Design of Room Temperature Electrically Pumped Visible Semiconductor Nanolasers
Fan, Yuanlong; Shore, K. Alan

IEEE Journal of Quantum Electronics

DOI: 10.1109/JQE.2018.2869332
Published: 01/10/2018
Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

16. Jan. 2024
Design of Room Temperature Electrically Pumped Visible Semiconductor Nanolasers

Yuanlong Fan and K. Alan Shore, Senior Member, IEEE

Abstract—This paper presents a comprehensive theoretical study of the optical and thermal properties of an electrically pumped semiconductor nanolaser (SNL) having an GaN/(InGaN/GaN MQWs)/GaN core shell structure. Numerical results show that the lasing whispering-gallery mode (WGM) has a threshold gain of 413 cm$^{-1}$. Furthermore, it is shown that when it is operated well above threshold, the device temperature increases by only 22 K above an ambient temperature of 300 K. These promising results are attributed to the strong mode confinement in the active region and the good thermal properties of the material system of the proposed structure. The results presented in this paper offer guidelines for fabrication of electrically pumped room temperature continuous wave SNL operating in the visible spectral region.

Index Terms—semiconductor nanolasers, photonic integrated circuits, gallium nitride.

I. INTRODUCTION

During the last two decades, extensive research effort has been devoted to the design of semiconductor nanolasers (SNLs) whose size are generally of order the lasing wavelength or even subwavelength scale [1-3]. Apart from their ultra-small size, SNLs are also characterized by their low power consumption [4-6], potential for high modulation bandwidth [7-9] and good compatibility with existing technologies such as photonic integrated circuits and lab-on-a-chip [10-12].

Amongst various existing SNLs [13-30], the so-called metal coated SNL (MCSNL) [15, 17, 23, 25, 26, 31, 32] has gained much attention in recent years due to its ingenious structure. The MCSNL mainly consists of an axially double heterostructured p-i-n pillar, a thin insulating layer surrounding the pillar and metal encapsulating the insulating layer and the pillar. Such configuration has the following advantages:

- The ease of fabrication: the pillar can be formed using standard dry-etching techniques, followed by thin-film deposition and sputtering to introduce the insulating layer and metal respectively [3];
- The choice of two alternative modes: depending on the thickness of the insulating layer, either photonic or plasmonic modes can be supported;
- The use of a subwavelength structure.

These promising results are attributed to the strong mode confinement in the active region and the good thermal properties of the material system of the proposed structure. The results presented in this paper offer guidelines for fabrication of electrically pumped room temperature continuous wave SNL operating in the visible spectral region.

The ease of electrical injection: the carriers can be injected through the top of the pillar via the coated metal and the base of the pillar via a large-area lateral contact. At the same time, the insulating layer prevents shorting of the diode junction;

- An ultra-small footprint (smaller than free-space laser wavelength λ_0) in all three dimensions due to the ability of the metal to tightly confine the mode to challenge the diffraction limit ($\lambda_0/2\pi$, where n is the refractive index).

- The elimination of optical interference between adjacent devices in photonic integrated circuits due to the coated metal [32].

The first MCSNL under electrical injection was experimentally demonstrated by Hill et al. in 2007 [15]. Continuous wave (CW) lasing at the wavelength of around 1.4 μm was observed with a cylindrical pillar of diameter 260 μm which almost reaches the diffraction limit. However, this device was operated at cryogenic temperature (77 K) due to the high optical loss in the metal at higher temperature. Since then, various attempts have been made to further decrease the size of the MCSNL and increase the operating temperature by compensating the loss introduced by the metal. For example, in 2011, an operating temperature of 140 K was achieved [23] using pillar undercut to improve the vertical mode confinement and subsequently lower the threshold gain. Theoretical work has also been undertaken to explore the possibility of room temperature (RT) operation for such undercut structures [32, 33]. Another method to reduce the metal loss is the use of a thick insulating layer between the active region and the metal to reduce the modal overlap with the metal [19, 34]. With these efforts, in 2012, RT CW electrical injection operation of MCSNL lasing at 1.55 μm was achieved [25] based on a rectangular pillar with a volume of only 0.42λ_0^3.

After successfully demonstrating electrically pumped RT CW MCSNL operating in the near infrared spectral region, it is natural to consider if such a structure may also be utilized in the visible spectral range where demand for novel sources arises from various emerging technologies such as Li-Fi and ultra-high definition (UHD) displays. However, to date, there have been no reports of RT CW electrically pumped MCSNLs or indeed any other SNLs, e.g., surface plasmonic SNLs which currently can be operated under RT optical injection with extremely small cavity sizes [35-37], in the visible spectral range. One likely reason is the poor mode confinement caused by the small refractive index difference between relevant materials of the cladding and active region. For example, in a

This work is supported by United Kingdom Engineering and Physical Sciences Research Council (U.K. EPSRC Grant No. EP/P006027/1). (Corresponding author: Yuanlong Fan.)

Yuanlong Fan and K. Alan Shore are with School of Electronic Engineering, Bangor University, Wales, LL57 1UT, United Kingdom (e-mail: y.fan@bangor.ac.uk; k.a.shore@bangor.ac.uk).
near infrared MCSNL with $\lambda_0=1.55\, \mu m$, the pillar of InP/InGaAs/InP has refractive indices of 3.1/3.4/3.1 [31] where the effective refractive index of InP can be further decreased by introducing undercut as mentioned above. However, in the visible MCSNL with $\lambda_0=465\, nm$, if the pillar is GaN/(InGaN/GaN MQWs)GaN which is commonly used in existing visible SNLS [27, 29, 30, 38], the refractive indices are 2.42/2.45/2.42 [39]. This gives a refractive index difference of 0.03 which is ten times smaller than that of the near infrared MCSNL. Moreover, it is challenging to undercut GaN due to its intrinsic crystal structure.

Recently, a radially double heterostructured p-i-n pillar structure SNL [29], namely the core-shell SNL, was experimentally demonstrated to tackle the above-mentioned issue in the visible spectral range. The core of this structure is the n doped GaN which is surrounded by InGaN/GaN MQWs and then the outer shell which is p doped GaN. In such a structure, the volume of the active region is one or more orders of magnitude greater than that of the axially double heterostructured p-i-n pillar. Moreover, the quantum-confined stark effect (QCSE) in the MQWs is eliminated which leads to a higher quantum efficiency and spectral stability [29, 40]. Lower transparency carrier density and Auger coefficient were also reported [41, 42] which should assist to decrease the lasing threshold. Lasing at a wavelength of 391 nm was observed at RT but under pulsed optical pumping. To achieve electrical pumping without significant increase of temperature, one possible way is to coat the core-shell SNL with metal which is similar to that which has been done for near infrared MCSNLs.

The aim of this paper is to numerically investigate the possibility of lasing behaviour in the visible of electrically pumped RT CW MCSNL with a core-shell structure. Firstly, the numerical model for the core-shell MCSNL is introduced where its three main physical properties are considered, namely optical, electrical and thermal properties. Such a structure will be shown to have low losses. By combining with the electrical and thermal simulations, the possibility of lasing behaviour of the core-shell MCSNL is discussed. Finally, conclusions are drawn based on the results obtained.

II. NUMERICAL MODEL

A schematic illustration of the core-shell MCSNL and its cross-sectional-view are, respectively, shown in Fig. 1 (a) and (b). The core-shell MCSNL is situated on a GaN-on-Sapphire substrate where GaN is N doped and used as a contact layer connected to the electrical contact (N Contact). The core of the MCSNL is N GaN which is sequentially and uniformly coated by the shells of InGaN/GaN MQWs, P GaN, SiO$_2$ and silver respectively with a thickness of t_{MQWs}, t_p, t_s and t_m. The SiO$_2$ prevents electrically shorting the diode. Silver is used to confine the mode and as a contact layer connecting to the P Contact. The fabrication process of the GaN/(InGaN/GaN MQWs)GaN based core-shell structure can be found in [29, 30] and the method in [23] can be used to introduce the shells of SiO$_2$ and silver. The size of each layer is shown in Table I. It should be pointed out that fabricated devices may deviate from the ideal in, for example, having some side-wall tilt. In

![Fig. 1. The schematic illustration of the core-shell MCSNL. (a) 3D view, (b) cross-sectional-view.](image)

A commercial simulator (COMSOL Multiphysics) based on the finite element method (FEM) [45] is used to perform the numerical simulations of the core-shell MCSNL. In particular, three main physical properties of the core-shell MCSNL are investigated, namely optical, electrical and thermal properties which are respectively simulated using Optics, Semiconductor and Heat Transfer modules provided by the COMSOL. Details of the model in each module is described in the following sub-sections.

A. Model for Optical Simulations

In the model, the core-shell MCSNL is surrounded by the air which is then enclosed by perfect matched layers (PMLs) to ensure no back-reflections of the light. The maximum element size for the finite element analysis and refractive index of each

<table>
<thead>
<tr>
<th>Layer Name</th>
<th>Material</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>N Doped Core</td>
<td>N GaN</td>
<td>$r_p=200, nm, t_m=425-625, nm$</td>
</tr>
<tr>
<td>InGaN in MQWs</td>
<td>InGaN</td>
<td>2, nm</td>
</tr>
<tr>
<td>GaN in MQWs</td>
<td>GaN</td>
<td>10, nm</td>
</tr>
<tr>
<td>MQWs</td>
<td>InGaN/GaN</td>
<td>$t_{MQWs}=8$ pairs</td>
</tr>
<tr>
<td>P Doped Shell</td>
<td>P GaN</td>
<td>7, nm</td>
</tr>
<tr>
<td>Insulating Shell</td>
<td>SiO$_2$</td>
<td>$t_s=20-60$, nm</td>
</tr>
<tr>
<td>Metal Shell</td>
<td>Ag</td>
<td>$t_m=40$, nm</td>
</tr>
</tbody>
</table>

Table I: The size of each layer of the MCCSNL.
Full 3D optical simulations are performed using the electromagnetic waves (frequency domain) interface in the Optics module which finds the eigenmodes for a given cavity by solving the wave equations. The PARDISO solver in the COMSOL is used to search for eigenmodes around a preset initial guess of the free-space resonance wavelength \(\lambda_0 \) which corresponds to the peak of the gain spectrum calculated in [44]. The number of returned eigenmodes is set to be 100 which gives the modes with free-space wavelengths within a 25-35 nm range of \(\lambda_0 \), depending on the size of the laser. These eigenmodes includes both physical and spurious modes which can be distinguished by their spatial variations. The physical modes have spatial variations that are comparable to the cavity size whereas the spurious modes have spatial variations that are comparable to the mesh size [46]. After filtering out the spurious modes, the threshold gain is calculated and compared with the material gain calculated in [44] to examine the possibility of lasing in the proposed core-shell MCSNL. The threshold gain, \(g_{th} \), is calculated by [32, 47]:

\[
g_{th} = \frac{2\pi n_g}{\lambda Q \Gamma}
\]

(1)

where \(n_g \) is the group refractive index of the active region, \(\lambda \) is the resonance wavelength, \(Q \) is the quality factor and \(\Gamma \) is the confinement factor. \(\lambda \) and \(Q \) are calculated from the eigenfrequencies of the eigenmodes. \(\Gamma \) is the confinement factor which is calculated as the ratio of total electric energy density in the active region and in the whole core-shell MCSNL. From (1), it can be seen that the general rules for designing a SNL with a low threshold gain is to (i) to increase the \(Q \) factor which can be achieved by avoiding modal overlap with the metal and (ii) to maximize the mode confinement in the active region.

III. OPTICAL SIMULATION RESULTS

In this section, attention is given to a range of circumstances in which the core-shell MCSNLs are shown to have low losses where the carrier density is \(6 \times 10^{19} \) cm\(^{-3} \) and temperature is 300 K. This carrier density and temperature will be used as a reference for the electrical and thermal simulation results shown in the following sections. Figure 2 shows the influence of N GaN thickness on the threshold gain and \(Q \) factor of the core-shell MCSNL where \(t_N = 200 \) nm, \(t_{MQW} = 966 \) nm, \(t_P = 80 \) nm and \(t_e = 40 \) nm. From Fig. 2, it can be seen that \(g_{th} \) decreases with the increase of \(t_N \) and \(Q \) increases with the increase of \(t_N \). Also, with the increase of \(t_N \), the wavelength is red-shifted which makes the material gain, \(g_{th} \), move towards its peak as shown in [44] where the wavelength is 465.60 nm.
The modes are whispering-gallery modes (WGM\textsubscript{m,n}) with the azimuthal mode number (m) of 0 and radial mode number (n) of 2. An example of the mode profile, in terms of electric field intensity, is shown in Fig. 3 when t\textsubscript{N}=625 nm. The threshold gains shown in Fig. 2 are all lower than the material gain calculated in [44] and therefore lasing can be supported. In particular, when t\textsubscript{N}=625 nm, g\textsubscript{th} is only 413 cm-1 which is much lower than the material gain (g\textsubscript{m}=1830 cm-1) calculated in [44]. The corresponding mode is shown in Fig. 3. It can be seen that this WGM is well confined in the core-shell MCSNL due to the metal coating. Most of the first order radial mode, which occupies the majority of the electric field intensity, is well confined in the active region with Γ=55.2%. This Γ will decrease, e.g., Γ=54.2% when t\textsubscript{N}=475 nm, with decrease of nanolaser height as parts of the mode leak into the substrate and the top P GaN where additional losses can also be introduced due to the metal coated on top of the P GaN. This is why g\textsubscript{th} increases with decrease of t\textsubscript{N} as shown in Fig. 2.

![Fig. 2. The influence of N GaN thickness on the threshold gain and Q factor of the core-shell MCSNL where r\textsubscript{P}=200 nm, t\textsubscript{MQW}=96 nm, t\textsubscript{P}=80 nm and t\textsubscript{N}=40 nm.](image)

The modes are still WGM\textsubscript{6,2} which are similar to the one shown in Fig. 3.

The threshold gain and the Q factor of the core-shell MCSNL where r\textsubscript{P}=200 nm, t\textsubscript{N}=625 nm, t\textsubscript{MQW}=96 nm and t\textsubscript{P}=80 nm. Figure 4 shows the effect of SiO\textsubscript{2} thickness where the threshold gain decreases with increase of t\textsubscript{N} and the Q factor increases with the increase of t\textsubscript{N}. This is because increase of the SiO\textsubscript{2} thickness increases the distance between the mode and metal thus reducing the losses. However, when the SiO\textsubscript{2} thickness is larger than 40 nm, the g\textsubscript{th} starts to decrease dramatically from 1830 cm-1 (t\textsubscript{N}=40 nm) to 190 cm-1 (t\textsubscript{N}=60 nm) where the wavelength red-shifts from 465.57 nm to 473.13 nm according to the gain spectrum in [44]. Such a rapid drop of material gain means that the device will not lase as it cannot overcome the losses, e.g., g\textsubscript{th} when t\textsubscript{N}=60 nm as shown in Fig. 4. Therefore, careful choice of SiO\textsubscript{2} thickness should be made for the core-shell MCSNLs. The modes are still WGM\textsubscript{6,2} which are similar to the one shown in Fig. 3.

![Fig. 4. The influence of SiO\textsubscript{2} thickness on the threshold gain and Q factor of the core-shell MCSNL where r\textsubscript{P}=200 nm, t\textsubscript{N}=625 nm, t\textsubscript{MQW}=96 nm and t\textsubscript{P}=80 nm.](image)

![Fig. 5. The influence of P GaN thickness on the threshold gain and Q factor of the core-shell MCSNL where r\textsubscript{P}=200 nm, t\textsubscript{N}=625 nm, t\textsubscript{MQW}=96 nm and t\textsubscript{P}=40 nm.](image)
Attention is finally given to the effect of the P GaN thickness on the threshold gain and the Q factor of the core-shell MCSNL where $t_P = 200$ nm, $t_N = 650$ nm, $t_{MQW} = 96$ nm and $t_r = 40$ nm. With increase of t_P thickness, the threshold gain firstly increases to a maximum of 1094 cm$^{-1}$ when $t_P = 55$ nm and then decreases to its minimum of 430 cm$^{-1}$ when $t_P = 75$ nm as shown in Fig. 5 where the Q factor shows a opposite trend to the threshold gain. The wavelength varies irregularly and thus also does the gain. The biggest difference of gain-loss is 1170 cm$^{-1}$ when $t_P = 75$ nm.

The corresponding profiles of the modes in Fig. 5 are shown in Fig. 6. From Fig. 6, it can be seen that the mode profile varies with change of P GaN thickness. When $t_P = 35$ and 45 nm, the modes are WGM$_{8,1}$ and the $t_P = 35$ nm has more mode confinement in the MQWs than $t_P = 45$ nm, and thus a lower threshold gain. However, when $t_P = 55$ and 65 nm, the modes changes to WGM$_{3,3}$ and most of their electric field intensities are located in the N GaN rather than in the MQWs which leads to a significant increase of the threshold gain. When $t_P = 75$ nm, the mode changes to WGM$_{6,2}$ where most of the electric field intensity of the mode returns to the MQWs. The above effect of P GaN thickness on the modes’ behavior is caused by the mode coupling between the co-existing WGM in the cavity with different angular and radial mode numbers. Detailed analysis of mode coupling in the core shell nano-resonator can be found in [68].

IV. ELECTRICAL AND THERMAL SIMULATION RESULTS

The threshold carrier density can be obtained from the steady state form of the laser rate equations. In this situation, the threshold carrier density $N_{th} = N_0 + 1/(G \tau_P)$ where $N_0 = 9.3 \times 10^{19}$ cm$^{-3}$ [69] is the carrier density at transparency, G_N is the gain coefficient and τ_P is the photon life time. $G_N = \alpha g$ where αg is the group velocity and $g = 5.8 \times 10^{-17}$ cm2 [69] is the differential gain. $\tau_T = Q/\lambda \pi c$ where Q and λ are extracted from the optical simulation results, c is the speed of light. For the core-shell MCSNL shown in Fig. 3 which has the optimal structure with the lowest threshold gain, the calculated threshold carrier density is $N_{th} = 9.7 \times 10^{19}$ cm$^{-3}$. The electrical simulation then shows that the corresponding voltage across and injection current through the core-shell MCSNL are respectively 3.45 V and 1.5 mA (I_{th}).

Figure 7(a) shows the temperature distribution and heat flux (shown as the red arrows) at threshold. From Fig. 7(a), it can be seen that the majority of the heat generated, largely attributed to the increase of Joule heating, is located around the bottom of P GaN which dissipates through the top coated metal and the substrate. The maximum temperature is 303 K which is only 3 K above the ambient temperature. Generally, increase of temperature will decrease the material gain (which is calculated when temperature is 300 K and the carrier density is 6×10^{19} cm$^{-3}$). However, the carrier density in this case is 9.7×10^{19} cm$^{-3}$ where the maximum material gain is expected to be above 2500 cm$^{-1}$ when the temperature is 300 K (see Fig. 12 in [44]). Therefore, it is expected the reduction of g_0 due to a 3 K increase of temperature can be sufficiently compensated by increasing the carrier density. In this situation, the material gain is more than six times larger than the loss without significant increase of temperature, thus further confirming the possibility of lasing in the core-shell MCSNL.

With a further increase of injection current to $5.1 I_{th}$ (the voltage is 4.00 V), the maximum temperature reaches 322 K and the heat also dissipates through the top coated metal and the
substrate as shown in Fig. 7(b). Such an increased temperature is still in an acceptable range where the gain is not expected to decrease significantly. The good thermal management of the core-shell MCSNL may be attributed to the large thermal conductivities of GaN and large heat capacity of the sapphire substrate. For example, for the MCSNL.2 losing in the near infrared region which suffers from self-heating problem [32], the thermal conductivity of the active region (InGaAs) is only 16 Wm⁻¹ K⁻¹ [32] which is much less than GaN (130 Wm⁻¹ K⁻¹ as shown in Table IV). Also, the heat capacity of the InP substrate (310 Jkg⁻¹ K⁻¹ [70]) is less than that of the sapphire substrate (880 Jkg⁻¹ K⁻¹ as shown in Table IV).

V. CONCLUSION

In paper, we have designed a metal coated semiconductor nanolaser (SNL) with an GaN/InGaAs/GaN MQWs/GaN core-shell structure. Numerical results demonstrate that the threshold gain of the SNL is more than four times lower than the material gain calculated in [44] due to the large mode confinement in the active region. Such a low threshold gain indicates the possibility of achieving room temperature (RT) continuous wave (CW) operation of the SNL under electrical injection. This is confirmed by our further simulations which show there is no significant over-heating problem when the SNL is operated well above threshold. The designs of SNL presented in this paper are considered to be helpful for the realization of an electrically pumped RT CW SNL operating in the visible spectral region.

REFERENCES

Yuanlong Fan received the B.Eng degree from Dalian University of Technology, China, in 2009 and his M.E. and Ph.D. degrees from the University of wollongong, Australia, in 2011 and 2016. He was a recipient of the Australian Endeavour Fellowship to undertake postdoctoral research at the University of wollongong, Australia in 2016. He is currently a researcher at the School of Electronic Engineering, Bangor University, United Kingdom. His research interests include design of semiconductor nanolasers, nonlinear dynamics of semiconductor (nano)lasers, fiber nonlinear optics, and optical signal processing.

K. Alan Shore (SM’95) received the degree in mathematics from the University of Oxford, Oxford, U.K., and the Ph.D. degree from University College, Cardiff, Wales, U.K.

He was a Lecturer with the University of Liverpool from 1979 to 1983 and with the University of Bath, where he became a Senior Lecturer in 1986, a Reader in 1990, and a Professor in 1995. He was a Visiting Researcher with the Center for High Technology Materials, University of New Mexico, Albuquerque, USA, in 1987. In 1989, he was a Visiting Researcher with the Electronics Laboratories, the University of Tokyo, Japan. From 1990 to 1991, he was with the TeleDanmark Research Laboratory and the MIDIT Center of the Technical University of Denmark, Lyngby. He was a Guest Researcher with the Electrotechnical Laboratory, Tsukuba, Japan, in 1991. In 1992, he was a Visiting Professor with the Department of Physics, University des IllesBelaires, Palma-Majorca, Spain. He was a Visiting Lecturer with the Instituto de Física de Cantabria, Santander, Spain, from 1996 to 1998, and a Visiting Researcher with the Department of Physics, Macquarie University, Sydney, Australia, in 1996, 1998, 2000, 2002, 2005, and 2008. In 2001, he was a Visiting Researcher with the ATR Adaptive Communications Laboratories, Kyoto, Japan. From 2001 to 2008, he was the Director of Industrial and Commercial Optoelectronics, a Welsh Development Agency Center of Excellence. Since 1995, he has been the Head of the School of Informatics, College of Physical and Applied Sciences, Bangor University. He has authored or co-authored more than 1000 contributions to archival journals, books, and technical conferences. With Prof. D. Kane, he co-edited the research monograph Unlocking Dynamical Diversity. His research work has been principally in the area of semiconductor optoelectronic device design and experimental characterization with particular emphasis on nonlinearities in laser diodes and semiconductor optical waveguides. His current research interests include nonlinear optics and its applications, and the design of nano-spin semiconductor lasers. In 1995, he was appointed as the Chair of Electronic Engineering with Bangor University. He was the Chair of the Welsh Optoelectronics Forum from 2006 to 2008 and has chaired the Photonics Academy for Wales, since its establishment in 2005. From 2008 to 2011, he was the Chair of the Quantum Electronics Commission of the International Union of Pure and Applied Physics.

Dr. Shore has been a Program Member for several OSA conferences. In 2010, he held a Japan Society for the Promotion of Science Invitation Fellowship with the Ultrafast Photonics Group, Graduate School of Materials Science, Nara Institute of Science and Technology, Nara, Japan. He is a Fellow of the Optical Society of America, the Institute of Physics, and the Learned Society of Wales for which he has served as a Council Member from 2012 to 2015 and from 2016 to 2019 and as its General Secretary from 2017-2020. He was a Co-Organizer of a Rank Prize Symposium on Nonlinear Dynamics in Lasers held at the Lake District, U.K., in 2002. He cofounded and from 1987 to 2012 acted as the Organizer and Program Committee Chair for the International Conference on Semiconductor and Integrated Optoelectronics, which is held annually in Cardiff, Wales, U.K. He chaired the Education and Training in Optics and Photonics conference held at the Technium OptiC, Wales, 2009. He coordinated International Year of Light activities in Wales during 2015. He chaired the Science and Technology Committee of the National Eisteddfod of Wales in 2017.