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140

141 Abstract

142 1. Currently, the deployment of tracking devices is one of the most frequently used approaches to 

143 study movement ecology of birds. Recent miniaturisation of light-level geolocators enabled 

144 studying small bird species whose migratory patterns were widely unknown. However, 

145 geolocators may reduce vital rates in tagged birds and may bias obtained movement data.

146 2. There is a need for a thorough assessment of the potential tag effects on small birds, as previous 

147 meta-analyses did not evaluate unpublished data and impact of multiple life-history traits, 

148 focused mainly on large species and the number of published studies tagging small birds has 

149 increased substantially. 

150 3. We quantitatively reviewed 549 records extracted from 74 published and 48 unpublished studies 

151 on over 7,800 tagged and 17,800 control individuals to examine the effects of geolocator tagging 

152 on small bird species (body mass <100 g). We calculated the effect of tagging on apparent 

153 survival, condition, phenology and breeding performance and identified the most important 

154 predictors of the magnitude of effect sizes.

155 4. Even though the effects were not statistically significant in phylogenetically controlled models, we 

156 found a weak negative impact of geolocators on apparent survival. The negative effect on 

157 apparent survival was stronger with increasing relative load of the device and with geolocators 

158 attached using elastic harnesses. Moreover, tagging effects were stronger in smaller species.

159 5. In conclusion, we found a weak effect on apparent survival of tagged birds and managed to 

160 pinpoint key aspects and drivers of tagging effects. We provide recommendations for establishing 

161 matched control group for proper effect size assessment in future studies and outline various 

162 aspects of tagging that need further investigation. Finally, our results encourage further use of 
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163 geolocators on small bird species but the ethical aspects and scientific benefits should always be 

164 considered.

165

166 Keywords: condition, migration, phenology, reproduction, return rate, survival, tracking device, tag 

167 effect

168

169 Introduction

170 Tracking devices have brought undisputed insights into the ecology of birds. Use of these tags has 

171 enabled researchers to gather valuable information about the timing of life events across annual cycles, 

172 the year-round geographic distribution of populations and other important ecological patterns in many 

173 species whose movement ecology was widely unknown (e.g. Patchett, Finch, & Cresswell, 2018; Stanley, 

174 MacPherson, Fraser, McKinnon, & Stutchbury, 2012; Weimerskirch et al., 2002). A significant proportion 

175 of recently published tracking studies use light-level geolocators on small bird species (body mass up to 

176 100 g; Bridge et al., 2013; McKinnon & Love, 2018); however, the increasing use of these tags on small 

177 birds raises questions about ethics of tagging and how representative the behaviour of tagged 

178 individuals is (Jewell, 2013; Wilson & McMahon, 2006).

179 Studies using tracking devices such as archival light-level geolocators (hereafter ‘geolocators‘) 

180 frequently report the effect of tagging. The published results on the effects of geolocator tagging are 

181 equivocal: some found reduced apparent survival, breeding success and parental care (Arlt, Low, & Pärt, 

182 2013; Pakanen, Rönkä, Thomson, & Koivula, 2015; Scandolara et al., 2014; Weiser et al., 2016) while 

183 others report no obvious effects (Bell, Harouchi, Hewson, & Burgess, 2017; Fairhurst et al., 2015; 

184 Peterson et al., 2015; van Wijk, Souchay, Jenni-Eiermann, Bauer, & Schaub, 2015). Recent meta-analyses 
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185 evaluating the effects of geolocators (Costantini & Møller, 2013) and other tracking devices (Barron, 

186 Brawn, & Weatherhead, 2010; Bodey et al., 2018) showed slightly negative effects on apparent survival, 

187 breeding success and parental care. These studies also discussed relative load as an aspect affecting the 

188 tagged birds (Costantini & Møller, 2013), or suggested multiple threshold values of relative load on birds 

189 (Barron et al., 2010; Bodey et al., 2018). However, these studies involved mainly large bird species 

190 where the same additional relative load will more negatively affect surplus power and thus the flight 

191 performance than in smaller species (Caccamise & Hedin, 1985). Moreover, previous studies did not 

192 control for the effect of small-sample studies, or phylogenetic non-independence and its uncertainty. 

193 There is thus a lack of systematic and complex evaluation of geolocator effects on small birds including 

194 species’ life-history and ecological traits, geolocator design, and type of attachment.

195 Almost all prior meta-analyses reporting effects of tagging relied only on published sources and 

196 could thus be affected by publication bias (Koricheva, Gurevitch, & Mengersen, 2013), as omitting 

197 unpublished sources in meta-analyses may obscure the result (see e.g. Sánchez-Tójar et al. 2018). The 

198 main source of publication bias in movement ecology could be a lower probability of publishing studies 

199 based on a small sample size, including studies where no or only few tagged birds were successfully 

200 recovered due to a strong tagging effect. Additionally, geolocator effects most frequently rely on 

201 comparisons between tagged and control birds and a biased choice of control individuals may directly 

202 lead to the misestimation of the tagging effect sizes. The bias in the control groups can be due to 

203 selection of smaller birds, birds being caught in different spatio-temporal conditions, including non-

204 territorial individuals, or different effort put into recapturing control and tagged individuals.

205 The number of studies tagging small birds is rapidly increasing each year even though our 

206 understanding of tag effects is incomplete. In this study, we evaluated the effects of tagging on apparent 

207 survival, condition, phenology, and breeding performance for small bird species (<100 g) in a robust 

208 dataset of both published and unpublished studies to minimize the impact of publication bias. 
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209 Moreover, we assess whether the tagging effects are related to species’ ecological and life-history traits, 

210 type of control treatment as well as geolocator and attachment designs. We build on the most recent 

211 advances in meta-analytical statistical modelling to get unbiased estimates of the geolocator 

212 deployment effects controlled for phylogenetic non-independence and its uncertainty (Doncaster & 

213 Spake, 2017; Guillerme & Healy 2017; Hadfield, 2010; Viechtbauer, 2010).

214

215 Predictions

216 i) Geolocators will negatively affect apparent survival, condition, phenology and breeding 

217 performance of small birds.

218 ii) Negative effects will be stronger in unpublished studies than in published studies.

219 iii) Deleterious effects will be most prominent in studies establishing matched control groups compared 

220 to studies with potentially-biased control groups.

221 iv) Geolocators which constitute a higher relative load will imply stronger negative effects. 

222 v) Geolocators with a longer light stalk/pipe will cause stronger negative effects because of increased 

223 drag in flight and thus increased energetic expenditure (Bowlin et al., 2010; Pennycuick, Fast, 

224 Ballerstädt, & Rattenborg, 2012). These effects will be stronger in aerial foragers than in other 

225 foraging guilds (Costantini & Møller, 2013).

226 vi) Non-elastic harnesses will cause stronger negative effects than elastic harnesses, which better 

227 adjust to intra-annual body mass changes and avoid flight restriction (Blackburn et al., 2016).

228

229

230
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231 Material and Methods

232 Data search

233 We conducted a comprehensive search for both published and unpublished studies deploying 

234 geolocators on bird species with body mass up to 100 g. We searched the Web of Science Core 

235 Collection (search terms: TS = (geoloc* AND (bird* OR avian OR migra*) OR geologg*)) and Scopus 

236 databases (search terms: TITLE-ABS-KEY (geoloc* AND (bird* OR migra*) OR geologg*)), to find 

237 published studies listed to 18 February 2018. Moreover, we searched reference lists of studies using 

238 geolocators on small birds and included studies from previous comparative studies (Bridge et al., 2013; 

239 Costantini & Møller, 2013; Weiser et al., 2016). In order to obtain information from unpublished studies, 

240 we inquired geolocator producers and the Migrant Landbird Study Group to disseminate our request for 

241 unpublished study details among their customers and members, respectively. In addition, we asked the 

242 corresponding authors of the published studies to share any unpublished data. The major geolocator 

243 producers – Biotrack, Lotek, Migrate Technology and the Swiss Ornithological Institute – sent our 

244 request to their customers. To find whether the originally unpublished studies were published over the 

245 course of this study, we inspected their status on 1 December 2018. The entire process of search and 

246 selection of studies and records (described below) is presented in a flow-chart (Fig. S1).

247 Inclusion criteria; additional data requesting

248 We included studies that met the following criteria:

249 1. The study reported response variables (e.g. return rates, body masses) necessary for effect size 

250 calculation.

251 2. The study included a control group of birds alongside the geolocator-tagged individuals or reported 

252 a pairwise comparison of tagged birds during geolocator deployment and recovery.
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253 3. As a control group, the study considered birds marked on the same site, of the same sex and age 

254 class without any indication of a difference in recapture effort between tagged and control groups.

255 4. For pairwise comparisons, the study presented correlation coefficients or raw data.

256 5. The variable of interest was presented outside the interaction with another variable.

257 In order to obtain robust and unbiased results, we asked the corresponding authors for missing data or 

258 clarification when the criteria were not met or when it was not clear whether the study complied with 

259 the criteria (70% response rate [n = 115]). In addition, we excluded birds that had lost geolocators 

260 before subsequent recapture as we did not know when the bird lost the geolocator, and excluded all 

261 individuals tagged repeatedly over years because of possible inter-annual carry-over effects of the 

262 devices. VBr assessed all studies for eligibility and extracted data, the final dataset was cross-checked by 

263 JK and PP. A list of all published studies included in the meta-analysis is provided in the Published Data 

264 Sources section.

265 Trait categories; effect size calculation; explanatory variables

266 We divided all collected data into four trait categories: apparent survival, condition, phenology and 

267 breeding performance based on the response variables reported (e.g. inter-annual recapture rates, body 

268 mass changes, arrival dates, or clutch sizes; Table S2). These categories represent the main traits 

269 possibly affected in the geolocator-tagged individuals. Subsequently, analyses were run separately for 

270 each trait category. We calculated the effect sizes for groups of tagged birds from the same study site 

271 and year of attachment, of the same sex (if applicable) and specific geolocator and attachment type 

272 accompanied with the corresponding control groups. For simplicity, we call these units records 

273 throughout the text. For each record, we extracted a contingency table with the treatment arm 

274 continuity correction (Schwarzer, Carpenter, & Rücker, 2014) or mean, variance, and sample size, to 

275 calculate the unbiased standardised mean difference – Hedges’ g (Borenstein, Hedges, Higgins, & 
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276 Rothstein, 2009) – and its variance with correction for the effect of small sample sizes (Doncaster & 

277 Spake, 2018). We used the equation from Sweeting et al. (2004) to calculate variance in pairwise 

278 comparisons. When raw data were not provided, we used the reported test statistics (F, t or χ2) and 

279 sample sizes to calculate the effect size using the R package compute.es (Del Re 2013). Besides the 

280 effect size measures, we extracted additional variables of potential interest – ecological and life-history 

281 traits per species, methodological aspects of the study, geolocator and attachment designs and harness 

282 material elasticity (Table 1).

283 Accounting for dependency

284 We accounted for data non-independence on several levels. When multiple records shared one control 

285 group (e.g. several geolocator types and attachment designs used in one year), we split the sample size 

286 in the shared control group by the number of records to avoid a false increase in record precision. When 

287 multiple measures were available for the same individuals, we randomly chose one effect size measure 

288 in each trait category (n = 8). If the study provided both recapture and re-encounter rates, we chose the 

289 re-encounter rate as a more objective measure of apparent survival. Re-encounters included captures 

290 and observations of tagged birds and thus the bias towards the tagged birds caused by the potentially 

291 higher recapture effort to retrieve the geolocators should be lower. Finally, we accounted for 

292 phylogenetic non-independence between the species and the uncertainty of these relationships using 

293 100 phylogenetic trees (Jetz, Thomas, Joy, Hartmann, & Mooers, 2012) downloaded from the 

294 BirdTree.org (www.birdtree.org) using the backbone of Hackett et al. (2008). Moreover, we used the 

295 random intercepts of species and study sites in all models, the latter to account for possible site-specific 

296 differences (such as different netting effort or other field methods used by particular research teams).

297 Overall effect sizes and heterogeneity
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298 We calculated the overall effect size for each trait category from all available records using meta-

299 analytical null models. We employed the MCMCglmm function from the MCMCglmm package (Hadfield, 

300 2010) to estimate overall effect sizes not controlled for phylogeny (model 1, Table S3). We then used the 

301 mulTree function from the mulTree package (Guillerme & Healy, 2017) to automatically fit a 

302 MCMCglmm model on each phylogenetic tree and summarized the results from all these models to 

303 obtain phylogenetically controlled overall effect size estimates (model 2, Table S3). We used weakly 

304 informative inverse-Gamma priors (V = 1, nu = 0.002) in all models. All fitted MCMCglmm models 

305 converged and Gelman-Rubin statistic was always <1.1 for all parameters. As our data contained many 

306 effect sizes based on small sample sizes, which could lead to a biased estimate of the overall effect size 

307 variance, all effect sizes were weighted by their mean-adjusted sampling variance (Doncaster & Spake, 

308 2018). We considered effect sizes (Hedge’s g) of 0.2, 0.5 and 0.8 weak, moderate and large effects, 

309 respectively. Moreover, we calculated the amount of between-study heterogeneity in all null models 

310 using the equation described in Nakagawa and Santos (2012). Phylogenetic heritability (H2) expressing 

311 the phylogenetic signal was estimated as the ratio of phylogenetic variance (σ2
phylogeny) against the sum 

312 of phylogenetic and species variance (σ2
species) from the models (Table S3; Hadfield & Nakagawa, 2010): 

313 H2 = σ2
phylogeny / (σ2

phylogeny + σ2
species)

314 Multivariate meta-analysis

315 To unveil the most important dependencies of the geolocator effects, we calculated three types of 

316 multivariate models: a full trait model (model 3), an ecological model (model 4) and models of 

317 publication bias (model 5, Table S3). In the full trait model, we used methodological, species, geolocator 

318 specification and attachment variables (Table 1) to estimate their impact on apparent survival (model 3). 

319 We did not compare the tagging effects of different attachment types due to their use in specific groups 

320 of species (e.g. the leg-flagged attachment in shorebirds or the full-body harnesses in nightjars and 
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321 swifts only). Prior to fitting the ecological model, we employed a principal component analysis of the 

322 inter-correlated log continuous life-history traits and extracted the two most important ordination axes 

323 – PC1 and PC2 (Table 1). The PC1 explained 54.4% of the variability and expressed a gradient of species 

324 characterised mainly by increasing body mass, egg mass and clutch mass (Fig. S4). The PC2 explained 

325 18.7% of variance and was characterised mainly by increasing clutch sizes, number of broods and 

326 decreasing migration distances (Fig. S4). These axes together with the categorical ecological traits (Table 

327 1) were then entered into the ecological model to estimate their effect on apparent survival (model 4). 

328 Finally, we tested for differences in effect sizes between published and unpublished results in each trait 

329 category using all available records (model 5). In these models, we employed the rma.mv function from 

330 the R package metafor (Viechtbauer, 2010) weighted by the mean-adjusted sampling error (Doncaster & 

331 Spake, 2018). Continuous predictors were scaled and centred. None of the model residuals violated the 

332 assumptions of normal distribution. Because the phylogenetic relatedness of the species explained only 

333 a small amount of variation and the phylogenetic relatedness correlates with the life-history and 

334 ecological traits, we did not control for phylogeny in the multivariate models but incorporated the 

335 random intercepts of species and study site. We calculated R2 for the full trait and ecological models 

336 using the residual between-study variability (τ2
residual) and the total between-study variability (τ2

total) 

337 according to the equation (López-López, Marín-Martínez, Sánchez-Meca, Van den Noortgate, & 

338 Viechtbauer, 2014): 

339 R2 = (1 – τ2
residual / τ2

total) × 100

340 Publication bias; body mass manipulation 

341 We used funnel plots to visually check for potential asymmetry caused by publication bias in each trait 

342 category (Fig. S5). To quantify the level of asymmetry in each trait category, we applied the Egger’s 

343 regression tests of the meta-analytical residuals from all null models of the trait categories (calculated 
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344 using the rma.mv function) against effect size precision (1 / mean-adjusted standard error; Nakagawa & 

345 Santos, 2012). An intercept significantly differing from zero suggests the presence of publication bias. In 

346 order to find differences in log body mass between the tagged and control individuals during the tagging 

347 and marking, we applied a linear mixed-effect model with species and study site as a random intercept 

348 weighted by the sample sizes. We considered all effect sizes significant when the 95% credible interval 

349 (CrI; using MCMCglmm function) or confidence interval (CI; using rma.mv function) did not overlap zero. 

350 All analyses were conducted in R version 3.3.1 (R Core Team, 2016). 

351

352 Results

353 We assessed 854 records for eligibility of effect size calculation and excluded 36% of these records 

354 mainly due to a missing control group (59% of ineligible records) or missing essential values for effect 

355 size calculation (21%; Fig. S1). Finally, a total of 122 studies containing 549 effect sizes were included in 

356 our meta-analysis wherein 35% effect sizes originated from unpublished sources (Table 2). The vast 

357 majority of the analysed effect sizes originated from Europe or North America (94%; Fig. S6) and the 

358 data contained information about 7,829 tagged and 17,834 control individuals of 69 species from 27 

359 families and 7 orders (Table S7).

360 We found a weak overall negative effect (Hedges’ g: –0.2; 95% CrI –0.29, –0.11; P <0.001) only 

361 on apparent survival in the model not controlled for phylogeny (model 1). Although we found no 

362 statistically significant overall tagging effects in any trait category when controlling for phylogenetic 

363 relatedness, the estimates were similar to those not controlled for phylogeny (model 2, Fig. 1). The 

364 phylogenetic signal (H2 = 59%) was statistically significant only for apparent survival, suggesting that 

365 closely related species have more similar response to tagging than less related species, but the variances 

366 explained by phylogeny and species were very low for all models (Table S8). 
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367 The full trait model of apparent survival revealed that tagging effects were stronger with 

368 increasing load on tagged individuals and that geolocators with elastic harnesses affected birds more 

369 negatively than geolocators with non-elastic harnesses (Table 3, Fig. 2). However, we found no 

370 statistically significant effect on apparent survival for control group type, sex, stalk length, foraging 

371 strategy or the interaction between stalk length and foraging strategy (model 3, Table 3). The ecological 

372 model suggested a relationship of apparent survival with the PC1, with negative effects being stronger 

373 with decreasing body, egg and clutch mass (model 4, Table 3). The full trait model explained 21.1% and 

374 the ecological model 11.8% of the between-study variance. 

375 We did not find any evidence for publication bias in any of the trait categories, either visually in 

376 the funnel plots (Fig. S5), or using Egger’s regression tests (Table 2). Moreover, there were no 

377 statistically significant differences in tagging effects between published and unpublished studies (model 

378 5, Table S9). The geolocator-tagged birds were on average 3.8% heavier than control individuals prior to 

379 the geolocator deployment and marking (LMM: estimate 0.008 ± 0.003, t = 2.47, P = 0.014).

380

381 Discussion

382 Geolocator deployment has a potential to reduce a bird’s apparent survival, condition, breeding 

383 performance, or may delay events of the annual cycle leading to biases in movement data. By 

384 conducting a quantitative review of published studies deploying geolocators on small bird species and 

385 incorporating unpublished data, we revealed only a weak overall effect of geolocators on apparent 

386 survival of tagged birds while we found no clear overall effect on condition, phenology and breeding 

387 performance. Moreover, we found no statistically significant effects of tagging in any of trait categories 

388 when accounting for phylogenetic relationships. Tagging effects on apparent survival were stronger with 
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389 a higher relative load, when the geolocators were attached with elastic harnesses and in small-bodied 

390 species. 

391 Overall tag effects

392 A negative overall effect of geolocator tagging on apparent survival found in this study seems to be 

393 prevalent across previous comparative studies of tagging effects (Barron et al., 2010; Bodey et al., 2018; 

394 Costantini & Møller, 2013; Trefry, Diamond, & Jesson, 2012; Weiser et al., 2016). However, unlike 

395 previous comparative (Barron et al., 2010; Bodey et al., 2018) and primary studies (e.g. Adams et al., 

396 2009; Arlt et al., 2013; Snijders et al., 2017), we found no overall negative effects of tagging on variables 

397 associated with breeding performance in our analysis. We also did not find evidence for overall effects 

398 of tagging on body condition and phenology, which was consistent with equivocal results of previous 

399 studies: some found reduced body condition (Adams et al. 2009, Elliott et al., 2012) or delayed timing of 

400 annual cycle events (Arlt et al., 2013, Scandolara et al., 2014), while others found no evidence for 

401 tagging effects on these traits (Bell et al., 2017; Fairhurst et al., 2015; Peterson et al., 2015; van Wijk et 

402 al., 2015). 

403 Tagged individuals that returned to the study site are potentially in better condition than the 

404 tagged individuals that did not return – this potentially contributes to the weak tagging effects on 

405 condition, phenology and breeding performance. However, the lack of effect we found on phenology 

406 and breeding performance could also be an artefact of the small sample sizes, as collecting these data is 

407 probably more challenging in small avian species, which are more difficult to re-sight and recapture and 

408 have shorter life-spans than the relatively heavier species included in the previous studies. Similarly, 

409 effects of tagging on condition could be underestimated in our analysis due to the initial differences we 

410 found between the body mass of tagged and control birds. Additionally, the intra-annual body mass 

411 changes could be biased in studies where timing of geolocator deployment and geolocator recovery 
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412 differs. Unfortunately, the timing of captures and recaptures was rarely reported and could not be 

413 analysed in our study. Overall, the weak effects of tagging we found support several primary studies 

414 (e.g. Bell et al., 2017; Fairhurst et al., 2015; Peterson et al., 2015; van Wijk et al., 2015), indicating that 

415 geolocator tagging is both ethical and provides credible information on bird movements. On the other 

416 hand, care should be taken as the tagging effect may be specific to populations or species. For example, 

417 Weiser et al. (2016) found a negligible overall effect but significant reduction of return rates in the 

418 smallest species in their meta-analysis. The negative effect of geolocators can also vary between years 

419 (Bell et al., 2017, Scandolara et al., 2014), or be induced by occasional bad weather conditions (Snijders 

420 et al., 2017), or food shortages (Saraux et al., 2011; Wilson et al., 2015). 

421 Inferring unbiased overall effect sizes

422 We minimised publication bias in our estimates of overall effects by including substantial amount of 

423 unpublished results (192 records of 38 species) and contacting authors of published studies for 

424 additional data. Still, some of these studies might get published in the future despite the delay between 

425 our data collation and the final analysis. We did not find any evidence that tagging effects differed 

426 between published and unpublished studies, suggesting that the tagging effect may not be a critical 

427 consideration for publishing a study. 

428 Moreover, we found no support for stronger tag effects in studies with matched control 

429 individuals compared to studies with less strict control treatments. However, this result is potentially 

430 confounded by the fact that tagged birds were on average larger and in potentially better condition than 

431 control birds, which would underestimate the negative effects of tagging. We thus suggest establishing 

432 carefully matched control groups in all future studies to enable a more reliable estimation of tagging 

433 effects. Such a control group should include: i) randomly selected individuals of the same species, sex 

434 and age class; ii) individuals caught at the same time of the season and year; iii) at the same time of the 
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435 day; iv) of similar size and condition as tagged individuals, and v) exclude non-territorial birds or 

436 individuals passing through the site.

437 Influence of relative load and species’ life-histories 

438 Our results support the current evidence (Bodey et al., 2018; Weiser et al., 2016) for reduced apparent 

439 survival in studies with a relatively higher tag load on treated individuals. Moreover, we found an 

440 increasing negative effect in studies tagging smaller species with smaller eggs and clutch masses. The 

441 lower body mass in these species is likely accompanied with a higher relative tag load due to technical 

442 constraints of lower tag weights. Although recent miniaturisation has led to the development of smaller 

443 tags, these tags have been predominantly applied to smaller species instead of reducing tag load in 

444 larger species (Portugal & White, 2018). The various relative loads used without observed tagging effects 

445 (e.g. Bell et al., 2017, Peterson et al., 2015; van Wijk et al., 2015) indicate the absence of a generally 

446 applicable rule for all small bird species (Schacter & Jones, 2017) and we thus recommend the use of 

447 reasonably small tags despite potential disadvantages (e.g. reduced battery lifespan or light sensor 

448 quality).

449 Harness material

450 Contrary to our prediction, we found higher apparent survival in birds tagged with harnesses made of 

451 non-elastic materials. Non-elastic harnesses are usually individually adjusted on each individual, 

452 whereas elastic harnesses are often prepared before attachment to fit the expected body size of the 

453 tagged individuals according to allometric equations (e.g. Naef-Daenzer, 2007). As pre-sized elastic 

454 harnesses cannot match perfectly the size of every captured individual, they may be in the end more 

455 frequently tightly fitted as some researches might tend to tag larger individuals or avoid too loose 

456 harnesses to prevent geolocator loss. Non-elastic harnesses may also be more frequently looser than 

457 elastic harnesses as researchers try to reduce the possibility of non-elastic harness getting tight when 
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458 birds accumulate fat. Tight harnesses significantly reduced the return rates in whinchat (Saxicola 

459 rubetra; Blackburn et al. 2016), and it may be difficult to register whether elastic harnesses are 

460 restricting physical movement of birds when deploying tags. In contrast, non-elastic harnesses, which 

461 are more commonly tailored according to the actual size, are often made sufficiently loose to account 

462 for body mass changes of each individual. Prepared elastic harnesses are usually used to reduce the 

463 handling time during the geolocator deployment (Streby et al. 2015) but this advantage may be 

464 outweighed by the reduced apparent survival of geolocators with tied elastic harnesses. We thus 

465 suggest to consider stress during geolocator deployment together with the potentially reduced apparent 

466 survival and the risk of tag loss when choosing harness material. 

467 Variables without statistically significant impact on tagging effect

468 Migratory distance did not affect the magnitude of the effect sizes, contrasting with some previous 

469 findings (Bodey et al., 2018; Costantini & Møller, 2013). However, none of these studies used 

470 population-specific distances travelled; instead, they used latitudinal spans between ranges of 

471 occurrence (Costantini & Møller, 2013) or travelled distance categorised into three distances groups 

472 (Bodey et al., 2018). These types of distance measurements could greatly affect the results especially in 

473 species that migrate mainly in an east-west direction (Lislevand et al., 2015; Stach, Kullberg, Jakobsson, 

474 Ström, & Fransson, 2016) or in species whose populations largely differ in their travel distances (Bairlein 

475 et al., 2012; Schmaljohann, Buchmann, Fox, & Bairlein, 2012). Moreover, light-level geolocators were 

476 most frequently deployed to the long-distance migrants in our study and the result can be thus 

477 applicable to these species only. 

478 Additionally, we found no overall effect of species’ foraging strategy, contrary to the strong 

479 overall negative effect found for aerial foraging species (Costantini and Møller 2013). Despite the tag 

480 shape altering the drag and thus energy expenditure during flight (Bowlin et al., 2010; Pennycuick et al., 
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481 2012), apparent survival tended to be better in individuals fitted with stalked geolocators and we found 

482 no interaction between stalk length and foraging strategy on the tagging effect size. Geolocators with 

483 longer stalks have been more frequently used in heavier birds with low relative load where the expected 

484 tag effect is weak. Moreover, previous results of strong negative effects in aerial foragers led to a 

485 preferential use of stalkless geolocators in these species and probably minimised the tagging effect in 

486 this foraging guild (Morganti et al., 2018; Scandolara et al., 2015). However, the evidence for the 

487 negative effects in non-aerial foragers is low as there is only one field study focusing on stalk length 

488 effects on the return rates (Blackburn et al., 2016).

489 Future considerations

490 Future studies evaluating the use of geolocators on birds should focus on assessing inter-annual 

491 differences in tagging effects, effects of varying relative loads, different stalk lengths or different 

492 attachment methods to minimise the negative effects of tagging. We also suggest to focus on the impact 

493 of various movement strategies such as fattening and moulting schedules on the tagging effect. All 

494 future studies should carefully set matched controls and transparently report on tagging effects. Finally, 

495 our results encourage use of geolocators on small bird species but the ethical and scientific benefits 

496 should always be considered.
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930 Table 1. Explanatory variables used in the multivariate meta-analysis of apparent survival extracted from 

931 published and unpublished geolocator studies or from the literature. N presents the number of records 

932 specified as the groups of tagged birds from the same study site, year of attachment, of the same sex, 

933 and the specific geolocator and the attachment type accompanied with the corresponding control 

934 groups.

Methodological aspect Description N

Published – data from published studies (for details see 

Methods), data from unpublished sources from years following 

an already published study, or data initially collected as 

unpublished but published by 31 August 2018

303Published data

Unpublished – data from unpublished studies 123

Matched – birds handled in the exactly same way as geolocator-

tagged birds except for geolocator deployment

102Control group

Marked only – birds of the same sex, age, from the same year 

and study site or birds from the same site, from different years

324

Species trait  

Aerial forager 122Foraging strategy1,2

Non-aerial forager 304

Males 195Sex

Females 120

Geolocator specification

Relative load % of geolocator mass (including the harness) of the body mass 

of the tagged birds

418
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Stalk/pipe length* Length (mm) of the stalk/pipe holding the light sensor or 

guiding the light towards the sensor (0 mm for stalkless models)

371

Attachment specification

Attachment type Leg-loop harness

Full-body harness

Leg-flag attachment

304

80

42

Elastic – elastan, ethylpropylen, neoprene, rubber, silicone, 

silastic, or Stretch Magic

235Material elasticity*

Non-elastic – cord, kevlar, nylon, plastic, polyester, or teflon 146

Ecological trait

Great circle distance between geolocator deployment site and 

population-specific centroid of the non-breeding (or breeding) 

range

426

Male body mass (g) 426

Female body mass (g) 426

Nest type – open/close 426

Clutch size (number of eggs) 426

Number of broods per year 426

Dense habitat preference (species occurs especially in dense 

habitats e.g. reeds or scrub) – yes/no 

426

Egg mass (g) – mean fresh mass3 426

Life-histories

Clutch mass (g) – egg mass × clutch size 426

935 * only used for harness attachments 

936 1 Cramp & Perrins, 1977–1994
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937 2 Rodewald, 2015

938 3 Schönwetter, 1960–1992

939

940 Table 2. Number of unpublished effect sizes included in the analysis and Egger’s regression tests of the 

941 null model residuals against their precision to assess the presence of publication bias.

Unpublished (%) Egger’s regression
Trait category

Effect sizes N Intercept t SE P

Apparent survival 28.9 426 0.12 1.53 0.08 0.121

Condition 63.3 79 –0.36 –1.70 0.21 0.088

Phenology 59.1 22 –0.26 –1.28 0.21 0.217

Breeding performance 27.3 22 –0.01 –0.01 0.61 0.993

942

943

944

945

946

947

948

949
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950 Table 3. Summary of the full trait model (n = 281; model 3) and the ecological model (n = 426; model 4) 

951 of the geolocator effects on apparent survival. Levels contrasted against the reference level are given in 

952 parentheses.

Full trait model

Trait Estimate SE Z 95% CI P

Intercept –0.25 0.10 –2.59 (–0.44; –0.06) 0.010

Published (published) 0.14 0.10 1.39 (–0.06; 0.34) 0.164

Control type (matched) –0.05 0.09 –0.61 (–0.23; 0.12) 0.542

Foraging strategy (aerial) –0.09 0.14 –0.61 (–0.36; 0.19) 0.540

Sex (males) –0.07 0.05 –1.30 (–0.17; 0.03) 0.192

Relative load –0.12 0.05 –2.36 (–0.23; –0.02) 0.018

Stalk/pipe length 0.07 0.04 1.77 (–0.01; 0.15) 0.077

Material elasticity (non-elastic) 0.19 0.08 2.21 (0.03; 0.35) 0.026

Foraging strategy (aerial) × stalk length –0.10 0.07 –1.40 (–0.25; 0.04) 0.161

Ecological model

Trait Estimate SE Z 95% CI P

Intercept –0.26 0.08 –3.20 (–0.42; –0.10) 0.001

PC1 0.06 0.03 2.32 (0.01; 0.11) 0.026

PC2 0.02 0.03 0.47 (–0.05; 0.08) 0.638

Dense habitat (yes) 0.03 0.13 0.21 (–0.22; 0.27) 0.834

Nest type (open) 0.14 0.11 1.27 (–0.08; 0.36) 0.205

953
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Figure 1. Overall effects of geolocators in the four trait categories, circles give means, horizontal lines 
represent 95% CrI. Filled symbols present the phylogenetically controlled overall effects, open symbols give 
the value from null models not accounting for phylogeny. N presents the number of effect sizes analysed. 

For the detailed description of the trait categories see Methods and Table S2. 
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Figure 2. Relationship between relative load and the effect of geolocator deployment on the apparent 
survival of tagged birds. Size of the circles reflects the precision (1 / mean-adjusted SE) of the effect sizes, 

the shaded area and dashed lines depict the 95% CI of the regression. 
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SUPPLEMENTARY MATERIALS S1–S8 

Figure S1. Flow-chart showing the study selection process and the number of records used for the effect 

size calculation for both published and unpublished studies. Records are specified as the groups of 

tagged birds from the same study site, year of attachment, of the same sex, and the specific geolocator 

and the attachment type accompanied with the corresponding control groups. 
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Table S2. Overview on trait categories, the corresponding response variables and their description as 

well as the number of studies and the number of records (specified as groups of tagged birds from the 

same study site, year of attachment, of the same sex, and the specific geolocator and attachment type 

having corresponding control groups). 

Trait Response variables Description # studies # records 

Apparent survival Recapture rate Ratio of recaptured 
individuals between years 

59 287 

 Re-encounter rate Ratio of recaptured or re-
sighted individuals 
between years 

40 139 

Condition Change in body mass Inter-annual changes 36 66 
 Feather corticosterone 

level 
 1 11 

 Arrival body condition Body condition index (body 
mass/wing length) 

1 1 

 Flight speed  1 1 

Phenology Arrival date  7 13 
 First egg laying date  6 9 

Breeding 
performance 

Clutch size  4 5 

 Number of fledglings  4 4 
 Hatching success  3 10 
 Brood success (nest with 

at least one fledgling)  
 2 2 

 Inter-annual site fidelity Inter-annual breeding 
dispersal distances 

1 1 
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Table S3. Description of model types used in our analysis and a script to extract the variance explained 

by the random effect terms. Models 1, 2 and 5 were fitted for each trait category, models 3 and 4 for 

apparent survival only.  

Model 1 Null model not 
controlled for 
phylogeny 

MCMCglmm(smd.g ~ 1, random = ~species.tree + lon.lat,  
data = survival, prior = priors1.mev,  
nitt = 250000, burnin = 21000, thin = 10,  
mev = survival$adj.vi) 
  

Model 2 Null model 
controlled for 
phylogeny 

mulTree(mulTree.data = mulTree_data_survival,  
formula = formula_survival, priors = mul_priors_survival, 
parameters = parameters, 
mev=mulTree_data_survival$data$adj.vi,  
output = "Survival_SpPhSi", chains = 2) 
  

Model 3 Full trait model rma.mv(yi = smd.g, V = adj.vi,  
mods = ~ factor(publ) + factor(control.type) + 
factor(aerial) + sex.final + scale(load) + 
scale(stalk.length) + elasticity + 
factor(aerial):scale(stalk.length),  
data = data.full,  
random = list((~1| data.full$species.tree), 
(~1|factor(data.full$lon.lat))),  
test = "z", level = 95, method = "ML") 
  

Model 4 Ecological 
model 

rma.mv(yi = smd.g, V = adj.vi,  
mods = ~ m$scores[,1] + m$scores[,2] + reed.shrub + 
nest.type,  
data = survival,  
random = list((~1| survival$species.tree), 
(~1|factor(survival$lon.lat))),  
test = "z", level = 95, method = "ML") 
  

Model 5 Model of 
publication bias 

rma.mv(yi = smd.g, V = adj.vi,  
mods = ~ factor(publ),  
data = survival,  
random = list((~1| survival$species.tree), 
(~1|factor(survival$lon.lat))),  
test = "z", level = 95, method = "ML") 

 

Script for heterogeneity extraction:  
Anim.survival <- (posterior$phylogeny) 
Spec.survival <- (posterior$species) 
Site.survival <- (posterior$site) 
Wei.survival <- (posterior$wei) 
Res.survival <- (posterior$res) 
sum.survival.het <- (Anim.survival+Site.survival+Spec.survival+Res.survival) / 
(Anim.survival+Site.survival+Spec.survival+Res.survival+Wei.survival) 
summary(sum.survival.het) 
Sum.survival <- (Anim.survival+Site.survival+Spec.survival+Res.survival+Wei.survival) 
summary(Anim.survival/Sum.survival) 
summary(Site.survival/Sum.survival) 
summary(Spec.survival/Sum.survival) 
summary(Res.survival/Sum.survival) 
Heritability.survival <- Anim.survival / (Anim.survival + Spec.survival) 
mean(Heritability.survival) 
quantile(Heritability.survival, probs = c(0.025, 0.975)) 
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Figure S4. The two most important ordination axes from a principal component analysis (PC1 and PC2), 

explaining the largest proportion of variability among continuous life-history traits (male and female 

body mass, egg mass, clutch mass, number of broods per year, clutch size and distance travelled 

between the breeding and non-breeding grounds; Table 1) for all 69 species included in the analysis. PC1 

and PC2 explained 54.4 % and 18.7 % of the variability, respectively. 
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Figure S5. Funnel plots presenting the effect size (Hedges’ g) against the inverse of the mean-adjusted 
sampling error in four trait categories. Solid lines present phylogenetically controlled overall effect size 
and dotted lines 95% CrI. Publication bias in the dataset is indicated by asymmetry of the funnel-shaped 
scatterplot (Koricheva, Gurevitch, & Mengersen, 2013).  
 

 

 

 

 

 

Page 55 of 59

Journal of Animal Ecology: Confidential Review copy

Journal of Animal Ecology: Confidential Review copy



Figure S6. Location of the study sites included in the analysis.  
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Table S7. Orders, families, species (Hackett et al. 2008) and number of records in each trait category for 

each species included in our analysis. Records are specified as the groups of tagged birds from the same 

study site, year of attachment, of the same sex, and the specific geolocator and the attachment type 

with the corresponding control group.  
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Caprimulgiformes Apodidae Apus apus 14 3 0 0 

  Tachymarptis melba 64 5 0 0 

 Caprimulgidae Caprimulgus europaeus 2 1 0 0 

Cuculiformes Cuculidae Coccyzus americanus 2 0 0 0 

Charadriiformes Charadriidae Charadrius hiaticula 2 1 0 0 

  Charadrius leschenaultii 2 0 0 0 

 Scolopacidae Calidris alba 5 0 0 0 

  Calidris alpina 16 2 2 3 

  Calidris mauri 3 0 0 1 

  Calidris pusilla 16 0 0 5 

  Calidris temminckii 4 1 0 0 

  Phalaropus lobatus 1 0 0 0 

Bucerotiformes Upupidae Upupa epops 2 1 1 1 

Coraciiformes Meropidae Merops apiaster 15 3 0 0 

Piciformes Picidae Jynx torquilla 4 0 0 0 

Passeriformes Acrocephalidae Acrocephalus agricola 4 0 0 0 

  Acrocephalus arundinaceus 27 1 6 0 

  Acrocephalus paludicola 1 1 0 0 

  Acrocephalus scirpaceus 15 1 0 0 

 Calcariidae Calcarius lapponicus 2 0 0 0 

 Emberizidae Emberiza hortulana 15 3 0 0 

  Emberiza melanocephala 3 1 0 0 

 Fringillidae Carpodacus erythrinus 2 1 1 0 

  Loxia curvirostra 0 1 0 0 

  Plectrophenax nivalis 1 0 0 0 

 Hirundinidae Delichon urbicum 1 0 0 0 

  Hirundo rustica 21 23 5 5 

  Progne subis 11 2 0 0 

  Riparia riparia 8 0 0 0 

  Tachycineta bicolor 3 5 0 0 

 Icteridae Dolichonyx oryzivorus 8 2 0 0 

  Euphagus carolinus 4 0 0 0 

  Icterus bullockii 1 0 0 0 

 Laniidae Lanius collurio 0 1 0 0 

  Lanius ludovicianus 10 0 0 1 
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Table S7 (continued). Orders, families, species (Hackett et al. 2008) and number of records in each trait 

category for each species included in our analysis. Records are specified as the groups of tagged birds 

from the same study site, year of attachment, of the same sex, and the specific geolocator and the 

attachment type with the corresponding control group. 
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Order Family Species     

 Locustellidae Locustella luscinioides 5 0 0 0 

 Mimidae Dumetella carolinensis 1 0 0 0 

 Motacillidae Anthus campestris 2 1 1 1 

 Muscicapidae Ficedula albicollis 4 3 0 0 

  Ficedula hypoleuca 16 0 2 0 

  Ficedula semitorquata 4 0 0 0 

  Luscinia megarhynchos 7 4 0 0 

  Luscinia svecica 4 2 0 1 

  Muscicapa striata 3 0 0 0 

  Oenanthe cypriaca 2 0 0 0 

  Oenanthe oenanthe 33 1 1 3 

  Phoenicurus phoenicurus 2 0 0 0 

  Saxicola rubetra 9 0 0 0 

 Parulidae Dendroica kirtlandii 1 1 0 0 

  Dendroica striata 1 0 0 0 

  Seiurus aurocapilla 2 0 0 0 

  Vermivora chrysoptera 4 1 1 1 

 Passerellidae Chondestes grammacus 1 0 0 0 

  Melospiza melodia 2 0 0 0 

  Passerculus sandwichensis 8 0 0 0 

  Passerella iliaca 1 1 0 0 

  Zonotrichia albicollis 2 0 0 0 

  Zonotrichia atricapilla 3 2 0 0 

 Passeridae Passer hispaniolensis 1 0 0 0 

 Sturnidae Sturnus philippensis 2 0 0 0 

 Sylviidae Phylloscopus sibilatrix 2 0 0 0 

 Turdidae Catharus bicknelli 2 0 0 0 

  Catharus fuscescens 1 0 0 0 

  Catharus guttatus 2 1 0 0 

  Catharus ustulatus 1 1 0 0 

  Hylocichla mustelina 2 0 0 0 

  Turdus migratorius 1 0 0 0 

 Tyrannidae Elaenia albiceps 5 2 2 0 

 Vireonidae Vireo olivaceus 1 0 0 0 
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Table S8. Heterogeneity proportions explained by the random effects (%), total between-study 

heterogeneity (%) and phylogenetical heritability (%; 95% CrI) for both phylogenetically controlled and 

uncontrolled null models of each of the four trait categories. 

Model Site Species Phylogeny Residual Total Heritability 

Apparent survival phylogeny 5.7 1.4 2.2 13.1 22.4 58.5 (15.1–92.6) 
Apparent survival 6.1 1.6 – 13.5 21.2 – 
Condition phylogeny 3.0 4.8 4.4 1.8 14.0 46.8 (5.1–94.1) 
Condition 3.3 4.8 – 2.0 10.1 – 
Phenology phylogeny 4.7 5.3 6.5 2.5 19.0 52.3 (5.0–96.5) 
Phenology 5.3 5.5 – 2.7 13.5 – 
Breeding performance phylogeny 19.0 12.3 12.1 10.0 53.4 45.7 (1.6–98.4) 
Breeding performance 22.1 16.2 – 10.5 48.8 – 

 

 

Table S9. Summary of the publication bias models for each trait category. Reference levels for treatment 

contrasts are unpublished results. Sample sizes are in parentheses.  

Trait category Trait Estimate SE Z 95% CI P 

Apparent survival Intercept –0.17 0.08 –2.21 (–0.33; –0.02) 0.027 

(426) Published –0.02 0.09 –0.20 (–0.20; 0.16) 0.838 

Condition Intercept 0.02 0.07 0.33 (–0.12; 0.17) 0.739 

(79) Published –0.06 0.12 –0.52 (–0.29; 0.17) 0.603 

Phenology Intercept 0.03 0.18 0.14 (–0.32; 0.37) 0.888 

(22) Published –0.20 0.21 –0.93 (–0.61; 0.22) 0.353 

Breeding performance Intercept 0.27 0.43 0.63 (–0.57; 1.11) 0.531 

(22) Published –0.61 0.50 –1.23 (–1.58; 0.36) 0.219 
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