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Summary 

1. Tropical coral reefs currently face an unprecedented restructuring since their extant form 

and function emerged ~24 million years ago in the early Neogene. They have entered the 

Anthropocene – an epoch where humans have become the dominant force of planetary 

change. Human impacts on and interactions with coral reefs are escalating across multiple 

trophic levels and scales, but we have a rudimentary understanding of what this means for 

their functional ecology.  

 

2. The overall goal of this special feature is to unpack what the Anthropocene means for the 

functional ecology of coral reefs, laying the foundations for new approaches and research 

directions in coral reef science. The collection describes the functional changes and novel 

dynamics that characterise Anthropocene reefs, from variations in their taxonomy and 

geology through to the resulting shifts in ecosystem services they provide to humanity. 

 

3. Common changes to coral reefs are occurring that are challenging their historical 

functional role. These include reductions in benthic calcifiers and declining carbonate 



production, and benthic assemblage shifts leading to a loss of structural complexity and 

flattening of reef seascapes. As reefs as we know them are lost from some locations, range 

extensions and the ‘tropicalisation’ of temperate locations present novel ecosystem 

configurations that are challenging ecological paradigms and our historical approach to 

ecosystem management.  

 

4. Hindering our progress, however, is a “functionality crisis”. Coral reef functional ecology 

to date has lacked a clear and universal definition of the term ‘function’ and many assumed 

links between taxa and reef processes lack empirical evidence. Moving forward, we must 

establish causal links between functional traits, the species that possess them, and specific 

ecosystem processes if we are to successfully manage Anthropocene reefs. The functional 

space coral reefs occupy has arguably widened, presenting ethical challenges surrounding the 

increasingly interventionist management practices required to achieve particular functional 

endpoints. 

 

5. For us to steer coral reefs towards a desirable functional future will require a more 

mechanistic understanding between ecosystem attributes and the provision of services, 

acknowledging that such services are co-produced by the ecosystem and society. 

Ultimately, this era in coral reef ecology requires a new approach to coral reef science, one 

that addresses the complex socio-ecological nature of coral reefs. These works outline a path 

ahead for defining and studying the functional ecology of coral reefs, drive debate as to what 

we want their functional future to look like, and call for ecosystem function to be at the heart 

of managing coral reef futures during this period of rapid transition. 

 

 



Introduction 

Early coral reefs lived among dinosaurs. These ancestral coral forms led to the 

emergence of scleractinian coral reefs ~65 million years ago (Ma) in the early Paleogene, that 

by the early Neogene (~24 Ma) had developed in to the functionally extant coral reefs we 

know today (Bellwood 2003; Bellwood, Goatley & Bellwood 2017) (Fig. 1). Between then 

and now, arguably little changed to the functionality of coral reefs, despite increases in 

species diversification (Bellwood, Goatley & Bellwood 2017). Recently, however, the 

globalisation of the human species has propelled coral reefs into an era of unprecedented 

change and coral reefs in the Anthropocene face an uncertain functional future (Fig. 1). 

Over the past few decades, and guided by classic ecological theory and practice, we 

have learned a great deal about the structuring forces of coral reef ecosystems. Early on in the 

evolution of coral reef science, research focused on the role played by gradients in natural 

biophysical forcings such as wave energy, temperature, light, and primary production (Odum 

& Odum 1955; Glynn 1976; Dollar 1982). As interactions between people and coral reefs 

increased, so too did the study of the resulting changes to reef configurations. We began to 

study the role played by fisheries exploitation (McClanahan & Muthiga 1988; Russ & Alcala 

1989) and nutrient enrichment due to coastal development (Grigg 1995; Hunter & Evans 

1995), and the study of key ecosystem functions, such as herbivory, reef growth, and 

predation became commonplace (Hubbard & Scaturo 1985; Lewis 1986; McClanahan & 

Shafir 1990). From the late 1980s onwards, the threats presented by climate change-induced 

coral bleaching (Harriott 1985; Hoegh-Guldberg 1999) and disease outbreaks (Aronson & 

Precht 2001) became increasingly apparent, with documented changes in reef 

reconfigurations away from their historical baselines (Hughes 1994) and the deleterious 

effects this was likely to present to humanity (Done 1999).  



As our knowledge grew, so too did our realisation that coral reefs represent tightly 

coupled social-ecological systems (Kittinger et al. 2012), whose complex states and 

dynamics (Jouffray et al. 2015; Donovan et al. 2018) are governed by interacting cross-scale 

human socioeconomic, cultural (Cinner et al. 2016; Hicks et al. 2016a) and biophysical 

processes (Williams et al. 2015; Jouffray et al. 2019). Under such contexts, classic ecological 

theory and paradigms can break down (Williams et al. this issue). In recent years, it has 

become evident that climate change-induced ocean warming driven by rising CO2 emissions 

is leading to an increase in the frequency of mass coral bleaching events across the planet 

(Hughes et al. 2018a). These events are often overwhelming local management and 

environmental variability to cause mass coral mortality at unprecedented scales (Hughes et 

al. 2017a) and reconfiguring entire reef assemblages (Hughes et al. 2018b; Stuart-Smith et al. 

2018). Despite the potential for recovery between bleaching events (Sheppard, Harris & 

Sheppard 2008; Gilmour et al. 2013; Graham et al. 2015), global climate change model 

projections predict a continued diminishing return time of coral bleaching events in the 

coming decades (van Hooidonk et al. 2016) that will severely challenge the capacity for reef 

recovery (Osborne et al. 2017). It is unequivocal that coral reefs have entered the 

Anthropocene (Norström et al. 2016; Hughes et al. 2017b), an epoch where humans are the 

dominant force of planetary change. However, we have a rudimentary understanding of what 

this might entail for the functional ecology of coral reefs.  

 

Unravelling the Anthropocene for coral reefs from a functional perspective  

Functional ecology aims to understand how core ecosystem functions, such as 

carbonate accretion, herbivory, and nutrient cycling in the case of coral reefs (Brandl et al. In 

Press), govern ecosystem dynamics, how certain species shape the system, and how this 

understanding informs responses to disturbances (Bellwood et al. this issue). The field of 



functional ecology draws heavily on trait-based approaches. Traits of organisms (for 

example, elements of morphology or behaviour) attempt to capture their role in ecosystem 

function (McGill et al. 2006; Mouillot et al. 2013). The greater the evidence for a given trait 

or trait combination capturing an ecosystem function, the more likely a trait-based approach 

will yield insights into the behaviour of that ecosystem.  

A functional approach offers the opportunity to study how coral reefs are responding 

to the complex network of socioeconomic, cultural and biophysical processes that now 

dictate their dynamics (Williams et al. this issue). This special feature unravels the 

Anthropocene for coral reefs from a functional perspective, outlining a path ahead by which 

we can steer them towards a desirable functional future, characterised by diverse calcifying 

coral reefs that continue to co-produce services for society. The collection describes the 

functional changes and novel dynamics that characterise coral reefs in the Anthropocene. The 

papers discuss the functional implications of assemblage shifts across trophic levels, changes 

to reef geological processes and seascapes, range extensions of tropical species, and the 

knock-on effects these changes are having on the ecosystem services reefs provide. The 

collection also provides a definitional framework for the study of ‘function’ and calls for a 

new approach to coral reef science in this era of rapid change. 

 The works highlight some common changes occurring to coral reefs in the 

Anthropocene that are challenging their historical functional role. Under intense bleaching-

induced coral mortality, coral assemblages are becoming morphologically less diverse and 

dominated by taxa with a higher morphological ‘compactness’ (Zwada et al. this issue). 

Concurrently, reductions in carbonate production and reef accretion are occurring that, in 

combination with bio-erosion, are resulting in net-erosional states and the flattening of reef 

seascapes (Perry & Alvarez-Filip this issue).  



In some locations, coral reefs as we know them are transitioning to novel 

configurations with novel functions (Fulton et al. this issue) that provide us with new 

opportunities to derive benefits from ecosystem services (Woodhead et al. this issue) (Fig. 2). 

For example, fleshy macroalgae are classically viewed as the functional endpoint to the coral-

algal regime shift that results from cumulative human stressors (Hughes 1994). However, 

“algae” are a diverse group and a natural part of many coral reef seascapes (Vroom et al. 

2006). These complex macroalgal reef habitats contribute to coral reef ecosystem function, 

including providing nursery habitats for juvenile reef fish, and boosting secondary 

productivity as they detach, float and become a food source for browsing herbivorous fishes 

(Fulton et al. this issue). Some of these fishes, such as the rabbitfish Siganus sutor, are fast-

growing and sustain fisheries production where tropical macroalgae have replaced reef-

building corals as the dominant habitat-former (Robinson et al. 2019). Such provision of 

ecosystem services through novel means (Woodhead et al. this issue) challenges some 

existing coral reef paradigms and requires we re-appraise how we might manage tropical 

macroalgal reefs (Fulton et al. this issue). 

Novel ecosystem configurations are also challenging our ‘traditional’ approaches to 

reef conservation and management as a whole, particularly where they are forming at the 

expense of past native assemblages (Graham et al. 2014). ‘Tropicalisation’ of temperate reefs 

is occurring as tropical species extend their ranges poleward, creating novel predator-prey 

dynamics and shifts in the dominant habitat-forming taxa (Vergés et al. this issue). These 

novel reef configurations and ecosystem service opportunities are driving debate as to how 

such situations should be managed from an ethical perspective, particularly as management 

strategies become increasingly interventionist (Vergés et al. this issue). This demands that we 

re-assess how we define coral reef ecosystem function, and what in fact makes for a 

functioning coral reef ecosystem in the Anthropocene.  



Re-thinking coral reef functional futures: the path ahead 

To steer coral reefs towards a desirable functional future, we must first acknowledge 

that ecosystem services are co-produced by the ecosystem and society (Woodhead et al. this 

issue). As coral reefs change, so too does our use of them. As society changes, technological 

innovations may create novel opportunities for ecosystem services to be drawn from coral 

reefs. These changes to the ecosystem and society will not benefit all user groups equally, 

and winners and losers will emerge (Vergés et al. this issue; Woodhead et al. this issue). 

Moving forwards, therefore, how we decide and manage for a particular functional outcome 

requires careful thought and a strong inclusion of social science in ecosystem management 

(Hicks et al. 2016b). This is true for both ensuring continued and equitable use of coral reefs, 

and to effectively develop and maintain conservation initiatives.   

One aspect currently hindering our progress, is a “functionality crisis” (Bellwood et 

al. this issue). To date, we have lacked a clear and universal definition of the term ‘function’ 

and many assumed links between function and coral reef processes lack empirical evidence. 

The works contained within this special feature call for a universal definition and propose 

that ‘function’ be defined as “the movement or storage of energy or material”, such that all 

functions are part of a continuum (Bellwood et al. this issue). An ‘ecosystem function’ 

therefore, refers to the movement or storage of energy or material within an ecosystem. By 

using this definitional framework, we should be able to increase research comparability and 

guide more effective management towards particular functional outcomes. To be successful, 

we must establish causal links between functional traits, the species that possess them and 

specific ecosystem processes. The focus should move towards quantifying ecosystem function 

rather than the providers of those functions (Bellwood et al. this issue).  

The range of coral reef conditions and geographic locations in the Anthropocene has 

widened, moving us in to a new realm of uncharted functional space (Fig. 1). Novel functions 



have and may continue to arise, or currently unrecognised ‘sleeping’ functions may become 

key functions in the future. This era in coral reef ecology requires a new approach to coral 

reef science, one that acknowledges the complex socio-ecological nature of coral reefs. The 

works call for us to question historical coral reef paradigms and test their capacity to capture 

the dynamics of Anthropocene reefs across scales (Fulton et al. this issue; Williams et al. this 

issue). If these paradigms fail, we must revise them or develop new ecological theory that 

embeds human socioeconomic and cultural processes at their heart. This will require us to 

bridge scientific disciplines, such as social-ecological systems research and macroecology, to 

develop and utilise innovative approaches to how we study, describe and manage 

Anthropocene reefs (Williams et al. this issue).  

 

Conclusions 

Interactions between human society and coral reefs are changing in unprecedented 

ways and rates. The dynamics of Anthropocene reefs are increasingly governed by a network 

of cross-scale human socioeconomic and cultural processes set upon the backdrop of a reef’s 

natural biophysical setting. Human-induced global climate change has emerged as the 

dominant structuring force of coral reefs, overwhelming their local contexts and causing them 

in many cases to adopt novel configurations. These shifts mean that in some locations past 

ecosystem functions are being lost, while in others novel ecosystem functions and services 

are emerging as human society adapts. Future reef configurations and the continued 

adaptation of society will likely result in functions not yet seen or recognised as important. 

These changes require we re-think what we mean by a functional future for coral reefs, what 

is functionally desirable in the Anthropocene, and how we manage these complex socio-

ecological systems to ensure particular functional endpoints.  
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Figure legends 

 

 

FIGURE 1 The changing scope of coral reef functional space into the Anthropocene. 

Functionally extant coral reefs emerged ~24 million years ago (Ma) in the early Neogene and 

existed in a relatively stable form prior to entering the Anthropocene. In recent decades, the 

scope and bounds of coral reef ecosystems has expanded and their functional future is now 

much more uncertain than in the geological past. For some reefs past functions remain, for 

others key functions are being lost. As novel reef configurations form and society responds, 

novel functions and ecosystem services are emerging. Future reef configurations and the 

continued adaptation of society will likely result in functions we have not yet seen or 

recognised as important. 



 

FIGURE 2 Functional shifts and novel dynamics that characterise coral reefs in the 

Anthropocene. Structurally-complex reefs with high accretion rates and carbonate production 

(a) are transitioning to net-erosional states following mass coral mortality, causing a 

flattening of reef seascapes (b). Tropical macroalgal beds are often viewed as the negative 

endpoint to a coral-algal regime shift, but some species occur naturally in high abundance 

close to coral reefs and contribute to overall reef function. For example, tropical Sargassum 

beds act as important nursery habitats for juvenile reef fish (c) and can sustain productive 

adult fish populations and fisheries where they have replaced corals as the dominant habitat-

former (d). As coral reefs are being lost from some locations, in others novel reef 

configurations are emerging, in some cases via range extensions and the ‘tropicalisation’ of 

temperate reefs that results in novel dynamics and new opportunities for human exploitation 

(e). Photo credits: Chris Perry (a-b) Christopher Fulton (c), James Robinson (d), and Adriana 

Vergés (e). 


