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Abstract
1.	 Passive	acoustic	monitoring	(PAM)	is	used	for	many	vocal	species.	However,	few	
studies	have	quantified	 the	 fraction	of	 vocalisations	 captured,	 and	how	animal	
distance	and	sound	source	level	affect	detection	probability.	Quantifying	the	de-
tection	probability	or	effective	detection	area	(EDA)	of	a	recorder	is	a	prerequisite	
for	designing	and	implementing	monitoring	studies,	and	essential	for	estimating	
absolute	density	and	abundance	from	PAM	data.

2.	 We	 tested	 the	 detector	 performance	 of	 cetacean	 click	 loggers	 (C-	PODs)	 using	
artificial	and	recorded	harbour	porpoise	clicks	played	at	a	range	of	distances	and	
source	 levels.	 Detection	 rate	 of	 individual	 clicks	 and	 click	 sequences	 (or	 click	
trains)	was	calculated.	A	Generalised	Additive	Model	(GAM)	was	used	to	create	a	
detection	function	and	estimate	the	effective	detection	radius	(EDR)	and	EDA	for	
both	types	of	signals.

3.	 Source	level	and	distance	from	logger	influenced	the	detection	probability.	Whilst	
differences	between	loggers	were	evident,	detectability	was	influenced	more	by	
the	deployment	site	than	within-	logger	variability.	Maximum	distance	for	detect-
ing	real	recorded	porpoise	clicks	was	566	m.	Mean	EDR	for	artificial	signals	with	
source	level	176	dB	re	1	μPa	@	1m	was	187	m.,	and	for	a	recorded	vocalisation	
with	source	level	up	to	182	dB	re	1	μPa	was	188	m.	For	detections	classified	as	
harbour	porpoise	click	sequences	the	mean	EDR	was	72	m.

4.	 The	analytical	methods	presented	are	a	valid	technique	for	estimating	the	EDA	of	
any	 logger	used	 in	abundance	estimates.	We	present	a	practical	way	 to	obtain	
data	with	a	cetacean	click	logger,	with	the	caveat	that	artificial	playbacks	cannot	
mimic	real	animal	behaviour	and	are	at	best	able	to	account	for	some	of	the	vari-
ability	 in	detections	between	sites,	removing	 logger	and	propagation	effects	so	
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1  | INTRODUC TION

Conservation	and	management	of	wildlife	requires	reliable	estimates	
of	 animal	 abundance	or	density,	 traditionally	 achieved	 through	vi-
sual	counts	or	by	(re-	)capturing	animals.	Many	animals,	such	as	forest	
dwellers	and	diving	marine	species	can	be	challenging	to	study	due	
to	inaccessibility	of	their	habitats	and	limited	availability	for	ground-	
based	or	 sea	 surface-	based	observers.	Visual	monitoring	methods	
are	furthermore	prone	to	inherent	biases	caused	by	temporal	vari-
ability,	observer	ability	and,	particularly	at	sea,	are	 limited	to	calm	
weather	 and	 good	 visibility.	 Visual	 surveys	 conducted	 in	 summer	
cannot	 predict	 abundance	 in	 other	 seasons,	 and	 if	 not	 conducted	
at	frequent	intervals	have	a	low	ability	to	detect	long-	term	trends	in	
population	status.	Cryptic,	but	vocal	species,	 including	many	mon-
keys,	bats,	birds,	frogs,	and	cetaceans	are	increasingly	being	moni-
tored	using	passive	acoustic	methods.	Various	techniques	have	been	
developed	 for	 mobile	 (i.e.,	 towed)	 acoustic	 methods	 for	 studying	
cetaceans	(Barlow	&	Taylor,	2005;	Akamatsu	et	al.,	2008)	but	static	
devices	pose	a	new	set	of	challenges.	Various	automated	acoustic	
devices	 to	 collect	 and	 analyse	 acoustic	 data	 can	 now	 detect	 and	
identify	species	and	can	be	an	efficient	alternative	to	or	complement	
existing	visual	 sampling	 as	 they	 can	be	used	 in	 inaccessible	 areas,	
reduce	disturbance	caused	by	human	presence,	and	maximise	tem-
poral	coverage	through	a	long-	term	sampling	regime	(Digby,	Towsey,	
Bell,	&	Teal,	2013;	Mellinger,	Stafford,	Moore,	Dziak,	&	Matsumoto,	
2007).	 In	this	paper,	we	present	a	technique	for	characterising	the	
performance	of	an	acoustic	detector	using	playback	experiments;	al-
though	the	technique	is	potentially	applicable	to	terrestrial	studies,	
our	focus	here	is	on	cetaceans.

Effective	 abundance	 monitoring	 is	 crucial	 for	 species	 under	
threat	from	anthropogenic	activities.	One	such	species	is	the	harbour	
porpoise	(Phocoena phocoena,	Linnaeus,	1758),	which,	although	com-
monly	sighted	off	the	North	East	Atlantic	coastline,	 is	 increasingly	
threatened	 by	 human	 activities;	 the	 Baltic	 subpopulation	 is	 listed	
as	 “critically	 endangered”	 in	 the	 IUCN	 Red	 List	 (Hammond	 et	al.,	
2008).	The	porpoise	 is	difficult	 to	monitor	using	visual	 techniques	
because	 of	 its	 small	 size	 and	 cryptic	 behaviour,	 but	 it	 lends	 itself	
well	to	acoustic	studies	because	it	emits	stereotypical,	narrow-	band	

high-	frequency	(NBHF)	echolocation	clicks	and	produces	near	con-
tinuous	vocalisations	apart	from	short	rest	periods	(Linnenschmidt,	
Teilmann,	 Akamatsu,	 Dietz,	 &	 Miller,	 2013;	 Wright	 et	al.,	 2017).	
Automated	 underwater	 click	 loggers	 such	 as	 C-	PODs	 (Chelonia	
Ltd.,	Cornwall,	UK)	use	waveform	characterisation	to	identify	clicks	
based	on	their	intensity,	bandwidth,	frequency,	and	duration.	After	
retrieval	of	the	devices,	custom-	written	software	then	uses	the	re-
corded	information	to	classify	detected	sounds	into	series,	termed	
trains.	 These	 are	 further	 categorised	 based	 on	 their	 likely	 origin	
(boat	sonar,	dolphin,	or	porpoise)	according	to	known	characteristics	
of	cetacean	vocalisations.	Click	logger	data	are	now	widely	used	to	
evaluate	 presence	 and	 foraging	 behaviour	 of	 vocalising	 cetaceans	
in	both	coastal	and	offshore	areas	(Benke	et	al.,	2014;	Verfuß	et	al.,	
2007;	Schaffeld	et	al.,	2016;	Simon	et	al.,	2010);	and	assess	distur-
bance	from	wind	farms,	shipping,	fisheries,	and	coastal	development	
(Carstensen,	Henriksen,	&	Teilmann,	2006;	Todd,	Pearse,	Tregenza,	
Lepper,	&	Todd,	2009).	They	can	also	potentially	be	used	to	estimate	
animal	density	(Kyhn	et	al.,	2012).

1.1 | Estimating density

Several	 approaches	have	been	developed	 to	estimate	 animal	den-
sity	 from	 stationary	 passive	 acoustic	 data	 (Marques	 et	al.,	 2012;	
Stevenson	et	al.,	2015);	we	introduce	two	here	that	are	relevant	to	
static	loggers.	In	the	first,	the	unit	of	analysis	is	an	individual	vocali-
sation,	such	as	a	cetacean	click.	Then,

where n	 is	the	number	of	detected	vocalisations,	c	 is	the	propor-
tion	of	those	that	are	false	positives	(i.e.,	not	from	the	target	spe-
cies),	v	 is	 the	effective	detection	area	 (EDA,	see	below),	T	 is	 the	
total	monitoring	time	summed	over	all	detectors	in	the	survey,	and	
r	is	the	average	rate	of	sound	production.	The	false-	positive	rate,	
c,	 is	 estimated	by	 inspecting	 a	 sample	of	 the	data	under	 the	 as-
sumption	 that	 a	human	analyst	 can	accurately	detect	 false	posi-
tives.	 Sound	 production	 rate	 is	 best	 obtained	 from	 an	 auxiliary	
study	where	a	sample	of	animals	are	fitted	with	acoustic	recording	

(1)̂D=
n
(

1− ĉ
)

v̂Tr̂

that	what	remains	is	density	and	behavioural	differences.	If	calibrated	against	real-	
world	EDAs	(e.g.,	from	tagged	animals)	it	is	possible	to	estimate	site-	specific	detec-
tion	area	and	absolute	density.	We	highlight	the	importance	of	accounting	for	both	
biological	and	environmental	factors	affecting	vocalisations	so	that	accurate	esti-
mates	 of	 detection	 area	 can	 be	 determined,	 and	 effective	 monitoring	 regimes	
implemented.

K E Y W O R D S

abundance,	C-POD,	density	estimation,	detection	function,	effective	detection	radius,	static	
passive	acoustic	monitoring
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tags	and	their	vocalisation	rate	is	measured;	in	practice,	it	is	often	
obtained	from	studies	undertaken	in	other	times	and	places	rais-
ing	the	possibility	of	bias.	Here	we	focus	on	estimating	EDA	using	
recordings	of	cetacean	echolocation,	but	the	following	equations	
can	 be	 applied	 to	 any	 animal	 that	 vocalises	 frequently.	 EDA	 is	
the	area	around	a	 logger	within	which	as	many	vocalisations	are	
missed	as	are	detected	outside	it;	hence	the	EDA	can	be	thought	
of	as	a	measure	of	the	area	monitored	by	a	logger.	Acoustic	detec-
tion	 is	 range-	dependent,	 so	one	way	 to	estimate	EDA	 is	by	 first	
estimating	a	detection	function,	g(y)	(Buckland	et	al.,	2001),	which	
describes	 the	probability	of	detection	as	 a	 function	of	horizonal	
range	 y	 of	 the	 click	 from	 the	 logger.	 Assuming	 vocalisations	 are	
distributed	 randomly	 around	 the	 logger	 (or,	 more	 appropriately,	
that	multiple	loggers	are	used	in	the	survey	and	that	they	are	dis-
tributed	randomly	within	the	study	area),

where	in	theory	w	=	∞	but	in	practice	some	finite	truncation	dis-
tance	is	used	where	g(y)	is	known	to	be	0.	EDA	is	sometimes	ex-
pressed	 in	 terms	of	 the	effective	detection	 radius	 (EDR),	ρ,	 that	
is,	 the	 distance	 from	 the	 logger	 within	 which	 as	 many	 animals	
are	missed	 as	 are	 detected	 outside	 it,	where	�=

√

ν∕�.	 Another	
related	quantity	 is	the	detection	probability,	that	 is,	the	average	
probability	of	detecting	a	sound	within	distance	w	of	the	logger,	
Pa=υ∕�w2.

In	 the	second	approach	 to	density	estimation	 (e.g.,	Kyhn	et	al.,	
2012),	the	monitoring	time	is	divided	into	a	sequence	of	short	“snap-
shots”	where	 animal	movement	 is	 negligible.	 Echolocating	 animals	
click	 in	a	regular	sequence	(a	“click	train”),	and	hence	 it	 is	typically	
possible	 to	 count	 the	 number	 of	 animals	 detected	within	 a	 snap-
shot	 interval	 (i.e.,	 the	number	of	overlapping	click	 trains).	The	unit	
of	analysis	in	this	approach	is	the	total	number	of	animal	detections,	
summed	over	all	snapshots.	Density	is	estimated	as

where ns	 is	 the	 number	 of	 animals	 detected,	 cs	 is	 the	 probability	
of	a	 false-	positive	animal	detection,	vs,	 is	 the	EDA	for	a	vocalising	
animal	 over	 the	 snapshot	 interval,	Ts	 is	 the	 total	 number	 of	 snap-
shots	(summed	over	all	sensors),	and	rs	is	the	probability	of	an	animal	
vocalising	at	least	once	during	a	snapshot	interval.	A	variant	of	this	
method	can	deal	with	the	situation	where	animals	are	in	groups,	and	
multiple	animals	can	be	detected	within	a	single	snapshot	(see	Kyhn	
et	al.,	2012).

In	 both	 the	 above	 formulations,	 a	 critical	 step	 is	 estimation	
of	the	detection	function,	g(y),	and	hence	the	EDA.	The	most	re-
liable	way	to	do	this	is	to	collect	auxiliary	information	from	wild-	
swimming	 animals	within	 the	 study	 area	 during	 the	 time	of	 the	
survey.	 In	 some	 cases,	 it	 may	 be	 possible	 to	 track	 a	 sample	 of	
animals	in	the	vicinity	of	the	loggers,	for	example	by	fitting	them	
with	acoustic-		and	location-	sensing	tags	(e.g.,	Marques,	Thomas,	
Ward,	 DiMarzio,	 &	 Tyack,	 2009)	 or	 by	 observing	 them	 from	 a	

vantage	point	 (e.g.,	Kyhn	et	al.,	2012).	However,	 tagging	studies	
are	 logistically	 infeasible	 in	many	situations,	and	vantage	points	
occur	 in	 limited	 locations	 and	 are	 only	 useful	 for	 species	 with	
short	dive	intervals.

Here,	we	present	an	alternative	approach,	based	on	playback	
of	artificial	cetacean	clicks	or	real	recordings.	This	has	the	advan-
tage	of	being	feasible	for	use	 in	many	cases	at	all	sampling	 loca-
tions,	and	potentially	at	multiple	times	during	the	survey	period.	
All	 acoustic	 studies	 should	 account	 for	 imperfect	 detectability,	
inherent	in	any	detector	and	various	factors	affect	the	detection	
probability	of	cetaceans	with	acoustic	data	loggers	(Katsanevakis	
et	 al.,	 2012).	 In	 a	 marine	 environment,	 playbacks	 can	 account	
for	 some	 of	 these	 factors,	 such	 as	 distance,	water	 temperature,	
background	noise,	 salinity,	 and	substrate	which	can	cause	varia-
tion	 in	 sound	 propagation,	 or	 lead	 to	 transmission	 loss,	 absorp-
tion	into	sediment	and	potential	shadowing	from	physical	objects	
(Au,	 1993;	 Au	&	Hastings,	 2008;	DeRuiter	 et	al.,	 2010;	 Zimmer,	
2011).	However,	a	playback	experiment	cannot	readily	account	for	
factors	related	to	animal	behaviour	and	activity	state	such	as	vo-
calisation	rate,	 intensity	and	frequency	of	emitted	sounds,	direc-
tion	of	movement,	and	orientation	in	the	water	column	(Nuuttila	
et	al.,	2013),	which	must	be	borne	 in	mind	when	 interpreting	re-
sults	 from	 such	 experiments.	 The	 first	 objective	 was	 to	 assess	
the	performance	of	the	hardware	detection	via	the	data	 logger’s	
hydrophone	in	detecting	playbacks	of	porpoise	click-	like	artificial	
signals.	The	second	objective	was	to	examine	the	performance	of	
the	click	train	classification	and	species	identification	software	by	
playing	a	 recorded	porpoise	vocalisation	 sequence	 to	 the	 logger	
and	calculating	the	detection	rate	for	the	clicks	detected	but	also	
for	click	sequences	identified	by	the	algorithm	(i.e.,	the	snapshot	
method).	The	equations	presented	above	can	be	adapted	to	other	
vocal	species	and	acoustic	instruments,	both	click	loggers	and	full	
bandwidth	 recorders	 while	 the	 practical	 experiment	 presents	 a	
crucial	step	towards	estimating	cetacean	abundance	based	on	sta-
tionary	acoustic	monitoring	of	echolocation	clicks.

2  | MATERIAL S AND METHODS

2.1 | C- POD calibration

The	 frequency	 response	 of	 the	 C-	POD	 hydrophone	was	 −208	dB	
re	1V/uPa	at	130	kHz.	Each	 logger	was	calibrated	 in	a	 tank	at	 the	
German	 Oceanographic	 Museum.	 This	 consisted	 of	 ensonifying	
each	C-	POD	with	 a	 130	kHz	 artificially	 created	 click	 signal	 at	 de-
creasing	 sound	 source	 levels	 and	 determining	 the	 sound	 pressure	
level	threshold	at	four	different	positions	around	the	C-	POD	where	
50%	of	the	transmitted	signal	was	received	by	each	POD.	The	av-
erage	threshold	level	over	the	four	positions	was	then	used	as	the	
calibration	sensitivity,	which	varied	from	111	dB	to	119	dB	re	1	μPa	
peak-	to-	peak	(pp)	across	the	C-	PODs	used	in	the	study.	Details	on	
methodology	can	be	found	 in	Dähne,	Verfuß,	Brandecker,	Siebert,	
and	Benke	(2013).

(2)ν=2�

w

∫
0

rg (y) dy

(3)̂D=
ns

(

1− ĉs
)

v̂sTsr̂s
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2.2 | C- POD deployment

Fifteen	 calibrated	 loggers	 were	 deployed	 off	 New	 Quay,	 Wales,	
moored	in	five	stations	of	three	loggers	each	in	a	triangular	forma-
tion,	 at	 depths	 of	 13-	20	m	 of	water,	 1.5	m	 above	 the	 seabed	 and	
approximately	50–75	m	apart	(Figure	1).	All	the	playbacks	were	con-
ducted	in	sea	states	two	or	less,	to	ensure	stability	of	the	recording	
set	up	and	the	accuracy	of	the	distance	measurements.	A	side-	scan	
sonar	survey	of	the	area	was	conducted	prior	to	the	study,	revealing	
a	generally	even,	sandy	bottom	substrate.

2.3 | Playback with artificial porpoise- like signals

All	 the	 playbacks	 were	 conducted	 from	 a	 small	 inflatable	 boat	
drifting,	with	engine	off,	across	 the	experimental	area.	An	artifi-
cial	click	signal	was	used	to	create	a	repeatable	signal	where	the	
source	level	could	be	manipulated	to	cover	the	intensity	range	of	
real	 harbour	 porpoise	 vocalisations.	 The	 signal	 consisted	 of	 15	
cycles	of	130	kHz	frequency,	generated	via	National	Instruments	
Corporation	 Ltd	 (UK)	 6356	 usb-	box	 and	 played	 back	 using	
National	 Instruments	 Labview	 software	 and	 an	 omni-	directional	
transducer	(Reson	TC4033,	Teledyne	RESON	A/S,	Denmark,	with	
a	projective	sensitivity	of	137	dB	pp	re	1	μPa/V	for	130	kHz	signal.	
The	signal	was	played	back	at	different	source	levels	(see	below)	
and	 distances	 from	0	 to	 800	m	 from	 the	C-	PODs,	 to	 assess	 the	
effect	 of	 varying	 intensity	 on	 detection	 probability.	 Due	 to	 the	
drift	 of	 the	 boat,	 the	 playbacks	were	 conducted	 from	 a	 total	 of	
744	different	distances	measured	using	the	boat’s	GPS.	The	omni-	
directional	 transducer	meant	 that	 the	 sound	would	 travel	 to	 all	
directions	 resulting	 in	expected	detections	 across	 all	C-	PODs	at	
varying	distances.

The	 signals	 were	 fed	 through	 an	 amplifier	 (A-	301,	 A.A.	 Lab	
Systems	Ltd.,	gain	26	dB),	which	drove	the	transducer	suspended	
from	 the	 boat	 at	 2	m	 below	 the	 water	 surface.	 The	 playback	
consisted	of	 four	separate	sequences.	Each	sequence	contained	
eleven	blocks	of	ten	clicks	(90	ms	duration	with	60	ms	pause	be-
tween	 each	 block);	 each	 block	 had	 different	 source	 levels	 (SL),	
decreasing	in	3	dB	steps	over	a	range	of	30	dB	from	176	dB	pp	re	
1 μPa/V	@	1	m	to	149	dB	pp	re	1	μPa/V	@	1	m	(Figure	S1,	online	
supplement).	Initially	playbacks	were	conducted	at	higher	source	

levels	 (up	 to	 184	dB	 re	 1	μPa/V	@	 1	m)	 but	 176	dB	 re	 1	μPa/V	
@	 1	m	 represented	 the	 maximum	 source	 level	 that	 could	 be	
produced	 with	 the	 used	 equipment	 without	 creating	 distorted	
waveforms.

2.4 | Playback with recorded porpoise vocalisations

To	assess	the	detection	probability	of	actual	harbour	porpoise	vocali-
sations,	and	the	performance	of	 the	click	 train	detection	algorithm,	
echolocation	 clicks	were	 recorded	 from	 captive	 porpoises	 at	 Fjord	
&	Bælt	Center,	Denmark,	and	compiled	 into	an	18	s	 long	sequence.	
The	 recording	 included	 clicks	 of	 varying	 amplitude	 and	 frequency	
ranges,	with	source	levels	between	130	and	182	dB	re	1	μPa,	repre-
senting	some	of	the	known	variability	in	click	rate	and	source	level	of	
real	porpoise	vocalisations	(See	signal	waveform	in	Figure	S2,	online	
supplement).

The	recording	was	played	using	a	similar	setup	as	above	but	without	
an	amplifier	and	through	a	calibrated	directional	transducer,	a	Reson	
TC2130,	resonant	at	104	kHz,	with	a	usable	transmitting	band	between	
100	and	200	kHz,	and	a	projection	directionality	of	12.316.9°	for	a	sig-
nal	between	100	and	150	kHz,	which	is	similar	to	a	porpoise	beam	at	
13°	at	130	kHz	(Koblitz	et	al.,	2012).	The	playbacks	were	played	from	
590	different	distances	ranging	from	0	to	640	m	from	the	C-	PODs	with	
an	additional	gain	of	20	dB	generated	through	the	computer,	resulting	
in	a	maximum	source	level	of	182	dB	re	1	μPa/V	@	1	m.	The	directional	
transducer,	which	has	a	narrow	beam	was	used	to	replicate	a	real	por-
poise	to	imitate	the	directionality	and	beam	width	of	the	animal.	During	
playbacks	it	was	continuously	rotated	from	side	to	side	horizontally	in	
an	arc	of	approximately	90°	centred	on	the	middle	of	each	C-	POD	sta-
tion,	imitating	the	sweeping	movement	of	a	porpoise	head.	The	speed	
of	rotational	arc	was	not	measured;	it	was	based	on	subjectively	deter-
mined	observations	of	animals.

The	 distance	 between	 the	 playback	 vessel	 and	 each	of	 the	C-	
PODs	was	determined	from	GPS	latitude	and	longitude	coordinates	
using	the	spherical	law	of	cosines	as	follows:

where	 the	 position	 of	 the	 boat	was	 defined	 as	 lat1 and long1,	 the	
position	of	the	C-	POD	was	defined	as	lat2 and long2,	and	R	was	the	
mean	radius	of	the	earth	(6,371	km).

(4)y=cos−1 ( sin (lat1) sin (lat2)+cos (lat1) cos (lat2) cos (long2− long1))R

F IGURE  1 A	diagram	of	a	C-	POD	
mooring	set	up	for	each	station	(a)	and	
the	map	of	the	deployment	site	of	all	the	
C-	PODs	(b).	For	each	of	the	five	station,	
three	C-	PODs	were	moored	on	the	sea	
bed	and	the	playback	transducer	was	
suspended	from	the	boat
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2.5 | Data analysis

The	data	were	visually	inspected	using	C-	POD	software	v.2.026	
(Chelonia,	2012)	to	assess	which	playbacks	were	detected	by	the	
logger.	 For	 each	 artificial	 sequence,	 the	 C-	POD	 raw	 click	 files	
(CP1	 files)	were	 examined,	 and	 the	 number	 of	 clicks	 from	 each	
series	 and	 each	 block	 was	 counted.	 For	 the	 recorded	 porpoise	
click	 sequence,	 only	 those	 playbacks	 with	 a	 clear	 recording	 of	
the	whole	or	part	of	 the	 identifiable	 sequence	were	considered	
as	 detected.	 The	 resulting	 data	 were	 divided	 into	 three	 data-
sets,	each	analysed	separately	to	assess	the	performance	of	the	
C-	POD’s	KERNO	train	classification	algorithm	 in	 identifying	 the	
playback	 sequence	 as	 of	 porpoise	origin:	 (a)	 detections	of	 play-
back	 sequence	 in	 raw	click	 files	 (called	CP1	 files	by	 the	C-	POD	
programme),	(b)	detections	of	trains	(CP3	files),	and	(c)	detections	
of	porpoise	trains	(CP3	files).

To	 estimate	 the	 detection	 function	 for	 the	 artificial	 signal,	
the	 detected	 clicks	were	 analysed	 using	 a	Generalised	Additive	
Mixed	Model	(GAMM),	implemented	via	the	gam	function	in	the	
mgcv	package	in	R	(Wood,	2006,	2011),	with	binomial	error	struc-
ture,	 logit	 link	function	and	maximum	likelihood	(ML)	parameter	
estimation.	 “Detected”	 (1)	 or	 “not	 detected”	 (0)	 was	 the	 binary	
response	variable,	with	distance,	source	level,	sensitivity,	station,	
and	playback	 ID	used	as	potential	explanatory	variables	 (on	 the	
logit	 scale).	 The	 numerical	 variables	 distance,	 source	 level,	 and	
sensitivity	were	modelled	using	 smooths	 (specifically,	 thin	plate	
regression	 splines,	with	degree	of	 smoothness	 selected	by	gen-
eralised	cross	validation).	Playback	ID	and	station	were	included	
as	random	effects,	as	each	playback	generated	trials	on	each	of	
the	three	C-	PODs	at	a	station,	making	the	responses	potentially	
nonindependent.	 All	 potential	 main-	effects	 models	 were	 fitted	
and	 the	 model	 with	 lowest	 Akaike	 Information	 Criterion	 (AIC)	
value	was	 selected	 for	 inference	 (Burnham	&	 Anderson,	 1998).	
Models	involving	interactions	were	not	considered.	Variance	and	
95%	confidence	 intervals	 (CIs)	were	calculated	using	a	nonpara-
metric	 bootstrap	 (conditioning	 on	 the	 selected	model),	 treating	

each	 playback	 as	 the	 unit	 for	 resampling	with	 1,000	 bootstrap	
replicates.

The	 selected	model	was	 then	used	 to	estimate	 click	detection	
probability	as	a	function	of	distance	and	the	other	selected	variables;	
EDR	was	 also	 calculated,	 by	 integrating	 out	 distance	 (Equation	2).	
The	 statistical	 analysis	 was	 identical	 for	 the	 recorded	 porpoise	
	sequence,	with	the	omission	of	source	level	as	explanatory	variable.

3  | RESULTS

3.1 | Playbacks with artificial porpoise clicks

Overall,	343	artificial	playback	sequences	of	11	blocks	of	10	clicks	
each	were	transmitted	across	the	15	C-	PODs.	This	resulted	in	over	
16,000	recorded	playback	blocks	that	were	visually	assessed.

The	model	with	lowest	AIC	values	included	all	five	explanatory	
variables	(distance	from	data	logger,	source	level,	sensitivity,	station,	
and	the	random	effect	of	playback;	see	Table	S1	in	the	online	supple-
ment).	The	model	explained	73.7%	of	the	deviance	in	the	dataset.	As	
expected,	there	was	a	strong	negative	effect	of	increasing	distance	
and	lower	source	level	of	the	playback	on	detection	probability,	but	
also	a	significant	effect	of	sensitivity	(Figure	2).	The	detection	prob-
ability	fell	sharply	between	100	and	300	m	distance	from	the	data	
logger.	The	effect	of	source	level	on	detection	probability	increased	
sharply	for	clicks	over	160	dB	pp	re	1μPa/V	@	1	m	for	all	CPODs.

The	 calculated	 EDR	 for	 artificial	 clicks	 with	 a	 source	 level	 of	
176	dB	re	1μPa	m	varied	from	225	to	148	m,	with	a	mean	of	186	m	
(95%	CI:	173-	200)	averaging	across	the	other	explanatory	variables	
and	a	mean	EDA	of	0.111	km2	 averaging	across	 all	 loggers.	 Lower	
source	levels	drastically	decreased	the	EDR	and	detection	area,	with	
notable	differences	between	C-	PODs	and	sites	(Figures	3,	4	and	S3,	
online	 supplement).	Results	 of	GAMM-	model	 (Table	 S1)	 showed	a	
strong	 negative	 correlation	 with	 distance	 and	 decreasing	 source	
level	 and	 to	a	 lesser	degree	with	 sensitivity.	The	EDR	values	with	
95%	CI	and	CV	for	each	C-	POD	for	different	source	levels	are	listed	
in	the	online	supplement	in	Table	S2.

F IGURE  2 The	effect	of	distance	from	C-	POD,	the	signal	source	level	and	logger	sensitivity	on	the	detection	probability	of	artificial	
playback	signal	in	the	GAMM	model,	estimated	at	the	mean	value	of	other	covariates.	Dashed	lines	indicate	plus	and	minus	two	standard	
errors	from	the	estimates;	y-	axis	is	transformed	to	the	response	variable	scale,	and	the	up-	ticks	on	x-	axis	show	the	covariate	values	in	the	
data
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3.2 | Playbacks with recorded porpoise clicks

The	recorded	porpoise	sequence	was	played	back	184	times	across	
the	 data	 loggers	 producing	 715	 captured	 sequences	 across	 dis-
tances	up	to	640	m	from	the	loggers.	A	total	of	12	loggers	out	of	the	
15	deployed	recorded	usable	data	for	this	part	of	 the	experiment;	
data	from	station	five	were	excluded	from	the	analysis	due	to	some	
unexplained	discrepancies	 in	 recordings,	 some	of	which	may	have	
been	due	to	mistakes	in	time	stamping	the	recordings	and	erroneous	
start	times	of	the	devices.	Consequently,	only	409	of	the	captured	
sequences	were	usable	for	analysis.

For	all	three	datasets	(raw	click	files,	(CP1	files);	detections	of	trains	
(CP3	files)	and	detections	of	porpoise	trains	 (CP3	files),	GAMM	with	
lowest	AIC	values	included	station,	distance,	sensitivity,	and	the	ran-
dom	effect	for	playback,	although	for	the	raw	click	data	(CP1	files)	and	
the	train	detection	files,	sensitivity	was	not	a	significant	variable	at	the	
p	=	0.05	level	(Table	S3	and	Figure	S5,	online	supplement).	Station	and	
distance	were	the	most	 influential	variables	according	to	AIC	scores.	
The	models	explained	between	40%	and	55%	of	the	deviance	in	the	
datasets,	 notably	 less	 than	 the	 models	 for	 the	 artificial	 playbacks.	
Lowest	detection	probabilities	for	click	data	(CP1)	were	recorded	for	

C-	PODs	1A,	1C,	2A,	and	2B.	High	detection	probability	of	clicks	did	
not	always	correspond	to	high	detection	of	classified	porpoise	trains	
(Figure	S5	and	S6,	online	supplement).

The	calculated	mean	EDR	across	all	C-	PODs	for	 raw	click	data	
from	the	recorded	signal	was	188	m	(95%	CI:	135–241).	For	the	part	
of	the	signal	that	the	algorithm	recognised	as	click	train	sequence,	
the	mean	EDR	was	116	m	(95%	CI:	80–152)	and	for	detected	signal	
that	was	classified	as	porpoise	train,	the	mean	EDR	was	72	m	(95%	
CI:	52–92)	 (Figure	4).	The	mean	EDR	values	for	the	click	data	with	
95	CI	and	CV	for	each	C-	POD	are	 listed	 in	 the	online	supplement	
Table	S4.	The	EDA	using	the	clicks	detected	from	the	raw	click	files	
(CP1)	was	0.111	km2.	When	examining	only	those	clicks	that	were	
correctly	 assigned	 as	 harbour	 porpoise	 trains	 by	 the	 classification	
algorithm,	the	effective	area	was	reduced	to	0.016	km2. The mean 
difference	in	EDR	from	detected	clicks	to	correctly	detected	species	
was	105	m	(95%	CI:	66–144).

3.3 | Maximum detection distances

Maximum	detection	distances	where	acoustic	detections	were	still	
made	 depended	 on	 the	 source	 levels	 of	 the	 emitted	 signals.	 The	
maximum	artificial	click	source	level	emitted	without	distortion	was	
176	dB	re	1	μPa	@	1	m.	Our	observed	maximum	detection	distance	
for	 this	 source	 level	was	 545	m	 (recorded	with	 C-	POD	 3B)	 and	 a	
mean	detection	distance	was	402	m	(95%	CI:	371–429).

The	maximum	detection	distance	for	the	recorded	porpoise	se-
quence	was	566	m	(C-	POD	4C)	and	the	mean	maximum	distance	for	
all	the	C-	PODs	was	248	m	(95%	CI:	181–316).

4  | DISCUSSION

Acoustic	recorders	are	now	commonly	used,	and	they	have	the	po-
tential	of	estimating	animal	abundance.	This	is	particularly	important	
in	the	context	of	small	cetaceans	where	click	loggers	are	widely	avail-
able,	easy	to	use	and	provide	cost	effective	way	for	long-	term	moni-
toring.	Understanding	 the	 distance	 at	which	 animals	 are	 detected	
and	 how	 source	 level	 and	 sensitivity	 affects	 their	 detectability	 is	

F I G U R E  3 Fitted	probability	curves	for	
the	detection	of	artificial	playback	clicks	
at	different	distances	for	source	levels	
between	176	and	149	dB	re	1 μPa/V	@	
1 m	for	C-	PODs	at	stations	1A	and	1B.	
Each	line	depicts	the	fitted	probability	for	
one	dB	value

F IGURE  4 The	effective	detection	radius	(EDR)	for	both	
recorded	porpoise	sequence	and	the	artificial	playbacks.	Artificial	
playback	of	highest	source	level	176	dB	(white),	recorded	porpoise	
playback	sequence	for	all	logged	clicks	(light	grey),	all	detected	
trains	(dark	grey),	and	all	trains	classified	as	porpoise	(black)	on	all	
C-	PODs
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crucial	 for	 quantifying	 the	 species’	 area	 use.	 Accurate	 estimates	
of	EDA	are	essential	 for	density	estimation	using	such	devices.	As	
far	as	we	are	aware,	this	is	the	first	published	study	to	attempt	the	
estimation	of	 the	detection	probability	and	calculation	of	EDA	for	
C-	PODs,	 or	 any	 other	 static,	 single	 hydrophone	 click	 detector	 for	
high-	frequency	odontocetes,	using	both	artificial	and	recorded	real	
cetacean	clicks.	Note,	however,	 that	playback	experiments	 cannot	
incorporate	animal	behavioural	variability	and	thus	cannot	produce	
accurate	estimates	of	detection	probability.	Although	 it	 is	possible	
that	some	unavoidable	multipath	reflections	were	contained	in	the	
playback	 signal,	 those	 reflections	 should	 not	 have	 interfered	with	
our	analysis	since	multipath	would	have	been	very	low	in	amplitude	
and	therefore	would	not	have	triggered	the	detection	threshold	of	
the	C-	POD	at	 longer	distances.	 In	very	short	 ranges	multipath	 re-
flections	can	be	recorded	as	individual	clicks	of	which	only	the	first	
(direct	path)	was	used	 for	our	calculations.	As	 such,	 the	use	of	an	
artificial	click	sequence	allowed	us	to	assess	the	performance	of	the	
C-	POD’s	hydrophone	and	electronics	in	detecting	clicks	in	a	stand-
ardised	and	repeatable	way.	The	use	of	real,	recorded	clicks	with	a	
directional	 transmitter	enabled	us	 to	evaluate	 the	performance	of	
the	classification	algorithm	for	one	type	of	standardised	sequence	
with	some	measure	of	potential	variability	exhibited	by	the	porpoise.

As	expected,	the	detection	probability	and	the	EDR	decreased	
with	increasing	distance	from	data	logger	and	the	decreasing	source	
level	of	the	artificial	signal.	For	porpoise-	like	sounds,	no	detections	
were	made	beyond	545	m	from	the	logger,	and	signals	below	153	dB	
pp	re	1	μPa/V	at	1	m	had	less	than	0.2	probability	of	being	detected	
even	at	distances	of	 less	than	50	m.	The	most	 intense	signal	emit-
ted	 (176	dB	 pp	 re	 1	μPa/V	 at	 1	m)	 here	 was	 effectively	 detected	
within	187	m	radius	around	the	C-	POD,	yielding	a	detection	area	of	
0.110	km2.	The	highest	source	level	used	here	was	at	the	edge	of	the	
performance	capability	of	the	transducer	and	may	have	caused	slight	
distortion	 to	 the	 signal.	 Further	 experiments	 with	 higher	 perfor-
mance	transducers	are	therefore	recommended	to	evaluate	higher	
source	levels.

Similarly,	decreasing	detection	probability	with	distance	was	ev-
ident	with	the	real	porpoise	click	sequences,	with	nearly	the	same	
EDR	of	188	m	for	the	raw	data.	The	real	clicks	had	generally	higher	
detection	 probability	 and	 were	 detected	 from	 further	 away	 than	
the	 artificial	 clicks,	 despite	 being	 played	 back	 using	 a	 directional	
transducer	which	was	being	 rotated	 from	 side	 to	 side.	The	higher	
detectability	of	the	recorded	real	porpoises	was	likely	because	the	
probability	 of	 artificial	 signal	 detection	was	 estimated	 for	 a	 single 
click,	whereas	the	probability	of	real	porpoise	signal	detection	was	
calculated	 for	 the	entire	18	 s	 long	 snapshot	 sequence,	more	easily	
detected	because	of	 its	duration	but	also	because	parts	of	the	se-
quence	were	played	at	higher	maximum	source	level	than	the	arti-
ficial	playbacks	(182	dB	re	1	μPa/V	@	1	m)	and	highlights	the	main	
difference	 between	 the	 two	 methods	 for	 density	 estimation	 dis-
cussed	earlier.	No	published	EDR	values	for	porpoise	clicks	exist	for	
C-	PODs,	but	for	TPODs	the	reported	mean	EDR	for	wild	porpoises	
for	 a	 comparable	 time	 window	 of	 15	s	 was	 approximately	 30	m,	
varying	slightly	with	TPOD	type	and	sensitivity	(Kyhn	et	al.,	2012).	

Here,	 the	mean	 EDR	of	C-	PODs	 for	 detecting	 and	 identifying	 re-
corded	porpoise	clicks	as	porpoises	was	much	improved	in	compari-
son	to	T-	PODs	at	72	m,	although	it	must	be	noted	that	Kyhn’s	results	
were	obtained	from	real,	wild	animals	using	visual	tracking	and	could	
have	thus	been	influenced	by	more	unknown	variables.

The	 highest	 source	 level	 of	 the	 real	 recorded	 porpoise	 signal	
was	at	182	dB	 re	1	μPa	@	1	m,	yielding	a	maximum	detection	dis-
tance	of	566	m.	The	mean	maximum	distance	for	all	the	C-	PODs	was	
248	m	(95%	CI:	181–316),	reflecting	much	reduced	detection	rates	
due	to	the	directional	transducer	used,	emulating	more	closely	the	
real-	life	scenario	of	actual	porpoise	movement	patterns	and	sonar	
beam-	width.

4.1 | Click detection vs. train classification

As	 expected,	 the	 detection	 probability	 decreased	 from	 detected	
clicks	 to	 classified	 trains,	 and	 again	 to	 correctly	 classified	 species	
(Figure	4).	 The	 challenge	 remains	 for	 the	 software	 developers	 to	
improve	the	train	classification	algorithm	to	match	the	click	detec-
tion	abilities	of	the	device,	increasing	its	EDA—for	the	real	porpoise	
click	 sequence	 used	 here,	 this	would	 be	 a	 five-	fold	 increase	 from	
0.02	to	0.1	km2.	As	C-	PODs	do	not	record	full	waveforms	they	de-
pend	heavily	in	train	detection	on	click	intervals	and	their	respective	
sequences.	Therefore,	an	improvement	is	limited	by	the	number	of	
clicks	necessary	 for	classification	and	the	allowed	number	of	 false	
positives.	Attempt	to	reduce	false	positives	typically	increases	false-	
negative	detections,	 however,	 in	 density	 estimation,	 false-	positive	
detections	are	perfectly	acceptable,	providing	the	false-	positive	rate	
is	accurately	determined	at	the	temporal	and	spatial	scale	of	the	den-
sity	estimates,	hence	the	parameter	c	in	equation	1.

4.2 | Differences between loggers, deployment 
sites, and playbacks

It	 is	crucial	to	ensure	that	data	loggers	used	are	calibrated	to	simi-
lar	sensitivity	thresholds.	C-	PODs	used	in	this	study	had	a	range	in	
detection	 sensitivities	 at	 received	 levels	 between	111	 and	119	dB	
re 1 μPa	 pp	which	 is	 higher	 than	 advertised	 by	 the	manufacturer.	
The	measured	calibration	sensitivity	had	only	a	slight	effect	on	the	
models,	but	there	were	large	differences	between	calculated	EDRs	
for	C-	PODs	 throughout	 the	experiment.	These	 are	 likely	due	 to	 a	
combination	 of	 factors	 including	 C-	POD	 sensitivity,	 subtle	 differ-
ences	 between	 deployment	 sites	 such	 as	 unexpected	 boulders	 or	
troughs	in	the	seabed	or	variation	in	the	substrate	type,	the	deploy-
ment	depth	(Sostres	Alonso	&	Nuuttila,	2015),	and	most	importantly	
the	added	variability	 in	 the	 transmitted	signal,	due	 to	hydrophone	
directionality	and	the	added	movement	by	the	operator	mimicking	
the	side-	to-	side	movement	of	the	porpoise	head.

4.3 | Wild harbour porpoise source levels

The	 source	 levels	 used	 here	 were	 based	 on	 limited	 recordings	
of	 wild	 porpoises	 (Villadsgaard,	 Wahlberg,	 &	 Tougaard,	 2007),	
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which	may	not	reflect	the	real	variation	in	source	levels,	likely	to	
be	affected	by	behavioural	context	and	variation	in	habitat	char-
acteristics,	such	as	ambient	noise.	Such	variation	has	been	dem-
onstrated	 for	 the	 beluga	whale	 (Delphinapterus leucas),	 adapting	
the	source	level	and	frequency	of	its	echolocation	clicks	according	
to	noise	levels	of	its	surroundings	(Au,	Carder,	Penner,	&	Scronce,	
1985).	Kyhn	et	al.	(2013)	show	that	recorded	source	levels	of	har-
bour	porpoises	 can	vary	drastically	between	169	and	199	dB	 re	
1 μPa	m	for	Danish	porpoises	and	170	to	189	dB	re	1	μPa	m	for	
porpoises	 from	 British	 Columbia	 resulting	 in	 a	mean	 difference	
of	 10	dB	 between	 the	 habitats.	 Furthermore,	 Villadsgaard	 et	al.	
(2007)	 reported	differences	between	porpoises	 in	 captivity	 and	
in	the	wild	of	~20	dB	showing	a	habituation	to	the	environment.	
Therefore,	measurement	of	source	levels	in	the	area	of	concern	is	
a	prerequisite	for	estimating	abundance	from	stationary	acoustic	
data	loggers.

Here,	 the	 maximum	 undistorted	 source	 level	 achieved	 was	
182	dB	 pp	 re	 1	μPa/V	 @	 1	m	 for	 the	 recorded	 real	 porpoise	 sig-
nal,	which	is	considerably	less	than	the	maximum	recorded	level	of	
205	dB	 re	 1	μPa/V	@	1	m,	 and	 therefore	 the	 EDRs	 reported	 here	
will	not	 represent	 the	 full	detection	 range	of	wild	porpoises.	High	
source	 levels	 have	been	 calculated	 for	 the	most	 intense,	 “on-	axis”	
clicks,	whereas	 the	 loggers	will	detect	both	on	and	off	axis	 clicks,	
and	consequently	clicks	of	varying	source	levels.	Here	we	aimed	to	
achieve	this	variation	by	swivelling	the	transducer	from	side	to	side	
and	although	we	believe	that	these	results	represent	at	least	some	
of	the	natural	variability	in	porpoise	click	trains	arriving	at	a	C-	POD,	
they	still	cannot	accurately	reflect	the	variation	in	natural	vocalisa-
tion	behaviour	 or	 in	 fact	 the	 actual	 position	of	 the	 animals	 in	 the	
water	column,	depending	on	their	behaviour	and	prey	type	targeted	
(Sostres	Alonso	&	Nuuttila,	2015).

4.4 | EDR/EDA and density estimation

Here	we	provide	a	way	to	use	playbacks	to	estimate	an	EDR	and	
EDA,	which	could	be	repeated	at	sites	where	monitoring	studies	
require	 some	estimate	of	 a	 local	detection	probability	 for	 an	ef-
fective	sampling	regime.	The	challenge	for	this	data	logger	is	not	
detecting	 the	 clicks—as	 seen	 here,	 the	 C-	POD	 detects	 porpoise	
clicks	 well.	 However,	 train	 classification	 and	 species	 identifica-
tion	necessarily	require	more	 information,	and	this	consequently	
reduces	 the	 EDR.	 In	 areas	 of	 low	 animal	 density,	 with	 no	 other	
cetacean	species	present,	it	would	be	practical	to	use	the	raw	click	
data	or	the	train	classification	results,	without	species	identifica-
tion,	improving	the	overall	detection	rate	and	enlarging	the	EDA.	
However,	where	there	are	several	species	present	this	approach	is	
not	workable	and	species	classification	is	the	most	practical	way	
of	distinguishing	species,	regardless	of	the	reduced	EDR.	Most	im-
portantly	EDR	and	playback	experiments	provide	means	to	quan-
tify	 effort	 in	 stationary	 acoustic	monitoring,	 not	only	 applicable	
and	 necessary	 for	 large	 scale	 efforts	 in	monitoring,	 but	 also	 for	
small	scale	studies	such	as	analysing	the	impacts	of	anthropogenic	
activities	on	odontocetes.

To	fully	establish	detection	probabilities	for	cetaceans,	we	need	to	
gain	a	thorough	understanding	of	the	effect	of	behaviour	and	group	
size	on	vocalisation	rates	(Nuuttila	et	al.,	2013),	including	the	portion	
of	time	the	animals	rest	and	spend	silent,	all	of	which	can	affect	detect-
ability	(Wright	et	al.,	2017).	We	can	be	relatively	certain	that	porpoise	
vocalisation	 rates	 vary	 according	 to	 time	 of	 day	 (Todd	 et	al.,	 2009;	
Schaffeld	 et	al.,	 2016),	 increase	 during	 prey	 capture	 (DeRuiter	 et	al.,	
2009;	Verfuß,	Miller,	Pilz,	&	Schnitzler,	2009),	and	decrease	or	are	non-
existent	during	rest	periods	(Linnenschmidt	et	al.,	2013;	Wright	et	al.,	
2017),	and	that	source	levels	of	their	feeding	buzzes	are	reduced	mak-
ing	them	less	detectable	than	other	clicks	at	similar	ranges	(DeRuiter	
et	al.,	2009).	For	many	other	cetacean	species,	we	have	only	 limited	
information	on	their	vocalisation	rates,	and	further	research	is	required.
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