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Abstract  

Natural fibres usually include hemp, jute, and flax fibres are gaining importance in composites 

with an increasing potential to replace synthetic fibres in advanced composites. Current glass 

and carbon fibre systems require large amount of energy in production, which has led to an 

upsurge in interest in the reinforcement potential of natural fibres. To improve composite 

performance, designers try different possibilities i.e. vary material thickness (lamina), fibre 

volume fraction, fibre weight ratio, fibre orientation, and fibre layups. Especially with natural 

fibres, higher variability of mechanical properties is a major challenge due to fibre parameters 

such as lignin content, pectin content and degree of polymerisation. Therefore, prediction of 

laminate performance at early stages of design requires computation.  

The present work is intended to understand how the flax fibre layups and orientation 

affect the mechanical behaviour of layered laminated composites. Unidirectional [0]4S, cross-

ply [0/90]2S, angle-ply [+45/-45]2S, and quasi-isotropic [0/90/45/-45]S laminates made up of 

flax fibre reinforced epoxy composites are considered to study tensile, flexural behaviour, and 

stress distribution in the individual laminae. A classical laminate plate theory (CLPT), which 

considers the elastic behaviour of the laminae, and a numerical simulation method based on 

finite element modelling (FEM) are used to predict the stress–strain response of a layered 

composite. Further, the analytical results and the numerical predictions show that the quasi-

isotropic flax/epoxy laminate perform better than angle-ply and cross ply laminates.  
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INTRODUCTION 

Bio-based composites are the future materials for lightweight industrial structures, having 

greater capability to replace current conventional composite materials (bio-derived resin in 

place of synthetic resins, similarly replacing glass or carbon fibres with natural fibrous 

materials) [1-3]. Naturally available fibrous materials are derived either from agricultural waste 

and or from forestry [4]. These fibres are being utilized it in the structural composites due to 

their eco-friendly nature and sustainability [5]. Energy and carbon credits from end of life 

incineration of natural fibres favours their usage in the automotive sector, construction 

industry, electronic casings, and in furniture industry [6-8].  

 A few articles have demonstrated the benefits and performance of natural fibres for 

composite applications [9-15]. It has been noted that some issue that natural fibres face include 

accentuated sensitivity to water and moisture resulting in composite durability problems, and 

incompatibility with hydrophobic polymers leading to poor fibre/matrix interface [16-17]. Flax 

fibres have higher strength and stiffness compared to other natural fibres such as hemp, sisal, 

jute, and coir fibres. Scientists have focused their attention on further improving flax fibre 

properties either by modifying fibre surface morphology and or by designing optimum fibre 

surface coatings [18-19]. The parameters of flax pre-forms such as lignin content, pectin 

content and degree of polymerisation show higher variability and severely degrade mechanical 

properties of flax/epoxy composites. Especially for layered composites, fibre waviness, fibre 

tows alignment, weft yarns used in flax fabrics influence the stress state in a laminate. To 

understand deformation and stress fields generated during mechanical loading of layered 

composite, mathematical and simulation models derived from continuum mechanics are used. 

From the literature review [20-23], it is clear that some experimental investigations 

have been conducted to understand stresses in a layered flax/epoxy composite. George et al. 

[15-17] studied the influence of processing and chemical treatment of flax fibres and 

composites. The work extended to evaluate the alkaline fibre treatment and its effect on 

longitudinal and transverse properties of unidirectional composites. Cerbu [10] studied 

mechanical behaviour of flax/epoxy and flax/glass/epoxy composites, where bidirectional flax 

woven fabrics are considered. Performance of bidirectional eight layered flax/epoxy 

composites showed higher mechanical properties in weft direction when compared to warp 

direction. Young’s modulus in tensile (33.84%)/bending (13.44%) and normal tensile stress 

(40.63%)/bending stress (12.69%) is greater for weft direction compared to warp direction of 



the specimen. Similarly, Durai Prabhakaran et. al. [11-12] studied flexural performance of 

biaxial (±450) non-crimp glass and flax fabrics (refer Figure 1a) with super-sap epoxy resin. 

Symmetrical laminates with layered configuration were produced to demonstrate the effect of 

hybridization of flax/glass layups on bending properties. To determine strength of composite, 

experiments are generally conducted on specimens subjected to loads that can produce simple 

stress fields and determining the load at which composite specimen fails. With these 

experimental approach, yield strength and ultimate strength can be obtained under uniaxial 

tensile and compression loading conditions. Determining stress/strain fields in individual 

laminae and their failure is difficult through experimental approach. Therefore, analytical and 

numerical models help to predict stress-strain fields in each laminae of layered composites.   

Several articles described theoretical development of higher-order three dimensional 

elasticity theories for layered composite laminate to account displacements, stress fields, and 

shear deformation. Reissner and Stavsky [24] proposed the first order lamination plate theory. 

Later the models are extended from thin/thick plates to laminated anisotropic plates. Whitney 

and Pagano [25], and J.N. Reddy et. al. [26-28] derived 3-D elasticity solution for a 

bidirectional composite plate, which reveals the nonlinearity of in plane displacements in any 

layer with respect to thickness of the plate. Sarvestani et al. [29] formulated theoretical model 

combining first-order shear deformation theory and layerwise theory for bending analysis of 

cross-ply laminate. Results obtained from the model are compared with three dimensional 

elasticity solution, the close agreement of result verifies the accuracy of the layerwise theory 

developed by the authors [29]. 

From the literature survey [27-29], it appears that laminate failure in bending is much 

more often than the in-plane loads [30]. Limited research carried out to understand natural fibre 

reinforced composites by theoretical and numerical models. The present study is motivated by 

the lack of three-dimensional elasticity and finite-element solution for flax fibre/epoxy 

composites with symmetric layups subjected to tensile and bending loads, as shown in Figure 

1c. Theoretical and numerical analysis has been undertaken to determine stresses and mid-span 

deflections in a layered composites i.e. unidirectional [0]4S, cross-ply [0/90]2S, angle-ply [+45/-

45]2S, and quasi-isotropic [0/90/45/-45]S laminates made up of flax fibre reinforced epoxy 

composites. Classical laminate plate theory (CLPT) and finite element (FE) simulation have 

been used to examine the stress distribution in the symmetric laminates of flax/epoxy 

composites under tensile and flexural loading conditions. For the simulation of stresses, 

Solidworks® version 2018 software (Dassault Systems, UK) was used. 

--------------FIGURE 1------------- 



ANALYTICAL MODELS 

Theoretical model defined in this section is a most commonly used analytical model based on 

micromechanics of materials. Several micromechanical models exists in literature to evaluate 

the mechanical behaviour of layered composite beams. In the present study, classical laminate 

plate theory (CLPT) was considered to predict stresses and strains in individual laminae owing 

to external loads on the laminate [27-28].  

Classical Laminate Plate Theory (CLPT) 

Consider a laminated plate with N layers of orthotropic laminae, each being oriented arbitrarily 

with respect to the laminate (x, y) co-ordinates, which are taken to be in the midplane of the 

laminate. The displacements (u1, u2, u3) at a point (x, y, z) in the laminate are calculated with 

the following expression [28]: 

𝑢1(𝑥, 𝑦, 𝑧) = 𝑢(𝑥, 𝑦) + 𝑈(𝑥, 𝑦, 𝑧) 

𝑢2(𝑥, 𝑦, 𝑧) = 𝑣(𝑥, 𝑦) + 𝑉(𝑥, 𝑦, 𝑧)                                           (1) 

𝑢3(𝑥, 𝑦, 𝑧) = 𝑤(𝑥, 𝑦) 

where (u, v, w) are the displacements of a point(x, y, 0) on the reference plane of the laminate. 

According to the classical laminate plate theory (CLPT), the laminate plate made of 

several layers of either same or different materials are placed either symmetrically or non-

symmetrically to the median surface. In the current study symmetric layers with the same 

thickness and same material are considered to define a composite laminate (Figure 1). 

Laminates [00]4S, [0/90]2S, [+45/-45]2S, and quasi-isotropic [0/90/45/-45]S are defined as 

symmetric transversely orthotropic laminated conditions. The stresses in a laminate vary from 

layer to layer, as well strains vary linearly across the beam thickness in spite of having laminae 

with different directional properties [20].  

 

--------------TABLE 1------------- 

 

Rule of mixtures did not account fibre kinking or surface treatment for flax fibres (refer Figure 

1b). Therefore, experimentally measured properties or properties which take kinking into 

account are presented in Table 1. From Table 1, using the constituent properties of fibre and 

matrix, stiffness matrix for a laminae can be defined as: 

Stiffness Matrix [S] = [

𝑄11 𝑄12 0
𝑄21 𝑄22 0
0 0 𝑄66

]                                                                                                      (2) 



where  𝑄11 = 
𝐸𝐿

1−𝜗𝐿𝑇𝜗𝑇𝐿
 ;   𝑄22 = 

𝐸𝑇

1−𝜗𝐿𝑇𝜗𝑇𝐿
 ;   𝑄12 = 

𝜗𝑇𝐿𝐸𝐿

1−𝜗𝐿𝑇𝜗𝑇𝐿
 ; 𝑄66 = 𝐺𝐿𝑇 ;                                         (3)   

𝜗𝐿𝑇𝐸𝑇 = 𝜗𝑇𝐿𝐸𝐿                                                                            (4) 

According to CLPT theory [20], total plate constitutive equation of a multi-layered laminate is 

used to calculate force and moment resultants  

[
𝑁
𝑀
] = [

𝐴 𝐵
𝐵 𝐷

] [
𝜀0
𝑘
]                                                                                                                                             (5) 

where strains and plate curvatures are estimated by using 

𝜀0 =
𝜕𝑢0

𝜕𝑥
                   𝑘 = −

𝜕2𝑤

𝜕𝑥2
                                                                                                                           (6) 

The elements of matrix [A], [B], and [D] are defined by equation (7), as shown below: 

𝐴𝑖𝑗 = ∑ (𝑄̅𝑖𝑗)𝑘
𝑛
𝑘=1 (ℎ𝑘 − ℎ𝑘−1)          𝐵𝑖𝑗 =

1

2
∑ (𝑄̅𝑖𝑗)𝑘
𝑛
𝑘=1 (ℎ𝑘

2 − ℎ𝑘−1
2 )   

𝐷𝑖𝑗 =
1

3
∑ (𝑄̅𝑖𝑗)𝑘
𝑛
𝑘=1 (ℎ𝑘

3 − ℎ𝑘−1
3 )                                                                                                                     (7) 

[A], [B], [D] matrices for the eight layered symmetric flax/epoxy laminates [00]4S, [0/90]2S, 

[+45/-45]2S, and quasi-isotropic [0/90/45/-45]S can be estimated from the lamina (or each ply) 

transformed stiffness matrix elements. Stresses in each lamina and the mid-span deflections of 

the composite beam are estimated for symmetric laminates.  

 

In Plane Tensile Loading 

Considering the layered composite beam section as shown in Fig 2 subjected to in-plane tensile 

loading are analysed to compute stresses and strains. Using CLPT, stresses and strains in the 

individual laminae can be estimated using 

{

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

}

𝑘

= [𝑄̅]𝑘

{
 

 
{

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

} + 𝑧 {

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦

}

}
 

 
                                                                                     (8) 

{

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
}

𝑘

= {

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

} + 𝑧𝑘 {

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦

}                                                                                                 (9)                                        

[

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

] = [

𝐴11 𝐴12 𝐴16
𝐴12 𝐴22 𝐴26
𝐴16 𝐴26 𝐴66

] {

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

}                                                                                        (10) 

 

--------------FIGURE 2------------- 



For the in-plane tensile loads: the elements in the matrix equation (10) are defined as Nx is 

200N, Ny is zero, and Nxy is zero. Laminae strains can be estimated using equation (9) and (10). 

The stress values can be determined using equation (8). 

 

Three Point Bending  

Considering the laminate section as shown in Fig 3b assuming beam subjected to 3-point 

bending as defined in Figure 3a. The differential equation of deformed section of layered 

composite is derived from plate theory (CLPT) as 

                         
𝑑2𝑤0

𝑑𝑥2
= −

𝑀

𝐸𝑥𝐼
                                                                                           (11) 

 

--------------FIGURE 3------------- 

 

When loading is prescribed on a layered composite, the deformation results in terms of mid-

plane strains and plate curvatures of the midplane can be calculated. The deformation can be 

estimated using equation (1) and visualized as shown in Figure 4 for a symmetric plate 

subjected to pure bending. Using equation (5) and equation (7), plate curvatures for an 

orthotropic laminae referred to arbitrary axes can be determined by using equation (9) 

{

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

} = [

𝐷11 𝐷12 𝐷16
𝐷21 𝐷22 𝐷26
𝐷61 𝐷62 𝐷66

] {

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦

}                                                                                          (12) 

Applying simply supported beam boundary conditions and solving the above equation leads 

to the following flexural properties (modulus, mid-span deflection, and bending stress) [20]:  

𝐸𝑥 =
12

ℎ3𝐷−111
                                                                                                                               (13) 

𝑤0 = −
𝐹𝑙2

48𝐸𝑥𝐼
𝑥 [3 − (

2𝑥

𝑙
)
2
]                    𝑤0𝑚𝑎𝑥 =

𝐹𝑙3

48𝐸𝑥𝐼
                                                           (14) 

(𝜎𝑚𝑎𝑥
𝑓

) =
3𝐹𝑚𝑎𝑥𝑙

2𝑏ℎ2
(1 + 6(

𝑤𝑚𝑎𝑥

𝑙
)
2
− 3(

𝑤𝑚𝑎𝑥ℎ

𝑙2
))                                                                 (15) 

 

 

--------------FIGURE 4------------- 

 

 

 

--------------FIGURE 5------------- 



NUMERICAL FE MODELLING  

Finite element models were developed using SOLIDWORKS® version 2018 (Dassault 

Systems, UK) to help understand tensile and flexural behaviour (analysis of stresses, strains 

and displacements) of a symmetric laminate. To simulate the real material behaviour, it was 

necessary to define density and mechanical properties of the material in Solidworks as given 

in Table 1. For any simulation, geometry, material, and boundary conditions are defined. The 

flax/epoxy specimens considered in the study have symmetry and therefore, unidirectional and 

cross-ply will have symmetry in the ply sequence, material, and geometrical symmetry, 

whereas the angle-ply has no through thickness plane of symmetry for material orientation.  

FEM will give results very slightly better than CLT (nearly matches but not perfect solution), 

as no defects are taken and everything is assumed perfectly bonded. Density normally does not 

play any role unless body force are taken into consideration by specifying acceleration due to 

gravity as the input file. Even then gravity or body force is very low as compared to other forces 

and does not contribute much. Therefore, the current study compares CLT and FEM results for 

flax/epoxy layered composites.  

To simulate tensile loading for a composite beam, specimen dimensions are chosen as 

per ISO standards 527-2:1996. Specimen geometry is 250 x 25 x 4 mm3, where tabs are 

considered at the specimen gripping area. The tab material dimensions are considered as 

Aluminium alloy 1060 plates with a dimension 50 x 25 x 2 mm3. A tensile load of 200 N is 

applied in axial x-direction as shown in Figure 2. SolidWorks used the directions X, Y, and Z 

of the global Cartesian system of coordinates having mixed mesh with curvature-based mesh 

having four Jacobian points having total nodes 63107, and elements 37256 (refer Figure 9a). 

 

--------------FIGURE 6------------- 

 

 

--------------FIGURE 7------------- 

 

Similarly, to simulate 3-point bending with the “simply supported” assumption, the load and 

deflection follows linear relationship. In the current study, comparison of four symmetric 

laminates are analysed for bending, assuming load applied at centre of beam as 200 N. The 

sum of reaction forces acting at supports are equal to 200 N in reverse direction to load applied. 

Specimen geometry is 80 x 15 x 4 mm3, where span (L) were set as 64 mm as shown in Figure 

3. SolidWorks used the directions X, Y, and Z of the global Cartesian system of coordinates 



having mixed standard mesh with high quality having total nodes 3801, and elements 2182 

(refer Figure 9b).  

 

--------------FIGURE 8------------- 

 

--------------FIGURE 9------------- 

 

 

RESULTS AND DISCUSSIONS 

Analytical models and finite element modelling (FEM) as a numerical method offers the 

possibility to quickly examine and evaluate laminate design at early stages of design long 

before a prototype is developed. The choice of natural fibres i.e. flax and hemp fibres rather 

than conventional fibres i.e. glass and carbon as fibre reinforcement yields a change of the final 

properties of the composite. One of the most relevant differences between the two kinds of 

fibres is their response to humidity. Unlike conventional fibres, cell-wall structure of plant 

fibres consists of chemical composition having polymers (cellulose and hemicellulose) 

combined with additional constituent’s lignin, pectin, wax or oil and structural water 

demonstrates water sorption isotherms [31]. Bergès et. al. [32] investigated the effect of 

moisture uptake on monotonic tensile properties of flax/epoxy composites and induces an 

increase in the fatigue strength for a high number of cycles.  

Twisting of fibres in flax yarns is a common problem refer figure 1b, which can 

influence on the stiffness of natural fibre composites. When the degree of twisting is increased, 

the fibres become more tightly configured within the yarns [33]. Resin penetration into highly 

twisted fibre yarns will get difficult and hence result in to poor impregnation characteristics, 

which can lead to porosity in the composites. To account “fibre yarn twisting” into 

micromechanical model, experiments are conducted to predict elastic constants using single 

layer composite. This considers the fibre yarn twisting while predicting stiffness in longitudinal 

and transverse directions, shear modulus, and Poisson’s ratio.  Another approach is to estimate 

the twisting angle using the sinus curve approach, which allows calculation of the (local) fibre 

orientation angle θ relative to the length direction (x-axis). The angle θ varies between zero 

and a maximum value, which is determined by the amplitude A relative to the sinus curve wave 

length λ, and thus by the fibre waviness [34]. In the present article, experimental approach is 

considered where single lamina properties are determined to account fibre yarn twisting.  



To predict natural fibre performance, very limited articles exists in literature to model the 

mechanical behaviour of a symmetric composites reinforced with flax fabrics. Analytical and 

numerical simulations for determining displacements and stress-strain fields of flax/epoxy 

composite subjected to tensile and bending loads are studied in this section.  

 

 

--------------FIGURE 10------------- 

 

Effect of fibre orientation on lamina stress/strain  

Laminae material axes (L, T) oriented at an angle θ to the reference axes (x, y) will influence 

stresses and strains. From the CLPT, normal stresses (σx and σy) and normal strains (εx and εy) 

are coupled with shear strain (γxy) and shear stresses (τxy). Similarly, when the normal stress σx 

is applied other than fibre oriented longitudinal or transverse direction will result in produce of 

shear strains γxy. To define relationship between shear strain and normal stress, cross-

coefficient mx and my are defined [20]. Variation of the elastic constants as a function of fibre 

orientation θ for the flax/epoxy laminate are shown in Figure 11.  Modulus Ex decreases from 

EL at  θ = 00 to ET at  θ = 900, where the variation of modulus Ex dependent on the shear modulus 

GLT. From Figure 11, for flax/epoxy laminae the value of Ex is less than modulus in longitudinal 

and transverse direction for values of θ between 450 and 900, similarly value of Gxy is largest 

at  θ = 450, and its variation is symmetric about this orientation. The cross-coefficients mx and 

my are zero at θ = 00 and θ = 900, but for intermediate values of θ, they recorded higher values.  

 

--------------FIGURE 11------------- 

 

 

Effect of symmetry on stiffness elements  

The symmetry or asymmetry of a laminate based on angle, material, and thickness of plies, 

may cancel out some elements of the extensional stiffness [A], coupling stiffness [B], and 

bending stiffness [D] matrices (refer equation 5). In the current work, laminates [00]4S, [0/90]2S, 

[+45/-45]2S, [0/90/+45/-45]S are considered as symmetry therefore elements of [B] matrix is 

zero and elements of Q matrix for unidirectional and cross-ply i.e. [Q16] and [Q26] are zero. 

According to CLPT, symmetric laminates subjected to forces only have zero midplane 

curvatures reducing or zeroing out the coupling of forces and bending moments, normal and 

shear forces, or bending and twisting moments. For in-plane loads on symmetric laminates, 



bending-stretching coupling can be eliminated whereas for non-symmetric laminates 

undesirable warping owing to loads applied are observed. Laminates having angle/symmetry, 

and number of plies the same but change the stacking sequence influences the stress-strain 

fields.   

 

--------------TABLE 2------------- 

 

In-Plane Loading for Stress-Strain Analysis 

For the current study, tensile and three-point bending configuration has been adopted to study 

flax/epoxy laminates. For tensile loading, axial force in the direction of fibre orientation F (200 

N) is applied as shown in Figure 2. Therefore, the resultant force is defined as Nx (200 N), and 

Ny, Nxy are defined as zero, whereas the fibre direction coincides with the global axis for 

unidirectional laminates. As no other moments acting on composite, the resultant moments Mx, 

My, Mxy are defined as zero.  Similarly, to compare the laminate performance under bending, 

load F (200 N) is applied at centre of beam, which is subjected to resultant moment Mx (213.3 

N.m/m), My, Mxy equal to zero. As no other forces acting on composite, resultant forces Nx, 

Ny, Nxy are defined as zero, where the fibre direction coincides with the global axis for 

unidirectional and cross-ply laminates. Figure 5 demonstrates the variation of mid-span 

deflection for a symmetric laminate subjected to bending load. With equation 5, mid-plane 

strains and plate curvatures are estimated using stiffness and compliance matrices (refer Table 

2). The stresses in a laminate vary from layer to layer, whereas strains vary linearly across the 

thickness even though the laminate is composed of laminae with varying directional properties 

[35 – 37]. Stresses and strains are calculated in each laminae both in global (x and y) and local 

material (1 and 2) directions. The distribution of a normal stresses (σx, σy, σ1, and σ2), normal 

strains (εx, εy, ε1 and ε2), shear strain (γxy and γ12) and shear stress (τxy and τ12) are plotted through 

the thickness of an eight-layered symmetric layups of unidirectional, cross-ply, angle-ply, and 

quasi-isotropic laminates subjected to in-plane tensile and bending loads as shown in Figure 6, 

7, and 8. The basic difference between in-plane loading and flexural loading is that the strains 

are not the same in all layers of the laminate that has flexural loading. 

 

Unidirectional, Cross-Ply, and Angle-Ply Laminates 

Following principles of plate theory, stress-strain fields for each laminae can be defined using 

stiffness elements i.e. [A], [B], [D] matrices. Under in-plane loads with no bending loads, the 



symmetric laminate have the curvatures are defined as zero, therefore the strains are constant 

through the thickness. Figure 6 represents the individual laminae stress-strain fields that are 

estimated from the stiffness matrices, where the in-plane axial force applied to the eight-layered 

composite specimen in the longitudinal direction. Normal stress (σy) is estimated as zero for 

unidirectional and angle-ply laminates, whereas for cross-ply has small stress field varying 

between the laminae. Similarly, shear stress (τxy) are defined as zero for unidirectional and 

cross-ply laminates, whereas for angle-ply laminate has shear stress acting across the thickness 

of the laminate. A 3D model has been established for simulation of the tensile test composite 

specimen, which enables to understand the tensile strength and individual ply stress fields. 

Eight ply flax/epoxy specimens with various stacking sequences were analysed for the stress 

and displacement predictions. The displacement at the free end of the specimen was found to 

maximum and zero at the clamped end whereas the significant reaction force was noticed at 

the clamped end during simulation. A good comparison was obtained between the CLPT results 

with the finite element model simulation data. 

 

--------------FIGURE 12------------- 
 

 

Figure 7 and 8 shows the individual ply stresses when a load 200 N is acting at centre of beam. 

For unidirectional and cross-ply, shear stress and midplane strains are zero because there are 

no in-plane forces acting and the laminate is symmetric. The state of stress through the 

thickness of the laminate (due to bending) results into laminate stiffness (estimated using 

equation (8) and (9). Figure 7 demonstrates the normal stress and shear stress variations across 

the thickness of laminates. Similarly, strain distribution through thickness of laminate is linear 

and plies used as outer contribute more to stiffness than inner layers of the laminate. Therefore 

bending stiffness for unidirectional is higher than cross-ply and angle-ply. From the analytical 

results, it has been shown that shear stress (τxy) in angle-ply is higher than the normal stress 

(σy), and this leads to laminate twisting under bending loads. Shear stress for the unidirectional 

and cross-ply laminate are computed as zero, resulting no twisting.  

Using SolidWorks, the distribution of the normal stress (σx = S11) across the thickness of the 

unidirectional laminate (ply 2) is shown in Figure 12. The stress values shown in the plots are 

in the second ply as 41.7MPa, nearly matches with the analytical (CLPT) solution computed 

for each lamina, refer Figures 7. Similarly, the distribution of vertical displacement (mid-span 

deflection) of the laminate W0max in the direction of the Z-axis are plotted in all four cases of 

laminate, as shown in Figure 10 and Table 3. The deflection obtained for the load (200 N) 



applied at centre of beam demonstrates unidirectional and cross-ply have better performance 

compared to angle-ply (deflection higher than [0]4S and [0/90]2S).   

 

 

Quasi-Isotropic Laminate 

Quasi-isotropic laminates are in general not symmetric but they can be designed symmetric by 

mirroring a number of laminae to the mid-plane. Advantage of symmetric quasi-isotropic 

laminate is the coupling matrix [B] is defined as zero. Flax/epoxy laminate with quasi-isotropic 

layup have extensional stiffness matrix [A] is defined as isotropic with elastic constants defined 

as independent of fibre orientation in the plane. The stiffness elements i.e. [A11] and [A22] is 

32290, [A16] and [A26] is zero, whereas [A11 – A12] is equal to two times [A66] i.e. 11352. The 

values obtained by CLPT satisfies the quasi-isotropic construction of plies.  

The stress-strain fields for quasi-isotropic flax/epoxy laminate is shown in Figure 6, 7, 8. 

As the layup consists of 0/90 on the outer layers which exhibits zero shear stress (τxy) whereas 

the middle layers with fibre orientation of +45/-45 defines shear stress values for the in-plane 

tensile loading as shown in Figure 6. In case of pure bending, laminates have shear stress (τxy) 

values across the thickness of the laminate similar to angle-ply laminates. The laminate bending 

moduli (flexural moduli) is estimated by using equation 13, the values obtained for quasi-

isotropic and cross-ply are nearly equal to due its specially orthotropic and symmetric layups. 

The mid-span deflection are estimated using equation 14 and also predicted using finite element 

model are listed in Table 3, where the deflection of quasi-isotropic is better than angle-ply, but 

higher than cross-ply and unidirectional laminates.  

 

--------------TABLE 3------------- 

 

CONCLUSIONS 

The work reports results obtained in numerical modelling of tensile and flexural behaviour of 

flax/epoxy composites with symmetrical layups (unidirectional, cross-ply, angle-ply, and 

quasi-isotropic) and these results are validated analytically using the classical laminate plate 

theory (CLPT). The static response of laminated flax/epoxy rectangular plates i.e. mid-span 

deflection, axial displacements, stress-strain fields are computed and compared for various 

symmetric flax/epoxy laminates with CLPT and FE numerical models. Based on the work, 

some conclusions may be drawn as follows: 



 Stiffness for the unidirectional laminates is greater than cross-ply, angle-ply, and quasi-

isotropic flax/epoxy laminates for both in-plane tension and bending conditions.  

 From the results, it has been shown that shear stress (τxy) in angle-ply is higher than the 

stress (σy), and this leads to laminate twisting under bending loads.  

 The laminate (angle-ply) presents much higher mid-span deflection than symmetric 

unidirectional, cross-ply, quasi-isotropic flax/epoxy laminates.  

In summary, for the numerical models developed as a tool has been found effective and 

powerful in predicting mechanical performance and stress/strain fields of flax fibre reinforced 

epoxy composite laminates loaded in tension and bending. Future experiments are planned to 

study mechanical properties for the four symmetrical layups of flax/epoxy composites and 

evaluate theoretical/numerical results presented in the article.  
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               Figure 1: Bidirectional flax fabrics, fibre bundle kinking pattern, and symmetric 

laminates: layup’s with varying lamina fibre orientations 

 

 

 

 

 

 

Figure 2: Tensile test specimen geometry of layered flax/epoxy composite  
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Figure 3: a) Load configuration of 3 point bending b) Thickness and coordinates of the laminae 

 

 

 

 

 

 

Figure 4. Flax fibre/epoxy laminate deformation under pure bending 

 

Unidirectional Cross-Ply 

Angle-Ply Quasi-Isotropic 



 

Figure 5: Load-deflection curve under 3-point bending of a layered flax/epoxy composite beam 

 

 

 

 

 Figure 6. Through-the-thickness distribution of in-plane tensile stress/strains for flax/epoxy laminate 



  

  

 

Figure 7. Through-the-thickness distribution of in-plane stress in bending for a flax/epoxy laminate 



 

 

 

 
Figure 8. Through-the-thickness distribution of the in-plane strains in bending for a flax/epoxy 

laminate 
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Figure 9. Mesh plot for laminate tensile and bending simulations  

 

 

 

Figure 10. Simulation for mid-span deflection of for a flax/epoxy laminate under flexural 

load  

a) 

b) 



 

 

 

 

Figure 11. Elastic Constants of a flax-epoxy laminae: variation with fibre orientation 
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Figure 12: Ply Stresses for Unidirectional [0]4s Flax/Epoxy Composite 
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Table 1: Material properties of fibre, matrix and laminae [12]  

 Fibre – Flax fibre 

Symbol 𝑉𝑓      (%) 𝐸1𝑓    (GPa) 𝐸2𝑓    (GPa) 𝐺𝑓    (GPa) 𝜗𝑓 ρf (g/cm3) 

Value 0.275 39.0 5.44 3.46 0.11 1.516 

 Matrix – Epoxy resin 

Symbol 𝑉𝑚      (%) 𝐸𝑚     (GPa) - 𝐺𝑚  (GPa) 𝜗𝑚 ρm (g/cm3) 

Value 0.725 3.70 - 1.37 0.35 1.152 

 Laminae – Flax/Epoxy single ply 

Symbol - 𝐸1     (GPa) 𝐸2     (GPa) 𝐺12  (GPa) 𝜗12 ρc (g/cm3) 

Value - 13.4 4.45 1.74 0.284 1.2794 
 

 

 

 

Table 2: Transformed Stiffness Matrix of Laminates with 0, 90, 45, -45 orientations  

Laminae number and fibre 

angle θ                              

(ply thickness is 0.5mm) 

𝑄̅11 𝑄̅22 𝑄̅12 𝑄̅66 𝑄̅16 𝑄̅26 

MPa 

Unidirectional Laminates [00]4S 

1st, 2nd, 3rd, 4th Ply 
5th, 6th, 7th, 8th Ply 

00 13769 4572 1298 1740 0 0 

Cross-Ply Laminate [0/90]2S 

1st, 3rd, 6th, 8th Ply 00 13769 4572 1298 1740 0 0 

2nd, 4rd, 5th, 7th Ply 900 4572 13769 1298 1740 0 0 

Angle-Ply Laminate [+45/-45]2S 

1st, 3rd, 6th, 8th Ply +450 6975 6975 3495 3936 2299 2299 

2nd, 4rd, 5th, 7th Ply -450 6975 6975 3495 3936 -2299 -2299 

Quasi-Isotropic Laminate [0/90/+45/-45]S 

1st and 8th Ply  00 13769 4572 1298 1740 0 0 

2nd and 7th Ply 900 4572 13769 1298 1740 0 0 

3rd and 6th Ply +450 6975 6975 3495 3936 2299 2299 

4th and 5th Ply -450 6975 6975 3495 3936 -2299 -2299 

 

 

 

 

 



 

Table 3: Bending Properties of Symmetric Layup Flax/Epoxy Laminates 

Composite Plate  Laminate 

Modulus 

(In-plane 

tensile) 

Ex 

Laminate 

Bending 

Modulus 

 

Ex 

Bending       

Stress 

𝜎𝑓𝑏  

Mid-Span Deflection  

at F = 200N 

W0max 

Theoretical 

(GPa) 

Theoretical 

(GPa) 

Theoretical 

(MPa) 

Theoretical 

(mm) 

Numerical 

(mm) 

Unidirectional [0]4S 13.4 13.4 79.8 1.02 1.051 

Cross Ply       [0/90]2S    8.98 10.7 79.8 1.28 1.307 

Angle Ply  [+45/-45]2S 5.22 5.18 80.2 2.64 2.647 

Quasi-Isotropic 

[0/90/45/-45]S 

7.36 9.85 79.9 1.39 1.413 
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