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Abstract 

Hydraulic traits are important for woody plant functioning and distribution. Associations 

among hydraulic traits, other leaf and stem traits, and species’ performance are relatively well 

understood for trees, but remain poorly studied for lianas. We evaluated the coordination 

among hydraulic efficiency (i.e. maximum hydraulic conductivity), hydraulic safety (i.e. 

cavitation resistance), a suite of 8 morphological and physiological traits, and species’ 

abundances for saplings of 24 liana species and 27 tree species in wet tropical forests in 

Panama. Trees showed a strong trade-off between hydraulic efficiency and hydraulic safety, 

whereas efficiency and safety were decoupled in lianas. Hydraulic efficiency was strongly 

and similarly correlated with acquisitive traits for lianas and trees (e.g. positively with gas 

exchange rates and negatively with wood density). Hydraulic safety, however, showed no 

correlations with other traits in lianas, but with several in trees (e.g. positively with leaf dry 

matter content and wood density and negatively with gas exchange rates), indicating that in 

lianas hydraulic efficiency is an anchor trait because it is correlated with many other traits, 
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while in trees both efficiency and safety are anchor traits. Traits related to shade-tolerance 

(e.g. low specific leaf area and high wood density) were associated with high local tree 

sapling abundance, but not with liana abundance. Our results suggest that different, yet 

unknown mechanisms determine hydraulic safety and local-scale abundance for lianas 

compared to trees. For trees, the trade-off between efficiency and safety will provide less 

possibilities for ecological strategies. For lianas, however, the uncoupling of efficiency and 

safety could allow them to have high hydraulic efficiency, and hence high growth rates, 

without compromising resistance to cavitation under drought, thus allowing them to thrive 

and outperform trees under drier conditions.  

 

Keywords: drought tolerance, functional traits, hydraulic conductivity, hydraulic 

architecture, plant-water relations, lianas, Panama, P50, species abundance, tropical forest 

 

Introduction 

Hydraulic efficiency, safety and associated traits are important in determining tree species’ 

functioning (Sterck et al. 2011, Cosme et al. 2017) and response to drought (Rowland et al. 

2015, Anderegg et al. 2016), and may therefore be important for predicting future shifts in 

tree species’ performance and distribution (Anderegg et al. 2012). We know, however, little 

about hydraulic traits and their relationships with other traits and performance for lianas. 

Understanding associations and trade-offs among such traits, and whether these differ 

between lianas and trees, will enhance our understanding of growth strategies, functioning 

and distribution of liana and tree species. 

High hydraulic efficiency (e.g. high sapwood-specific maximum hydraulic 

conductivity) is associated with high photosynthetic efficiency (Brodribb et al. 2004, 

Santiago et al. 2004) and, hence, allows species to grow rapidly (Poorter 1999), especially in 
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moist, high-light environments. However, tissue investments that enhance hydraulic 

efficiency, such as wide and long vessels that are associated with low wood density, usually 

decrease hydraulic safety (Lens et al. 2011, Markesteijn et al. 2011b), which may be one of 

the factors preventing these species from occurring in dry areas. There is mixed support for a 

trade-off between hydraulic efficiency and safety for trees, with some studies showing a 

trade-off (Hacke et al. 2006, Markesteijn et al. 2011b, De Guzman et al. 2016) where others 

do not (Gleason et al. 2015, Santiago et al. 2018). However, empirical comparisons of the 

tradeoffs in functional traits between lianas and trees are not common. Lianas generally have 

lower hydraulic safety and wood density due to less investment in supporting stem tissues, 

and higher hydraulic efficiency (Zhu and Cao 2009, van der Sande et al. 2013, De Guzman et 

al. 2016). If for lianas hydraulic efficiency is not constrained by hydraulic safety (i.e. no 

trade-off), then lianas could have high conductivity and remain photosynthetically active 

without being very vulnerable in dry conditions, which could then contribute to explaining 

why lianas tend to become relatively more abundant towards seasonal forests (Schnitzer 

2005). To our knowledge only one study has assessed the relationship between efficiency and 

safety for lianas and trees. De Guzman et al. (2016) found a trade-off between hydraulic 

efficiency and safety among six liana and six tree species in a seasonally dry tropical forest in 

Panama, which appeared similar for lianas and trees (Santiago et al. 2015). However, they did 

not formally test for differences between lianas and trees in the efficiency-safety trade-off.  

Apart from the trade-off between hydraulic efficiency and hydraulic safety, several 

studies have shown that physical and ecological limitations can also impose trade-offs and 

synergies of hydraulic traits with other traits. For example, species with high hydraulic 

efficiency also have high gas exchange rates, which contributes to an acquisitive life history 

strategy of fast resource acquisition, growth and tissue turnover (Santiago et al. 2004). Hence, 

hydraulic efficiency may be positively related with traits related to an acquisitive growth 
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strategy (photosynthetic efficiency, stomatal conductance, specific leaf area) and transporting 

tissue morphology (maximum vessel length). Species with high hydraulic safety, however, 

have low gas exchange rates and other traits related to a conservative life history strategy of 

resource conservation and slow growth and tissue turnover (Markesteijn et al. 2011b). 

Hydraulic safety may therefore be related to traits that comprise a conservative growth 

strategy (high leaf dry matter content, wood density, water use efficiency, and Huber value). 

Although liana and tree seedlings have generally similar life-history trade-offs (Gilbert et al. 

2006), they may differ in associations of hydraulic traits with other morphological and 

physiological traits such as wood density, vessel length and photosynthetic efficiency, and in 

the relationship between traits and their local abundance. 

Here, we evaluate the associations among hydraulic efficiency, hydraulic safety (here 

measured as cavitation resistance, i.e. xylem potential at 50% loss of hydraulic conductivity; 

P50), a suite of relevant physiological and morphological traits (wood density, maximum 

vessel length, Huber value, water use efficiency, specific leaf area, leaf dry matter content, 

leaf photosynthetic efficiency, and stomatal conductance), and abundance for saplings of 24 

liana and 27 tree species from two tropical moist forests in Central Panama. We ask three 

questions. First, do lianas and trees differ in the trade-off between hydraulic efficiency and 

hydraulic safety? We expected that, although lianas and trees may differ in their average trait 

values because of less investment in supporting tissue for lianas, the classical trade-off 

between hydraulic efficiency and safety would be similar between lianas and trees, as traits 

that promote efficiency (e.g. wide and long vessels) should reduce safety regardless of life 

form. Second, do lianas and trees differ in associations of hydraulic efficiency or safety with 

other physiological and morphological traits? We expected hydraulic efficiency to be 

positively related with maximum vessel length, photosynthetic efficiency, stomatal 

conductance and specific leaf area, and negatively to leaf dry matter content and wood 
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density, water use efficiency, and Huber value (sapwood area / leaf area) (Fig. 1a). Based on 

the trade-off between efficiency and safety, we expected hydraulic safety to be oppositely 

related to these variables. We expected that both hydraulic efficiency and safety are ‘anchor’ 

traits, i.e. traits that are strongly correlated to other traits because of their importance for plant 

functioning. Third, how are these traits related to the abundance of tree and liana saplings in 

wet tropical forests? We expected that shade tolerant species of lianas and trees with 

conservative trait values (e.g. high wood density and low specific leaf area) would be more 

abundant in these relatively dense and wet forests. Hydraulic safety would be less important 

because species are rarely water limited and experience low hydraulic risk, and hydraulic 

efficiency would be less important because of low light conditions and low transpiration rates 

in the understory. 

 

Material and Methods 

 

Forest sites 

We collected data from saplings of liana and tree species in two forest sites in Central 

Panama; San Lorenzo and Soberania national parks. We included these two sites to expand 

the range in life history strategies among our focal species and test for the generality of the 

results (Condit et al. 2000, Engelbrecht et al. 2007). In San Lorenzo, data were collected 

along the road leading to the Smithsonian Tropical Research Institute’s Canopy Crane (9° 16’ 

51.71” N, 79° 58’ 28.27” W), and in Soberania along Pipeline road (9° 8' 11.54" 

N, 79° 43' 24.71" W), near the Gamboa Research facilities. We collected individuals along 

roads growing under similar light levels. Both forests have a distinct dry season: San Lorenzo 

national park is located on the Caribbean coast and receives 3203 mm rainfall per year at the 

canopy crane site (140 m.a.s.l.), with a 3-month dry season (<100 mm rainfall per month) 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

from January until March. Pipeline road, which crosses the Soberania national park, is 

located near the center of the Isthmus of Panama and the area where we undertook our 

sampling (70 m.a.s.l.) receives approximately 2311 mm rainfall per year, with a 4-month dry 

season (<100 mm rainfall per month) from mid-December until mid-April. Mean annual and 

monthly rainfall was calculated from 20–80 year rainfall records in a network of rainfall 

stations (Steve Paton, pers. comm.). We will refer to the Soberiana forest as the ‘moist’ 

forest, and to San Lorenzo as the ‘wet’ forest because of their differences in rainfall. Both 

sites have clayey soils with a pH around 5 (Turner and Engelbrecht 2011), and a mean annual 

temperature of 26 °C. Due to rapid species turnover across the rainfall gradient (Condit 

1998), focal species largely differed among sites. 

 

Species selection 

In this study, we analyzed plant hydraulic traits for liana and tree species. We selected these 

species based on variation in life history strategies (mainly for trees, data for lianas are rare), 

and variation in growth form for lianas. 13 tree and 13 liana species were collected from San 

Lorenzo national park, and 16 tree and 13 liana species from Soberania national park. From 

the 10 liana species from Soberania national park for which we had growth form information, 

half were self-supporting and half were structural parasite in the sapling stage (see van der 

Sande et al. 2013). For the other species we lacked this information. Results on differences in 

traits between lianas and trees based on the species from Soberania national park were 

published earlier (van der Sande et al. 2013). Two tree and two liana species were collected 

in both forest sites, and all other species were unique to the sites. Hence, in total we collected 

data for 51 species: 27 tree and 24 liana species. We focused on saplings between 1.5 and 2 m 

tall because of the importance of the regeneration stage for species adaptations (Poorter 

2007), their limited root system may cause potentially stronger water limitation and, hence, 
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increase the importance of hydraulic traits. Moreover, destructive sampling was not feasible 

for adult individuals, and seedlings often have undifferentiated xylem conduits that are 

impossible to measure. Per species per site, we selected 5 individuals. Collected saplings of 

lianas and trees were growing in similar intermediate to high light environments along 

unpaved forest roads, in order to minimize potential phenotypic trait variation caused by 

differences in environmental conditions. Field sampling took place between February and 

July 2011 (i.e. in the dry season). 

 

Hydraulic efficiency and safety 

For 3-4 randomly selected individuals per species, we measured maximum xylem-specific 

conductivity (i.e. hydraulic efficiency) after removing xylem embolisms, and xylem 

cavitation resistance (i.e., hydraulic safety) using the pressure sleeve method (Cochard et al. 

1992, Salleo et al. 1992). The aboveground shoots of saplings were harvested from the field 

between 8:00 and 10:00AM, stored in a large, dark cooler to avoid excessive dehydration and 

transported to a laboratory for further processing. Lateral branches and leaves were cut from 

the main stem and cuts were sealed with instant Loctite® super glue. Stems were re-cut under 

distilled water, and distal ends were trimmed with a razorblade to clear any blocked vessels. 

The stems were cut to a length 10% longer than the maximum vessel length (MVL; see ‘Trait 

measurements’) to avoid open vessels that can affect measurements of hydraulic conductivity 

(on average the stems were 84 cm long). We took caution to avoid open vessels, because 

these can lead to overestimation of the vulnerability curves when using the pressure sleeve 

method (Martin-StPaul et al. 2014). The bark was removed from about 1 cm of the shoot 

ends. While submerged, the shaved basal end of the stem was wrapped in Parafilm (Pechiney 

Plastic Packaging, Chicago, IL, USA) and connected to a manifold of hysteresis-resistant 

Polytetrafluoroethylene (PTFE) tubing, holding up to five stems at a time. With all stems in 
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place the manifold was attached to a Scholander pressure chamber (Model 600; PMS 

Instrument, Albany, NY, USA) at 150 kPa overhead pressure filled with a flow solution of 10 

mmol potassium chloride (KCl) in distilled, degassed and filtered (0.2 µm) water. Stems were 

flushed for at least 30 min to remove xylem emboli, after which the manifold was attached to 

an overhead water reservoir (Sperry et al. 1988), supplying the same flow solution to the 

stems at 5 kPa for 10 min before measuring conductivity. Three repeated measurements were 

taken to assure that conductivity had reached a steady flow and measured as the time needed 

to fill 1 ml of a fine grated serological pipette. Solution injection always followed the 

direction of natural water flow in the plant, from base to the top. 

Subsequently, we determined cavitation resistance by applying increasing air pressure 

(i.e. to mimic tissue desiccation) using a pressure sleeve (PMS Instrument, Albany, NY, 

USA; Cochard et al. 1992, Salleo et al. 1992) to the stem and measuring the conductivity. 

After pressurizing, stems were left to rest for 10 min with both ends under water, after which 

they were re-connected to the low pressure head flow-system and conductance was measured. 

This sequence was repeated with increasing sleeve pressures, using steps of 0.5 MPa if 

conductivity declined fast, and steps of 1 or 2 MPa if conductivity declined slowly (see 

Appendix S1-4), until conductance had declined by more than 90%. From these 

measurements, we constructed one sigmoidal vulnerability curve per species (Cochard et al. 

2013), with loss in hydraulic conductivity as a function of xylem water potential (see 

Appendix S1-4). We constructed these curves using Nonlinear Least Squares regression 

analyses using the nls function in R. Loss in hydraulic conductivity (in %) was calculated as: 

100 – (Kx/Kmax * 100), in which Kx is the conductance (mol s
-1

 MPa
-1

) measured after 

pressurizing and Kmax the maximum hydraulic conductance measured after flushing. From the 

vulnerability curves, we calculated the xylem potential at 50% loss of hydraulic conductivity 

(P50). P50 is the most commonly used measure to characterize cavitation resistance or xylem 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

safety. We also calculated the xylem potential at 12 and 88% loss of hydraulic conductivity 

(i.e. P12 and P88, respectively), because these are sometimes used as alternative measures of 

xylem safety (Domec and Gartner 2001, Choat et al. 2012, Gleason et al. 2015) P50 (and P12 

and P88) values were multiplied by -1 so that high values indicate high cavitation resistance 

and low values indicate low cavitation resistance. Maximum sapwood-specific hydraulic 

conductivity (Ks; mol m
-1

 s
-1

 MPa
-1

) was calculated by dividing maximum hydraulic 

conductivity (Kmax; in mol s
-1

 MPa*m, where m refers to the length of the stem) by the 

sapwood area in m
2
 (see ‘Trait measurements’), and the maximum leaf-specific hydraulic 

conductivity (Kl) by dividing Kmax by the total leaf area above the apical cut in m
2
. Results of 

Ks and Kl were qualitatively similar, and therefore results of Ks will be presented in the 

manuscript and of Kl in an appendix. Ks indicates the optimization of wood hydraulic 

function per xylem volume, and does not necessarily affect total water transport. Sapwood 

area was estimated after removing the bark and subtracting the pith, and measured with a 

calliper. All transversal wood area was considered to be functional because of the young age 

of the plants. We will refer to P50 multiplied by -1 (i.e. resistance to cavitation) as “hydraulic 

safety”, and to the maximum sapwood-specific hydraulic conductivity as “hydraulic 

efficiency”. 

 

Trait measurements 

For all 5 individuals per species, additional morphological and physiological whole plant, 

stem and leaf traits were collected; wood density (WD; g cm
-3

), maximum vessel length 

(MVL; cm), Huber value (Hv; sapwood area / leaf area; cm
2
 cm

-2
), specific leaf area (SLA; 

cm
2
 g

-1
), leaf dry matter content (LDMC; g g

-1
), leaf area-specific photosynthetic efficiency 

(Aarea; μmol m
-2

 s
-1

), stomatal conductance (Gs; mmol m
-2

 s
-1

), and water use efficiency 

calculated as Aarea/Gs (WUE; μmol mol
-1

). These traits were included because they represent 
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the leaf, stem, and whole plant economic spectra (Wright et al. 2004, Chave et al. 2009, Díaz 

et al. 2015), are important for species’ growth rate and ecological strategy (Poorter et al. 

2008, Wright et al. 2010) and often correlated with hydraulic traits in trees (Santiago et al. 

2004, Markesteijn et al. 2011b, 2011a). High Huber values are associated with a conservative 

strategy because low leaf area reduces transpiration, and narrow xylem vessels that reduce 

cavitation risk have relatively more vessel wall tissue, which increases sapwood area. 

Leaf traits were determined on a pooled sample of five leaves per individual, and stem 

traits were determined based on one stem sample per individual, excluding the bark. WD, 

SLA and LDMC were measured according to general protocols (Perez-Harguindeguy et al. 

2013). The Hv was calculated as the sapwood area at the upper distal cut divided by total leaf 

area it supported. MVL was measured with the air injection method (Greenidge 1952); we 

pressurized the stems at 1–1.5 bar and re-cut them under water, about 1 cm at a time, until air 

bubbles emerged, indicating that the longest vessel element had been opened and found. We 

used MVL as a proxy for mean vessel length, as the two are strongly correlated (Jacobsen et 

al. 2012), and because of its relation with other important life history traits (Markesteijn et al. 

2011b). Physiological traits (Aarea, gs and WUE) were determined on five different 

individuals per species in the field at the start of the wet season. Maximum photosynthesis 

per unit leaf area (Aarea) and stomatal conductance (gs) were measured between 7:00 and 

11:00 using a LI-COR 6400xt (Li-Cor, Lincoln, NE, USA) at an irradiance of 1,000 μmol s
−1

 

m
−2

. For more details about collection and measurements of these morphological and 

physiological traits, see Van der Sande et al. (van der Sande et al. 2013). 

Species’ abundance data 

To obtain the abundance of the liana and tree species, we used four existing 1 ha forest plots 

(two moist forest plots and two wet forest plots) adjacent to the respective areas where we 

sampled the liana and tree hydraulics and traits. These four 1 ha plots are part of a larger set 
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of eight plots that span the rainfall gradient across the Panamanian Isthmus and that were 

established in 2013 with grant funding from the UK Natural Environment Research Council 

(NERC) to Prof Owen Lewis, and faculty startup funds to Dr Liza Comita. In each of the 1-

ha forest plots, established seedlings and saplings (≥20 cm tall and <1 cm dbh) were censused 

and measured multiple times between 2013 and 2017 in 400 seedling plots of 1 m
2
 placed at 

5 m intervals in each 1 ha plot (N = 1600). Data from the last census of the seedlings and 

saplings in January 2017, funded by a US National Science Foundation (NSF) RAPID grant, 

were used to estimate the abundance for our selected species in the respective forest types. 

The data from the two moist forest plots and the two wet forest plots were pooled for 

analyses, to obtain a more accurate estimate of abundance based on a larger sample size. 

 

Analyses 

Trait differences between trees and lianas have been evaluated for part of the data set in a 

previous paper (van der Sande et al. 2013), and are summarized for the entire data set in 

Appendix S5. Here we evaluate how lianas and trees differ in the relationship between 

hydraulic efficiency (maximum sapwood-specific conductivity; Ks) and hydraulic safety (P50 

multiplied by -1), by testing for differences in slope between the two life forms using 

standardized major axis (SMA) analysis. SMA analyses can test bivariate relationships 

(hence, without clear cause-and-effect variables) and differences in slope among groups. We 

used species average values for all traits. Initially, forest type was included as a factor in the 

analyses, but since forests showed no significant differences (Appendix S6), and since 

including random factors in SMA analysis is not possible, we simplified the model and 

combined species from both forest types. For the species that were measured in both forest 

types, we used average trait values to avoid pseudo-replication. To evaluate whether there is 

an upper ceiling relationship between efficiency and safety we also evaluated differences 
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between lianas and trees in the 90% quantile relationship between hydraulic efficiency and 

hydraulic safety using quantile regression analysis. Possible phylogenetic signals in hydraulic 

safety and efficiency were tested with Pagel’s lambda, which generally performs well for 

testing phylogenetic signal in complex systems (Münkemüller et al. 2012), using the 

‘phylosig’ function of the ‘phytools’ package in R (Revell 2012). 

 To evaluate how lianas and trees differed in their associations of hydraulic efficiency 

and hydraulic safety with morphological and physiological traits, we used similar SMA 

analyses. Again, traits of species that were measured in both forest types were averaged, 

because very few trait associations differed between forest types (only between hydraulic 

efficiency and Hv for lianas, between hydraulic efficiency and SLA for trees, and between 

hydraulic safety and WD for trees; Appendix S6& S7). In total we performed 17 SMA 

analyses, which with a critical P level of 0.05. In order to correct for the probability to falsely 

reject the null hypotheses, we also calculated the Benjamini-Hochberg corrected P-values 

(Benjamini and Hochberg 1995). Furthermore, to explore associations among all traits for 

lianas and trees, we calculated pairwise Pearson correlations and presented these in a 

correlation network for lianas and trees separately and forest types combined, and performed 

principal component analyses for lianas and trees separately (after scaling the traits by 

dividing by their standard deviation). 

 The relationship between species’ abundance and traits was evaluated using generalized 

linear models with a negative binomial error distribution per trait. We used a negative 

binomial error distribution because this gave a better goodness-of-fit (using a chi-square test) 

than a Poisson distribution (Appendix S8). In each model, an interaction between the trait and 

life form was included to evaluate differences in trait effects on abundance between lianas 

and trees. 
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Analyses were performed in R v. 3.3.1 (R Core Team, 2016). SMA analyses were done 

with the sma function of the smatr package (Warton et al. 2012), Pearson correlations with 

the rcorr function of the Hmisc package (Harrell Jr and Others 2018), principal component 

analyses using the rda function of the vegan package (Oksanen et al. 2018), and quantile 

regression analyses using the qr function of the quantreg package (Koenker 2018). For 

negative binomial generalized linear models, we used the nb.glm function of the MASS 

package (Venables and Ripley 2002), and for the poisson generalized linear model, we used 

the glm function. Chi-square tests to evaluate goodness-of-fit were performed using the 

pchisq function.  

 

Results 

Lianas had higher hydraulic efficiency (i.e. sapwood-specificy maximum hydraulic 

conductivity; Ks) and lower hydraulic safety (measured as cavitation resistance; P50*-1) than 

trees (Appendix S5), similar to what we found in an earlier study for only part of these data 

(van der Sande et al. 2013). Furthermore, lianas had lower Hv and higher Aarea and gs than 

trees, indicating that lianas have a more acquisitive growth strategy (Cai et al. 2009, Zhu and 

Cao 2009). None of the traits differed significantly between self-supporting and structural 

parasite liana species (based on a comparison of only 10 species for which we had this 

information; Appendix S9), in line with our earlier findings (van der Sande et al. 2013). 

Lianas and trees differed in the trade-off between hydraulic efficiency and hydraulic 

safety: trees showed a trade-off (P-value = 0.006, R
2
 = 0.27) but lianas did not (P-value = 

0.234, R
2
 = 0.06; Fig. 2, Table 1). Both life forms showed a significant negative upper ceiling 

(i.e. 90% quantile) relationship between hydraulic efficiency and hydraulic safety, indicating 

that high efficiency and high safety do not occur in combination (Fig. 2). This upper ceiling 

relationship, however, was stronger for trees than lianas. Results were similar for leaf 
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hydraulic conductivity (Kl) and when hydraulic safety was assessed using the water potential 

at 12% and 88% conductivity loss, which have been used as alternative safety measures 

(Domec & Gartner, 2001; Gleason et al., 2015; Appendix S10). Hydraulic safety had a strong 

phylogenetic signal (Pagel’s lambda=0.97, P-value=0.030) but hydraulic efficiency only a 

weak one (lambda=0.25, P-value=0.365).  

Standardized major axis analyses (Fig. 3 and 4), correlation networks (Fig. 1b,c, 

Appendix S11) and principal component analyses (Fig. 5) showed that hydraulic efficiency 

was similarly correlated for lianas and trees to most other traits; hydraulic efficiency was 

positively correlated with MVL, Aarea, gs (though not significantly for trees for MVL and gs), 

and negatively with WD and Hv (R
2
 ranging between 0.13 and 0.42). However, the 

correlation between hydraulic efficiency and Hv was more negative for trees (standardized 

slope = -1.39; Table 1) than for lianas (std. slope = -0.72), and the correlation between 

hydraulic efficiency and WUE was positive for lianas (R
2
 = 0.29) but non-significant for trees 

(R2 = 0.02; Table 1, Fig. 3e, g). The correlation between hydraulic safety and other traits, 

however, differed largely between lianas and trees (Fig. 3, 4, Table 1); Hydraulic safety of 

lianas was not correlated with any of the morphological and photosynthetic traits, whereas 

hydraulic safety of trees was positively correlated with WD and LDMC and negatively with 

Aarea and gs (R
2
 ranging between 0.16 and 0.37). Hence, hydraulic efficiency is strongly 

correlated with a suite of traits especially in lianas, whereas safety is strongly correlated only 

with a suite of traits in trees. See appendix S13 for within-species correlation analyses. 

WD was strongly correlated with many traits for both life forms, but SLA only weakly 

(Fig. 4), indicating that SLA – as main component of the leaf economics spectrum – poorly 

correlates with hydraulic and morphological traits. Stomatal conductance (Gs) was negatively 

related with water use efficiency (WUE) for trees, because high conductance leads to high 

water loss and thus low WUE. However, there was no correlation between gs and WUE for 
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lianas, and a weak positive correlation between Aarea and WUE. This means that the WUE of 

lianas is mainly driven by variation in Aarea, whereas WUE of trees is mainly driven by 

variation in gs. 

Hydraulic efficiency and safety did not affect abundance of tree and liana species (Fig. 

6; Appendix S14). Abundance of tree saplings was positively related to WD and LDMC and 

negatively to SLA and MVL, but abundance of liana saplings was not related to any of the 

measured traits (Appendix S14).  

 

Discussion 

 

We evaluated how lianas and trees differ in the associations between hydraulic efficiency, 

hydraulic safety and other physiological and morphological traits, and the influence of traits 

on local abundance. We showed that, while hydraulic efficiency and safety showed a trade-

off in trees, they were decoupled in lianas. None of the liana or tree species had both high 

efficiency and high safety. Lianas and trees also showed pronounced differences in trait 

coordination. Conservative traits increased abundance in trees but not in lianas, and hydraulic 

efficiency and safety did not affect species abundance. These results indicate that different 

mechanisms determine hydraulic efficiency, safety and abundance in lianas and trees. 

 

The hydraulic efficiency–safety trade-off for lianas and trees 

We expected that hydraulic efficiency (maximum sapwood-specific conductivity; Ks) and 

hydraulic safety (the xylem potential at 50% loss of hydraulic conductivity multiplied by -1; -

P50) would be negatively correlated because xylem traits that enhance hydraulic efficiency 

come at the expense of safety, and vice versa (Lens et al. 2011). For example, long and wide 

vessels increase hydraulic conductivity (Poiseuille 1844, Lens et al. 2011), but 
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simultaneously increase the risk of cavitation because wide vessels have a higher probability 

of containing a large pit membrane pore (Wheeler et al. 2005). For trees we indeed found a 

strong trade-off between efficiency and safety, but not for lianas (Fig. 2), indicating that 

lianas can avoid the efficiency-safety trade-off. Nevertheless, both lianas and trees showed an 

upper limit relation between efficiency and safety (Fig. 2), and while some liana species 

reached very high efficiencies, their safety was generally low. These results show that it is 

impossible to combine high hydraulic efficiency and high safety (Gleason et al. 2015, 

Bittencourt et al. 2016). This upper limit may be caused by wide vessels that enhance 

hydraulic efficiency and are likely to contain large pits that lead to high cavitation risk, and/or 

by the trade-off between the investment in conduits to enhance hydraulic efficiency at higher 

water potentials vs. the investment in fiber to prevent implosion at very negative water 

potentials (Bittencourt et al. 2016). The species in our study (both lianas and trees) showed 

about half the range in hydraulic safety as is found globally (Choat et al. 2012), probably 

because greater hydraulic safety is unnecessary in these wet forests. In a slightly drier forest 

(1865 mm y
-1

) and for more exposed adult canopy individuals, lianas and trees combined 

showed a trade-off between efficiency and safety (De Guzman et al. 2016), perhaps because 

these species function closer to their upper efficiency and safety limits. Across all our liana 

and tree species, we also found a significant negative correlation between hydraulic 

efficiency and safety (r = -0.42, P-value = 0.002, df = 49), indicating that collectively 

evaluating life forms can conceal group differences.  

Even though lianas have generally lower hydraulic safety than trees (Fig. 2; Appendix 

S5), they may not experience higher levels of cavitation because of 1) access to deeper water 

sources (Andrade et al., 2005, Schnitzer 2005, Chen et al. 2015), 2) stronger stomatal control 

to avoid excessive water loss (Chen et al. 2015), and 3) stronger leaf osmotic adjustment to 

maintain cell turgor at lower leaf water potentials (Maréchaux et al. 2017). These alternative 
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or complementary ways to avoid desiccation under drought conditions may allow the 

coexistence of liana species with low safety and liana and tree species with much higher 

safety (Fig. 2). Strategies of low safety and high efficiency, however, may lead to higher 

mortality at extreme levels of drought (Nepstad et al. 2007). Surprisingly, several species, 

both lianas and trees, had low efficiency and low safety – a combination that we would 

expect to be outcompeted or remain very rare in both wet and dry forest ecosystems. 

Hydraulic safety had a strong phylogenetic signal but hydraulic efficiency did not, indicating 

that the existence of species with low efficiency and low safety is not because of 

phylogenetic constrains. Globally, a large part of the woody species has low efficiency and 

low safety (Gleason et al. 2015). Possibly, the drought tolerance of species with low 

efficiency and low safety is determined by drought-avoiding traits such as rooting depth and 

stomatal control or by different wood volumes.  

 

What explains the uncoupling between hydraulic efficiency and safety for lianas? 

Lianas may have higher hydraulic efficiency than trees (Zhu and Cao 2009, van der Sande et 

al. 2013, De Guzman et al. 2016, Appendix S5) because of their lower investment in 

supporting tissues such as fibers (Ewers et al. 2015), allowing for more investment in 

conducting tissue. It could therefore be that lianas have higher sapwood-specific conductivity 

and are less constrained in the allocation of xylem to supporting and conducting tissue, and 

that more variation in hydraulic efficiency is possible at low safety (Bittencourt et al. 2016). 

The decoupling between hydraulic efficiency and safety may be explained by properties that 

affect only efficiency or only safety. For example, inter-vessel pit membrane properties can 

vary independently from vessel size or length (Hacke and Sperry 2001) and can affect 

hydraulic safety more than efficiency (Tyree and Sperry 1989, Maherali et al. 2006, Venturas 

et al. 2017). Pit pores limit the spread of air much more strongly than they limit the spread of 
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water between adjacent vessels, and are therefore thought to be especially important for 

controlling cavitation resistance (Wheeler et al. 2005, Hacke et al. 2006, Choat et al. 2007) 

while having less influence on water transport efficiency. Furthermore, high calcium 

concentrations in the pit membranes decrease flexibility of the membranes, which especially 

limits spread of air (Herbette and Cochard 2010). Therefore, if pit membrane properties differ 

between lianas and trees, then this could potentially explain why hydraulic efficiency and 

safety are decoupled in lianas but not in trees. Further studies are needed to evaluate the 

mechanisms underlying the uncoupling of safety and efficiency in lianas, from cellular to 

whole-plant level, and why trees are not similarly able to decouple safety and efficiency.  

 

Efficiency as an anchor trait for lianas and efficiency and safety as anchor traits for 

trees 

We expected that lianas and trees would have similar associations of hydraulic efficiency and 

safety with other traits; hydraulic efficiency would be positively associated with transporting 

tissues (maximum vessel length (MVL)), rates of gas exchange (i.e. physiologically active 

leaves with high specific leaf area (SLA), stomatal conductance (gs), and photosynthetic 

efficiency (Aarea)), and negatively with Huber value (Hv) and conservative traits that reduce 

water transport (high wood density (WD), leaf dry matter content (LDMC) and water use 

efficiency (WUE)). The relationships would be opposite for hydraulic safety. We found that 

hydraulic efficiency is correlated with many other traits for lianas and slightly more weakly 

for trees (Fig. 3, 4) and associated especially positively with gas exchange rates and 

negatively with Hv for lianas and trees (Fig. 5a,b). Hydraulic safety, however, was correlated 

with many other traits for trees, but is not correlated with any trait for lianas (Fig. 3, 4), and 

was associated most strongly positively with LDMC and negatively with SLA for lianas (Fig. 

5a), and positively with WD and negatively with Aarea, gs and MVL for trees (Fig. 5b). For 
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lianas, the average correlation strength of hydraulic efficiency with other traits was higher 

(r=0.55) than the average correlation strength of other traits (Appendix S15). For trees, both 

hydraulic efficiency (r=0.30) and safety (r=0.34) were among the traits most strongly 

correlated with other traits, together with Aarea (0.35), gs (0.32) and WD (0.37). Hence, 

hydraulic efficiency is an anchor trait – i.e. associated with many other traits – for lianas, 

while both hydraulic efficiency and hydraulic safety are anchor traits for trees. 

The weak correlations of hydraulic safety of lianas with other traits may also indicate 

that different traits not studied here determine safety of lianas (e.g. pit pore distribution, 

calcium control of membrane flexibility, or stomatal control). Hydraulic efficiency of lianas, 

however, is positively correlated with long vessels, low wood density and high gas exchange 

rates. Contrary to expectations, efficiency of lianas is positively correlated with WUE, 

probably because WUE is more strongly driven by Aarea than by gs (Fig. 1b). This indicates 

that WUE of lianas is mainly determined by variation in carbon gain, which increases with 

hydraulic efficiency (Fig. 4c), and less by variation in water loss.  

 

Why is safety correlated with other traits for trees but not lianas?  

In these relatively wet tropical forests, hydraulic safety is strongly associated with other traits 

for trees. The positive correlations of safety with WD and LDMC, and negative correlations 

with Aarea and gs, could indicate that tough wood and leaves with low physiological activity 

are an important strategy to enhance hydraulic safety. Possibly, low light availability in 

wetter forests increases the importance of conservative trait values, including high safety 

(Markesteijn et al., 2011a), and therefore results in strong trade-offs of hydraulic safety and 

WD with other traits. Alternatively, the lack of correlations between hydraulic safety and 

other traits for lianas is caused by the small range in safety values among liana species (Fig. 

2). When evaluating the relations of safety with WD, LDMC, Aarea and gs (which were 
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significant for trees; Fig. 3b and 4d, f, h) using a similar range in safety values for trees as for 

lianas (necessarily also reducing the sample size from 26 to 20 tree species), none of the 

relationships are significant for trees (Appendix S12). This indicates that relationships of 

safety with other traits for lianas could be significant if a larger range in safety and/or a larger 

sample size is used, although other studies also report low safety values for lianas (e.g. De 

Guzman et al. 2016) and, hence, lianas with comparably high safety probably do not exist. 

However, the small range in efficiency values among tree species does still result in 

significant correlations between efficiency and other traits, suggesting that also for lianas the 

small range in safety values cannot fully explain the lack of correlations. The importance of 

hydraulic safety for trees and of hydraulic efficiency for lianas, in combination with the lack 

of high efficiency in trees and the lack of high safety in lianas, suggest that trees can tolerate 

dry and/or shady conditions whereas lianas can avoid experiencing dry conditions (Schnitzer 

2005). 

 

Conservative traits affect tree but not liana abundance in moist Panamanian forests 

We expected that, in these wet but light-limited forests, high hydraulic efficiency would not 

increase abundance because it provides no advantage under low-light conditions, and high 

hydraulic safety would not increase abundance because species are rarely water limited in 

these wet forests. However, under the low light conditions species with conservative trait 

values such as low SLA, Aarea, and high WD would reach higher abundances at the sapling 

stage. We indeed found that hydraulic efficiency and safety did not affect species’ abundance 

of tree or liana saplings, and that acquisitive traits (SLA, MVL) decreased and conservative 

traits (WD, LDMC) increased abundance of tree saplings (Fig. 6; Appendix S14). Strong 

light limitation in the understory of these moist and wet forests may provide an advantage to 

species with a ‘conservative’ resource strategy, which survive best as saplings and therefore 
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reach highest abundances. Moreover, conservative species may grow slowly into adult trees 

and, hence, stay longer as saplings in the understory, which may further increase their 

abundance over time. Contrary to expectations, none of the traits affected the abundance of 

liana saplings. This is surprising, as we included traits belonging to the leaf economics 

spectrum and stem economics spectrum, which are thought to be generally important for 

plant strategies and functioning, and therefore also for different life forms (Wright et al. 

2004). It is likely that liana saplings in these forests are neither water limited (because of 

sufficient water availability) nor light limited, possibly because many liana species are light 

demanding and regenerate in open habitats (Schnitzer and Bongers 2002). Since traits are 

more strongly related to the regeneration niche than to the adult niche (Poorter 2007), the 

relationship between traits and abundance may be absent for lianas at the adult stage too. 

Instead of the importance of local plant abundance, traits may better explain species 

distributions and their presence along gradients of resource availability. For example, the 

importance of conservative traits for trees but not lianas would indicate that trees have an 

advantage under some limiting resources (e.g. wet forests with low light availability), 

whereas lianas would favor areas with high light availability (Schnitzer 2005).  

 

Conclusions 

We evaluated the trade-off between hydraulic efficiency and hydraulic safety, the 

associations among other relevant morphological and physiological traits, and the effect of 

traits on abundance for saplings of 51 tree and liana species. Trees showed the expected 

trade-off between efficiency and safety, but lianas did not, indicating that safety and 

efficiency of lianas is partly controlled by different mechanisms than safety and efficiency of 

trees. This uncoupling of efficiency and safety for lianas could allow them to transport more 

water and potentially enhance their growth rates while not reducing their resistance to 
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cavitation, which could potentially explain their success in drier forests. Conservative traits 

were positively related with abundance of tree saplings, probably because they enhance shade 

tolerance. However, none of the traits were related with the abundance of liana saplings, 

suggesting that other environmental factors limit liana abundance. Further studies are needed 

to underpin the mechanisms of the decoupling between efficiency and safety for lianas (self-

supporting vs. structural parasites), and the consequences of these differences for species 

performance and abundance. 
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Tables: 

Table 1: Results of standardized major axis analyses to test how lianas and trees differ in their relationships between hydraulic efficiency, safety 

and other stem and leaf traits. Each row represents one model in which the slope of trees, lianas, and their difference is tested. The slope, p-value 

and r
2
 is given per life form, as well as the likelihood-ratio (LR) test, p-value and Benjamini-Hochberg (BH) corrected p-values for the 

difference in slope between lianas and trees. We used the BH-corrected p-values because this is a powerful tool to correct for the probability to 

wrongly reject the null hypotheses with multiple comparisons (Benjamini and Hochberg 1995). To facilitate comparison among models, the 

value of the slope is based on the scaled variables, i.e. by subtracting the mean and dividing by the standard deviation. 

  Trees   Lianas   

Differences in slope of trees vs 

lianas 

Var 1 Var 2 Slope p-value r
2
 Slope p-value r

2
 LR p-value 

BH-corrected 

p-value 

Hydraulic efficiency Hydraulic safety -0.38 0.006 0.27 -1.98 0.234 0.06 32.04 <0.001 <0.001 

Hydraulic efficiency WD -1.12 0.047 0.15 -1.09 0.001 0.43 0.01 0.904 0.932 

Hydraulic efficiency MVL 1.08 0.211 0.06 1.06 0.001 0.42 0.01 0.932 0.932 

Hydraulic efficiency Hv -1.39 <0.001 0.42 -0.72 <0.001 0.62 9.61 0.002 0.009 

Hydraulic efficiency WUE -2.70 0.509 0.02 0.66 0.007 0.29 24.27 <0.001 <0.001 

Hydraulic efficiency SLA -2.59 0.741 <0.01 -0.74 0.127 0.10 17.75 <0.001 <0.001 

Hydraulic efficiency LDMC 1.06 0.981 <0.01 1.16 0.811 <0.01 0.10 0.758 0.859 
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Hydraulic efficiency Aarea 1.05 0.066 0.13 0.81 <0.001 0.75 1.45 0.229 0.354 

Hydraulic efficiency Gs 0.99 0.064 0.13 0.89 <0.001 0.57 0.18 0.670 0.814 

Hydraulic safety WD 0.82 0.001 0.37 1.82 0.619 0.01 8.56 0.003 0.010 

Hydraulic safety MVL -0.79 0.059 0.13 -1.77 0.409 0.03 7.85 0.005 0.014 

Hydraulic safety Hv 1.01 0.484 0.02 -1.20 0.291 0.05 0.36 0.546 0.714 

Hydraulic safety WUE 1.02 0.844 <0.01 -1.31 0.352 0.04 0.70 0.404 0.572 

Hydraulic safety SLA -0.98 0.255 0.05 -1.47 0.082 0.13 2.00 0.158 0.269 

Hydraulic safety LDMC 0.84 0.036 0.16 1.77 0.054 0.16 7.18 0.007 0.017 

Hydraulic safety Aarea -0.66 0.001 0.37 -1.30 0.343 0.04 6.39 0.011 0.021 

Hydraulic safety Gs -0.72 0.021 0.19 -1.49 0.925 0.00 6.51 0.011 0.021 
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Figure descriptions: 

 

Figure 1: Hypothesized relationships (a) and results for lianas (b) and trees (c) between 

hydraulic safety (-P50, i.e. P50 multiplied with -1; left graph), hydraulic efficiency (Ks; right 

graph) and other stem traits (left half of each graph) and leaf traits (right half of each graph). 

Other traits are: specific leaf area (SLA), leaf dry matter content (LDMC), photosynthetic 

efficiency (Aarea), stomatal conductance (Gs), water use efficiency (WUE), wood density 

(WD), Huber value (Hv), and maximum vessel length (MVL). Green lines indicate positive 

correlations and red lines indicate negative correlations, and the width in fig. b and c 

corresponds with the correlation strength. The hypothesized relationships are similar for 

lianas and trees. Non-significant correlations in fig. b and c are not shown. For correlation 

coefficients, see Appendix S11. 

 

Figure 2: Relationship between hydraulic efficiency (i.e. maximum sapwood hydraulic 

conductivity) and hydraulic safety (i.e. water potential at 50% loss of hydraulic conductivity 

multiplied by -1) for trees (red) and lianas (black). The lines represent the estimated 

relationship between the two variables (Table 1), the solid line indicates a significant 

relationship (for trees) and dashed line indicates a non-significant trends (for lianas). The 

grey and red background represent the upper 90% quantiles (which were significant for both 

lianas and trees). The likelihood-ratio test (LR) with corresponding significance (P) for the 

difference in slope between lianas and trees is given. For statistics of the individual slopes, 

see Table 1. 
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Figure 3: Relationships of hydraulic efficiency (left column) and hydraulic safety (right 

column) with morphological and physiological traits; wood density (a and b), maximum 

vessel length (c and d), Huber value (e and f; sapwood area / leaf area), and water use 

efficiency (g and h). The relationships are tested using standardized major axis regressions 

(Table 1). Data for trees are given in red; data for lianas in black. Trend lines for non-

significant relationships (P>0.05) are not shown. The likelihood-ratio test (LR) with 

corresponding significance (P) for the difference in slope between lianas and trees is given. 

For statistics of the individual slopes, see Table 1. 

 

Figure 4: Relationships of hydraulic efficiency (left column) and hydraulic safety (right 

column) with morphological and physiological leaf traits; specific leaf area (a and b), leaf dry 

matter content (c and d), area-based photosynthetic efficiency (e and f), and stomatal 

conductance (g and h), tested using standardized major axis analyses (Table 1). Data for trees 

are given in red; data for lianas in black. Trend lines for non-significant relationships 

(P>0.05) are not shown. The likelihood-ratio test (LR) with corresponding significance (P) 

for the difference in slope between lianas and trees is given. For statistics of the individual 

slopes, see Table 1. 

 

Figure 5: Principal component analyses for lianas (a) and trees (b), based on the two forest 

types combined. Each point represents one species. The traits included are: hydraulic 

efficiency (Ks), hydraulic safety (-P50), wood density (WD), maximum vessel length (MVL), 

Huber value (Hv), water use efficiency (WUE), specific leaf area (SLA), leaf dry matter 

content (LDMC), area-specific photosynthetic efficiency (Aarea), and stomatal conductance 

(Gs). 
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Figure 6:  Relationship of wood density, maximum vessel length, specific leaf area and leaf 

dry matter content with species’ abundance across 800 m
2
. Species’ abundance data came 

from 1-ha plots adjacent to the sites where traits were measured. Within each plots, sapling 

abundance was measured in 400 1-m
2
 subplots, totaling a measured area of 800 m

2
 per 

species. Red lines indicate significant relationships for trees. None of the relationships was 

significant for lianas. For statistics, see Appendix S14. 
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