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Abstract  19 
 20 

This paper describes the development and application of a novel and generic framework for 21 

parsimonious soil-water interaction models to predict the risk of agro-chemical runoff. The 22 

underpinning models represent two scales to predict runoff risk in fields and the delivery of 23 

mobilised pesticides to river channel networks. Parsimonious field and landscape scale runoff 24 

risk models were constructed using a number of pre-computed parameters in combination 25 

with live rainfall data. The precomputed parameters included spatially-distributed historical 26 

rainfall data to determine long term average soil water content and the sensitivity of  land use 27 

and soil type combinations to runoff. These were combined with real-time live rainfall data, 28 

freely available through open data portals and APIs, to determine runoff risk using  SCS 29 

Curve Numbers. The rainfall data was stored to provide antecedent, current and future  30 

rainfall inputs. For the landscape scale model, the delivery risk of mobilised pesticides to the 31 

river network  included intrinsic landscape factors. The application of the framework is 32 

illustrated for two case studies at field and catchment scales, covering acid herbicide at field 33 

scale and metaldehyde at landscape scale. Web tools were developed and the outputs provide 34 

spatially and temporally explicit predictions of runoff and pesticide delivery risk at 1km2 35 

resolution. The model parsimony reflects the driving nature of rainfall and soil saturation for 36 

runoff risk and the critical influence of both surface and drain flow connectivity for the risk 37 

of mobilised pesticide being delivered to watercourses. The novelty of this research lies in the 38 

coupling of live spatially-distributed weather data with precomputed runoff and delivery risk 39 

parameters for crop and soil types and historical rainfall trends. The generic nature of the 40 

framework supports the ability to model the runoff and field-to-channel delivery risk 41 

associated with any in-field agricultural application assuming application rate data are 42 

available. 43 

 44 

  45 



1. Introduction 46 
 47 

Rainfall-induced surface and subsurface runoff mobilises and transports the chemicals used 48 

for in-field agricultural applications (fertilisers, herbicides and pesticides) from land to 49 

receiving freshwaters. Agriculture is therefore a significant source of water pollution, 50 

affecting drinking water quality and treatment costs. In England, for example, water 51 

companies spent £92 million in 2008-09 removing pollutants from water supplies to meet 52 

drinking water standards (National Audit Office, 2010). However, for some pollutants, such 53 

as metaldehyde, there are currently no cost-effective methods of removal, although the UK’s 54 

first treatment plant has recently been constructed at significant cost to the water company in 55 

question1. Concentrations of such agrochemicals above safe limits in surface and 56 

groundwaters creates not only environmental risk, but also a risk to human health. 57 

 58 

Agricultural applications can enter surface water via a number of pathways. Spills, spray-drift 59 

and illegal disposal are generally managed by best practice guidance and prosecution. Surface 60 

and subsurface runoff can transport agrochemicals in dissolved and particulate form, from the 61 

field to watercourses. The proportion that is removed in solution relative to that attached to 62 

mobilised soil particles depends on the intrinsic soil properties, topography / slope and the 63 

characteristics of the agrochemicals such as pesticides, including their sorption and solubility 64 

properties (Louchart et al., 2001; Guo et al., 2004; Vinten et al., 2005; Kay et al., 2009; 65 

Newell-Price et al., 2011).  66 

 67 

The biggest driver of surface and subsurface runoff is precipitation and the timing and 68 

characteristics of the first rainfall event after application are very important. Antecedent 69 

weather determines the wetness of the soil and therefore the degree to which the chemical is 70 

‘held’ by the soil. Applications made to wet soil (at field capacity or wetter), or just before 71 

heavy rainfall, are more likely to be lost in surface runoff or by-pass flow to field drains, with 72 

negative environmental and water quality impacts as they are transferred to surface or 73 

groundwater (Mitchell et al., 2005; Gao et al., 2008; Lapworth et al., 2012), although the 74 

propensity for mobilised pollution to reach watercourses also depends on additional factors 75 

affecting delivery (e.g. the status and maintenance of field drains, the topology of the 76 

landscape, distance to watercourses). Thus, water pollution risk is enhanced by poor timing 77 

of applications in relation to weather events which can result in pollutant concentrations in 78 

surface waters that exceed drinking water standards (Petty et al., 2003).  79 

 80 

In addition to the environmental benefits, the efficacy of any agricultural application is 81 

severely reduced if runoff washes it from the crop or the field. For the farmer, the reduced 82 

efficacy leads to risks of reduced yields (income) and/or increased costs (and thereby lower 83 

gross margins) if the treatment has to be re-applied to protect the crop. The annual cost to 84 

farmers of agricultural runoff has been estimated at £238m (Jacobs UK Ltd, 2008) a 85 

significant part of which can be attributed to the impact of runoff losses associated with 86 

compromised pesticide and herbicide effectiveness. There are additional environmental 87 

(damage) costs and, in future, there may be financial penalties for pesticides and herbicides 88 

being washed into watercourses. Preventing agro-chemicals reaching surface and 89 

groundwaters by imparting source control measures is more cost-effective than water 90 

treatment and some initial research has identified a benefit-to-cost ratio of 65:1 for prevention 91 

over treatment (Defra, 2013).  92 

 93 

                                                 
1 https://wwtonline.co.uk/features/project-focus-hall-claims-uk-first-in-water-treatment  

https://wwtonline.co.uk/features/project-focus-hall-claims-uk-first-in-water-treatment


Direct detection of the source of pesticides and herbicides carried by runoff is difficult due to 94 

the diffuse nature and temporal variability of the sources and the high cost of instrumentation 95 

(Meyer et al., 2019) and with some pollutants, the length of time taken to analyse water 96 

samples makes real-time risk mapping impractical. Consequently, modelling water pollution 97 

risk is the only practical option in most cases. 98 

 99 

This paper describes the development of two decision tools operating over different scales of 100 

decision making. The tools provide interfaces to two parsimonious soil-water runoff models; 101 

one supporting on-farm decisions at the field scale and another supporting landscape scale 102 

management. Both include inputs and outputs at a1km2 spatial scale, but their aims are very 103 

different and their outputs should be interpreted in very different ways. The field scale tool 104 

provides the end-user with point-based information of runoff risk derived from a model 105 

operating over each 1km2 independently. It uses a meta-model to forecast surface runoff risk 106 

for a given land use on a given soil from recent recorded and forecast rainfall alone. It aims to 107 

support farmers and land managers to better manage pesticide applications. The catchment 108 

scale model also uses a 1km2 scale (in part because most of the data available to support such 109 

analyses and models are at best at 1 km2 resolution). However, the inputs and outputs do not 110 

describe processes that operate independently over each 1km2. Rather, the inputs describe 111 

landscape processes that are topologically connected such as field drain and surface flows as 112 

well as landscape connectivity between fields and watercourses. In this case, the outputs 113 

provide Tier 1 screening to identify hotspots requiring further investigation, with the aim of 114 

supporting informed on-the-ground catchment management by environmental agencies and 115 

water companies. 116 

 117 

2. Background 118 

 119 
This research is informed by two limitations arising from previous work: the difficulties of 120 

determining antecedent soil water status (and thereby the potential for soil to hold water) and 121 

the temporally static nature of many landscape scale decision support tools in this domain.  122 

 123 

2.1 Modelling Runoff  124 
 125 

The SCS Curve Number (CN) method (USDA SCS, 1972) is commonly used to model 126 

surface runoff depth from rainfall amount, soil surface characteristics and antecedent 127 

wetness. It is also used to predict runoff and infiltration (USDA, 2004). It is applicable to 128 

small catchments ( 6,500 ha) (NRCS, 2002) and has been implemented in models to 129 

estimate agrochemical transport to water (e.g. CREAMS - Knisel 1980; SWAT - Arnold et 130 

al., 1998; PRZM - Carsel et al., 1998; APEX - Williams and Izaurralde, 2006) and has been 131 

shown to be robust for a range of climates, soil types and land uses (e.g. Gassman et al., 132 

2007). It has been found to perform better than an infiltration model in modelling runoff in an 133 

agricultural catchment in England (Kannan et al., 2007). Many CN models predict runoff 134 

depths for individual weather events using an empirical relationship between direct runoff 135 

depth, rainfall amount, soil surface characteristics and antecedent wetness (USDA, 2004). 136 

The rainfall amount at which runoff starts depends on the maximum potential retention, 137 

which in turn, depends on land use and soil type. The CN approach provides a widely used 138 

and effective method for estimating direct runoff due to rainfall. Despite its simplicity, and 139 

the availability of CNs for various land use and soil type combinations (USDA, 2004; Chow 140 

et al., 1988; Pilgrim & Cordery, 1993), operationally it can be difficult to estimate the 141 

antecedent soil moisture conditions. Although the antecedent soil water status has been 142 



estimated from 5-day antecedent rainfall (e.g. Mishra et al., 2005), this has been shown to be 143 

poorly correlated with maximum potential retention (USDA, 2004). 144 

 145 

2.2 Decision Support Tools 146 
 147 

User-facing decision tools started to emerge with the advent of easily programmable GISs 148 

with graphical user interfaces. These were developed to support farming compliance under 149 

newly legislated environmental directives, such as the Water Framework Directive (WFD, 150 

2000) in Europe, and sought to minimise the externalities of agricultural activity on 151 

waterbodies. Decision tools, for use by both farmers and policy makers, were developed over 152 

a range of spatial scales: nationally, at typical scales of 1, 5 and 10 km2 and Europe-wide at 153 

scales of 10, 20 and 50 km2. Examples of UK models include those of Webb and 154 

Misselbrook (2004), Chadwick et al. (2005), Chambers et al. (1999), Davison et al. (2008), 155 

Lord and Anthony (2000) and Lord (1992) many of which are summarised in Anthony et al. 156 

(2008). At the European scale, similar models include PyCatch (Schmitz et al., 2017) and the 157 

FOOTPRINT (Functional Tools for Pesticide Risk Assessment and Management) framework 158 

which integrates pesticide use information with a physically based field scale soil water 159 

model (Jarvis et al., 2000) for drainage and leaching pathways and PRZM (Suarez, 2005) for 160 

runoff and erosion pathways. Hydrological modelling frameworks have also been used to 161 

simulate agrochemical runoff (Kannan et al., 2006; Ficklin et al., 2013; Bannwarth et al., 162 

2013; Zhang et al., 2018). A key and unavoidable characteristic of existing landscape 163 

process-based models is that their outputs and the scales they report over are spatially and 164 

temporally incompatible with the expectations and needs of land managers. Here, a key 165 

limitation is the fact they are underpinned by highly static, spatially and temporally 166 

aggregated data by way of model inputs such as underlying soil types, drainage, land use, 167 

climate, terrain characteristics and farming practice.  168 

 169 

2.3 Research aims 170 
 171 

The critical gap, common to SCN models and decision support tools, regardless of scale, is 172 

that they do not incorporate live and dynamically updated data on soil condition or rainfall. 173 

Very detailed and precise prediction models for soil water balances and associated runoff, 174 

leaching and pollution risks (e.g. Morselli et al., 2018; Pullan et al., 2016) require specific, 175 

local information that cannot be obtained from generalised GIS layers, often requiring in situ 176 

parameterisation and measurement. This is because data may not be freely available (e.g. 177 

soils data), are dis-aggregates of coarser scale data (e.g. agricultural land use) or are 178 

themselves modelled outputs (e.g. landscape connectivity data). A further key issue across 179 

scales and model types is that they commonly suffer from poor performance when evaluated 180 

using monitoring data despite being very heavily parameterised (Kim et al., 2010; Bieger et 181 

al., 2014; Gassman et al., 2014; Zeiger and Hubbart, 2016). For this reason, recent research 182 

has explored the use of parsimonious tools for pesticide risk (e.g. Gassman et al., 2013; 183 

Steffens et al., 2015; Pullan et al., 2016). 184 

 185 

It is against this background, that this paper describes the development of two decision tools 186 

providing real-time, spatially-explicit and temporally-dynamic field runoff and field-to-187 

channel pesticide delivery risk information for supporting decisions regarding pesticide 188 

application (field scale) or management of surface water withdrawal for public water supply 189 

(catchment scale). These are demonstrated for two example agro-chemical applications in 190 

two differing environmental settings in the UK. The tools incorporate parsimonious field 191 

runoff and field-to-channel delivery models that combine real-time data of antecedent, 192 



current and predicted rainfall obtained from a national meteorological institute API. Both 193 

tools generate real-time predictions of current and future agro-chemical field runoff or field-194 

to-channel delivery risk over a 5-day window. A key distinction is that the field scale tool has 195 

a focus on quantifying runoff risk, whereas the catchment scale tool focuses on quantifying 196 

the risk of delivery to the channel network – i.e. pesticide delivery risk rather than runoff risk. 197 

 198 

3. Methods and new models 199 
 200 

Two case-study catchments were selected. The Wissey catchment in eastern England is 201 

dominated by arable cropping and has a potential risk of metaldehyde in waterbodies. 202 

Metaldehyde is used to treat slugs on oil seed rape, potatoes and horticultural crops and was 203 

responsible for 23% of failures to meet drinking water standards in the 4th quarter of 2016 in 204 

England and Wales (Defra, 2017a). Metaldehyde also topped the list of pesticides which 205 

breached the 0.1 μg/l drinking water safety limit between 2013 and 2015 (Defra, 2017b). In 206 

contrast, the Teifi catchment in mid-Wales, is dominated by grassland used for livestock. 207 

Here, acid herbicide applications for managing weeds in pastures represents a risk for 208 

drinking water quality. Field and landscape (catchment) scale models were developed for 209 

both case studies using the methods described below. For illustration in this paper, the results 210 

present the application of the field model and tool for runoff risk in the Teifi catchment in 211 

Wales, and the landscape scale model and tool for metaldehyde delivery risk in the Wissey 212 

catchment in England. 213 

 214 

3.1 Field scale model 215 
 216 

3.1.1 Overview 217 
 218 

The aim of the field scale model was to provide location specific information of current and 219 

predicted future (5 day) runoff risks, at a 1 km2 grid cell scale representing the field. It sought 220 

to support on-farm decisions about agro-chemical applications and to provide forecasts of 221 

whether any surface runoff is expected at the field scale. Although a soil water balance model 222 

could be used to antecedent soil water conditions and the CN method (USDA, 2004) to assess 223 

potential field runoff in real-time, data and computational requirements are an important 224 

limitation. In addition, fully parameterised soil water balance models require a known 225 

starting condition and are prone to cumulative errors, particularly during periods of low 226 

rainfall. From an operation point of view, using a soil water balance model to estimate 227 

antecedent soil water conditions also requires the user (farmer) to collect and process rainfall 228 

data even during periods when runoff risk forecasts are not required. To overcome this, a 229 

meta-modelling approach was used to estimate antecedent soil conditions from soil type, 230 

long-term average soil water content for the day of year, recent recorded rainfall and short-231 

term forecast rainfall. An overview of the field scale model is shown in Figure 1.  232 

 233 



 234 
 235 

Figure 1. The field scale runoff risk model. 236 

 237 

3.1.2 Data and Model 238 
 239 

The soil water balance model, WaSim (Hess and Counsell, 2000), was used to estimate daily 240 

soil water condition () using the approach described by Hess et al. (2010) and Holman et al. 241 

(2011). It used a long time-series (1961 to 2015) of daily rainfall and reference 242 

evapotranspiration data at 1 km2 resolution from the CEH CHESS dataset (Robinson et al, 243 

2016, 2017) for each of the 28 hydrology of soil type (HOST) (Boorman et al., 1995) classes 244 

found in England and Wales, and three land cover classes.  245 

 246 

WaSim is a daily soil water balance model that simulates changes in root zone soil water 247 

content and water table position in response to weather and water management. It estimates 248 

changes in soil water content by combining data on rainfall, crop specific evapotranspiration, 249 

soil characteristics and field drainage. It estimates daily surface runoff using a CN approach 250 

based on the soil water content using the approach of Hawkins et al. (1985) and Garen 251 

(1996).  252 

 253 

The water content of the upper (0 – 0.15 m) layer (0) is estimated from daily effective 254 

rainfall, evapotranspiration and drainage to a lower layer. The proportion of the soil water 255 

stored above field capacity (FC) that is released from a saturated soil increases from zero at 256 

FC to a maximum at saturation (SAT) following an exponential function (Raes and van Aelst, 257 

1985) dependent on the texture of the upper soil layer. Validation of predicted field-scale 258 

runoff is difficult due to the paucity of field-scale runoff data for a sufficient range of soil, 259 

crop and climate conditions for national application. However, Holman et al. (2011) 260 

evaluated partitioning of hydrologically effective rainfall between slow and quick flow-paths 261 
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in the WaSim model by upscaling to the catchment scale across all of England and Wales. 262 

For 27 out of the 29 HOST soil classes (Boorman et al., 1995) (peat soils excepted). The 263 

WaSim estimates of baseflow index (BFI) were within the 95% confidence intervals of the 264 

national-average BFI , suggesting that the model is adequately capturing the effect of soil 265 

type and wetness on runoff generation. 266 

 267 

Using linear regression on a subset of the data (1961 – 2000), the daily soil water condition 268 

was modelled from the 10 previous days’ accumulated rainfall (P10), the number of days 269 

since the last day with rainfall >2 mm (P2) and long-term average modelled daily soil water 270 

condition (𝜃𝑖̅) for each the day of the year, i. The resulting linear regression models were 271 

shown to fit well to the soil water conditions modelled by the soil water balance model for an 272 

independent timeseries (2001-2015), summarised in Section 3.1.3 and as described in 273 

Comber et al (2018). The parameterised regression model was then used with recent and 274 

short-term forecast rainfall data to forecast runoff, R, using the CN method of Hawkins et al. 275 

(1985) and Garen (1996) as follows: for rainfall, P (mm d-1), greater than a threshold value, I 276 

(mm), direct runoff, R (mm d-1), is estimated from: 277 

 278 

𝑅 =
(𝑃−𝑆)2

(𝑃+(1−)𝑆)
  for P > S 

 

R = 0 for P ≤ S 

(1) 

 279 

where S is the maximum retention, mm and the threshold I is defined as  280 

 

𝐼 = 𝑆 
 

(2) 

Note that  (dimensionless) is an empirical value that represents the proportion of rainfall on 281 

a soil at average antecedent conditions that can fall without generating runoff, and is typically 282 

set to 0.2.  283 

 284 

On a particular day, S was estimated from the retention at dry antecedent conditions, S1 285 

(mm), the relative saturation of the top 0.15 m of the soil, fs (dimensionless) and two 286 

weighting factors, W1 and W2 for retention (Hawkins et al., 1985):  287 

 288 

 

𝑆 = 𝑆1 [1 −
𝑓𝑠

𝑓𝑠 + 𝑒𝑥𝑝(𝑊1 − 𝑊2𝑓𝑠)
] 

 

(3) 

 

𝑓𝑠 =
𝜃𝑖

𝜃𝑠
 

 

(4) 

𝑊1 = 𝑙𝑛 [
1

1 −
𝑆3

𝑆1

− 1] + 𝑊2 (5) 

 289 

 290 



𝑊2 = 2 [𝑙𝑛 (
0.5

1 −
𝑆2

𝑆1

− 0.5) − 𝑙𝑛 (
1

1 −
𝑆3

𝑆1

− 1)] (6) 

 291 

The retention, Sn (mm), at dry (n = 1), average (n = 2) and wet (n=3) antecedent conditions, is 292 

estimated from the curve number, N2 (dimensionless) at average antecedent conditions 293 

(Garen, 1996). 294 

𝑆𝑛 = 250 (
100

𝑁𝑛
− 1) 

 

(7) 

𝑁1 =
𝑁2

2.281 − 0.01281𝑁2
 (8) 

 

𝑁3 =
𝑁2

0.427 +  0.00573𝑁2
 (9) 

 

 

 

 295 

3.1.3 Model Validation 296 

 297 
Hess et al. (2010) used a continuous water balance model, WaSim (Hess and Counsell, 2000) 298 

to model daily soil water content and estimate daily surface runoff using a CN approach. 299 

WaSim is a one-dimensional, field-scale layered soil-water balance model that operates on a 300 

daily timestep. The water content of the upper (0 – 0.15 m) layer, 0 (dimensionless), is 301 

estimated from daily effective rainfall (P - R), evapotranspiration, E (mm d-1) and drainage to 302 

a lower layer, D (mm d-1). D increases with 0 from zero at field capacity, FC, to a maximum 303 

at saturation, SAT, following an exponential function (Raes and van Aelst, 1985): 304 

  305 

𝐷 = 𝜏(𝜃0 − 𝜃𝐹𝐶)
𝑒(𝜃0−𝜃𝐹𝐶) − 1

𝑒(𝜃𝑆𝐴𝑇−𝜃𝐹𝐶) − 1
150 (10) 

 306 

Where  (d-1) is the proportion of the soil water stored above field capacity that is released 307 

from a saturated soil in one day and is dependent on the soil texture, and 150 (mm) is the 308 

thickness of the upper soil layer. 309 

 310 

Three linear regression models, M1 to M3, were calibrated against 0 for each soil and 311 

climate combination in each of the two study areas:  312 

- M1 is a simple linear regression of 0 against the 5-day accumulated antecedent 313 

rainfall, P5 under the expectation that for a given location and soil type, 0 will be 314 

correlated with the antecedent rainfall; 315 

- M2 considered the 10-day accumulated antecedent rainfall, P10, and the number of 316 

days since the last rainfall >2 mm, JP>2;  317 

- M3 considered the 10-day accumulated antecedent rainfall, P10, the number of days 318 

since the last rainfall >2 mm, JP>2 and also considers the long-term average value of 319 

0 for the day of the year, (𝜃𝑖̅). This assumed that the effect of antecedent rainfall on 320 

0 may vary with seasonal variation in 0. For example, a small P10 on at a time of 321 

year when the soil is generally wet would result in wetter antecedent conditions than 322 

at a time when the soil is generally drier.  323 



Each model is summarised in Table 1 and was calibrated against the WaSim continuous 324 

model and then used to estimate 0.  325 

 326 

Model 

Coefficients 

Model 1 (M1) Model 2 (M2) Model 3 (M3) 

X1 Accumulated 5-day 

antecedent rainfall, 

P5 

Accumulated 10-day 

antecedent rainfall, P10 

Accumulated 10-day 

antecedent rainfall, P10 

X2  Number of days since 

the last rainfall >2 mm, 

JP>2 

Number of days since the 

last rainfall >2 mm, JP>2 

X3   Long-term average value 

of 0 for the day of the 

year, (𝜃𝑖̅) 

Table 1. A summary of the different models that were evaluated. 327 

 328 

Table 2 shows the coefficient estimates of the three locally calibrated linear models to 329 

estimate antecedent soil moisture conditions, adjusted for each site and soil type. It also 330 

includes the root mean squared error (RMSE), mm d-1, between upper layer soil water 331 

content from a continuous model and the three meta-models for the calibration (1961-2000) 332 

and validation (2001-2015) periods. For the two models relying only on antecedent rainfall 333 

(M1 and M2) the intercept is the most important coefficient of the model, taking values close 334 

to the volume water fraction at field capacity. The M3 coefficients demonstrate the 335 

importance of including average soil moisture conditions and the major difference between 336 

parameters is driven by weather conditions rather than by soil type. Similarly the validation 337 

results show that M3 achieves the best results for both soil types and both climates. 338 

Moreover, the results suggest that introducing the daily average soil moisture content has an 339 

important impact on the quality of the model. 340 

Case  

Study 

Soil 

Type 

 Coefficients RMSE 

Model Intercept X1 X2 X3 Calibration Validation 

Teifi 

Clay 

Loam 

M1 0.376 0.002   0.030 0.031 

M2 0.393 0.001 -0.004  0.027 0.029 

M3 0.126 0.001 -0.004 0.675 0.024 0.025 

Sandy 

Loam 

M1 0.266 0.002   0.033 0.033 

M2 0.284 0.001 -0.004  0.030 0.031 

M3 0.090 0.001 -0.004 0.664 0.026 0.026 

Wissey 

Clay 

Loam 

M1 0.351 0.003   0.035 0.032 

M2 0.361 0.002 -0.002  0.031 0.028 

M3 0.029 0.002 -0.002 0.875 0.023 0.020 

Sandy 

Loam 

M1 0.241 0.004   0.033 0.033 

M2 0.252 0.002 -0.003  0.030 0.031 

M3 0.027 0.002 -0.002 0.833 0.026 0.026 

Table 2. Coefficients of the three linear models and the root mean squared error (RMSE), mm 341 

d-1, for the calibration (1961-2000) and validation (2001-2015) periods. 342 



 343 

3.2 Landscape scale model 344 

 345 

3.2.1 Overview 346 
 347 

The landscape scale model provides spatially distributed information on pesticide delivery 348 

risk. The overarching aim was to identify field-to-channel delivery risk hotspots to support 349 

and inform catchment management and on-the-ground follow up by environmental agencies 350 

and water companies. It therefore identifies locations of high risk that may require further 351 

investigation. The landscape scale tool generates a spatially-distributed field-to-channel 352 

delivery risk surface to inform drinking water abstraction decisions. The output predicts the 353 

spatial pattern of mobilised pesticide loadings delivered to receiving watercourses. The 354 

parsimonious approach combines layers of intrinsic landscape scale factors, runoff and 355 

pollutant transfer, national historical daily rainfall data from the CEH Gridded Estimates of 356 

Areal Rainfall dataset (Keller et al., 2015), as well as live data of current and antecedent 357 

rainfall, as summarised in Figure 2.  358 

 359 

 360 
Figure 2. The parsimonious landscape scale model. OM = organic matter. 361 

 362 

A source-mobilisation-delivery-impact model of the water pollutant transfer continuum 363 

(Lemunyon and Gilbert, 1993; Haygarth et al., 2005; Zhang et al., 2017) was adopted. In this 364 

framework, runoff following rainfall is the key mobilisation force and the proportion of 365 

pesticide load available for mobilisation into the runoff moving down the soil profile to field 366 

drains or downslope across the land surface is assumed to be the same as the ratio of runoff 367 

amount to event rainfall total. Pesticides are therefore partly absorbed by the soil and non-368 

binding pesticides are mobilised in runoff. This multiplicative correction approach is similar 369 

to that used by Verro et al. (2002). The landscape model recognises that rainfall can reach 370 

watercourses via different delivery pathways (e.g. surface runoff, drain flow) and measures of 371 
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hydrological connectivity between agricultural fields and the river channel network influence 372 

the propensity for mobilised pollution (e.g. pesticides) to reach the watercourses. In the case 373 

of the latter, surface runoff connectivity is calculated using distance to river channel and the 374 

downslope average slope gradient using a high resolution digital elevation model (DEM) and 375 

channel network data layer (Prosser and Rustomji, 2000; Walling and Zhang, 2004), whereas 376 

drain flow connectivity uses farm-type specific estimates based on recent surveys of drain 377 

maintenance associated with the upkeep of the permeable backfill or drain freeboard, as well 378 

as the frequency of supportive mole ploughing (Zhang et al., 2016).  379 

 380 

3.2.2 Data and model 381 
 382 

Data at 1 km2 resolution were assembled for each case study area. The proportions of 383 

different land use including crop types in each grid cell (Comber et al., 2008) were matched 384 

with freely available data on pesticide application rates to determine pesticide loadings to 385 

farmed land. The land use data described in Comber (2008) uses advanced spatial 386 

disaggregation methods to robustly allocate agricultural census data from the June Survey of 387 

Agriculture and Horticulture (JAS). JAS data are reported at coarse spatial units (such as 388 

Parish level) and the disaggregation is to finer spatial units such as 1km2. This data underpins 389 

many tools supporting national level policy support. Garthwaite et al (2013; 2014; 2015) 390 

describe pesticide usage on different agricultural land uses and spatially distributed pesticide 391 

loadings to agricultural land were estimated by linking the land use proportions of each 1km2 392 

to the reported pesticide usage for that land use.  393 

 394 

The loadings from all applications to agricultural land are then modified to estimate the 395 

loading susceptible to runoff mobilisation and delivery from field-to-channel by the soil 396 

sorption capacity for the pesticide in question, which is modelled as a function of known 397 

pesticide behaviour and soil organic carbon content  (% OC). Accordingly, the proportion of 398 

chemical loading susceptible to mobilisation and runoff loss with rainfall, K is calculated as 399 

follows:   400 

 401 

𝐾 =
1

1 + 𝐾𝑜𝑐 × 𝑂𝐶/100
 (11) 

 402 

where Koc is a measure of the tendency of a chemical to bind to soils (an adsorption 403 

coefficient) set at 67 in the Wissey and 20 in the Teifi study catchments.. 404 

 405 

Runoff was estimated using the Mishra-Singh model (Mishra et al., 2005), a modified CN 406 

method, that accounts for event rainfall and antecedent soil moisture conditions. To estimate 407 

runoff (R, mm), event rainfall (P, mm) and the antecedent 5-day rainfall (P5, mm) are 408 

required, as well as an estimate of storage depth (S, mm), initial abstraction (Ia) and an 409 

intermediary term, M: 410 

 411 

𝑆 =
25400

𝐶𝑁
− 254 (12) 

 412 

𝐼𝑎 = 𝜆𝑆 (13) 

 413 

𝑀 = − (
(1 + 𝜆)

2
) 𝑆 + √(1 − 𝜆)2𝑆24𝑃5𝑆 (14) 



 414 

𝑅 = (
(𝑃 − 𝐼𝑎)(𝑃 − 𝐼𝑎 + 𝑀

𝑃 − 𝐼𝑎 + 𝑀 + 𝑆
) (15) 

 415 

where  is an empirical value which typically set to 0.2. The CN values for different soil 416 

types, land use and surface conditions are based on Hess et al. (2010) using the UK 417 

Hydrology of Soil Type (HOST) classification (Boorman et al., 1995). These were mapped 418 

into four hydrological soil groups (A, B, C, D) to reflect the minimum rate of rainfall 419 

infiltration for bare soil after prolonged wetting and the transmission rate within the soil 420 

profile, under five land use types; grass, row crops, small grains, semi-naturals and 421 

woodlands (Table 3).  422 

 423 

Table 3. Pesticide usage and Curve Number (CN) groups for different land use categories. 424 

June Agricultural Census  

description1 

Pesticide usage  

Group2 CN group3 

Wheat Cereals Row crops 

Early potatoes Potatoes Row crops 

Late potatoes Potatoes Row crops 

Sugar beet Beet crops Row crops 

Leguminous forage crops Other fodder crops Row crops 

All Other crops for stockfeeding Other fodder crops Row crops 

Root crops, brassicas & fodder beet Vegetable brassicas Row crops 

Winter barley Cereals Row crops 

Borage Other arable crops Row crops 

Field beans Peas & beans Row crops 

Peas for harvesting dry Peas & beans Row crops 

Maize Maize & sweetcorn Row crops 

Maize – grain Maize & sweetcorn Row crops 

Maize – fodder Maize & sweetcorn Row crops 

Winter oilseed rape Oilseeds Row crops 

Spring oilseed rape Oilseeds Row crops 

Linseed Other arable crops Row crops 

Spring barley Cereals Row crops 

All Other crops Other arable crops 

Small 

grains 

Bare fallow Set aside 

Semi-

natural 

Short rotation coppice Other arable crops Row crops 

Miscanthus Other arable crops Row crops 

Crops for aromatic or medicinal use Other arable crops Row crops 

Oats Cereals Row crops 

Mixed corn Other arable crops 

Small 

grains 

Rye Other arable crops 

Small 

grains 

Triticale Other arable crops 

Small 

grains 



Other peas and beans Other outdoor vegetables Row crops 

Culinary plants for human consumption (e.g. 

herbs) 

Lettuce & other leafy 

salads Row crops 

All other veg and salad including carrots and 

onions 

Lettuce & other leafy 

salads Row crops 

Vining peas for processing Other outdoor vegetables Row crops 

Orchards commercial Top fruit & hops Row crops 

Wine grapes Other soft fruit 

Small 

grains 

All other small fruit Other soft fruit 

Small 

grains 

Orchards noncommercial Top fruit & hops Row crops 

Orchards Top fruit & hops Row crops 

Strawberries Strawberries 

Small 

grains 

Raspberries Other soft fruit 

Small 

grains 

Blackcurrants Other soft fruit 

Small 

grains 

Temporary Grass Grassland Grass 

Woodland Woodland Woodland 

Land used for outdoor pigs Set aside 

Semi-

natural 

Other non-agricultural land Set aside 

Semi-

natural 

Permanent Grass Set aside Grass 

Rough Grazing Set aside 

Semi-

natural 
1 The June Survey of Agriculture and Horticulture (JAS) is an annual survey which collects 425 

detailed information on arable and horticultural cropping activities, land usage, livestock 426 

populations and farming labour force figures - 427 

https://data.gov.uk/dataset/june_survey_of_agriculture_and_horticulture_uk 428 
2 The pesticide usage group reflects the key groups used in surveys reporting publicly 429 

available data on pesticide applications (e.g. Garthwaite et al., 2013, 20145, 2015) 430 
3 Taken from Hess et al. (2010) 431 

 432 

The JAS classes were linked to pesticide survey usage categories and, in turn, the CN 433 

categories in Hess et al. (2010). Hess et al. (2010) proposed appropriate CNs for each unique 434 

combination of grouped soil type and land cover, dependent upon the surface condition 435 

which is classified as either ‘good’ or ‘poor’.  A CN of 0 represents maximum storage, whilst 436 

a score of 100 suggests zero storage (i.e. a totally impermeable soil). The hydrological soil 437 

groups reflect the minimum rate of rainfall infiltration for bare soil after prolonged wetting 438 

and the transmission rate within the soil profile. Group A soils are characterised by low 439 

runoff potential and high infiltration rate even when wetted, with a transmission rate of >7.6 440 

mm/hr. Group B soils have a moderate infiltration rate and are typified by moderate to well 441 

drained soils with transmission rates of 3.8 – 7.6 mm/hr. Group C soils have low infiltration 442 

rates and are typified by moderately fine to fine texture and a layer impeding downward 443 

water movement, yielding transmission rates of 1.3 – 3.8 mm/hr. Finally, group D soils have 444 

high runoff potential and very low infiltration rates, typifying clay soils with very low 445 



transmission rates of 0 – 1.3 mm/hr. CN values recommended by Hess et al. (2010) are 446 

presented in Table 4. 447 

 448 

Table 4. Curve Numbers (CN) for surface runoff generation based on Hess et al. (2010). 449 

Hydrological Vegetation Surface condition 

soil group type Good1 Poor2 

A Grass 39 68 

A Row crops 65 72 

A Small grains 61 65 

A Semi-natural 39 68 

A Woodland 30 45 

B Grass 39 79 

B Row crops 65 81 

B Small grains 61 76 

B Semi-natural 39 79 

B Woodland 30 66 

C Grass 74 86 

C Row crops 82 88 

C Small grains 81 84 

C Semi-natural 74 86 

C Woodland 70 77 

D Grass 80 89 

D Row crops 86 91 

D Small grains 85 88 

D Semi-natural 80 89 

D Woodland 77 83 
1 Good soil structure, limited management activities (e.g. contour ploughing) to reduce runoff 450 

transmission from the field 451 
2Degraded soil structure resulting in enhanced runoff generation, plus evidence of 452 

management activities increasing runoff transmission (e.g. downslope tramlines, compaction 453 

due to livestock trampling or use of heavy farm machinery, fine seed beds)  454 

 455 

Finally, hydrology outputs from a process-based model developed for national policy 456 

support, namely PSYCHIC (Phosphorus and Sediment Yield CHaracterisation In 457 

Catchments; Collins et al., 2007; Davison, et al., 2008; Stromqvist et al., 2008; Collins and 458 

Anthony, 2008; Collins et al., 2009; Comber et al., 2013; Collins and Zhang, 2016), were 459 

used to derive monthly soil runoff partitioning between surface and drain flow pathways for 460 

each 1km2. The PSYCHIC model runs use a combination of baseline climate conditions 461 

(1961 to 1990) and 2010 JAS.  462 

 463 

3.2.3 Model validation 464 
 465 

The validation of a landscape scale model predicting 1km2 risk surfaces, i.e. providing 466 

information to support Tier 1 screening of  risk, is inherently difficult.. The model reported 467 

here provides information on landscape scale risk and empirical pesticide data, collected at an 468 

appropriate resolution, simply does not exist at appropriate scales for validating the modelled 469 

patterns of spatial risk. However, previous research (e.g. Stromqvist et al., 2008; Collins and 470 

Anthony, 2008; Collins et al., 2016; Collins and Zhang, 2016; Zhang et al., 2017a,b) has 471 



evaluated the catchment and broader scale spatial patterns predicted for aggregated diffuse 472 

pollution (nutrients and sediment, not pesticides) delivery to watercourses using the 473 

underlying algorithms from PSYCHIC that are incorporated in the landscape model, using 474 

available local (i.e. original PSYCHIC model research project) or strategic monitoring data in 475 

the form of 1991-2010 PARCOM (Neal and Davies, 2003) reporting and the Harmonized 476 

Monitoring Scheme (https://data.gov.uk/dataset/b17a2efa-bdd6-4740-8030-477 

fb87f7f2bcff/historic-uk-water-quality-sampling-harmonised-monitoring-scheme-detailed-478 

data) at 33 stations for the period 1980-2010. Paris Commission (PARCOM) monitoring is 479 

undertaken as part of the 1992 OSPAR (Oslo–Paris) Convention which combined the 1972 480 

Oslo Convention on dumping waste at sea and the 1974 Paris Convention on land-based 481 

sources of marine pollution. PARCOM monitoring is undertaken to report the delivery of 482 

terrestrial pollutants to the maritime area in accordance with the OSPAR Convention. The 483 

Harmonized Monitoring Scheme is a long-term water quality scheme in the UK that was 484 

initiated by the Department of the Environment in 1974. 485 

 486 

4. Results 487 
 488 

The field and catchment scale models were coded in R and interactive web tools with an 489 

Open Street Map front end were created in RMarkdown using the leaflet, flexdashboard, 490 

shiny, sp, dygraphs and reshape2 R packages. Recent and short-term forecast rainfall was 491 

recognised as a critical input for each scale in order to determine field runoff and field-to-492 

channel delivery risk. For each study catchment, live weather data and precipitation forecasts 493 

from the Meteorological Office (the UK’s national weather service) DataPoint API (Met 494 

Office, 2018) were downloaded for each day, interpolated into a 1 km2 grid and stored in 495 

raster stack. These were used to serve the online models with antecedent, current and 496 

predicted rainfall data for each 1 km2. The online web tools are dynamic, calculating field 497 

runoff or field-to-channel delivery risk at each location from the live precipitation data and 498 

the user inputs. A zoomable OpenStreetMap layer provided the background mapping. 499 

 500 

4.1 Field scale tool 501 
 502 

The intention of the field scale tool was that it would be used by farmers and farm managers 503 

to inform their day-to-day decision making around agricultural chemical applications. The 504 

web interface asks users to enter a postcode, and then to click on an individual 1 km2 grid 505 

cell. For the purposes of the models demonstrated here, the interface in Wales assumes an 506 

Acid herbicide application decision and in the East of England a Metaldehyde application 507 

(only the Wales tool is illustrated). The runoff risk for the selected grid cell for the next 5 508 

days is shown in text format below the map and there are a number of tabs containing 509 

additional information. A screen grab of the catchment scale tool is shown in Figure 3. Here 510 

rainfall and runoff risk are not quantified, they are simply stated if predicted to be present at 511 

the selected location for the selected time period +5 days, as described above. 512 

 513 



 514 
Figure 3. A screenshot of output from the Teifi catchment field scale runoff risk model at 515 

https://saric.shinyapps.io/tei_field/.  516 

 517 

4.2 Catchment scale tool 518 
 519 

The catchment scale tool  was aimed at land and environmental managers with catchment / 520 

sub-catchment and watershed remits, including local water companies. Runoff and pesticide 521 

field-to-channel delivery risk is mapped and indicates locations with varying risk, given 522 

current and antecedent rainfall conditions, with the aim of supporting drinking water 523 

abstraction operations. The on-line tool asks users to indicate the agro-chemical they are 524 

interested in, the status of the soil and the date for which they require field-to-channel 525 

delivery risk estimates. For this proof of concept tool, the choices for agro-chemicals are 526 

limited to “Metaldehyde” and “Acid Herbicide”, and the choices for soil status to “Good” or 527 

“Poor”. The runoff risk is R (mm) from Equation 15 was categorised into 4 classes of risk: 528 

None when R = 0, Low when 0 < R <= 0.02, Moderate when 0.02 < R <= 0.05 and High 529 

when R > 0.05. In contrast to the field scale tool, the aim here was to provide users with 530 

landscape and catchment scale policy responsibilities with some information about the degree 531 

of pesticide delivery risk across the 1 km2 grid cells comprising the study area. The user can 532 

pick any date between current date and October 2017 with the aim of allowing users to 533 

explore known runoff events and the degree to which the tool predicted any locally observed 534 

runoff and this is supported by an interactive (dy)graph of the mean rainfall in this period for 535 

this area. When the user selects a date, the current and previous 5-day rainfall for each 1 km2 536 

are extracted and the model is run generating a surface of predicted pesticide delivery risk. 537 

The boxplots show the rainfall for the previous 5 days and the date being queried. A screen 538 

grab of the catchment scale model application to the Wissey catchment is shown in Figure 4.  539 

 540 



 541 
Figure 4. A screenshot of output from the Wissey catchment scale field-to-channel delivery 542 

risk model at https://saric.shinyapps.io/wis_catch/.  543 

 544 

5. Concluding Remarks 545 
 546 

The effective use of agrochemicals in modern agriculture contributes to sustained crop yields 547 

and quality. However, agrochemicals are less effective when they ‘run off’ into surface and 548 

groundwaters soon after they are applied. The risk of this happening increases when 549 

agrochemicals are applied to wet (saturated) soils and when rainfall occurs soon after 550 

application. Runoff and associated pollutant delivery from field-to-channel also has negative 551 

impacts on environmental and drinking water quality when agrochemicals are transferred to 552 

surface or groundwater. 553 

 554 

This paper describes a novel, generic and parsimonious modelling framework that integrates 555 

dual-scale soil water interaction models with real-time weather data. It addresses a number of 556 

impediments to the use of existing runoff risk models to inform on-farm management 557 

decisions and catchment management.  558 

i) Most soil-water interaction models have high data and input parameter requirements to 559 

generate daily time-step simulations of processes related plant and crop growth. 560 

ii) Consequently they require in-depth knowledge about input process parameters.  561 

iii) They frequently require data which may not be available, for example to non-academic or 562 

non-research organisations, or to farmers and commercial companies. 563 

iv) Many of these models perform poorly when compared with observed monitoring data 564 

(e.g. Zeiger and Hubbart, 2016). 565 

v) Finally, because of these issues, existing models are not easily integrated into tools able to 566 

quantify the real-time field runoff and field-to-channel delivery risks which are required to 567 

support more reactive and effective agrochemical management decisions on the ground.  568 

 569 

The dynamic, real-time decision tools developed in this research do not address all of these 570 

issues (there remain difficulties in validating the detailed spatial patterns predicted by any 571 



catchment scale model, for example). However, the provision of spatially- and temporally- 572 

explicit runoff and pesticide delivery risk information using parsimonious models is novel. 573 

We have demonstrated their applicability for two spatial scales of decision making: on-farm 574 

and catchment. The individual components of the parsimonious tools are not new: field and 575 

catchment scale models of pesticide and herbicide runoff have existed for a long time. But, 576 

critically, existing tools fail to provide timely and thereby useful information to managers. 577 

There are many live and location specific weather forecasting websites, smartphone apps and 578 

tools. As yet, however, real-time forecasting and soil water models have not been linked in an 579 

accessible and user-friendly way. In most decision tools, the model data inputs are relatively 580 

static (e.g. cropping systems, soil conditions, measures of catchment scale field drainage, etc) 581 

and do not support location- and time-specific queries. The result is that the modelled soil-582 

water interactions and pesticide persistence represent some kind of generalised overall runoff 583 

trend rather than a specific local runoff measure.  584 

 585 

There are a number of areas of potential future work emerging from this research for the 586 

further development of this modelling framework. The field and catchment scale models are 587 

very much proofs of concept and demonstrate how parsimonious but sensitive runoff risk 588 

models could be included in such frameworks. The utility of the tools and the interfaces from 589 

the end user perspective could be enhanced and the scope of the tools could be expanded in a 590 

number of ways. In our generic approach for both field and catchment scales, the critical 591 

variables driving field runoff and field-to-channel delivery risk are those related to 592 

antecedent, current and forecast rainfall in combination with fundamental intrinsic controls. 593 

In previous models, these have been assumed under a suite of potential scenarios that the user 594 

has to choose from. However, the ability to link to spatially- and temporally- explicit data for 595 

the rainfall variables through APIs offers a new avenue for enhancing the wider application 596 

and utility of soil-water-connectivity models. The future ability to serve many different types 597 

of geo-spatial data in this way via distributed data portals will only increase, reducing the 598 

dependency on locally held data. The landscape scale tool could be expanded to include 599 

nested watershed, catchment and sub-catchment scales and any corresponding aggregation 600 

associated with instream transfer processes. A further area for development would be to 601 

account for “noise” in runoff from agricultural applications, not least of which are point 602 

pollution due to poor on farm practice (incidental spillages, etc), runoff from domestic and 603 

managed green space applications as well as pesticide spray drift. A final and critical area of 604 

further work in the context of the approaches described is the inclusion of high accuracy 605 

rainfall data. This project used publicly available rainfall data served through the UK Met 606 

Office’s API and interpolated over a 1km2 grid. Higher quality data is not provided for free. 607 

As the models inherently depend on rainfall (to parameterise the soil wetness factors through 608 

antecedent rainfall, to model current risk and determine future risk projections), the greatest 609 

influence on the quality of the model outputs is driven by this data. 610 

 611 

In summary, the tools developed in this research provide user interfaces to stripped down, 612 

parsimonious soil-water-connectivity models that take advantage of the availability of live 613 

rainfall data. Their components reflect the importance of knowledge of past and current 614 

rainfall as drivers of field runoff and field-to-channel delivery. To this end, each model pre-615 

computed long-term water content for different soil types and crops, was linked to a live 616 

rainfall data feed and requested a very small amount of information from users (date, soil 617 

status, crop type) from which field runoff and field-to-channel delivery risk was computed 618 

using antecedent and current rainfall. The wider applicability of this research is underpinned 619 

by the generic nature of the parsimonious modelling framework. Assuming the availability of 620 

relevant mechanistic understanding and information on application doses, the models could 621 



easily be extended to predict risks to water quality and the wider environment for any 622 

agricultural application at the farm decision scale or at the landscape management scale. 623 

Future work will develop a more strategic and commercial framework for a wider suite of 624 

parsimonious models.  625 
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