Analysis of nanorice structure formed by hydrolysis reaction of FeCl3 with KH2PO4
Armstrong, Oliver; Thomas, P. John

Published: 01/08/2018

Publisher's PDF, also known as Version of record

Dyfyniad o’r fersiwn a gyhoeddwyd / Citation for published version (APA):
Armstrong, O., & Thomas, P. J. (2018). Analysis of nanorice structure formed by hydrolysis reaction of FeCl3 with KH2PO4. Poster session presented at 7th EuCheMS Chemistry Congress, Liverpool, United Kingdom.

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Analysis of nanorice structure formed by hydrolysis reaction of \(\text{FeCl}_3 \) with \(\text{KH}_2\text{PO}_4 \).

Oliver L. Armstrong, P. John Thomas

chue20@bangor.ac.uk School of Chemistry
Bangor University, Bangor, Gwynedd, Wales, UK LL57 2UW

Forced Hydrolysis Process

The method of producing hematite in this process involves the precursor \(\text{FeCl}_3 \) being dissolved in aqueous solutions, with a small addition of \(\text{KH}_2\text{PO}_4 \) and heating at 100°C, for between 12-72 hours.\(^{(1)}\) The length of time heating correlates closely with both the shape of the hematite particles produced and their aspect ratio. The process proceeds by a forced hydrolysis of \(\text{Fe}^{3+} \) to form an orthophosphate group and the hematite product.\(^{(2)}\) The use of \(\text{KH}_2\text{PO}_4 \) in this method is important to ensure the morphological structure of the formed particles as a nanorice elliptical shape.\(^{(3)}\)

TEM studies

HRTEM images have confirmed to us the nanorice shape of our formed hematite particles. Some HRTEM images have also confirmed to us that these particles are of a single crystal structure. The lattice constants have been found to be in close agreement to calculated values for hematite, with crystal planes (121), (011), (111) and (112) being identified. We also attained EDX maps of the nanorice, confirming the particles were indeed a mix of iron and oxygen. The particles were found to be 500nm in length and around 100nm width at widest point, giving an aspect ratio of 5. Very little variation in size and shape of particles was observed between batches.

Raman Spectroscopy

Our produced iron oxide particles have been analysed by raman spectroscopy. When comparing our spectra against published spectra, both calculated and observed, there is a close fit for that of hematite confirming our produced particles have a chemical structure of \(\alpha-\text{Fe}_2\text{O}_3 \).\(^{(4)}\) This will have implications to properties of the particles such as density, hardness and magnetism.

XRD studies

Our diffractograms are found to be similar to published data of hematite, with key peaks found at certain degree points. XRD data builds a definite crystal structure of the sample by measuring electron density of the crystal structure at a range of angles. The peaks found at 24.4, 33.3, 35.9, 41.1, 49.6 and 54.2 degrees indicate a close correlation to published data.\(^{(5)}\) The radiation source used was Copper Kα with a wavelength of 1.541Å.

Analysis Conclusions

In conclusion the nanorice shaped \(\text{Fe}_2\text{O}_3 \) particles have been studied by a variety of techniques, which all confirm the crystal structure to be that of hematite. We have proven the high morphological control of the method with close to monodisperse populations of nanorice of 500nm in length. A combination of these resolved properties means we can have highly controlled dispersions of magnetic particles.

References