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Summary  17 

1. We are in the Anthropocene – an epoch where humans are the dominant force of planetary 18 

change. Ecosystems increasingly reflect rapid human-induced, socioeconomic and cultural 19 

selection rather than being a product of their surrounding natural biophysical setting. This 20 

poses the intriguing question: to what extent do existing ecological paradigms capture and 21 

explain the current ecological patterns and processes we observe?  22 

 23 
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2. We argue that, although biophysical drivers still influence ecosystem structure and 24 

function at particular scales, their ability to offer predictive capacity over coupled social-25 

ecological systems is increasingly compromised as we move further into the Anthropocene. 26 

 27 

3. Traditionally, the dynamics of coral reefs have been studied in response to their proximate 28 

drivers of change rather than their underlying socioeconomic and cultural drivers. We 29 

hypothesise this is limiting our ability to accurately predict spatial and temporal changes in 30 

coral reef ecosystem structure and function. 31 

 32 

4. We propose ‘social-ecological macroecology’ as a novel approach to a) identify the 33 

interactive effects of biophysical and socioeconomic and cultural drivers of coral reef 34 

ecosystems across spatial and temporal scales, b) test the robustness of existing coral reef 35 

paradigms, c) explore whether existing paradigms can be adapted to capture the dynamics of 36 

contemporary coral reefs, and d) if they cannot, develop novel coral reef social-ecological 37 

paradigms, where human dynamics are part of the paradigms rather than the drivers of them. 38 

 39 

5. Human socioeconomic and cultural processes must become embedded in coral reef 40 

ecological theory and practice as much as biophysical processes are today if we are to predict 41 

and manage these systems successfully in this era of rapid change. This necessary shift in our 42 

approach to coral reef science will be challenging and will require truly interdisciplinary 43 

collaborations between the natural and social sciences. 44 

 45 

Key-words: Anthropocene, coral reef, ecology, macroecology, prediction, scale, social-46 

ecological macroecology, social-ecological systems 47 

 48 
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Introduction 49 

Natural biophysical gradients such as wave energy, primary production, and seawater 50 

temperature drive coral reef ecosystem structure and function across multiple scales and 51 

trophic levels, from microbes (Kelly et al. 2014) and plankton (Gove et al. 2016), to corals 52 

(Gove et al. 2015) and fish assemblages (Heenan et al. 2016). However, human impacts such 53 

as fishing (Edwards et al. 2014), nearshore nutrient enrichment (D’Angelo & Wiedenmann 54 

2014), sedimentation (Wolanski, Martinez & Richmond 2009), and the warming and 55 

acidifying of our oceans (Albright et al. 2016; Hughes et al. 2018a) are pushing the 56 

environmental boundary conditions defined by natural biophysical drivers on many coral 57 

reefs globally. Furthermore, the distal socioeconomic and cultural drivers underlying these 58 

proximate impacts, such as trade, consumer demands, human migration, and carbon dioxide 59 

emissions, are all predicted to increase (Norström et al. 2016; Hughes et al. 2017). This 60 

presents a new reality where the majority of coral reefs will increasingly reflect human-61 

induced, socioeconomic and cultural drivers rather than being a product of their long-term 62 

natural biophysical setting. How we study and describe reef ecology must include this 63 

paradigm shift in thinking if we are to predict and manage their dynamics effectively.  64 

We propose an approach that will identify how key biophysical, socioeconomic and 65 

cultural drivers of reefs interact across scales to drive coral reef ecosystem patterns and 66 

processes. In doing so, this approach will arm us with the predictive capacity required to 67 

manage coral reef dynamics in this era of rapid change. We start by reviewing how natural 68 

biophysical drivers influence reefs, from dictating the dominance, behaviour, and trophic 69 

ecology of individual reef organisms, through to governing the spatial ecology of reef 70 

communities across the seascape. We then highlight how human socioeconomic and cultural 71 

drivers have become an important structuring force of contemporary coral reefs at particular 72 

scales. In doing so, we underline our lack of understanding regarding the degree biophysical, 73 
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or human socioeconomic and cultural drivers dominate depending on the scale of 74 

observation, suggesting macroecological approaches as a potential solution. Finally, we 75 

question whether traditional coral reef paradigms capture this new interwoven reality and 76 

stress the need for a ‘socio-ecological macroecology’ approach to develop paradigms for 77 

coral reefs in the Anthropocene.  78 

 79 

Biophysical drivers: setting natural bounds on coral reef ecosystems  80 

By studying coral reefs in remote locations with limited direct human influence, we 81 

have learnt how coral reefs respond to, and are shaped by gradients in biophysical drivers 82 

such as wave energy, primary production, and seawater temperature (Fig. 1). High wave 83 

energy environments, for instance, can promote the dominance of low-lying benthic 84 

organisms such as turf algae, crustose coralline algae, and encrusting corals that are less 85 

vulnerable to physical dislodgement (Geister 1977; Gove et al. 2015). In contrast, lower 86 

wave energy environments tend to favour more structurally complex benthic communities, 87 

dominated by three-dimensional calcifying corals and upright macroalgae (Williams et al. 88 

2013; Aston et al. 2018). Such increases in substrate complexity are often positively related 89 

to reef fish density and biomass (Graham & Nash 2012) due to increased refuge from 90 

predation (Rogers, Blanchard & Mumby 2014), and as such waves can indirectly mediate 91 

predator-prey dynamics on reefs. Across the Pacific Ocean, for example, the biomass of 92 

grazing herbivorous fishes peaks at islands with moderate wave exposure where the largest 93 

edible algal mass for these fishes tends to occur (Heenan et al. 2016). Wave energy can also 94 

influence reef fish community structure through interactions with fin morphology and 95 

swimming performance (Fulton, Bellwood & Wainwright 2005), with high wave energy 96 

environments capable of impacting the feeding success of some fishes and thus key 97 

ecosystem functions like herbivory (Bejarano et al. 2017).  98 
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Natural gradients in nutrient concentrations and primary production have predictable 99 

effects on coral reef ecosystems (Gove et al. 2016). For example, tropical islands located in 100 

more productive regions of the Pacific Ocean support a greater number of microbes with 101 

nutrient-related metabolisms (e.g., nitrate and nitrite ammonification) (Kelly et al. 2014), an 102 

increased cover of calcifying benthic organisms (Williams et al. 2015a), and a greater 103 

biomass of grazing herbivorous, planktivorous, and top-predatory fishes (Nadon et al. 2012; 104 

Williams et al. 2015b; Heenan et al. 2016). Gradients in nutrients and primary production 105 

also exist at smaller scales around individual islands. For example, when deep subsurface 106 

waves interact with bathymetry around islands they break and can pump water up through the 107 

thermocline. These so-called ‘internal waves’ can raise nutrient concentrations in the 108 

shallows (Leichter, Stewart & Miller 2003; Wang, Dai & Chen 2007; Aston et al. 2018), 109 

which in turn can promote heterotrophic feeding and growth rates in corals (Leichter & 110 

Salvatore 2006; Fox et al. 2018; Williams et al. 2018), and ultimately drive broad spatial 111 

transitions in benthic functional group dominance around islands (Aston et al. 2018). Coral 112 

reefs are also hydrodynamically connected by additional physical processes such as lagoonal 113 

outflow and surface downwelling that can move allochthonous nutrient sources between reef 114 

habitats (Williams et al. 2018) and, in the absence of confounding local human impacts, 115 

enhance reef productivity and function (Graham et al. 2018). 116 

Seawater temperature is another key determinant of coral reef persistence and 117 

function. Most coral reef ecosystems occur in waters with a seasonal minimum sea-surface 118 

temperature of 18°C (Kleypas, McManus & Menez 1999). Marginal reef communities can 119 

form in waters below 22°C, and this can be explained by the interacting effect of temperature 120 

with light, nutrients, and aragonite saturation (Couce, Ridgwell & Hendy 2012). Bounded 121 

within these temperature limits, gradients in seawater temperature influence the dominance 122 

and life history of individual reef organisms. For example, hard coral cover 123 
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decreases at lower temperatures, while macroalgae become more prevalent with latitudinal 124 

and cyclical seasonal drops in temperature (Glenn, Smith & Doty 1990; Fulton et al. 2014; 125 

Williams et al. 2015a). Browsing herbivorous fishes become more dominant in cooler waters, 126 

while warmer waters support an increased biomass of detritivorous fishes (Floeter et al. 127 

2005; Hoey, Pratchett & Cvitanovic 2011; Heenan et al. 2016). Fish body size also varies 128 

predictably with temperature. Body size is inversely related to temperature due to the 129 

increased growth rate, earlier maturation, and shorter life span of individuals at higher 130 

temperatures (Atkinson 1994; Trip et al. 2008; Taylor, Trip & Choat 2018).  131 

These natural constraints on a reef’s biophysical and functional form do not act in 132 

isolation and appear predictable in the absence of confounding local human impacts 133 

(Williams et al. 2015a). However, anthropogenic activities have become a dominant driver of 134 

coral reef ecosystems across a broad range of socioeconomic and cultural contexts, increasing 135 

the complexity of drivers and their interactions that govern ecosystem state (Fig. 2). 136 

 137 

Socioeconomic and cultural drivers: a new reality for coral reefs  138 

The footprint of human activity is evident on coral reefs at all trophic levels. Fishing 139 

has dramatically reduced overall fish biomass on coral reefs (Williams et al. 2011; MacNeil 140 

et al. 2015; Graham et al. 2017), with an emphasised loss of herbivores (Edwards et al. 2014) 141 

and top predators (Sandin et al. 2008; Valdivia, Cox & Bruno 2017; Cinner et al. 2018) and 142 

thus the key ecosystem functions they perform. Fishing can also disrupt the basic physiology 143 

and behavior of target species, including the sex change dynamics (Taylor 2014) and flight 144 

responses of reef fishes (Januchowski-Hartley et al. 2012), both of which have the potential 145 

to affect overall reef ecosystem function (Madin et al. 2010).  146 

Land-use change alters sedimentation regimes and nutrient input to reefs (Wolanski, 147 

Martinez & Richmond 2009). In conjunction with fishing (McClanahan et al. 2003), these 148 
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effects can favour the competitive superiority of fleshy algae (Barott et al. 2012) to ultimately 149 

promote their overall dominance (Smith, Hunter & Smith 2010; Smith et al. 2016). Dredging 150 

and plastic pollution are increasing coral disease prevalence on reefs (Pollock et al. 2014; 151 

Lamb et al. 2018), which in turn contributes to a loss of live coral cover and reduced reef 152 

calcification rates. Humans are also re-structuring coral reef microbial communities (Kelly et 153 

al. 2014), and promoting the abundance of disease-causing bacteria and viruses (Dinsdale et 154 

al. 2008). Remarkably, human-introduced invasive rats can lower fish growth rates and levels 155 

of herbivory on reefs by predating on seabirds that would otherwise deliver offshore nutrient 156 

subsidies to shallow waters bordering the islands (Graham et al. 2018).  157 

Globally, human-induced warming of the ocean is resulting in increasingly frequent 158 

mass coral bleaching events (Hughes et al. 2018a) that are transforming coral assemblages 159 

(Hughes et al. 2018b) and in some cases causing regime shifts to fleshy macroalgae (Graham 160 

et al. 2015). In combination with human-induced ocean acidification (Albright et al. 2016), 161 

these shifts in benthic composition have broader ecosystem effects, from compromising the 162 

growth of reef structures (Perry et al. 2013; Perry et al. 2018) to changing the diversity, 163 

abundance, and behaviour of other reef-associated organisms (Keith et al. 2018; Richardson 164 

et al. 2018; Stuart-Smith et al. 2018). Hence, myriad interconnected human drivers are 165 

rapidly changing the structure and function of reefs (Pendleton et al. 2016). 166 

The proximate human impacts to reefs described above are, themselves, ultimately 167 

dictated by underlying distal socioeconomic and cultural drivers, such as global trade, 168 

markets and finance, as well as the movement and behavioral choices of people and their 169 

associated demands on coastal resources (Kittinger et al. 2012; Hicks et al. 2016a; Norström 170 

et al. 2016) (Fig.2). While the coral reef research community has made significant advances 171 

in measuring the response (decline) of coral reef ecosystems to these distal socioeconomic 172 

and cultural drivers, we have not done so intentionally in an a priori manner.  Instead, we 173 
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have indirectly measured their effect by studying their emergent proximate impacts, such as 174 

commercial and recreational fisheries (Fig. 2). We hypothesise this is limiting our ability to 175 

accurately predict spatiotemporal changes of contemporary reef ecosystems. We further 176 

suggest that these human socioeconomic and cultural drivers can combine to become such a 177 

dominating structuring force of reef ecosystem state that they overwhelm any influence of a 178 

reefs’ surrounding natural biophysical setting. Williams et al. (2015a) tested this hypothesis 179 

by quantifying the relationship between coral reef benthic communities and gradients in 180 

biophysical drivers across Pacific islands that spanned a gradient of human density. At 181 

island-mean scales, they demonstrated that biophysical drivers were able to strongly predict 182 

coral reef ecosystem state when human density was low, but that these relationships were lost 183 

or fundamentally altered when human population density increased. We propose that this loss 184 

of predictive power over reef ecosystem state will be regained when human socioeconomic 185 

and cultural variables are instead fully integrated into analyses and used as predictors in the 186 

modeling framework. Further, we argue that implementing a multi-scaled macroecology 187 

approach will provide a more nuanced understanding of how biophysical, socioeconomic, 188 

and cultural drivers interact across spatial and temporal scales to influence coral reef patterns 189 

and processes. 190 

Work has begun to address the crucial data and knowledge gaps linking the structure 191 

and function of natural ecosystems to the distal socioeconomic and cultural drivers that 192 

underpin their proximate drivers of change. Examples include the socioeconomic drivers of 193 

biodiversity loss and societal response capacities of hyperdiverse tropical ecosystems 194 

(Barlow et al. 2018), quantitative data on land grabbing and the international trade of coral 195 

reef resources (Norström et al. 2016), and the increasing amount of social science 196 

quantitative indicators people can use in social-ecological systems research and sustainability 197 

science (Hicks et al. 2016b). These types of data can improve our ability to predict the 198 
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dynamics of natural ecosystems (Hicks et al. 2016a), including coral reefs. For example, 199 

distance to markets is a better predictor of the condition of reef fisheries than local human 200 

population densities in the vicinity of the reefs (Cinner et al. 2013). Further, combining travel 201 

times to reefs, as a measure of their accessibility (Maire et al. 2016), with human population 202 

sizes within a given distance, produces a metric known as ‘gravity’, which is a stronger 203 

predictor of fisheries exploitation on any given reef than human population density alone 204 

(Cinner et al. 2016; Cinner et al. 2018). When reef fisheries are quantified as either doing 205 

better (bright spots) or worse (dark spots) than expected given their natural biophysical 206 

bounds, it is human socioeconomic and cultural data such as customary taboos, marine 207 

tenure, and levels of local engagement in management, that are able to better predict the two 208 

outcomes (Cinner et al. 2016). We highly advocate these recent approaches and anticipate 209 

that unless we start to more routinely monitor, decipher, and account for socioecological links 210 

across scales we will become unable to predict spatiotemporal changes to coral reef 211 

ecosystem dynamics. We need to move to a point where we are integrating this thinking in to 212 

new ecological theories and paradigms that explicitly insert humans in to the equation across 213 

scales. As such, we require a new multi-scaled macroecological approach to coral reef 214 

ecology that is aligned with our current time, i.e., the Anthropocene. 215 

 216 

Looking to the future: coral reef ecology in the Anthropocene  217 

The past century has seen an evolution in ecological thinking, with theories and 218 

frameworks continuously updated and refined based on our ever-increasing understanding of 219 

natural systems. Coral reef science is no exception. Early theories and descriptions of the 220 

origins, structure, and distribution of coral reefs (Darwin 1842) were extended to encompass 221 

a more mechanistic, ecological, and process-based understanding of these diverse ecosystems 222 

(Odum & Odum 1955). Concurrently, the broad field of ecology was evolving across 223 
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multiple terrestrial and aquatic systems. The longstanding Clementsian view of unidirectional 224 

ecological succession (Clements 1936) gave way to an appreciation of more complex 225 

interacting processes governing ecosystem dynamics and non-equilibrium theory (Odum 226 

1969; Whittaker 1970). Concepts of ecological resilience then developed (Holling 1973) and 227 

were later directly applied to non-equilibrium systems like coral reefs (Connell 1978; 228 

Nyström, Folke & Moberg 2000). More recently, resilience theory has expanded to embrace 229 

a social-ecological systems framework that explicitly treats humans as internal rather than 230 

external to the system (Berkes & Folke 1998; Biggs et al. 2012). These works have given rise 231 

to a range of ecological paradigms that have formed our views on what defines coral reef 232 

ecosystems, what shapes them, and how they function.  233 

What is now unequivocal is that human imprints can be observed at all biophysical 234 

scales, across all levels of biological organisation, and in the processes upon which ecological 235 

theories rest, such as species dispersal, colonisation, invasion, extinction, isolation, tolerance, 236 

and competition (Ellis 2015). Acknowledging that humans have emerged as a significant 237 

force in nature, “natural” biophysical processes that previously determined the assembly, 238 

dynamics, structure and functional ecology of ecological communities, may now be 239 

overwhelmed by anthropogenic activities (Fig. 2). This new situation poses an intriguing 240 

question: to what extent do traditional ecological paradigms capture and explain the 241 

ecological patterns and processes we observe in the Anthropocene?  242 

The unprecedented breakdown of isolation by human migration and trade has caused 243 

dramatic changes to the dispersion and diversity of species globally (Meyerson & Mooney 244 

2007; Westphal et al. 2008; Banks et al. 2014), with both positive and negative impacts to 245 

ecosystem services (Charles & Dukes 2007; Pejchar & Mooney 2009; Schlaepfer, Sax & 246 

Olden 2011). This loss of isolation is potentially compromising the explanatory and 247 

predictive power of traditional ecological models. For example, when Helmus et al. (2014) 248 
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investigated the species–isolation relationship for anole lizards among Caribbean islands they 249 

found that anole biogeography reflects anthropogenic processes, such as economic isolation 250 

of human populations, rather than geographic processes postulated in traditional island 251 

biogeography theory. Similar perturbations to the effectiveness and relevance of traditional 252 

ecological models and paradigms are likely occurring in the ocean. 253 

In the marine environment, humans have influenced species biogeography by the 254 

unintentional and intentional introduction of species through transport and trade. Examples 255 

include ballast water release from cargo ships, aquaculture, and the aquarium industry 256 

(Padilla & Williams 2004). Moreover, we have created artificial ‘islands’ that are no longer 257 

static stepping-stones, but instead, float and move. Human-derived flotsam is providing a 258 

dispersal mechanism for tropical Atlantic fishes to cross the deep-water Mid-Atlantic Barrier 259 

(Luiz et al. 2012) and is facilitating alien species invasions (Gregory 2009). Floating plastic 260 

waste harbours distinct microbial assemblages, the so-called ‘Plastisphere’ (Zettler, Mincer & 261 

Amaral-Zettler 2013), with this unique biotope providing a mechanism by which disease-262 

causing pathogens of reef corals spread in the Anthropocene (Lamb et al. 2018). Recent 263 

biophysical dispersal models have even offered the provocative suggestion that human 264 

infrastructure, such as oil and gas installations across the North Sea, can form a highly inter-265 

connected regional network of coral ecosystems capable of supplying larvae to natural 266 

populations downstream (Henry et al. 2018). In these instances, to fully understand and be 267 

able to predict the observed ecological dynamics at play requires a new strategy. The human 268 

socioeconomic and cultural processes governing such modifications to species dispersal and 269 

diversity must become an integral part of ecological theory and practice as much as 270 

biological and geophysical processes are today (Ellis 2015; Österblom et al. 2017). 271 

The pervasive global influence of humans in governing the spatial dynamics of 272 

ecological systems requires new theoretical advances to study, define, and sustainably 273 
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manage them (Herrick & Sarukhán 2007; Mumby & Steneck 2008; Hulme-Beaman et al. 274 

2016; Rose et al. 2016; Cadotte et al. 2017). Coral reefs are no exception; they face a new 275 

reality with their dynamics governed by cross-scale interacting biophysical and human 276 

socioeconomic and cultural drivers (Norström et al. 2016; Hughes et al. 2017) (Fig. 2) and 277 

we question whether traditional coral reef paradigms accurately capture this complexity. 278 

Moving forward, humans (and their activities) must become an integral part of coral 279 

reefs and their dynamics. For this purpose, we propose ‘social-ecological macroecology’ as a 280 

novel concept for studying coral reefs in the 21st century. This approach embeds 281 

macroecology – the study of organism-environment relationships at large spatial and 282 

temporal scales (Brown & Maurer 1989; Keith et al. 2012; Heffernan et al. 2014), within a 283 

social-ecological systems framework. In doing so, social-ecological macroecology explicitly 284 

inserts the presence, behaviour, dynamics, and ecology of the human species into the 285 

equation, and does so across spatial and temporal scales. We stress the critical role of a 286 

macroecology approach – the scale of observation directly influences the ecological 287 

finding(s), their interpretation, and their subsequent use in guiding coral reef management.  288 

Taking a social-ecological macroecology approach to studying coral reefs will require 289 

some innovative thinking and we suggest four core pathways to this approach: 290 

 291 

1. Identify the interactive effects of biophysical and human socioeconomic and 292 

cultural drivers of coral reef ecosystems across spatial and temporal scales. This 293 

will improve our predictive capacity, such that we understand how changing one 294 

parameter, either biophysical, socioeconomic or cultural, at any specific scale 295 

interacts with other drivers at other scales to alter coral reef ecosystem structure and 296 

function.  297 

 298 
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2. Test the robustness of classic coral reef paradigms. We need to revisit and test 299 

whether classic ecological paradigms developed, in many instances, outside of the 300 

social-ecological systems framework, are still able to capture the dynamics of 301 

Anthropocene reefs accurately.  302 

 303 

3. Adapt current coral reef paradigms.  If classic paradigms fail to capture the 304 

spatiotemporal dynamics of reefs today accurately, we should explore whether 305 

adapting these paradigms, by including human dynamics as drivers, substantially 306 

improve their predictive capacity.  307 

 308 

4. Develop novel coral reef social-ecological paradigms. In some cases, adapting 309 

existing coral reef paradigms may not be enough; we will need to develop novel rules 310 

and theories to create ‘social-ecological paradigms,’ where human dynamics are part 311 

of the paradigms rather than the external drivers of them.  312 

 313 

We will need to continually re-visit and test the performance of any of the adapted or 314 

novel paradigms developed under this approach due to the unprecedented rate of social and 315 

ecological change in the Anthropocene. In following these guidelines, coral reef ecologists 316 

should be able to identify, at any given spatial or temporal scale of observation, which 317 

interacting predictors (biophysical, socioeconomic or cultural) offer the best predictive 318 

capacity over coral reef ecosystem structure and function.  319 

 320 

Conclusions 321 

We remain convinced that human social, cultural and economic processes must 322 

become an integral part of ecological theory and practice as much as biological, geological 323 
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and physical processes are today. This warrants a revisiting of traditional coral reef 324 

ecological paradigms and theories and either adapting them so that they capture 325 

contemporary dynamics of intertwined social-ecological systems, or developing novel social-326 

ecological theories. This will be challenging and will require truly interdisciplinary 327 

collaborations between researchers in the natural and social sciences.  328 

 329 
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Figures and figure legends 674 

 675 

 676 

Figure 1. Examples of the natural bounds set by gradients in biophysical drivers on coral reef 677 

ecosystem structure and function across trophic levels, from microbes to sharks. 678 
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 683 

 684 

Figure 2. Drivers of coral reef ecosystems pre- and post- Anthropocene. Before coral reefs 685 

entered the Anthropocene, their ecosystem state was heavily governed by natural biophysical 686 

drivers, even in the presence of small subsistence-based human populations (left). This is still 687 

the case for some remote, uninhabited coral reef islands and atolls that are far removed from 688 

direct human impacts. However, many coral reefs today are impacted by local human drivers, 689 

such as commercial and recreational fishing and effluent discharge from land (right). 690 

Importantly, these proximate drivers of reef ecosystem state are themselves ultimately dictated 691 

by a complex network of underlying socioeconomic and cultural drivers (right). The 692 

biophysical drivers are still present on Anthropocene reefs, but their relative influence in 693 

governing reef ecosystem state is likely greatly reduced. Because of this, we propose the need 694 

for ‘social-ecological macroecology’ which embeds macroecology – the study of organism-695 

environment relationships at large spatial and temporal scales, within a social-ecological 696 

systems framework. 697 
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