.0003184 0.87 0.836

Error	 441 0.1608853 0.0003648

Total	 799 0.2829281

Analysis of Variance for G8

Source DF	 SS	 MS F P R2

nsp	 3 0.0070783 0.0023594 8.42 0.000 0.449

nind	 3 0.0011176 0.0003725 1.56 0.203

nsp * nind	 9 0.0024270 0.0002697 0.97 0.466

rep	 49 0.0130393 0.0002661	 *

nsp * rep	 147 0.0411790 0.0002801 1.01 0.476

nind * rep 147 0.0351854 0.0002394 0.86 0.862

Error	 441 0.1228902 0.0002787

Total	 799 0.2229167
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Stepping-stone model, m = 0.01, s = 0.0, 25th generation.

Analysis of Variance for ti,

Source DF SS MS F P R2

nsp 3 0.004569 0.001523 1.25 0.294 0.478

nind 3 0.002919 0.000973 0.74 0.529

nsp * nind 9 0.018635 0.002071 1.73 0.080

rep 49 0.084744 0.001729 *

nsp * rep 147 0.179036 0.001218 1.02 0.441

nind * rep 147 0.193033 0.001313 1.10 0.238

Error 441 0.528000 0.001197

Total 799 1.010938

Analysis of Variance for 0

Source DF SS MS F P R2

nsp 3 0.0010589 0.0003530 0.84 0.474 0.528

nind 3 0.0014896 0.0004965 1.30 0.277

nsp * nind 9 0.0026931 0.0002992 0.86 0.562

rep 49 0.0485340 0.0009905 *

nsp * rep 147 0.0617214 0.0004199 1.21 0.076

nind * rep 147 0.0561173 0.0003818 1.10 0.238

Error 441 0.1535082 0.0003481

Total 799 0.3251225

Analysis of Variance for G3

Source DF SS MS F P R2

nsp 3 0.0461157 0.0153719 46.66 0.000 0.599

nind 3 0.0011562 0.0003854 1.26 0.291

nsp * nind 9 0.0020648 0.0002294 0.83 0.593

rep 49 0.0405598 0.0008278 *

nsp * rep 147 0.0484330 0.0003295 1.19 0.096

nind * rep 147 0.0450401 0.0003064 1.10 0.226

Error 441 0.1225461 0.0002779

Total 799 0.3059157
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Stepping-stone model, m = 0.01, s = 0.9, 25th generation.

Analysis of Variance for Pi,

Source DF SS MS F P R2

nsp 3 0.0002767 0.0000922 0.20 0.897 0.461

nind 3 0.0001936 0.0000645 0.14 0.933

nsp * nind 9 0.0009796 0.0001088 0.26 0.986

rep 49 0.0253033 0.0005164 *

nsp * rep 147 0.0681866 0.0004639 1.09 0.254

mind * rep 147 0.0656879 0.0004469 1.05 0.352

Error 441 0.1878078 0.0004259

Total 799 0.3484357

Analysis of Variance for 0

Source DF SS MS F P R2

nsp 3 0.0003651 0.0001217 1.63 0.184 0.480

nind 3 0.0001606 0.0000535 0.77 0.513

nsp * mind 9 0.0004545 0.0000505 0.69 0.716

rep 49 0.0075202 0.0001535 *

nsp * rep 147 0.0109446 0.0000745 1.02 0.429

nind * rep 147 0.0102387 0.0000697 0.96 0.623

Error 441 0.0321466 0.0000729

Total 799 0.0618304

Analysis of Variance for Ga

Source DF SS MS F P 112

nsp 3 0.0044860 0.0014953 28.33 0.000 0.521

nind 3 0.0001142 0.0000381 0.74 0.528

nsp * mind 9 0.0003307 0.0000367 0.68 0.727

rep 49 0.0056891 0.0001161 *

nsp * rep 147 0.0077594 0.0000528 0.98 0.559

nind * rep 147 0.0075287 0.0000512 0.95 0.645

Error 441 0.0238214 0.0000540

Total 799 0.0497294
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Stepping-stone model, m = 0.1, s = 0.0, 25th generation.

Analysis of Variance for ti,

Source DF SS MS F P R2

nap 3 0.001058 0.000353 0.30 0.828 0.411

nind 3 0.000303 0.000101 0.09 0.968

nap * nind 9 0.015491 0.001721 1.17 0.310

rep 49 0.085513 0.001745 *

nap * rep 147 0.175255 0.001192 0.81 0.931

nind * rep 147 0.173397 0.001180 0.80 0.941

Error 441 0.646492 0.001466

Total 799 1.097508

Analysis of Variance for 0

Source DF SS MS F P R2

nap 3 0.0010919 0.0003640 1.38 0.252 0.493

nind 3 0.0003366 0.0001122 0.28 0.838

nap * nind 9 0.0097903 0.0010878 3.43 0.000

rep 49 0.0278828 0.0005690 *

nap * rep 147 0.0388006 0.0002639 0.83 0.907

nind * rep 147 0.0584307 0.0003975 1.25 0.043

Error 441 0.1399656 0.0003174

Total 799 0.2762983

Analysis of Variance for G.t

Source DF SS MS F P R2

nap 3 0.0131314 0.0043771 21.78 0.000 0.525

nind 3 0.0002189 0.0000730 0.23 0.874

nap * nind 9 0.0076666 0.0008518 3.48 0.000

rep 49 0.0224738 0.0004586 *

nap * rep 147 0.0295493 0.0002010 0.82 0.922

nind * rep 147 0.0462809 0.0003148 1.29 0.027

Error 441 0.1080160 0.0002449

Total 799 0.2273369
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Stepping-stone model, m = 0.1, .3 = 0.9, 25th generation.

Analysis of Variance for

Source	 DF	 SS	 MS F P R2

nsp	 3 0.001647 0.000549 0.36 0.782 0.453

nind	 3 0.004737 0.001579 0.83 0.478

nsp * mind	 9 0.042001 0.004667 2.64 0.006

rep	 49 0.095401 0.001947

nsp * rep	 147 0.224263 0.001526 0.86 0.856

nind * rep 147 0.278783 0.001896 1.07 0.294

Error	 441 0.780145 0.001769

Total	 799 1.426977

Analysis of Variance for 0

Source	 DF	 SS	 MS F P R2

nsp	 3 0.004517 0.001506 1.19 0.314 0.525

nind	 3 0.000824 0.000275 0.21 0.890

nap * mind	 9 0.006153 0.000684 0.60 0.797

rep	 49 0.165001 0.003367

nsp * rep	 147 0.185224 0.001260 1.11 0.219

mind * rep 147 0.193332 0.001315 1.15 0.136

Error	 441 0.502508 0.001139

Total	 799 1.057559

Analysis of Variance for Ge

Source DF	 SS	 MS F P R2

nap	 3 0.1565939 0.0521980 49.37 0.000 0.596

nind	 3 0.0007079 0.0002360 0.21 0.888

nap * nind	 9 0.0055556 0.0006173 0.64 0.762

rep	 49 0.1448862 0.0029569

nsp * rep	 147 0.1554191 0.0010573	 1.10 0.234

nind * rep 147 0.1633317 0.0011111	 1.15 0.135

Error	 441 0.4243199 0.0009622

Total	 799 1.0508143
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Stepping-stone model, m = 0.01, s = 0.0, 150th generation.

Analysis of Variance for tia

Source	 DF	 SS	 MS F P R2

nap	 3 0.004784 0.001595 0.48 0.698 0.446

nind	 3 0.005075 0.001692 0.47 0.706

nap * nind	 9 0.010515 0.001168 0.34 0.961

rep	 49 0.168285 0.003434

nsp * rep	 147 0.490153 0.003334 0.98 0.564

nind * rep 147 0.532894 0.003625 1.06 0.323

Error	 441 1.507597 0.003419

Total	 799 2.719304

Analysis of Variance for 0

Source	 DF	 SS	 MS F P R2

nap	 3 0.003742 0.001247 0.55 0.650 0.536

nind	 3 0.003436 0.001145 0.66 0.575

nap * nind	 9 0.011335 0.001259 0.67 0.739

rep	 49 0.356096 0.007267

nap * rep	 147 0.334595 0.002276 1.20 0.077

nind * rep 147 0.253299 0.001723 0.91 0.744

Error	 441 0.833113 0.001889

Total	 799 1.795617

Analysis of Variance for G3t

Source DF	 SS	 MS F P R2

nap	 3 0.143903 0.047968 23.98 0.000 0.576

nind	 3 0.003209 0.001070 0.70 0.552

nsp * nind	 9 0.010584 0.001176 0.70 0.705

rep	 49 0.323607 0.006604

nap * rep	 147 0.294004 0.002000 1.20 0.084

nind * rep 147 0.223844 0.001523 0.91 0.744

Error	 441 0.736266 0.001670

Total	 799 1.735418
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Stepping-stone model, m = 0.01, s = 0.9, 150th generation.

Analysis of Variance for ti,

Source	 DF	 SS	 MS F P R2

1.54 0.206 0.461

3.65 0.014

2.49 0.009

*

1.00 0.481

0.88 0.829

nsp

nind

nsp *nind

rep

nsp* rep

nind* rep

Error

Total

3 0.011867

3 0.024544

9 0.057424

49 0.163633

147 0.377441

147 0.329396

441 1.128323

799 2.092628

0.003956

0.008181

0.006380

0.003339

0.002568

0.002241

0.002559

Analysis of Variance for 0

Source
	

DF	 SS
	

MS F P R2

0.33

0.82

1.12

*

0.82

0.92

nsp

nind

nsp * nind

rep

nsp *rep

nind* rep

Error

Total

3 0.003937

3 0.011150

9 0.049419

49 0.653025

147 0.591028

147 0.666330

441 2.167547

799 4.142436

0.001312

0.003717

0.005491

0.013327

0.004021

0.004533

0.004915

0.806 0.477

0.485

0.349

0.925

0.717

Analysis of Variance for Ge

Source DF	 SS	 MS F P R2

18.11 0.000 0.503

0.87 0.458

1.11 0.354

*

0.82 0.926

0.92 0.721

nsp

nind

nsp * nind

rep

nsp * rep

nind* rep

Error

Total

3 0.213695

3 0.011557

9 0.048078

49 0.640403

147 0.578101

147 0.651070

441 2.121218

799 4.264122

0.071232

0.003852

0.005342

0.013069

0.003933

0.004429

0.004810
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Stepping-stone model, m = 0.1, s = 0.0, 150th generation.

Analysis of Variance for ti,

Source DF SS MS F P R2

nap 3 0.0021716 0.0007239 1.38 0.252 0.493

nind 3 0.0036734 0.0012245 2.05 0.109

nap * nind 9 0.0042370 0.0004708 0.89 0.537

rep 49 0.0521841 0.0010650 *

nap * rep 147 0.0773349 0.0005261 0.99 0.518

nind * rep 147 0.0876370 0.0005962 1.12 0.187

Error 441 0.2341281 0.0005309

Total 799 0.4613662

Analysis of Variance for 0

Source DF SS MS F P R2

nap 3 0.0007740 0.0002580 2.05 0.109 0.457

nind 3 0.0008260 0.0002753 2.39 0.071

nap * nind 9 0.0003786 0.0000421 0.33 0.964

rep 49 0.0096560 0.0001971 *

nap * rep 147 0.0184713 0.0001257 0.99 0.516

nind * rep 147 0.0169521 0.0001153 0.91 0.749

Error 441 0.0558845 0.0001267

Total 799 0.1029425

Analysis of Variance for Gat

Source DF SS MS F P R2

nap 3 0.0056152 0.0018717 19.87 0.000 0.493

nind 3 0.0006572 0.0002191 2.60 0.054

nap * nind 9 0.0002611 0.0000290 0.31 0.972

rep 49 0.0075854 0.0001548 *

nsp * rep 147 0.0138493 0.0000942 1.00 0.488

nind * rep 147 0.0123810 0.0000842 0.89 0.787

Error 441 0.0415104 0.0000941

Total 799 0.0818596
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Stepping-stone model, m = 0.1, 3 = 0.9, 150th generation.

Analysis of Variance for tia

Source DF SS MS F P R2

nsp 3 0.001053 0.000351 0.31 0.822 0.431

nind 3 0.008610 0.002870 1.98 0.119

nsp * nind 9 0.006357 0.000706 0.50 0.875

rep 49 0.073888 0.001508 *

nsp * rep 147 0.169054 0.001150 0.81 0.931

nind * rep 147 0.212716 0.001447 1.02 0.422

Error 441 0.623336 0.001413

Total 799 1.095014

Analysis of Variance for 0

Source DF SS MS F P R2

nsp 3 0.0017932 0.0005977 1.59 0.194 0.455

nind 3 0.0011546 0.0003849 0.77 0.512

nsp * nind 9 0.0097642 0.0010849 2.07 0.031

rep 49 0.0519594 0.0010604 *

nsp * rep 147 0.0551509 0.0003752 0.72 0.992

nind * rep 147 0.0734498 0.0004997 0.95 0.631

Error 441 0.2312758 0.0005244

Total 799 0.4245477

Analysis of'Variance for Ga

Source DF SS MS F P R2

nsp 3 0.0320387 0.0106796 35.68 0.000 0.509

nind 3 0.0008884 0.0002961 0.76 0.521

nsp * nind 9 0.0076247 0.0008472 2.08 0.030

rep 49 0.0436529 0.0008909 *

nsp * rep 147 0.0440004 0.0002993 0.74 0.986

nind * rep 147 0.0575860 0.0003917 0.96 0.602

Error 441 0.1794744 0.0004070

Total 799 0.3652654
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MINITAB macro for two way
Kruskall-Wallis

Dependant variable in column C15. Independant variables in columns C2 and
C3.

noecho
rank c16 c18
let c80=c20.0+c3
unstack c16 into c20 c21 c22 c23 c24 c26 c26 c27 c28 c29 c30 c31 c32 c33 c34 c36;
subscripts c60.
let k20=sum(c20)
let k21•sum(c21)
let k22=sum(c22)
let k23=sum(c23)
let k24=sum(c24)
let k26=sum(c26)
let k28=sum(c26)
let k27=sum(c27)
let k28=sum(c28)
let k29=sum(c29)
let k30=sum(c30)
let k31=sum(c31)
let k32=sum(c32)
let k33=sum(c33)
let k34=sum(c34)
let k36=sum(c36)
let k120=k20**2
let k121=k21**2
lot k122=k22**2
let k123=k23**2
let k124=k24**2
let k126=k26**2
let k128=k28**2
let k127=k27**2
let k128=k28**2
let k129=k29**2
let k130=k30**2
let k131=k31**2
let k132=k32**2
let k133=k33**2
lot k134=k34**2
let k136=k36**2
let k38=4
let k37=4
let k38=count(c20)
let k40=count(c16)
let k41=k40*(k40+1)*(k40+1)/4
let k42=k40*(k40+1)/12
let k43=(k120+k121+k122+k123+k124+k126+k128+k127+k128+k129+k130+k131+k132+k133+k134+k136)/k38-k41
let k220=(k2O+k21+k22+k23)**2+(k24+k26+k28+k27)**2+(k28+k29+k3O+k31)**2+(k32+k33+k34+k36)**2
let k44=k220/k38/k38-k41
let k2210(k2O+k24+k28+k32)**2+(k21+k26+k29+k33)**2+(k22+k28+k3O+k34)**2+(k23+k27+k31+k36)**2
let k46=k221/k38/k37-k41
let k46=k43-k44-k46
let k60=k44/k42
let k61=k46/k42
let k62•k48/k42
let k63•k43/k42
let k60=k38-1
let k61=k37-1
let k62=(k38-1)*(k37-1)
let k83=k38*k37-1
note k60 k61 k62 k63 contains kw statistics for treatl (nip) treat2 (nind)
note treatl*treat2 and treat with df in k60 k61 k62 k63 respectivly
print k60 k61 k62 k63
print k80 k61 k62 k63
cdf k60 into k200;
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chisquare with k60.
let k201•1.0-k200
cdf k61 into k202;
chisquare with k61.
let k203m1.0-k202
cdf k62 into k204;
chisquare with k62.
let k206m1.0-k204
cdf k63 into k206;
chisquare with k63.
let k207=1.0-k206
note k201 k203 k206 and k207 contain P-values for treatl treat2
note interaction and treatment respectively
print k201 k203 k206 k207
erase c16-c100
erase kl-k230
echo



Appendix D

FSTAT.0

*include <p2c/p2c.h>

*define npmax	 1100
*define nlmax	 20
*define numax
*define maxboot	 6000
*define maxind	 6000
*define modulo	 10

typedef double frq[nlmax][numax];
typedef double fst[nlmax];
type def float peral[nlmax][numax];
typedef float (*ptr_to_peral[npmax])[numax];
typedef float sorted[maxboot];
typedef unsigned short numb_per_loc[npmax][nlmax];

Static unsigned short an]., anu, np, nl, nu, ia, iu, iv, ip, il;
Static unsigned short (*an) [nlmax7;
Static unsigned short anp[nlmax];
Static unsigned short npinf, npsup;
Static ptr_to_peral h, p;
Static double *anbar, *annbar, sanc, *termi, *term2, *term3, *term4, *term6;
Static double (*pbar)[numax], (*ppbar)[numax], (*varp)[numax], (*hbarnnumax],

(*capf)[numax], OthetaHnumax], (*smallf)[numax];
Static double ecapfl, *thetal, *smallfl;
Static float *capfb, *thetb, *smlfb;
Static FILE *Mein, *fileoutl, *fileout2, *filobooti, *fileboot2, *fileboot3;
Static Char locname[n1max][9];
Static double tterml, tterm2, tterm3, tterm4, ttermS, a, b, c, tcapf, ttheta,

tsmallf;
Static double real_f[3];
Static long si, 52, pass;
Static FILE *fileini, *filepar, *filemig;
Static unsigned short numbperm;
Static Char name[266], namedat[266],nameout[266];
Static Char nametmp[266], nameboot1[268 nameboot2[268], nameboot3[268];
Static unsigned short stepi;
Static Char ens;
Static Char filein_IAME[_FESIZE];
Static Char fileoutl_IAMELFISIZE1;
Static Char fileout2_11AME[_FISIZE];
Static Char fileini_IAME[_FISIZE];
Static Char filepar_IAME[_FISIZE];
Static Char filemig_IAME[_FISIZE];
Static Char fileboot1JAME[_FISIZE];
Static Char fileboot2JAME[_FISIZE];
Static Char fileboot3_11AME[_FISIZE];

	 iformf	
Static double uniform()
{

long x, k;

k	 s1 / 636681.;
s1 gg (ii - k • 638681.) * 40014L - k • 12211;
if (s1 < 0)

si	 21474836831.;
k • s2 / 62774L;
s2 • (s2 - k * 627741.) * 409692L - k * 3791;
if (s2 < 0)

s2 +• 21474833991.;
x • sl - s2;
if (a < 1)

+= 2147483662L;
return (a * 4.8668130-10);

) /*of func uniform*/
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Static long grandom(n)
long n;

return ((long)(uniform() * n));
} /*of func grandom*/
/44* ********************* *seem** ***** as** ***** 444,4. ****** ***** **********/
Static Void readdata(f)
FILE **f;
{
unsigned short FOILIN;
Char *TEMP;
unsigned short FORLIN1, FORLIN2;

rewind(*f);
fscanf(*f, "%hd%hd%hd%*["\n]", knp, knl, knu);
getc(*f);
it (np (0 1) (
printf(" only one population. can not calculate theta. exiting.\n");
printf(" if you want smallf, create a dummy population fixed for\n");
printf(" 1 allele, theta and capf will then be meaningless.\n");
_Escape(1);

1
it (np > npmax II nl > nlmax) (
printf(" too many populations or loci. npmaxm %Id nlmaxm %ld\n",
(long)npmax, (long)nlmax);
printf(" recompile with a higher value for npmax or nlmax.\n");
printf(" exiting. ..\n");
_Escape(1);

FORLIN • n1;
for (ii 'I 1; il (m FORLIN; il++) (
fgets(locname[il	 1], 9, *f);
TEMP • strchr(locname[il - 1], 9\n');
it (TEMP PE KULL)
*TEMP 0;

FORUM m n1;
for (il m 1; il (m FORUM; 11++)
angil - 1] m np;

anl m n1;
FORUM m np;
for (ip m 1; ip cm FORLIN; ip++) (
FORLIN1 n1;
for (il m 11 il <IN FORLIN1; 11+0{
an[ip - 13[11 - 1] 
FORLIM2 m nu;
for (iu m 1; iu	 FORLIN2; iu++) (

h[ip - 1][il - l][iu - 1] m 0.0;
PUP - 13	 - 13 [iu - 1] I, 0.0;

1
while (!P_eof(sf))
fscanf(*f, "%hd", kip);
it (ip I m 0)
FORLIN m n1;
for (ii m 1; il <m FORLIN; il++) (

fscanf(*f, "%hd",
iu m ia / modulo;
iv m ia % modulo;
it (ia I m 0) (
an[ip	 - 13++;
p[ip - 13[12 - 1][iu - 1] +m 1.0;
pup - 13[11 - 1][iv - 1] +m 1.0;
if (iu !m iv)
h[ip - 13[11 - 1][iu - 13 +• 1.0;
h[ip - I] [ii - 1](iv - 1] +m 1.0;

}

}
fscanf(ef, "%sr\O");
getc(*f);

/*of procedure readdata*/

Static Void basic_stats()

double temp;
unsigned short FORUM, FOILIN1, FORLIN2;

fprintf(fileout1, " 	 11);
FORLIN m np;
for (ip m 1; ip <0 FORLIN; ip++)

fprintf(fileoutl, "%Su", ip);
putchar('\n');
FORLIN m n1;
for (ii m 1; il <m FORLIN; il++) {
fprintf(fileout1, "\n	 locus; %s\n", locname[il - 1]);
fprintf(fileoutl, "	 n");
FORLIN1 m np;
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for (ip • 1; ip <• FORLIM1; ip++)
fprintf(fileoutl, "Uu", an[ip - 11111 - 1]);

putc( '\n/, fileout1);
FORUM. m nu;
for (in m 1; iu <m FORUM.; iu++) {

fprintf(fileoutl, "p: %3n", 111):
FORLIM2 m up;
for (ip m 1; ip <m FORLIM2; 1p++) {

if (an[ip - 1][11 - 1] P . 0)
fprintf(fileoutl, 116.3f",
p[ip	 - 13Ein - 1] / 2.0 / an[ip - 1][11 - 1]);

els.
fprintf(fileoutl,

)
putc( 2 \n l , fileoutl);

)
putc( 2 \10, fileout1);
FORLIM1 m nu;
for (in • 1; in Cm FORLIM1; iu++) {

fprintf(fileouti, "ho: %2u", in);
FORLIM2 m up;
for (ip m 1; ip Cm FORLIM2; 1p++) {

if (an[ip - 1][11 - 1] P m 0)
fprintf(fileoutl, "%6.3f",
htip - 13[11 - 1][in - 1] / an[ip - 13[11 - 13);

else
fprintf(fileout1, " 	u),

1
putc( 3 \n', fileout1);

1
putc( 1 \n , , fileout1);
FORLIM1 m nu;
for (in • 1; in Cs FORLIM1; iu++) {

fprintf(fileoutl, "he: %2u" 1 iu);
FORLIM2 m up;
for (ip m 1; ip (m FORLIM2; ip++) {

if (an[ip - 11111 - 1] P m 0) {
temp m ptip - 1][1]. - 1][iu - 1] / 2.0 / an[ip - 13[11 - 1];
fprintf(fileoutl, "%6.3f",
2.0 • temp * (1.0 - temp) * 2.0 * an[ip - 1]
[11 - 1] / (2.0 * an[ip - 13[11 - 1] - 1));

1 else
fprintf(fileout1, " 	

putc()\n), fileoutl);

)
fflush(fileout1);
P_ioresult m 0;
/*of procedure basic_stats*/

Static Void calcistat(inf, sup, ins)
unsigned short int, sup;
Char ins;

double temp;
unsigned short FORUM, FORLIM1, FORLIM2;
long TEMPI;
double TEMP2;

pass++;
FORLIM m nl;
for (11 • 1; 11 Cm FORUM; il++)

anp[11 - 1] m sup - inf + 1;
for (1p m inf; ip Cm sup; ip++) {

FORLIM1 m nl;
for (11 m 1; 11 Cm FORLIM1; il++) {

FORLIM2 • nu;
for (in • 1; iu Cm FORLIM2; iu++) {

it (an[ip - 13[11 - 1] P m 0.0) {
p[ip - 1][11 - 1][in - 1] /0 2.0 * an[ip - 1][11 - 1];
h[ip -	 - Miu -	 I. an[ip - Mil - 1];
else {
p[ip - 1][11 - 1][1u - 1] • 0.0;
h[ip - 1][11 - 1][1u - 1] m 0.0;
if (in mm 1)
anp[il - 1]--;

)
)

)
FORLIM • n1;
for (11 • 1; 11 Cm FORUM; 11+0 (

anbar[11 - 1] • 0.0;
annbar[11 - 1] in 0.0;
for (ip m inf; ip Cm sup; ip++) {

anbar[11 - 1] +m an[ip - 1][11 - 1];
TEMPI • an[ip - 13[11 - 1];
annbar[11 - 1] += TEMPI * TEMPl;

)
if (anp[11 - 1] > 1 kk anbar[11 - 1] P m 0) {
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anbar[11 - 1] I. anp[il - 1];
- 1] • anp[11 - 1] • anbar[il - 13 -

annbarCil - 13 / anpfil - 13 / anbarCil - 13;
anc[11 - 1] I. anp[11 - 13 - 1.0;
FORUM m nu;
for (in • 1; in <ig FORLIM1; iu++) {

pbar[11 - 13 Eiu -	 0.0;
ppbarCil 13 [in - 1] a 0.0;
hbar [11 - 1] [iu - 	 3* 0.0;
for (ip • inf; ip <21 sup; ip++) {

pbar[il - 13
[in - 1] +in anCip - 13 [11 - 13 • pCip - 13 [11 - 13 [in - 1];

TEMP2 a p[ip -	 -	 [in -	 ;
ppbar [11 - 1] [in - 13 	 an[ip - 1] [11 - 1] • (TEMP2 • TEMP2) ;
hbarCil - 13

[in - 1] +21 an[1p - 1] [11 - 13 * h[ip - 1] [ii - 13 [in - 	 ;

pbar[il - 1]
[in - 13 • pbar[il - 1] [in - 1] / anp[11 - 1] / anbarCil - 1];

TEMP2 a pbar[11 - 1][1u - 1];
varp[il - 1]

[in - 1] m ppbar[11 - 1]
-	 - anp[il - 1] • anbar[il - 1] • (TEMP2 * TEMP2);

varp[il - 1][1n - 1] • varp[11 - 1]
(in - 13 / (anp[11 - 1] - 1.0) / anbar[11 - 1];

hbar[11 - 1]
[1u - 1] hbar [11 - 1] (in - 	 / anpCil -	 / anbar [11 - 1];

if (pass am 1) {
pute(' \a' , tileout1);
FORUM • n1;
for (11 • 1; 11 <• FORUM; 11++) {

fprintf(fileoutl, "\n for locus : %s\n", locname[11 - 13);
FORLIM1 a nu;
for (1u a 1; in	 FORUM; iu++) {

fprintf (fileoutl , "f is: %2u", 1u);
FORLIM2 up;
for (1p a 1; ip	 FORLIM2; ip++) {

	

if (anCip - 13[11 - 1] !• o at p[ip - 13[11 -	 - 13 > 0.0001 at
p[ip -	 -	 Ciu -	 < 0.0090)

temp 4.0 *	 -	 -
- 13 • ( 1 - pup -	 [1.1 - 1] Ciu - I]) • anCip - 13

[ii - 1] / (2.0 • an[ip - 1] [11 - 1] - 1 .0) ;
temp	 h[ip - 13 [11 - 1] [iu - 13 / temp;
fprintf (fileoutl , "%8 .4f" , temp) ;

} else
fprintf(fileout1, " 	u),

1
puto( 2 \n l , fileoutl);

tterm1 0.0;
tterm2 m 0.0;
tterm3 • 0.0;
tterm4 m 0.0;
tterm6 a 0.0;
.FORLIM • nl;
for (11 1; D. <= FORUM; il++)

if (anp[il -1] >1 kk anbar[11 -13 != 0)
terml[11 - 1]	 0.0;
term2[11 - 1] • 0..0;
term3[11 - 1] 0.0;
term4[11 - 1] • 0.0;
term6[11 - 1] • 0.0;

•	 a• 0.0;
b a 0.0;
c * 0.0;

.FORLIM1 a nu;
for (in a 1; in (• FORLIM1; iu++)

if (pbarCil -	 - 1] > 0.00001 kk pbar[11 1][iu 1] < 0.99999)
a pbar[11 l][iu - 1] * (1.0- pbar[il - 1][iu - 1]);	 •
a +a (1 .0 - anp[11 - 1]) • varp[il - 13 Ciu - 13 / anp[11 - 1];
b a a;
a -m hbar[11 - 1][1u - 1] / 4.0;
a a varp[11 - 1] [iu -	 - a / (anbar[il - 13 - 1) ;
a * an air( -	 • a / adc [ 11 - ] ;
b +0 (1.0 - 2.0 • anbar[il - 1]) * hbar[11 - 13

[in - 13 / 4.0 / anbar[il - 1];
b	 anbarCil - 13 • b / (anbar[11 - 13 - 1.0);
c	 hbar[11 - 1] [iu - 1] / 2.0;
capf [11 - 1] Ciu - 13	 (a + b) / (a + b + c) ;
thetaCil - 1] [in - 13	 a / (a + b + c) ;
smallf[11 - 1][1u - 1] b / (b +
term1C11 -	 + a + b;
term2[11 - 1] +AI • + b + c;
'term3[11 - 13 +m a;
term4[11 - 13 +a b;
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term6[1.1 - 1] +m b + c;
1 else (

capt[il - 1]Cin - 1] m 0.0;
theta[il - 1]Cin - 13	 0.0;
mmallt[il - 1] Cin - 1] m 0.0;

it (pass mil 1 kk term2[il - 1] ! m 0.0 kk term6[1.1 - 1] I m 0.0) {
tprintt(tileoutl, "\n for locus : %s\n", locnameCil - 13);
tprintt(fileoutl, "allele capt	 theta	 smallf \n"):

it (term2[il - 1] ! m 0.0 kk term6Ci1 - 1] I . 0.0) {
captl[il - 1] m terml[il - 1] / term2Cil - 131
thetal[il - 1]	 term3[1.1 - 1] / term2Cil - 131
smallt1Cil - 1] m term4Cil - 13 / term6Cil - 1];

else {
captl[il - 1] • 0.0;
thetalCil - 13 m 0.0;
smalltl[il - 1] m 0.0;

it (pass mm 1 kk term2Cil - 1] ! m 0.0 kk term6[il - 1] !m 0.0)
?ULM 0 nu;
for (in m 1; in <• FORLIN1; in++)

tprintt(tileoutl, "Uu%10.4t%10.4t%10.4f\n",
in, capt[il - 1] Cin - 1], theta[il 1]
[in - 1], smallt[il -	 - 13);

tprintt(fileoutl, " all %9.4t%10.4f%10.4f\n",
captl[il - 1], thetalCil - 13, smalltl[il 1]);

tterml 4411 terml[il - 1];
tterm2 +0 term2[il - 1];
tterm3 +0 term3[1.1 1];
tterm4 +m term4[11 - 1];
tterm6 +m term6[11 -

1

teapt m tterml / tterm2;
ttheta m tterm3 / tterm2;
tsmallt m tterm4 / tterm6;
it (pass != 1)

return;
tprintt(tileoutl, "\n over all loc1\n");
fprinti(fileoutl, "	 capt	 theta	 smallt\n");
tprintt(fileoutl, IS	 %10.4810.4t%10.4t\n1, teapt, ttheta, tsmallf);
ttlush(tileoutl);
P_ioresult m 0;
real_t[0] m tcapt;
real_f[1] • ttheta;
real_f[2] a tenant;

} /*of procedure calctstat*/

Static Void jack_ov_pop(ini, sup)
unsigned short inf, sup;

double captlj, capfjj, smallf1j, smallfjj, thetalj, thetajj, anbarj,
annbarj, ancj, term1j, term2j, term3j, term4j, term6j, pbarj, ppbarj,
hbarj, varpj, aj, bj, ej;
unsigned short anpl, anp2, FORLIN, FORLIM1;
long TEMP;
unsigned short FORLIM2;
double TEMPI;

tprintt(tileoutl, "\njackkniting over populations.\n"):
ttlush(fileoutl);
P_ioresult a 0;
FORUM m nl;
for (ii m 1; il (13 FORLIN; il++)

anbarCil - 13 •m anp[11 - 1];
anpl m anp[il 1] - 1;
anp2 m anpl - 1;
captlj • 0.0;
captjj m 0.0;
thetalj m 0.0;
thetajj m 0.0;
smallilj m 0.0;
smalltjj a 0.0;
FORLIM1 m nu;
for (1u al 1; in <m FORLIM1; in++) (

pbar[il - 1][in - 1] *m anbar[il 1];
hbarCil - 13Ciu - 13 am anbarCil - 13;

for (ip m int; ip <0 sup; ip++) {
it (anCip - 1311.1 - 1] !• 0)

anbarj m (anbar[il - 1] - anCip	 - 13) / anpl;
TEMP a anCip - 13	 - 1];
annbarj • annbarCil - 13 - TEMP • TEMP;
ancj m (anpl * anbarj - annbarj / anpl / anbarj) / anp2;
termlj • 0.0;
term2j m 0.0;
term3j • 0.0;
term4j m 0.0;
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term6j is 0.0;
FORLIM2 m nu;
for (in al 1; in <m FORLIM2; in++) {

pbarj m pbar[il - 1]
Tin - 1]	 an[ip - 13[1.1 - 13 • p[ip - 13[11 - 13[in - 1];
TEMPI 0 p[ip - 13[il -	 - 1];
ppbarj • ppbar[il - 13
tin - 1] - an[ip - 13[11 - 1] • (TEMP/. * TEMPI);
hbarj • hbar[il - 13
(in - 1]	 an[ip - 13[1.1 - 1] S h[ip - 13[11 -	 - 13;
pbarj • pbarj / anpl / anbarj;
varpj m (ppbarj - anpl • anbarj • pbarj • pbarj) / anp2 / anbarj;
hbarj m hbarj / anpl / anbarj;
it (pbarj > 0.00001 kk pbarj < 0.99999) {
aj m pbarj • (1.0 - pbarj) - anp2 * varpj / anpl;
bj m aj;
aj m varpj - (aj - hbarj / 4.0) / (anbarj - 1.0);
aj m aj * anbarj / ancj;
bj +0 (1.0 - 2.0 • anbarj) * hbarj / 4.0 / anbarj;
bj m anbarj * bj / (anbarj - 1.0);
cj m hbarj / 2.0;
termij +m aj + bj;
term2j 4 • aj + bj + cj;
term3j	 aj;
term4j +m bj;
term6j +0 bj + cj;

it (term2j ! m 0.0 kk term6j !• 0.0) (
capflj +m teradj / term2j;
TEMPI termlj / term2j;
captjj +• TEMPI • TEMPl;
thetalj +0 term3j / term2j;

term3j / term2j;
thetajj +0 TEMPI * TEMPI;
smalltlj +0 term4j / term6j;
TEMP/. S term4j / term6j;
smalltjj +m TEMPI * TEMPI.;

if (term2j !• 0.0 kt term6j != 0.0)
tprintf(tileoutl, "\n for locus : %s\n", locname[il - 13);
tprintf(fileout1, " capt theta smallt\n");
captjj -m captlj * capflj / angil - 13;
captjj m sqrt(anpl * captjj / anp[il - 13);
captlj m anp[il - 1] • captl[il - I] - anp/ * captlj / anp[il - 1];
thetajj -m thetalj * thetalj / ang11 - 1];
thetajj m sqrt(anpl * thetajj / anp[il - 1]);
thetalj m anp[il - 1] * thetal[il - 1] - anp1 * thetalj / sap (ii - 1];
smallfjj -m smalltlj • smalltlj / anp[11 - 1];
smalltjj m sqrt(anpl * smallfjj / angil - 13);
smallflj • anp[il - 1] • smalltl[il - 1] - anpl * smalltlj / anp[il - 1];
tprintt(tileoutl, " total%10.4t%10.4n10.41 means\n",
capflj, thetalj, smallf1j);
tprintt(fileoutl, " 	 %10.4f%10.4f%10.4t std. devs.\n",
capfjj, thetajj, smalltjj);
tflush(fileoutl);
P_ioresult m 0;

Static Void jackknife(int, sup, ens)
unsigned short int, sup;
Char ens;

double captlj, captjj, smalltlj, smalltjj, thetalj, thetajj, termij, term2j,
term3j, term4j, term6j;
unsigned short an11, FORLIM;
double TEMP;

it (sup > 2)
jack_ov_pop(int, sup);

anll m sal - 1;
captlj m 0.0;
capijj m 0.0;
thetalj • 0.0;
thetajj m 0.0;
smallflj • 0.0;
smalltjj m 0.0;
FORLIM m n1;
for (ii m 1; il <• FORLIM; il++) {
termlj tterml - term1[il - 1];
term2j m tterm2 - term2[il - 1];
term3j m tterm3 - term3[il - 1];
term4j 0 tterm4 - term4[11 - 1];
term6j m tterm6 - term6[11 - 1];
if (term2j i • 0 kit term6j !• 0) {

captlj +m termlj / term2j;
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TEMP teradj / term2j;
capfjj 401 TEMP * TEMP;
thetalj +m term3j / term2j;
TEMP m term3j / term2j;
thetajj +m TEMP * TEMP;
smallflj +m term4j / term6j;
TEMP m term4j / termSj;
smallfjj +m TEMP • TEMP;

capfjj m sqrt(anll a (capfjj - capflj * capflj / anl) / anl);
capflj anl • tcapf - anll * capflj / anl;
thetajj • sqrt(anll a (thetajj - thetalj • thetalj / anl) / an1);
thetalj • anl * ttheta - anll * thetalj / anl;
smallfjj m sqrt(anll • (smallfjj - smallflj • smallflj / ml) / ml);
mmallflj anl • tsmallf - anll * smallflj / ml;
fprintf(fileoutl, "\n jackknifing over loci.\n");
if (fileouti I m KULL)
fileoutl m freopen(fileout1JAME, "a", fileout1);

else
fileout1 m fopen(fileout1_NAMI, "a");

if (fileout1 mm NULL)
_EscIO(FileNotFound);

fprintf(fileoutl, "\n 	 capf	 theta	 smallf\n");
fprintf(fileoutl, " total%10.4f%10.42%10.4f means\n",
capflj, thetalj, smallflj);
fprintf(fileoutl, "	 S10.4f%10.4f%10.4f std. devs.\n",
capfjj, thetajj, smallfjj);
fflush(fileoutl);
P_ioresult m 0;

1 /*proc jackknife*/

typedef float perpop[npmax];
typedef float sperperpop[npmax];

Static Void perpair()

double smallfp, tsmallfp, pqp, tpqp, ap, bp, cp, termlp, term2p, term3p,
term4p, termSp;
perperpop tterm2p, tterm3p;
double thetapp, smallfpp, tthetapp, anbarp, annbarp, ancp, pbarp, ppbarp,

varpp, hbarp;
perperpop fpp, fppt, mppt;
unsigned short ipl, ip2;
float maxmig;
unsigned short FORLIM, FORLIM1;
Char STR2[256];
unsigned short FORLIM2, FORLIN3;
long TEMP, TEMPl;
double TEMP2, TEMP3;

FORLIN m up;
for (ip 1; ip <• FORLIM; ip++)
Ipp[ip - 1] m (float ONalloc(sizeof(perpop));
fppt[ip - 1] • (float *)Malloc(sizeof(perpop));
tterm2p[ip - 1] m (float ONalloc(sizeof(perpop));
tterm3p[ip 1] • (float *)Malloc(sizeof(perpoP));
mppt(ip - 1] • (float *)Malloc(sizeof(perpop));

FORUM m up;
for (ipi m 0; ipl < FORUM; ipl++) {

FORLIN1 m up;
for (ip2 m 0; ip2 < FORLIN1; ip2++)
fppt[ipillip2] -9.99;
tterm2pCip2Hip1] • 0.0;
tterm3p[ip2llip1] 0.0;

}
Iprintf(fileoutl, "\n** ********** **************** ******* ***** ***** ***\n");
fprintf(fileout1, " theta per locus over pair of populations.\n");

?ORLIN m nl;
for (il m 1; 11 <• FORLIR; il++) {
fprintf(fileoutl, "\n for locus: %s\n\n", locname[il 1]);
fprintf(fileoutl, "	 9;

FORLIM1 m up;
for (ip 0 1; ip <0 FORLIM1; ip++)
fprintf(fileout1, "%eu", ip);

putc( 2 \n', fileoutl);

FORLIN1 m up;
for (1p1 • 0; 1p1 <

FORLIM2 • up;
for (1p2 0; ip2

fpp[ipl][ip2] m -9.99;

FORLIN1 m up;
for (ipi • 0; ip1 <

fprintf(fileoutl,
FORLIM2 m up;

FORLIM1; ipl++) f

< FORLIN2; ip2++)

FORUM; ipl++) {
"%eu", ipl + 1);
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for (42 ipl; ip2 < FORLIN2; ip2++)
if (ipl + 1 an ip2 + 1) ( /*calculation of smallf per pop/

mmallfp a 0.0;
pqp 0.0;
tsmallfp 0.0;
tpqp • 0.0;
FORLIN3 nu;
for (in n 1; in <a FORLIN3; in++) {

if (p[ipl][il - l][in - 1] > 0.00001 kk
p[ipl][il - 1] [in - 1] < 0.99999)

pqp • p[ipl][il -	 - 1] • (1.0 - p[ipl][il - i][iu 1]);
smallfp n 1 - h[ip1][il - 1] [in - 1] / 2.0 / pcip;
tsmallfp +n smallfp • pcip;
tpqp +a pqp;

1
if (tpqp != 0.0) (
tsmallfp /a tpqp;
tpqp • 2.0 • an[ip1][il 1] - 1.0;
tsmallfp • (tpqp • tsmallfp + 1.0) / (tpqp + tsmallfp);
fpp[ipl][ip2] tsmallfp;

) else ( /*calculation of theta and smallf per pair of pop*/
if (an[ipl][il - 1] != 0 tk an[ip2][il - 1] t a 0)

anbarp a (an[ipl][il - 1] + an[ip2][il - 1]) / 2.0;
TEMP • an[ipl][il - 1];
TEMPI a an[ip2][il - 1];
annbarp a TEMP • TEMP + TEMPI * TEMPI;
ancp a 2.0 • anbarp - annbarp / 2.0 / anbarp;
termlp a 0.0;
term2p a 0.0;
term3p • 0.0;
term4p a 0.0;
termSp n 0.0;
FORLIN3 n nu;
for (in • 1; in <= FORLIN3; in++) {

pbarp • an[ipl][il - 1] * p[ipl][11 - 1] [in - 1] + nn[ip2]
-	 • p[ip2][il - 1] [in - 1];

TENP2 a p[ipl][11 -	 -
TEMP3 a p[ip2][il - 1] [in - 1];
PPbarp a an[ipl][il - 1] • (TEMP2 * TEMP2) + an[ip2]

[ii - 1] * (TEMP3 • TEMP3);
hbarp	 - 1] *	 - 1][in - 1] + an[ip2]

[ii - 1] * h[ip2][il - 1] [in - 1];
pbarp • pbarp / 2.0 / anbarp;
varpp s ppbarp - 2.0 * anbarp * pbarp * pbarp;
varpp /a anbarp;
hbarp • hbarp / 2.0 / anbarp;
ap pbarp * (1.0 - pbarp) - varpp / 2.0;
bp a ap;
ap -a hbarp / 4.0;
ap varpp + np / (1.0 - anbwrP);
ap anbarp * ap / ancp;
bp +0 (1.0 - 2.0 * anbarp) • hbarp / 4.0 / anbarp;
bp a anbarp * bp / (anbarp - 1.0);
cp a hbarp / 2.0;
tarsal, +a ap + bp;
term2p +a ap + bp + cp;
term3p += ap;
term4p +a bp;
term6p +a bp + cp;

tterm2p[ip2][ipl] +a term2p;
tterm3p[ip2][ipl] +a term3p;
if (term2p ! a 0.0 kk term6p !• 0.0) {
thetapp • term3p / term2p;
smallfpp a term4p / term6p;
fpp[ip1][1p2] thetapp;
fpp[ip2][ipl] thetapp;

if (ii am n1) {
if (tterm2p[ip2][ipl] I n 0.0)

tthetapp n tterm3p[ip2][ipl] / tterm2p[ip2][ip1];
fppt[ip2][ipl] a tthetapp;
fppt[ir][ip2] • tthetapp;

1

FORLIN2 • np;

this is if matrices of theta per locus and perpair
need to be written to fileoutl

s/
for (ip2 a 0; ip2 < FORLIN2; ip2++)

if (ipi + 1! . ip2 + 1) f
if (fpp[ipl][ip2] > -9.0)
fprintf(fileouti, "%6.2f", ipp[1p1)[ip2]);

else
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fprintf(fileout1, "	 .9;
else
fprintf(fileoutl, " 	 u);

putc( 1 \n o , fileoutl);

)

FORUM up;
for (ipl 0; ipl < FORLIN; ipl++)
FORLIN1 up;
for (ip2 0; ip2 < FORLIN1; ip2++) {

if (fppt[iplllip2] > 0.0)
mpt[ip1llip2] • (1.0 - tppt[ipi][ip2]) / 4.0 / fppt[ipl][ip2];

else
mpptCip13[1p2] • -999.999;

)

maxmig AI -1000.0;
FORLIN 0 up;
for (ipl • 0; ipi < FORUM; ip1++)
FORLIN1 up;
for (ip2 mi 0; ip2 < FORLIM1; ip2++)

it Gappt[ipl][ip2] > maxmig)
maxmig sippt[ipl][ip2];

)

Is printf("%10.3f\n", maxmig); */
FORUM = up;
for (ipl 1; ipl <0 FORUM; ip1++)
FORLIN1 up;
for (ip2 • 1; ip2 <0 FORLIM1; ip2++)

sprintf(STR2, "%s.mig", name);
strcpy(filemig_IANK, STR2);

}
/4.	 if (mppt[ipirCip2]<0) then mppt[ipi]Iipthmmaimig;*/

}
if (filemig ! In MULL)
filemig 0 freopen(filemig_IANE, "w", filemig);

else
filemig fopen(filemig_IAMS, "w");

if (filemig 00 MULL)
_EscIO(FileNotFound);

FORLIN up;
for (ipl = 1; ipl <30 FORLIN; ipl++)
FORLIN1 up;
for (ip2 1; ip2 <0 FORLIN1; ip2++)

fprintf(filemig, "%10.3fVhd4u\n", mppt[ip1 - 1] [1p2 - 1], ip2. iP1);
/* if ipl<>ip2 thins/
/*if mppt[ip1]142]<>999.999 then*/
putc('\n i , filemig);

)
if (filemig != NULL)
fclose(filemig);

filemig FULL;
fflush(fileouti);
P_ioresult 0 0;
FORLIN up;
for (ip • 1; ip <0 FORLIM; ip++)

Free(fppt[ip - 1]);
Free(fpp[ip 1]);
Fr..(tterm2p[ip - 1]);
Fre.(tt.rm0gip - 13);
Free(mppt[ip - 1]);

)
} /*proc perpairei

/* Local variables for quicksort: */
struct LOC_quicksort {
float **a;
;

Local Void sort(1, r, LINZ)
short 1, r;
struct LOC_quicksort *LIII;

short i, j;
float x, y;

1;
j 0 r;
x • (*LIII->a)[(1 +	 / 2 - 1];
do (

while ((*LISIE->a)(i -	 < x)
i++;

while (x < (oLIIII->a)(j - 1])
J--;

if (i <• j) {
y • (*LIIIE->a)[i - 1];
(44.111(->a)(i - 1] • (*LINK->a)0 -
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- 13 m 7;
1++ ;

J--;
}

) while (i <s j);
if (1 < j)

sort(1, j, LIU);
if (i <

sort(i, r, LIU);

/ *****	 ********** 4.4.4.444444.1.4444.444.44444.4.4..mos ************ **es/
Static Void quicksort(a_, lo, hi)
float *ea_;
short lo, hi;
{ /squicksorts/

struct LOC_quicksort V;

V.a a_;
sort(lo, hi, kV);

Static Void bootstrap(ans)
Char ans;

short 	 i, mbl, mbu, temp;
float termlb, term2b, term3b, term4b, term6b, cafl, cafu, thetl, thetu,

smlfl, calf u;
short repbb, repuu;
float cell, cabin, thetll, thetuu, smlf11, smlfuu;
unsigned short FOILIM1;

mb • 0;
for (i • 1; i <• maxboot; i++)

termlb • 0.0;
term2b • 0.0;
term3b 0.0;
term4b 0.0;
term6b 0.0;
FORLIM1 nl;
for (11 1; il <• FORUM; il++)

temp • grandom((long)nl) + 1;
termlb +m termi[temp - 1];
term2b 4.• term2[temp - 1];
term3b +• term3[temp -
term4b +0 term4Etemp - 17;
term6b 4.• term6[temp - 1];

if (term2b != 0.0 kk term6b != 0.0)
mb++;
capfb[mb - 1] termlb / term2b;
thetb[mb - i] • term3b / term2b;
smlfb[mb - 1] • torm4b / term6b;

mbl	 (long)floor(1.0 maxboot / 40.0 + 0.6);
mbu	 (long)floor(39.0 maxboot / 40.0 + 0.6);
quicksort(kcapfb, 1, maxboot);
quicksort(kthetb, 1, maxboot);
quicksort(ksmlfb, 1, maxboot);
cafl capfb[mbl - 1];
cafu capfb[mbu -
thetl thetb[mbl - 1];
thetu • thetb[mbu - 1];
smlfl • smlfb[mbl - 1];
smlfu • smlfb[mbu - 1];
repbb • (long)floor(1.0 • maxboot / 200.0 + 0.6);
repuu • (long)floor(199.0 maxboot / 200.0 + 0.6);
cell S capfb[repbb - 1];
cafuu • capfb[repuu - 1]1
thetll • thetb[repbb - 1];
thetuu thetb[repuu - 1];
calf 11 • smlfb[repbb
smlfuu • sulfb[repuu - 1];
fprintf(fileoutl, "\	
fprintf(fileoutl, " 	 bootstrapping over loci.\n\n");
fprintf(fileoutl, "	 96%% confidence interval.\n\n");
fprintf(fileoutl, " capf theta smallf\n");
fprintf(fileoutl, 110.4f/10.41%10.4f\n", cafl, thetl,
fprintf(fileoutl, "%10.42110.4f%10.4f\n\n", cafu, thetu, smlfu);
fprintf(fileoutl, "	 99%% confidence interval.\n\n");
fprintf(fileoutl, "	 capf	 theta	 smallf\n");
fprintf(fileoutl, q10.41110.4f%10.4f\n", cafll, thetll, smlf11);
fprintf(fileout1, "%10.4f%10.4f%10.41\n\n", cafuu, thetuu, salfuu);
fflush(fileout1);
P_ioresult • 0;

Static Void permwithin()
{

\n");
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unsigned short rep, i, max, temp, tempi;
uchar pop[maxind * 2];
unsigned short n[numax];
short repb, repu;
float cafl, cafu, thetl, thetu, calf 1, smlfu;
short repbb, repuu;
float cull, cafuu, thetll, thetuu, smlf11, smlfuu;
unsigned short FORUM, FORLIN1, FORLIN2, F0RLIN3;

numbperm • 6000;
FORLIN 0 numbperm - 2;
for (rep • 0; rep <m FORUM; rep++)

FORLIN1 m np;
for (ip 1; ip <0 FORLIN1; ip++) {

FORLIN2 • nl;
for (ii 0 1; il <• FORLIM2; il++)

max m an[ip -	 - 1] • 2;
if (max ! is 0) {
FORLIN3 m nu;
for (in 1; in (0 FORLIN3; in++)

n[in - 1]	 0;
FORLIN3 nu;
for (in m 1; in <0 FORLIN3; iu++)

PUP -	 - 1] (in - 1] .pm wax;
if (in mm 1)
n[iu - 1] m (long)floor(p[ip - i][il - 	 - 1] + OS;

else
nun - 1]	 n[in - 2] + (long)floor(p[ip - 1] [ii - 1]

[in - 1] + 0.6);

m 0;
FORLIN3 m nu;
for (in 1; iu <0 FORLIN3; iu++)

if (pCip - lila - 1][iu - 1] !0 0.0)
do {

pop[i - 1] • in;
} while (i != nCiu	 1]);

}
m max;

do {
temp m pop[i - 1];
tempi • grandom((long)i) + 1;
pop[i - 1] • pop[templ - 1];
pop[templ - 1] m temp;
i--;

) while (i ! m 1);
FORLIN3 m nu;
for (in 1; in <0 FORLIN3; iu++)

h[ip - 1][il - 1] (in - 1] m 0.0;
1;

while (i < max)
if (pop[i - 1]	 pop[1]) {

h[ip -	 - 1][pop[i - 1] - 1] +m 1.0;
h[ip - 1][il - 1][pop[1] - 1] +0 1.0;

+• 2;

}
}
calcfstat(1, np, ans);
capfb[rep] • tcapf;
thetb[rep] m ttheta;
smlfb[rep] • tsmallf;

capfb[numbperm - 1] real_f[0];
thetb[numbperm - 1] • real-f[1];
smlfb[numbperm - 1] • roal_f[2];
quicksort(&capfb, 1, numbperm);
quicksort(kthetb, 1, numbperm);
quicksort(ksulfb, 1, numbperm);
repb m (long)floor(1.0 • numbperm / 40.0 + 0.6);
repu (long)floor(39.0 • numbperm / 40.0 + 0.6);
cafl • capfb[repb - 1];
cafu m capfb[repu - 01
thotl 0 thetb[repb - 1];
thetu m thetb[repu - 1];
smlfl • sulfb[repb - 1];
smlfu m smlfb[repu - 1];
repbb • (long)floor(1.0 * numbperm / 200.0 + 0.6);
repuu m (long)floor(199.0 • numbperm / 200.0 + 0.6);
cafll m capfb[repbb -
cafuu • capfb[repuu - 1];
thetll • thetb[repbb - 1];
thetuu • thetb[repuu - 1];
calf 11 m smlfb[repbb - 13;
smlfuu • smlfb[repun - 13;
FORLIN • numbperm -1;
for (rep m 0 ; rep 02 FORUM ; rep++)
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frine(fileboot1, "%6h410.4f%10.41%/0.4f\n", (rep + 1), capfb[rep], thetb[rep], sm1fb[rep]);

fflush(fileboot1);
fprintf(fileoutl, "\nesessess. *********** **sees** ************ * ***** 44.\10);

	

fprintf(fileoutl, "	 permutting alleles within samples.\n\n");

	

fprintf(fileoutl, "	 96%% confidence interval.\n\n");
	fprintf(fileoutl, "	 capf	 theta	 smallf\n");

fprintf(fileoutl, 1110.4f%10.42%10.4f\n, cafl, thetl, smlf1);
fprintf(fileoutl, "S10.42110.4f%10.4f\n\n", cafu, thetu, smlfu);

	

fprintf(fileoutl, "	 99%% confidence interval.\n\n");
	fprintf(fileoutl, "	 capf	 theta	 smallf\n");

fprintf(fileoutl, "%10.4f%10.4f%10.4f\n", cell, thetll, smlf11);
fprintf(fileoutl, "%10.41%10.41%10.42\n\n", cafuu, thetun, smlfuu);
rep numbperm + 1;
do {

rep--;
} while (smlfb[rep - 1] >0 real_f[2]);
rep++;
it (rep < numbperm)

fprintf(fileoutl, "(prob fis00) 0 /10.6f\n", 1.0 - (double)rep / numbperm);
else

fprintf(fileont1, "(prob fis=0)( %10.6f\n", 1.0 / numbperm);
fflush(fileoutl);
P_ioresult 0;
/*of proc permwithin*/

Static Void permbetween()

unsigned short 1, rep, temp, tempi, max;
uchar pop[maxind * 2];
unsigned short n[npmax][numax];
unsigned short sumn[npmax];
short repb, repu;
float cafl, cafu, thetl, thetu, smlfl, smlfu;
short repbb, repuu;
float cell, cafuu, thetll, thetuu, smlf11, smlfuu;
unsigned short FORUM, FORUM, FORUM, FORUMS;

numbperm 0 6000;
FOILIN • numbperm - 2;
for (rep 0; rep <0 FORUM; rep++) {

FORLIM1 nl;
for (ii 1; il <0 FORLIM1; 11++)

max 0;
sumn[0] • an[0][il - 1] • 2;
FORLIM2 np;
for (ip 1; ip <0 FORLIM2; ip++)

max +0 an[ip - 1][il - 1] * 2;
FORLIM2 0 np;
for (ip 2; ip <0 FORLIM2; ip++)

sumn[ip - 1]	 sumn[ip - 2] + an[ip - 1] [ii 1] • 2;
it (max ! 0 0)

FORLIN2 np;
for (ip 1; ip <0 FORLIN2; ip++)

FORUMS nu;
for (iu 1; iu <= FORUMS; iu++)

	

n[ip - 1][112 - 1]	 0;
1
FOILIN2 = np;
for (ip 1; ip <0 FORLIN2; ip++) {

FORUMS • nu;
for (in 11 iu <0 FORUMS; iu++) f

p [ip - 1] Iii - 1] [iu - 1] * Is an[ip - 1] [il - 1] * 2.0;
if (ip 00 1 kk iu an 1)

n[ip - 1][iu - 1] 0 (long)floor(p[ip - l][1:1 - l][iu - 1] + 0.6);
else it (in 00 1)

n[ip - 1]
[iu - 1] • n[ip - 2][nu - 1] + (long)floor(p[ip lila - 1]

[iu - 1] + 0.6);
else

n[ip - 1]
[in - 1] 0 n[ip -	 - 2] + (long)floor(p[1p	 - 1]

uu - 1] + 0.6);

i	 0;
FORLIM2 np;
for (ip • 1; ip <0 FORLIN2; ip++) f

FORUMS 0 nu;
for (in • 1; in <0 FORUMS; iu++)

it (p[ip - 1][11 - 1][in - 1] !• 0.0) {
do f

pop[i - 1]	 iu;
while (i !• n[ip - 1][iu - 1]);

i = max;
do f

temp pop[i -
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tempi m grandom((long)i) + 1;
popCi - 1] m pop[templ 1];
pop[templ - 1] m temp;
i--;
while (i ! m 1);

FORLIN2 m np;
for (ip m 1; ip <m FORLIM2; ip++)

FORLIM3 m nu;
for (iu m 4 in <m FORLIN3; iu++)

hCip -	 - 13[iu - 1] m 0.0;
pCip -	 - 1][iu - 1] m 0.0;

ip m 1;
m 1;

do {
while (i < sumn[ip - 13) {

pCip - 13[11 - l][pop[i - 1] - 1] +m 1.0;
p[ip - 13[11 - 13[pop[i] - 1] +m 1.0;
if (pop[i - 1] I m pgp[i])

h[ip -	 - l][popCi - 13 - 1] +m 1.0;
h[ip - 1][11 - 1](pop[i] - 1] +m 1.0;

1
+m 2;

ip++;
while (ip <m np);

}
calcfstat(1 1 np, ans);
capfb[rep] m tcapf;
thetb[rep] m ttheta;
smlfbCrep] m tsmallf;

capfb[numbperm- 1] m real_f[0];
thetb[numbperm - 1] • real_f[1];
smlfb[numbperm - 1] • real_f[2];
quicksort(kcapfb, 1, numbperm);
quicksort(kthetb, 1, numbperm);
quicksort(&smlfb, 1, numbperm);
repb • (long)floor(1.0 * numbperm / 40.0 + 0.6);
repu m (long)floor(39.0 * numbperm / 40.0 + 0.6);
cafl capfb[repb - 1];
cafu m capfb[repu - 1]1
thetl m thetb[repb - 1];
thetu m thetb[repu - 13;
smlfl m smlfb[repb - 1];
smlfu m smlfb[repu - 1];
repbb • (long)floor(1.0 * numbperm / 200.0 + 0.6);
repuu m (long)floor(199.0 * numbperm / 200.0 + 0.6);
cern m capfb[repbb - 1];
cafuu m capfb[repuu - 1];
thetll m thetb[repbb - 1];
thetuu m thetb[repuu - 1];
smlf11 m smlfb[repbb - 1];
smlfuu m smlfb[repuu - 1];
FORLIN • numbperm -1;
for (rep m 0 ; rep <• FORLIM ; rep++)

frintf(fileboot2, "%6u%10.4f%10.4f%10.4f\n", (rep + 1), capfb[rep], thetb[rep], smlfb[rep]);

fflush(fileboot2);
fprintf(fileoutl, "\n******* ***** *************** ****** ****** ***** ****\n“);
fprintf(fileout1, " 	 permutting alleles within total.\n\n");
fprintf(fileoutl, "	 96U confidence interval.\n\n");
fprintf(fileout1, "	 capf	 theta	 smallf\n");
fprintf(fileoutl, H%10.4/110.4f%10.4f\n", cafl, thetl, smlf1);
fprintf(fileouti, "%10.4f%10.41%10.4f\n\n", cafu, thetu, smlfu);
fprintf(fileout1, " 	 99S% confidence interval.\n\n");
fprintf(fileout1, "	 capf	 theta	 smallf\n");
fprintf(fileout1, "%10.42%10.4f%10.42\n", cafll, thetll, smlf11);
fprintf(fileouti, "%10.4f%10.4f%10.4f\n\n, cafuu, thetuu, smlfuu);
rep m numbperm + 1;
do {

rep--;
while (capfb[rep - 1] >m real_fCO3);

rep++;
if (rep < numbperm)
fprintf(fileoutl, "(prob fit-O) m %10.6f\n", 1.0 - (double)rep / numbperm);

else
fprintf(fileoutl, "(prob fit m0)< %10.6f\n u , 1.0 / numbperm);

fflush(fileoutl);
P_ioresult m 0;

typedef uchar pops[maxind + 1][nlmax];

Static Void permmultgen()

unsigned short rep;
uchar (*pop)[amax];
unsigned short n[npmax];
unsigned short temp, max, i;



Appendix D. FSTAT.0 	 287

short repb, repu;
float call, cafu, thetl, thetu, smlfl, smlfu;
short repbb, repuu;
float cull, cafuu, thetll, thetuu, smlf11, smlfuu;
Char STR1[266];
unsigned short FORLIN, FORLIM1;
int TEMPI;

numbperm m SOOOL
pop m (uchar(m)[nlmax])Nalloc(sizeof(pops));

/10
sprintf(STR1, "%s.tmp", name);
strcpy(fileout2JAME, STR1);

fileont2 m tmpfile(fileout2);
FORLIM m numbperm - 2;
for (rep • 0; rep <ms FORUM; rep++)

rewind(filein);
rewind(fileout2);

fscanf(filein, "%hd%hd%hdUE'An]", knp, knl, knu);
getc(filein);
FORLIN1 m up;
for (ip m 1; ip <23 FORUM.; ip++)

n[ip - 1] 10 0;
i m 1;
FORLIM1 m nl;
for (ii m 1; il <35 FORLIM1; il++) {

fscanf(filein, "%*[-\n]");
getc(filein);

while (!P_eof(filein)) {
fscanf(filein, "%hd", kip);
if (ip mm 0)

continue;
n[ip - 1]++;
FORLIM1 nl;
for (ii m 1; il <m FORLIM1; il++) {

fscanf(filein, "%d", kTEMP1);
pop[i][il - 1] m TEMPI;

fscanf(filein, "%*['\4");
getc(filein);
J.++;

1
max m i - 1;
FORLIMI • up;
for (ip m 2; ip <m FORUM; ip++)

n[ip - 1] +m n[ip - 2];
m max;

do {
FORUM m nl;
for (ii m 1; il <0 FORLIM1; il++)

pop[0][il - 1] • pop[i][il - 1];
temp a grandom((long)i) + 1;
FORLIM1 m nl;
for (ii 0 1; il <0 FORLIMI; il++) {

pop[i][11 - 1] m pop[temp][11 - 1];
Pop [temp] [ii - 1] m Pop [0] [ii - 1];

i--;
while (i ! m 1);

fprintf(fileout2, "%3u%3u%311\n", up, iii, nu);
FORLIMI • nl;
for (ii m 1; il <m FORLIM1;i1++)
putc('\niaileout2);
111 0;

ip m 1;
do {

do {

fprintf(fileout2, "%3u", ip);
FORLIM1 m n1;
for (il m 1; il <m FORLIM1; il++)
fprintf(fileout2, "%3d", pop[i][il 1]);

putc( 2 \n 3 , fileout2);
while (i ! mo nlip - 17);

ip++;
1 while (ip	 up);
readdata(kfileout2);
calcfstat(1, up, ans);
capfb[rep] m tcapf;
thetb[rep] m ttheta;
smlfb[rep] m tenant;

capfb[numbperm - 1] m real_f[0];
thetbEnumbperm - 1] 0 real_f[1];
smlfb[numbperm - 1] m real_f[2];
quicksort(kcapfb, I, numbperm);
quicksort(kthetb, 1, numbperm);
quicksort(ksmlfb, 1, numbperm);
repb m (long)floor(1.0 numbperm / 40.0 + OM;
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repu • (long)floor(39.0 * numbperm / 40.0 + 0.6);
cafl capfb[repb - 1];
cafu capfb[repu - 1];
thetl m thetb[repb - 1];
thstu m thetb[repu - 13;
smlfl m smlfb[repb - 1];
smlfu m smlfb[repu - 1];
repbb m (long)floor(1.0 * numbperm / 200.0 + 0.6);
repuu m (long)floor(199.0 * numbperm / 200.0 + 0.6);
cafll m capfb[repbb 1];
cafuu • capfb[repuu - 131
thetll m thetb[repbb 1J;
thetuu m thetb[repuu 1];
smlill m smlfb[repbb 1];
smlfuu m smlfb[repuu 1];
FOILIN m numbperm -1;
for (rep • 0 ; rep <0 FORUM ; rep++) {
frintf(fileboot3, "%6 n410.4n10.42%10.4f\n", (rep + 1), capfb[rep], thetb[rep], smlfb[rep]);

fflush(fileboot3);
fprintf(fileoutl, "\ 	
fprintf(fileoutl, "	 permuttin genotypes within total.\n\n");
fprintf(fileoutl, " 	 95%% confidence  intervalAn\n");
fprintf(fileouti, "	 capf	 theta	 smallf\n");
fprintf(fileoutl, "%10.4f%10.4f%10.4f\n", cafl, thetl, smlf1);
fprintf(fileoutl, "%10.4f%10.4f%10.4f\n\n", cafu, thetu, smlfu);
fprintf(filsouti, "	 99%% confidence interval.\n\n");
fprintf(filsouti, "	 capf	 theta	 smallf\n");
fprintf(filsoutl, .110.4/110.4n10.41\n", cafll, thetll, smlf11);
fprintf(filsoutl, "%10.42%10.4n10.4f\n\n", cafuu, thetuu, smlfuu);
rep • numbperm + 1;
do

rep--;
} while (thetb[rep - 1] >mm real_f[1]);
rep++;
putc( 3 \20, fileout1);
if (rep < numbperm)
fprintf(filsoutl, "(prob fst•O) • %10.6f\n", 1.0 - (double)rep / numbperm);

else
fprintf(fileoutl, "(prob ist•0)< %10.6f\n", 1.0 / numbperm);

fflush(filsout1);
fclose(fileout2);
P_ioresult m 0;
Free (pop)

1

main(argc, argv)
int argc;
Char *argv[];
{
unsigned short FORUM;

PASCAL_MAII(argc, argv);
filemig m KULL;
filepar m TULL;
fileini • NULL;
fileout2 m NULL;
filsouti • NULL;
filein a NULL;
filebootl m NULL;
fileboot2 m NULL;
fileboot3 m KULL;
ens m 111);
pass 0;
strcpy(fileini_IAME, "fstat.ini");
if (fileini ! m NULL)
fileini • freopen(fileini_IAME, "r", fileini);

else
fileini m fopen(fileini_KAME, "r");

if (fileini mm KULL)
_EscIO(FilegotFound);

fscanf(fileini, "%laid", ksl, ks2);
if (fileini I m KULL)
fclose(fileini);

fileini m KULL;
strcpy(name, P-argv[1]);
sprintf(namedat, is.sdb", name);
sprintf(nameout, "%s.out", name);
sprintf(namebootl, qs.bo1", name);
sprintf(nameboot2, "%s.bo2", name);
sprintf(nameboot3, "%s.bo3", name);
strcpy(filein_NAME, namedat);
if (filein f m NULL)
Mein m freopen(filein_NAME, "r", filein);

else
filein m fopen(filein_IATE, "r");

if (filein mm NULL)
_EscIO(FilelotFound);

fscanf(filein, "%hcalland%*[-\n]", knp, knl, knu);
getc(filein);
strcpy(filsoutl_TAME, flameout);
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if (fileoutl !m KULL)
fileoutl m freopen(fileoutl_IAME, "w", fileoutl);

else
fileoutl m lopen(fileoutl_NAME, "w");

if (fileoutl um KULL)
_EscIO(FileNotFound)i

strcpy(filebootl_IAME, namebootl);
if (filebootl ! m NULL)

filebootl m freopen(filebootl_IAME, "w", filebootl);
she

filebootl m fopen(filebootLIAME, "w");
it (filebootl mm KULL)

_EscIO(FilelotFound);
strcpy(fileboot2JAME, nameboot2);
it (fileboot2 I m NULL)

fileboot2 m freopen(fileboot2JAME, "w", fileboot2);
else

fileboot2 m fopen(fileboot2JAME, "w");
if (fileboot2 mm NULL)

_EscIO(FileNotFound);
strcpy(fileboot3_NAME, naneboot3);
it (fileboot3 1 m NULL)

fileboot3 m freopen(fileboot3JAME, "w", fileboot3);
else

fileboot3 • fopen(fileboot3JAME, "w");
if (fileboot3 mm NULL)
_EscIO(FilektFound);

FORLIM • up;
for (ip m 1; ip <m FORUM; ip++)

h[ip - 1] m (float(*)[numaz])Malloc(sizeof(peral));
pup - 1] m (float(*)[numax])Malloc(sizeof(peral));

}
amber m (double *)Malloc(sizeof(fst));
annbar • (double *)Malloc(sizeof(fst));
inc m (double *)Malloc(siseof(fst));
terml • (double *)Malloc(sizeof(fst));
term2 m (double *)Malloc(sizeof(fst));
term3 m (double *)Nalloc(sizeof(fst));
tern4 • (double *)Malloc(sizeof(fst));
term6 • (double *)Malloc(sizeof(fst));
pbar • (double(*)[numax])Malloc(sizeof(frq));
ppbar m (double(*)[numax])Malloc(sizeof(frq));
Tarp • (double(*)Enumax3)Malloc(sizeof(frq));
hbar m (double(*)[numax])Malloc(sizeof(frq));
capf m (double(*)[numaz])Malloc(sizeof(frq));
theta a (double(*)[numax])alloc(sizeof(frq));
amallf m (double(*)[nuax3)Malloc(sizeof(frq));
capfl m (double *)Malloc(sizeof(fst));
thetal m (double *)Malloc(sizeof(fst));
mann m (double *)Malloc(sizeof(fst));
an 0 (unsigned short(*)[n]max])Malloc(sizeof(numb_per_loc));
capfb m (float *)Malloc(sizeof(sorted));
thetb m (float *)Malloc(sizeof(sorted));
smlfb m (float *)Malloc(sizeof(sorted));
readdata(kfilein);
basic_stats();
npinf m 1;
npsup m up;
calcfstat(npinf, npsup, ens);
jackknife(npinf, npsup, ins);
bootstrap(ans);
perpair();
permwithin();
pernbetween();
permmultgen();
FORUM m np;
for (ip m 1; ip	 FORUM; ip++)
Free(h[ip 0);
Free(p[ip - 1]);

}
Free(capfb);
Free(thetb);
Free(smlfb);
Free(an);
Free(annbar);
Free(anc);
Free(terml);
Free(term2);
Free(term3);
Free(term4);
Free(term6);
Free(pbar);
Free(ppbar);
Free(varp);
Free(hbar);
Free(capf);
Free(theta);
Free(smallf);
Free(capfl);
Free(thetal);
Free(smallf1);
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if (fileoutl ! NULL)
felose(fileoutl);

fileontl NULL;
if (fileini ! NI NULL)
fileini • freopen(fileini_IANE, "w", fileini);

else
fileini • fopen(fileini_IANE, "w");

it (fileini	 KULL)
_EscIO(FilellotFound);

fprintf(fileini, "%ld %ld\n", si t n2);
if (fileini l a NULL)
fclose(fileini);

fileini KULL;
if (filein !• NULL)
fclose(filein);

if (fileontl 1 0 NULL)
fclose(fileontl);

if (fileini != NULL)
fclose(fileini);

if (filepar ! NULL)
fclose(filepar);

if (filemig ! El NULL)
fclose(filenig);

if (filebootl ! • NULL)
felosse(fileboot1);

if (fileboot2 ! mi KULL)
fclose(fileboot2);

if (fileboot3 ! NULL)
fclose(fileboot3);

exit(EXIT_SUCCESS);
}
/* End. a/
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20	 3	 $
30-3
PG -1
3P -2

22 13 22
22 11 22

22
22
22
22
22
12

23 22
22 12
23 33
11 22
12 22
22 12

32132222 12 22 22
32112323 22 22 23
22 11 23 22 22 12
22112323 22 23 22
22112323 22 22 22
22232222 22 22 22
22113333 22 22 12
22113333 22 12 23
22112323 22 22 22
32112222 22 22 33
22 11 22 12 11 13
32232323 22 22 22
22 11 23 22 23 12
22112222 12 22 12
22 11 22 22 22 22
22 11 22 22 22 11
22112222 22 33 22
22 23 22 22 33 22
22112222 22 33 22
22122222 22 22 22
22 12 22 22 22 22
22 12 33 12 11 11
22 22 33 22 23 22
22 33 23 22 23 22
22332323 22 11 22
22 22 23 22 22 23
22 33 23 22 33 33
22 12 22 22 22 23
22 12 22 22 11 22
22122232 22 00 23
22 33 22 11 00 22
22 23 23 22 33 23
22232222 22 22 22
22222222 22 33 23
22 23 23 22 33 22
22 23 23 22 22 22
22 23 23 11 22 23
22 23 23 22 23 23
12 11 22 22 22 12
22222323 22 22 22
12 11 23 22 23 23
11 11 22 22 23 33
11 22 22 22 23 22
22 22 22 22 22 23
22 22 22 22 11 23
22 22 22 22 11 22
11 22 22 22 11 23
22 22 22 22 22 12
11 12 22 22 22 23
11 22 22 22 23 23
11 11 22 22 13 22
22 23 23 22 22 22
22 12 22 22 33 22
11 12 22 22
22 22 22 22 12 22
22 11 22 1 22 11 22
22 33 23 1 22 11 22
22 33 23 1 22 12 22
22232222 1 22 12 22
32231212 1 22 11 22
22 23 23 1 22 22 22
22 12 22 1 22 12 22
22 12 12 1 22 12 22
22 22 23 1 22 12 22
22 22 22 1 00 11 22
22 12 12 1 11 12 22
22 12 12 1 22 22 22
22 23 22 1 22 /1 22
32232222 1 22 11 22
22 22 23 1 22 11 12
22 12 23 1 22 11 22
32222323 1 22 11 22
32222323 1 22 23 12
22 22 23 1 22 13 22
22 33 23 1 22 23 22
22 33 23 1 22 12 22
22 23 23 1 22 22 22
32122323 1 22 22 22
22 23 22 1 22 22 22
22 22 22 ,	 1 22 22 12
22 22 22 1 12 22 22
22 11 23 1 22 22 12
22 22 22 1 22 22 12
22 23 12 1 12 33 22
22 22 13 1 22 12 22
22 22 23 1 22 12 22
12 12 22 1 12 23 22
22 22 33 1 22 22 22
22 33 22 1 22 23 22
22 22 22 1 12 12 22
12 23 23 1 12 12 12
22232323 1 22 12 22
12 22 22 1 12 12 22
22 22 22 1 22 11 22
22232323 1 22 11 12
12 23 22 1 22 11 12
22231111 1 22 12 22
22 33 22 1 22 11 22
22 22 22 1 22 22 22
22 33 23 1 22 11 22
11 23 23 1 22 23 12
12 12 12 1 12 22 22
22 11 22 1 22 22 22
22 22 22 1 22 22 22
22 22 33 1 22 22 11
22222222 1 22 22 12
32332323 1 22 22 22
22 23 23 1 22 22 12
22 12 22 1 22 33 22
22233333 1 22 22 22
32331212 1 22 22 22
22 22 23 1 22 12 22
22 22 23 1 22 12 22
11 12 22 1 22 23 22
22233333 1 22 12 12
22 23 33 1 22 22 33
22333333 1 22 11 33
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13 12 11 23 19 22 23 22
13 22 11 33 19 22 11 22

22 11 13 19 22 22 22
11 22 11 13 14 22 33 22
13 12 11 13 14 22 12 23
IS 22 11 13 19 22 33 22
13 22 11 13 19 22 33 22
13 22 11 22 14 22 33 22
13 22 23 13 14 22 22 22
13 22 11 13 14 22 33 22
13 22 11 12 19 22 23 22
13 22 11 23 14 22 33 22
13 22 11 22 14 22 22 22
13 22 11 13 14 22 33 22
13 22 11 22 14 22 22 22
13 22 11 33 20 22 22 33
13 22 11 33 20 22 33 33
13 22 11 33 20 22 13 33
14 22 11 22 20 22 23 33
14 12 11 22 20 22 23 33
14 12 33 22 20 22 13 33
14 22 22 12 20 22 13 33
14 22 22 22 20 22 13 33
14 22 22 22 20 22 22 33
14 22 22 22 20 22 33 33
14 22 11 22 20 22 22 33
14 22 12 22 20 22 11 33
14 22 22 22 20 22 13 33
14 22 22 22 20 22 13 33
14 22 23 22 20 22 12 22
14 22 22 22 20 22 33 22
14 22 23 22 20 22 33 22
14 22 23 22 20 22 22 22
14 22 23 22 20 22 13 22
14 22 33 22 20 22 12 22
14 22 33 22
14 22 23 22
14 22 33 22
16 22 12 33
/I 22 12 13
18 22 12 33
15 22 11 23
15 22 12 23
15 22 13 33
15 22 22 33
15 22 22 12
15 22 22 33
15 22 11 33
15 22 13 13
15 22 12 13
15 22 It 13
15 22 22 13
15 22 11 33
16 22 11 33
IA 22 11 23
15 22 11 13
IS 22 11 33
15 22 13 23
16 22 It 22
16 22 11 22
16 22 12 22
16 22 12 22
16 22 11 22
16 22 11 22
16 22 11 22
16 22 22 22
16 22 11 22
16 22 11 22
16 22 11 22
16 22 13 22
16 22 13 22
16 22 13 22
16 22 13 23
16 22 13 33
16 22 13 33
16 22 13 12
16 22 13 22
16 22 13 22
17 22 13 22
17 12 13 22
17 12 13 12
17 22 23 22
17 22 11 22
17 22 23 22
17 12 11 22
17 22 13 00
17 22 13 00
17 22 33 22
17 22 13 22
17 22 13 22
17 22 11 22

17 22 13 22
17 22 13 22
17 22 13 13
17 22 22 22

• 17 22 12 22
17 22 13 00
48 22 22 22
18 12 22 12
18 22 11 22
IS 22 12 22
18 22 12 22
IA 22 23 12
18 22 12 22
18 12 12 22
16 22 12 22
18 22 22 22
18 22 11 13
18 22 12 13
16 22 12 11
16 22 23 11
18 22 23 12
18 22 23 22
16 22 23 22
16 22 23 12
18 22 11 22
16 22 13 12
14 22 12 22
14 22 00 22
14 22 12 22
19 22 12 22
19 22 23 22
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1	 2	 3 4	 6 6 7 6 9 10 11 12 13 14 16 16	 17 18 19 20
locus: 506-2
n	 20	 20	 20 20	 20 20 20 20 20 19 20 20 20 20 30 20	 20 20 20 20

p:	 1 0.00 0.00 0.40 0.00 0.10 0.12 0.10 0.07 0.06 0.05 0.15 0.03 0.06 0.06 0.00 0.00 0.07 0.06 0.00 0.00
p:	 2 1.00 1.00 0.60 1.00 0.90 0.88 0.90 0.93 0.96 0.96 0.66 0.97 0.96 0.96 1.00 1.00 0.93 0.96 1.00 1.00
NI:	 10.00 0.00 0.10 0.00 0.20 0.06 0.20 0.06 0.00 0.00 0.30 0.06 0.10 0.10 0.00 0.00 0.16 0.10 0.00 0.00

20.00 0.00 0.10 0.00 0.20 0.05 0.20 0.05 0.00 0.00 0.30 0.05 0.10 0.10 0.00 0.00 0.15 0.10 0.00 0.00
3s:	 1 0.00 0.00 0.49 0.00 0.16 0.22 0.16 0.14 0.10 0.10 0.26 0.05 0.10 0.10 0.00 0.00 0.14 0.10 0.00 0.00
hi:	 20.00 0.00 0.49 0.00 0.18 0.22 0.16 0.14 0.10 0.10 0.26 0.06 0.10 0.10 0.00 0.00 0.14 0.10 0.00 0.00

locus: PC-1
a	 20	 20	 20 20	 20 20 20 18 20 20 20 20 20 20 20 20	 20 20 19 20

p:	 1 0.80 0.20 0.33 0.16 0.07 0.12 0.15 0.17 0.23 0.62 0.28 0.26 0.90 0.17 0.60 0.68 0.47 0.36 0.16 0.28
p:	 2 0.07 0.46 0.55 0.60 0.65 0.53 0.76 0.39 0.55 0.30 0.62 0.66 0.07 0.50 0.33 0.10 0.12 0.47 0.39 0.30
14	 3 0.12 0.35 0.12 0.26 0.28 0.36 0.07 0.44 0.23 0.07 0.10 0.10 0.03 0.33 0.07 0.23 0.40 0.17 0.46 0.42
ha:	 1 0.10 0.30 0.15 0.30 0.05 0.15 0.10 0.00 0.15 0.36 0.35 0.20 0.00 0.06 0.40 0.55 0.66 0.40 0.21 0.45
ha:	 2 0.15 0.60 0.20 0.60 0.40 0.46 0.26 0.11 0.30 0.40 0.46 0.30 0.05 0.30 0.25 0.10 0.15 0.65 0.37 0.20
ha:	 3 0.25 0.30 0.05 0.30 0.36 0.30 0.15 0.11 0.35 0.15 0.10 0.10 0.05 0.25 0.15 0.46 0.70 0.35 0.16 0.45
hi:	 1 0.33 0.33 0.45 0.26 0.14 0.22 0.26 0.29 0.36 0.48 0.41 0.38 0.18 0.30 0.49 0.46 0.51 0.47 0.27 0.41
ho:	 2 0.14 0.51 0.61 0.49 0.47 0.51 0.36 0.49 0.51 0.43 0.48 0.47 0.14 0.51 0.46 0.18 0.22 0.61 0.49 0.43
hi:	 3 0.22 0.47 0.22 0.38 0.41 0.47 0.14 0.51 0.36 0.14 0.18 0.18 0.06 0.46 0.14 0.36 0.49 0.30 0.61 0.60

locus: 135-2
n	 20	 20	 20 20	 20 20 20 20 20 20 20 20 20 20 20 20	 17 20 20 20

p:	 1 0.00 0.00 0.00 0.10 0.10 0.06 0.17 0.10 0.05 0.05 0.12 0.17 0.23 0.03 0.17 0.03 0.09 0.28 0.00 0.00
p:	 2 0.72 0.66 0.88 0.62 0.70 0.56 0.66 0.72 0.70 0.96 0.68 0.82 0.23 0.97 0.12 0.86 0.86 0.66 0.97 0.30
p:	 3 0.28 0.33 0.12 0.28 0.20 0.40 0.17 0.17 0.25 0.00 0.00 0.00 0.56 0.00 0.70 0.12 0.06 0.06 0.03 0.70
ha:	 1 0.00 0.00 0.00 0.20 0.10 0.10 0.35 0.00 0.10 0.10 0.26 0.25 0.46 0.05 0.35 0.06 0.16 0.36 0.00 0.00
ha:	 2 0.36 0.45 0.25 0.76 0.30 0.40 0.40 0.25 0.60 0.10 0.26 0.25 0.16 0.05 0.26 0.10 0.06 0.25 0.06 0.00
ha:	 3 0.35 0.45 0.25 0.55 0.30 0.30 0.15 0.25 0.40 0.00 0.00 0.00 0.50 0.00 0.60 0.06 0.12 0.10 0.05 0.00
hi:	 1 0.00 0.00 0.00 0.16 0.18 0.10 0.30 0.16 0.10 0.10 0.22 0.30 0.36 0.05 0.30 0.05 0.17 0.41 0.00 0.00
hi:	 2 0.41 0.46 0.22 0.48 0.43 0.51 0.47 0.41 0.43 0.10 0.22 0.30 0.36 0.05 0.22 0.26 0.26 0.46 0.05 0.43
be:	 3 0.41 0.46 0.22 0.41 0.33 0.49 0.30 0.30 0.38 0.00 0.00 0.00 0.51 0.00 0.43 0.22 0.11 0.10 0.06 0.43
for locus : 306-2

!is: 1	 ?Pt	 rtf	 0.8 Vtf -0.1 0.8 -0.1 0.6 1.0 1.0 -0.1 0.0 0.0 0.0 Vt? 7ff -0.1 0.0 rtf Vtf
!is: 2	 777	 77f	 0.8 TT? -0.1 0.8 -0.1 0.6 1.0 1.0 -0.1 0.0 0.0 0.0 'WI fff -0.1 0.0 'WI ?TT
for locus	 : Pit-1

us:	 1	 0.7	 0.1	 0.7 -0.1	 0.6 0.3 0.6 1.0 0.6 0.3 0.1 0.6 1.0 0.8 0.2 -0.2 -0.3 0.1 0.2 -0.1
us: 2 -0.1 -0.2	 0.6 -0.2	 0.1 0.1 0.3 0.8 0.4 0.1 0.1 0.4 0.6 0.4 0.4 0.5	 0.3 -0.3 0.2 0.5
fis: 3-0.1	 0.4	 0.8 0.2	 0.1 0.4 -0.1 0.8 0.0 -0.1 0.6 0.5 0.0 0.4 -0.1 -0.3 -0.4 -0.2 0.7 0.1
for locus : API-2

fis: 1	 777	 Mt	 777 -0.1	 0.5 0.0 -0.2 1.0 0.0 0.0 -0.1 0.2 -0.3 0.0 -0.2 0.0 -0.1 0.1 ff? ?ft
fis: 2	 0.1	 0.0 -0.1 -0.6	 0.3 0.2 0.1 0.4 -0.2 0.0 -0.1 0.2 0.6 0.0 -0.1 0.6	 0.8 0.4 0.0 1.0
as: 3	 0.1	 0.0 -0.1 -0.3	 0.1 0.4 0.6 0.2 0.0 ?TT 7?? tf? 0.0 WI -0.2 0.6	 0.0 0.0 0.0 1.0

294
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*WNWIWWWWWWW.WWW0104 ****** salwasevameassaame
fer locus : 501-2
allele capf theta snallf

1 0.4271 0.1053 0.3606
2 0.4279 0.1053 0.3606

all 0.42711 0.1063 0.3606
for locus : P11 -I

allele capf theta small!
1 0.4646 0.2341 0.3010
2 0.3603 0.1518 0.2468
3 0.2812 0.0816 0.2173

all 0.3767 0.1618 0.2661
for locus : APS-2

allele capt theta snail!
1 0.0992 0.0614 0.0403
2 0.4000 0.2420 0.2085
3 0.3810 0.2586 0.1661

all 0.3421 0.2176 0.1690

ever all loci
capt	 theta	 small!

0.3681	 0.1773	 0.2316
mosesmaioss	 ass	 syssesesseas	
jackknifing over populations.
for locus : SDI-2

capf	 thsta	 small!
total	 0.4686	 0.1246	 0.3794 wane

0.2103	 0.0887	 0.1743 std. dots.
for locus : POI-1

capf	 theta	 small!
total	 0.3756	 0.1621	 0.2548 moans

0.0625	 0.0430	 0.0646 std. dews.
fsr locus : APS-2

capf	 theta	 small!
total	 0.3468	 0.2217	 0.1686 mans

0.0892	 0.0658	 0.0812 std. dsve.

jackknifing ever lsci.
capf	 theta	 small!

total	 0.3676	 0.1770	 0.2327 mans
0.0155	 0.0262	 0.0417 std. dove.

MIMMINIO 	 *Mt ***** essyseassesessessems
	 pping over loci.

95% confidence interval.

	

capf	 theta	 suallf

	

0.3421	 0.1063	 0.1590

	

0.4279	 0.2176	 0.3606

911% confidence interval.

	

capf	 theta	 small!

	

0.3421	 0.1063	 0.1690

	

0.4279	 0.2176	 0.3606
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theta per locus over pair of population.
fer locus: 508-2

1 2 3
0.37

4 5
0.00

6
0.08

7
0.08

8
0.04

9
0.00

10
0.00

11
0.13

12
0.00

13
0.03

14
0.03

16 16 17
0.06

18
0.03

19 20

2 0.37 0.08 0.00 0.08 0.04 0.00 0.00 0.13 0.00 0.03 0.03 0.05 0.03
3	 0.37 0.37 0.37 0.18 0.14 0.18 0.22 0.27 0.26 0.11 0.32 0.27 0.27 0.37 0.37 0.22 0.27 0.37 0.37
4 0.37 0.08 0.08 0.08 0.04 0.00 0.00 0.13 0.00 0.03 0.03 0.06 0.03
5	 0.08 0.08 0.18 0.08 -0.03 -0.02 -0.03 -0.02 -0.02 -0.01 0.02 -0.01 -0.01 0.08 0.08 -0.02 -0.01 0.08 0.08
6	 0.08 0.08 0.14 0.08 -0.03 -0.03 -0.03 -0.01 -0.02 -0.03 0.03 0.00 0.00 0.08 0.08 -0.02 0.00 0.08 0.08
7	 0.08 0.08 0.18 0.011 -0.02 -0.03 -0.03 -0.02 -0.02 -0.01 0.02 -0.01 -0.01 0.08 0.08 -0.02 -0.01 0.08 0.08
8	 0.04 0.04 0.22 0.04 -0.03 -0.03 -0.03 -0.04 -0.04 0.00 -0.01 -0.03 -0.03 0.04 0.04 -0.03 -0.03 0.04 0.04
•	 0.00 0.00 0.27 0.00 -0.02 -0.01 -0.02 -0.04 -0.06 0.03 -0.03 -0.04 -0.04 0.00 0.00 -0.03 -0.04 0.00 0.00

10	 0.00 0.00 0.26 0.00 -0.02 -0.02 -0.02 -0.04 -0.06 0.02 -0.03 -0.04 -0.04 0.00 0.00 -0.03 -0.04 0.00 0.00
11	 0.13 0.13 0.11 0.13 -0.01 -0.03 -0.01 0.00 0.03 0.02 0.07 0.03 0.03 0.13 0.13 0.01 0.03 0.13 0.13
12	 0.00 0.00 0.32 0.00 0.02 0.03 0.02 -0.01 -0.03 -0.03 0.07 -0.02 -0.02 0.00 0.00 0.00 -0.02 0.00 0.00
13	 0.03 0.03 0.27 0.03 -0.01 0.00 -0.01 -0.03 -0.04 -0.04 0.03 -0.02 -0.02 0.03 0.03 -0.02 -0.02 0.03 0.03
14	 0.03 0.03 0.27 0.03 -0.01 0.00 -0.01 -0.03 -0.04 -0.04 0.03 -0.02 -0.02 0.03 0.03 -0.02 -0.02 0.03 0.03
16 0.37 0.08 0.08 0.08 0.04 0.00 0.00 0.13 0.00 0.03 0.03 0.06 0.03
16 0.37 0.08 0.08 0.08 0.04 0.00 0.00 0.13 0.00 0.03 0.03 0.05 0.03
17	 0.06 0.06 0.22 0.06 -0.02 -0.02 -0.02 -0.03 -0.03 -0.03 0.01 0.00 -0.02 -0.02 0.06 0.05 -0.02 0.05 0.05
18	 0.03 0.03 0.27 0.03 -0.01 0.00 -0.01 -0.03 -0.04 -0.04 0.03 -0.02 -0.02 -0.02 0.03 0.03 -0.02 0.03 0.03
18 0.37 0.08 0.08 0.08 0.04 0.00 0.00 0.13 0.00 0.03 0.03 0.06 0.03
20 0.37 0.08 0.08 0.08 0.04 0.00 0.00 0.13 0.00 0.03 0.03 0.05 0.03

for locus: PSI-1
1 2 3 4 8 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0.34 0.30 0.43 0.50 0.42 0.66 0.36 0.36 0.06 0.38 0.41 0.00 0.37 0.08 0.00 0.14 0.26 0.37 0.27
2	 0.34 0.03 0.00 0.02 -0.02 0.13 -0.03 -0.01 0.17 0.05 0.06 0.46 -0.03 0.16 0.23 0.11 0.02 -0.02 0.00
3	 0.30 0.03 0.01 0.06 0.04 0.04 0.07 -0.02 0.09 -0.03 -0.03 0.40 0.01 0.07 0.21 0.17 -0.03 0.08 0.08
4	 0.43 0.00 0.01 -0.02 -0.01 0.04 0.03 -0.02 0.22 0.01 0.00 0.63 -0.02 0.20 0.32 0.22 0.03 0.04 0.08
6	 0.60 0.02 0.06 -0.02 -0.01 0.04 0.06 0.00 0.29 0.04 0.03 0.60 0.00 0.27 0.39 0.27 0.07 0.06 0.11
6	 0.42 -0.02 0.04 -0.01 -0.01 0.10 -0.02 -0.01 0.23 0.05 0.05 0.53 -0.03 0.21 0.30 0.17 0.04 -0.01 0.03
7	 0.65 0.13 0.04 0.04 0.04 0.10 0.18 0.04 0.32 0.01 -0.01 0.64 0.09 0.29 0.45 0.38 0.10 0.19 0.24
8	 0.36 -0.03 0.07 0.03 0.06 -0.02 0.19 0.02 0.21 0.10 0.11 0.48 -0.02 0.19 0.23 0.09 0.05 -0.06 -0.02
•	 0.36 -0.01 -0.02 -0.02 0.00 -0.01 0.04 0.02 0.16 -0.01 -0.01 0.46 -0.02 0.13 0.25 0.16 -0.01 0.03 0.06

10	 0.06 0.17 0.09 0.22 0.21 0.23 0.32 0.21 0.16 0.16 0.18 0.13 0.19 -0.03 0.04 0.10 0.07 0.22 0.16
11	 0.38 0.06 -0.03 0.01 0.04 0.06 0.01 0.10 -0.01 0.16 -0.03 0.48 0.03 0.13 0.29 0.23 0.00 0.11 0.13
12	 0.41 0.06 -0.03 0.00 0.03 0.06 -0.01 0.11 -0.01 0.18 -0.03 0.51 0.03 0.16 0.32 0.25 0.01 0.12 0.14
13	 0.00 0.46 0.40 0.63 0.60 0.53 0.64 0.48 0.46 0.13 0.48 0.51 0.48 0.15 0.01 0.27 0.36 0.49 0.40
14	 0.37 -0.03 0.01 -0.02 0.00 -0.03 0.09 -0.02 -0.02 0.19 0.03 0.03 0.48 0.16 0.26 0.14 0.01 -0.02 0.01
15	 0.08 0.16 0.07 0.20 0.27 0.21 0.29 0.19 0.13 -0.03 0.13 0.16 0.16 0.16 0.06 0.10 0.05 0.20 0.14
16	 0.00 0.23 0.21 0.32 0.39 0.30 0.46 0.23 0.26 0.04 0.29 0.32 0.09 0.26 0.06 0.04 0.17 0.25 0.16
17	 0.14 0.11 0.17 0.22 0.27 0.17 0.38 0.09 0.16 0.10 0.23 0.26 0.27 0.14 0.10 0.04 0.12 0.10 0.03
18	 0.26 0.02 -0.03 0.03 0.07 0.04 0.10 0.06 -0.01 0.07 0.00 0.01 0.36 0.01 0.06 0.17 0.12 0.06 0.06
12	 0.37 -0.02 0.08 0.04 0.06 -0.01 0.19 -0.06 0.03 0.22 0.11 0.12 0.49 -0.02 0.20 0.25 0.10 0.06 -0.02
20	 0.27 0.00 0.08 0.08 0.11 0.03 0.24 -0.02 0.06 0.15 0.13 0.14 0.40 0.01 0.14 0.16 0.03 0.06 -0.02

for locus: 1111-2
1 2 3 4 6 6 7 8 9 10 11 12 13 14 16 16 17 18 19 20

1 -0.02 0.04 0.00 -0.01 0.02 0.02 -0.01 -0.02 0.18 0.13 0.12 0.25 0.21 0.38 0.02 0.06 0.10 0.20 0.28
2-0.02 0.09 0.00 0.00 -0.01 0.03 0.01 -0.01 0.24 0.18 0.16 0.21 0.27 0.33 0.06 0.11 0.12 0.26 0.22
3	 0.04 0.09 0.10 0.04 0.17 0.08 0.02 0.06 0.06 0.05 0.06 0.43 0.07 0.67 -0.03 0.00 0.13 0.05 0.49
4	 0.00 0.00 0.10 -0.01 0.00 -0.01 0.00 -0.01 0.22 0.14 0.11 0.17 0.26 0.29 0.07 0.09 0.06 0.24 0.21
5-0.01 0.00 0.04 -0.01 0.03 -0.02 -0.03 -0.02 0.13 0.07 0.06 0.23 0.17 0.37 0.01 0.02 0.02 0.16 0.29
6	 0.02-0.01 0.17 0.00 0.03 0.04 0.05 0.02 0.32 0.24 0.21 0.10 0.36 0.20 0.14 0.17 0.13 0.34 0.10
7	 0.02 0.03 0.08 -0.01 -0.02 0.04 -0.02 0.00 0.16 0.08 0.04 0.20 0.20 0.34 0.05 0.04 0.00 0.20 0.29
8-0.01 0.01 0.02 0.00 -0.03 0.06 -0.02 -0.02 0.11 0.06 0.03 0.26 0.14 0.40 -0.01 0.00 0.02 0.13 0.32
9 -0.02 -0.01 0.06 -0.01 -0.02 0.02 0.00 -0.02 0.17 0.11 0.09 0.23 0.20 0.36 0.02 0.06 0.07 0.19 0.27
10	 0.18 0.24 0.06 0.22 0.13 0.32 0.16 0.11 0.17 0.01 0.06 0.64 -0.02 0.67 0.03 0.01 0.16 0.00 0.62
11	 0.13 0.18 0.06 0.14 0.07 0.24 0.08 0.06 0.11 0.01 -0.02 0.46 0.06 0.60 0.02 -0.02 0.06 0.07 0.66
12	 0.12 0.16 0.06 0.11 0.06 0.21 0.04 0.03 0.09 0.06 -0.02 0.41 0.09 0.56 0.03 -0.01 0.01 0.11 0.51
13	 0.26 0.21 0.43 0.17 0.23 0.10 0.20 0.26 0.23 0.64 0.46 0.41 0.67 0.01 0.40 0.41 0.28 0.57 0.04
14	 0.21 0.27 0.07 0.26 0.17 0.35 0.20 0.14 0.20 -0.02 0.06 0.09 0.57 0.70 0.06 0.04 0.21 -0.01 0.66
16	 0.38 0.33 0.67 0.29 0.37 0.20 0.34 0.40 0.36 0.67 0.60 0.66 0.01 0.70 0.53 0.65 0.43 0.70 0.03
16	 0.02 0.06 -0.03 0.07 0.01 0.14 0.06 -0.01 0.02 0.03 0.02 0.03 0.40 0.06 0.53 -0.03 0.09 0.04 0.46
17	 0.06 0.11 0.00 0.09 0.02 0.17 0.04 0.00 0.06 0.01 -0.02 -0.01 0.41 0.04 0.66 -0.03 0.06 0.04 0.49
18	 0.10 0.12 0.13 0.06 0.02 0.13 0.00 0.02 0.07 0.16 0.06 0.01 0.28 0.21 0.43 0.09 0.06 0.22 0.39
19	 0.20 0.25 0.06 0.24 0.16 0.34 0.20 0.13 0.19 0.00 0.07 0.11 0.57 -0.01 0.70 0.04 0.04 0.22 0.64
20	 0.28 0.22 0.49 0.21 0.29 0.10 0.29 0.32 0.27 0.62 0.66 0.61 0.04 0.65 0.03 0.46 0.49 0.39 0.64

prmutting alleles within samples.

on confidence interval.

	

capt	 theta	 smallf

	

0.1401	 0.1011	 -0.0630

	

0.2269	 0.1034	 0.0669

Old confidence interval.

	

capt	 theta	 small!

	

0.1279	 0.1807	 -0.0604

	

0.2430	 0.1837	 0.0761

(prob fis.0)(	 0.00020
OPAM	 gern11.04.1.1.1.1.

permutting alleles vithin total.

955 confidence interval.

	

capf	 theta	 small!
-0.0490 -0.0076 -0.0494

	

0.0489	 0.0087	 0.0602

Is% confidence interval.

	

capf	 theta	 small!

	

-0.0613	 -0.0093	 -0.0621

	

0.0632	 0.0122	 0.0630

(pato fit.0)(	 0.00020
isms	

Formatting genotypes vithin total.

$65 confidence interval.

	

capf	 theta	 small!

	

0.3624	 -0.0101	 0.3663

	

0.3631	 0.0121	 0.3688

confidence interval.

	

capt	 theta	 smallf

	

0.3623	 -0.0128	 0.3627

	

0.3632	 0.0161	 0.3704

(preb fet.0)<	 0.00020



Appendix G

Raw output of the treatment of
Beta data

1	 2	 3	 4	 6 I 7 8 9 10 11 12	 13	 14	 16	 IA 17	 18	 19 20
locus: GOT-3
n	 20	 20	 20	 20	 20 20 20 20 20 20 20 20	 20	 20	 20	 20 20	 20	 20 20

p:	 10.30 0.82 0.53 0.57 0.85 0.53 0.40 0.17 0.90 0.80 0.66 0.33 0.38 0.82 0.82 0.95 0.86 0.60 0.46 0.38
p:	 20.70 0.17 0.47 0.42 0.16 0.47 0.60 0.82 0.10 0.40 0.46 0.88 0.62 0.17 0.38 0.05 0.36 0.60 0.66 0.62
ha:	 10.40 0.36 0.75 0.56 0.30 0.46 0.40 0.16 0.20 0.80 0.70 0.26 0.56 0.15 0.86 0.10 0.60 0.50 0.40 0.46
ho:	 20.40 0.36 0.76 0.56 0.30 0.46 0.40 0.16 0.20 0.80 0.70 0.26 0.56 0.15 0.66 0.10 0.60 0.50 0.40 0.46
kg :	 10.43 0.30 0.61 0.50 0.26 0.61 0.49 0.30 0.18 0.49 0.61 0.46 0.48 0.30 0.48 0.10 0.47 0.61 0.61 0.48
ha:	 2 0.43 0.30 0.61 0.60 0.28 0.61 0.49 0.30 0.18 0.49 0.61 0.46 0.48 0.30 0.48 0.10 0.47 0.61 0.51 0.48

locus: API
It	 20	 20	 20	 20	 20 20 20 19 20 20 20 20	 20	 20	 20	 20 20	 20	 20 20

PS	 1 0.30 0.23 0.10 0.40 0.38 0.3S 0.10 0.37 0.80 0.88 0.63 0.42 0.17 0.12 0.12 0.46 0.07 0.60 0.06 0.40
PS	 2 0.46 0.72 0.62 0.40 0.07 0.40 0.20 0.00 0.15 0.03 0.07 0.40 0.67 0.86 0.75 0.47 0.62 0.28 0.86 0.40
I:	 3 0.26 0.05 0.28 0.20 0.66 0.25 0.70 0.83 0.06 0.30 0.40 0.17 0.26 0.03 0.12 0.07 0.30 0.23 0.10 0.20
ho:	 1 0.80 0.45 0.20 0.60 0.85 0.40 0.10 0.32 0.40 0.46 0.85 0.15 0.25 0.06 0.26 0.40 0.16 0.20 0.10 0.80
he:	 2 0.70 0.66 0.86 0.40 0.16 0.40 0.40 0.00 0.30 0.05 0.16 0.30 0.15 0.10 0.30 0.35 0.66 0.16 0.20 0.80
ha:	 3 0.50 0.10 0.56 0.40 0.60 0.30 0.50 0.32 0.10 0.50 0.80 0.15 0.40 0.05 0.26 0.15 0.80 0.05 0.20 0.40
km:	 1 0.43 0.38 0.18 0.49 0.48 0.47 0.18 0.48 0.33 0.46 0.61 0.60 0.30 0.22 0.22 0.51 0.14 0.61 0.10 0.49
km:	 2 0.51 0.41 0.48 0.49 0.14 0.49 0.33 0.00 0.28 0.05 0.14 0.49 0.50 0.28 0.38 0.51 0.48 0.41 0.26 0.49
ha:	 3 0.38 0.10 0.41 0.33 0.61 0.38 0.43 0.48 0.10 0.43 0.49 0.30 0.38 0.06 0.22 0.14 0.43 0.38 0.18 0.33

locus: SDI
n	 19	 19	 19	 19	 19 19 19 19 19 19 19 19	 19	 19	 19	 19 19	 19	 19 19

PS	 1 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.11 1.00 0.97 1.00 1.00 1.00 1.00 0.84
5:	 2 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.89 0.00 0.03 0.00 0.00 0.00 0.00 0.18
ho:	 1 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.05 0.00 0.00 0.00 0.00 0.11
km:	 2 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.06 0.00 0.00 0.00 0.00 0.11
ha:	 1 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.05 0.00 0.00 0.00 0.00 0.27
ha:	 2 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.05 0.00 0.00 0.00 0.00 0.27

locus: POI
n	 20	 20	 20	 20	 20 20 20 20 20 20 20 20	 0	 20	 20	 20 0	 18	 0 0

p:	 1 0.80 0.50 0.60 0.60 0.50 0.38 0.60 0.70 0.50 0.38 0.60 0.86 fltt 0.23 0.50 0.60 7711 0.81 7777 71T?
p:	 2 0.38 0.60 0.60 OM OM 0.62 0.50 0.30 0.60 0.82 0.60 0.36 77T? 0.76 0.50 0.60 ???? 0.39 ?TT? Mt
p:	 3 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 VITT 0.03 0.00 0.00 'MT 0.00 TM TM
ho:	 1 0.70 1.00 1.00 1.00 1.00 0.45 1.00 0.80 1.00 0.75 1.00 0.40 It?? 0.35 1.00 1.00 T??? 0.22 MT TM
ho:	 2 0.85 1.00 1.00 1.00 1.00 0.46 1.00 0.80 1.00 0.76 1.00 0.40 Mt 0.40 1.00 1.00 T??? 0.22 TI?? ?TT?
km:	 3 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ft?? 0.06 0.00 0.00 TTTT 0.00 ttft ft??
ha:	 1 0.49 0.51 0.61 0.51 0.51 0.48 0.51 0.43 0.61 0.48 0.51 0.47 ???? 0.36 0.51 0.61 TTTT 0.49 'MT ?ft?
ho:	 2 0.48 0.61 0.61 0.61 0.61 0.48 0.61 0.43 0.61 0.48 0.51 0.47 ft?? 0.38 0.61 0.61 ft?? 0.49 ttft ft??
ha:	 3 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ???? 0.06 0.00 0.00 ?tit 0.00 ttTT ????

locus: P11-1
n	 20	 20	 20	 19	 20 20 15 19 20 20 20 20	 0	 0	 20	 20 18	 0	 11 20

p:	 1 0.80 0.82 0.93 0.60 0.42 0.70 0.23 0.58 0.90 0.67 0.97 0.53 7??? tftt 0.42 0.38 0.31 7TT? 0.73 0.20
5:	 2 0.40 0.17 0.07 0.60 0.57 0.30 0.77 0.42 0.10 0.42 0.03 0.47 7TTT 1TT? 0.57 0.82 0.89 tftt 0.27 0.80
ho:	 1 0.80 0.36 0.15 0.79 0.86 0.80 0.47 0.84 0.20 0.86 0.06 0.95 1/TT MT 0.86 0.86 0.39 'Mt 0.56 0.00
ho:	 2 0.80 0.36 0.16 0.79 0.86 0.80 0.47 0.84 0.20 0.86 0.06 0.96 ?TT? ???? 0.85 0.86 0.39 ft?? 0.66 0.00
ha:	 1 0.49 0.30 0.14 0.51 0.50 0.43 0.37 0.60 0.18 0.60 0.06 0.51 tttt MT 0.50 0.48 0.44 ?TT? 0.42 0.33
km:	 2 0.49 0.30 0.14 0.61 0.60 0.43 0.37 0.50 0.18 0.50 0.06 0.61 7T?? TM 0.50 0.48 0.44 1ft? 0.42 0.33

locus: IDS
n	 20	 20	 20	 20	 20 20 20 20 20 20 20 20	 20	 20	 20	 20 20	 20	 20 20

PS	 1 0.42 0.23 0.60 0.60 0.40 0.36 0.47 0.10 0.38 0.50 0.65 0.53 0.60 0.42 0.40 0.42 0.30 0.55 0.12 0.50
PS	 2 0.67 0.78 OM 0.60 0.60 0.66 0.63 0.90 0.82 0.60 0.46 0.47 0.60 0.57 0.80 0.67 0.70 0.46 0.88 0.50
ha:	 1 0.36 0.15 0.80 1.00 0.80 0.60 0.76 0.20 0.75 0.90 0.70 0.95 0.90 0.86 0.80 0.86 0.40 0.90 0.15 0.80
ho:	 2 0.35 0.15 0.80 1.00 0.80 0.60 0.76 0.20 0.75 0.90 0.70 0.95 0.90 0.86 0.80 0.86 0.40 0.90 0.16 0.80
ha:	 1 0.60 0.36 0.61 0.51 0.49 0.47 0.61 0.18 0.48 0.61 0.51 0.51 6.51 0.60 0.49 0.50 0.43 0.51 0.22 0.61
km:	 2 0.60 0.38 0.51 0.61 0.49 0.47 0.51 0.18 0.48 0.51 0.51 0.51 0.51 0.50 0.49 0.60 0.43 0.61 0.22 0.51
for locum : 301-3

Xis: 1	 0.1 -0.2 -0.5 -0.1 -0.1 0.1 0.2 0.5 -0.1 -0.2 -0.4 0.4 -0.1	 0.6 -0.4	 0.0 -0.3	 0.0	 0.2 0.1
Xis: 2	 0.1 -0.2 -0.6 -0.1 -0.1 0.1 0.2 0.6 -0.1 -0.2 -0.4 0.4 -0.1	 0.6 -0.4	 0.0 -0.3	 0.0	 0.2 0.1
for locus : APR

Xis: 1 -0.4 -0.3 -0.1	 0.0 -0.4 0.1 0.6 0.3 -0.2 0.0 -0.3 0.7	 0.2	 0.8 -0.1	 0.2 -0.1	 0.6	 0.0 -0.2
Xis: 2 -0.4 -0.3 -0.4	 0.2 -0.1 0.2 -0.2 ?TT -0.1 0.0 -0.1 0.4	 0.7	 0.6	 0.2	 0.3 -0.1	 0.8	 0.2 -0.8
Xis: 3 -0.3	 0.0 -0.3 -0.2 -0.2 0.2 -0.2 0.3 0.0 -0.2 -0.6 0.5	 0.0	 0.0 -0.1 -0.1 -0.4	 0.8 -O./ -0.2
for locus : SON

Xis: 1 -0.1	 ITT	 ?TT	 TT?	 ITT 17? Tft ttt TT? ft? tt? ?ft	 0.5	 ?ft	 0.0	 ?ft ft?	 ttt	 tft 0.6
Xis: 2 -0.1	 tft	 TT?	 ???	 TT? 17T 'Pt? ?ft ft? ttt tft ?ft	 0.5	 ?TT	 0.0	 11? tft	 ft?	 TIT 0.8
for locus : POI

Xis: 1 -0.4 -1.0 -1.0 -1.0 -1.0 0.1 -1.0 -0.4 -1.0 -0.6 -1.0 0.1	 ft?	 0.0 -1.0 -1.0 ?TT	 0.5	 tt? 'ft?
Xis: 2 -0.4 -1.0 -1.0 -1.0 -1.0 0.1 -1.0 -0.4 -1.0 -0.6 -1.0 0.1	 ?VP	 0.0 -1.0 -1.0 ?TT	 0.6	 7IT it?
Xis: 3	 0.0	 ft?	 ?ft	 ???	 ftt ?ft tt? 711 'ft? ?ft ft? ft?	 11?	 0.0	 TT?	 /TT ITT	 ?ft	 ft? ?ft
for locus : P8I-1

Xis: 1 -0.6 -0.2 -0.1 -0.6 -0.7 -0.4 -0.3 -0.7 -0.1 -0.7 0.0 -0.8	 ft?	 It? -0.7 -0.4 0.1	 ??? -0.3 1.0
Xis: 2 -0.8 -0.2 -OA -0.6 -0.7 -0.4 -0.3 -0.7 -0.1 -0.7 0.0 -0.8	 TIT	 TT? -0.7 -0.4 0.1	 TT? -0.3 1.0
for locus : NDI

Xis: 1	 0.3	 0.6 -0.8 -1.0 -0.8 -0.3 -0.6 -0.1 -0.6 -0.8 -0.4 -0.8 -0.8 -0.7 -0.8 -0.7 0.1 -0.8	 0.3 -0.6
Xis: 2	 0.3	 0.6 -0.8 -1.0 -0.8 -0.3 -0.5 -0.1 -0.8 -0.8 -0.4 -0.8 -0.8 -0.7 -0.8 -0.7 0.1 -0.8	 0.3 -0.8
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theta
0.2091
0.0446

theta
1.1394
0.6055

thsta
0.0408
0.0204

theta
0.2192
0.0626

theta
0.0565
0.0270
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for locis : 60/-3
allele capf
	

theta
	

small!

	

I.	 0.1435
	

0.1685
	

-0.0300

	

2	 0.1436
	

0.1665 -0.0300

	

all	 0.1435
	

0.1686 -0.0300
fer locus : API
allele calif
	

theta	 small!

	

0.2276
	

0.1708
	

0.0684

	

2	 0.3248
	

0.2777
	

0.0652

	

3	 0.0996
	

0.1645 -0.0777

	

all	 0.2266
	

0.2069
	

0.0226
for locus : SDI
allele cap!
	

theta	 small!

	

1	 0.1139
	

0.7014
	

0.3/66

	

2	 0.8139
	

0.7014
	

0.3766

	

all	 0.8139
	

0.7014
	

0.3766
for locus : POI
allele capf	 theta	 small!

	

/	 -0.6611	 0.0420 -0.6295

	

2	 -0.6614	 0.0398 -0.6262

	

3	 -0.0017 -0.0019
	

0.0002

	

all	 -0.5577	 0.0407 -0.6238
for locus : PI1-1
allele capf	 theta
	

smallf

	

1	 -0.1121	 0.2195 -0.4249

	

2 -0.1121	 0.2195 -0.4249

	

ell	 -0.1121	 0.2196 -0.4249
for locus : IDS
allele cap!	 'theta	 smallf

	

1	 -0.4032	 0.0589
	

-0.4911
2	 -0.4032	 0.0689 -0.4911

	

all	 -0.4032	 0.0569 -0.4911

STS? all loci

	

capt	 theta	 small!

	

-0.0796	 0.1665	 -0.2953
emu 	 	 esessemosessemps.
jackknifing ever populations.
for locus : 003-3

theta
0.1683
0.0601

cap!
total	 0.1439

0.0874
for locus : API

cap!
total	 0.2267

0.0749
!sr locus : SDI

total	 11126
0.4080

for locus : POI
cap!

total -0.5576
0.1419

for locus : P1I-1

total -0.1116
ca

0.1607
for locus : IDS

cap!
total -0.4048

0.1029

jackknifing over loci.
;apt	 theta

total	 -0.0791	 0.1641
0.1570	 0.0425

small!
-0.0307 means
0.0662 ltd. dove.

small!
0.0227 means
0.0837 std. dove.

small!
0.4248 Ming
0.2102 std, dem

small!
-0.6262 means
0.1282 std. dews.

small!
-0.4296 1141LAS
0.1117 std. dem

small!
-0.4928 means
0.0906 Ott. dove.

smallf
-0.2958 Mins
0.1386 Ott. doss.

ego	

95/
capf

-0.3546
0.1989

99%
cap!

-0.4335
0.2853

	  ping Over loci.
confidence interval.

theta	 smallf
0.0944	 -0.5177
0.2669 -0.0636

coafidsnce interval.
theta	 smallf

0.0700	 -0.6692
0.3028	 0.0272
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theta per leesa ever pair if pepuleeleas.
fir locus: 601-3

1	 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 16 10
0.42 0.08 0.12 0.46 0.07 -0.01 0.01 0.53 0.15 0.10 -0.03 -0.01 0.42 0.17 0.61 0.20 0.06 0.02 -0.01

2	 0.42 0.17 0.12 -0.02 0.16 0.30 0.58 0.00 0.10 0.16 0.39 0.33 -0.03 0.08 0.06 0.06 0.16 0.24 0.33
3	 0.08	 0.17 -0.01 0.21 -0.02 0.01 0.22 0.28 0.00 -0.01 0.06 0.03 0.17 0.01 0.37 0.02 -0.02 -0.01 0.03
4	 0.12	 0.12 -0.01 0.15 -0.02 0.03 0.27 0.22 -0.02 -0.02 0.09 0.06 0.11 -0.01 0.31 -0.01 -0.01 0.00 0.05
5	 0.46 -0.02 0.21 0.15 0.20 0.34 0.61 -0.01. 0.13 0.18 0.43 0.37 -0.03 0.11 0.03 0.08 0.23 0.28 0.37

0.07	 0.16 -0.02 -0.02 0.20 0.00 0.21 0.27 -0.01 -0.02 0.05 0.02 0.16 0.00 0.36 0.01 -0.03 -0.02 0.02
7 -0.01	 0.30 0.01 0.03 0.34 0.00 0.09 0.41 0.05 0.02 -0.02 -0.02 0.30 0.08 0.50 0.10 -0.01 -0.03 -0.03
•	 0.01	 0.58 0.22 0.27 0.61 0.21 0.09 0.68 0.30 0.26 0.02 0.07 0.58 0.33 0.75 0.36 0.19 0.13 0.07
9	 0.63	 0.00 0.28 0.22 -0.01 0.27 0.41 0.68 0.20 0.25 0.50 0.46 -0.01 0.17 -0.01 0.15 0.30 0.36 0.45

10	 0.15	 0.10 0.00 -0.02 0.13 -0.01 0.05 0.30 0.20 -0.01 0.12 0.08 0.09 -0.02 0.28 -0.01 0.00 0.02 0.08
11	 0.10	 0.15 -0.01 -0.02 0.18 -0.02 0.02 0.25 0.26 -0.01 0.07 0.04 0.14 0.00 0.34 0.00 -0.02 0.00 0.04
12-0.03	 0.39 0.06 0.09 0.43 0.06 -0.02 0.02 0.50 0.12 0.07 -0.02 0.38 0.14 0.58 0.17 0.03 0.00 -0.03
13-0.01.	 0.33 0.03 0.06 0.37 0.02 -0.02 0.07 0.46 0.08 0.04 -0.02 0.33 0.10 0.53 0.12 0.01 -0.01 -0.02
14	 0.42 -0.03 0.17 0.11 -0.03 0.16 0.30 0.58 -0.01 0.09 0.14 0.38 0.33 0.07 0.04 0.06 0.19 0.24 0.33
15	 0.17	 0.08 0.01-0.01 0.11 0.00 0.08 0.33 0.17 -0.02 0.00 0.14 0.10 0.07 0.26 -0.02 0.01 0.04 0.10
16	 0.61	 0.06 0.37 0.31 0.03 0.36 0.50 0.75 -0.01 0.28 0.34 0.58 0.63 0.04 0.26 0.23 0.39 0.44 0.53
17	 0.20	 0.06 0.02 -0.01 0.08 0.01 0.10 0.36 0.15 -0.01 0.00 0.17 0.12 0.06 -0.02 0.23 0.02 0.06 0.12
18	 0.06	 0.19 -0.02 -0.01 0.23 -0.03 -0.01 0.19 0.30 0.00 -0.02 0.03 0.01 0.19 0.01 0.39 0.02 -0.02 0.01
19	 0.02	 0.24 -0.01 0.00 0.28 -0.02 -0.03 0.13 0.36 0.02 0.00 0.00 -0.01 0.24 0.04 0.44 0.06 -0.02 -0.02
20 -0.01	 0.33 0.03 0.05 0.37 0.02 -0.03 0.07 0.45 0.08 0.04 -0.03 -0.02 0.33 0.10 0.53 0.12 0.01 -0.02

fir tem: APE
1	 2 3 4 6 6 7 8 8 10 11 12 13 14 15 16 17 18 16 20

1	 0.09 0.04 -0.01 0.15 -0.02 0.20 0.22 0.27 0.21 0.14 -0.01 0.00 0.19 0.10 0.02 0.05 0.02 0.20 0.00
2	 0.09 0.06 0.11 0.41 0.11 0.44 0.49 0.46 0.46 0.38 0.11 0.04 0.01 0.00 0.08 0.08 0.20 0.05 0.12
3	 0.04	 0.06 0.09 0.28 0.07 0.25 0.36 0.46 0.40 0.30 0.10 -0.02 0.10 0.02 0.12 -0.02 0.17 0.08 0.10
4 -0.01	 0.11 0.09 0.14 -0.02 0.24 0.22 0.18 0.15 0.10 -0.03 0.04 0.23 0.14 -0.01 0.11 -0.01 0.26 -0.02
5	 0.15	 0.41 0.28 0.14 0.12 0.08 -0.01 0.32 0.12 0.02 0.15 0.23 0.52 0.41 0.24 0.29 0.09 0.62 0.15
•	 -0.02	 0.11 0.07 -0.02 0.12 0.19 0.19 0.21 0.16 0.10 -0.03 0.02 0.22 0.13 0.01 0.08 -0.01 0.23 -0.02
7	 0.20	 0.44 0.26 0.24 0.08 0.19 0.06 0.62 0.36 0.20 0.25 0.23 0.64 0.41 0.36 0.24 0.24 0.51 0.24
•	 0.22	 0.49 0.36 0.22-0.01. 0.19 0.09 0.39 0.16 0.06 0.22 0.31 0.60 0.49 0.32 0.36 0.16 0.56 0.22
9	 0.27	 0.46 0.46 0.18 0.32 0.21 0.62 0.39 0.09 0.17 0.16 0.38 0.60 0.61 0.18 0.48 0.06 0.63 0.19

10	 0.21	 0.45 0.40 0.15 0.12 0.16 0.35 0.16 0.09 0.02 0.14 0.33 0.58 0.49 0.21 0.41 0.05 0.60 0.16
11	 0.14	 0.38 0.30 0.10 0.02 0.10 0.20 0.06 0.17 0.02 0.10 0.24 0.51 0.41 0.18 0.31 0.03 0.62 0.11
12-0.01	 0.11 0.10 -0.03 0.15 -0.03 0.26 0.22 0.16 0.14 0.10 0.04 0.23 0.14-0.02 0.12 -0.02 0.25 -0.03
13	 0.00	 0.04 -0.02 0.04 0.23 0.02 0.23 0.31 0.38 0.33 0.24 0.04 0.10 0.02 0.06 -0.01 0.11 0.09 0.04
14	 0.19	 0.01 0.10 0.23 0.52 0.22 0.54 0.60 0.60 0.58 0.51 0.23 0.10 0.00 0.20 0.12 0.34 -0.01 0.24
15	 0.10	 0.00 0.02 0.14 0.41 0.13 0.41 0.49 0.51 0.49 0.41 0.14 0.02 0.00 0.13 0.03 0.24 0.00 0.15
16	 0.02	 0.08 0.12 -0.01 0.24 0.01 0.35 0.32 0.18 0.21 0.18 -0.02 0.06 0.20 0.13 0.14 0.02 0.24 0.00
17	 0.06	 0.08 -0.02 0.11 0.29 0.08 0.24 0.36 0.48 0.41 0.31 0.12 -0.01 0.12 0.03 0.14 0.18 0.08 0.11
18	 0.02	 0.20 0.17 -0.01 0.09 -0.01 0.24 0.16 0.09 0.05 0.03 -0.02 0.11 0.34 0.24 0.02 0.19 0.36 -0.01
19	 0.20	 0.06 0.08 0.26 0.62 0.23 0.51 0.59 0.63 0.60 0.62 0.26 0.09 -0.01 0.00 0.24 0.08 0.36 0.26
20	 0.00	 0.12 0.10 -0.02 0.16 -0.02 0.24 0.22 0.19 0.16 0.11 -0.03 0.04 0.24 0.15 0.00 0.11 -0.01 0.26

for lovas: SDK
1	 2 3 4 5 6 7 S	 9 10 11 12 13 14 15 16 17 18 16 20

1	 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.79 0.06 0.00 0.06 0.06 0.06 0.06 -0.01
2	 0.06 0.89 0.00 0.12
3	 0.06 0.89 0.00 0.12
4	 0.06 0.89 0.00 0.12
5	 0.06 0.89 0.00 0.12
6	 0.06 0.89 0.00 0.12
7	 0.06 0.89 0.00 0.12
8	 0.06 0.89 0.00 0.12
9	 0.06 0.89 0.00 0.12

10	 0.06 0.89 0.00 0.12
11	 0.06 0.89 0.00 0.12
12	 0.06 0.89 0.00 0.12
13	 0.79	 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.86 0.89 0.86 0.89 OM 0.69
14	 0.06 0.89 0.00 0.12
16	 0.00	 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.00 0.00 0.00 0.00 0.00 0.06
16	 0.06 0.89 0.00 0.12
17	 0.06 0.09 0.00 0.12
18	 0.06 0.89 0.00 0.12
19	 0.06 0.89 0.00 0.12
20-0.01	 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.69 0.12 0.06 0.12 0.12 0.12 0.12
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for locus: PSI
1	 2 3 4 6 • 7 0 •	 10 11 12	 13 14 15 16 17 18 19 20

1	 0.02 0.02 0.02 0.02 0.09 0.02 0.00 0.02	 0.00 0.02 -0.02 0.23 0.02 0.02 -0.03
2	 0.02 0.00 0.00 0.00 0.02 0.00 0.07 0.00	 0.03 0.00 0.03 0.13 0.00 0.00 0.01
3	 0.02	 0.00 0.00 0.00 0.02 0.00 0.07 0.00	 0.03 0.00 0.03 0.13 0.00 0.00 0.01
4	 0.02	 0.00 0.00 0.00 0.02 0.00 0.07 0.00	 0.03 0.00 0.03 0.13 0.00 0.00 0.01
IS	 0.02	 0.00 0.00 0.00 0.02 0.00 0.07 0.00	 0.03 0.00 0.03 0.13 0.00 0.00 0.01
S	 0.01	 0.02 0.02 0.02 0.02 0.02 0.17 0.02 -0.02 0.02 0.12 0.02 0.02 0.02 0.07
7	 0.02	 0.00 0.00 0.00 0.00 0.02 0.07 0.00	 0.03 0.00 0.03 0.13 0.00 0.00 0.01
I	 0.00	 0.07 0.07 0.07 0.07 0.17 0.07 0.07	 0.18 0.07 -0.02 0.33 0.07 0.07 -0.01
•	 0.02	 0.00 0.00 0.00 0.00 0.02 0.00 0.07 0.03 0.00 0.03 0.13 0.00 0.00 0.01
10	 0.00	 0.03 0.03 0.03 0.03 -0.02 0.03 0.18 0.03 0.03 0.12 0.03 0.03 0.03 0.011
11	 0.02	 0.00 0.00 0.00 0.00 0.02 0.00 0.07 0.00	 0.03 0.03 0.13 0.00 0.00 0.01
12-0.02	 0.03 0.03 0.03 0.03 0.12 0.03 -0.02 0.03	 0.12 0.03 0.27 0.03 0.03 -0.03
13
14	 0.23	 0.13 0.13 0.13 0.13 0.02 0.13 0.33 0.13	 0.03 0.13 0.27 0.13 0.13 0.22
15	 0.02	 0.00 0.00 0.00 0.00 0.02 0.00 0.07 0.00	 0.03 0.00 0.03 0.13 0.00 0.01
16	 0.02	 0.00 0.00 0.00 0.00 0.02 0.00 0.07 0.00	 0.03 0.00 0.03 0.13 0.00 0.01
17
18-0.03	 0.01 0.01 0.01 0.01 0.07 0.01 -0.01 0.01	 0.00 0.01 -0.03 0.22 0.01 0.01
19
20

for locus: 111-1
1	 2 3 4 6 6 7 I 9	 10 11 12	 13 14 16 16 17 18 19 20

1	 0.10 0.26 0.01 0.06 0.01 0.23 -0.01 0.20 -0.01 0.34 0.01 0.06 0.09 0.14 0.02 0.27
2	 0.10 0.02 0.20 0.28 0.03 0.61 0.12 0.00	 0.13 0.10 0.18 0.28 0.34 0.42 0.00 0.66
3	 0.25	 0.02 0.36 0.44 0.14 0.67 0.27 -0.02	 0.27 0.00 0.33 0.44 0.49 0.67 0.12 0.68
4	 0.01	 0.20 0.36 0.00 0.07 0.13 0.00 0.31	 0.00 0.46 -0.01 0.00 0.02 0.06 0.08 0.16
5	 0.05	 0.28 0.44 0.00 0.13 0.07 0.04 0.40	 0.04 0.53 0.02 -0.00-0.01 0.01 0.16 0.09
•	 0.01	 0.03 0.14 0.07 0.13 0.34 0.02 0.10	 0.02 0.23 0.05 0.13 0.18 0.25 -0.02 0.38
7	 0.23	 0.51 0.67 0.13 0.07 0.34 0.21 0.63	 0.20 0.75 0.16 0.07 0.03 -0.02 0.38 -0.04
9-0.01	 0.12 0.27 0.00 0.04 0.02 0.21 0.23-0.01 0.37 0.00 0.04 0.07 0.12 0.03 0.24
•	 0.20	 0.00 -0.02 0.31 0.40 0.10 0.63 0.23 0.23 0.02 0.29 0.40 0.46 0.53 0.08 0.66
10-0.01	 0.13 0.27 0.00 0.04 0.02 0.20 -0.01 0.23 0.37 0.00 0.04 0.07 0.12 0.04 0.24
11	 0.34	 0.10 0.00 0.46 0.53 0.23 0.75 0.37 0.02	 0.37 0.42 0.63 0.57 0.66 0.24 0.75
12	 0.01	 0.18 0.33 -0.01 0.02 0.05 0.16 0.00 0.29	 0.00 0.42 0.02 0.04 0.08 0.07 0.19
13
14
15	 0.05	 0.28 0.44 0.00 -0.01 0.13 0.07 0.04 0.40	 0.04 0.53 0.02 -0.01 0.01 0.16 0.09
16	 0.00	 0.34 0.49 0.02 -0.01 0.16 0.03 0.07 0.45	 0.07 0.57 0.04 -0.01 -0.01 0.20 0.04
17	 0.14	 0.42 0.67 0.06 0.01 0.25 -0.02 0.12 0.63	 0.12 0.65 0.08 0.01 -0.01 0.28 -0.01
18
19	 0.02	 0.00 0.12 0.08 0.16 -0.02 0.38 0.03 0.08	 0.04 0.24 0.07 0.16 0.20 0.28 0.42
20	 0.27	 0.55 0.68 0.16 0.09 0.38 -0.04 0.24 0.66	 0.24 0.75 0.19 0.00 0.04 -0.01 0.42

for locus: IDI
1	 2 3 4 5 6 7 I 0	 10 11 12	 13 14 15 16 17 10 10 20

1	 0.05 -0.01 -0.01 -0.02 -0.01 -0.02 0.22 -0.02 -0.01 0.01 0.00 -0.01 -0.02 -0.02 -0.02 0.00 0.01 0.18 -0.01
2	 0.06 0.13 0.14 0.06 0.01 0.11 0.02 0.03	 0.13 0.18 0.16	 0.13 0.07 0.05 0.07 -0.02 0.18 0.00 0.13
3 -0.01	 0.13 -0.01 0.01 0.03 -0.01 0.31 0.02 -0.01 -0.01 -0.01 -0.01 0.00 0.01 0.00 0.06 0.00 0.27 -0.01
4-0.01	 0.14 -0.01 0.02 0.04 -0.01 0.32 0.03	 0.00 0.00 0.00	 0.00 0.01 0.02 0.01 0.07 0.00 0.27-0.01
5 -0.02	 0.05 0.01 0.02 -0.01 0.00 0.20 -0.01	 0.01 0.03 0.03	 0.01 -0.01 -0.01 -0.01 0.00 0.04 0.16 0.01
6-0.01	 0.01 0.03 0.04 -0.01 0.02 0.15 -0.01	 0.03 0.06 0.06	 0.03 0.00 -0.01 0.00 -0.02 0.07 0.11 0.03
7 -0.02	 0.11 -0.01 -0.01 0.00 0.02 0.28 0.01 -0.01 0.00 0.00 -0.01 0.00 0.00 0.00 0.04 0.00 0.24 -0.01
11	 0.22	 0.02 0.31 0.32 0.20 0.16 0.28 0.10	 0.31 0.36 0.34	 0.31 0.23 0.20 0.23 0.09 0.37 -0.03 0.31
9-0.02	 0.03 0.02 0.03 -0.01 -0.01 0.01 0.18 0.02 0.05 0.04	 0.02 0.00 -0.01 0.00 -0.01 0.05 0.14 0.02
10-0.01	 0.13 -0.01 0.00 0.01 0.03 -0.01 0.31 0.02 -0.01 0.00 -0.01 0.01 0.01 0.01 0.07 0.00 0.27 -0.01
11	 0.01	 0.18 -0.01 0.00 0.03 0.06 0.00 0.36 0.06 -0.01 -0.00-0.01 0.02 0.03 0.02 0.10-0.01 0.32 -0.01

0.00	 0.16 -0.01 0.00 0.03 0.05 0.00 0.34 0.04	 0.00 -0.01 0.00 0.02 0.03 0.02 0.09 0.00 0.30 -0.01
13-0.01	 0.13 -0.01 0.00 0.01 0.03 -0.01 0.31 0.02 -0.01 -0.01 0.00 0.01 0.01 0.01 0.07 0.00 0.27 -0.01
14-0.02	 0.07 0.00 0.01 -0.01 0.00 0.00 0.23 0.00	 0.01 0.02 0.02	 0.01 -0.01 -0.01 0.02 0.03 0.19 0.00
16-0.02	 0.05 0.01 0.02 -0.01 -0.01 0.00 0.20 -0.01	 0.01 0.03 0.03	 0.01 -0.01 -0.01 0.00 0.04 0.16 0.01
16-0.02	 0.07 0.00 0.01 -0.01 0.00 0.00 0.23 0.00	 0.01 0.02 0.02	 0.01 -0.01 -0.01 0.02 0.03 0.19 0.00
17	 0.00 -0.02 0.06 0.07 0.00 -0.02 0.04 0.09 -0.01	 0.07 0.10 0.09	 0.07 0.02 0.00 0.02 0.11 0.06 0.06
18	 0.01	 0.18 0.00 0.00 0.04 0.07 0.00 0.37 0.06	 0.00 -0.01 0.00	 0.00 0.03 0.04 0.03 0.11 0.33 0.00
19	 0.18	 0.00 0.27 0.27 0.16 0.11 0.24 -0.03 0.14	 0.27 0.32 0.30	 0.27 0.19 0.16 0.19 0.06 0.33 0.27
20-0.01	 0.13 -0.01 -0.01 0.01 0.03 -0.01 0.31 0.02 -0.01 -0.01 -0.01 -0.01 0.00 0.01 0.00 0.06 0.00 0.27

permuttiag alleles within samples.

16% confidence interval.

capt theta small!
0.1234 0.1591 -0.0449
0.1975 0.1611 0.0457

09% confidence interval.

capt theta small!
0.1106 0.1688 -0.0606
0.2063 0.1614 0.0688

(prob fis .0)<	 0.00020

mese	 	 moms*	

	

permutting alleles within total 	

95% confidence interval.

	

capf	 theta	 smallf

	

-0.0419	 -0.0065	 -0.0421

	

0.0420	 0.0071	 0.0422

9011 confidence interval.

	

capf	 theta	 small!
-0.0644 -0.0083 -0.0548

	

0.0521	 0.0096	 0.0533

Cprob 11'00) .	0.99960

perm:Sting genotypes within total.

95% confidence interval.

capf	 theta	 small!
-0.0890 -0.0059	 -0.0958
-0.0883	 0.0068 -0.0826

941% confidence interval.

ca	 theta	 =alit
-0.08if -0.0077 -0.0989
-0.0882	 0.0096	 -0.0808

(prob fst .0)<	 0.00020



Appendix H

Raw output of the treatment of
Nucella data

1	 2 3 4 6 8 7 8 9 10 11 12 13 14 16
locus: EST-3
n	 13	 30 39 7 24 6 13 19 17 18 21 17 18 21 21

p: 1 0.73 0.75 0.72 0.93 0.88 0.80 0.98 0.89 0.78 0.97 0.95 0.86 1.00 0.98 0.98
p: 2 0.27 0.26 0.28 0.07 0.12 0.20 0.04 0.11 0.24 0.03 0.06 0.16 0.00 0.02 0.02
ho: 1 0.64 0.37 0.28 0.14 0.26 0.40 0.08 0.21 0.24 0.08 0.10 0.29 0.00 0.05 0.06.
ho: 2 0.64 0.37 0.28 0.14 0.26 0.40 0.08 0.21 0.24 0.08 0.10 0.29 0.00 0.06 0.06
he: 1 0.41 0.38 0.41 0.14 0.22 0.38 0.08 0.19 0.37 0.08 0.09 0.28 0.00 0.06 0.05
he: 2 0.41 0.38 0.41 0.14 0.22 0.38 0.08 0.19 0.37 0.08 0.09 0.28 0.00 0.06 0.06

locus: LAP-1
n	 12	 29 39 7 24 8 14 19 17 18 21 17 18 21 21

p: 1 0.88 0.88 1.00 1.00 0.98 0.76 0.98 0.87 0.79 0.88 0.88 0.97 1.00 0.86 0.88
p: 2 0.12 0.12 0.00 0.00 0.02 0.25 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.02 0.00
p: 3 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.13 0.21 0.06 0.12 0.03 0.00 0.12 0.14
ho: 1 0.25 0.24 0.00 0.00 0.04 0.17 0.07 0.18 0.41 0.26 0.14 0.08 0.00 0.10 0.29
ho: 2 0.26 0.24 0.00 0.00 0.04 0.17 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.06 0.00
ho: 3 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.18 0.41 0.12 0.14 0.08 0.00 0.06 0.29
he: 1 0.23 0.22 0.00 0.00 0.04 0.41 0.07 0.23 0.34 0.23 0.21 0.08 0.00 0.25 0.25
he: 2 0.23 0.22 0.00 0.00 0.04 0.41 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.06 0.00
he: 3 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.23 0.34 0.12 0.21 0.06 0.00 0.21 0.25

locus: LAP-2
n	 14	 30 39 7 24 8 14 19 17 18 21 17 18 21 21

p: 1 0.07 0.02 0.04 0.00 0.04 0.00 0.11 0.11 0.15 0.03 0.02 0.03 0.00 0.02 0.00
p: 2 0.93 0.98 0.98 1.00 0.98 1.00 0.89 0.89 0.86 0.97 0.98 0.97 1.00 0.98 1.00
ho: 1 0.14 0.03 0.08 0.00 0.08 0.00 0.21 0.21 0.29 0.08 0.06 0.08 0.00 0.06 0.00
ho: 2 0.14 0.03 0.08 0.00 0.08 0.00 0.21 0.21 0.29 0.08 0.05 0.08 0.00 0.06 0.00
he: 1 0.14 0.03 0.07 0.00 0.08 0.00 0.20 0.19 0.28 0.08 0.06 0.06 0.00 0.06 0.00
he: 2 0.14 0.03 0.07 0.00 0.08 0.00 0.20 0.19 0.28 0.08 0.06 0.08 0.00 0.06 0.00

locus: MDH-1
n	 12	 30 39 7 23 8 14 19 17 16 21 17 18 21 21

p: 1 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p: 2 0.08 0.20 0.27 0.00 0.09 0.33 0.07 0.11 0.12 0.03 0.12 0.00 0.03 0.06 0.17
p: 3 0.92 0.80 0.73 1.00 0.91 0.67 0.89 0.89 0.88 0.94 0.88 0.97 0.97 0.96 0.83
p: 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.03 0.00 0.00 0.00
ho: 1 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ho: 2 0.17 0.40 0.28 0.00 0.17 0.33 0.14 0.11 0.12 0.08 0.24 0.00 0.08 0.10 0.24
ho: 3 0.17 0.40 0.28 0.00 0.17 0.33 0.07 0.11 0.12 0.12 0.24 0.08 0.08 0.10 0.24
ho: 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.08 0.00 0.00 0.00
he: 1 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
he: 2 0.18 0.33 0.40 0.00 0.18 0.48 0.14 0.19 0.21 0.08 0.21 0.00 0.08 0.09 0.28
he: 3 0.18 0.33 0.40 0.00 0.18 0.48 0.20 0.19 0.21 0.12 0.21 0.08 0.08 0.09 0.28
he: 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.08 0.00 0.00 0.00

locus: PEP-1
n	 14	 30 39 7 21 8 14 19 17 18 21 17 18 21 21

p: 1 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.21 0.18 0.68 0.38 0.58 0.68 0.89 0.80
p: 2 0.96 1.00 1.00 1.00 1.00 1.00 0.93 0.79 0.82 0.44 0.62 0.41 0.42 0.31 0.40
p: 3 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p: 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00
ho: 1 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.32 0.24 0.62 0.67 0.85 0.72 0.62 0.71
ho: 2 0.07 0.00 0.00 0.00 0.00 0.00 0.14 0.32 0.24 0.82 0.87 0.69 0.72 0.52 0.71
ho: 3 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ho: 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00
he: 1 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.34 0.30 0.51 0.48 0.61 0.50 0.44 0.49
he: 2 0.07 0.00 0.00 0.00 0.00 0.00 0.14 0.34 0.30 0.61 0.48 0.50 0.60 0.44 0.49
he: 3 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
he: 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00
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locus: PEP-2
n	 14 30	 39 7 24 6 14 18 17 18 20	 17 18 21 20

p:	 1 0.98 1.00 1.00 1.00 1.00 0.80 0.89 0.68 0.78 0.89 0.47 0.58 0.28 0.48 0.33
p:	 2 0.04 0.00 0.00 0.00 0.00 0.20 0.11 0.42 0.24 0.31 0.63 0.44 0.72 0.62 0.88
ho:	 1 0.07 0.00 0.00 0.00 0.00 0.00 0.21 0.60 0.24 0.50 0.85 0.29 0.31 0.48 0.66
ho:	 2 0.07 0.00 0.00 0.00 0.00 0.00 0.21 0.60 0.24 0.50 0.86 0.29 0.31 0.48 0.66
he:	 1 0.07 0.00 0.00 0.00 0.00 0.38 0.20 0.60 0.37 0.44 0.61 0.61 0.42 0.61 0.46
he:	 2 0.07 0.00 0.00 0.00 0.00 0.38 0.20 0.50 0.37 0.44 0.61 0.61 0.42 0.61 0.46

locus: P011-1
n	 14 30	 39 7 24 8 14 19 17 18 21	 17 18 21 21

p:	 1 0.04 0.00 0.00 0.00 0.00 0.17 0.07 0.60 0.16 0.69 0.60 0.68 0.92 0.88 0.88
p:	 2 0.93 0.97 0.88 0.79 0.86 0.83 0.93 0.47 0.71 0.31 0.60 0.44 0.08 0.12 0.14
p:	 3 0.04 0.03 0.14 0.21 0.16 0.00 0.00 0.03 0.16 0.00 0.00 0.00 0.00 0.00 0.00
ho:	 1 0.07 0.00 0.00 0.00 0.00 0.33 0.14 0.47 0.18 0.50 0.62 0.63 0.17 0.24 0.29
ho:	 2 0.14 0.07 0.28 0.43 0.29 0.33 0.14 0.42 0.47 0.60 0.52 0.53 0.17 0.24 0.29
ho:	 3 0.07 0.07 0.28 0.43 0.29 0.00 0.00 0.06 0.29 0.00 0.00 0.00 0.00 0.00 0.00
he:	 1 0.07 0.00 0.00 0.00 0.00 0.30 0.14 0.51 0.28 0.44 0.61 0.61 0.18 0.21 0.26
he:	 2 0.14 0.07 0.25 0.38 0.26 0.30 0.14 0.51 0.43 0.44 0.61 0.61 0.18 0.21 0.26
he:	 3 0.07 0.07 0.26 0.38 0.26 0.00 0.00 0.06 0.28 0.00 0.00 0.00 0.00 0.00 0.00

locus: P011-2
it	 14 30	 39 7 24 6 14 19 17 18 21	 17 18 21 20

p:	 1 0.04 0.00 0.00 0.00 0.00 0.17 0.07 0.46 0.16 0.88 0.50 0.68 0.92 0.88 0.88
p:	 2 0.98 1.00 1.00 1.00 1.00 0.83 0.93 0.66 0.86 0.34 0.60 0.44 0.08 0.12 0.12
ho:	 1 0.07 0.00 0.00 0.00 0.00 0.33 0.14 0.68 0.18 0.44 0.62 0.53 0.17 0.24 0.26
ho:	 2 0.07 0.00 0.00 0.00 0.00 0.33 0.14 0.68 0.18 0.44 0.62 0.53 0.17 0.24 0.26
he:	 1 0.07 0.00 0.00 0.00 0.00 0.30 0.14 0.51 0.28 0.47 0.61 0.61 0.18 0.21 0.22
he:	 2 0.07 0.00 0.00 0.00 0.00 0.30 0.14 0.61 0.28 0.47 0.61 0.61 0.18 0.21 0.22

for locus : EST-3
fis: 1 -0.3 0.0	 0.4 0.0 -0.1 -0.1 0.0 -0.1 0.4 0.0 0.0 -0.1 777 0.0 0.0
fis: 2 -0.3 0.0	 0.4 0.0 -0.1 -0.1 0.0 -0.1 0.4 0.0 0.0 -0.1 ??? 0.0 0.0.
for locus : LAP-1

fis: 1 -0.1 -0.1	 ??? ??? 0.0 0.6 0.0 0.3 -0.2 -0.1 0.3	 0.0 ??? 0.8 -0.1
fis: 2 -0.1 -0.1	 ??? ??? 0.0 0.6 ??? ??? ??? 0.0 ???. ??? ??? 0.0 ???
fis: 3	 77? ???	 ??? ??? ??? ??? 0.0 0.3 -0.2 0.0 0.3	 0.0 ??? 0.8 -O./
for locus : LAP-2

fis: 1	 0.0 0.0	 0.0 ??? 0.0 ??? -0.1 -0.1 -0.1 0.0 0.0	 0.0 ??? 0.0 ???
fis: 2	 0.0 0.0	 0.0 ??? 0.0 ??? -0.1 -0.1 -0.1 0.0 0.0	 0.0 ??? 0.0 ???
for locus : NDH-1

fis: 1	 ??? ???	 ??? ??? ??? ??? 0.0 ??? ??? ??? ???	 ??? ??? ??? ???
fis: 2	 0.0 -0.2	 0.3 ??? -0.1 0.3 0.0 0.6 0.4 0.0 -0.1	 ??? 0.0 0.0 0.2
fis: 3	 0.0 -0.2	 0.3 ??? -0.1 0.3 0.8 0.6 0.4 0.0 -0.1	 0.0 0.0 0.0 0.2
fis: 4	 ??? ???	 ??? ??? ??? ??? ??? ??? ??? 0.0 ???	 0.0 ??? ??? ???
for locus : PEP-1

fis: 1	 ??? ???	 ??? ??? ??? ??? 0.0 0.1 0.2 -0.2 -0.4 -0.3 -0.4 -0.2 -0.4
fis: 2	 0.0 ???	 ??? ??? 77? ??? 0.0 0.1 0.2 -0.2 -0.4 -0.2 -0.4 -0.2 -0.4
fis: 3	 0.0 ???	 ??? ??? 77? ??? ??? ??? ??? ??? ???	 77? ??? ??? ???
fis: 4	 77? ???	 ??? ??? 777 77? ??? ?Tr ??? ??? ???	 0.0 ??? ??? ???
for locus : PEP-2

fig : 1	 0.0 ???	 ??? ??? ??? 1.0 -0.1 0.0 0.4 -0.1 -0.3	 0.4 0.3 0.1 -0.2
fin: 2	 0.0 ???	 ??? ??? ??? 1.0 -0.1 0.0 0.4 -0.1 -0.3	 0.4 0.3 O./ -0.2
for locus : P011-1

fis: 1	 0.0 77?	 ??? ??? ??? -0.1 0.0 0.1 0.3 -0.1 0.0	 0.0 -0.1 -0.1 -0.1
fis: 2	 0.0 0.0 -0.1 -0.2 -0.1 -0.1 0.0 0.2 -0.1 -0.1 0.0	 0.0 -0.1 -0.1 -0.1
fis: 3	 0.0 0.0 -0.1 -0.2 -0.1 ??? ??? 0.0 -0.1 ??? ???	 77? 777 ??? ???
for locus : P011-2

fis: 1	 0.0 ???	 777 ??? 777 -0.1 0.0 -0.1 0.3 0.1 0.0	 0.0 -0.1 -0.1 -0.1
fis: 2	 0.0 ???	 ??? ??? ??? -0.1 0.0 -0.1 0.3 0.1 0.0	 0.0 -0.1 -0.1 -0.1
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for locus : EST-3
	

96% confidence interval.
allele capf theta smallf capf theta smallf

1 0.1643 0.0718 0.0891 0.1926 0.1698 -0.1022
2 0.1643 0.0718 0.0891 0.4233 0.4398 0.0781

all 0.1643 0.0718 0.0891
for locus : LAP-1
allele	 capf theta smallf

99% confidence interval.
capf	 theta	 smallf

1 0.1322 0.0384 0.0994 0.1468 0.1168 -0.1321
2 0.0974 0.0808 0.0180 0.4600 0.4849 0.0912
3 0.2100 0.0804 0.1693

all 0.1618 0.0623 0.1048
for locus : LAP-2
allele capf	 theta	 smallf

1	 -0.0409	 0.0191 -0.0812

	

2 -0.0409	 0.0191 -0.0812
all	 -0.0409	 0.0191 -0.0812
for locus : 11DH-1
allele capf	 theta	 small?

1	 0.0008	 0.0103 -0.0098
2	 0.1823	 0.0493	 0.1188
3	 0.1767	 0.0379	 0.1433

	

4 -0.0018	 0.0022 -0.0039
all	 0.1861	 0.0428	 0.1280
for locus : PEP-1
allele capf	 theta	 smallf

1	 0.2218	 0.3802	 -0.2668
2	 0.2284	 0.3779 -0.2402
3	 0.0008	 0.0103 -0.0098
4	 0.0002	 0.0031 -0.0029

all	 0.2230	 0.3767 -0.2446
for locus : PEP-2
allele capf	 theta	 smallf

1	 0.3800	 0.3427	 0.0667
2	 0.3800	 0.3427	 0.0667

all	 0.3800	 0.3427	 0.0687
for locus : P011-1
allele capf	 theta	 smallf

1	 0.6623	 0.6712	 -0.0207
2	 0.3833	 0.4208 -0.0648

	

3 -0.0482	 0.0730 -0.1308
all	 0.4220	 0.4647 -0.0600
for locus : P011-2
allele capf	 theta	 smallf

1	 0.6672	 0.6703 -0.0308
2	 0.6672	 0.6703 -0.0306

all	 0.6672	 0.6703 -0.0308

over all loci
capf	 theta	 smallf

0.3283	 0.3327 -0.0068

jackknifing over populations.
for locus : EST-3

capf	 theta	 smallf
total	 0.1768	 0.0722	 0.1104 means

0.1188	 0.0212	 0.1189 std. devs.
for locus : LAP-1

capf	 theta	 small?
total	 0.1476	 0.0608	 0.1029 means

0.1012	 0.0220	 0.1131 std. devs.
for locus : LAP-2

capf	 theta	 smallf
total -0.0437	 0.0200 -0.0646 means

0.0108	 0.0163	 0.0223 std. devs.
for locus : 11DH-1

capf	 theta	 smallf
total	 0.1762	 0.0464	 0.1339 means

0.1068	 0.0231	 0.0979 std. devs.
for locus : PEP-1

capf	 theta	 smallf
total	 0.2178	 0.3744 -0.2604 means

0.1006	 0.0737	 0.0721 std. devs.
for locus : PEP-2

capf	 theta	 smallf
total	 0.3772	 0.3437	 0.0623 means

0.0967	 0.0880	 0.0938 std. devs.
for locus : P011-1

capf	 theta	 smallf
total	 0.4272	 0.4602 -0.0687 means

0.0830	 0.0861	 0.0317 std. days.
for locus : P011-2

capf	 theta	 smallf
total	 0.6623	 0.6783 -0.0321 means

0.1099	 0.1072	 0.0401 std. devs.

jackknifing over loci.
capf	 theta
	

small?
total	 0.3386	 0.3434 -0.0078 means

0.0848	 0.0738
	

0.0489 std. dove.

bootstrapping over loci.
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theta per locus over pair of populations.
for locus: EST-3

1 2 3 4 6 8 7 8 9 10 11 12 13 14 16
1 -0.03 -0.03 0.08 0.06 -0.04 0.18 0.07 -0.03 0.19 0.17 0.02 0.29 0.23 0.23
2 -0.03 -0.02 0.06 0.03 -0.08 0.11 0.04 -0.03 0.13 0.12 0.01 0.19 0.18 0.18
3 -0.03 -0.02 0.08 0.06 -0.08 0.13 0.08 -0.02 0.16 0.14 0.02 0.20 0.17 0.17
4 0.08 0.06 0.08 -0.03 0.00 -0.06 -0.04 0.02 -0.03 -0.04 -0.02 0.08 -0.02 -0.02
6 0.06 0.03 0.06 -0.03 -0.03 0.02 -0.02 0.01 0.03 0.02 -0.02 0.09 0.06 0.06
8 -0.04 -0.08 -0.08 0.00 -0.03 0.10 -0.02 -0.09 0.14 0.10 -0.06 0.34 0.20 0.20
7 0.18 0.11 0.13 -0.06 0.02 0.10 0.00 0.10 -0.04 -0.03 0.03 0.01 -0.03 -0.03
8 0.07 0.04 0.08 -0.04 -0.02 -0.02 0.00 0.03 0.01 0.00 -0.02 0.08 0.03 0.03
9 -0.03 -0.03 -0.02 0.02 0.01 -0.09 0.10 0.03 0.13 0.11 -0.01 0.21 0.18 0.18

10 0.19 0.13 0.16 -0.03 0.03 0.14 -0.04 0.01 0.13 -0.02 0.06 0.00 -0.03 -0.03
11 0.17 0.12 0.14 -0.04 0.02 0.10 -0.03 0.00 0.11 -0.02 0.03 0.02 -0.02 -0.02
12 0.02 0.01 0.02 -0.02 -0.02 -0.06 0.03 -0.02 -0.01 0.06 0.03 0.13 0.08 0.08
13 0.29 0.19 0.20 0.08 0.09 0.34 0.01 0.08 0.21 0.00 0.02 0.13 0.00 0.00
14 0.23 0.18 0.17 -0.02 0.06 0.20 -0.03 0.03 0.18 -0.03 -0.02 0.08 0.00 -0.02
16 0.23 0.18 0.17 -0.02 0.06 0.20 -0.03 0.03 0.18 -0.03 -0.02 0.08 0.00 -0.02

for locus: LAP-1
1 2 3 4 6 8 7 8 9 10 11 12 13 14 16

1 -0.03 0.22 0.06 0.07 -0.02 0.06 0.03 0.08 -0.02 0.03 0.08 0.12 0.00 0.04
2 -0.03 0.13 0.04 0.06 0.01 0.04 0.05 0.09 -0.01 0.04 0.06 0.08 0.03 0.08
3 0.22 0.13 0.01 0.63 0.04 0.17 0.29 0.13 0.14 0.03 0.14 0.18
4 0.06 0.04 -0.03 0.18 -0.03 0.03 0.12 0.02 0.02 -0.03 0.01 0.08
6 0.07 0.06 0.01 -0.03 0.28 -0.01 0.08 0.18 0.04 0.07 -0.01 -0.01 0.08 0.10
6-0.02 0.01 0.63 0.18 0.28 0.19 0.08 0.08 0.03 0.09 0.23 0.36 0.04 0.10
7 0.06 0.04 0.04 -0.03 -0.01 0.19 0.02 0.10 0.01 0.01 -0.03 0.01 0.01 0.04
8 0.03 0.06 0.17 0.03 0.08 0.08 0.02 -0.01 -0.01 -0.03 0.03 0.10 -0.04 -0.03
9 0.08 0.09 0.29 0.12 0.18 0.08 0.10 -0.01 0.03 0.00 0.12 0.19 -0.01 -0.01

10 -0.02 -0.01 0.13 0.02 0.04 0.03 0.01 -0.01 0.03 -0.02 0.02 0.07 -0.03 0.00
11 0.03 0.04 0.14 0.02 0.07 0.09 0.01 -0.03 0.00 -0.02 0.02 0.08 -0.03 -0.02
12 0.08 0.06 0.03 -0.03 -0.01 0.23 -0.03 0.03 0.12 0.02 0.02 0.00 0.02 0.06
13 0.12 0.08 -0.01 0.36 0.01 0.10 0.19 0.07 0.08 0.00 0.08 0.11
14 0.00 0.03 0.14 0.01 0.08 0.04 0.01 -0.04 -0.01 -0.03 -0.03 0.02 0.08 -0.03
16 0.04 0.08 0.18 0.08 0.10 0.10 0.04 -0.03 -0.01 0.00 -0.02 0.06 0.11 -0.03

for locus: LAP-2
1 2 3 4 6 8 7 8 9 10 11 12 13 14 15

1 0.02 -0.01 0.00 -0.02 -0.01 -0.03 -0.02 0.00 -0.02 0.00 -0.01 0.06 0.00 0.08
2 0.02 -0.01 -0.04 -0.01 -0.04 0.07 0.06 0.11 -0.02 -0.02 -0.02 -0.01 -0.02 -0.01
3 -0.01 -0.01 -0.02 -0.02 -0.03 0.02 0.02 0.07 -0.02 -0.01 -0.02 0.01 -0.01 0.01
4 0.00 -0.04 -0.02 -0.02 0.03 0.03 0.07 -0.03 -0.03 -0.03 -0.03
6 -0.02 -0.01 -0.02 -0.02 -0.03 0.01 0.01 0.06 -0.02 -0.02 -0.02 0.01 -0.02 0.02
8 -0.01 -0.04 -0.03 -0.03 0.03 0.02 0.06 -0.04 -0.04 -0.04 -0.04
7 -0.03 0.07 0.02 0.03 0.01 0.03 -0.03 -0.02 0.01 0.04 0.02 0.09 0.04 0.11
8-0.02 0.08 0.02 0.03 0.01 0.02 -0.03 -0.02 0.01 0.03 0.02 0.08 0.03 0.09
9 0.00 0.11 0.07 0.07 0.06 0.08 -0.02 -0.02 0.06 0.08 0.08 0.13 0.08 0.14

10 -0.02 -0.02 -0.02 -0.03 -0.02 -0.04 0.01 0.01 0.06 -0.03 -0.03 0.00 -0.03 0.01
11 0.00 -0.02 -0.01 -0.03 -0.02 -0.04 0.04 0.03 0.08 -0.03 -0.03 0.00 -0.02 0.00
12 -0.01 -0.02 -0.02 -0.03 -0.02 -0.04 0.02 0.02 0.08 -0.03 -0.03 0.00 -0.03 0.01
13 0.06 -0.01 0.01 0.01 0.09 0.08 0.13 0.00 0.00 0.00 0.00
14 0.00 -0.02 -0.01 -0.03 -0.02 -0.04 0.04 0.03 0.08 -0.03 -0.02 -0.03 0.00 0.00
16 0.08 -0.01 0.01 0.02 0.11 0.09 0.14 0.01 0.00 0.01 0.00

for locus: NDH-1
1 2 3 4 6 8 7 8 9 10 11 12 13 14 16

1 0.03 0.08 0.01 -0.03 0.14 -0.04 -0.04 -0.04 -0.02 -0.02 0.02 0.00 -0.02 -0.01
2 0.03 0.00 0.10 0.03 0.01 0.02 0.01 0.00 0.07 0.01 0.12 0.10 0.08 -0.02
3 0.08 0.00 0.14 0.08 -0.08 0.06 0.06 0.04 0.11 0.04 0.18 0.16 0.13 0.01
4 0.01 0.10 0.14 0.02 0.28 -0.01 0.00 0.01 -0.02 0.04 -0.03 -0.03 -0.02 0.07
6 -0.03 0.03 0.08 0.02 0.17 -0.03 -0.03 -0.03 -0.01 -0.02 0.02 0.01 -0.01 0.00
8 0.14 0.01 -0.08 0.28 0.17 0.12 0.11 0.08 0.24 0.10 0.36 0.34 0.29 0.02
7 -0.04 0.02 0.08 -0.01 -0.03 0.12 -0.04 -0.04 -0.02 -0.02 0.01 0.00 -0.02 -0.01
8 -0.04 0.01 0.06 0.00 -0.03 0.11 -0.04 -0.04 -0.01 -0.03 0.03 0.01 -0.01 -0.02
9 -0.04 0.00 0.04 0.01 -0.03 0.08 -0.04 -0.04 -0.01 -0.03 0.04 0.02 0.00 -0.03
10 -0.02 0.07 0.11 -0.02 -0.01 0.24 -0.02 70.01 -0.01 0.01 -0.02 -0.02 -0.02 0.04
11 -0.02 0.01 0.04 0.04 -0.02 0.10 -0.02 -0.03 -0.03 0.01 0.06 0.03 0.01 -0.02
12 0.02 0.12 0.18 -0.03 0.02 0.36 0.01 0.03 0.04 -0.02 0.06 -0.01 0.00 0.09
13 0.00 0.10 0.16 -0.03 0.01 0.34 0.00 0.01 0.02 -0.02 0.03 -0.01 -0.02 0.07
14 -0.02 0.08 0.13 -0.02 -0.01 0.29 -0.02 -0.01 0.00 -0.02 0.01 0.00 -0.02 0.06
15 -0.01 -0.02 0.01 0.07 0.00 0.02 -0.01 -0.02 -0.03 0.04 -0.02 0.09 0.07 0.06
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for locus: PEP-1
1 2 3 4 6 8 7 8 9 10 11 12 13 14 15

1 0.03 0.04 -0.03 0.02 -0.04 0.00 0.12 0.09 0.49 0.29 0.48 0.50 0.81 0.51
2	 0.03 0.09 0.24 0.21 0.84 0.42 0.83 0.86 0.73 0.84
3	 0.04 0.11 0.27 0.24 0.88 0.48 0.87 0.89 0.78 0.87
4 -0.03 0.00 0.11 0.08 0.48 0.27 0.46 0.48 0.58 0.48
6	 0.02 0.08 0.20 0.17 0.69 0.37 0.58 0.80 0.88 0.69
8 -0.04 -0.01 0.10 0.08 0.46 0.28 0.44 0.47 0.67 0.47
7	 0.00 0.09 0.11 0.00 0.08 -0.01 0.04 0.01 0.41 0.21 0.41 0.43 0.64 0.44
8	 0.12 0.24 0.27 0.11 0.20 0.10 0.04 -0.03 0.21 0.06 0.22 0.24 0.38 0.26
9	 0.09 0.21 0.24 0.08 0.17 0.08 0.01 -0.03 0.28 0.08 0.28 0.28 0.40 0.29

10	 0.49 0.84 0.88 0.48 0.69 0.46 0.41 0.21 0.28 0.06 -0.02 -0.02 0.01 -0.02
11	 0.29 0.42 0.48 0.27 0.37 0.28 0.21 0.06 0.08 0.06 0.06 0.07 0.18 0.08
12	 0.48 0.83 0.87 0.46 0.68 0.44 0.41 0.22 0.28 -0.02 0.05 -0.02 0.01 -0.02
13	 0.60 0.86 0.89 0.48 0.60 0.47 0.43 0.24 0.28 -0.02 0.07 -0.02 0.01 -0.01
14	 0.81 0.73 0.78 0.68 0.68 0.57 0.64 0.38 0.40 0.01 0.18 0.01 0.01 0.00
16	 0.51 0.84 0.87 0.48 0.69 0.47 0.44 0.26 0.29 -0.02 0.08 -0.02 -0.01 0.00

for locus: PEP-2
1 2 34 6 8 7 a 9 10 11 12 13 14 16

1 0.03 0.04 -0.03 0.02 0.07 0.00 0.30 0.11 0.20 0.41 0.32 0.84 0.40 0.68
2	 0.03 0.41 0.14 0.48 0.28 0.38 0.67 0.61 0.78 0.68 0.72
3	 0.04 0.48 0.17 0.62 0.32 0.43 0.81 0.56 0.81 0.80 0.76
4 -0.03 0.07 0.03 0.30 0.12 0.21 0.41 0.31 0.83 0.40 0.67
6	 0.02 0.38 0.12 0.44 0.24 0.36 0.54 0.47 0.76 0.53 0.89
8	 0.07 0.41 0.48 0.07 0.38 -0.08 0.02 -0.10 -0.04 0.14 0.02 0.38 0.12 0.32
7	 0.00 0.14 0.17 0.03 0.12 -0.08 0.19 0.02 0.09 0.30 0.20 0.63 0.29 0.48
8	 0.30 0.48 0.62 0.30 0.44 0.02 0.19 0.04 0.00 0.00 -0.03 0.14 0.00 0.11
9	 0.11 0.28 0.32 0.12 0.24 -0.10 0.02 0.04 -0.02 0.14 0.06 0.36 0.13 0.31

10	 0.20 0.38 0.43 0.21 0.36 -0.04 0.09 0.00 -0.02 0.07 0.00 0.28 0.08 0.21
11	 0.41 0.67 0.81 0.41 0.64 0.14 0.30 0.00 0.14 0.07 -0.01 0.06 -0.02 0.03
12	 0.32 0.61 0.55 0.31 0.47 0.02 0.20 -0.03 0.06 0.00 -0.01 0.11 -0.02 0.08
13	 0.84 0.78 0.81 0.83 0.76 0.38 0.63 0.14 0.35 0.28 0.06 0.11 0.06 -0.02
14	 0.40 0.58 0.80 0.40 0.63 0.12 0.29 0.00 0.13 0.08 -0.02 -0.02 0.06 0.02
16	 0.68 0.72 0.76 0.67 0.69 0.32 0.48 0.11 0.31 0.21 0.03 0.08 -0.02 0.02

for locus: PON-1
1 2 3 4 6 8 7 8 9 10 11 12 13 14 16

1 -0.01 0.02 0.07 0.02 0.02 -0.03 0.36 0.08 0.57 0.34 0.42 0.83 0.79 0.78
2-0.01 0.06 0.19 0.08 0.15 0.02 0.49 0.18 0.70 0.48 0.68 0.89 0.86 0.83
3	 0.02 0.06 -0.01 -0.01 0.06 0.06 0.37 0.06 0.68 0.36 0.43 0.77 0.74 0.72
4	 0.07 0.19 -0.01 -0.02 0.06 0.11 0.26 -0.01 0.48 0.28 0.32 0.78 0.71 0.88
5	 0.02 0.08 -0.01 -0.02 0.06 0.06 0.34 0.04 0.64 0.34 0.41 0.77 0.74 0.71
8	 0.02 0.15 0.06 0.05 0.06 -0.01 0.18 -0.01 0.38 0.18 0.22 0.74 0.68 0.64
7-0.03 0.02 0.06 0.11 0.06 -0.01 0.33 0.08 0.65 0.32 0.40 0.83 0.78 0.76
8	 0.36 0.49 0.37 0.26 0.34 0.18 0.33 0.14 0.03 -0.03 -0.02 0.30 0.26 0.22
9	 0.08 0.18 0.05 -0.01 0.04 -0.01 0.08 0.14 0.33 0.14 0.19 0.81 0.67 0.64

10	 0.57 0.70 0.56 0.48 0.64 0.38 0.66 0.03 0.33 0.06 0.01 0.13 0.09 0.08
11	 0.34 0.48 0.38 0.28 0.34 0.18 0.32 -0.03 0.14 0.06 -0.02 0.32 0.27 0.24
12	 0.42 0.58 0.43 0.32 0.41 0.22 0.40 -0.02 0.19 0.01 -0.02 0.27 0.22 0.18
13	 0.83 0.89 0.77 0.78 0.77 0.74 0.83 0.30 0.81 0.13 0.32 0.27 -0.02 -0.01
14	 0.79 0.86 0.74 0.71 0.74 0.68 0.78 0.26 0.67 0.09 0.27 0.22 -0.02 -0.02
16	 0.76 0.83 0.72 0.68 0.71 0.64 0.76 0.22 0.64 0.06 0.24 0.18 -0.01 -0.02

for locus: PGN-2
1 2 3 4 5 8 7 8 9 10 11 12 13 14 16

1 0.03 0.04 -0.03 0.02 0.07 -0.02 0.33 0.03 0.67 0.38 0.48 0.87 0.82 0.81
2	 0.03 0.36 0.09 0.60 0.17 0.73 0.64 0.83 0.93 0.90 0.90
3	 0.04 0.41 0.11 0.56 0.20 0.78 0.58 0.87 0.94 0.91 0.91
4 -0.03 0.12 0.00 0.33 0.06 0.68 0.37 0.46 0.88 0.83 0.82
6	 0.02 0.31 0.07 0.47 0.14 0.70 0.51 0.69 0.93 0.89 0.88
8	 0.07 0.35 0.41 0.12 0.31 -0.01 0.11 -0.07 0.34 0.18 0.22 0.74 0.88 0.87
7 -0.02 0.09 0.11 0.00 0.07 -0.01 0.27 -0.01 0.61 0.32 0.40 0.83 0.78 0.77
8	 0.33 0.60 0.66 0.33 0.47 0.11 0.27 0.17 0.08 -0.02 0.00 0.39 0.34 0.33
9	 0.03 0.17 0.20 0.06 0.14 -0.07 -0.01 0.17 0.41 0.22 0.29 0.74 0.89 0.88

10	 0.67 0.73 0.76 0.58 0.70 0.34 0.61 0.08 0.41 0.02 -0.01 0.18 0.11 0.10
11	 0.38 0.54 0.68 0.37 0.51 0.18 0.32 *0.02 0.22 0.02 -0.02 0.32 0.27 0.28
12	 0.48 0.83 0.67 0.46 0.69 0.22 0.40 0.00 0.29 -0.01 -0.02 0.27 0.22 0.20
13	 0.87 0.93 0.94 0.88 0.93 0.74 0.83 0.39 0.74 0.18 0.32 0.27 -0.02 -0.02
14	 0.82 0.90 0.91 0.83 0.89 0.88 0.78 0.34 0.89 0.11 0.27 0.22 -0.02 -0.02
15	 0.81 0.90 0.91 0.82 0.88 0.67 0.77 0.33 0.88 0.10 0.28 0.20 -0.02 -0.02
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permutting alleles within samples.

96% confidence interval.

	

capf	 theta	 smallf

	

0.2986	 0.3318 -0.0628

	

0.3883	 0.3338	 0.0618

99% confidence interval.

	

capf	 theta	 smallf

	

0.2898	 0.3313 -0.0881

	

0.3790	 0.3338	 0.0713

(prob fismO) w	0.67280

4.1.******4. ***** we** ***** 4.144. ***** 4.1444.1.14444s**
permitting alleles within total.

96% confidence interval.

	

capf	 theta	 smallf
-0.0433 -0.0071 -0.0440

	

0.0442	 0.0083	 0.0449

99% confidence interval.

	

capf	 theta	 smallf
-0.0686 -0.0089 -0.0681

	

0.0687	 0.0116	 0.0677

(prob fit=0)<	 0.00020

permutting genotypes within total.

96% confidence interval.

	

capf	 theta	 smallf

	

0.3104	 -0.0137	 0.2992

	

0.3120	 0.0183	 0.3197

99% confidence interval.

	

capf	 theta	 smallf

	

0.3102	 -0.0164	 0.2938

	

0.3124	 0.0266	 0.3213

(prob fst=0)<	 0.00020


