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14 Abstract

15 The frequency and intensity of extreme weather events (e.g. flood, drought) are predicted 

16 to increase for the foreseeable future and it is expected that these will negatively impact upon 

17 agroecosystem functioning. Our understanding of how grassland ecosystems respond to extreme 

18 weather events occurring at different times of the year, however, is lacking. To better understand 

19 the seasonal response of grassland to flooding, we subjected an agricultural grassland to an 8-

20 week extreme flood event at three different temperatures (5 °C-winter, 15 °C-spring/autumn and 

21 25°C-summer) and then followed its subsequent recovery for 9 weeks after floodwater removal. 

22 We focused on key indicators of ecosystem functioning including primary production, nutrient 

23 cycling, greenhouse gas (GHG) emissions, ammonia (NH3) volatilization, and soil microbial 

24 communities. The experiment used intact soil mesocosms (1 kg) with indigenous vegetation 

25 collected from a grassland with no previous history of flooding. Flooding reduced biomass 

26 production by 18% at 5 °C, 50% at 15 °C and 95% at 25 °C. Flooding also significantly disrupted 

27 elemental cycling (nitrogen, phosphorus and carbon) as evidenced by an increased release of P, 

28 Fe and NH4
+ into the soil and overlying floodwater and large amounts of CH4 and NH3 released 

29 to the atmosphere (mainly during the flooding). These effects were more pronounced at higher 

30 temperatures (e.g. 45 to 700 kg CH4-C ha−1 and 1 to 5 kg NH3-N ha−1 at 15 and 25 °C, 

31 respectively). In addition, after floodwater removal this NH4
+ was rapidly nitrified leading to large 

32 losses of N2O (1.0 to 14.2 kg N2O-N ha−1 at 5 to 25 °C, respectively). Especially at higher 

33 temperatures, flooding resulted in a reduction in soil microbial biomass (more than 58% of the 

34 equivalent unflooded treatment at 25 °C) and changes in microbial community structure (assessed 

35 by PLFAs). Further, some of these changes persisted after flood removal including a loss of 

36 actinomycetes, arbuscular mycorrhizal fungi and fungi. Overall, we conclude that ecosystem 

37 responses to extreme weather events are critically dependent on temperature with those occurring 

38 at higher temperatures having a greater negative impact than those at the lowest temperature (5 

39 °C). The large potential release of CH4 and N2O also suggests that flood events should be 

40 considered as a potential source of  GHGs when comparing top-down and bottom-up calculations 
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41 of national inventories, and that further work is needed to better refine GHG emission estimates 

42 for these events.  

43 Keywords: Climate change, Nitrous oxide, Methane, Iron oxyhydroxide; PLFA; Soil 

44 microorganisms

45 1. Introduction

46 Climate change is increasing the incidence of extreme weather events (Slater and 

47 Villarini, 2016) and current predictions indicate that their frequency and intensity will increase 

48 for the foreseeable future (IPCC, 2014). These events constitute a major threat to the delivery of 

49 soil-related agroecosystem services such as biomass production, biodiversity conservation, 

50 erosion control, pest and disease control, water quality and supply, and climate regulation, 

51 resulting in a loss of soil functioning (Bünemann et al., 2018). 

52 Under future global warming scenarios, increases in temperature will result in more 

53 intense rainfall events (a warmer atmosphere can hold more water), an acceleration of snow and 

54 ice melt, and an increase in sea level, thereby increasing the risk of flooding (Trenberth, 2011). It 

55 is also predicted that areas with no previous history of flooding will become increasingly affected 

56 (Thorne, 2014). Extreme flood events can occur throughout the year and can cover large land 

57 areas with floodwater persisting from days to months, with floodwater depths reaching up to 2 m 

58 (Met Office, 2014; Morris and Brewin, 2014; Posthumus et al., 2009; Romanescu and Stoleriu, 

59 2017). The overall damage to agroecosystems appears to be dependent upon the time of year when 

60 floods occur (Posthumus et al., 2009), plant species and their growth stage (Morris and Brewin, 

61 2014), the type of flooding and the preceding agricultural management regime (Sánchez-

62 Rodríguez et al., 2017, 2018b). At higher temperatures, chemical and biological soil reactions are 

63 accelerated and it is normally assumed that these will aggravate the effects of extreme flood events 

64 on plant production (Posthumus et al., 2009) and potential nutrient losses (Sánchez-Rodríguez et 

65 al., 2018b), however, colder weather also causes devastating effects if the crop is completely 

66 submerged (Das et al., 2009). It is also important to note that the impact of flooding on soil-based 

67 ecosystem services may continue after the floodwater has receded (Niu et al., 2014; Osanai et al., 

68 2017). 
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69  Greenhouse gas (GHG) emissions from agricultural soils are likely to markedly shift in 

70 response to extreme weather events. For example, drought is expected to reduce GHG emissions 

71 as microbial activity becomes water-limited, whilst in contrast, flooding may increase net GHG 

72 emissions, due to a microbial switch from aerobic to anaerobic metabolism (Hou et al., 2000). 

73 Although N2O produced under aerobic conditions may be reduced, and CH4 emissions may 

74 increase under flooding, the overall mineralization of soil organic carbon (SOC) is typically 

75 suppressed due to the lack of O2 required for oxidative-based enzymatic processes (Miller et al., 

76 2001). Interestingly, however, there is also evidence showing an increase in mineralization in 

77 waterlogged or flooded soils (Alongi et al., 2012), particularly at elevated temperatures (Kirwan 

78 and Blum, 2011) when N and C, factors that limit decomposition rates of organic matter, are 

79 abundant. 

80 In relation to plant biomass production and water quality, the release of nutrients and 

81 consequent loss of soil fertility may also be aggravated under prolonged inundation, altering the 

82 cycling of key nutrients (e.g. N, P, S; Bünemann et al., 2018). For example, under flooding and 

83 progressive anoxia, nitrification becomes inhibited leading to the net accumulation of NH4
+ which 

84 may subsequently lead to phytotoxicity and/or enhanced NH3 volatilization, while denitrification 

85 can lead to the loss of residual soil NO3
− as N2O/N2, particularly when labile SOC is present 

86 (Senbayram et al., 2012). Under waterlogging, a drop in redox potential can cause the reduction 

87 and solubilisation of Fe3+ inducing the release of P held on the surfaces of Fe-oxyhydroxides. 

88 Ultimately, this can cause a redistribution of nutrients adsorbed on Fe oxides within the soil 

89 profile. 

90 The deleterious effect of flooding on plant growth and soil functions appears to be 

91 critically dependent on the duration and timing of the event (Glaz and Lingle, 2012; Shao et al., 

92 2013). Typically, little adverse effect is seen if the floodwater dissipates within 2 weeks, however, 

93 longer inundation periods may trigger major changes in soil functioning and ecosystem service 

94 delivery (Niu et al., 2014). Finally, the size and composition of the soil microbial community, a 

95 key driver for soil functioning and soil-based ecosystem services, is strongly affected by water 

96 content and temperature (Castro et al., 2010) and, traditionally, alterations in its structure have 
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97 been described during flooding, such as a reduction in Gram− bacteria and an increase in Gram+ 

98 bacteria (Bossio and Scow, 1998). 

99 Given the increased frequency of extreme flood events, it is important that we gain a 

100 better mechanistic understanding of how this affects soils both during and after flooding. The 

101 results obtained in this laboratory experiment under controlled conditions, which allow us to 

102 assess different scenarios easily, indicate the main alterations that could happen under field 

103 conditions. Field experiments dealing with extreme flooding events will benefit from the results 

104 obtained here. This will support the design of successful flood-amelioration strategies to offset 

105 the negative effects of flooding and will also inform future soil management regimes. As 

106 temperature is a key regulator of biochemical reaction rates in soil, we hypothesize that season 

107 will be one of the most important factors which determines the outcome of flooding on soil 

108 functioning, air quality and soil microbial communities. To evaluate this, we simulated an extreme 

109 flood event at 5 °C (winter flood), 15 °C (spring/autumn flood) and 25 °C (summer flood) in a 

110 grassland soil with no previous history of flooding. We investigated nutrient dynamics and 

111 potential losses, GHGs emissions, NH3 volatilization, changes in soil microbial communities and 

112 biomass production during an extreme flooding event (8 weeks) and after the flood water was 

113 removed, during the recovery of these soils (9 weeks of recovery). Unflooded grassland soil at 

114 the same temperatures was used as baseline to compare with the flooded ones. 

115 We selected a grassland soil because of its importance not only in the UK but also 

116 worldwide, and the services and soil functions that it provides, including its ability to improve 

117 soil C sequestration after a conversion from previously degraded soils (Hirsch et al., 2016). We 

118 hypothesized that the magnitude of the response will be more evident (a greater loss of soil 

119 functioning, a bigger deterioration of air quality, major alterations in the soil microbial 

120 communities and higher reductions in biomass production) and that different mechanisms and 

121 reactions will be involved at higher temperatures.

122

123 2. Materials and methods

124 2.1. Soil sampling and soil characterization
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125 Twenty-four 10 × 10 × 10 cm intact soil blocks of around 1 kg weight with their 

126 indigenous vegetation were collected from the top soil (Ah horizon) of a sheep-grazed grassland, 

127 dominated by Lolium perenne L. located in Abergwyngregyn, North Wales (53º14’21” N, 

128 4º00’57” W) in spring 2016. The soil is classified as a Eutric Cambisol (IUSS Working Group 

129 WRB, 2015) with a sandy clay loam texture that receives each year 100 kg N ha−1, 20 kg P ha−1 

130 and 20 kg K ha−1. The site has a mean annual soil (0-10 cm) temperature of 10 °C (daily mean 

131 ranges from −2.5 to 23 °C) and annual rainfall of 1060 mm.

132 A representative soil sample of one kg was collected from the same area, air-dried for one 

133 week at 25 °C and sieved (2 mm) to characterize the main physical-chemical properties. The pH 

134 (6.0) and the electrical conductivity (< 0.1 dS m−1) were determined in a 1:2.5 (w/v) soil:distilled 

135 water suspension. Fifty ml of 0.5 M BaCl2 were used to extract the exchangeable bases from 5 g 

136 of soil, after shaking for 1 h at 20 °C, and the cations (1600 mg Ca kg−1, 120 mg K kg−1, 90 mg 

137 Mg kg−1, 30 mg Na kg−1, 22 mg Al kg−1) analysed with a Series 720 ICP-OES (Agilent 

138 Technologies Inc., Santa Clara, CA). Total organic carbon (C, 21.0 g kg−1) and nitrogen (N, 1.6 

139 g kg−1) in soil were determined using a CHN-2000 analyser (Leco Corp., St Joseph, MI). 

140 A 0.5 M K2SO4 solution was used to extract mineral N in a ratio 1:5 soil:extractant (w/v), 

141 shaking for 30 min at 150 rev min−1 before centrifuging at 8540 g for 10 min. Ammonium (1.4 g 

142 kg−1) and NO3
− (14.0 g kg−1) in the extract were determined colorimetrically according to 

143 Mulvaney (1996) and Miranda et al. (2001), respectively, using a PowerWave-XS microplate 

144 reader (BioTek Instruments Inc., Winooski, VT). Finally, P availability index  (10.0 g kg−1) was 

145 measured according to the molybdate blue method of Murphy and Riley (1962), after extracting 

146 P from the soil (1 h, 200 rev min-1) using a 1:5 (w/v) soil:0.5 M acetic acid solution. 

147

148 2.2. Experimental design, treatments and phases of the experiment

149 The twenty-four intact soil blocks were placed at the bottom of transparent containers 

150 made of polypropylene (11 × 8 cm base and 27 cm high; Lock & Lock Ltd., Seoul, Republic of 

151 Korea) and distributed equally among three identical Fitotron® plant growth chambers (Weiss 

152 Technik UK Ltd, Ebbw Vale, UK) with a photoperiod of 16 h d−1, light intensity of 350 μmol m−2 
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153 s−1, and relative humidity of 70%, each one with a different temperature, 5 °C, 15 °C or 25 °C, 

154 for the whole length of the experiment. A Rhizon® sampler (0.15 μm pore size; Rhizosphere 

155 Research Products, Wageningen, The Netherlands) was inserted into the middle of each soil block 

156 at an angle of 45° and a depth of 5 cm at the beginning of the experiment to recover soil solution 

157 throughout the experiment (i.e. to minimize damage to soil structure and indigenous vegetation). 

158 This experiment had three distinct phases:

159 (1) Pre-flood phase: During the first 20 d of the experiment, the plant-soil mesocosms were kept 

160 field-moist (ca. 75 % of field capacity) weighing them twice per week and watering individually 

161 with oligotrophic water collected from the Aber River (53º14’09” N, 4º01’01” W), located near 

162 to the field where the plant and soil samples were taken. The concentration of nutrients in the 

163 river water was low (3.1 mg C L−1, 0.16 mg NO3-N L−1, 0.01 mg NH4-N L−1, 0.04 mg P L−1, pH 

164 6.5).

165 (2) Flood-phase: Four mesocosms at each temperature (5 °C, 15 °C and 25 °C) were flooded (F) 

166 with 0.9 L of river water while the other four were watered with river water to keep field-moist 

167 (C). The three temperatures were designed to simulate winter, spring/autumn and summer 

168 flooding temperatures, although the rest of variables were the same (moisture of the growth 

169 chambers, photoperiod, light intensity), to assess the effect of the temperature (main objective). 

170 The floodwater depth was maintained 10 cm above the soil surface for eight weeks reflecting 

171 unprecedented flooding events observed in the general region in 2016. The treatments were called 

172 control 5 °C, control 15 °C, control 25 °C, flood 5 °C, flood 15 °C and flood 25 °C. Therefore, 

173 six treatments from the combination of the factor temperature (5 °C, 15 °C and 25 °C) and 

174 flood/non-flood and four mesocosms per treatment were used in this experiment.

175 (3) Soil recovery phase: The last phase started by carefully removing the floodwater from the 

176 containers that were flooded in the previous stage. Non-flooded, field-moist conditions were 

177 subsequently maintained for nine weeks in all 24 mesocosms. 

178

179 2.3. Soil chemical indicators
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180 Soil solution and floodwater (only during the second phase for the flooded mesocosms) 

181 were sampled weekly using a Rhizon® sampler and a pipette, respectively. A Model 209 pH meter 

182 (Hanna Instruments Ltd., Leighton Buzzard, UK) was used to measure the pH, while a 

183 PowerBase-XS microplate reader (BioTek Instruments Inc., Winooski, VT) was used for the 

184 colorimetric determination of P (Murphy and Riley, 1962), Fe (Loeppert and Inskeep, 1996), 

185 NH4
+ (Mulvaney, 1996) and NO3

− (Miranda et al., 2001). The potential losses of these nutrients 

186 were calculated from the maximum concentrations measured in the soil solution and floodwater 

187 during the flood phase (Crelease, Eqn. 1):

188 Crelease (mg mesocosm−1) = [Csol × Vsoil × Θ] + [Cflood × Vflood] (Eqn. 1)

189 where Csol and Cflood are the concentration of a nutrient in the soil solution and floodwater 

190 respectively, Vsoil and Vflood are the volume of soil (0.7 l) and floodwater (0.9 l) respectively and 

191 Θ is the volumetric water content (0.5 m3 m−3). 

192

193 2.4. Greenhouse gas emissions and NH3 losses

194 Gas samples were taken on a weekly basis for the flood and recovery phases except the 

195 week in which the floodwater was removed when three gas samplings were done. Firstly, a lid 

196 with rubber septum was used to hermetically seal the containers. At time 0 h and 1 h, the 

197 headspace gas was then sampled using a syringe and extracted gas samples placed in pre-

198 evacuated gas-tight glass vials (22 ml). The concentrations of GHG in the vials was measured 

199 using a Clarus 500 gas chromatograph equipped with a HS-40 Turbomatrix autoanalyzer 

200 (PerkinElmer Inc., Waltham, MA); CH4 and CO2 were detected with a flame ionization detector 

201 (FIC) connected to a methanizer and N2O with a 63Ni electron-capture detector. Greenhouse gas 

202 fluxes were calculated with the difference of each gas concentration at time 0 and 1 h after 

203 correction for temperature and the ratio between chamber volume and soil surface area 

204 (Mackenzie et al., 1998). 

205 The linearity of the fluxes was determined in Sánchez-Rodríguez et al. (2018a). Total 

206 cumulative fluxes were estimated by multiplying the mean of two successive daily fluxes by the 

207 number of hours between these gas samplings and summing that value to the previous cumulative 
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208 total. The global warming potential (GWP) of the GHGs was estimated in CO2 equivalents by 

209 multiplying the total cumulative fluxes by 34 for CH4, 1 for CO2 and 298 for N2O before summing 

210 them (IPCC, 2013). 

211 Ammonia volatilization was estimated by trapping evolved NH3 using headspace acid 

212 traps. Briefly, 25 mm diameter glass microfiber filters saturated with 0.15 M H3PO4 (one per 

213 mesocosm and sampling; Whatman GmbH, Dassel, Germany) were suspended on the underside 

214 of the container lids (while GHG sampling). After one hour in contact with the air inside the 

215 hermetically closed container, the filters were removed and the filter papers extracted with 1 ml 

216 of distilled water (1 h, 200 rev min-1) before colorimetric determination of NH4
+ in the extract 

217 according to the salicylic acid-hypochlorite procedure of Mulvaney (1996). Weekly samplings 

218 were done from the beginning of the flooding to the fourth week of soil recovery. 

219

220 2.5. Soil biological indicators

221 Soil (25 g) was removed from each mesocosm at the beginning and end of the soil 

222 recovery phase, sieved to 2 mm and stored at −80 °C. Subsequently, the samples were freeze-

223 dried and phospholipid fatty acid (PLFA) analysis undertaken according to Bartelt-Ryser et al. 

224 (2005) with taxonomic groups ascribed to individual PLFAs using the Sherlock® PLFA Method 

225 and Tools Package (PLFAD1; Microbial ID Inc., Newark, DE). One hundred and two fatty acids 

226 were identified in the soil samples, however, we only present results from the twenty-nine whose 

227 concentration was higher than 0.5% of the total PLFAs (and the one used as a biomarker for 

228 protozoa which only constituted 0.4% of the total PLFAs), classified per taxonomic group 

229 (Bartelt-Ryser et al., 2005; Bedard and Knowles, 1989; Bossio and Scow, 1998; Bowman et al., 

230 1991, 1993; Kieft et al., 1994; Niklaus et al., 2003; Olsson et al., 1999; Paul and Clark, 1996; 

231 Ratledge and Wilkinson, 1988; Zelles, 1999): 

232 14:0 iso, 15:0 iso, 15:0 anteiso, 15:1 iso ω 6c, 16:0 iso, 17:0 iso, 17:0 anteiso and 17:1 iso ω9c 

233 were used for Gram+ bacteria; 16:1 ω  5c, 16:1 ω7c, 16:1 ω9c, 17:1 ω8c, 17:0 cyclo ω7c, 18:1 

234 ω5c, 18:1 ω7c, 18:1 ω9c and 19:0 cyclo ω7c were used for Gram− bacteria; 16:0 10 methyl, 17:1 

235 ω7c 10 methyl, 18:0 10 methyl and 18:1 ω7c 10 methyl for actinomycetes; 15:0 DMA as 
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236 biomarker for anaerobic bacteria; 20:4 ω6c for protozoa; 18:2 ω6c for fungi; and 16:1 ω5c as 

237 biomarker for putative arbuscular mycorrhizal fungi; 14:0, 15:0, 16:0, 17:0, 18:0 were found but 

238 were not assigned to a specific taxonomic group.

239 At the end of the soil recovery phase, the grass was cut, and dry weight recorded after 

240 oven drying (80 °C, 48 h) to establish how the different treatments altered plant productivity.

241

242 2.6. Statistical analysis

243 Analysis of variance (ANOVA) with six treatments (three temperatures, 5, 15 and 25 °C, 

244 with and without flood) and four replications per treatment was used to determine differences in 

245 potential losses of nutrients, cumulative GHG fluxes, GWP, cumulative apparent NH3 and plant 

246 biomass at the end of the experiment, and microbial biomass and taxonomic groups (PLFAs) after 

247 the flood phase and after the soil recovery phase. When significant differences were found (p < 

248 0.05), Tukey´s HSD post hoc was used to separate means of the six treatments. Potential losses 

249 of Fe and NO3
−, cumulative CH4 and N2O fluxes, and plant biomass were log10-transformed, and 

250 putative arbuscular mycorrhiza was squared-transformed, to meet the requirements for ANOVA. 

251 Principal component analysis (PCA) based on a data correlation matrix with principal components 

252 (PCs) was developed at the end of the flood phase and after soil recovery to evaluate alterations 

253 in soil microbial communities (PLFAs, taxonomic groups). 

254 All the statistical analyses were performed in the statistical package SPSS software v22.0 

255 (IBM Inc., Armonk, NY) except for the PCA, which was done in R’ (R Core Team, 2003) with 

256 the Vegan package (Oksanen et al., 2018) to include additional variables (pH, P, Fe, NH4
+, NO3

−, 

257 GHG fluxes and apparent NH3) as environmental factors based on their correlations with the 

258 different taxonomic groups. Significance was evaluated using the permutation test (Bonferroni´s 

259 correction). 

260

261 3. Results

262 3.1. pH, soil nutrient dynamics and potential losses
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263 The pH in soil solution fluctuated (range of 6.5-8.5) for the six treatments over the course 

264 of the experiment (Fig. 1a). The lowest values were measured for the containers at 5 °C while the 

265 highest pHs were measured in the soil solution of the unflooded mesocosms at 25 °C except in 

266 the last three samplings for the flooded containers at 25 °C. The pH in the floodwater increased 

267 with temperature (Fig. 1b).

268 The concentration of P in the soil solution was also variable throughout the experiment 

269 but a general trend in which the highest concentrations were measured for the mesocosms with 

270 the lowest temperatures (in 13 of 17 samplings) was observed (Fig. 1c). The trend was the 

271 opposite for the P released into the floodwater, with the lowest concentration of P found in the 

272 floodwater of the flooded mesocosms at 5 °C (Fig. 1d). Iron in the soil solution was much greater 

273 in the flooded treatments than in the control ones, peaking at around 15 mg Fe L−1 one week after 

274 the flood started for the containers at 25 °C and the last week of the flooding phase for the 

275 containers at 15 °C, and around 6 mg Fe L−1 in the last week of the flood phase for the containers 

276 at 5 °C (Fig. 1e). The concentration of Fe in the soil solution of the unflooded treatments was 

277 negligible in most occasions and below 3 mg Fe L−1 in the rest. As for P, the release of Fe into 

278 the floodwater was positively related to temperature, except in the last two weeks of the flood 

279 phase when the highest concentrations of Fe were found in the mesocosms at 15 °C (Fig. 1f).

280 The time course of NH4
+ in the soil solution and floodwater followed a similar pattern as 

281 described for Fe, with negligible concentrations in the pre-flood phase but which rapidly increased 

282 and peaked as a function of the temperature (25 > 15 > 5 °C; Figs. 2ab). A gradual reduction in 

283 soil solution NH4
+ concentration was seen when the floodwater was removed in all treatments. In 

284 contrast, the initial concentrations of NO3
− in soil solution were between 6 and 30 mg N L−1 but 

285 then, during the flood phase, they remained low except for the unflooded mesocosms at 5 °C, in 

286 which these concentrations were higher than for the rest of the unflooded mesocosms (but always 

287 below 12 mg N L−1; Fig. 2c). These concentrations were lower than 4 mg N L−1 in the floodwater 

288 of the three treatments (Fig. 2d). However, NO3
− in the soil solution of the flooded containers in 

289 the soil recovery phase reached values of nearly 60 mg N L−1 at 25 °C and 12 mg N L−1 at 15 °C. 
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290 Table 1 displays the potential losses of nutrients from soil for the six treatments during 

291 flooding. In general, the combination of flooding × higher temperatures significantly (p < 0.001) 

292 increased the potential losses (kg ha−1) of P (between 5.0 ± 0.2 and 9.6 ± 0.7), Fe (between 3.9 ± 

293 0.6 and 13.7 ± 1.3) and NH4
+ (between 2.4 ± 0.4 and 17.3 ± 1.0) in comparison with the unflooded 

294 mesocosms (1.9 kg ha−1 for P and lower than 0.5 kg ha−1 for Fe and NH4
+, Table 1). 

295

296 3.2. GHG fluxes and apparent NH3 volatilization

297 Daily GHG fluxes and apparent NH3 volatilization are shown in Figure 3. Significant CH4 

298 emissions were only detected during the flood phase and the day after the floodwater was removed 

299 for the 15 and 25 °C flooding treatments only (Fig. 3a). These daily emissions were greater and 

300 more prolonged at 25 °C than at 15 °C, reaching up to 90 and 25 mg C m−2 h−1, respectively. In 

301 the case of CO2, daily fluxes were higher in the flooded mesocosms than in the control ones, 

302 except for the first gas sampling period (Fig. 3b). Above-background N2O fluxes were only 

303 detected during the soil recovery phase for two treatments, peaking at 3.2 mg N m−2 h−1 for the 

304 flooded containers at 25 °C and around 1 mg N m−2 h−1 for those held at 15 °C, one week and four 

305 weeks after flood removal, respectively (Fig. 3c). Finally, NH3 emissions were concentrated in 

306 the flood phase and only occurred in the flooded mesocosms at the two highest temperatures, 

307 reaching up to 0.75 mg N m−2 h−1 at 25 °C and 0.15 mg N m−2 h−1 at 15 °C (Fig. 3d).

308 The control treatment at 25 °C was the only treatment that acted as a sink for cumulative 

309 CH4 and N2O fluxes (Table 2). The highest cumulative fluxes (p < 0.001) were produced in the 

310 flooded containers at 25 °C, followed by the ones at 15 °C, and then the rest of combinations. 

311 Negative cumulative CO2 fluxes were calculated for the unflooded mesocosms at 15 and 25 °C. 

312 GWP was significantly higher (p < 0.001) for the flooded mesocosms at 25 °C in comparison 

313 with the rest of the treatments (Table 2), with CH4 accounting for 82% of the GWP for this 

314 treatment. Finally, cumulative N losses due to apparent NH3 volatilization were significantly 

315 higher (p < 0.001) for the flooded mesocosms at 25 °C, followed by flooded mesocosms at 15 °C, 

316 and lastly, by the rest of mesocosms.

317
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318 3.3. Soil microbial communities

319 Flooding at different temperatures significantly altered the size and structure of the soil 

320 microbial communities, some of which persisted through to the end of the soil recovery phase. 

321 Soil microbial biomass was significantly reduced (p < 0.001) for the combination flood × 25 °C 

322 to 58.8% of the equivalent unflooded treatment at the end of the flooding, and to 66.7% after soil 

323 recovery (Table 3). Gram+ bacteria (%) were increased (p < 0.001) due to the effect of flooding 

324 and higher temperature after the floodwater phase, while a similar effect occurred for Gram− 

325 bacteria after the soil recovery in the flooded mesocosms (p < 0.001 for both). Actinomycetes 

326 were negatively affected (p = 0.002 and p < 0.001) by temperature for the flooded containers, 

327 especially in the second sampling. Flooding produced the lowest (at 5 °C) and the highest (at 25 

328 °C) percentage of protozoa after soil recovery (p = 0.032). The proportion of putative arbuscular 

329 mycorrhiza fungi and fungi (%) both decreased with increasing temperature but mainly because 

330 of the combination flooding × higher temperatures. Fungi after soil recovery (Table 3) was an 

331 exception to this where the 25 °C flooded mesocosms were found to have the highest percentage 

332 of fungi.

333 The PCA for the different taxonomic groups (PLFAs) and their relationships with the 

334 environmental variables is shown in Fig. 4a. The separation of treatments after the flood phase 

335 and soil recovery can be seen in Fig. 4b and Fig. 4c, respectively. The first PC, accounting for 

336 55% of the total variance, was related with opposing shifts in Gram− bacteria and actinomycetes. 

337 The second PC explained 30% of the total variance and was mainly related to the abundance of 

338 Gram+ bacteria. The differences between soil microbial communities were more evident at higher 

339 temperatures and in the first sampling (Figs. 4bc), with a similar microbial structure for the lowest 

340 temperature in flooded and unflooded mesocosms after soil recovery (Fig. 4c). 

341 On one hand, the flooded mesocosms, in the order 25 °C > 15 °C > 5 °C, were more 

342 related to higher pH, solution nutrient concentration (except for NO3
−), higher GHG fluxes (CH4 

343 after the flood phase and N2O after soil recovery), Gram+ bacteria after the flood phase and 

344 Gram− bacteria after soil recovery. On the other hand, the unflooded containers, in the order 25 

345 °C > 15 °C > 5 °C, were more related to higher NO3
− in soil solution, actinomycetes and putative 
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346 arbuscular mycorrhiza contents, with this effect clearer after the flood phase (Fig. 4b) than after 

347 the soil recovery (Fig. 4c). Some significant correlations between the PCs and the environmental 

348 variables were found: pH (r = 0.59, p = 0.009), Fe (r = 0.75, p = 0.009), NH4
+ (r = 0.59, p = 

349 0.018), CH4 (r = 0.71, p = 0.009), CO2 (r = 0.65, p = 0.009) and apparent NH3 (r = 0.75, p = 

350 0.009).

351

352 3.4. Plant biomass

353 The plants growing in the flooded mesocosms at 15 and 25 °C started showing chlorosis 

354 two weeks after the floodwater was added and even necrosis in some of the leaves. Damage was 

355 greatest at the highest temperature, but no visual differences were observed between the plants 

356 growing in the control and flooded containers at 5 °C. The vegetation in the flooded containers at 

357 25 °C completely died after 3-4 weeks of flooding. Overall, flooding limited plant dry weight (kg 

358 m−2) at 5 °C (0.82 ± 0.09 vs 0.68 ± 0.10), 15 °C (1.49 ± 0.03 vs 0.75 ± 0.44) and 25 °C (2.68 ± 

359 0.15 vs 0.12 ± 0.09), although the difference only proved significant at 25°C (Fig. 5). 

360

361 4. Discussion

362 4.1. Biomass production, element cycling and water quality 

363 Our study showed a clear interactive effect of flooding and temperature on soil functions 

364 or processes within intact grassland mesocosms. It is clear that temperature is a dominant factor 

365 regulating biomass production and soil functions under an extreme flood event: a biomass 

366 reduction of 95% relative to the controls was observed at 25 °C. This mirrors the devastating 

367 effects that spring and summer floods have been shown to have on agricultural production (loss 

368 of crop quality and yield), even when the length of the event is short (3-4 weeks) (Klaus et al., 

369 2016; Posthumus et al., 2009). 

370 Flooding induced rapid changes in many soil chemical quality indicators, with the effects 

371 seen faster at elevated temperatures (25 > 15 > 5 °C). Although P and NO3
− in soil solution were 

372 in general lower at the end of the experiment than at the beginning, the majority of these indicators 

373 returned to their pre-flood values after a few weeks of soil recovery demonstrating the resilience 
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374 of this grassland soil which has no previous history of inundation (Sánchez-Rodríguez et al., 

375 2017). However, the extreme events induced a release of nutrients (P, Fe and N in the form of 

376 NH4
+) from the system and a significant increase of their potential losses, especially at high 

377 temperatures. Nutrient losses could pollute new areas where the floodwater is discharged, 

378 contribute to the eutrophication of adjacent water bodies or even produce toxicity due to soil 

379 accumulation of phytotoxic elements (e.g. Fe or Mn; Millaleo et al., 2010). Therefore, an 

380 immediate reduction in soil fertility may be expected after an extreme flood event. Although it 

381 will depend on the soil, nutrient content and bioavailability it could affect grassland sustainability 

382 and resilience under future events. In addition, in a scenario in which the frequency of extreme 

383 flood events and mean global temperature are increasing, soil functions and processes such as 

384 habitat provision, element cycling and water cycling (water quality) could be damaged to a greater 

385 extent if no alleviation measures are implemented. 

386 Soil solution pH was highly variable and provided a poor indicator of alterations caused 

387 by flooding. A large drop in redox potential and the release of Fe into solution was predicted to 

388 induce the release of P held on Fe oxide surfaces. Little evidence for this was seen, however, 

389 suggesting that any P released was either immobilized in the microbial biomass, re-sorbed to other 

390 mineral surfaces [e.g. Al(OH)3], or was taken up by living plants (at 5 and 15 °C). The loss of P 

391 to the floodwater we ascribe to the decomposition and release of P from the above-ground 

392 vegetation (Sánchez-Rodríguez et al., 2019). 

393 The N cycle suffered significant alterations depending on the temperature of the flood 

394 event. As expected, nitrification was limited during the flood phase (Nielsen et al., 1996). 

395 Evidence for nitrification was only found for the control treatment at the lowest temperature 

396 (really low NO3
− concentrations in the soil solution and lack of N2O emissions for the rest of the 

397 temperatures). We hypothesize that plant uptake of inorganic N most likely explains their low 

398 concentration in the unflooded mesocosms and to a lesser extent for the flooded mesocosms as 

399 plants growing in these conditions close their stomata and reduce the uptake of water soluble 

400 nutrients as a response (Milroy and Bange, 2013). There was an accumulation of NH4
+ in the 

401 flooded mesocosms (soil solution and floodwater) that we hypothesise could have had two 
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402 different origins and contributions depending on the temperature: (1) mineralization of organic 

403 matter which increases with temperature (Kirwan and Blum, 2011); and (2) death of plants at 

404 higher flood temperatures, reducing the possibility of plant NH4
+ uptake. 

405 This NH4
+ accumulation occurred rapidly in the flooded mesocosms at 25 °C (peaking 7 

406 d after flooding for soil solution, and 14 d for the floodwater), and a bit slower for the mesocosms 

407 at 15 °C (peaking after three-four weeks of flooding), in comparison with the containers at 5 °C. 

408 A considerable decrease in these NH4
+ concentrations was observed at the two highest 

409 temperatures during the flood phase, probably due to NH3 volatilization as seen by Chen et al. 

410 (2015) for prolonged flooded rice crops. After that, a rapid reduction in NH4
+ concentration in the 

411 soil solution of the flooded containers was seen during soil recovery, linked to an increase in NO3
− 

412 and N2O emissions, higher at higher temperatures, indicating that the nitrifier population was 

413 unaffected by flooding. This is in line with Xu et al. (2016) who reported an increase in gene 

414 abundance and activity of the nitrifiers with temperature. 

415

416 4.2. Air quality and global warming potential

417 The release of CH4 was seen only during the flood phase and the day the floodwater was 

418 removed. We ascribe the latter to the degassing of CH4 previously trapped in soil pores rather 

419 than de novo production. Methane production under flooding was clearly enhanced by the 

420 temperature and were analogous to those measured by Zhou et al. (2018) for subtropical 

421 permanently flooded rice paddy fields in China (up to 900 kg CH4-C ha−1 yr−1). We speculate that 

422 the rapid death of roots, particularly at high temperatures, led to the release of labile C into the 

423 soil supporting microbial activity and fuelling a rapid lowering of the redox potential below −100 

424 mV and production of CH4 (Hou et al., 2000). Alternatively, this process could have been driven 

425 by the release of lactic acid and ethanol into the soil from live roots under hypoxia (i.e. respiratory 

426 C dumping; Jones et al., 2009). The loss of alternative electron acceptors from soil solution (e.g. 

427 NO3
−) alongside the rapid accumulation and stabilization of the end-products (e.g. Fe2+) also 

428 suggests a very rapid drop in redox potential at higher temperatures. The rapid cessation of CH4 

429 production after removal of floodwater and the evidence for the emergence of more superior 
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430 alternative electron acceptors (NO3
−, Fe3+), however, suggests that methanogenic activity was 

431 rapidly inhibited or that any CH4 produced was consumed by methanotrophs. 

432 The daily and cumulative CO2 fluxes were higher in the mesocosms where the vegetation 

433 had a lower photosynthetic activity, under flooding at 25 °C (no plants survived), and the lowest 

434 CO2 fluxes were measured for the unflooded mesocosms at 15 and 25 °C, which had the highest 

435 fixation of C and biomass production. This is the opposite to that observed in similar experiments 

436 without vegetation (Sánchez-Rodríguez et al., 2018b), but agrees with Lewis et al. (2014) for 

437 fluxes measured in vegetated coastal wetlands. Overall, the total amount of gaseous C loss (CO2 

438 + CH4) from the most impacted treatment (flood, 25 °C) was 1.2 g C kg−1 over the 49 d 

439 experimental period.  Probably, this high C flux is in part due to the large amount of decaying 

440 plant material which is senescing and being broken down. It would be interesting to compare 

441 these values with the results obtained in future field experiments under similar temperatures 

442 (winter/spring-autumn/summer flood events) to quantify how extreme flood events could affect 

443 long-term C storage. 

444 In our experiment, N2O was only produced in significant quantities in the recovery phase. 

445 At the start of the experiment the soil solution NO3
− concentrations were low and it is highly likely 

446 that most of this was fully denitrified to N2 shortly after flooding (Reddy and Patrick Jr., 1975). 

447 It is well established, however, that N2O production is optimal at water filled pore space values 

448 of between 60-70% which would have occurred after flood water removal (Bateman and Baggs, 

449 2005). This soil is known to have an intrinsically high net nitrification rate (ca. 0.42 mg N kg−1 

450 d−1; Jones et al., 2004), and therefore N2O may have been produced via both nitrification and/or 

451 denitrification as the NH4
+ accumulated during flooding (ca. 5 mg N kg−1) was subsequently 

452 converted to NO3
−. At 25 °C, the N2O emission window lasted ca. 22 d with a mean N2O flux of 

453 0.51 mg N2O-N kg−1 d−1 (i.e. 11.2 mg N2O-N kg−1). This indicates that N2O was also produced 

454 from de novo mineralization of soil organic N (SON) after floodwater removal, presumably in 

455 response to an accelerated turnover of the soil microbial community and the removal of O2 

456 limitation on SON breakdown (pool size 1600 mg N kg−1) after flood water removal. Our 

457 measured fluxes (equivalent to 6 and 14 kg N2O-N ha−1 at 15 and 25 °C, respectively) were 
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458 considerably higher than those measured by Zhou et al. (2018) in flooded rice (6 kg N2O-N ha−1 

459 yr−1), and than those calculated in field experiments with winter wheat fertilized with 190 kg N 

460 ha−1 as digestate (0.7 kg N2O-N ha−1) on the same soil (Sánchez-Rodríguez et al., 2018a). 

461 Field experiments monitoring extreme flood events are necessary to check if extreme 

462 flood events can cause similar or higher GHG emissions than those produced from agricultural 

463 management events (e.g. fertilizer addition, tillage). However, monitoring emissions during real 

464 extreme flood events remains highly challenging as they are notoriously difficult to predict, it is 

465 problematic to logistically deploy GHG equipment, and they frequently lack a counterfactual 

466 control treatment. In view of the potential GHG emissions reported here under flooding and the 

467 large land surfaces that are affected by these extreme floods (Klaus et al., 2016; Met Office, 2014), 

468 there is an urgent need to produce more accurate GHG emission estimates from these events. This 

469 will be useful to help explain differences between top-down and bottom-up GHG emission 

470 calculations as well as seasonal patterns in observed atmospheric concentrations (Ganesan et al., 

471 2015), and to aid the design of more sustainable GHG mitigation strategies. It should also be 

472 considered that the gaseous loss of NH3 in particular both during and after flooding not only 

473 affects soil functioning but also negatively impacts on air quality and should be considered further 

474 (Galloway et al., 2003). 

475 Finally, these losses of nutrients via gaseous emissions also alter soil functions such as 

476 habitat provision, element, water and organic matter cycling that are essential for essential soil-

477 based ecosystem services, i.e. biomass production, biodiversity conservation, water quality and 

478 supply and climate regulation. Consequently, agricultural management and practices in locations 

479 where there is a high risk of flooding (historically or in recent years) should be more focused on 

480 maintaining these soil functions with fertilizer and organic matter applications, particularly after 

481 extreme flood events. If possible, they should improve the drainage and the water evacuation 

482 facilities (e.g. water pumping stations) to minimize the time that the floodwater remains on the 

483 land.

484
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485 4.3. Habitat provision for soil organisms: Soil microbial communities and their relationship with 

486 environmental factors

487 As used in previous studies, PLFA analysis was used to provide a broad scale assessment 

488 of changes in soil microbial communities induced by flooding (Bossio and Scow, 1998; Liao et 

489 al., 2018; Pan et al., 2016). Although PLFA groups cannot be quantitatively compared against 

490 each other (e.g. fungal biomass vs Gram+ biomass), they do provide a relative indication of how 

491 experimental treatment affects each group. Overall, extreme flooding caused a reduction in total 

492 microbial biomass, particularly at higher temperatures. During flooding it was expected that the 

493 microbial biomass would increase at 25 °C in response to the death of the vegetation and a large 

494 input of labile C to the soil. However, our results strongly suggest that maintaining live roots and 

495 an active rhizosphere is more important for preserving the microbial community. This is 

496 particularly true for obligate biotrophs such as arbuscular mycorrhizal fungi (AM fungi). Poor 

497 plant growth in the recovery phase might also explain why the microbial biomass and AM fungal 

498 biomass did not recover in the 25 °C flooded treatment, even when O2 was restored to the system. 

499 Flooding also induced a very large reduction in total fungal biomass relative to other 

500 taxonomic groups (by >50% at 15 and 25 °C). With a few exceptions, these fungi are almost all 

501 obligate aerobes (Tonouchi, 2009), consequently it is not surprising that their loss is induced by 

502 long-term flooding and anoxia. This sensitivity of fungi to waterlogging suggests that this metric 

503 may provide a good indicator of flood stress within the microbial community. 

504 Gram+ bacteria are typically considered to be more resistant to stress (Guckert et al., 

505 1985) and were shown to increase in response to flooding in a previous study (Bossio and Scow, 

506 1998). We found a similar effect during flooding, however, this effect did not persist after the soil 

507 recovery phase. In contrast, the actinomycetes, a filamentous subset of the Gram+ bacteria, were 

508 found to decrease in response to flooding. Similar to fungi, we ascribe this response to their 

509 obligate aerobic nature. Gram− bacteria are generally considered to be fast growing in comparison 

510 to Gram+ bacteria. It is possible that the small increase in their population upon flood removal 

511 was due to them filling the niche space left by fungi in the soil. 
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512 These results highlight the essential role of vegetation for maintaining soil microbial 

513 communities in this grassland soil and the importance in providing soil-based ecosystem services 

514 (biomass production, biodiversity conservation, water quality and supply and climate regulation). 

515 The use of flood-resistant plant species would help maintain the delivery of these ecosystem 

516 services in flood prone areas. Lastly, the persistent alterations in microbial community seen even 

517 after flood recovery also indicate that soil biological indicators are more sensitive than most 

518 routine chemical indicators. 

519

520 5. Conclusions 

521 In this study, we show that extreme flood events negatively impact upon soil functioning 

522 and soil-based ecosystem services, and water quality of an intact grassland soil, with the damage 

523 being more severe at higher temperatures. Clear alterations in element cycling and dynamics, 

524 biomass production and GHG emissions were produced in the short-term and biological 

525 alterations (biological population regulation, microbial biomass and structure of soil microbial 

526 communities) in the mid-term. This mesocosm experiment provides clear evidence that ecosystem 

527 responses to extreme weather events are highly dependent on temperature. It is predicted that 

528 extreme events of different types are likely to become more frequent in the future and 

529 consequently, extreme events may occur in close succession (e.g. flood followed by drought). 

530 Further work, including mechanistic (simulating conditions of the different seasons) and field 

531 (different seasons) experiments, is therefore required to determine how flooding alters the 

532 resilience of grasslands to future extreme weather events. 

533
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731 Figure captions

732 Fig. 1 Time course (mean value and standard error) of pH, P and Fe in soil solution and 

733 floodwater for the different treatments. 5C: unflooded mesocosms at 5 °C; 15C: 

734 unflooded mesocosms at 15 °C; 25C: unflooded mesocosms at 25 °C; 5F: flooded 

735 mesocosms at 5 °C; 15F: flooded mesocosms at 15 °C; 25F: flooded mesocosms at 25 

736 °C. Four replicates per treatment. 

737 Fig. 2 Time course (mean value and standard error) of NH4
+ and NO3

− in soil solution and 

738 floodwater for the different treatments. 5C: unflooded mesocosms at 5 °C; 15C: 

739 unflooded mesocosms at 15 °C; 25C: unflooded mesocosms at 25 °C; 5F: flooded 

740 mesocosms at 5 °C; 15F: flooded mesocosms at 15 °C; 25F: flooded mesocosms at 25 

741 °C. Four replicates per treatment. 

742 Fig. 3 Daily CH4, CO2 and N2O fluxes and apparent NH3 volatilization (mean value and 

743 standard error). 5C: unflooded mesocosms at 5 °C; 15C: unflooded mesocosms at 15 °C; 

744 25C: unflooded mesocosms at 25 °C; 5F: flooded mesocosms at 5 °C; 15F: flooded 

745 mesocosms at 15 °C; 25F: flooded mesocosms at 25 °C. Four replicates per treatment. 

746 Fig. 4 Principal component analysis (PCA) of microbial community PLFAs in response 

747 to flooding and temperature. a Relationships between taxonomic groups (arrows) that 

748 were used for the PCA and environmental variables (small crosses; pH, P, Fe, NH4
+, 

749 NO3
−, daily CH4, CO2 and N2O fluxes); b Treatment separation after the flood phase; and 

750 c Treatment separation after soil recovery. 5C: unflooded mesocosms at 5 °C; 15C: 

751 unflooded mesocosms at 15 °C; 25C: unflooded mesocosms at 25 °C; 5F: flooded 

752 mesocosms at 5 °C; 15F: flooded mesocosms at 15 °C; 25F: flooded mesocosms at 25 

753 °C. Four replicates per treatment.

754 Fig. 5 Biomass production at the end of the experiment (mean value and standard error). 

755 Different letter indicate differences according to Tukey´s HSD test at a probability level 
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756 of 0.05. 5C: unflooded mesocosms at 5 °C; 15C: unflooded mesocosms at 15 °C; 25C: 

757 unflooded mesocosms at 25 °C; 5F: flooded mesocosms at 5 °C; 15F: flooded mesocosms 

758 at 15 °C; 25F: flooded mesocosms at 25 °C. Four replicates per treatment. 
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Highlights

 Flooding induced a rapid release of nutrients, especially at higher temperatures.
 700 kg CH4-C ha−1 and 5 kg NH3-N ha−1 were released in the flood phase at 25 

°C.
 During soil recovery, nitrification led to 1.0-14.2 kg N2O-N ha−1 losses at 5-25 

°C.
 Flooding reduced soil microbial biomass, actinomycetes and arbuscular 

mycorrhiza. 
 Flooding reduced biomass production by 18% at 5 °C, 50% at 15 °C and 95% at 

25 °C.
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Table 1 Potential losses of nutrients (mean ± standard error, n = 4) as a function 
of temperature and flooding. Different letters indicate differences according to 
Tukey’s HSD test at a probability level of 0.05.
Treatment P

(kg P ha−1)
Fe 

(kg Fe ha−1)
NH4

+ 
(kg N ha−1)

NO3
− 

(kg N ha−1)
Control 5°C 1.9 ± 0.1 c 0.4 ± 0.1 d 0.4 ± 0.1 d 3.6 ± 1.0 a
Control 15°C 1.9 ± 0.1 c 0.0 ± 0.0 d 0.1 ± 0.0 d 0.2 ± 0.0 b
Control 25°C 1.9 ± 0.2 c 0.1 ± 0.0 d 0.1 ± 0.0 d 0.2 ± 0.1 b
Flood 5°C 5.0 ± 0.2 b 3.9 ± 0.6 c 2.4 ± 0.4 c 2.0 ± 0.2 ab
Flood 15°C 8.5 ± 0.4 a 10.6 ± 0.4 b 12.5 ± 0.2 b 0.5 ± 0.1 b
Flood 25°C 9.6 ± 0.7 a 13.7 ± 1.3 a 17.3 ± 1.0 a 3.6 ± 0.7 a
P value <0.001 <0.001 <0.001 <0.001
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Table 2 Cumulative GHG fluxes, global warming potential (GWP in equivalent kg of CO2) and apparent NH3 volatilization 
(mean ± standard error, n = 4) as a function of temperature and flooding. Different letters indicate differences according 
to Tukey’s HSD test at a probability level of 0.05.
Treatment CH4

(kg C ha−1)
CO2
(kg C ha−1)

N2O
(kg N ha−1)

GWP
(kg C ha−1)

GWP*
(kg C ha−1)

Apparent NH3 
(kg N ha−1)

Control 5°C   0.5 ± 0.6 c   421 ± 79 b   0.6 ± 0.2 cd   614 ± 51 b 192 ± 66 b 0.1 ± 0.0 c
Control 15°C   0.8 ± 0.8 c  −73 ± 65 c   0.0 ± 0.2 d   −33 ± 83 b   41 ± 43 b 0.1 ± 0.0 c
Control 25°C −0.2 ± 0.5 c −289 ± 60 c −0.1 ± 0.1 d −311 ± 94 b −22 ± 45 b 0.1 ± 0.0 c
Flood 5°C    0.3 ± 0.2 c 595 ± 74 b  1.0 ± 0.1 c   896 ± 116 b 301 ± 49 b 0.1 ± 0.0 c
Flood 15°C  45.7 ± 5.2 b 453 ± 88 b  5.7 ± 1.4 b 3713 ± 519 b 3261 ± 435 b 1.0 ± 0.9 b
Flood 25°C 717.7 ± 75.5 a 1196 ± 102 a 14.2 ± 1.9 a 29817 ± 2162 a 28621 ± 2267 a 5.0 ± 0.2 a
P value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
GWP*: global warming potential excluding CO2 emissions.



ACCEPTED MANUSCRIPT

Table 3 ANOVA of soil microbial biomass (total amount of PLFAs, nmol g−1) and taxonomic groups (%) at the end of the flood phase and after floodwater removal 
and soil recovery (mean ± standard error, n = 4). Different letters indicate differences according to Tukey’s HSD test at a probability level of 0.05.
Treatment Microbial 

biomass
(nmol g−1)

Gram+ 
bacteria
(%)

Gram− 
bacteria
(%)

Actinomycetes
(%)

Anaerobes
(%)

Protozoa
(%)

Arb. myco.
(%)

Fungi
(%)

At the end of flooding
Control 5°C 379.5 ± 32.9 a 24.3 ± 0.2 c 49.6 ± 0.2 14.2 ± 0.4 ab 1.61 ± 0.09 2.17 ± 0.12 6.36 ± 0.13 a 1.85 ± 0.39 ab
Control 15°C 339.1 ± 17.5 a 25.6 ± 1.3 bc 48.3 ± 1.1 14.6 ± 0.5 ab 1.64 ± 0.15 2.18 ± 0.34 5.70 ± 0.23 ab 2.00 ± 0.16 a
Control 25°C 311.9 ± 8.2 a 27.1 ± 0.2 b 47.0 ± 0.5 16.3 ± 0.4 a 1.55 ± 0.16 2.00 ± 0.08 4.95 ± 0.14 bc 1.15 ± 0.23 abc
Flood 5°C 378.9 ± 23.3 a 26.5 ± 0.2 bc 48.9 ± 0.4 13.7 ± 0.4 b 1.31 ± 0.09 1.96 ± 0.04 6.34 ± 0.21 a 1.19 ± 0.10 abc
Flood 15°C 342.2 ± 21.4 a 27.7 ± 0.3 ab 48.8 ± 0.5 13.8 ± 0.3 b 1.78 ± 0.09 1.86 ± 0.07 5.28 ± 0.15 b 0.83 ± 0.13 c
Flood 25°C 183.4 ± 18.8 b 30.2 ± 0.6 a 48.8 ± 1.1 12.5 ± 0.8 b 1.34 ± 0.07 1.87 ± 0.12 4.34 ± 0.29 c 0.93 ± 0.13 bc
P value <0.001 <0.001 0.242 0.002 0.063 0.598 <0.001 0.004

After soil recovery
Control 5°C 306.0 ± 27.6 a 25.7 ± 0.5 a 47.8 ± 0.6 bc 16.0 ± 0.5 ab 1.41 ± 0.07 b 2.20 ± 0.11 ab 5.25 ± 0.13 a 1.60 ± 0.40 ab
Control 15°C 242.0 ± 5.4 ab 26.0 ± 0.1 a 47.5 ± 0.3 bc 17.3 ± 0.5 ab 1.48 ± 0.09 ab 1.99 ± 0.14 ab 4.94 ± 0.24 a 0.85 ± 0.21 ab
Control 25°C 269.0 ± 12.4 a 27.3 ± 0.3 ab 46.0 ± 0.6 c 17.7 ± 0.2 a 1.93 ± 0.10 a 2.01 ± 0.11 ab 4.43 ± 0.16 ab 0.64 ± 0.08 b 
Flood 5°C 271.3 ± 4.3 a 26.1 ± 0.2 a 48.0 ± 0.3 bc 16.4 ± 0.1 ab 1.50 ± 0.16 ab 1.75 ± 0.05 b 5.23 ± 0.07 a 1.05 ± 0.19 ab
Flood 15°C 269.4 ± 16.7 a 26.0 ± 0.5 ab 49.8 ± 0.7 ab 15.0 ± 0.9 bc 1.46 ± 0.06 b 2.01 ± 0.18 ab 4.62 ± 0.18 ab 1.12 ± 0.27 ab
Flood 25°C 179.3 ± 6.7 b 26.6 ± 0.1 b 51.1 ± 0.9 a 12.9 ± 0.8 c 1.29 ± 0.09 b 2.57 ± 0.26 a 3.50 ± 0.45 b 2.03 ± 0.39 a
P value <0.001 0.052 <0.001 <0.001 0.006 0.032 0.003 0.025

Control: mesocosms without flooding; Flood: mesocosms which were flooded.
Anaerobes anaerobic bacteria, Arb. Myco. putative arbuscular mycorrhizal fungi.


