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Bottom trawlers land around 19 million tonnes of fish and inver-
tebrates annually, almost one quarter of wild marine landings.
The extent of bottom trawling footprint (seabed area trawled at
least once in a specified region and time period) is often contested
but poorly described. We quantify footprints using high resolution
satellite Vessel Monitoring System (VMS) and logbook data on 24
continental shelves and slopes to 1000m depth, over at least two
years. Trawling footprint varied markedly among regions, from
<10% of seabed area in Australian and New Zealand waters, the
Aleutian Islands, East Bering Sea, South Chile and Gulf of Alaska
to >50% in some European seas. Overall, 14% of the 7.8 million
km2 study area was trawled and 86% not trawled. Trawling activ-
ity was aggregated; the most intensively trawled areas account-
ing for 90% of activity comprised 77% of footprint on average.
Regional swept-area ratio (SAR) (ratio of total swept-area trawled
annually to total area of region, a metric of trawling intensity) and
footprint area were related, providing a new approach to estimate
regional trawling footprints when high resolution spatial data are
unavailable. If SAR was ≤0.1, as in 8 of 24 regions, there was >95%
probability that >90% of seabed was not trawled. If SAR was 7.9,

equal to the highest SAR recorded, there was >95% probability
that >70% of seabed was trawled. Footprints were smaller, and
SAR ≤0.25, in regions where fishing rates consistently met interna-
tional sustainability benchmarks for fish stocks, implying collateral
environmental benefits from sustainable fishing.

fisheries | effort | footprint | habitat | seabed

Reserved for Publication Footnotes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

www.pnas.org --- --- PNAS Issue Date Volume Issue Number 1--??

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136



Submission PDF

There has been sustained debate about the extent of bot-
tom trawling impacts on marine environments (1, 2). Both the
scale and ecological consequences of trawl impacts have been
highlighted, with suggestions that bottom trawls are “annually
covering an area equivalent to perhaps half of the world’s con-
tinental shelf” (1). In contrast, fishing industry representatives
often claim the scale of their impact is more limited, highlighting
their targeted use of well-defined fishing grounds rather than
widespread “ploughing” of the seabed (3). Robust quantification
of the distribution and intensity of bottom trawling would provide
an evidence base to assess pressures on seabed habitats, to com-
pare the impacts of different fisheries, to characterise fisheries
and to estimate the extent of untrawled areas outside Marine
Protected Areas (MPA), and fisheries closures (4-9).

Distributions of trawling activity were traditionally reported
at a spatial scale of several hundred km2 and larger; because these
coarse scales were used for data collection and recording (10).
Activity mapped at coarse scales inevitably provides a misleading
picture of the spatial distribution of trawling, since trawled areas
combine with untrawled areas (11). Local and regional studies
have provided a higher-resolution view of activity from positions
in vessel logbooks, analyses of plotter data, analyses of overflight
data or direct tracking of subsets of vessels. These show that
trawling distributions are often highly aggregated, but coverage
of vessels and areas was usually insufficient to map total trawling
distributions at the shelf-sea scale (12).

The introduction of Vessel Monitoring Systems (VMS) as
a surveillance and enforcement tool revolutionised the study of
fishing activity and footprints, providing high-resolution infor-
mation on locations of individual fishing vessels and complete
or almost complete coverage of many fleets (13-15). VMS data
enable management authorities to monitor whether a vessel is
in an area where it is permitted to fish. VMS data are also
used by scientists to show the locations and dynamics of fishing
activity, usually based on density distributions of position records
or reconstructed tracks (16-18). High-resolution descriptions of
trawling activity from VMS have already underpinned studies
of fishing behaviour and dynamics (19-20), trawling impacts on
species, habitats and ecosystem processes at regional scales (21-
28) and provided indicators of fishing pressure (4, 29). They have
also supported marine spatial planning (7, 9, 30, 31), including
mapping fishing grounds (32-35), and providing advice on siting
MPA (7, 33) and assessment of MPA effects (13, 14). VMS data
are often linked, vessel by vessel, to the fishing gears that are
deployed and catches recorded (17).

High resolution position data allow the aggregation of trawl-
ing to be assessed at multiple scales. Aggregation needs to be
accounted for when estimating trawling impacts because repeated
passes on a previously trawled seabed each have a smaller impact
than the first pass of a trawl on a previously untrawled seabed
(36). Analyses at finer scales will better identify aggregation
and the presence of untrawled areas (2), which have impor-
tant implications for impact and recovery dynamics, and reveal
smaller trawled areas and lower trawling pressure than analyses at
coarser-scales (37-38). The scale at which the spatial distribution
of trawling activity can be shown to be random in a given year is
typically less than 5 km2 (e.g. 12), but random trawling activity
tends to be uniformly spread at the same scale when data are
accumulated over multiple years (39).

An increasing number of regional analyses describe trawling
footprints based on VMS or high resolution tow-by-tow observer
and logbook data (5, 9, 23, 40). VMS data provide advantages
over Automatic Identification System (AIS) data for measuring
the totality of these footprints because VMS is usually required
for whole fleets and the use of VMS as a formal enforcement
tool means that attempts to stop transmissions are usually spotted
and rectified (41). Further, vessel identification codes recorded

Fig. 1. Relationships between the spatial resolution of effort data and the
trawling footprint (Approach A, grid cell-based, see main text), for depth
ranges of 0-200m and >200-1000m. Region codes follow Table 1 and Fig. 3.
Three regions are not represented on the >200-1000m panel because these
regions are predominantly <200m deep.

with VMS position data can be linked directly to vessel identifi-
cation codes used for recording information on gear types and
dimensions as well as catch or landings data (17, 42, 43). The
main limitation of VMS data in relation to AIS is the relatively
low transmission rate, typically one position record every one or
two hours, thus requiring the development of methods to identify
fishing activity and to interpolate tracks (44-46).

Systematic comparisons of the footprints of bottom trawl
fisheries in those regions where the majority of all fishing vessels
are monitored using VMS or reporting tow-by-tow observer data
would provide an evidence base to resolve uncertainties about
the scale and intensity of bottom trawling and to underpin as-
sessments of the impacts of trawling on seabed habitats. Such
evidence is also necessary to effectively assess and manage the
environmental impacts of fishing methods and to address trade-
offs given that bottom trawl fishing makes a substantial contribu-
tion to human food supply. Data from the Food and Agriculture
Organisation of the United Nations (FAO; 48-50) suggest that
landings of fish, crustaceans and molluscs from towed bottom
gears from 2011-2013 were 18.9 – 19.8 million t yr-1, equating to
23.3 - 24.4% of mean annual marine wild-capture landings in the
same years (SI Appendix, Text S1).

Here, we collate and analyse VMS and logbook data to
provide standardised high resolution estimates of bottom trawling
footprints on continental shelves and slopes to a depth of 1000
m in selected regions of Africa, the Americas, Australasia and
Europe. In these analyses, bottom trawling refers to all towed
gears making sustained contact with the seabed including beam
and otter trawls, and dredges (47). We assess whether the aggre-
gation of bottom trawling activity is a consistent feature of trawl
fisheries in different regions, and describe how footprints are
related to fisheries landings, effort and the status of fish stocks.
We quantify a relationship between trawling footprints and less
complex measures of total trawling activity. This relationship can
be used to estimate footprints for those areas of the world where
high-resolution data are not available, and to predict how fishing
footprintsmay evolve in newly exploited areas given any proposed
or projected level of trawling effort (e.g. the Arctic).

Trawling footprints
To estimate bottom-trawling footprints we obtained high-

resolution vessel position data accounting for 70%–100% of all
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Table 1. Summaries of trawling footprint and fisheries data, by region, for depths of 0-1000 m. Information in brackets following
region names indicates when regions largely follow existing fishery management areas (excluding areas deeper than 1000 m). Region
codes are used to identify regions in the figures. Regional swept area ratio (SAR) is the mean annual total area swept by trawls divided
by the area of the region to 1000 m depth. Trawling footprints are expressed using the three approaches as described in the text:
approach A, cell assumption: summing the area of any grid cells in which any trawling activity is recorded; approach B, random
assumption: assuming Poisson distribution of effort within cells and approach C, uniform assumption: that trawling is uniformly spread
within cells. The percentage of the region accounting for 90% of activity is the sum of the area of the most intensively trawled areas
accounting for 90% of total activity divided by the sum of the area accounting for all activity, based, in this calculation, on approach C.
Coverage of trawling activity in each region is estimated from the proportion of total landings or effort attributed to vessels providing
VMS or logbook data. Landings per unit area of footprint are the mean annual landings of the monitored fleets divided by the footprint
area (based on approach C, uniform assumption). Differences in regional swept area ratio and footprint in this table and in a previous
analysis for the Adriatic Sea and West of Iberia (23) result from differences in the choice of boundary.

Region Region
code

Cover-
age of
total
bottom
trawling
effort
(%)

Method
to assess
cover-
age

Years
included

Area 0-
1000m
(103

km2)

Area
0-
200m
(103

km2)

Regional
swept
area
ratio
(km2

km-2

yr-1)

% area of
region
trawled
(approach
A, cell as-
sumption)

% area of
region
trawled
(approach
B, random
assump-
tion)

% area of
region
trawled
(approach
C, uniform
assump-
tion)

% area of
region ac-
counting
for 90%
of
trawling
activity

Land-
ings (103

t yr-1)

Land-
ings per
unit area
of foot-
print (t
km-2

yr-1)

Adriatic
Sea
(GFCM
2.1)

1 72 Landings 2010-12 39 37 7.926 82.7 79.1 80.7 59.3 28 0.89

West of
Iberia
(ICES 9a)

2 81 Effort 2010-12 40 23 4.321 83.9 58.7 64.3 37.2 14 0.54

Skagerrak
and
Kattegat
(ICES 3a)

3 100 Effort 2010-12 55 41 3.328 75.0 50.0 54.4 33.0 31 1.04

Tyrrhenian
Sea
(GFCM
1.3)

4 82 Landings 2010-12 138 53 2.286 68.4 43.8 49.9 30.2 10 0.15

Irish Sea
(ICES 7a)

5 83 Effort 2010-12 48 48 1.459 82.5 25.4 28.5 14.8 71 5.17

North Sea
(ICES
4a,b,c)

6 86 Effort 2010-12 586 523 1.191 89.3 42.2 51.7 39.8 745 2.46

North
Benguela
Current

7 95 Effort 2008-10 203 92 0.967 37.0 24.6 27.8 19.4 150 2.66

Western
Baltic Sea
(ICES
23-25)

8 72 Effort 2010-12 87 87 0.960 61.1 30.8 36.1 26.5 26 0.83

Aegean
Sea
(GFCM
3.1)

9 75 Landings 2010-12 175 64 0.798 52.4 26.7 31.9 23.9 5 0.09

West of
Scotland
(ICES 6a)

10 81 Effort 2010-12 161 114 0.453 68.4 19.1 23.0 18.5 75 2.03

South
Benguela
Current

11 97 Effort 2008-13 122 56 0.440 29.9 12.2 13.8 9.5 114 6.73

Argentina 12 96 Effort 2010
and
2013

910 837 0.276 45.3 14.2 17.6 14.8 590 3.68

East
Agulhas
Current

13 93 Effort 2008-13 140 96 0.247 38.2 9.4 11.1 8.6 8 0.52

Southeast
Australian
Shelf

14 100 Effort 2009-12 268 230 0.134 31.9 7.0 8.6 7.3 12 0.53

Northeast
Australian
Shelf

15 100 Effort 2009-12 557 337 0.112 19.8 4.7 5.7 4.6 10 0.31

New
Zealand

16 90 Effort 2008-12 1053 260 0.106 31.3 6.9 8.6 7.5 10 0.11

East
Bering Sea

17 97 Effort 2008-10 634 575 0.089 34.5 6.5 7.9 7.0 1146 22.88

North
California
Current

18 100 Landings 2010-12 119 55 0.077 29.5 5.5 6.9 6.1 305 37.28
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Continued from previous page

Region Region
code

Cover-
age of
total
bottom
trawling
effort
(%)

Method
to assess
cover-
age

Years
included

Area 0-
1000m
(103

km2)

Area
0-
200m
(103

km2)

Regional
swept
area
ratio
(km2

km-2

yr-1)

% area of
region
trawled
(approach
A, cell as-
sumption)

% area of
region
trawled
(approach
B, random
assump-
tion)

% area of
region
trawled
(approach
C, uniform
assump-
tion)

% area of
region ac-
counting
for 90%
of
trawling
activity

Land-
ings (103

t yr-1)

Land-
ings per
unit area
of foot-
print (t
km-2

yr-1)

Southwest
Australian
Shelf

19 100 Effort 2009-12 338 283 0.034 10.5 2.1 2.7 2.3 5 0.57

Aleutian
Islands

20 97 Effort 2008-10 84 35 0.033 12.9 1.8 2.1 1.8 123 70.09

North
Australian
Shelf

21 100 Effort 2009-12 794 792 0.026 14.8 1.9 2.2 2.0 150 8.48

Gulf of
Alaska

22 85 Effort 2008-10 398 294 0.024 8.2 1.4 1.7 1.4 138 20.85

Northwest
Australian
Shelf

23 100 Effort 2009-12 686 474 0.023 6.5 1.3 1.6 1.4 5 0.47

South
Chile

24 85 Effort 2009-13 189 149 0.004 7.4 0.4 0.4 0.4 5 5.90

Fig. 2. Mean interval between trawling events and the proportion of
unfished area at depths 0-1000m for regions in (a) Americas, (b) Europe, (c)
Australasia and (d) Africa. Black lines indicate boundaries of study regions,
pale blue tones depths 0-200m in the study regions, darker blue tones depths
0-1000m in the study regions, and all deeper areas and areas outside study
regions are shown in white. In all numbered regions, the proportion of
bottom trawling included in this analysis exceeds 70% of total activity (Table
1). Region codes follow Table 1 and Fig. 3.

known trawling activity over two to six years (usually the three
years, 2008-2010) in each of 24 regions (Fig. 1, Table 1, SI Ap-
pendix, Text S2, Figures S3-S26). Footprints were defined as the
area of seabed trawled at least once in a specified region and
time period, with area trawled determined from gear dimensions
and tow locations (SI Appendix, Table S1, Text S2). Trawling
activity data were collated and processed for regions spanning 7.8
million km2 of seabed to depths of 1000m.Regions were excluded

Fig. 3. Proportions of the total area of each region, at depths of 0-200m and
>200-1000m, trawled at different frequencies. Region code numbers increase
as regional Swept Area Ratio (SAR) decreases.

from the analyses where trawling activity data provided <70%
coverage of total trawling activity (SI Appendix, excluded regions
listed in Table S2, Text S3, Figures S27-S34).

Trawling footprints may be estimated in at least three ways.
All of these rely on gridding the region used by fisheries at a
defined scale, and then generating measures of the area trawled
within every grid cell by overlaying information on the positions
of fishing tows. Areas trawled in every grid cell are then summed
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Fig. 4. Relationship between the regional swept area
ratio (SAR) and the trawling footprint (Approach C,
assumes uniform spread in grid cells, see main text).
Left panel: symbol sizes indicate the proportion of
total fishing activity recorded in each region (all >
70%), numbers in symbols identify regions listed in
Table 1 and Fig. 3. Right panel: black line is the
fitted relationship footprint = SAR/ (b+SAR); dark blue
shading indicates 95% confidence intervals for model
fit and light blue shading indicates 90% prediction
intervals for footprint.

Fig. 5. Relationships between the relative rate of fishing mortality and the
regional swept area ratio (SAR) by region. Circles denote the ratio of fishing
mortality (F, mean 2010-2012) to the FMSY reference point for individual
bottom dwelling stocks. The black horizontal dashed line indicates F/ FMSY=
1, usually treated as a desirable upper limit on fishing rates by managers.
One value of F/ FMSY >8, for a Mediterranean stock, and in a region where
the regional swept area ratio is 7.93, is excluded from the figure for clarity.

across the region. The approaches differ in how they estimate the
area trawled within each grid cell. Approach A involves summing
the area of any grid cells in which any trawling activity is recorded
in a defined time period (usually one year), even though some of
the area within a grid cell may not have been trawled in that time
period. Approach B involves summing the area trawled within
each grid cell in a defined time period, where the area trawled is
estimated based on the assumption that the number of times any
point within the cell is trawled is randomly (Poisson) distributed
(5). Approach C involves summing the area trawled within each
grid cell in a defined time period, where the area trawled is
estimated based on the assumption trawling is uniformly spread
within the cell.

With approach A, footprint estimates depend very strongly
on grid resolution. As grid-cell area is increased from to 1-3 km2

(the scale at which trawling is usually distributed randomly within
cells (12)) to ≥104 km2, the estimated area of trawling footprints
increased substantially (Fig. 1). Median increases in footprints
were 34%, 63%, 48% and 57% in Europe, Africa, Americas and
Australasia respectively at depths 0-200 m, and 41%, 33%, 56%
and 55% at depths 200-1000 m. Thus, at coarse resolutions of
analysis, such as the 0.5° grid cells (area approximately 2185
km2 at 45° N or S) that have sometimes been used to show
trawling distributions (11), trawling footprints will be markedly
overestimated and the extent of untrawled areas underestimated.

Even though reductions in the scale of grid cell-based anal-
yses to around 1 km2 will characterise trawling footprints more
accurately, these footprint estimates will still be larger than
those resulting from more detailed analysis of the distribution
of individual trawling tracks within cells. This is because it is
impossible, or statistically unlikely, that a grid cell is trawled in
its entirety when trawling intensity is low. Approaches B and C
directly address this issue. Approach B provides a more accurate
estimate of annual trawling footprint because the distribution of
trawling at any point within cells of close to 1 km2 area has been
shown to be random on annual time-scales (39). Approach C is
more appropriate to estimate aggregate footprint overmany years
because trawling within cells tends to spread more uniformly as
many years of trawl location data are aggregated. Thus annual
mean footprint is better approximated by approach B than by C
while themulti-year footprint is better approximated by approach
C than by B.

To estimate the trawled area within grid cells, we first calcu-
lated the annual swept area ratio (SAR) for each grid cell. In
general, SAR is defined as the total area swept by trawl gear
over a defined time-period (usually one year) divided by the total
seabed area at a defined spatial scale (usually from grid cell to
region). The total area swept within a defined area (e.g. a grid
cell) is calculated as the product of trawling time, towing speed
and dimensions of gear components contacting the seabed (42),
summed over the different types of trawl gear operating in the
area. The estimated mean annual SAR in each grid cell is then
used as the mean of an assumed random distribution (Poisson,
approach B), or uniform spread (approach C), of trawling within
each cell to determine the proportion of grid cell area that was
trawled at least once (i.e. contributes to footprint area) or not
trawled.

When using the 1 km2 cell-based approach (approach A) to
estimate the trawling footprints in the study period, 33.6% of the
total area for which we collated ≥70% of bottom trawling activity
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(7.8 million km2 of seabed at depths 0-1000 m) was trawled and
66.4% was untrawled. When we accounted for untrawled areas
inside trawled grid cells assuming random trawling distributions
(approach B), trawled area fell to just 11.7% and untrawled area
was 6.9 million km2 or 88.3% of total area. When we assumed
uniform trawling distributions within trawled cells (approach C),
trawled area was 14.0% and untrawled area was 86.0% (6.7
million km2) of total area. The overall pattern was consistent
with regional patterns, with approach A yielding higher estimates
of footprint than approaches B and C (Table 1, SI Appendix
Fig. S35). We primarily report footprints based on the uniform
approach C, as these best approximate the aggregate footprint of
trawling over many years.

The overall footprint of trawling to a depth of 1000 m, based
on the assumption of uniform spread within grid cells (approach
C), was ≤10% of seabed area in 11 of the 24 regions (Table 1,
Fig. 2). A larger fraction, from 10% to 30% of the shelf and
upper slope area to 1000 m depth, was trawled in the Irish Sea,
North Benguela Current, South Benguela Current, Argentina,
East Agulhas Current andWest of Scotland. The remaining seven
regions, all in the northeast Atlantic and Mediterranean, had
>30% to 81% of the shelf area trawled. The untrawled area
was >50% in 20 of the 24 regions. Some of the largest regions
we considered were among the least intensively trawled. Thus
trawling footprint in the largest region, New Zealand, was 8.6%,
while footprints in Argentina, North Australian Shelf and North
West Australian Shelf (ranked 2-4 by area) were 17.6%, 2.2%
and 1.6% respectively (Table 1, SI Appendix Fig. S36). Concentra-
tion of trawling activity within footprints varied among regions.
The most intensively trawled area accounting for 90% of total
trawling activity (calculated with the uniform spread assumption,
approach C) ranged from 0.4% to 40% of the area of the regions
and comprised 52% to 100% of the total trawling footprint area
within regions (mean 78%) (Table 1, SI AppendixFig. S37).We fo-
cus on approach C when making these comparisons because this
approach provides more reliable estimates of trawling footprints
on themulti-year time-scales which are relevant when considering
impact and recovery dynamics of most seabed biota (47).

The frequency of trawling is another relevant metric when
assessing trawling impacts on the status of seabed biota (47). We
expressed the frequency of trawling disturbance as the average
interval between trawling events for each of the trawled grid cells.
This metric is the inverse of the cell-specific SAR.More than half
the seabed area is trawled at an interval of at least once per year,
on average, in the region with the highest regional SAR (Adriatic
Sea, Fig. 2). Over one quarter of the seabed area is trawled with
this frequency in five of the other eight European seas (Fig. 2).
In all Australasian regions, three quarters of the seabed is never
trawled, or is trawled less than once every 10 years, as is the case
in the South Benguela Current, East Agulhas Current, North
California Current, East Bering Sea, Aleutian Islands, Gulf of
Alaska and South Chile (Fig. 2). Within regions, there tended
to be large differences in the proportions of the seabed area
untrawled in the 0-200 m and 200-1000 m depth bands (Fig. 3),
likely reflecting the different foci and development of bottom
trawl fisheries in these regions.

Among regions there was a strong relationship between re-
gional SAR and the total trawling footprint based on the uniform
assumption (Fig. 4). This relationship between regional SAR and
regional trawling footprint implies that regional SAR estimates,
calculated from basic information on fishing effort (measured as
time trawling) and some knowledge of gear and vessel charac-
teristics, may be used to predict trawled and untrawled areas of
seabed at regional scales. For example, for mean regional SAR
= 1 yr-1, the prediction probability intervals for footprint (where
the mean estimate of footprint by region = SAR/ (b+SAR), with
b = 2.072 s.e. 0.154) indicate >0.95 probability that at least 23%

of the region remains untrawled and 0.90 probability that 33 to
54% is trawled (Fig. 4). For SAR ≤0.1 yr-1, as in eight of our 23
regions, there was a >0.95 probability that at least 90% of the
seabed was untrawled. For SAR of 7.93 yr-1, equal to the highest
SAR recorded (Adriatic Sea), there is a >95% probability that
more than 70% of the seabed was trawled.

Regions were included in the main analyses when catch or
effort data indicated that the trawling activity recorded with VMS
or observer data was at least 70% of total activity. Alternative
cut-offs of 80% or 90% did not lead to significant changes in the
mean relationships shown in Fig. 4, but confidence and predic-
tion intervals increased substantially if only the few regions with
>90% activity were included. This relationship between regional
SAR and trawling footprint based allows us to approximate the
increase in trawling footprint that would result if we had been able
to include 100% of known trawling activity in our analyses. If we
assume the relationship between SAR and trawling footprint ap-
plies in all the cases where coverage is <100%, then the combined
trawling footprint across all regions would increase by 71000 km2,
or 0.9% of the 7.8 million km2 study area, if we obtained data on
all trawling activity. This would represent an increase of 8.2% in
the total area trawled across all 24 regions, with higher regional
increases in regions where coverage of effort was closer to 70%.

We calculated regional SAR with high resolution data, but
it can also be calculated as the product of total annual hours of
trawling, mean towing speed and gear width without information
on the location of trawlers at sub-regional scales. Regional SAR
calculated from this more widely available information might
then be used to predict trawling footprint, using the relationship
in Fig. 4. We applied this approach to the bottom trawl shrimp
fisheries off the U.S. coast of the Gulf of Mexico, a region for
which we had no VMS data. The area of the northern Gulf of
Mexico shelf and slope to a depth of 1000 m is approximately 4.6
× 105 km2 and the swept-area in the years 2007-2009 was 2.8 × 105

km2 yr-1. This leads to a mean SAR of 0.64 yr-1. If the relationship
described in Fig. 4 applies to these bottom trawl fisheries then
there is a 0.9 probability that 16-43% of this region of the Gulf of
Mexico is trawled, based on the uniform assumption, and a 0.95
probability that more than 56% is untrawled (SI Appendix, Text
S4).

Bottom trawling may impact a range of seabed types within
a given footprint. For regions where ≥70% of trawling activity
was recorded we quantified the intersection of trawling with
four broad seabed types. We defined seabed types based on
sediment composition obtained from the dbSEABED database
of marine substrates (51). A simple sediment classification rather
than a more highly resolved habitat classification was adopted to
enable equitable treatment of habitat across all regions and for
consistency with habitat types reported in most trawling impact
studies (36 ,52-55). Grid cells were classified to sediment types by
denoting: “gravel” if gravel>30%, else “sand” if mud<20%, else
“mud” if sand<20%, else “muddySand” (53). Sediment data could
be obtained for 90%of cells in all regions, except forNewZealand
EEZ (86%), Aleutian Islands (72%), Gulf of Alaska (68%) and
Argentina (52%).

Within all regions, the bottom trawling footprint on each
sediment type was correlated with total area by sediment type (SI
Appendix, Fig. S38). This result implies that bottom trawling ac-
tivity is not consistently directed towards certain sediment types.
This is expected since we compiled activity by multiple fleets
rather than individual types of bottom trawl fishery (e.g. stratified
by gears, fleets) and because fishers are targeting different fish
species with different trawl gears on many types of seabed (e.g.
42). While this result may be more nuanced with a more highly
resolved classification of habitat types (e.g. 23), a consistent and
highly resolved ecologically-based habitat classification is not
available for all regions.

681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748

6 www.pnas.org --- --- Footline Author

749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816



Submission PDF

International calls for MPA coverage of 10% of ocean area
(56) to 30% or more (57), often focus on the protection of seabed
from bottom trawling. Our results demonstrate that ≥30% of the
seabed was not trawled during the study period in all regions
except the Adriatic Sea. In 20 of the 24 regions ≥50% of the
seabed was not trawled during the study period. This proportion
of untrawled seabed is already much greater than the proportion
proposed for protection within MPA (56, 57), demonstrating
opportunities in many regions to site MPAs in areas that have
not been affected by, and would not displace, trawling activity.
Further, since trawling footprints were distributed more or less
evenly in relation to broad sediment types, the large proportions
of untrawled area in a region may imply a relatively representa-
tive range of seabed types currently remain untrawled. But, as
described in relation to the habitat analysis, this conclusion may
not hold when habitat types are more highly resolved or when
active management intervention affects the distribution of fishing
activity.

Finally, we assessed relationships between regional SAR and
metrics of the intensity of fisheries exploitation. There was a
significant, but noisy, positive relationship between regional SAR
and relative rates of fishing mortality F (expressed as the ratio
between recorded F and the reference point FMSY, Fig. 5, SI
Appendix Text S5, Table S3). Broadly, when regional SAR was
≤0.25, as in 12 of our 24 study regions, fishing rates on all stocks
for which we had data were close to or below FMSY. Conversely,
when regional SAR was >0.25, F was greater than FMSY for 85%
of the stocks. A regional SAR of 0.25 corresponds to a trawling
footprint spanning of around 10% of the area of a region, based
on the uniform assumption and the relationship between SAR
and footprint (approachC, Fig. 4 and see SI Appendix, Fig. S39 for
the direct relationship trawling footprint and relative F). When
regional SAR exceeded three, as recorded in two Mediterranean
regions and one Baltic region, all stocks for which we had data
were fished at or above FMSY (Fig. 5). When we conducted a
more constrained analysis, which only included those stocks with
distributions spanning at least 50% or 70% of the region to which
they were assigned, the breakpoint remained close to SAR=0.25
in both cases (SI Appendix, Fig. S40, S41). The relationships
between trawling footprints (approach C) and relative F (SI
Appendix, Fig. S39) also held when we only included those stocks
with distributions spanning at least 50% or 70% of the region to
which they were assigned (SI Appendix, Fig. S42, S43). Thus, in
regions where fishing rates consistently met international sustain-
ability benchmarks for fish stocks, trawling footprints based on
approach C were typically ≤11% of region area. These patterns
imply that fisheries management systems that effectively meet
reference points for exploitation rates on bottom dwelling stocks
will achieve collateral environmental benefits because SAR and
thus trawling footprint will be lower.

Our group made significant efforts internationally to obtain
high-resolution trawling activity data for regions where these data
are recorded. The seabed area including the continental shelf
area to 1000 m globally approximates 42.5 million km2, thus
the data we acquired cover 18.4% of this. Our data accounted
for a similar proportion (19.5%) of estimated global landings by
bottom trawlers (3.78 million tonnes yr-1, Table 1; assuming mean
global landings of 19.35 million tonnes yr-1, Text S1). Regions
where data were not available to us included some areas where
we expect high levels of bottom fishing activity (e.g. Bay of Biscay,
east coast U.S. and Canada, Brazil shelf and southeast Asia).

To conclude, there are large differences in trawling footprints
among study regions. But, for almost all the shelves and slopes
we studied, total footprints to depths of 200 m and 1000 m, based
on the more representative assumption of uniform spread of
trawling activity within cells, are well below the 50% previously
suggested (1) and are less than 10% overall in almost half the re-

gions. There were strong positive relationships between regional
SAR and footprint, providing a new method to estimate trawling
footprints for regions where high-resolution data from logbooks,
automatic identification systems and satellite vessel monitoring
systems are not available. Regional SAR and trawling footprints
were generally smaller in regions when fisheries were meeting
reference points for sustainable exploitation rates on bottom
dwelling stocks, implying collateral environmental benefits from
successful fisheries management of these bottom dwelling stocks.

Methods
Bottom trawling contribution to global landings

Marine global landings by mobile bottom fishing gears for the years
2011-2013 were estimated from FAO landings data (48) (SI Appendix, Text
S1). First, species or species groups not caught with mobile bottom gears were
excluded, as were species with mean landings of <1000 t yr-1 which account
for a negligible proportion of the total (<1% but cannot be quantified
precisely due to non-recording). For remaining species or species groups,
we estimated the proportion caught by mobile bottom fishing gear (SI Ap-
pendix, Text S1) and combined this with estimates of mean annual landings
of marine fishes that are not identified by FAO (49-50, 58). The calculation
excludes fish which are caught but discarded (59).

Estimating trawling footprints
We estimated the area trawled within each grid cell using approach B

(assuming random trawling distribution) and approach C (assuming a uni-
form spread of trawling distribution). Both approaches required estimates of
grid cell SAR. Grid cell SAR was estimated for individual cells, typically 1×1 km
(1 km2) or 1×1 minute of longitude and latitude (1.9km2 at 56°N or S) in grids
spanning each region. At these spatial scales trawling tends to be randomly
distributed within years, but tends to be uniformly spread on longer time-
scales (39), consistent with the assumptions we make to estimate footprint.
For each grid cell the SAR was calculated as the ratio of the total trawl swept-
area (estimated from gear dimensions, towing speed and towing time) di-
vided by grid-cell area. Methods of analysis varied among regions depending
on how vessels were tracked (VMS or observers, logbooks), on how fishing
tracks were reconstructed from position data and how fishing tracks were
linked to vessel, gear dimension and catch information (SI Appendix Table
S1, Text S2). The methods were adopted by regional specialists to provide
their most reliable estimates of grid cell SAR, and thus footprint, within
region. Details of analytical approaches for each region are described in the
SI Appendix (Table S1, Text S2, Fig. S3-S34). Data used in the analyses can
be accessed from a database deposited with the University of Washington
(https://trawlingpractices.wordpress.com/datasets/).

At broad scales, the distributions of bottom trawling tend to be consis-
tent from year to year as activity is strongly tied to fish distributions, and
limited by environmental, technical and economic constraints on areas of
gear deployment in the absence of changing management regulations (11).
Even so, our analyses of changes in activity distribution from year to year
in each region do show that there are often small increases in cumulative
footprint area as additional years are included in the computations (SI
Appendix, Fig. S3-S34). In regions where footprint is small the absolute
effects of these increases would be trivial and substantial areas are still
expected to remain untrawled on decadal time-scales. In regions where
habitat is relatively uniform and footprint is large it is possible that the
entire region available to trawlers would be fished on decadal timescales if
economically viable to do so, with the exception of any management areas
where bottom fishing is banned or where the seabed is unsuitable for use of
towed bottom gears.

The selection of regional boundaries will influence the results of the
footprint analysis. Thus boundaries were selected and fixed before we
started the analyses, primarily based on the shelf and slope area to 1000
m and adjacent to nations for which we expected data to be available, but
also guided by biogeographic and oceanographic features, and in some cases
existing management regions. Once these boundaries were defined we split
the designated area based on 0-200 m and 200-1000 m depths. We could
not use existing classifications like Large Marine Ecosystems (LME) because,
in many cases, use of LMEs would lead to mixed jurisdictions and fisheries
from multiple countries in one region, and would have reduced the overall
coverage of trawling activity. The proportional coverage of trawling activity
by region was estimated from the proportion of catch or fishing effort
recorded by the trawlers for which we obtained data as a proportion of total
catch or effort by all trawlers in the region (Table 1).

In some regions, such as Europe, small inshore vessels may use towed
bottom gears but may not be subject to the same monitoring or reporting
requirements as larger vessels. Even in regions where we have high coverage
of reported catch or effort, some inshore bottom trawling activity may not
be included. We therefore caution that the results for these regions may not
be informative for the immediate inshore zone (typically to 3 miles offshore)
and further data collection and analyses would be needed to address this
data gap.

Fishing mortality
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Estimates of the ratio of fishing mortality rates (F) to fishing mortality
reference points (FMSY) for 87 stocks caught with towed bottom gears were
used to describe the sustainability of fishing rates in each region. For each
one of the 23 areas with high coverage of trawling activity (>70%), data on
the intensity of the fishing pressure for stocks targeted by bottom contact
fishing gears were obtained from the RAM Legacy database (60, Version
4.30; http://ramlegacy.org). RAM Legacy is currently the most comprehen-
sive repository of stock assessment data containing time series of biomass,
catches, fishing mortality, recruitment and management reference points
for more than 1000 stocks of marine and anadromous fishes. Stocks were
included in the analyses when: (1) both trawl footprint data and a fishing
mortality reference point were available for the years 2008-2010; (2) the
spatial distribution of the stock matched at least one of the regions with high
coverage (>70%) of trawling activity; (3) the largest proportion of landings
from the stock, by gear, is taken with bottom trawls. Additional descriptions
of the methods, the stocks included, stock distributions in relation to the
study regions and resulting status estimates are provided in the SI Appendix
(Text S5, Table S3).
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