

Impacts of grazing abandonment on ecosystem service provision: Coastal grassland as a model system

Ford, Hilary; Garbutt, Angus; Jones, Davey L.; Jones, Laurence

Agriculture, Ecosystems and Environment

DOI: 10.1016/j.agee.2012.09.003

Published: 01/11/2012

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Ford, H., Garbutt, A., Jones, D. L., & Jones, L. (2012). Impacts of grazing abandonment on ecosystem service provision: Coastal grassland as a model system. Agriculture, Ecosystems and Environment, 162, 108-115. https://doi.org/10.1016/j.agee.2012.09.003

Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Chapter 3: Impacts of grazing abandonment on ecosystem service provision: coastal grassland as a model system

Hilary Ford, Angus Garbutt, Davey L. Jones & Laurence Jones

Accepted for publication in Agriculture, Ecosystems & Environment

3.1 Abstract

A coastal grassland was used as a model system to examine how grazing management, un-grazed (for six years), rabbit grazed or fully grazed (ponies 0.2 ha⁻¹, cattle 0.05 ha⁻¹ and rabbits 45 ha⁻¹), affected biodiversity and ecosystem service provision, by measuring an extensive suite of biophysical variables as proxies for ecosystem services. For 'supporting services', nutrient cycling was greatest in ungrazed grassland but primary productivity did not differ. The 'provisioning service' of food production was only provided by fully grazed grassland. For grazing effects on 'regulating services' total carbon (C) stock did not differ and effects on pest regulating invertebrates and pollinator abundance were variable. The potential for flood control was considered greatest in the un-grazed grassland; with faster water infiltration than in the fully grazed grassland. The 'cultural service' of environmental appreciation was considered higher in fully grazed grassland due to significantly greater plant species richness, more forb species and more forbs flowering than in un-grazed grassland.

Key-words: biodiversity, conservation, ecosystem function, management, seminatural grassland, trade-offs

3.2 Introduction

Grassland management for multiple ecosystem services often results in potential conflicts or trade-offs (Macleod and McIvor, 2006). This is important as many ecosystem services are delivered by semi-natural grasslands (Bullock et al., 2011; Table 3.1); "supporting services" (primary productivity and nutrient cycling); "provisioning services" (food production, preservation of the genetic diversity of wild species and fresh water supply); "regulating services", (maintenance of an equable climate, water storage, pest regulation and pollination) and "cultural services" (conservation status, environmental appreciation and recreation). In managed grasslands, the basic trade-off is between intensive management to maximise food production and extensive management resulting in lower production, but increased biodiversity and a wider range of cultural services (Power, 2010). Semi-natural, low productivity grasslands, traditionally used for low intensity cattle and sheep farming, have declined by 90 % in the UK since 1945, converted to intensive production by drainage and fertilisation (Bullock et al., 2011). In many parts of Europe they now face a further threat, with managed grazing of these habitats being 'abandoned' in both the uplands and lowlands due to the removal of European Union (EU) subsidies (Strijker, 2005). Policy makers have signed up to halt biodiversity loss and degradation of ecosystem services within the EU by 2020 and to adopt an integrated approach to land use management (Kleijn et al., 2011). It is therefore vital to assess how abandonment of low productivity grazing land impacts on biodiversity, ecosystem function and potential consequences for ecosystem service provision.

The effects of removing large herbivores (i.e. cattle, sheep or horses) are well understood for grassland biodiversity and ecosystem function, but the implications for wider ecosystem service provision have been poorly quantified, or not quantified at all, especially for multiple services (Power, 2010). Grazing removal decreases plant diversity (Pykälä, 2003), increases invertebrate and small mammal abundance and diversity (Morris, 2000; Schmidt et al., 2005), and can either increase or decrease bird abundance and diversity dependent on feeding and nesting sward requirements (Vickery et al., 2001). Where large grazers are removed smaller grazers, particularly rabbits, may define habitat characteristics, keeping patches of grassland fairly open, preventing declines in plant diversity but allowing soil to become less compact (Isermann et al., 2010), creating a habitat with characteristics of both grazed and un-grazed grassland, with likely mixed effects upon ecosystem services. Voles and other small mammals are usually present, even within 'un-grazed' areas and have different effects on vegetation and nutrient cycling characteristics to large herbivores (Bakker, 2003). Cessation of cattle grazing where rabbits are not present leads to the development of a plant community dominated by highly competitive tall grasses or shrubs (Janišová et al., 2011) with reduced soil compaction and possible implications for several variables linked to ecosystem service provision.

Table 3.1 Ecosystem services (S = supporting, P = provisioning, R = regulating, C = cultural) with list of proxy measurements.

Ecosystem service	Proxy measurement
Primary productivity (S)	Annual net primary productivity (above ground)
Nutrient turnover (S)	N mineralisation rate
	Detritivore feeding rate
	Root turnover rate
Food production (P)	Number of cattle per hectare
Genetic diversity (P)	Plant species richness
Equable climate (R)	C stock
Flood control potential (R)	Water infiltration rate
Pest regulation (R)	Invertebrate biodiversity, spider and predatory beetle abundance
Pollination (R)	Nectar feeder biodiversity and abundance
Conservation (C)	Abundance of RDB or nationally scarce invertebrates
Aesthetic appreciation (C)	Plant biodiversity, vegetation structure, grass: forb ratio &
	flowering

Above-ground primary productivity (ANPP), a key supporting service, may increase or decrease with grazing intensity (De Mazancourt et al., 1998; Leriche et al., 2003). Nutrient turnover, another supporting service, also shows variable effects with grazing management (Bakker, 2003; Bardgett et al., 1998; Van Wijnen et al., 1999). Coastal grasslands, particularly those adjacent to crop fields, may potentially provide invertebrates for the twinned regulating services of pest control and pollination (Everard et al., 2010; Losey and Vaughan, 2006). However, effects of grazing intensity on these services are difficult to predict. Invertebrate pest regulators, such as spiders and beetles, are often more abundant on un-grazed grassland (Morris, 2000) but pollinators may be most abundant on grazed grassland due to a likely increase in floral resources (Potts et al., 2003; Sjödin et al., 2008). Soil moisture and temperature changes may also affect the regulating service of equable climate, via impacts upon C storage and greenhouse gas emissions (Luo and Zhou, 2006). The cultural service of aesthetic appreciation is likely to be higher in grazed grasslands due to expected greater plant diversity and abundance and diversity of forbs (Pykälä, 2003).

To date, where links have been drawn between grazing intensity, impact upon ecosystem characteristics, and multiple ecosystem service provision, these have been largely based on literature reviews (Bullock et al., 2011; Kemp and Michalk, 2007). There have been few habitat case studies where these effects have been quantified within an ecosystem services framework. The novelty of this study lies in using a wide range of habitat measurements across different grazing intensities as proxies for specific ecosystem services (Table 3.1). A managed grazing experiment within a low fertility grazed coastal grassland was used as a model system to examine how grazing affects ecosystem service provision, following the framework of the Millennium Ecosystem Assessment (MA, 2005) and the UK National Ecosystem Assessment (Bullock et al., 2011). The three grazing treatments used were 'fully grazed' (i.e. extensively cattle, pony and rabbit grazed), 'rabbit grazed' and 'un-grazed' (i.e. abandoned). The overarching hypothesis of this study is that 'changes in grazing will differentially affect individual services, and will alter the balance of supporting, provisioning, regulating and cultural ecosystem service provision of semi-natural grassland.

3.3 Materials and methods

3.3.1 Study site and experimental design

Fixed sand dune grasslands are low-productivity semi-natural grasslands, and a UK Biodiversity Action Plan (BAP) priority habitat. Newborough Warren is a calcareous coastal sand dune grassland, located in NW Wales (53° 8′ 59″ N, 4° 21′ 1″ W), noted for its high biodiversity and designated as a National Nature Reserve, Site of Special

Scientific Interest and Special Area of Conservation under the EC Habitats and Species Directive 1992. The 389 ha site is managed by Countryside Council for Wales (CCW). Managed grazing was introduced in 1987; stocking levels have varied but the site is now grazed by ponies (Equus ferus caballus; 0.2 ha⁻¹), cattle (Bos *taurus*; 0.05 ha⁻¹) and rabbits (*Oryctolagus cuniculus*; 45 ha⁻¹), designed to maximise plant diversity. Rare breed cattle, Belted Galloways and Dexters are stocked within the fully grazed study area for 18 months before being 'finished' on improved pasture and sold for meat (Graham Williams, pers. comm.). The predominant vegetation in the experimental area is fixed dune Festuca rubra - Galium verum grassland. In 2003, three replicate experimental blocks, each containing three 10 x 10 m experimental units, one fully grazed unit (unfenced), one rabbit grazed unit (fenced with 10 x 10 cm mesh to exclude large grazers) and one un-grazed unit (fenced with 10 x 10 cm mesh and an additional 2.7 x 3.7 cm mesh buried 20 cm underground to prevent rabbit access) were set up. Experimental blocks are separated from each other by hundreds of metres and by low dunes. Prior to construction of grazing exclosures the vegetation was a uniform 4-6 cm height. Small mammals such as field voles (Microtus agrestis) and invertebrate herbivores were assumed to be present within all experimental units. All biophysical measurements avoided a 1 m buffer zone adjacent to the fences for rabbit grazed and un-grazed exclosures. Fully grazed units are denoted as PR1 - PR3 (PR stands for pony & rabbit grazed); rabbit grazed units as R1 – R3 and un-grazed units as U1 -U3.

3.3.2 Soil characteristics

Soil moisture content and temperature were recorded within each experimental unit, at six locations, once a month from June to September 2009. Soil conductivity was measured in direct volts using a *Delta T* Theta Meter HH1 across 6 cm depth and converted to percentage soil moisture content using a calibration suitable for mineral soils. Soil temperature was measured in the top 11 cm using a digital thermometer. Samples to determine bulk density and soil organic matter content were collected during September 2009 using three intact soil cores of 3.8 cm diameter and 15 cm depth from each experimental unit. Cores were dried at 105 °C

for 72 h and the dry mass divided by the volume of the core to calculate bulk density. Loss-on-ignition, at 375 °C for 16 h was used to estimate organic matter content. pH was determined using a Corning pH meter 220. Water infiltration rate was measured using three single ring infiltrometers (Carroll et al., 2004) per experimental unit. This method was used as vertical percolation flux dominates water flow in sandy soil. These 10 cm diameter x 20 cm length cylinders were hammered 5 cm into the ground and briefly filled with water to pre-saturate the ground. Water was again poured into the infiltrometers up to 5 cm from the top. The time taken for the water to move 5 cm down the infiltrometer was recorded and converted into a water infiltration rate in mm min⁻¹.

Plant available nitrogen (N) was measured by N mineralisation assays (Rowe et al., 2011) calculated from three 15 cm depth soil cores per unit, taken in September 2009. Soil cores were taken using plastic corers, capped at both ends to minimise soil disruption and stored intact at 4 °C. Accumulated inorganic N was flushed from the cores by spraying with a solution of similar ionic concentration to UK rain over 7 d until 150 ml of leachate had been collected. Cores were incubated at 10 °C for 28 d, homogenised and a sub-sample extracted using 1M KCl for the analysis of ammonium and nitrate content (Rowe et al., 2011). Net nitrification and ammonification rates were calculated over these 28 d, assuming that all previous inorganic N had been removed during the 7 d flushing period, and were expressed as mg N g⁻¹ dry wt d⁻¹. Litter breakdown via mesofaunal detritivores was measured in autumn using ten bait lamina (Terra Protecta GmbH, Germany) per unit (in two lines of five, 50 cm apart).

3.3.3 Vegetation characteristics

During July, vegetation height was measured at five points within five 1×1 m quadrats per experimental unit with a custom made drop disc of 20 cm diameter, 10 g mass. Within two quadrats from each unit above-ground live vegetation and plant litter was collected from a 25 x 50 cm area cut to ground-level. One root core of 5 cm diameter and 10 cm depth was also taken per quadrat and washed to remove all soil. Above-ground vegetation, litter and roots were all dried at 80 °C for

24 h and weighed to give indicators of above-ground shoot biomass, litter biomass and below-ground root biomass respectively. C stock (t C ha⁻¹) was measured for four pools: soil, roots, plant litter and shoots, derived from biomass using the following conversions: Soil C as 0.55 of soil organic matter; root C is 0.44 of root biomass (dry wt) and plant litter and shoot C is 0.42 of biomass (dry wt) in comparable UK fixed dune grasslands (unpublished data). ANPP, peak biomass from three grazer excluded areas per experimental unit, was recorded as a direct measure of primary productivity. During February 2009, vegetation was cut to ground level in three 50 x 50 cm areas per experimental unit. Each cut area was protected from pony, cattle and rabbit grazers by an 8 cm mesh gabion (50 \times 50 \times 50 cm) and vegetation allowed to re-grow until peak biomass at the end of August when areas were re-cut within a central 25 x 25 cm area. Vegetation was dried at 80 °C for 72 h then weighed and converted to kg dry wt m⁻² yr⁻¹ to provide a measure of ANPP. Autumnal fine root turnover was estimated by modifying the method of Lukac and Godbold (2010). In mid September 2010 four nylon 1 mm root turnover mesh strips (Normesh, UK), 2.5 cm wide x 15 cm long, were placed in vertical cuts made in the soil with 2.5 cm overlap at the bottom and 2.5 cm emerging from the soil, 50 cm apart, across a 2 m transect in each unit. After 28 d the mesh strips were removed along with a slightly wider and deeper intact soil core. Cores were pushed out and divided in two along the mesh line, the number of fine roots penetrating each mesh depth zone (0 - 2.5; 2.5 - 5; 5 - 7.5; 7.5 - 10 cm)were counted by eye as a proxy for fine root turnover.

3.3.4 Biodiversity of plants and invertebrates

Plant percentage cover, species richness and number of species flowering were recorded during July in five 1 x 1 m quadrats from each experimental unit. For functional group analysis, plant percentage cover data was standardised to 100 % and divided into six broad phylogenetic functional groups: lichen, moss, forbs, sedges, grass and shrubs.

Pitfall traps were used to sample ground dwelling invertebrates for 26 d in May and 28 in July. Six pitfall traps per experimental unit were set up in two lines of three, 2

m apart. Each trap consisted of a plastic cup (80 mm diameter x 105 mm deep) a third full with a 50/50 mix of ethylene glycol and water, to preserve invertebrates, with a drop of washing up liquid to break the surface tension. Each trap was pushed into a hole made by a soil auger until they were level with the soil surface. A rain hat was placed over each trap and set at 3 cm from the ground. A wire basket of 5 cm mesh size was also placed over each rain hat and pegged down to prevent interference by grazers. Most invertebrates caught in pitfall traps were identified to species level, apart from Diptera and parasitic Hymenoptera, and assigned to a functional group: predatory, zoophagous (predatory and scavenging), phytophagous (herbivore or granivorous), detritivore (feed on detritus and associated decomposer community of fungi and bacteria), or an additional category 'not assigned'.

Nectar feeding invertebrates were sampled by bait-less pan traps, six per experimental unit (2 blue, 2 white, 2 yellow), for 72 h during June and again in July 2009. In each experimental unit two triangles, 5 m apart, consisting of one pan trap of each colour, 1.5 m apart, was set up. Traps of the same colour were pooled to give three samples per experimental unit. Each trap consisted of 203 mm diameter shallow bowls sprayed yellow, blue or white, half filled with water containing a drop of washing detergent to break the surface tension. Wire baskets of 5 cm mesh size were placed over all traps to prevent damage by grazing animals. The contents of the pitfalls and pan traps were preserved in 70 % Industrial strength methylated spirits (IMS) or ethanol.

3.3.5 Analysis

The effect of grazing on each measured variable was analysed using an ANOVA on linear mixed effects model (lme) output in R (R Development Core Team, 2011) e.g. Ime (temperature ~ grazing, random = ~1|block/grazing). This approach was used to enable the raw data to be analysed accounting for replication at the level of the experimental unit or block (n=3). Variables were log, square root, or arcsine square root transformed as appropriate to improve model fit. Results of best model fit were presented here based on lowest Akaike information criterion (AIC) number

and quantile probability plot (qqnorm) with most normal distribution. Where ANOVA results showed a significant grazing effect, differences between pairs of grazing treatments (PR & R; PR & U), were reported directly from the lme summary output. As the remaining treatment pair (R & U) could not be 'read' directly from the lme summary, the difference between values for R and U in relation to PR was divided by the standard error to give a number (#) for the following calculation '2*(1 – pt(#,df=4))' This gives a probability value for the difference between R and U for a two-tailed test where d.f. = 4.

3.4 Results

3.4.1 Soil and vegetation characteristics

Soil temperature was significantly higher on the fully grazed than the un-grazed grassland. Vegetation height was significantly different between all treatment pairs with the lowest sward height in the fully grazed, intermediate in the rabbit grazed and highest in the un-grazed grassland (Table 3.2). Root biomass was significantly greater in the rabbit grazed than the un-grazed grassland. Plant litter was significantly higher in the un-grazed and rabbit grazed compared to the fully grazed grassland. Water infiltration rate, was significantly higher in the un-grazed and rabbit grazed than fully grazed grassland. Water infiltration rate, was significantly higher in the un-grazed and rabbit grazed than fully grazed grassland. Soil pH, moisture content, bulk density, organic matter content and above-ground shoot biomass were not significantly with grazing. As separate C pools 'soil' and 'shoots' (above-ground live biomass) were not significantly different between grazing treatments (Figure 3.1). Root C stock was significantly greater for rabbit grazed than un-grazed grassland, contributing around 20 % of the total C pool. Plant litter C stock was significantly greater in un-grazed and rabbit grazed than grazed grassland.

ANPP and soil organic matter content (soil surface organic layer ~6 cm thick) did not differ significantly with grazing treatment (Table 3.2). Net nitrification rate was significantly higher in the un-grazed than the fully grazed grassland but net ammonification rate did not differ significantly with grazing treatment (Figure 3.2). Mesofaunal feeding rate was significantly greater for rabbit grazed in depth zone 1 and for un-grazed in depth zone 2 and 3 compared to fully grazed grassland (Figure 3.3). Fine root turnover at 0-2.5 cm was significantly greater in un-grazed and rabbit grazed than fully grazed grassland (Figure 3.4).

Table 3.2 Soil and vegetation characteristics, grazing treatment means \pm standard deviations with bold letters indicating significant differences at *(p < 0.05) or ***(p < 0.001), *ns* = non-significant.

	Fully grazed	Rabbit grazed	Un-grazed	ANOVA
Soil				
рН	6.21 ± 0.37	6.16 ± 0.45	6.01 ± 0.33	ns
Moisture content (%) ^x	13.02 ± 8.12	8.28 ± 2.62	6.26 ± 5.42	ns
Temperature (°C) ^x	18.08 ± 2.90 a	17.20 ± 0.39 ab	16.93 ± 2.20 b	*
Bulk density (g cm ⁻³)	1.01 ± 0.07	1.02 ± 0.09	0.93 ± 0.10	ns
Organic matter content	3.11 ± 0.71	3.23 ± 0.64	3.57 ± 0.92	ns
(%)				
Infiltration rate (mm min ⁻	6.60 ± 1.94 a	22.74 ± 14.7 b	37.27 ± 28.8 b	*
¹)				
Vegetation				
Vegetation height (cm)	5.27 ± 1.03 a	19.43 ± 7.68 b	37.63 ± 7.94 c	***
Root biomass (kg dry wt	1.24 ± 0.55 ab	1.22 ± 0.36 a	0.71 ± 0.26 b	*
m⁻²)				
Litter biomass (kg dry wt	0.12 ± 0.03 a	0.22 ± 0.08 b	0.28 ± 0.04 b	*
m ⁻²)				
Shoot biomass (kg dry wt	0.83 ± 0.29	0.80 ± 0.29	0.59 ± 0.25	ns
m ⁻²)				
ANPP (kg dry wt m ⁻² y ⁻¹)	0.34 ± 0.09	0.35 ± 0.07	0.34 ± 0.10	ns

^x Mean values of 4 months data, June-September

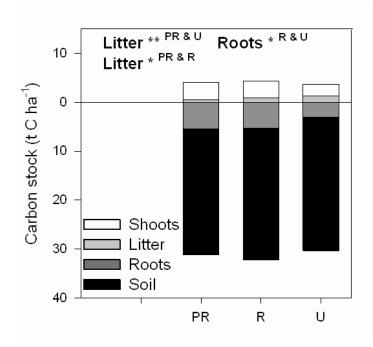


Figure 3.1 Effect of grazing (PR = fully grazed, R = rabbit grazed, U = un-grazed) on C stock. Bold text indicates significant differences between grazing treatments for each component, * (p < 0.05), ** (p < 0.01).

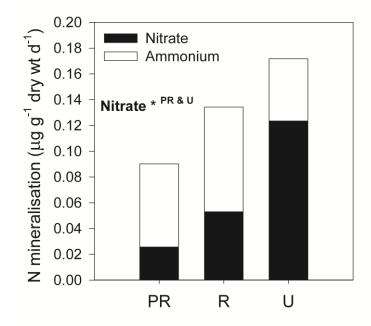


Figure 3.2 Effect of grazing (PR = fully grazed, R = rabbit grazed, U = un-grazed) on N mineralisation. Bold text indicates significant differences between grazing treatments for each component, * (p < 0.05).

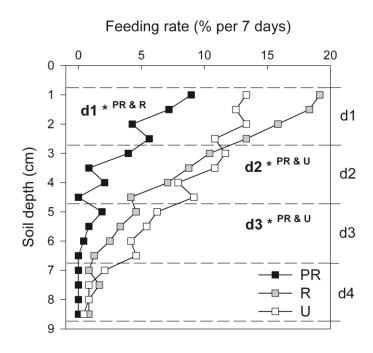


Figure 3.3 Effect of grazing (PR = fully grazed, R = rabbit grazed, U = un-grazed) on below-ground mesofaunal feeding rate in autumn. Bold text indicates significant differences between grazing treatments for each depth zone (d1 - d4), *(p < 0.05).

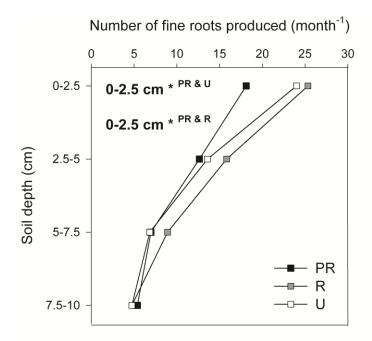


Figure 3.4 Effect of grazing (PR = fully grazed, R = rabbit grazed, U = un-grazed) on number of new fine roots produced per month, as a proxy for potential fine root turnover. Bold text shows significant differences between grazing treatments for each soil depth * (p < 0.05).

3.4.2 Biodiversity

Cumulative plant species richness, for un-grazed, rabbit grazed and fully grazed plots was 45, 49 and 61 species (per 15 m²) respectively. At the experimental unit level, fully grazed grassland was significantly more species rich, particularly for forbs, than un-grazed grassland (Table 3.3). Graminoids were equally species rich regardless of grazing intensity. Forb cover was significantly higher in fully and rabbit grazed grassland than in un-grazed habitat. In contrast, grass cover was significantly lower in fully grazed than rabbit or un-grazed grassland (Figure 3.5). Total number of species flowering, particularly forbs, and percentage of forb species flowering were all significantly greater in fully grazed than un-grazed than

Table 3.3 Plant species richness and flowering, grazing treatment means \pm standard deviations
with bold letters indicating significant differences at $*(p < 0.05)$, <i>ns</i> = non-significant.

Variable	Fully grazed	Rabbit grazed	Un-grazed	ANOVA
Mean species richness (spp per 1 x 1				
<i>m)</i>				
All species	22.93 ± 4.04	18.93 ± 4.51	16.20 ± 2.27 b	*
	а	ab		
Graminoid (grasses & sedges)	7.33 ± 1.50	7.20 ± 0.86	6.60 ± 0.83	ns
Forb	11.13 ± 2.45	7.80 ± 2.81 ab	5.47 ± 1.36 b	*
	а			
Number of species flowering				
All species	10.53 ± 3.36	8.93 ± 2.15 a	6.33 ± 1.84 b	*
	а			
Graminoid	4.40 ± 1.50	5.67 ± 0.98	4.60 ± 1.24	ns
Forb	6.13 ± 2.20 a	3.27 ± 1.83 ab	1.73 ± 1.22 b	*
Percentage species flowering				
Graminoid	59.89 ± 16.8	79.02 ± 11.6 b	69.40 ± 16.4	*
	а		ab	
Forb	54.36 ± 14.6	41.92 ± 15.1	32.29 ± 21.2 b	*
	а	ab		
Forb / forb + graminoid pc.				
Forb percentage	21.25 ± 0.07	16.65 ± 0.08 a	6.90 ± 0.05 b	*
	а			

Of nearly ten thousand invertebrates sampled from pitfalls, 40 % were predatory spiders of 62 species and 3 % predatory and zoophagous beetles, mainly carabids and Staphylinidae of 43 species. Pan traps sampled 14 bee species. Predatory Coleoptera were more abundant (ANOVA; F = 5.2, d.f. = 4, p < 0.05) and species rich

(ANOVA; F = 13.2, d.f. = 4, p < 0.01) in fully grazed than un-grazed grassland. Araneae were also significantly most abundant (ANOVA; F = 9.72, d.f. = 4, p < 0.05) and species rich (ANOVA; F = 9.72, d.f. = 4, p < 0.05) on fully grazed land. Nectar feeders, as a proxy for pollinators, did not differ significantly in either abundance or species richness with grazing intensity.

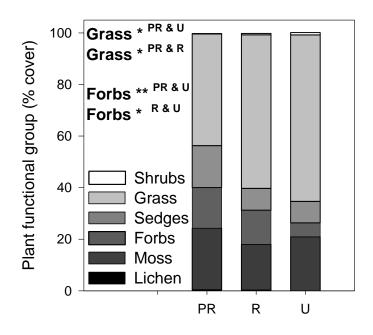


Figure 3.5 Effect of grazing (PR = fully grazed, R = rabbit grazed, U = un-grazed) on plant functional groups (adjusted to 100 %). Bold text shows significant differences between grazing treatments for each plant group, * (p < 0.05), ** (p < 0.01).

Pan traps sampled *Colletes cunicularius* a Red Data Book (RDB3) listed sand mining bee, and pitfalls sampled the carabid beetle *Amara lucida*, Staphylinidae *Mycetoporus piceolus* and *Mycetoporus punctus*, Linyphiidae *Mecopisthes peusi* and the ground bug *Megalonotus praetextatus*, all nationally scarce invertebrates associated with coastal dune habitat (Alexander et al., 2005). Certain species were only found as one or two isolated individuals, *C. cunicularius*, *A. lucida*, *M. punctus* and *M. praetextatus*, and therefore cannot be linked to habitat type. The rove beetle *M. piceolus* was more abundant in the un-grazed grassland; in contrast the small spider *M. peusi* was more numerous in the grazed grassland. Full results for invertebrate abundance and diversity are presented in Table A3.1.

3.5 Discussion

Most European semi natural grasslands, including coastal grasslands, have suffered a decline in traditional grazing, with marginal grasslands being 'abandoned' or replaced by 'conservation grazing' to address conservation priorities such as plant diversity or provision of habitat for breeding birds (GAP, 2012). The relationships between grazing impacts on biophysical measures in this study and probable impacts on ecosystem services are summarised in Figure 6, supplemented by additional information from the literature for some services. We acknowledge that for some of these services, particularly the cultural services, they are proxies of 'potential' ecosystem services, rather than 'realised' ecosystem services. From the results of this study, it is clear that different grazing regimes favour different ecosystem services, or changes in the way grazing management is applied. Here, the widely held view that low intensity grazing is always the 'best' management option for the conservation of semi-natural grasslands is challenged.

3.5.1 Supporting services

Primary productivity and nutrient cycling are key supporting services of seminatural grasslands. These underlie regulating services such as equable climate by greater plant biomass leading to higher C sequestration rates (Soussana et al., 2004), and provisioning services such as forage production and quality (Bullock et al., 2011). Nutrient cycling is important as it determines plant available N, a limiting factor for plant primary productivity (Bardgett et al., 2011). Decomposition may influence N cycling positively or negatively, dependent on the C:N ratio of organic substrate available to microbes (Bardgett, 2005). Generally, faster decomposition rates will be detrimental for C storage as soil respiration will increase (Luo and Zhou, 2006). Classic theory suggests that more intensively grazed land will be dominated by faster bacterial nutrient cycling and un-grazed or lightly grazed grassland by slower fungal cycling (Bardgett et al., 1998; McNaughton et al., 1997). However, in this study one aspect of nutrient cycling, net nitrification rate, was greatest in un-grazed grassland, supporting an opposing view that grazing by large herbivores can decrease nutrient cycling (Bakker, 2003; Van Wijnen et al., 1999). This may be because cattle distribute N unevenly via their faeces and urine whereas smaller mammals such as voles, present within un-grazed units, return nutrients to plants more uniformly (Rotz et al., 2005). In addition, as the plant litter inputs, mesofaunal feeding rate and root turnover rate were greater in un-grazed and rabbit than fully grazed grassland more nutrients may be returned to the soil via decomposition in these grazing regimes.

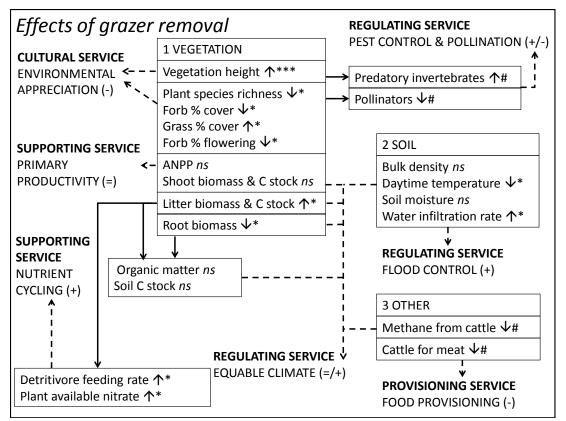


Figure 3.6 Effects of pony and cattle removal from coastal grassland on measured variables and potential ecosystem service delivery. Significant increase or decrease in variables indicated by up (\uparrow) or down (\downarrow) arrows (*p < 0.05, ***p < 0.001, *ns* = not significant), # for expected results from the literature. Direct links between variables (solid lines), indirect links to ecosystem services (dashed lines) with positive (+), equal (=) or negative (-) effects on ecosystem services are also shown.

3.5.2 Provisioning services

It can be argued that the low intensity grazed coastal grassland is more important than other grassland management types for the provisioning service of food supply, with good quality beef or lamb produced at low stocking levels (Wood et al., 2007). This service would be lost upon removal of grazing. However, as grazing abandonment is not a static state, with natural succession shrubs and trees will dominate and non-commercial food sources such as nuts and berries may become important to some people, but these benefits are difficult to quantify (Everard et al., 2010). Genetic diversity of wild species may be enhanced by the use of rare breeds of cattle for conservation grazing and seed from semi-natural grassland used to create species-rich grasslands under agri-environmental schemes (Bullock et al., 2011). This service may be enhanced by extensive grazing management to maximise plant biodiversity.

Fresh drinking water supply, via recharge of aquifers under grassland is another key provisioning service. This service is also provided by both chalk aquifers underlying semi-natural grasslands and vast swathes of UK upland grasslands that are major water catchments (Holland et al., 2011; Koo and O'Connell, 2006). In this study water infiltration rates increased when large herbivores were removed, regardless of the presence or absence of rabbits, as large grazers are responsible for soil compaction (Elliott and Carlson, 2004). Even though the study coastal grassland is largely level, in sloping habitats it is likely that high water infiltration rates will improve water storage and reduce run-off (Marshall et al., 2009). It may therefore be proposed that rabbit grazed or un-grazed grasslands should be promoted on hillsides where water storage is important for land managers. If primary succession continues in the un-grazed or 'abandoned' grassland, shrubs are likely to dominate and the pattern of water infiltration and water storage may be reversed, with greater water storage in the grazed grassland due to lower evapo-transpiration rates (Chartier et al., 2011).

3.5.3 Regulating services

Regulating services include maintenance of an equable climate, control of flooding and water quality and pest regulation and pollination. Semi-natural grasslands play an important part in maintenance of an equable climate as they are a valuable C store, according to current evidence emit little nitrous oxide and have lower methane emissions than intensively managed grasslands due to lower stocking levels (Bullock et al., 2011; Jones and Donnelly, 2004; Soussana et al., 2004). There is currently little consensus on the role of grazing in grassland C sequestration. Light, moderate or heavy grazing can all increase soil C, depending on grassland type (Kemp and Michalk, 2007). Conversely extensive grazing or no grazing may also increase C storage (Campbell et al., 1997; Soussana et al., 2004) and lead to increased C storage. This study found that total C stock from four combined pools, soil, roots, litter and shoots, did not differ with grazing intensity but that root C was greatest in fully and rabbit grazed, while litter C was greatest in rabbit and ungrazed grassland. As root-derived C contributed more to total C stock than litter or shoot-derived C and root-derived C has a residence time of 2.5 times that of litter or shoot derived C (Rasse et al., 2005) there is potential for greater C storage in the grazed grassland.

Water storage within grassland groundwater also maintains regulating functions such as moderating overland flow, reducing flooding and improving water quality by reducing nutrients and pathogenic bacteria than often contaminate surface waters (Bullock et al., 2011; Kemp and Michalk, 2007). The decreased infiltration rates due to compaction caused by grazing of cattle or other large herbivores leads to higher runoff and N contamination via faeces or urine (Cheng-Zhang and Squires, 2010; Rotz et al., 2005). By contrast, grazing abandonment increases infiltration rates with significant potential as a tool to manage flood risk (Carroll et al., 2004).

Invertebrate abundance and diversity, particularly of large predatory spiders, carabids and staphylinids is often higher in un-grazed grasslands (Ford et al., 2012a; Morris, 2000), with potential implications for pest regulation where semi-natural grasslands border arable fields. Our results show the opposite, with greatest abundance and diversity of predatory invertebrates in the fully grazed grassland. As catch size was consistently greatest in fully grazed, intermediate in rabbit grazed

and smallest in un-grazed it is likely that increased structural complexity of vegetation in the rabbit grazed and un-grazed treatments resulted in reduction of catch (Melbourne, 1999), therefore these results may not capture true abundance and diversity of predatory invertebrates. Nectar feeders and therefore pollinators, including bumble bees, hoverflies and butterflies, tend to be driven by floral abundance, floral richness, availability of nectar resources and sward structure (Potts et al., 2003; Sjödin et al., 2008), all factors influenced by grazing intensity. Grazing also affects soil microbial diversity, with clear effects on microbial composition in both sand dunes and saltmarsh (Ford et al., 2012b), although the implications for ecosystem services provision are unclear.

3.5.4 Cultural services

Proof of the importance of coastal grasslands to cultural services includes the conservation status of coastal grasslands as a UK Biodiversity Action Plan (UK BAP) listed priority habitat with some important plants, nationally scarce invertebrates (Alexander et al., 2005), birds such as RDB3 skylarks (Alauda arvensis) and BAP listed priority amphibian, natterjack toad (Epidalea calamita). Environmental appreciation and recreation are also key cultural services in semi-natural grasslands and coastal sand dunes in particular attract significant numbers of tourists (Bullock et al., 2011; Jones et al., 2011). Aesthetic appreciation of the environment is likely to improve with reduction in grass in favour of increased abundance of flowering plants (Mitteager et al., 2006; Paar et al., 2008). In this study plant species richness, particularly for forbs, and flower abundance were significantly greater in fully than in un-grazed habitat. Tall grasses were more dominant in the un-grazed areas, indeed Arrhenatherum elatius, a negative indicator species of fixed dune grassland, was present only within rabbit grazed and un-grazed grassland. Plassmann et al. (2010) also found that the number of positive indicator species was lower in ungrazed grassland. Therefore a tentative conclusion could be drawn that aesthetic appreciation is greater in extensively grazed than un-grazed grassland.

3.5.5 Grazing management for conservation

Mixed grazing is often recommended as grazing with both horses and cattle can lead to enhanced control of competitive grass species, opening up gaps for other plant species and increases in structural diversity compared to cattle grazing alone (Loucougaray, 2004). Welsh mountain ponies graze on poor quality forage and avoid flowering heads, with potential positive results for plant diversity, flowering and aesthetics, as argued in this study. Sheep will graze a sward shorter than either cattle or ponies and may select high quality plant parts such as flowers, pods and young shoots (Rook et al., 2004), making them less suitable for conservation grazing. Despite the majority of north-west European grassland managers promoting low intensity grazing by ponies and/or cattle, Newton et al. (2009), in a systematic review of grazing management, found that the presence of grazers consistently lead to a decline in 'tussocky' vegetation with negative effects on reptile and invertebrate habitat. Rotational grazing, where animals are moved at regular time intervals allowing vegetation time to 'recover', often has favourable effects on plant, bird and invertebrate diversity (Söderström et al., 2001; Wrage et al., 2011). It is also recognised that un-grazed vegetative buffer zones adjacent to riparian or arable fields, can allow spatial co-delivery of multiple ecological services, although these are rarely quantified (Olson & Wäckers, 2007). Where large grazers are removed rabbit grazing may define habitat characteristics, keeping patches of grassland fairly open, with a lower mean sward height than un-grazed grassland, preventing major declines in plant or forb diversity but allowing soil to become less compact (Isermann et al., 2010) with greater infiltration rates, results mirrored by this study. However, rabbits are often dependent on large herbivores to maintain the short vegetation they prefer, and these effects may not persist.

3.5.6 Ecosystem service tradeoffs

In the light of abandonment of low productivity grazing land throughout Europe, in addition to biodiversity measures of 'success' in conservation, ecosystem service measures and trade-offs need to be taken into account when choosing an appropriate grassland management scheme. Results from this case study and the wider scientific literature indicate that extensively cattle grazed or mixed pony/cattle grazed grassland should be conserved for the ecosystem services of plant genetic diversity, food provision, cultural environmental appreciation and potential pollination services. Un-grazed grassland should be conserved for the ecosystem services of invertebrate biodiversity, water storage and flood control (particularly on hill-side slopes), nutrient cycling and the potential for pest regulation. Rabbit grazed grasslands provide slightly lower plant biodiversity and cultural services than grazed grasslands but similar water infiltration dynamics to un-grazed grasslands. Grazing management should depend on the conservation objectives for a particular habitat but should take into account likely trade-offs with other ecosystem services. Perhaps grassland managers, whilst maintaining extensively grazed areas, could trial the introduction of rabbit grazed or un-grazed 'buffer strips' next to water courses, natural boundaries or arable fields, to minimise biodiversity and ecosystem service trade-offs.

3.6 Acknowledgements

This study was funded as part of a NERC - Centre for Ecology and Hydrology project - NECO3610. Thanks to CCW for access to field site, Rhian Walsh and Aled Roberts for fieldwork assistance, David Cooper for statistical advice and Dick Loxton for invertebrate identification.

3.7 References

Alexander, K., Archer, M., Colenutt, S., Denton, J., Falk, S., Godfrey, A., Hammond, P., Ismay, J., Lee, P., Macadam, C., Morris, M., Murray, C., Plant, C., Ramsay, A., Schulten, B., Shardlow, M., Stewart, A., Stubbs, A., Sutton, P., Tefler, M., Wallace, I., Willing, M., Wright, R., 2005. Habitat section 8: Coastal sand dunes. In: Managing Priority Habitats for Invertebrates, Buglife The Invertebrate Conservation Trust, Peterborough, UK.

Bakker, E.S., 2003. Herbivores as mediators of their environment: the impact of large and small species on vegetation dynamics. PhD-thesis Wageningen University, Wageningen, The Netherlands. ISBN 90-5808-878-2; pp. 1-184.

Bakker, E.S., Olff, H., Gleichman, J.M., 2009. Contrasting effects of large herbivore grazing on smaller herbivores. Basic Appl. Ecol. 10 (2), 141-150.

Bardgett, R.D., 2005. The Biology of Soil: A Community and Ecosystem Approach. Oxford University Press, Oxford, UK.

Bardgett, R.D., Campbell, C.D., Emmett, B.A., Jenkins, A., Whitmore, A.P., 2011. Chapter 13: Supporting services. In: The UK National Ecosystem Assessment Technical Report, UK National Ecosystem Assessment, UNEP-WCMC, Cambridge, UK.

Bardgett, R.D., Wardle, D.A., Yeates, G.W., 1998. Linking above-ground and belowground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biol. Biochem. 30 (14), 1867-1878.

Bullock, J.M., Jefferson, R.G., Blackstock, T.H., Pakeman, R.J., Emmett, B.A., Pywell, R.J., Grime, J.P., Silverton, J., 2011. Chapter 6: Semi-natural grasslands. In: The UK National Ecosystem Assessment Technical Report, UK National Ecosystem Assessment, UNEP-WCMC, Cambridge, UK.

Campbell, B.D., Stafford-Smith, D.M., McKeon, G.M., 1997. Elevated CO₂ and water supply interactions in grasslands: a pastures and rangelands management perspective. Global Chan. Biol. 3 (3), 177-187.

Carroll, Z.L., Bird, S.B., Emmett, B.A., Reynolds, B., Sinclair, F.L., 2004. Can tree shelterbelts on agricultural land reduce flood risk? Soil Use Manage. 20 (3), 357-359.

Chartier, M.P., Rostagno, C.M., Pazos, G.E., 2011. Effects of soil degradation on infiltration rates in grazed semiarid rangelands of northeastern Patagonia, Argentina. J. Arid Environ. 75 (7), 656-661.

Cheng-Zhang, Z., Squires, V., 2010. Biodiversity of plants and animals in mountain ecosystems. In: Squires, V., Hua, L., Li, G., Zhang, D. (Eds), Towards Sustainable Use of Rangelands in north-west China. Springer, London, UK, pp. 101-125.

De Mazancourt, C., Loreau, M., Abbadie, L., 1998. Grazing optimization and nutrient cycling: when do herbivores enhance plant production? Ecology 79 (7), 2242–2252.

Elliott, A.H., Carlson, W.T., 2004. Effects of sheep grazing episodes on sediment and nutrient loss in overland flow. Aust. J. Soil Res. 42 (2), 213-220.

Everard, M., Jones, L., Watts, B., 2010. Have we neglected the societal importance of sand dunes? An ecosystem services perspective. Aquatic Conserv: Mar. Freshw. Ecosyst. 20 (4), 476-487.

Ford, H., Garbutt, A., Jones, L., Jones D.L., 2012a. Grazing management in saltmarsh ecosystems drives invertebrate diversity, abundance and functional group structure. Insect Conserv. Diver. (2012) doi: 10.1111/j.1752-4598.2012.00202.x.

Ford, H., Rousk, J., Garbutt, A., Jones, L., Jones D.L., 2012b. Grazing effects on microbial community composition, growth and nutrient cycling in salt marsh and sand dune grasslands. Biol. Fertil. Soils. doi 10.1007/s00374-012-0721-2.

GAP: Grazing Advice Partnership, 2012. http://www.grazinganimalsproject.org.uk

Holland, R.A., Eigenbrod, F., Armsworth, P.R., Anderson, B.J., Thomas, C.D., Heinemeyer, A., Gillings, S., Roy, D.B., Gaston, K.J., 2011. Spatial covariation between freshwater and terrestrial ecosystem services. Ecol. Appl. 21 (6), 2034– 2048.

Isermann, M., Koehler, H., Mühl, M., 2010. Interactive effects of rabbit grazing and environmental factors on plant species-richness on dunes of Norderney. J. Coastal Conserv. 14 (2), 103-114.

Janišová, M., Bartha, S., Kiehl, K., Dengler, J., 2011. Advances in the conservation of dry grasslands: Introduction to contributions from the seventh European dry grassland meeting. Plant Biosyst. 145 (3), 507–513.

Jones, L., Angus, S., Cooper, A. Doody, P., Everard, M., Garbutt, A., Gilchrist, P. Hansom, J., Nicholls, R., Pye, K., Ravenscroft, N., Rees, S. Rhind, P., Whitehouse, A., 2011. Chapter 11: Coastal margins. In: The UK National Ecosystem Assessment Technical Report, UK National Ecosystem Assessment, UNEP-WCMC, Cambridge, UK. Jones, M.B., Donnelly, A., 2004. Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO₂. New Phytol. 164 (3), 423–439.

Kemp, D.R. & Michalk, D.L., 2007. Towards sustainable grassland and livestock management. J. Agri. Sci. 145, 543-564.

Kleijn, D., Rundlo, M. Scheper, J., Smith, H.G., Tscharntke, T., 2011. Does conservation on farmland contribute to halting the biodiversity decline? Trends Ecol. Evol. 26 (9), 474-481.

Koo, B.K., O'Connell, P.E., 2006. An integrated modelling and multicriteria analysis approach to managing nitrate diffuse pollution: 2. A case study for a chalk catchment in England. Sci. Total Environ. 358 (1-3), 1-20.

Koyani, P.T., Bossuyt, B., Bonte, D., Hoffmann, M., 2008. Grazing as a management tool in dune grasslands: Evidence of soil and scale dependence of the effect of large herbivores on plant diversity. Biol. Conserv. 141 (6), 1687-1694.

Leriche, H., Le Roux, X., Desnoyers, F., Benest, D., Simioni, G., Abbadie, L., 2003. Grass response to clipping in an African savanna: Testing the grazing optimization hypothesis. Ecol. Appl. 13 (5), 1346-1354.

Losey, J.E., Vaughan, M., 2006. The economic value of ecological services provided by insects. BioScience 56 (4), 311-323.

Loucougaray, G., Bonis, A., Bouzillé, J-B., 2004. Effects of grazing by horses and/or cattle on the diversity of coastal grasslands in western France. Biol. Conserv. 116, 59-71.

Lukac, M., Godbold, D.L., 2010. Fine root biomass and turnover in southern taiga estimated by root inclusion nets. Plant Soil 331 (1-2), 505-513.

Luo, Y., Zhou, X., 2006. Soil Respiration and the Environment. Academic Press, London, Elsevier.

24

MA, 2005. Ecosystems and Human Well-being: Synthesis. Washington DC: Island Press.

MacLeod, N.D., McIvor, J.G., 2006. Reconciling economic and ecological conflicts for sustained management of grazing lands. Ecol. Econ. 56 (3), 386-401.

Marshall, M.R., Francis, O.J., Frogbrook, Z.L., Jackson, B.M., McIntyre, N., Reynolds, B., Solloway, I., Wheater, H.S., Chell, J., 2009. The impact of upland land management on flooding: results from an improved pasture hillslope. Hydrological Processes 23, 464-475.

McNaughton, S.J., Banyikwa, F.F., McNaughton, M.M., 1997. Promotion of the cycling of diet-enhancing nutrients by African grazers. Science 278 (5344), 1798-1800.

Melbourne, B.A., 1999. Bias in the effects of habitat structure on pitfall traps: An experimental evaluation. Aust. J. Ecol. 24 (3), 228-239.

Mitteager, W.A., Burke, A., Nordstrom, K.F., 2006. Landscape features and restoration potential on private shorefront lots in New Jersey, USA. J. Coastal Res. Special Issue 39, 891-898.

Morris, M.G., 2000. The effects of structure and its dynamics on the ecology and conservation of arthropods in British grasslands. Biol. Conserv. 95, 129-142.

Newton, A.C., Stewart, G.B., Myers, G., Diaz, A., Lake, S., Bullock, J.M., Pullin, A.S., 2009. Impacts of grazing on lowland heathland in north-west Europe. Biol. Conserv. 142, 935-947.

Olson, D.M., Wäckers, F.L., 2007. Management of field margins to maximize multiple ecological services. J. Appl. Ecol. 44, 13-21.

Paar, P., Röhricht, W., Schuler, J., 2008. Towards a planning support system for environmental management and agri-environmental measures – The Colorfields study. J. Environ. Manage. 89, 234-244.

25

Plassmann, K., Edwards-Jones, G., Jones, M.L.M., 2010. Effects of long-term grazing management on sand dune vegetation of high conservation interest. Appl. Veg. Sci. 13 (1), 100-112.

Potts, S.G., Vulliamy, B., Dafni, A., Ne'aman, G., Willmer, P., 2003. Linking bees and flowers: How do floral communities structure pollinator communities? Ecology 84 (10), 2628-2642.

Power, A.G., 2010. Ecosystem services and agriculture: tradeoffs and synergies. Philos. T. Roy. Soc. B 365 (1554), 2959-2971.

Pykälä, J., 2003. Effects of restoration with cattle grazing on plant species composition and richness of semi-natural grasslands. Biodivers. Conserv. 12 (11), 2211-2226.

R Development Core Team, 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

Rasse, D.P., Rumpel, C., Dignac, M., 2005. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269 (1-2), 341–356.

Rook, A.J., Dumont, B., Isselstein, J., Osoro, K., WallisDeVries, M.F., Parente, G., Mills, J., 2004. Matching type of livestock to desired biodiversity outcomes in pastures – a review. Biol. Conserv. 119, 137-150.

Rotz, C.A., Taube, F., Russelle, M.P., Oenema, J., Sanderson, M. A., Wachendorf, M., 2005. Whole-farm perspectives of nutrient flows in grassland agriculture. Crop Sci. 45 (6), 2139-2159.

Rowe, E.C., Emmett B.A., Smart, S.M., Frogbrook, Z.L., 2011. A new net mineralisable nitrogen assay improves predictions of floristic composition. J. Veg. Sci. 22 (2), 251-261.

Schmidt, N.M., Olsen, H., Bildsoe, M., Sluydts, V. & Leirs, H., 2005. Effects of grazing intensity on small mammal population ecology in wet meadows. Basic Appl. Ecol. 6 (1), 57-66.

Sjödin, N.E., Bengtsson, J., Ekbom, B., 2008. The influence of grazing intensity and landscape composition on the diversity and abundance of flower-visiting insects. J. Appl. Ecol. 45, 763-772.

Söderström, B., Pärt, T., Linnarsson, E., 2001. Grazing effects on between-year variation of farmland bird communities. Ecol. Appl. 11 (4), 1141-1150.

Soussana, J.F., Loiseau, P., Vuichard, N., Ceschia, E., Balesdent, J., Chevallier, T., Arrouays, D., 2004. Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manage. 20 (2), 219-230.

Strijker, D., 2005. Marginal lands in Europe – causes of decline. Basic Appl. Ecol. 6 (2), 99-106.

Van Wijnen, N.J., Wal, R. & Bakker, J.P., 1997. The impact of herbivores on nitrogen mineralization rate: consequences for salt-marsh succession. Oecologia 118 (2), 225-231.

Vickery, J.A., Tallowin, J.R., Feber, R.E., Asteraki, E.J., Atkinson, P.W., Fuller, R.J., Brown, V.K., 2001. The management of lowland neutral grasslands in Britain: Effects of agricultural practices on birds and their food resources. J. Appl. Ecol. 38 (3), 647-664.

Wood, J.D., Richardson, R.I., Scollan, N.D., Hopkins, A., Dunn, R., Buller, H., Whittington, F.M., 2007. Quality of meat from biodiverse grassland. In: Hopkins, J.J., Duncan, A.J., McCracken, D.I., Peel, S., Tallowin, J.R.B. (Eds.), High Value Grassland, British Grassland Society, Cirencester, pp. 107-116.

Wrage, N., Strodthoff, J., Cuchillo, H.M., Isselstein, J., Kayser, M., 2011. Phytodiversity of temperate permanent grasslands: ecosystem services for agriculture and livestock management for diversity conservation. Biodivers. Conserv. Doi 10.1007/s10531-011-0145-6.

27

Appendix

Table A3.1 Invertebrate species counts for all grazing treatments from pitfalls and pan traps (nectar feeders only); COL (Coleoptera), ARA (Araneae), HYM (Hymenoptera), HET (Heteroptera), CHI (Chilopoda), HET (Heteroptera), OPI (Opiliones), DIC (Dictyoptera), ORT (Orthoptera), PUL (Pulmonata), ISO (Isopoda), DIP (Diploda), DER (Dermaptera), HAP (Haplotaxida); sorted by functional group; PRE (Predatory), ZOO (Zoophagous), OMN (Omnivore), PHY (Phytophagous, (B) Bryophyte feeder), POL (Pollen feeder), DET (Detritivore, (F) Fungivorous, (S) Scavenging), MYR (Myrmecophilous), DUN (Dung feeder), NEC (Nectar feeders) NOT (Not assigned). Spiders; FRH (foliage running hunter), GRH (ground running hunter), SA (Stalker/Ambusher), SWB (Space web builder), OW (Orb weaver), SW (Sheet weaver). N (nationally scarce), RDB3 (Red data book 3 listed), * (associated with coastal dune habitat; Alexander et al., 2005).

Order	Family	Species	Common name	Group	PR	R	U	Total
COL	Staphylinidae	Tachyporus atriceps	Rove beetle	PRE ¹	24	10	2	36
COL	Staphylinidae	Tachyporus dispar	Rove beetle	PRE ¹	6	3	0	9
COL	Staphylinidae	Tachinus marginellus	Rove beetle	PRE ¹	0	0	1	1
COL	Staphylinidae	Amischa analis	Rove beetle	PRE ¹	1	1	1	3
COL	Staphylinidae	Oxypoda lentula	Rove beetle	PRE ¹	1	0	0	1
COL	Staphylinidae	Othius subuliformis	Rove beetle	PRE ¹	2	1	0	3
COL	Staphylinidae	Quedius boops	Rove beetle	PRE ¹	2	0	0	2
COL	Staphylinidae	Quedius curtipennis	Rove beetle	PRE ¹	3	0	0	3
COL	Staphylinidae	Quedius fuliginosus	Rove beetle	PRE ¹	1	2	0	3
COL	Staphylinidae	Quedius semiobscurus	Rove beetle	PRE ¹	6	4	0	10
COL	Staphylinidae	Quedius molochinus	Rove beetle	PRE ¹	1	0	2	3
COL	Staphylinidae	Quedius levicollis	Rove beetle	PRE ¹	1	3	0	4
COL	Staphylinidae	Philonthus carbonarius	Rove beetle	PRE ¹	1	0	0	1
COL	Staphylinidae	Philonthus cognatus	Rove beetle	PRE ¹	1	0	0	1
COL	Staphylinidae	Philonthus splendens	Rove beetle	PRE ¹	0	1	0	1
COL	Staphylinidae	Philonthus varians	Rove beetle	PRE ¹	1	0	0	1
COL	Staphylinidae	Ocypus aenocephalus	Rove beetle	PRE ¹	13	5	0	18
COL	Staphylinidae	Ocypus brunnipes	Rove beetle	PRE ¹	3	2	3	8
COL	Staphylinidae	Ocypus olens	Rove beetle	PRE ¹	1	0	0	1
COL	Staphylinidae	Stenus clavicornis	Rove beetle	PRE ¹	2	2	6	10
COL	Staphylinidae	Stenus ossium	Rove beetle	PRE ¹	0	1	1	2
COL	Staphylinidae	Stenus pusillus	Rove beetle	PRE ¹	1	0	0	1
COL	Staphylinidae	Stenus juno	Rove beetle	PRE ¹	5	2	1	8
COL	Staphylinidae	Stenus latifrons	Rove beetle	PRE ¹	0	1	0	1
COL	Staphylinidae	Stenus nigritulus	Rove beetle	PRE ¹	1	0	0	1
COL	Staphylinidae	Xantholinus linearis	Rove beetle	PRE ¹	6	4	0	10
COL	Staphylinidae	Xantholinus longiventris	Rove beetle	PRE ¹	2	1	1	4
COL	Staphylinidae	Aleochara sparsa	Rove beetle	PRE ¹	0	1	0	1
COL	Cantharidae	Rhagonycha fulva	Soldier beetle	PRE ²	10	0	0	10
COL	Coccinellidae	Rhyzobius litura	Lady bird	PRE ²	5	2	1	8
COL	Coccinellidae	Nephus redtenbacheri	Lady bird	PRE ²	1	2	1	4
		Subcoccinella						
COL	Coccinellidae	vigintiquattuorpunctata	Lady bird	PRE ²	3	1	2	6
COL	Histeridae	Kissiter minimus	Water beetle	PRE ³	1	0	0	1
COL	Carabidae	Nebria salina	Ground beetle	ZOO ⁴	1	0	0	1
COL	Carabidae	Dyschirius globosa	Ground beetle	ZOO ⁴	2	0	1	3
COL	Carabidae	Pterostichus versicolor	Ground beetle	ZOO ⁴	1	0	0	1
COL	Carabidae	Calathus fuscipes	Ground beetle	ZOO ⁴	24	7	0	31
COL	Carabidae	Calathus melanocephalus	Ground beetle	ZOO ⁴	23	8	0	31
COL	Carabidae	Badister bipustulatus	Ground beetle	ZOO ⁴	8	5	5	18
COL	Carabidae	Metabletus foveatus	Ground beetle	ZOO ⁴	2	1	0	3
COL	Carabidae	Notiophilus aquaticus	Ground beetle	ZOO4	1	0	0	1
COL	Carabidae	Trechus obtusus	Ground beetle	ZOO4	0	0	1	1
COL	Carabidae	Pterostichus niger	Ground beetle	ZOO ⁴	0	2	0	2
COL	Carabidae	Amara aenea	Ground beetle	PHY ⁴	4	3	0	7
COL	Carabidae	Amara communis	Ground beetle	PHY ⁴	0	4	0	4

COL	Carabidae	Amara lucida	Ground beetle	PHY ⁴ N	1	3	0	4
COL	Carabidae	Amara lunicollis	Ground beetle	PHY ⁴	2	4	3	9
COL	Carabidae	Amara ovata	Ground beetle	PHY ⁴	0	0	1	1
COL COL	Carabidae Carabidae	Amara tibialis Harpalus tardus	Ground beetle Ground beetle	PHY ⁴ PHY ⁴	3 2	1 1	0 1	4 4
COL	Leiodidae	Harpalus tardus Leiodes rugosa	Fungus beetle	PHY ⁵	2	0	0	4
COL	Leiodidae	Leiodes rufipennis	Fungus beetle	PHY ⁵	12	10	2	24
COL	Leiodidae	Sciodrepoides watsoni	Fungus beetle	PHY⁵	1	0	0	1
COL	Leiodidae	Catops fuliginosus	Fungus beetle	PHY⁵	0	0	8	8
COL	Leiodidae	Catops morio	Fungus beetle	PHY⁵	0	2	2	4
COL	Leiodidae	Agathidium laevigatum	Fungus beetle	PHY⁵	1	0	0	1
COL	Byrrhidae	Simplocaria semistriata	Pill beetle Long-toed	PHY⁵ (B)	0	2	0	2
COL	Dryopidae	Dryops ernesti	water beetle Long-toed	PHY⁵	2	0	0	2
COL	Dryopidae	Dryops luridus	water beetle Darkling	PHY⁵	0	0	1	1
COL	Tenebrionidae	Lagria hirta	beetle	PHY ⁵	2	0	2	4
COL	Tenebrionidae	Melanimon tibialis	Darkling beetle	PHY⁵	7	5	1	13
COL	Tenebrionidae	Phylan gibbus	Darkling beetle	PHY⁵	2	2	1	5
<u> </u>	Tenebrionidae	Ctonionus suchurs	Darkling beetle	РНҮ⁵	1	1	0	2
COL COL	Chrysomelidae	Cteniopus suphureus Chrysomela populi	Leaf beetle	PHY ⁵ PHY ⁵	1 2	1 0	0 0	2 2
COL	Chrysomelidae	Galerucella tenella	Leaf beetle	PHY ⁵	2	0	0	2
COL	Chrysomelidae	Lochmaea capreae	Leaf beetle	PHY ⁵	1	3	0	4
COL	Chrysomelidae	Longitarsus gracilis	Leaf beetle	PHY⁵	1	2	0	3
COL	Chrysomelidae	Longitarsus luridus	Leaf beetle	PHY⁵	6	5	0	11
COL	Chrysomelidae	Longitarsus jacobaea	Leaf beetle	PHY ⁵	39	1	0	40
COL	Chrysomelidae	Cassida prasina	Leaf beetle	PHY⁵	0	0	1	1
COL	Chrysomelidae	Chaetocnema hortensis Neocrepidodera	Leaf beetle	PHY⁵	1	0	0	1
COL	Chrysomelidae	, ferruginea Neocrepidodera	Leaf beetle	PHY⁵	20	13	1	34
COL	Chrysomelidae	transversa	Leaf beetle	PHY⁵	1	0	0	1
COL	Curculionidae	Otiorrhynchus ovatus	Weevil	PHY⁵	1	2	1	4
COL	Curculionidae	Philopedon plagiatus	Weevil	PHY⁵	10	12	4	26
COL	Curculionidae	Sitona lineellus	Weevil	PHY⁵	3	1	0	4
COL	Curculionidae	Hypera plantaginis	Weevil	PHY⁵	7	3	0	10
COL	Curculionidae	Apion pubescens	Weevil	PHY⁵	3	0	0	3
COL	Elateridae	Agrypnus murinus	Click beetle	POL ⁶	33	20	3	56
COL	Elateridae	Agriotes obscurus	Click beetle	POL ⁶	11	5	0	16
COL	Hydrophilidae	Megasternum concinnum	Water beetle	DET ⁷	19	10	6	35
COL	Staphylinidae	Anotylus tetracarinatus	Rove beetle	DET ¹	1	0	0	1
COL COL	Staphylinidae Staphylinidae	Ischnosoma splendidum	Rove beetle	DET ¹ (F)	0	1	5 13	6 27
COL	Staphylinidae Staphylinidae	Mycetoporus piceolus Mycetoporus punctus	Rove beetle Rove beetle	DET ¹ (F) N DET ¹ (F) N	5 0	9 1	13	27
COL	Staphylinidae	Atheta brunneipennis	Rove beetle	DET ¹ (F)	0	0	1	1
COL	Staphylinidae	Micropeplus staphylinoides	Rove beetle	DET ¹ (F)	0	1	0	1
COL	Latridiidae	Corticaria minuta	Scavenger beetle	DET ⁸ (F)	0	0	1	1
COL	Staphylinidae	Drusilla caniculatata	Rove beetle	MYR ¹	0	6	0	6
COL	Staphylinidae	Zyras collaris	Rove beetle	MYR ¹	0	0	1	1
COL	Staphylinidae	Platydracus stercorarius	Rove beetle	MYR ¹	9	6	0	15
COL	Scarabaeidae	Aphodius prodromus	Dung beetle	DUN ⁹	0	1	0	1
COL	Scarabaeidae	Onthophagus similis	Dung beetle		5	0	1	6
COL	Scarabaeidae	Geotrupes stercorarius	Dung beetle		0	0	2	2
COL	Scarabaeidae	Aphodius fimetarius	Dung beetle		1	0	0	1
COL	Scarabaeidae	Aphodius rufipes	Dung beetle		1 0	0 1	0 0	1
COL	Scarabaeidae	Sericea brunnea Philorhizus	Dung beetle	DUN ⁹				1
COL	Carabidae	melanocephalus	Ground beetle	NOT	0	1	2	3
COL	Staphylinidae	Mocyta fungi	Rove beetle	NOT	23	13	12	48
COL	Staphylinidae Staphylinidae	Pella limbata Bianius cordidus	Rove beetle	NOT	0	0	1	1
COL	Staphylinidae	Bisnius sordidus Badura macrocora	Rove beetle	NOT	4	0	0	4
COL COL	Staphylinidae Staphylinidae	Badura macrocera Megalinus alabratus	Rove beetle	NOT	1	0	0	1
COL	Staphylinidae	Megalinus glabratus Lampyris poctiluca	Rove beetle	NOT NOT	3 3	0 1	0 1	3 5
1.1.11	Lampyridae	Lampyris noctiluca	Glow worm		3	T	T	Э

ARA	Clubionidae	Cheiracanthium virescens	Foliage spider	PRE ¹⁰	1	0	0	1
ARA	Clubionidae	clubionid juveniles	Foliage spider	(FRH) PRE ¹⁰	3	1	0	4
ARA	Gnaphosidae	Drassodes cupreus	Ground spider	(FRH) PRE ¹⁰	10	3	2	15
ARA	Gnaphosidae	Haplodrassus signifer	Ground spider	(GRH) PRE ¹⁰	0	2	0	2
ARA	Gnaphosidae	Zelotes electus	Ground spider	(GRH) PRE ¹⁰ (GRH)	19	6	0	25
ARA	Gnaphosidae	Zelotes latreillei	Ground spider	PRE ¹⁰ (GRH)	4	19	16	39
ARA	Gnaphosidae	Micraria pulicaria	Ground spider	PRE ¹⁰ (GRH)	0	0	1	1
ARA	Gnaphosidae	Gnaphosid juveniles	Ground spider	PRE ¹⁰ (GRH)	2	12	1	15
ARA	Lycosidae	Pardosa monticola	Wolf spider	PRE ¹⁰ (GRH)	643	371	5	1019
ARA	Lycosidae	Pardosa palustris	Wolf spider	PRE ¹⁰ (GRH)	33	2	0	35
ARA	Lycosidae	Pardosa armentata	Wolf spider	PRE ¹⁰ (GRH)	2	0	0	2
ARA	Lycosidae	Pardosa pullata	Wolf spider	PRE ¹⁰ (GRH)	103	360	269	732
ARA	Lycosidae	Pardosa nigriceps	Wolf spider	PRE ¹⁰ (GRH)	15	52	145	212
ARA	Lycosidae	Alopeosa barbipes	Wolf spider	PRE ¹⁰ (GRH)	1	0	0	1
ARA	Lycosidae	Alopecosa pulverulenta	Wolf spider	PRE ¹⁰ (GRH) PRE ¹⁰	49	27	7 0	83
ARA ARA	Lycosidae Lycosidae	Trochosa ruricola Trochosa terricola	Wolf spider Wolf spider	(GRH) PRE ¹⁰	1 10	0 6	2	1 18
ARA	Lycosidae	lycosid juveniles	Wolf spider	(GRH) PRE ¹⁰	10	98	44	264
ARA	Thomisidae	Xysticus cristatus	Crab spider	(GRH) PRE ¹⁰ (SA)	11	2	0	13
		,	•	• •				
ARA	Thomisidae	Xysticus erraticus	Crab spider	PRE ¹⁰ (SA)	17	4	0	21
٩RA	Thomisidae	Xysticus kochi	Crab spider	PRE ¹⁰ (SA)	11	1	0	12
ARA	Thomisidae	Ozyptila atomaria	Crab spider	PRE ¹⁰ (SA)	1	0	0	1
٩RA	Thomisidae	thomisid juveniles	Crab spider	PRE ¹⁰ (SA)	9	3	2	14
ARA	Salticidae	Euophys frontalis	Jumping spider	PRE ¹⁰ (SA)	0	0	1	1
ARA	Salticidae	Heliophanus flavipes	Jumping spider	PRE ¹⁰ (SA)	0	0	1	1
ARA	Theridiidae	Enoplognatha thoracica	Comb spider	PRE ¹⁰ (SWB)	1	0	0	1
ARA	Dictynidae	Argenna subnigra	Mesh webbed spider	PRE ¹⁰ (SWB)	58	60	4	122
ARA	Tetragnathidae	Pachygnatha degeeri	Orb weaver	PRE ¹⁰ (OW)	473	212	25	710
ARA	Linyphiidae	Ceratinella brevipes	Sheet weaver	PRE ¹⁰ (SW)	1	0	0	1
ARA	Linyphiidae	Ceratinella brevis	Sheet weaver	PRE ¹⁰ (SW)	0	0	2	2
ARA	Linyphiidae	Walckenaeria acuminata	Sheet weaver	PRE ¹⁰ (SW)	0	2	9	11
٩RA	Linyphiidae	Walckenaeria antica	Sheet weaver	PRE ¹⁰ (SW)	11	14	6	31
٩RA	Linyphiidae	Walckenaeria atrotibialis	Sheet weaver	PRE ¹⁰ (SW)	0	3	1	4
٩RA	Linyphiidae	Walckenaeria monoceros	Sheet weaver	PRE ¹⁰ (SW)	18	2	1	21
٩RA	Linyphiidae	Walckenaeria vigilax	Sheet weaver	PRE ¹⁰ (SW)	0	1	0	1
ARA	Linyphiidae	Dicymbium nigrum	Sheet weaver	PRE ¹⁰ (SW)	8	3	0	11
ARA	Linyphiidae	Peponocranium ludicrum	Sheet weaver	PRE ¹⁰ (SW)	0	0	1	1
ARA	Linyphiidae	Oedothorax fuscus	Sheet weaver	PRE ¹⁰ (SW)	4	0	1	5
ARA	Linyphiidae	Oedothorax retusus	Sheet weaver	PRE ¹⁰ (SW)	5	0	0	5
ARA ARA	Linyphiidae	Pelecopsis parallela	Sheet weaver	PRE ¹⁰ (SW)	2	0	0	2
				PRE ¹⁰ (SW)				
ARA ARA	Linyphiidae Linyphiidae	Pocadicnemis pumila Mecopisthes peusi	Sheet weaver Sheet weaver	PRE ¹⁰ (SW) PRE ¹⁰ (SW) N	1 13	0 3	3 1	4 17
ARA	Linyphiidae	Trichopterna thorelli	Sheet weaver	N PRE ¹⁰ (SW)	0	2	0	2
ARA	Linyphiidae	Cnephalocotes obscurus	Sheet weaver	PRE ¹⁰ (SW)	0	2	1	3
ARA	Linyphiidae	Erigone atra	Sheet weaver	PRE ¹⁰ (SW)	5	0	0	5
	Linyphiidae	Erigone dentipalpis	Sheet weaver	PRE ¹⁰ (SW)	3	0	0	3
ARA				(300)	5	0	0	3
ARA ARA	Linyphiidae	Tiso vagans	Sheet weaver	PRE ¹⁰ (SW)	95	69	12	176

ARA	Linyphiidae	Troxochrus scabriculus	Sheet weaver	PRE ¹⁰ (SW)	0	1	3	
ARA	Linyphiidae	Tapinocyba praecox	Sheet weaver	PRE ¹⁰ (SW)	11	0	2	1
ARA	Linyphiidae	Gongylidiellum vivum	Sheet weaver	PRE ¹⁰ (SW)	15	9	6	1
ARA	Linyphiidae	Erigonella hiemalis	Sheet weaver	PRE ¹⁰ (SW)	0	1	0	
ARA	Linyphiidae	Agyneta decora	Sheet weaver	PRE ¹⁰ (SW)	5	1	1	
ARA	Linyphiidae	Centromerita concinna	Sheet weaver	PRE ¹⁰ (SW)	3	6	0	
ARA	Linyphiidae	Centromerus prudens	Sheet weaver	PRE ¹⁰ (SW)	0	0	1	
ARA	Linyphiidae	Stemonyphantes lineatus	Sheet weaver	PRE ¹⁰ (SW)	2	1	0	
ARA	Linyphiidae	Bathyphantes gracilis	Sheet weaver	PRE ¹⁰ (SW)	3	2	0	
ARA	Linyphiidae	Bathyphantes parvulus	Sheet weaver	PRE ¹⁰ (SW)	4	1	0	
ARA	Linyphiidae	Lepthyphantes tenuis	Sheet weaver	PRE ¹⁰ (SW)	23	10	2	3
ARA	Linyphiidae	Lepthyphantes mengei	Sheet weaver	PRE ¹⁰ (SW)	0	6	1	
ARA	Linyphiidae	Lepthyphantes pallidus Lepthyphantes	Sheet weaver	PRE ¹⁰ (SW)	6	23	5	3
ARA	Linyphiidae	zimmermani	Sheet weaver	PRE ¹⁰ (SW)	1	2	0	
ARA	Linyphiidae	juveniles Linyphiidae*	Sheet weaver	PRE ¹⁰ (SW)	55	33	6	9
HYM	Formicidae	Lasius fuliginosus	Ant	PRE ¹¹ (P)	0	0	1	
HYM	Formicidae	Lasius mixtus	Ant	PRE ¹² (P)	3	8	9	
HYM	Formicidae	Lasius umbratus	Ant	PRE ¹³ (P)	1	0	0	
HET	Nabidae	Nabis flavomarginatus	Damsel bug	PRE ¹⁴	0	1	0	
СНІ	Lithobiidae	Lithobius microps Ceratocombus	Centipede	PRE ¹⁵	0	1	2	
HET	Dipsocoridae	coleoptratus		PRE ¹⁶	0	0	8	
OPI	Nemastomatidae	Nemastoma bimaculata	Harvestmen	ZOO ¹⁵	0	0	1	
OPI	Phalangiinae	Lacinius ephippiatus	Harvestmen	200 200 ¹⁵	0	5	2	
OPI	-			200 200 ¹⁵	5	7	2	
OPI	Phalangiinae Phalangiinae	Platybunus triangularis Lophopilio palpinalis	Harvestmen Harvestmen	ZOO ¹⁵ ZOO ¹⁵	5	3	2	
	-							
OPI	Phalangiinae	Oligolophus tridens	Harvestmen	ZOO ¹⁵	1	0	0	2
OPI	Phalangiinae	Phalangium opilio	Harvestmen	ZOO ¹⁵	204	53	4	2
OPI	Phalangiinae	Opilio saxatilis	Harvestmen	ZOO ¹⁵	20	22	10	!
OPI	Leiobunidae	Leiobunum blackwalli	Harvestmen	ZOO15	0	0	1	
OPI	Leiobunidae	Leiobunum rotundum	Harvestmen	ZOO15	0	1	0	
OPI		immature harvesters*	Harvestmen	ZOO15	36	23	20	-
HYM	Formicidae	Formica fusca	Ant	OMN ²	3	2	2	
HYM	Formicidae	Lasius niger	Ant	OMN ¹⁷	36	47	77	1
HYM	Formicidae	Myrmica rubra	Ant	OMN ²	1	30	10	4
НҮМ	Formicidae	Myrmica ruginodis	Ant	OMN ¹⁷	9	34	23	(
HYM	Formicidae	Myrmica sabuleti	Ant	OMN ¹⁷	165	124	4	2
HYM	Formicidae	Myrmica scabrinodis	Ant	OMN ¹⁷	21	10	34	_
DIC	Ectobiinae	Ectobius panzeri	Cockroach	OMN ¹⁸	11	2	1	
HET	Tingidae	Acalypta parvula	Lace bug	PHY ¹⁴	71	34	38	14
HET	Berytidae	Berytinus minor	Stilt bug	PHY ¹⁴	4	3	0	1.
			Stilt bug	PHY ¹⁴	3	2		
HET	Berytidae	Berytinus montivagus	0				0	2
HET	Tingidae	Kalama tricornis Megalonotus	Lace bug	PHY ¹⁴	204	110	9	3
HET	Lygaeidae	praetextatus	Ground bug	PHY ¹⁴ N	0	1	0	
HET	Lygaeidae	Stygnocoris sabulosus	Ground bug	PHY ¹⁴	2	0	1	
HET	Lygaeidae	Plinthiscus brevipennis	Ground bug	PHY ¹⁴	0	0	1	
HET	Rhopalidae	Myrmus miriformis		PHY ¹⁴	0	1	1	
ORT	Acrididae	Chorthippus brunneus	Grasshopper	PHY ¹⁵ *	0	0	1	
ORT	Acrididae	Omocestus viridulus Myrmeleotettix	Grasshopper	PHY ¹⁵ *	0	2	0	
ORT	Acrididae	maculatus	Grasshopper	PHY ¹⁵ *	1	1	0	
PUL			Snails & slugs	PHY ¹⁵	150	153	80	3
ISO	Trichoniscidae	Trichoniscus pusillus	Woodlouse	DET ¹⁵ (S)	0	1	0	
ISO	Philosciidae	Philoscia muscorum	Woodlouse	DET ¹⁵ (S)	295	1251	136	16
ISO	Armadillidiidae	Armadillidium vulgare	Woodlouse	DET ¹⁵ (S)	52	347	37	4
ISO	Porcellionidae	Porcellio scaber	Woodlouse	DET ¹⁵ (S)	71	123	116	3
DIP	Julidae	Cylindroiulus latestriatus	Millipede	DET ¹⁵ (S)	354	196	137	6
DIP	Julidae	Julus scandinavius	Millipede	DET ¹⁵ (S)	0	0	107	5.
DIP	Julidae	Ophyiulus pilosus	Millipede	DET ¹⁵ (S)	20	1	3	
DIP	Julidae	Brachyiulus pusillus	Millipede	DET (5) DET ¹⁵ (S)	15	7	8	
DIP	Julidae	Omatoiulus sabulosus	Millipede	DET ¹⁵ (S)	15	1	° 0	
DIP	Polydesmidae	Polydesmus angustatus	Millipede	DET ¹⁵ (S)	2	3	1	
DER	Forficulidae	Forficula auricularia	Earwig	DET ¹⁵ (S) *	14	4	1	
HAP	Lumbricidae.		Earthworm	DET ¹⁵ NEC ²	53	30	11	
HYM	Colletidae	Colletes cunicularius	Mining bee	RDB3	0	0	2	
HYM	Colletidae	Colletes fodiens	Solitary bee	NEC ²	1	0	0	
	Andrenidae	Andrena nigroaenea	Mining bee	NEC ²	0	0	1	
HYM	Anureniuae	Anurena mgrouenea	winning Dee	NLC	0	0	-	

HYM	Megachilidae	Osmia aurulenta	Mason bee Red mason	NEC ²	0	0	4	4
HYM	Megachilidae	Osmia rufa	bee	NEC ²	0	0	1	1
			Yellow face					
HYM	Colletidae	Hylaeus communis	bee	NEC ²	2	4	3	9
HYM	Apinae	Bombus hortorum	Bumble bee	NEC ²	3	6	0	9
HYM	Apinae	Bombus lapidarius	Bumble bee	NEC ²	0	5	13	18
HYM	Apinae	Bombus pascuorum	Bumble bee	NEC ²	5	4	6	15
HYM	Apinae	Bombus terrestris	Bumble bee	NEC ²	0	7	0	7
HYM	Apinae	Bombus bohemicus	Bumble bee	NEC ²	3	0	0	3
HYM	Apinae	Bombus lucorum	Bumble bee	NEC ²	0	0	11	11
HYM	Apidae	Apis mellifera	Honey bee	NEC ²	0	0	5	5

¹ Clough, Y., Kruess, A. & Tscharntke (2007). Organic versus conventional arable farming systems: Functional grouping helps understand staphylinid response. Agriculture Ecosystems & Environment, 118, 285-290.

² Chinery, M. (1986) Collins guide to the insects of Britain and Western Europe. HarperCollins Publishers, London, UK.

³ Watford Coleoptera Group, <u>www.thewcg.org.uk</u> (last accessed 02.11.11).

⁴ Vanbergen, A. J., Woodcock, B. A., Koivula, M., Niemela, J., Kotze, D. J., Bolger, T., Golden, V., Dubs, F., Boulanger, G., Serrano, J., Lencina, J. L., Serrano, A., Aguiar, C., Grandchamp, A. C., Stofer, S., Szel, G., Ivits, E., Adler, P., Markus, J. & Watt, A. D. (2010) Trophic level modulates carabid beetle responses to habitat and landscape structure: a pan-European study. Ecological Entomology, 35, 226-235.

⁵ Eyre, M.D. & Luff, M.L. (2005) The Distribution of Epigeal Beetle (Coleoptera) Assemblages on the North-East England Coast. Journal of Coastal Research, 215, 982-990.

⁶ Elateridae of the British Isles, <u>www.elateridae.co.uk</u> (last accessed 02.11.11).

⁷ Lassau, S.A., Hochuli, D.F., Cassis, G. & Reid, C.A.M. (2005) Effects of habitat complexity on forest beetle diversity: do functional groups respond consistently? Diversity and Distributions, 11, 73-82.

⁸ Latridiidae, <u>www.tolweb.org/Latridiidae</u> (last accessed 02.11.11).

⁹ Lobo, J.M., Hortal, J. & Cabrero-Sanudo F.J. (2006) Regional and local influence of grazing activity on the diversity of a semi-arid dung beetle community. Diversity and Distributions, 12, 111-123.

¹⁰ Uetz, G.W., Halaj, J. & Cady, A.B. (1999) Guild Structure of Spiders in Major Crops. The Journal of Arachnology, 27, 270-280.

¹¹ Akino, T. (2002) Intrusion on the host ant species Lasius japonicus by queens of the shining black ant Lasius fulginosus (Hymenoptera: Formicidae). Entomological Science, 5, 179-186.

¹² Schlick-Steiner, B.C., Steiner, F.M. & Seifert, B. (2002) Lasius flavus - A host species of Lasius mixtus (Hymenoptera : Formicidae). Sociobiology, 39, 141-143.

¹³ Myrmecos.net, <u>http://www.myrmecos.net/formicinae</u> (last accessed 02.11.11).

¹⁴ British bugs, http://www.britishbugs.org.uk (last accessed 02.11.11).

¹⁵ Tilling, S.M. (1987) A key to the major groups of British Terrestrial Invertebrates. Field Studies, 6, 695-766.

¹⁶ http://delta-intkey.com (last accessed 02.11.11).

¹⁷ O'Grady, A., Schmidt, O. & Breen, J. (2010) Trophic relationships of grassland ants based on stable isotopes. Pedobilogia, 53, 221-225.

¹⁸ Orthoptera, <u>www.orthoptera.org.uk</u>. (last accessed 02.11.11).