Interaction of straw amendment and soil NO3- content controls fungal denitrification and denitrification product stoichiometry in a sandy soil
Senbayram, Mehmet; Well, Reinhard; Bol, Roland; Chadwick, David R.; Jones, David L.; Wu, Di

Soil Biology and Biochemistry

DOI: 10.1016/j.soilbio.2018.09.005

Published: 01/11/2018

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Interaction of straw amendment and soil NO$_3^-$ content controls fungal denitrification and denitrification product stoichiometry in a sandy soil

Mehmet Senbayrama,b, Reinhard Wella, Roland Bolc, David R. Chadwickd, David L. Jonesd,e, Di Wud,*

a Thünen Institute of Climate-Smart Agriculture, Federal Research Institute for Rural Areas, Forestry and Fisheries, Bundesallee 65, 38116 Braunschweig, Germany

b Institute of Plant Nutrition and Soil Science, University of Harran, Osmanbey, 63000, Sanliurfa, Turkey

c Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

d School of Natural Sciences, Bangor University, Gwynedd, LL57 2UW, UK

e UWA School of Agriculture and Environment, University of Western Australia, Crawley, WA 6009, Australia

Corresponding author: Di Wu

Corresponding author address: School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK

Corresponding author Tel: +44 1248 383062

Corresponding author E-mail: w.di@fz-juelich.de
Abstract

The return of agricultural crop residues are vital to maintain or even enhance soil fertility. However, the influence of application rate of crop residues on denitrification and its related gaseous N emissions is not fully understood. We conducted a fully robotized continuous flow incubation experiment using a Helium/Oxygen atmosphere over 30 days to examine the effect of maize straw application rate on: i) the rate of denitrification, ii) denitrification product stoichiometry (N$_2$O/N$_2$O+N$_2$ ratio), and iii) the contribution of fungal denitrification to N$_2$O fluxes. Five treatments were established using sieved, repacked sandy textured soil; i) non-amended control, ii) nitrate only, iii) low rate of straw + nitrate, iv) medium rate of straw + nitrate, and iv) high rate of straw + nitrate (n=3). We simultaneously measured NO, N$_2$O as well as direct N$_2$ emissions and used the N$_2$O 15N site preference signatures of soil-emitted N$_2$O to distinguish N$_2$O production from fungal and bacterial denitrification. Uniquely, soil NO$_3^-$ measurements were also made throughout the incubation. Emissions of N$_2$O during the initial phase of the experiment (0-13 days) increased almost linearly with increasing rate of straw incorporation and with (almost) no N$_2$ production. However, the rate of straw amendment was negatively correlated with N$_2$O, but positively correlated with N$_2$ fluxes later in the experimental period (13-30 days). Soil NO$_3^-$ content, in all treatments, was identified as the main factor responsible for the shift from N$_2$O production to N$_2$O reduction. Straw amendment immediately lowered the proportion of N$_2$O from bacterial denitrification, thus implying that more of the N$_2$O emitted was derived from fungi (18±0.7% in control and up to 40±3.0% in high straw treatments during the first 13 days). However, after day 15 when soil NO$_3^-$ content decreased to <40 mg NO$_3^-$-N kg$^{-1}$ soil, the N$_2$O 15N site preference values of the N$_2$O produced in the medium straw rate treatment showed a sharp declining trend 15 days after onset of experiment thereby indicating a clear shift towards a more dominant bacterial source of N$_2$O. Our study singularly highlights the complex interrelationship between soil NO$_3^-$
kinetics, crop residue incorporation, fungal denitrification and N$_2$O/(N$_2$O+N$_2$) ratio. Overall we found that the effect of crop residue applications on soil N$_2$O and N$_2$ emissions depends mainly on soil NO$_3^-$ content, as NO$_3^-$ was the primary regulator of the N$_2$O/(N$_2$O+N$_2$) product ratio of denitrification. Furthermore, the application of straw residue enhanced fungal denitrification, but only when the soil NO$_3^-$ content was sufficient to supply enough electron acceptors to the denitrifiers.

Keywords: Organic carbon; Denitrification product ratio; Greenhouse gas; Nitrogen cycling; Site preference
1. Introduction

Nitrous oxide (N\textsubscript{2}O) is a potent greenhouse gas with ca. 300 fold higher global warming potential than carbon dioxide (CO\textsubscript{2}) and is also involved in the destruction of the stratospheric ozone layer (Ravishankara et al., 2009). Globally, soils are the largest anthropogenic source of N\textsubscript{2}O, which is produced by several microbial and chemical processes (Butterbach-Bahl et al., 2013). Increasing evidence suggests that biological denitrification (fungal and bacterial) is the dominant process responsible for the soil-driven increase in atmospheric N\textsubscript{2}O (Baggs, 2011). Microbial denitrification includes all or parts of the sequential reduction of NO\textsubscript{3} to NO\textsubscript{2}, NO, N\textsubscript{2}O and N\textsubscript{2}, which occurs under oxygen limited situations in soil (e.g., high water-filled pore space) (Weier et al., 1993). Due to the large background N\textsubscript{2} concentration in air and the large spatial and temporal heterogeneity of N\textsubscript{2} production, fluctuations in soil-borne N\textsubscript{2} fluxes are hard to determine. Therefore, a comprehensive and quantitative understanding of the controlling factors of denitrification in soil is still missing (Davidson and Seitzinger, 2006; Butterbach-Bahl et al., 2013).

Soil carbon (C) availability is one of the most critical factors regulating denitrification rate, as labile C is the electron donor for all of the reduction steps from NO\textsubscript{3} to N\textsubscript{2} (Burford and Bremner, 1975). Most laboratory studies have tested the effect of readily available C substrates (e.g. glucose) on denitrification pathways and its product stoichiometry (Weier et al., 1993; Meijide et al., 2010; Giles et al., 2017; Wu et al., 2017), however, only a few studies have used complex plant/animal residues (Miller et al., 2008; Köster et al., 2015). Straw incorporation in agricultural soils can improve soil quality (e.g. porosity, water-holding capacity, cation exchange capacity), increase land productivity and helps to sequester more C. However, concerns have also been raised about the effect of straw addition on soil N\textsubscript{2}O emissions, as both positive and negative influences have been reported (Pan et al., 2017; Koebke et al., 2018; Xiao et al., 2018). This discrepancy may be...
partly because, in addition to many other factors (e.g. moisture, oxygen, pH, temperature), labile soil C content alters the relative availability of reductant vs. oxidant compounds, which in turn also affects the final end products of denitrification, i.e. NO, N₂O or N₂. The higher ratio of electron donors (available organic C)/acceptors (N oxides) as a result of organic matter application to soil may favor N₂O reduction (Smith and Arah, 1990) due to electron donor abundance (Hutchinson and Davidson, 1993). The common hypothesis is that additional labile C amendment could promote denitrification rates in moist soils (Zhong et al., 2018) and also may enhance elemental N₂ losses via promoting sequential reduction of NO₃⁻, NO₂, NO and N₂O to N₂ (Smith and Arah, 1990; Hutchinson and Davidson, 1993; Mathieu et al., 2006). Although a number of studies have indicated that N₂O emissions from soils can be lowered under conditions favoring N₂O reduction to N₂ (Firestone, 1982; Weier et al., 1993), it is still not clear how straw application in conjunction with mineral fertilizer would affect both production and reduction rate of N₂O. Furthermore, the N₂O/(N₂O+N₂) product ratio of denitrification is regulated by the complex interrelationship between a number of soil parameters, e.g. NO₃⁻ concentration, available C content and O₂ availability (Blackmer and Bremner, 1978; Senbayram et al., 2012). For example, several studies have shown that higher soil NO₃⁻ concentration in soil can inhibit N₂O reductase activity, since NO₃⁻ is preferred over N₂O as a terminal electron acceptor (Firestone, 1982; Weier et al., 1993; Qin et al., 2017b). In this context, it is still not yet clear whether the amendment of soil with labile C would directly promote N₂O reduction to N₂ or whether its effect on the N₂O/(N₂O+N₂) product ratio depends on other soil parameters, e.g. NO₃⁻ content.

In addition to bacteria, fungi are also capable of denitrification and N₂O production. Denitrifying fungi generally lack N₂O reductase, thus the gaseous emission from fungi is in the form of N₂O rather than N₂ (Laughlin et al., 2002). The possibility of significant contributions of fungi to soil N₂O production has been demonstrated in several studies, which reported fungal contributions of
between 40% and 89% of the emitted N\textsubscript{2}O in different terrestrial ecosystems (Laughlin et al., 2002; Chen et al., 2014; Zhong et al., 2018). Since several studies have shown that organic C supply in moist soils could increase both fungal/bacterial biomass ratio and fungal N\textsubscript{2}O production (Laughlin et al., 2002; Hayden et al., 2012; Zhong et al., 2018), we hypothesize that fungal denitrification may be a dominant source for N\textsubscript{2}O emission in NO\textsubscript{3}\^- rich, crop residue amended, moist soil.

The different enzyme types of bacteria and fungi are known to produce a different intramolecular 15N distribution in the linear asymmetric N\textsubscript{2}O molecule, so-called 15N site preference (SP). It has been found that the SP value of N\textsubscript{2}O produced by bacterial denitrification ranges from -9\%\textperthousand to +9\%\textperthousand, whereas nitrification and fungal denitrification produce N\textsubscript{2}O with a SP range from +34\%\textperthousand to +40\%\textperthousand (Toyoda et al., 2017). This non-destructive, low cost gas sampling approach has been used previously to distinguish the different sources of N\textsubscript{2}O production pathways in both lab and field scale studies (Decock and Six, 2013; Rohe et al., 2017).

Direct measurements of small amounts of N\textsubscript{2} produced from denitrification in soils are challenging due to the high atmospheric N\textsubscript{2} background and a lack of sufficiently sensitive equipment. Various approaches have been used to indirectly measure N\textsubscript{2} production from soil, e.g. the commonly used acetylene inhibition technique (Weier et al., 1993; Miller et al., 2008) and 15N isotope labeling (Cai et al., 2001). However, neither are ideal, introducing their own artifacts (Terry and Duxbury, 1985; Groffman et al., 2006; Nadeem et al., 2013). In recent years, several automated soil incubation systems have been established for continuous direct N\textsubscript{2} measurement, based on the replacement of the soil atmosphere by He (Bol et al., 2003; Cardenas et al., 2003; Molstad et al., 2007; Liu et al., 2010; Köster et al., 2013; Qin et al., 2017b). In this study, we conducted our incubation experiment with a newly-designed fully robotic continuous flow incubation system (ROFLOW) that enables us to determine directly very low (≥10 g N\textsubscript{2}-N ha-1) soil N\textsubscript{2} fluxes using sealed vessels and steel.
components (<10 ppm N\textsubscript{2} background concentration). Furthermore, the system is uniquely equipped with a filter membrane at the base for soil water sampling and moisture adjustment (Fig. 1), which allows simultaneous monitoring of soil NO\textsubscript{3}- dynamics during experiments.

We studied a sandy textured arable soil with low ammonium (NH\textsubscript{4}+) content and examined i) whether or not there is a potential for higher N\textsubscript{2}O emission when straw in conjunction with nitrate (NO\textsubscript{3}) based fertilizer is incorporated into soil, ii) does the straw amendment directly regulate the N\textsubscript{2}O/N\textsubscript{2}O+N\textsubscript{2} product ratio of denitrification, and iii) will the straw amendment increase the contribution of fungal denitrification to N\textsubscript{2}O fluxes? This was achieved through the use of a unique experimental platform that allowed online simultaneous measurements of NO, N\textsubscript{2}O and N\textsubscript{2} fluxes, and soil water sampling for NO\textsubscript{3}-. Furthermore, we coupled this with N\textsubscript{2}O isotopomer measurements to distinguish N\textsubscript{2}O production between fungal and bacterial denitrification.

2. Materials and methods

2.1. Soil

The soil was collected from farmland in Fuhrberg, Lower Saxony, Germany (52° 33' 6" N, 9° 50' 49" E). Winter wheat had been grown prior to soil sampling. The sandy textured soil was classified as a Gleyic Podzol (sand 90.1\%, silt 3.1\%, clay 5.9\%) and contained 0.1\% total N, 0.5 mg NH\textsubscript{4}+-N kg-1 soil, 43.7 mg NO\textsubscript{3}-N kg-1 soil and 1.8\% organic carbon with a pH of 5.6 (H\textsubscript{2}O). The upper 5 cm of soil and roots were removed and soil was collected from the first 10 cm below the removed layer. The soil was sieved to <10 mm, air-dried and stored at 4 °C before packing into cores. Prior to the experiment, soil was wetted to ca. 40\% water holding capacity (WHC) for a week and stored at room temperature to minimize the drying-wetting effect.
2.2. *Robotized soil incubation experiment and trace gas measurements*

The incubation experiment was carried out at Thünen Institute of Climate-Smart Agriculture in Braunschweig, Germany in the ROFLOW system using a make-up atmosphere containing 80% He and 20% O₂ (Köster et al., 2013). The cylindrical incubation vessels consisted of acrylic glass with an inner diameter of 140 mm and 150 mm height. Each incubation vessel was equipped with a polyamide filter membrane (EcoTech, Bonn, Germany - hydrophilic; pore size 0.45 μm) at the bottom, which allowed adjustment of the soil moisture and the removal of the soil water samples.

The experiment consisted of five treatments ($n=3$); i) non-amended control treatment (CK) with no addition, ii) treated with 20 mmol KNO₃ (KNO₃), iii) low rate of straw + 20 mmol KNO₃ (LS+N), iv) medium rate of straw + KNO₃ (MS+N) and iv) high rate of straw + KNO₃ (HS+N). The pre-incubated soils were mixed by hand with 1, 2.5 or 5 g kg⁻¹ dry soil maize straw (0.78% total N and 44.05% total C) in the LS+N, MS+N, and HS+N treatments, respectively prior to the experiment and 1 kg dry soil was packed into each vessel (with a density of 1.25 g cm⁻³). Oven-dried maize straw was ground through a 2 mm mesh sieve for homogeneity. By applying a vacuum from the top of each vessel, the repacked soil cores were flooded from the bottom of the vessels with either 20 mmol KNO₃ solution (in KNO₃, LS+N, MS+N, and HS+N) or distilled water (in CK) and then drained to 28.3% gravimetric water content (67% WFPS) by applying a vacuum to the ceramic plate. The incubation vessels were then sealed and the atmospheric air in the vessels was replaced by a pure He/O₂ mixture (to remove any CO₂, NO, N₂O or N₂ in the soil pores or headspace) by applying a vacuum from the top and filling with He/O₂ mixture in three cycles that were completed within 6 h. Subsequently, the headspace of each vessel was flushed continuously with a gas mixture of He (80%) and O₂ (20%) at a flow rate of ca. 25 mL min⁻¹. The temperature of the incubation room was set at 20°C during the 30 days of incubation.
The airflow from each vessel was directed sequentially to a gas chromatograph by two multi-positional valves (VICI, Houston, USA), where the gas sample was analyzed a thermal conductivity detector (TCD) for N₂, O₂, and CO₂, and an electron capture detector (ECD) for N₂O quantification. The sample outlet of GC was connected to the inlet of the online NO analyzer (Eco-Physics, Dürnten, Switzerland). A microcontroller unit (Arduino Mega 2560 REV3) was programmed to control the system via giving/receiving signals i) to/from the multi-positional VICI valves for setting the target position, ii) to/from the GC for ready signal or start/stop method and iii) to the computer to start/stop data acquisition (for a schematic overview of the system see Fig. 1).

2.3. Mineral N analysis

Soil samples were collected at the end of the incubation period from each vessel. The soil samples were extracted with 2 M KCl solution (1:5 w/v) by shaking for 1 hour. Additionally, ca. 15 ml of soil solution was collected on two occasions from each vessel during the incubation period (during moisture adjustment at the beginning of the incubation and 13 days after onset of treatments) by opening the valve at the bottom of the membrane filter and applying slight overpressure from the top. The KCl extracts and soil solution were then filtered through Whatman 602 filter paper and stored at −20°C until analysis. The concentrations of NH₄⁺ and NO₃⁻ in soil extracts and soil solution were measured using a continuous flow analyzer (Smartchem 200S/N1104238, WESTCO, France).

2.4. Isotope analysis and N₂O source partitioning

Additional gas samples for isotopic analysis were taken from each incubation vessel by attaching 120-mL serum bottles to the outlets in flow-through mode (Well et al., 2008) for around 2 h. The
N₂O δ¹⁵N_{bulk}, δ¹⁵N_α, and δ¹⁸O isotope signatures were then determined by analyzing m/z 44, 45, and 46 of intact N₂O⁺ molecular ions, and m/z 30 and 31 of NO⁺ fragment ions (Toyoda and Yoshida, 1999) on an isotope ratio mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) at Thünen Institute Braunschweig, Germany. The SP value of the produced N₂O (SP₀), i.e. prior to its partial reduction to N₂, was calculated using a Rayleigh-type model, assuming that isotope dynamics followed closed-system behavior (Lewicka-Szczebak et al., 2017). The model can be described as follows:

\[
SP_{N₂O-ᵣ} = SP₀ + ηᵣ \ln \left(\frac{C}{C₀} \right)
\]

(1)

In this equation, SP_{N₂O-ᵣ} is the SP value of the remaining substrate (i.e. residual N₂O), SP₀ is the SP value of the initial substrate (i.e. produced N₂O before reduction occurred), ηᵣ is the net isotope effect associated with N₂O reduction, and C and C₀ are the residual and the initial substrate concentration (i.e. C/C₀ expresses the N₂O/(N₂O+N₂) product ratio). In this study an ηᵣ of -5‰ was used based on previously reported average values (Lewicka-Szczebak et al., 2014). For source partitioning, the end-member values (SP_D) were defined as 37‰ for nitrification and fungal denitrification, and -5‰ (SP_D) for bacterial denitrification (Toyoda et al., 2017). The source partitioning of N₂O production was based on the two end-member isotopic mass balance equation:

\[
SP₀ = SP_D \times f_{D-SP} + SP_{ID} \times f_{ID-SP}
\]

(2)

It should be noted that distinguishing the N₂O produced between nitrification and fungal denitrification based on SP values is impossible because of the overlapping SP signature from those pathways (Frame and Casciotti, 2010; Lewicka-Szczebak et al., 2014; Toyoda et al., 2017). In this equation, f_{D-SP} and f_{ID-SP} represent the contribution of bacterial denitrification and
nitrification+fungal denitrification to total N$_2$O release calculated on the basis of SP$_0$ values, respectively. In the present study, however, considering that the specific experimental conditions were set up to favor denitrification, i.e. i) N was applied in the form of NO$_3$; ii) initial soil NH$_4^+$ content was under detection limits (<0.5 mg NH$_4^+$-N kg$^{-1}$ soil) with constantly low NH$_4^+$ content during incubation; and iii) high soil moisture (67% WFPS), the contribution of nitrification and nitrifier denitrification were assumed to be negligible (See Discussion). Thus, only the most plausible scenario (bacterial denitrification vs fungal denitrification) was discussed for the SP$_0$ source partitioning calculation.

2.5. Calculations and statistical analysis

The cumulative gas emissions were calculated by linear interpolation between measured fluxes. Statistically significant differences were tested using Tukey’s honest significant difference post-hoc tests at a 5% significance level by SPSS 21.

3. Results

3.1. Soil mineral N

Soil NH$_4^+$ concentrations in all treatments were very low (1-3 mg kg$^{-1}$ soil) at the end of the experiment (Table 1). Soil NO$_3^-$ concentrations decreased over time in all treatments and the observed rate of decrease was more rapid with an increasing rate of straw application (Fig. 2A). Soil NO$_3^-$ contents at the end of the 30-day incubation period followed the trend: KNO$_3$ > LS+N = CK > MS+N > HS+N (Table 1). Soil NO$_3^-$ was completely depleted in the HS+N treatment after 13 days, whereas 84%, 59% and 12% of the soil NO$_3^-$ were depleted in MS+N, LS+N and KNO$_3$ at the end of the incubation, respectively.
3.2. Emission of NO, N$_2$O, N$_2$ and CO$_2$

Significant NO emission peaks were observed in straw-amended treatments (HS+N, MS+N and LS+N) immediately after onset of the experiment, whereas the NO emissions from the CK and KNO$_3$ treatments remained low throughout the experiment. Here the maximum NO emission rates were 7 (±2), 38 (±18) and 22 (±6) g NO-N ha$^{-1}$ day$^{-1}$ in the LS+N, MS+N and HS+N treatments, respectively. Total emissions of NO over the 30 day incubation were significantly greater in the HS+N and MS+N treatments than in the LS+N, with the lowest seen in KNO$_3$ and CK, indicating the importance of labile C on NO formation and losses (Table 2).

The daily N$_2$O flux rate increased over time in all treatments, reaching a maximum at around day 7 and then decreased afterwards with different declining rates between the treatments (Fig. 2B-F). Maximum daily N$_2$O emission rates were 269 (±13), 414 (±27), 631 (±24), 734 (±64), and 899 (±36) g N$_2$O-N ha$^{-1}$ day$^{-1}$ in the CK, KNO$_3$, LS+N, MS+N and HS+N treatments, respectively. In the HS+N treatment, fluxes of N$_2$O decreased sharply after day 10, and remained low throughout the experimental period, whereas the N$_2$O flux rates decreased gradually in all the other treatments, but were less pronounced for decreasing rates of added straw. At the end of the incubation period, N$_2$O fluxes were below the detection limit in the HS+N and MS+N treatments, but significant N$_2$O fluxes were still detected in all the other treatments.

The decrease in N$_2$O fluxes followed almost the same trend as the decrease in NO$_3^-$ concentrations in different treatments. From our measurements, when soil NO$_3^-$ concentrations decreased below 40 mg NO$_3^-$-N kg$^{-1}$ soil, the emission of N$_2$O also decreased. Thus, we can separate the experiment into two Phases; Phase I (0-13 days – no limitation of NO$_3^-$ in any treatments) and Phase II (13-30 days – NO$_3^-$ limited, specifically in high straw rate treatments). As shown in Table 2, emission of N$_2$O in Phase I increased almost linearly with higher rates of straw incorporation in N fertilized soils. However, application of KNO$_3$ only slightly increased N$_2$O fluxes during this period.
compared to CK. In Phase II, almost no N$_2$O emissions were detected in the HS+N treatment, and the cumulative emissions during this phase were now negatively correlated with the rate of straw amendment. Here, the highest cumulative N$_2$O fluxes were measured in the LS+N and the KNO$_3$ treatments and the lowest from the HS+N treatment. Overall, application of N fertilizer alone significantly increased the cumulative N$_2$O emissions by 80% compared with the CK, while this increase was 125%, 85% and 49% in the LS+N, MS+N and HS+N treatments, respectively (Table 2).

Fluxes of N$_2$ in the CK and the KNO$_3$ treatments were consistently low throughout the experimental period and increased only slightly during the last 10 days of incubation, being more pronounced in the CK than in the KNO$_3$ treatment. In straw amended treatments, N$_2$ emissions were very low during the first 10 days of incubation, but peaked over a relatively short period in the HS+N treatment at 13 day (Fig. 2B-F). Subsequently, the N$_2$ emissions increased gradually over time in all straw treatments and the rate of increase was larger at higher rates of straw application. Here, the increase in N$_2$ emission rates was closely associated with the decrease in N$_2$O emissions and soil NO$_3^-$ concentrations (Fig. 2). Emissions of N$_2$ became dominant in the HS+N and the MS+N treatments in Phase II. Total N$_2$ fluxes were more than 10-fold higher in Phase II than in Phase I in all treatments. Between the treatments, the highest cumulative N$_2$ emissions were observed in HS+N and MS+N, while the lowest were from the CK and KNO$_3$ (Table 2). The N$_2$O/(N$_2$O+N$_2$) ratio decreased significantly in all treatments in Phase II compared to Phase I. However, this decrease in N$_2$O/(N$_2$O+N$_2$) ratio was lowest in both KNO$_3$ and LS+N treatments and highest in the HS+N. In the MS+N treatment, the emission of N$_2$O (48%) was very similar to the emission of N$_2$ (52%) in Phase II, while in contrast it had been 99% N$_2$O and only 1% N$_2$ in Phase I.

Daily fluxes of CO$_2$ increased significantly over time in Phase I and remained relatively constant in Phase II (Fig. 3). Cumulative CO$_2$ fluxes were almost doubled in the HS+N treatment compared...
to CK, whereas an increase of about 70% was observed in MS+N compared to CK and KNO₃ treatments.

3.3. N₂O SP values and source partitioning

The SP₀ values ranged from -4‰ to 4‰ on day 1 in all treatments, being lowest in KNO₃ treatment (-4‰ ±0.3) and highest in straw amended treatments (4‰ ±4.6 in HS+N) (Fig. 2). Addition of straw in combination with KNO₃ increased SP₀ values from the first day (P <0.05) up to 8‰. The SP₀ values increased gradually over time in all treatments until day 13 and the rate of increase was higher with higher levels of straw amendment. After day 13, different SP₀ value dynamics were observed in different treatments, indicating multiple N₂O sources. The SP₀ values continued to increase in the CK, KNO₃ and LS+N treatments until the end of the incubation, reaching maximum value of 30.5 ‰, whereas the SP₀ values sharply decreased in the MS+N treatment, reaching -2.6 ‰ at day 29. It was not possible to detect SP₀ values in the HS+N treatment after day 13 due to extremely low N₂O concentrations (less than 100 ppb).

To calculate the proportion of each N₂O emitting process, source partitioning based on the two-end-member model was used. During the initial period of the experiment, very low SP₀ values suggest that almost all emitted N₂O originated from bacterial denitrification, however, the share of fungal denitrification derived N₂O increased almost linearly over time in all treatments. In later periods, specifically in Phase II, the SP₀ values showed a decreasing trend in the MS+N treatment (no N₂O was emitted in HS+N), which paralleled the decreasing trend in N₂O emission and soil NO₃⁻ content. This clearly indicates that when soil NO₃⁻ content decreases, bacterial denitrification recovers and even then may dominate again in parallel to the increase in N₂O reduction rates. The contribution of fungal denitrification to the cumulative N₂O emitted during the incubation period varied between 29% and 40% between the treatments, being significantly greater in the straw
amended soils (Fig. 4A). Note, we acknowledge that the SP₀ source partitioning approach provides only an estimation about the source of emitted N₂O due to the i) overlapping SP signals of different processes, ii) variability of isotopologue enrichment factors of N₂O reduction, and iii) variation in SP signals between different microbial strains (see Discussion). Nevertheless, the technique provides useful insights of the effects of straw addition on the underlying soil microbial processes.

4. Discussion

4.1. Sources of N₂O as affected by straw amendment and soil NO₃⁻ kinetics

Using SP values and the two end-member approach enables an estimation of the relative contributions of fungal and bacterial denitrification to N₂O emission, which are occurring simultaneously in amended soils. However, this approach is only valid if i) the N₂O reduction fractionation effect on SP values can be corrected, and ii) the N₂O derived from nitrification and nitrifier denitrification were negligible. In the present study, the following conditions were set to fit this specific case. Firstly, the direct measurement of N₂ production enabled us to calculate the initial SP values (SP₀) by considering the N₂O reduction fractionation effect (Lewicka-Szczebak et al., 2017), which minimizes the possibility of overestimation of fungal denitrification/nitrification (Wu et al., 2016). Secondly, a sandy soil with very low NH₄⁺ content and high soil moisture (WFPS=67%) was chosen, and N was applied in the form of NO₃⁻ to suppress N₂O formation from nitrification during the incubation period. Nevertheless, in the present experiment fungal denitrification may still be overestimated due to the possible contribution of nitrification derived N₂O related to the mineralization of the organic matter during the experiment. However, in our recent study, the contribution of mineralization related N₂O formation from various straw treatments was found to be < 5% of the emitted N₂O in a fertilized
sandy soil over 40 days of incubation (Koebke et al., 2018). Therefore, we believe that the present experimental set up enabled a reliable estimation of fungal and bacterial denitrification derived N$_2$O using the N$_2$O SP source partitioning approach. During the initial period of the experiment, the very low SP$_0$ values (-4 to 4‰) suggested that almost all emitted N$_2$O originated from bacterial denitrification. However, the linear increase in SP$_0$ values until day 13 in all treatments indicated that the share of fungal denitrification derived N$_2$O increased over time. Dominancy of bacterial N$_2$O during the early phase of the experiment with a subsequent shift (almost linear increase over time) towards fungal activity is in agreement with previous studies (Laughlin and Stevens, 2002; Zhong et al., 2018). This indicated that bacterial activity started almost immediately after the start of the experiment, whereas the fungal colonization and activity increased somewhat slower, but became dominant in the latter phase. Similarly, Henriksen and Breland (2002) found that bacterial activity dominated immediately after residue incorporation in soils, whereas biological activity gradually shifted towards a dominance of fungal activity in later phases. The observed higher proportion of fungal N$_2$O production in straw amended treatments is consistent with previous studies in which the fungal N$_2$O production was increased under an enhanced organic C supply in moist soil (Laughlin et al., 2002; Zhong et al., 2018).

The sharp decrease in SP$_0$ values after day 15 in the MS+N treatment indicated a clear shift of N$_2$O source from fungal denitrification to bacterial denitrification, which was in parallel with the decreasing trend in N$_2$O emission and soil NO$_3^-$ content. Unlike bacterial denitrifiers, fungi generally lack nitrous oxide reductase (nos), which means fungal denitrification mainly relies on the availability of NO$_3^-$ and NO$_2^-$ as electron acceptors (Baggs, 2011). We therefore presume the shift from fungal to bacterial N$_2$O in high straw amended treatments is attributed to the depletion of electron acceptors in soil (NO$_3^-$, and NO$_2$), causing a decrease in denitrifying fungal community.
As most denitrifying bacteria have *nos* and thus can use N\(_2\)O as an electron acceptor, bacterial denitrification recovered and dominated again when soil NO\(_3^-\) concentrations became limited.

In the present study, the contribution of fungal denitrification to N\(_2\)O emission was similar to the 18\% fungal contribution in control soil measured by Herold et al. (2012) (where the acetylene inhibition technique was used), 40-51\% in residue added soils reported by Zhong et al. (2018) (acetylene inhibition technique was used), and 36\%-70\% in NO\(_3^-\) treated coastal sediments reported by Wankel et al. (2017) (isotopomer and stable isotope labelling was used). On the other hand, Laughlin and Stevens (2002) reported a much greater contribution of fungi to N\(_2\)O production (89\%) in grassland soils where soil organic C content was expected to be high. In this context, we conclude that the application of crop residues could enhance N\(_2\)O emission through fungal denitrification, however, only when soil NO\(_3^-\) content is sufficiently high for supplying enough electron acceptors to denitrifying organisms. However, in straw amended soils, a depletion of NO\(_3^-\) in soil may cause a shift from fungal to bacterial denitrification derived N\(_2\)O. Nevertheless, we should note that in view of the uncertainties of the SP approach, and that there are limited comparisons of studies using the same approach to estimate fungal N\(_2\)O production there is still a need to confirm these results in future studies.

4.2. N\(_2\)O production and reduction as affected by straw amendment and soil NO\(_3^-\) kinetics

Straw application can increase the rate of the denitrification (microbial or fungal) (Baggs, 2011; Qin et al., 2017a; Xiao et al., 2018), mainly due to the extra substrate supply (electron donors as energy source) (Giles et al., 2017). During the initial period of our experiment (in Phase I), total gaseous N (NO+N\(_2\)O+N\(_2\)) and CO\(_2\) fluxes increased almost linearly with the higher straw application rate, thereby showing a significant relationship between respiration and denitrification rates (Burford and Bremner, 1975; Miller et al., 2008; Xiao et al., 2018).
Contradictory observations have been reported on the impact of crop straw incorporation on N\textsubscript{2}O emissions (Chen et al., 2014; Shan and Yan, 2013). This discrepancy may be partly because of the effect of labile C on the end product of bacterial or fungal denitrification (N\textsubscript{2}O or N\textsubscript{2}), which may vary under different conditions (Qin et al., 2017b). In our study, gaseous N fluxes during Phase I were dominated by N\textsubscript{2}O, with minor NO fluxes and almost no N\textsubscript{2} emissions even in the straw treatments. In Phase I, application of KNO\textsubscript{3} alone slightly increased N\textsubscript{2}O fluxes compared to CK, whereas N\textsubscript{2}O fluxes increased more than 3-fold in HS+N indicating that labile organic C was likely limiting and controlling the rate of the N\textsubscript{2}O production (Fig. 2). It has been suggested that addition of crop residues would decrease N\textsubscript{2}O emissions by lowering N\textsubscript{2}O/N\textsubscript{2} ratio and stimulating microbial immobilization in soil (Mathieu et al., 2006; Frimpong and Baggs, 2010). It is striking that in contrast to the expected outcome, even with excess organic C input (5 g straw kg-1 dry soil in HS+N), high NO\textsubscript{3}- content in soil would still inhibit N\textsubscript{2}O reduction, causing very high N\textsubscript{2}O emission and also relatively high NO fluxes. Compared to N\textsubscript{2}O fluxes, the NO fluxes in straw amended soils were very low. However, compared to CK and KNO\textsubscript{3}, straw amendment did induce significant NO losses during the initial phase of the experiment. Because straw amendment also enhanced fungal denitrification during this phase, the increase in NO fluxes may be attributed to the leakage from fungal denitrification. We may speculate that NO\textsubscript{3}- and NO\textsubscript{2}- reducing fungal strains developed faster than the NO reducers shortly after amendments causing such leakage, however, further research at the molecular level is needed to prove this hypothesis.

In the present study, the increase in N\textsubscript{2} fluxes became greater when soil NO\textsubscript{3}- contents decreased below 40 mg NO\textsubscript{3}--N kg-1 soil (in Phase II), and N\textsubscript{2} fluxes dominated when concentrations decreased below 30 mg NO\textsubscript{3}--N kg-1 soil in the HS+N and MS+N treatments (Fig. 4B). This is likely because the supply of NO\textsubscript{3}- at the denitrifying microsites became lower than the demand for terminal electron acceptors, which is in agreement with earlier reports (Weier et al., 1993;
Senbayram et al., 2012; Qin et al., 2017a). It should be noted that measured total soil \(\text{NO}_3^- \) concentration was likely much higher than the concentrations in the soil microsites where denitrification occurs (Myrold and Tiedje, 1985). In this context, further research is needed perhaps with new measurement approaches to better quantify the direct relationship between \(\text{NO}_3^- \) concentration and the product stoichiometry of denitrification in soil hotspots.

In contrast to a number of studies (Cookson et al., 1998; Mathieu et al., 2006), our results showed that \(\text{N}_2\text{O} \) reduction was found not to be directly affected by C supply. Higher labile C seems to favor \(\text{N}_2\text{O} \) reduction only when soil \(\text{NO}_3^- \) content decreases to a threshold concentration, which seemed to occur when the bulk \(\text{NO}_3^- \) concentration ranged between 20 and 50 mg N kg\(^{-1}\) soil in our study. This is possibly because, \(\text{NO}_3^- \) is usually preferred over \(\text{N}_2\text{O} \) as a terminal electron acceptor and \(\text{N}_2\text{O} \) can escape from the soil whenever \(\text{NO}_3^- \) supply is greater than the reducing demand of denitrifiers (Swerts et al., 1996). We believe that the present study explains the contradictory reports of straw addition on \(\text{N}_2\text{O} \) fluxes as i) firstly we show in Phase I, straw addition triggered \(\text{N}_2\text{O} \) fluxes (when \(\text{NO}_3^- \) is high) with no \(\text{N}_2\text{O} \) reduction effect, and ii) secondly in Phase II, almost all \(\text{N}_2\text{O} \) was reduced to \(\text{N}_2 \) when soil \(\text{NO}_3^- \) content decreased below a certain level. In support of our findings, Xiao et al. (2018) recently showed that crop residue application drastically stimulated \(\text{N}_2\text{O} \) fluxes when applied with KNO\(_3\), compared to other nitrogen forms.

5. Conclusion

Based on the results in this experiment, there are four key take-home messages;

i) Straw amendment in moist sandy soil enhances soil denitrification rate and triggers gaseous N losses.

ii) When soil \(\text{NO}_3^- \) content is high, denitrification produces almost solely \(\text{N}_2\text{O} \) with little \(\text{NO} \) and \(\text{N}_2 \) emissions from straw amended soils. Thus, our data suggests that straw
application, even at very high rates, does not directly affect the product stoichiometry of denitrification (N$_2$O/(N$_2$O+N$_2$) product ratio).

iii) The effect of crop residue application on soil N$_2$O emissions is related to the soil NO$_3^-$ content, since NO$_3^-$ appears to be the ultimate regulator of the N$_2$O/(N$_2$O+N$_2$) product ratio of denitrification.

iv) Application of straw residue predominantly enhances fungal denitrification when soil NO$_3^-$ content is sufficient, however, when soil NO$_3^-$ is low, bacterial denitrification dominates.

Thus, the present study suggests that in agricultural systems where large amount of organic plant residues are incorporated into soil, risk of N$_2$O emissions can be minimized by keeping soil NO$_3^-$ concentrations under site-specific threshold values (e.g. using NO$_3^-$-free N fertilizers and/or fertilizers containing nitrification inhibitors). Another way of mitigating N$_2$O in these soils could be to develop management practices which slow down fungal growth after residue amendment as the present study suggests that fungal denitrification seems to be an important processes contributing to N$_2$O losses in residue-amended soils. Further field validations are needed to test the efficiency of these hypotheses. Overall, our study shows the importance of continuous direct measurement of N$_2$ fluxes alongside N$_2$O and NO fluxes and soil NO$_3^-$ concentrations, and the use of the N$_2$O 15N site preference approach in improving our understanding of the complex interrelation between crop straw incorporation and gaseous denitrification N losses.

Acknowledgements
This study was co-funded by the Deutsche Forschungsgemeinschaft through the project “Fluxes and mechanisms of permanent nitrogen removal and N$_2$O production in a heavy nitrogen loaded regions of China” and research unit DFG-FOR 2337: “Denitrification in Agricultural Soils: Integrated Control and Modeling at Various Scales (DASIM)”. This work was also supported by the UK-China Virtual Joint Centre for Agricultural Nitrogen (CINAg, BB/N013468/1), which is jointly supported by the Newton Fund, via UK BBSRC and NERC, and the Chinese Ministry of Science and Technology. We thank Martina Heuer and Jennifer Ehe for stable isotope analysis, Ute Tambor for Nmin, Dr. Dominika Lewicka-Szczebak for isotopomers data analysis and Dr. Jan Reent Köster for NO analysis.
References

Decock, C., Six, J., 2013. How reliable is the intramolecular distribution of 15N in N$_2$O to source partition N$_2$O emitted from soil? Soil Biology and Biochemistry 65, 114–127.

influence on N_2O reduction and N_2O isotopomer ratios. Rapid Communications in Mass Spectrometry 27, 2363–2373.

Senbayram, M., Chen, R., Budai, A., Bakken, L., Dittert, K., 2012. N$_2$O emission and the N$_2$O/(N$_2$O + N$_2$) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations. Agriculture, Ecosystems & Environment 147, 4–12.

Well, R., Flessa, H., Xing, L., Xiaotang, J., Römheld, V., 2008. Isotopologue ratios of N$_2$O emitted from microcosms with NH$_4^+$ fertilized arable soils under conditions favoring nitriﬁcation.

Table 1 Soil nitrate (NO$_3^-$) and ammonium (NH$_4^+$) concentrations at the end of the experiment in non-amended control (CK), KNO$_3$ (KNO$_3$), low rate of straw + KNO$_3$ (LS+N), medium rate of straw + KNO$_3$ (MS+N) and high rate of straw + KNO$_3$ (HS+N) treatments. Means denoted by a different letter in the same column differ significantly according to the Tukey’s HSD post-hoc tests at $\alpha=0.05$.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>NO$_3^-$ (mg N kg$^{-1}$ dry soil)</th>
<th>NH$_4^+$ (mg N kg$^{-1}$ dry soil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK</td>
<td>33±8.3 b</td>
<td>2±1.1 a</td>
</tr>
<tr>
<td>KNO$_3$</td>
<td>81±5.6 a</td>
<td>1±0.3 a</td>
</tr>
<tr>
<td>LS+N</td>
<td>37±4.8 b</td>
<td>3±0.8 a</td>
</tr>
<tr>
<td>MS+N</td>
<td>15±8.6 c</td>
<td>2±1.2 a</td>
</tr>
<tr>
<td>HS+N</td>
<td>0±0.0 d</td>
<td>3±0.1 a</td>
</tr>
</tbody>
</table>
Table 2: Cumulative emissions of N$_2$O, N$_2$, NO and CO$_2$ at Phase I (0-13 days) and during the whole incubation period (0-30 days) in non-amended control (CK), KNO$_3$ (KNO$_3$), low rate of straw + KNO$_3$ (LS+N), medium rate of straw + KNO$_3$ (MS+N) and high rate of straw + KNO$_3$ (HS+N) treatments. Means (n=3) denoted by a different letter in the same column differ significantly according to the Tukey’s HSD post-hoc tests at $\alpha=0.05$.

<table>
<thead>
<tr>
<th></th>
<th>N$_2$O (g N ha$^{-1}$)</th>
<th>N$_2$O (g N ha$^{-1}$)</th>
<th>N$_2$ (g N ha$^{-1}$)</th>
<th>N$_2$ (g N ha$^{-1}$)</th>
<th>NO (g N ha$^{-1}$)</th>
<th>NO (g N ha$^{-1}$)</th>
<th>CO$_2$ (kg C ha$^{-1}$)</th>
<th>CO$_2$ (kg C ha$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 0-13</td>
<td>Total</td>
<td>Day 0-13</td>
<td>Total</td>
<td>Day 0-13</td>
<td>Total</td>
<td>Day 0-13</td>
<td>Total</td>
</tr>
<tr>
<td>CK</td>
<td>2448±145</td>
<td>4555±606</td>
<td>38±1.0</td>
<td>697±93.0</td>
<td>1.4±0.1</td>
<td>1.7±0.1</td>
<td>77±19.3</td>
<td>156±35.4</td>
</tr>
<tr>
<td>KNO$_3$</td>
<td>4033±106</td>
<td>8115±792</td>
<td>45±7.8</td>
<td>564±78.7</td>
<td>1.6±0.0</td>
<td>1.9±0.1</td>
<td>71±14.9</td>
<td>160±23.8</td>
</tr>
<tr>
<td>LS+N</td>
<td>5616±151</td>
<td>10192±771</td>
<td>103±18.4</td>
<td>819±62.8</td>
<td>25.0±5.7</td>
<td>25.3±5.7</td>
<td>74±18.6</td>
<td>176±41.8</td>
</tr>
<tr>
<td>MS+N</td>
<td>6907±567</td>
<td>8797±1378</td>
<td>81±3.0</td>
<td>1656±139.7</td>
<td>71.2±11.6</td>
<td>71.6±11.6</td>
<td>120±19.3</td>
<td>252±17.8</td>
</tr>
<tr>
<td>HS+N</td>
<td>7594±302</td>
<td>7604±295</td>
<td>197±45.3</td>
<td>2049±597.0</td>
<td>42.3±11.9</td>
<td>42.7±12.0</td>
<td>131±14.6</td>
<td>307±30.7</td>
</tr>
</tbody>
</table>
Figure captions:

Figure 1. Simplified diagram of the robotized continuous flow incubation system (ROFLOW) used in the experiment. The system is controlled by a Arduino-based microcontroller unit (Arduino Mega attached with 16 position relay). This control unit adjusts the position of VICI valves, gives signals to the GC (start/stop method) and the computer (start and stop data acquisition).

Figure 2. (A) NO$_3^-$ dynamics, and (B-F) daily emissions of N$_2$O, N$_2$, NO and SP$_0$ values during the incubation period (30 days) in non-amended control (CK), KNO$_3$ (KNO$_3$), low rate of straw + KNO$_3$ (LS+N), medium rate of straw + KNO$_3$ (MS+N) and high rate of straw + KNO$_3$ (HS+N) treatments. Error bars shows the standard error of each treatments (n=3).

Figure 3. Soil daily cumulative CO$_2$ emissions during the incubation (30 days) in non-amended control (CK), KNO$_3$ (KNO$_3$), low rate of straw + KNO$_3$ (LS+N), medium rate of straw + KNO$_3$ (MS+N) and high rate of straw + KNO$_3$ (HS+N) treatments. Error bars shows the standard error of each treatment (n=3). Means denoted by a different letter differ significantly according to the Tukey’s HSD post-hoc tests at $\alpha=0.05$.

Figure 4. (A) Contribution of fungal and bacterial denitrification derived N$_2$O emissions to the cumulative N$_2$O fluxes, and (B) the ratio of N$_2$O/(N$_2$O+N$_2$) during the Phase I (0-13 days), Phase II (13-30 days), and whole incubation period (0-30 days) in non-amended control (CK), KNO$_3$ (KNO$_3$), low rate of straw + KNO$_3$ (LS+N), medium rate of straw + KNO$_3$ (MS+N) and high rate of straw + KNO$_3$ (HS+N) treatments. Error bars shows the standard error of each treatment (n=3). DAO indicates days after onset of the treatments.