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Summary 31 

 32 

1. Long-term climate change experiments are extremely valuable for studying ecosystem 33 

responses to environmental change. Examination of the vegetation and the soil should be non-34 

destructive to guarantee long-term research. In this paper, we review novel field methods using 35 

isotope techniques for assessing carbon dynamics in the plant-soil-air continuum, based on 36 

recent field experience and examples from a European climate change manipulation network. 37 

2. Eight European semi-natural shrubland ecosystems were exposed to controlled warming and 38 

drought manipulations. One field site was additionally exposed to elevated atmospheric CO2. 39 

We evaluate the isotope methods that were used across the network to evaluate carbon fluxes 40 

and ecosystem responses: 1) analysis of the naturally rare isotopes of carbon (13C and 14C) and 41 

nitrogen (15N); 2) tracing changes in isotopic signatures in ecosystem compartments in-situ, by 42 

using pulse labelling with 13CO2, soil injections of 13C- and 15N-enriched substrates, or 43 

continuos labelling with 13C-depleted CO2 by Free Air Carbon dioxide Enrichment (FACE); 44 

and 3) manipulation and tracing the isotopic composition of soil substrates (14C) in lab-based 45 

studies.  46 

3. Questions related to long-term carbon turnover processes were investigated by natural 14C 47 

signals, specifically 14C signature of soil respiration gave insights into the decomposition of old 48 

soil carbon sources. Contrastingly, the stable isotopes 13C and 15N were used for shorter-term 49 

processes, as the residence time in a certain compartment of the stable isotope label signal is 50 

limited. 13C-labelling techniques exert a minimal physical disturbance, however, the dilution of 51 

the applied isotopic signal can be challenging, and the contamination of the field site with 52 

released excess 13C can be a problem for subsequent natural abundance (14C and 13C) or label 53 

studies. 54 

4. Based on the experience with the experimental work, we provide recommendations for the 55 

application of the reviewed methods to study carbon fluxes in the plant-soil-air continuum in 56 

long-term, large-scale climate change experiments.  57 

 58 

Key-words: warming; drought; bomb-C; FACE; pulse-labelling; stable isotopes; 14C  59 
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 83 

 84 

Introduction 85 

  86 

Global climate change scenarios predict that increased greenhouse gas (e.g. CO2, CH4 and 87 

N2O) concentrations in the atmosphere will alter the periodicity and magnitude of drought 88 

events and will increase mean global temperatures by approximately 0.2 °C per decade (IPCC 89 

2013). For the European continent this will manifest as drier summers in the South and 90 

increased precipitation in the North (IPCC 2013). Elucidating the consequences of such 91 

atmospheric changes for biogenic carbon fluxes is one of the main challenges for the scientific 92 
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community. Some models have predicted a positive feedback to climate change, resulting from 93 

higher increases in respiratory fluxes from ecosystems (e.g. carbon release through soil 94 

respiration) than in net primary productivity, which would lead to further increases in 95 

atmospheric CO2 (Friedlingstein et al. 2006; Denman et al. 2007). To assess the likelihood of 96 

positive feedback, experimental studies that analyse the long-term adaptations of ecosystem 97 

carbon fluxes to climate change are critically needed. However, climate change experiments 98 

are often conducted at short or medium time scales due to funding constraints, or due to the 99 

limited life-span of the experimental plots, as repeated removal of samples often leads to 100 

disturbances and experimental artefacts in the studied system. Hence, there is a necessity for 101 

the maintenance of long-term experiments using non-destructive methods. 102 

Carbon fluxes through the plant-soil-air continuum play a central role in soil carbon cycling. 103 

Drought and warming alter the quantity and composition of carbon inputs to the soil by 104 

changing plant available carbon and nitrogen sources (de Graaff et al. 2007; Leakey et al. 2009). 105 

Microbial growth in soil is generally constrained by available carbon, therefore qualitative and 106 

quantitative changes in rhizodeposition are likely to alter the activity of heterotrophic 107 

microorganisms and the rates of soil organic matter (SOM) mineralisation (Zak et al. 2000; 108 

Phillips et al. 2006). Consequently, aboveground to belowground fluxes might largely 109 

determine carbon emissions from ecosystems under the different climate change scenarios 110 

(Chapin et al. 2009). 111 

Stable carbon isotope studies can give important insights into carbon fluxes through the plant-112 

soil-air continuum with the minimal disturbance to the system. The isotopic carbon composition 113 

of compartments in this continuum is a result of the different isotope fractionation processes 114 

along the pathway from CO2 fixation by plants to carbon allocation to soil (reviewed in 115 

Brüggemann et al. 2011). Thus, the analysis of the natural abundance of carbon isotopes in 116 

these compartments can give information about some processes related to photosynthesis and 117 

carbon losses through plant or soil respiration (Brüggemann et al. 2011). In addition, in-situ 118 

pulse labelling with the heavy stable carbon isotope (13C) is a powerful tool to analyse short-119 

term dynamics of carbon allocation to the soil with high resolution (Högberg et al. 2008; Epron 120 

et al. 2012; Reinsch & Ambus 2013). The recent development of techniques for 13C analyses in 121 

specific compounds such as phospholipid fatty acids (PLFAs), amino-sugars, RNA and DNA, 122 

constitutes a remarkable advance in the studying of carbon cycling. These analyses allow for 123 

the examination of rhizodeposit utilisation by microbes or trophic interactions between 124 

functional groups (Ostle et al. 2003; Jin & Evans 2010; Ruess & Chamberlain 2010). The 125 
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application of these isotopic methods can therefore provide unique information about 126 

aboveground-belowground linkages and their alterations in response to climate changes.  127 

In order to investigate long-term effects of climate change on shrubland ecosystems, an 128 

experimental network was established across Europe (the INCREASE network). Studying the 129 

response of shrublands to climate change is important, since they are representative ecosystems 130 

in Mediterranean and North European countries, where they play an important ecological role 131 

in preserving biodiversity (Verdú 2000; Wessel et al. 2004). In addition, land area covered by 132 

shrublands has dramatically decreased in temperate Europe during the past century, due to land 133 

use changes, increased pollution and eutrophication, and climate change (Fagúndez 2013). In 134 

Mediterranean regions, however, shrublands have increased their extension due to land 135 

abandonment (Fagúndez 2013).  136 

Within the climate change network, common non-destructive methods were used across sites 137 

to ensure the comparison of treatment effects across different climatic regions (Beier et al. 2004; 138 

Mikkelsen et al. 2008). Evaluating the impact of climate change treatments on shrubland carbon 139 

dynamics was one of the main objectives of this experimental network, and thus a range of 140 

methodologies to quantify and trace distinct carbon pools and their fluxes have been applied 141 

since 1999. Priority was given to those techniques that minimise disturbances to vegetation and 142 

soil to guarantee long-term research.  143 

Here, we review isotope methods that have been applied across this climate change 144 

experimental network to study ecosystem carbon dynamics in the plant-soil-air continuum. In 145 

particular, we focus on methodologies that: 1) analyse the abundance of naturally rare isotopes 146 

of carbon (13C and 14C) and nitrogen (15N) in the different ecosystem compartments to evaluate 147 

their responses to climate change; and 2) trace experimentally-induced changes in the isotopic 148 

signatures to assess rhizodeposition utilisation by soil biota, by using either 13CO2 pulse 149 

labelling, continuous labelling with 13C-depleted CO2 from Free Air Carbon dioxide 150 

Enrichment (FACE), or injections of 13C- and 15N-enriched substrates in the field, and finally 151 

3) manipulate and trace the isotopic composition of C-compounds to analyse C mineralisation 152 

by soil microorganisms in laboratory studies. Along-side the methods, data from the field 153 

studies are presented as accompanying illustrative boxes, and practical recommendations for 154 

the applications of these methodologies at large-scale climate change experiments are outlined 155 

in Table 1. The combination of the isotope methods with methods for in-situ quantification of 156 
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aboveground, root and fungal mycelia biomass will increase our understanding of climate 157 

change effects on carbon dynamics with the least possible disturbance. 158 

 159 

The experimental climate change network INCREASE 160 

The experimental network for the study of climate change impacts on European shrublands 161 

(INCREASE, ‘An Integrated Network on Climate Research Activities on Shrubland 162 

Ecosystems’) was established in 1998. The network is comprised of eight shrublands situated 163 

across a natural temperature gradient of mean annual temperature from c. 8 °C in the North to 164 

c. 16 °C in the South, and a rainfall gradient ranging from 510 mm to 1741 mm from East to 165 

West (see Fig. 1 in Reinsch et al. 2017). These sites represent Continental, Atlantic and 166 

Mediterranean shrublands. At each site, whole-ecosystem warming and drought treatments 167 

were applied in triplicates of 20 m2 plots, by using automated retractable curtain constructions 168 

(see Beier et al. 2004 and Mikkelsen et al. 2008 for a full description). At one of the Danish 169 

sites (DK-BRA), a FACE treatment was installed, and combinations of the climate treatments 170 

were established and resulted in a plot size of 9 m2 (Mikkelsen et al. 2008). Climatic conditions 171 

at the plot level (air temperature, humidity, soil temperature and moisture) were recorded in 172 

half-hour or hourly intervals, and main carbon pools and fluxes have been periodically 173 

monitored. Most frequent measurements include aboveground plant biomass and composition 174 

(Kröel-Dulay et al. 2015), litter production, soil respiration and net ecosystem carbon exchange 175 

(Beier et al. 2008; 2009; Lellei-Kovács et al. 2016). Measurements of litter decomposition, soil 176 

nitrogen mineralisation (Emmett et al. 2004) and soil microbial biomass and activity (Sowerby 177 

et al. 2005) have also been conducted with different periodicity. 178 

 179 

Methodologies using natural abundance of carbon isotopes 180 

 181 

1 Ecosystem processes reflected by stable isotope fractionation (13C and 15N)  182 
 183 

The relative abundance of the rare and heavy stable isotopes of nitrogen (15N) and carbon (13C) 184 

compared to the most abundant stable isotope, 14N and 12C respectively, is a signature that 185 

reflects the isotopic discrimination associated with gain and loss processes of a given entity. 186 

These signatures are expressed as the delta (δ) notation (e.g. δ13C and δ15N in ‰), which is the 187 

deviation of the rare isotope abundance in the sample compared to a reference material (Brand 188 



7 
 

& Coplen 2014; Muccio & Jackson 2009). The naturally occurring background level is termed 189 

‘natural abundance’ of the given rare stable isotope (Berglund & Wieser 2011). Most natural 190 

processes (chemical, physical or enzymatically catalysed) discriminate against heavy isotopes 191 

(e.g. 13C, 15N, 18O), which in open systems results in an isotopically depleted product with 192 

comparably smaller concentration of the heavy isotopes than its corresponding substrate 193 

(Robinson 2001; Fry 2006). If the dominant process rate changes, or if the substrate is 194 

exhausted, then the δ value of the product (such as the plant leaf) may significantly change, due 195 

to the underlying fractionation. Delta notation is appropriate when dealing with natural samples 196 

that are not labelled with excess heavy isotopes (see next sections), and variations at the level 197 

of natural abundance are useful for evaluating natural discrimination processes. Importantly, 198 

natural abundance cannot be studied if ‘overlain’ by a study of labelling with heavy isotopes. 199 

Decreases in soil water availability due to drought can alter the isotope signature of both carbon 200 

and nitrogen in the aboveground plant biomass. During drought stress, leaves reduce stomatal 201 

opening to preserve water. As this happens, the space that confines the air as an immediate 202 

source of CO2 for photosynthesis (the sub-stomatal cavity) becomes a more closed system due 203 

to the restriction of the renewal of CO2, and as a result a higher proportion of the heavy 13C in 204 

CO2 is fixed by Rubisco (C3 plants; Tcherkez et al. 2011). Hereby the discrimination against 205 

the heavy 13C isotope is decreased. As a consequence, in plants with a C3 photosynthetic 206 

pathway a 13C enrichment in the leaf occurs during drought stress (Cernusak et al. 2013). 207 

Indeed, the 13C enrichment at the leaf level is related to an increased intrinsic water use 208 

efficiency (WUEi), the ratio of assimilation to stomatal conductance (Farquhar & Richards 209 

1984; Donovan & Ehleringer 1994). Changes in soil water availability may also alter the leaf 210 

nitrogen isotope signature by changing the nitrogen availability with soil depth, and thereby the 211 
15N signature of the plant nitrogen source (Lloret et al. 2004). Since δ15N is often analysed at 212 

the same solid sample as δ13C by IRMS (Isotope Ratio Mass Spectrometer), interpretation of 213 

δ15N can be a useful complement to understand the ecosystem processes. Nitrate and 214 

ammonium sources of different origin or at different soil depths can vary in δ15N signature (Xue 215 

et al. 2009). Hence, if a drought event changes the vertical nitrogen availability in the soil, the 216 

plant nitrogen source can shift to a different soil depth possibly causing a change in δ15N 217 

signature in the leaves. In general, an increase in δ15N signature in the leaves indicates a 218 

progressive N saturation and/or N losses in the surrounding system because all major pathways 219 

of N loss (denitrification, ammonia volatilization and nitrate leaching) cause δ15N enrichment 220 

of the remaining nitrogen (Peñuelas et al 2000). Interpretation of changes in leaf δ15N, however, 221 
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is not straightforward since leaf δ15N signatures might largely depend on mycorrhizal 222 

associations and shifts in nitrogen sources between organic and inorganic compounds (the 223 

increase in plant δ15N values with aridity may also result from increasing reliance on recycled 224 

organic N sources as opposed to new inputs) under a drought or warming could influence the 225 

leaf δ15N as well (Michelsen et al. 1998; Pardo et al. 2006; Andresen et al. 2009).  226 

Across the field sites, the effects of warming and drought on plant 13C and 15N natural 227 

abundance was monitored over four years, starting two years after onset of the climate 228 

manipulations. Current year shoots or leaves were analysed for δ13C and δ15N immediately after 229 

each artificially prolonged drought. Plant material was dried at 70°C and ground to a fine 230 

powder before analysis for natural abundance values of δ13C and δ15N using isotope ratio mass 231 

spectrometry (IRMS). We expected to find higher δ13C values: i) in drought treated plants 232 

(compared to control plots) and, ii) in plants growing at drier locations across the precipitation 233 

gradient (within a given plant species). Furthermore, we expected iii) the δ15N to change in 234 

response to drought, as the nitrogen source (depth) is changed (at one location, within-species). 235 

Some significant effects of the drought treatment were observed on plant tissue δ13C and δ15N 236 

(Box 1). Differences between years (effect of time) were more pronounced than the effect of 237 

the drought treatment for Populus alba δ13C (HU), Erica multiflora δ15N (SP) and Globularium 238 

alypum δ15N and δ13C (SP). Only Calluna vulgaris showed a significant response to the drought 239 

treatment for δ13C as hypothesized (Box 1A). For C. vulgaris, which was growing at several 240 

locations (UK-CL, NL and DK-MOLS), the δ13C was higher at drier locations, when compared 241 

along the precipitation gradient, and also higher in the drought treatment, at the NL or UK-CL 242 

sites (Box 1B). Finally, we found no response of leaf δ15N to drought or warming, however, P. 243 

alba had a much depleted δ15N relative to the other species. We attribute these differences to 244 

species specific utilization of different nitrogen sources (perhaps more dependent on nitrate at 245 

the HU site), or different mycorrhizal associations with higher rates of isotopic fractionation 246 

(e.g. ericoid mycorrhiza in E. multiflora and C. vulgaris; Michelsen et al. 1998; Pardo et al. 247 

2006). 248 

 249 

2 Bomb-14C technique to asses sources of soil respiration 250 
 251 

The analysis of natural 13C abundance in CO2 can be used to distinguish between autotrophic 252 

and heterotrophic components of soil respiration in some ecosystems where the sources of 253 

respired substrates (i.e. recent photosynthates vs. SOM) have contrasting δ13C values. Changes 254 
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in δ13C values can be observed after vegetation changes, e.g. where C4 plants are introduced in 255 

areas previously dominated by C3 vegetation, or vice versa, the so-called C3-C4 shift. In these 256 

situations, the δ13C signature of plants and soil carbon may differ by up to 10 ‰ (Hanson et al. 257 

2000). The partitioning of soil respiration between historical SOM and recent photosynthates 258 

can then be calculated using a linear isotope mixing models (Robinson & Scrimgeour 1995; 259 

Hanson et al. 2000). However, such vegetation shifts are rare in natural ecosystems, and 260 

therefore the use of 13C natural abundance to differentiate between autotrophic and 261 

heterotrophic respiration is limited (but see Millard et al. 2008).  262 

As an alternative to stable carbon isotopes (12C, 13C), the natural radioactive 14C abundance can 263 

be used to identify sources of soil respiration. Radiocarbon signatures of recent and older carbon 264 

are different as a result of the nuclear bomb tests in the atmosphere during the 1950/60s. These 265 

tests led to an increase in the 14C content in the atmospheric CO2 in the Northern hemisphere, 266 

which reached its maximum in 1963 (‘bomb peak’). Ever since the subsequent atmospheric 267 

nuclear test moratorium, the ‘bomb-14C’ content has decreased due to the dilution with fossil 268 

fuel-derived CO2 in the atmosphere and its incorporation in ocean and terrestrial carbon pools 269 

(Trumbore 2009). Through that incorporation, the radiocarbon analysis of ecosystem fluxes 270 

provides information about the age of decomposed carbon substrates and can be used to 271 

differentiate carbon sources within ecosystems: recently plant-assimilated carbon (autotrophic 272 

component of soil respiration) should have a similar radiocarbon signature as the current 273 

atmosphere, while the radiocarbon content of older carbon released through SOM 274 

mineralisation (heterotrophic component) reflects the year of fixation of that carbon, again a 275 

mixing model solution. Several studies have successfully achieved the separation of sources of 276 

respiration across ecosystems using the ‘bomb-14C’ method (Gaudinski et al. 2000; Cisneros-277 

Dozal et al. 2006; Czimczik et al. 2006; Schuur & Trumbore 2006; Subke et al. 2011). In these 278 

studies, analysis of the 14C-CO2 signatures of roots and SOM was performed under controlled 279 

conditions and collated with analyses of field gas efflux (the mixed pool). Radiocarbon analysis 280 

of soil or ecosystem respiration has been used to evaluate the response of a range of ecosystems 281 

to different factors of climate change, such as increasing temperatures, decreasing rainfall or 282 

permafrost thaw (Borken et al. 2006; Muhr & Borken 2009; Muhr et al. 2009; Schuur et al. 283 

2009).  284 

We tested the effect of experimental warming and drought on the natural abundance of 14C in 285 

respired soil CO2 at early stages of the climate manipulations at the Peaknaze field site (UK-286 

PK). Our hypothesis was that drought increased heterotrophic respiration more than warming 287 
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in this seasonally waterlogged soil, due to a greater responsiveness of old soil carbon to drought 288 

relative to temperature as a driver (Bol et al. 2003; Domínguez et al. 2015). Therefore, we 289 

expected the greatest 14C-enrichment in the field-collected soil respiration samples from the 290 

drought plots. Soil efflux samples were collected in the late experimental drought period 291 

(September 2011), using a molecular sieve sampling system (Bol et al. 1995; Hardie et al. 2005; 292 

Hardie et al. 2009) attached to closed dark respiration chambers placed on the soil overnight. 293 

CO2 was subsequently recovered from the molecular sieve traps for 14C analysis by Accelerator 294 

Mass Spectrometry (AMS; Box 2). Soil and root samples were collected to conduct separate 295 

incubations to obtain the 14C-signatures of the heterotrophic and autotrophic respiration, 296 

respectively. These incubations were performed in leak-tight glass jars with a connection to the 297 

molecular sieve sampling system. The results revealed a high heterogeneity of the 14C signature 298 

of the soil efflux with no significant effect of the warming treatment, and a trend towards the 299 

release of older carbon from the drought plots (although not statistically significant). By 300 

comparison with the known record of post-bomb atmospheric 14C-CO2 concentration (Box 2), 301 

the carbon being released from the plots was estimated to have been fixed between six and eight 302 

years earlier (M. Dominguez, unpublished).  303 

 304 

Methods using in-situ 13C labelling to study rhizodeposition utilisation 305 
 306 

In-situ pulse labelling with the stable carbon isotope (13C) is an efficient method for evaluating 307 

the time lag between carbon assimilation and CO2 release from soil (Kuzyakov & Gavrichkova 308 

2010). It can be applied to investigate a wide range of processes in the plant-soil-atmosphere 309 

continuum (Högberg et al. 2008; Brüggemann et al. 2011; Epron et al. 2012). With this method, 310 

a concentrated pulse of 13C-enriched or depleted substrate in the form of CO2 or of a carbon-311 

containing organic substrate, is released into the undisturbed ecosystem. Subsequently 312 

assimilation or heterotrophic consumption will transfer the labelled carbon, and the 13C content 313 

of the product and organism will reflect the rate and the quantity of carbon transfer from one 314 

pool to another (Studer et al. 2014). Analysis of 13C in specific compounds such as PLFAs is a 315 

specific tool to assess the utilisation of different carbon sources by different functional groups 316 

of soil biota. The development of 13C labelling has increased the recognition of the central role 317 

that rhizodeposition plays in soil carbon cycling (Ostle et al. 2003; Jin & Evans 2010; Kuzyakov 318 

& Gavrichkova 2010; Dijkstra et al. 2013).  319 

 320 
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113C-CO2 pulse labelling  321 
 322 

In 13C-CO2 pulse labelling experiments, 13C enriched CO2 is released in closed, intact plant-323 

soil systems during daylight hours, typically for 1.5 to 6 hours, where it is assimilated by the 324 

green plant biomass. Plant and soil samples are taken from unlabelled and labelled systems at 325 

different time intervals, with a higher sampling frequency within the first 48 hours after the 326 

labelling. The allocation of 13C to belowground pools (roots, exudates, microbiota) is 327 

subsequently analysed, which allows the determination of the fraction of recently fixed carbon 328 

actively utilized by e.g. different microbial functional groups. Using 13C-CO2 pulse labelling, 329 

several authors demonstrated that the flux of recently photosynthesized carbon to soil microbes 330 

occurs very fast, often within a few hours of 13CO2 uptake (Rangel-Castro et al. 2005). The 331 

maximum incorporation of 13C into microbial RNA occurs within four to eight days after the 332 

pulse (Ostle et al. 2003). Fungi typically show the greatest utilisation of plant-derived carbon 333 

within the first 48 hours after plant labelling. Lower 13C enrichment in bacterial biomarker 334 

PLFAs indicates a delay in the utilisation of plant-derived carbon by bacteria, or a greater 335 

dependence of bacteria on carbon sources different from recently-fixed carbon. Gram positive 336 

bacteria and, in particular actinomycetes, are known to rely less on plant-derived carbon than 337 

Gram negative bacteria (Butler et al. 2004; Treonis et al. 2004; Balasooriya et al. 2008; 2013; 338 

2014). The levels of allocation of belowground fixed carbon and the subsequent utilisation by 339 

microbes might be affected by a range of factors such as the seasonality of plant activity. 340 

Usually, more carbon is allocated belowground towards the end of the growing season 341 

(Högberg et al. 2010; Balasooriya et al. 2013), under exposure to elevated atmospheric CO2 342 

concentrations (Denef et al. 2007; Jin & Evans 2010; Reinsch et al. 2013), under drought 343 

conditions (Fuchslueger et al. 2014) or in plants grown on fertile soils (Denef et al. 2009; 344 

Paterson et al. 2011). 345 

In the climate change network, several pulse-labelling experiments have been conducted in 346 

combination with 13C-PLFA analyses to study rhizodeposit utilisation by microbes. At the 347 

Clocaenog site (UK-CL) we aimed to study the utilisation of rhizodeposits along a soil moisture 348 

gradient, by applying a 13C-CO2 pulse during the late growing-season (August 2011). We used 349 

transparent domes of 50 cm diameter and 100 cm height, enclosing individual C. 350 

vulgaris plants. We applied repeated pulses of 13C-CO2 (99 atom% 13C = 99% 13C + 1% 12C) 351 

over eight hours (Box 3). The domes were sealed to a frame which was inserted into the ground 352 

at least ten days before the pulse, and had several sealed septa to collect gas samples to estimate 353 

the concentration of the 13C-labelled CO2. Plant leaves and soil from the rooting zone were 354 
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collected at different times after the labelling, using a higher sampling frequency during the 355 

first hours after the pulse. Soils were freeze-dried, sieved to ≤ 5 mm and PLFAs were extracted. 356 

Fatty acid methyl esters (FAMEs) were analysed by gas chromatography combustion-isotope 357 

ratio mass spectrometry (GC-c-IRMS). The main challenge was the low recovery of 13C label 358 

in the belowground compartment, especially in individual FAMEs. Despite the applied 13C 359 

concentration of 99 atom%, the apparent low photosynthetic rates combined with the excessive 360 

dilution of the 13C label in the large carbon pools of unlabelled woody branches and root- and 361 

microbial biomass resulted in an overall low level of 13C enrichment in the FAMEs (Box 3). 362 

Similar patterns have also been observed in other pulse labelling experiments (Griffith et al. 363 

2004). 364 

Three pulse-labelling events were conducted at the Brandbjerg site (DK-BRA,) between 2010 365 

and 2013 (Box 3). The Brandbjerg experiment consists of drought and warming manipulations 366 

in combination with ambient and elevated levels of CO2 concentration. The developed 367 

experimental setup for pulse-labelling aimed i) to be easily deployable in remote areas, ii) to 368 

distribute labelled 13C-CO2 to as many plots at the same time as possible to ensure similar and 369 

constant conditions for CO2 uptake by the vegetation, and iii) to ensure constant CO2 370 

concentration available to the vegetation throughout the labelling period. Therefore, a mobile 371 

flow-through system suitable for continuous 13C-CO2 delivery was developed (Box 3): A gas-372 

tight vinyl balloon (~3 m diameter) was filled with CO2 free synthetic air and mixed with 13C-373 

CO2 (50 or 99 atom%) that supplied the transparent chambers enclosing the vegetation of 374 

interest with air over the duration of the experiments ranging from 4 to 7.5 hours. Air was 375 

pumped continuously through gas tight tubing via electric diaphragm pumps (Reinsch & Ambus 376 

2013). The first experiment was conducted at the end of the growing season (October 2010), 377 

when we observed the highest allocation of carbon belowground as measured by 13C in soil 378 

respiration (Reinsch et al. 2014). The second experiment was conducted in the spring (May 379 

2011) and showed a major allocation of carbon to aboveground structures under elevated 380 

atmospheric CO2 concentration, but carbon allocation to belowground structures was higher in 381 

drought plots than in untreated control plots. The allocation of recently-assimilated carbon 382 

under warming conditions was similar to that under ambient conditions. The last experiment, 383 

conducted in early season 2013 (June), was performed during a period with impeded 384 

photosynthetic activity and indicated that labelling performance is poor when vegetation is 385 

recovering from harsh winter conditions with bare frost or severe drought conditions (Box 3). 386 
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Thus, it is important that the vegetation of interest displays green, photosynthetically active 387 

structures to facilitate CO2 uptake and sufficient labelling of ecosystem carbon pools. 388 

Our studies illustrate the complexity of controlling in-situ pulse-labelling experiments in 389 

ecosystems dominated by woody plants, which is even more challenging with 13C-CO2 than 390 

with 14C-CO2 because of their respective atmospheric backgrounds and detection limits (Epron 391 

et al. 2012). Ideally, 13C doses for in-situ use should be carefully tested in trials, considering 392 

the nature of the studied vegetation and the compounds to be analysed. If e.g. specific 393 

compounds of the soil microbial biomass are the main interest, then strong isotopic doses should 394 

be applied, and it is advisable to deploy the 13C pulse when plants naturally allocate carbon 395 

belowground e.g. when preparing for winter. The 13C signal can be increased by using highly 396 

labelled 13C-CO2 (99 atom %). However, the usage of a highly enriched CO2 can potentially 397 

lead to blurry signals and has to be applied with caution (Watzinger 2015). Furthermore, 13C-398 

CO2 concentration inside the labelling chamber should be as close as possible to ambient 399 

values, because unrealistic high CO2 concentration will change plant CO2 uptake. Repeated 400 

moderated 13C-CO2 applications during longer exposure times might be more appropriate, but 401 

inside closed transparent chambers, temperature and humidity may increase if the labelling 402 

period is prolonged, which also affects photosynthetic processes (Epron et al. 2012). Losses of 403 
13C due to physical diffusion and adsorption/desorption into the chamber and tubing material 404 

should also be considered. In particular, the back-diffusion of the 13CO2 from the soil to the 405 

atmosphere which entered the soil pores during the labelling might confound the interpretation 406 

of measured belowground respiration (Subke et al. 2009; Selsted et al. 2011). However, when 407 

applied properly, the insights into terrestrial carbon allocation will be detailed and novel (Box 408 

3). 409 

 410 

2 Free Air Carbon dioxide Enrichment (FACE)-labelling 411 
 412 

An alternative method for 13C pulse-labelling of vegetation and whole-ecosystems is to utilize 413 

the 13C-depleted CO2 in already planned or ongoing FACE experiments. The FACE technique 414 

has through decades been used within cropping systems (Kimball 2016), grasslands (Hovenden 415 

et al. 2014; Reich et al. 2014; Mueller et al. 2016) and forests (Terrer et al. 2016) experiments, 416 

with the primary goal of assessing potential carbon dynamics and enhancement of plant growth 417 

(Andresen et al. 2016). As a side effect, the change in carbon isotopic composition of vegetation 418 

exposed to FACE-treatment can be used to trace freshly assimilated carbon into soil microbial 419 
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biomass, fauna and organic carbon pools. This approach was used at the Brandbjerg site (DK-420 

BRA). The CO2 used to elevate concentrations of atmospheric CO2 to 510 ppm had δ13C values 421 

ranging from –3.0 to –36.7 ‰ throughout 8 years of experimental treatment, with and overall 422 

mean of -26.1 ‰. The source of the CO2 supplied by Air Liquide (Air Liquide, Denmark) was 423 

most often a brewery surplus CO2 as a chemically obtained side product. The FACE mixing of 424 

the added CO2 with ambient CO2 in the moving air mass resulted in a 13C depletion ranging 425 

from -6.7 to -15.6 ‰. On average, this equals a depletion of CO2 in FACE plots of -4.8 ‰ 426 

relative to the atmospheric -8 ‰ average. Ecosystem carbon pools became depleted 427 

accordingly, and the FACE 13C depletion acted as a long-term persistent isotope labelling. As 428 

a result, soil fauna (Enchytraeids) sampled from each of the climate-treated plots was 429 

significantly depleted in δ13C by -0.5 to -2.0 ‰ in the CO2 treatments (Andresen et al. 2011). 430 

This was due to translocated 13C substrate through the food web, starting with plant assimilation 431 

of 13C-depleted CO2, followed by plant root exudation and microbial utilization of the 13C 432 

depleted substrate and eventual digestion of microbes by enchytraeids. Hereby the freshly 433 

supplied carbon source was recognized to be transferred in the natural setting, within a given 434 

time scale. Also microbial biomass and PLFAs had different baseline of 13C content in ambient 435 

(not-treated) plots compared to CO2 treated plots (Andresen et al. 2014). This was used for the 436 

calculation of 13C enrichments for each PLFA biomarker individually, also illustrating the 437 

pathway of newly-assimilated carbon into microbial biomass. A drawback of the 13C-FACE 438 

label is again contamination of the surroundings, as even short and small un-planned draft winds 439 

can carry the depleted label onto ‘ambient’ plots, and these will most likely be ‘contaminated’ 440 

with 13C (though not markedly exposed to high CO2 concentrations) after some years of FACE 441 

activity. Therefore, one needs to collect reference material for the ‘natural abundance’ level 442 

well away from the FACE experiment. 443 

 444 

 3 In situ injection of 13C-enriched substrate solutions 445 
 446 

As a much more localized approach to a specific area, in-situ addition of 13C- and 15N-enriched 447 

substrates directly below the soil surface can be used to assess the competition for the substrate 448 

between i) plants and soil microbes, ii) microbial groups, and iii) the effects of the climate 449 

change treatments upon the competition for carbon or nitrogen substrates. Much research has 450 

focused on the sharing of nitrogen sources between plant and microbes (Kuzyakov & Xu 2013) 451 

using in-situ soil injections of 15N labelled inorganic nitrogen (ammonium and nitrate) or 452 
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organic nitrogen (amino acids) (Bardgett et al., 2003; Sorensen et al., 2008). Once amino acids 453 

with dual labelled compounds (15N and 13C) were available for experimental use, double-454 

labelled substrate was used to explore e.g. plant uptake of intact amino acids (Näsholm et al. 455 

2009; Rasmussen et al. 2010), and microbial utilization of carbon substrates (Dungait et al. 456 

2013; Rinnan & Baath 2009).   457 

In a labelling experiment at the DK-BRA site, amino acid injections into the soil were 458 

conducted to analyse the impact of the climate treatments on the uptake of free amino acid 459 

nitrogen by plants and soil microbes. Dual-labelled glycine (13C2
15N-glycine: 99 atom% 13C - 460 

of both carbon atoms - and 99 atom% 15N) was added to 20 × 20 cm2 sub-plots (Andresen et al. 461 

2009). Each sub-plot received 0.1 L of re-demineralised water labelled with 0.027 g glycine, 462 

corresponding to 687 mg glycine m-2 (223 mg C m-2 or 0.016 mg glycine g-1 dry weight soil). 463 

The label was injected into the soil just below the soil surface with a syringe moved among 16 464 

evenly spaced points of a template, placed on top of the vegetation (Andresen et al. 2009). One 465 

day (c. 24 h) after labelling with glycine, soil cores were sampled from the soil surface to 15 466 

cm depth, for determining the relative uptake of the amino acid in plant roots (IRMS solid 467 

sample) and soil microbes. As in many other soil labelling experiments, the largest label 468 

recovery (measured by 15N recovery since respiratory losses of 13C remain unknown) was found 469 

in the total microbial biomass compared to total plant biomass (Kuzyakov & Xu 2013). A 470 

subsample of fresh soil was extracted with re-demineralised water, and another set of 471 

subsamples was first vacuum-incubated with chloroform for 24 hours to release microbial 472 

carbon and nitrogen (Joergensen & Mueller 1996; Brookes et al. 1985), before extraction with 473 

re-demineralised water. A third subsample of soil was freeze dried (lyophilized) and later used 474 

for PLFA extractions. The 13C enrichment in marker PLFAs thus indicated the activity (vitality) 475 

of the specific microbial group (Watzinger 2015). We found that bacteria opportunistically 476 

utilised the freshly added glycine substrate, i.e. incorporated 13C, whereas fungi showed only 477 

minor or no glycine derived 13C-enrichment (Andresen et al. 2014). In comparison, 13C traced 478 

into the microbial community via the 13C-CO2 pulse label at the same site (DK-BRA) also 479 

reached the bacterial community first. Bacteria showed high 13C enrichment compared to fungal 480 

groups (Reinsch et al. 2014). This suggests that in-situ injection of 13C substrates might be a 481 

plausible alternative to mimic rhizodeposition effects. With the direct addition of 13C label to 482 

the soil a strong labelling of the microbial community was more easily achieved than with the 483 

indirect 13C labelling of microbes via plant assimilated 13C-CO2 (Box 3).  484 

 485 
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Use of labelled carbon-compounds to analyse carbon mineralisation by soil 486 

microorganisms 487 
 488 

Since soil microorganisms have an important role in controlling the availability of nutrients via 489 

mineralisation of SOM, our understanding of how microbial functioning in the ecosystem is 490 

altered by global change must be improved (Grayston et al. 1997). Microbial catabolic diversity 491 

of a soil is directly related to the carbon decomposition function within a soil and potentially 492 

provides a sensitive and ecologically relevant measure of the microbial community structure 493 

(Garland & Mills 1991). Subsequently, multiple assays have been developed to generate 494 

community level physiological profiles (CLPP) that can act as fingerprints of microbial 495 

function. Three approaches for measuring CLPP in soils are reported in the literature: (i) Biolog 496 

(Garland & Mills 1991); (ii) a substrate-induced respiration (SIR) technique (Degens & Harris 497 

1997); and (iii) MicroResp (Campbell et al. 2003). These methods are all based on quantifying  498 

CO2 respired during the mineralisation of organic carbon compounds that vary in size, charge 499 

and structural complexity. The first approach, Biolog MicroPlateTM (Biolog), assesses the 500 

catabolic diversity of soil organisms using a microtitre plate by incubating a soil culture in the 501 

presence of nutrients and 95 different carbon substrates; respired CO2 is used to reduce a 502 

tetrazolium violet salt, which results in a colour change that can be quantified colorimetrically 503 

(Garland & Mills 1991). This approach, however, has been criticized for bias towards fast 504 

growing organisms that thrive in culture (Preston-Mafham et al. 2002). In response to the 505 

criticism of the Biolog method, Degens & Harris (1997) developed a method based on SIR 506 

where individual substrates are added to intact soil and evolved CO2 is sampled and quantified. 507 

Finally, Campbell et al. (2003) combined aspects of both methods (MicroRespTM) where the 508 

response to carbon substrate addition to soil is measured colorimetrically using a cresol red 509 

indicator dye in a microtitre plate format. 510 

Community level physiological profiling of soils samples collected from all treatments across 511 

the network was conducted to determine the catabolic utilisation profile, turnover and pool 512 

allocation of low molecular weight (LMW) carbon compounds by using a selection of 14C-513 

labelled substrates. This method enabled the attribution of respired CO2 to specific metabolic 514 

processes that facilitates the quantification and qualification of microbial mineralisation 515 

kinetics of substrates varying in structural complexity and recalcitrance. The kinetics of 516 

microbial 14C-CO2 evolution can be described using a first order exponential decay model (Box 517 

4). The number of terms used in the exponential decay model can be used to explain how 518 

microbial kinetics relates time, substrate complexity and carbon pool allocation to, for example,  519 
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rapidly cycled labile soil solution carbon, microbial structural carbon and recalcitrant 520 

extracellular soil organic carbon  (Kuzyakov & Demin 1998; Nguyen & Guckert 2001; Boddy 521 

et al. 2007). Attribution of modelled carbon pool sizes and turnover rates to biological function 522 

are not only time and substrate dependent. Therefore, soil physical, biological and chemical 523 

interactions may be miss attributed to biological function. Indeed, the lack of knowledge and 524 

techniques available to examine the interaction between discrete carbon pools (Glanville et al, 525 

2016). Using the half-life of 14C labelled carbon in soil solution we were able to examine the 526 

environmental gradient of the warming treatment across the climate change network and 527 

identified that temperature becomes rate limiting for microbial uptake of carbon from the soil 528 

solution pool at < 10.5 °C. We also showed that experimentally manipulated warming simply 529 

speeds up the catabolic utilisation of labile LMW carbon in a predictable pattern (Box 4). 530 

 531 

Conclusions and recommendations 532 
 533 

Stable isotope studies provide insightful information about carbon (and nitrogen) fluxes through 534 

the plant-soil-atmosphere continuum with minimal disturbance to the system, and contribute to 535 

advance our understanding of climate change impacts on aboveground-belowground linkages. 536 

However, their application is not exempt from difficulties and disadvantages. To keep a high 537 

caution and avoid mistakes, our collective recommendations for applying the described 538 

methods are provided and addressed in Table 1.  539 

In-situ pulse-labelling studies are powerful to analyse short-term carbon fluxes in the plant-soil 540 

system, but there are major seasonality constraints to the distribution of the label throughout 541 

the ecosystem compartments, i.e. the seasonality of carbon allocation belowground due to 542 

changing plant activity, or the plant health status which determines the amount of tracer entering 543 

the system. A significant challenge was the achievement of sufficient 13C enrichment in 544 

microbial biomass in in-situ 13C-CO2 pulse-labelling studies, where the pools of background 545 

carbon in the studied compartments were high and hence diluted the 13C signal. This was less 546 

of a problem for 14C studies, due to more sensitive analysis methods. 547 

Importantly, field plots previously ‘contaminated’ by highly enriched isotope labelling should 548 

be considered potentially inoperable for further scientific isotope studies using the natural 549 

abundance approach. However, plant and soil structures remain largely undisturbed. In outlook 550 

for setting up a large-scale climate manipulation, areas that have not been previously used for 551 

experimental work with isotopes should consequently be selected. In particular, the ‘bomb-C’ 552 
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method is very sensitive to the contamination of soil or plant samples with 14C-enriched 553 

material, and thus its application should be limited to sites and facilities where no 14C-labelling 554 

work has been conducted. Additionally, it should be noted that any history of fertilization might 555 

also alter the natural isotope abundance of ecosystem compartments (in particular 15N 556 

signatures), potentially confounding experimental results. Furthermore, military training 557 

grounds, public recreational activity and vicinity of traffic are known to potentially contaminate 558 

the soil with ‘artificial compounds’ which might interfere with delicate measurements on HPLC 559 

and GC-MS systems. 560 

Incubation studies with isotope labelled carbon compounds in-situ or in-vitro are relatively fast 561 

to conduct and produce insightful data. The rapid utilisation of labelled substrates by soil 562 

microorganisms, occurring immediately upon application, is a controlling factor for the timing 563 

of the experimental work both at field and lab conditions. Hence, a sampling scheme needs to 564 

be carefully planned before experiment initiation. Furthermore, pre-obtained knowledge of site 565 

specific plant and microbial activity, substrate affinity and natural substrate concentrations is 566 

important for planning any tracer application experiment (Table 1). 567 
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Table 900 

Table 1. Suggestions and advice to consider when applying isotopic methods for the study of 901 

carbon fluxes in the plant-soil system. 902 

Method Expenses (cost) Advice (do’s and don’ts) Before you start Data analysis hint Time spent 

Bomb-C (natural 
14C abundance) 

High (AMS analysis); 
Equipment for CO2 
sampling is relatively 
cheap (closed 
chambers, carbon free 
pump, batteries, and 
molecular sieve 
system). An IRGA is 
also required. 
 

- Avoid materials and labs 
with possible 14C 
contamination 
- If soil CO2 is to be 
analysed in the field, long 
incubation times are 
required to get sufficient 
CO2 for AMS analysis 
(typically >1 ml).   
- Think carefully about the 
soil depths to be analysed, 
and take the sample 
consistently. 14C signatures 
might vary strongly along 
few cm in the soil. 
- If bulk soil 14C is to be 
analysed, try to remove the 
roots as much as possible, 
because of their contrasted 
14C signature. 

- Discuss your 
experimental setup 
and objectives with 
the Radiocarbon 
facility staff. 
- If you are not sure 
about potential 14C 
contamination in your 
lab, use another lab or 
make a swipe test. 
- Plan carefully the 
minimum number of 
samples required, as 
AMS analysis are 
expensive. 
- Make previous trials 
to assess the 
incubation times 
required to get a 
sufficient CO2 sample 
- Go through the 
whole process of 
sample preparation 
with a trial sample. 

- Discuss your 
results with the 
Radiocarbon  
facility staff.  

- Processing time 
depends on the 
type of sample, 
although is 
usually low; 
determination by 
AMS may take 
several months 
depending on the 
facility. 

In situ  13C pulse-
labelling 

13C- enriched 
compounds used for 
labelling and as 
standards are usually 
expensive; 13C 
determination by 
IRMS is much 
cheaper than 14C by 
AMS, although more 
expensive than 14C by 
liquid scintillation 
(14C labelling). 
 

- Consider the target pools 
to be analysed and plan 
your doses consequently. 
Take the potential dilution 
of the label by the 
unlabelled root system or 
soil carbon pool into 
account. 
- Think about the trade-off 
between faster and stronger 
or weaker and longer 13C 
pulses. 
- If your study requires a 
high 13C enrichment, mind 
the potential risk of 
contaminating the site. 
- Avoid above ambient CO2 
concentrations in the 
chamber. 
- If you need to monitor 
CO2 during your pulse, 
remember that IRGAs are 
rather insensitive to 13CO2. 
- High sampling frequency 
immediately after the pulse 
application is 
recommended.  

- Test your chamber 
and tubing materials 
for adsorption / 
desorption effects, and 
ensure these are 
without carbon content 
(use PTFE (Teflon) 
tape, not gluing paper-
based). 
- Make a previous trial 
if possible and go 
through the whole 
process of sample 
preparation. 

Report the label 
addition per area: g 
13C m-2. 

- Pulse labelling 
experiments are 
usually short, but 
intensive. High 
sampling 
frequency after 
the pulse is very 
time-consuming.  
- Sample 
processing 
depends on the 
type of sample 
and number of 
replicates. 
- Experiments 
requiring root 
washing or 
microbial 
compound 
extraction are time 
consuming. 

Natural 
abundance of 
isotopes (13C and 
15N) 

Rather cheap IRMS 
analysis. 

- Make sure the history of 
sampling site is known 
(previous labelling 
experiments?) 
 

- Avoid sample 
contamination. 
- Be aware that FACE 
can dilute the isotopic 
signal, most CO2 
enriched systems use 
13C depleted sources, 

- Make sure the 
experiment is 
feasible with 
sufficient δ13C shift 
and fractionation 
expected to be 
strong enough to 

- Sampling time 
and grinding / 
weighing of 
sample.  
- Analysis usually 
done at dedicated 
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because this is 
cheaper. 

measure, base this 
on known 
discrimination at 
certain points in the 
carbon and nutrient 
cycle. 

natural abundance 
facility. 

14C-substrates Analysis of the 
trapped 14C-CO2 is 
relatively cheap. 

- High risk of contaminating 
lab equipment. 

- You need to work in 
a dedicated 14C lab 
safely away from the 
natural abundance 
facility. 

 - Continue 
sampling until 
decline in 
emission is level, 
this ensures better 
model fit. 

13C-injection in 
situ 

IRMS of dry matter 
plant material and soil 
cheap. 
The GC-c-MS of 
PLFAs for 
determination of 13C-
enrichment of 
individual PLFAs 
requires a specialised 
lab. 

- Contamination risk of 13C 
leaching is present, but 
smaller to our judgement 
than from 13C-CO2 
experiments. 
- Do not use areas dedicated 
to natural abundance work. 

- Labelling intended 
for soil microbial 
components is more 
intense from 13C liquid 
substrate in-situ 
injection than from 
13C-CO2 pulse 
labelling.  

 - Soil sampling is 
destructive, 
consider to have 
several parallel 
plots to harvest an 
undisturbed plot at 
each sampling 
event.  
- Sample handling 
from field work 
until the 
extraction takes a 
few days so plan 
only one sampling 
event per week if 
possible. 
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Box 1. Isotopic signal of plant leaf responses to precipitation 904 

A 905 

             906 

B 907 

 908 

Stable isotopes in aboveground plant material: δ13C and δ15N from isotopic ratio mass 909 

spectrometry (IRMS) analysis of solid samples. A: Leaves and twigs (t) from P. alba (HU), E. 910 

multiflora L. (SP), G. alypum L. (SP) and C. vulgaris (NL); filled circle ● is control, open circle 911 

○ is drought treatment, ▼ is warming treatment. P-values indicate effects of treatment, year, 912 

and the interaction of these factors on 13C or 15N, analysed by two-way ANOVA; ns is non-913 
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significant effect. Number indicates year (2001=1, 2002=2, 2003=3 or 2004=4). Species (site) 914 

differences and annual differences are stronger than treatment effects. B: δ13C of C. vulgaris 915 

versus annual precipitation of the previous year. Within each site, leaf δ13C was higher in the 916 

drought treatment in comparison to control. Across sites, plants from drier sites (lower 917 

precipitation) show higher leaf δ13C values. The response to the drought treatment is the same 918 

as moving to a drier site. 919 

920 
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Box 2. Impact of warming and drought on the 14C signature of soil 921 

respiration 922 
 923 
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Closed dark respiration chambers and a molecular sieve sampling system was used in the field 925 

(UK-PK) to collect CO2 of the soil efflux for the analysis of its 14C signature by Accelerator 926 

Mass Spectrometry (AMS). A: Recent and older carbon sources have contrasting radiocarbon 927 

(14C) signatures as a result of the nuclear bomb tests in the atmosphere during the 1950/60s. 928 

These tests led to a global increase in the 14C content in the atmospheric CO2, which reached 929 

its maximum in ~AD1963. The unit for 14C signature (% Modern) is a measurement of the 930 

deviation of the 14C/12C ratio of a sample from the "Modern" standard, which is defined as 95% 931 

of the radiocarbon concentration (in AD 1950) of a reference material (NBS Oxalic Acid I, 932 

SRM 4990B), adjusted to a δ13C reference value of –19 ‰. B: The 14C signature of the soil 933 

efflux measured at the site (bars, left axis) was highly heterogeneous (ranging from 105.49 to 934 

110.13 % Modern; values of > 100 % Modern suggest that a substantial component (and 935 

potentially all) of the carbon was trapped by photosynthesis during the post-bomb era i.e. since 936 

~AD 1955), with no significant effect of the warming treatment, and a trend towards the release 937 
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of older carbon in the drought plots. On average, the carbon being released from the plots had 938 

been fixed from the atmosphere between six and eight years earlier (line, right axis). Incubations 939 

confirmed that the carbon respired by roots (mostly of V. myrtillus L.) was recently fixed 940 

(similar 14C signature as the atmosphere at the time of sampling), while the carbon released 941 

from root-free soil samples (heterotrophic component) showed a variable range of ages, with 942 

substantial components of pre-bomb carbon (carbon fixed before AD 1955). C: Detail of a 943 

closed static chamber used to collect CO2 from the soil efflux. Air is pumped in a closed loop 944 

from the chamber through a quartz glass cartridge containing a zeolite molecular sieve, which 945 

traps the CO2 allowing it to be returned to the laboratory, recovered by heating, and analysed 946 

by AMS. 947 

948 
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Box 3. Analysing rhizodeposit utilisation by microbes in the field    949 
 950 

 951 

 952 

 953 

 954 

 955 

 956 

 957 

 958 

 959 

 960 

 961 

 962 

 963 

 964 

In-situ pulse-labelling experiments adding 13C-CO2 to closed transparent chambers were used 965 

to study the translocation of the recently-fixed carbon belowground and the rhizodeposition 966 

utilization by microbes, e.g. by measuring 13C incorporation into microbial biomarkers. A: At 967 

the Clocaenog site (UK-CL) this technique was applied along a peat layer gradient. Repeated 968 

pulses of 13C-CO2 were applied during eight hours to C. vulgaris using sealed domes attached 969 

to a core inserted into the ground. B: The incorporation of 13C into soil microbial PLFAs was 970 

analysed. Despite a high applied dose of 13C (99 atom %), the dilution of the tracer within the 971 

large pool of unlabelled root biomass was remarkable, and as a consequence most of the 972 

analysed PLFAs showed no 13C enrichment. C: 13C recovery in Gram negative bacteria after a 973 
13C-CO2 pulse at the Brandbjerg site (DK-BRA). The enrichment pattern in PLFAs attributed 974 

to Gram negative bacteria in soils exposed to drought and elevated CO2 concentration (+120 975 
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ppm) for 8 years show different carbon utilization patterns and magnitudes under imposed 976 

climatic conditions implying changed carbon cycle dynamics. D: Flow-through pulse-labelling 977 

equipment showing the gas reservoir containing 13C-CO2 for up to eight hours of labelling 978 

connected to transparent Plexiglas chambers via tubing. 979 

  980 
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Box 4. Exponential decay kinetics for 14CO2 evolution during microbial 14C 981 

substrate mineralisation  982 
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The catabolic utilisation profile, turnover and pool allocation of low molecular weight (LMW) 987 

carbon substrates was determined in soils collected across the experimental network. A 988 

selection of sixteen 14C labelled amino acids and sugars varying in structural complexity and 989 

recalcitrance were used in a multiple substrate induced respiration (SIR) assay on soil. Evolved 990 

CO2 was collected using NaOH traps and absorbed 14CO2 was measured with a scintillation 991 

counter (Perkin Elmer). The rate at which radiolabelled substrates were metabolised by the 992 

microbial community was used to determine microbial uptake kinetics and turnover in the 993 
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absence of plants (no autotrophic input). A double term first order decay model with an 994 

asymptote described our data best;  995 

tktk eaeayf 21
210

−− ++=     eqn. 1. 996 

where f describes the amount of 14C-labelled substrate or metabolites remaining in the soil at 997 

time t, the asymptote y0 explains the 14C labelled material adsorbed to unavailable soil 998 

complexes or metabolites partitioned into unavailable recalcitrant material, the exponential 999 

coefficient k1 describes the initial rapid uptake and respiration of 14C labelled substrate by the 1000 

microbial community immediately following carbon substrate application, and k2 describes a 1001 

slower secondary mineralisation phase which we ascribed to immobilisation in microbial 1002 

biomass and transformation of organic metabolites (microbial turnover). The terms a1 and a2 1003 

relate to the proportion of 14C labelled substrate that is associated with each exponential 1004 

coefficient at time (t). 1005 

The mean residence time (MRT) or substrate half-life (t1/2) can be calculated according to  1006 

nk
t )2ln(

2
1 =

      eqn. 2. 1007 

The turnover of each pool can then be calculated as the inverse of the MRT (1/MRT).  1008 

 1009 

A: For substrate mineralisation the equation: y = 40.3766 + 48.32160.0230x + 13.18120.0017x fitted 1010 

the data with an r2 of 0.99. Using the coefficients (kn) from the fitted equation, the half-life of 1011 

the substrate can be calculated using eqn. 2. Substrate half-life was in the first phase (soil 1012 

solution uptake) 30 h, and the second slower phase (microbial turnover) 408 h. Approximately 1013 

40 % of the substrate was immobilised in the soil, 48.3 % respired during the first phase, and 1014 

13.2 % respired during the slower second phase. B: Half-life of the substrate in the soil solution 1015 

versus mean annual temperature, in control (triangle) and warming (circle) treatments, data 1016 

points are mean ± SE (n=3). Warming treatment and relative warmer site, simply increases the 1017 

catabolic utilisation of labile LMW-carbon until a threshold mean annual temperature of 11.5 1018 

ºC. 1019 
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