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VOC emissions from the combustion of low grade lignocellulosic waste 

The European Commission in order to reduce the greenhouse gas emissions is 

promoting the usage of renewable energy techniques and the replacement of 

fossil fuels with biomass. It is estimated that two thirds of the renewable energy 

production will be derived by biomass by 2020 (European Commission, 2012). 

However, the increasing need for biomass fuels generates the debate of 

sustainability of biofuels like corn-based ethanol as the impact of the potential 

land use change generates more greenhouse emissions than the emissions which 

can be reduced by its usage. In response to the this concern, the usage of biomass 

wastes for biofuels does not affect the land use changes and therefore improves 

the sustainability potential of biomass fuels (Searchinger et al, 2008). 

Energy recovery by wood waste is considered a non-contributor method to 

greenhouse gas emissions. However, wood waste might contain contaminates 

which could release toxic volatile compounds. Also the produced particulates and 

ash, during combustion, may contain non-volatile compounds such as heavy 

metals (Pitman 2006). This study investigates the gaseous VOC emissions during 

combustion of low grade lignocellulosic waste in order to determine the wood 

wastes suitability as a bio-fuel source. 

Keywords: Wood waste; wood combustion; VOCs; biomass fuel; energy 

recovery; GC-MS; GC-FID 

 

Introduction  

The United Nations Framework Convention on Climate Change met in 1992 to discuss 

the various methods to stabilize the greenhouse gas concentrations in the atmosphere at 

a level of anthropogenic emissions that would not affect the climate system. The 

convention discussed many methods of stabilization of greenhouse gas emissions, 

including the use of green technologies for the generation of energy (wind, solar and 

wave power) and the use of carbon capture and storage (CCS) and the reduction of our 

reliance on fossil fuels.  



Paragraph: use this for the first paragraph in a section, or to continue after an extract. 

In response to the growing concerns around climate change the European Union 

has set a target of reducing the emissions by 80% to 95% from the values of 1990 by 

2050 with an intermediate target of 20% reduction by 2020 (European Commission, 

2012). The European Commission estimates that two thirds of the renewable energy 

production will be derived by biomass by 2020. In a separate attempt to reduce green 

gas emissions and pollution, the EU Landfill directive (1999/31/EC) has resulted in 

increased pressures on National and Regional Governments to divert most wastes from 

landfill. 

Parikka (2004) estimated that the world’s total above ground timber biomass 

reserve to be 420 (109) tonnes and the estimated the global production of wood fuel to 

be approximately 1,634 (106) tonnes with 90% of this was produced in developing 

countries. In contrast, the world production of round wood (1,515 (106) m3) was 

dominated by developed countries. However, of the 1,515 (106) m3 about 40% is 

classed as primary or secondary processing residues and suitable for composites or 

energy production.  

The wood usage in its various applications results in a significant amounts of 

wood waste. The wood waste is produced during multiple stage of its processing 

product cycle; harvesting, processing, manufacture and disposal of final product. The 

wood waste is either recycled or used for energy production. It is estimated that UK 

produces 4.6 million tonnes of wood waste annually (Greenhalf M. and Brown M., 

2012). Wood wastes according to PAS 111:2012 standards are categorised in four 

different grades. Category A is referred to clean without or minimal amounts of 

coatings and fixing which is mainly recyclable. Category B is a mixture of category A 

wood waste and wood derived for construction and demolition activities and solid wood 



furniture waste. Category B is used for recycling and fuel source. Category C wood 

waste contain municipal wood waste, furniture, fencing and wood based panels. 

Because the high content of contaminates including metal, paints, coatings, 

preservatives, glass, glues and rubber which makes the category C wood waste suitable 

only for combustion. The last category D wood waste includes CCA and creosote 

treated wood which is not possible to be reused in any manner. 

The debate around sustainability and the expansion of biomass utilisation (as a 

replacement for fossil-based resources) has tended to focus more on biofuels 

development than biomaterials exploitation to date. Searchinger et al (2008) famously 

highlighted the potential land use change impacts associated with first generation (i.e. 

food crop-based) bio-ethanol development, and since then a wide range of secondary or 

advanced biofuels have been investigated using non-food biomass as a feedstock. Much 

of this research has focused on the exploitation of lignocellulosic material in woody and 

herbaceous biomass (e.g. Kim et al, 2016; Park et al, 2016, Jones et al, 2014; Zhu and 

Pan, 2010) as well as from agricultural residues such as corn stover (e.g. Chen et al, 

2015) and wheat and rice straws (Gonzalez et al, 2011; Han et al, 2015). 

In terms of forestry wood waste, there has been much focus on bio-energy 

development, and on wood pellet markets in particular. Sjølie and Solberg (2011) 

assessed GHG emissions associated with European wood pellet production, and 

McKechnie et al (2011) have considered forest bio-energy in relation to forest carbon 

stores. Their study considered both wood fuel pellets and bio-ethanol production from 

woody biomass, and highlighted the significance of stored carbon in the overall carbon 

balance of the forest bio-energy lifecycles.  

Given the competing pulls on wood waste biomass, Bringezu et al (2012) have 

proposed an approach to account for international timber flows, based on the concept of 



safe operating space. In doing so, they highlighted the need for joined-up biofuels and 

bio-materials policies, calling for the development of sustainable biomass action plans, 

as part of the broader economy-wide sustainability planning process. 

Even though energy recovery from wood waste does not contribute to 

greenhouse gas emissions, it might have other environmental impacts because of the 

contained contaminants which could be released as toxic volatile compounds during 

combustion. The produced particulates and the ash may also contain non-volatile 

compounds such as heavy metals (Pitman 2006). In order to determine the 

appropriateness of wood wastes as a bio-fuel source, this study examines the gaseous 

VOC emissions during combustion.  

Materials and methods 

Materials 

Samples 

The sample wastes which were used in this study were obtained from a waste 

recycling and reprocessing company Greenworld Ltd, Kings Lynn, Norfolk, UK. Four 

different waste materials were subjected to determination of VOC emission compounds 

during combustion. The selected sample wastes were fine flour category C wood waste, 

shredded category C wood waste, paper mill waste and semi-composted wood particles 

from garden waste. The sourced materials were stored as different piles in an open 

space at the wood waste processing facility of Greenworld. 

The category C wood waste, contained coated and treated timber, nails and 

metal fixings, coatings and glues, glass, grit, plastics and rubber. The wood waste was 

shredded on site into particles of 30 cm size. By further processing of the shredded 

category C wood waste, a fine dust which was piled separately was also produced. 



Shredded category C wood waste was collected from the bottom, middle and top of the 

pile and mixed together to best represent any variability within the pile. In order to 

avoid the collection of material containing external contamination, the samples were 

collected from a depth of 50 cm into pile. The same sampling procedure was used to 

collect fine flour category C waste wood and paper mill waste. 

Garden waste derives from civic amenity site or collected from households and 

contains grass cuttings, leaves and woody material. The garden waste is used for soil 

conditioners, mulch, top soil constituent and turf dressing by composting method. The 

larger wood particles which are usually contained in this type of waste, are not easily 

compostable and therefore after the final screening stage of the composting process the 

large un-composted wood particles are collected and piled separately. Those semi-

composted wood particles were also collected from a separate stored pile in the same 

manner as mentioned before. 

The final product of Greenworld is a fine flour free from contaminates. 

Therefore all samples had to be a fine flour before testing. The shredded category C 

wood waste and the semi-composted wood waste were cut into small pieces and any 

possible contaminates (glass and metal) were removed by hand. The small clean sample 

particles were then milled into a fine flour. The paper waste was difficult to be milled 

and therefore was grounded by pestle and mortar. 

Combustion apparatus 

The sample combustion was done with the apparatus presented in Figure 1. The 

samples were placed in ceramic crucibles and combusted in a Carbolite 12/13 oven. The 

smoke was drawn upwards by a venturi vacuum pump with an 80-100 psi of air supply. 

The smoke was forced by the vacuum through a 47 mm Millipore glass fibre filter with 

0.7 μm pore size in order to collect any particulates contained into the smoke. The 



filtered smoke was then driven into a desorption tube containing Tenax TA and 

carboxen 1018 absorbent trap which was collecting the VOCs. 

Tenax TA is a porous material based on 2,6-diphenylene oxide polymer which 

absorbs VOC molecules with a size range of 5 to 20 carbon and carboxen 1018 a high 

purity porous carbon polymer which absorbs VOCs with size rage of 2 to 5 carbons.  

VOC analysis equipment 

In order to identify the chemical composition of the VOCs which were collected 

by the absorbent trap a Clarus 480 Gas Chromatography with Flame Ionization Detector 

(GC-FID) and a Clarus 680 PerkinElmer Gas Chromatography with Mass Spectroscopy 

(GC-MS) were used. 

Methods 

Combustion procedure 

The samples were dried in an oven at 80 oC until constant mass (around 16 hrs) 

to remove the contained moisture which could affect the materials combustion 

properties. The reason of using 80oC instead of 105oC was to ensure that no chemical 

changes will occur during the drying phase. Ceramic crucibles filled with dry samples 

were placed into the furnace and the heat was switched on. When the furnace had 

reached the set temperature it was left running for 5 min before sampling the emissions 

in order to produce sufficient amount of smoke to be collected. The vacuum pump and 

the sorbent trap were assembled separately from the glass filter with the exhaust hood 

and the furnace in order to control the moment of the sampling. The compressor was 

switched on prior sampling to reach full pressure and then placed on the filter for 

sampling. The sampling duration was 1 min. After the first sampling the absorbent trap 



was removed and replaced with a new one and the sampling procedure was repeated for 

another two times in order to produce three replicates for every run. 

The weighed ceramic crucibles were filled with the dry samples and weighed 

again before and after the combustion for the determination of the remained ash. The 

glass filter was also weighed before and after testing in order to determine any possible 

particulate deposition on the filter. 

The combustion temperatures were chosen after a short test in which the 

samples were ignited with firelighters and the temperature was measured by thermal 

couples. The highest temperature (850 oC) was observed at the semi-composted wood; 

the second highest temperature was observed during the combustion of category C 

wood waste while paper had the lowest temperature of 700 oC. Despite the highest 

achieved temperature of each type of waste a few intermediate temperatures were also 

chosen because during the combustion, each waste spent a significant time at these 

temperatures before and after the highest temperature was achieved. In case of paper the 

combustion was fast and therefore only the highest temperature was selected for this 

study. In particular for the category C wood waste the combustion temperatures were 

400 oC, 600 oC and 800 oC. The semi-composted wood was combusted at 500 oC and 

850 oC and the paper waste at 700 oC 

GC-MS analysis method 

The GC-MS analysis was based on solvent desorption of the VOCs which were 

contained in the sorption tubes. Each tube was washed several times with methanol in 

order to ensure that all the trapped VOCs were dissolved. The VOC containing 

methanol solution was then analysed by GC-MS with a DB5 column. The separated 

compounds, where transferred with nitrogen carrier gas, to the GC and MS which were 

further analysed. The compounds were identified by characteristic fragmentation 



patterns and matched against the National Institute of Standards and Technology (NIST) 

mass spectral library. 

GC-FID analysis method 

The VOCs which were trapped in the tenax and the carboxen tubes were 

thermally desorbed into the GC-FID by quickly heating to 200 oC in a stream of 

nitrogen gas. The column which was used was the same type with the GC-MS (DB5 

column). The volatile compounds were released gradually from the sorption tube and 

collected in an internal cold trap at -30 oC. The collected volatile compounds were 

subsequently heated and released onto the GC where they were separated according 

their vapour pressure. The FID further characterised the VOC compounds by the ion 

production during oxygen flame combustion. 

Results and discussion 

GC-MS analysis 

Table 1 presents the GC-MS results of each waste type despite the combustion 

temperature. The reason for this analysis is the qualification of the VOCs according to 

their retention time. The obtained data will be used in combination with the GS-FID for 

the quantification of the combustion products. The values are the matching probability 

percentage with the NIST database. The compounds which are presented in Table 1 

were selected as the highest probability percentage. The less complex emissions were 

observed at both fine and shredded category C wood waste. However, despite the fact 

that both fine and shredded category C wood waste were supposedly derived from the 

same source material there were only two compounds matching in their emissions. 

Those compounds were the pyridine and benzaldehyde which are known to be released 

by plants decomposition and combustion. Therefore, as was expected, those two 



compounds were also observed in the case of semi-composted wood. Both compounds 

are used as industrial solvents. Pyridine which was present in all samples, including 

paper waste, is a hazardous and carcinogenic volatile compound. Benzaldehyde as 

phenol are aromatic compounds that could be derived from contaminants but also from 

lignin. In the fine flour category C wood waste and the paper waste there were phenol 

compounds observed which were absent in the shredded and composted wood waste. 

3,5, dithiahexanol 5,5, dioxide and 6-phenyl tetrahydro 1,3, oxazine-2-thione 4-

methyl were only observed in the case of the fine flour category C wood waste. Those 

compounds might be derived from contaminants and could be more concentrated in the 

case of fine flour in contrast to the other samples. This could be explained by the fact 

that fine flour category C wood waste was industrially produced and therefore, 

contaminates removal could not be achieved at the same efficiency as was done in the 

laboratory with the shredded category C wood waste. 

Naphtho (2, 1-b) furan was only observed in the case of the shredded category C 

wood waste. Another compound which is common in all samples except of the fine 

flour category C wood waste was the Heptane which could be derived from the 

cellulose decomposition. The presence of heptane was expected to be found during 

wood combustion (Mcdonald et al, 2000). Heptane is also used in adhesives, sealants, 

paints and coatings, and is a hazardous toxic substance. Also 2-methyl phenol which is 

also known as o-cresol was present in shredded category C wood waste and paper 

waste. O-cresol is a possible carcinogen and hazardous VOC and is used in adhesives, 

sealants, paints and coatings. 1-methylene-1H-indene was observed in shredded 

category C wood waste and into the semi-composted wood. 

Acetophenone, 2-ethyl-1-hexanol, 3-methyl phenol and 1, 2, 6, 6, 9, 9, 

heptamethyl-10-methyloene-spiro (2, 7) dec-4-ene were only observed in the case of the 



semi-composted wood. Bi-phenyl, which occurs naturally in certain plants and is used 

as plant disease control, was also observed in the semi-composted wood and into the 

paper waste emissions. 

The combustion of paper waste produces several different VOC compounds. 

The large variety of compounds that emitted during the waste paper combustion could 

be explained by the several treatments which occur during paper production, printing 

recycling and deinking. 

GC-FID analysis  

GC-FID analysis revealed that some VOCs elute in shorter time than could be 

identified by GC-MS. The first peak on the GC-MS was appeared after 3.7 min while 

the GC-FID showed peaks from 1.82 min and therefore those peaks could not be 

identified. It is possible that those early eluted compounds which were observed during 

the GC-FID analysis to have been vaporised during the solvent desorption procedure 

which took place at the GC-MS analysis. The individual amounts of the emitted VOCs 

are presented in Table 2, 3 and 4. 

From the GC-FID results it is obvious that the identified VOCs were differ from 

the VOCs observed by GC-MS analysis. This is because of the different temperatures 

used for this analysis. The GC-MS analysis showed the possible produced VOCs during 

combustion without taking into account the temperature that can be achieved by burning 

these waste samples. Therefore, the results of the GC-FID represent the actual VOCs 

which will be produced when using those samples as burning fuels. 

According to Figure 2 it is obvious that the VOCs are reducing at higher 

combustion temperatures. As was expected the volatile compounds were decomposing 

in a pyrolysis procedure to smaller and simpler hydro carbon compounds resulting to 

smaller amount of non-flammable VOCs. Biomass pyrolysis is starting at around 160-



250 oC and as the temperature rises there is more gas production than VOCs and tar 

(Williams et al 2012). It is also interesting that the semi-composted wood showed 

higher amount of VOC between 500 oC and 850 oC than the category wood waste C. It 

was expected that the wood waste would resulted to higher VOCs because of the 

presence of contaminates. However lower temperatures might revealed a complete 

different trend. It is hypothesised that the contained contaminates were pyrolysed in a 

lower than the 600 oC temperature and the low line which appears in Figure 2 derives as 

a statistical error. However it is important to point out that the total amount of emitted 

VOCs by the combustion of category C wood waste was less than half of the amount 

emitted by semi-composted wood. The combusted paper waste at 700 oC seemed to 

produce the highest amount of VOCs in contrast to the other 2 samples. 

Conclusions 

The combustion emissions from category C wood waste appeared to have 

similar VOC compounds with the semi-composted wood. The paper waste showed 

extremely higher variety of VOC compounds in contrast to category C wood waste and 

semi-composted wood waste.  

Some of the highest VOCs amounts were not identified as the compounds were 

only detected by GC-FID and were absent in the GC-MS analysis. It was observed that 

as the temperature increases the total amount of VOCs were reduced. Also compounds 

with lower vapour pressures which were absent in lower combustion temperatures were 

started to emit and the higher vapour pressure compounds slowly fade. It was 

hypothesised that as the combustion temperature increases the VOCs compounds were 

pyrolysed and transformed to higher vapour pressure compounds. 
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Table 1: Emission compounds as detected by GC-MS. The values are the Probability 
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Heptane   74.4% 48% 71% 

3,5, dithiahexanol 5,5, dioxide 36.7%       

α-L-galactopyranoside, methyl 6-deoxy       33.8% 

2-pentanone       54.9% 

Methyl ester-butanoic acid       92.8% 

3-penten-2-one       52.5% 

Pyridine 80.1% 83% 81.4% 63.5% 

2,2, dimethodoxy butane       78.9% 

Toluene       54.8% 

Heptanol       53.2% 

3-hexanone       35.5% 

2-hexanone       80.7% 

Cyclopentanone       51.8% 

1-acetylaldehyde-3-cyclopentene       45.2% 

2-methyl cyclopentanone       60.9% 

1,2 mono acetate ethaneidol       74% 

Ethylbenzene       54% 

6-phenyl tetrahydro 1,3, oxazine-2-thione 4-methyl 28.8%       

2-methyl cyclopenten-1-one       60.9% 

1-(2-furanyl) ethanone       75.7% 

Butyrolactone       66.4% 

Benzaldehyde 53.2% 56% 59%   

Phenol 51.3%     67% 

Benzonitrile       65% 

Benzofuran       49.5% 

Tetrahydro furan-2-carbonyl chloride       43.9% 

2-ethyl-1-hexanol     72.8%   

2-hydroxy benzaldehyde       71% 

2-methyl-phenol   35.6%   53% 

3-methyl-phenol     24.3%   

Acetophenone     16.8%   

2-methoxy phenol       70.4% 

Naphthalene       44.9% 

Azulene       35% 

1-methylene-1H-indene   67.5% 42.2% 
 

Bi-phenyl     43.1% 66.1% 

Dibenzofuran       58.6% 

Naphtho (2, 1-b) furan   73.8%     

1,2,6,6,9,9, heptamethyl-10-methylene-spiro(2,7) dec-4-ene     24.6%   

9-methylene 9-H-flouorene       61.8% 

 

 

 



Table 2: Emitted VOCs by combustion of category C wood waste at temperatures of 

400 oC, 600 oC and 800 oC 

 Temperature 

 800 oC 600 oC 400 oC 

Compound Retention time Area μV sec-1 g-1 Area μV sec-1 g-1 Area μV sec-1 g-1 

Unknown 1.67 0 0 1701.1 

Unknown 1.74 0 36.09 1385.98 

Unknown 1.85 0.75 31.69 1430.09 

Unknown 1.94 184 29.3 1568.93 

Heptane 3.22 0.14 27.4 19.14 

Pyridine 5.19 0.28 6.49 655.35 

Benzaldehyde 13.25 0.26 10.28 0 

2-methyl-phenol 16.57 0.25 48.64 0 

1-methylene-1H-indene 21.13 0.42 56.87 0 

Naphtho (2,1-b) furan 30.79 0.2 2.49 0 

Table 3: Emitted VOCs by combustion of semi-composted wood at temperatures of 500 

oC and 850 oC 

 Temperature 
 

850 oC 500 oC 

Compound Retention time Area μV sec-1 g-1 Area μV sec-1 g-1 

Unknown  1.73 0 249.77 

Unknown  1.79 100.6 161.16 

Unknown  1.98 133.48 313.9 

Heptane 3.24 172.07 291.92 

Pyridine 5.72 26.56 144.71 

Benzaldehyde 13.33 4.72 68.72 

2-ethyl-1-hexanol 16.67 5.66 36.58 

1-methylene-1H-indene 22.61 0.84 2.6 

Bi-phenyl 26.36 0.71 16.79 

 

 

 

 

 

 

 



Table 4: Emitted VOCs by combustion of paper waste at temperatures of 700 oC 

Compound Retention time Area μV sec-1 g-1 

Unknown  1.72 457.66 

Unknown  1.79 659.93 

Unknown  2 172.13 

Heptane 3.24 54.51 

Toluene 5.7 35.84 

2-oxo-3-cyclopentene-acetylaldehyde 8.33 46.85 

Ethylbenzene 9.17 14.89 

Benzofuran 14.46 61.63 

2-methodoxy phenol 18.06 21.2 

Naphthalene 21.08 3.97 

 

 

Figure 1: Schematic presentation of combustion apparatus 
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Figure 2: Total amount of VOCs emitted in different combustion temperatures 
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