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SUMMARY

Gene-flow has been studied in this research from an analytical, theoretical,
and practical angle. While simple models of restricted gene-flow are tractable
analytically and can produce very accurate predictions when compared with
the results of computer simulations, models of discrete populations with
geographical structure and models of continuous populations need further
research. In particular, models of isolation by distance in a continuum are
very difficult to relate to concepts familiar to the population geneticist since
the basic concept linking continuous populations to discrete ones, the
neighbourhood size, is shown to be flawed.

Inferring gene-flow from indirect methods implies obtaining unbiased
estimators of quantities such as F-statistics. The framework for estimation
presented in this research can be used to derive unbiased estimators in
different situations, and can also help to clarify the underlying assumptions
made when making these estimates. In particular the conditions are specified
under which Nei and Chesser's (1983) and Weir and Cockerham's (1984)
estimators are most appropriate.

While analytical treatment of geographically structured populations is
difficult, F-statistics can be used to unravel levels of 'genetic structuring in
these populations. Methods are presented which yield ways of discriminating
_between samples taken within and among breeding units, a necessary
distinction if levels of gene-flow .are to be inferred. Calculations of pairwise
Fg, even in continuous populations, provide a picture of the geography of
gene-flow in the population investigated.

The methods are applied to data sets of three species, Brassica oleracea ssp.
oleracea, Beta vulgaris ssp. maritima and Nucella lapillus and lead to new
insights in the population biology of these species.
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Chapter 1
(GGeneral introduction

At the onset of the century, the two scientists Hardy (1908) and Weinberg (1908)
discovered independently the basic law, or principle, of population genetics, which
predicts the fate of genotypic and allelic frequencies in idealised populations. This
principle states that, in an infinite sized Mendelian population, allele and genotype
frequencies stay constant over time and therefore, the population does not evolve.
This principle defined the basis of population genetics theory and opened the way
for the first generation of theoretical population geneticists, Wright, Fisher and
Haldane. While these three workers prepared the ground for many investigations of

known and unknown evolutionary problems, their work was difficult to follow by

biologists and was described as

‘As technical a body of research as that in statistical mechanics, say, and

requiring as detailed a study’ Bartlett (1955)

and

‘Brilliant intuitions, daring approximations, arguments set out so briefly
that one was not always sure precisely what was being argued, however

much diluted by passages of limpid lucidity, posed a formidable task for
the reader.” Gale (1990)

Following this early work, scientists such as Kimura and Feller, in the fifties, started
a systematic examination of the writings of the founders of the subject, and have
clarified many arguments by setting them out in detail and discussing them in a

more rigorous manner (Gale, 1990).

12



Chapter 1. General introduction 13

The problematic of population genetics at this time was the description and
explanation of genetic variation within and among populations. It remains its
problematic some forty years later (Lewontin, 1991).

Before the development of biochemical and molecular techniques, genetic variation
was difficult to measure since genes could only be perceived through the conspicuous
phenotype of the individuals. Despite these difficulties, Wright (1943) used
theoretical predictions to explain the genetic polymorphism of flower colour in the
desert snow Linanthus parryae, while others were focusing on the shell colour
polymorphism of the land snail Cepaea nemoralis (Lamotte, 1951,1959; Cain &
Sheppard, 1950, 1954).

The independent discovery of the application of protein gel electrophoresis to genetic
studies by Harris (1966) and Lewontin & Hubby (1966) provided direct access to an
astonishingly large quantity of variability (Lewontin, 1991) whilst it opened
passionate discussions about the evolutionary basis of this polymorphism (Lewontin,
1974; Kimura, 1983), it also provided robust data sets to which statistical methods
could be applied.

The rapid progress made by molecular biologists at the onset of the eighties opened

the doors to yet more information on the genetic make-up of species.

Genetic variation within and among populations can be described in terms of allele
and genotypic frequencies. As Wright (1931) pointed out, the proportion of
heterozygotes in the total population is a good indicator of this variation. He
developed statistics, called fixation indices or F-statistics, that partition the
proportion of heterozygotes into within and among population components. These
quantities, hbwever, need to be estimated, since they are only based on samples of
the total population. Even if the whole set of populations were to be sampled, the
genetic sampling of gametes would still be occurring every generation. The work
that Nei (1973, 1975, 1977) and Cockerham (1969, 1973) have initiated on the
estimation of these quantities is very useful but has laid a trap for the unwary
because comparisons between quantities estimated by one or the other approach are
not valid, as will be shown in Chapter 3.

Since describing the fate of genes within and among populations is the main area of
interest, it would be of interest to define what a population is. This task was
undertaken by Crawford (1984), but a definite answer was not found. Since a

reference population is one where mating occurs at random, developing tools that
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detect such units, if they exist, could lead to dramatic improvements in the
understanding of the genetic structure of populations, as will be shown in
Chapters 4 and 5.

While of great evolutionary interest, the description and understanding of the
processes maintaining genetic variation remained for a long time the preoccupation
of relatively few biologists. The increasing awareness in contemporary society
regarding ethical questions posed by ecology and genetics makes the problem of
interest to a much wider audience. The issues raised by conservation biology have
helped to place the subject of genetic variation and its maintenance firmly in
‘limelight’. Population geneticists are requested to help in understanding the risks
associated with the release into the environment of Genetically Modified Organisms.
Forensic science, particularily DNA finger-printing, is part of the apparatus used in
courts of law to determine innocence or guilt. These three examples should be
sufficient to emphasize how crucial it is that population geneticists state clearly
what can be inferred from their studies, as well as to highlight areas in which they
feel unable to make definite statements. To this end, it seems important to develop
theoretical models of structured populations, to test their predictions with
Monte-Carlo simulations using tools of an appropriate nature, and to apply these

tools to biological models of relevance to the problem.



Chapter 2

Population genetic models and

analytical solutions

2.1 Introduction

The understanding of the genetical structure of natural populations has been greatly
enhanced by the modelling of population structure. The pioneer of this approach
was Wright (1931) with his island model of population. He considered a monoecious,
diploid population with discrete (non-overlapping) generations, subdivided into an
infinite number of finite sized islands (named sub-populations, gamodemes, demes or
local populations). He focussed his attention on a one locus, two allele system. Each
island exchanges migrants at a rate m, with migrants coming from any of the other
islands. With an infinite number of islands, the allele frequencies of the total
population do not change from one generation to the next and therefore, the allele
frequencies in the migrant pool also stay constant. Migration could be haploid
(gametes) or diploid (individuals). Nagylaki (1983) showed that the type of
migration has little influence on the general outcome of the model. The island model
has been enhanced by Latter (1973), who considered a finite set of finite sized
islands. Slatkin (1985a) called this second version the n-island model. The main
difference between the n-island model and Wright’s version is that allele frequencies
fluctuate in the former, leading to somewhat more complex analytical solutions than

the latter.
Kimura (1955) introduced the first geographically structured model, the

stepping-stone. Each deme can exchange migrants only with its closest neighbours.

15
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The number of neighbouring demes available for exchanges of migrants is called
connectedness in the rest of this work. A connectedness of two represents a
one-dimensional stepping-stone model and would correspond to a species living in a
linear habitat like a river bank, a sea shore, or a road edge. Increasing the
connectedness leads to two- (connectedness 4) or three-dimensional (connectedness
6/8) stepping-stone models. The higher the connectedness, the closer the model is to
an island model, which could be described as a stepping-stone of connectedness

(D — 1), D being the number of islands. Restricting migration to the nearest demes
is as unrealistic as hyper-connectedness, and an intermediate model is developed
here, called a pseudo-neighbourhood, where the probability of migrants arriving at a
deme is a decreasing function of distance from that deme.

There remains the possibility that, in reality, no truly panmictic unit (deme) may
exist. To take account of this type of population structure, another set of models
has been developed, in which no panmictic unit is assumed: the isolation by
distance, or neighbourhood model, of Wright (1943). In this model, each individual
disperses its genes according to a decreasing function of distance (the
pseudo-neighbourhood described above could be defined as a model in which demes
disperse their genes according to a decreasing function of distance). No discrete
structure is assumed, but a useful device, the neighbourhood size, can be defined: it
consists of the area from which the parents of the central individual could be
considered as if drawn at random (Wright, 1943). This area is defined as a circle of
radius 20 centred on the individual under investigation, providing that the
distribution of dispersed particles (gametes or individuals) is normal, where o is the
parent to offspring dispersal standard deviation. To implement this model, one must
make very restrictive assumptions about growth rate (Poisson distribution of the
numbers of offspring) and spatial distribution of individuals (if individuals are not
constrained to occupy intersections of a lattice grid, the population will eventually

collapse into a biological black-hole (Felsenstein, 1975)).

2.2 Necessary prerequisites.

The first step in modelling is the definition of the goals. The aim of this research is
to understand the behaviour of F-statistics as a function of biological and genetical

parameters. It is therefore useful to have a model with the maximum possible
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information. Maximum possible information in population genetics is given by the
probability of identity by descent (Malécot, 1948). The probability of identity by
descent is the probability that two alleles are descended from the same common
ancestral allele. It is usually contrasted with the probability of identity in state,
which is the probability that the two alleles cannot be distinguished by the observer.
This last probability is dependent on the devices used to detect genetic variation

(Cockerham, 1984; Cockerham & Weir, 1987).

2.2.1 Identity by descent versus identity in state.

To implement a computer program that will display the identity by descent, it is
necessary and sufficient to have all the alleles in the starting generation with a
different label. That is, if the diploid population consists of D demes and N
individuals per deme, the starting generation will contain 2DN different alleles.

All alleles in subsequent generations bearing the same label will therefore be
descended from the same unique allele of the starting generation. Mutation can be
included in this model, providing that each new mutant allele possesses a new label.
This model without mutation could be called the 2DN state model. With mutation
it is the infinite allele model (e.g. Hartl & Clark, 1989). To relate this model to
biological reality and quantify the disparity between identity by descent and identity
in state, it is possible to implement a procedure that will reduce the number of
alleles (labels) present in the starting generation. The procedure consists of
assigning at random one of k allelic states to the 2DN allele array (Figure 2.1). An
equivalence relation or mapping R(k) (Figure 2.2) between the infinite and the k
alleles is therefore defined. The mapping R(k) is then applied to subsequent
generations. It is worth noticing that this mapping is independent of population

‘structure, migration pattern and selfing proportion.

2.2.2 Efficient procedure to build generations.

Drawing random numbers is time consuming and should be avoided if the quality of
the results is not to be affected. Gliddon (pers. comm.) suggested that it is only

necessary to apply the genetic sampling rules to the first generation. The subsequent
generations can then be built from replicates of the first. The 2DN ordered labels of

the starting generations can also be considered as location markers. The procedure
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Figure 2.1: Reduction of the number of alleles
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Figure 2.2: The equivalence relation between identity by descent and identity in state
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Figure 2.3: location of allele prior to mating

can be described as follows (Figures 2.3 & 2.4) : the leftmost column of Figure 2.4
represents the genotypic array prior to mating. Each allele is positioned according
to Figure 2.3. The middle column of Figure 2.4 represents the genetic sampling
between generation ' — 1 and T'. This genetic sampling is also equivalent to a
transition matrix from a Markov chain (Hartl & Clark, 1989). Focussing on the top
row of Figure 2.4, position 5 and 7 (position refers to number in Figure 2.3) of
generation 1 (filled circles) are occupied by the allele in position 4 in generation 0.
The allele in position 4 at generation 0 is D, hence the presence of D at position 5
and 7 in genération 1. The same process is applied to subsequent generations. The
middle row of Figure 2.4 focusses on the outcomes of allele D: the transition matrix
between generations 1 and 2 shows that this allele could be picked either via
position 5 or position 7. Empty circles are for position 7 whilst black circles are for
position 5. Mutation can be added to this procedure, after the genetic sampling
stage. To model a multi-locus system with this procedure (with or without
recombination), a position is given to individuals rather than alleles.

The obvious advantage of the procedure described is the avoidance of at least 2DN
draws in a random number generator each generation (more if there is migration and
selfing). A rough estimate of the number of possible states of the transition matrix

is 2DN?PN (each 2DN location can be occupied by one of 2DN alleles). How many
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Figure 2.4: Equivalence between genetic sampling and transition matrix

transition matrix states one needs to generate to be sure of the reliability of the
results is still unknown, but simulations with as (\eua as 5 transition matrix states
for an island model gave results similar after 100 generations to simulations where
draws were made in the random number generator each generation. Caution is
needed however for stepping-stone models: since migration is restricted to adjacent
demes, if migration is low, it is quite likely that some pairs of demes will not
exchange migrants if the number of replicates is too low. In the case of the
one-dimensional stepping-stone model, if no migration occurs between two adjacent
demes in all‘replica.tes, then the demes lying on each side of these two demes will be
effectively completely isolated. The number of replicated first generations needs
therefore to be higher for low migration and geographically structured populations.
As a result of the consideration given above, the results displayed are based on data

sets built from either 20, 50 or 100 replicates of the transition matrix.

2.2.3 Random number generators.

One of the stumbling-blocks of stochastic computer modelling is due to the
generation of random numbers. In fact, it is nearly impossible to generate a true

random sequence on a digital computer (one way would be connection to a truly
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random phenomenon such as the noise of an electronic diode, but the procedure is
not simple (Ripley, 1987)). Random number generators are in fact pseudo random,
that is, they are based on a deterministic equation that produces a random-like
sequence as output. One of the equations that has proved to be fairly reliable is the

Multiplicative Linear Congruential Generator (MLCG):
Xn+1 = (aX, +c) mod m,n >0 (2.1)

where m, the modulus, is a positive integer, a and ¢ are both positive and less than
m and X is a positive integer between 0 and m (Knuth, 1981). Depending on the
choice of @, ¢ and m, one will obtain a more or less random sequence. Figures 2.5 to

2.8 give examples of such MLCGs extracted from the literature.
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Figure 2.9: The result of 50000 draws in the integer random function of Turbo Pascal.

A good random number generator?

Testing the quality of random number generators is still a matter of investigation
and no less than 20 empirical tests exist. For a generator to be good, it should pass
all the tests. Figures 2.5 to 2.8 provide an empirical picture of the quality of random
number generators (L’Ecuyer, 1988). Only Figure 2.8 provides a random-like
pattern. This generator consists of the combination of two of the best 16-bit MLCG
018

according to L’Ecuyer (1988). The period of this generator is larger than 210'® and

it passed all 21 empirical tests described in L’Ecuyer (1988). The Pascal code for it
is found in L’Ecuyer (1988) and is reprc;duced in Annex A.1.1. The generator in
Figure 2.7, advocated by Park and Miller (1988) as a minimal standard, scores quite
badly in the spectral test (L’Ecuyer, 1988), shows a fairly coarse lattice structure
and possesses a period of only 2100,

Another warning needs to be made about random number generators provided by
commercial packages: Figure 2.9 shows the results of ‘50000 draws in the integer
random function of Turbo Pascal Version 6.00 using 10000 as a maximum. The
results are sorted and stored in 50 classes (each of width 200). Figure 2.9 shows a
strong bias favouring low integer values. This pattern, however, is not found when
using the integer part of the real random number generator multiplied By 10000.

To generate normal and exponential deviates, the following algorithms were
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implemented (Ripley, 1987):

Exponential deviate:

1. Draw a random number between 0 and 1 from a uniform distribution.

2. The exponential deviate is the absolute value of the natural logarithm of the
random number drawn in (1). If the exponential distribution has a mean A

different from one, multiply the result of (2) by .

Normal deviate

1. Draw two random numbers z; and z; between -1 and 1 from a uniform

distribution.

2. Repeat step (1) until z; and z, belong to the unit circle, that is, until the sum

of their squares s, is less than 1.
3. Let l=,/-2In(s)/s
4. The two normal deviates are given by z;! and z,l

The algorithm for the exponential deviate consists of an inversion of the exponential
function, whereas the algorithm for the normal deviate consists of drawing two

independent uniform deviates from the unit circle (polar algorithm). Although more
efficient algorithms exist (e.g Marsaglia, 1964 for a random normal deviate), the two

chosen prove satisfactory for our purposes.

2.2.4 Independence between migration and selfing

The two evolutionary forces to be dealt with in this research are migration and
selfing. Migration is chosen to be gametic rather than zygotic, primarily because the
early population genetic models of population structure were based on gametic
migration. Gametic migration is found very often in nature, either in plants (via
pollen dispersal) or in animals (via exchanges of one sex between herds as in
monkeys (Chesser,1991) and whales (Amos, Barrettand Dover, 1991)).

Gametic migration means that dispersal takes place prior to mating. Under this
condition, selfed individualé could only be non-migrants, a feature that would

introduce dependence between selfing proportion and migration proportion in the
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Figure 2.10: Algorithm for independence between migration and selfing

model. The approach is therefore to implement a mixed mating model, in which
reproduction occurs first if the individual is selfed, with a probability of migration of
m/2 (because 2 alleles instead of 1 will migrate), and dispersal occurs first if the

individual is not selfed. Figure 2.10 summarises the algorithm.

2.3 Implementation of the models

The goal of this section is to describe a computer program, MODEL42, that was
developed during this research. This program integrates the different gene-flow
patterns described in the introduction and more in a single package (option 1 from

the main menu). Once the gene-flow patterns have been built and saved into a file, a

number of further options exist:

o Estimation of the average dispersal distance between parents and offspring.
This option is useful for checking that the neighbourhood size is as intended.
It will then calculate the one-way dispersal variance and give the distribution

of the different distances of dispersal. More details about this option are given

in the section on isolation by distance.
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¢ Building of generations following the procedure described in the previous
section. A graphical output of the number of alleles left in the population is

also given.

o Graph of the distribution of allelic frequencies per generation. Up to 5
different generations can be pictured on the screen, the x-axis representing the
frequency class and the y-axis the number of alleles in each class. This option
could be used in conjunction with the Ewens-Watterson test for neutrality

(Ewens, 1972; Watterson, 1978) to test for the effect of subdivision and

geographical structuring.

o Reduction of the number of alleles (identity by descent — identity in state),

using the procedure described in the previous section.
e Sampling at random the modelled population.
o Estimation of Wright’s F-statistics on the samples or the total population.

e Visualisation of the genotypic composition of the population after the number
of alleles has been reduced to 2 (with more alleles, the number of colours
necessary to distinguish between genotypes becomes too large, as the number

of genotypes for k alleles is k(k + 1)/2).

As the name of the program suggests, it intends to do almost anything that can be
done in the framework of neutral models in population genetics. Hopefully, the
answers to the questions will not be as obscure as that given by the computer in The
Hitchhiker’s. Guide to the Galazy, but MODEL42 lacks flexibility. It is therefore a
useful tool for demonstration or teaching purposes, but it has to be ‘disintegrated’
for research purposes. In particular, the sampling procedure and the estimation of

F-statistics are better used as standalone programs.

2.3.1 Constants and variables required to construct the
first generation.

The first item that needs defining is the size of the total population. It will be a
constant over the whole program and is called MaxInd for maximum number of
individuals. The equivalent for the number of alleles is DMaxInd, twice the number

of individuals. MaxInd has to be a power of 4. In most simulations it will be 4096,
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48. Individual genotypes are stored in a two-dimensional array of size MaxInd*2
called a field of genotypes. Two Boolean arrays also need defining, one for the
migrants and one for the selfed individuals. These arrays will be one-dimensional
and of size DMaxInd and MaxInd respectively. Population size then needs to be
entered and is called PopSize. MaxInd divided by PopSize is the number of
subpopulations NumbSp. PopSize is a power of 4, with its exponent between 0 and 6.
Other parameters that need to be entered are the migration proportion MigProp and
the selfing proportion SelfProp, both real numbers between 0 and 1. Once all these
parameters have been entered, the field of genotypes for generation 0 needs to be
initialised according to Figure 2.3. Initialisation of the two Boolean arrays for
migration and selfing is then achieved by comparing the outcome of a draw in the
random number generator to the input value of either migration or selfing. If the
random number is less than MigProp or SelfProp, the corresponding Boolean value

in the array is set to true, otherwise it is set to false. The following steps depend on

the gene-flow patterns.

2.3.2 The island model

Two different forms of the island model of populations (Figure 2.11) can be
modelled. The first is the infinite-size-continent island model, the second the
gametic-cloud island model. The difference between the two lies in the migration
pattern: in the infinite-size-continent migrants come from all the islands, including
the recipient, whereas in the gametic-cloud, migrants come from all islands but the
recipient. Both are finite island models because the number of islands is finite.
These two types of island models are co'mpa.red in Takahata & Nei (1984): the

migration proportion in the infinite-sized-continent island model is related to the

gametic cloud as follows:

D
Mise = 55— Mg

D-1
where D is the number of demes, m;,. is the migration proportion in the
infinite-sized-continent and m,, is the migration proportion in the gametic cloud.
We can see readily that, with a large number of demes, these two proportions will be
essentially the same.
In terms of programming, the difference between the two models is that in the
infinite-sized-continent, a random number between 1 and MaxInd is drawn if the

individual is a migrant, but we repeat the procedure of drawing a random number
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Figure 2.11: The gametic-cloud finite island model of population structure

until it does not belong to the original deme in the gametic-cloud island model. For

non-migrants, a random number between 1 and PopSize is drawn and if ¢ is the

identifier of the deme, we add to this random number (¢ — 1)*PopSize. The Pascal

code for the gametic-cloud island model is given below:

x:=0;
for i:=1 to NumbSp Do
For k:=1 to PopSize Do
Begin
x:=mx+1;
Templ :=Grandom(PopSize)+1;
Temp2 :=Grandom(PopSize)+1;
If Not Sel-[x]
Then begin
I Mig~[x]
Then Begin
Repeat
Wherel :=Grandom(MaxInd)+1
Until ((Wherei<=(i-1)#PopSize)
or (Wherei>i*Popsize));
End
Else Wherei:=(i-1)*PopSize+Tempi;
If Nig"~[x+MaxInd]
Then Begin
Repeat
Where2:=Grandom(MaxInd)+1
Until ((Where2<=(i-1)#PopSize)
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or (Where2>i*Popsize));
End
Else Where2:=(i-1)*PopSize+Temp2;
End
Else Begin
It Mig-[x]
Then Begin
Repeat
Wherei :=Grandom(KaxInd)+1
Until ((Wherei<=(i-1)+PopSize)
or (Wherei>i»Popsize));
End
Else Wherel:=(i-1)*PopSize+Tempi;
Where2:=Wherei;
End;
" Champ2-~[x,1] :=ParChamp2~ [Where1,Grandom(2)+1];
Champ2~[x,2] :=ParChamp2~ [Where2,Grandom(2)+1];

end;

in which GRandom is the random number generator, Mig™~ and Sel~ are the Boolean
arrays of migrants and selfers, ParChamp~ is the field of genotypes at generation 0
and Champ~ is the field of genotypes at generation 1. The complete code for these
two procedures can be found in appendices A.4 and A.5.

The infinite-size-continent island model is intended to mimic constant allelic
frequencies over generations in the migrant pool. However, this is in conflict with
the fast procedure to build generations: as each allele in the offspring field is
determined by a random location in the parent field and allele frequencies fluctuate
over time, the allele frequencies in the migrant pool will also fluctuate. A way to
implement the infinite-sized-continent island model would be to replace migration by
mutation: each generation, a proportion PropMig of the DMaxInd alleles mutates

(migrates) to one of the DMaxInd possible allelic states. This will ensure constancy

of allelic frequencies in the migrant pool.

2.3.3 The stepping-stone model

As we have seen in the introduction, migration occurs only between adjacent demes
in the true stepping-stone model. A graphical representation of a one-dimensional
stepping-stone is given in Figure 2.12 and of a two-dimensional stepping-stone in
Figure 2.13. The initialisation procedure, as well as filling the Boolean arrays for
migration and selfing, is done as for the island model. The difference lies in the

provenance of migrants. In a 2-dimensional stepping-stone model, we need to lay the
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field of genotypes on a 2-dimensional surface. This is done by specifying a number of

rows and columns as a function of NumbSp:

Case NumbSp of
4096 :begin numbrow:=64;numbcol :®»64;end;
1024 :begin numbrow:=32;numbcol:=32;end;
266 :begin NumbRow:=16;NumbCol:=16;end;
64 :begin NumbRow:=8;¥umbCol:=8;end;
16 :begin BumbRow:=4;NumbCol:=4;end;
4 :begin NumbRow:=2;NumbCol:=2;end;
1 :begin NumbRow:=1;KumbCol:=1;end;

end;

The 7 loop in the island model needs to be replaced by two nested loops,
corresponding to the number of rows and columns respectively. If the gamete is a

migrant, we call a procedure that randomly picks one of the 4 possible provenances:

Procedure GetOfset(Var OfsVer,0fsHor:Shortint);
var
temp, dist:byte;
begin
OfsHor:=0;
0fsVer:=0;
temp:=GRandom(4) ;
case temp of
0 : OfsHor:=-1;
1 : OfsHor:=i;
2 : OfsVer:=-1;
3 : OfsVer:=y;
end;
end; {0f Proc GetOfs}

However, a problem arises if the deme under consideration is on one of the field sides
and the offset causes the migrant to come from outside the field. One solution would
be to make the 2-dimensional surface a torus, so that there are no edges.
Alternatively, one could decide that if the migrant is coming from outside the field,
it is not a migrant, which will reduce the migration proportion for demes on the
edges. An option in MODEL42 lets us choose between these two options and
assign the value true or false to the Boolean Tor. The function GetNewCoord then

returns the appropriate horizontal and vertical coordinates:

Function GetNewCoord(Tor:boolean;a,Ni:integer;0fsa:Shortint):integer;
var Res : integer;
Begin

If Tor

Then Res:=(a+Ni-1+0fsa) mod Ni
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Else Begin
If ((a+Dfsa)<1)
Then Res:=GRandom(a)
Else If ((a+0fsa)>Ni)
Then Res:=at+Grandom(Ni-a)-1
Else Res:=a+0fsa-1i;
end;
GetNewCoord:=Res;
End; {0f Function detNewCoord}

where a is the row or column identifier of the recipient deme, Ni is the number of
rows or columns and Ofsa is the offset obtained from the previous procedure. The
complete code for this procedure is found in appendix A.6.

Migration need not to be restricted to the nearest deme. Indeed, it is more realistic
to consider that the distribution of migrants is some decreasing function of distance
such as a negative exponential. Then, for a given proportion of migration, the
largest proportion will come from the nearest neighbour, the next largest from the
second nearest and so on so forth. The shape of the distribution can be altered by
use of the mean for the negative exponential. To allow migration to be a decreasing
function of distance, two extra parameters are required: the average of the negative
exponential Aver and the maximum distance of dispersal Dist. If we want to model
a true stepping-stone model, it is sufficient to input a large average dispersal
distance and to set Dist to 1. MODEL42 implements a 1-dimensional
stepping-stone with a negative exponential distribution of migrants, as well as a
3-dimensional stepping-stone (migrants can come from 8 directions ) with either a
half-normal distribution or a negative exponential. The procedure for 3-dimensions,
while slightly more complicated, uses the same logic as in two-dimensions. Pascal

code for these procedures can be found in appendix A.7,A.8 and A.9.

2.3.4 The isolation by distance model (IBD)

In the models of population structure considered so far, individuals have been
packaged in discrete structures called demes, within which mating occurred at
random apart from a defined proportion SelfProp of selfing. It is likely, however,
that individuals are distributed in a continuum, with a dispersal of gametes
following some decreasing function of distance. This is the isolation by distance, or
neighbourhood model in which the parameters to be specified are the male and

female standard deviations of the dispersal distance, the distribution in use being
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the normal distribution. The field of parents at generation 0 is initialised in the
same way as for the other gene-flow patterns. Different variants are then considered:
a ‘true Wright’ Neighbourhood model, in which coordinates of the male and female
gametes are picked from the location of the offspring, or a plant neighbourhood
model, where the coordinates of the female gamete is picked from the location of the
offspring and the coordinate of the male gamete is picked from the location of the
female gamete. Selfing could be random, that is, a function of the dispersal distance,
or fixed. If it is fixed, a female gamete is picked at random and the male gamete is
drawn from the same location if a random number is less than the proportion of
fixed selfing. The continuum can be on a toroidal or a flat surface. To avoid the
biological black-hole phenomenon (Felsenstein, 1975), individuals are located at a
fixed position on the intersection of a grid. Clumping can also be avoided with
density dependence: the denser the surrounding, the less likely it is that a seed can
germinate. Obviously, fixing individuals on the intersection of a grid is a form of
density dependence, but this limits the number of parameters required by the model.

The Pascal code for this gene-flow pattern is found in appendix A.10.

2.3.5 The pseudo-neighbourhood model

Rather than having one single individual at the intersection of a grid, we could have
a deme. This model, intermediate between the 3-dimensional stepping-stone model
with migration following a decreasing function of distance and the IBD model, has
been named a pseudo-neighbourhood model. It is equivalent to the addition of an
extra parameter, density, to the IBD model: the larger the deme, the denser the
population. As with the IBD model,. migration is not a parameter, but is deduced
from the underlying dispersal distribution of gametes: with a negative exponential
distribution of dispersal distance f(z) = Aexp(—Az), the proportion of gametes
migrating is 1 — exp(—A).

This gene-flow pattern can be implemented through sub-option 6 of option 1 in

MODELA42. The Pascal code can be found in appendix A.11.
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Table 2.1: Genotype frequencies in subdivided populations

Genotypes
AA Aa aa
population 1 p? 2p1q1 g
population 2 2 2p2g2 g
population 2 p? 2piq; q?
population & pi 2Pk g P
e 7 Doty 223 =1 0
pooled . =% P

ko
letting p = Zlflﬂ and adding the variable F' leads to:

pooled P(1-F)+pF  2pq(1-F) q1—-F)+gF

2.4 Analytic solutions

2.4.1 The Island model of a population

Consider an infinite set of finite sized islands each composed of N diploid
monoecious individuals., Individuals within each of these islands breed at random,
ai)art from a proportion m of migrants drawn at random from the whole (Wright,
1943). The number of islands being infinite, the overall allele frequency is constant,
generation after generation, as is the allele frequency in the migrant pool. On the
other hand, the allele frequency in each island will be dictated by the opposing
effects of genetic drift and migration.

The overall effect of this structuring will be an alteration of the composition of the
genotypic array leading to an apparent deficit of heterozygotes in the whole
population (Walhund, 1928): consider & isolated populations of diploid, monoecious
individuals. Focussing our attention on one locus with two allelic states a and A, it
is possible to derive the expected frequencies of the three genotypes in each

subpopulation (Table 2.1).
Now suppose that the k£ populations are grouped together and that individuals mate
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at random. One generation is sufficient to restore panmixia and therefore, the
expected frequency of each genotype is 7%, 257 and §° for AA, Aa and aa
respectively. The ratio of the two heterozygote proportions before and after pooling
is (1 — F). If F is equal to zero, there is no difference in Aa genotype frequencies
between the 2 generations, if F is positive, the population before pooling showed a
deficit in heterozygotes. The expression for F' can be derived from the above table

by taking, for example, the frequency of AA genotypes:

ko2
LBl (1~ F) +pF (22)
solving for F' leads to:
2
o
F=— 2.3
pq (23)
F is therefore always positive and zero only when py = ps =...=p;=... = pi. As

soon as two or more isolated populations show unequal allele frequencies, the
populations considered as a whole will present a deficit in heterozygotes.

Measures of gene diversity often found in the literature are fp and fi, the identity by
descent within and among populations respectively (Nei, 1973; Felsenstein, 1976;
Slatkin, 1985a; Slatkin 1993). The overall identity by descent, f is then defined as
% fo+(1- %)fh where D is the number of demes in the population. If there is

random mating within populations, the expression for fy is simply:

D k _
2.2 pi=1p (2.4)
j=11=1
whereas the expression for f is:
k

(i) = 7 (2.5)

=1 j=1

combining these results in (2.3) leads to:

_fo—=f
F= 17

Structuring leads to heterozygote deficit, but in a different way from selfing. To

quantify the extent of these two deficits, the F-statistics described in Chapter 3 are
often used. Focussing first on the within-population deficit due to selfing, the
expected value of F;, at generation t can be expressed as a function of the
proportion of selfing and the value of F;, at generation (¢ — 1) as follow:"

S 8
_+_

2 21:1":—1 + (1 - 3)0 (2'6)

Esg =
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that is, a proportion s/2 of individuals will carry two alleles descending from the
same allele of the preceding generation, a proportion s/2 will carry two alleles
descending from different alleles of the preceding generation but which where copies
of a single allele in a previous generation and a proportion (1 — 8) will remain in

- random mating proportions (one generation of random mating restores

Hardy-Weinberg equilibrium). Equation 2.6 can be rewritten:
Fo, = 5(1+ Fu,_,) (2.7)
at equilibrium, F;,, = F;,,_, and therefore

A s
Fy=5— (2.8)

(Crow & Kimura, 1970).

One important feature of the above equations is that they are independent of
population size, providing that F}, is unbiased. Therefore, selfing affects the breeding
structure of the population at the genotypic level rather than the allelic level.

I shall turn now to the between-population heterozygote deficit which is due to
genetic drift. This can be expressed as a function of the variance effective size of the
sub-population, N, (see next section), the migration proportion, m and the
heterozygote deficit of the preceding generation, Fj;, as follows:

1
2N,

Fp, = (1=m)? ( +(1- -;K)F,t,q) (2.9)

(Wright, 1943). Contributions to Fy; come only from non-migrants. A proportion
1/2N, of individuals will carry two alleles descending from the same ancestral allele
of the preceding generation, whereas a proportion (2N, — 1)/2N, will be descended
from different alleles of the preceding generation, but which are copies of a single
allele in a previous generation in proportion Fy,_,. An interesting feature of this last

expression appears for N, = 1. Substituting 1 for N, in (2.9) leads to:

Fltt = (1 - m)2 (% + (1 - %)Fﬂft—l)

= Ll 4 Ry, )

In comparing this with (2.7), it can be seen that (1 — m)? = s, at least formally.
Indeed, (1 — m)? is the proportion of gametes ‘staying’ in the population and if the

population contains only one individual, this is the proportion of selfing.
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At equilibrium, Fy;, = Fj,_,, which leads to:

_ (1 —m)?
"7 2N, - (2N, - 1)(1 — m)?
(Wright, 1943; Crow & Kimura, 1970; Hartl & Clark, 1989). If terms involving m,
m? and N,m? are considered to be small, (2.10) reduces to:

5 1
Fo = INom+1 (2.11)

F, (2.10)

The above approximation was made by Wright (1951) at a time when computers
were not commonplace. However, the simplicity of the expression of this
approximation made it very popular and it has been widely adopted by population

geneticists.

The concept of population effective size, N,

The notion of effective population size traces back to Wright (1931). This is a very

useful concept for comparative purposes and a practical necessity when dealing with
natural populations (Wright, 1969, p 211). Indeed, when one wishes to compare two
populations, it is necessary to define an ‘idealised’system, in which both populations

could be compared. This system is defined as follows (Hartl and Clark, 1989, p64):

1. diploid organism

sexual reproduction

non-overlapping generations

many independent sub-populations, each of constant size N
randorﬁ mating within each sub-population

no migration between sub-populations

no mutation

©® N > o oA~ W N

no selection.

Any departure from these very restrictive hypotheses will lead to different
expectations for the rate of changes in homozygosity and/or the rate of allele
frequency drift. The effective size of a population is then defined as the size of an
idealised population that would show the same changes in homozygosity (inbreeding
effective size, N!), or the same changes in allele frequencies (variance effective size,

N?) as the population under investigation. A third effective size has been defined by
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Haldane (1939) and Ewens (1979), the eigenvalue effective size (Nf), where N? is
defined as a function of the largest non-unit eigenvalue of the transition matrix of
the Wright- Fisher model (Crow and Denniston, 1988).

The three effective sizes are equivalent most of the time (Crow and Kimura, 1970,
carry out an extensive comparative analysis of N* and N? and show that most of the
time they lead to the same estimate of N.). The inbreeding effective size of a

population is defined as whatever must be substituted for IV in the following formula:
1

where F} is the rate of change in homozygosity of the population at time ¢. However,
this formula leads to an indetermination (0/0) when the rate of change of
homozygosity reaches 0 (F = 1), when the population is at equilibrium. This

equation could be rewritten in term of heterozygosity:

H; = WHt—l

with the same problem (H = 0 at equilibrium with no mutation nor migration).
A more useful formula, that of the variance effective size of a population, is defined

as whatever must be substituted for N in the following formula:

p(l—p ‘
oh, = (2N ) (2.13)

where 3, is the sampling variance of gametes over generations of the population
(Wright, 1969, p 211). Replacing N by N? in the previous equation and rearranging

leads to:

oX A
N =—-%2 2.14
2p(1 - p) (2.14)

This result is valid for a one generation time interval. For more than one generation,
multiplying the right hand side of this last equation by the time interval in
generations, t, has been suggested (Nei & Tajima 1981; Pollak, 1983; Waples, 1989).
Waples (1989) also defined parameters, F, and Fj, that lead to appropriate
(unbiased) measurements of N? for two sampling schemes, corresponding to

sampling before and after reproduction. The estimate of F, given by Waples (1989)

is:

(:1:, )
roy CEEET

3—1 .
where z; and y; represents estimates of the frequency of allele 7 in the two

generations and K the number of segregating alleles. It has been found that a better
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estimate of F, is: .
F::w = =1 ((B,' - 3/:')2
SE (zi + :)/2 — ziws)

where F,, stands for weighted F.. When all the population is sampled, an estimate
of N? is:

NY'= —— (2.15)

because the sampling correction in both generations cancels the covariance term (c.f.
Waples, 1989, equation 12, p 382). Computer simulations showed that this last
formula is in very close agreement with (2.14), whereas the non-weighted F, often
leads to negative estimate (Infinite effective size), as mentioned by Waples (1989).
Expression for N, under specific breeding systems can now be sought.

The sampling variance in an inbred population through selfing could be expressed as

follows:
1— 1—
Uzﬁp = p'_—( Np)(l—l')-f‘p—(ﬂ. p)l' (2.16)

That is, the inbred population is divided in two components, one non inbred, with a
sampling variance of p(1 — p)/2N and the other, inbred, with a sampling variance of
p(1 = p)/N. Equation 2.13 reduces to:

o3, =2 _261 *+5) (2.17)

We can now use these two definitions to derive the variance effective size of a
partially self-fertilising population. The same result could be obtained from a
inbreeding effective size perspective (e.g Pollak, 1987, 1988). Substituting (2.17) into

(2.13) leads to: N
‘ N =N, = 1TF (2.18)
(Wright, 1943; Li, 1955, p323) where F' is an F;,, the within-population heterozygote
deficit. Under a 100% self-fertilisation regime, F;, will be equal to 1 and the effective
population size will be half the real population size, as expected.

Inbreeding could be due to mating between relatives rather than selfing. This
problem has been researched by Pollak (1987,1988) and Caballero & Hill (1992).
They arrived at the following results:

If partial full-sib mating occurs:

(2.19)

where D is the number of families.
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If partial half-sib mating occurs:

v i_ 4D
N!=N; = T+ 7F (2.20)
The preceding results could be generalised to:
N!=Ni = DN (2.21)

* 1+(2N-1)F
where N is the family size and D the number of families. This result was given in a
slightly different form in Pollak (1988). That is, if groups are considered as families
(this is not true for the first few generations in an island model where individuals at
generation 0 are unrelated, as in the model described in the preceding section, but
this becomes true as time goes on), the effective size of a population made of D
families of size N is given by (2.21).
The effective size of a subdivided population can also be derived, following Wright
(1943) and Li (1955). If a population is subdivided into D breeding groups of equal
size N, the sampling variance in each group is p;(1 — p;)/2N, where p; is the allele

frequency in group i. The average value of o3, over the D groups is:

Z Di (1 - pl) — t=]4.z;§$ pt) (2'22)

U'Ap
1—1

Now, 22, p:(1 — p;)/D is the proportion of heterozygotes in the total population
(providing that there is random mating within each subpopulation) and is thus
equal to 2pg(1 — F), where F is F,;. Substituting into the last equation leads to:

,2 - PIl-—F)

ho = o (2.23)

substituting (2.23) into (2.13) and remembering that the population is made of DN
individuals leads to:
. DN

N=1—F

This last formula, however, does not hold true from an inbreeding effective size

(2.24)

perspective. The inbreeding effective size of a subdivided population is given by
(2.21).

Combination of these results in a single formula seems to be a daunting task: which
one is appropriate to specific cases, how to combine them to obtain the effective size
of a population undergoing inbreeding through selfing, together with mating with

relatives and subdivisions, with the added complication that the number of
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successful gametes may not have a Poisson (binomial) distribution and the sex ratio
may be different from 1: 1.

Suggestions on how to deal with the last points (Poisson distribution of successful
gametes and sex-ratio) are made in Pollak (1987, 1988). N in the previous
expressions should be replaced with N’, where N’ is defined as the reciprocal of the
probability that two gametes contributing to random separate adults come from the
same parent. Namely, in the case of unequal sex ratio, N should be replaced by
4Ny N¢[(Nm + N¢) where N,, and Ny are respectively the number of males and
females in the population. In the case of non-Poisson distribution of the number of
successful gametes, N becomes %%’fzz- where o? is the variance of the number of
successful gametes (e.g. Li, 1955, p 322).

The effective size of a selfed, subdivided population can now be considered. The
effective size of each group is given by (2.18) and the global effective size is given by

(2.24). Combining the two leads to:

Drir;

which can be rearranged into:

DN
(1 + -Fu)(]- - Fat)

This formula is valid if (i) all the different levels of structuring have been properly

N,, = (2.26)

identified, (ii) the effect of mutation is considered negligible and (iii) there is
territoriality. Such a situation may occur in conservation, where all the members of
the species are sampled and the time scale does not exceed a few generations,
therefore allowing mutation to be neglected.

On the other hand, if only a small range of the species has been surveyed, or
mutation is considered important, or the aim of the study is to compare two
(subdivided) populations of the same species at different locations, or there is no
correlation between the parent and offspring spatial location (no territoriality), or
we are interested in inbreeding effective size rather than variance effective size to
quantify the effect of inbreeding depression, (2.21) should be used instead of (2.24)

and we obtain: DN

.N — 1+F5, 2_27
1+ Q@ - 1)F. (2.27)

which rearranges to:

DN
2NFy + (1 + Fi)(1 = Fy)

Nepg = (2.28)
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One can readily see that levels can be added, providing that conditions of validity
are met and that each new effect (sex-ratio, unequal number of successful gametes,
selfing, inbreeding, subdivisions) is incorporated at the appropriate level. The
combined effect of unequal number of successful gametes with inbreeding due to

mating with relatives is dealt with in Caballero & Hill (1992). More on the topic of

effective size can be found in Chapter 3.

Mixed breeding patterns

" An application of the results of the preceding section permits the derivation of the
equilibrium for F,; in an infinite island model, when there is partial selfing.

Equation 2.10 can be rewritten:

5 1 :'a - 2
e = (1+Fu)(1 —m) (2.29)
2N — (2N -1 - F,)(1 —m)?
combining with (2.8) leads to:
— )2
Fy (1—-m) (2.30)

T N@2—-35) - (N2=3s) -1)(I=-m)

that is, the magnitude of drift changes from 1/2N to 1/2N(1 — s).

Biological inference

Now the equilibrium values of both F;, and F,; have been established, the problem
can be reversed: given F;, and F, is it possible to infer what the proportion of
selfing and migration in the population under investigation are? If the assumptions
of the infinite island model stand, it is sufficient to reverse the results of equation 2.8

and equation 2.10, which leads to:

A

5= 2K (2.31)
1+ F;
and
h=1-— 2N Fur (2.32)
(2N, —1)Fy + 1

The utility of this equation will be discussed in Chapter 4, but it should be noted
that N, refers to the effective sample size. The effective population size follows only

if the whole population is sampled, or if experiments, such as
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mark-release-recapture, lead to estimates of the census local population size. If

(2.11) is used instead of (2.10), one can extract the product N.m:

l_pat

; 2.33
ir. (233)

N.m =

(e.g. Slatkin, 1985a). That is, the effective number of migrants per local population
can be extracted. Providing that the conditions leading to equation 2.11 are met
and that the estimate of F,; is independent of both sample size and number of

demes sampled, this expected number of migrants will estimate the actual number

of migrants, regardless of the sampling strategy.

Non-equilibrium situation

It may be of interest to predict values of F,; and Fj, in situations where equilibrium
is not reached, either because the process has not been going on for long enough, or
because a disturbance has modified the conditions. It has been shown that it is only
necessary to derive equations for F;, solutions for Fj, can be readily found by

replacing N by 1 and (1 — m)? by s. Consider equation 2.9, it is possible to express

F,; as a function of time and Fg:

F1 = A+BF0
Fg = A+BF1=A+AB+B2F0

t
F, = B'F+AY B™! (2.34)

=1
where A = 11_;%)1 and B = (1 —m)*(1 — 5%) (A= B =s/2 for F,). The
over-braced sum in the last equation can be rewritten:

14 Bt_l

t=-1 — 2.
g; B 51 (2.35)
leading to:
" A A
— Rt -
F, = B*(Fy l—B)+1—B (2.36)
It is worth noticing that 25 is the equilibrium value of F,; (Fi,). The over-braced

part of last equation tends to 0 as ¢ tends to oo, because B is less than 1. The larger
B is, the longer it will take for F,; to reach its equilibrium value. For B to be large,

N needs to be large and m small, conditions necessary to apply equation 2.11 for
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the estimation of the product N.m.. This means that the approximation will only
be useful in cases where the equilibrium value takes a long time to be reached and
is, therefore, unlikely to ever be attained. Time to equilibrium can be assessed with

the following treatment: consider the time ¢ it will take for F,; to reach 2% of its

equilibrium value:

A A A
t _ - a2
Bh-1—p)*1=5 = °G=5
B — (z-1)A

Fr(1-B)-A

In -F_(_L(T:IB)A;A)
t 2 (2.37)

In(B)
If Fy is 0, this last expression reduces to:
_In(1—2)

t = W (2.38)

As z tends to 17, the numerator tends to —oo. If both m <« 1 and N > 1, the
denominator will be close to 0~ and the population will take a very long time to
reach an equilibrium. For F,, the cases of interest are for large s and we therefore
see that equilibrium will be reachefvery quickly.

Figure 2.14 shows the time it takes for F,; to reach 95% of its equilibrium under
different combinations of migration and local population sizes, F being set to 0. We
can see that what determines time to equilibrium is the greater of m or 1/N. The
larger they are, the faster equilibrium is reached. As few as 20 generations are

sufficient for equilibrium to be reached if m is close to 0.1 or N is close to 10.

2.4.2 The stepping-stone model of population

The island model of population we have just been investigating is the simplest
among the models dealing with subdivision of populations because it does not have
any geographical structure. The stepping-stone model, introduced by Kimura (1955)
is a half way house between the very realistic but intractable isolation by distance,
or neighbourhood model (Felsenstein, 1975) and the island model of populations.
Solutions for the island model are straightforward because of the equal relationship
between each deme. As soon as geographical structure is added to the model, the

mathematical treatment has to be different. In particular, the correlation of gametes
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Figure 2.14: Number of generations before F,; reaches 95% of its equilibrium value

belonging to different sub-populations has to be expressed as some function of the
distance between these sub-populations.

Approximate solutions for the correlation of gene frequencies of populations k steps
apart are given in Kimura and Weiss (1964) and Weiss and Kimura (1965) for the
one- two- and three-dimensional stepping-stone. For the infinite one-, two- and

three-dimensional stepping-stone, the correlation between populations k steps apart

is:

-

(2.39)

r(k) = exp (— 2mioo

_ e (—y/B=0)
r(p) = v (2.40)

) = 2% (_pﬁ") (2.41)

(Kimura & Weiss, 1964) where m; is the short range migration and mc, is the long

range migration, p is defined as \/Im in two dimensions and \/m in
three.

We can see that the correlation of gene frequencies falls off more rapidly in three
dimensions than in two dimensions, which in turn falls off quicker than in a
one-dimensional stepping stone model. Figure 2.15 displays the changes in the

correlation as a function of distance, with mq, = 1076 and m; = 0.1. A peculiarity
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Figure 2.15: Correlation between populations k steps apart in 1-, 2- and 3-dimensions.

of the three-dimensional stepping-stone is that, even if the long range migration (or
mutation) is 0, the correlation does not go to 1, but its maximum is .

Subsequent work on stepping-stone models has been done by Marayuma (1970,
1971a,b,c, 1972a,b,c, 1974). An interesting finding is that a quantity akin to F, the
ratio (1 — fx)/(1 — fo),where f} is the coefficient of inbreeding between genes drawn
from individuals k colonies apart and f; is the coefficient of inbreeding between
genes drawn from individuals in the same colony, tends to stabilise even thought the
individual fi’s approach 1. '

A computer simulation of stepping-stone models is described in Kimura and
Marayuma, (1971). They investigated a toroidal two-dimensional stepping-stone, and
a circular oﬁe—dimensional stepping-stone. They found that if the product N.m is
larger than 4, no local differentiation occurs and the whole population behaves as if
panmictic. On the other hand, when N,.m is less than 1, marked differentiation
between random breeding units occurs. They also show that in a one-dimensional
stepping-stone model, differentiation occurs for higher values of N.m than in the
two-dimensional case, which is to be expected just by looking at the prediction of
the correlation of gene frequencies with distance.

Another point stressed in this paper is that the appropriate measurement of genetic
differentiation will be dependent on the level of mutation or, more accurately, on the

product of the total population size and the mutation rate Nyu. If Nyu is small, then
(1= fo)/(1 =f), where T is the average of the different fi’s, is the appropriate
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measure of genetic differentiation. However, if this product is large (larger than two)
then the appropriate measurement is fo/f because both fo and f will be small.
Crow and Aoki (1984) derived exact solutions for G, = '?f-.; in an island-model
under migration and mutation. They showed that in both an island and a
stepping-stone model, the equilibrium value of G,; is independent of the mutation
rate, but that G, is linearly related to the logarithm of the number of demes in a
stepping-stone. They also showed that the shape of the habitat (the connectedness)
has a large influence on the equilibrium values of G,;, a result to be expected given
the findings of Kimura & Weiss (1964) (Figure 2.15). Slatkin (1993) considered
non-equilibrium situations, and showed that in some cases, structuring can be
detected. However, no analytical treatment of the time to equilibrium of the

different Fixation indices in a stepping-stone model seems to exist. As Felsenstein

(1976) puts it:

‘Wright’s quantities are of great biological interest and hopefully future

work will resume their use.’

2.4.3 Isolation by distance.

Malécot (1948) and Wright (1943) pioneered analytical work on the isolation by
distance, or neighbourhood, model. As was pointed out by Felsenstein, Malécot’s

results are wrong because of an incompatibity between the assumptions of the model:
1. Random distribution of individuals
| 2. Poisson distribution of the number of offspring
3. Independence of migration among offspring

Felsenstein (1975) showed that assumption (1) is incompatible with assumptions (2)
and (3): (2) & (3) lead to clumping of individuals.

Although his results are in general agreement with other models, Wright’s isolation
by distance model involves a complex set of assumptions, most of which are
inexplicit (Felsenstein, 1976).

To compare isolation by distance with other discrete models, there is a need to
define the equivalent of a random mating unit. This is the so-called neighbourhood
of Wright, presented in the introduction of this chapter. The size of the

neighbourhood will be dependent on the mating systems and the distribution of
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parent-offspring dispersal among others things. Formulae for this unit are given in
Wright (1969) and a review paper by Crawford (1984). If individuals are distributed
along a linear habitat and the parent-offspring dispersal distribution is normal,the
neighbourhood length, Ny, is defined as:

NL = 2\/7?0

where o is the standard deviation of the parent-offspring dispersal distances.
In a two-dimensional habitat, with the dispersal distances following a bivariate,
zero-mean, normal distribution with equal variances o2 along two orthogonal axes,

the neighbourhood area, N4, is defined as:
Ny = 4ro?

and is circular. As we are interested in the number of individuals within the
neighbourhood area, it is sufficient to multiply the neighbourhood area with a
density parameter, d (in MODEL42 the density is kept constant at 1, making the
number of individuals in the neighbourhood area equal to the neighbourhood area
itself). Providing everything else is kept constant, the expression for ¢ in the above
equations will change as a function of the mating system. For a true Wright model,
this is just the average of the male and female dispersal, 5"‘7'*'”1, but for a plant
model, the neighbourhood area is (Crawford, 1984):

Plant a?n 2

If selfing occurs, the male dispersal variance needs multiplying by (1 — s).
Extra-components can be added to take account, for example, of the effect of
vegetative growth (Gliddon & Saleem, 1985).

When measuring these quantities in nature, data are usually projected on one axis
to give the axial dispersal variance, which is half the absolute dispersal variance.
This projection leads to a change in the underlying distribution of dispersal. If it is
a circular bivariate normal, then its projectionAon one dimension gives a Rayleigh

distribution (Parzen, 1960, p 320):
z -1z, .
&)= o (T
For bivariate distributions other than the normal, there is no such simple solution.

Whittaker (pers. comm.) gives a solution for distributions of the form

K -1,z _2
= — —(=)1¥F
a'exP(2 (a)H)
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known as the exponential power family distribution, defined for —1 < 8 <1 (this
reduces to the bivariate normal if § = 0). The solution for the projection of these

distributions on one axis takes the form:

1@ = e (FOF)

and it can be readily seen that for 8 = 0, this expression reduces to the Rayleigh
distribution.

Wright devoted thirty pages in volume 2 of his masterpiece (Wright, 1969, pp
295-324) to the expectation of F-statistics in a continuum. Consider an individual,
I. Consider a circular area of radius r (r is equal to twice the standard deviation of
the dispersal distance of parents to offspring, considered to be normal) centred on I,
containing N uniformly distributed, with a density of 1 per area unit, individuals, all
equally likely to be the parents of individual I. The area is 7r? = 4wo?. There is
therefore N = 4no? equally likely parents. If the grandparents are considered, the
variance will be twice as large and the standard deviation /2 times as large. The
area from which grandparents could be considered as if drawn at random is therefore
7(2v/20)? = 8702, As the distribution of individuals is uniform, the number of
equally likely grandparents is 2N. For any generation K in the past, the area of
equally likely ancestors has a radius of v Kr and effective population size KN. The

inbreeding of individual I relative to an area SN can be expressed as:

(
Fla — N(%) + N_lFés

2’3 (1+F )+ 2N-1 3:
. (2.42)

" o _ 1+F,",' 3N—1 "
F3a - ( ) + 4s

\

where / denotes number of generations in the past and subscripts the size of the area
concerned. It is tempting to consider Fj, in the previous system to be an F;,,
because it is the inbreeding of one individual relative to a subset SV of the global
population, which is supposed to be infinite. I suggest however that this is a
peculiar type of F,; and will delay the discussion and justification of this statement

until later.
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System (2.42) has (S — 1) equations and S unknown F,,. if the primes are dropped.
However, F,, can be considered as zero. By sequentially replacing the different F,
and letting the process go on for long enough so that the primes can be dropped, the

following expression emerges:

S-1
R, = 2'—_ 25;11 tk, l = - _kN ~ t(k—l) (243)
(Wright, 1943). It has been shown that:
S-1 5-1 1
S ti=1-SNts, SNts=J[[(1 - —=
k=1 k=1 kN

(Wright, 1969, p 297, equation 12.24 with Nx = XN, as is the case for an area).
The product can be written:

st 1, T(S-%)
I10 - N = T(S)r(1 - e

k=1

where I'(z) is Euler’s gamma function. The expression for Fj, becomes:

_ T =H)I(S) - T(S - %)
= TE= )5 TT5 =4 (244)

and the expression for the total inbreeding, F: can be found by taking the limit as

Fla

S — oo.

Calculations of this expression are tedious, with the numerator and denominator
growing to huge quantities as the number of neighbourhoods S increases. The time
to equilibrium is very long, of the order of tens of thousands of neighbourhoods (and
therefore generations).

Wright proposed approximating the sumlz,f:‘l1 tx by an integral. He suggested using
(2.43) for the first 40 or 50 terms, for there is a large discrepancy between the exact
value of Fj, and the continuous approximation and then to use the continuous
approximation (Wright, 1969, equation 12.33, p300).

The same treatment has been applied to populations located on a linear continuum.

The number of individuals to consider this time after S generations is VSN and t; is

expressed as:

b= YEZDN - lz(,,_l) (2.45)
VEN
The expression for Fj, becomes:
1— HS;I 1— 1 '
’ k=1 (1 — 72%) (2.46)

T IS (A= o)
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For estimation of this quantity, the same procedure as for area is followed
(approximation of the sum with an integral), but the number of times (2.45) needs
to be calculated has to be much larger than for an area. Wright then provides an

approximation for higher terms (equations 12.28 and 12.29 p298).

The basic conclusion of this work is that Fj, increases as the area surveyed
increases. The increase is faster when the original neighbourhood size is small. This
effect is stronger in one-dimension than in two dimensions, as can be seen from
Figures 12.2 & 12.3 (p 299 & 301 respectively in Wright, 1969). Indeed, with an
original neighbourhood size of 5 in two-dimensions, even with 107 neighbourhoods,
Fi, has not reached 1.

Wright points out that a more interesting quantity is the amount of differentiation
among areas of any given effective population number within some constant large
total considered to be infinite, Fj;. Although it cannot be calculated directly,
making use of the relationship between the different F’s and providing that Fy: can
be calculated, it is easy to derive F};. Behaviour of F,; in the one-dimensional case
shows some very interesting features (Fig 12.2 in Wright, 1969). Even when the
length compared to the total contains many neighbourhoods, F,; stays constant (for
N = 103, F,; starts decreasing for a length corresponding to 300 neighbourhoods, for
a total of 3000). [It should be pointed out here that there is a misprint in the book:
F; in the third line of text, p 299, should read F;,]. On the other hand, in the

two-dimensional case, F,; decreases from the start.

Formulae are also given for non-normal distribution of parent-offspring dispersal
distances (an effect similar to increasing the neighbourhood size,

Figures 12.5 & 12.7), long range migration (it lowers Fj;, Figure 12.9). The effect of
selfing leads to equations 12.57 & 12.58 (Wright, 1969, p312).

Wright suggested that the quantity Fj, described above is akin to an F;,. I have to
disagree, at least partially, with him there. First of all, there do not seem to be any
conditions that will lead to a negative value of Fj, in (2.43), since tj is always
positive and less than 1. One could say that selfing does not lead to negative values
either, but avoidance of mating with relatives could be pictured as a negative rate of
selfing, or a rate of outcrossing larger than 1. Furthermore, we saw in the subsection
on the island model that F;, is the heterozygote deficit due to evolutionary pressures
independent of population size. The expressions derived above (2.42) are fypica.lly

dependent on population size. In his treatment of selfing in populations distributed
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in a continuum (p 311, 1969), Wright had to introduce another quantity, that he
called E;,, for the correlation between random gametes from neighbourhoods
relative to an array of S neighbourhoods. The definition he gives for Fj,
(equation 12.55, p 312, 1969) is essentially the same as (2.6).
In fact, if we consider the second equation in system (1) of Pollak (1987),

Fayyy = (1—m)? [$F+(1-1)8)]

(2.47)

Oy = (L=m)? [Fe(1 +F) + (1= 4)6]
the coefficients of F' and 6 in the second equation are the same as those of Fj, and
F}, in (2.42).
The solution of (2.47) can be easily found for equilibrium (Fiz41) = F; = F and
O(t41) = 0; = 0):

e e, - — ~
( F = 1 —2m + mH(1+2mNs —2m + m? — m®Ns
1+4mN-2mNs —4m* + 4m® — m* — 2m*N + 5m*Ns —4m°Ns + m*Ns
<
s N,
0 = 1 —2m 4+ m?
" 1+4mN-2mNs —4m* + 4m° — m* — 2m*N + 5m*Ns —4m°Ns + m*Ns

‘ (2.48)
On the other hand, the following system,which we have encountered in the

subsection for an island model (this is the system leading to equation 2.30) can be

written:
fery = Q1+ 1£)5
(2.49)
Oy = (1—m)(BE+(1- 3580,
When equilibrium is reached, we have:
( . PR —
h = a—=2m + m?)
144mN-2mNs —2m + m* — 2m*N + m*Ns
$ v (2.50)
| f = =

under the usual simplifying conditions, over- and under-braced elements of the
solutions (2.48) and (2.50) can be neglected leading respectively to:
F ~ 1+2mNs

1+4mN=-2mNs
(2.51)

0 ~ -1
= 144mN-2mNs
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and:

0 ~ -1
= 144mN-2mNs
(2.52)

f =135
that is, 6 is the same in both cases, confirming the view that Fj, in (2.43) is akin to
F,;,. However, f and F are different since it can be shown that F is an F};, whereas
f in the second system is an Fj,.
On the other hand, it is true that Fj, in equation 2.43 is the lowest possible in the
hierarchy of F’s. It would therefore be useful (following Wright’s notation) to keep
the notation Fj,, rather than associating with either F;, or F,;. The problem may
seem semantic, but we will see in the next two chapters that there are fundamental

differences between F;, and F;, in terms of biases and of variance effective sizes.

2.5 Comparison of the different models.

2.5.1 Materials and methods

In order to compare the effects of different gene-flow patterns on genetic variability,
MODELA42 was used. Three levels of migration and two population sizes were used
with the gametic cloud island model, and the 1-, 2- and 3-dimensional stepping
stone model. For the 1- and 3-dimensional stepping stone, dispersal was limited to
the nearest neighbours. Ten replicates were run over 10000 generations and Fy; was
used as a measure of the level of genetic variability. The three levels of migration
were 0.1%, 1% and 10% for deme sizes of 16 and 64 and a total number of
individuals of 4096. F,; was calculated every generation for the first 100, then every
10 until the 1000th generation and every 100 generations after that. Curvilinear
regressions were applied to each of the 24 sets of parameters (3 levels of migration, 2
deme sizes and 4 gene-flow patterns) using the statistical package Genstat.

Equation (2.36), with Fp set to 0 gives:
(1-m)

B=oy—arn-na=m

2t 1 t
(1= (L= m)*(1 - 52))

and was used for the curvilinear regression. This equation should fit well with the
data from the island model. Discrepancies with other gene-flow patterns should give

some insights into how geographical structuring affects the genetic drift process.
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2.5.2 Results

Figures 2.16 & 2.17 display the results. Each point on these graphs represents the
average of F,; over the 10 replicates for the given generation. The generations are
displayed on a logarithmic scale.

F,; increases with time, as expected and reaches higher values with low migration
than with high migration. Equilibrium for F,; is reached in most of the cases after
ten thousand generations. Time to equilibrium for Fy; in the island model is
determined by which of m or 1/N is the largest (Figure 2.14). In the last graph of
Figures 2.16 & 2.17, time to equilibrium for the island model is essentially the same,
because m in both cases is larger than 1/N.

The effect of connectedness is also as expected: as connectedness decreases, Fy
increases, but only after a certain number of generations. This behaviour, as far as I
am aware, has never been observed and is best seen in the middle graph of

Figure 2.16. We can see that F,; up to a.round the 50th generation is the same for
all gene-flow patterns and diverges thereafter. The same observation can be made
for all the figures, with divergence time occurring earlier (as in the case for high
migration), or later (as in the case for low migration). F,; increases at the same rate
in stepping-stone as in island models until it levels off in the island model, whilst
still increasing in stepping-stones. Two- and three-dimensional stepping stones seem
to reach a plateau after some time (top graph of Figure 2.17 and middle graph of
Figure 2.16 are exceptions), whereas 1-dimensional stepping stone models never
seem to plateau before reaching 1 (bottom graph of Figure 2.17 is an exception, but
I suspect that this is due to the small number of demes).

The first gra;ph in Figure 2.16 shows tha,t,‘when migration is very low (1 migrant
every 60 generations) there is no difference between the gene-flow patterns. When
migration is so low that the plateau occurs at very high value of F,;, there is
virtually no effect of connectedness. This is not surprising, since very low rates of
migration ensure that even neighbouring demes will display large variances in allelic
frequencies (low correlation). If there is no migration at all, the different populations
are not connected and all the models behave in the same manner. A rule of the
thumb could be that with Nm < 0.025, the effect of geographical structuring is
virtually non-existent. As migration increases, the different gene-flow patterns start
to differentiate. The difference between 2- and 3-dimensional stepping-stoﬁes being

much smaller than the difference between 2- and 1-dimensional. It seems that for

<
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Table 2.2: Estimated m and N from curvilinear regression.Standard error in paren-

thesis.
m = 0.001 m = 0.01 m=0.1
Island, N = 64
M(x100) 0.084(0.0007) 0.922(0.009)  10.2(0.36)
N 65.9(0.3) 68.3(0.6) 70.0(2.5)
N=16
M(x100)  0.1(0.0) 0.9(0.0) 10.7(0.5)
N 18(0.097) 16(0.15) 17(0.86)
Step. sto. 3D, N = 64 4
#(x100) 0.055(0.001)  0.42(0.009)  2.28(0.08)
N 66.5(0.5) 87(1.6) 175(5.7)
N=16
#(x100)  0.1(0.0) 0.4(0.0) 1.5(0.1)
N 18(0.1) 23(0.5) 57(3.5)
Step. sto. 2D, N = 64
M(x100) 0.047(0.001) 0.294(0.008)  1.34(0.04)
N 68.8(0.7) 93.4(2.1)  202.6(5.8)
N=16
Mm(x100)  0.1(0.0) 0.3(0.0) 0.8(0.0)
i 17(0.1) 24(0.5) 70(3.3)
Step. sto. 1D,N =64
(x100) 0.034(0.001) 0.056(0.003) 0.040(0.002)
N 72.2(0.8)  161.9(6.0)  784.3(24.9)
N=16
7(x100) 0(0) 0.1(0) 0.1(0)
N 17(0.1) 26(0.5) 116(4.8)
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2.6. Discussion and conclusion

values of Nm larger than 5, the disparities between island models and 2- and
3-dimensional stepping-stones lessen, but this may be due to the small number of
demes in the population.

Estimated migration and deme size from the curvilinear regressions are given in
table 2.2. Estimates of both N and m for the island model are very close to the
input parameters, whereas m is always lower and NN larger for stepping-stones.
Within the stepping-stones, the 1-dimensional always leads to the lowest estimates
of migration and largest estimates of deme sizes, followed by the 2-dimensional and
the 3-dimensional stepping-stone. The fit of the curvilinear regression to the data is
however rather bad, showing a tendency to underestimate F,; in the early phases
and to overestimate it in the late phases (Figures 2.16 & 2.17). Thérefore, unless
migration is so low that the equilibrium value of Fy; is very close to 1 (top graph in
Figure 2.16), equation 2.36 is a bad predictor of F}; in stepping stone models.

We can, however, gain some information on what the equation should be like for
stepping-stone models from the Ffgures: it is only when F; reaches a plateau in the
island model that its value diverges for stepping-stone models. This is the time
necessary for correlation of allelic frequencies between adjacent groups to develop.
As these correlations developed, it makes the panmictic unit larger and decreases
the migration, because these larger units of random mating exchange, on average,
less migrants than the smaller units of the early process. By making N and m
dependent on time, it should be possible to get a better fit of the curvilinear

regression to the data in a stepping-stone model.

2.6 Discussion and conclusion

2.6.1 Pros and cons of MODELA42.

MODEL42 was developed on a DOS platform, using Borland’s Turbo-Pascal
version IV, V and VI. In these implementations of a Pascal compiler under MS-DOS,
the maximum size of an array is 64 kilobytes, allowing for a maximum of 16384
individuals if identity by descent is to be measured. Moving to a UNIX platform, or
using the new version of the Pascal compiler from Borland, Borland-Pascal VII,
would solve this problem. Translation of the code into C is also currently being done.
Only single locus systems can be modelled. Replicates are often considereci as

equivalent to different independent loci (Slafkin, 1985a), but they are not, since the
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pedigrees of independent loci from the same individual are the same, whereas the
pedigree of independent replicates are different. This may have some important
consequences in term of variance between loci. Indeed, Feldman & Christiansen
(1975) have shown that migration among a set of semi-isolated populations could
result in a cline of linkage disequilibria and Ohta (1982) proposed to measure the
extent of isolation between populations with D,;, an F,;-like statistic based on
linkage disequilibrium. A solution to this problem has already been suggested.
Rather than giving a location to alleles in the initial generation, locations are
specified for individuals and each generation, after the sampling of parents, the
sampling of alleles within parents is carried out as many times as there is loci. This
will also allow the modelling of certain types of selection, such as meiotic drive.

Other types of selection, however, seem much more complicated to implement.

2.6.2 State of analytical work.

As we have seen, the theory for island models of populations is rather accurate and
the discrepancies between the different types of island models are very small.
Predictions of the values of F),; at equilibrium, as well as in non-equilibrium
situations can be made, and seem accurate (Figures 2.16 & 2.17). The time to
equilibrium is dependent on which of the two quantities m or 1/N is the largest and
value at equilibrium is essentially dependent on the effective number of migrants,
Nm. Although results are not shown, predictions in an island model with a
proportion s of selfing are also accurate for equilibrium as well as non-equilibrium
situations.

Equations for prediction of the effective sizes of both local and global population are
also gi\"eq. The effect of subdivisions and of selfing, although similar in terms of F
are opposité in terms of variance effective sizes: subdivision leads to larger effective .
than census sizes, whereas selfing leads to smaller effective than census sizes.

The situation is quite different for stepping-stone models. The only quantity that
has been derived analytically is the correlation of allele frequencies at equilibrium
for demes k steps apart, when the number of demes is infinite and with a proportion
of long range migration ensuring that variability is still present in the total array.
Relating the correlations of allele frequencies to F,; has yet to be done. Wright
derived equilibrium values for F;, in a model of randomly distributed clustérs, which

bears only some resemblances to the stepping-stone models (Wright, 1969,



2.6. Discussion and conclusion 60

10000 ; S
m(t) ——- ]
1000 | ]
100 F ]
€ 10 | ]
- L
=
~ -
c L
Z ; ]
01 F
001 | ]
0.001 : :
1 10 100 1000

Generations

Figure 2.18: Typical behaviour of the functions N(t) and m(t).

p 320-323). The finding of Crow & Aoki (1984) that equilibrium values of G, in

stepping-stone models are dependent on the shape of the habitat are confirmed here.

It would, however, be of interest to obtain a relation similar to (2.36) for

stepping-stone models. I suggest that this could be achieved if N and m are made

time dependent. Expressions for N(t) and m(t) have yet to be found for the relation:
1 — m(oc0))? 1

2N (o0) - (2(N(oo)(— 1)))(1 (o)’ (1 = (= m()H - W)t)

F(t+1) =

However, they should be constant until equilibrium is reached in an island model

and then N(t) should increase while m(t) should decrease. A possible form could be:

N(t) = N1+ Alexp(t/C1)),
m(t) = m(l — A2exp(-C2/t))

where C1 and C2 are constants of the order of the number of generations it takes for
equilibrium to be reached in an island model and Al and A2 are coefficients taking
into account the dimension of the habitat. Figure 2.18 shows what the typical
behaviour of these functions should be.

The situation is even more complex for the isolation by distance model. As
mentioned before, the neighbourhood size is supposed to be equivalent to a random
mating unit and depends on the distribution of parent-offspring dispersal. The

assumption that individuals within a neighbourhood mate at random is, however, a
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gross simplification: individuals at the centre of the neighbourhood are more likely to
be the parents of the central individual than individuals at the edges. Furthermore,
the proportion of selfing in the population is given by the distribution of
parent-offspring dispersal distances since it is the proportion of the parent-offspring
dispersal distances that fall in the unit square. The smaller the neighbourhood, the
larger this quantity (which is always larger than 1/N, c.f. table 1 in Rolhf & Schnell,
1971, p 297). Rolhf & Schnell (1971) looked at the effect of the dispersal
distribution of parent-offspring and showed that a uniform rather than a conical
(mimicking a normal) distribution decreases F' drastically (Figure 14, p 316). They
then attempted to derive exact solutions for F’s under different parent-offspring
dispersal patterns, obtained good agreement of the theory with their simulated data
set and found discrepancies with Wright’s results for the uniform distribution.

However,they could calculate F' only up to the second generation. As they put it:

‘Unfortunately, it does not appear feasible to work out the expected F'’s

for later generations using our approach.’

They also showed that, as time goes on and even with a uniform distribution of
parent-offspring dispersal, the distribution of ancestors after only 2 generations is no
longer uniform (Table 2,p 313).

In this work, no attempt was made to follow the change of F,; in isolation by
distance models for the reasons stated above. Furthermore, we will see in the next
chapters that it is not possible to detect a random breeding unit in isolation by

distance models.



Chapter 3

F-Statistics

3.1 Introduction

Prior to 1966, the amount and distribution of genetic variability within species was
largely unknown. The phenotypic markers available were frequently under polygenic
control or were likely to be unrepresentative of the whole genome (eg. lethal alleles).
The discovery of protein gel electrophoresis independently by Harris (Harris, 1966)
and Lewontin & Hubby (Hubby & Lewontin, 1966; Lewontin & Hubby, 1966)
initiated twenty five years of intensive investigation of protein variation in natural
populations by hundreds of laboratories (Lewontin, 1991). This polymorphism was
shown to segregate in a Mendelian manner. The amount of variability detected was
astonishing: about one third of the loci surveyed over a wide range of species (Nevo
et al. (1984) carried out a literature survey and found studies of intraspecific
variation in 1111 species, with an average, of 23 loci and 200 individuals per species
examined) were polymorphic and the average heterozygosity per individual was 10
percent (Lewontin, 1991). These observations generated a debate between the
adherents of a selectionist (balancing) view led by Mayr, Cain and Dobzhansky on
the one hand and the adherents of a neutralist (neoclassical) view, led by Kimura on
the other. Although still unresolved, the tenants of both schools are now aware that
nothing is as clear cut as they first thought, due mainly to the fact that their
hypotheses were based on very simplistic population genetic models with no
population.structuring or specific reproductive system. Fortunately, another
outcome of the discovery of gel electrophoresis was the possibility of using this
information to get a better understanding of the genetic structure of natural

populations, providing that the loci under scrutiny are not undergoing too strong a
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selection. Measurements of gene-flow are discussed in the next sections and the

statistical robustness of these measurements are discussed.

3.2 Measuring gene-flow

Gene-flow is a collective term that embodies all mechanisms resulting in the
movement of genes from one group of individuals to another (Slatkin, 1985a). The
word population will not bé used here, because, as we will see in Chapter 4, they are
extremely difficult to characterise. Measuring gene-flow implies estimating a
quantity that will provide information about movement of genes. This may be

achieved by using two distinct approaches:

1. Dispersal of individuals or of gametes. These types of measurements will give
some information about gene dispersal, providing that the individual
reproduces or that the gamete is successful in producing an individual. These

types of measurements are direct methods of estimating gene-flow.

2. Inferences of gene-flow by observing the frequency distribution of alleles and
genotypes. These are indirect methods of estimating gene-flow. The actual
movement of genes will not be observed, but the distribution of allele and
genotype frequencies should give us some indication of how much gene-flow

occurs in the surveyed species.

The respective advantages and inconveniences of both types of measurement are

discussed below.

3.2.1 Direct methods

The principle behind this technique is to identify visible (conspicuous) markers and
to follow their movement. The first study to answer an evolutionary question using
this type of marker is that of Dobzhansky & Wright (1943). They used an orange
marker gene on Drosophila pseudoobscura that was known to have no effect on
dispersal and released homozygous individuals from a source point. They collected
the flies in traps 10 or 20 metres apart laid out in a crossed pattern. They used the
information obtained to get a temporal estimate of the neighbourhood effective size,
which was of the order of 500-1000 individuals. However, another study by
Crumpacker & Williams (1973) gave an estimate of the order of 10000, an order of
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magnitude larger than Dobzhansky & Wright’s estimate. Further studies showed
that the condition under which the flies are released will have a drastic influence on
the neighbourhood size estimate. A study by Jones et al. (1981) was carried out in
Death Valley, California, where flies can only be found in discrete oases separated by
several kilometres. The marked flies were released in a clearly unsuitable habitat.
The following day, flies were trapped not only in the closest oasis, 2 km away, but
also in the farthest one, 8 km away. The average dispersal distance was found to be
400-500m, three times as much as that found by Dobzhansky and Wright. It was
shown (Coyne et al., 1982) that, even where the flies were released in an oasis, some
were trapped as far as 5 km away in the desert and at an oasis 14.6 km away.

Other examples of direct measurement of gene-flow can be found in Endler (1977),
Wright (1978, chapter 2) and Slatkin (1985a) but the above example is sufficient to
indicate what can and what cannot be done using this type of measurement. At
best, direct measurement can only indicate the gene-flow occurring under the
conditions when the experiment is conducted. Experiments tend to be carried out
under normal or natural environmental conditions. If the sampling strategy does not
disturb the dispersal pattern (but see Johnston & Heed, 1975) and is adequate,
direct measurement will provide good estimates of common movements. In a
suitable environment, D. pseudoobscura has an average daily displacement of 200
metres but, when conditions get more difficult, the average daily displacement
increases. Unfortunately, one aspect of the dynamics of movement is not taken into
account by direct measurement: its stochasticity. Although flies may move an
average of 200 meters a day, a drought, or the local extinction of a population, may
lead to drastic shift in the dispersal pattern over a very short period of time. These
type of movement are very unlikely to be recorded by direct measurement, but will

affect the genetic make-up of the population.

3.2.2 Indirect methods

‘An indirect method is one that uses observed spatial distribution of
alleles, chromosomal segment or phenotypic traits to draw inferences
about the level or pattern of gene-flow and other mechanism of genetic
evolution.’ (Slatkin, 1985a)

The methods for making these inferences has been discussed in the previous chapter.

It is sufficient to say here that the allelic and genotypic distribution in a population
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are a function of the evolutionary forces acting on it, such as selfing and migration. If
many independent loci show a similar pattern of allelic and genotypic distributions,
it is possible to relate these to distributions obtained from population genetic

models. Many different techniques have been developed, and are reviewed below.

The ‘private allele’ method of Slatkin(1985b)

The ‘private allele’ method of estimating gene-flow is one of the most intuitive ways
of approaching the problem. When surveying a population by gel electrophoresis,
one obtains a distribution of allele frequencies. If the survey encompasses many
samples, the distribution of allele frequencies can be obtained for each sample. The
idea behind the ‘private allele’ technique is that if an allele is present in only one of
the samples, then its frequency in this sample will be some function of the migration
rate. However, when private alleles are at very low frequencies, they could come
from a newly arisen mutant in the population, but, if they reach a high frequency in
only one of the samples, then this suggests that very little genetic material is
exchanged between the different samples. The inference of migration level can then
be done by running computer simulations and relating the frequencies of private
alleles to the migration proportion. Slatkin (1985b) provides the relationship

between ‘private allele’ frequencies and the effective number of migrants, N.m.:
log p7 = alog Nom. + b, (3.1)

where a and b are found by computer simulation and depend on the sample size and
the number of demes sampled (Slatkin, 1985a; Slatkin & Takahata, 1986).
Applications of this technique to natural data is found in Slatkin (1985a) and gives
an estimate 6f N_.m. consistent with other indirect methods. As pointed out in the
paper, more work is needed to identify sources of bias, but the technique seems to be
quite insensitive to weak selection (Slatkin, 1985a) and mutation rate (Barton &
Slatkin, 1986).

Although appealing in its simplicity, this technique has several drawbacks. Slatkin &
Barton (1989) showed that the ‘private allele’ technique is not as robust as other
existing techniques, such as those based on F-statistics. Indeed, most of the
information collected in an experiment is not used, because only few alleles will be
private. Another drawback of the technique is that the genotypic composition of the
population is ignored and it is therefore impossible to know if each sample belongs

to one or more breeding units.
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Spatial autocorrelation analysis

Spatial autocorrelation is a technique derived from the field of ecology. If locations
close to each other tend to exchange more genetic material than locations further
apart, then calculating the correlation coefficients of allelic frequencies with distance
should give a good overview of the amount of gene-flow occurring in the population.
For each allele, the correlation coefficient is calculated over all pairs of locations that
are a specified distance apart and used to generate a correlogram. To date, this
technique only describes the genetic correlations between samples, without making
any genetical inferences from it (Slatkin, 1985a). To carry out a spatial
autocorrelation analysis, samples from different locations need to be taken. It is
then necessary to find a measure of the distance between these locations, either
geographic distance, or nearest neighbour (Slatkin & Arter, 1991). Figure 1 in
Slatkin & Arter (1991) shows a variety of such possible distances measures,
depending on the assumptions made a priori about dispersal pathways. The final
step is to compute the spatial autocorrelation for each variable in each distance
class. Moran’s I (CLiff & Ord, 1981) is often used:

k _ _
_n Yitj ws(j)(zi —7Z)(z; — T)
Dizj w§f’ (zi — T)?

where n is the number of locations sampled, Z is the average value of z;, the sample

Ii

: (3.2)

frequency of the allele under scrutiny, k is the distance class and w,(: )=1ifiand ]
are both in the same class and 0 otherwise. For each class of distance, I} can be
estimated. This set of values can then be plotted on a correlogram. A flat
cbrrelogra,m would be an indication that geographical structure is non existent, as in
an island m(;del, whereas a decaying one would indicate restricted gene-flow between
locations. The statistical significance can then be tested using techniques such as
those described in Cliff & Ord (1981).

With reference to what biological inferences can be made using this method, there is
a vigourous debate between Slatkin and co-workers on the one hand (Slatkin &
Arter, 1991) and Sokal and co-workers on the other (Sokal & Oden, 1991). As
mentioned already, drawing inferences about levels of gene-flow using this technique
seems difficult because a genetical theory to support these estimates does not exist.
As with the ‘private allele’ technique, only allelic frequencies are used and all the
information contained by genotype distributions is lost. On the other hand, this is

the only technique that explicitly takes into account geographical distance and it
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may be the best method of analysing populations living on a continuum, as pointed
out by Heywood (1991).

Lethal alleles

The first estimates of N.m. were based on the frequency of lethal alleles. Because of
the strong selection against the allele, any two lethals could be assumed to have
descended from the same mutation in the recent past. Simple models predict the
way in which effective population size, heterozygote fitness and immigration rate
affect the probability of allelism of lethal from the same and different populations
(Slatkin, 1985a). This technique, however, has been used mainly to infer population
size and heterozygote fitness, but should be mentioned as one of the first methods to
attempt to estimate gene-flow.

Dobzhansky & Wright(1941) used observations of lethal alleles in D. pseudoobscura
from isolated populations to measure several populations parameters and found
N.m. to be 54. In their discussion they tempered the estimate down due to biases,
but concluded that N.m, is certainly larger than 5 in this species, indicating that
genetic drift is not a strong enough force to allow differentiation between
populations of this species.

Wallace(1966) used lethal alleles to measure the decrease in frequency with
geographical distance and found that in D. melanogaster, the frequency of lethal

alleles would decrease approximately 50% at a distance of 150 meters.

Genetic distances

Genetic dist;'«mces were first used in population genetics to provide a single
quantitative measure of differences in two or more sets of allele frequencies.
Differences in gene frequencies between populations provide such a measure,
although there exist other ways of estimating genetic distances, such as differences
in a quantitative character, or number of nucleotide substitutions.

The first study involving genetic distances as measured with differential gene
frequencies is that of Cavalli-Sforza & Edwards (1967), where the authors obtained
an evolutionary tree of human races.

Nei (1987) distinguishes two classes of genetic distances: the first is used for
population classification and includes Pearson’s coeflicient of racial likeness

(Pearson, 1926), Rogers’ distance (Rogers, 1972) and Mahalanobis’ D? statistic
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(Mahalanobis, 1936). They are geometric distances, in the sense that the population
could be represented as a point in a v-dimensional space on the basis of the
frequencies of the v alleles at a locus. All populations then lie on the hyper-plane
defined by Y u_, p» = 1. With two populations, X and Y, with respective allele
frequencies p; and p, = 1 — p; and ¢y, ¢z, the Euclidean distance between the

populations, based on that diallelic locus, is

dxy = \/(P1 - @1)* + (p2 — @2)? (3.3)
and, if there are v alleles
dxy = Z(pu - Qu)z (34)
u=l

Geometric distances based on the square-root of allelic frequencies have also been
used, so that instead of lying on the hyper-plane, populations lie on a hyper-sphere
with radius 1. A measure of the genetic distance is then simply the angle between
the two radii joining the centre of the hyper-sphere to the location of the
populations on its surface. It can be shown that the distance between two

populations can be expressed as

1 (pu — Qu)2
> [— , (3.5)

¥ =
u pu+q'u,

where 1 is the angle between the radius of the two populations (Weir, 1990).
Cavalli-Sforza & Bodmer (1971) used the chord length, d, between population X

and Y as a measure of genetic distance, where

d = 1/[2 — 2cos(¥)]. (3.6)

A second class of genetic distances is used for evolutionary studies and can be
‘rela.ted to Wright’s F-statistics. This second class includes F,; itself (cf. next
subsection) and Nei’s standard genetic distance, D, (Nei, 1972):

D=—1n(\/{;{5;) (3.7)

where Jx = L p?, Jy = ¥ ¢2 and Jxy = ¥ puqu. This last equation is used very

often to assess genetic distances.
Slatkin (1985a) proposed another classification following Latter’s idea (Latter,
1973), using genetic distances based on heterozygosity, and another based on

homozygosity. He pointed out that the type of information extracted from each class
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is quite different. While N,m, can be extracted from Fj; (cf. Chapter 2), it seems
possible to extract m, directly from D as proposed by Nei (1975, p. 194).
Although promising, the statistical problems associated with estimations and

inferences of this last category of distances remain largely unexplored.

The F-statistics of population structure

The F-statistics are tools devised by Wright(1921,1951) that measure the
heterozygote deficit relative to its expectation under the Hardy-Weinberg

* equilibrium (H.W.E.). Although reminiscent of the ‘beanbag genetics’ of Mayr
(1959), the Hardy-Weinberg equilibrium remains the reproductive regime of
reference for two reasons: it is the best understood and, whatever the genotypic
make up of the population, one generation of panmixia restores the equilibrium.
A measure of the heterozygote deficit is simply the ratio of the difference between

expected and observed heterozygosity to the expected heterozygosity:

F= HExp - HOba =1 HOba
HE::p HEzp

(3.8)

The symbol F' stands for Fixation index. If individuals are to be more homozygous
than predicted by H.W.E., F will be positive, with a maximum of 1, when all
individuals are homozygous. On the other hand, if individuals tend to be less
homozygous than predicted by H.-W.E., then F' will be negative, with a minimum of
-1. A very nice feature of this parameter is that it can be related to both the
inbreeding coefficient and the probability of identity by descent as shown in
Chapter 2. Wright preferred to define F' as the correlation of the presence or

absence of an allele in uniting gametes, because a probability cannot be negative. As

he puts it (Wright, 1969):

‘In a panmictic population, there is no correlation between
homologous genes of uniting gametes relative to the gene frequencies in
the whole population. On splitting up into small lines which breed within
themselves, a correlation between uniting gametes is to be expected. This
suggests a description of population structure in general and the effects
of inbreeding in particular by means of the correlations expected under
Mendelian heredity. The concept of correlation of homologous genes of a
certain class is required from the broader standpoint of a group of

parameters useful for the description of population structure in general.’
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Table 3.1: Proportional frequencies of the different genotypes in the case of multiple

alleles under any reproductive regime

Ay A; Ax Total
AL |Q-F)pi+Fp | (1-F)pipe (1= F)p1pe 21
A; (1=F)papr | (1— F)pi + Fp, (1 = F)papk P2
Ay (1 - F)peps (1 = F)pips (1-F)pi + Fpe | P&
Total P1 P2 ... Dk 1

First, let us demonstrate that F' is a correlation coefficient by considering a diploid
population with a single, multi-allelic, segregating locus. If allele A; is opposed to all
others, frequency of homozygote A;A; is given by (1 — F)p? + Fp; where p; is the
frequency of allele A; in the population and the frequency of heterozygote
AiA;, 5 #iis 2p;(1 — p;)F. To show that the fixation index F' is the same as the
correlation between uniting gametes, let V4, V3, ..., Vi be arbitrary values assigned
to the alleles and w, with suitable subscripts, describes the proportional frequencies
of the different alleles and genotypes as shown in Table 3.1. The formula of
Pearson’s correlation coefficient’s , p, is
_ Cov(z,y) _ Ty —TF
SN R

The different components of this expression are defined, in the context of correlation

between alleles as follows: the mean genetic value of the population and the variance

are given by

and

which leads to

k
222 ViViwi; —( Vipi)?

J

(3.9)

p= :
‘ 02
The w;; are derived from Table 3.1 with: w;; = (1 — F)p;p; if ¢ # j and

wij = (1 = F)p? + Fp; if ¢ = j. Thus the over-braced part of (3.9) can be written

o

” Y

k & | P . k k
22 ViViwi; = 3 V(1 - F)pf +Fpi] + 2 Vi(l = F)pi 3 Vip; (3.10)
i i i § i
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Using Newton’s expansion on the over-braced part of (3.10) and rearranging, we

obtain . . .

(1- F);[szf + Vipi Z; Vipil = (1 - f")(z{: Vipi)? (3.11)
This is valid only if F' is the same for all alleles and their combinations, such as
when there is no selection affecting the locus under scrutiny. This problem is not
mentioned in Wright (1969) but has been pointed out by different authors
(Roughgarden, 1979; Golding & Strobeck, 1983). In the fourth volume of his
masterpiece, Wright (1978, p. 60) came back to this problem by highlighting the
differences between the inbreeding coefficient, f, to which the demonstration applies
and F-statistics, to which the demonstration applies only under the hypothesis that
the locus under scrutiny is neutral. Bearing in mind that the evolutionary forces we

are interested in affect alleles in the same way, this ‘mathematical trick’ should not

affect the proof and equation 3.10 can now be rewrii;ten
kK k k k k
Y ViV = F Y Vi — F(3 Vi) + (3 Vins)? (3.12)
J s s [ [

Substituting (3.12) into (3.9) leads to:

—F (3.13)

5
This completes the proof that the fixation index F is the same as the correlation
coefficient between uniting gametes and that it is independent of the genetic values
assigned to the different alleles. '

The success of fixation indices compared to other indirect methods come from their
ability to partition the heterozygote deficit into two components (which could be
extended to many more, e.g. Wright, 19"78). If we sample randomly in natural
populations, samples are taken from different locations. These samples may or may
not belong to the same panmictic unit. Fixation indices allow the measurement of
the heterozygote deficit within sampled locations and provide an estimate of F' due
to evolutionary forces such as selfing. This fixation index is called Fi,, 7 for
individual and s for subpopulation. The fixation index could also be measured for
the whole sample, leading to F:, ¢ for total population. If F;, and F; differ, then
another source of heterozygote deficit must exist: it is known as the Walhund effect

(Walhund, 1928) and is quantified by Fy. In terms of correlation we define:

o F as the correlation between gametes that unite to produce the individuals

relative to the gametes of the total population



3.2. Measuring gene-flow 72

o F;, as the average over all subdivisions of the correlation between uniting

gametes relative to those of their own subdivisions

o F,; as the correlation between random gametes within subdivisions, relative to

gametes of the total population.

The relationship between these three F’s can now be derived. Within a single
population, s, the heterozygote deficit, F;,,, for allele A; can be written as a function
of the allele frequency in that subpopulation, p,; and the observed number of

heterozygotes:
HObs.,- = 2ps; (1 — ps; )(1 — Fis;) (3.14)

where Hoz,,,‘, is the observed heterozygosity in the sth subpopulation. Fj, is then
defined as the average over all subpopulations of Fj,,. This average will not be an
unweighted average, because allelic frequencies between subpopulations will differ
and therefore, the contribution of each subpopulation to the global F;, will be
different. If the average was not weighted, the contribution to F;, of a subpopulation
with only one copy of allele A; would be the same as the contribution of a
subpopulation with N copies of allele A;. This point has been stressed by some
authors (eg. Nei, 1973), but did not appear in the demonstration of Wright (1969,
pp. 294- 295), although it is explicitly taken into account in Wright (1978, p. 80).
The expression of the weight is simply p,(1 — p,) [dropping the subscript i for

simplicity], leading to: " '

= Ea p5(1 - pa)-Fia

F, = 3.15
EP p,(l - ps) ] ( )

where D is the number of subpopulations sampled. The total heterozygosity can

now be written

oo 3B e

which leads to o
2
Ho;,,‘ = 5 Ep,(]. - ps)(l - T.',). (317)

Since F;, is the same for all subpopulations, it can therefore be taken out of the

summation sign. Rearranging then leads to

D
Hom =20 ~F2) (- 528, SR

where p; is the frequency of A; over all subpopulations.
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Table 3.2: Values of the different F’s under extreme reproductive regimes. Cases 1
and 2 affect all loci equally, whereas cases 3 and 4 affect only the loci tightly linked

to the locus undergoing disassortive mating.

Breeding system Fis | F | Fu
1. Random mating
e a. large migration between subpopulations 0(0]0
e b. no migration between subpopulations 0 1 1
2. Total selfing
e a. large migration between subpopulations 1101
¢ b. no migration between subpopulations 1111

3. Disassortative mating, 2 alleles
¢ a. large migration between subpopulations -1 1<0§-1

¢ b. no migration between subpopulations -1 [ <0 -1

4. Disassortative mating, large number of alleles

¢ a. large migration between subpopulations 11?7

e b. no migration between subpopulations 1?7 -1

Bearing in mind that the variance of the frequency of A;, o2,, over subpopulation is
1/D TP p? — p? we obtain

Hoby, = 2(1 = F,) [pe(1 — p) — 02,] . (3.19)
Dividing both sides of the equation by 2p;(1 — p;) leads to

HObag = 2
oLl N : 1-
)= pe(l— Pt)(

In the left-hand side of the equation, we can recognise the expression 1 — Fj; (e.g,

). (3.20)

equation 3.8). Rewriting (3.20) then gives

o ——
0.2

pe(1 — ))

The over-braced part of the last equation is the formula for F,;. Therefore the

1—Fp=(1-TFo)(l- (3.21)

general relationship between the three F's is:

(1-Fit) = (1 — Fig)(1 — Fat) S (3.22)

Now that the relation between the three F’s is established, we need to
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Figure 3.1: Fj as a function of F}, and Fy;. The same F}; value can arise from different

combination of F;, and Fj;.

focus on their respective meanings. Table 3.2 provides examples of the values taken
by these three statistics under different extreme reproductive regimes. The first
thing to notice is that different reproductive regimes lead to the same value for Fy,
as shown by cases 1b, 2a and 2b. The outcome of these reproductive regimes is that
no heterozygotes are left in the population, but the statistic Fi; is unable to
discriminate between the forces that caused this deficit. The same conclusions apply

to any value of the statistic F; as shown in figure 3.1.

On the other hand, F;, and F,: quantify the respective contributions of inbreeding
and structuring to the heterozygote deficit, providing that the sampling strategy is
adequate.

F,; can be interpreted as a measure of the amount of differentiation among
subpopulations, relative to the limiting amount under complete fixation within each
sub-population, in contrast to o2, which measures this differentiation in absolute
terms (Wright, 1978). Indeed, the denominator of Fu¢, p:g:, is the expression of the
maximum possible variance in allelic frequency in the population, which would occur

if a proportion p; of the populations were fixed for one allele and the remaining
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populations for the other, in the simple case of two alleles segregating at a locus.
Wright(1978) pointed out that observations of Fy,; alone could be misleading, because
different patterns of allelic frequencies could lead to the same F,;. For example,
consider a sample of twenty populations. In one instance, one population is fixed for
allele A; and the remaining nineteen fixed for A;. Another set of twenty populations
has ten populations fixed for A; and the remainder for A;. The F,; obtained from
both samples will be the same, but the numerator and denominator will be different.
The extent of differentiation seems larger in the second than in the first case and, if
many loci where to show the same pattern, one could suspect that the nineteen
populations fixed for the same allele are isolated from the twentieth, but not isolated
from each other. On the other hand, if such a pattern is displayed by only one locus,
the hypothesis that the pattern had arisen by chance would be difficult to reject.
Another interesting example is one where only two populations are sampled and the
locus under scrutiny has four alleles, with alleles A; and A; equi-frequent in
population 1 and allele A3 and A4 equi-frequent in population 2. Although it seems
that little if any genetic exchanges occur between these populations, F,: will only be
1/3, because complete fixation of four alleles could not occur in a sample of only two
populations. Fy; therefore measures the extent to which the process of fization has
gone toward completion (Wright, 1978).

To overcome the problems highlighted in the above examples, Wright advocates the
use of not only Fj;, but also of ag‘ and p:q; to assess population differentiation. If a
great deal of allele replacement seems to have occurred, so that the populations
under scrutiny seem very differentiated, as in different species within a genus, the
quantity of interest will be az., whereas if there is little differentiation, F,; will be of

interest in assessing population structure.

3.3 On estimating F-statistics

In the preceding section, F-statistics were defined in terms of population gene and
genotype frequencies. These, however, cannot be readily obtained, even if the whole
population is sampled, due to two sources of error: the first due to genetic sampling
occurring in each generation (sampling of gametes from the parental array to
produce the next generation); and the second, statistical sampling. Another source

of sampling error exists, namely the parametric sampling, due to different mutation
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rate at different loci (Slatkin & Arter, 1991). In the model developed here, however,
mutation is not of interest, because of the time scale at which we are working.
Information about this third source of variation and its influence on the estimators
of F-statistics can be found in Cockerham & Weir (1987) and Weir & Basten (1990).
Estimation of the population gene and genotype frequencies traces back to Levene
(1949). Since then, a lot of progress has been made and I will present two families of
estimators that are widely used in the literature. The first was developed by
Cockerham (1969, 1973) and Weir & Cockerham (1984) and takes account of the
two sources of biases mentioned in the previous paragraph. The other, developed by
Nei (1973, 1978) and Nei & Chesser (1983) takes only account of the statistical
sa,mpliﬁg. If our interest lies only on the population from which the sample was
taken, Nei’s approach could be justified, but if the intention is to use the F-
statistics to compare structuring in the sample with other populations of the same
species or with different species, the first method is to be preferred.

Measuring F-statistics is of little interest if no population parameter can be
extracted. A third method for seeking appropriate estimators is developed which
leads to an estimate of both the local and global effective size of the samples. This is
an interesting parameter which may help in coming to an understanding of the level
at which selection is acting in the framework of Wright’s shifting balance theory
(Wright, 1977, Chapter 13).

3.3.1 Cockerham’s method (1969, 1973)

Cockerham(1969, 1973) approaches the problem of the estimation of the different
F-statistics by mean of a hierarchical analysis of variance (ANOVA). The
observational unit used is the gene (each and every gene, Cockerham, 1973). Let ag;
index the jth allele in the ith individual in the kth population. z;; is defined as a
measure of frequency such that z4; = 1 if axij = A, and x5 = 0 if agy; = A#A
(1969). Let the population frequency of A be P(axi; = A) = p. The following model
can be written (Cockerham, 1969)

Thij = P + ax + bri + Wiij (3.23)

where the effects, all random, are a for groups, b for individuals and w for within

individuals and have variances o2, o? and o2, respectively. The expectations of
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quadratics over classes of genes are:

E(zpijziniy) - =
P +p(1 —p)=p*+o° if k=k,i=dj=j
PP+Fp(l—p)=p*+Covg if k=kK,i=1ij#j
P+0p(1—-p)=p*+Cov, if k=FK,i#d
p* + Cov, if k#E.

Therefore, F and § are simply defined as a function of the covariances. f is the ratio
(F —8)/(1 — 6). For uncorrelated groups, Cov, = 0. Otherwise, it is the covariance
between the least related genes, in the sense that they are furthest apart in the
hierarchy (Cockerham, 1973). If this correlation is not zero, all the estimated
statistics will be relative to it and could be redefined as p'q’ = (1 — 8,)pg = o2,
0'=(60-0,)/(1—-6,) and F' = (F —8,)/(1 — 8;). This point stresses the importance
of properly identifying the different level of structuring. A discussion of the problem
is found in Cockerham(1973) and is developed further in Chapter 4. It is sufficient
to say here that, without modification of the basic model (equation 3.23), if there
are isolates within subpopulations, F' and @ can be estimated, but not f, whereas if
there are subpopulations within areas and areas within populations, F' and 6 cannot
be estimated but f can. Parametrically we have in terms of correlations

(Cockerham,1973)

2

p(1 —p)
Covg, = Fp(l _P)
Cov, = .6p(1 —p).

o

The correlations are related to the components of variance as follows:

1-F)pl-p) = o2

(F-0)p1-p) = of
Gp(1 - p) = o,
and
02 = ol +oi+02

It is now necessary to estimate Fi(F'), Fy:(0) and F;,(f) respectively from a

hierarchical analysis of variance design. To do this, we simply need to construct the
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different sums of squares for the analysis of variance (e.g. Sokal and Rohlf,1982):

880 = TijTh; = Zi(2N2+ MN1) = 2DNpg
S8, = Zk.(z zkis)? _  2,(4NatN) — 2DN}T)¢'—:"2&
SS, = Ek(Z z-":lm)2 - E;k(212\7]3+N1)2 — 2DN;72
58 = 'DN*"’Z = 2DNp*

where NN, stands for the number of homozygotes AA and N; stands for the number

of heterozygotes AA. The differences of sums of squares follow is given by:

SS0-a = 2DNpr gk
~ adding and subtracting 2DNpz? to SSo-2 leads to:
SSo-2 = 2DN(Prgr — a
Sy = gt
SSi, = 2DN(pFgr—o02,) — 2™
SSy_3 = 2DNa:k.

where a:k is the population variance of the allele frequency. This parameterisation of
Cockerham’s equations will allow to find the relation between Wright’s F-statistics
and Cockerham’s estimators.

The set of equations leads to Table 3.3 if for simplicity, we rewrite p for pz and o2 for

O';j:k. The expressions for ', 6 and f can be readily extracted from this table and give

o2 4 o

'r= — T "k 24
- o+ af+0l (3.24)

] % 3.25
"~ oltof+0l (3.25)

f = ot (3.26)
— ab2+at2Ul 3

On the other hand, if only allelic frequencies are available, one has to make the
-assumption that each of the samples are in Hardy-Weinberg equilibrium, and the
only statistic that can be estimated is d. The layout of the analysis of variance for
this case is shown in Table 3.4. It is also the table that would be used in the case of
data from haploids with Npep = 2Ngip. In this case the expression for 6 will be :

(3.27)

These two tables are for 1 allele only. To get an estimate over alleles at a locus and

over loci, one simply sums numerators and denominators.
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Table 3.3: Hierarchical analysis of variance on allele frequencies when genotypic fre-

quencies are available

Source of Degrees of Sum of Mean Expected
variation freedom Squares Squares Mean Squares
Among Demes D-1 2DNo? DN | 52 | 962 + 2N o2
Among individuals | D(N —1) | 2DN(pq — 02) %Vé\%l o2 + 202
sl N; N;
within demes -5+ - spIN=T
Within individuals | DN 2 P ol
Total 2DN -1 2DNpgq 2P0
If 4 indexes alleles and r loci:
F Zr u(al? + os
F — y ru Qru 3.28
eru Uozv'u ’ ( )
] Zr U o;
f = == 3.29
Trudl,’ (3:29)
where o2 stands for the sum of the three variance components,
2
A o
fo e by (3.30)

a0, +05,.)

These estimates will be unbiased in the sense that they are ratios of unbiased
estimators. Other methods of averaging over alleles and loci have been investigated,
but gave worse results than this simple weighted average (Weir & Cockerham, 1984).
It should be noted that, although the relation between the three F's stands for each
allele, it does not for the combined estimators.

Confidence intervals for these estimates can be readily obtained by means of
re-sampling techniques such as Jackknife and Bootstrap (Weir, 1990, pp. 137-143).
The advantage of such techniques is that they do not depend on the assumption of
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Table 3.4: Analysis of variance on allele frequencies when genotypic frequencies are

ot _available

Source of Degrees of Sum of - Mean Expected
variation freedom Squares Squares | Mean Squares
Among Demes | D -1 2DNg? 2DNo? 02, +2No?
Within demes | D(2N — 1) | 2DN(pq — 02) %Véj%’;l o2,
2DN.
Total 2DN -1 2DNpq SENEE

normality and are easily implemented on a computer (cf. algorithms and Fortran
source code in Weir, 1990). Randomisation tests (permutations of alleles within
samples, between samples and permutations of multi-locus genotypes) can be carried
out to test if f, F' and 6 respectively are significantly different from zero. These
tests also allow to generate an empirical distribution of the different estimators
under the null hypothesis. Weir’s program (1990) has been translated in Pascal and
C and the code is given in appendix D. These randomisation tests will be further
discussed in Chapter 4

Long (1986) refined Cockerham’s approach by extending the diallelic system to a
multi-allelic system by mean of multiple analysis of variance (MANOVA) rather
than ANOVA and proposes an approxim‘a,te test based on Wilk’s A distribution.

3.3.2 Nei & Chesser’s methods (1983)

Let pi; be the frequency of allele A; in the kth population and Pj;; be the frequency
of genotype A;A; in the kth population. Nei (1977) defined the fixation indices in

the following way:

F, = 1-H,/H,, (3.31)
Fy = 1-H,/H, (3.32)
F,t = I—H,/Ht, (3.33)
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where H,=1-Y;P;, H,=1 - Z;E and H; =1-Y;p5:%. Py, p_? and p;? are the
respective weighted averages over populations if they are of different sizes. The
problem is then to estimate H,, H, and H; from the samples (Nei & Chesser, 1983).
Let zx; and Xj;; be the sample frequency of allele A; and genotype A;A; respectively.
It should be stressed that —although it is not mentioned anywhere in Nei & Chesser
(1983)— even if the total population is sampled, it is still only one of the possible
states of the genotypic array and therefore, estimators are to be used. An account of
the question of fixed versus random effect can be found in Weir (1990, pp. 136, 145).
An unbiased estimate H, of H, is just the number of homozygotes:

H,=1-Y Xui/D. (3.34)

ki

where D is the number of samples. z;, however, is not an unbiased estimate of p_,’“

Under the multinomial sampling of genotypes, we have (subscript k is dropped for

brevity):
E(z}) = Var(z) + [E(2:)]* = E[XE + X,-;(§ Xij) + (_; Xi;/2)%) (3.35)
because

zi = (Xii + 3 Xii/2)?
7]
Equation3.35 becomes:

E(z}) = Pi+Pi(1-Pi)/N

+Pii(Cigs Pij) — Pi(Tigs Pis)IN

+(Tizi Pii)? /4 + iz Pij /AN — (Ziz; Pij)? /AN
= p}+ Pi/N + Ty; Bij /4N — p}/N.

where N is the sample size, presumed constant over samples. This leads to:

A

~ N _2 Ho
H, = N_—l[l - Za: -3 N] : (3.36)
where H, is given by (3.34).
Similarly for the estimate of H;, we get:
-1 —2 s )
H =1 E:r + %5 " 3ND (3.37)

where H, and H, are given by (3.36) and (3.34) respectively.
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Now the different estimates of the fixation indices are:

F, = 1-H,/H, (3.38)
F, = 1-H,/H, (3.39)
Fy = 1-H,/H,. (3.40)

3.3.3 A population genetics view

So far, we have been dealing with a statistical approach of the problem of estimating
F-statistics. Biologists, however, often find it difficult to understand statistical
papers, and I will attempt here to derive unbiased estimators of the F-statistics
using concepts more familiar to the population geneticist and, more generally, to the
population biologist.

When a sample is taken from a natural population (and I stress again here that the
sample could consist of the whole population under investigation), two measures of
genetic variability are to be estimated: the allelic frequency and the genotypic
frequency. These two measures will be estimated from the same sample. For
example, either allozyme methods or RFLP techniques are used to obtain genotypic
frequencies, from which allelic frequencies will be inferred. This corresponds to
sampling without replacement, that is, once one allele of the individual under
scrutiny is known, there are only 2N — 1 possible alleles for the second if we are
dealing with a diploid population. This simple fact means that instead of sampling
from a binomial distribution, we are sambling from a hyper-geometric distribution.
This point was stressed by Levene(1949), Haldane (1954) and Gouyon (pers.
comm.). Consider a sample of N individuals and, therefore, 2N alleles, where p is
the frequency of allele A and ¢ = 1 — p is the frequency of allele A. The sample will
consist of 2Np copies of allele A and 2Ng of allele A. The probability of a

heterozygote is the probability of obtaining A once and only once from two draws:

(%Np) (%Nq) )

Prob(AA) = Prob(X =1) = Cx)
N

This can be rewritten:

4N?pg  4Npq
N(2N-1) 2N -1

Prob(X =1) =
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Replacing Het ., with this last quantity into the equation of F;, leads to:
4Npq =1

(2N —1)2pg 2N -1'

That is, the expected value of Fj, is negative, a point already stressed by

Kirby(1973) and Cockerham(1973). To obtain an unbiased estimate, we need to

subtract this quantity from the definition of F;, to give:

F,=1-

(3.41)

Hetop, 1
.E;' _ 1- 2Npq + (ZN—I). (3.42)

T 1+ (ae)

The denominator of this last equation is necessary to standardise the estimate over

the range —1 to +1. If we consider that the uncorrected F;,, named F;,, in the
following, consists of two components, F;,, (the value toward which Fi,, converges
when N tends to o) and —1/(2N — 1), the expected value of F;, when N is finite.

This leads to:
1

(1= Fag) = (1= Faa))(1 + 52—

) (3.43)

which can be rearranged to give equation 3.42.

This correction would be sufficient if the sample size N was to be equal to the
sample effective size N, (the size of an idealised population that would lose
heterozygote or drift at the same rate as the observed one). If it is not the case, N
needs to be replaced by N..

We have seen in Chapter 2 that the effective size of a population undergoing partial
selfing is N/(1 + F3,). Replacing IV by this last expression leads to a converging

recursive formula:

1- -Fia
Fy=1- o (3.44)
1+ —p—o
. ' 1+F.’.(‘_1)
Putting X; = -1/ (% — 1) leads to the following sets of equations:
18
H etol’m
fio = 1= 90pg
_ E&o - XO
B = 7%
Fipo — X(s-
F, = —w_ 1)
1= Xy '’
At equilibrium F;,, = F;,,_, and we obtain:
ﬁ s = _F_"__ﬁo —AX'-

1-X
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Replacing X by its value and rearranging leads to:

¥ 2N—-1+F,, '

(3.45)

If N =1, F;,, = —1 unless there is no heterozygotes in the population, when it is
undefined. Substituting 1 for N and —1 for F;,, into the expression for F}, leads to
an undefined expression.

Equation 3.45 is the same as both Cockerham and Nei’s estimator. It leads to the

effective local sample size (both inbreeding and variance), which can be expressed as:

N
1+ F,

Ng=N" = (3.46)

as was found in Chapter 2, equation 2.18. As expected, if there is 100% selfing in the
population, N, will be half the census size, because the rate of allele frequency drift,
as well as the rate of loss of heterozygosity, will be twice as large as in a random
mating population. In the absence of homozygotes, as in the case of overdominance
with homozygotes being lethal, the local effective size will be infinite, a result to be
expected, since there is no loss of heterozygotes or changes in allelic frequencies over
generations.

The effects of the recursive correction are shown in Figure 3.2. Samples of different
sizes were taken from a 2-dimensional stepping stone model composed of 64 demes
of size 64,with 20% migration and 70% selfing. The different F;, are calculated for
each sample size.

The effect of the corrections is obvious. Fj,, within a deme (for sample sizes below
64) increases as sample size increases, whereas F, stays constant, with the other
estimates being intermediate. This plotting technique will be used in Chapter 4 as a
way of inferring the level of population structure.

- When estimating Fy;, as was the case for F;,, the sampling distribution of the
variance of allele frequencies over populations will follow a hyper-geometric and not
a binomial distribution. Once again two parameters will be estimated from the
samples, the local allelic frequencies, py where k refers to the kth sample and P, the
global allelic frequency. The distribution will be the outcome of 2N draws without
replacement in a sample of size 2DN. The variance of such a distribution is given by
the following equation:

D-1

Var(H(2DN,2N,2DNp)) = DN —TP¢

(3.47)
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OB Fe = Fuug+X(i1) '
Fy — Fy, = ‘1'+X =1
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Figure 3.2: Behaviour of the family of F;,. Equilibrium is reached after only 3 itera-

tions of the recursion. See text for details.

Replacing the numerator in the definition of F}; by this last expression leads to:

D-1

F st
An unbiased measure of F;, if the subdivisions were to be arbitrary subdivisions of a
single panmictic unit is given by:
(-2

—gk— - (211));;11)
Fu, = mlq:-c_ (231;1—1) . (3.49)

However, if they are not, it is necessary once again to correct the sample sizes to
obtain an unbiased estimator. But we face a new problem because, under partial
selfing, rates of allele frequencies drift and loss of heterozygosity are the same,
providing that selfers are not territorial (the location in space of offspring is
uncorrelated with that of the parents). However, in a subdivided population, these
two parameters are different since subdivisions will lead to a faster rate of loss of
heterozygosity, because individuals within populations are more related than
individuals from the total, but to a slower rate of allele frequency drift, as is shown
in Chapter 2 (equations (2.21) and (2.24)). We therefore need to consider these two

approaches and we will see that the outcomes lead respectively to 6§ and G,;:.
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Correction for rate of loss of heterozygosity

We can calculate the global inbreeding effective size using (2.21) given in Chapter 2
(the global variance effective size if there is no territoriality). What needs to be
corrected, however, is not N but D, the number of families (demes). As D appears

twice in the expectation of F,: (3.48), we will have, putting

TENrs — L
X _ 1+ 2Nel_1 Fn,
t = 2DN, -1
14(2N~1)Fot,
the following expressions:
2

Fﬂo = %
Pk Gk
_ Fuy—Xo
Fao = = Xo
Foto — X(t-1
F, = -t 201
t 1 — X-1)
At equilibrium, Fyy, = Fy,_,,, leading to:
A F’t - X
Fy=——rn.
TT1I-X

Replacing X by its value and rearranging leads to:

F _ (2DNel - l)Fato - (.D - 1)
* 7 (D=1)2Ng—1)+ 2Ny — 1)Fy,

which is the same as Cockerham’s 6. This leads to the global inbreeding effective

(3.50)

size of the population, Nig, as well as the global variance effective size if families

(demes) are not territorial:

(3.51)

NSubd‘ — NRel® _ DNel _ _ DNA _
“ ° 1 + (2DN¢:I - l)Fat 2NF3t+(1 +Ea)(1 —Fat)
which is also expression (2.28). When both E, and F,; are 0, Niy reduces to DN,
whereas when Fy; = 1, Ni, = -g. We can see here the analogy with F;,: when N =1,
F., is undefined and the last expression reduces to the expression of the effective size

when there is partial selfing. -

Correction for rate of allelic frequency drift

In this case, the global variance effective size is used to correct the expected value of

Fy. Using (2.24) of Chapter 2, applying it to both occurrences of D in (3.48) and
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using the now usual substitution:

D_ _ 1

X: = 35—

t = 2DNg 1
I-Fn

we get:
o2
F, sto _pk_
Pk 9k
Fy, — Xo
1-Xp
F, sty — X(t—l)
1— Xy

Fat;l

Fy,

At equilibrium, Fy, = Fy .1 leading to:

fo=Bre=X
1-X
Replacing X by its value and rearranging leads to:
P = (2DNg —1)Fy, — (D -1)
D(2Ng —1)+ (1 — F,)

which is the same as Nei’s (1983) estimate, but different from that of Cockerham

(3.52)

(1973). The expression of the global variance effective size can now be written:
. Subd¥ _ A‘D N _
< (1 + -Fu)(]- - Fst)
which is the same as (2.26).

This last formula allows us to compare two systems that will lead to a similar

(3.53)

genotypic composition of the total population, that is no heterozygotes: the first is
100% selfing in a single, non subdivided population of size N, the second is a
‘random mating subdivided popula,tion”, with each sub-population of size 1 and no
migration between them. In the first case the effective global population size will be
N/2, in the second, it will be infinite. This could be understood in terms of the
variance of number of successful gametes: in the first case, the number of successful
gametes is Poisson-distributed, whereas in the second case, this variance is 0, that is,
every individual has one and only one offspring. .

Figure 3.3 describes a similar situation. The different curves were obtained as

follows:

o N5f° is the average variance effective size estimated over 50 replicates
—using (2.15)— of a population with the following parameters:
D =1,N =4096,s = 0.9.
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Figure 3.3: Comparison of selfing and subdivisions

o N f“bd" is the average variance effective size estimated over 50 replicates of a

population with the following parameters: D = 4096, N = 1, m = 0.05.
e _ 4096
o N7 (2) = gy
o NSW(z) = %,

Fu(z) is calculated using:

1

Fu(z) = (1 —m)? (ﬁ +(1- %)Fu(z _ 1))

with N = 1 and m = 0.05. Fj,(z) could have been used instead of Fy(z), with

S

Ful) =

(1+ Fi(z - 1))

and s =0.9.

3.3.4 Summary of estimation procedures

Three different methods to obtain estimators of Wright’s fixation indices have been
derived, one based on an analysis of variance design, one based on the expectation of
variances and one which gives a population genetics interpretation to the bias,
leading to the effective size of both the local and global population. We need now to
compare the two estimates of F,;, G,; and 8 and find out if they are independent of

both sample size and number of samples.
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Table 3.5: Estimation procedures.
-Fi Fat
2
Infinite pop. | F,, =1- H—;;g“- Fy, = %%
Finite pop.
F, } Fato— e
R.M., no subd. | F,, = i3I Fupy = —2—JpRT
IN-T IDN-1
No R.M,, subd. N (D) needs to be replaced by N.(D.)
No territoriality Territoriality
: _ _N_ NT____D T__D
Eff. size Ny = o DYt = TTGNa D D; T
X & 1 Nt _ _D¥T-1 ‘7 _ _DT-1
X Xis T 2Ng-1 Xg™ = 2132‘5"*"1\’“-1 X = 2DTNg~1
I - FiaQ-X‘ia . pNT _ F.:Q—XN;;T T _ Fotn—XTn
F Fu 1~-X:s Fat - I—X:’fr Fat - I—X‘T;
s _ (2N=1)Fisg+1 | 5 _ (2DN4=1)Fy,—(D-1) _ (2DNu=1)Fuy—(D~1)
E’ - 2];—1"‘1 189 0 - ID"II'*‘J sty ;‘2};3[—1’ G.t - th]‘;d—lj‘:'l-l atg
: - _N NT _ DN T DN
Global eff. size N, Y Ng = INGTA+F (0 N, = T3F1=5)
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Before doing so, it will be useful to have formulae relating these different estimators
to each other. From now on, Cockerham’s estimates will be called respectively f and
6 , Nei’s G;, and G,;. The formula for F,; before recursion (equation (3.49)) will be

called F,;, because three of us, P.H. Gouyon, C.J. Gliddon and myself, originated it.

Wright’s basic formulae will keep their names. Table 3.5 summarises the results.

For F,:
(2N - 1)-Fi'a +1

2N -1+ F,
For more than 2 alleles, F,; is the weighted average of the different F,;,, where the

F=Gi,= (3.54)

weight is p,qy.
_(2DNyg—1)Fyy— (D -1)

Fu, = BN =) (3.55)
(2DN= - I)Fat — (D — 1)

Gu =55 - O (3.56)
(2DNy —1)Fy — (D — 1) .57

6= b-D)@Ns—1) + @Na = DFy
where N,; is defined as N/(1 + f ). The expression of each as a function of each other

is also of interest:

D
6= Fat,m (3.58)
D
g = Gum (3.59)
G = —T2D =D (3.60)

D—1+F’t_F5tg

3.4 Comparison of 0 and G,

3.4.1 The functions If}s(Es),B(Et) and Gy (Fa)

A first step in understanding the differences between 6 and G,; and their relation to
Fy; consists in studying them as a function of F,;. Plots as a function of F; for
different combinations of sample size N and number of samples D are found in
Figure 3.5-3.8. For completeness, a plot of F,, as a function of Wright’s F;, is given
in Figure 3.4. Table 3.6 summarises the functional analysis of If',-,, 0 and G,:. The
three functions are continuously increasing over their domain of definition, D
(positive derivative). They cross the x-axis when x is equal to its expectation in a

finite sample, under random-mating and no subdivisions. The three functions
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Figure 3.4: Iﬁ,-, as a function of Wright’s F;,

Table 3.6: Functional analysis of Fi,,0 and Gy

F; 6 Gt

D Forz € [-1,1,N>1| Forz€[0,1,D>1 | Forz €[0,1],D >1
F(z) € [-1,1] F(2) € [745,1] | Flz) € [praim 1

2N-1)2-1 2DN(D-1 2D2N(2N-1
F'(z) {_LTHN-H:: ,>0Ve Z'D_—1+_§"7_x =1 > 0V | roer- 2N—15+1_)'F-z > 0Ve

—1 D-1
— =T <353 — =T < 3pN-1
Sign 0=>z= 21;11 O=z= _211331;11
+=>z> 550 +=>z> P2
impy_eo T - Dﬂiz z

: 2Nz-1 1
limpco 2N -1 = 3N
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converge to Wright’s F-statistics when N and D tend to co. More interesting is the
behaviour of # and G,; when either D or N tends to co. As N tends to 0o, G tends
to Wright’s F,;VD, whereas the expression of 4 still depends on D (Table 3.6). As D
tends to oo, both the expression of § and G,; depend on N, the only difference

between the two being a —1 in the denominator for §. Other observations can be

made:

Both estimators differ from F,; for low sample sizes and number of demes

sampled.

Both can be negative (this needs stressing, Weir & Cockerham’s estimator is

not the only one leading to negative estimates of Fy;).
They are equal to F,; when Fy; = 1.

Increasing the sample size will lower the intersection with the x-axis, because
the allelic frequencies per sample is more accurate with an increased number of
individuals per sample. On the other hand, increasing the number of samples
without increasing their size has no effect on the individual p}s. Therefore, if
negative values of either estimator are to be avoided, increasing the sample
size is needed. What is meant by a negative estimate of either 8 or G,; is that
the population under investigation display less variation in allelic frequencies

between samples than that which is ezpected just by chance.

An increase in the number of samples lessens the difference between G,: and 6

(Table 3.6 & Figure 3.7).

Increasing the sample size is sufficient to reduce the discrepancy between G

and Fy, (Table 3.6 & Figure 3.6), whereas it has little effect on 6.

Gw < Fu,VD,N. If (D —1) > (2N —1), 6 £ F. The latter may be found

when expansive molecular techniques (sequences...) are used.

6 is defined in the interval [—1,1] when N = 1, the interval for F;,. As F, is
undefined for N = 1, we see that the only fixation index that can be estimated

in this case is 6.

The absolute value of 8 is always larger than the absolute value of 'G,t.
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3.4.2 Experimental design

In order to assess the quality of the two estimators in respect of their behaviour
under different sampling strategies, I will consider an adaptation of the experimental
design described in Slatkin & Barton (1989). The different population structures
were simulated using the model described in Chapter 2. The difference between this
model and Slatkin’s is that at generation 0, rather than having a completely
monomorphic population, the population is as polymorphic as possible (2DN
unique alleles if there is DN individuals). There is therefore no need for mutation as
long as the number of generations is not too large (< 10000 depending on the

amount of migration and the variance effective size, D.N,).

Samples of varying sizes and of varying number were taken at random from an
island model of population (gametic cloud) and a 2-dimensional stepping stone
model. In Slatkin & Barton (1989), sampling was at random with respect to
individuals and demes for the island model, but was a function of a parameter k
representing the spacing between demes for the stepping stone model. In this design,
sampling is at random over the total population for the stepping-stone model to
allow an investigation of the dependance of § and G, on sampling strategy. That is,
do the estimates of § and G,; differ if 5,10,20 or 50 demes are sampled, at random,
from the total population. As there is geographical structuring in a stepping-stone
model, sampling for different k values will lead to different estimates (cf. section on

the stepping-stone model in Chapter 2).

For each model of population structure, deme size and number of demes were fixed
at 64, for a grand total of 4096 individuals. Three levels of migration were
considered, 0.005,0.05 and 0.1, leading to an Nm product of 0.32,3.2 and 6.4
respectively. These values for migration were chosen so that the product Nm lies on
each side of the threshold 1 (If Nm >> 1, the population behaves as effectively
panmictic). Two levels of selfing were considered, 0% and 90%, corresponding to a

typical outcrosser and a typical selfer. Fifty replicates were run until they reached
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equilibrium and the following sampling strategy was adopted:

Number of samples
Numb. of Ind. per sample | 5 10 20 50

5 50 50 50 50
10 50 50 50 50
20 50 50 50 50
50 50 50 30 50

Figures 3.9—3.12 show the results of the effect of the number of samples. Each
point corresponds to the average of 200 data points. The error bars are the 95%
confidence interval (CI) of the mean. In each case we can see that 6 seems to be the
same for all sampling schemes, whereas G,; increases asymptotically toward 8 as the
number of samples increases. In fact, leaving out the case of 5 samples — in the
third graph of figure 3.10 and the first graph of figure 3.12, the 95% CI of 6 for 5
samples do not overlap with the other CI — there is no difference in all estimates for
@ (overlapping CI), whereas 95% CI of the mean for 10 and 20 samples never
overlaps for G,:. Therefore G, is not an unbiased estimator of F,; with respect to
the number of samples. We can also see that 95% CI of G4 and 6 do not overlap.
To test if § is an unbiased estimator of F,;, we need to compute the expected value

of F,:.. For the island model, it can be calculated using (2.29):

Model F, | Fu
m = 0.005,s = 0.0 | 0.0 [ 0.437
m = 0.005,s = 0.9 | 0.82 | 0.585
m = 0.05, s = 0.0 | 0.0 |0.067
m = 0.05,s =0.9 | 0.82 | 0.116
m=0.1,s=0.0 0.0 |0.032
m=01,s=09 |0.82|0.053

The graphed results for 6§ fit very well with the values in the table and, as the

number of sample increases, G, converges toward the values in the above table.
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Figures 3.13—3.16 focus on the effect of the number of individuals per sample.
There is no sign of convergence of § and G,; with an increasing number of
individuals per sample, but both estimators remain fairly constant. The 95% CI of
the means of § and G,; do not overlap. Once again, the values for # are in close
agreement with the data in the table of expected values of F,; in an island model,
but Gy is consistently lower. This could have been guessed from Table 3.6, where
we saw that G, converges toward F,; when N tends to oo, for all D. The 95% CI of
the mean does not seem to decrease significantly as the number of individuals per
sample increases. For a given migration and selfing level, the values in a
stepping-stone model of § and G, are higher than in an island model. This is to be
expected, the input migration in a stepping-stone model being larger than the
effective migration. This trend is stronger for large migration and is enhanced by

selfing (which reduces the local effective size).
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Up to now, the focus has been on each effect separately. However, the number of
samples and the number of individuals per sample may strongly interact. It is
therefore necessary to carry out a statistical analysis that takes the interaction into
account, to check that the preceding results are not flawed.

A first analysis is aimed at examining whether taking different numbers of samples
and numbers of individuals per sample from the same population affect estimates of
F’,-,, 0 and G,. This experiment is designed to eliminate the variance due to genetic
sampling, which adds an unnecessary level of noise.

Fifty replicates of each set of the parameters described below were run, and each of
these replicates were then independently sampled using the 16 different sampling
strategies. The number of individuals per sample and the number of samples are
fixed effects, but the effect of replicates — which has to be taken into account
because each replicate is used for all treatments — is random (Sokal & Rohlf, 1981).
In summary, we have a 3-way mixed factorial design with no repetitions. We have to
assume that the 3-way interaction is non-significant (additivity of the different
effects) and will test the three 2-way interactions against the 3-way interaction, and
the two fixed effects, number of samples and number of individuals per sample,
against [number of samples*replicate] and [number of individuals*replicate]
respectively. The effect of replicates is of no interest and could not be tested (no

exact F-test can be calculated). The codes in the first column of table 3.7 have the

following meanings:

¢ IS: Island model, SS: stepping-stone model
o LM: 1% migration, HM: 10% migration
e NS: no selfing, S, 90% selfing

e EG: generation 25, LG: generation 150

The early and late generation were chosen to mimic a non-equilibrium (half-way to
equilibrium) and an equilibrium situation. Using (2.38) on an island model with 1%
migration and no selfing, generation 25 correspond to the half-way, whereas
generation 150 is at equilibrium. For the other island model patterns, equilibrium is
reached faster (selfing and high migration speed up the process). Although it is

impossible to predict analytically the time to equilibrium in a stepping-stone, it can
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(NsP)

Table 3.7: 3-way mixed factorial design for the effect of number of sa.mple{, number
of individuals per samplgl[::;g replicates (random). DNT = lotera &':”"]
Population type F, 0 G

NSP | NIND | INT | NSP { NIND | INT | NSP | NIND | INT
IS,LM,NS,EG ~ | NS NS | NS | NS NS NS | *** NS NS
IS,LM,NS,LG NS NS | NS | NS NS NS | *** NS | NS
IS,LM, S,EG NS NS | NS | NS NS [ #¥x [ *xx NS | ***
IS,LM, S,LG NS NS | NS | NS NS | NS [ *** NS | NS
IS, HM,NS,EG NS NS | NS | ** NS k| Hrx NS | **
IS,HM,NS,LG NS NS | NS | NS NS | NS [ *** NS NS
IS,HM, S,EG NS NS [ NS | NS NS | NS [ *** NS | NS
IS,HM, S,LG NS NS | NS | NS NS NS [ *** NS | NS
SS,LM,NS,EG NS NS | NS | NS NS | NS [ *** NS NS
SS,LM,NS,LG NS NS | NS | NS NS | NS [ *** NS NS
SS,LM, S,EG NS NS [ NS [ NS NS | NS [ *** NS NS
SS,LM, S,LG NS * ** | NS NS | NS [ *** NS NS
SS,HM,NS,EG | NS NS | NS | NS NS | *xx [ %% NS | **x*
SS,HM,NS,LG NS NS | NS | NS NS | NS [ *** NS NS
SS,HM, S,EG NS NS ** | NS NS [ NS [ *** NS | NS
SS,HM, S,LG NS NS [ NS | NS NS U B NS *

be done graphically and it was checked that values of the estimators of F,; had
reached a plateau.

As we are nbt interested in the effect of replicates or the two-way interaction
containing it (most of the 2-way interactions with replicates were non significant,
appendix B), only the effects of number of individuals per sample, number of
samples and their interactions are summarised in Table 3.7. The proportion of the
variance explained by the model (R?) ranges from 41% to 60% (appendix B),
showing quite a good fit with the model. The first striking feature of this table is
that there is always a highly significant effect of the number of samples on G

(P < 0.001). G is therefore not an unbiased estimator of F,;, confirming the results
of the graphical analysis. The second feature is that the interaction, while not
significant in the majority of the cases, is significant in 25% of the cases for

estimators of Fy; and 12.5% of the cases for Iﬁ.-,. One could suspect that the 3-way
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repliectes C\'ep)
interaction and the 2 two-ways containing ' |could be pooled together, as they are

not significant (Sokal & Rohlf, 1981), but a quick look at the ANOVA in appendix B
tells us that it is not necessary, the 3 MS [nsp*rep, nind*rep, Error] being of the
same order of magnitude. We cannot, however, conclude that there is no additivity
of the individual effects, for the interaction is not significant in the majority of the
cases. The simplest explanation is that the data are heteroscedastic and not
normally distributed, rendering the §ype I error (the probability of rejecting the null
hypothesis when it is true) larger than it should be.

The effect of the number of individuals per sample for both estimators of Fy; is

never significant, nor the effect of the number of samples for F';,.

The effect of number of individuals per sample is significant in one case for F,, and
the effect of the number of samples in one case for , leading to an acceptable Type I
error of 6.25%.

Last, but not least, the 3 estimators are not affected by equilibrium or non

equilibrium situations, levels of selfing or levels of migration.

We can now turn to a design that includes the effect of genetic sampling, for this
effect will always be there when estimating F-statistics from natural populations.
Figures 3.9 to 3.12 showed us that the 95% confidence interval for either estimator
decreases as the number of samples increases. This will render the analysis of the
data set using conventional parametric test such as the analysis of variance
(ANOVA) very difficult, because one of the condition of application of ANOVA is
homoscedasticity (Sokal & Rohlf, 1981). This condition is obviously not met here
and we need to find a non parametric equivalent: for a one way ANOVA, this test is
the Kruskall-Wallis test (Kruskall & Wallis,1952). In such a test, instead of working
with the raw data, the data are ranked and the analysis of variance is carried out on
the ranked data. In our case, we have two crossed factors (the number of individuals
per sample and the number of samples), both being fixed effects. Friedman’s test
deals with two factors, but one of them is random. We therefore need a
generalisation of the Kruskall-Wallis test for two fixed crossed factors and it can be
found in Scheirer, Ray & Hare (1976) where the partitioning of the variance
components is applied to rank rather than sum of squares. Contrasts could even be
applied, but this is not the purpose of this experiment, as we are not really
interested in comparing the effect of having 5 samples against the effect of having

50, but we want a general idea about the effect of increasing the number of samples.
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Table 3.8: 2-way Kruskall-Wallis with 40 repetitions per treatment.

Population type F. 0 [em

NSP | NIND | INT | NSP | NIND | INT | NSP | NIND | INT
IS,LM,NS,EG NS NS | NS | NS NS [ NS | **| NS | NS
IS,LM,NS,LG " [ NS NS. | NS | ** NS [ NS [ *** NS | NS
IS,LM, S,EG NS NS | NS | NS NS | NS [ *** NS | NS
IS,LM, S,LG NS NS | NS | NS NS | NS | ** | NS | NS
IS, HM,NS,EG * NS | NS * NS | NS | *=* [ NS | NS
IS,HM,NS,LG NS NS | NS | NS NS | NS | *** NS | NS
IS,HM, S,EG NS NS | NS | NS NS | NS | ** | NS | NS
IS,HM, S,LG NS NS | NS | NS NS [ NS | ** | NS | NS
SS,LM,NS,EG NS NS | NS | NS NS | NS | ** | NS [ NS
SS,LM,NS,LG | NS NS [ NS | NS NS | NS | **x NS | NS
SS,LM, S,EG NS NS | NS | NS NS | NS [ *** NS [ NS
SS,LM, S,LG NS NS | NS | NS NS | NS [ *** NS | NS
SS,HM,NS,EG | NS NS | NS | NS NS | NS | *** NS | NS
SS,HM,NS,LG NS NS | NS | NS NS | NS | **x NS [ NS
SS,HM, S,.EG NS NS | NS | NS NS | NS | *** NS | NS
SS,HM, S, LG NS NS | NS | NS NS | NS | *** NS | NS

640 replicated populations for each set of parameters were generated, and subsets of
40 were assigned at random to each sampling strategy. A MINITAB macro was
written (Appendix C) and the results are presented in Table 3.8.

The results are self-explanatory: in most‘ instances, F}, and @ are unbiased (non
significance of the effects of number of samples, number of individuals and
interaction), whereas the effect of the number of samples on G,; is always highly
significant (P < 0.001), confirming the two previous analyses. The interaction in all
cases is non significant, as is the effect of the number of individuals per samples.
The ¥ype I error seems however, to be slightly higher than 5%. This means that,
when comparing two samples, we will find them significantly different one from
another when they are not, with a higher probability than 5%.

The added effect of genetic sampling does not impair the results of the previous
analysis, F., and 6 are unbiased estimators of F;, and F,; respectively, whereas G,; is

biased by the number of samples.
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3.5 Discussion and conclusions

A quick survey of the literature in population biology will show how widely the tools
described in this chapter are used. It is astonishing to see how much has been
written on the subject of F-statistics, without the reaching of a consensus on which
sets of estimatofs are to be used to provide true, unbiased estimates. The ongoing
polemic between Nei on the one hand (Nei, 1977, 1986, 1987; Nei & Chesser, 1983)
and Cockerham and Weir on the other (Cockerham, 1969, 1973; Weir and
Cockerham, 1984; Cockerham & Weir, 1986, 1987; Weir, 1990 ) does not seem to
help the researcher in population biology to find the appropriate set of tools for his
or her problem (0 and G,; are found in equal proportion in the literature, with no
statements in general as to why one set of estimators has been chosen rather than
the other). Even more surprising is the number of scientific publications using
computer packages such as BIOSYS-1 (Swofford & Selander, 1981), which do not
provide unbiased estimators of F-statistics. BIOSYS-1, in particular, uses the
definitions of F-statistics of Nei (1977), which are not corrected for small sample
sizes (estimation of H,, H, and H,; are not considered in this paper, but are
presented in Nei & Chesser (1983)).

In their comparison of indirect estimators of gene-flow, Slatkin & Barton (1989)
used the definition of G, given in Nei’s (1973) paper (Slatkin & Barton, 1989,
pl356, equations 9a,b,c), while using Weir & Cockerham’s (1984) definitions. This is
slightly unfair, since Nei’s paper does not address the question of estimation and a
more appropriate analysis would have compared Weir & Cockerham (1984) with Nei
& Chesser (1983). The relationship between G,; and @ given in Slatkin & Barton
(1989) is for the estimators given in Weir & Cockerham (1984) and Nei & Chesser
(1983) (in this relationship, if 4 is negative, then G,; is negative, whereas Slatkin &
Barton claim that G,; is always positive. This is true for the definition of G, in Nei
(1973, 1977), but not for Nei & Chesser (1983)).

Slatkin & Barton (1989) also find that 8 gives an overestimate of Nm when Nm is
large and suggest that this is so because 8 is unbiased (G,:, on the other hand,
always gives underestimates). This discrepancy between estimated and true Nm is
more likely to come from the relation between F,; and Nm: it has been shown
(Chapter 2) that the expression F; = 1/(4Nm + 1) is only an approximation, that
relies on m being small and N being large. These assumptions do not seem to hold

true for 4Nm > 30, as is shown on Figure 3.17, where both the exact and
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Figure 3.17: Discrepancies between the approximate and the exact estimation formula

for Nm.

approximate formulae for the estimation of Nm from F,; are shown, for N = 25, as
in Slatkin & Barton (1989). It is then possible to calculate what will be the
approximate Nm value when the exact Nm is 51.2 and this gives 160

(Fyt = 0.0062125). This is still lower that the estimate found by Slatkin & Barton
(289 for the infinite allele model, Table 1, p 1360), but of the right order of
magnitude (the coefficient of variation of 4 is very large).

6 and G,; seem to behave similarly for low Nm values. This is not surprising, since
the number of samples as well as the sample size are quite large. Indeed Figure 3.8

- shows that fhere is little differences between 8, G, and Wright’s F,; with 10 samples
of 10 individuals. For migration of 0.001 and 0.01, the inferred Nm is always slightly
larger than its expectation, for @ as well as G,;. Figure 3.17 shows that the
approximate estimation is always larger than the exact estimation, a finding that
corroborates the results of Slatkin & Barton (1989). It should also be noted that, as
there is an inverse relation between Fy; and Nm, the closer the estimators of F,; are
to 0, the larger will be the differences in Nm.

The differences between Nei’s approach and Weir & Cockerham’s revolves around
models of fixed versus random effects. Nei considers that the species being surveyed
is unique and that there is therefore no need to estimate the global allele frequencies

(Nei, 1986; Cockerham & Weir, 1987; Weir, 1990). On the other hand, Weir &
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Cockerham (1984) point out that the observed allelic frequencies are the results of
genetical sampling over generations as well as statistical sampling. That is, even if
the total population is sampled, it is still necessary to estimate the global allele

frequencies, because it is only one of the possible outcomes of the genetic sampling

process that the species is undergoing.

An important finding in this work is that G4; depends upon the number of samples,
whereas 0 does not. This finding means that comparison of gene-flow estimates
based on G, from different samples is not reasonable. The number of samples used
here is of the order of that which is found in the literature (5 to 50). Althought Nei
(1986) suggested to use a correction on G, to account for the effect of the number of
samples, this estimator of F}; is very seldom found in the literature, probably
because Nei (1986) does not give an explicit formula (the correction is given for Dy,

one component of G,).

Another point of interest concerns the value that should be assigned to the
estimators of F,; when the samples are completely monomorphic. Nei & Chakravarti
(1977) and Nei (1986) prefer to define the estimator as 0, while Weir & Cockerham
(1984) suggest that it be left undefined. As the amount of polymorphism detected
depends on the technique used (gel electrophoresis of isosymes, Random Fragment
Length Polymorphism, Variable Number of Tandem Repeats such as minisatellites
and microsatellites, Randomly Amplified Polymorphic DNA), one could find an F
of 0 using a technique with a low power of resolution such as gel electrophoresis of
isozymes, whereas another technique could give a completely different result
(Cockerham, 1984; Cockerham & Weir, 1987). For this very reason, it seems logical
to follow Weir & Cockerham rather than Nei.

The approach used here for deriving unbiased estimates of Wright’s F-statistics
should help to clarify the circumstances in which it is preferable to use one or the
other estimators. As Nei (1986) pointed out, he is interested in the degree of gene
differentiation among populations rather than in the coefficient of inbreeding or
coancestry within populations in which Weir & Cockerham (1984, p 1358) are
interested. The two families of estimators can be derived from a unified approach
that properly identifies the distribution generated by the sampling strategy as an
hyper-geometric rather than a binomial. This finding allows the derivation of
unbiased estimators of F;, and F,: providing that the null hypotheses are true

(random mating and no subdivisions) and leads to the estimators F},, and Fg,. In
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no circumstances, however, should these estimators be used, since there is no reason,
a priori, to accept the null hypotheses. To obtain unbiased estimators if the null
hypotheses are not true, it is necessary to formulate alternative hypotheses. The
alternative hypothesis for random mating within sub-populations is that some
selfing occurs, in which case N, the sample size, has to be replaced by the variance
effective size due to selfing. This leads to equation 3.45, which is the same as both
Nei & Chesser’s G;, and Weir & Cockerham’s f. For Fy;, the alternative hypotheses
formulated by Nei & Chesser (1983) and Weir & Cockerham (1984) are different:
Nei & Chesser (1983) consider that the sampled population is unique, so that the
global allelic frequency does not need estimating. This brings an alternative
hypothesis which is cast in terms of allelic frequencies and the implicit assumption
that there is homing: offspring will tend to stay where their parents lived. Using the
variance effective size of a subdivided population, equation 3.52 is obtained. On the
other hand, Weir & Cockerham (1984) consider that there is an extra level in the
hierarchy: it could be other populations not sampled, or even non existing
populations, but statistical outcomes of the genetic drift process. In this case, the
global allelic frequency has to be estimated and the different correlations are relative
to the highest level in the hierarchy, that is, the correlation between the least related
genes (Cockerham, 1969, 1973). In this framework, the alternative hypothesis is cast
in terms of rate of loss of heterozygosity, because rate of allele frequency drift could
be affected by external inputs (migrants from populations not sampled, mutation
etc...). The effective size to use to obtain an unbiased estimator of F,; is the
variance effective size of a population where mating between relatives occurs and
leads to equation 3.50. It should be stressed that the rate of loss of heterozygosity
will be the same for both Nei & Chesser’s and Weir & Cockerham’s alternative
hypotheses, whereas the rate of allele frequency drift will be different. These
differences stem from the implicit assumption of homing in Nei & Chesser, whereas
there is an implicit assumption of no homing in Weir & Cockerham. These two
different perspectives will help to answer different questions. Weir & Cockerham’s
estimators are appropriately used to compare estimates of gene-flow from different
samples, either within a species or across species boundaries and will give unbiased
answers to questions of the type: does species X at location A have the same
breeding pattern as species X at location B. It has been shown that this type of

questions cannot be answered with Nei’s estimators, because of their dependance on
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the number of samples. On the other hand, Nei’s estimators will be useful tools for
the manager of a conservation reserve, who may be interested in measuring the
extent of gene differentiation. It has been demonstrated, in particular, that G,; is an
appropriate statistic to measure the variance effective size of a subdivided
population. This measurement of the variance effective size not only does not
require temporal data, which is always difficult to obtain, but seems also to be less
subject to the large variations suffered by temporal estimates.

The framework described here to obtain unbiased estimators of F-statistics has other
advantages: as long as an alternative hypothesis is clearly stated, it is possible to
derive estimators for any type of evolutionary pressures. In particular, biased
sex-ratio, unequal contribution of parents to the gametic pool and fluctuations in
population sizes could be accounted for by including the effects in the formula for

the effective size, as discussed in Chapter 2.



Chapter 4

Theoretico-realistic

considerations?

4.1 Introduction

The aim of this chapter is to describe a series of techniques that have been
developed to unravel levels of structuring in natural populations. This problem is
very seldom addressed in the scientific literature and estimates of gene-flow are
measured at a scale that is decided a priori by the researcher. No attempt is made
in general to test if this scale is appropriate or not. This is unfortunate, since the
behaviour of F-statistics, used to infer levels of gene-flow, are highly dependent on
the underlying structure of the population (Chapter 3; Cockerham, 1969, 1973).
One of the reasons why so little care is given to this problem is that natural
populations live in general on a continuum (Wright, 1978), in which case discerning
the boundaries of a sub-unit such as a deme will be a daunting task. To overcome
this difficulty, researchers often use the concept of neighbourhood area, defined in
Chapter 2. It was shown, however, that this concept is far from perfect, often
misleading and, moreover, relies on the estimation of parent to offspring dispersal
distance, which may well be highly variable in time and space. It is therefore
necessary to outline a reasonably robust general strategy, tested on known models of

population structure and, most importantly, transferable to the field.

Since F-statistics are designed to partition the heterozygote deficit into its different
components and since unbiased estimators can be obtained, it is logical to start with

them. Wright (1978, p. 115, Figure 4.2) used data of Dobzhansky & Epling (1944)

110
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on Drosophila pseudoobsura to plot the changes in F;, and F,; measured at different
scales and showed that F;, increases with the size (area) of the sampling unit,
whereas F,; decreases. He also applied this technique to the analysis of a data set
from Epling & Dobzhansky (1942) on the desert snow Linanthus parryae (Wright,
1978, p. 203, Figure 6.3) and a data set collected by Lamotte (1951) on the land
snail, Cepaea nemoralis (Wright, 1978, p. 231, Figure 6.16). These three surveys
showed an increase in the value of F;, as the sampled area increases and a
concurrent decrease in the value of Fy, an indication that gene-flow is somewhat
restricted. However, the estimators of F;, and F,; used in these analyses are not
unbiased and would show an increase in the value of F;, even if samples belonged to
the same breeding unit, as is shown on Figure 3.2, Chapter 3. Since the objective is
to identify correctly levels of structuring in natural populations, use will be made of

the unbiased estimators derived in Chapter 3.

4.2 Raiders of the lost deme.

The smallest unit that one can possibly sample is the individual itself. We have seen
in the Chapter 3 that at this level, F-statistics are not defined. One can start to
look at a way of grouping these individuals in small units. From this level of
grouping, F;, and F,; can be estimated. Grouping can then be made at a slightly
larger scale and F-statistics recalculated. This procedure is repeated until all
individuals are grouped into one single unit. Experiments such as these are widely
used in ecology as a way to asses species richness at different scales (e.g. May, 1992).
Values of F,-; and F,; can be plotted on a graph where the x-axis represents the
different levels of grouping, and the y-axis the values of the F-statistics. As long as
individuals belong to the same breeding unit, there is no changes in the values of
either statistic, but F;, starts increasing (F,: decreasing) as soon as samples (groups)
consist of more than one breeding unit. In Figure 3.2, unbiased F;, stays constant
until groups are made of 64 individuals and then starts increasing, because the
source of bias has changed from one due to selfing within a random-breeding unit to
one due to partial isolation between breeding units. It is therefore possible to
conclude that groups of 64 individuals constitute a random-breeding unit, or deme.
Note in this case that N.m is 64/1.54 0.2 = 8.32. This graphical method therefore

seems to be able to detect structuring for Nm values larger than 4, in contradiction
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with what is generally reported in the literature (e.g. Slatkin, 1985, 1987; Crow &
Kimura, 1970; Nunney & Campbell, 1993): if Nm is larger than 4, then the
population behaves as if effectively panmictic. |

The behaviour of F-statistics calculated at different levels of grouping have been
investigated using data sets generated with MODEL42 described in Chapter 2. As
the expected distribution of F-statistics is unknown (Weir, 1990), use will be made

of re-sampling techniques such as the jackknife and the bootstrap in significance

testing.

4.2.1 Re-sampling techniques

The generalisation of personal computers in the office has allowed the development
of new statistical techniques, known under the generic name of re-sampling
techniques, or randomisation tests. These techniques are not subjected to the
limitations suffered by parametric tests, such as normal distribution of the data, or

homogeneity of the variances (Manly, 1991; Crowley, 1992).

The Jackknife

In ordinary usage, this word describes a large pocket knife, with a multitude of small
pull-out tools, so that the owner is able to tackle many small tasks without having
to look for something better. While this statistical technique was first described by
Quenouille (1956), its name was given by Tukey (1958), who outlined that this
method can be used where no better one can easily be.

Given a parameter, ¢ and a series of observations, X1, X3,...,Xy, one can obtain an
estimate, gZS, of ¢. The jackknife procedure consists of obtaining n new estimates of
@, ¢; by omitting each observation in turn. The mean of all these estimates is then

just the average of all ¢;, 4() and a new estimator of ¢, which should be less biased

1s:

$1=nd—(n—1)¢

(Weir, 1990) and an estimate of the variance of ¢ is:

Var(é),z =2 ; ! Z (43: - ﬁg(.))2

%

Taking F;, for example, if n populations have been sampled, we can obtain an

estimate of the variance of F;, by omitting each of the samples in turn. This will be
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the procedure to follow if one wants to find the confidence interval of F;, measured
at a given locus. This would be a way to identify samples behaving oddly. On the
other hand, if many loci are scored, each one can be omitted in turn, to give the
confidence interval of F;, over loci. Comparisons of confidence intervals over
populations and over loci would be a way to identify loci with peculiar behaviours
(Goudet et al, In Press) and to eliminate them from subsequent analyses.

This technique, however, suffers some drawbacks. In particular, it is very sensitive

to outliers, under which case, the jackknife variance is too large (Efron, 1982; Manly,

1991).

The Bootstrap

This method was first described by Efron (1979), who pointed out that the
Jackknife can be regarded as an approximation to a more primitive method that he
named the bootstrap, to reflect the fact that its use is analogous to someone pulling
themselves up by their boot-laces. If there are n observational units, it consists of
sampling with replacement a large number of times (1000) n observational units and
to recalculate the statistics from this sample. For F-statistics, it would be sampling
n loci from n with replacement and recalculating the F-statistics. This technique
does not need to be applied with less than 5 observations, since it is possible to
enumerate all combinations (there is 4(22) possible values with two loci, 27 with
three loci, 256 with four). The different bootstrap estimates can then be sorted in
ascending order and the inner 95% provide the bootstrap confidence interval. It
should be noted that bootstrapping F,: or F;; values over populations would be

meaningless, since the same population can be sampled many times.

Randomisation testing: the method of permutations.

The two techniques described above provide a confidence interval of the observed
statistics. It is then possible to assess if the statistic is different from 0 by checking
if 0 is included in the confidence interval. However, this relies on the assumption
that the loci under scrutiny are neutral and also that they are a random sample of
all possible loci.

A technique that proves useful in relaxing the above assumptions consists of
permuting alleles within samples, alleles within the total and multi-locus genotypes
among samples to test Fi,, Fi; and Fy respectively. This way, the distribution of the
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null hypothesis is obtained (e.g. alleles within samples are associated at random,
therefore, there is random mating and Fj, is not different from 0). Generating 4999
such permutations plus the observed value and sorting the data in ascending order
will give the probability that the observed combination of alleles within individuals
is due to random mating. If this probability is < 0.05, then the null hypothesis can
be rejected at the 5% level.

Some problems arise as to how to generate the null distribution for Fy;: if there is
random mating within sub-populations, then permuting alleles or multi-locus
genotypes will give essentially the same results, because each allele can be considered
as being independent of the other allele present at the locus. However, if there is a
certain amount of selfing, or mating with relatives, alleles within individuals are not
independent one from another and testing F,; using the permutation of alleles within
the total will lead to erroneous results, by increasing the probability of Type I error.
This last set of techniques are a special case of more general computer-intensive
methods, known as Monte-Carlo tests (Manly, 1991). Permutation methods test the
null-hypothesis that the observed distribution is random. In Monte-Carlo tests, the
null hypothesis is more specific. In our case, it could be ‘The observed samples
behave in the same manner as an island model of populations, with 10% mz'gratz:on
between samples and 70% selfing’. Testing this hypothesis could be achieved using
MODEL42, through the generation of many replicates with the parameters of the
null hypothesis.

4.2.2 The island model

To assert if fneasuring F-statistics at different scales is able to unravel levels of
structuring, the island model was used first. Twenty replic;a.tes of the gametic cloud
island model described in Chapter 2 were simulated and run for one thousand
generations. The genotypic array at the thousandth generation was saved. Each
replicate was considered as an independent locus, from which f, #§ and G,; were
estimated using the program FSTAT, whose listing can be found in Appendix D.
Confidence intervals on each point were obtained by jackknifing over loci. The
confidence interval displayed on the graphs are the 95% confidence intervals,
calculated as +1.96c0. All the individuals in the population were sampled.

Figure 4.1 was obtained from an island model with 64 islands and 64 individuals on

each island. Selfing occured at random (1/64) and migration between islands was set
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Island model, N=D=64, m=1%, no selfing
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Figure 4.1: Changes in F-statistics with mesh size.

at 1%. Figure 4.1 displays the effect of grouping of samples on f (solid line), 8 and
G4t (dashed lines). Focusing on f, we see that it stays constant below the deme size,
with a value of 0 (this is the expected value of f when there is random mating). As
soon as more than one deme are pooled together, f increases suddenly to a value
near its maximum (F;;). The differences between f as measured below deme size
and above deme size is statistically significant (confidence intervals do not overlap).
6 and G,; behave exactly in the opposite way: there is a decrease in their value after
grouping of more than 1 deme.

Because we are using data generated by computer simulations, we expect each locus
to behave in' a similar manner to the others. As was mentioned in the previous
section, this can be tested using jackknifing over population for each locus, while a
jackknife (or bootstrap) over loci is also calculated. A confidence interval per locus
is then obtained, as well as the overall confidence interval. If one or more loci have a
confidence interval that does not overlap the over-loci confidence interval, it is
discarded for the next analysis. Figures 4.2 to 4.4 display these confidence interval
calculated at different mesh sizes: if natural populations are sampled, the sampling
will operate either below or above the true deme size, if only because sampling is not
exhaustive. We can see in these figures that as long as sampling is below the deme
size (Figures 4.2 and 4.3), confidence intervals are very small, they all overlap and

no locus displays an f significantly different from 0. One can however notice that
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Island model, 1% mig, N=D=64,n0 selfing, Mesh=16
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Figure 4.2: Detecting outlier loci at mesh=16

there is variation among loci, although never enough to lead to the elimination of
one of them. Figure 4.4 shows that when samples contain more than one random
breeding unit, confidence intervals widen, the values of f are shifted upwards and no
locus has a confidence interval overlapping with the zero axis. Although all the
over-population confidence intervals overlap with the over-loci confidence interval,
some of the loci are at the limit of being excluded.

To answer the question of how much migration is necessary before the subdivided
population behaves as effectively panmictic, a data set was generated with 30%
migration, deme size of 64 and 16 demes, with no selfing. This leads to a Nm of
19.2. The results are displayed on Figure 4.5.

The first striking feature is how large the confidence interval on f is. This is because
of the scale on the y-axis, which only covers the range [-0.005:0.03]. On the other
hand, 0 is encompassed in the confidence interval for samples within deme, but
excluded from it when samples are made of more than one deme. Furthermore,
although not significant using the jackknife confidence interval of f, it is noticeable
that f increases between sample mesh of 64 and sample mesh of 256. However, for
this set of parameters, it seems that 8 is a more appropriate statistics to use, since
the decrease in its value between sample mesh 64 and 256 is statistically significant.
When the estimators are very close to 0, as in the present case, use can be made of

the permutation procedure described above. The probabilities that the observed f, 8
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Island model, N=64,D=16, m=30%, s=0%
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Figure 4.5: Changes in F-statistics with mesh size

and F come from a single large, random mating population are given below:

Mesh f 0 F
4 0.0672 < 0.0002 0.002
16 | 0.0426 < 0.0002 0.0024
64 | 0.0672 < 0.0002 0.002
256 |0.00720 < 0.0002 0.0028
1024 |0.00160 n/a n/a

In all cases, 6 is highly significant (the observed @ is the highest of 5000 estimates
generated b}; permutations). With regard to f, although the probability des not
allow the rejection of the null hypothesis for sample sizes 4 and 64, it is rejected for
sample size 16 and is very close to the rejection level for 4 and 64. This remains
unexplained. The non-availability of the probability levels of § and F for a sample
size of 1024 is because there is only one sample, in which case § and F' cannot be
calculated. One could wonder if these tests would accept the null-hypothesis when it
is true since all probability levels in the above table are very low. To test this, a
single large, random breeding unit was modelled. The simulation was run until the
thousandth genération and, as in the previous cases, 20 replicates were run to mimic
20 independent loci. This population was exhaustively sampled for mesh sizes of 64

and 256 and the probability that the observed f,8 and F come from a single large,
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Island model, N=D=64, m=1%, s=90%
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Figure 4.6: Changes in F-statistics with mesh size

random mating population are given below:

Mesh | f 6 F
64 0.493 0.911 0.555
256 [0.520 0.888 0.556

Obviously from the above table, the null hypothesis is accepted when it is true.
Next, it is of interest to see the effect of selfing on the behaviour of the different
F-statistics. Figure 4.6 shows the changes in f (solid line) , § and G,;: (dashed lines)
for an island model with 90% selfing and 1% migration. Although there is still a
statistically significant increase in the value for f after pooling together more than 1
deme, it is much more difficult to discern, because f is near its maximum value of 1.
On this graph, structuring is better inferred from 6 and G,;. Figure 4.7 also shows
that with selfing, even when loci are independent, it is possible to get outliers, since

one of the loci CI does not overlap with the over-loci CI.

4.2.3 One-dimensional stepping-stone models

Since the two extremes of population structures with finite deme size are the island
model and the one-dimensional stepping-stone model, with the two- and
three-dimensional stepping-stone models being intermediate (cf. Chapter 2), only

one-dimensional stepping-stone models will be treated here. For a given migration,
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Island model, 1% mig, N=D=64,s=90%, Mesh=64
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Figure 4.7: Detecting outlier loci at mesh size 64.

population size, selfing proportion and number of demes, what differences are there
between an island model and a 1-dimensional stepping stone model? Analysis of the
behaviour of Fy: over time was carried out in Chapter 2 and it was shown that
models with geographical structuring take longer to reach equilibrium. One can
therefore wonder if the technique presented above will work for stepping-stone
models. A first step in understanding the differences between models with and
without geographical structure is to keep all parameters (migration, deme size,
selfing level, number of demes) constant and to follow the changes in F-statistics as
a function of the mesh size.

Figure 4.8 sﬁows this comparison. The first striking feature is that @ is much larger
in a stepping-stone than in an island. This is an indication that equilibrium has
been reached for the island model, since F,; values in island and stepping-stones
start diverging after equilibrium has been reached in the island model. There are no
differences in f as long as it is measured below the deme size, a sign that f is not
affected by geographical structuring as long as it is measured at an appropriate
scale. However, as demes are pooled together, f in the stepping-stone model keeps
increasing, whereas it stabilises very quickly in the island model. Most of the
changes in the value of f occurs in a single step in island models (the curve is
horizontal from deme size 2 to 64 and then from deme size 128 to 2048 — the same

observation could be made from Figure 4.1). It is also remarkable that the amount
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N=D=64, no selfing, 10% migration
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Figure 4.8: Comparison of a one dimensional stepping-stone model with an island

model of population structure

of increase in f between deme size 64 and 128 is the same for both models. This is
because neighbouring demes in a one-dimensional stepping stone model exchange
the same number of migrants as any demes in the island model.

Figures 4.9, 4.10 and 4.11 display the changes in F-statistics for a 1-dimensional
stepping-stone model. The percentage of migration in Figure 4.9 is 10%, which
makes the product Nm 6.4. Structuring can still be detected, but two important
changes can be seen. First, the increase in f when grouping more than 1 deme does
not look as sharp as in the island model., This is because the range of the y-axis is
much larger here since 6 is larger. Second, the confidence interval on 8 is much
larger than in the island model. The first point can be understood as follows: in the
island model, the different demes share the same ‘level’ of relatedness, whereas in
the stepping-stone model, individuals in demes close one to another are likely to be
more related than individuals in demes further apart. The second point emphasizes
a facet of stepping stone versus island structure: a wider range of F,; values are
obtained with a given set of parameters in a stepping stone model than in an island
model, because the genetic sampling process is restricted in space.

Figure 4.10 displays essentially the same information, but the level of selfing this
time is 90% instead of 0%. The increase in f is much more difficult to perceive, for

the same reason as in the island model, namely, f is always near its maximum. It is
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Figure 4.11: Changes in F-statistics as a function of mesh-size

noteworthy that f below and above deme size are not statistically different anymore.
This is also the case for 6. In this case, it lis not possible to detect the deme size,
whereas it was possible to do so in the island model. And, just as a classic film
requires a good ending, one cannot fail to be disappointed by this negative result.
The values of § when samplesare taken within a deme is higher than in the case with
no selfing: selfing accelerates the process of random genetic drift and therefore will
increase the amount of differentiation between patches. The reverse is true when
there is avoidance of mating between relatives, a negative f is obtained and 6 will be
lower than if mating was at random, because avoidance of mating with relatives will
slow down the process of random genetic drift.

Figure 4.11 is another example with a deme size of 16 and migration of 20%, which
give a Nm of 3.2. f below and above deme size are statistically different, whereas 6
values are not.

The migration levels used in these investigations give Nm products larger than one,
a level of gene-flow at which the population is supposed to behave as effectively
panmictic. It has been possible, however, to detect structuring in most cases. Even
when the deme size was not identifiable, as in Figure 4.10, there was a statistically
significant difference between f calculated at the deme size and f calculated at the
highest level of pooling.

A difference in behaviour of f as a function of pooling levels is also shown. While f
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Figure 4.12: Behaviour of F-statistics when the sex-ratio is biased (1% of males in

the total population)

in island models tends to level off quickly after pooling of more than one deme, it
keeps increasing in one-dimensional stepping-stone models. It is therefore suggested
that the technique presented here could also be used as a first appraisal of the

presence of geographical structuring.

4.2.4 Effect of a biased sex ratio

Before closing this section, some consideration needs to be made as to how the
different estimators behave when some of the assumptions of the applications are
relaxed. In particular, few species are monoecious, and a biased sex ratio is often
found in social and domesticated animals, or in plants with peculiar reproductive
systems, such as gynodioecy (presence of female and hermaphrodite plants in the
same species). If the sex ratio is biased, the effective size of local population of the
species is considerably lowered.

Figure 4.12 displays the changes in F-statistics for a single large population (4096
individuals), but with a very strong biased sex ratio (1% males in the population,
which gives a N, of 162). The expected value of both f and 6 is zero and it is shown
on Figure 4.12 that the observed values, at different levels of sampling, are not

statistically different from 0.
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Note also that a biased sex ratio implies a large variance in reproductive success
(because males are producing more offspring than females). It is therefore likely that

there will be no effect of differential reproductive success on the behaviour of

unbiased F-statistics.

4.3 Estimation of Nm or N and m?

Since unbiased F-statistics have proved useful for identifying levels of structuring, it
is possible to turn to the problem of biological inferences, namely inferring levels of
selfing and migration from random breeding units. The case of selfing is
straightforward: the relation between f and s was given in Chapter 2, equation 2.8
and does not depend on a combination of parameters. In all cases where selfing is 0,
it has been shown that when f is measured below the deme size, it is not
significantly different from 0, the expected value with no selfing. When selfing
occurs, the expected value of f is given by equation 2.8 and is plotted in

Figure 4.13. With 70% selfing, the expected value of f is 0.538 which is the observed
value of f in Figure 3.2 and with 90% selfing, it is 0.82, the observed value in
Figures 4.6 and 4.10.

Although this method of estimating s can be considered as ‘rough and ready’
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compared to other methods, such as those of Ritland (1990), it gives accurate

estimates when f is estimated at an appropriate scale.

The case for m is different. It has been shown in Chapter 2 that F,; relate both to
N, and m, and that, under the assumptions that m is small and N, is large, it is a
simple function of the product of these two parameters. On the other hand, when
these assumptions are not met, an exact relationship between # and N, and m was
given (equation 2.10). The discrepancy between these two relations was given in
Chapter 3, Figure 3.17 for N = 25. Figure 4.14 displays the same relationship but
for a wide range of values of N, between 2 and 10,000. Here N refers to the effective
sample size, since 0 is estimated from samples. The first observation is that the
approximation always leads to an overestimation of the number of migrants. This
trend is stronger for small sample sizes than large ones, but still hold true for sample
sizes of 10,000 individuals when 8 is small (0.0001). Noteworthy in Figure 4.14 is
the independence of the approximate formula with regard to N (ainherent
characteristic), which leads to some aberrant results, such as a number of effective
migrants larger than the sample size (as an example, with samples of size 10 and an
observed 6 of 0.0001, 4Nm would be equal to 9999). On the other hand, the exact
formula for 4 Nm may look artificial, since it consists of multiplying by 4N both the
right hand-side and the left hand-side of equation 2.10, which gives m. However, it
gives results that look a priori sensible, since the inferred 4 Nm is never larger than
4N. A major inconvenience of this formula, for comparative purposes, is that it is
not independent of sample size. 4Nm will increase as the sample size increases for a
given 8. The only appropriate measurement to compare different populations cannot
be cast in term of biological parameters, such as Nm, but has to be achieved through
an estimator independent of the sampling strategy, 6. Unless  is large, use of the
approximation could give rise to highly erroneous results, an order of magnitude

larger than the real parameters.

Bearing these considerations in mind, use can still be made of unbiased estimators of
F-statistics to infer biological parameters, as long as the conditions of application
are understood. It was shown that when the sample size is 25 individuals, the
approximate formula holds when 6 is larger than 0.1. 25 individuals is a sample size
commonly found in the population biology literature. When molecular techniques
are used (RFLP, VNTR, sequence), sample sizes tend to be smaller, because these

techniques are more costly and time-consuming. In this case, even higher values of 6
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Table 4.1: Results of biological inferences carried out on the data sets reviewed above

Model| &« m N N. Nem D ! [] 3 Nemapp Ne 1miez Nemex
IM1 | 0 001 64 64 0.64 64]—0002 0.285| —0.004 063 64 0010  0.62
IM2 |09 001 64 35 035 64| 0816 0.425| 0.898 033 35 0009 033
IM3 | 0 03 64 64 1920 16| 0007 0008 0014 3881 64 0329 2081
SS1 | o 01 64 64 6.40 64] 0002 0450 0.004 031 64 0005  0.30
Ss2 |09 o1 64 35 352 64| 0818 0606 0.900 016 35 0.005 016
SS3 0 0.2 16 16 3.20 256 | —-0.002 0.756 | —0.005 0.08 16 0.005 0.08

must be found before use can be made of the approximation. In cases where 8 is less
than 0.1, it is suggested that m be estimated from the exact relation rather than
Nm from the approximate relation and to multiply the estimated m by the average
effective sample size, to get an estimator of Nm. One also needs to bear in mind
that the relation between m, Nm and F,; is based on the assumption that in the
populations under investigation, equilibrium between the opposing forces of random
genetic drift and migration has been reached, an equilibrium that may well take a

very long time to be achieved (cf. Chapter 2).

Table 4.1 summarises the results of biological inferences made on the data sets
presented above. Focussing on § first, we see that the estimate is in very good
agreement with the parameter entered in the model, both in the island model and
the stepping-stone model. N,ﬁzapp is a good estimator of N.m in island models and
when the proportion of migration is small. When m is large, the discrepancy
between N,m,yp, and the real value can be quite large (twice as large for IM3),
whereas N‘,r‘n&r is in very good agreement with the real value. Noteworthy also is
the agreement between the inferred migration and the real value, even for large
migration, as is the case for IM3. As was noted in Chapter 2, the effect of selfing is

to diminish the local effective size and this is confirmed when comparison is made of

N, in IM1 and IM2.

Stepping-stone models show a different pattern: estimations of selfing rate and local
effective size are in close agreement with the real values, but migration estimates,
either on their own or in combination with the effective size, are very different from
the input values. In this case, because § values are quite high, there is a close

agreement between the approximate and exact estimation of N.m.
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4.4 The isolation by distance model: a new
scenario

While F-statistics are useful and accurate to measure the extent of isolation in
structured populations with no overlapping demes, one needs to investigate their

behaviour in isolation by distance models, to test:
o If the concept of neighbourhood size is meaningful

o If structuring can be detected, even though the biases on F-statistics for these

models are not known.

To answer these questions, linear patterns of isolation by distance are modelled
using an exponential decay for the parent-offspring dispersal distances. Selfing is not
random, but fixed at 10% in all cases. The population consists of 1024 individuals,
the simulations were run for one thousand generations. Twenty replicates,
simulating twenty independent loci, were recorded at the thousandth generation. An
exponential distribution of parent-offspring dispersal was used. Seven different
standard deviation of dispersal, A are discussed, ranging from very restricted
dispersal (A = 1) to very large dispersal (A = 99). The distribution of dispersal
distances generated is shown in Figure 4.15. A point of importance is the
discontinuity between 0 and 1. This is due to the fixed proportion of selfing, or
‘homing’: only 10% of the gametes for all distributions stay at the location of their
progenitor. This is the proportion that would be expected with a A of 10, but would
be higher for smaller A and smaller for larger A.

The changesb in F-statistics as a function of mesh size are given in Figures 4.16 to
4.22. The behaviour of the changes in f and # bears some resemblance to that of a
linear stepping stone model: changes in values of f and 6 are smooth, compared to
an island model. However, a discontinuity is noticeable in linear stepping stone
models, whereas it is not in isolation by distance.

A sharp increase in f occurs from the smallest mesh size (2) with very restricted
dispersal (Figure 4.16), whereas f stays constant for all mesh sizes with A =99
(Figure 4.22). With an average dispersal of 2, no differences in the values of f could
be detected for samples of sizes 2,4 and 8. As dispersal distance increases, changes
in the values of f occur later. Note however, that even with an average dispersal of

99, 8 is significantly different from 0. For a A of 5 (Figure 4.18), structuring is only
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Figure 4.15: Distribution of dispersal distances in a linear isolation by distance model,
with an exponential decay of dispersal distances, for seven different parameters of

scale.

significantly detected for a mesh size of 64. It is 256 for a A of 20 (Figure 4.20) and
no differentiation between units could be detected for larger values, although a trend
toward an increase in the value of f exists for A = 20 and to a (much) lesser extant,
40 (Figure 4.21.

Further interpretation of these graphs seems difficult. Detection of units that are
isolated will be dependent on the number of levels of grouping: should one consider
the overlapping of confidence interval of 2 successive points on the graphs, or should
one considerb absolute differences? In Figure 4.16, the first statistical difference
between adjacent points occurs between levels 8 and 16, while if absolute differences
are considered, level 8 is different from level 2. The definition of the neighbourhood
size is given in Chapter 2: the area from which the parent of the central individual
could be considered as if drawn at random. Taking the inner 95% of the exponential
distribution provides us with some measure of the neighbourhood size. On the other
hand, Figures 4.16 to 4.22 could be used to infer neighbourhood sizes by considering
non-overlapping of 2 neighbouring points (1) or non-overlapping with the first point
on the graph (2). Table 4.2 gives the different values for the neighbourhood size.
Although these three measures increase with an increase in A, little more can be said

and the relations between these three sets of data do not seem straightforward.
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Table 4.2: Possible estimates of neighbourhood size. (1) is for two consecutive points

with non-overlapping CI. (2) is for non-overlapping CI with the first point. (3) is based

on Wright’s neighbourhood definition, adapted for a exponential parent to offspring

dispersal

Mog(z)(3) (1) (2) (1)/B) (2)/()

[ S - T i )

10
20
40
99

4
7
18
37
74
148
365

8 8 2
16 16 2.29
64 32 3.56

128 64  3.46

7 256 ?

7 ?

o7 ?

2
2.29
1.78
1.73
3.46

?
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Figure 4.23: log—log regression of Nm on distance

It is therefore possible to detect isolation by distance using the changes in

F-statistics with mesh size, but it seem difficult to find a structure that would bear

resemblance to a neighbourhood size.

Other ways of detecting geographical structuring have been described in the
scientific literature. In particular, Slatkin (1993), developed a method for detecting
isolation by distance in equilibrium and non-equilibrium populations. It consists of
calculating Nm per pair of samples using the relation F,; = 1/(4Nm + 1), derived in
Chapter 2, Equation 2.11. A linear regression of log(Nm) on log(Distance) is then
applied. If the slope is significantly different from zero, then there is isolation by
distance. This method has been applied to two levels of migration in a
one-dimensional stepping-stone model. The results are displayed in Figure 4.23 and
4.24. Both regressions (for 10 and 50% migration, with 16 demes made of 16

individuals) are highly significant. As migration increases, both the constant and

the regression coefficient increase.

This method was also applied to the one dimensional isolation by distance model, on
the data sets used for the previous analyses. For the following, F-statistics were
calculated for samples of size 16. There are therefore 64 samples and the largest

distance between samples is 64. Table 4.3 gives the regression equations, together

with their R2.
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Table 4.3: log—log regression of Nm on distances and R?
A Regression equation | R? Neigbourhood size(4)
1 log(Nm) = -1.73 — 0.44log(d) 0.47 0.18
2 log(Nm) = -0.80 — 0.61log(d) 0.67 0.45
5 log(Nm) 1.30 — 0.92log(d) 0.90 3.67
10 log(Nm) 2.84 — 1.121og(d) 0.94 17.12
20 log(Nm) = 4.03 —1.03log(d) 0.86 56.26
40 log(Nm) 4.73 — 0.93 log(d) 0.68 113.30
99 log(Nm) = 5.25—0.95log(d) 0.59 190.57
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expected.

The constants and the regression coefficients are highly significant in all cases

(P < 0.0001). The percentage of the variance explained by the regression is also
high, between 47 and 90%. This percentage is maximised for intermediate values of
A and decreases for very small or very large As.

While no real trend is shown by the regression coefficients, the constant of the
regression increases as A increases. Slatkin suggested using the constant (the
intercept of the regression line with the y-axis) as a measure of the neighbourhood
size. The results are displayed in the right most column. The neighbourhood size
increases with increasing ), as expected. Comparison of the different estimates of
neighbourhood sizes is given in Figure 4.25. While (2) and (3) are at best mythical,
there is a good agreement between Slatkin’s estimate and the expectation (Wright’s
estimate).

To explain the values of the regression coefficient and the percentage of the variance
explained, it is useful to plot the data. Figures 4.26 to 4.32 show that the regression
hides part of the story. Figures 4.26 and 4.27 show a decrease in the estimated Nm
with distance for small distances, but no differences in the estimate of Nm for larger
distances (> 10) (6 is the same between samples 10 units apart or 64 units apart).
The relationship is truly linear in Figures 4.28 and 4.29. For Figures 4.30 to 4.32, no

differences in the value of Nm can be detected for small distances (which means that
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Figure 4.26: log—log plot of Nm on distance

there is no differences in 8 for samples one unit apart or 10 units apart), whereas
Nm diminishes for larger distances (> 10 for Figure 4.32). These behaviours
emphasize the problem of scale: for very low dispersal distances, sampling locations
far apart will not lead to any detection of isolation by distance and one would be
tempted to conclude that the investigated population behaves as if it was an island
model. The reverse is true for species with large dispersal distances.

One of the drawback of this technique is that a log—Ilog linear relationship between
migration and distance has to be assumed. This relationship, however, is not
necessarily linear, even in a 1-dimensional habitat. One of the suggestions of Slatkin
(1993) is that when the regression line is not statistically significant, it could be an
indication that the population is not at equilibrium under the opposing forces of
migration and random genetic drift. For large A’s, however, it has been checked that
Fy: reached a plateau. If only short distances are considered in these simulations,
one would conclude that the population is not at equilibrium, whereas it is.

Since the log—log regressions of Nm values on distances seem to detect only some
of the information present, other ways of presenting the data have been devised.
Once the matrix of Nm values between samples has been calculated, it is possible to
represent it on a three-dimensional graph, where the sample numbers are indexed
along the z and the y-axes and the z-axis represents the migration. The picture

generated will be symmetrical, by construction, with respect to the main diagonal.
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Nm as a function of distance in a 1-dimensional isolation by distance model
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Nm as a function of distance in a 1-dimensional isolation by distance model
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One expects on such a graph to see high values on the main diagonal for isolation by
distance in a one dimensional habitat, since the main diagonal represents samples
close one to each others and to see decreasing values as one moves away from this
main diagonal. The picture created will therefore look like the crest or the ridge of a
mountain landscape. On the other hand, if there is no isolation by distance, no
distinctive patterns should emerge from the graph. Figures 4.33 to 4.35 show this
graph for an island model of population structure, a two-dimensional, and
one-dimensional stepping-stone. The graphs display the expected patterns: ‘chaos’
for the island model, whereas the main diagonal contains the highest migration
values for the one-dimensional stepping-stone model. The pattern observed for the
two-dimensional stepping-stone (Figure 4.34) is interesting: first of all, the effect of
the ordering of the sample can be seen: the stepping stone was a 4*4 (16 demes) and
it is noticeable that values of Nm follow the spatial arrangement (eg. sample 2 and
8). The other interesting feature displayed by this graph is the large variance of
migration levels encountered: samples 12 to 16 display higher levels of migration

than the others.

Enhancement of these figures is achieved through interpolation of the data using the
computer package UNIRAS. The data are then transform logarithmically. The
outcome is presented in Figures 4.36 and 4.37. The lower left picture represents the
untransformed matrix of migration, the lower right the interpolated data and the
upper figure the logarithmic transform of the interpolated data. For the
one-dimensional stepping-stone model, the upper figure describes perfectly the
gene-flow pattern: high migration occurs along the main diagonal and decreases as
samples get further apart. Note however the edge effect, characterised by higher
migration at the limit of the sampling range and the irregularity of the migration
estimate between adjacent samples. This point is important and was already noted
By Endler (1977): isolation by distance leads to the occurrence of clines of
gene-frequencies that can persist for a long time, even in the absence of selection.
This effect is also perceived in two-dimensional gene-flow patterns (Figure 4.37),

where some adjacent samples seem to exchange more genetic material than others.

The same treatment has been applied to the isolation by distance model. Results are
only given for A = 20. F-statistics, from which the migration matrix was inferred,
were calculated at a mesh size of 64. The results are presented in Figure 4.38. Note

the similarity between the isolation by distance and the one-dimensional
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Figure 4.33: Estimated Nm between pairs of samples, island model
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Estimated Nm between patches.
Stepping stone 1D, N=64, D=16, m=2%, no seffing.
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stepping-stone model. Once again, distinguishing between these two types of
patterns of gene-flow will be quite difficult. If F-statistics are calculated at a smaller
mesh size, the observed pattern is more rugged, but the main feature remains: high

migration on the main diagonal, which decreases as demes get further apart.

4.5 The variance effective size, yet again!

It was shown in Chapters 2 and 3 that F-statistics could be useful tools to estimate
the variance effective size of a population, since temporal data are not required for
these estimations. It would therefore be of interest to compare estimates of the
variance effective size measured with temporal data with those obtained from
F-statistics. Criticisms could be made regarding the usefulness of estimates of N}
based on F-statistics, since they require an estimation of the census size, but Waples
(1988) has shown that the estimate based on temporal data is also dependent on the
census size. If no estimate of the census population size exists, at least the ratio of
the census size to the effective size can be given.

To compare estimators of the variance effective size based on F-statistics (labelled
N.F on the graphs) and those based on temporal changes in allelic frequencies
(labelled N.Var), different patterns of gene-flow were modelled using MODEL42
and calculation of the two estimators of variance effective sizes were carried out
every 200 generations, for 10000 generations for 50 independant replicates.

Figure 4.39 gives the results for an island model of population structure, with 1%
rrﬁgration and no selfing, with a deme size of 16 and 256 demes. The two estimators
give similar results, namely an effective size which is more than twice as large as the
census size of 4096 individuals. As was discussed in Chapter 2, the variance effective
size of a subdivided population is larger than the census size, a feature that needs
stressing, since emphases on effective population sizes generally state that they are
lower than the census size (Crow & Denniston, 1988; Gale, 1990; Gilpin, 1991;
Ballou, 1992). '

The other striking feature of this figure is the stability of N.F', compared with
N.Var. The former is always between 10500 and 10800 whereas the latter ranges
from less than 7000 to 13000. This is not surprising, since F-statistics measure the
amount of differentiation that has been going on in the population from its

foundation, whereas temporal data only take into account the variation that
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Figure 4.38: Nm between pairs of samples.
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Island model. D=256, N=16, m=0.01, s=0.0
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Figure 4.39: Estimates of variance effective sizes.

occurred between the two sampled generations.

Also noteworthy is the increase in fluctuation of the variance effective size as time
goes on. This is because there is an erosion of the genetic variability through time.
Next the effect of selfing is investigated (Figure 4.40). The trends are similar to the
previous case. The variance effective size is still larger than the census number, even
though selfing is present in the population. Fluctuations are larger for N.Var than
N F, but the two estimators stay in good agreement. The question as to how much
selfing is necessary before its effect anhihilates that of structuring can be found in
terms of F,t‘a.nd Fiyi if Fyy < 3{3;1: then the variance effective size is smaller than
the census size.

This is the situation displayed in Figure 4.41. The average effective size in this case
is less than 3000, compared to a census number of 4096. N, F is still subject to less
variation than N.Var and again the two estimators stay in very good agreement.
The effect of geographical structuring on the variance effective size can be seen in
Figure 4.42. The modeled population is a linear stepping-stone model, with 50%
migration between adjacent demes. The first characteristic of this graph, compared
to populations with no geographical structuring, is the time necessary for
equilibrium of the variance effective size to be reached. Values of the effective size do

not level off before the 8000th generation. Apart from this, the two estimators are in

very good agreement and for the first 2000 generations, they are nearly identical.
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Figure 4.40: Estimates of variance effective sizes
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Figure 4.41: Estimates of variance effective sizes
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Figure 4.42: Estimates of variance effective sizes

The amount of migration between adjacent demes (50%) is very large, but after
10000 generations, the variance effective size is 3.5 times the census size.

N.F stays a better estimator of N since its fluctuations are much smaller than
those of N.Var after the two thousandth generation.

N.F and N.Var are both good estimators of the variance effective size. Since the
latter does not require spatial information such as the location and size of the demes
but only temporal estimates of the changes in allele frequencies, it seems appropriate
to use the concept of variance effective size to unmask what has been elusive so far:
the neighbourhood size. Measurements of F-statistics were taken at mesh sizes 1, 4,
16 and 64 and N.F calculated from it. The appropriate neighbourhood size
corresponds to the best agreement between N.Var and N F. Figure 4.43 .gives the
results for a 2-dimensional isolation by distance model, where the input
parent-offspring dispersal distances should have led to a neighbourhood of size 4. It
is obvious from Figure 4.43 that 4 is not the appropriate neighbourhood size and the
best fit is for a sample size of 1. In other words, all the heterozygote deficit in the
population is due to structuring and not to selfing or inbreeding. The equilibrium
value of the variance effective size in this case is around 8000, twice the census
number. This is surprisingly low since a neighbourhood of 4 corresponds to highly

restricted gene-flow (62 = =1, where o2 is the variance of the parent to offspring

dispersal distance).
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Figure 4.43: Estimates of variance effective sizes. N.1,4,16 and 64 are fore mesh sizes

of 1, 4, 16 an 64 respectively.

A similar pattern is observed in Figure 4.44. The input parent-offspring dispersal
distance was such that the neighbourhood size should have been 16. It is clear from
the figure that it is not the case and, once again, the best fit of N,Var and N F is
for samples of 1 individual. The average variance effective size this time is 5200,
slightly larger than the census size. The scale of the x-axis of Figure 4.44 is different
from the other graphs, since the number of generations looked at is only 1000.

4.6 Discussion and conclusions.

Unravelling the structure of natural populations remains one of the main
preoccupations of population biologists. They have at their disposal a series of tools
that are not necessarily designed to answer the questions they are asking, but which
can nevertheless be adapted to meet their needs. It is of crucial importance that the
capabilities of each of these tools is clarified and the conditions of application stated.
The large number of new techniques to decipher the hidden variability render this
task even more difficult and one only needs to read the type of questions being asked
in internet news groups such as bionet.general, bionet.molbio.rapds,
bionet.population-bio to appreciate the problems faced by researchers. The first

problem is often one of scale, that is, to ensure that the samples taken are made of a
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Figure 4.44: Estimates of variance effective sizes

single random breeding unit. For some species, the limit may be obvious, such as a
barn in some species of mice, or the troupe in monkeys. In other cases, however, the
limits are not easy to find and are often based on previous ecological studies, which
measured dispersal of individuals or of gametes (eg. Lamotte 1951, 1959 for the
snail Cepaea nemoralis; Dice & Howard (1951) for the prairie deer mouse
Peromyscus maniculatus bairdi; Blair (1960) for the rusty lizard Sceloropus
ofivaceus; Levin & Kerster (1968) for a perennial, insect-pollinated plant Phloz
pilosa). Hoﬁever, it has been shown in this study that even when samples are taken
in an area of the size of the neighbourhood, the deficit of heterozygotes measured
within neighbourhood may well still be due to structuring (Figure 4.43 & 4.44). If
samples are taken within a random mating area, then detection of its limit can be
achieved by pooling recursively samples until an increase in the value of f is seen.
This point is important, since, if samples are larger than a random breeding unit,
then estimates of F,; will be lower than the correct value and, therefore, estimates of
migration will be larger than the actuality. To demonstrate this property, Nm was
inferred from @ using the approximate relation for the island model, with 1%
migration and no selfing and a deme size of 64 (Nm = 0.64). The results are given

in the following table:
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Mesh 6 Nm
4 0.2818 0.64
16 0.2823 0.64
64 0.2846 0.63
256 0.0692 3.36
1024 0.0211 11.60

As long as # is measured below the deme size, the estimate of Nm is accurate, while
it increases dramatically as soon as more than one deme is pooled together.

To test if the changes in the value of f are significant, statistical resampling
methods were used. The usual test for significance of F-statistics are based on x? (Li
& Horvitz, 1953) and suffers from its limitations. In particular, the numbers of
expected genotypes in each class have to be larger than five (Sokal & Rohlf, 1981).
As the distribution of allele frequencies in natural populations tends to be U-shaped
(Chakraborty et al., 1980; Latter, 1975; Ohta, 1976; Nei, 1987), it is likely that
grouping of classes of genotypes will be necessary. On the other hand, resampling
tests do not require these assumptions. It was shown that they prove useful for
identifying levels of structuring, although jackknife and bootstrap methods seem to
provide conservative estimates. Others resampling methods can be used instead, not
to provide confidence intervals, but to test if the observed statistic is different from
zero and it was shown that stucturing could be detected this way, even when the
effective number of migrants per deme is as large as 20 in an island model.
Iﬁvestiga.tiop of stepping stone models showed interesting patterns. It is still
possible to detect structuring and to find the limit of the random breeding unit, but
the changes in f after the pooling of more than one deme are not as apparent as in
the island model. It was also noted that the confidence interval of # is much larger
than in island models, meaning that fluctuations in allelic frequencies from one
replicate to the next are larger in the former than the latter.

Since estimates of F,; are often used to infer migration levels, it seemed necessary to
review the suitabilty of application of the relationship between these two factors. It
was shown that the usual approximation F,; = 1/(4Nm + 1) is valid only for large
values of F; and was further contingent upon large sample sizes. Attention was
drawn to this problem, with the increasing cost and time needed to unravel genetic

variability when using new molecular techniques such as RFLPs and VNTRs, data
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sets are tending to become much smaller.

Since f changed as a function of the grouping of the samples and displayed a
discontinuity at the level of the breeding unit, isolation by distance models in a one
dimensional habitat were generated to assess if it was possible to measure indirectly
the size of the neighbourhood area. These investigations showed that although f
increased with the size of the sampled area, one could not perceive any
discontinuities in these changes and that statistically significant differences between
f’s were not an appropriate measure of Wright’s neighbourhood size whereas a
method developed by Slatkin (1993), based on the log—log regression of estimates of
Nm on distances, gave a good estimate of the neighboorhood size, apart for very
large dispersal distances. On the other hand, this method assumes a linear
relationship between log(/Nm) and log(Distance). This linear relation was shown to
exist in only certain cases, for intermediate values of the dispersal distances.

A graphical representation of the migration matrix looks to be a promising way of
displaying the information and should allow the discrimation of species undergoing
isolation by distances from species where there is no isolation by distance. The same
graphical representation also allowed the discrimination between habitat structure of
different dimensions.

Comparisons of estimates of the variance effective sizes, made using temporal data
and spatial data, were carried out. Both estimates were in good agreement and
displayed a trend seldom emphasized in the literature: the variance effective size of
a subdivided population can be larger than the census size. It was, however, obvious
that estimates based on temporal data are less accurate than those based on spatial
data. On the other hand, to get an accurate estimate from spatial data, one needs
to know the population structure of the species investigated. This knowledge is not
required for temporal data. As deme size cannot be detected in isolation by distance
models, then if only spatial data were available and if an estimate of effective
population size were needed, this leads to a ‘Catch22’ situation. Comparisons of
estimates of the variance effective size based on temporal data with those based on
spatial data measured at different scales demonstrate that the concept of
neighbourhood size is flawed. It may be a useful measure of parent to offspring
dispersal distance but this should not be considered as a random breeding unit, that

is, in any way, comparable to a deme in island or stepping-stone models.



Chapter 5

Applications to data from natural

populations

5.1 Introduction

Investigation of the genetic structure of natural populations has monopolised the
interest of population biologists for fifty years since the early work of Wright on the
desert snow Linanthus parryae. The number of these studies has grown
exponentially after the discovery of protein gel electrophoresis in 1966. These studies
are usually intended to answer an evolutionary question but have been referred to as
the ‘Find’em and grind’em’ school of population genetics by some (Lewontin, 1991).
The work presented here belongs to another category of population genetics studies
that could be called the ‘Find’em and scrounge’em’school, as I did not myself collect
any of the data presented here. I am ind‘ebted to Amanda Day for the dogwhelk
data and to Alan Raybould and Alan Gray for the data on beet and cabbage.

Natural populations possess many very undesirable properties for the population
geneticist, because they never seem to comply with the requirements of theoretical
models. The population geneticist’s task is therefore to find means of getting
samples from natural populations to conform with the assumptions of one or the
other of these models. Chapter 4 presented methods for assessing population
structuring which were tested on computer generated data-sets corresponding to
known structure of populations. The results of these investigations generally takes
the form of an expected behaviour of some statistic when measured in a population

with given parameters (increase in f when more than one breeding unit is pooled
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together, significant regression between log(Nm) and log(distance) when there is

isolation by distance, chaotic pattern in the migration matrix for an island model of
population structure). These processes were inductive. In the following, a deductive
process will be presented: given the behaviour of a particular statistic, can biological

parameters be deduced or inferred? (Chalmers, 1976).

5.2 Brassica oleracea ssp. oleracea

Known by the common name of wild cabbage, it is native to the coast of
northwestern Europe as well as the Mediterranean (Thompson, 1976). Usually
disliked by most children, probably because of a French legend which says that little
boys are found under their leaves (as opposed to little girls, who are found under
roses), the origin of its name stems from the old Norman French word, caboche
(Collins, 1992), which meant head. This also explains the expression ‘Cabbage head’
describing somebody who is rather simple-minded.

Brassica oleracea is a polymorphic diploid species, containing many cultivars, such
as B. cauliflora, the cauliflower, B. oleracea var. gemmifera, the Brussel sprout, B.
oleracea var. italica, the broccoli and B. oleracea var.capitata, the cabbage
(Thompson, 1976). However, it is doubtful whether the many cultivated species of
B. oleracea evolved solely from the wild cabbage and several other wild diploid
relatives such as B. cretica, B. insularis and B. rupestris may have contributed
(Yarnell, 1956).

This species complex displays a strong self-incompatibility (Thompson & Taylor,
1966) which -only tends to disappear in lines that have achieved greater uniformity
through intense selection.

Since this polymorphic species i) is a typical outcrosser, ii) exists in cultivated as
well as wild forms, iii) is likely to undergo genetic manipulation for crop
improvement (Raybould & Gray, 1993), it would seem to be a judicious choice for

use as a biological model of gene-flow between crops and their wild relatives.

5.2.1 Material and methods

A core population of 400 individuals divided into 20 patches of potentially
interbreeding individuals was sampled from a more or less linear habitat on a stretch

of the coastline of Dorset, Southern England. All patches were located on cliff-tops
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Figure 5.1: Samples location of Brassica oleracea ssp. oleracea

along a 30 km section of coastline between the Foreland (SZ 055824, east of
Swanage) and Durdle Door (SY 805803, west of Lulworth Cove) (Figure 5.1). At
Windspit and St Aldhelm’s Head, five patches were taken from more or less
continuous populations. The remaining ten patches were taken at Durdle Door (2
samples), Old Harry (3 samples), Dancing Ledge, West Man and Kimmeridge (3
samples). For each patch, samples of lea‘.f tissue were taken from 20 adult flowering
plants (Gray et al., 1992). In this species pollination is insect mediated, the main
pollinators being, in this location, the bumble bee species Bombus lapidarius and B.
terrestris and the bee Anthophora plumipes and Apis mellz'féra. It was noted (Gray
et al., 1992) that little competition for pollinators exists, since Brassica flowers
before most species, but that there may well be a scarcity of pollinators. Also, the
behaviour of pollinators appears to be strongly influenced by flower density, bees
generally preferring high density patches.

Three out of 11 electrophoretic loci were found to be suitable for analysis
(polymorphic), SDH-2, PGI-1 and APH-2 (Gray et al, 1992). The genotypic

distribution in each population at these 3 loci can be found in Appendix E in a form
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Table 5.1: The eight levels of pooling of samples for Brassica oleracea ssp. oleracea.

Pooling distance Pooled samples

1 <4m

2 <10m

3 <25m WSS-1 SA1-2

4 <100m WSS-3, WS4-5 SA5-1 DD1-2
5 <500m WSS-5 WSA-SA1 KR3-2 DD1-2
6 <2km OH1-2 DL-WS5 WSA-SA1 KR3-1 DD1-2
7 <4km OH1-2 DL-SA1 KR3-1 DD1-2
8 >4km ALL SAMPLES TOGETHER

suitable for input into the program FSTAT (Appendix D).

To assess whether samples corresponded to random breeding units, each was
subdivided into 4 subsamples, with subsamples grouping together the closest
individuals, according to a per-sample map provided by Alan Gray and Alan
Raybould. The different fixation indices were calculated for this group of 80
samples. Fixation indices were then calculated for the 20 original samples. Samples
were subsequently pooled as a function of distance, with the third pooling level for
samples less than 25 metres apart, the fourth for samples less than 100 meters apart
and so on. The different pooling stages are summarised in Table 5.1 (from right to
left on the map). OH stands for Old Harry, DL for Dancing Ledge, WS for Wind
Spit, SA for St Alban, KR for KimmeRidge and DD for Durdle Door. Populations
at St Alban and WindSpit were more or less continuous, with the different samples
at these locations being somewhat arbitrary. Pooling of these two groups occurs

between stages 3 and 5 (25m < z < 500m).

5.2.2 Results

Appendix F gives the raw output of the program FSTAT (Appendix D). It can be

detailed as follows:

e The allele frequencies per sample, as well as the size of each sample, for each
allele at each locus. The observed and the expected heterozygosity per allele,

for each sample and locus is then given (The expected heterozygosity is
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calculated using a hyper-geometric distribution, that is, instead of being
2Np(1 —p), it is 4Np(1 — p)/(2N —1)).

o f per allele per sample. If the allele is not present in the sample, the table

contains question marks, as f is undefined.
e Estimates of F, 8 and f per allele and locus.
e The overall F, § and f.
e The jackknife mean and standard deviation over samples, per locus.
o The jackknife mean and standard deviation over loci.
o The bootstrap over-loci confidence interval at 95% and 99%.
o The Pairwise @ estimates per locus.

e 95% and 99% confidence intervals for the null hypothesis that f is equal to
zero (against the alternative hypothesis that f is larger than zero). The
probability that the observed f is equal to zero.

¢ 95% and 99% confidence intervals for the null hypothesis that F is equal to
zero (one sided test). The probability that the observed F is zero.

e 95% and 99% confidence intervals for the null hypothesis that 8 is equal to
zero (one sided test). The probability that the observed 8 is zero.

The estimaté over loci of the pairwise 8 is used to calculate the pairwise Nm,
written into another file.

The overall estimates of F' = 0.328, § = 0.178 and f = 0.232 show that there is a
deficit of heterozygotes both within and among samples.

Within sample heterozygote deficit, as measured by f, is positive at the three loci
(Figure 5.2). Jackknifing over samples lead to large confidence intervals (CI), an
indication of the large variance of heterozygote deficit within samples. The largest is
for SDH-2, with sample DL displaying an f of 0.8, while sample SA5 has an f of
—0.15. Bearing in mind that there is a self-incompatibility system in Brassica
(which should lead to an excess of heterozygotes and therefore, a negative f), this is

a first indication that samples are larger than the random breeding unit.
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Figure 5.2: Jackknife CI over populations and over loci for B. oleracea

Figure 5.3 displays the effect on f and 6 of the pooling strategy. A sharp increase in
f (decrease in ) occurs up to 100m and then levels out. This is an indication of
strong population structuring with gene-flow being restricted even at the level of
samples (note the increase between level 1 and 2, i.e. sub-samples vs samples.).
Comparison with the investigation of one-dimensional stepping stone and
one-dimensional isolation by distance models (cf. Chapter 4) suggests that the
average distance of dispersal must be very restricted (the rate of increase in f is
si_mila.r to the shape for a A of 1 in the isolation by distance model, Figure 4.16).
Also, no real plateau is reached (slight increage of f up to the last point), an
indication that isolation by distance occurs even for long distances. Focussing now
on the Jackknife CI of f, there are no statistical differences among f’s measured
below 25m, but f measured for samples covering 100m is different from f estimated
from the original samples.

Subsequently, Slatkin’s method (1993), described and applied to isolation by
distance models in Chapter 4, was used: 6 was calculated for each pair of samples
and the distance between samples was recorded. Nm was inferred from the pairwise
6 values. A linear regression was carried out after a log—log transform of the data

(Figure 5.4). The regression equation obtained for Brassica was:

log(Nm) = 0.84 — 0.17log(distance)
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where the distances are expressed in metres. Although the regression coefficient is
significantly different from zero, the percentage of the variance explained by the
regression is very low (R? = 0.05). We would expect to obtain a graph similar to
Figure 4.26 but there are not enough points representing short distances to build up
such a picture. Furthermore, the data set is based on only three loci and is much
more variable than a data set obtained from computer simulations. This analysis
therefore falls short of a satisfactory explanation for the patterns of gene-ﬂov.v
occurring in Brassica.

Figure 5.5 displays a 3-dimensional plot of estimated migration per pair of samples.
Ordering of samples along the z- and y-axes goes from right to left on the map,
starting at OH1 and ending at DD2. The lower left graph gives the estimated
migration, while the lower right graph displays a surface generated by interpolation
of the data set with the computer package UNIRAS. The top graph represents a
log transform of the bottom right. The emerging pattern looks quite dissimilar to
the modelled one-dimensional gene-flow patterns. One main peak can be observed,
which corresponds to one of the continuous populations sampled, Windspit. The
amount of gene-flow between patches in this continuum is very high. Surprisingly,
however, high levels of gene-flow are not observed in the other continuum, St
Aldhem’s Head. For the rest of the samples, distance between samples does not
seem to be a very good predictor of the amount of gene-flow. The observed
migration landscape appears to correspond to a species living in a habitat made of

more than one dimension.

5.3 Beta vulgaris ssp. maritima

Known by the common name of sea beet, this subspecies is thought to be an
ancestor of most, if not all, cultivars. Most of these cultivars belong to the
sub-species B. vulgaris ssp. vulgaris and include sugar beets, beetroots, mangolds
and fodder beets (Campbell, 1976). Beta is an old world genus virtually confined to
Europe. Its use probably dates from prehistoric times. The Romans used Beta
vulgaris ssp. maritima as feed for animals and man. It was taken from Italy to
northern Europe by the barbarian invaders. Because the British blockaded the
French ports, thereby creating a shortage of cane sugar from the West Indies,

Napoleon published (in 1811) a series of decrees requiring beet to be grown and
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studied in schools. This led to a rapid improvement in sugar content through mass
selection on multilines (twenty to thirty parental stocks, Campbell, 1976).

B. vulgaris ssp. maritima is diploid (2n = 2z = 18), largely anemophilous and
outbred (Dark, 1971). It has, however, been classified as both anemophilous and
insect pollinated by Raybould & Gray (1993). Its clifftop habitat is very similar to
that of wild cabbage but it also occurs along driftlines in bays. The habitat could be
characterised as linear as far as cliff-tops are concerned but not for driftlines. Its
usefulness as a biological model stems from the same considerations as for Brassica:
Beta vulgaris is outcrossed, exists in cultivated as well as wild form and is likely to
undergo genetic transformation (Raybould & Gray, 1993). Evidence for gene
exchanges between wild and cultivated forms has already been published (Santoni,
1993; Santoni & Berville, 1992). A thorough appraisal of gene-flow patterns in this

species complex seems, therefore, of prime interest.

5.3.1 Material and methods

Sampling took place along the Dorset coastline, Southern England. Its exact
location overlaps that of Brassica. A core population of 400 individuals was divided
into two major groups, ten patches from driftline populations and ten from cliff-top
populations (Figure 5.6).

The first group comprised five patches from a stone embankment and the upper
levels of saltmarshes around Holes Bay, a small bay on the northern edge of Poole
Harbour and five patches at greater distance from one another around the shores of
Poole Harbour on shingle banks and tide lines (two on Furzey Island, one at Rockley
Sands and t§vo in Brand’s Bay). The cliff-top patches, scattered from St Aldhem’s
Head to the Foreland included five populations at Windspit. Leaf samples from
adult plants were taken for electrophoresis.

Six loci out of 13 showed polymorphism. The first 3, Got-3, APH and SDH were
described in Gray et al. (1992). The last 3 PGI, PER-1 and MDH were not because
of difficulties in the interpretation of the gels. These problems now seem to have
been resolved (Raybould, pers. comm.). Loci PGI and PER-1 are included,
although some sampled patches are missing (FB,HW,HO and RW for PGI and FB,
FW and ST for PER-1). Results for the« loci should be treated with caution because
of the missing populations and also because of difficulties in interpreting the gels. -

The pooling procedure was similar to that adopted for Brassica oleracea ssp.
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Figure 5.6: Samples location of Beta vulgaris ssp. maritima

oleracea and is summarised in the Table 5.2 (from left to right on the map). Pooling
of the samples at WindSpit occurred between level 3 and 5, while pooling of the

samples of Poole Harbour occurred between level 5 and 7.

5.3.2 Results

The raw results are presented in Appendix G, in the same format as for Brassica.
The overall F' was —0.08, 6 was 0.167 and f was —0.295. Thus, there was a
significant excess of heterozygotes within samples, whereas there was a significant
deficit of heterozygotes between samples. f and 8 cancel out for the global
heterozygote deficit F. This can be better understood by looking at Figure 5.7,
which displays values of f per locus, together with over-samples Jackknife CI and
over-loci bootstrapped CI.

GOT-8 and APH-2 are not significantly different from zero, whereas SDH presents a
significant heterozygote deficit and PGI, PER-1 and MDH a significant excess. As
already mentioned, the three loci displaying excess heterozygosity need to be treated

cautiously because gel interpretation was difficult (A. Raybould, pers. comm.), and
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Table 5.2: The eight levels of pooling of samples for Beta vulgaris ssp. maritima.

Figure 5.7: Jackknife CI over populations and over loci for B. maritima

Pooling distance Pooled samples
1 <4m
2 <10m
3 <25m WE-WF DP-LI
4 <80m WM-WL DP-LI PN-OH
5 <500m WW-WL DP-LI PN-OH FB-FW OH-RW
6 <2km SA-WL DP-LI PN-OH BE-BB FB-FW RS-HW, ST-RW
7 <4m SA-WL DP-LI PN-QH BE-FW RS-RW
8 >4km ALL SAMPLES TOGETHER
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Figure 5.8: Changes in f with levels of grouping for all loci.

because some samples gave uninterpretable results. The 3 loci displaying an excess
of heterozygotes may be linked to the self-incompatibility system found in Beta.
SDH shows a strong deficit of heterozygotes and thetufconﬁdence intervals do not
overlap (Jackknife over population and Bootstrap over loci). Furthermore, one
sample (FB) at this locus was fixed for an allele at very low frequency in all other
samples. This explains the structure of the matrix of pairwise @ for this locus
(Appendix G) where most rows and columns are empty because the same allele is
fixed in most populations. For this reason, the strategy for pooling samples together
is divided into four steps: first of all, we analyse the six loci together. This leads to
figure 5.8. Notice first that f increases from the leftmost point, an indication that
the population structure follows an isolation by distance model and that gene-flow is
very restricted. f is negative for all the pooling levels, that is, even when samples
more than 4km apart are pooled together there is still a deficit of heterozygotes.
From the stand point of detecting random breeding units, confidence intervals for
samples more than 4km apart with subsamples of the original are not statistically
different. A negative f will also have some influence on @ by lowering it. Figure 5.9
displays the same analysis after removal of SDH. The behaviour of the changes in f
is essentially similar to the previous graph, which is not surprising since SDH is
nearly monomorphic (absent in most samples, apart from FB where its frequency

reaches 0.89). It should also be noted that the Jackknife mean and standard
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Figure 5.9: Changes in f with levels of pooling, SDH excluded.

deviation of § and F are out of the domain of definition of these two statistics (cf.
Appendix G). This is because sample FB behaves as an outlier and it has been
pointed out in Chapter 4 that Jackknife statistics are very sensitive to outliers.
Figure 5.10 displays the results for the 3 loci displaying negative f.

Oxnce again, the general trend is the same, although the values for 6 are smaller.

Figure 5.11, at {ast, displays the results for the two ‘well-behaved’ loci. The changes
in f follow the same trends as previously but are emphasised. The confidence
interval displayed on this graph should not be taken too seriously because they are
based on only two measures.

Even though a high level of heterogeneity exists among these loci, all graphs showed
the same trends. f is increasing with the pooling level, a sign that there is some
isolation by distance. This increase starts from the first point, which corresponds to
f measured within samples (an area of four metres squared). It is tempting to
conclude from this analysis that there is no. such entity as a random breeding unit
in Beta vulgaris ssp. maritima.

Slatkin’s method (1993) was applied and the results are displayed in Figure 5.12.
The slope of the regression is not significant and the percentage of the variance
explained by the model is very small (R? < 0.01). Also, data for very short distances

were very scarce, as was the case for Brassica.
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Figure 5.10: Changes in f with levels of pooling for PGI, PER-1 and MDH

Beta vulgaris ssp maritima. Loci GOT-3, APH
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Figure 5.12: log—log regression of Nm on distance. Beta vulgaris ssp. maritima

The equation for the regression is:
log(Nm) = 0.51 — 0.09 log(distance)

For this species too, it seems that detection of isolation by distance with Slatkin’s
method (1993) is compromised, whereas the technique of grouping samples and
recalculating f for each level of grouping provides some evidence that isolation by
distance is occurring.

The sampling strategy was designed to allow a comparison of samples from the bay
(&riftline populations) and from the cliff-tops. The two methods used above are not
particularly well suited to this type of analysis, although it would have been possible
to divide the samples into two groups and to carry out an analysis on each group.
The graphical method presented first in Chapter 4 and used on Brassica seems a
more appropriate way of distinguishing between these two groups. This is illustrated
in (Figure 5.13). The cliff-top samples (1 to 10) on this figure do not seem to
correspond to a one-dimensional habitat since there is no sign of increased migration
along the main diagonal (neighbouring samples) for the first part of these graphs
(Figure 5.13). However, these samples are easily distinguished from the driftlines
populations which display much higher levels of gene-flow (samples 11 to 20). For
this wind pollinated species, it therefore seems that gene-flow occurs mainly through

a process of extinction and recolonisation which would be more frequent in bays
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(e.g. storms) than on the less disturbed habitat of a cliff-top. A consequence of this

observation is that gene-flow occurs probably more through seed migration than

through pollen dispersal.

5.4 The dogwhelk, Nucella lapillus

The dogwhelk Nucella lapillus is a widely distributed predatory intertidal gastropod,
feeding on mussels and barnacles. It is ubiquitous on rocky substrates around the
coasts of Great Britain and Ireland and extends from Iceland to Portugal (Berry and
Crothers, 1974). The main reaéon for choosing this species rather than any others
resides in its dispersal behaviour: restriction in adult movement to only a few metres
only (Hughes, 1972), associated with the absence of a dispersed planktonic stage, are
likely to result in pronounced local differentiation of subpopulations. Furthermore,
since Nucella lapillus is restricted to the intertidal zone, it seems a very good
biological model to test for the levels of connectidness in this habitat.

Shell shape is different in exposed and sheltered sites: whelks from exposed sites
have a thinner, shorter shell than whelks from sheltered sites and a larger aperture
that allows them to resist wave action. On the other hand, a thicker shell allows
whelks from sheltered sites to resist the action of predatory crabs during their
growth (Currey & Hughes, 1982).

Chromosome number has been found to vary between sheltered and exposed sites,
with 2n = 26 for exposed sites and 2n = 36 for sheltered sites. This polymorphism is
due to Robertsonian translocations (Bantock & Cockayne, 1976). However, when no
chromosome number polymorphism can be found, the number of chromosomes is

2n = 26 and this is the case in most of the British Isles apart from the English
Channel (Bantock & Cockayne, 1976). .

5.4.1 Material and methods

Allozyme data were obtained by A.J. Day (1990) on dogwhelks from 15 sites 50m to
21 km apart in S. Devon, S.W. England (Figure 5.14).

Sites 1 to 5 (between Blackpool and Start Point) are very exposed to wave action
and are quite distant from each other (0.8-6.7 km). All sites with whelk populations
on this stretch of coastline were sampled. These populations were usually dense,

with easily identified breeding aggregations in crevices. Each sample consisted of all
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the whelks within a single aggregation (Day,1990). To the south of Start Point, the
coastline is mainly sheltered. Ten sites were sampled along this strip of coast, one at
Start Point itself (6 individuals), three around Lannacombe Bay, and six to the east
of Prawle Point. At both Prawle and Lannacombe, the samples came from a 0.5km
stretch of coastline and the distance between samples was 50-150m at the former
and 150-300m at the latter (Day, 1990). Whelks were dispersed and no aggregations
could be found so samples were taken within foraging areas of less than 4m?
(following estimates of maximum distance travelled by whelks (Hughes, 1972)) in an
attempt to ensure that individuals would be part of the same breeding unit. The
size of the sampled areas in the sheltered sites meant that no more than 21 whelks
were found at a single sample location (Day, 1990).

Samples were analysed for allozyme variation at eight soluble enzyme loci Est-8,
Lap-1, Lap-2, Mdh-1, Pep-1, Pep-2, Pgm-1 and Pgm-2. Nomenclature,
electrophoresis buffers and staining methods follow those of Day & Bayne (1988)
modified by Day (1990).

Raw data were presented in Day (1990) and are given in Appendix H. All loci were
polymorphic and the number of alleles per locus ranged from two for Pep-1, Pgm-1,
Est-8, Pep-2 to four for Pgm-2, Lap-2.

Since differences in morphology as well as genetic variability were noticed in the
previous analysis, the strategy for grouping samples was divided into two parts.

First, when all sites were considered, the following groupings were made:

all samples independently

8-9, 10-11, 14-15 pooled together .
7-9, 10-12, 13-15 pooled together
7-9, 10-15 pooled together

1-2, 4-5, 7-9, 10-15 pooled together
1-2, 3-5, 7-9, 10-15 pooled together
1-5, 6-9, 10-15 pooled together

1-5 and 6-15 pooled togéther

© 0 N o ok W N

all sites together

The curves following changes in f will therefore be made of nine data points.

For the study of sheltered sites only, the pooling strategy was:
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1. all sheltered samples independently
8-9, 10-11, 14-15 pooled together

8-9, 10-11, 12-13, 14-15 pooled together
7-9, 10-12, 13-15 pooled together

7-9, 10-15 pooled together

6-9, 10-15 pooled together

S T

all sheltered sites together

An extra level of pooling between level 2 and 4 (8-9 , 10-11, 12-13, 14-15) was added
to check for the effect of the pooling strategy on the behaviour of the changes in f.

There will therefore be 7 data points.

In a previous analysis, Day (1990) found that, in the whole sample, high F,; values
resulted from a high degree of heterogeneity from exposed (quite monomorphic) to
sheltered sites (rather polymorphic). Some evidence of a smaller scale of population
structuring came from the analysis of some of the eight loci studied but without the
opportunity of calculating confidence intervals or, consequently, the precise scale at

which such structuring might take place.

5.4.2 Results

Overall F-statistics were 0.328 for F, 0.3327 for § and —0.007 for f. There is a
strong heterozygote deficit due to differences in allele frequencies among samples,
whereas no heterozygote deficit or excess is detected at the scale of samples
(P=0.573, according to the permutation test of alleles within samples, Appendix H).
On the other hand, the probability that the observed 6 is obtained by chance is less

than 0.0002.

Analysis per site and per locus

The number of monomorphic loci per site was given in Goudet et al. (In Press). It is
a good indicator of the amount of variability present in sheltered and exposed sites.
For the exposed sites, an average of 60% of the loci within sites are monomorphic,
whereas this number falls to 25% for the sheltered sites. These differences in levels
of polymorphism among sampled areas led Goudet et al. (In Press) to reanalyse the

data. Their results can be summarised as follows:
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Figure 5.15: Jackknife CI per locus over samples and bootstrap CI over loci.

Exposed sites The f value (0.02) and confidence interval ([-0.11,0.09]) are similar
to the analysis encompassing all three areas. Pep-1 gives the highest deficit (0.11)
and Lap-1 and Mdh-1 the greatest excess (-0.10 and -0.13 respectively). Pep-1 is the

only locus that shows more variability in the exposed than in the sheltered area.

Sheltered, Prawle Point The estimated f from Prawle Point is -0.08, with 95%
CI [- 0.20,0.05), again similar to the three areas together, although slightly more
negative. Lap-1 shows a large deficit of heterozygotes (0.20) and Lap-2 an excess

(-0.34).

Sheltered, Lannacombe Bay Lannacombe Bay gives unexpected results in that
the estimated f is 0.09, but the 95% CI is [0.02,0.18], implying that there is a
heterozygote deficit in this area. This is also the area where allelic frequencies at 4
loci are most variable (allele 9 for Lap-2, Est-8, Mdh-1 and allele 11 for Pep-2) as
shown in Day (1990, Figure 2).

The variability between loci in terms of f is summarised in Figure 5.15.

Recurrent pooling of sites

All sites Results for the effect of recurrent pooling of sites on f are displayed in
Figure 5.16.
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Figure 5.16: Changes in f with pooling stage in Nucella lapillus, all sites, all loci.

Pooling levels 2 and 3 lead to a slight increase in the value of f, but the first major
discontinuity occurs at pooling level 4, when all sheltered Prawle sites are grouped
together. This could be considered as a first level of structuring, although confidence
intervals of the mean (Jackknifing over loci) between level 3 and 4 overlap. The next
3 pooling levels consist in grouping of exposed populations, and the f values
obtained are constant. We have already mentioned that the exposed area was fairly
monomorphic so it is not surprising to see that these pooling stages do not provide
any new information. If there is structuring in this area, the data set is unable to
detect it. Level 7 also adds the Start Point samples (only 6 individuals) to those of
Lannacombe without changing the f value.

The next discontinuity on the graph occurs between level 7 and 8, when pooling
together Lannacombe Bay samples with Prawle Point samples. Here, the difference
in f value is large enough for the two CI not to overlap. This is the second level of
structuring. Pooling all samples together reveals the third level of structuring,

highlighting the difference in genetic make-up of exposed and sheltered sites.

Sheltered sites only Figure 5.17 describes the change of f in sheltered sites only.

The graph shows a similar behaviour to that for all sites (Figure 5.16). The extra
pooling level 3 (pooling of sites 12 and 13 together) leads to a slight increase in f,
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Figure 5.17: Changes in f with pooling stages in Nucella lapillus, sheltered sites, all

loci.

followed by a decrease when pooling 10-12 and 13-15. Although the difference is not
significant, it suggesté that sites 12 and 13, only 50 m apart, belong to different
breeding units and confirms that the pooling strategy adopted is appropriate.

The observation that Lap-2 is significantly different from all other loci (Figure 5.15)
led to a reanalysis of sheltered sites excluding this locus. Results are given in
Figure 5.18.

The graph shows essentially the same behaviour but confidence intervals of the
mean are much narrower. This allows discrimination between pooling levels 4 and 5,
the third level of structuring, which corrésponds to the pooling together of all
Prawle Point samples. The pooling of all sheltered sites (level 7) remains highly
significant.

A matrix of pairwise estimates of Nm was calculated from over-loci pairwise . The
results are shown on Figure 5.19.

The first striking feature of this figure is its similarity with the figure obtained for a
one-dimensional stepping-stone model (Figure 4.35) and a one-dimensional isolation
by distance model (Figure 4.38). Gene-flow is highest along the main diagonal, and
decreases as samples get further apart. The lowest genetic exchange occurs between
samples at Prawle Point and those at exposed sites. The number of migrants is

highest for Prawle Point and it is clear that this area is made up of two groups. This
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Figure 5.18: Changes in f with pooling stages in Nucella lapillus, sheltered sites,
Lap-2 excluded.

is in a.greemént with what had been detected using the changes in f with pooling
stages. The number of migrants between exposed sites seems lower but more spread
out. The ‘bottom of the saddle’ is at Lannacombe Bay where clines of gene
frequencies are steepest (Day, 1990). Although it may seem naively inductivist
(Chalmers, 1976), one may be tempted to conclude that Nucella lapillus lives in a
one dimensional habitat. A falsificationist would say that gene-flow patterns in
dogwhelks do not follow those of an island model or of a two-dimensional
s’éepping-stope model.

The main points from this analysis are: |

o There is a wide variation in polymorphism between sheltered and exposed
sites. Exposed sites are more monomorphic and polymorphism is expressed at
different loci from sheltered sites (Goudet et al., In Press). Start Point seems

to be a barrier to effective gene-flow.

e Lannacombe Bay and Prawle Point, separated by 3.3 km, correspond to 2

different populations with little genetic exchange.
o Prawle Point seems to be divided into two isolated breeding groups.

¢ Even though there seem to be two breeding groups at Prawle Point and one at
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Lannacombe Bay, these groups do not seem to be random breeding units.

o Gene-flow in Nucella lapillus seems to be restricted to one dimension.

5.5 Discussion and conclusions

Cabbage and beet are likely candidates for genetic improvement by means of genetic
manipulation (Raybould & Gray, 1993). The possible effects of genes from
genetically modified organisms (GMO’s) escaping into the environment, either
because the individual bearing the modification escapes or because there is
hybridisation with a wild relative, remain largely unknown and will most certainly
be dependent on particular genes and organisms. However, it seems more than likely
that it will occur since crops could be thought of as an infinitely large pool of genetic
material, constantly reimplanted into the environment. This is an effect very similar
to that of recurrent mutation or migration (Gliddon, 1993) and well documented in
the scientific literature (eg. Crow & Kimura, 1970). To delay the escape, minimum
confinement distances of genetically modified crops are likely to be imposed and are
documented in Raybould & Gray (1993), after Levin & Kerster (1974). Isolation
requirements for Brassica is 900 m, whereas it is 3200 m in Beta. Although § was
higher in Brassica (0.328) than in Beta (0.167), it would be very difficult to compare
the two species, since f values are so different. It was shown in Chapter 2 that the
breeding system will affect measurements of 8, since selfing will lower the local
effective size, whereas disassortive mating will enhance it (thereby speeding up or
sfowing down the process of random genetic drift). Brassica is insect pollinated and
insect flight distances seem to be strongl}; influenced by flower density (Gray et al.,
1992). It was shown (Figure 5.5) that the amount of gene-flow is higher in the large
continuous patches than in the rest of the samples, suggesting that pollen is the
principal component of dispersal in this species. If this is the case, confinement
distances have little meaning, since the length of the flight will be a function of the
density of flowers encountered and a bee may well fly hundreds of metres to find a
suitable plant. A better idea than confinement distances would be to surround the
field of modified crop with a pollen donor that cannot hybridise with the crop.

Beta, on the other hand, is predominantly wind pollinated. Two different habitats
were analysed and Figure 5.13 showed that levels of gene-flow are much higher in

driftline than in cliff-top populations. If dispersal was to be mainly pollen mediated,
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one would expect to see either no differences or more gene-flow on cliff-tops where
the wind is stronger. It seems, therefore, that seeds are the main element of dispersal
in this species, at least for long distance migration. A study on the distribution and
dispersal of Beta vulgaris spp. maritima germplasm in England, Wales and Ireland
(Doney et al., 1990) found that seed dispersal was mediated by tides, winds, animals
and man. From the analysis carried out here, it seems that tides and/or storms are
likely to be the main factor in the long distance dispersal of beet. One cannot fail to
feel that lowering the probability of escape of modified Beta genes in the
environment is difficult (Eijlander, 1989; Boudry et al. (In Press)) and that other
solutions such as genes engineered to trigger death under environmental conditions
alien to those of the crop (Ellstrand & Hoffman, 1990) should be looked into.

There are no proposals yet to genetically modify dogwhelks, (although a garlic
butter flavouring gene would please the Mediterranean cooks) but this species is of
interest in another evolutionary domain. Questions have been raised in order to
explain the genetic polymorphism observed in Nucella lapillus. The polymorphism
observed at many electrophoretic loci seems to be linked to environmental
conditions. In particular Lap-2 was shown to be correlated with many ecological
factors such as exposure to wave action, shell shape and chromosome polymorphism
(Day, 1990). The same questions have been raised for other gastropods, in particular
Cepaea nemoralis, the land snail, which displays a polymorphism of the colour and
banding patterns of the shell. Many different selectionist arguments have been
advanced to explain this trait ranging from predatory action (Cain & Sheppard,
1951) to effect the of temperature and albedo (Jones et al., 1981). Nonetheless
dispersal is extremely limited in this spetéies (Lamotte, 1951), which would allow for
differentiation to take place through the effect of random genetic drift. Figure 5.19
shows lower migration in the Lannacombe Bay area than elsewhere in the studied
area. Since this is also where Robertsonian polymorphism is found (which may well
be a partial fertility barrier and therefore, prevent or diminish gene-flow), one could
be tempted to conclude that differences in environmental conditions (high exposure
against low exposure) have favoured genetic differentiation of whelks each side of this
bay. However, when comparing the picture obtained for whelks with those obtained
via modelling of populations living in a one-dimensional habitat (Figure 4.38 &
4.36), the patterns are essentially similar. One is tempted to invoke the principle of

parsimony (Occam’s razor) to conclude that mere random genetic drift is sufficient
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to explain the observed pattern. Evidence for selection in this case would be better
sought in laboratory experiments and it should always be remembered that it is

rather too easy to commit suicide with Occam’s razor (Gliddon & Gouyon, 1989).



Chapter 6

General discussion and conclusions

6.1 New developments in F-statistics.

A recent paper by Cockerham & Weir (1993) examines the estimation of gene-flow

from F-statistics. The main thrust of this paper is
‘to clarify the behaviour of Fsr and Gsr based estimators of gene-flow’.

Some remarks are necessary here to clarify what Cockerham & Weir (1993) mean by
Fst and Ggsr statistics. Fsr based statistics, in their terms, are the correlation of

genes within groups within populations. It is what has been called @ in this research,
and what they call 5. The difference between f# and 6 is that i) the model for B does
not take the genotypes into consideration; ii) there is no mutation in the model used

for @ whereas there is in the model for 8. They state:

‘the model under consideration is the standard island model, with a
finite set of islands, each of size N. Individuals are monoecious, and

mating is at random including a random amount of selfing.

[---]

Even though we generally assume the mutation rate to be much less than
the migration rate, we cannot address questions about migration for a
finite number of populations at equilibrium unless there is some

mutation maintaining variation.’

Indeed, the quantities that they are estimating, X and Y, are the within-population
and overall allelic frequencies respectively (as well as the expectation of f, and 7,

the probabilities of identity by descent within and among populations respectively).

186
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Another quantity would need to be estimated if they were to consider departure
from random-mating within groups. As far as reaching equilibrium is concerned, it
was shown in this research that, with the 2N-allele model with no mutation (cf.
Chapter 2), simulations can be run for long enough to attain equilibrium without

losing polymorphism (see below).

Cockerha,m & Weir (1993) also consider two Gsr based statistics, Gc4 and Gsr.
The first refers to a paper by Crow & Aoki (1984), and corresponds to what has
been called G, in this research. This quantity (equation 3 in Cockerham & Weir
(1993)) is the same as the estimator of G,; derived in Nei & Chesser (1983). The
second (equation 4 in Cockerham & Weir (1993)) is what has been called F; in this
research, namely, the weighted average of the different F};,, where u designates
alleles and the weight is p,(1 — p,). The equivalence between the Cockerham & Weir
(1993) estimators and mine is easily checked by comparing equations (3) and (4) in
Cockerham & Weir (1993) with equations 3.59 and 3.57 here, respectively.

Mutation, g, is considered in Cockerham & Weir (1993), as it was in the model of
Crow & Aoki (1984) but has not been considered in this research. This added
complication seems unnecessary since i) polymorphism is maintained for a long
enough period in the 2N-allele model with no mutation; ii) it occurs in the
equilibrium formula for § only as a product with the migration term (pd in
Cockerham & Weir (1993), equation 1). Figure 6.1 shows the changes of 3 as a
function of migration and mutation rates. The striking feature of this figure is the
iﬁdependencc between migration and mutation rates on § (additivity). If we replace
migration in expression 2.10 by the sum <‘)f migration and mutation

(m — (Dm/(D — 1) + u)), there is no difference between the two expressions apart
from very high mutation and migration rates (Figure 6.2). Although mutation rates
of the order of 10% have been found in some hyper variable and repetitive DNA, it
is more often considered to be in the range of 10~7 to 10~3 per locus per generation
(Maynard Smith, 1989). For these values, there is no differences between the two

formulae.

Cockerham & Weir (1993) point out the differences between 8 and G¢y4 as being one
of definition. First of all, they give the relation between identity by descent and

identity in state, then derive unbiased estimators of the two identities in state I:’o
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CW(1993) beta as a function of migration and mutation rate
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Figure 6.1: B(m, p) (Cockerham & Weir, 1993, equation 1), with r = 10 and M = 25.

Difference between CW(1993) equation 1 and equation 2.10
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Figure 6.2: Differences between f(m,pu) and equation 2.10 when migration in the

latter is replaced by the sum of migration and mutation rates
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and 13"1, and point out that, G¢4 is defined as

—

Fy-F
1-F'

where F is the probability that two genes drawn at random from the entire
population are identical. This is the definition of F' that was given in Chapter 2. On
the other hand, £ is defined as

) N )
1-F

Cockerham & Weir (1993) say:

‘B'is preferable to Ggy4 for quantifying the relation between genes in this
model. The argument is based on 8 not depending on the unknown
quantity n [D here], on the use of each level of differentiation rather than

the use of averages over levels, and on the use of intra-class correlations.’

While these remarks explain the discrepancies between the two estimators, in
particular the dependence of G4 on the number of samples, it does not lead to a
clear statement about the underlying hypotheses needed to take estimators. It was
pointed out in this work that the hypothesis behind the Weir & Cockerham
estimators is one of rate of loss of heterozygosity, whereas that behind Crow & Aoki
is one of rate of allele frequency drift. The two explanations are complementary but
the latter provides a framework in which to include further complexity in the model.
The analysis carried out on estimation of gene-flow focussed on the inverse
relationship R(z) = 1/z — 1, where z is one of the estimators of Wright’s F,;, and
R(2) an estimator of 4Nm. Note that there is a misprint and that the formula for
R(G;T) (p. 858) should read:

(2N —-1)n

R(G;‘T) = m

Cockerham & Weir (1993) state:

‘Considerable simplification occurs for R(Gsr) when all individuals in all

groups of a population at equilibrium are sampled.

[--]

-]
[R(Gsr))] provides a fairly close approximation to 4 Nm for
p L m, m<0.1 and n large.
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[..]

The percentage of discrepancy depends on m, and in the case of R(G;T),
on the sampling dimensions. When m = 0.1, censusing the population is

far better than drawing a sample for R(G;T).’

A complete census of the population does not alter the problem of estimation, as
was pointed out in Chapter 3, since the genetical sampling is still present with a
complete census. The simplifications for R(Gsr) are also valid for large sample size
and large number of demes sampled. Indeed, if the total population comprises few
populations and few individuals per population, the total census will still provide a
highly biased estimator of Fy.

Table 1 in Cockerham & Weir (1993) points out the independence of the parameter
B, with regard to M and r (the number of individuals per sample and the number of
samples, respectively) and shows that the parameter Gsr (F,: here) is dependent on
M and r. This is not surprising since Gsr is a statistic and not an estimator. As
was pointed out in Chapter 3, a more appropriate comparison would be that of £
and G4, a comparison that was carried out in Chapter 3 and which showed that,
while independent of M, G¢c4 depends on r as expected from the relationship
between S and Gga.

Table 2 in Cockerham & Weir (1993) compares theoretical values of R(z) with those
obtained in Slatkin & Barton (1989). Note that superscripts ! & 2 in the second and
third column should read * and ' respectively. They point out that the bias is
always positive and sometimes very large, a finding that corroborates what has been
found in this research (Figures 3.17 and 4.14).

Table 3 in Cockerham & Weir (1993) présents the results of their own simulation,
where estimators were taken after the 101,000th generation, since the calculations
are based on X and Y which take a very long time to reach equilibrium. However, g
reaches equilibrium much faster (Crow & Aoki, 1984; Chesser, 1991). This last
feature is shown in Figure 6.3.

In this research, time to equilibrium was checked using expression 2.38 for the island
model and by ensuring that estimators of F,; had reached a plateau for the
stepping-stone models so that there was no need to run unnecessarily lengthy
simulations.

Cockerham & Weir (1993) focus only on an island model at equilibrium with 10%

migration. The results of Chapter 3 were for a much wider set of situations, since
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£0,£1,beta

1000 2000 3000 4000 5000 6000 - Crations

Figure 6.3: Changes over time of 0;:,63: and f5: (fo, fi and beta on the graph re-
spectively), following Cockerham & Weir (1987). The parameters are g = 0.0001,
m =0.1, N =128, n = 100. 0,0 = 030 = 1, as in Slatkin & Barton (1989). Note that

equilibrium is reached faster for A than for the identity by descent coefficients.
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equilibrium as well as non-equilibrium situations, random and partial selfing, and
island as well as stepping-stone models were investigated. The results here
generalised those of Cockerham & Weir (1993), showing that 3 is unbiased in all the
situations examined. It was pointed out in this research that seeking estimators of
Nm is valid only when 0 is large, and that comparisons of different populations
should be carried out using @ rather than Nm (cf. Chapter 4).

An interesting feature of Table 3 in Cockerham & Weir (1993) is that they consider
two types of starting conditions: one which corresponds to the simulation of Slatkin
& Barton (1989) where the entire population is monomorphic (labelled ‘fixed’ in
Table 3), and one where they sampled 1000 unique alleles at random to create the

genotypic array of the first generation.

‘Instead of an infinite-allele model, we used one with 1000 alleles and
equal mutation rate among all the alleles to make the simulations more
manageable.” Cockerham & Weir (1993)

This last situation is similar to what has been implemented here but the
infinite-allele model was made manageable by using the method presented in
Chapter 2.

I have to disagree with the statement of Cockerham & Weir (1993) about source of
the errors in Slatkin & Barton (1989).

"We do not know, of course, what contributed to the errors in the
simulations of Slatkin & Barton (1989), but one possibility is that the
populations were not at equilibrium.’ Cockerham & Weir (1993)

Figure 6.3 pictures the exact changes in identity by descent coefficients and 3, with
the parameters and starting values used by Slatkin & Barton (1989). It is obvious
from this figure that equilibrium for S is reached much faster than that for the
identity by descent coefficients. Figure 6.3 also corroborates the finding that time to
equilibrium depends on the larger of m and 1/N. In the present case, m is much
larger than 1/N, and is the sole determinant of time to equilibrium. Although
equation 2.38 could not be used here to assess time to equilibrium (since Fp is

undefined), the equation can be rewritten in terms of Fy:

A A

Fi=B"R-1—p)+1°p
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from which
oy n(wEEa)
In(B)
In the present case, f; = 0 (05, = 03, = 0.9998) and this expression reduces to
In(l-2z
t= '%F_) b
where B = (1 — (p + 2%))?(1 — 1/2N), to give 43.4 generations as the time

necessary for 8 to reach 99.99% of its equilibrium value. Even if this result is an
approximation, since the starting population is monomorphic, Slatkin & Barton
(1989) must have allowed for mutation to create enough polymorphism which would
have meant running the simulations for a large number of generations. The
inaccurécy of Slatkin & Barton’s results must be due to a different factor.

In their conclusions, Cockerham & Weir (1993) write:

‘Finally, we note that there are conditions under which functions of
F-statistics can provide gene-flow estimates with low bias. We must agree
with a reviewer of this paper, however, and acknowledge a deficiency in
the approaches discussed in this paper for providing such estimates. The
problem is that these approaches are based on measures of population
differentiation presumed to have been caused by gene-flow. No direct
observations on gene-flow are used, and inferences are necessarily limited
by the assumptions of the model, including neutral alleles and
attainment of equilibrium. There is no basis for distinguishing between
the events of the migration model assumed and any other evolutionary
scenario that could lead to the same pattern of gene frequencies within
and between groups. Unless the various assumptions of a model such as
the island model are verified by direct observations, there must continue
to be doubts about analyses based on assumption-laden

theories—whether or not theses analyses rest on simulations.’

Unfortunately, as was pointed out in this research (cf. Chapter 3), direct
measurements of gene-flow are likely to be even more inacurate than indirect
measurement and could therefore mislead the researcher. Examples of such
discrepancies have been found in many species and are likely to have arisen because
of the large variance of dispersal over time. Methods presented in Chapter 4 and 5
should help to discriminate between the hypotheses of selective pressure and

gene-flow. As Slatkin (1985a) stated:
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‘Estimates based on data from one or two loci should be suspect, but if
estimates are based on data from numerous loci and there is consistency
in the estimates using different methods, it is reasonable to have some

confidence in the conclusions.’

One of the findings in Chapter 5 is that the behaviour of the changes in f, when
pooling samples together, is very robust in situation which depart from random
mating (eg. graphs for Beta vulgaris ssp. maritima). Even when loci present obvious
signs of selection, such as Lap-2in Nucella lapillus, we have been able to identify
them. Unless all loci are submitted to the same type of selection, it seems that the
methods presented here are a step forward in the identification of selection acting at
some loci.

Similarly, distinguishing between breeding patterns was made possible by plotting
the matrix of pairwise Nm values. Some doubts may be cast as to the accuracy of
such measurements, doubts with which I would agree. In particular, better estimates
would be obtained by using the exact relationship between § and Nm given in
Chapter 3 and 4, rather than using the approximation. Another solution would be
to portray the pairwiée 6’s themselves, but the outcome is likely to be difficult to
interpret, since 6 is constrained between [—1/(2N — 1) : 1], whereas exact Nm can
vary between [0 : N] and approximate Nm between [0 : oo]. However, the outcome
of this graphical representation should give a good indication of the underlying
patterns of gene-flow. Even when the populations are not at equilibrium between
the opposing forces of random genetic drift and migration, one would expect to see
lé,rger values of migration between adjacent populations than between populations
further apart if isolation by distance (in a discrete or continuous form) is occurring,
On the other hand a chaotic pattern would be a strong indication that there is no
geographical structuring, whether at equilibrium or not.

The last remark concerns the quality of data. As pointed out by Slatkin (1985a), it
is necessary to obtain many independent loci displaying a similar behaviour before
estimates of gene-flow can be made. Of the three data sets presented here, only the
dogwhelk data could be considered as potentially sufficient to quantify gene-flow but
because there was no clear indication of the limit of the breeding unit, this
quantification was avoided. This point is likely to be most constraining on the
accurate inferences of levels of gene-flow since, without a notional breeding unit, one

can never be sure that sampling was carried out at the appropriate scale.
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In this research, results of simulations were always compared to those obtained from
analytical theory, when available, and were in good agreement. When the analytical
theory was unavailable or too complex to be solved even by numerical methods, at
least the results followed expected patterns. Simulations were not considered on a
par with analytical theory but were used to analyse otherwise intractable models.
Great care has been taken in verifying the results and ensuring that all the elements
of the simulations were correct. In particular, great care was taken to choose truly
random number generators, an aspect of stochastic simulations that, to my

knowledge, is too often ignored.

6.2 Conservation genetics

The main scope of conservation biology is to identify the rules for maintaining the
fitness of individuals and populations, and to understand the biological principles
upon which these rules are based (Soulé, 1986). In a review called ‘Conservation

genetics and conservation biology: a troubled marriage’ Soulé & Mills (1992) write:

‘Until the middle 1970s, most of the people in charge of conservation
ignored genetics, and most of the people in charge of genetics ignored
conservation. But beginning around 1970, plant geneticists started to
become alarmed about the disappearance of primitive or traditional crop
varieties and {heir replacement by modern, genetically uniform, cultivars.
Geneticists suspected then as they do today that the seeds of the green
revolution contained the agents of their own ultimate collapse, namely,

genetic uniformity.’

Since those days, an international system of gene banks was endorsed by the United
Nations Conference on the Human Environment in Stockholm (1972) and the
International Board of Plant Genetic Resources (IBPGR) was established, in order
to further the collection, conservation, documentation and use of germplasm crop
species (Williams, 1988).

Genetics, however, remains a minor component of conservation biology for many

reasons:

o It is usually accepted that the maintenance of genetic variability will affect the

long-term survival of the species but does little for the short term (Goodman,
1987; Belovsky, 1987; Schwartz et al., 1986; Dawson et al. 1987; Lande (1988)).
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o Genetic variability on its own has little meaning and needs qualifiers such as

electrophoretic, DNA, neutral, selected (Brown & Schoen, 1992)

e Depending on the type of variability being considered, the effects of
bottlenecks are different: electrophoretic variability, and inbreeding effective
size are reduced (increased homozygosity) (McComas & Bryant, 1990),
whereas additive genetic variance seems to increase (Goodnight, 1987,1988;
Carson, 1990; Lewin, 1990).

o Genetic variability may well be enhanced at the level of the total population
through processes of local extinction and recolonisation (Ewens, 1990; Gliddon

& Goudet, In Press).

e Moreover, genetics is an arcane field, in part because of its difficult jargon, and

in part because it is quantitative (Soulé & Mills, 1992).

The first point seems to be dated now, and the latest reviews seem to emphasize the
growing need for genetics to be taken into account in assessing chances of survival of
a species (Soulé & Mills, 1992).

The second point is of more interest, since the body of data obtained through
studies of DNA polymorphism is growing and tends to replace electrophoretic work
in the scientific reviews. The prime advantage of DNA techniques compared to
protein electrophoresis resides in the amount of polymorphism detected. Species
that appeared essentially monomorphic when screened for electrophoretic variants of
pfoteins may reveal polymorphism with one or the other molecular tools now
available to population geneticists. Quesil:ions arise as to how much polymorphism is
necessary in order to estimate population structuring. It was shown in Chapter 3
that F-statistics are undefined when the locus is monomorphic. Similarly, when 2N
alleles are obtained from a sample of N individuals, it is impossible to estimate
Wright’s Fixation indices. Total monomorphism is as bad as total polymorphism
and one might wonder what the optimum amount of variability at a locus is in terms
* of the estimation of population structure. The information that one can extract
from a locus should follow a parabola, crossing the zero-axis at 1 and 2N alleles, and
with a maximum somewhere in between. For such systems, looking at a phylogeny
of alleles has been proposed (e.g. Slatkin & Maddison, 1989, 1990, Excoffier et al.,

1992), but requires expensive sequencing techniques and may be difficult to apply
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since phylogeny can only safely be inferred in the absence of recombination (Slatkin

& Maddison, 1989, 1990).

It was pointed out in Chapter 3 that the collection of genotypic data is crucial to
obtain unbiased estimators of F-statistics. Randomly Amplified Polymorphic DNA
(RAPD) are being used in population genetics and are often described as a cheap
and easy technique to detect polymorphism. However, the technique suffers many
drawbacks since markers are dominant, lack repeatability, have been shown to follow
non-Mendelian modes of inheritance (Riedy et al., 1992), and give results highly
dependent on the experimental conditions (McPherson et al., 1993).

It is cleé,r that, from a conservation point of view, an assessment of all types of
variability is required, until some correlations can be found between the different
sources. Neutral markers, however, can, under the conditions discussed in this
research, provide information aboﬁt gene-flow patterns in the past. This information

could prove useful for the conservationist.

Studies of the effect of bottlenecks on populations have shown that while
electrophoretic variability is reduced, additive variance seems to increase (Bryant et
al., 1986; McCommas & Bryant, 1990). This increase in additive genetic variance is
due to the conversion of epistatic and dominant terms to additive terms (Templeton,
1991). This is a whole new facet of the field of population genetics and conservation
and it is in line with the predictions of Wright’s shifting balance theory (Wright,
1977). Most experimental studies of bottlenecks, however, have been carried out on
léboratory organisms, such as Drosophila melanogaster, which tend to have a r-type
life-history. Unfortunately, endangered sl;ecies [that we want to preserve] tend to be
of the K-type, and are more likely to suffer the effect of inbreeding-depression
and/or outbreeding-depression (Templeton & Read, 1983; Templeton, et al. 1986).
Indeed, ‘r-species’ such as the mosquito Culez pipiens goes through bottlenecks
every year during the winter and therefore experience frequent local extinctions and
recolonisations. Evolution must have favoured a genotypic make-up for these species
insensitive or less-sensitive to these fluctuations than species with little fluctuation
in population size. Furthermore, one can foresee an uproar if scientists were allowed
to experiment with the endangered ‘cute and cuddly’ species, experiments that are
necessary if better conservation strategies are to be defined and applied by

conservationists.



6.2. Conservation genetics 198

The question of a Single Large Or Several Small (SLOSS) populations remains a
classic conservation dilemma. From a pure demographic perspective, a single large
population seems better since the probability of extinction of a patch is a convex
increasing function of decline in patch size (this consideration needs moderating
however, since a single catastrophe could wipe out the single large population). On
the other hand several small populations would be the best way to maximise the
maintenance of genetic variability at the level of the total population, if inbreeding
depression were not a problem. This dilemma would have to be understood in the
framework of metapopulations: a set of local populations which are established by
colonists, survive for a while, send out migrants and eventually disappear (Levins,
1970). MODELA42, presented in this research, does not include this demographic
feature of metapopulations but could still be considered as a reference for such
studies. One of the criticisms that can be made of existing metapopulation models
(see Olivieri et al. (1990) for notable specific exceptions) is that demography and
genetics are usually uncoupled: some metapopulations models (eg. Wade &
McCauley, 1988; Marayuma & Kimura, 1980) have no real dynamics locally since
the local populations, after foundation by a specified numbers of individuals, grow
instantly to their carrying capacity. Models in the same category have fixed r and K
values, independent of the genotypes and, therefore, focus only on short term
ecological effects rather than long term evolutionary consequences. A second
category of models considers a constant fitness (independent of density and/or
frequency). Possible ecological effects are therefore ignored to allow evolutionary
consequences to be studied. As was pointed out by Gliddon & Goudet (In Press),
given the relative lack of incorporation of genotypic effects on parameters of clear
importance for colonisation such as colonising ability and extinction probability, it
should come as no surprise that the majority of the models predict that demographic
(genotype independent) effects are of major concern in designing conservation
strategies. In a neutralist framework, a measure that may be more appropriate than
the census size is the effective population size. We have seen throughout this work
that many different, often contradictory, definitions of effective size exist. While
inbreeding effective size is a measure of the rate of loss of heterozygosity, the variance
effective size is a measure of the rate of loss of genetic variability from a population,

or a measure of the rate of allele frequency drift. Crow & Denniston (1988) stated:
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‘If one is interested in conserving genetic variance,.. ., it [variance

effective size] is the most appropriate effective number.’

A survey of the scientific literature will show at least three other types of effective

sizes emerging:

o The extinction effective size of Haldane (1939), also called eigenvalue effective
size, since it can be calculated by measuring the largest non-unit eigenvalue of

the transition matrix of the Wright-Fisher model (Ewens, 1979, 1982).

e The mutation effective size, introduced by Marayuma & Kimura (1980), stems
from the infinite allele model and is defined as a function of the probability
that two individuals chosen at random from the entire population are of the

same allelic type, the function being:

(1—u)?
2N — 2N = 1)(1 — u)?

(we recognise here equation 2.10, with the mutation rate u replacing the

P =

migration rate m). Providing that P and u can be estimated, and that the
infinite allele model holds true, then solving for N would lead to the mutation
effective size of the population (Ewens, 1989).

e The diversity effective size (Gregorius, 1991) , ‘which accounts for the rate of
loss of allelic variation, and not merely the rate of loss of heterozygosity’ and is

similar in concept to the variance effective size.

It has been shown in Chapter 4 that restricted gene-flow enhances the variance
effective size of the population compared to the census size and therefore, maintains
more genetic variability. Similar ﬁndings‘ were described in metapopulation models.
Wade & McCauley (1988, 1991) considered two different types of founders: a
‘Propagule Pool’ in which there is one large source population from which the
migrants originate; and a ‘Migrant Pool’ in which migrants are drawn at random
from the extant local populations. The ‘Propagule Pool’ confirms the results of a
verbal model of Wright (1940), namely, that F,; was increased, relative to a no
extinction control and, therefore, the variance effective size was increased providing
that the number of founders was less than the carrying capacity. In the ‘Migrant
Pool’ model, F,; was increased and, hence, variance effective size, providing that
4Nm + 1 was larger than twice the number of founders, where N is the local

carrying capacity and m the rate at which local populations exchange migrants.
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This view was expressed by Ewens in 1989:

‘It is usually accepted that a subdivided population subject to extinction
of subpopulations will lose genetic variation more rapidly than an equally
large random mating population, or equivalently that it has a smaller
eigenvalue effective population size. The above shows that it is not
necessarily true. [...] We will see later than when mutation exists, the
subdivided population can maintain more genetic variation, on the
average, than a random mating population of the same size, again

against accepted views.’
However in 1990 Ewens states:

‘Except in extreme cases involving very many subpopulations each of
small size, the rate of loss of genetic variation is greater than that for a
single random mating population [...] and the implication for MVPS
(Minimum Viable Population Size) is that a larger [global] population
size is needed in the substructured case if the rate of loss of genetic
variation is to be kept at the same value as that of an undivided

population.’

In both quotations, reference is made to maintenance of genetic variation but no
mention is made of the level at which this variation is maintained. Conclusions from
the present research are that if variation is to be maintained within subpopulations,
in order to avoid inbreeding depression, then maximisation of the inbreeding
effective size is the goal, and a single large would be better than several small
populations. On the other hand, if variation is to be maintained globally, then
maximising the variance effective size is in order, and several small is better than a
single large population. Note that the length of time over which this variation has to
be maintained has not yet entered the argument but it is obvious from my results
that, if genetic variation is to be maintained in the long term then several small is
also better than a single large.

This discussion of effective sizes is a typical example of what Soulé & Mills (1992)
meant when they mentioned the difficult jargon of population genetics. One might
wonder whether the terminology of effective sizes, confusing even for geneticists,
should not abandoned altogether and replaced by clear definitions such as rate of

allele frequency drift (variance effective size), rate of loss of heterozygosity
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(inbreeding effective size), variance in the number of successful gametes (extinction
effective size). Although these definitions have less impact than the catch-words
‘effective sizes’, they would avoid misuse since many conservationists have ignored
the differences between census and effective size and used the latter as an estimate

of MVPS (Harris & Allendorf, 1989; Ewens, 1990).

6.3 Risk assessment: releasing GMO’s

It was pointed out in Chapter 5 that population genetics theory can be used to try
and predict the effect of releasing Genetically Modified Organisms (GMO’s) in the
environment. Direct measurement of escapes of modified crops, or of their gametes,
into the wild proves difficult since what needs to be measured are the long distance
events. As was pointed out by Gliddon (pers. comm.), virtually all of the sampling
methods and monitoring protocols described in the literature fail to describe the
minimum levels of detection which could be achieved using their particular protocol.
This problem is exacerbated by the design of the experiments—- in the vast majority
of cases using higher i)lants, the marked organisms are in a small minority of total
organisms in the design. This results in the experimental design making it difficult
to detect the spread of the marker in relation to the probability of recovering the
non-marked gene. For example, if a marker is represented by 1% of the total
organisms, even if it is distributed uniformly across the entire experimental area, it
will only be recovered in 1% of the samples. This fault of experimental design could
well account for the very small distances that have been reported for the spread of
GMO'’s. Dafmency & Renard (1992) referred to one experiment with transgenic
oil-seed rape in which a small plot (10m x 10m) of recipient plants was situated at
800 m from a large plot (100m x 100m). The recipient plot consisted of 50%
male-sterile and 50% hermaphrodite plants. On average, 1.5% of the seeds recovered
from the male-steriles in the small plot had been pollinated by plants from the large
plot, which was 800m distant. This should be compared with results (Darmency &
Renard, 1992) in which no pollen was detected at 100m from a small source of
transgenic rape located in the centre of a 1 hectare field.

A second point that needs emphasising is the crucial need to fit a distribution to the
data collected. It was mentioned in Chapter 4 that the projection of bivariate

distributions of the exponential family in one-dimension gives rise to a power
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function. Kareiva et al. (1993) and Manasse (1992) came to similar conclusions.
Note that most reported results are expressed in terms of marker genes at a given
distance as a percentage of total genes sampled. This is inappropriate as it is scale
dependent, the correct form being of marker genes at a given distance as a
percentage of the total number of marker genes recovered. This last method removes
the dependence on size of the source of marker genes and correctly emphasizes the

rate of decrease of marker genes recovered with distance (Kareiva et al., 1993).

While the above considerations will improve direct measurements of gene-flow, the
space-time variability intrinsic to direct measurements remains. Furthermore, only
part of the gene-flow occurring is measured, since what is followed are marker genes
and there seems to be no need for a transgenic crop in these experiments because
the foreign DNA is used merely as a marker. The debate then returns to the
usefulness of direct versus indirect methods. While data sets provided for the study
of Beta and Brassica in Chapter 5 were not sufficient for quantitative predictions to
be made, I have been able to show that levels of gene-flow are higly dependent on
environmental condifions. One is therefore tempted to regard direct estimations as
an attempt to characterise levels of gene-flow in a given, monitored environment.
For predictions to be of any use, the experiment would need to be repeated in many
different environments and indirect methods should be used concurrently in a close
wild relative (if it exists) on a large scale to assess how variable gene-flow could be
and how much long distance migration occurs because this last category will be

extremely difficult to measure with direct methods.

Risk to conservation should not be neglected. One possible effect of the escape of a
large number of genetically uniform organisms (with wild relatives), be it a GMO or
not, will certainly be to diminish the diversity of the wild relatives. Examples, sadly,
already exist: supportive breeding of salmonid populations (releasing captive-bred
animals into the wild to support weak and endangered populations), in an attempt
to enhance wild stocks, results a in dramatic increase in the rate of loss of genetic
heterozygosity of the wild population, as well as an increase allele frequency drift,
thereby reducing both the inbreeding and the variance effective size of the wild
population (Ryman & Laikre, 1991).
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8.4. General conclusions

6.4 General conclusions

Gene-flow has been studied in this researéh from an analytical, theoretical and
practical angle. While simple models of restricted gene-flow are tractable
analytically and can produce very accurate predictions when compared with the
results of computer simulations, models of discrete populations with geographical
structure models of continuous populations need further research. Basic
requirements for models of discrete populations and analytical models are
highlighted. However it should be kept in mind that models of isolation by distance
in a continuum are very difficult to relate to concepts familiar to the population
geneticist since the basic concept linking continuous populations to discrete ones,
the neighbourhood size, has been shown to be flawed.

Inferring gene-flow from indirect methods implies obtaining unbiased estimates of
quantities such as F-statistics. The framework for estimation presented, which uses
the concept of variance effective size to derive unbiased estimates in different
situations, does help to clarify the underlying assumptions. In particular, the
conditions under which the estimates of Nei & Chesser (1983) and Weir &
Cockerham (1984) are best suited have been highlighted.

While analytical treatment of geographically structured populations is difficult,
F-statistics can be u;ed to unravel levels of genetic structuring when the ideal
conditions of an island model are not met. Methods presented here yield ways of
discriminating between samples taken within and among breeding units, a necessary
distinction if levels of gene-flow are to be inferred. Calculation of pairwise F;’s
pfovides a picture of the geography of gene-flow in the population investigated, even
in continuous populations. |

Emergent properties are inherent in biological systems since they are hierarchical.
Gliddon & Gouyon (1989) pointed out that the outcome of selection at any level of a
hierarchy (molecule, individual, group..) must be the result of a successful selection
at all underlying levels. In this research, individual and molecular levels were
amalgamated because individuals were represented by a collection of independent
(diploid) loci. It was pointed out that effects such as those of bottlenecks have a
different outcome on electrophoretic and quantitative variation. Small interactions
in systems with few components can be ignored but as the the number of
components in the system increases, interactions, even if very small, take precedence

over separate effects (Cohen & Stewart, 1991). The question ‘why all this
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polymorphism?’ is as bad a question as ‘why sex?’ or ‘what is the unit of
selection?’. Indeed one might be tempted to answer ‘42’ and apply for funding to

build a new computer!
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Appendix A
Listing of MODEL42

A.1 STEPINF.PAS

?nit stepint;

(»

(% WARNING !!! All the declarations within INTERFACE are
(* global;===> ;ou can use them in all the programs

(» using The unit StepInf

(=
(
Interface

uses
crt,Graph,dos,Drivers{,Fonts};

const
MaxInd = 4096;
n = 64;
DMaxInd = 8192;

GFP_Mes : Airay[o..Q] of string[40]=
"

1]
*ISLAND MODEL WITH INF. COETINEET’,
YISLAND MODEL WITH GAMETIC CLOUD’,
’STEP. STO. MODEL i1 DIM. EXP. DISTR.?,
’STEP. STO. 2 DIM. CON. 47,
’STEP. STO. 2 DIM. CON. 8 EXP. DISTR.?,
’STEP. STO. 2 DIN. CON. 8 NOR. DISTR.?,
'STEPPING STONED NEIGHBOURKOOD’,
'PLANT LATTICE MODEL’,
’TRUE WRIGHT LATTICE MODEL’);

type
Names = String[40];
Ext = string[3];
Struct = array[1i..3] of word;
W_Coord = array[i..4] of word;
Point = record
X,y tinteger;
end;

ExistsPtr ="Exists;
Exists = Array[i..DMaxInd] of Boolean;

AliveGenPtr ="AliveQen;

AliveGen = Array[i..DMaxInd] of Word;
IntFldPtr =*IntFld;
IntFld = Array[1..MaxInd,1..2] of Word;
Descr_GFP1 = record
kind : char;
self :single;
mig :single;
popsize tword;
unused :array[1..5] of byte;
end;
Descr_GFP4 = record
kind : char;
self :single;

219
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(%]
N
o

mig tsingle;
popsize tword;
tor tboolean;
unused sarray[1..4] of byte;
end;
Descr_GFP3 = record
kind : char;
self :single;
mig :single;
popsize tword;
tor :boolean;
dist :byte;
Aver :Byte;
unused :array[1..2] of byte;
end;
Descr_GFP7 a record
kind ¢+ char;
self :linglo;
popsize :word;
tor :boolean;
aver :SINGLE;
unused ;array[1..4] of byte;
oend;
Descr_GFP8 = record
kind : char;
self :single;
dilpn,dilpt:linflo;
tor,plant :boolean;
unused :array[1..1] of byte;
end;
DescrRec = record
ilNam :names;
NewData sarray[1..16] of byte;
ond;

IntF1ldFile = File Of IntFld;
AliveGenFile = File 0Of AliveQen;
ExistsFile = File Of Exists;
DescrRecFile = File of DescrRec;

const
W_Size_Small : W_Coord=(5,15,79,24);
W_Size_Big : W_Coord=(5,3,79,24);

var
FilNamDat ,Bame,FilNamPar : Names;
FilNamRed ,FilNamIxt ,FilNamFre : Names;
GrDriver,GrMode ¢ integer;
Graphics : boolean;
ErrCode ¢ Byte;
FileDat ,FileRed : IntfldFile;
ThisDescrRec : DescrRec;
FileDescrRec : DescrRecFile;
FileTxt ,File6,Filepar ,FScreen ¢ Text;
FileFre : AliveGenFile;
MaxAll : Word;
Exti : ext;
81,82 ¢ Longlnt;
‘D : DirStr;
Ta : NameStr;
E : ExtStr;

(

Function lintrange(low,high:longint) : longint;
Function range(low,high:real):real;

Procedure FileList (exti:ext);

Function Uniform : Doubles;

Function Grandom( N :LongInt) : Longint;

Procedure Window2(X : W_Coord);

Procedure Ini(var Fld:IntFldPtr);

Procedure FillBoolArray(Param:Single;var Arbool:ExistsPtr);
Function FileExist (Name :Names) :Boolean;

Procedure Erase_File(var Name:Names);

Function Affirmed(Default,Ingraph:boolean):Boolean;
Procedure Message_End;

Procedure Write_Descr_OFP(ss:char;var F:IntFldFile);
Procedure Read_Descr_GFP(var £f:text;var F:IntFldFile);
Procedure UpDate_FileRec(Var NewRec:DescrRec);
Procedure InitTxt(Name:Names);

%unction GetNewCoord(Tor:boolean;a,N:integer;0fsa:ShortInt) :integer;

IMPLEMENTATION
( CHECK REAL AND INTEGER VALUES
function licheck : longint;
var x : longint;
begin

{s1-}

readln(x);

{$1+})
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(3

if IoResult<>0 then
repeat
writeln;
z;%t;(’lnput not in correct form- Please retype ’);

readln(x);
{$1+)
until IoResult=0;
licheck:=x;
end; (*lichecks)

function lintrange(low,high:longint) : longint;
var x : longint;
begin

x:=licheck;

while (x<low) or (x>high) do

begin
write(’0ut of range, Please retype: ? ?’);
x:=licheck;
writeln;

end;
lintrange:=x;
end; (*lintranges)

function rcheck : real;
var x : real;

readln(x);
{$1+}
if IoResult<>0 then
repeat
writeln;
z;it;(’lnpnt not in correct form- Please retype ’);
I-
readln(x);
{$1+}
i until IoResult=0;
rcheck:=x;
end; (*rchecks)

function range(low,high:real) : real;
var x : real;

begin

x:=rcheck;

while (x<low) or (x>high) do

begin
write(’Out of range, Please retype: ? ?);
x:=rcheck;
writeln;

end;

range:s=x;
znd; (*ranges)

FILES IN DIRECTORY
procedure FileList(Extli:ext);

var
DirInfo : Searchrec;
Xpos ,YPos :Byte;
P :PathStr;
D. :DirStr;
| :HameStr;
E . :ExtStr; \
egin
Xgol:I1;
TextBackGround (Black);
Window(5,3,79,12);
clrscr;
TextBack@round (Lightdray) ; TextColor(Yellow);
Window(3,2,77,11);

ClrScr;
GotoXY(23,1);write(’LIST OF FILES IN DIRECTORY:’);
TextColor(Blue);
FindFirst(’#, '4exti,Anyfile, DirInfo);
while DosError = 0 do
bogin
FSplit(Dirinfo.Name,D,§,E);
It ((E=’?)
or (E=’ SAG’)
or (Em=’ FIQ’)
or (E=’.DAT’)
or (E=’,RED’))
Then Begin
If WhereY+1<(Hi(WindMax))
Then GoToXY(Xpos,WhereY+1)
Else Begin
Xpos :=XPos+14;
YPos:=2;
GoToXY(XPos,YPos) ;
End;
write(dirinfo.name);
ond;
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findnext(dirinfo);

end;
GoToXY(50,Hi (WindMax)) ; TextColoxr (YELLOW) ;
Write(’PRESS ANY KEY TO PROCEED.’);
Repeat Until ReadKey>$i;
GotoXY (50 ,Hi(WindMax));ClrEol;
end;
(sxsssnsennsnnssGET ANSWER Y, OR DEFAULT AND PASS IT BACK )
function affirmed (default,ingraph:boolean):boolean;
(* Waits for yes or no or default for return only #)
var
gotit,yesno : boolean;
ans,dans : char;
begin
repeat
otit:=true;
T default then
begin

if ingraph then outtext(’ [Yes] : ?)
else write(’ [Yes] : ?);
dans:=’y’
end
else
begin
if ingraph then outtext(’ [No] : ?)
else write(’ [No] : ?);
dans:=’n?;
end;
if ingraph then outtext(’ Y or N? ?)
else write(’ Y or ¥? ?);
repeat
ans :=ReadKey;
until ans>=$13;
if ans=#13 then ans:=dans;
if Upcase(ans) in [’Y?,’N’] then
case ans of
'y?,’Y?: yesno:=true;
‘n?,’N’: yesno:=false;
end (* ans *)

else
begin
if ingraph then begin
SetFillStyle(SolidFill,GetBkColor);
Bar(0,0etY-10,640,CGetY);
MoveTo(5,0etY);
outtext (’Please answer ’);
end else begin
writeln;
write(’Please ansver ’);
end;
gotit:=false;
end;
until gotit;

affirmed:=yesno;

if ingraph then outText(Upcase(ans)) else writeln(Upcase(ans));

end (* affirmed *) ;

( MESSAGE_END )

Procedure Message_End;

Begin
SetTextStyle(defaultFont ,HorizDir,1);
SetTextJustify(LeftText,CenterText);
SetColor(getcolor);
OutTextXY(b,detMaxY-5,’PRESS ANY KEY TO PROCEED.?);
Repeat Until ReadKey>#i;
cleardevice;
setBkColor(Blue);
RestoreCrtMode;
Graphics:=False;

End; {0f Proc Message_End}

A.1.1 UNIFORM.PAS

UKXIFORN FUEC )
Function Uniform : Double;
Var
Z,k : Longlnt;
Begin

k:=S1 div 53668;
81:240014*(S1-k#53668)-k*12211;
If 81 < O Then 81:=31+2147483563;
k:=82 div 52774;
82:2409692+(82-ke52774) ~k*3791 ;
If 82<0 Then S2:= S2+2147483399;
Z:m gl-82;

If Z<1 Then Z:= 2+2147483562;
Uniform:=Z«4,666613E~10;

end; {0f Func Uniform}

Function Grandom( N: Longint) : Longlnt;
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Begin
Grandom:=Trunc(UniFormsX) ;
end; {0f Func Grandom}

( 2nd WINDOW )
Procedure Window2( X:W_Coord);
Begin
TextBack(round(black
Hindov(x[l],x[2],1[3],1[4]) ClrScr;
TextBackdround(Blue); TcxtColor(iS),
Window(x[1])-2,x[2]-1,x[3]~-2,x[4]~1);
ClrS8cr;
End;
( INITIALISATION PROCEDURE )
Procedure Ini(Var Fld:IntFldPtr);
var i: word;
Begin
MaxAll :=DMaxInd;
For i:=1 to MaxInd do
Begin
Fld~[i,1]:=i;
F1d~[i,2] :=MaxInd+i;
end;

end;
(

FILL_BOOLEAN_ARRAY PROCEDURE )
Procedure FillBoolArray(Param : Single;var ArBool :ExistsPtr);

var i : integer;

Begin -
For i:=1 to DMaxInd Do arbool~[i]:mUniform<Param;

End;{0f Proc FillBoolArray}

(ess*easers+FILEEXIST FUNC )
Function FileExist(Name :Names) :Boolean;

var £ : File;

Begin

As;ign(f,lamo);

I-

reset(f);
close(?);
{81+}
FileExist :»I0Result=0;
End; { Of Function FileExist)}
(sexsssssssxERASE_FILE PROC )
Procedure Erase_File(Var Name:Names);
Var £ :File;
begin
ClrScr;
graphics:=false;
Window2(W_Size_Big);
Write(’Input File lll. for Output (Without ext.): ?);
Readln(Name) ;
If FileExist(name)
Then Begin

Write(’WARNING!!. File Already exists. Do you want to Erase it?’);

If Affirmed(False,draphics)

Then Begin
assign(f,Name);
Erase(?f);
If FileExist(Name+’ ,DAT?)
Then Begin
asnign(f,lano+’ DAT?);
erase(f);
End; '
It FiloExist(lame+’.nED’)
Then Begin
assign(f,Name+’ RED’);
erasa(f);
End;
End
Else Begin
repeat
write(’Input File Name For OutPut : ?);
readln(Name);
Until (Not FiloExist(lano));
End;
End;
end;
WRITE_DESCR_GFP PROC: )
Procedure Write_Descr_GFP(ss:char;var F:IntFldFile);
var
ans : boolean;
NoewBame : names;
P ¢ word;
Begin
ClrScr;

Vindow2(V_Size -Big);
GotoXY(10,2);
Writeln(’ Name of File is :?,Hame);
case ss of
140,320 :begin
With FileRec(F) Do
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end;

Begin

End;

4 :begin
With FileRec(F) Do
Begin

end;

End;

137,767,76" :begin
Vith FileRec(F) Do
Begin

Descr_GFP1(UserData) .kind:=ss;

write(’ Input Proportion of selfing [0.0..1.0] : ?);
Descr_GFP1(UserData) .self:=srange(0.0,1.0);

write(’ Input Migration proportion [0.0..1.0] : ?);
Descr_GFP1(UserData) .mig:=range(0.0,1.0);

repeat
write(’ Input deme size [1,4,16,64,266,1024] : *);
P:=LintRange(1,1024);
until ((P=1) or (P=4) or
(P=16) or (P=64) or (P=256) or (P=1024));
Descr_GFP1(UserData) .PopSize:=P;

Descr_GFP4(UserData) .kind:=ss;

write(’Input Proportion of selfing [0.0..1.0] : ?);
Descr_GFP4(UserData) .self:=range(0.0,1.0);

write(’> Input Migration proportien [0.0..1.0] : ?);
Descr_GFP4(UserData) .mig:=range(0.0,1.0);

repeat

write(’ Input deme size [1,4,16,64,2566,1024] : ?);

P:=LintRange(1,1024);
until ((P=1) or (P=4) or

(P=16) or (P=64) or (P=256) or (P=1024));

Descr_GFP4(UserData) .PopSize:=P;
write(’ Do you want the pattern to be toroidal ? ?);
Descr_GFP4(UserData) .tor:maffirmed (False,graphics);

Descr_GFP3(UserData) .kind:=ss;

write(’Input Proportion of selfing [0.0..1.0] : ?);
Descr_GFP3(UserData) .self:=range(0.0,1.0);

write(’ Input Migration proportion [0.0..1.0] : ?);
Descr_GFP3(UserData) .mig:=range(0.0,1.0);

repeat
vrite(? Input deme size [1,4,16,64,256,1024] : *);
P:=LintRange(1,1024);
until ((P=1) or (P=4)
or (P=16) or (P=64)
or (P=256) or (P=1024));
Descr_GFP3(UserData) .PopSize:=P;
write(’ Do you want the pattern to be toroidal 7 ?);
Descr_GFP3(UserData).tor
:maffirmed(False,graphics);
If Descr_GFP3(userdata).mig=0.0
Then Descr_GFP3(userdata).dist:=0
Else Begin
write(? How far do you allow dispersal [1..99] ? ?);
Descr_GFP3(UserData) .dist:=lintrange(1,99);
write(’ Average distance of dispersal f1..991 7 ’);
Descr_GFP3(userdata) .Aver:=LintRange(1,99);
end;

With FileRec(F) Do ,

Descr_GFP7(UserData) .kind :=ss;
write(’Input Proportion of selfing [0.0..1.0] : ?);
Descr_GFP7(UserData) .self:=range(0.0,1.0);

repeat

write(’ Input deme size [1,4,16,64,256,1024] : ’);

P:=LintRange(1,1024);
until ((P=1) or (P=4) or

(P=16) or (P=64) or (P=266) or (P=1024));

Descr_GFP7(UserData) .PopSize:sP;
write(’ Do you want the pattern to be toroidal ? ?);
Descr_GFP7(UserData) .tor:=affirmed (False,graphics);
write(’ Average distance of dispersal [0..99.0] ? ?);
Descr_GFP7(userdata).Aver:=Range(0.0,99.0);

With FileRec(F) Do.Dolcr_GFPB(UlorData).kind:-l;

write(’Input Proportion of selfing [0.0..1.0] : ?);

with FileRec(F) Do Descr_GFP8(UserData).self:srange(0.0,1.0);
With FileRec(F) Do Descr.GFP8(UserData) .dispm:=sdm;

With FileRec(F) Do Descr_GFP8(UserData) .dispf:=sdf;

With FileRec(F) Do Descr_GFP8(UserData).tor:=neibtor;

With FileRec(F) Do Descr_GFP8(UserData).plant:=plant;

end;
. end;
" :begin
Begin
End;
end;
{
82,79 :begin
end;
}

end;
end; {0f Proc Write_Descr_GFP}
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( READ_DESCR_GFP PROC )
Procedure READ_DESCR_GFP(var £f:text;var F:IntFldFile);
var .
x :byte;
ss :sZ:ingESOJ;
Begin
ClrS8cr;
Window2(W_Size_Big);
gotoxy(2,1); writeln(’?);
gotoxy(2,2); writeln(®
gotoxy(2,3); writeln(’
gotoxy(2,4); writeln(’
gotoxy(2,6); writeln(’
gotoxy(2,6); writeln(’
gotoxy(2,7); writeln(’
gotoxy(2,8); writeln(’?);
with filerec(F) do
Begin
gotoxy(15,2);
write (£f,’NAME OF FILE: ’);
x:=0;
repeat
write(ff ,Upcase(name[x]));
ximx+l;
until name[x]=%0;
writeln(ff);
x:mord (Descr_GFP1(UserData) .kind)=-48;
ss:=GFP_Mes[x];
ss:=concat (*TYPE of GFP: ’,ss);
GotoXY(20,3);
Writeln(ff,ss);
gotoxy(5,4);
writeln(ff,’SELFING= ’,Descr_GFP1(UserData).Self:6:4)

ond;
case chr(FileRec(F).userdata{1]) of
112,02 :begin
With FileRec(F) do
Begin
gotoXY(50,4);
Writeln(ff,’MIGRATION= ’,Descr_GFP1(UserData) .Mig:6:4);
gotoxy(E,6);
a Writeln(ff,’DEME SIZE IS: ’,Descr_GFPi(userdata).PopSize:6);
end;
end;
4 tbegin
With FileRec(F) do
Begin
gotoXY(50,4);
Writeln(ff, MIGRATION= ’,Descr_GFP4(UserData) .Nig:6:4);
gotoxy(5,5);
Writeln(ff, ’DEME SIZE IS: ’,Descr_GFP4(userdata).PopSize:6);
gotoxy(5,6);
q Writeln(ff, TOROIDAL IS: ?,Descr_GFP4(userdata).tor);
end;
ond;
'37,767,76’ :begin
With FileRec(F) do
Begin
gotoXY(50,4);
Writeln(ff, ’MIGRATION= ’,Delcr-GFPS(Ul.rData).Hig:6:4);
gotoxy(5,6);
Writeln(ff,’DEME SIZE IS: ’,Descr_GFP3(userdata).PopSize:6);
gotoxy(5,6);
Writeln(ff, TOROCIDAL IS: ?,Descr_GFP3(userdata).tor);
gotoxy(50,6);
writeln(££, 'MAX DIST OF DISP= ?,Descr_GFP3(userData).Dist:3);
gotoxy(60,6);
writeln(ff,’AVER DIST Of DISP= ’ ,Descr_GFP3(userdata).Aver:3);

ond;
. end;
" :begin
With FileRec(F) do
Begin
gotoxy(5,6);
Writeln(ff,’DEME SIZE IS: ’,Descr_GFP7(userdata).PopSize:8);
gotoxy(50,6);
writeln(ff,’AVER DIST Of DISP= ’ ,Descr_GFP7(userdata).Aver:5:3);
gotoxy(6,6);
Writeln(ff,’TOROIDAL IS: ’,Descr_GFP7(userdata).tor);
ond;
end;
’87,9? :bogin
end;
end; .
End;
( INITTXT PROC " )
Procedure InitTxt(Name:Names);
var
i:word;
Begin

for i:=1 to Length(Name) do Name[i]:=Upcase(Name[i]);
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FilNamTxt :asName+’.TXT?;

If FileExist (FilNamTxt)

Then Begin
Assign(FileTxt ,PilNamTxt);
reset (FileTxt);
Append(FileTxt);

Else Begin
Assign(FileTxt ,FilBamTxt);
roerZO(FiloTxt);

d;
writeln(FileTxt,
’ DESCRIPTION OF THE POPULATION:
Read_Descr_GFP(FileTxt ,FileDat);
sriteln(FileTxt,
)

close(FileTxt);
%nd; {0f InitTxt Proc}

;

’);

UPDATE FILEREC PROCEDURE

Procedure UpDate_FileRec(Var NewRec:DescrRec);
var
i :word;
Pos tword;
DummyRec :DescrRec;
Found_1 :Boolean;
begin
Found_1:=False;
i:=0;

i:mi+1;
NewRec.FilNam[i] :=Upcase(NewRec.FilNam[i]);
Until BewRec.FilNam[i}=20;
For i:=i to Length(NewRec.FilNam) do NewRec.FilNam[i]:=#0;
Reset (FileDescrRec);
If FileSize(FileDescrRec)<>0
Then
Repeat

Pos:=FilePos(FileDescrRec);

read (FileDescrRec,DummyRec) ;

If DummyRec.FilNam=NewRec.FilNam

Then Begin
Seek(FileDescrRec,Pos);
write(FileDescrRec,NewRec);
Found_1:=True;

End;
Until ((Found_1) or (Eof(FileDescrRec)));
If Not Found_1
Then Begin
Seek(FileDescrRec,FileSize(FileDescrRec));
Write(FileDescrRec,NewRec);

End;

Close(FileDescrRec);

ETNEWCOORD FUNCTION

End;{0f Update_FileRec Proc}
(

Function GetNewCoord(Tor:boolean;a,F:integer;0fsa:ShortInt) :integer;

var Res : integer;
Begin
. If Torxr
Then Begin
Res:=(a+N+60-1+0fsa) mod X;
end
Else Begin
If ((a+Dfsa)<i)
Then Res:=GRandom(a)
Else If ((a+0fsa)>N)
Then Res:=a+drandom(¥-a)-1
Else Res:=a+0fsa-1;
ond;
GetNewCoord:=Res;

?nd; {0f Function GetNewCoord}

Begin (sMain body#)
TextBackGround (Blue) ;TextColor(White);
Window(1,1,80,26) ;ClrScr;
If FileExist(’MODEL42.INI’)
then begin
Assign(FileS, ’MODEL42.INI?);
reset(File6);
read(file6,sl,s2);
Close(FileS);
end
else Begin
Assign(File6, ’NODEL42.INI?’);
rewrite(File6);
Close(File8);
write(’Input first seed [1..2147483562] : ?);
81:=lintrange(1,2147483562);
write(’Input second seed [1..2147483398] : ?);
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81:=lintrange(1,2147483398);

end;
If FileExist(’NMODEL42.REC’)
Then Begin
Assign(FileDescrRec, ’MODEL42.REC’);
nolot(FiloDoncrk.c),
Close(FileDescrRec);
End
Else Begin
A-nign(?ilcboscrnoc,’HDDEL42.REC’);
Rewrite(FileDescrRec);
Close(FileDescrRec);

AlsignCrt(FScr.on) ;Rewrite(FScreen);
End.{0f Unit StepInf}

A.2 MODEL42.PAS

zrogrl- Model42;

(+ THIS PROGRAM IS JUST THE MENU FOR ALL THE OTHER BITS. FROM IT CALLS ARE

KADE TO :
=PROGRAN BLDGFPAT (REPLICATES OF EITHER:
=ISLAND MODEL (To BUILD) .

-STEPPING STONE MODEL -|_|-,--..-=|_|-=..=- ETC...

~NEIGHBOURHOOD MODEL (EXPU DB BNORMAL)
=PROGRAM BUILDGEN
=PROGRAM PLOTFREQ
=PROGRAN SHFIELD

=PROGRANM DISPERSAL (CALCULATION OF THE AV. DISP. IN A NEIB)
=PROGRANM REARR (FOR USE OF SAMPLING WITH A NEIB MODEL)
~PROGRAM SAMPLING (FOR ¥ON NEIB MODEL)

=PROGRAM CALCFSST (CALCULATION OF FSTAT FOR NON NEIB MODEL)

PLENTY OF COMMENTS TO HAD, BUT I CAN’T BE BOTHER.
OH YES, S8IZE OF FIELD=MAXIED IS DEFINED IN UNIT STEPINF.

*)
)

USES
STEPINF,DOS,CRT ,GRAPH,DRIVers ,FONTs ,GRAPH2D ,STATS_1,STATS_2;

var
choix ‘:char;

{$1 BLDGFPAT.PAS}
{$I DISPLIN.PAS}
{$1 BUILDGEN.PAS}
{$I PLOTFREQ.PAS}
{$I REDUC.PAS}

%sr SHFIELD.PAS}

( MENU

FUBECTION menu : char;

begin
ToxtBnckGround(c an) ;
Window(1,1,80, 25! ;ClrScr;
ToxtBackGround(Bluck),
Window(5,3,79,24) ;ClrScr;
TextBackdround (Blue) ; toxtcolor(is)
Window(3,2,77,23); CIrScr,
gotoxy(27 1),Irit01n(”)
gotoxy(27,2) ;writeln(?® KENU M)
gotoxy(27,3);eriteln(??);
toxtcolor(ls)
. gotoxy(17, 4); writeln(?7);.
gotoxy(17,6); writeln(’ O
gotoxy (17, 6); writeln(’
gotoxy(17,7); writeln(’
gotoxy(17,8); writeln(’
gotoxy(17,9); writeln(’
gotoxy(17, 10). writeln(?
gotoxy(17,11); writeln(’
gotoxy(17,12); writeln(?
gotoxy(17,13); writeln(’
gotoxy(17,14); writeln(’
gotoxy(17,16); writeln(’?);
{gotoxy(17,19); writeln(’’);}

List contents of files

Build Gene Flow Patterns

Estimate dispersal

Build Generations

Plot Distr. of All. Freq.
Reduction of allele number
Sampling

Calculation of F_Stat

Picture 0f the Field Of GenoTypes
End Session

CO~NRTAWN-=O

textcolor(15);

gotoxy(45,16); writeln(??);

gotoxy(45,17); write(’?);

toxtcolor(128+15),Irito(' Your Choice’);textcolor(16);
write(? : ’);

gotoxy(45 18); writeln(??);

textcolor(16);

L VY
N N Nt o Nt ot Nt N o
e e we we wo we wo we o wo
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repeat

gotoxy(64,17);
choix:=readkey;

if not (choix in [’0’..79°])
then begin

end;
until choix in
gotoxy(64,17);
write(choix);
delay(100);
menu:=choix;

gotoxy(64,17);
textcolor(16);
write(choix,? ?);
gotoxy(44,20);
textcolor(blink+Yellow);
writeln(’ Incorrect Ansver’);
Delay(800);
gotoxy(64,17);
textcolor(15);

write(? ?);
gotoxy(44,20) ;clreol;

[r02,.79'];

TextBack@Ground (Blue) ;

textcolor(16)
end;

(exsnsnsxrssexMAIN BODY

begin

grdriver:=EGA; grmode:=EGAHi; name:=’?;
s*ss24Check and initialise Eraphics***‘**)
If RegisterBGIDriver (QEGAVGADriverProc)<0 then Halt(i);
If RegisterBGIFont(@TriplexFontProc)<0 then Halt(1i);
If RegisterBdIFont(€SmallFontProc)<0 then Halt(1);
InitGraph(grdriver,grmode,’?);
ErrCode :=GraphResult;
if ErrCode<>groOk
Then begin
writeln(’Graphics Init. Error’,ErrCode);
Writeln(’GrMode= ’,drMode,’ QGrDriver= ’,GrDriver);
Halt(1);
end
Else begin
SetGraphmode(grmode) ;
Graphics:=true;
end;
SetBkColor(Blue);
SetTextStyle(TriplexFont,HorizDir,4);
SetTextJustify(CenterText ,CenterText);
SetColor(Yellow);
ODutTextXY(GetMaxX div 2,detMaxY-4*(GetMaxY div 5),
YMODEL 42 or ?);
OutTextXY(GetMaxX div 2,GetMaxY-3=(GetMaxY div 6),
'GENE FLOW PATTERNS AND F-STATS’);
QutTextXY(GetMaxX div 2,0;tHaxY-2t(GctHaxY div B6),
by?);
OutTextXY(GetMaxX div 2,GetMaxY-(GetMaxY div §5),

» JEROME GOUDET’) ;
SetTextStyle(DefaultFont,HorizDir,1);
SetTextJustify(LeftText ,LeftText);
DutTextXY(5,GetMaxY-5,

'PRESS ANY KEY TO PROCEED ’);
repeat until ReadKey>#1; !
Graphics:=False;

RestoreCrtMode;

repeat

ClrScr;

choix:=menu;

case choix of

70’ : begin

gotoXY(20,22);
write(’Not available yet. Press a key’);
repeat until readkey>#1i;

end;
11?7 : begin
BLDGFPAT;
End;
72?7 : Begin
DISPERSAL;
end;
’3? ; Begin
BUILDGEN;
'4? :Begin
PLOTFREQ;
4
’6? : Begin
REDUC;
End;
’6’ : Begin

gotoXY(20,22);
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write(’Not available yet. Press a key’);
repeat until readkey>#i;

gotoXY(20,22);

write(’Not available yet. Press a key’);
repeat until readkey>#1;

'8’ : Begin
SHFIELD;
end;
end;

until (choix=’97);
SetGraphMode(GrMode) ;
SetBkColor(Blue);

SetTextStyle(TriplexFont ,HorizDir,4);
SetTextJustify(CenterText ,ConterText);

SetColor(Yellow);

DutTextXY(GetMaxX Div 2,GetMaxY div 3,’BYE FOR NOW’);

OutTextXY(GetMaxX div 2,2¢(GetMaxY
Delay(800) ;
rewrite(FileS);
write(File6,s1,? ’,s2);

div 3),’TARA Y RWAN’);

{Grandom(2147483562)+1 is one of =1}

{GRandom(2147483398)+1 is one of s2}

close(FileS);

CloseGraph;
TextBackGround (0) ;TextColor(7);
Window(1,1,80,26);

clrser;

Close(FScreen);

end. :

A.3 BLDGFPAT.PAS

Procedure bldgfpat;
var
choix schar;

{$I GFISINCO.PAS}
{31 GFISCLOU.PAS}
{$1 GFSS1DEX.PAS}
{$1 GFSS2DC4.PAS}
{81 GFSSBEXP.PAS}
{$I GFSSNEIB.PAS}
{$1 INTRECS.PAS}
Function MenuRep:char;

Begin
TextBackdround (cyan);
Window(1,1,80,26) ;ClrScr;
TextBackGround (Black);
Window(6,3,79,24) ;ClrScr;
TextBackdround (Blue) ;textcolor(15);
Window(3,2,77,23) ;ClrScr;
gotoxy(27,1);uriteln(’?);
gotoxy(27,2);writeln(’ REX
gotoxy(27,3) ;uriteln(’?);
textcolor(16);
gotoxy(17,6); writeln(’?);
gotoxy(17,6); writeln(’
gotoxy(17,7); writeln(?
gotoxy(17,8); writeln(’
gotoxy(17,9); writeln(’
gotoxy(17,10); writeln(’
gotoxy(17,11) ; writeln(’
gotoxy(17,12); writeln(’
gotoxy(17,13); writeln(’
gotoxy(17,14); writeln(’
gotoxy(17,16); writeln(’?);

{gotoxy(17,19); writeln(’?);}

OO WM

textcolor(15);

gotoxy(46,16); writeln(’?);
gotoxy(45,17); write(??);
textcolor(128+16) ;write(’ Your Choi
write(? : ");

gotoxy(45,18); writeln(’?);

textcolor(ib);
Tepeat
gotoxy(64,17);
choix:sreadkey;
if not (choix in ['1?..°9°])
then begin

U LD F I
Island model with inf. continent ’);
Island model with gametic cloud );

Step. sto. model 1 dim. exp. distr. ?);
Step. sto. 2 dim. con. 4 D F
Step. sto. 2 dim. con. 8 exp. distr.?);
Step. sto. 2 dim. con. 8 nor. distr.’);

Stepping stoned Neighbourhood 5
Plant Lattice model M)
True Wright Lattice model )

ce’);textcolor(15);
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gotoxy(64,17);
textcolor(15);
write(choix,’ ?);
gotoxy(44,20);
textcolor(blink+Yellow);
writeln(’ Incorrect Ansver’);
Delay(800);
gotoxy(64,17);
textcolor(16);
write(? ?);
gotoxy(44,20) ;clreol;
end;

until choix in [?1°..?9°];

gotoxy(64,17);

write(choix);

delay(100) ;

menurep :=choix;

TextBackdround(Blue);

textcolor(16)

End; {0f Func MenuRep}

Begin
clrscr;
choix:smenurep;
case choix of

1’ : GFISINCOD;

’2? 3 GFISCLOU;

’3? : GFSS1DEX;

4’ : GFSS2DC4;

’6? : GFSS8EXP;

'6’ : Begin
GoToXY(30,22);
write(’Not Available yet.’);
write(’Press a key.’);
repeat until readkey>#1;
exit;

End;
»*7? : QFSSEEIB;

'8’ : Begin
GoToXY(30,22);
write(’Not Available yet.?);
vrite(’Press a key.’);
repeat until readkey>#1;
exit;

end;
'9? : INTRECS

End;
End; {0f BLDGFPAT Proc}

A.4 GFISINCO.PAS

Procedure GFISINCO;

var
‘Champ : IntFldPtr;
a,i,x : Integer;
Mig,Self : ExiptsPtr;
t,Reps ¢ byte;
PropMig,SelfProp : single;
BumbSP ,PopSize : Integer;
( MIG PROC *
Procedure Migr (PopSize,NumbSp : integer;
. ig,Sel : ExistsPtr;
var ParChamp2 : IntF1ldPtr);
var
Champ2 :IntF1dPtr;
Templ,Temp2 :Integer;
i,3,k,1,x :integer;
vherel ,vhere2 tinteger;
begin
Gotgo-(Chnnp2.Sizoﬂf(ChllPZ‘));
x:=0;

for i:=1 to NumbSp Do
For k:=1 to PopSize Do
Begin
x:mx+l;
Templ :=Grandom(PopSize)+1;
Temp2:=Grandom(PopSize)+1;
It Not Sel-[x]
Then begin
1f Mig~[x]
Then Wherei :=Grandom(MaxInd)+1
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else Wherei:=(i-1)sPopSize+Templ;
If lig'[x#luxlnd]
h

Then Where2:=Grandom(MaxInd)+1
End else Where2:=(i-1)sPopSize+Temp2;
Else Begin

If Mig~[x]
Then Wherei:=Grandom(MaxInd)+1
Else Wherei:=(i-1)#PopSize+Templ;
Where2:sWherei;
End;
Champ2~[x,1] :msParChamp2”[Wherei,drandom(2)+1];
Champ2* [x,2] :sParChamp2” [Where2,drandom(2)+1];

ond;
FreeNem(ParChamp2,Size0f (ParChamp2-));
ParChamp2 :»Champ2;
end;{0f Proc Migr}
(

MAIN PROGRANM

Begin
clrscr;
Window2(W_8ize_Big);
Erase_File(Name);
FilNamDat :=Name;
Assign(FileDat ,FilNamDat);
Write_Descr_GFP(’1’,FileDat);
With FileRec(FileDat) Do
Begin
SelfProp:=Descr_GFP1(userdata).self;
PropMig:=Descr_GFP1 (userdata) .mig;
PopSize:=Descr_GFP1(userdata) .Popsize;
With ThisDescrRec Do
Begin
FilNam:=Name;
For i:=1 to 16 do
NewData[i] :muserdatalil;

d;

End;

Update_Filerec(ThisDescrRec);

t:=0;Reps:=10;

InitTxt(Name);

Read_Descr_GFP(FScreen,FileDat);

GotoXy(15,10);

Write(’How many replicates do you want [10..50] : ?);

Reps:=LintRange(10,50);

Rewrite(FileDat);close(FileDat);

FumbSp :=MaxInd div PopSize;

GoToXY(15,12);

write(’Replicate no: completed’);

While t<Reps Do

Begin
timtel;
GetMem(Champ,SizeDf (Champ™));
Ini(Champ);
GetMem(Mig,Size0f (Mig™)) ;GetHem(Self,Size0L(SelL"));
FillBoolArray(PropMig,Mig);
FillBoolArray(SelfProp,Self);
Migr (PopSize,NumbSp,

Mig,Self,
Champ) ;

reset (FileDat) ;seek(FileDat,FileSize(FileDat));
Write(FileDat,Champ”);
Close(FileDat);
FreeMem(Champ,Size0f(Champ*));
FreeMem(Mig,Size0f (Mig=));
FreeNem(Self,Size0f(Self"));
GoToXY(29,12) ;Write(t:4);

End; {0f while t<Reps}

End;{0f Proc GFISINCO}

A.5 GFISCLOU.PAS

(»esexsesexesBUILDREP PRO
Procedure GFISCLOU;

var
Champ . : IntFldPtr;
a,i,x ¢ Integer;
lig,Sclf : ExistsPtr;
t,Reps ¢ byte;
PropMig,S8elfProp ¢ Double;
HumbSP,PopSize : Integer;
( MNIG PROC
Procedure Migr (PopSize,FumbSp : integer;
Nig,Sel : ExistsPtr;
var ParChamp2 ¢ IntFldPtr);

var
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Champ2 :IntFldPtr;
Templ,Temp2 :Integer;
i,j,k,1,x tinteger;
wherel,vwhere2 tinteger;
begi

n
GetMem(Champ2,Size0f (Champ2~));
x:=0;
for i:=1 to NumbSp Do
For k:=1 to PopSize Do
Begin
x:mx+]l;

Templ :=Grandom(PopSize)+1;
Temp2:=Grandom(PopSize)+1;
If Not Sel”~{x]
Then begin
If Mig~[x]
Then Begin
Repeat
Wherel :sGrandom(MaxInd)+1
Until ((Wherei<=(i-1)sPopSize)
or (Wherel>isPopsize));
End
Else Wherei:=s(i-1)*PopSize+Templ;
It Mig"[x+NaxInd]
Then Begin
Repeat
Where2:=Grandom(MaxInd)+1
Until ((Where2<=(i-1)%PopSize)
o: (Where2>isPopsize));

Else Where2:m(i-1)*PopSize+Temp2;

Else Begin
If Mig~[x]
Then Begin
Repeat
Where1 :=Grandom(MaxInd)+1
Until ((Wherei<=(i-1)*PopSize)
or (Wherei>isPopsize));
End
Else Wherel:=(i-1)*PopSize+Templ;
Where2:=Wherel; .
End;
Champ2~[x,1] :=ParChamp2~[Wherei ,Grandom(2)+1];
Champ2~[x,2] :=ParChamp2~ [Where2,Grandom(2)+1];
end;
FreeMem(ParChamp2,8ize0f (ParChamp2~));
ParChamp2 :=Champ2;
znd;{ot Proc Migr}

MAIN PROGRAN )

Begin
clrscr;
Graphics:sFalse;
Window2(W_Size_Big);
Erase_File(Name);
FilNamDat :=Name;
Assign(FileDat,FilNamDat);
Write_Descr_GFP(’2’,FileDat);
With FileRec(FileDat) Do
Begin !
SelfProp:=Descr_GFP1i(userdata).self;
PropMig:=Descr_GFP1(userdata) .mig;
PopSize:=Descr_GFPi(userdata) .Popsize;
With ThisDescrRec Do
Begin
FilNam:=Name;
For i:»1 to 16 do
NewData[i]:muserdata[i];

d;

End;
Update_Filerec(ThisDescrRec);
t:=0;Reps:=10;
InitTxt (Name);
Read_Descr_GFP(FScreen,FileDat);
GotoXy(15,10);
Write(’How many replicates do you want [10..50] : ?);
Reps:=LintRange(10,50);
Rewrite(FileDat);close(FileDat);
NumbSp :=MaxInd div PopSize;
GoToXY(15,12); -
write(’Replicate no: completed’);
While t<Reps Do
Begin
t:mt+l;
GetMem(Champ,8ize0f (Champ~));
Ini(Champ);
GetMem(Mig,Size0f(Mig")) ;GetMem(Sals,Size0f (Self"));
FillBoolArray(PropMig,Mig) ;
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FillBoolArray(SelfProp,Self);
Migr (PopSize,NumbSp,
Nig,Self,

Champ) ; :
reset (FileDat) ;seek(FileDat ,FileSize(FileDat));
Write(FileDat ,Champ*);

Close(FileDat);
FreeMem(Champ,8ize0f(Champ~)) ;
Froolo-(lig.SizoOf(Hig‘));
FreeMem(Self,8ize0f (Self"));
GoToXY(29,12) ;Nrite(t:4);

End; {Ot while t<Reps}

End;{0f Proc GFISCLOU}

A.6 GFSS2DC4.PAS

Procedure GFSS2DC4;

var
Champ : IntFldPtr;
a,i,x ¢ Integer;
Nig,Self : ExistsPtr;
t,Reps . : byte;
PropMig,SelfProp : Double;
BumbSP,PopSize : Integer;
NumbRow , NumbCol ¢ Integer;
Tor : boolean;

(exsassrnsrenssGET THE HOR AND VERT OFFSET OF MIGR**

Procedure GetOfset(Var DfsVer,0fsHor:Shortint);
var
temp, dist:byte;

begin

OfsHor:=0;

OfsVer:=0;

temp :=GRandom(4) ;

case temp of .
0 : DfsHor:s-1;
1 : OfsHor:=i;
2 : OfsVer:»s-1;
3 : OfsVer:=1;

end;
end; {0f Proc GetOfs}

NIG PROC
Procedurse Migr (Tor :boolean;
NumbCol ,NumbRow,PopSize : integer;
Mig,Sel : ExistsPtr;
var ParChamp2 : IntFldPtr);
var
Champ2 :IntFldPtr;
Templ,Temp2 :Integer;
i,5,k,1,A111,A112,x tinteger;
Horl,Hor2,Verti,Vert2 sinteger;
wherel,where2 tinteger;
OfsHor ,0fsVer - :Shortint; !
begi.

n
GetMem(Champ2,8ize0f (Champ2*));
x:m0;
for i:31 to NumbRow Do
For j:=1 to NumbCol Do
For k:=1 to PopSize Do
Begin
x:mx+l;
Templ :=Grandom(PopSize)+1;
Temp2:=Grandom(PopSize)+1;
horl:=j-1;
verti:=i-1;
hor2:=j-1;
vert2:mi-1;
If Not Sel~[x]
Then begin
I1f Mig=[x]
Then Begin
GetOfset (0fsVer,0fsHor);

hor1:=GetNewCoord(Tor, j , FumbCol ,0fsHor) ;
vertl:=GetNewCoord(Tor,i,SumbRow,0fsVer);

End;

Wherel :=PopSize*Hori+PopSize*NumbColsVert1+Tempi;

Then in

It lig’[x+laxlndJ
og
GetOfset (OfsVer,0fsHor);
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hor2:sGetNewCoord(Tor, j,NumbCol ,0fsHor) ;
vert2:=GetNewCoord(Tor,i, umbRow,0fsVer);
End;
Hhoroz:-§0p8izo*ﬂorz+Popsizo~luubCo1‘Vort2+ronp2;
End

Else Begin

1f mg‘ [x]

Then Begin
GetOfset (0fsVer,0fsHor);
hori :»GetNewCoord(Tor, j,FumbCol ,0fsHor) ;
verti:=GetNewCoord(Tor,i,NumbRow,0fsVer);

End;

Wherel :=PopSize*Hori+PopSize*NumbCol*Verti+Templ;

Where2:=Wherel;

End;
Champ2~[x,1] :=ParChamp2” [Wherel,Grandom(2)+1];
Champ2-~[x,2] :®ParChamp2~ [Where2,Grandom(2)+1];

end;
FreeMem(ParChamp2,Size0f (ParChamp2~));
ParChamp2 :=Champ2;

MAIN PROGRAN

znd;{nf Proc Migr}

Begin
clrscr;
Graphics:=False;
Window2(W_Size_Big);
Erase_File(Name);
FilNamDat :=Name;
Assign(FileDat,FilNamDat);
Write_Descr_GFP(’4’,FileDat);
With FileRec(FileDat) Do
Begin
SelfProp:=Descr_GFP4(userdata).self;
PropMig:=Descr_GFP4 (userdata) .mig;
PopSize:=Descr_GFP4(userdata) .Popsize;
Tor :msDescr_GFP4(userdata) .tor;
With ThisDescrRec Do
Begin
FilNam:=Name;
For i:=1 to 16 do
End NewData[i] :muserdatalil;

End; :

Update_Filerec(ThisDescrRec);

t:=0;Reps:=10;

InitTxt (Name);

Read_Descr_GFP(FScreen,FileDat);

GotoXy(15,10);

Write(’How many replicates do you want [10..50] : ?);

Reps:=LintRange(10,50);

Rewrite(FileDat) ;close(FileDat);

NumbSp :=MaxInd div PopSize;

Case NumbSp of
4096 :begin numbrow:=64;numbcol :m64;end;
1024 :begin numbrow:=32;numbcol :=32;end;
266 :begin NumbRow:=16;NumbCol:=16;end;
64 :begin NumbRow:=8;NumbCol:=8;end;
16 :begin NumbRow:=4;NumbCol:=4;end;

4 :begin BumbRow:=2;NumbCol:=2;end;
a 1 tbegin FumbRow:=1;NumbCol:=1;end;
end;
@GoToXY(15,12); !
write(’Replicate no: completed’);
While t<Reps Do
Begin
timtel;
GetMem(Champ,Size0f (Champ™));
Ini(Champ);

GetMem(Mig,8ize0f (Mig™"));GetNem(Self,Size0f(Self"));
FillBoolArray(PropMig,Mig);
FillBoolArray(SelfProp,Self);
Migr (Tor ,NumbCol ,HumbRow ,PopSize,
Nig,Self,
Champ) ;
reset(FileDat) ;seek(FileDat,FileSize(FileDat));
Write(FileDat,Champ”);
Close(FileDat);
FreeNem(Champ,Size0f(Champ~));
FreeMem(Mig,Size0f(Mig=));
Froclon(Sof ,Size0f (Self™));
GoToXY(29,12);Nrite(t:4);
End; {0f while t<Reps}

End; {0f Proc BuildField}

A.7 GFSS1DEX.PAS
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Procedure GFSS1DEX;

var

Champ ¢ IntFldPtr;
a,i,x ¢ Integer;
Mig,Self : ExistsPtr;
t,Reps : byte;
PropMig,SelfProp : Double;
NumbSP,PopSize : Integer;
Distance,Average : Byte;

Tor : boolean;

(»sRETURN AN INTEGER FROM A NEGATIVE EXPONENTIAL

Function IntExpo(Dist,Av:byte) :Byte;

Var Temp :8ingle;

begin
repeat

Temp :sUniform;
Until Temp>Exp(-1.0%Dist);
Temp :==1,0%aveLn(Temp) ;
IntExpo:=Trunc(Temp)+1;
End; {0f Function IntExpo}

(sssxsanssnsensGET THE HOR AND VERT OFFSET OF MIGR

Function GetOfset :shortint;

var
temp, dist:
offs

begin

byte;
:shortint;

Offs:=-99;
Dist:=IntExpo(Distance,average);
temp :=GRandom(2) ;

case temp of

0
1

: Offs:m-dist;
: Offs:=dist;

end;
Get0fSet :=0ffs
end; {0f Proc GetOfs}

MIG PROC

Procedure Migr (Tor ¢ boolean;
PopSize,NumbSp : integer;
Mig,Sel ¢ ExistsPtr;
var ParChamp2 ¢ IntFldPtr);

var

Champ2 :IntFldPtr;

Temp1,Temp2 :Integer;

,j.k,1,x :integer;

Horl ,Hor2 tinteger;

wherel ,where2 :integer;

OfsHor :Shortint;

begin

x:=0;

GetMem(Champ2,Size0f (Champ2~));

for i:=1 to NumbSp Do

For k:=1 to PopSize Do

Begin
x:mx+l;
Templ:sdrandom(PopSize)+1;
Temp2:=Qrandom(PopSize)+1;

horl:=ji-1;
hor2:=i~1;
If Not Sel~[x]
Then begin
if lig‘[x]
Then Begin

OfsHor:=GetOfset;
hori :=GetNewCoord(Tor,i,NumbSp,0fsHor) ;
End;
Wherel:=PopSize*Hori+Templ;
If Mig~ [x+MaxInd]
Then Begin
0fsHor:=GetOfset;
hor2:=detNevCoord(Tor,i,NumbSp,0fsHor) ;
end;
Hhor¢2:liopsizotﬂor2+ronp2;
End

Else Begin
If Mig~[x]
Then Begin
fsHor :=GetOfset;
hori:=GetNewCoord(Tor,i,NumbSp,0fsHor) ;

Bn .
Hhorcl:-ﬁopSizctnor1+Tonp1;
Where2:=Wherei;
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End;
Champ2“{x,1] :®»ParChamp2~[Wherei,Grandom(2)+1];
Champ2-[x,2] :sParChamp2~ [Where2,Grandom(2)+1];

end;
FreeMem(ParChamp2,3ize0f (ParChamp2-)) ;
ParChamp2 :=Champ2;
znd:{uf Proc Migr}

#+MAIN PROGRAM )

Begin
clrscr;
Graphics:=False;
Window2(W_Size_Big);
Erase_File(Name);
FilNamDat :=Name;
Assign(FileDat,FilNamDat);
Write_Descr_GFP(’3’,FileDat);
With FileRec(FileDat) Do
Begin
SelfProp:=Descr_GFP3(userdata).self;
PropMig:=Descr.GFP3(userdata) .mig;
PopSize:=Descr_GFP3(userdata) .Popsize;
Tor:=Descr_GFP3(userdata).tor;
distance:msDescr_GFP3(userdata) .dist;
Average:=Descr_GFP3(userdata).Aver;
With ThisDescrRec Do
Begin
FilNam:=Name;
For i:w1i to 16 do
NewData[i]) :muserdata[i];
d;
End;
Update_Filerec(ThisDescrRec);
t:=0;Reps:=10;
InitTxt (Kame) ;
Read_Descr_GFP(FScreen,FileDat);
GotoXy(15,10);
Write(’How many replicates do you want [10..50] : ?);
Reps :sLintRange(10,50);
Rewrite(FileDat);close(FileDat);
NumbSp :=MaxInd div PopSize;
GoToXY(15,12);
write(’Replicate no: completed?);
While t<Reps Do '
Begin
timt+];
GetMem(Champ,SizeOf (Champ~));
Ini(Champ);
GetMem(Mig,S8ize0f (Mig~));GetMem(Self,Size0f(Self"));
FillBoolArray(PropMig,Mig);
FillBoolArray(SelfProp,Self);
Migr (tor,PopSize,NumbSp,
Mig,Self,
Champ) ;
reset (FileDat) ;seek(FileDat ,FileSize(FileDat));
Write(FileDat,Champ*);
Close(FileDat);
FreeMem(Champ,Size0f (Champ~));
FreeMem(Mig,Size0f(Mig=));
FreeMem(Self ,Size0f(Self"));
GoToXY(29,12);Write(t:4);
End; {0f while t<Reps}
End; {0f Proc GFSSiDEX}

A.8 GFSSS8NOR.PAS

(*sennesssnssGENE FLOW PATTERN : STEPPING STONE 8 CON EXP DISP.ssassasussssss)
Procedure GFSSS8NOR;

var
Champ ¢ IntFldPtr;
a,i,x : Integer;
liE,Solf ¢ ExistsPtr;
t,Reps : byte;
PropMig,SelfProp : Double;
BumbSP,PopSize : Integer;
FumbRow , NJumbCol ¢ Integer;
Distance,Average . : Byte;
Tor ¢ boolean;

(»sRETURN AN INTEGER FROM A NEGATIVE EXPONEETIAL

function Norm(var b:byte) : single;
var
x,y,s,1,d1 : single;
begin
if b=0 then norm:=0 else
begin
8:=20.0;
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repeat

x:®2,0#Uniform-1.0; y:=2.0%Uniform-1.0;
s:=sqr(x)+sqr(y);

until 8<1.0;

l:mgqrt(~2.0%1n(s)/s);

if Uniform<0.5 then di:=mxs]l else di:=ysl;

" norm:mdisb;

ond; (+if bs)
end (* norm #) ;

(sesesssssnssessGET THE HOR AND VERT OFFSET OF MIGRe#s#:
Procedure GetOfset(Var OfsVer,0fsHor:Shortint);

var

temp, dist:byte;

begin
OfsHor:=-99;
OfsVer:=-99;
Dist :»trunc(norm(Distance));
temp:=GRandom(4);
case temp of
0 : OfsHor:s-dist;
1 : OfsHor:=dist;
2 : OfsVer:=-~dist;
3 : OfsVer:=dist;
end;
If Temp<=i
Then 0fsVer:=Qrandom(2#Dist+1)-Dist
Else OfsHor:=GRandom(2#Dist+1)~Dist;
end; {0f Proc GetOfs}

NIG PROC

Procedure Migr (Tor :boolean;
NumbCol ,HumbRow,PopSize : integer;
Mig,Sel ¢ ExistsPtr;
var ParChamp2 ¢ IntFldPtr);

var

Champ2 :IntFldPtr;

Templ,Temp2 :Integer;

i,j,k,1,A111,A112,x tinteger;

Hori ,Hor2,Verti ,Vert2 iinteger;

vherei,vhere2 tinteger;

OfsHor ,0fsVer : :Shortlint;

begin

GetMem(Champ2,8izeCf (Champ2-)) ;

x:=0;
for i:=1 to NumbRow Do
For j:=1 to BumbCol Do
For k:=1 to PopSize Do
Begin
x:mx+l;
Temp1 :=Grandom(PopSize)+1;
Temp2:=Grandom(PopSize)+1;
hori:=j=-1;
verti:=j-1;
hor2:=j-1;
vert2:mj-1;
If Not Sel~[x]
. Then bogin
bt lig‘[x] !
Then Begin
ot0fset (0fsVer,0fsHor);
hori:=GetNewCoord(Tor,j,FumbCol,0fsHor) ;
vertl:=GetNewCoord(Tor,i,NumbRow,0fsVer);
End;
Wherel :=PopSize*Hori+PopSize*NumbCol#Verti+Templ;
It Mig" [x+MaxInd]
Then Begin
Get0fset (0fsVer,0fsHor);
hor2:=GetNewCoord(Tor, j ,NumbCol ,DfsHor) ;
vert2:sGetNewCoord(Tor,i,SumbRow,0fsVer);

End;
Where2:=PopSize*Hor2+PopSize*NumbColsVert2+Temp2;
End
Else Begin
If Mig~[x]
Then Begin
ot0fset (0fsVer,0fsHor);
hori :=GetEewCoord(Tor, j,HumbCol ,0fsHor) ;
verti:=GetNewCoord(Tor,i,NumbRow,0fsVer);

End;
Wherel :=PopSize*Hori+PopSize*NumbCol*Verti+Templ;
Where2:=Wherel;
End;
Champ2~[x,1] :=ParChamp2“ [Wherel,Grandom(2)+1];
Champ2- [x,2] :=ParChamp2” [Where2,drandom(2)+1] ;

ond;
Froolon(Pnréhanpz,Sizoﬂf(Panhanp2“));
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znd;{Of Proc Migr}

ParChamp?2:=Champ2;

MAIN PROGRAN )

Begin

clrscr;
Graphics:=False;
Window2(W_Size_Big);
Erase_File(Name);
FilBamDat :=Name;
Assign(FileDat,FilNamDat);
¥Write_Descr_GFP(’8’,FileDat);
With FileRec(FileDat) Do
Begin
SelfProp:sDescr_GFP3(userdata).self;
PropMig:=Descr_GFP3(userdata).mig;
PopSize:=Descr_GFP3(userdata) .Popsize;
Tor:=Descr_GFP3(userdata) .tor;
Distance:=Descr_GFP3(userdata) .Dist;
Average :=Descr_GFP3(Userdata) .Aver;
With ThisDescrRec Do
Begin

FilNam:=Name;

For i:=1 to 16 do

NewData[i] :=userdata[i];

d;

End;
Update_Filerec(ThisDescrRec);
t:=20;Reps:=10;
InitTxt(Name);
Read_Descr _GFP(FScreen,FileDat);
GotoXy(15,10);
Write(’How many replicates do you want [10..50] : ?);
Reps :=LintRange (10,50);
Rewrite(FileDat) ;close(FileDat);
HumbSp :=MaxInd div PopSize;
Case NJumbSp of
4096 :begin numbrow:=64;numbcol :®64;end;
1024 :begin numbrow:=32;numbcol:=32;end;
266 :begin FumbRow:=16;NumbCol:=16;end;
64 tbegin NumbRow:®8;NumbCol:=8;end;
16 :begin NumbRow:®4;KumbCol:=4;end;
4 :begin NumbRow:=2;NumbCol:=2;end;
4 1 :begin FumbRow:=1;FumbCol:=i;end;
end;
GoToXY(15,12);
write(’Replicate no: completed’);
While t<Reps Do
Begin
timt+l;
GetMem(Champ,SizeDf (Champ~));
Ini(Champ);
GetMem(Mig,Size0f (Mig™));GetMem(Self,Size0f(Self"));
FillBoolArray(PropMig,Nig) ;
FillBoolArray(SelfProp,Self);
Migr (Tor ,HumbCol ,NumbRow,PopSize,
Mig,Self,
Champ) ;
reset (FileDat) ;seek(FileDat,FileSize(FileDat));
Write(FileDat,Champ”);
Close(FileDat);
FreeMem(Champ,8ize0f(Champ~));
Fro.Hon(HiE.Sizon(Hig‘));
FreeMem(Self,Size0f(Self"));
GoToXY(29,12);Write(t:4);
End; {0f while t<Reps}

End;{0f Proc GFSSS8NOR}

A.9 GFSSS8EXP.PAS

(s*ssesnssse+GENE FLOW PATTERN : STEPPING STONE 8 CON EXP DISP.%tssssssssssans)

Procedure GFSS8NOR;

var
Champ : IntFldPtr;
a,i,x ¢ Integer;
Mig,Selt ¢ ExistsPtr;
t,Reps : byte;
PropMig,8e1fProp : Doubls;
NumbSP,PopSize : Integer;
BumbRow , JumbCol : Integer;
Distance,Average ¢ Byte;
Tor ¢ boolean;

(*«RETURN AN INTEGER FROM A NEGATIVE EXPONENTIAL

function Norm(var b:byte) : single;

var
x,y,8,1,d1 : single;
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begin
if b=0 then norm:=0 else
begin
5:20.0;
repeat
x:=2,.0¢«Uniform-1.0; y:=2,0%Uniform-1.0;
s:m8qr(x)+sqr(y);
until s<1.0;
1:=gqrt(-2.0%1n(s)/s);
if Uniform<0.5 then di:=mx*1l else di:mysl;
norm:=disb;
oend; (#if bs)
end (* norm *) ;

(eesssxsasexass+GET THE HOR AND VERT OFFSET OF NIGR

Procedure Get0fset(Var DfsVer,0fsHor:Shortint);
var
temp, dist:byte;

begin
OfsHor:=-99;
OfsVer:=-99;
Dist :=trunc(norm(Distance));
temp:=GRandom(4) ;
case temp of
"0 : OfsHor:=-dist;
1 : OfsHor:=dist;
2 : OfsVer:=s-dist;
3 : OfsVer:=dist;

end;

If Temp<=1i

Then 0fsVer:=Grandom(2#Dist+1)-Dist

Else OfsHor:=GRandom(2#*Dist+1)-Dist;
end; {0f Proc GetOfs)

MIG PROC

Procedure Migr (Tor tboolean;
NumbCol ,NumbRow,PopSize : integer;
Mig,Sel : ExistsPtr;
var ParChamp2 : IntF1dPtr);

var

Champ2 :IntFldPtr;

Templ, Temp2 : :Integer;

i,j,k,1,A111,A112,x tinteger;

Hori ,Hor2,Verti,Vert2 :integer;

vherel ,wvhere2 :integer;

OfsHor,0fsVer :Shortint;

begi

n
GotMem(Champ2,3ize0f (Champ2~));
x:=0;
for i:=1 to BumbRow Do
For j:=1 to NumbCol Do
For k:=1 to PopSize Do
Begin
x:mx+1;
Templ :=Grandom(PopSize)+1;
Temp2 :=Grandom(PopSize)+1;
hori:sj-1;
vertl:=i-i;
" hor2:=j-1;
vert2:=si-1;
If Not Sel~[x]
Then begin
1f Mig~[x]
Then Begin
Get0fset (0fsVer,0fsHor);
hori :=GetBewCoord(Tor, j,NumbCol,0fsHor) ;
vertl:=GetNewCoord(Tor,i,NumbRow,0fsVer);

1
Wherel :mPopSize*Hor1+PopSize*NumbCol*Verti+Templ;
If Mig” [x+MaxInd]
Then Begin
ot0fset (0fsVer,0fsHor);
hor2:=GetNewCoord(Tor, j,JumbCol,0fsHor) ;
vert2:=GetNewCoord(Tor,i,HumbRow,0fsVer);
End;
E:horo2:-PopsizotHor2+PopSizo*lumbCoI¢Vort2+Tomp2;
d

Else Begin
If Mig=[x]
Then Begin
ot0fset (0fsVer,0fsHor);
hori:=GetBewCoord(Tor, j,NumbCol,0fsHor) ;
verti:=GetBewCoord(Tor,i,NumbRow,0fsVer);
End;
Wherel :=PopSize*Hori+PopSize+*NumbColsVerti+Templ;
Where2:=¥Wherel;
End;
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znd:{of Proc Migr}

Champ2-~(x,1] :sParChamp2” [Wherel,drandom(2)+1];
Champ2“[x,2] :=ParChamp2” [Where2,Grandom(2)+1];

end;
FreeMem(ParChamp2,Size0f (ParChanp2™)) ;
ParChamp2 :sChamp2;

MAIN PROGRAM

Begin

clrscr;
Graphics:=False;
Window2(W_Size_Big);
Erase_File(Name);
FilNamDat :=Nams;
Assign(FileDat,FilNamDat);
¥rite_Descr_GFP(’6’,FileDat);
With FileRec(FileDat) Do
Begin
SelfProp:=Descr_OFP3(userdata) .self;
PropMig:=sDescr_GFP3(userdata) .mig;
PopSize:=sDescr_GFP3(userdata) .Popsize;
Tor:=Descr_GFP3(userdata) .tor;
Distance :=Descr_GFP3(userdata) .Dist;
Average :mDescr_GFP3(Userdata) .Aver;
With ThisDescrRec Do
Begin
FilNam:=Kame;
For i:=1 to 16 do
NewData[i] :muserdata[i];
End;

End;
Update_Filerec(ThisDescrRec);
t:=0;Reps:=10;
InitTxt (Name);
Read_Descr_GFP(FScreen,FileDat);
GotoXy(15,10);
VWrite(’How many replicates do you want [10..50] : ?);
Reps :=LintRange(10,50);
Rewrite(FileDat);close(FileDat);
NumbSp :=MaxInd div PopSize;
Case NumbSp of
4096 :begin numbrow:=64;numbcol :»64;end;
1024 :begin numbrow:=32;numbcol:»32;end;
266 :begin NumbRow:=16;NumbCol:®16;end;
64 :begin NumbRow:=8;FumbCcl:=8;end;
16 :begin NumbRow:=4;NumbCol:=4;end;
4 :begin NumbRow:=2;BumbCol:=2;end;
d 1 tbegin NumbRow:=1;KumbCol:=1;end;
end;
GoToXY(15,12);
write(’Replicate no: completed?’);
While t<Reps Do
Begin
t:=tel;
GetMem(Champ ,8ize0f (Champ"));
Ini(Champ);
GetMem(Mig,8ize0f(Mig™) ) ;GetMem(Self,Size0f(Selt"));
FillBoolArray(PropMig,Mig) ;
FillBoolArray(SelfProp,Self);
Migr (Tor ,JumbCol ,HumbRow,PopSize,
Mig,Sel?,

. Champ) ; .
reset (FileDat) ;seek(FileDat,FileSize(FileDat));
Write(FileDat,Champ~);
Close(FileDat);
FreeMem(Champ,Size0f (Champ=));
FreeMem(Mig,Size0f(Mig=));
FreeMem(Self,SizeOf (Self"));
GoToXY(29,12) ;Write(t:4);
End; {0f while t<Reps}

End; {0f Proc GFSSSNOR}

A.10 INTRECS.PAS

procedure intrecs;

(sesssisnnsssees Model for plants on a torus
const
maxplants = (%14641%)4096;
n = (2121%)64;
type
genratns = 1..2;
sexes = 1..2;
fields = record
genos: array[i..maxplants,genratns] of byte;
end;
field2s = record
dgonozlz array[i..n,1..n) of byte;
end;
intflds = record
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gamets: lrray[i..laxpllntl,loxos] of word;

end;
var
intfld : intflds;
filel : f£ile of intflds;
NAME1 H names;
rep,reps : integer;
sdm,sdf,s : single;
selfing,plant : boolean;
NeibSize H 8ingle;
ch,chr,chc,ansver : char;
( )
procedure self;
begin

write(’"Random" selfing?’);
ir Attirnod(Truc,Or;phicn) then begin selfing:=true;s:=0.0; end
slse
begin
selfing:=false;
write("Input selfing rate [0..1]7 ?);
s:=Range(0.0,1.0);

writeln;
end;
end; (* Procedure Selfs)

)
function Norm(var a,b:single) : single;
var

x,y,s,1,d1 : single;

begin

if ©<0.00000001 then norm:=a else
begin

8:20,0;

repeat

x:=2.0¢Uniform-1.0; y:=2,0*Uniform-1.0;
s:=sqr(x)+sqr(y);

until s5<1.0;
1:m8qrt(-2.0%1ln(s)/s);

if Uniform<0.5 then di:=x*1 else dl:=ysl;
norm:=a+dish; '

end; (»if bs)

end (* norm ») ;

( )
function sqdispersed(var a:integer; sd:single): integer;
(susing mean=0 and std. dev., sd, generates new location from a*)

(*on a toroidal surface of n *+ n *)
var

| : single;

x,y : integer;
begin

m:=0,0;

y:= (a-1) div n; {ordinate}

x:= (a=1) mod n; {abcissa}

x:=x+round (Norm(m,sd)) ;
y:sy+round (Norm(m,sd)) ;

While x < 0 do x:=n+x; {0 <= x} ,
While y < 0 do y:=n+y; {0 <= y}

x:=x mod n; {0 <= x <= p-1}
y:=y mod n; {0 <= y <= n-1}

sqdispersed:®» 1 + x + n * y; {1 <= SqDisPersed <= n*(n-1)+n-1+1 = n#n}
end (*function sqdisperseds);

Function dispersed(var a:integer; sd:single):integer;
var

n :single;

x,y tinteger;

begin

m:=0.0;

repeat

x:=((a=1) mod n) +1;

y:=((a=1) div n) +1;

x:=x+round(norm(m,sd));
y:=y+round(norm(m,sd));

until ((x>0) and (y>0) and (x<=n) and (y<=n));
dispersed:=sx + n * (y-1);

ond; (#Function disperseds)

(
procedure intseeds(sdi,sd2:single);

var
i,3,id : integer;
male,female,vwho: integer;
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begin

with intfld do
for i:=1 to maxplants do
begin
if Uniform<0.5 then id:=0 else id:=»maxplants;
female:=dispersed(i,sd2);
ian.tl[i,zl:-fonu1.+id;
£ plant then who:=female else who:=i;
if selfing then male:=dispersed(who,sdl)
else if Uniform<s then male:=female
else
repeat
male:=dispersed(who,sdl);
until male<>who;
if Uniform<0.6 then id:=0 else id:=maxplants;
amets[i,1] :=male+id;
end; (*i loop #)

end; (* integer seedling for true & torus -plant models)

Procedure BuildRep;

var

rep : integer;

Begin
Rewrite(filel);

Graphics:=False;
plant:=true;
repeat
writeln(’ Do you want a plant model? :’);
Plant :=Affirmed (False,graphics);
write(’ Input Neighbourhood size : ’);readln(NeibSize);
If Plant
then begin
write(’Input female dispersal variance- ’);
readln(sd?);
self;
sdm:=2+(NeibSize/4/PI-sdf)/(1-8);
writeln (’ The calculated male dispersal variance is : ?,sdm:10:7);
write (? Do you want to alter it ?’);
If Affirmed(True,graphics)
then begin .
write(’Input male dispersal variance- ?);
readln(sdm);
NeibSize:=4#Pis (sdms(1-8)/2+sd?);
writeln (’ The New Neighbourhood size is : ’,NeibSize:10:0);
end;
end
else begin
self;
sdf:=Neibsize/pi/(1-8);
sdm:=NeibSize/pi/(1-8);
writeln (’ Dispersal is : ?,sdm:10:7);
write (’ Do you want to alter it 7?);
It Affirmed(True,draphics)
then begin

write(’Input dispersal variance- ?);
readln(sdm);
sdf :=gdm;
NeibSize:=Pis(1-8)*(sdm+sdf)/2;
end; t
end;
writeln;

write(’You are currently modeling ’);
if plant then writeln(’a plant neighbourhood model?)
else writeln(’a true wright neighbourhood model?);
writeln(’ male disp var : ?,sdm:10:7,° female disp var : ’,sdf:10:7);
If not selfing then writeln(’ The groportion of selfing individuals is : ?,s:10:7)
else writeln(’ S8elfing is random ’);
writeln(’ The expected neighbourhood size is : ’,Neibsize:10:0);
write( ’is everything to your satisfaction?: ?);
until affirmed(true,graphics);

sdm:wsqrt (sdm)/2;
sdf :msqrt(sdf)/2;

write(’Input no. of replicates- ?’);readln(reps);
for rep:=1i to reps do

begin
ntseeds(sdm,sdf);
write(filel,intfld);
writeln(’Completed rep ’,rep:3);
end;
close(Filel);
End;{0f Procedure BuildReps}
( )

begin (#MAIN PROGRAM+)
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clrser;
NAME1 :=’resul .dat’;
write(’Input filename for Output fields- ’);
readln(NAMEL); ‘
Assign(filel ,NAME1);
Buildrep;

ond;

A.11 GFSSNEIB.PAS

(ssssenussessxGENE FLOW PATTERN : STEPPING STONE 8 CON EXP DISP.ss#ssstissnsus)

Procedure GFSSEEIB;

var
Champ ¢ IntFldPtr;
a,i,x ¢ Integer;
Self : ExistsPtr;
t,Reps ¢ byte;
PropMig,S8elfProp ¢ Double;
NumbSP ,PopSize : Integer;
NumbRow, BumbCol : Integer;
Distance : BYTE;
average : SINGLE;

Tor ¢ boolean;

(««RETURN AN INTEGER FROM A NEGATIVE EXPOFEETIAL
Function IntExpo(Dist:BYTE;av:SINGLE) :Byte;

Var Temp :8ingle;
nolp :BytE; !

begin
Repeat
Temp:®~1.0%av¢Ln(Uniform);
Res :=Trunc(Temp) ;
Until Res<=127;
IntExpo:=res;
End; {0f Function IntExpo}

(sxxsssexssranssGET THE HOR AND VERT OFFSET OF MIGR:

Function GetOfset :shortint;
var
temp, dist:byte;
offs :shortint;
begin
0ffs:=-99;
Dist:=IntExpo(Distance,average);
temp :mGRandom(2) ;
case temp of
0 : Offs:m=dist;
1 : Offs:=dist;
end;
Get0fSet :=0ffs
end; {0f Proc GetOfs}

MIG PROC
Procedure Migr (Tor tboolean;
: HumbCol ,NumbRow,PopSize : integer;
Sel ¢ ExistsPtr;
var ParChamp2 ¢ IntF1dPtr);
var
Champ?2 :IntF1dPtr;
Templ,Temp2 :Integer;
i,j,k,1,A111,A112,x tinteger;
Horl ,Hor2,Vert1 ,Vert2 tinteger;
wherel ,where2 tinteger;
OfsHor ,0fsVer :ShortInt;
begi

n
GetMem(Champ2,Size0f (Champ2~));
x:=0;
for i:=1 to NumbRow Do
For j:=1 to FumbCol Do
For k:=1 to PopSize Do
Begin
x:mx+];
Templ :=Grandom(PopSize)+1;
Temp2:=Grandom(PopSize)+1;
hori:=j-1;
verti:=i-1;
hor2:=j-1;
vert2:msi-1;
If Not Sel”[x]

Then begin
0fsHor :=GetOfset;
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End
Else Begin

hor1:=GetNewCoord(Tor, j,NumbCol,0fsHor) ;
0fsVer:=GetOfset;
vertl:=GetNewCoord(Tor,i,SumbRow,0fsVer);

Wherel :=PopSize*Hori+PopSize*BumbCol*Verti+Templ;
OfsHor :=GetOfset;

hor2:=GetNewCoord(Tor, j,JumbCol,0fsHor) ;
OfsVer:=GetOfset;
vert2:=GetNewCoord(Tor,i,NumbRow,0fsVer);
Where2:asPopSize*Hor2+PopSizesNumbColsVert2+Temp2;

OfShor:=(et0fset;
hori:=sGetNewCoord(Tor, j,NumbCol ,0fsHor) ;
OfsVer:=(etOfset;
verti:=GetNewCoord(Tor,i,NumbRow,0fsVer);
Wherel:=PopSize*Hori+PopSize*NumbColsVerti+Tempi;
Where2:=Wherei;

End;
Champ2-[x,1] :»ParChamp2” [Where1,Grandom(2)+1];
Champ2-~[x,2] :sParChamp2”~ [Where2,drandom(2)+1];

ond;

FreeMem(ParChamp2,8ize0f (ParChamp2~)) ;

ParChamp?2 :=Champ2;

znd;{uf Proc Migr}

Begin
clrscr;
Graphics:=False;
Window2(W_Size_Big);
Erase_File(Name);
FilNamDat :=Eame;

MAIN PROGRAN )

Assign(FileDat,FilNamDat);
Write_Descr_GFP(’7’,FileDat);
With FileRec(FileDat) Do

Begin

SelfProp:=Descr_GFP7(userdata) .self;
PopSize:=Descr.GFP7 (userdata) .Popsize;
Tor:=Descr_GFP7 (userdata) .tor;
Average:=Descr_GFP7 (userdata) .Aver;
With ThisDescrRec Do
Begin
FilNam:=Name;
For i:=1 to 16 do
NewData[i] :musardatal[il;
’
End;
Update_Filerec(ThisDescrRec);
t:=0;Reps:=10;
InitTxt (Name);
Read_Descr_GFP(FScreen,FileDat);
GotoXy(15,10);

Write(’How many replicates do you want [10..50] : ?);

Reps:=LintRange(10,50);
Rewrite(FileDat);close(FileDat);
NumbSp:=MaxIind div PopSize;
Case NumbSp of
4096 :begin numbrow:=64;numbcol :=64;end;
1024 :begin numbrow:=32;numbcol:=32;end;
266 :begin NumbRow:=16;NumbCol:=16;end;
64 :begin NumbRow:=8;NumbCol:=8;end;
16 tbegin NumbRow:=4;NumbCol:=4;end;
4 :begin BumbRow:=2;NumbCol:=2;ehd;
q 1 :begin FumbRow:=1;KumbCol:=1;end;
end;
GoToXY(15,12);
write(’Replicate no: completed’);
While t<Reps Do
Begin
timt+l;
GetMem(Champ ,Sizelf (Champ™));
Ini(Champ);
GetMem(Self,Size0f(Self™));
FillBoolArray(SelfProp,Self);
Migr (Tor ,NumbCol ,NumbRow,PopSize,
Self,
Ch

amp) ;
reset(FileDat) ;seek(FileDat,FileSize(FileDat));

Write(FileDat,Champ~);
Close(FileDat);
FreeMem(Champ,Size0f(Champ~));
Froolon(Solf,Sichf(Solf’g);
GoToXY(29,12) ;Write(t:4);

End; {0f while t<Reps}

End; {0f Proc GFSSEEIB}

A.12 DISPERSAL.PAS

Procedure dispersal;
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type
Square_FieldPtr ="Square_Field;

Square_Field = array(0..(n-1),0..(n-1),1..2]of integer;
var

name,filnami,filnam3 tnames;

filel :IntFldFile;

File3 stext;

8qField :Square_FieldPtr;

Field :IntF1ldPtr;
ThisOne,Dispx,Dispy, IDispxy sinteger;

histo :array [0..200] of longint;
AveDisp,VarDisp,Thisdisp :Extended;
avedispx,avedispy,Dispxy,absdisp,axdisp :Extended;
x,y,k,x0,y0,1i tinteger;

Function Nax(x,y:integer):integer;
Begin :

If x>y Then Max:=x Else Max:=y;
znd; {0f Function Max)

MAIN PROGRAM )
begin
clrscr;
extl:=)?;
FileList (Ext1);
Window2(N_8ize_Small);
Repeat

writeln (° Input filnam for output : ’);
write(’ Return to Exit. ’);
readln(name);
If name=’’ then Exit;
Until FileExist(¥ame);
filnami:=name;
filnam3:=name+?’ . TTT’;
for i:=0 to 200 do histo[i]:=0;
assign(File3,FilNam3) ;rewrite(File3);
append(file3);
writeln(File3,
? rep avg.abs.disp var.disp avg.Axdisp’);
Close(File3);
assign(filel,filnami);reset(filel);
GetMem(Field,SizeDf(Field"));
GetMem(SqField,Size0f(SqField"));
while not eof(filel) do
begin
read(filel,field");
i:=m0;
for y:=0 to (n-1) do
for x:=0 to (n-1) do
begin
i:mi+l;
sqfield~[y,x,1]:=field"[i,1];
sqfield~[y,x,2]):=field"[i,2];
end;
absDisp:=0.0;AxDisp:=0.0;VarDisp:=0.0;AveDispx:=0.0;AveDispy:=0.0;Thisdisp:=0.0;
for y:=0 to (n-1) do
for x:20 to (n-1) do
for k:=1 to 2 do

begin
& ThisOne:=sqfield"[y,x,k];
If ThisOne>MaxInd then ThisOne:=ThisOne-NaxInd;
x0:=((ThisOne-1) mod n); {provides a figure between 0 and (n-1)}
yO:2((ThisOne-1) div n); {provides a figure between 0 and (n-1)}
dispx :=abs(x0-x) ;
dispy:=abs(y0-y);
If dispx>(n div 2) then dispx:=n-dispx;
If dispy>(n div 2) then dispy:=n-dispy;
DispXy:=sqr (Dispx)+Sqr(Dispy);
Dispxy:=1.0#sqrt(Dispxy);
IDispXY:=trunc(DispXy) ;
Histo[IDispxy] :=histo[IDispxy]+1;
ThisDisp:=Thisdisp+Dispxy;
ab-Disp:-ablbi|p+Dilpx+D1|p¥;
q VarDisp:=sVarDisp+Sqr(Dispxy);

ond;

axDisp:=Thisdisp/DMaxInd;

:mabsDisp/DMaxInd/2;

p:=VarDisp/DMaxInd-sqr{axDisp) ;
writeln(FilePos(File1):6,absDisp:8:4,’ ’,VarDisp:8:4,’ ’,axDisp:8:4);
append(File3);
writeln(File3,
FilePos(File1):6,’ ' ,AbsDisp:8:4,’ !,VarDisp:8:4,? ’,axDisp:8:4);
close(File3);

end;

append(File3);

writeln(filed);

for i:=0 to 200 do

if histo[i]<>0 then writeln(file3,i+0.5:6:2,’ ?,histo[i]);

close(file3d);

Freemem(Field,Size0f(Field"));
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FreeMem(8qField,Size0f(SqField"));

end;

A.13

Procedure buildgen;

BUILGEN.PAS

var
Filel,File2 :IntFldFile;
name :array [1..5] of names;
Namel inames;
CountAll tReal;
Pres :Exists;
ThisGen,NumbOfGen tword;
MaxInFile :word;
name2,name3 inames;
field,prev_field tintfldptr;
temp,i,j,count :word;
Jj,rep,MaxRep tbyte;
col sarray[1..5]of word;
¥rite_It,Print :Boolean;
TEMP1 :BYTE;
begin
ClrScr;
Graphics:=False;
Extl:=’?;
FileList (Ext1);
Window2(W_Size_Small);
Write(’Do you want to write results to a file : ??);
Write_It:=Affirmed(True,Graphics);
Write(’ Input number of generations [2..10000]: °);
NumbOfden :=LintRange(2,10000) ;
writeln (’You can give up to five names :’);
rep:=0;
repeat
Repeat
rep:=rep+l;

Write(’Input one of the above (without ext.) ’);

Write(’ (Return to Exit.) :’);

readln(Name[repl);

If ((rep=1) and (Name[rep]=’’)) then Exit;
Until (FileExist(Name[repl));

Until ((Name[rep]=’’) or (rep=5));

If Name[rep]=’’ then MaxRep:=Rep~i else MaxRep:=rep;
write(’ Print the graph? : ?);
Print:=Affirmed(False,Graphics);

rep:=0;
SetGraphMode (drMode) ;
If Print
Then Begin
for i:m1 to 6 do col[i]:=white;
SetBkColor(Black);
End
Else Begin
col[1] :=yellow;
col[2] :=red;
co01[3] :=white;
col[4]:-§roon;
col[5]):=lightcyan; !
SotBRColor?BIuo);
End;

Qraphics:=True;
axex:=’Generations.’;
axey:®’Number of extant Alleles.’;
Axes;
settextstyle(defaultfont,horizdir,1);
(sgraduation axe des y*)
outtextxy(xoi-2,yfi+1 2=2);
outtextxy(xoi-30,yfi+1,71007);
outtextxy(xoi~2,yfit+yq+1,2-1);
outtextxy(xoi=30,yfi+y4+1,2767);
outtextxy(xoi-2,yfi+2syq+1, 1-7);
outtextxy(xoi-30,yfi+2sy4+1,150’);
outtextxy(xoi=2,yfi+3syq+1,1-2);
outtextxy(xoi-30,yfi+3syd+1,2257);
outtextxy(xoi~2,yoi+2,2=2);
outtextxy(xoi-30,y0i+2,20%);
(=graduation axe des x*)
outtextxy(xfi-3sx4~3,y0i+2,7+7);
outtextxy(xfi-2#x4-3,y0i+2,741);
outtextxy(xfi-x4-3,yoi+2,41);
outtextxy(xfi-3,yoi+2,’+7);

Repeat

rep:=rep+i;
Namel :sName[rep] ;
Bame2:=namei+’ .DAT’;
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assign(File1,Namel1);Reset(Filel);

If Write_it

Then Begin
assign(File2,Name2);
If FileExist(Name2)
Then Reset(File2) else rewrite(File2);
Allifn(FiloTxt,lnnoi#’.TXT’);
If FileExist(Namel+’.TXT’)
Then reset(FileTxt)
Else Rewrite(FileTxt);
Close(FileTxt);
Append (FileTxt);
!ritoln(?ilorxt,

)).
Writeln(FileTxt, !
'NUMBER OF ALLELES EXTANT IN POPULATION AT GEN. X?);
Close(FileTxt);

End;
dotHon(péov-Fiold,SizoOf(Prov_Fiold‘));

TEMP1 :=QRANDOM(FILESIZE(FILEL));
seek(Filel ,TEMP1);
Read(Filel ,Prev_field");
Count:=1;
MaxInFile:=i;
If Write It
Then' If NumbOfGen<=MaxInFile
Then Count:=1
else Count:= NumbO0fGen div MaxInFile;
MoveTo(xo,~dy+yo);
For ThisGen:=1 to NumbOfGen do
Begin
If Print
Then SetLineStyle(((rep-1) mod 4),0,((rep-1) div 4)#2+1)
Else SetLineStyle(SolidLn,0,NormWidth);
SetColor(collrepl);
GetMem(Field,Size0f (Field"));
TEMP1 :=»GRANDOM(FILESIZE(FILE1));
seek(Filel,TEMP1);
Read(Filei,Field");
If ThisGen=i
Then Begin
For i:=1 to MaxInd do
For j:=1 to 2 do
Field“[i, j]:=Prev_Field~[i,jl;
end

Else Begin
For i:=1 to MaxInd do
For j:=1 to 2 do
Begin
Temp:=Field“[i,jl;
If ((Temp>DMaxInd) or (Temp<i))
Then Begin
OutTextXY(5,10,
’ I found an unexisting Allele. Program Stopped!’);
Halt(1);
End;
If Temp>MaxInd
Then Begin
B YH
Temp :=Temp-MaxInd;
end
Else o=t '
Field~[i,j]:=Prev_Field"[Temp,jjl;
End;
End;
If Write_it
Then If (ThisGen MOD COUNT)=0
Then Begin
Seek(File2,FileSize(File2));
Write(File2,Field");
End;
CountAll:=0.0;
For i:s1 to DMaxInd Do Pres[i]:=False;
For i:=1 to MaxInd do
For j:=1 to 2 do Pres[Field~[i,j]]:=True;
For i:=1 To DMaxInd Do
If Pres[i] Then CountAll:=CountAll+1.0;
If Write It
Then If (ThisGen MOD COUNT)=0
Then Begin
Append (FileTxt);
Writeln(FileTxt,thisgen:4,’ ?,Countall:6:0);
Close(FileTxt);
End;
G1y:=CountAll/100{DMaxInd};
gix:»(ThisGen+1)/(Numb0fGen+i);
Px1 :=Round (dx*gix)+xo0;
Py1:m~Round(dy*gly)+yo;
LineTo(px1,pyl);
FreeMem(Prev_Field,Size0f(Prev_Field")) ;Prev_Field:=Eil;
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Prev_Field:=Field;

End;
MoveTo (GetMaxX-250,10+10%Rep) ;
LineTo(GetMaxX-200,10+10%Rep) ;
SetTextStyle (DefaultFont ,HorizDir,1);
SetTextJustify(LeftText,CenterText);
OutTextXy(GetMaxX-180,10+10%rep, namel) ;
close(Filel);
If Write_It Then Close(File2);
FreeMem(Field,Size0f(Field"));

Until Rep=MaxRep;

Message_End;

A.14 PLOTFREQ.PAS

Procedure plotfreq;

type
histo= array [0..DNaxInd] of Word;

var
filnami : Names;
filel : IntFldfile;
i,j,k,numbclass,AllNumb : integer;
Max,Incr ¢ integer;
Gener : array[i..5] of Byte;
yoRep,dyRep : array[1..5] of integer;
Rep,MaxRep ¢ Byte;
MaxHisto : Word;
print : boolean;
histoAll s Histo;
Field : IntFldPtr;
FreqOfAll ¢ AliveQenPtr;
Col : array[i..6] of word;
81,82 : stringl[18];
( CATEGORISE##*»
procedure categorise ( FreqOfAll : AliveGenPtr;
Max,incr : integer;
NumbClass :Integer;
var histos : histo);
var
i,j,Temp : integer;
EClass ¢ integer;
begin
for NClass:=0 to NumbClass do histos[EClass]:=0;
for i:=1 to dmaxind do
begin
temp :aFreq0fA11~[i];
If Temp=0
Then Histos[0] :=Histos [0]+1
Else Begin
g:-o;
or EClass:=1 to NumbClass do
begin
If (Temp>j) and (Temp<=(j+incr))
Then Histos[NClass] :aHistos[NClass]+i;
j:=j+incr;
end;
MaxHisto:=0;
For EClass:=1 to NumbClass do
If Histos[NClass)>MaxHisto
Then MaxHisto:=Histos[NClass];
End;
End;
end; {0f Categorise}
(
begin (* MAIN PROGRAN#)
ClrScr;
Graphics:=Falss;
For i:=1 to 5 do
Begin

[1] :=0;
z;i:;[i]:-O;

End;

Extl:=’DAT?;

FileList (Ext1);
Window2(W_Size_Small);
Repeat
write ( ’ Input FilName (Without Ext.): ?);
write ( ’ Return to exit. ’);
readln(Fillami);
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If FilNami=’’ then Exit;

Until FileExist(FilNami+’.DAT?);
assign(Filel ,Filnami+’ .DAT’);reset(Filel);
GetMem(Freq0fAll,Size0f (Freq0fAll~));
Writeln(’You can give up to 5 different generations.’);
Rep:=0;
Repeat

Rep:=Rep+i;

Write(’Which generations do you want to look at ? :?);

Write(?(0 to exit).?);

Gener[rep] :sLintRange (0,FileSize(Filel));
Until ((Gonorf&op]-o) or (Repm=b));
If Gener[Repl=0 Then MaxRep:=Rep-1 Else MaxRep:=Rep;
write(’Print Output? ’);
Print:=Affirmed(false,Graphics);
If not print
Then For i:=1 to 6 do col[i]:=yellow
Else For i:=i to 6 do col[i]:=white;
Close(Filel);

rep:=0;

SetGraphMode (GrMode) ;

If Print Then SetBkColor(Black) else SetBkColor(Blue);
Graphics:=True;

axex:=’CLASS OF NUMBER OF COPIES’;

axey:=’NUMBER OF ALLELES IN CLASS X.?;

axes;
SetColor(coll1]));
SetTextStyle(SmallFont,HorizDir,4);
SetTextJustify(LeftText,CenterText);
OutTextXY(x0=70,yo-dy+10, ’Generation’);
For i:=1 to MaxRep do
Begin
yoRep[i] :myo-trunc((i-1)#(dy div MaxRep));
dyRep[i] :=dy div MaxRep;
’
Repeat
Rep:=Rep+1;
Max:=0;
AllNumb:=0;
Reset(Filel);
Seek(File1,Gener[repl-1);
GetMem(Field,Size0f(Field™));
read(Filel,Field");
close(Filel);
for i:=1 to dmaxind do
FreqOfAl1~[i]:=0;
For i:=1 to MaxInd do
For j:=1 to 2 do
FreqDfA11~([Field~[i, j]] :=FreqOfAll-[Field~[i,j]]+1;
FreeMem(Field,8ize0f(Field"));
For i:=1 to DMaxInd do
if FreqOfAll“[il>Max
then Max:®Freq0fAll-~[i];
JumbClass :=Max;
incr:=1;
Categorise (Freq0fAll,Max,Incr,NumbClass,HistoAll);
G1y:=HistoAll[0]/MaxHisto{DMaxInd};
Gly:=1.0;
G1x:=0;
Px1i:mx0;
py1 :m=Round(dyRep [repl*gliy)+yoRep[rep];
If Rep<MaxRep !
Then Begin
MoveTo(px1,pyl);
SetLineStyle(SolidLn,0,FormWidth);
setColor(White);
LineTo(px1+dx+10,py1);

End;
MoveTo(pxi,pyl);
SetColor(Col[Rep]);
SetTextStyle(SmallFont,HorizDir,4);
SetTextJustify(LeftText,CenterText);
Str(MaxHisto,s1);
s2:=Concat (’Highest is: ’,s1);
OutTextXY(xo+dx+10,yorep[rep]-(dyRep[rep] div 3),s82);
Str(Max,s1);
s2:=Concat (’Fumb. Class: ’,s1);
OutTextXY(xo+dx+10,yorep[repl-(2+(dyRep[rep] div 3)),s2);
Str(dener(repl,si);
OutTextXY(x0-20,yoRep[Rep]l-(dyRep[rep] div 2),s1);
For i:=1 to NumbClass Do
Begin

G1y:»HistoAll[i]/MaxHisto{DMaxInd};

If G1y>1.0 Then G1y:=1.0;

Gix:=1i/Max;

Px1 :=Round (dx*G1ix)+xo0;

Pyi:=-Round(dyRep[rep]*gly)+yoRep[rep] ;

lovoTo(pxi,yoBopfrop );

LineTo(px1,Py1);
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Until rep=MaxRep;

Message_End;

FreeNem(Freq0fAll,SizeDf (Freq0fAll~));
end; {0f Procedure PlotFreq}

A.15 REDUC.PAS

(s*ssaessexsxREDUC PRO )

Procedure reduc;
var

Champ ,ParChamp ¢ IntFldPtr;
{Freq0fAll ¢ AliveGenPtr;}
i,j,L,K : Word;

Temp, jj,REP,Compt ,X : word;

begin
ClrScr;
Graphics:=False;
extl:=?DAT?;
FileList (extl);
Window2(W_8ize_Small);
Repeat
Write(’Input One Of the above ’);
Write(’(Return to Exit.) : *);
Readln(Name);
If name=’’ then Exit;
Until FileExist (Name+’ .DAT?);
FilNamDat :=Name+’ .DAT?;
FilNamRed :=Name+’ .RED’;
assign(FileRed,FilNamRed) ;revrite(FileRed);close(FileRed);
assign(FileDat,FilNamDat);reset(FileDat);
MaxAll:=2;
write (’Input the Number Of Alleles you want [2..50]: ?);
MaxAll:=LintRange(2,50);
REP:=1 ;Compt :=0;
While Compt<rep Do
Begin
reset (FileDat);
getmem(ParChamp,Size0f (ParChamp=));
X:=0;
for i:=1 to MaxInd do
for i:-l to 2 do Parchamp~[i,j]:=GRandom(MaxAll)+1;
For i:=1 to MaxAll Do FreqOfAll-[i]:=0;
for i:=1 to MaxInd do
for j:=1 to 2 do
FreqOfA1l~[ParChamp=[i,j]] :=Freq0fAl1l~ [ParChamp~[i,jl]+1;
reset(FileFre) ;seek(FileFre,FileSize(FileFre));
Write(FileFre ,Freq0fAll~);
Close(FileFre);
Freemem(FreqOfAll,SizeOf (Freq0fAll")) ;Freq0fAll :=Nil;
getmem(Champ,8ize0f (Champ~));
While not eof(FileDat) Do

in
read(FileDat,Champ~);
For i:m1 to MaxInd do '
For j:=1 to 2 do
Begin
Temp :=Champ~[i, j];
I Temp>MaxInd
Then Begin
Jj:=2;
Temp :sTemp-MaxInd;
end
Else J=1;
Champ~[i, j] :=ParChamp~[Temp, §j];

End;

reset (FileRed);

seek(FileRed,FileSize(FileRed));

write(FileRed,Champ®);

close(FileRed);
End; { Of While Not Eof(FileDat)}
freemem(champ,Size0f(Champ));
Freemem(ParChamp,Size0f (ParChamp~)) ;ParChamp:=Nil;
compt :®»compt+l;

End;
Close(FileDat);
End; { Of Proc Reduc}

A.16 SHFIELD.PAS

Procedure shfield;
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()

const
FieldSide :Word=n;
SpSidel :Wordsy;
Sp8ide2 sword=y;
type
PicF1dPtr =-PicFld;
picfld = array[i..MaxInd,1..3] of byte;
Geno = array[0..(n-1),0..(n-1)] of byte;
colour = array[0..16] of byte;
Sentence = string(80];
var
XTitOutp : integer;
filel : intfldfile;
File2 : alivegentile;
£14,Fldb : intfldPtr;
Changes ¢ picfldPtr;
fall : word;
FreqOfAll : AliveQenPtr;
genos : geno;
freq : array[0..n] of integer;
XScale,YScale,XOri : integer;
xwidth,ywidth ¢ word;
YOri ¢ integer;
x,Gen,LastXPos ,Xpos,Bumb,i,j, k,ii,jj : longint;
al,a2,aa : word;
countchange, temp,countgen : word;
Bame,FillNami ,Fillam2,s,FilNam3 : names;
Titre { sentence;
Colours : colour;
InfEdge,SupEdge ,Posmin,PosMax ,Dif : dnteger;
PCol,GraphCard,Homi,Hom2,Het : Byte;
chc,Ans,ansb,choix,bb : char;
Draw@rid,Reduc,Print : boolean;
f£ile3 : text;
( )
Procedure initialize;
begin
Colours[0] :=Black; colours[8] :=DarkGray;
Colours[1] :=Bluse; colours[9] :=LightBlue;
Colours[2] :=Green; colours[10] :sLightGreen;
Colours[3] :=Cyan; colours[11] :=LightCyan;
Colours[4] :mRed; . colours[12] :=sLightRed;
Colours[5] :=Magenta; colours[13] :=LightMagenta;
Colours[68] :mBrown; colours[14] :-Yeglo';
Colours[7] :=sLightGray; colours[i5] :sWhite;
SetdraphMode(GrMode) ;
Graphics:=True;
XScale:=2+(GetMaxX Div 6)-1;
YScale:=2=(GetMaxY div 3)-1;
Xori:=GetMaxX div 6; {160}
Yori:=GetMaxY-5+(GetMaxY div 6); {80}
XScale:=340;
YScale:=220;
xwidth:=sXScale div n;
ywidth:»YScale div n; !
XScale:=XWidthen;
YScale:mYWidthen;
End;{of proc initialize}
Procedure Title(titre:sentence);
var
YPos,ZPos : integer;
x1,y1,x2,y2 : word;
i,j.Stap,¥ : longint;
xwidth,ywidth : word;
s,u,t : string[40];
x : real;
begin

SetFillStyle(80lidFill,PCol);
SetLineStyle(80lidLn,0,NormWidth);

(*ALL THE SCREEN+)
Bar(0,0,GetMaxX,GetMaxY);
SetTextStyle(TriplexFont ,HorizDir,2);
SetTextJustiFy(centertext,CenterText);
SetColor(16);
SetLineStyle(SolidLn,0,ThickWidth);

(«DEFINE BOX#)
Rectangle(80,30,GetMaxX-80,GetMaxY=30);
OutTextXY(GetMaxX div 2,40,titre);
SetFillStyle(SolidFill,0);
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SetLineStyle(SolidLn,0,NormWidth) ;

(*LEGEED COMMAND#)
Rectangle(GetMaxX-150,100,GetMaxX-90,140);
SetTextStyle(SmallFont,HorizDir,4);
SetTextJustiFy(lefttext,centertext);
SetFillStyle(80lidFill,Hom1);
bar(GetMaxX-140,110,GetMaxX~135,1156);
rectangle(GetMaxX~140,110,8etMaxX~136,115);
OutTextXY(GetMaxX~130,112, °HOM1?);
SetFillStyle(SolidFill,Hom2);
bar(GetMaxX-140,120,0etMaxX-136,125);
rectangle (GetMaxX-140,120,GetMaxX~-136,125);
OutTextXY(GetMaxX-130,122, ’HON2?);
SetFillStyle(80lidFill,Het);
bar(GetMaxX-140,130,0etMaxX-136,135);
roctunglo(dotlaxx-140,130,00tHaxX-135,135);
OutTextXY(GetMaxX-130,132, HET?);
SetTextStyle(SmallFont ,HorizDir,4);
SetTextJustify(CenterText ,CenterText);
OutTextXY(GetMaxX div 2,GetMaxY-15,

'PRESS ANY KEY FOR NEXT GEEERATION, Q TO QUIT.’);
ond; {0f proc title}

Function DrawField (Newgenos :picfldPtr; countind,countgen :word):char;

var
i,XL,YL sword;
PopSize tword;

xx,Yy tword;
s,s1,82 :string[40];

begin

str(countind,s1) ;str(Countgen,s2);

s:mconcat(’ GENERATION : ’,s2);

SetFillStyle(SolidFill,PCol);

SetLineStyle(SolidLn,0,NormWidth);

SetTextStyle(SmallFont ,HorizDir,5);

SetTextJustiFy(centertext,CenterText);

bar(100,GetMaxY-50,3etMaxX~100,0etMaxY-33);

setcolor(ib);

gntToxtxY(round(GotHaxX div 2),GetMaxY-40,s);

:my;

While i<=CountInd do -’

begin
SetFillStyle(SolidFill,colours[NewGenos~[i,3]]1);
YL:=YOri+(NewGenos~[i,1])*ywidth;
XL :=X0ri+(BewGenos~[i,2] ) *xwidth;
bar(XL,YL,XL+xwidth-1,YL+ywidth-1);
irmi+l;

ond;

if not print then setcolor(0);

If DrawGrid

then for xx:=0 to n do

begin
if (xx mod a2)=0 then
line(XOri+xx+xwidth-1,Y0ri-1,X0Ori+xx*xwidth-1,Y0ri+yscale~1);
if (xx mod a1)=0 then
line(X0ri-1,Y0ri+xx*ywidth-1,X0Ori+xscale-1,Y0ri+xx*ywidth-1);

end

else rectangle(XOri-1,Y0ri-1,X0ri+xscale,YOri+yscale);

q DrawField:=readkey;
end; !

(

{1}Begin
clrscr;
Draw@rid:=True;
Graphics:=False;
Ext1:=’RED’;
FileList(Extl);
Window2(W_Size_Small);
Writeln

(&4 HARIIIG:! This procedure will only map a reduced field with 2 alleles!’);
writeln

(> If you gidlnot build it, just press return when asked for the file name.’);
writeln

(’ Othervise, allele n 1 will be mapped against all the others!!!!’);
Repeat
Write(’Input one of the above (without ext.) ’); .
Write(’(Return to Exit.) :?);
readln(Name);
If name=’’ then Exit;
Until (FileExist(Name+’.RED’)) {or (FileExist(Name+’.DAT’)))};
REDUC:=true{not Affirmed(False,draphics)};
Write (’Input Title (<80 Char) : ’);Readln(Titre);

. write(’Do you want to print the graph? : ?);
print:=Affirmed (False,Graphics);
If Bot Print
Then begin
Homi :m3;
Hom2:m1;
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Het:=11;
Pcol:=7;
end
else begin
Homi :=0;
Hom2:=16;
Het :=7;
Pcol:=0;

End;
GetMem(F1d,Size0f(F1d~)) ;GetMem(Fldb,Size0f(F1dB"));
GetMem(Changes,Size0f (Changes~));
if Reduc
then begin
FilNaml :aName+’ .RED’;
Fall:=1;
assign(FileDat,name);
write(? Input Deme size(1 for lattice model): ?);
readln(SPSidel);
8pSidel:=Trunc(Sqrt(SPSidei));
SpSide2:uSpSidei;
FieldSide:=n div SpSide1;
write(’Do you want do draw a grid 7(Y/I) : ?);
DravOrid:-Aftirnod(Truo,Fullo§;
Al:=SpSidel;
A2:=SpSide2;
for i:=1 to maxInd do
begin
Changes~[i,1]:=0;
Changes~[1i,2]:=0;
Changes~[i,3]:»0;

end;

assign(Filel,Filnami) ;Reset (File1);

read(Filei,F1db~);

CountGen:=FilePos(Filel);

For i:=1 to maxind do

{2} begin

if F1db~[i,1])=Fall Then F1d~[i,1]:=1 else F1d~[i,1]:=2;
if F1db~[i,2]=Fall Then F1d~[i,2]:=1 else F1d~[i,2]:=2;

{2} end;
close(Filel);
For 1:m0 to FieldSide-1 do
For j:=0 to FieldSide~1i do
for ii:=0 to SpSidel~-1 do
for jj:=0 to SpSide2-1 do
{2} Begin
temp:=1+jj
+ii*SpSide2

+ j*SpSide2#*SpSidel

+ ixSpSide2*SpSideisFieldSide;

if ((F1d*[Temp,1]=1) xor (F1d~[Temp,2]=1))

then genos[is»SpSidel+ii,j*SpSide2+jj] :=Het

else If (Fld~[temp,1]=1)
then Genos[i*SpSidei+ii,j*SpSide2+jj] :=Homi
else Genos[i*SpSidei+ii,j*SpSide2+jjl :=Hom2;

changes~[temp,1] :=i*SpSidei+ii;

changes”[temp,2] :=j*SpSide2+jj;

changes™[temp,3] :mgenos [i#SpSide1+ii, j*SpSide2+3jl;

{2} end;
for 1:=0 to n-1 do

gin
freq[i] :=0;
for j:=0 to n-1i do
T it gonol[i,i]lhonz '
then freq[i] :=freq[i]+2
else if g-nol[i,i =het
then freqli] :=freq[il+i;
end;
Initialize;
Title(titre);
choix:sDrawField(changes ,maxind,Count@en);
If Upcase(choix)=$81
Then Begin
RestoreCrtNode;
Graphics:=False;
exit;
End;
reset(Filel);
Seek(Filel,1);
While not Eof(Filel) Do
{2} Begin
countchange:=0;
read(Filel F1db");
CountGen:=FilePos(File1);
For i:=1 to maxind do
{3} begin
if Fldb~[i,1]=Fall Then F1d"[i,1]:=1 else F1ld~[i,1]:=2;
if Fldb~[41,2]=Fall Then F1d~[i,2]:=1 else F1d~[i,2]:=2;
{3} end;
For i:=0 to FieldSide-1 do
For j:=0 to FieldSide-1 do
For ii:=0 to SpSidei-1 do
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For jj:=0 to SpSide2-1 do
{3} Begin
temp:=i+jj
+iis8p8ide2
+ j*SpSide2+SpSidel
+ isSpSide2*SpSidelsFieldSide;
It (Fld"[temp,1]=F1d~[temp,2])
then Begin
It ((F1d~[temp,1]=1)
and (genos[isSpSidei+ii,j*SpSide2+jj]
<>Homi))
then Begin
CountChange:sCountChange+1;
Changes” [CountChange,1] :=i#SpSidei+ii;
Changes” [CountChange,2] :=j#SpSide2+jj;
Changes~ [CountChange,3] :=Homi ;
end;
I1f ((F1d“[temp,1)=2)
and (genos[isSpSidei+ii,j*SpSide2+jj]
<>Hom2))
then begin
CountChango:ICountChan e+l ;
Changes~[CountChange,1] :mi»SpSidei+ii;
Changes” [CountChange,2] :=j*SpSide2+jj;
Changes” [CountChange,3] :=sHom2;
end; .

end
else If ((F1d"[Temp,1]<>F1d"[Temp,2])
and (0.nolf1t5p51d01+ii,jt8p81d02+jj]
<Het))
then begin
CountChange:=CountChange+1;
Changes” [CountChange,1] :=i«SpSidei+ii;
Changes” [CountChange,2] :»j*#SpSide2+jj;
Changes” [CountChange,3] :=Het;
ond;
{3} end;{0f ij loop)
for i:m1 to countchange do
genos[changes~[i,1] ,changes~[i,2]] :=changes~[1,3];
for i:m0 to n-1 do
begin
freq[i] :=0;
for j:=0 to n-1 do
it gonos[i,i]-homz
then freqfi]:=freqlil+2
else if gonol[i,i =het
then freq[il:=freq[il+1;
end;
choix:-DravFiold(changcs,countchange,CountGen);
If Upcase(choix)=#81
Then Begin
RestoreCrtMode;
Graphics:sFalse;
close(filel);
exit;

End;
{2} End;{While not Eof(File1)}
end;
FreeMem(Changes,Size0f (Changes™”));
FreeMem(F1d,SizeOF(F1d")) ;FreeMem(F1dB,Size0f(F1dB"));
close(filel);
Message_End;

{1}End;
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Island model, m = 0.01, s = 0.0, 25th generation.

Analysis of Variance for F;,

Source DF SS MS F P R?

nsp 3 0.003154 0.001051 1.01 0.391 0.467

nind 3 0.000634 0.000211 0.15 0.931

nsp * nind 9 0.002648 0.000294 0.25 0.986

rep 49 0.077907 0.001590 *

nsp*rep 147 0.153260 0.001043 0.90 0.769

nind *xrep 147 0.209261 0.001424 1.23 0.055

Error 441 0.509644 0.001156

Total 799 0.956508

Analysis of Variance for 6
Source DF SS MS F P R?
nsp 3 0.0005019 0.0001673 0.59 0.622 0.497
nind 3 0.0007509 0.0002503 0.61 0.609
nspxnind 9 0.0019107 0.0002123 0.63 0.775
rep 49 0.0425860 0.0008691 *
nspxrep 147 0.0416334 0.0002832 0.84 0.902
nind *rep 147 0.0602207 0.0004097 1.21 0.074
Error 441 0.1495081 0.0003390
Total 799 0.2971117
Analysis of Variance for G,

Source DF SS MS F P R?
nsp 3 0.0580782 0.0193594 85.63 0.000 0.599
nind 3 0.0006707 0.0002236 0.68 0.563
nspxnind 9 0.0015447 0.0001716 0.64 0.764
rep 49 0.0356708 0.0007280 *
nspxrep 147 0.0332347 0.0002261 0.84 0.892
nind xrep 147 0.0480452 0.0003268 1.22 0.067
Error 441 0.1184957 0.0002687
Total 799 0.2957400
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Island model, m = 0.01, s = 0.9, 25th generation.

Analysis of Variance for F,,

Source DF SS MS F P R?
nsp 3 0.0007322 0.0002441 0.79 0.502 0.493
nind 3 0.0002148 0.0000716 0.22 0.881
nsp*nind 9 0.0041677 0.0004631 1.66 0.097
rep 49 0.0218950 0.0004468 *
nsp*rep 147 0.0454585 0.0003092 1.11 0.217
nind*rep 147 0.0473871 0.0003224 1.15 0.136
Error 441 0.1231933 0.0002793
Total 799 0.2430487
Analysis of Variance for

Source DF SS MS F P R?
nsp 3 0.0001908 0.0000636 1.42 0.240 0.520
nind 3 0.0000338 0.0000113 0.30 0.827
nspxnind 9 0.0017721 0.0001969 5.28 0.000
rep 49 0.0036807 0.0000751 *
nsp*rep 147 0.0065878 0.0000448 1.20 0.079
nind *rep 147 0.0055704 0.0000379 1.02 0.442
Error 441 0.0164354 0.0000373
Total 799 0.0342710

Analysis of Variance for Gy
Source DF SS MS F P R?
nsp 3 0.0041815 0.0013938 40.73 0.000 0.587
nind 3 0.0000201 0.0000067 0.23 0.876
nspxnind 9 0.0013746 0.0001527 5.38 0.000
rep 49 0.0028792 0.0000588 *
nsp*xrep 147 0.0050307 0.0000342 1.21 0.075
nind xrep 147 0.0042956 0.0000292 1.03 0.404
Error 441 0.0125086 0.0000284
Total 799 0.0302903
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Island model, m = 0.1, s = 0.0, 25th generation.

Analysis of Variance for F,

Source DF SS MS F P R?
nsp 3 0.000173 0.000058 0.04 0.988 0.447
nind 3 0.008703 0.002901 2.39 0.071
nspxnind 9 0.013732 0.001526 1.08 0.377
rep 49 0.112286 0.002292 *
nspxrep 147 0.191729 0.001304 0.92 0.718
nind *rep 147 0.178288 0.001213 0.86 0.865
Error 441 0.623820 0.001415
Total 799 1.128731
Analysis of Variance for
Source DF SS MS F P R
nsp 3 0.0025341 0.0008447 4.83 0.003 0.490
nind 3 0.0007483 0.0002494 1.00 0.393
nsp * nind 9 0.0059394 0.0006599 3.29 0.001
rep 49 0.0134302 0.0002741 *
nspxrep 147 0.0257211 0.0001750 0.87 0.836
nind *xrep 147 0.0365568 0.0002487 1.24 0.050
Error 441 0.0884503 0.0002006
Total 799 0.1733801
Analysis of Variance for G,:
Source DF SS MS F P R?
nsp 3 0.0199270 0.0066423 47.47 0.000 0.554
nind 3 0.0004122 0.0001374 0.70 0.555
nspxnind 9 0.0041490 0.0004610 2.96 0.002
rep 49 0.0110689 0.0002259 *
nspxrep 147 0.0205701 0.0001399 0.90 0.775
nind xrep 147 0.0289360 0.0001968 1.27 0.036
Error 441 0.0685836 0.0001555
Total 799 0.1536468
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Island model, m = 0.1, s = 0.9, 25th generation.

Analysis of Variance for F},
Source DF SS MS F P R?
nsp 3 0.005418 0.001806 1.09 0.355 0.434
nind 3 0.001614 0.000538 0.26 0.852
nspxnind 9 0.012895 0.001433 0.73 0.685
rep 49 0.102261 0.002087 *

nspxrep 147 0.243295 0.001655 0.84 0.897
nind *rep 147 0.301282 0.002050 1.04 0.382
Error 441 0.870647 0.001974

Total 799 1.537413

Analysis of Variance for 8

Source DF SS MS F P R?
nsp 3 0.000474 0.000158 0.11 0.955 0.470
nind 3 0.000919 0.000306 0.20 0.894

nsp * nind 9 0.005129 0.000570 0.38 0.946

rep 49 0.151878 0.003100 *

nspxrep 147 0.212513 0.001446 0.96 0.618
nind xrep 147 0.220807 0.001502 0.99 0.507
Error 441 0.666050 0.001510

Total 799 1.257770

Analysis of Variance for G,

Source DF SS MS F P R?

nsp 3 0.131069 0.043690 36.22 0.000 0.528
nind 3 0.000572 0.000191 0.15 0.929
nspxnind 9 0.004021 0.000447 0.35 0.958

rep 49 0.133018 0.002715 *

nspxrep 147 0.177325 0.001206 0.94 0.662
nind*xrep 147 0.186370 0.001268 0.99 0.520
Error 441 0.564583 0.001280

Total 799 1.196958
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Island model, m = 0.01, s = 0.0, 150th generation.

Analysis of Variance for F},

Source DF SS MS F P R?
nsp ~ 3 0.009739 0.003246 1.48 0.221 0.523
nind 3 0.000566 0.000189 0.08 0.973

nsp * nind 9 0.016045 0.001783 0.93 0.497

rep 49 0.214204 0.004372 *

nspxrep 147 0.321601 0.002188 1.14 0.152
nind *rep 147 0.361902 0.002462 1.29 0.027 -
Error 441 0.843927 0.001914

Total 799 1.767984

Analysis of Variance for 6

Source DF SS MS F P R?
nsp 3 0.001801 0.000600 0.37 0.774 0.466
nind - 3 0.001001 0.000334 0.21 0.889

nsp * nind 9 0.011431 0.001270 0.67 0.741

rep 49 0.248972 0.005081 *

nspxrep 147 0.237420 0.001615 0.85 0.885
nind xrep 147 0.233683 0.001590 0.83 0.906
Error 441 0.842168 0.001910

Total 799 1.576476

Analysis of Variance for G,

Source DF SS MS F P R?
nsp 3 0.130200 0.043400 31.44 0.000 0.515
nind 3 0.000777 0.000259 0.19 0.902

nsp * nind 9 0.009927 0.001103 0.67 0.733

rep 49 0.222666 0.004544 *

nspxrep 147 0.202925 0.001380 0.84 0.889
nind*rep 147 0.199361 0.001356 0.83 0.912
Error 441 0.721903 0.001637

Total 799 1.487757
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Island model, m = 0.01, s = 0.9, 150th generation.

Analysis of Variance for F,

Source DF SS MS F P R?
nsp 3 0.020299 0.006766 3.06 0.030 0.452
nind 3 0.003256 0.001085 0.45 0.720
nspxnind 9 0.029542 0.003282 1.25 0.262

rep 49 0.220294 0.004496 *

nsp*xrep 147 0.325201 0.002212 0.84 0.891
nind *rep 147 0.356786 0.002427 0.92 0.711
Error 441 1.157906 0.002626

Total 799 2.113284

Analysis of Variance for 8

Source DF SS MS F P R
nsp 3 0.021257 0.007086 1.53 0.209 0.551
nind - 3 0.007505 0.002502 0.55 0.647

nsp * nind 9 0.019666 0.002185 0.55 0.834

rep 49 0.740714 0.015117 *

nspxrep 147 0.680023 0.004626 1.17 0.110
nind *rep 147 0.665752 0.004529 1.15 0.143
Error 441 1.737598 0.003940

Total 799 3.872514

Analysis of Variance for G,

Source DF SS MS F P R?
nsp 3 0.134474 0.044825 10.27 0.000 0.567
nind 3 0.008420 0.002807 0.65 0.583
nspxnind 9 0.020528 0.002281 0.61 0.786

rep 49 0.708612 0.014461 *

nspxrep 147 0.641636 0.004365 1.17 0.111
nind*xrep 147 0.632287 0.004301 1.16 0.133
Error 441 1.640922 0.003721

Total 799 3.786880
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Island model, m = 0.1, s = 0.0, 150th generation.

Analysis of Variance for F,

Source DF SS MS F P R?
nsp 3 0.0007358 0.0002453 0.49 0.692 0.481
nind 3 0.0008862 0.0002954 0.65 0.583
nspxnind 9 0.0030408 0.0003379 0.74 0.676
rep 49 0.0424588 0.0008665 *
nspxrep 147 0.0741282 0.0005043 1.10 0.234
nindxrep 147 0.0666915 0.0004537 0.99 0.525
Error 441 0.2024102 0.0004590
Total 799 0.3903517
Analysis of Variance for

Source DF SS MS F P R?
nsp 3 0.0003442 0.0001147 1.87 0.137 0.490
nind 3 0.0001397 0.0000466 0.78 0.506
nspxnind 9 0.0005833 0.0000648 1.23 0.276
rep 49 0.0035752 0.0000730 *
nsp*rep 147 0.0090137 0.0000613 1.16 0.127
nind *rep 147 0.0087517 0.0000595 1.13 0.180
Error 441 0.0233000 0.0000528
Total 799 0.0457080

Analysis of Variance for G,
Source DF SS MS F P R?
nsp 3 0.0052936 0.0017645 38.08 0.000 0.557
nind 3 0.0000914 0.0000305 0.67 0.570
nspxnind 9 0.0004158 0.0000462 1.16 0.320
rep 49 0.0028325 0.0000578 *
nsp*xrep 147 0.0068109 0.0000463 1.16 0.125
nind xrep 147 0.0066571 0.0000453 1.14 0.165
Error 441 0.0175880 0.0000399
Total 799 0.0396892
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Island model, m = 0.1, s = 0.9, 150th generation.

Analysis of Variance for F},

Source DF SS MS F P R
nsp 3 0.003271 0.001090 0.65 0.581 0.484
nind 3 0.001802 0.000601 0.43 0.729
nsp*xnind 9 0.019724 0.002192 1.58 0.119
rep 49 0.101976 0.002081 *
nspxrep 147 0.244760 0.001665 1.20 0.082
nind *rep 147 0.203304 0.001383 1.00 0.503
Error 441 0.612401 0.001389
Total 799 1.187238
Analysis of Variance for 6
Source DF SS MS F P R
nsp 3 0.0011029 0.0003676 1.02 0.386 0.431
nind 3 0.0015081 0.0005027 1.58 0.197
nsp*nind 9 0.0032322 0.0003591 0.98 0.452
rep 49 0.0164057 0.0003348 *
nsp*xrep 147 0.0529951 0.0003605 0.99 0.526
nind*rep 147 0.0467987 0.0003184 0.87 0.836
Error 441 0.1608853 0.0003648
Total 799 0.2829281
Analysis of Variance for G,
Source DF SS MS F P R
nsp 3 0.0070783 0.0023594 8.42 0.000 0.449
nind 3 0.0011176 0.0003725 1.56 0.203
nspxnind 9 0.0024270 0.0002697 0.97 0.466
rep 49 0.0130393 0.0002661 *
nsp*xrep 147 -0.0411790 0.0002801 1.01 0.476
nind *rep 147 0.0351854 0.0002394 0.86 0.862
Error 441 0.1228902 0.0002787 |
Total 799 0.2229167
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Analysis of Variance for Fj,

Stepping-stone model, m = 0.01, s = 0.0, 25th generation.

Source DF SS MS F P R?

nsp 3 0.004569 0.001523 1.25 0.294 0.478

nind 3 0.002919 0.000973 0.74 0.529

nspxnind 9 0.018635 0.002071 1.73 0.080

rep 49 0.084744 0.001729 *

nsp*xrep 147 0.179036 0.001218 1.02 0.441

nind xrep 147 0.193033 0.001313 1.10 0.238

Error 441 0.528000 0.001197

Total 799 1.010938

Analysis of Variance for
Source DF SS MS F P R
nsp 3 0.0010589 0.0003530 0.84 0.474 0.528
nind 3 0.0014896 0.0004965 1.30 0.277
nspxnind 9 0.0026931 0.0002992 0.86 0.562
rep 49 0.0485340 0.0009905 *
nspxrep 147 0.0617214 0.0004199 1.21 0.076
nind*rep 147 0.0561173 0.0003818 1.10 0.238
Error 441 0.1535082 0.0003481
Total 799 0.3251225
Analysis of Variance for G,

Source DF SS MS F P R?
nsp 3 0.0461157 0.0153719 46.66 0.000 0.599
nind 3 0.0011562 0.0003854 1.26 0.291
nsp*xnind 9 0.0020648 0.0002294 0.83 0.593
rep 49 0.0405598 0.0008278 *
nspxrep 147 0.0484330 0.0003295 1.19 0.096
nind *xrep 147 0.0450401 0.0003064 1.10 0.226
Error 441 0.1225461 0.0002779
Total 799 0.3059157
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Stepping-stone model, m = 0.01, s = 0.9, 25th generation.

Analysis of Variance for F},

Source DF SS MS F P R
nsp 3 0.0002767 0.0000922 0.20 0.897 0.461
nind 3 0.0001936 0.0000645 0.14 0.933
nspxnind 9 0.0009796 0.0001088 0.26 0.986
rep 49 0.0253033 0.0005164 *
nspxrep 147 0.0681866 0.0004639 1.09 0.254
nind *xrep 147 0.0656879 0.0004469 1.05 0.352
Error 441 0.1878078 0.0004259
Total 799 0.3484357
Analysis of Variance for

Source DF SS MS F P R?
nsp 3 0.0003651 0.0001217 1.63 0.184 0.480
nind 3 0.0001606 0.0000535 0.77 0.513
nsp * nind 9 0.0004545 0.0000505 0.69 0.716
rep 49 0.0075202 0.0001535 *
nsp*xrep 147 0.0109446 0.0000745 1.02 0.429
nind xrep 147 0.0102387 0.0000697 0.96 0.623
Error 441 0.0321466 0.0000729
Total 799 0.0618304

Analysis of Variance for G,;
Source DF SS MS F P R
nsp 3 0.0044860 0.0014953 28.33 0.000 0.521
nind 3 0.0001142 0.0000381 0.74 0.528
nspxnind 9 0.0003307 0.0000367 0.68 0.727
rep 49 0.0056891 0.0001161 *
nspxrep 147 0.0077594 0.0000528 0.98 0.559
nind*rep 147 0.0075287 0.0000512 0.95 0.645
Error 441 0.0238214 0.0000540
Total 799 0.0497294
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Stepping-stone model, m = 0.1, s = 0.0, 25th generation.

Analysis of Variance for F,,

Source DF SS MS F P R

nsp 3 0.001058 0.000353 0.30 0.828 0.411

nind 3 0.000303 0.000101 0.09 0.968

nsp*nind 9 0.015491 0.001721 1.17 0.310

rep 49 0.085513 0.001745 *

nspxrep 147 0.175255 0.001192 0.81 0.931

nind *rep 147 0.173397 0.001180 0.80 0.941

Error 441 0.646492 0.001466

Total 799 1.097508

Analysis of Variance for 6
Source DF SS MS F P R
- nsp 3 0.0010919 0.0003640 1.38 0.252 0.493
nind 3 0.0003366 0.0001122 0.28 0.838
nspxnind 9 0.0097903 0.0010878 3.43 0.000
rep 49 0.0278828 0.0005690 *
nspxrep 147 0.0388006 0.0002639 0.83 0.907
nindxrep 147 0.0584307 0.0003975 1.25 0.043
Error 441 0.1399656 0.0003174
Total 799 0.2762983
Analysis of Variance for G,

Source DF SS MS F P R?
nsp 3 0.0131314 0.0043771 21.78 0.000 0.525
nind 3 0.0002189 0.0000730 0.23 0.874
nsp*xnind 9 0.0076666 0.0008518 3.48 0.000
rep 49 0.0224738 0.0004586 *
nspxrep 147 0.0295493 0.0002010 0.82 0.922
nind*rep 147 0.0462809 0.0003148 1.29 0.027
Error 441 0.1080160 0.0002449
Total 799 0.2273369
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Stepping-stone model, m = 0.1, s = 0.9, 25th generation.

Analysis of Variance for F;,

Source DF SS MS F P R?
nsp 3 0.001647 0.000549 0.36 0.782 0.453
nind 3 0.004737 0.001579 0.83 0.478
nspxnind 9 0.042001 0.004667 2.64 0.006

rep 49 0.095401 0.001947 *

nspxrep 147 0.224263 0.001526 0.86 0.856
nind *rep 147 0.278783 0.001896 1.07 0.294
Error 441 0.780145 0.001769

Total 799 1.426977

Analysis of Variance for 8

Source DF SS MS F P R?
nsp 3 0.004517 0.001506 1.19 0.314 0.525
nind - 3 0.000824 0.000275 0.21 0.890

nsp x nind 9 0.006153 0.000684 0.60 0.797

rep 49 0.165001 0.003367 *

nsp*xrep 147 0.185224 0.001260 1.11 0.219
nind *rep 147 0.193332 0.001315 1.15 0.136
Error 441 0.502508 0.001139

Total 799 1.057559

Analysis of Variance for G,

Source DF SS MS F P R?
nsp 3 0.1565939 0.0521980 49.37 0.000 0.596
nind 3 0.0007079 0.0002360 0.21 0.888

nsp * nind 9 0.0055556 0.0006173 0.64 0.762

rep 49 0.1448862 0.0029569 *

nspxrep 147 0.1554191 0.0010573 1.10 0.234
nind*xrep 147 0.1633317 0.0011111 1.15 0.135
Error 441 0.4243199 0.0009622

Total 799 1.0508143
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Stepping-stone model, m = 0.01, s = 0.0, 150th generation.

Analysis of Variance for Fi,

Source DF SS MS F P R?
nsp 3 0.004784 0.001595 0.48 0.698 0.446
nind 3 0.005075 0.001692 0.47 0.706

nsp * nind 9 0.010515 0.001168 0.3¢ 0.961
rep 49 0.168285 0.003434 *
nspxrep 147 0.490153 0.003334 0.98 0.564
nind xrep 147 0.532894 0.003625 1.06 0.323
Error 441 1.507597 0.003419

Total 799 2.719304

Analysis of Variance for 8

Source DF SS MS F P R?
nsp 3 0.003742 0.001247 0.55 0.650 0.536
nind - 3 0.003436 0.001145 0.66 0.575

nsp * nind 9 0.011335 0.001259 0.67 0.739

rep 49 0.356096 0.007267 *

nspxrep 147 0.334595 0.002276 1.20 0.077
nind xrep 147 0.253299 0.001723 0.91 0.744
Error 441 0.833113 0.001889

Total 799 1.795617

Analysis of Variance for G,

Source DF SS MS F P R
nsp 3 0.143903 0.047968 23.98 0.000 0.576
nind 3 0.003209 0.001070 0.70 0.552

nsp * nind 9 0.010584 0.001176 0.70 0.705

rep 49 0.323607 0.006604 *

nspxrep 147 0.294004 0.002000 1.20 0.084
nindxrep 147 0.223844 0.001523 0.91 0.744
Error 441 0.736266 0.001670

Total 799 1.735418
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Stepping-stone model, m = 0.01, s = 0.9, 150th generation.

Analysis of Variance for F;,

Source DF SS MS F P R?
nsp 3 0.011867 0.003956 1.54 0.206 0.461
nind 3 0.024544 0.008181 3.65 0.014

nsp * nind 9 0.057424 0.006380 2.49 0.009

rep 49 0.163633 0.003339 *

nsp*rep 147 0.377441 0.002568 1.00 0.481
nind *rep 147 0.329396 0.002241 0.88 0.829
Error 441 1.128323 0.002559

Total 799 2.092628

Analysis of Variance for 0

Source DF SS MS F P R?
nsp 3 0.003937 0.001312 0.33 0.806 0.477
nind - 3 0.011150 0.003717 0.82 0.485

nsp * nind 9 0.049419 0.005491 1.12 0.349

rep 49 0.653025 0.013327 *

nsp*rep 147 0.591028 0.004021 0.82 0.925
nind *rep 147 0.666330 0.004533 0.92 0.717
Error 441 2.167547 0.004915

Total 799 4.142436

Analysis of Variance for G,

Source DF SS MS F P R
nsp 3 0.213695 0.071232 18.11 0.000 0.503
nind 3 0.011557 0.003852 0.87 0.458

nsp * nind 9 0.048078 0.005342 1.11 0.354

rep 49 0.640403 0.013069 *

nsprep 147 0.578101 0.003933 0.82 0.926
nind*rep 147 0.651070 0.004429 0.92 0.721
Error 441 2.121218 0.004810 |
Total 799 4.264122
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Stepping-stone model, m = 0.1, s = 0.0, 150th generation.

Analysis of Variance for F,,

Source DF SS MS F P R?
nsp 3 0.0021716 0.0007239 1.38 0.252 0.493
nind 3 0.0036734 0.0012245 2.05 0.109
nsp * nind 9 0.0042370 0.0004708 0.89 0.537
rep 49 0.0521841 0.0010650 *
nspxrep 147 0.0773349 0.0005261 0.99 0.518
nind xrep 147 0.0876370 0.0005962 1.12 0.187
Error 441 0.2341281 0.0005309
Total 799 0.4613662
Analysis of Variance for 6

Source DF SS MS F P R?
nsp 3 0.0007740 0.0002580 2.05 0.109 0.457
nind : 3 0.0008260 0.0002753 2.39 0.071
nsp * nind 9 0.0003786 0.0000421 0.33 0.964
rep 49 0.0096560 0.0001971 *
nsp*rep 147 0.0184713 0.0001257 0.99 0.516
nind xrep 147 0.0169521 0.0001153 0.91 0.749
Error 441 0.0558845 0.0001267
Total 799 0.1029425

Analysis of Variance for Gy
Source DF SS MS F P R?
nsp 3 0.0056152 0.0018717 19.87 0.000 0.493
nind 3 0.0006572 0.0002191 2.60 0.054
nsp * nind 9 0.0002611 0.0000290 0.31 0.972
rep 49 0.0075854 0.0001548 *
nspxrep 147 0.0138493 0.0000942 1.00 0.488
nind *rep 147 0.0123810 0.0000842 0.89 0.787
Error 441 0.0415104 0.0000941
Total 799 0.0818596
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Analysis of Variance for F,,

Stepping-stone model, m = 0.1, s = 0.9, 150th genération.

Source DF SS MS F P R?
nsp 3 0.001053 0.000351 0.31 0.822 0.431
nind 3 0.008610 0.002870 1.98 0.119
nspxnind 9 0.006357 0.000706 0.50 0.875
rep 49 0.073888 0.001508 *
nsp*rep 147 0.169054 0.001150 0.81 0.931
nind *rep 147 0.212716 0.001447 1.02 0.422
Error 441 0.623336 0.001413
Total 799 1.095014
Analysis of Variance for 6
Source DF SS MS F P R?
nsp 3 0.0017932 0.0005977 1.59 0.194 0.455
nind 3 0.0011546 0.0003849 0.77 0.512
nspxnind 9 0.0097642 0.0010849 2.07 0.031
rep 49 0.0519594 0.0010604 *
nspxrep 147 0.0551509 0.0003752 0.72 0.992
nind xrep 147 0.0734498 0.0004997 0.95 0.631
Error 441 0.2312758 0.0005244
Total 799 0.4245477
Analysis of ‘Variance for G,
Source DF SS MS F P R
nsp 3 0.0320387 0.0106796 35.68 0.000 0.509
nind 3 0.0008884 0.0002961 0.76 0.521
nspxnind 9 0.0076247 0.0008472 2.08 0.030
rep 49 0.0436529 0.0008909 *
nspxrep 147 - 0.0440004 0.0002993 0.74 0.986
nind*rep 147 0.0575860 0.0003917 0.96 0.602
Error 441 0.1794744 0.0004070
Total 799 0.3652654




Appendix C

MINITAB macro for two way
Kruskall-Wallis

Dependant variable in column C15. Independant variables in columns C2 and
C3.

noacho

rank cib c16

let c60=c2#»10+c3

unstack c16 into ¢20 c21 ¢22 ¢23 c24 c25 c26 c27 c28 ¢29 c30 c31 c32 ¢33 ¢34 ¢35;
subscripts c60.

let k20=sum(c20)

let k2i=sum(c21)

let k22=spum(c22)

let k23=sum(c23)

let k24=sum(c24)

let k26=sum(c25)

let k26=sum(c26)

let k27=sum(c27)

let k28=sum(c28)

let k29=sum(c29)

let k30=sum(c30)

let k3imsum(c31)

let k32=sum(c32)

let k33=sum(c33)

let k34=sum(c34)

let k35msum(c36)

let k120=k20%%2

let ki2i=k21%#2

let k122=k22#%%2

let k123=k23##2

let ki24=k24##2

let ki25=k265##2

let k126=k26%%2

let k127=k272%2

let k128=k28##2

let ki129=k29##2

let k130=k30#%2

let k13i=k31##2

let k132=k32#42 )
let k133=k33#%2

let ki134m:k34%»2

let k135=k36%#2

let k36=4

let k37m4

let k38=mcount(c20)

let k40=count(ci5)

let k41mk40=(k40+1)%(k40+1)/4

let k42=k40*(k40+1)/12

let k43=(k120+k121+k122+k123+k124+k1256+k126+k127+k128+k129+k130+k131+k132+k133+k134+k135)/k38-k41
let k220=(k20+k21+k22+k23) ##2+(k24+k25+k26+Kk27 ) *#2+(k28+k29+k30+k31) ##2+(k32+k33+k34+k35) ##»2
let k44=k220/k38/k36-k41

let k221=(k20+k24+k28+k32)##2+(k21+k26+k29+k33) ##2+(k22+Xk26+k30+k34) ##2+(k23+k27+k31+k35)#»2
let k465=k221/k38/k37-k41

let k46=k43-k44-k4b

let k50=k44/k42

let k51=k45/k42

let k52=k46/k42

let k53=k43/k42

let k60=k36-1

let k61mk37-1

let k62m(k36-1)#(k37-1)

let k63=k36#k37-1

note k60 k51 k52 k53 contains kw statistics for treati (nsp) treat2 (nind)
note treatistreat2 and treat with df in k60 k61 k62 k63 respectivly
print k50 k51 k62 kb3

print k60 k61 k62 k63

cdf k60 into k200;

272



Appendix C. MINITAB macro for two way Kruskall-Wallis 273

chisquare with k60,

let k201=1.0-k200

cdf kb1 into k202;

chisquare with k61.

let k203=1.0-k202

cdf k62 into k204;

chisquare with k62.

let k205=1,0-k204

cdf k563 into k206;

chisquare with k63.

let k207=1.0-k206

note k201 k203 k2056 and k207 contain P-values for treatl treat2
note interaction and treatment respectively
print k201 k203 k205 k207

erase c16-c100

erase ki-k230

echo
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FSTAT.C

#include <p2c/p2c.h>

$define npmax 1100
#define nlmax 20
#define numax 9
#define maxboot 65000
#define maxind 65000
#define modulo 10

typedef double frq[nlmax][numax];

typedef double fst[nlmax];

typedef float peral[nlmax] [numax];

typedef float (#ptr_to_peral[npmax])[numax];
typedef float sorted[maxboot];

typedef unsigned short numb_per_loc[npmax] [nlmax];

Static unsigned short anl, anu, np, nl, nu, ia, iu, iv, ip, il;

Static unsigned short (#an)[nl-axg

Static unsigned short anpinlmax];

Static unsigned short npinf, npsup;

Static ptr_to_peral h, p;

Static double *anbar, *annbar, *anc, *termi, *term2, *term3, sterm4, *term5;

Static double (*pbar)[numax], (*ppbar)[numax], (*varp)[numax], (*hbar)[numax],
(»capf) [numax], (*theta)[numax], (*#smallf)[numax];

Static double *capfl, *thetal, *smallfl;

Static float *capfb, *thetb, *smlfb;

Static FILE *filein, *fileouti, *fileout2, *filebootl, *fileboot2, *fileboot3;

Static Char locname[nlmax][9];

Static double tterml, tterm2, tterm3, tterm4, tterm5, a, b, c, tcapf, ttheta,
tsmallf;

Static double real_f[3];

Static long si, s2, pass;

Static FILE »fileini, sfilepar, *filemig;

Static unsigned short numbperm;

Static Char name[256], namedat [256], nameout[256];

Static Char nametmp[266], nllobootltzssl, nameboot2[256] , nameboot3[256];

Static unsigned short stepi;

Static Char ans;

Static Char filein_NAME[_FENSIZE];

Static Char fileouti _NAME[_FNSIZE];

Static Char fileout2_NAME[_FESIZE];

Static Char fileini_NAME[_FWSIZE];

Static Char filepar NAME[_FESIZE];

Static Char filemig NAME[_FENSIZE];

Static Char filebooti NAME[_FESIZE];

Static Char fileboot2 NAME[_FESIZE];

Static Char fileboot3_NANE[_FESIZE];

/ uniform func /
gtntic double uniform()

long z, k;

k = s1 / 53668L;
s1 = (s1 - k * 53668L) * 400i4L - k * 12211;
if (s1 < 0)
s1 += 2147483663L;
k = 82 / B2774L;
82 = (82 - k * 52774L) * 409692L - k * 3791;
it (s2 < 0)
$2 += 2147483399L;
z = 3] - 82;
if (z < 1)
z += 2147483662L;
return (z * 4.656613¢-10);
} /#of func uniforme/
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Static long grandom(n)
long n;

return ((long)(uniform() * n));
} /#of func grandoms/

Static Void readdata(f)
EILE L
unsigned short FORLIN;
Char *TEMP;
unsigned short FORLIMi, FORLIM2;

revind(*f);
flclnf(‘f, "xhd%hdxhd%*[ \nl", &np, &nl, &nu);
otc (»1);
£ (np <= 1) {
printf(" only one population. can not calculate theta. exiting.\n");
printf(" if you want smallf, create a dummy population fixed for\n");
print£(" 1 allels. theta and capf will then be meaningless.\n");
-Escape(1);

if (np > npmax || nl > nlmax) {
printf(" too man populationn or loci. npmax= %1d nlmax= %ld\n",
(long)npmax, (long)nlmax);
print£(" recompile with a higher value for npmax or nlmax.\n");
print£(" exiting...\n");
-Escape(1);

FORLIM = nl;
for (il = 1; i1 <= FORLIM; il++) {
fgotl(locnano[il - 1], 9, =f);
TEMP = ltrchr(locnano[il - 1], \n’);
if (TEMP != NULL)
*TEMP = 0;

}
FORLIN = nl;
for (il = 1; i1 <= FORLIN; il++)
anp[il - 1] = np;
anl = nl;
FORLIN = np;
for (ip = 1; ip <= FORLIN; ip++) {
FORLIMi = nl;
for (il = 1; i1 <= FUELIHi i1++) {
anfip - 111 ~ 1]
FORLIN2 = nu;
for (iu = 3; iu <= FORLIN2; iu++) {
h[ip - 1] [i1 - 13fdu - 1] = 0. 0;
plip -}1][11 = 1][iu - 1] = 0.0;

}

while (!P_eof(*f)) {
facanf(sf, “4hd", &ip);
it (ip = 0) {
FORLIM = nl;
for (il = {; i1 <= FORLIM; il++) {
fscanf (»f, "%hd", &ia);
iu = ia / uodulo,
iv = ia % modulo;
if (ia != 0) {
an[ip - 1][i1 ~ 1]++
[ip - 1][i1 - 1][in - 1] += 1.0; '
p[ig - 1]1[i1 - 1][17 - 1] += 1,0;
iu t= iv)
hiip - 1][11 = 1][iu - 1] += 1,0;
y hlip = 11[i1 - 1][iv = 1] += 1.0;

} .

}
fscanf (*£, "%+[*\n]");
getc(st);

} /#of procedure readdatas/

%tutic Void basic_stats()

double temp;
unsigned short FORLIM, FORLIM1, FORLIN2;

fprintf(fileoutt, " ");
FORLIK = np;
for (ip = 1; ip <= FORLIN; ip++)
tprintf(filooutl, "%6u", ip);
putchar(’\n’);
FORLIN = nl;
for (il = 1; il <= FORLIN; il++) {
fprintf(filooutl “\n locus: %s\n", locname[il - 1]);
fprintf(tiloouti, " n');
FORLIMNY = np;
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for (ip = 1; ip <= FORLIM1; i
fprintf(filoouti, “"%6u", Eip - 11[i1 - 1]);

putc(’\n’, fileouti);

FORLIM1 = nu;

for (iu = 1; fu <= FORLIM1; iu++) {
tprintt(filnoutl, “p: Z3n“ iu);
FORLIN2 = np;
for (ip = 1; ip <= FORLIN2; ip++) {

it (an[ip - 1][11 - 1] t= 0)
fprintf(fileoutl, "¥%6.3f",
p‘Eip = 11041 = 13 [4u = 11/ 2.0 / anlip - 11[41 - 13);

fprintf(filoouti, " 777?7?T");
putc(’\n?’, fileout1);

putc(’\n’, fileoutl);
FORLIN1L = nu;
for (iu = 1; iu <= FORLIM1i; fu++) {
fprintf(fileouti, “ho: %2u", iu);
FORLIN2 = np;
for (ip = 1; ip <= FORLIN2; ip++) {
it (an[ip ~ 1[11°-1] 1= 0)
f tintf(filooutl "%6.3f",
ip - 11[i1 - 1J[iu - 11"/ anlip - 11[i1 - 11);

ol-o
fprintf(fileoutl, " ?7777%);
putc(’\n’, fileoutli);

utc(’\n?, fileoutl);
ORLIM1 = nu;
for (iu = 1; iu <= FORLIM1; iu++) {
fprintf(filoouti, “he: X2u" iu);
FORLIM2 = np;
for (ip = 1; ip <= FDBLIH2 ip++) {
if (an[ip - hr-h o ¢
temp = plip - 1]1[il - 1][iu - 1] / 2.0 / an[ip - 11[i1 - 1];
fprintf(filoouti, ny%6.31",
2.0 » temp ¢ (1.0 - temp) * 2.0 * an[ip - 1]
) [11 = 1) / (2.0 * an[ip - 1][i1 - 1] - 1));
else
!pri¥tf(filoout1. " 2?777);

putc(’\n?, fileoutl);
}
££1lush(fileoutl);

P_ioresult = 0;
; /%of procedure basic_statss/

Static Void calcfstat(inf, sup, ans)
unsigned short inf, sup;
Char ans;

double temp;

unsigned short FORLIM, FORLINi, FORLIN2;
long TEMP1;

double TEMP2;

pass++;
FORLIM = nl; - s
for (i1 m i; il <= FORLIN; il++)
anp[il - 1] = gup - inf + 1;
for (ip = inf; ip <= sup; ip++) {
FORLINL = nl,
for (i1 = 1; i1 <= FORLIM1; il++) {
FOELIHZ = nu;
or (iu = 1; iu <= FORLIM2; iu++) {
it (an[ip - 1][11 - 1] = 0.0) {
E = 1][41 - 1]J[iu - 1] /= 2.0 » an[if - 1][11 -1]1;
[ip = 11[i1 - 1] [iuv - 1] /= an[ip - 1]1[i1 - 1];

o f{

p = 1][41 ~ 1][iu - 1] = 0.0;
h[ip = 11[i1 - 1][iu - 1] = 0.0;
if (dy == 1)

anp[il - 1]=-=;

}
}

FORLIN = n];
for (i1 = 1; i1 <= FORLIM; il++) {
anbar[il - 1] = 0.0;
annbar[il - 1] = 0.0;
for (ip = inf; ip <= sup; ip++) {
anbar([il - 1] += an[ip - 1][il1 - 1];
TENPL = an[i - 1][i1 - 1];
annbar[il - 1] += TEMP1 * TEHPi.

if (anp[il = 1] > 1 && anbar[il - 1] != 0) {
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anbar[il - 1] /= anp[il - 1];
anc[il - 1] = anp[il ~ 1] = lnbnr[il -1] -
annbar(il ~ 1] / nnp[il = 1] / anbar[il - 1];
anc[il - 1] /= anp[il - 1] - 1.0;
FORLIN1 = nu;
for (iu = 1; iu <l FORLIMi; iu++) {
pvar[il - 1]1[iu - 1] = 0.0;
ppbar[il - 1][iu - 1] = 0. 0;
hbar[il -~ 1][iu - 1] = 0.0;
for (1E = int ip <= sup; ip++) {
pbar(il - 1]
[iu = 1) += an[ip - 1][i1 - 1] . plip - 11[i1 - 1]1(iu - 1];
TEHP2 = p[ip - 11[11 - 1) [iu -
ppbaril = 1]1[iu = 1] += ln[ip - 1][11 - 1] » (TEMP2 = TENP2);

hbar([il - 1]
[iu - 1] 4= an[ip - 1J[i1 - 1] * h[ip - 11[41 - 1] liu - 1];
pblt[il - 1]
[iu - 1] bar[il - 1][iu - 1] / anp(il - 1] / anbar[il - 1];
TEXP2 = pbar[gl = 1] [iu - 13;
vnrp[il - 1]

iu - 1] = ppbar[il - 1]
[iu = 1] = anplil - 1] # anbar[il - 1] * (TEMP2 * TEMP2);
varp[il - 1]{iu - 1] = varp[il - 1]
[iu = 1] / (anp[il - 1] - 1.0) / anbar[il - 1];
hbar[il - 1]
(iu ; 1] = hbar[il - 1]1[iu = 1] / anp[4l - 1] / anbar[il - 1];

}

}
if (pass == 1) {
putc(’\n?, fileoutl);
FORLIN = n1
for (il = 1; i1 <= FORLIM; il++) {
fprintf(fileouti, "\n for locus : %s\n", locname(il - 1]);
FORLINL = nu;
for (iu = 1; iu <= FORLIN1; iu++) {
fprintf(fileoutl, "fis: %2u", iu);
FORLIM2 = np;
for (ip = 4; ip <= FORLIN2; ip++) {
it (an[ip = 1J[41 - 1] 1= O && plip - 11[i1 - 1]J[iu - 1] > 0.0001 &k
plip - 1][i1 - 1][iu - 1] <€ 0.9999) {
temp = 4.0 » p[ip - 1]1[i1 - 1]
fiu - 1] » (1 - pEip - 1][11 - 1][iu - 1]) * an[ip - 1]
(i1 - 1] /7 (2.0 # an[ip - 1][i1 - 1] - 1.0);
temp » 1 - h[ip - 1][11 - 1]1[iu - 1] / temp;
fprintf(filooutl, "¥%8.41", temp);
} else
fprintf(fileouti, " ?7277777);

putc(’}n’, fileoutl);

3
3

ttermi = 0.0;
tterm2 = 0,0;
tterm3
ttermd
ttermb
.FORLIN = nl;
for (il = 1, il <= FORLINM; il++) {
if (anp[il 12 nnbar[il - 1] !- 0) {
termi[il 0.0; ,
term2[il )
term3[il
term4[il
termb[il
a=0.0;
b= 0,0;
c = 0,0;
- FORLIM1 = nu; ) .
for (iu = 1; iu <= FORLIM1i; iu++) {
it (pbar{il - 11[iu = 1] > 0. 00001 &% pbar[il - 11[iu - 1] < 0.99999) {
= pbar[il = 1][iu = 1] *= (1.0 = pbar[il - 1][iu - 1])
+= (1 0 - anp[il - 1]) * varp[il - 1]J[iu - 1] / unp[il - 1],

a
a
b=
a-= hbar[il -1]J[iu-11/4
a
a
b

nuaw
[~}
o

[y
el
IIIIIV

| I I I I B |
-
|

0. 0,
.0.0;
0.0;
0 0;

= varp{il = 1]J[iu - 1] - a / (nnbar[il -1] - 1);

dan ar(i1 - ] = a / anc[il 1;

+= (1.0 = 2.0 * anbar[il - 1]) * hbar[il - 1]

[(iu - 1] / 4.0 / anbar[il - 1];

b = anbar{il - 1] * b / (anblr[il -1] - 1.0);
c = hbar({il = 1][iu = 1] /2
capf[il - 1]1[iu - 1] = (a + b) "/ (arb+o);
thetalil = 1J[iu - 1] = a / (a + b + ¢);
smallffil - 1J[iu=-1]1 =b / (b + ¢);
termifil - ¥ + a + b;
torm2{il - 1] +=m g + b +
‘term3{il - 1] += a;
term4[il - 1] += b;
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term6[il - 1] += b + ¢;

} else {
capr[il - 1][iu - 1] = 0.0;
theta(il - 1][iu - 1] = 0.0;
smallf (il - 1][iu ~ 1] = 0.0;

}

if (pass == 1 &% term2[il - 1] != 0.0 && term5[il - 1] != 0.0) {
fprintf(fileoutl, "\n for locus : ¥s\n", locname(il =~ 1]);
fprintf(fileoutl, "allele capf theta  smallf \n");

}

if (term2[il - 1] != 0.0 &k term6[il -~ 1] != 0.0) {
capfl{il - 1] = termi[il - 1] / term2[il - 1];
thetal[il - 1] = term3[il - 1] / term2(il - 1i;
smallfl(il - 1] = term4[il - 1] / term5(il - 1];

} oelse {
capfl{il - 1] = 0.0;
thetal[il - 1] = 0.0;
smallfl[il - 1] = 0.0;

}
if (pass == 1 &% term2[il - 1] != 0.0 && term5[il - 1] = 0.0) {
FORLINM1 = nu;
for (iu = 1; iu <= FORLIM1i; iu++)
fprintf(fileouti "Y5u¥10.4%10.41%10.4f\n",
iu, capf[il - 1][iu - 1], theta[il - 1]
[iu = 1), smallf[il - 1][iu = 1]);
fprintf(fileoutl, " all %9.42%10.41%10,4f\n"
capfl[;l =1, thetallil - 1], smallfi[il - 1]);

ttermi += termi[il - 1];
tterm2 += term2[il - 1};
tterm3 += term3[il - 1];
ttermd += termd[il - 1];
N ttermb += term5[il - 1];
}
tcapf = ttermi / tterm2;
ttheta = tterm3 / tterm2;
tsmallf = tterm4 / ttermb;
if (pass != 1)

return;
fprintf(fileouti, "\n over all loci\n");
fprintf(fileoutli, " capf theta smallf\n");
fprintf(fileoutl, " %10.4£%10.4%10.4f\n", tcapf, ttheta, tsmallf);
fflush(fileouti);

P_ioresult = 0;
real_f[0] = tcapf;
real_f[1] = ttheta;
real_f£[2] = tsmallf;

} /#of procedurs calcfstats/

Static Void jack.ov_pop(inf, sup)
unsigned short inf, sup;

double capflj, capfjj, smallflj, smallfjj, thetalj, thetajj, anbarj,
annbarj, ancj, termij, term2j, term3j, term4j, termbj, pbarj, ppbarj,
hbarj, varpj, aj, bj, cj;

unsigned short anpi, anp2, FORLIM, FORLIM1i;

long TEMP;

uns Enod short FORLIN2;

double TEMP1;

fprintf(fileoutl, "\njackknifing over populations.\n");
f£flush(fileouti); )
P_ioresult = 0;
FORLIN = nl;
for (il = 1; i1 <= FORLINM; il++) {
anbar(il - 1] #= anp[il - 1];
anpi = anp[il - 1] - 1;
anp2 = anpl ~ 1;
capflj = 0.0;
capfjj = 0.0;
thetalj = 0.0;
thetajj = 0.0
smallflj = O,
smallfjj = 0.
FORLIN1 = nu;
for (iu = 1; iu <= FORLIN1; iu++) {
pbar[il - 1][iu - 1] *= anbar[il - 1];
hbar[il = 1][iu ~ 1] *= anbar[il - 1];

}
for (ip = inf; ip <= 'u§= ip++) {
it (anlip - 11041 - 1] 1= 0) {
anbarj = (anbar[il - 1] = an[ip - 1J[i1 = 1]) / anpi;
TEMP = an[ip - 1][i1 - 11;
annbarj = annbar(il - 1] - TEMP # TENP;
ancj =" (anpi * anbarj - annbarj / anpl / anbarj) / anp2;
termij = 0.0;
term2j = 0.0;
term3j = 0.0;
termdj = 0.0;
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termb6j = 0.0;
FORLIN2 = nu;
for (iu = 1; iu <= FORLIN2; iu++) {
barj = pbar{il - 1]
Eiu - 1] = an[ip - 1]1[11 - 1] » plip - 11[i1 - 1]1(iu ~ 1];
TEMP1 = plip - 1J[11 - 1]1[iu - 15;
ppbarj = ppbar[il - 1]
iu = 1] - anfip - 1][i1 ~ 1] » (TEMP1 * TEMP1);
hbarj = hbar[il - 1]
[iu = 1] - an[ip - 1][41 - 1] & h{ip - 1][i1l = 1] [iu - 1];
pbarj = pbarj / anpi / anbarj;
varpj = (ppbarj - anpi * anbarj * pbarj * pbarj) / anp2 / anbarj;
hbarj = hbarj / anpi / anbarj;
it (pbarj > 0.00001 &k pblr; < 0.99999) {
;j = pgnrj * (1.0 - pbarj) - anp2 * varpj / anpi;
= aj;
aj = varpj = (aj - hbarj / 4.0) / (anbarj - 1.0);
aj = li * anbarj / ancj;
bj 4= (1.0 - 2.0 *» anbarj) * hbarj / 4.0 / anbarj;
bj = anbarj * bj / (anbarj - 1.0);
cj = hbarj / 2.0;
_termij += aj + bj;
term2j +m» aj + bj + cj;
term3j += aj;
termdj += bj;
} termbj += bj + cj;

}

if (term2j !m 0.0 && term5j != 0.0) {
capflj += termij / term2j;
TEMPL = terml torng;
capfjj += TEMP1 » TEMP1;
thetalj += term3j / term2j;
TEMP1 = term3j / term2j;
thetajj += TEMP1 = TEMP1;
smallflj += term4j / termbj;
TEMP1 = term4j / termbj;
smallfjj += TEMP1 » TENP1;

}

}
ir (tornQ% != 0.0 k& term5j != 0.0) {
fprintf(fileoutl, "\n for locus : %s\n", locnamae[il - 1]);
2printf(fileocuti, " capf theta smallf\n");
capfjj -= capflj * capflj / anpfil - 13;
capfjj = sqrt(anpl » capfjj / anplil - 1]1);
capflj = anp[il - 1] * capf1[il - 1] - anpil * capflj / anp[il - 1];
thetajj == thetalj *» thetalj / anpl[il - 1];
thetajj = sqrt(anpl & thetajj / anplil - 1]);
thetalj = anp[il - 1] * thetallil = 1] - anpl * thetalj / amp[il - 1];
smallfjj = smallflj * smallflj / anp(il - 1];
smallfjj = sqrt(anpl » smallfjj / anplil - 1]);
snallfl% = anp(il - 1] * smallfl[il - 1] - anpl # smallflj / anp[il - 1];
fprintf(fileoutl, " total%10.41%10.4£%10.4f means\n",
capflj, thetalj, smallflj);
fprintf(fileoutl, " %10.47%10.41%10.4f std. devs.\n",
capfjj, thetajj, smalltjj);
£flush(fileoutl);
P.ioresult = 0;

}
/ . . /
Static Void jackknife(inf, sup, ans)

unsigned short inf, sup;
Char ans;

double capflj, capfjj, smallflj, smallfjj, thetalj, thetajj, termij, term2j,
term3j, termd4j, termbj;

unlifnod short anli, FORLIN;

double TEMP;

if (sup > 2)
jack_ov_pop(inf, sup);

anli = anl - 1;

capflj = 0.0;

capfjj = 0.0;

thetalj = 0.0;

thetajj = 0.0;

smallflj = 0.0;

smallfjj = 0.0;

FORLIMN = nl;

for (il = 1; il <= FORLIM; il++) {
termij = tterml - termi[il ~ 1];
term2j = tterm2 - term2[il - 1];
term3j = tterm3 - term3[il - 1];
termdj = tterm4 - term4[il - 1];
term6j = ttermb ~ term5[il - 1];
if (term2j != O &k termbj != 0) {

capflj += termij / term2j;



Appendix D. FSTAT.C

280

TEMP = termij / term2j;

capfjj += TEMP & TENP;

thetalj += term3j / torle,

TENP = term3j / term2j;

thetajj += TEMP * TEMP;

smallflj += termdj / toruSJ,

TENP = term4j / termbj;

smallfjj += TEMP * TEMP;
) }
capfjj = sqrt(anli * (capfjj - cupflj * capflj / anl) / anl);
capflj = anl * tcapf - anll * capfl
thetajj = sqrt(anll » (thetajj - thotalj - thotnlj / anl) / anl);
thetalj = anl » ttheta -~ anli # thetalj / anl;
smallfjj = sqrt(anli * (smallfjj - smallflj & smallflj / anl) / anl);
smallflj = anl * tsmallf - anll * smallflj / anl;
fprintf(fileoutl, “\n jackknifing over loci.\n");
it (fileouti != NULL)

ltilooutl a freopen(fileouti_NAME, "a", fileoutl);
else
fileoutl = fopen(fileouti _NAME, "a");

if (fileouti == NULL)

-EscI0(FileNotFound);
fprintf(fileoutl, "\n apf theta smallf\n");
fprintf(tilcoutl, " total%10. 41%10 41%10.4f means\n",
capflj, thetalj, lllllflj)
fprintf(fileouti, %10 41%10.41%10.4f std. devs.\n",
capfjj, thetajj, smallfjij);
fflush(fileoutl);
P_ioresult = 0;

} /*proc jackknifes/

typedef float perpoplnpmax];
typedef float *perperpop[npmax];

itatic Void perpair()

double smallfp, tsmallfp, pqp, tpqp, ap, bp, cp, termip, term2p, term3p,
term4p, termbp;

perperpop tterm2p, tterm3p;

double thetapp, smallfpp, tthetapp, anbarp, annbarp, ancp, pbarp, ppbarp,
varpp, hbarp;

perperpop fpp, fppt, mppt;

unsigned short ipi, ip2;

float maxmig;

unsigned short FORLIM, FORLIM1;

Char STR2[256];

unsigned short FORLIN2, FORLIM3;

long TEMP, TEMP1;

double TEMP2, TEMP3;

FORLIM = np;

for (ip = 1; ip <= FORLIN; ip++) {
tpplip - 1] = (float O)Halloc(siz-of(pcrpop))
fpptip - 1] = (float #)Halloc(tiz.ot(perpop)),
tterm2p[ip - 1] = (float *)Malloc(sizeof(perpop));
tterm3p[ip = 1] » (float *)Malloc(sizeof(per; op)),

y mpptip -~ 1] = (float =)Malloc(sizeof(perpop));

FORLIM = np;
for (ipl = 0; ipi < FORLIN; ipi++) {
FORLIM1 = np;
for (ip2 = o~ 2 < FOBLIHI ipa++) { .
fppt%ipi][i 25 = -9.9
ttorn2p[ip2§[ip1] = 0. 0;
tterm3p[ip2] [ip1] = 0.0;

}
fprintf(£fileouti, "\n s+#\n");

fprintf(fileouti, " theta per locus over pair of populations.\n");

FORLIN = n];
for (i1 = 1; i1 <= FORLIN; il++) {
fprintf(filcoucl "\n tor locus: %s\n\n", locname[il - 1]);
fprintf(fileoutl, ")
FORLIN1 = np;
for (ip = 1; ip <= FORLINMi; 1 ++)
tprintf(filcouti, “"%6u”,
putc(’\n’, fileouti);

FORLIN1 = np;
for (ipl = 0; ipl < FORLIMi; ipi++) {
FORLIMN2 = np
for (ip2 = o ip2 < FORLIM2; ip2++)
fpp[ipiltip2§ = -9.99;

FORLIHi = np;

for (ipl = 0; ipi < FORLIN1; ipi++) {
fprintf(filoouti, "%6u", 1p1 +1);
FORLIN2 = np;
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for (ip2 = ip1; ip2 < FORLIN2; ip2++) {
if (ipt + 1 == ip2 + 1) { /#calculation of smallf per pop*/
smallfp = 0.0;
= 0.,0;
¥§£.11fp = 0.0;
tpqp = 0.0;
FORLIM3 = nu;
for (iu = 1; ju <= FORLIN3; iu++) {
if (plip1][il - 1][iu - 1] > 0.00001 &%
plip11[il1 - 1] [iu - 1] < 0.99999) {
pap ® plip11[il - 11[iu - 1] » (1.0 - p[ip1]1[i1 - 1][iu - 1]);
smallfp = 1 = h[ip1]J[4il - 11[du - 1] / 2.0 / pqp;
tsmallfp += smallfp * pgp;
} tpqp += pqp;

}
if (tpgp != 0.0) {
tsmallfp /= tpqp;
tpqp = 2.0 = lgfipil[il - 1] - 1.0;
tsmallfp = (tpqp * tsmallfp + 1.0) / (tpgp + tsmallfp);
£pplip1] [ip2] = tsmallfp;

} else { /scalculation of theta and smallf per pair of pop*/
if (an[ip1][il1 - 1] != O && an[ip2][il - 1] != 0) {
anbarp = (an[ip1][il - 1] + an[ip2]{il - 1]) / 2.0;
TEMP = an[ip1][il - 1];
TEMPL = an[ip2][il - 1];
annbarp = TEMP * TEMP + TENP1 » TENP1;
ancp = 2.0 # anbarp - annbarp / 2.0 / anbarp;
termip = 0.0;
term2p = 0.0;
tera3dp = 0.0;
termip ®» 0.0;
termbp = 0.0;
FORLIM3 = nu;
for (iu = 1; iu <= FORLIM3; iu++) {
pbarp = an[ip1][il - 1] # g[ipl][il = 1]1[iu - 1] + an[ip2]
[i1 = 1] » plip2] [11 - 11[iuw - 1};
TEMP2 = p[ip1][il1 - 1][iu - 1];
TEMP3 = p[ip2][il - 1][iu ~ 1];
ppbarp = an[ip1][il ~ 1] » (TEMP2 # TEMP2) + an[ip2]
[i1 = 1] » (TEMP3 = TENP3);
hbarp = an[ip1][il = 1] * h[ip1]1[il - 1][iu - 1] + anlip2]
(il = 1] » h(ip2][il - 1][iu ~ 1];
pbarp = pbarp / 2.0 / anbarp;
varpp ™ ppbarp = 2.0 * anbarp * pbarp * pbarp;
varpp /= anbarp;
hbarp = hbarp / 2.0 / anbarp;
ap = pbarp * (1.0 - pbarp) = varpp / 2.0;
bp = ap;
ap == hbarp / 4.0;
ap = varpp + ap / (1.0 - anbarp);
ap = anbarp * ap / ancp;
bp += (1.0 - 2.0 * anbarp) * hbarp / 4.0 / anbarp;
bp = anbarp * bp / (anbarp - 1.0);
cp = hbarp / 2.0;
termip += ap + bp;
term2p += ap + bp + cp;
term3p += ap;
term4p += bp;
termbp += bp + cp;

}
tterm2p[ip2] [ip1] += term2p;
tterm3p[ip2] [ipi] += term3p;
if (term2p != 0.0 &k term5p != 0.0) {
thetapp = term3p / term2p;
smallfpp = termdp / termbp;
fpplipi]) [ip2] = thetapp;
fpplip2] [ip1] = thetapp;

if (i1 == nl) {
it (tterm2p[ip2]1[ip1] != 0.0) {
tthetapp = tterm3p[ip2] [ip1] / tterm2p[ip2][ipil;
2ppt[ip2] [ip1] = tthetapp;
fppt[igl][ipZ] = tthetapp;

}
}
}
}

FORLIN2 = np;
*

this is if matrices of theta per locus and perpair
need to be written to fileoutl

*/
for (ip2 = 0; ip2 < FORLIN2; ip2++) {
if (ip1 + 1 = ip2 + 1) {
it (£pplip1l1lip2] > -9.0)
lfprintt(filoouti, n%e.2¢", fpplip11[ip2]1);
else
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fprintf(fileouti, " ")
else
fprintf(fileout1, * “);
putc(’\n’, fileout1);
}
FORLIN = np;

for (ip1 = 0; 1p1 < FORLIN; ipi++) {
FORLIN1 = np

for (ip2 = o 1%2 < FO!LIll ip2a++) {

it (fppt[ipi] ip2]

-ppt[ip1][1p2] = (1.0 - tppt[ipi][ipZ]) / 4.0 / £ppt(ip1][ip2];

-pptgipiltipzl = -999.999;

}

maxmig = -1000.0;

FORLIN = np;

for (ipl = 0; ipi < FORLIN; ipi++) {
FORLIN1 = np

for (ip2 = o 1%2 < FORLIN1; ip2++) {

it (wp t[i 1][ip2] > -ax-i )
lax-;s = IPPg[ipg][ipg]; ¢

}

/* print£("%10.3f\n", maxmig); */

FORLIN = np;

for (ipl = 1; ipi <= FORLINM; ipi++) {
FORLIM1 = n

for (ip2 = f ip2 <= FORLIM1; ip2++) {

lprintf(STRZ, “%s.mig", na-o).
strcpy(filemig NAME, srnz),

/* if (mppt[ip1]1~[ip2]<0) then mppt[ip1]~[ip2] :=maxmig;*/

}
if (filemig != NULL)
filemig = freopen(filemig NAME, "w",
else
filemig = fopen(filemig NAME, "v");
if (filemig == NULL)
_EscI0(FileNotFound);
FORLINM = np;
for (ipi = 1; ipi <= FORLIN; ipi++) {
FORLIM1 = np;
for (ip2 = 1; ip2 <= FORLIN1; ip2++)

fprintf(filo-zg, "%10. 3!%4u%4u\n“, mppt [ip1 - 1][ip2 - 1], ip2, ip1);

/% if ip1<>ip2 thenx/
/*if mppt[ip1]~ [ip2]<>999 999 thens/
putc(’( , Tilemig);

if (filemig != WULL)
fclose(t lonig).

filemi TULL;

fflu-h%filooutl).
P_ioresult = 0;

FORLIH = np;

for (ip = 1; ip <= FORLINM; ip++) {
Froc(fppt[ip - 1] ;

Free(fpplip - 11);

Free(tterm2p[ip - 1]);
Free(tterm3plip - 11);
Free(mppt[ip - 11);

}
} /*proc perpairs/

/* Local variables for quicksort: */
struct LOC_quicksort {

float *=*a;

H
Local Void sort(l, r, LINK)

short 1, r;
ztruct LDc_quicklort sLIIK;

short i, J;
float x, ¥y;

i=1];
i -{finllx->a)[(1 +r)/2-1]1;
d
°-h11. C(CeLINK=->a)[i - 1] < x)
i++;
while (x < (sLINK->a)[j - 11)

uja'« NI
y = (sLIEE->a) [i -

1];
(*LINK->a)[i - 1] = (-Lle->a>[j - 1]
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(sLINK=->a)[j - 1] = y;
i+4;

3=

} while (i <= j);
it 1< J

sort(l, j, LINK);
if (1 < r)
sort(i, r, LINK);

/
Static Void quicksort(a., lo, hi)
float #ea_;
short lo, hi;
{ /»quicksorts/
struct LOC_quicksort V;

V.a=a_;
sort(lo, hi, &V);

/
Static Void bootstrap(ans)
Char ans;

short mb, i, mbl, mbu, temp;

float termib, term2b, term3db, termib, termbdb, cafl, cafu, thetl, thetu,

smlfl, smlfu;
short repbb, repuu;
float cafll, cafuu, thetll, thetuu, smlfll, smlfuu;
unsigned short FORLIM1;

mb = 0;
for (1 m 1; 1 <= maxboot; i++) {
termib = 0.0;
term2b = 0.0;
term3b = 0.0;
term4b = 0.0;
termbb = 0.0;
FORLINM: = nl;
for (i1 = 1; il <= FORLIML; il++) {
temp = grandom((long)nl) + 1;
termib += termi[temp - 1];
term2b += term2[temp - 1];
term3b += term3[temp - 1];
termib += termé[temp - 1];
termSb += term6[temp - 1];

}

if (term2b !=m 0.0 &k term5b != 0.0) {
mb++;
capfb(mb - 1] = termib / term2b;
thetb{mb = 1] = term3b / term2b;
smlfb{mb = 1] = termdb / termbb;

mbl = (long)floor(1.0 * maxboot / 40.0 + 0.5);
mbu = (long)floor(39.0 * maxboot / 40.0 + 0.5);
quicklort(icapfb, 1, maxboot);
quicksort(kthetb, 1, maxboot);
quicksort(&smlfb, 1, maxboot);
cafl = capfbmbl - 1];
cafu = capfb[mbu - 1];
thetl = thetb[mbl - 1];
thetu = thetb(mbu - 1];
smlfl = smifb(mbl - 1];
smlfu = smlfb(mbu - 1]
repbb = (long)floor(1.0
repuu = (long)floor(199.
cafll = capfb[repbd - 1

. cafuu = capfb[repuun - 1];
thetll = thetb[repbb - 1]
thetuu = thetb[repuu - 1]
snlfll = smlfb[repbd - 1]
salfuu = smlfb[repun - 1];

’
0 » maxboot / 200.0 +
0 = maxboot / 200.0
;

.
’
.
’
.
’

fprintf(fileouti, "\n
fprintf(fileoutt, * bootstrapping over loci.\n\n");
fprintf(fileouti, ' 96%% confidence interval.\n\n");
fprintf(fileouti, " capf theta smallf\n");
fprintf(fileoutl, "%10.4£%10.41%10.4f\n", cafl, thetl, smlfl);
fprintf(fileouti, "%10.4£%10.4£%10.4f\n\n", cafu, thetu, smlfu);
fprintf(fileouti, " 99%% confidence interval.\n\n");
fprintf(fileoutl, " capf theta smallf\n");

fprintf(fileoutl, "%10.4£%10.41%10.4f\n", cafll, thetll, smlfll);
fprintf(fileoutl, "%10.4£%10.41%10.4f\n\n", cafuu, thetuu, smlfuu);

£flush(fileoutl);
’ P_ioresult = 0;

\n");

/
%tltic Void permwithin()
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unsigned short rep, i, max, temp, tempi;

uchar pop(maxind * 2];

unsigned short n{numax];

short repb, repu;

float cafl, cafu, thetl, thetu, smlfl, smlfu;

short repbb, repuu;

float cafll, cafuu, thetll, thetuu, smlfll, smlfuu;
unsigned short FORLIM, FORLIMNi, FORLIM2, FORLIM3;

numbperm = 5000;
FORLIN = numbperm - 2;
for (rep = 0; rep <= FORLIN; rep++) {
FORLIN1 = np;
for (ip = 1; ip <= FORLIN1; ip++) {
FORLIN2 = nl;
for (il = 1; 11 <= FORLIN2; il++) {
max = an[ip - 11[i1 - 1] » 2;
if (max != 0) {
FORLIN3 = nu;
for (du = 1; iu <= FORLIN3; iu++)
nfiu - 1] = 0;
FORLIM3 = nu;
for (iu = 1; ju <= FORLIM3; iu++) {
g[ip = 1J[i1 - 1J[iu = 1] *= max;
£ (ia == 1)
n[iu - 1] = (long)floor(plip - 1]1[il - 1]1[iu - 1] + 0.5);
else
nliu = 1] = n[iu - 2] + (long)floor(plip - 11[il - 1]
{iu = 1] + 0.5);

i=0;
FORLIM3 = nu;
for (iu = 1; ju <= FORLIM3; iut+) {
ifd(pEip - 11041 = 1] [iu - 1] = 0.0) {
o

poptd - 13
1=-1] = ju;
pop y } while %1 t» nfiu - 1]);

}
i = max;
do {
temp = pop[i -~ 1];
templ = grandom((long)i) + 1;
popli - ?] = popltempl - 1];
op[tempi - 1] = temp;

)
} while (i !I= 1);
FORLIM3 = nu;
for (iu = 1; ju <= FORLIM3; iu++)
. h[ip = 1][i1 - 1][iu - 1] = 0.0;
=

vhile (i < max) {
if (pop[i - 1] != pop[il) {
h[ip - 1]J[11 - 1] [pop[i - 1] - 1] += 1.0;
3 hlip = 1J[il - 1][pop[i] = 1] += 1.0;

i+m 2;

3

}

calcfstat(i, np, ans);

capfb[rep] = tcapf;

thetb[rep] = ttheta; '
smltb[rep] = tsmallf;

}
capfb[numbperm - 1] = real_f(0];
thetb[numbperm - 1] = real_f[1];
sulfb[numbperm - 1] = real_f[2];
quicksort(&capfb, 1, numbperm);

- quicksort (&thetb, 1, numbperm);
quicksort(&smlfb, 1, numbperm);
repb = (long)floor(i.0 * numbperm / 40.0 + 0.5);
repu = (long)floor(39,0 * numbperm / 40.0 + 0.5);
cafl = capfb[repb - 1];
cafu = capfb[repu - 1];
thetl = thetb[repb - 1];

thetu = thetb[repu - 1];

smlfl = smlfb(repd - 1];

smlfu = smlfb[repu - 1];

repbb = (long)floor(1.0 * numbperm / 200.0 + 0.5);
repuu = (long)floor(199.0 # numbperm / 200.0 + 0.5);
cafll = capfb[repbb ~ 1];

cafuu = capfb(repuun - 1];

thetll = thetb[repbdb - 1];

thetuu = thetb[repuu - 1];

smlfll = smlfb[repbd ~ 1];

smlfuu = smlfb[repuu - 1];

FORLIN = numbperm -1;

for (rep = O ; rep <= FORLIM ; rep++) {
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fgrintt(filobooti. "%6u%10.4£%10.42%10.4f\n", (rep + 1), capfblrep], thetb[rep], smlfblrepl);

2flush(filebootl);

fprintf(fileocuti, “\n \n");
fprintf(fileoutl, * permutting alleles within samples.\n\n");
fprintf(fileout, * 96%% confidence interval.\n\n");
fprintf(fileoutli, " capf theta smallf\n");

fprintf(fileouti, "%10.4£%10.4£%10.4f\n", cafl, th.tl, smlfl);
fprintf(fileoutl, "%10 4£%10.41%10.4f\n\n", cnfu thetu, smlfu);
fprintf(fileouty, " 99%% confidence interval. \n\n");
fprintf(fileoutl, " capf theta smallf\n");
fprintf(fileouti, "%10.4£%10.47%10.42\n", cafll, thotll, smlfll);
fprintf(fileouti, "%10.4£%10.4£%10.4f\n\n", cafuu, thetuu, smlfuu);
rep = numbperm + 1;
do {
rep-=;

} while (smlfb[rep - 1] >= real _f[2]);
Teptt;
if (rep < numbperm)

tprintf(fileoutl, "(prob fis=0)= %10.5f\n", 1.0 = (double)rep / numbperm);
else

fprintf(fileoutl, "(prob £is=0)< %10.5f\n", 1.0 / numbperm);
f£flush(fileoutl);
P_ioresult = 0;

} 7%of proc por-vithin‘/

%tltic Void permbetween()

unsigned short i, rep, temp, tempi, max;
uchar pop(maxind * 25

unsigned short n[npnax][nu-lx],

unsigned short lu-n[np-

short repb, repu

float cafl, cafu. thetl, thetu, smlfl, smlfu;

short repbb, repuu;

float cafll, cafuu, thetll, thetuu, smlfll, smlfuu;
unsigned short FORLIM, FORLIM1, FORLIN2, FORLIM3;

numbperm = 5000;
FORLIN = numbperm - 2;
for (rep = 0; rep <= FORLIN; rep++) {

FORLIM1 = nl;

for (il = 1; il <= FORLIM1; il++) {
max = 0;
lumn[O] = an[0][il - 1] * 2;
FORLIN2 = np;

for (ip = 1; ip <= FORLIN2; ip++)
max += anfip - 1][11 - 1] = 2;
FORLIN2 = np;
for (ip = 2; ip <= FORLIN2; ip++)
suln[ig -1] = sumn[ip -2] + an[;p - 1]1[i1 - 1] = 2;
: 4

(max != 0) {
FORLIM2 = np;
for (ip = 1; ip <= FORLIM2; ip++) {
FORLIM3 = nu;

for (iu = 1; iu <= FORLIM3; iut++)
nlip - 1]1[iu - 1] = 0;

FORLIN2 = np;
for (ip = 1; ip <= FORLIN2; ip++) {
FORLIM3 = nu;
for (iu = 1; iu <= FORLIM3; iu++) {
plip - 1] fi1 - 13Cdu - 1] *= lm[:lp - 11041 - 1] * 2.0;
£ (ip == 1 && ju == 1)
nlip - 1][iu - 1] = (long)floor(plip - 11041 - 1]Ciu = 1] + 0.5);
ollo if (iu == 1)

[iu - 1] 2 n[ip = 2]1[nu - 1] + (long)floor(plip - 11[il - 1]
[iu - 1] + 0.5);
else
alip - 1]
[iu-1] = n[ip = 1]1[iu = 2] + (long)floor(plip - 11[il - 1]
[iu - 1] + 0.5);

}
i=0;
FORLIM2 = np;
for (ip = 1; ip <= FORLIN2; ip++) {
FORLIN3 = nu;
for (iu = 1; iu <= FORLIN3; iu++) {
it (pEip = 1][i1 - 1][iu = 1] != * 0. 0 {

ids;

fi-11=
pop } vhilo (i != n[ip - 1][iu - 1]1);

}
}
i = max;
do {
temp = popli - 1];
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templ = grandom((long)i) + 1;

popfi = 1] = pop[templ - 1];
popltempl - 15 = temp;

} while (i != 1);

FORLIN2 = np;

for (ip = 1; ip <= FORLIN2; ip++) {
FORLIMN3 = nu;
for (iu = 1; iu <= FORLINM3; iu++) {

nlip - 1Jf41 - 1][4u - 1] = 0.0;

N plip - 11[41 - 1] [iuv - 1] = 0.0;

I =

1’- 1;

do {

while (i < sumn[ip = 1]) {
plip - 1][11 = 1]1[pop[i ~ 1] = 1] += 1.0;
plip - 11[il1 = 1) [pop(i] - 1] += 1.0;
if (popli - 1] != pop[i]) {
h[gp - 1][11 - lg[gop[i - 1] = 1] += 1,0;

y hlip - 1J[il - 1] [pop[i] - 1] += 1.0;

1 +m 2;

ip++;
} Ihil; (ip <= np);

}

calcfstat(i, np, ans);
captb[rep] = tcapf;
thetb{rep] » ttheta;
smlfb(rep] = tsmallf;

}

capfb(numbperm = 1] = real_f£[0];

thetb[numbperm = 1] = real_f[1];

snlfb[numbperm = 1] = real_f[2];

quicksort (kcapfb, 1, numbperm);

quicksort (kthetb, 1, numbperm);

quicksort (ksmlfb, 1, numbperm);

repb = (long)floor(1i.0 * numbperm / 40.0 + 0.5);
repu = (long)floor(39.0 * numbperm / 40.0 + 0.5);.
cafl = capfb[repb - 1];

cafu = capfblrepu - 1];

thetl = thetb[repb - 1];

thetu = thetb[repu - 1];

smlfl = smlfb[repdb - 1];

smlfu = smlfb[repu - 1];

Tepbb = (long)floor(1.0 * numbperm / 200.0 + 0.5);
repuu = (long)floor(199.0 * numbperm / 200.0 + 0.5);
cafll = capfb[repbb ~ 1];

cafuu = capfb[repuu - 1];

thetll = thetb[repbb - 1];

thetuu = thetb[repuu - 1];

smlfll = smlfblrepbb - 1];

smlfuu = smlfblrepuu - 1];

FORLIN = numbperm -1;
for (rep = 0 ; rep <= FORLIN ; rep++) {
fprintf(fileboot2, "%6u%10.4£%10.4£%10.4f\n", (rep + 1), capfb[rep], thetb[rep], smlfb[repl);

£f1ush(fileboot2);

fprintf(fileouti, "\n *ss\n");
fprintf(fileouti, " permutting alleles within total.\n\a");
fprintf(fileoutl, * 96%% confidence interval.\n\n");
fprintf(fileoutt, * capf theta smallf\n");

fprintf(fileocuti, "%10.4£%10.4£%10.47\n", cafl, thetl, smlfl);
fprintf(fileouti, "%10.47%10.41%10.4f\n\n", cafu, thetu, smlfu);
fprintf(fileouti, " 99%% confidence interval.\n\n");
fprintf(fileoutt, " capf theta smallf\n");
fprintf(fileouti, "%10.47%10.41%10.42\n", cafll, thetll, smlfll);
_fprintf(fileoutl, "%10.41%10.4£%10.4f\n\n", cafuu, thetuu, smlfuu);

rep = numbperm + 1;
do {

rep--;
} vwhile (capfblrep - 1] >= real_f£[0]1);
rep++;
if (rep < numbperm)

fprintf(fileoutl, "(prob fit=0)= %10.5f\n", 1.0 - (double)rep / numbperm);
else

fprintf(fileout1, "(prob £it=0)< %10.5f\n", 1.0 / numbperm);
£flush(fileoutl);
P_ioresult = 0;

}
typedef uchar pops[maxind + 1] [nlmax];

%tntic Void permmultgen()

unsigned short rep;

uchar (*pop) [nlmax];
unsigned short ninpmax];
unsigned short temp, max, i;
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short repb, repu;

float cafl, cafu, thetl, thetu, smlfl, smlfu;

short repbb, repuu;

float cafll, cafuu, thetll, thetuu, smifll, smlfuu;
Char STR1{256];

unsigned short FORLIN, FORLIN1;

int TEMP1;

numbperm = 5000;
y pop = (uchnr(t)tnl-lx])lnlloc(-izoof(pop-));
.

sprintf(STR1, "%s.tmp", name);
/ltrcpy(filooutz_lAHE. STR1);
.

fileout2 = tmpfile(fileout2);
FORLIN = numbperm - 2;
for (rep = 0; rep <= FORLIN; rep++) {
rewind(filein); :
rewind(fileout2);
fscanf(filein, “%hd%hd¥%hd¥%*[~\nl", &np, &nl, &nu);
getc(filein);
FORLIM1 = np;
for (ip = 1; ip
nlip - 1] = 0;
Ii;

FORLIM1 = nl;

for (i1l = 1; il <= FORLIMi; il++) {
fscanf(filein, "%*[~\n]");
getc(filein);

while (!P_eof(filein)) {

fscanf(filein, "%hd", kip);

it (ip == 0)
continue;

nlip = 114+;

FORLINL = nl;

for (i1l = 1; il <= FORLINM1; il++) {
fscanf(filein, "%d", &TEMP1);
poplil }[11 -1] = TENP1;

fscanf(filein, "%*["\n]");
etc(filein);
++;

<= FORLIN; ip++)

}
max = i - 1;
FORLIN1 = np;
for (ip = 2; ip <= FORLIM1; ip++)
nlip - 1] += n[ip - 2];
i = max;
do {
FORLIM1 = nl;
for (il = 1; i1 <= FORLIMi; il++)
popl0][il - 1] = pop[ilfil - 1];
temp = grandom((long)i) + 1;
FORLIM1 = nl;
for (il = 1; il <= FORLIM1; il++) {
pop[i][il ~ 1] = pop[temp][il - 1];
pop[tch] [i1 - 1) = pop[0][il - 1];

i-=;
} while (i != 1);
fprintf(fileout2, "%3u%3u¥%3u\n", np, nl, nu);
FORLINi = nl;
for (i1 = 1; il <= FORLIM1;il++) '
: putc(’\n’,fileout?2);

- 0;

i++;
fprintf(fileout2, "%3u", ip);
FORLIN1 = nl;
for (i1 = 1; il <= FORLIM1; il++)
fprintf(fileout?2, "%3d", poplil[il - 1]);
putc(’\n?, fileout2);
} while (4 != n[ip - 11);
ip++;
} while (ip <= np);
readdata(&fileout2);
calcfstat(l, np, ans);
captb[rep] = tcapf;
thetb[rep] = ttheta;
smlfb[rep]l = tsmallf;

}

capfb[numbperm - 1] = real_f[0];

thetb[numbperm - 1] = real_f[1];

snlfb[numbperm - 1] = real_f[2];

quicksort (kcapfb, 1, numbperm);
quicksort(&thetb, 1, numbperm);

quicksort (&smlfb, 1, numbperm);

repb = (long)floor(1.0 » numbperm / 40.0 + 0.5);
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repu = (long)floor(39.0 * numbperm / 40.0 + 0.5);
cafl = capfbrepdb - 1];
cafu = capfb[repu ~ 1];

thetl = thetb[repb - 1];

thetu = thetb[repu - 1];

sulfl = smlfb[repb - 1];

salfu = smlfb[repu - 1];

Tepbd = (long)floor(1.0 * numbperm / 200.0 + 0.6);
repuu = (long)floor(199.0 # numbperm / 200.0 + 0.5);
cafll = capfblrepbb - 1];

cafuu = capfb[repuu - 1];

thetll = thetb[repbb - 1];

thetuu = thetb[repuu - 1];

smlfll = smlfb[repbdb - 1];

smlfuu = smlfb[repuu - 1];

FORLIN = numbperm ~1;

for (rep = 0 ; rep <= FORLIN ; rep++) {

t;rintf(filoboots, "%6u%10.41%10.4£%10.42\n", (rep + 1), capfblrepl, thetblrep], smltb[repl);

£flush(fileboot3);

fprintf(fileout1, "\n \n");
fprintf(fileoutl, " p.rnuttinf genotypes within total.\n\n");
fprintf(fileouti, " 96%¥% confidence interval.\n\n");
fprintf(fileoutl, * cap?f theta smallf\n");

fprintf(fileouti, ”%10.4!%1%.4!%10.4f\n", cafl, thetl, salfl);
fprintf(fileoutl, "%10.41%10.41%10.4f\n\n", cafu, thetu, smlfu);
fprintf(fileouti, " 99%% confidence interval.\n\n");
fprintf(fileoutt, " capf theta smallf\n");
fprintf(fileoutl, "%10.4£%10.41%10.4f\n", cafll, thetll, smlfll); -
fprintf(filecuti, "%10.4£%10.4%10.4f\n\n", cafuu, thetuu, smlfuu);
:op{- numbperm + 1;

0

rep-=;

} vhglo (thetb[rep - 1] >= real_f[1]);
reptt;

putc(’\n’, fileout1i);

if (rep < numbperm)

fprintf(fileoutl, "(prob fst=0)= %10.56f\n", 1.0 = (double)rep / numbperm);

else
fprintf(fileoutl, "(prob fst=0)< %10.5f\n", 1.0 / numbperm);
fflush(fileouti);
fclose(fileout2);
P_ioresult = 0;
) Free(pop);

main(argc, argv)
int argc;
%hnr sargv(];

unsigned short FORLIN;

PASCAL_MAIN(argc, argv);
filemig = NULL;
filepar = NULL;
fileini = NULL;
fileout2 = NULL;
fileouti = NULL;
filein = NULL;
filebooti = WULL;
fileboot2 = NULL;
fileboot3 = NULL;
ans = 'n’;
pass = 0} ’
strcpy(fileini BAME, “fstat.ini"); '
if (fileini != NULL)

lfilaini = freopen(fileini _NAME, “r", fileini);
else

fileini = fopen(fileini NAME, "r");
if (fileini == NULL)

.EscI0(FileNotFound);
fscanf(fileini, "¥%1d%1d", &si, &s2);
if (fileini != NULL)

fclose(fileini);
fileini = NULL;
strcpy(name, P_argv[1]);
sprintf(namedat, "'}s.sdb", name);
sprintf(nameout, "¥%s.out", name);
sprintf(namebooti, "%s.bo1", name);
sprintf(nameboot2, "%s.bo2", name);
sprintf(nameboot3, "%s.bo3", name);
strepy(filein_NAME, namedat);
if (filein != NULL)

lfiloin = freopen(filein _NAME, "r", filein);
else

filein = fopen(filein_NAME, "r");
if (filein == FULL)

-EscI0(FileNotFound);
fscanf(filein, "%hd%hd%hd¥%*["\nl", &np, &nl, &nu);
getc(filein);
strcpy(fileout1_NAME, nameout);



Appendix D. FSTAT.C

289

if (fileouti != FULL)
lfiloouti = freopen(fileout1 _NAME, "w", fileoutl);
else
fileoutl = fopen(fileouti _NAME, "w");
if (fileouti == JULL)
-EscI0(FileNotFound);
strcpy(filebooti _NAME, namebootl);
if (filebootli != NULL)
. filebootl = freopen(filebooti NAME, "u", filebootl);
olse
filebootl = fopen(filebooti NAME, "w");
if (filebootl == NULL)
-EscI0(FileNotFound);
strcpy(fileboot2_NAME, nameboot2);
if (fileboot2 != FULL)
fileboot2 = freopen(fileboot2_NAME, "w", fileboot2);
else .
fileboot2 = fopen(fileboot2 NAME, "w");
if (fileboot2 == FULL)
_EscID(FileNotFound);
strcpy(fileboot3_NAME, nameboot3);
if (fileboot3 != NULL)
1 fileboot3 = freopen(fileboot3_NAME, "w", fileboot3);
else
fileboot3 = fopen(fileboot3_NAME, "w");
if (fileboot3 == FULL)
_Escl0(FileNotFound);
FORLIN = np;
for (ip = 1; ip <= FORLIR; ip++) {
hlip - 1] = (float(#)[numax])Malloc(sizeof(peral));
plip = 1] = (float(*) [numax])Malloc(sizeof(peral));

anbar = (double *)Malloc(sizeof(fst));

annbar = (double ®)Malloc(sizeof(fst));

anc = (double *)Malloc(sizeof(fst));

termi = (double *)Malloc(sizeof(fst));

term2 = (double *)Malloc(sizeof(fst));

term3 = (double *)Malloc(sizeof(fst));

termi = (double *)Malloc(sizeof(fst));

term6 = (double *)Malloc(sizeof(fst));

pbar = (double(#)[numax])Malloc(sizeof(frq));
ppbar = (double(*) [numax])Malloc(sizeof(frq));
varp = (double(#*)[numax])Malloc(sizeof(frq));
hbar = (double(#*)[numax])Malloc(sizeof(frq));
capf = (double(*)[numax])Malloc(sizeof(frq));
theta = (double(#)[numax])Malloc(sizeof(frq));
smallf = (double(*) [numax]))Malloc(sizeof(frq));
capfl = (double #)Malloc(sizeof(fst));

thetal = (double #)Malloc(sizeof(fst));
smallfl = (double #*)Malloc(sizeof(fst));

an = (unsigned short(#*) [nlmax])Malloc(sizeof (numb_per_loc));

captb = (float *)Malloc(sizeof(sorted));

thetb = (float *)Malloc(sizeof(sorted));

smlfb = (float *)Malloc(sizeof(sorted));

readdata(kfilein);

basic_stats();

npint = 1;

npsup = np;

calcfstat (npinf, npsup, ans);

jackknife(npinf, npsup, ans);

bootstrap(ans);

porplir(§3

permwithin();

permbetween() ;

permmultgen();

FORLIN = np;

for (ip = 1; ip <= FORLIN; ip++) {
Free(h[ip = 1]);

y Free(plip - 1]);

Free(capfb);
Free(thetb);
Free(smlfd);
Free(an);
Free(annbar);
Free(anc);
Free(termi);
Free(term2);
Free(term3);
Free(termd);
Free(term5);
Free(pbar);
Free(ppbar);
Free(varp);
Free(hbar);
Free(capt);
Free(theta);
Free(smallf);
Free(capfl);
Free(thetal);
Free(smallfl);
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if (fileouti != NULL)
fclose(fileouti) ;
fileoutl = NULL;
if (fileini != NULL)
lfiloini = freopen(fileini NAME, "w", fileini);
else
fileini = fopen(fileini_NAKE, "w");
if (fileini == FULL)
-EscI0O(FileNotFound);
fprintf(fileini, "%1d %ld\n", si, s2);
if (fileini != NULL)
fclose(fileini);
fileini = NULL;
if (filein != IULL)
fclose(filein);
if (fileouti != NULL)
fclose(fileoutl);
if (fileini != NULL)
fclose(fileini);
if (filepar != NULL)
fclose(filepar);
if (filemig != NULL)
fCIOIO(fgllli 'H
if (filebootl !- NULL)
fclose(filebootl);
if (fileboot2 != NULL)
fclose(fileboot2);
if (fileboot3 != NULL)
fclose(fileboot3);
exit (EXIT_SUCCESS);

}
/* End. &/
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Appendix F

Raw output of the treatment of

Brassica data
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Appendix F. Raw output of the treatment of Brassica data

295

foxr lacus :@ SDN-2

allele ugt thesa small?
1 0.4279 0.10863 0.3608
2 0.427¢ 0.1053 0.3606

a1 0.4279 0.1083 0.3606

theta smallf
i 0.4648 0.2341 0.3010
2 0.3603 0.1518 0.2458
3 0.2812 0.0816 0.2173
al 0.3757 0.1618 0.2661

allele  ca theta smallt
1 0.0992 0.0614 0.0403
2 0.4000 0.2420 0.2085
3 0.3810 0.2586 0.1651
all 0.3421 0.217¢ 0.1590

sver all loci
ca theta smalle
0.3801 0.1773 0.2319

ackknifing "n_gopnuiou.

fox locus : SDR
capt theta smallf
total 0.46868 0.1246 0.3794
0.2103 0.0287 0.1743
foT locus : PAl-t
[2 theta ssalls
sosal 0.3756 0.1621 0.2548
0.0628 0.0430 0.0646
foT locus : APE-2
c:g! theta smalls
0.3458 0.2217 0.1588
0.0892 0.0658 0.0812

juckknifing sver locd.
capt sheta smallt
sotal 0.3676 0.1770 0.2327
0.0166 0.0262 0.0417

tetal

seans
std. devs.

means
std. devs.

seans
std. devs.

means
std. devs.

boosesra) glng over loci.

95X confidence interval.
ugt theta smallf
0.3421 0.1053 0.1590
0.4279 0.2176 0.3608

99% confidence interval.
cap? theta smallt

0.3421 0.1053 0.1590
0.4279 0.2176 0.3606



Appendix F. Raw output of the treatment of Brassica data ' 296

theta per locus ever pair of populations.
for 1uu:1snl-2

2 3 4 § [d 7 8 9 10 11 12 13 14 18 16 17 18 19 20
1 0.37 0.08 0.08 0.08 0.04 0.00 0.00 0.13 0.00 0.08 0.03 0.05 0.03
2 0.37 0.08 0.08 0.08 0.04 0.00 0.00 0.13 0.00 0.03 0.03 0.0 0.03
3 0.37 0.37 0.37 0.18 0.14 0.18 0.22 0.27 0.26 0.11 0.32 0.27 0.27 0.37 0.37 0.22 0.37 0.37 0.37
4 0.37 0.08 0.08 0.08 0.04 0.00 0.00 0.13 0.00 0.03 0.03 0.05 0.08
8§ 0.08 0.08 0.18 0.08 -0.03 -0.02 ~0.03 -0.02 -0.02 -0.01 0.02 -0.01 -0.04 0.08 0.08 -0.02 ~0.01 0.08 0.08
¢ 0.08 0.08 0.14 0.08 -0.03 -0.03 -0.03 -0.01 -0.02 -0.03 0.03 0.00 0.00 0.08 0.08 -0.02 0.00 0.08 0.08
T 0.08 0.08 0.18 0.08 -0.02 -0.08 =-0.03 -0.02 -0.02 -0.01 0.02 -0,01 -0.01 0.08 0.08 -0.02 -0.01 0.08 0.08
8§ 0.04 0.04 0.22 0.04 -0.08 =0.03 ~0.03 =-0.04 -0.04 0.00 -0.01 -0.03 -0.03 0.04 0.04 -0.03 -0.03 0.04 0.04
9 0.00 0.00 0.27 0.00 -0.03 =0.01 -0.02 -0.04 -0.05 0.03 -0.03 -0.04 -0.0¢ 0.00 0.00 -0.03 -0.04 0.00 0.00
10 0.00 0.00 0.26 0.00 -0.02 -0.02 -0.02 -0.04 -0.05 0.02 -0.03 -0.04 -0.04 0.00 0.00 -0.03 -0.04 0.00 0.00
11 0.13 0.13 0.11 0.13 -0.01 -0.03 -0.01 0.00 0.03 0.02 0.07 0.03 0.08 0.13 0.13 0.01 0.03 0.13 0.13
12 0.00 0.00 0.32 0.00 0.02 0.083 0.02 -0.01 -0.03 =0.03 0.07 -0.02 -0.02 0.00 0.00 0.00 -0.02 0.00 0.00
13 0.03 0.03 0.27 0.083 -0.01 0.00 -0.01 ~0.03 -0.04 -0.04 0.08 .02 -0.02 0.083 0.03 -0.02 -0.02 0.083 0.03
14 0.03 0.03 0.27 0.03 -0.01 0.00 -0.01 =0.03 -0.04 -0.04 0.03 -0.02 -0.02 0.03 0.03 ~0.02 =0.02 0.08 0.03
15 0.87 0.08 0.08 0.08 0.04 0.00 0.00 0.13 0.00 0.03 0.03 0.06 0.08
16 0.37 0.08 0.08 0.08 0.04 0.00 0.00 0.13 0.00 0.03 0.03 0.08 0.03
17 0.08 0.08 0.22 0.06 -0.02 -0.02 -0.02 -0.03 -0.03 -0.03 0.01 0.00 -0.02 -0.02 0.058 0.06 -0.02 0.05 0.08
18 0.03 0.03 0.27 0.03 -0.0f 0.00 -0.01 -0.03 -0.04 -0.04 0.03 -0.02 =0.02 -0.02 0.03 0.03 -0.02 0.08 0.03
19 0.37 0.08 0.08 0.08 0.04 0.00 0.00 0.13 0.00 0.03 0.03 0.05 0.03
20 0.37 0.08 0.08 0.08 0.04 0.00 0.00 0.13 0.00 0.03 0.03 0.05 0.08
for locus: PEI-1
1 2 3 4 [ [] 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0.34 0.30 0.43 0.50 0.42 0.56 0.36 0.3¢ 0.06 0.38 0.41 0.00 0.37 0.08 0.00 0.14 0.26 0.37 0.27
2 0.34 0.03 0.00 0.02 ~0.02 0.13 -0.03 -0.01 0.17 0.06 0.06 0.48 -0.03 0.15 0.28 0.11 0.02 -0.02 0.00
3 0.30 0.03 0.01 0.05 0.04 0.04 0.07 -0.02 0.09 -0.08 -0.03 0.40 0.01 0.07 0.21 0.17 -0.03 0.08 0.08
4 0.43 0.00 0.01 =-0.02 -0.01 0.04 0.03 -0.02 0.22 0.04 0.00 0.58 -0.02 0.20 0.32 0.22 0.03 0.04 0.08
8 0.50 0.02 0.08 -0.02 -0.01 0.0¢4 0.06 0.00 0.29 0.04 0.03 0.60 0.00 0.27 0.39 0.27 0.07 0.06 0.1
6 0.42 -0.02 0.04 -0.01 ~0.01 0.10 -0.02 -0.01 0.23 0.05 0.05 0.53 -0.03 0.24 0.30 0.17 0.04 -0.01 0.08
7 0.856 0.13 0.04 0.04 0.04 0.10 0.19 0.04 0.32 0.01 -0.0t 0.64 0.09 0.29 0.46 0.38 0.10 0.19 0.2¢
8 0.3 -0.03 0.07 0.03 0.08 -0.02 0.1 0.02 0.24 0.10 0.11 0.48 -0.02 0.19 0.23 0.09 0.05 -0.05 -0.02
9 0.36 -0.01 -0.02 -0.02 0.00 -0.01 0.04 0.02 0.16 -0.01 -0.01 0.46 -0.02 0.13 0.25 0.16 -0.0t 0.03 0.05
10 0.08 0.17 0.09 0.22 0.29 0.23 0.32 0.21 0.16 0.16 0.18 0.13 0.19 -0.03 0.04 0.10 0.07 0.22 0.1§
i1 0.38 0.06 -0.03 0.01 0.04 0.05 0.04¢ 0.10 -0.01 0.16 -0.03 0.48 0.03 0.13 0.29 0.23 0.00 0.11 0.13
12 0.41 0.06 -0.03 0.00 0.03 0.05 -0.0¢ 0.11 -0.01 0.18 -0.03 0.61 0.03 0.45 0.32 0.25 0.01 0.12 0.14
13 0.00 0.46 0.40 0.53 0.60 0.53 0.64 0.48 0.46 0.13 0.48 0.81 0.48 0.16 0.09 0.27 0.3¢ 0.49 0.40
14 0.37 -0.03 0.01 -0.023 0.00 -0.03 0.09 -0.02 -0.02 0.19 0.03 0.03 0.48 0.16 0.256 0.14 0.01 -0.02 0.01
18 0.08 0.18 0.07 0.20 0.27 0.21 0.29 0.49 0.13 -0.03 0.13 0.156 0.15 0.16 0.06 0.10 0.08 0.20 0.14
16 0.00 0.23 0.21 0.32 0.39 0.30 0.45 0.28 0.25 0.04 0.29 0.32 0.09 0.25 0.05 0.04 0.17 0.26 0.18
17 0.14 0.11 0.17 0.22 0.27 0.17 0.38 0.09 0.16 0.10 0.23 0.26 0.27 0.14 0.10 0.04 0.12 0.10 0.03
18 0.26 0.02 -0.03 0.03 0.07 0.04 0.10 0.056 -0.01 0.07 0.00 0.04 0.36 0.01 0.05 0.17 0.12 0.06 0.05
19 0.37 -0.02 0.08 0.04 0.05 -0.01 0.19 -0.05 0.08 0.22 0.11 0.12 0.49 -0.02 0.20 0.25 0.10 0.06 -0.02
0.27 0.00 0.08 0.08 0.11 0.03 0.24 -0.02 0.06 0.16 0.13 0.14 0.40 0.01 0.14 0.15 0.03 0.05 -0.02
for locus: APN-2
2 3 4 [ [3 7 8 9 10 11 12 13 14 18 16 17 18 19 20
1 -0.02 0.04 0.00 -0.01 0.02 0.02 -0.01 -0.02 0.18 0.13 0.12 0.25 0.21 0.38 0.02 0.06 0.10 0.20 0.28
2 -0.02 0.09 0.00 0.00 -0.01 0.03 0.0f -0.01 0.2¢ 0.18 0.16 0.2¢ 0.27 0.33 0.06 0.11 0.12 0.26 0.22
3 0.04 0.00 0.10 0.04 0.17 0.08 0.02 0.06 0.06 0.05 0.06 0.43 0.07 0.57 -0.03 0.00 0.13 0.05 0.49
4 0.00 0.00 0.10 -0.01 0.00 -0.01 0.00 -0.01 0.22 0.14 0.11 0.17 0.26 0.29 0.07 0.09 0.06 0.2¢ 0.21
5§ ~0.01 0.00 0.04 -0.0% 0.03 -0.02 -0.03 -0.02 0.13 0.07 0.06 0.23 0.17 0.37 0.01 0.02 0.02 0.16 0.29
6 0.02 -0.01 0.17 0.00 0.03 0.04 0.06 0.02 0.32 0.24 0.21 0.10 0.35 0.20 0.14 0.17 0.18 0.3¢ 0.10
7 0.02 0.03 0.08 -0.01 -0.02 0.04 -0.02 0.00 0.16 0.08 0.04 0.20 0.20 0.3¢ 0.056 0.04 0.00 0.20 0.29
8 -0.01 0.01 0.02 0.00 -0.03 0.05 -0.02 -0.02 0.14 0.05 0.03 0.26 0.14 0.40 -0.01 0.00 0.02 0.13 0.32
9 -0.02 -0.01 0.05 -0.01 =0.02 0.02 0.00 -0.02 0.17 0.11 0.09 0.23 0.20 0.38 0.02 0.06 0.07 0.19 0.27
10 0.18 0.24 0.06 0.22 0.13 0.32 0.16 0.11 0.17 0.01 0.05 0.54 -0.02 0.87 0.03 0.01 0.18 0.00 0.62
11 0.13 0.18 0.056 0.14 0.07 0.24 0.08 0.06 0.11 0.01 -0.02 0.46 0.056 0.60 0.02 -0.02 0.08 0.07 0.58
12 0.12 0.16 0.06 0.11 0.06 0.21 0.04 0.03 0.0 0.05 -0.02 0.41 0,09 0.56 0.03 -0.01 0.01 0.11 0.51
13 0.25 0.2¢ 0.4%8 0.7 0.23 0.10 0.20 0.26 0.23 0.54 0.46 0.41 0.57 0.01 0.40 0.41 0.28 0.57 0.04
14 0.21 0.27 0.07 0.25 0.17 0.35 0.20 0.14 0.20 -0.02 0.05 0.09 0.57 0.70 0.08 0.04 0.21 -0.01 0.65
16 0.38 0.33 0.57 0.29 0.37 0.20 0.34 0.40 0.38 0.67 0.60 0.56 0.01 0.70 0.53 0.55 0.43 0.70 0.08
16 0.02 0.08 -0.03 0.07 0.061 O0.14 0.05 -0.01 0.02 0.03 0.02 0.03 0.40 0.06 0.853 -0.03 0.09 0.0¢ 0.46
17 0.08 0.11 0.00 0.09 0.02 0.17 0.04 0.00 0.056 0.01 -0.02 -0.01 0.41 0.04 0.56 -0.03 0.05 0.04 0.49
18 0.10 0.12 0.13 0.06 0.02 0.13 0.00 0.02 0.07 0.1 0.06 0.01 0.28 0.21 0.43 0.09 0.05 0.22 0.39
19 0.20 0.25 0.06 0.2¢ 0.16 0.34¢ 0.20 0.13 0.19 0.00 ©.07 0.11 0.57 -0.01 0.70 0.04 0.04 0.22 0.64
20 0.28 0.22 0.49 0.21 0.29 0.10 0.29 0.32 0.27 0.62 0.55 0.61 0.04 0.66 0.03 0.46 0.49 0.39 0.64

permusting alleles within samples.
96% confidence interval.
capt theta small?
0.1401 0.1814 ~0.0530
0.2209 0.1834 0.0569
99X contidence interval.
capt theta smallft
0.1279 0.1807 =-0.0684
0.3430 0.1837 0.0761
(prod tis=0)< 0.00020
permusting alleles within sosal.
956X confidence insezval. '
capt theta smallt
-0.04%0 ~0.0075 ~«0.0494
0.0489 0.0087 0.0802
9% confidence interval.
capt theta smalle
-0.0618 =0.0093 ~=0.0821
0.0832 0.0122 0.0830

(preb fit=0)< 0.00020

permutting genotypes within total.
95% confidence interval.
capt theta smallt
0.3624¢ ~0.010¢ 0.3583
0.3633 0.012¢ 0.3688
99% contidence interval.
capt theta smallt
0.3623 -~0.0128 0.3627
0.36832 0.0164 0.3704

(prob fsy=0)<  0.00020
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Appendix G
Beta data

R SugLLRe 2228282220 2ATSunRN onrbrrttrr 8888sSan 00000 v™ we NON ©O ¢ 00 Ve
MNNOCCPEE (IVCNODEEEM MO0y St rmtttt NNOOOMM NOWOOWW - ¢ R S A ]
..... . G NEANENT e e Lo [-op-op o op-ug-op-op-uy-uy Pt LAEENY 00 000 00 e+ ww oo
00000 000000000 000000 Ll L ol - X-2-2-X-1-1 ©coooco0o00 L) L
e o et OWWOOOOOON ROOOOOO OFEEErereo ok OMOWLWLNN OMNw &&= oo @me Mo
had 2““““55 20'112212l “0O00QOO0OO Lob 0B bbb ob-ob-ob bl 172““““ 2”81122 e e e e kK3 .
v e o e s s e e e o 4 “ e e e s e . . . Tt s e see OO0 OO0 & et O [-X-3
- 2-2-2-12-1"J ooooooooo “o0oO0OO0O0O e~ 000000 ©o00000 1 ]
[} OOww CVMONVHUAUD BOO0O0O000 WWRAONNOARNO Oretrtet OWWOOWw OO0 ©OVA && VUL &t BN
- NWWSSSS ”52221&JJ$ 1&&&&M& lJSOJJJJJJ """"ﬂ" 254905J mm mmm "ﬂ mL" "" mm
000000 000000000 L2 X-2-2-] 000000000 ~ee~e ©o00000 [}
ow o ONNOWWOow PRO000QO OFEECttttrt DARRDW COMM MM HHE® & e e
N &88SS8ES &5T3RB3Nee 2888888 CEeETLLEE R588R3T "8Resse LEERCOESCEEE SF SRR S o S
“ e e s e e " 4 e s s 4 s e s e e s e e AP SRR “ e v o e ......ﬂﬂ 00 &~ et 00 OO0
-X-X-X-71-1-J 000000000 - E-X-X-X.J Lol ol ol ol ol ol g [-X-X-X-2-X-3 - 1-X-1-X-2-J e
© O CO00 OWUNFOWVWWHWY ARO0000O0 000000 v O WMWY wooOo oo - &~ OO0 ww ~
% 838938% R¥L5$RuaaY 2888888 8338833348 RNCTVLT RULBVIR 22 2o FE 22F I3 55
00000 o000c000C0OO0O0 “Oo0000O0 00O0wwOoOOO (-2-X-X-%-1-1 000000 ' [ [ )
ONOWVWEE ONWLNWVOLWN® AEMVUVVL 000000O0WwO O WVWOO O0000O0® "M OO0 OO0 M we
Q? Nonvoww 2171232” M“ HWROOOOO MUWWOOO0WRO RILBEBI2 248884“ MM O.Mnm 66 <t &6 oo
©ococoo00 escococco oococo0o ©0OwWwOOO0O ooooo0o coceco 77 T°4 O] T °F
* SUhwWaS oNWUMUOUQBLL ®292998 QNRAVSVENY Orrrtrt QULVWOS WW KWeQ te Q00 & K&
" NDHHAM) HBOOHONNO WOO0O6S8 NNNOMEOMMO CECEEE NeLO®IAR 2 S ee oo ee
4 cReeEnRans TEEANETN TN ENNENT fap-op-ag-up-et-u SR 00 ©0O0O &~ OO0 ¢&¢ OO
ccoccoo ©00000000 woooo0o0 cccccccoo P e R cccocoo ]
M SEIVUVEE ONEVLKOCOE AUAUNAGR Orrsreecre Ofcctes 0000QMA vt KRG WY eee S 06
NOONWVEE CADNINAT MO v v @0 v vd ot vl -~ 0 ettt (NDYDRWW - se s LRI ok o ol ] LR
.................... 3 e~ —eeee ii st OO OOO OO &¢&& o o
cocoooco ©oco0oo0o00000 000000 e~ —eeeee oococovo i )
OMPVVWLY ONOrWVOWORO GO000000 OVWOOOOKRKO O®M Pl ~— et
N ANBRRLY QUSLNIRBTS 28883888 {VNS99SEES {22203 KA%2RTn <% RY9 ST anE e ee
............................. . eIk GGG e OO ©00 &+ oo~ 900 0O
ococoocoo ©ooo0co0oco0000 “00000 000000000 ©ooo0o000 ocoococoo ]
" OWVWOOWW OCMMROWVWOWYR RO00000 O000000OWHO OM o e - - -~ oe ©
o QB2LeeRz 835284853 2828882 8&2238883nn8 538888 KBLRRzm T e T @9k 99 -
PERRRY frauinains mageaes tRusfsasans wasaaas nmusnnew 00 000 & wwe OO OO
ocoooo0o0 ©c00c00c0000 “o0O00O 00O -“WOO0O0O ooco0o0o00 cooco0o0o0 ti (11 " O]
O 00COORR CWMOWVWOWVWUM AOOO0O0O00 OWNOWVWONDO OhNWVWOO OQO0O0O0w-A MM OOCN ¢¢ VO -k 00
" NOPOOFEF (OOMEOWFO?® wWOOOOO0O (NMVWOFFOFTFO NUEHOWW NVWERYL - - - ° . && . & - - ¢
.......................................... 668 009 «& cow o oo
oococooco ocoococooo0o00 wo00QO0OO ooooco0o000O oocoococo cooocoo i J ] ] [
® 0000ON® OCOWWOOOMVO GO00O0O00 0000000 W-O CO0O0OON ONNVWOE wWww (WO && 00F ww 9O
RNt IOHNOTCANNMINN HOOOOO0O0 MUWOOOOWWO MNANNNW (NMONEE® - - - -+ & - e o .
.......................................... 00 600 && wwe OO OO
©ocococoo ©o0o000000O0 w“oo0o00O 000 wwWOoO00O ococoo0o0 ocococo0o0o 11 1t [ DR ]
® OrRNUVWOO AFRONNONDOD GO000000 OOCOCOOOMMO GENFYWOO O0O0OCONE WW ™MeEwm & PIEe M o
NHROHAIN WMOOMOMPO? wHOOO0O00O0 (HEMODVVOFCEO HWUFDOWVW HONNW = -+ & - && - o0 - - -
.......................................... 00 O0r;OC &~ OO+ OO OO
ocooocoo oocooococ0oO0O wooocoo ococoocooo00co oocooco0o coococoo [} DR ]
~ 0000CO0GG O0CO0O00O0OENMM AOOO0O00O0 0000000V WMkEEAEE ORMUWW I VNN & O00* AN Vv
NPOCEE?P AR ATV IS HO000000 (WNOOOOWWO WNHNEEMM NEWONNWVW -+ ° ¢+ && e .
..... . LT NAR NN NSRS S t i e R R S 1RSIk Sid “ANRYY oo oo e wwr 00 co
oocoooo ooo00o000O0 woo0OO0OO 00O WWOOOO ooococo0o ococoooco ) ]
® OMrVWVWY OVOWVOOONRAD ROO00O000 ONNOVWVWOBLNO OOCOOMM OWWOOKKE wWw HNN & vt we Mo
TNCEFPFRD NNPNCEMEEM HOOOO0O0O0 (NMOOETOFFO NEMOOTYE (IMOOOEew - - - - > && . & - - - .
..... . LR S Pk S i) S ] S B YRNENY 00 o000 &+ oo~ o co
©oococoo ©oocooco0c00 wooooo ocoococooo0o0o0 ©ooco0oo000 ooocooco i [}
W OVWOOVY OCVLRVVLVORYW AO0O00000 0000000 ONEWWOO O0COCO0AA wWH @ && O00s M~ ©o
NOHMMNN NMOVOROPAW HWOOO0O0O0O (NUWOOOOWWO NFLOPOWWY NPORXVEE - - - + + &&= - & - -
..... . I I I St -eases vaLseaenns LLaeaenn CONREY co 060 e wwe o co
cooco0o0 ©coco0coco0co0000 wooooo OO0 w"O00O0O ocoocooo oococo0o0o 11 111 () ] [
* OFNWWOO 0C00CCARAM ARO00000 O0O00000OWHHO BOONAWY O0OO0O0HW we ONMN e ©Oe Wu OO0
NN COUVOY NICCFHVTEECTFM HOOOOO0O0 NWWOOOOWVWNO «LWUAAWWY NDWOOWW - + - - * && - & -+ -
..... . R S IS I ] eesas e S I I I I S CRGARY 0o 0oco Fe due 0O wes
L X-T-Y-2-1-3 XX Y-2.7-%-7-7-3 “000O00 000w~ 0000 ocoocooco oOowwooOo (1 . 1 LR )
M OMRWVVWe CONEOVVLEN- R000000 0000000 WHO CWhVWVUYY 00000 WUW wWEM & OONr v 9O
TRERE DD THENNOUEY ~“O000000 (WWOO6O0WWE NAOHWwWAw NLukoWW : .mm sE Lt Se oo
ccccoo ©oo0c000000 wooocoo 660 wwGoco oocococo0o 0000004.. T R AR
NNONFWVWNOD OCNNIVVNOOVORO RO00000 0000000 HWWOWONWVWOO 03'5500122!330!71!00?!22!0.
IR AMMAn _NROTULNeEs 000008 NNWOCCCUWS LNBWAMAn CaRA-"nNng TO-ed oMW -0
P e 3 A S S S S B S P R S i S ST R S S B S S P B RN el e e .. ﬂOOAO%OS?YPll’P omoo
g ©ooooocoa oooooooocog 1000000 ©00-“woO0O0OKM ©000000H ©00000 i SRR I
“wCo0000mnm ocowwoocomwelannvouutconnouwenwroocoora T caruvwoo e En e w0 _ee an
SR TERY - INCPACRRENN -~ RO A - NOMORCONES - NOTRREY ATV NNOW e - - - .- - e c®
«% R RS S drtr Sy in S Dl St e S Be T S Sk Sx Sk S S B S I R P S S S P S I S S I oco 04%!%0!040‘04!00
g ©ococoocod ©0000O0O0COOH 000000 000000000 H ©000O0O0OH ©0O0O00O0O0Y girtgi siie
-1
hnl?lZlﬁDn1231231230n121212051231231230!121312'n13121211211231 A AN w00
B4 00 o0 Ba se ve on B4 oo 0o g ¢o 20 0o B4 83 o0 by 00 Bn
e ......:......:.. ...M....: e —ansee ............c.u..l.«l.ohhhﬂhhhuhhhhhﬂhh
aad333 anrdd3 223 AR3388 HERA32333 KA3333 Laid333 sRRrASYRRRYReYeS

297



Appendix G. Raw output of the treatment of Beta data 298

for locus : €0T-3

allele ¢ theta mmallf
1 0.1436 0.16856 ~=0.0300
2 0.1438 0.1685 -0.0300

all 0.1435 0.1685 =0.0300

allele  ca theta
1 0.2278 0.1708 0.0884
2 8 2177 0.0652

a1 0.2268 0.2089 0.0228

allele  ca theta malle
1 0.8139 0.7014 0.3768
2 0.8139 0.7014 0.3768
a 0.81 0.7014 0.37¢¢
for lecus : PeI

allele  cap? theta small?
1 =0.8611 0.0420 -0.6295
2 -0.5614 0.0398 -0.6262
3 =0.0017 =0.0019 0.0002
all -0.5677 0.0407 =0.6238
for lecus : PER-1
allele n{! theta small? .
1 =0.1121 0.2195 -0.4249
2 -0.1121 0.2195 -0.4249
all -0.1121 0.2195 ~0.4249

allels  capf theta smallf
1 ~0.4032 0.0589 -0.4911
2 ~0.4032 0.0589 -0.401%
al ~0.4032 0.0588 -0.4911

ever all leci
cap? sheta smallt
=0.0798 0.1666 -0.2053

ackknif over populations.
j!ar :I.uln:‘: nr-g pel

u{! theta smallf
total 0.1439 0.1688 ~0.0307 means
0.0374 0.0501 0.0662 std. devs.

for locus : APR
ugt theta smallt
total 0.2267 0.2091 0.0227 means
0.0749 0.0445 0.0837 std. devs.
for locus : SDM

ca]
total 1.{:2. 1.1394 0.4248 means
0.4080 0.6086 0.2102 std. devs.

for locus : POl
capf theta small?
tetal -o.gsn 0.0408 -0.6252 means
0.1419 0.0204 0.1282 ossd. devs.
fox locus : PER-1

ca) theta small?

tesal -0.1118 0.2192 -0.4206 means

. 0.0625 0.1117 std. dovs.

for locus : HDE
eagt theta smalle

tosal  -0.4048 0.0585 =0.4928 means
0.1029 0.0270 0.0905 std. devs.

Jackknifing over loci.
us! theta smallet

total -~0.0791 0.1641 -0.2958 means
0.1570 0.0425 0.1385 std. devs.

buntnpsin‘ over loci.
95% confidence interval.
capt theta smallf
=0.3646 0.0944 -0.5177
0.1989 0.2569 -0.0838

99% confidence interval.
cap? theta smallt
-0.4336 0.0700 -0.6592
0.2853 0.3028 0.0272
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theta per locus ever pair of pepulations.
for lecus: G0T-3

1 2 3 4 1 [} 7 8 ? 10 11 12 13 14 18 16 17 18 19 20
1 0.42 0.08 0.12 0.46 0.07 -0.04 0.01 0.53 0.15 0.10 -0.03 -0.01 0.42 0.17 0.61 0.20 0.06 0.02 -0.01
2 0.42 0.17 0.12 -0.02 0.16 0.30 0.58 0.00 0.10 0.16 0.39 0.33 -0.03 0.08 0.06 0.08 0.1 0.2¢ 0.33
3 0.08 0.17 -0.04 0.21 -0.02 0.01 0.22 0.28 0.00 -0.01 0.06 0.03 0.17 0.01 0.37 0.02 -0.02 -0.01 0.03
4 0.12 0.12 -0.01 0.15 -0.02 0.03 0.27 0.22 -0.02 -0.02 0.09 0.08 0.11 -0.0%1 0.31 -0.01 =-0.01 0.00 0.05
5 0.46 -0.02 0.21 0.1§ 0.20 0.3¢ 0.61 -0.0¢ 0.13 0.18 0.43 0.37 -0.03 0.1t 0.08 0.08 0.23 0.28 0.37
6 0.07 0.16 -0.02 -0.02 0.20 0.00 0.21 0.27 -0.01 -0.02 0.06 0.02 0.16 0.00 0.3 0.01 -0.08 -0.023 0.02
7 ~0.01 0.30 0.01 0.03 0.3¢ 0.00 0.09 0.41 0.05 0.02 -0.02 -0.02 0.30 0.08 0.50 0.10 -0.01 -0.03 -0.03
8 0.01 0.58 0.22 0.27 0.61 0.2t 0.09 0.68 0.30 0.25 0.02 0.07 0.58 0.33 0.76 0.38 0.19 0.13 0.07
9 0.83 0.00 0.20 0.22 -0.01 0.27 0.41 0.68 0.20 0.25 0.50 0.45 -0.01 0.17 -0.01 0.16 0.30 0.36 0.45
10 0.16 0.10 0.00 -0.02 0.13 -0.01 0.06 0.30 0.20 -0.01 0.12 0.08 0.09 -0.02 0.28 -0.01 0.00 0.02 0.08
11 0.10 0.15 -0.01 -0.02 0.18 -0.02 0.02 0.25 0.26 -0.0% 0.07 0.04 0.14 0.00 0.3¢ 0.00 -0.02 0.00 0.04
12 -0.03 0.39 0.06 0.09 0.43 0.05 -0.02 0.02 0.50 0.12 0.07 -0.02 0.38 0.14 0.58 0.17 0.08 0.00 -0.03
13 -0.01 0.33 0.03 0.06 0.37 0.02 -0.02 0.07 0.45 0.08 0.04 -0.02 0.33 0.10 0.53 0.12 0.01 -0.01 -0.02
14 0.42 -0.03 0.17 0.11 -0.03 0.18 0.30 0.58 -0.01 0.09 0.14 0.33 0.33 0.07 0.04 0.06 0.19 0.24 0.33
16 0.iT 0.08 0.0t -0.014 0.11 0.00 0.08 0.33 0.17 -0.02 0.00 0.14 0.10 0.07 0.26 -0.02 0.01 0.04 0.10
16 0.61 0.08 0.37 0.31 0.03 0.3 0.50 0.78 -0.01 0.28 0.34 0.58 0.53 0.04 0.28 0.23 0.39 0.44 0.53
17 0.20 0.08 0.02 -0.01 0 0.04 0.10 0.36 0.156 -0.01 0.00 0.17 0.12 0.05 -0.02 0.23 0.02 0.05 0.12
18 0.06 0.19 -0.02 -0.01 0.23 -0.03 -0.01 0.19 0.30 0.00 -0.02 0.03 0.01 0.1# 0.01 0.39 0.02 -0.02 0.0t
19 0.02 0.2¢ -0.01 0.00 0.28 ~0.02 -0.03 0.13 0.3¢ 0.02 0.00 0.00 -0.01 0.24 0.04 0.4¢ 0.05 -0.02 =-0.02
20 -0.01 0.33 0.03 0.08 0.37 0.02 -0.03 0.07 0.46 0.08 0.04 -0.03 -0.02 0.33 0.10 0.53 0.12 0.01 -0.02

for locus: APR

1 3 4 ] [ T 8 9 10 11 12 13 14 18 16 17 18 19 20
1 0.09 0.04 -0.01 0.15 -0.02 0.20 0.22 0.27 0.21 0.14 -0.01 0.00 0.1% 0.10 0.02 0.08 0.02 0.20 0.00
2 0.09 0.08 0.11 0.41 0.11 0.44¢ 0.49 0.46 0.45 0.38 0.1 0.04 0.01 0.00 0.08 0.08 0.20 0.05 0.12
3 0.04 0.08 0.09 0.28 0.07 0.25 0.38 0.46 0.40 0.30 0.10 -0.02 0.10 0.02 0.12 -0.02 0.17 0.08 0.10
4 -0.01 0.11 0.09 0.14 -0.02 0.2¢ 0.22 0.18 0.15 0.10 -0.03 0.04 0.23 0.14 -0.01 0.11 -0.01 0.25 -0.02
& 0.15 0.41 0.28 0.14 0.12 0.08 -0.01 0.32 0.12 0.02 0.16 0.23 0.52 0.41 0.24 0.29 0.09 0.52 0.15
6 -0.02 0.1t 0.07 -0.02 0.12 0.19 0.19 0.21 0.16 0.10 -0.03 0.03 0.22 0.13 0.01 0.08 -0.01 0.28 -0.02
7 0.20 0.44 0.25 0.2¢ 0.08 0.19 0.00 0.52 0.35 0.20 0.26 0.23 0.54 0.41 0.35 0.24 0.2¢ 0.51 0.24
9 0.22 0.49 0.36 0.22 -0.01 0.1% 0.09 0.39 0.16 0.05 0.22 0.31 0.60 0.4 0.32 0.38 0.18 0.59 0.22
9 0.27 0.46 0.46 0.18 0.32 0.21 0.52 0.3 0.00 0.17 0.1¢ 0.38 0.860 0.51 0.18 0.48 0.09 0.63 0.19
10 0.21 0.45 0.40 0.15 0.12 0.18 0.35 0.18 0.09 0.02 0.14 0.33 0.58 0.49 0.21 0.41 0.06 0.60 0.16
11 0.14 0.38 0.30 0.10 0.02 0.10 0.20 0.05 0.17 0.02 0.10 0.24¢ 0.51 0.41 0.18 0.31 0.03 0.52 0.1t
12 =0.01 0.11 0.10 -0.03 0.16 ~0.03 0.26 0.22 0.16 0.14 0.10 0.0¢ 0.23 0.14 -0.02 0.12 -0.02 0.25 -0.03
18 0.00 0.04 -0.02 0.04 0.23 0.02 0.23 0.31 0.38 0.33 0.24 0.04 0.10 0.02 0.06 ~0.01 0.11 0.09 0.04
14 0.19 0,01 0.10 0.23 0.52 0.22 0.5¢ 0.60 0.60 0.5868 0.51 0.38 0.10 0.00 0.20 0.12 0.34 -0.04 0.24
16 0.10 0.00 0.02 0.14 0.41 0.13 0.41 0.49 0.51 0.49 0.41 0.14 0.02 0.00 0.43 0.083 0.24 0.00 0.15
16 0.02 0.08 0.12 -0.01 0.2¢ 0.0¢ 0.36 0.32 0.18 0.21 0.18 -0.02 0.06 0.20 0.13 0.14 0.02 0.2¢ 0.00
17 0.06 0.08 -0.02 0.11 0.29 0.08 0.2¢ 0.36 0.48 .41 0.12 -0.01 0.12 0.03 0.14 0.1% 0.08 0.11
18 0.02 0.20 0.17 -0.06t 0.09 -0.01 0.24 0.16 0.09 0.056 0.03 -0.02 0.11 0.34¢ 0.24 0.02 0.19 0.36 -0.01
19 0.20 0.06 0.08 0.26 0.562 0.23 0.51 0.590 0.63 0.60 0.52 0.26 0.09 -0.01 0.00 0.24¢ 0.08 0.36 0.2¢
20 0.00 0.12 0.10 -0.02 0.16 ~0.02 0.2¢ 0.22 0.19 0.16 0.11 -0.03 0.0¢ 0.24 0.16 0.00 0.11 -0.01 0.2¢

for locus: 3DM

1 2 3 4 5 [ 7 8 [ 4 10 11 12 13 14 15 16 17 18 19 20
1 0.06 0.08 0.06 0.08 0.06 0.08 0.06 0.06 0.06 0.06 0.08 0.79 0.08 0.00 0.06 0.06 0.06 0.06 -0.04
2 0.08 0.89 0.00 0.12
3 0.06 0.89 0.00 0.12
4 0.08 0.89 0.00 0.12
5 0.08 0.89 0.00 0.12
6 0.08 0.89 0.00 0.12
7 0.06 0.89 0.00 0.12
8 0.08 0.89 0.00 0.12
9 0.08 0.%9 0.00 0.12
10 0.08 0.%9 0.00 0.12
11 0.08 0.89 0.00 0.12
12 0.08 0.89 .00 0.12
13 0.79 0.89 0.89 0.89 0.89 0.89 0.39 0.%9 0.8% 0.8% 0.%9 0.39 0.89 0.86 0.89 0.89 0.39 0.89 0.69
4 0.08 0.89 0.00 0.12
16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.00 0.00 0.00 0.00 0.00 0.08
16 0.08 0.89 0.00 0.12
17 0.08 0.89 0.00 0.12
18 0.08 0.99 0.00 0.12
19 0.08 0.89 0.00 0.12
20 -0.01 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.69 0.12 0.068 0.12 0.12 0.12 0.12
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for locus: PI

1 2 3 4 8 [3 7 8 9 10 1 12 13 14 15 16 17 18 19 2
1 0.02 0.02 0.02 0.02 0.09 0.02 0.00 0.02 0.0 0.02 -0.02 0.23 0.02 0.02 -0.08
2 0.02 0.00 0.00 0.00 0.02 0.00 0.07 0.00 0.03 0.00 0.03 0.13 0.00 0.00 0.01
3 0.02 0.00 0.00 0.00 0.02 0.00 0.07 0.00 0.03 0.00 0.03 0.13 0.00 0.00 0.01
4 0.02 0.00 0.00 0.00 0.02 0.00 0.07 0.00 0.03 0.00 0.08 0.13 0.00 0.00 0.01
$§ 0.02 0.00 0.00 0.00 0.02 0.00 0.07 0.00 0.03 0.00 0.03 0.18 0.00 0.00 0.0t
¢ 0.09 0.02 0.02 0.02 0.02 0.02 0.17 0.02 -0.02 0.02 0.12 0.02 0.02 0.02 0.07
7 0.02 0.00 0.00 0.00 0.00 0.02 0.07 0.00 0.03 0.00 0.03 0.13 0.00 0.00 0.01
8 0.00 0.07 ©0.07 0.07 0.07 0.17 0.07 0.07 0.18 0.07 -0.02 0.33 0.07 0.07 .01
9 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.07 0.03 0.00 0.03 0.13 0.00 0.00 0.01
10 0.00 0.03 0.08 0.03 0.03 =0.02 0.03 0.18 0.03 0.03 0.12 0.03 0.08 0.03 0.08
11 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.07 0.00 0.08 0.03 0.13 0.00 0.00 0.01
g =-0.02 0.083 0.03 0.03 0.03 0.12 0.03 -0.02 0.03 0.12 0.08 0.27 0.03 0.03 -0.03
14 0.23 0.13 0.13 0.13 0.13 0.02 0.13 0.33 0.13 0.083 0.13 0.27 0.13 0.13 0.22
16 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.07 0.00 0.03 0.00 0.03 0.13 0.00 0.01
16 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.07 0.00 0.03 0.00 0.0 0.13 0.00 0.01
17
:: -0.08 0.01 0.01 0.01 0.01 0.0T 0.01 -0.01 0.01 0.08 0.01 -0.03 . 0.01 0.0
20
foxr locus: PER-1
3 4 5 8 7 8 9 10 11 12 13 14 18 16 17 18 19 20
1 0.10 0.256 0.01 0.056 0.04 0.23 -0.01 0.20 -0.01 0.34 0.01 0.05 0.09 0.14 0.02 0.27
2 0.10 0.02 0.20 0.28 0.03 0.51 0.12 0.00 0.13 0.10 0.18 0.28 0.3 0.42 0.00 0.55
3 0.26 0.02 0.36 0.44 0.14 0.67 0.27 -0.02 0.27 0.00 0.33 0.44 0.49 0.57 0.12 0.68
4 0.01 0.20 0.36 0.00 0.07 0.13 0.00 0.31 0.00 0.45 -0.01 0.00 0.02 0.0 0.08 0.16
5 0.06 0.28 0.44 0.00 0.13 0.07 0.04 0.40 0.04 0.53 0.02 =0.01 =0.01 0.01 0.16 0.09
6 0.01 0.03 0.14 0.07 0.13 0.3¢ 0.02 0.10 0.02 0.23 0.085 0.13 0.18 0.25 -0.02 0.38
7 0.28 0.51 0.67 0.13 0.07 0.34 0.21 0.63 0.20 0.76 0.15 0.07 0.038 -0.02 0.38 -0.04
8 -0.01 0.12 0.27 0.00 0.04 0.02 0.21 0.23 =0.01 0.37 0.00 0.04 0.07 0.12 0.03 0.2¢4
® 0.20 0.00 -0.02 0.3t 0.40 0.10 0.83 0.28 0.28 0.02 0.29 0.40 0.45 0.83 0.08 0.68
10 -0.014 0.13 0.27 0.00 0.04 0.02 0.20 -0.01 0.23 0.37 0.00 0.04 0.07 0.12 0.04 0.24
11 0.3¢ 0.10 0.00 0.45 0.53 0.28 0.78 0.37 0.02 0.37 0.42 0.83 0.57 0.65 0.24 0.75
12 0.01 0.18 0.33 -0.01 0.02 0.06 0.15 0.00 0.29 0.00 0.42 0.02 0.0¢ 0O.08 0.07 0.19
13
14
15 0.06 0.28 0.44 0.00 -0.01 0.13 0.07 0.0¢ 0.40 0.04 0.53 0.02 =-0.0t 0.01 0.16 0.09
16 0.09 0.34 0.49 0.02 -0.01 0.18 0.03 0.07 0.45 0.07 0.57 0.04 =-0.01 -0.01 0.20 0.04
g 0.14 0.42 0.87 0.06 0.01 0.25 -0.02 0.12 0.53 0.12 0.65 0.08 0.01 -0.01 0.28 -0.01
19 0.02 0.00 0.12 0.08 0.16 -0.02 0.38 0.03 0.08 0.04 0.24 0.07 0.16 0.20 o0.28 0.42
20 0.27 0.56 0.68 0.16 0.09 0.38 -0.04 0.24 0.66 0.2¢ 0.78 0.19 0.08 0.04 -0.0% 0.42
fox locus: ADE
1 2 3 4 5 (] 7 8 9 10 11 12 13 4 18 16 17 18 1
0.06 -0.01 -0.01 -0.02 -0.01 -0.02 0.22 -0.02 -0.01 0.01 0.00 -0.04 -0.02 -0.02 -0.02 0.00 0.01 0.18 -0.01
2 0.06 0.13 0.14 0.05 0.04¢ 0.11 0.02 0.03 0.13 0.18 0.16 0.13 0.07 0.05 0.07 -0.02 0.18 0.00 0.13
3 -0.01 0.13 -0.04 0.01 0.08 -0.01 0.31 0.02 ~0.01 -0.01 -0.02 -0.01 0. 0.01 0.00 0.06 0.00 0.27 -0.01
4 -0.01 0.14 -0.01 0.02 0.04 -0.01 0.32 0.03 0.00 0.00 0.00 0.00 0.014 0.02 0.01 0.07 0.00 0.27 -0.0t
§ -0.02 0.05 0.01 0.02 -0.01 0.00 0.20 -0.01 0.01 0.03 0.08 0.01 -0.01 -0.01 =0.01 0.00 0.04 0.16 0.0t
6 -0.01 0.0t 0.03 0.04 -0.01 0.02 0.15 -0.01 0.03 0.06 0.06 0.03 0.00 ~0.01 0.00 -0.02 0.07 0.1t 0.03
7 -0.02 0.11 -0.01 -0.01 0.00 0.02 0.28 0.01 -0.0¢ 0.00 0.00 -0.01 0.00 0.00 0.00 0.04 0.00 0.24 -0.01
8 0.22 0.02 0.31 0.32 0.20 0.15 0.28 0.18 0.31 0.36 0.3¢ 0.31 0.23 0.20 0.23 0.09 0.37 -0.03 0.31
9 -0.02 0.03 0.02 0.03 -0.01 -0.01 0.01 0.18 0.02 0.05 0.04 0.02 0.00 -0.014 0.00 -0.014 0.06 0.14 0.02
10 -0.01 0.13 -0.01 0.00 0.01 0.03 -0.01 0.31 0.02 =0.01 0.00 -0.01 0.01 0.04 0.01 0.07 0.00 0.27 -0.01
11 0.01 0.18 -0.01 0.00 0.03 0.06 0.00 0.36 0.06 -0.01 =-0.01 -0.01 0.02 0.03 0.02 0.10 -0.0f 0.32 -0.01
12 0.00 0.16 -0.01 0.00 0.03 0.05 0.00 0.34 0.04 0.00 -0.01 0.00 0.02 0.03 0.02 0.09 0.00 0.30 -0.01
13 -0.01 0.13 -0.01 0.00 0.01 0.03 -0.0t 0.31 0.02 -0.01 -0.0t 0.00 0.04 0.01 0.01 0.07 0.00 0.27 -0.01
14 -0.02 0.07 0.00 ©0.01 -0.014 0.00 0.00 0.23 0.00 0.0f 0.02 0.02 0.01 ~0.04 ~0.01 0.02 0.03 0.19 0.00
156 .02 0.05 0.014 0.02 -0.01 -0.01 0.00 ©0.20 -0.01 0.01 0.03 0.03 0.01 -0.0t -0.04 0.00 0.04 0.18 0.01
16 -0.02 0.07 0.00 0.01 -0.01 0.00 0.00 0.23 0.00 0.01 0.02 0.02 0.01 -0.01 -0.0% 0.02 0.03 0.19 0.00
17 0.00 -0.02 0.06 0.07 0.00 -0.02 0.04 0.09 -0.01 0.07 0.10 0.09 0.07 0.02 0.00 0.02 0.11 0.08 0.08
18 0.01 0.18 0.00 0.00 0.04 0.07 0.00 0.37 0.06 0.00 -0.01 0.00 0.00 0.03 0.04 0.03 0.11 0.33 0.00
19 0.18 0.00 0.27 0.27 0.16 0.11 0.24 -0.03 0.14 0.27 0.32 0.30 0.27 0.19 0.16 0.19 0.06 0.38 0.27
20 -0.01 0.13 -0.01 -0.01 0.01 ©0.03 -0.04 0.31 0.02 -0.01 -0.01 -0.01 -0.01 0.00 0.01 0.00 0.06 0.00 0.27

ixmttn‘ alleles within samples.
95X contidence interval.
capt theta smalle
0.1234 0.1581  =0.0449
0.1978 0.1611 0.0457
9% confidence interval.
capt theta small?
0.1108 0.1588 =0.06068
0.2088 0.1614 0.0588

(prob tis=0)< 0.00020

permussing alleles within total.
96% confidence interval.
“f’ theta small?
-0.0419 =-0.0066 ~-0.042%
0.0420 0.007¢ 0.0422
99X contidence interval.
cap? theta smllf
-0.0544 -0.0083 -0.0548
0.0529 0.0096 0.0533

A(p‘nb 2it=0)= 0.99960

permusting genosypes withia sesal.
95% confidence interval.
capt theta smallt
=0.08%0 -0.0059 =-0.0958
-0.0883 0.0068 ~0.0826
99) confidence interval.
cay theta smalle
-0.0891 =0.0077 =~0.09089
-0.0882 0.0098 -0.0808

(prob fasw0)< 0.00020
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for locus : EST-3

allele capf theta smallt
1 0.1643 0.0716 0.0891
2 0.1543 0.0716 0.0891
all 0.1543 0.0716 0.0891
for locus : LAP-1
allele cap?f theta smallf
1 0.1322 0.0364 0.0994
2 0.0974 0.0808 0.0180
3 0.2100 0.0604 0.1693
all 0.1516 0.0523 0.1048
for locus : LAP-2
allele capf theta smallf
1 =0.0409 0.0191 -0.0612
2 -0.0409 0.0191 -0.0612
all =0.0409 0.0191 -0.0612
for locus : MDH-1
allele capf theta smallf
1 0.0008 0.0103 -0.0096
2 0.1623 0.0493 0.1188
3 0.1757 0.0379 0.1433
4 -0.0018 0.0022 -0.0039
all 0.1661 0.0426 0.1280
for locus : PEP-1
allele capf theta smallf
1 0.2216 0.3802 =0.2558
2 0.2284 0.3779 -0.2402
3 0.0008 0.0103 -0.0096
4 0.0002 0.0031 =-0.0029
all 0.2230 0.3767 -0.2446
for locus : PEP-2
allele capf theta smallf
1 0.3800 0.3427 0.0567
2 0.3800 0.3427 0.0667
all 0.3800 0.3427 0.0567
for locus : PGM-1
allele capf theta smallf
1 0.5623 0.5712 =-0.0207
2 0.3833 0.4208 -0.0648
3 =0.0482 0.0730 -0.1308
all 0.4220 0.4547 -0.0600
for locus : PGM-2
allels capf theta smallf
b 0.5672 0.5703 -0.0306
2 0.5572 0.5703 -0.0306
all 0.5572 0.5703 -0.0306
over all loci
capf theta smallf
0.3283 0.3327 -0.0066

jackknifing over populations.
for locus : EST-3

capf theta
total 0.1756 0.0722

0.1188 0.0212
for locus : LAP-1

capf theta
total 0.1476 0.0608

0.1012 0.0220
for locus : LAP-2

capf theta
total -0.0437 0.0200

0.0108 0.0163
for locus : MDH-1

capf theta
total 0.1752 0.0464

0.1056 0.0231
for locus : PEP-1

capf theta
total 0.2176 0.3744

0.1005 0.0737
for locus : PEP-2

capf theta
total 0.3772 0.3437

0.09567 0.0860
for locus : PGM-1

capf theta
total 0.4272 0.4602

0.0830 0.0861
for locus : PGN~2

capf theta
total 0.5623 0.6763

0.1099 0.1072
jackknifing over loci.

cap?f theta
total 0.3366 0.3434

0.0648 0.0736

smallf
0.1104 means
0.1189 std. devs.

smallf
0.1029 means
0.1131 std. devs.

smallf
=0.0646 means
0.0223 std. devs.

smallf
0.1339 means
0.0979 std. devs.

smallf
=0.2504 means
0.0721 std. devs.

smallf
0.0623 means
0.0938 std. devs.

smallf
=0.0687 means
0.0317 std. devs.

smallf
=0.0321 means
0.0401 std. devs.

smallf
=0.0078 means
0.0489 std. devs.

bootstrapping over 1

oci.

95% confidence interval.

capt theta smallf
0.1926 0.1696 =0.1022
0.4233 0.4396 0.0761
99% confidence interval.
capf theta smallf
0.1468 0.1156 =0.1321
0.4500 0.4649 0.0912
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theta per locus over pair of

for locus: EST-3
1

1
2
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2
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0.11
0.07
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0.06
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0.03
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=0.03
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PEP-1

for locus
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permutting alleles within samples.
96% confidence interval.
cap?f theta smallf
0.2986 0.3316 =0.0626
0.3663 0.3336 0.0518
99% confidence interval,
cap? theta smallf
0.2898 0.3313 -0.0661
0.3790 0.3338 0.0713

(prob fis=0)=  0.57280

permutting alleles within total.
96X confidence interval.
capf theta smallf
-0.0433 =0.0071 -0.0440
0.0442 0.0083 0.0449
99% confidence interval.
cap?f theta smallt
=0.0685 =0,0089 =0.0681
0.05687 0.0115 0.0677

(prob fit=0)< 0.00020

permutting genotypes within total.
96% confidence interval.
capf theta smallf
0.3104 -0.0137 0.2992
0.3120 0.0183 0.3197
99% confidence interval.
capf theta smallf
0.3102 -0.0164 0.2938
0.3124 0.0265 0.3213

(prob fst=0)<  0.00020



