
 

 

 

P
R

IF
Y

S
G

O
L

 B
A

N
G

O
R

 /
 B

A
N

G
O

R
 U

N
IV

E
R

S
IT

Y
 

 

The inhibition of automatic imitation: a meta-analysis and synthesis of
fMRI studies
Darda, Kohinoor Monish; Ramsey, Richard

Neuroimage

DOI:
10.1016/j.neuroimage.2019.04.059

Published: 15/08/2019

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):
Darda, K. M., & Ramsey, R. (2019). The inhibition of automatic imitation: a meta-analysis and
synthesis of fMRI studies. Neuroimage, 197, 320-329.
https://doi.org/10.1016/j.neuroimage.2019.04.059

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or
other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal
requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private
study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to
the work immediately and investigate your claim.

 19. Apr. 2024

https://doi.org/10.1016/j.neuroimage.2019.04.059
https://research.bangor.ac.uk/portal/en/researchoutputs/the-inhibition-of-automatic-imitation-a-metaanalysis-and-synthesis-of-fmri-studies(a7f89980-ee35-4844-b37f-b6d4d624c43f).html
https://research.bangor.ac.uk/portal/en/researchoutputs/the-inhibition-of-automatic-imitation-a-metaanalysis-and-synthesis-of-fmri-studies(a7f89980-ee35-4844-b37f-b6d4d624c43f).html
https://research.bangor.ac.uk/portal/en/researchoutputs/the-inhibition-of-automatic-imitation-a-metaanalysis-and-synthesis-of-fmri-studies(a7f89980-ee35-4844-b37f-b6d4d624c43f).html
https://doi.org/10.1016/j.neuroimage.2019.04.059


Journal:		

	

	

	

	

	

	

	

	

Title:	The	inhibition	of	automatic	imitation:	a	meta-analysis	and	synthesis	of	fMRI	

studies	

Kohinoor	M.	Darda	and	Richard	Ramsey	

	

Wales	Institute	for	Cognitive	Neuroscience,	School	of	Psychology,	Bangor	University,	

Bangor,	Gwynedd,	Wales,	LL57	2AS,	United	Kingdom	

Corresponding	author:	r.ramsey@bangor.ac.uk	

	

	

Key	words:	fMRI;	imitation-inhibition;	meta-analysis.	

	 	



 2 

Abstract	

Humans	copy	other	people	without	their	conscious	awareness,	a	behaviour	known	as	

automatic	imitation.	Although	automatic	imitation	forms	a	key	part	of	daily	social	

interactions,	we	do	not	copy	other	people	indiscriminately.	Instead,	we	control	imitative	

tendencies	by	prioritising	some	actions	and	inhibiting	others.	To	date,	neuroimaging	

studies	investigating	the	control	of	automatic	imitation	have	produced	inconsistent	

findings.	Some	studies	suggest	that	imitation	control	relies	on	a	domain-specific	neural	

circuit	related	to	social	cognition	(the	theory-of-mind	network).	In	contrast,	other	

studies	show	engagement	of	a	domain-general	neural	circuit	that	is	engaged	during	a	

diverse	range	of	cognitive	control	tasks	(the	multiple	demand	network).	Given	the	

inconsistency	of	prior	findings,	in	the	current	paper	we	avoided	problems	associated	

with	interpreting	individual	studies	by	performing	a	meta-analysis.	To	do	so,	we	used	a	

multi-level	kernel	density	analysis	to	quantitatively	identify	consistent	patterns	of	

activation	across	functional	magnetic	resonance	imaging	studies	investigating	the	

control	of	imitation.	Our	results	show	clear	and	consistent	evidence	across	studies	that	

the	control	of	automatic	imitation	is	guided	by	brain	regions	in	the	multiple	demand	

network	including	dorsolateral	frontoparietal	cortex.	In	contrast,	there	was	only	limited	

evidence	that	regions	in	the	theory	of	mind	network	were	engaged.	Indeed,	medial	

prefrontal	cortex	showed	no	consistent	engagement	and	right	temporoparietal	junction	

engagement	may	reflect	spatial	rather	than	imitative	control.	As	such,	the	current	meta-

analysis	reinforces	the	role	of	domain-general	control	mechanisms	and	provides	limited	

evidence	in	support	of	the	role	of	domain-specific	processes	in	regulating	imitative	

tendencies.	Consequently,	neurocognitive	models	of	imitation	need	updating	to	place	

more	emphasis	on	domain-general	control	mechanisms,	as	well	as	to	consider	more	
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complex	organisational	structures	of	control,	which	may	involve	contributions	from	

multiple	cognitive	systems.		
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Introduction	

The	involuntary	tendency	of	human	beings	to	imitate	others’	gestures,	speech	patterns,	

and	postures,	is	known	as	automatic	imitation	(Heyes,	2011).	It	has	been	suggested	that	

such	automatic	imitative	behaviour	functions	as	a	“social	glue”	as	it	increases	pro-social	

behaviour,	positive	rapport,	feelings	of	affiliation	and	liking	between	interacting	

partners	(Kavanagh	&	Winkielman,	2016;	van	Baaren,	Janssen,	Chartrand,	&	

Dijksterhuis,	2009;	Lakin	&	Chartrand,	2003;	Chartrand	&	Bargh,	2009;	van	Baaren,	

Holland,	Steenaert,	Van	Kippenberg,	2003).	Given	the	influence	of	imitation	on	

strengthening	social	bonds,	researchers	have	started	to	investigate	the	psychological	

and	biological	mechanisms	that	underpin	imitation.	For	example,	over	the	last	20	years,	

researchers	have	used	functional	magnetic	resonance	imaging	(fMRI)	in	order	to	better	

understand	the	neural	underpinnings	of	the	control	of	automatic	imitative	tendencies.	

However,	these	studies	have	provided	mixed	findings	regarding	the	contributions	of	

domain-general	or	domain-specific	neural	networks	in	imitation	control.	The	current	

paper,	therefore,	meta-analyses	fMRI	studies	to	date	on	the	control	of	automatic	

imitation	in	order	to	provide	a	combined	quantitative	estimate	of	the	extant	evidence	of	

many	individual	studies	(Lipsey	&	Wilson,	2001).			

In	the	last	two	decades,	automatic	imitation	has	been	widely	studied	with	an	

attempt	to	interconnect	different	disciplines	like	cognitive	science,	social	psychology,	

evolutionary	biology,	and	cognitive	neuroscience	(Prinz	&	Meltzoff,	2002;	Chartrand	&	

Bargh,	1999;	Byrne	&	Russon,	1998).	This	convergence	across	multiple	disciplines	has	

allowed	for	a	range	of	perspectives	on	imitation	to	emerge	in	which	theory	and	

empirical	data	can	strengthen	each	other.	In	social	psychology,	automatic	imitation	has	

been	studied	in	naturalistic	social	interactions	(Chartrand	&	Lakin,	2013).	Along	with	

functioning	as	a	“social	glue,”	research	performed	in	more	naturalist	settings	suggests	
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that	imitation	behaviour	is	also	moderated	by	other	variables	including,	but	not	limited	

to,	personality	variables,	self-construal,	goal	to	affiliate	or	disaffiliate,	cultural	and	social	

contexts,	as	well	as	the	similarity,	familiarity,	and	status	of	the	person	being	imitated	

(Chartrand	&	Lakin,	2013;	Caspers	et	al.,	2010;	Duffy	&	Chartrand,	2015).		

Even	though	automatic	imitation	seems	to	be	an	important	behaviour	that	

facilitates	social	interactions,	we	do	not	always	copy	others’	behaviours.	In	many	

situations,	imitation	can	be	maladaptive,	and	it	is	essential	to	circumvent	the	tendency	

to	automatically	imitate	(Cross	&	Iacoboni,	2014;	Cross,	Torrisi,	Losin,	&	Iacoboni,	2013;	

van	Schie,	van	Waterschoot,	&	Bekkering,	2008;	Newman-	Norlund,	van	Schie,	van	

Zuijlen,	&	Bekkering,	2007).	This	need	to	regulate	imitative	tendencies	indicates	the	

existence	of	a	selection	mechanism	that	inhibits	unwanted	actions,	and	prioritises	

alternatives	(Brass	et	al.,	2009).	Thus,	imitation	control	can	be	divided	into	at	least	two	

component	processes	–	action	representation	and	action	selection.	We	observe	an	

interaction	partner	and	their	actions	(representation),	and	then	select	the	action	that	

needs	to	be	executed	(selection).				

In	contrast	to	social	psychology	approaches,	researchers	in	the	field	of	cognitive	

psychology	and	neuroscience	have	generally	used	computer-based	reaction-time	(RT)	

measures	of	the	inhibition	of	automatic	imitation	(Brass	et	al.,	2000;	Stürmer	et	al.,	

2000).	One	of	the	most	commonly	used	tasks	in	this	field	consists	in	making	finger	

movements	while	simultaneously	observing	a	compatible	or	incompatible	finger	

movement	(Brass	et	al.,	2000).	For	example,	participants	may	be	asked	to	make	a	finger	

movement	in	response	to	an	imperative	cue	i.e.	they	are	instructed	to	lift	their	index	

finger	when	they	see	a	number	‘1’	on	screen,	and	their	middle	finger	when	they	see	a	

number	‘2.’	Simultaneously,	participants	also	observe	a	task-irrelevant	index	or	middle	
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finger	movement,	which	is	compatible	or	incompatible	with	their	own	response.	Other	

variants	of	this	task	include	hand	opening	and	closing	movements	instead	of	finger	

movements	(Press	et	al.,	2005;	Wang	et	al.,	2011)	or	pre-specifying	the	participant’s	

response	before	the	imperative	cue	(i.e.	participants	are	asked	to	always	lift	their	index	

finger	when	they	see	a	finger	movement;	Brass,	Bekkering	&	Prinz,	2001;	Heyes	et	al.,	

2005).	In	these	variants	as	well,	participants	observe	a	hand	or	finger	movement	which	

is	compatible	or	incompatible	with	their	own	response.	Irrespective	of	the	task	used,	

greater	cognitive	resources	are	required	when	inhibiting	movements	incompatible	to	

one’s	own	responses,	thus	leading	to	greater	RTs	(Heyes,	2011;	Brass	&	Heyes,	2005).	

The	difference	between	the	incompatible	and	compatible	conditions	(referred	to	as	the	

general	compatibility	effect)	is	said	to	be	a	measure	of	imitation	control	(Heyes	et	al.,	

2005;	Heyes,	2011).		

To	date,	a	number	of	neuroimaging	studies	have	investigated	the	neural	

mechanisms	of	imitation	control	using	RT	paradigms.	However,	the	evidence	

demonstrating	the	extent	to	which	RT	paradigms	of	imitation	control	engage	domain-

general	or	domain-specific	neural	networks	is	mixed.	Domain-specific	processes	

operate	on	particular	types	of	stimuli	or	aspects	of	cognition,	while	domain-general	

processes	operate	across	a	range	of	stimuli	and	tasks	(Barett,	2012;	Spunt	&	Adolphs,	

2017).	One	of	the	prevailing	theories	of	automatic	imitation	proposes	that	imitation	

control	relies	on	a	domain-specific	neural	circuit	related	to	social	cognition	(Brass	et	al.,	

2009).	This	“specialist”	theory	has	gained	traction	with	evidence	from	patient	and	

neuroimaging	data	pointing	to	the	engagement	of	two	key	candidate	regions	–	the	

anterior	medial	prefrontal	cortex	(mPFC)	and	the	right	temporoparietal	junction	(rTPJ)	

(Brass	&	Heyes,	2005;	Brass	et	al.,	2009).	For	example,	mPFC	and	rTPJ	have	been	
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engaged	in	human	brain	imaging	investigations	of	imitation	inhibition	(Brass	et	al.,	

2001;	2005;	2009;	Spengler	et	al.,	2009;	Wang	et	al.,	2011).	Brass	and	colleagues	further	

proposed	a	dissociation	of	roles	for	the	mPFC	and	rTPJ	during	imitation	control	-	the	

rTPJ	distinguishes	between	self-	and	other-generated	actions,	and	the	mPFC	enforces	

the	self-generated	action	when	faced	with	conflict	from	an	action	representation	

generated	by	another	agent	(Brass	et	al.,	2009).	In	addition,	patients	with	frontal	lobe	

lesions	show	disrupted	imitation	inhibition	behaviour	(Brass	et	al.,	2003;	Spengler	et	al.,	

2010)	and	an	increased	tendency	to	automatically	imitate	even	when	they	are	clearly	

instructed	to	not	do	so	(Lhermitte	et	al.,	1986).	More	evidence	for	the	involvement	of	

rTPJ	comes	from	neuro-stimulation	studies:	inhibiting	the	activity	in	the	rTPJ	by	

transcranial	magnetic	stimulation	(TMS)	interfered	with	imitative	responses	impairing	

imitation	inhibition	(Hogeveen	et	al.,	2014;	Sowden	&	Catmur,	2015).	Irrespective	of	the	

method	used,	it	is	worth	noting	that,	to	date,	there	have	only	been	a	small	number	of	

studies	implicating	mPFC	and	rTPJ	in	the	control	of	imitation.	Moreover,	these	studies	

have	used	relatively	small	sample	sizes	between	10	and	25	participants	and	there	have	

been	few,	if	any,	direct	replications.	Therefore,	the	sum	total	of	evidence	for	mPFC	and	

rTPJ	engagement	during	imitation	control	is	suggestive	rather	than	compelling.		

Along	with	imitative	control,	neuroimaging	findings	suggest	mPFC	and	rTPJ	are	

also	engaged	in	a	variety	of	socio-cognitive	tasks	that	are	associated	with	theory	of	

mind,	including	distinguishing	between	self	from	other,	perspective	taking,	as	well	as	

attributing	beliefs,	desires	and	attitudes	to	others	(ToM;	Gallagher	et	al.,	2000;		Amodio	

&	Frith,	2006;	Ruby	&	Decety,	2001;	Aichhorn	et	al.,	2006;	Decety	et	al.,	2002;	

Santiesteban	et	al.,	2012;	Brass	et	al.,	2009;	Spengler	et	al.,	2010).	Based	on	these	

findings,	self-other	control	processes	have	thus	been	proposed	as	a	candidate	
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mechanism	for	a	range	of	socio-cognitive	functions.	For	example,	it	is	important	to	

inhibit	one’s	own	perspective	or	mental	state	and	enhance	that	of	the	other	when	

empathising	with	others,	taking	their	perspective,	or	engaging	a	successful	theory-of-

mind	(de	Guzman	et	al.,	2016;	Sowden	&	Shah,	2014).	Further,	atypical	self-other	

control	has	been	linked	to	disorders	characterised	by	social	dysfunction	including	

autism	and	schizophrenia	(Cook	and	Bird	 ,	2012;	Ferri	et	al.,	2012).	Overall,	this	

evidence	suggests	that	in	imitation	control,	it	is	crucial	to	inhibit	the	representation	of	

the	other’s	action,	and	enforce	your	own,	and	this	mechanism	is	guided	by	a	domain-

specific	neural	circuit	unique	to	social	cognition	(Brass	et	al.,	2009).	

In	contrast	to	this	“specialist”	view	of	imitation	control,	however,	“generalist”	

theories	of	imitation	suggest	that	the	inhibition	of	automatic	imitation	does	not	differ	

from	any	other	pre-potent	tendencies	or	general	cognitive	functions	(Heyes,	2011;	

Cooper	et	al.,	2013).	Multiple	cognitive	control	tasks	like	the	Flanker,	Stroop,	and	Simon	

tasks,	which	require	the	inhibition	of	automatic	overlearned	response	tendencies,	have	

been	found	to	engage	a	domain-general	control	network	identified	in	the	dorsolateral	

fronto-parietal	cortices	(Aron	et	al.,	2014;	Bunge	et	al.,	2002;	Hazeltine	et	al.,	2007;	Nee	

et	al.,	2007;	Wager	et	al.,	2005).	This	network	is	also	called	the	multiple	demand	(MD)	

network	as	it	is	engaged	across	a	diversity	of	mental	operations	(Duncan	et	al.,	2010).	

Across	studies	that	investigate	imitation	inhibition,	some	have	found	engagement	of	the	

mPFC	and	rTPJ	(Brass	et	al.,	2001;	2005;	2009;	Spengler	et	al.,	2009),	whereas	others	

show	engagement	of	the	MD	network	(Bien,	Roebroeck,	Goebel,	&	Sack,	2009;	

Crescentini,	Mengotti,	Grecucci,	&	Rumiati,	2011;	Cross	&	Iacoboni,	2013;	Mengotti,	

Corradi-Dell’Acqua,	&	Rumiati,	2012;	Marsh	et	al.,	2016).	However,	most	previous	fMRI	

studies	have	been	limited	by	low	statistical	power	and	small	sample	sizes.	More	
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recently,	a	multi-experiment	study	using	larger	sample	sizes	(N=28,	N=50)	and	a	

functional	region	of	interest	(fROI)	approach	that	bolsters	statistical	power	and	

functional	sensitivity	has	shown	that	imitation	control	engages	only	the	MD	network,	

and	not	mPFC	or	rTPJ	(Darda,	Butler	&	Ramsey,	2018).	Indeed,	even	with	an	a	priori	

power	analysis	ensuring	80%	power	to	detect	medium	effect	sizes,	Darda	and	

colleagues	(2018)	did	not	even	find	a	directional	trend	to	suggest	that	the	ToM	network	

was	directly	engaged	during	imitation	control.	

As	mentioned	before,	imitation	control	can	be	divided	into	at	least	two	

component	processes	–	action	representation	and	action	selection.	The	above	review	of	

literature	suggests	two	possible	neural	mechanisms	as	being	key	to	action	selection	

during	imitation	control.	On	one	hand,	during	imitation	control,	the	neural	

representation	generated	by	the	observed	person’s	action	is	inhibited,	and	the	self-

generated	action	is	selected	and	enforced	and	this	selection	mechanism	engages	a	

domain-specific	neural	network	i.e.	the	mPFC	and	rTPJ.	On	the	other	hand,	the	selection	

mechanism	may	be	guided	by	a	domain-general	neural	network	i.e.	the	MD	network.	In	

both	possible	mechanisms,	the	input	is	the	same	i.e.	the	observed	person	and	action	

may	engage	domain-specific	socio-perceptual	neural	circuits.	However,	the	difference	

lies	in	the	selection	or	control	mechanism	that	underlies	the	inhibition	of	automatic	

imitative	tendencies	which	finally	leads	to	consequent	behaviour	(see	graphical	

representation	in	Figure	1).		

The	question	of	interest	for	the	current	meta-analysis,	therefore,	lies	at	the	

selection	stage	of	imitation	control	with	the	evidence	to	date	for	engagement	of	domain-

specific	and	domain-general	neural	networks	being	inconsistent.	Even	though	the	most	

statistically	powerful	fMRI	study	to	date	only	shows	the	engagement	of	the	MD	network	
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(Darda	et	al.,	2018),	the	interpretation	of	individual	studies	remains	limited	in	scope	for	

several	reasons.	First,	many	single	studies	are	likely	to	be	underpowered	leading	to	

missed	or	spurious	results	(Button	et	al.,	2013).	Second,	empirical	work	involves	design	

choices	that	strongly	influence	results,	making	it	harder	to	generalise	effects	across	

analysis	pipelines	and	differing	experimental	procedures	(Carp,	2012).	Given	the	

inconsistency	of	prior	findings	and	the	absence	of	a	quantitative	synthesis	of	evidence,	

taking	a	meta-analytical	approach	to	further	investigate	the	neural	basis	of	imitation	

has	many	benefits	(Cumming,	2014).	As	such,	by	means	of	a	meta-analysis,	the	current	

paper	enables	the	detection	of	consistent	patterns	of	activation	across	studies.		

In	order	to	quantify	the	consistency	and	specificity	of	regional	activation	for	

imitation	control	across	studies,	we	performed	a	multi-level	kernel	density	analysis	

(MKDA;	see	Methods	and	Materials	for	details).	We	included	all	fMRI	studies	(N=12)	

investigating	imitation	control	using	the	RT	measure	of	imitation	inhibition	(see	Table	

1).	Our	primary	measure	aimed	to	quantify	the	consistency	of	region	engagement	

across	studies	with	particular	focus	on	the	engagement	of	the	ToM	network	and	the	MD	

network.	The	dependent	variable	was	the	blood	oxygen	level	dependent	(BOLD)	

response	measured	in	the	included	fMRI	studies.	Given	the	prior	mixed	findings	across	

studies,	this	meta-analysis	aimed	to	quantify	the	extent	to	which	ToM,	MD	or	both	

neural	networks	may	be	engaged	when	during	the	inhibition	of	automatic	imitation.		

We	also	ran	two	more	exploratory	analyses,	which	were	based	on	a	small	subset	

of	the	total	studies.	The	most	common	measure	of	imitation	inhibition,	the	general	

compatibility	effect,	also	includes	a	spatial	component	(Heyes,	2011).		In	order	to	

measure	imitative	compatibility	more	specifically,	therefore,	imitative	and	spatial	

effects	need	to	be	dissociated	(Gowen	et	al.,	2016;	Boyer	et	al.,	2012;	Catmur	&	Heyes,	
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2011).	However,	only	a	few	fMRI	studies	have	measured	the	imitative	compatibility	

effect	independent	of	the	spatial	component	(Darda	et	al.,	2018;	Marsh	et	al.,	2016;	

Cross	et	al.,	2013).	This	makes	it	difficult	to	interpret	the	roles	of	the	ToM	(mPFC	and	

rTPJ)	and	MD	networks	in	imitation	control	–	their	engagement	could	reflect	both	social	

(imitative)	and/or	non-social	(spatial)	control.	Indeed,	the	rTPJ	has	been	previously	

associated	with	orienting	to	both	social	and	non-social	stimuli	(Corbetta	et	al.,	2008;	

Thiel	et	al.,	2004).	Thus,	given	that	only	a	few	studies	have	dissociated	between	

imitative	(N=3)	and	spatial	compatibility	(N=4)	effects,	we	also	ran	two	further	

exploratory	MKDAs	in	order	to	quantify	consistency	of	patterns	across	studies	for	both	

imitative	and	spatial	compatibility	effects.	Indeed,	given	the	low	number	of	studies	

included	in	the	secondary	analyses,	these	results	provide	only	suggestive,	and	not	

compelling,	evidence	regarding	the	role	of	the	MD	and	ToM	networks	in	imitative	and	

spatial	control.		

Methods	and	Materials	

Literature	search	and	data	collection	

In	the	current	paper,	we	follow	recent	guidelines	put	forward	for	meta-

analysing	neuroimaging	studies	(Muller	et	al.,	2018).	FMRI	studies	exploring	the	

inhibition	of	automatic	imitative	tendencies	were	searched	for	on	the	online	database	

PubMed,	as	well	as	the	article	search	engine	Google	Scholar.	Combinations	of	keywords	

including	‘imitation	inhibition,’	‘fMRI,’	‘imitation,’	‘automatic	imitation,’	and	‘imitation	

control’	were	used	to	identify	relevant	literature	(prior	to	January	2019).	A	total	of	15	

studies	were	found.	We	rejected	studies	if	the	primary	method	of	investigation	was	not	

fMRI,	if	the	study	did	not	report	results	in	stereotactic	coordinate	space	(either	

Montreal	neurological	Institute	(MNI)	or	Talaraich	coordinates)	(N=1;	Bien	et	al.,	2009),	
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if	reported	results	were	based	on	region-of-interest	(ROI)	analyses,	and	the	study	did	

not	report	whole-brain	analysis	coordinates	either	in	the	main	article	or	in	

supplementary	materials	(or	we	could	not	obtain	them	from	the	authors)	(N=1;	Brass	et	

al.,	2009),	and	if	the	study	involved	children	or	atypical	populations	(and	the	

coordinates	for	controls	were	not	reported	separately)	(N=1;	Spengler,	Bird,	&	Brass,	

2010).		

A	wide	variety	of	contrasts	are	used	in	studies	that	investigate	the	inhibition	of	

automatic	imitation.	However,	in	order	to	minimise	heterogeneity,	studies	that	used	a	

paradigm	that	was	not	based	on	or	was	not	conceptually	similar	to	the	Brass	et	al.	

(2000)	paradigm	for	measuring	inhibition	of	automatic	imitation	were	also	excluded.	

Thus,	12	studies	with	a	total	of	300	participants	were	included	in	the	meta-analysis	(see	

Table	1).		

Even	though	our	main	analysis	was	on	the	general	compatibility	effect,	we	also	

ran	two	separate	meta-analyses	for	spatial	and	imitative	compatibility.	Table	2	

summarises	the	contrasts	used	in	the	current	meta-analysis	for	general,	spatial,	and	

imitative	compatibility	effects.	A	total	of	13	contrasts	across	12	studies	with	142	foci	

were	used	for	general	compatibility,	4	contrasts	across	4	studies	with	42	foci	were	used	

for	spatial	compatibility,	and	a	total	of	3	contrasts	across	3	studies	with	20	foci	were	

used	for	imitative	compatibility.		

Data	analysis	

All	analyses	in	the	current	paper	were	performed	in	MatlabR2015b	

(Mathworks,	Naticks,	MA)	using	the	MKDA	toolbox	developed	by	Wager	et	al.,	2007;	

http://wagerlab.colorado.edu).	MKDA	is	an	analysis	technique	that	uses	a	random	

effects	model	to	assess	convergence	across	studies.	This	allows	for	assessing	

convergence	across	studies	as	opposed	to	between	individual	foci	(as	implemented	in	
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classical	meta-analysis	techniques	that	use	fixed	effects	analyses).	Thus,	results	are	not	

biased	by	a	small	number	of	individual	studies.	Further,	each	contrast	is	weighted	by	

the	sample	size	and	study	quality	(i.e.	whether	the	study	used	fixed	or	random	effects	

model;	Wager	et	al.,	2007;	Kober	and	Wager,	2010).		

MKDA	was	performed	on	all	three	compatibility	types	separately.	Before	

performing	the	analyses,	we	extracted	the	following	information	from	each	study	and	

included	it	in	our	database:	authors,	year	of	publication,	sample	size,	task	contrasts,	

fixed	or	random	effects	model,	and	MNI	or	Talaraich	co-ordinates.	Co-ordinates	

reported	in	Talairach	space	were	converted	to	MNI	stereotactic	space	using	Lancaster	

transformation	(tal2icbm	transform;	Lancaster	et	al.,	2007).	Peak	coordinates	from	each	

contrast	map	were	then	convolved	with	a	10mm	spherical	kernel	in	order	to	create	a	

contrast	indicator	map	(CIM).	The	resulting	voxels	within	10	mm	of	the	peak	were	

deemed	“significant”	and	given	a	value	of	one;	other	voxels	were	given	a	value	of	zero	

which	indicated	no	significant	effect.	A	density	map	was	then	created	by	averaging	the	

indicator	maps,	weighted	by	sample	size,	and	whether	the	study	used	a	fixed	or	random	

effects	model.	More	specifically,	as	recommended	by	Wager	and	colleagues	(Wager,	

Lindquist,	&	Kaplan,	2007),	this	density	map	was	weighted	by	the	square	root	of	the	

sample	size	of	the	study,	and	then	multiplied	by	an	adjustment	factor	of	1	for	random	

effects	analysis,	and	.75	for	a	fixed	effects	analysis.		

Each	voxel	of	the	density	map	was	given	a	density	statistic	P.	P	stands	for	the	

proportion	of	contrasts	included	in	the	analysis	that	show	activity	within	10mm	of	the	

voxel.	A	Monte	Carlo	simulation	(with	5000	iterations)	was	then	carried	out	in	order	to	

identify	voxels	that	had	a	P-statistic	that	was	higher	than	the	frequency	predicted	by	

chance.	This	was	tested	against	the	null	hypothesis	that	activated	regions	in	the	

resulting	pairwise	contrast	maps	(from	the	5000	iterations)	were	randomly	distributed	
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across	the	brain.	To	test	for	the	significance	of	the	cluster	size,	a	similar	procedure	was	

used.	This	allowed	for	the	identification	of	a	threshold	for	cluster	size	at	which	a	specific	

number	of	voxels	needed	to	be	activated	contiguously	so	that	the	cluster	could	be	

deemed	significant.		

In	order	to	maximise	sensitivity	in	testing	our	hypotheses,	we	report	results	

using	two	thresholding	techniques.	One	thresholding	technique	is	based	on	height	and	

the	other	is	based	on	cluster	size.	For	the	weighted	P-statistic	(height-based	threshold),	

the	family	wise	error	(FWE)	corrected	threshold	is	the	proportion	of	studies	which	

yielded	activity	within	10	mm	of	a	voxel	that	showed	a	higher	P-statistic	than	the	

maximum	P-statistic	across	95%	of	the	Monte	Carlo	maps.	For	the	cluster	size	

threshold,	the	FWE	corrected	threshold	is	the	contiguous	voxels	observed	at	two	

different	thresholds	(p<.001	and	p<.01)	whose	cluster	size	is	more	than	the	extent	of	

clusters	found	across	95%	of	the	Monte	Carlo	maps.	We	use	two	cluster-based	

thresholds	in	order	to	also	detect	regions	that	show	a	lower	response	in	magnitude	over	

a	larger	cluster	size	both	at	more	stringent	(p<.001)	and	less	stringent	(p<.01)	

thresholds.	Voxels	that	exceed	the	height-based	threshold	in	our	analysis	appear	on	the	

resulting	maps	in	Figure	2	in	yellow,	and	those	that	exceed	the	cluster	extent-based	

threshold	appear	in	orange	(p<.001)	and	red	(p<.01).		

In	the	resulting	table	(Table	3),	peak	activation	foci	that	pass	the	height-based	

threshold	are	reported.	If	activations	do	not	pass	the	height-based	threshold,	foci	of	the	

cluster-extent-based	thresholding	are	reported.	The	number	of	voxels	in	each	cluster	

that	survived	height-based	and/or	extent-based	thresholding	is	also	reported.	Resulting	

coordinates	were	localised	using	the	SPM	Anatomy	Toolbox	(Eickhoff	et	al.,	2005).	The	

database	of	co-ordinates,	and	code	used	to	perform	the	meta-analysis	are	available	

online	(https://osf.io/dbuwr/).	
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Results	

For	the	general	compatibility	effect,	across	13	contrasts	from	12	studies,	

consistent	activation	was	found	in	right	inferior	parietal	lobule,	right	supramarginal	

gyrus,	right	superior	temporal	gyrus,	and	right	temporo-parietal	junction	(see	Table	3;	

Figure	2A).	These	clusters	survived	both	height-based	and	the	more	stringent	extent-

based	thresholding	(p<.001).	Activation	was	also	found	in	right	superior	frontal	gyrus,	

and	right	middle	frontal	gyrus,	which	survived	both	height	and	the	less	stringent	extent-

based	thresholding	(p<.01).	Activation	in	the	left	and	right	insula	survived	the	more	

stringent	extent-based	threshold	(p<.001),	but	not	the	height-based	threshold.	

Activation	in	the	right	IFG	survived	the	less	stringent	extent-based	threshold	(p<.01)	

but	not	the	height-based	threshold.	

We	ran	two	further	MKDAs	separately	for	spatial	and	imitative	compatibility.	

For	spatial	compatibility,	across	4	contrasts	from	4	studies,	we	found	consistent	

activation	that	withstood	the	height-based	thresholding	in	the	left	IPL	and	the	right	SFG	

(see	Table	3;	Figure	2B).	No	regions	withstood	cluster-based	thresholding.	For	imitative	

compatibility,	across	3	contrasts	from	3	studies,	we	found	consistent	activation	in	the	

left	IPL	that	survived	height-based	(see	Table	3;	Figure	2C).	Activation	was	also	found	in	

the	right	IPL,	which	withstood	height-based	as	well	as	the	less	stringent	extent-based	

thresholding	(p<.01).		

These	density	maps	showing	regions	that	withstood	both	height	and/or	cluster-

extent	thresholding	for	each	compatibility	type	were	then	overlaid	with	the	ToM	and	

MD	network	masks	separately.	The	ToM	network	mask	consisted	of	four	parcels	

including	the	dorsal,	medial,	and	ventral	medial	prefrontal	cortex	(DMPFC,	MMPFC,	

VMPFC),	and	the	right	temporo-parietal	junction	(rTPJ),	which	have	previously	been	

implicated	in	mentalising	or	theory-of-mind	(Dufour	et	al.,	2013).	For	the	MD	network	
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mask,	16	parcels	were	used	which	included	areas	in	bilateral	superior	and	inferior	

parietal	lobules	(SPL,	IPL),	intraparietal	sulcus	(IPS),	inferior	and	middle	frontal	gyrus	

(IFG,	MFG),	precentral	gyrus	(PrecG),	insula	(Ins),	and	the	supplementary	motor	area	

(SMA)	(available	at:	https://evlab.mit.edu/funcloc/download-parcels).	Overlay	of	the	

density	maps	with	the	ToM	and	MD	network	masks	allowed	for	identification	of	overlap	

between	regions	that	were	consistently	activated	in	the	MKDA	and	the	ToM	and	MD	

networks	(Figure	3).	For	all	compatibility	types	(general,	imitative	and	spatial),	all	

regions	that	passed	height	or	extent-based	thresholding	overlapped	with	regions	in	the	

MD	network	(Figure	3A).	Additionally,	one	cluster,	which	showed	consistent	activation	

for	general	compatibility,	also	overlapped	with	the	right	TPJ	in	the	ToM	network	(Figure	

3B).	There	was	no	overlap	with	the	mPFC	node	of	the	ToM	network	for	any	

compatibility	type.		

In	order	to	break	down	the	role	of	the	right	TPJ	in	general	compatibility,	we	

performed	a	further,	more	exploratory	analysis.	We	compared	peak	coordinates	from	

prior	studies	with	a	right	TPJ	mask,	which	has	been	previously	implicated	in	theory-of-

mind	(Dufour	et	al.,	2013).	To	do	so,	the	ToM	network	mask	for	rTPJ	was	overlaid	with	

the	contrast	indicator	maps	of	all	studies	used	for	imitative	(N=3)	and	spatial	(N=4)	

compatibility.	The	contrast	indicator	maps	include	10mm	spherical	kernels	around	

peak	coordinates	of	each	contrast.	This	allows	coordinates	from	prior	imitative	and	

spatial	compatibility	contrasts	to	be	displayed	without	any	thresholding	restrictions	

and	overlaid	with	the	rTPJ	node	of	the	ToM	network.	Figure	4	shows	overlap	between	

contrast	indicator	maps	for	general	compatibility	and	spatial	compatibility	with	the	

right	TPJ	node	of	the	ToM	network	mask.	By	contrast,	there	is	no	overlap	between	

contrast	indicator	maps	for	imitative	compatibility	and	the	same	right	TPJ	mask.	
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Discussion	

In	the	current	paper,	we	performed	a	meta-analysis	of	fMRI	studies	in	order	to	quantify	

the	consistency	and	specificity	of	regional	activation	during	the	inhibition	of	automatic	

imitation.	Our	results	supported	a	“generalist”	view	of	imitation	control	–	we	found	

clear	engagement	of	dorsolateral	frontoparietal	cortices	when	observing	an	action	that	

conflicted	with	a	current	motor	intention.	These	regions	overlapped	with	regions	

associated	with	the	MD	network.	We	found	less	evidence	for	a	“specialist”	view	of	

imitation	control,	which	relies	on	the	ToM	network.	Indeed,	there	was	no	engagement	of	

mPFC	across	studies	and	there	was	no	clear	evidence	regarding	the	engagement	of	rTPJ;	

there	was	only	suggestive	evidence	that	it	may	reflect	spatial	rather	than	social	control.	

Thus,	our	results	provide	unambiguous	support	for	the	engagement	of	a	domain-

general	neural	network	during	the	control	of	imitation,	and	only	limited	evidence	for	

the	engagement	of	a	domain-specific	neural	network	that	is	tied	to	social	cognition.		

Studies	investigating	the	neural	correlates	of	imitation	control	have	to	date	

shown	mixed	evidence	for	the	engagement	of	domain-general	and	domain-specific	

neural	networks	in	imitation	inhibition.	While	some	studies	have	found	engagement	of	

the	mPFC	and	rTPJ	(Brass	et	al.,	2001;	2005;	2009;	Spengler	et	al.,	2009),	others	show	

engagement	of	the	MD	network	(Bien,	Roebroeck,	Goebel,	&	Sack,	2009;	Marsh	et	al.,	

2016;	Darda	et	al.,	2018).	The	current	MKDA	demonstrated	that	brain	regions	in	the	

multiple	demand	network	are	reliably	and	consistently	engaged	across	studies	that	

investigate	imitation	inhibition	using	the	general	compatibility	effect.	Brain	regions	in	

the	MD	network	are	also	engaged	for	imitative	(bilateral	IPL)	and	spatial	compatibility	

effects	(left	IPL,	right	SFG).	Thus,	our	findings	suggest	that	brain	regions	that	are	

engaged	across	a	range	of	cognitive	control	tasks	are	also	reliably	engaged	when	
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controlling	the	automatic	tendency	to	imitate	others,	as	measured	by	general	and	

imitative	compatibility	effects.	

Evidence	supporting	the	engagement	of	a	domain-specific	neural	circuit	that	is	

central	to	social	cognition	and	includes	mPFC	and	rTPJ	was	less	consistent	in	the	

current	meta-analysis.	Brass	et	al.	(2009)	proposed	that	the	rTPJ	was	involved	in	

distinguishing	between	self-	and	other-generated	actions,	whereas	the	mPFC	was	

engaged	when	enforcing	the	correct	action.	However,	the	current	MKDA	did	not	find	

any	evidence	of	anterior	mPFC	engagement	for	either	general,	spatial,	or	imitative	

compatibility	effects.	An	absence	of	mPFC	engagement	for	imitation	control	across	

studies	is	thus	inconsistent	with	the	hypothesis	that	a	specific	neural	system	related	to	

social	cognition	is	also	engaged	during	the	inhibition	of	automatic	imitation	(Brass	et	al.,	

2009).		

In	contrast	to	the	results	reported	in	mPFC,	across	studies	investigating	

imitation	inhibition	as	measured	by	the	general	compatibility	effect,	the	current	meta-

analysis	found	engagement	of	rTPJ.	However,	it	is	difficult	to	interpret	the	role	of	rTPJ	in	

imitation	control	for	at	least	two	reasons.	First,	the	general	compatibility	effect	is	a	

product	of	both	spatial	and	imitative	effects,	which	makes	it	hard	to	interpret	in	a	

straightforward	manner.	Second,	rTPJ	is	involved	in	both	social	and	non-social	

processes,	which	makes	it	a	functionally	heterogenous	region	(Corbetta	et	al.,	2008;	

Krall	et	al.,	2015,	2016;	Lee	&	McCarthy,	2016;	Schuwerk	et	al.,	2017).		

Further,	in	the	current	meta-analysis,	across	12	studies,	we	find	engagement	of	

rTPJ	for	the	general	compatibility	effect.	However,	it	is	important	to	distinguish	

between	a	synthesis	of	evidence	based	on	a	descriptive	approach,	and	a	quantitative	

meta-analysis	(Gigerenzer,	2018).	To	date,	14	fMRI	studies	have	investigated	imitation	

control	by	measuring	the	general	compatibility	effect	(we	excluded	Bien	et	al.,	2009	and	
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Brass	et	al.,	2009	in	the	meta-analysis,	see	Methods).	Out	of	the	14	studies,	only	4	

studies	report	the	engagement	of	rTPJ	for	the	general	compatibility	effect	(see	Darda	et	

al.,	2018,	Table	1	for	more	details).	Thus,	we	find	that	only	28.6%	of	fMRI	studies	on	

imitation	control	to	date	(4/14)	show	any	evidence	in	support	of	a	role	of	rTPJ	in	

imitation	control,	and	these	studies	do	not	dissociate	between	spatial	and	imitative	

effects.		

In	the	largest	and	most	sensitive	fMRI	study	of	imitation	inhibition	to	date,	

Darda	and	colleagues	(2018)	showed	no	engagement	of	rTPJ	for	the	imitative	

compatibility	effect,	but	engagement	of	rTPJ	for	general	and	spatial	compatibility	

effects.	Similarly,	in	the	current	meta-analysis,	when	we	explored	the	unthresholded	

spatial	and	imitative	compatibility	effect	maps	separately,	there	was	partial	overlap	

between	the	spatial	compatibility	effect	and	rTPJ,	but	no	overlap	between	the	imitative	

compatibility	effect	and	rTPJ.	Given	that	the	small	number	of	fMRI	studies	investigating	

spatial	and	imitative	compatibility	effects	separately	(N=4	and	N=3,	respectively),	the	

current	findings	need	to	be	interpreted	with	caution.	However,	when	taken	together	

with	prior	findings,	the	results	provide	consistently	limited	evidence	for	the	univariate	

engagement	of	rTPJ	in	the	control	of	imitative	tendencies.	In	contrast,	current	fMRI	

findings	provide	more	evidence	that	rTPJ	is	involved	in	resolving	spatial	conflict,	which	

is	in	keeping	with	patient	work	(Vallar	&	Perani,	1987;	Valler	et	al.,	1993),	as	well	as	

evidence	using	spatial	cueing	tasks	like	the	Posner	paradigm	(Posner	&	Cohen,	1984;	

Thiel	et	al.,	2004;	Corbetta	et	al.,	2008).	More	recent	work	also	suggests	that	rTPJ	may	

play	a	more	domain-general	role	in	the	process	of	contextual	updating,	acting	on	

changing	expectations	after	unexpected	events	(Geng	&	Vossel,	2013;	Mengotti	et	al.,	

2017).	Assuming	that	on	incompatible	trials	expectations	are	violated,	rTPJ	may	play	a	

more	generalised	role	of	context	updating	in	imitation	and	spatial	control.	However,	
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irrespective	of	whether	it	plays	a	domain-specific	or	domain-general	role,	in	the	current	

meta-analysis,	we	find	limited	evidence	for	the	univariate	engagement	of	rTPJ	in	the	

control	of	automatic	imitative	tendencies.		

	

Limitations	and	alternative	interpretations	

Before	moving	on	to	the	wider	theoretical	implications	of	these	results,	we	first	

acknowledge	possible	limitations	to	the	current	meta-analytical	approach.	The	current	

meta-analysis	did	not	include	work	by	Brass	and	colleagues	(2009),	which	implicated	

rTPJ	and	mPFC	in	imitation	control,	due	to	the	whole-brain	data	being	unavailable.	

Nonetheless,	as	mentioned	before,	only	28.6%	(4/14)	of	fMRI	studies,	which	have	

investigated	imitation	control,	found	engagement	of	mPFC	and	rTPJ,	and	they	all	had	

small	sample	sizes	(between	10	and	20	participants).	It	is,	therefore,	unlikely	that	the	

inclusion	of	an	additional	study	with	a	relatively	small	sample	size	(Brass	et	al.,	2009)	

would	change	the	results	of	the	meta-analysis,	given	that	they	are	weighted	by	sample	

size.		

A	further	consideration	is	the	relative	size	of	the	MD	and	ToM	networks	that	we	

used	in	our	analyses.	Given	that	the	MD	network	spans	a	much	larger	area	than	the	ToM	

network,	our	analysis	may	be	biased	toward	finding	results	in	the	MD	network	over	the	

ToM	network.	Although	this	is	true	in	a	relative	sense,	we	do	not	feel	that	it	hinders	our	

interpretation	of	the	results	in	the	ToM	network	for	several	reasons.	First,	regions	of	

interest	in	the	ToM	network	were	not	particularly	small	areas.	The	mPFC	regions	

included	several	portions	of	the	dorsal,	middle,	and	ventral	mPFC,	and	the	rTPJ	covered	

a	relatively	large	area	of	cortex.	Second,	both	networks	were	defined	accurately	based	

on	prior	work,	which	used	large	samples	of	participants.	Thus,	even	though	ToM	areas	

were	comparatively	smaller	than	the	MD	network,	they	still	covered	a	swath	of	cortex	in	
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regions	functionally	and	precisely	defined	as	the	ToM	network.	Consequently,	we	feel	

confident	that	had	these	regions	been	consistently	engaged	across	studies,	we	would	

have	been	able	to	detect	them.	Third,	even	if	we	only	use	CIMs	across	the	whole	brain,	

which	report	activation	peaks	from	prior	studies,	thus	avoiding	issues	with	

thresholding	or	choice	of	masks,	we	still	do	not	find	evidence	for	engagement	near	rTPJ	

and	mPFC	for	the	imitative	compatibility	effect	(Figure	4).	

An	additional	possibility	to	consider	is	that	the	difference	between	the	results	

in	terms	of	domain-specific	and	domain-general	network	engagement	could	be	due	to	

the	differences	in	stimuli	used	in	the	studies	included	in	the	meta-analysis.	However,	

the	tasks	are	all	conceptually,	visually	and	cognitively	similar	to	each	other	with	only	

minor	differences	across	all	studies.	For	example,	in	Darda	et	al.,	(2018;	Exp1	and	

Exp2),	the	stimuli	consist	of	index	and	middle	finger	movements,	whereas	in	Wang	et	al.	

(2011),	hand	opening	and	closing	movements	are	used.	Moreover,	a	recent	meta-

analysis	also	showed	that	behavioural	performance	is	consistent	across	a	range	of	

studies	that	cover	a	range	of	minor	methodological	differences	(Cracco	et	al.,	2018).	

Given	the	lack	of	substantial	differences	between	the	studies	and	the	consistent	pattern	

of	behavioural	data,	it	seems	unlikely	that	small	differences	could	be	responsible	for	

these	effects.		

Finally,	we	acknowledge	that	fMRI	is	only	one	form	of	measurement,	and	it	is	

important	to	consider	how	these	findings	mesh	with	results	from	other	neuroscience	

techniques.	For	instance,	neurostimulation	studies	have	implicated	rTPJ	in	imitation	

control	(Santiesteban	et	al.,	2015;	Bardi	et	al.,	2017).	Using	repetitive	transcranial	

magnetic	stimulation	(TMS),	dampening	of	activity	in	the	rTPJ	interfered	with	imitative,	

but	not	spatial	responses	(Hogeveen	et	al.,	2014;	Sowden	&	Catmur,	2015),	whereas	

excitatory	stimulation	of	the	rTPJ	by	anodal	transcranial	direct	current	stimulation	
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(tDCS)	caused	increased	performance	on	the	imitation	task	(Santiesteban	et	al.,	2012).	

Further,	in	patients	with	lesions	in	the	temporoparietal	junction	area,	imitation	

inhibition	deficits	have	been	found	to	correlate	with	deficits	in	visual	and	cognitive	

perspective	taking	tasks,	further	supporting	the	role	of	rTPJ	in	imitation	control	

(Spengler	et	al.,	2010).	Thus,	there	seems	to	be	a	discrepancy	between	neurostimulation	

and	patient	studies,	and	results	from	the	current	meta-analysis	of	fMRI	studies.	The	

evidence	from	neurostimulation	and	patient	studies	for	the	engagement	of	rTPJ	in	

imitation	control	is,	however,	limited	to	a	few	studies	with	small	sample	sizes.	Under	

any	yardstick,	therefore,	the	sum	total	of	evidence	from	neurostimulation	and	patient	

studies	can	only	be	judged	to	be	suggestive	at	present.	It	is	based	on	a	few	studies	with	

small	sample	sizes	that	lack	formal	power	analyses	and	replications.	Therefore,	for	

more	confirmatory	evidence,	future	investigations	with	pre-registered	and	adequately	

powered	replications	are	essential	(Munafo	et	al.,	2017;	Zwaan	et	al.,	2018;	Nelson	et	al.,	

2018).	In	addition,	it	is	also	possible	that	the	role	of	rTPJ	in	imitation	control	cannot	be	

captured	by	univariate	measurements	and	a	more	complex	neural	organisation	is	at	

play	during	imitation	control.		

	

Theoretical	implications	

The	lack	of	consistent	activation	in	mPFC	in	the	current	meta-analysis	and	a	

difficulty	in	interpreting	the	role	of	rTPJ	have	implications	for	“specialist”	theories	of	

imitation.	“Specialist”	theories	suggest	that	based	on	a	dedicated	neural	circuit	for	social	

cognition,	self-other	control	is	crucial	for	the	regulation	of	imitation,	empathy,	autism,	

and	theory-of-mind	(Brass	et	al.,	2009;	de	Guzman	et	al.,	2016;	Sowden	&	Shah,	2014).	

However,	more	recent	behavioural	evidence	suggests	that	imitation	may	not	vary	as	a	

function	of	autistic-like	traits	or	empathy,	thus	questioning	the	reliance	of	imitation	
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inhibition	on	a	distinctly	social	mechanism	(Butler	et	al.,	2015;	Cracco	et	al.,	2018;	

Genschow	et	al.,	2017).	Instead	of	a	distinctly	social	mechanism,	imitation	control	may	

involve	domain-general	cognitive	control	mechanisms,	which	are	also	engaged	during	

the	control	of	other	non-social	pre-potent	response	tendencies	(Heyes,	2011;	Cooper	et	

al.,	2012).	Indeed,	the	dual-route	model	of	automatic	imitation	proposed	by	Heyes	

(2011)	can	explain	the	control	of	automatic	imitative	tendencies	without	assuming	a	

reliance	on	a	self-other	distinction.	The	model	suggests	that	like	other	stimulus-

response	compatibility	tasks,	imitation	control	is	mediated	by	long-term	stimulus-

response	associations	which	are	a	product	of	learning.	In	line	with	this,	the	

computational	model	put	forth	by	Cooper	et	al.	(2012)	further	substantiates	this	notion	

by	demonstrating	that	spatial	and	imitative	compatibility	effects	depend	on	similar	

cognitive	processes,	and	any	behavioural	differences	are	accounted	for	by	different	sets	

of	input	nodes	for	spatial	and	imitative	effects	in	a	general	dual-route	framework	(but	

see	Berthental	&	Scheutz	(2013)	for	a	critique	of	this	model).		

Even	though	it	is	possible	that	imitation	and	spatial	compatibility	rely	on	a	

partly	shared	set	of	cognitive	processes,	this	does	not	address	the	question	of	whether	

these	processes	also	rely	on	similar	or	distinct	neurobiological	mechanisms.	The	

current	meta-analysis	suggests	that	the	selection	mechanism	in	imitation	inhibition	is	

guided	by	a	domain-general	multiple	demand	system,	which	is	also	engaged	during	the	

inhibition	of	other	non-social	external	influences.	However,	a	lack	of	engagement	of	

mPFC	(and	possibly	rTPJ)	in	imitation	control	does	not	imply	that	they	do	not	also	play	

a	regulatory	role	in	imitation	control.	For	example,	mPFC	has	been	demonstrated	to	

exert	a	top-down	influence	during	modulation	of	imitation	via	direct	gaze	(Wang	et	al.,	

2011).	In	addition,	rTPJ	showed	a	higher	response	when	an	interaction	partner	was	

believed	to	be	human	and	looked	human	compared	to	when	these	animacy	cues	were	
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absent	(Klapper	et	al.,	2014).	These	findings	suggest	that	mPFC	and	rTPJ	may	play	a	

regulatory	role	in	imitation	control	and	may	be	functionally	connected	to	other	

networks	without	being	directly	engaged	(Burnett	&	Blakemore,	2009).	The	current	

findings	suggest	that	future	work	should	postulate	and	test	more	complex	models	of	

imitation	control,	which	extend	beyond	the	operations	of	the	theory	of	mind	network.	

In	a	similar	manner,	other	socio-perceptual	circuits,	which	extend	beyond	the	

MD	network,	may	also	be	involved	when	inhibiting	automatic	imitative	tendencies.	In	

this	regard,	it	is	important	to	note	the	distinction	between	input-	and	mechanism-

specificity.	Of	course,	the	input	in	the	imitation	inhibition	task	can	be	readily	identified	

as	emanating	from	a	social	entity	i.e.	a	human	hand.	Thus,	the	observed	input	is	clearly	

social	in	the	sense	that	the	observed	agent	offers	opportunity	for	social	interaction.	

Although	the	perceptual	input	is	social,	a	domain-general	selection	mechanism	may	still	

operate	in	imitation	control.	Indeed,	it	is	possible	that	the	same	selection	mechanism	

operates	across	both	social	and	non-social	contexts.	In	the	context	of	imitation,	

therefore,	domain-specific	action	observation	and	person	perception	networks	may	

functionally	interact	with	domain-general	control	mechanisms	in	the	MD	network	(see	

Figure	1).	Thus,	similar	to	other	domains	of	social	information	processing,	an	interplay	

between	domain-general	and	domain-specific	networks	may	result	in	the	control	of	

automatic	imitative	tendencies	(Baldauf	&	Desimone,	2014;	Spunt	&	Adolphs,	2017;	

Zaki	et	al.,	2010).	Thus,	the	engagement	of	domain	specific	and	domain	general	neural	

networks	in	imitation	control	may	be	more	complicated	that	what	current	models	of	

imitation	suggest.	Consequently,	theories	that	move	beyond	a	neat	division	and	posit	

links	between	domain-general	and	domain-specific	systems	in	imitation	control	need	to	

be	given	greater	emphasis	in	future	work	(Barrett,	2012;	Spunt	&	Adolphs,	2017;	

Michael	&	D’Ausilio,	2015;	Binney	&	Ramsey,	2019).		
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In	conclusion,	the	current	meta-analysis	provides	evidence	that	the	selection	

mechanism	when	inhibiting	automatic	imitative	tendencies	is	guided	by	the	regions	of	

the	domain-general	multiple	demand	network	rather	than	a	domain-specific	system	

related	to	social	cognition.	Our	meta-analysis	questions	the	role	of	mPFC	and	right	TPJ	

in	imitation	control,	and	suggests	that	current	neurocognitive	models	of	imitation	

control	need	further	revision	in	order	to	account	for	the	more	complex	nature	of	

functional	interplay	between	domain-general	and	domain-specific	systems.			
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Table	1.	Data	extracted	from	the	studies	included	in	the	meta-analysis.		

	

Authors	 Year	 Sample	 Contrasts	 Fixed/Random	
Effects	Model	

MNI	or	
Talaraich	
coordinates	

GC	 SC	 IC	

Brass	et	al.		 2001	 10	 x	 	 	 Fixed	 Talaraich	

Brass	et	al.	 2005	 20	 x	 	 	 Fixed	 Talaraich	

Spengler	et	

al.	
2009	 20	 x	 	 	 Random	 Talaraich	

Crescentini	

et	al.	
2011	 19	 x	 	 	 Random	 MNI	

Wang	et	al.	 2011	 20	 x	 	 	 Random	 MNI	

Mengotti	

et	al.	
2012	 22	 x	 x	 	 Random	 MNI	

Cross	&	

Iacoboni	
2013	 24	 x	 x	 	 Random	 MNI	

Cross	et	al.	 2013	 20	 x	 	 x	 	 	

Klapper	et	

al.	
2014	 19	 x	 	 	 Random	 MNI	

Marsh	et	

al.	
2016	 24	 x	 x	 x	 Random	 MNI	

Darda	et	

al.	(Exp1)	
2018	 28	 x	 	 	 Random	 MNI	

Darda	et	

al.	(Exp2)	
2018	 50	 x	 x	 x	 Random	 MNI	

Campbell	

et	al.	

2018	 	 x	 	 	 Random	 MNI	

TOTAL	=	

11	
	 300	 	 	 	 	 	

	

NB:	GC	=	General	Compatibility,	SC	=	Spatial	Compatibility,	IC	=	Imitative	Compatibility	 	
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Table	2.	Contrasts	used	in	the	meta-analysis	for	general,	spatial,	and	imitative	

compatibility.		

	

Authors	 Year	 General	Compatibility	 Spatial	Compatibility	 Imitative	Compatibility	

Brass	et	al.		 2001	 General	Incompatible	>	

General	Compatible	

	 	

Brass	et	al.	 2005	 General	Incompatible	>	

General	Compatible	

	 	

Spengler	et	al.	 2009	 General	Incompatible	>	

General	Compatible	

	 	

Crescentini	et	

al.	
2011	 General	Incompatible	>	

General	Compatible	

	 	

Wang	et	al.	 2011	 General	Incompatible	>	

General	Compatible*	

	 	

Mengotti	et	

al.	
2012	 Non-specular	>	

Specular^	

Spatially	Incompatible	>	

Spatially	Compatible	

	

Cross	&	

Iacoboni	
2013	 General	Incompatible	>	

General	Compatible	

Spatially	Incompatible	>	

Spatially	Compatible	

	

Cross	et	al.	 2013	 General	Incompatible	>	

General	Compatible	

	 General	Compatibility	>	

Spatial	Compatibility	

Klapper	et	al.	 2014	 General	Incompatible	>	

General	Compatible*	

	 	

Marsh	et	al.	 2016	 General	Incompatible	>	

General	Compatible	

Spatial	Incompatible	>	

Spatially	Compatible	

Imitatively	Incompatible	

>	Imitatively	Compatible	

Darda	et	al.	

(Exp1)	
2018	 General	Incompatible	>	

General	Compatible	

	 	

Darda	et	al.	

(Exp2)	
2018	 General	Incompatible	>	

General	Compatible	

Spatial	Incompatible	>	

Spatial	Compatible	

Imitative	Incompatible	>	

Imitatively	Compatible	

Campbell	et	

al.	

2018	 General	Incompatible	>	

General	Compatible	

	 	

	

No.	of	studies	 12	 4	 3	

No.	of	contrasts	 13	 4	 3	

No.	of	foci	 142	 42	 20	

Table	2	shows	the	contrasts	used	in	the	current	meta-analysis,	and	the	number	of	

contrasts,	foci,	and	studies	for	each	compatibility	type	(general,	spatial,	and	imitative).		

*Collapsed	across	conditions;	for	Wang	et	al.,	2011:	collapsed	across	direct	and	averted	

gaze,	for	Klapper	et	al.,	2014:	collapsed	across	belief	(motion-capture,	computer	

animation)	and	form	(human,	non-human).	

^Non-specular	>	Specular	i.e.	{(spatially	incompatible	and	imitatively	compatible)	+	

(imitatively	incompatible	and	spatially	compatible)	>	general	compatible)}]		
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Table	3.	Areas	consistently	activated	for	general	compatibility,	spatial	compatibility,	and	

imitative	compatibility.		
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GENERAL	COMPATIBILITY	
Region	 MNI	 Maximum	P	 No.	of	Voxels	 Threshold	

x	 y	 z	
Right	TPJ	 60	 -46	 22	 0.42	 	 	1	 ^**	

Right	TPJ	 56	 -46	 32	 0.41	 1	 ^**	

Right	supramarginal	
gyrus	

56	 -36	 36	 0.44	 9	 ^**	

Right	IPL	 60	 -34	 34	 0.43	 2	 ^**	

Right	IPL	 	52	 -30	 	 38	 0.37	 5	 ^**	

Right	MFG	 	34	 0	 54	 0.45	 15	 ^*	

Right	SFG	 26	 -2	 64	 0.37	 46	 ^*	

Left	Insula	Lobe	 -36	 14	 0	 0.32	 453	 **	

-34	 12	 -2	 	 213	 	

-36	 18	 2	 	 240	 	

Right	Insula	Lobe	 38	 16	 4	 0.36	 405	 **	

34	 18	 0	 	 172	 	

46	 12	 2	 	 75	 	

38	 16	 6	 	 158	 	

Right	IFG	 46	 14	 10	 0.28	 1269	 *	

44	 16	 -4	 	 74	 	

28	 24	 -4	 	 44	 	

32	 12	 0	 	 41	 	

46	 22	 2	 	 113	 	

56	 10	 2	 	 116	 	

28	 20	 6	 	 105	 	

36	 26	 6	 	 66	 	

56	 16	 6	 	 128	 	

52	 12	 14	 	 219	 	

48	 2	 22	 	 92	 	

40	 8	 22	 	 132	 	
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Table	3	shows	areas	consistently	activated	for	general	compatibility,	spatial	

compatibility,	and	imitative	compatibility.	Maximum	P	stands	for	the	maximum	

proportion	of	studies	exhibiting	the	effect	at	the	peak	density	weighted	by	sample	size.	

MNI	=	Montreal	Neurological	Institute	(MNI)	standard	stereotaxic	space	coordinates.	

The	voxel	size	is	2	×	2×2	mm

3

.

	

		

*Clusters	withstanding	p<.01	cluster	extent-based	threshold.	

**Clusters	withstanding	p<.001	cluster	extent-based	threshold.	

^Clusters	withstanding	the	height-based	threshold.	

	 	

50	 8	 28	 	 139	 	

SPATIAL	COMPATIBILITY	

Left	IPL	 -36	 -40	 48	 0.78	 8	 ^	

Right	superior	
frontal	gyrus	

	

24	 -4	 58	 0.78	 190	 ^	

	 24	 -6	 54	 	 56	 ^	

	 24	 -4	 60	 	 134	 ^	

IMITATIVE	COMPATIBILITY	

Left	supramarginal	
gyrus/	IPL	

-48	 -28	 34	 0.73	 11	 ^	

Right	supramarginal	
gyrus/	IPL	

	

48	 -26	 44	 0.73	 18	 *^	

	 52	 -30	 42	 	 7	 	

	 46	 -26	 46	 	 11	 	
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Figure	1.	Brain	networks	associated	with	the	control	of	automatic	imitation.	

	

Figure	1.	Brain	networks	associated	with	the	control	of	automatic	imitation.	

This	graphical	representation	divides	imitation	control	into	two	constituent	processes	–	

representation	of	the	person	and	their	action,	and	the	selection	(control)	of	the	right	

action	to	be	executed.	In	the	context	of	automatic	imitation,	the	representation	system	

consists	in	face,	body,	biological	motion,	and	action	perception.	The	neural	substrates	

for	person	and	action	perception	span	the	fusiform	gyrus,	occipitotemporal	cortex,	and	

posterior	superior	temporal	sulcus,	as	well	as	the	mirror	neuron	system	(Kanwisher,	

2010;	Caspers,	et	al.,	2010).	The	control	or	selection	system	consists	in	a	brain	network	

that	is	either	domain-general	(i.e.	the	multiple	demand	network)	or	domain-specific	(i.e.	

the	theory-of-mind	network).	N.B.	Abbreviations:	MNS	=	mirror	neuron	system;	IPL	=	

inferior	parietal	lobule,	IFG	=	inferior	frontal	gyrus;	pSTS	=	posterior	superior	temporal	

sulcus;	OT	=	occipito-temporal	cortex;	FG	=	fusiform	gyrus,	MD	=	multiple	demand	

network;	ToM	=	theory-of-mind	network;	mPFC	=	medial	prefrontal	cortex;	PMC	=	

primary	motor	cortex;	dlPFC	=	dorsolateral	prefrontal	cortex;	TPJ	=	temporo-parietal	

junction.	The	bidirectional	arrow	“											”	indicates	links	between	the	different	nodes	of	

imitation	control.			
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Figure	2.	Consistency	of	brain	activation	from	the	MKDA	Analyses.				

	

Figure	2.	Consistency	of	brain	activation	from	the	MKDA	Analyses.				

Brain	areas	that	are	consistently	engaged	for	general	compatibility	(A),	spatial	

compatibility	(B),	and	imitative	compatibility	(C).	Voxels	that	exceed	the	height-based	

threshold	(p<.05,	FDR	corrected)	in	our	analysis	appear	in	yellow,	and	those	that	exceed	

the	cluster	extent-based	threshold	appear	in	orange	(p<.001)	and	red	(p<.01).		

	

	 	



Figure	3.	Overlay	of	the	MKDA	maps	with	the	ToM	and	MD	network	masks.	

	

Figure	3.	Overlay	of	the	MKDA	maps	with	the	ToM	and	MD	network	masks.	
Overlay	of	the	density	maps	with	the	ToM	and	MD	network	masks	allowed	for	identification	of	overlap	between	regions	that	were	
consistently	activated	in	the	MKDA	and	the	ToM	and	MD	networks.	For	all	compatibility	types	(general,	imitative	and	spatial),	all	regions	
that	passed	height	or	extent-based	thresholding	overlapped	with	regions	in	the	MD	network	(A).	Additionally,	one	cluster,	which	
showed	consistent	activation	for	general	compatibility,	also	overlapped	with	the	right	TPJ	in	the	ToM	network	(B).	There	was	no	overlap	
with	the	mPFC	node	of	the	ToM	network	for	any	compatibility	type.		



Figure	4.	Overlay	of	Contrast	Indicator	Maps	with	rTPJ.	1 

	2 

Figure	4.	Overlay	of	Contrast	Indicator	Maps	with	rTPJ.	3 

The	ToM	network	mask	for	rTPJ	overlaid	with	the	contrast	indicator	maps	of	all	studies	4 

used	for	general	(N=12;	A)	imitative	(N=3;	B)	and	spatial	(N=4;	C)	compatibility.	There	5 

was	overlap	between	contrast	indicator	maps	for	general	compatibility	and	spatial	6 

compatibility	with	right	TPJ.	There	is	no	overlap	between	contrast	indicator	maps	for	7 

imitative	compatibility	and	the	same	right	TPJ	mask.	8 

Abbreviations:	IC	=	Imitative	Compatibility;	SC	=	Spatial	Compatibility,	GC	=	General	9 

Compatibility	10 

	 	11 
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