
Bangor University

DOCTOR OF PHILOSOPHY

Optimising Kinematic Systems Using Crowd-Sourcing and Genetic Algorithms

Henshall, Gareth

Award date:
2019

Awarding institution:
Bangor University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 27. Apr. 2024

https://research.bangor.ac.uk/portal/en/theses/optimising-kinematic-systems-using-crowdsourcing-and-genetic-algorithms(788570df-afc1-49d6-abad-965cf8370d6d).html

School of Computer Science and Electronic Engineering
College of Environmental Sciences and Engineering

Optimising Kinematic Systems Using
Crowd-Sourcing and Genetic Algorithms

Gareth I. Henshall

Submitted in partial satisfaction of the requirements for the
Degree of Doctor of Philosophy

in Computer Science

Supervisor Dr. Llyr ap Cenydd & Dr. Bill Teahan

April 2019

Acknowledgements

„ When anything new comes along, everyone, like

a child discovering the world, thinks that they’ve

invented it, but you scratch a little and you find a

caveman scratching on a wall is creating virtual

reality in a sense. What is new here is that more

sophisticated instruments give you the power to

do it more easily. Virtual reality is dreams.

—Morton Heilig

One of the hardest parts of this thesis to write is this page, it is a near impossible task to

thank everyone who has helped, influenced or guided me over the last few years. With

that being said I would like to extend my most sincere thanks to the following people

for all their support during my PhD.

• Dr. Llyr ap Cenydd and Dr. William Teahan as without their continued guidance

and support this research would have never reached level it did. I thoroughly

enjoyed working with you these last few years and hope we continue to collaborate

in the future.

• To HPC Wales and The Lever Hulme Trust for their separate funding through

some of my years as a researcher. Without them much of this would not have

been possible.

• Dr. David Perkins, you were always there to offer some advice, mentor and help

me through my teaching. I feel if I had not worked with you over the past few

years my teaching would not be at the level it is now. Also, you provided a safe

i

place to come and chat about any worries and concerns and I thank you for that. I

trust we will work together again in the future.

• The Academics and Staff in the Bangor University Computer Science department

who have made me feel so welcome and made it a great environment to work in

for the duration of my studies. I have some very fond memories of the department

and it will forever be a pleasant place to come visit.

• Cameron Gray, James Jackson & Joseph Mearman where to start with you three.

Cameron, for being a LATEXwizard and fixing the silly mistakes I make when days

are slow. James & Joe, it was a pleasure to work with you and the friendship you

all provided was made the experience far more bearable. I wish you all the best

in your future studies, I am only a message away if you need me.

• To my friends and family who without your continued encouragement and support

much of this wouldn’t have been possible. Whether it was cheering my up on a

low day or motivating me to get back on track you have all helped in your own

way.

• Finally, to Mum and Dad. You have always pushed and encouraged me to achieve

my best in life and this was no different during my PhD years. Your support is

always unwavering, and I would not have achieved much of the things I have

without your love and guidance. Some much-needed frank talks were had along

the way but these have only helped me become a better individual. So, for all of

your love and help I thank you.

ii

Abstract

Procedural animation systems are capable of synthesising life-like organic motion

automatically. However due to extensive parameterisation, tuning these systems can

be very difficult. Not only are there potentially hundreds of interlinked parameters,

the resultant animation can be very subjective, and the process is difficult to automate

effectively.

The research presented in this thesis is divided into three stages. Our first motivation is

to examine whether artificially intelligent characters appear more or less human-like in

virtual reality (VR). Our results indicate that there is a clear split in how we perceive an

artificial character depending on viewing method and game type.

Our second motivation is to assess whether anonymous individuals can anneal a

procedurally animated creature towards a desired outcome. To do this we present

an online system which used crowd-sourcing to direct a genetic algorithm. This

methodology is further tested by asking users to interactively rate a population of virtual

dolphins to a prescribed behavioural criterion. Our results show that within a few

generations a group of users can successfully tune an animation system toward a desired

behaviour.

Our final motivation is to investigate if there are differences in animation and behavioural

preference between observations made across 2D screens and VR. We describe a study

where users tuned two sets of dolphin animation systems in parallel, one using a normal

monitor and another using an Oculus Rift. Our results indicate that being immersed in

VR leads to some key differences in preferred behaviour.

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Hypothesis . 3

1.3.1 Research Questions . 3
1.3.2 Objectives . 3

1.4 Scope & Limitations . 4
1.5 Contributions . 4
1.6 Publications . 6
1.7 Structure of Thesis . 7

1.7.1 Thesis Structure Overview 9

2 Related Work 10
2.1 Techniques for Solving Optimisation Problems 10

2.1.1 Genetic Algorithms . 10
2.1.2 Alternative Methods to Genetic Algorithms 11

Tabu-Search . 12
Simulated Annealing . 12
Artificial Neural Network . 13

2.1.3 A Comparison of Optimisation Methods 13
2.2 Animation Optimisation . 14

2.2.1 Inverse Kinematics . 16
2.2.2 Physics Based Approaches 17
2.2.3 Neural Network Animation Controllers 18
2.2.4 Human-in-the-Loop Optimisation 21

2.3 Optimising Characters for VR . 22
2.3.1 The Concept of ‘Presence’ 22
2.3.2 Immersion Within a Virtual Environment 23

A Controller’s Effect on Immersion 25
2.3.3 Photo-Realism’s Effect on Presence in Virtual Environments . 26
2.3.4 The Brain’s Response to VR Compared to a 2D Monitor . . . 28

2.4 Chapter Summary and Conclusion 28

3 The Influence ofVirtual Reality on the Perception ofArtificial Intelligent
Characters in Games 30

v

3.1 Racing Game . 31
3.2 First Person Shooter . 33

3.2.1 Randomised Multiconnected Environment Generator 35
3.2.2 Procedural Dungeon Generation Algorithms 35

Custom Dungeon Algorithm 36
Algorithm Summary . 41
Online Environment Generator 41
Limitations in 3D Rendering 41

3.3 The AI Opponent . 42
3.4 Monitor, Headset and Input Device 43
3.5 Experimental Methodology . 44

3.5.1 Ethical Consideration . 45
3.6 Experimental Results . 46
3.7 Chapter Summary and Conclusion 48

4 An Initial Evaluation of Crowd Sourced Procedural Animation
Optimisation for a Simple Animation System 51
4.1 A Prototype Snake Model . 52

4.1.1 Trail Renderers . 52
4.1.2 Snake Models Parameters List 56

4.2 Ratings System . 58
4.2.1 Snake Rating System . 59
4.2.2 A Users View of the Application 59

4.3 Analysis of Experiments Participants 61
4.4 Populating Further Generations using a Genetic Algorithm 62

4.4.1 Selection Methods . 63
Roulette Wheel Selection . 63
Tournament Selection . 64
Linear Ranking Selection . 64

4.4.2 Fitness Function Variation 66
Fitness Function Algorithm Pseudo-Code 67

4.4.3 Cross-Over Method . 67
Single Point Crossover . 68
Two Point Crossover . 68
Uniform Crossover . 69

4.4.4 Mutations . 69
Uniform Mutation . 70
Non-Uniform Mutation . 70
Boundary Mutation . 71
Creep Mutation . 71

4.4.5 Our Genetic Algorithm . 72
4.4.6 Human-in-the-Loop Algorithm Pseudo-Code 72

vi

4.5 Server Side . 72
4.6 Results . 73

4.6.1 Trail Time . 74
4.6.2 RGB . 74
4.6.3 Other Parameters . 75
4.6.4 Statistical Analysis using Two-Way ANOVA with Replication . 76
4.6.5 Euclidean and Manhattan Distances 78

4.7 Chapter Summary and Conclusion 79

5 Adapting a Dolphin Animation System for Crowd Sourced Procedural
Animation Optimisation 82
5.1 A Dolphin Model . 83
5.2 Underwater Environment Setup . 88

5.2.1 Water fog effect . 88
5.2.2 Atmospheric Scattering . 88
5.2.3 Water Surface . 88
5.2.4 Detritus . 89
5.2.5 Lighting . 89
5.2.6 Light Shafts . 89
5.2.7 Caustics . 90
5.2.8 Underwater Sound . 91
5.2.9 Completed Underwater Environment 91

5.3 Experimental Methodology . 91
5.3.1 Creature Initialisation . 93
5.3.2 Rating System . 93

5.4 Subsequent Generations . 95
5.5 Chapter Summary and Conclusion 95

6 An Evaluation of Crowd Sourced Procedural Animation Optimisation
for the Dolphin Animation System 97
6.1 Experimental Methodology . 98
6.2 Participant Data . 98
6.3 Results . 99

6.3.1 Default Swim Speed . 100
6.3.2 Friendliness and Faithfulness 101
6.3.3 Barrel Rolling and Chattering 103
6.3.4 Other Notable Parameters . 105
6.3.5 Similar Parameters Across Mediums 105
6.3.6 Statistical Analysis using Two-Way ANOVA with Replication . 106
6.3.7 Euclidean and Manhattan Distances 108
6.3.8 Average Ratings . 108

6.4 Chapter Summary and Conclusion 109

vii

7 Final Summary and Conclusions 112
7.1 Introduction . 112
7.2 Reflection of the Thesis Objectives 112
7.3 Main Findings and Contributions . 114
7.4 Limitations . 115
7.5 Future Work . 116

7.5.1 Framework Modification to Allow Modularisation and Unified
Development . 117

7.5.2 Neural Networks as a Means for Data Collection 117
7.5.3 Optimising Creatures Towards Different Behaviours 117
7.5.4 More Complex Animation Systems 118
7.5.5 Natural Parameter Manipulation using Motion Controls 118

References 120

A Genetic Algorithm Source Code 126

B A Dolphin Models Parameters 132
B.1 Body . 132
B.2 Brain . 135
B.3 Mouth . 136
B.4 Tail . 137

C Snakes Experiment Graphs 138

D 2D Vs. VR Experiment Graphs 140

E Cyberworlds 2015 Conference Poster [35] 149

F Artificial Evolution (EA) 2017 Conference Poster [36] 150

viii

List of Figures

1.1 A schematic diagram showing the overall structure of this thesis. 9

2.1 Mori’s hypothetical graph of the uncanny valley’s effect on human
perception of robots [90] . 27

3.1 Players view from inside the car during the game. 31
3.2 The breaking zones along the track which cause the AI car to slow down. 32
3.3 The implemented mini-map for participants to get a bird’s eye view of the

track . 33
3.4 The player and opponent character in the FPS game 34
3.5 The player’s view within the FPS maze. This is randomly generated using

the RMCM algorithm. 34
3.6 The used algorithm as a flow diagram 37
3.7 A visual representation of a random room generation in stages. 38
3.8 Door placement through the random placement of a focal point in each

room to ensure player accessability. 40
3.9 The final generated environment . 41
3.10 An example of a generaed environment and the first person redndering. . 42
3.11 The finite state machine controlling the AI character. 43
3.12 The participant’s assessment of their opponent’s identity for the First-

Person Shooter game. 46
3.13 The participant’s assessment of their opponent’s identity for the First-

Person Shooter game. 47
3.14 Number of players wins for each of the four game instances. 49

4.1 A snake model comprised of a sphere game object and a trail rendered to
give the appearance of a tail. Also, an example of a snake moving towards
the sphere target within the scene. 53

4.2 Trail Renderer settings as used with the snake 55
4.3 The 0 - 5 rating system used within the prototype experiment. 58
4.4 The cubes and plane used within the environment for rating selection and

snake’s platform. 60
4.5 Flowchart of the general structure of a Genetic Algorithm. 62
4.6 A visual representation of Roulette Wheel Selection 64
4.7 A visual representation of Tournament Selection 65
4.8 A visual representation of Rank Selection 66

ix

4.9 A visual representation of Single Point Crossover 68
4.10 A visual representation of Two Point Crossover 68
4.11 A visual representation of Uniform Crossover 69
4.12 Tail Length (trailTime) trends across the generations 74
4.13 RGB trends across the generations . 75
4.14 Euclidean and Manhattan distances for each generation. 79
4.15 The appearance of the average snakes for Generations 1 (red head), 5

(orange head) & 10 (green head). 80

5.1 Example virtual dolphin used in our study. Each dolphin is controlled by
33 parameters describing its animation and behaviour. 84

5.2 Dolphin model consisting of a polygonal mesh and underlying skeletal
rig. The skeleton consists of mouth and fin appendages attached to a main
backbone chain. 85

5.3 Screenshot of underwater environment demonstrating sub-surface
scattering, water surface shader and light shaft effects 90

5.4 Screenshot of debug view of underwater environment. Projected caustic
effects can be seen on surface of the spheres 90

5.5 Screenshot of dolphin models placed in completed underwater environment 91
5.6 A screenshot of our application showing the virtual environment, dolphins

and embedded 0-5 rating system. 94

6.1 The Default Swim Speed parameter over the generations. Lower values
represent a slower swim speed and higher is faster. 100

6.2 Friendliness (a)(b) and faithfulness (c)(d) parameters over the generations.
Dolphins with higher values for friendliness are less likely to approach
the user. 102

6.3 Barrel roll (a)(b) and mouth open chance (c)(d) parameters over the
generations. Lower values give higher chance of performing barrel rolls
and dolphin chatter respectively. 104

6.4 The Near Player Distance parameter over the generations. Lower values
represent a slower swim speed and higher is faster 106

6.5 Tail Max Amplitude (a)(b) and Tail Rest Amplitude (c)(d) parameters
over the generations. Lower values represent a smaller tail amplitude. . . 107

6.6 Euclidean and Manhattan distances at each generation. 108
6.7 Average ratings for each generation. 109

7.1 Screenshot from the application showing two dolphins swimming near
the user with Oculus touch hands. 119

C.1 All graphs for snake study . 138

D.1 All graphs for 2D Vs. VR study . 140

x

List of Tables

4.1 Trail Renderer Properties . 53
4.2 A Comparison of Different Rating Scales 59
4.3 Example data for rank selection. 65
4.4 2-Way ANOVA with Replication Test: Comparing Generation 0 and Final

Generation . 78

5.1 Parameter list and ranges for the dolphin animation system. 86

6.1 Default Speed t-Test: Two-Sample Assuming Unequal Variances 101
6.2 Friendliness t-Test: Two-Sample Assuming Unequal Variances 102
6.3 Faithfulness t-Test: Two-Sample Assuming Unequal Variances 103
6.4 Barrel Roll Chance t-Test: Two-Sample Assuming Unequal Variances . 104
6.5 Mouth Open Chance t-Test: Two-Sample Assuming Unequal Variances . 105
6.6 2-Way ANOVA with Replication Test: Comparing 2D Monitor and VR

Final Generations . 108

xi

Chapter 1

Introduction

1.1 Motivation

As real-time computer graphics continues to advance, virtual characters continue

towards photo-realism. Although rendering techniques allow for the development of

life-like visuals, the majority of complex characters still rely heavily on pre-determined

data such as key-frame or motion capture sequences for their animations. While this

remains the standard method of animating characters, especially humans, the creation

and use of data-driven animation can also be expensive and arduous for developers

especially as they constantly try to keep up with the advances in technology and the

demands of the consumer market.

Whilst the methods behind data-driven animation produce very convincing results,

the motion is still inherently an illusion. Data-driven animation alone can struggle to

produce natural behaviour in increasingly dynamic environments. Procedural animation

can potentially overcome this issue by producing situated like-life motion, especially

when the agent is reactive and embodied in the environment. If the systems produced

have sufficient complexity, they could potentially produce animations with the range of

motions and behaviours comparable to their real-life counterparts.

Due to the immersive nature of virtual reality (VR), we perceive things differently to a

conventional 2D monitor. The advent of consumer grade VR capable of inducing a deep

sense of ‘being there’, known as presence, gives us for the first time the opportunity to

exist in the same space as virtual creatures at a convincing level of immersion. This

presents new and exciting challenges in many areas of animation, as now even the

slightest hitch during motion blending can be enough to break immersion. The intimate

1

nature of such experiences also requires greater attention to behavioural realism, player

interaction and an emphasis on micro animation such as eye contact. Furthermore, the

recent introduction of more sophisticated hand controllers aids the immersion even

more as users are now able to use their hands and soon individual fingers to interact

with the environment. This rapid pace of development means that it is now getting

increasingly easier to break immersion in VR, and any motion or behavioural glitch can

break the illusion and therefore sense of presence.

1.2 Problem Statement

One of the main challenges with procedural animation is the number of parameters that

are required to successfully tune the system towards some goal motion or behaviour.

As virtual creatures get more complex, so potentially does the number of parameters

and therefore permutations. Furthermore, parameters are often inter-dependant and

capable of producing emergent behaviour. A famous example of this is Craig Reynolds’

Boids system [86], where three simple steering behaviours (Separation, Alignment

and Cohesion) combine to synthesize the natural phenomena of bird mumuration and

flocking. Effectively searching through this vast parameter space is therefore difficult

for an individual or team to do. Furthermore, the appearance and anthropomorphisation

of a virtual creature is not particularly conducive to automation as the outcome can

often be very subjective.

The creation of a parameter space for a procedurally animated creature can also be

subject specific. No two characters will be animated the same, and a parameter space

that works for one creature will not be suitable for another [43].

The research outlined in this thesis has two goals. Firstly, we aim to use genetic

algorithms combined with crowd sourcing techniques to simplify, speed up and

democratise the procedural animation optimisation process. Secondly, we are interested

to see if there are differences in an annealed animation system based on medium,

specifically if optimal parameters and therefore desired creature behaviour differ based

on whether the person guiding the system is using a desktop monitor or are immersed

with the creatures in VR.

Introduction 2

1.3 Hypothesis

The overarching hypothesis for this research is as follows:

„ The optimisation of the parameter space for

procedurally animated creatures can be achieved

through a combination of genetic algorithms and

crowd sourcing. Such a system could be useful

for tuning procedural animation systems across

different viewing mediums.

1.3.1 Research Questions

As this topic area is fundamentally exploratory, a traditional hypothesis is not sufficient,

as there is no clear prediction to be made. Therefore, the following research questions

form the basis for this research.

1. Do people perceive the same animation systems and their behaviour differently in

Virtual Reality?

2. Can crowd sourcing be used to optimise the parameter space of a procedurally

animated creature towards some desired goal?

3. Is there a difference in the ideal parameter space and therefore procedural

animation and behaviour between 2D and Virtual Reality?

4. If so, what key attributes are required for a specific viewing platform?

1.3.2 Objectives

From the research questions stated above the following objectives can be proposed:

1. Examine whether crowd sourcing can be used to optimise the parameter space of

a procedural animation system through an online experiment.

Introduction 3

2. Conduct an experiment comparing the optimisation of an identical starting

parameter space acrossmultiple viewing platforms assessing the changes produced

over multiple generations — 2D Monitor and Virtual Reality.

3. Evaluate the differences in desired animation and behaviour attributes based on

viewing platform.

1.4 Scope & Limitations

Our research is limited to crowd sourcing as a means for data collection. As this is the

main source of data collection, we have not considered using a neural network as an

alternative method. Due to the resources and time needed to create a suitable neural

network, this had to be ruled out as an option for this research, and this has meant that

crowd sourcing became the only of data collection.

Secondly, our implementation is limited to creatures with relatively simple animation

systems. While future work could explore more complex articulated figures such

as quadrupeds and bipeds, and physically simulated articulated figures, this work

concentrates on kinematic animation systems only.

1.5 Contributions

The following contributions are claimed from the work presented within this thesis:

Contribution 1 — Virtual Reality’s Influence on the Perception of Artificial

Intelligent Characters

Two experiments were designed to test a user’s perception of an AI character across 2D

and virtual reality. Very little research has been conducted into this area and the system

proposed demonstrates that non-playable characters (NPC) are perceived differently

depending on their viewing platform. Chapter 3 describes how the perception of an NPC

alters depending on the viewing platform. Secondly, the level of immersion provided

through VR also appears to alter the way we perceive AI characters. There is also a link

to the way a game is played and how VR affects the players perception of that world.

Introduction 4

Contribution 2—A Parameter Optimisation Tool for Crowd Sourced Procedural

Animation Systems

A system based on a genetic algorithm was developed to tune the parameter space of

a procedurally animated creature towards a specific goal. In Chapter 4 we describe

a novel online system that uses crowd sourcing and genetic algorithms to optimise

a parameter space for a particle-based animation system. We demonstrate how this

approach can be used to anneal a simple animation system towards a desired animation

and behaviour. This is further reinforced by demonstrating statistical difference between

a starting parameter space and its end.

Contribution 3—ADolphin Models Adaptation to Fit a Parameter Optimisation

Tool

A procedurally animated dolphin model was altered to fit the parameter optimisation tool

used in Chapter 4. In Chapter 5 we extended the previous approach to a more complex

dolphin animation system from a commercial game. By adapting the methods used in

Chapter 3 to fit a more complex animation system we demonstrate its robustness and

flexibility. The dolphin model was adapted to suit the system and was then optimised

towards a desired goal.

Contribution 4 — Evaluating Parameter Spaces Procedural Animations

Creatures

We demonstrate the need for differing parameter spaces for a procedurally animated

creature when being viewed on a different platform. In Chapter 6 we provided definitive

proof that there is a statistically significant difference between a procedurally animated

creatures parameter space when they are tuned for a specific viewing platform, whether

it be within VR or on a 2D monitor. Moreover, this suggests that the creation of a

procedurally animated creature should be implemented with the viewing platform in

mind and tested from its early conception.

Introduction 5

1.6 Publications

The following are publications which were written as a part of the research conducted

for this thesis. Some publications have been extended and form the main Chapters of

this thesis, where-as others are referenced accordingly within the text.

[32] C. J. Headleand, G. Henshall, L. Ap Cenydd and W. J. Teahan, ‘Randomised

Multiconnected Environment Generator’, Bangor University, 2014 (pp. 6, 7,

31).

[33] ——, ‘Towards Real-Time Behavioral Evolution in Video Games’, in Artificial

Life and Intelligent Agents Symposium, Springer, 2014, pp. 3–16 (pp. 6, 7, 31).

[34] ——, ‘The Influence of Virtual Reality on the Perception of Artificial Intelligent

Characters in Games’, in Research and Development in Intelligent Systems

XXXII, Springer, 2015, pp. 345–357 (pp. 6, 7, 31).

[35] G. Henshall, C. Headleand, W. Teahan and L. ap Cenydd, ‘Towards Crowd-

Sourced Parameter Optimisation for Procedural Animation’, Cyberworlds, 2015

(pp. 6, 7, 52, 113, 149).

[36] G. Henshall, W. Teahan and L. ap Cenydd, ‘Crowd-Sourced Optimisation of

Procedural Animation Systems’, Artificial Evolution (EA), 2017 (pp. 6, 7, 52,

113, 150).

[37] ——, ‘Crowd-Sourced Procedural Animation Optimisation: Comparing

Desktop and VR Behaviour’, Cyberworlds, 2017 (pp. 6–8, 83, 92, 113).

[38] ——, ‘Towards Real-Time Animation Optimisation in VR’, Computer Grahpcis

& Visual Computing (CGVC), 2017 (pp. 6–8, 83, 113).

[39] ——, ‘Virtual Reality’s Effect On Parameter Optimisation for Crowd-Sourced

Procedural Animation’, The Visual Computer, Springer, 2018 (pp. 6–8, 83,

113).

For publications [32], [33] & [34], I co-developed the two experimental games used

within the study andwas in charge of both running the study and dealing with participants.

Contributions were also made to the papers themselves. For publications [35], [36], [37],

[38] & [39], I was the lead developer across all experiments. The Dolphin animation

system used in these studies was implemented by Dr. Llyr Ap Cenydd, as part of the

commercial VR application Ocean Rift [81]. The experiments in these publications

Introduction 6

were designed, developed and ran by myself, and I am the primary author of all five

papers and was second author on the remaining three.

1.7 Structure of Thesis

The remainder of this thesis is structured as follows:

Chapter 2 - Contains an extensive review of the literature in the areas of animation

optimisation, and perception in virtual reality. This chapter also aims to cover the

main theories and techniques used throughout the thesis.

Chapter 3 - Describes two pilot studies into the way we perceive a non-player character

within a gaming environment across both virtual reality and standard 2D display.

Publications: This chapter is primarily made up of work published in [34], with

additional work coming from [32], [33].

Chapter 4 - Describes a prototype system which uses a crowd sourced parameter

optimisation tool and a genetic algorithm to tune the parameter space of a simple

snake like creature towards an optimal outcome.

Publications: Parts of this chapter were primarily published in [35], [36], where

the former received the award for ‘Best Poster’.

Chapter 5 - Explains the process extending the system developed in chapter 4 for a

much more complex dolphin animation system. The chapter also describes a

study where users were asked to rate dolphins across multiple evolved generations,

in order to compare differences in behaviour and motion preference across 2D

monitor and VR.

Publications: Parts of this were primarily published in [37], [38] with [39]

forming the backbone of this chapter.

Introduction 7

Chapter 6 - A full analysis of the results gathered during Chapter 5’s study are provided

here. We also provide an in-depth breakdown of the key parameters, and how

they altered across generations and differ between viewing platforms.

Publications: As with the previous chapter most of the work here was published

in [39], with additional work coming from [37], [38].

Chapter 7 - Evaluates the overriding success and outcomes of this thesis. Following

this a reflection of the objectives is carried out, with the main findings and

contributions presented. The chapter concludes by discussing limitations and

possible avenues for future research.

Introduction 8

1.7.1 Thesis Structure Overview

Figure 1.1 shows the overall structure of the thesis. Chapters 3 and 4 describe two

separate pieces of work that were conducted in parallel, this provided insight and

groundwork for the system and experiment detailed in Chapter 5. The results of this

study are then analysed in Chapter 6.

Figure 1.1: A schematic diagram showing the overall structure of this thesis.

Introduction 9

Chapter 2

Related Work

In this chapter we provide an extensive review of the literature into two main areas:

Animation Optimisation and Optimisation for Virtual Reality. These works provide a

grounding for which the research presented within this thesis is based on.

The creation of autonomous characters which have the ability to realistically navigate

virtual environments remains a persistent challenge in real-time computer animation

research. How natural a character’s movement appears versus how much control can be

exerted is also a common concern.

2.1 Techniques for Solving Optimisation Problems

2.1.1 Genetic Algorithms

A genetic algorithm (GA) is a method for solving optimisation problems which can be

both constrained and unconstrained based on natural selection (the process that drives

biological evolution) [69]. A GA is designed to continuously modify a population of

individual genomes towards a particular end goal. Through each iteration of the GA a

random selection of the genomes from the current population are chosen to reproduce

therefore creating offspring (children) for the new generation. The intention is that

over successive generations the population will evolve towards the optimal solution.

Although the complexity of the problem trying to be solved by a GA can vary greatly,

they all follow a similar base structure (see Algorithm 1) which can serve as a blue print

for the development of a new GA.

10

Algorithm 1: Basic Genetic Algorithm Pseudo-Code.

1 initialise population
2 while new population not complete do
3 calculate fitness
4 selection
5 crossover
6 mutation
7 add to new population

A GA consists of three main types of rules at each step when creating a new generation

from the current population (different methods for selection, crossover and mutation are

discussed in Section 4.4):

Selection: This selects the individuals from the parent population to be used in the

creation of offspring.

Crossover: A crossover is the method that combines the selected parents to form the

offspring.

Mutation: Applies a random change to individual chromosomes of each offspring.

A GA can often be viewed as function optimiser even though the range of problems

to which GA’s can be applied to is quite board [109]. The description of a GA is

intentionally vague as in some sense the term ‘genetic algorithm’ can have two meanings.

In a strict sense the term refers to a model investigated and introduced by John Holland in

1975 [45]. It is still the case that much of the existing theory behind a GA is based solely

or mostly on the model introduced by Holland. Secondly, they can be referred to as the

canonical genetic algorithm [106]. A GA’s success as an approach for optimisation are

most effective when applied to a problem with no available derivatives and the fitness

landscape suffers from ill-conditioned parts [57].

2.1.2 Alternative Methods to Genetic Algorithms

There are many alternative methods to a GA which perform similar types of operation

but are better suited to different applications, some of these and their uses are discussed

below.

Related Work 11

Tabu-Search

This method was first introduced by Fred W. Glover in 1986 and formalised in 1989 [26].

Similarly, to a GA it is a meta heuristic search method employing local search methods.

Glover’s initial research showed that this search method could be used in treating classic

problems such as graph colouring and the travelling salesman. Tabu-Search (TS) uses

a local or neighbourhood search procedure to move from a potential solution to a

new improved solution within the neighbourhood until the stopping criteria has been

satisfied. TS carefully explores the neighbourhood of each solution during the search in

order to avoid common pitfalls such as score plateaus or exploring poor-scoring areas.

The system relies on three main memory structures (tabu list) which consist of a set of

banned solutions and rules:

1. Short-Term: The most recently considered solutions with strategic forgetting

implemented.

2. Intermediate-term: Records and compares features of a select number of best

trial solutions.

3. Long-term: The goal of this is to diversify the search by employing principles

which are roughly the reverse of the intermediate-term memory.

Essentially, TS aims to avoid repetitious moves such as, when two moves are located

near to one another the search can get stuck in locally optimal solutions. These searches

are marked as ‘tabu’ and therefore will not be returned to whilst in the surrounding

search space. The goal of the intermediate and long-term methods is to break out of

these local searches whilst maintaining possibility of finding an optimal solution.

Simulated Annealing

Simulated Annealing (SA) is a method for solving unconstrained and bound-constrained

optimisation problems [68]. Simply, this is the process of not always improving the

output but sometimes extending the search to find alternatives. It exploits the local

space to search for optimum solutions for the problem but will also explore the wider

search area to allow for any over-looking. This method was developed by Kirkpatrick et

al. in 1983 [54], they state that there is a deep and useful connection between statistical

Related Work 12

mechanics and multivariate or combinatorial optimisation. This combination along

with annealing provides a framework for optimisation of very large and complex system.

Their method provided a new perspective on traditional optimisation problems and

methods. Goffe et al. proposed using SA on four econometric problems [27]. They

determined that SA is a very robust algorithm as it is less likely to fail on difficult

functions and could also find the global optimum.

Artificial Neural Network

McCulloch and Pitts [70] used a basis of mathematics and algorithms called threshold

logic to create a computational method for neural networks. Their pioneering research

paved the way for neural networks and has since been split into two approaches. One

focuses on biological process whilst the other is the application of neural networks within

artificial intelligence. In optimisation an ANN repeats a two-phase cycle (propagation

and weight update). When an input vector is presented to the ANN, it is propagated

through the network layer by layer until the output layer is reached. A loss function

is then used to compare the output layer with an optimal layer providing the ANN

with an error value for each neuron in the output layer. These error values are then

propagated back through the network until each neuron has an associated error value

which represents its contribution to the original output. A study conducted byVillarrubig

et al. [105] used an ANN to analyse its performance on different optimisation problems.

Their solution was able to approximate objective functions with a multi-layer perceptron

and then use those approximations to solve optimisation problems.

2.1.3 A Comparison of Optimisation Methods

Many studies based on comparing optimisation methods have been conducted and

some of these will be discussed below: Westhead et al. compared a genetic algorithm,

evolutionary programming, simulated annealing and tabu search for molecular docking

[108]. They determined that the genetic algorithm performed the best in terms of

the median energy of the solutions located. However, their results showed that tabu

searching performed better in terms of locating solutions close to crystallographic

ligand conformation. They conclude by suggesting that a combination of a genetic

algorithm and tabu search could provide the optimal performance and would outperform

any method alone. A genetic algorithm, simulated annealing and tabu search have also

Related Work 13

been compare when predicting the effort component of software projects [104]. Uysal

states that all three methods are capable for estimating the optimal parameters of the

effort components of software projects. However, unlike Westhead et al. it was found

that simulated annealing outperformed the rest on this type of searching. A genetic

algorithm outperformed other methods when performing warehouse scheduling [110].

The purpose of this study was to compare several techniques for scheduling shipments

for a brewing warehouse.

As the research presented in this thesis focuses on the trying to emulate nature in the

optimisation of a creature’s parameter space it was decided that the best optimisation

method would be a genetic algorithm as this best suit this type of research. The nature

of a GA means that it can be simple to implemented but adapted to suit many more

complex scenarios, such as complex procedurally animated creatures. Therefore, this

is the optimisation method that has been used for future studies contained within this

thesis.

2.2 Animation Optimisation

Early techniques for the optimisation of motion included motion warping, retargeting

and various signal processing operations. Motion warping is a simple technique based

on the warping of motion parameter curves for keyframes or captured animation [111].

The animator derives a smooth deformation which preserves the structure of the original

motion through keyframe-like constraints. This technique allows for reusable ‘clip

motions’ to be stored into libraries for use when required. Retargeting motion is the

process of adapting animatedmotions from one character for another. Gleicher presented

a method for finding the adaptions needed to retarget motions from one character to

another [25]. To achieve this, he used geometric constraints and a simple objective

function. While the practicality of the method works, a cost is paid towards the quality of

the resulting motions. Lee & Shin present a similar technique for adapting pre-exisitng

motions for a character to have the desired features which have been specified by a set

of constraints [64]. Their approach used a hierarchical curve fitting technique alongside

a new inverse kinematic solver. This method greatly reducing the burden of a numerical

optimisation to find the solutions, the technique was demonstrated to be appropriate

for retargeting a motion to compensate for geometric variations. Finally, motion signal

Related Work 14

processing can be successfully applied to designing, modifying and adapting animated

motion [8]. They assembled a library of signal processing techniques applicable to

animated motion. The technique provided a rapid interactive loop and facilitated reuse

and adaptation of motion data.

Parameter optimisation is an efficient way to generate new animations from a minimal

amount of data. However, physically based techniques can be difficult to scale for more

complex animation systems. Fang & Pollard describe a set of constraints and objective

functions which lead to linear time analytical first derivatives [21]. Realistic motion

is an important part of video games and simulations, the more life-like a character’s

movements, the more immersive the environment appears to be. The blending of large

libraries of motion captured sequences together using constraint-based optimisation

continues to be one of the most widely used approaches within both commercial software

and research. While motion capture is a reliable way for reproducing motion in virtual

environments, this data has proven to be difficult to modify [56]. If the data provided

through motion capture is insufficient then more will need to be acquired which is both a

time consuming and expensive process. Kovar et al. present a framework for generating

controllable and realistic motion through a database of motion capture. The approaches

encapsulate connections by automatically constructing a graph comprised of different

motions, then searching that graph for any motions which satisfy the user constraints.

The illusion of natural movement has been produced through blending together a set of

animation clips from a motion database. Lee et al. proposed a novel representation of

motion data and control which enabled characters with both highly agile response to

user input and natural handling of arbitrary external disturbances to continuously flow

through the configuration space of character poses [65]. This methodology addresses

some of the key issues inherent in graph-like representation such as, responsiveness,

to start with arbitrary poses and responses to perturbations. Lee showed that pre-built

k-nearest neighbour searching is 2-3 times faster than the kd-tree method in the Point

Cloud Library [63]. This method proposes an efficient method for searching static

objects.

Related Work 15

2.2.1 Inverse Kinematics

Inverse Kinematics (IK) has been used heavily in the animation of characters in real

time applications. It is a mathematical process of recovering the movements of an

object in a world from some other stored data. In other words, the angles of a kinematic

chain of joints are calculated to achieve a desired pose [22]. The only requirement is to

define a position as the input, IK then calculates what the pose is. An IK solver attempts

to minimise the positional error between two points by providing a target position

and a position for the chain end-effector. New techniques, such as Jacobian matric

[71], analytical [12] and iterative-based [20] approaches were formed as a result of the

problem posed by IK. Forward Kinematics (FK) is essentially the reverse of IK and is

often used in predicting movements in non-living objects. This method takes the angles

of each joint within a chain and calculates the target position of a figure (such as a hand).

This could be stated as: given the four leg lengths, find the current pose of the character

once the leg lengths have been measured. Two novel feedback control-based IK solvers

were developed by Burrell et al. [9]. The first method has distinct similarities to other

feedback control-based solvers and borrows ideas from the Cyclic Coordinate Decent

and the Jacobian Transpose methods [10]. This produced a straightforward algorithm

with unstable proportional integral derivative gains to determine its performance. Their

second approach solves the IK problem through a discrete time state space modelling

framework. The second method is more complex to implement but can converge more

quickly and has improved immunity to the kinematic singularities which occur in the

Jacobian based methods [9].

Unlike Burrell et al. [9] which attempts to find new methods for IK solvers, Meredith

& Maddock [71] utilise the Jacobian based solution in their techniques for an efficient

solving real-time IK solver. They present a real-time application which drives a walking

character around rough terrain, thus demonstrating the effectiveness of their Jacobian

interpretation. The technique used incrementally changed a joint’s orientation from

the stable starting point towards a configuration state. The study concludes that there

is a definite argument for using the half-sized Jacobian when only the end-effectors

position is required. Existing motions are blended in a linearised representation to

guarantee exact control. By concatenating the parameters, van Basten et al. generated

highly-constrained animations in real time [3]. Their method consisted of two novel

Related Work 16

concepts; a hybrid interpolation scheme which relies on rotational and Cartesian

interpolation of joints. This results in exact positioning of limbs because of the linear

blend weights. The second method utilises a blend candidate selection schema and soft

constraints. This technique is fully automatic and guarantees exact limb positioning.

A real-time system which uses a set of constraints to produce the most likely pose was

developed by Grochow et al [29]. Their system can replace style-based IK whenever

it is used within computer animation and vision. The model uses training data to

determine the preferred pose through the probability model (Scaled Guassian Process

Latent Variable Model). All parameters of the models are automatically learned which

ensures no manual tuning is required. There are a number of potential applications

where a game or simulation will require the motions of a character to look both realistic

and satisfy very specific constraints (e.g, moving towards a target) in real-time.

2.2.2 Physics Based Approaches

Physics-based approaches to animation can produce life-like visuals, as any in real life

is likely to adhere to the laws of physics. However, designing controllers for producing

stable and life-like motion of physically-based articulated figures is incredibly difficult

and almost impossible to design by hand, most use a user in the loop-based approach to

deal with this issue [55], [62].

Grzeszczuk and Terzopoulos presented a learning technique capable of automatically

synthesising realistic locomotion for animation of physics-based models of animals,

being especially suitable for animals with highly flexible bodies such as snakes and

fish [30]. By using a multilevel learning process, it first performs repeated locomotion

trails in search of actuator control functions. Secondly, a short-time Fourier analysis

is applied. This learning process abstracts control functions which produce effective

locomotion into a compact representation. Finally, the creatures then put into practice

the new compact controllers they have learned.

Similarly, a realistic physics-based method of bird flight animations was developed by

Wu and Popovic [113]. Their method enables a bird to follow a specified trajectory by

computing a realistic set of wing beats. Elastically deformable feathers are added to a

bird’s articulated skeleton and each wing beat is optimised separately through optimising

Related Work 17

its parameters for the most natural motion resulting in a final series of concatenated

optimal wing beats. Although this method worked well, it was later simplified for real-

time applications [117]. Their method includes taking into account the aerodynamics of

the bird flight model. Target nodes are set into the space which the bird passes through

in sequence while adjusting the orientation and flapping continuously. This method

allows for a bird to fly along an arbitrary path.

A non-linear inverse optimisation algorithm for estimating optimisation of parameters

from motion capture data was used to derive realistic character motion for physically

simulated bipeds [66]. This method was used to derive appropriate muscle and ligament

stiffness at joints depending on the task. New motions were created through space-time

optimisation which minimises the total muscle torques according to the prescribed

preferences.

A similar process of creating virtual creatures which move and behave in a simulated

three-dimensional physical world was developed by Karl Sims [92]. Genetic algorithm

optimisations techniques were used in the morphology of creatures and their neural

systems which control the muscle forces. He was able to direct the simulated evolution’s

towards specific behaviours such as swimming, walking and jumping through fitness

evaluation functions. All of this resulted in a system which generated autonomous

three-dimensional virtual creatures without the need for user specifications, design

efforts or knowledge of algorithmic details.

2.2.3 Neural Network Animation Controllers

Gary Riddle pioneered early developments of neural networks [88]. He described a

model for skilled action for synthetic actors in a virtual environment. The method

implemented a collection of trained neural networks which guided lower-level motors

skills from a connectionist model. Although his models held considerable promise, they

were still a long way from achieving a level of sophistication required for simulated

actors to behave as real people do.

Neural networks have been used in physically-simulated walking motions [14]. This

control is real-time and requires no motion-specific or character-specific tuning. The

method works by integrating an inverse pendulum model, adjustments for gravity and

Related Work 18

velocity errors and tracking by using a proportional-derivative control, using Jacobian’s

transpose control. Instant realisation of a suitable controller can be achieved when the

character proportions and motion styles authored interactively. Overall, the method

generalises across gait parameters, motion styles, character proportions and locomotion

tasks. The motion styles, gait parameters and character proportions can be interactively

authored.

The SIMBICON controller [115] is a simple controller strategy which was used to

generate a large variety of gaits and styles in real-time. A small number of parameters

or the construction of a controller can be authored and informed by motion capture.

Direct transitions between controllers are demonstrated as well as parameterised control

of changes in direction and speed. A modified version of SIMBICON was developed

through using a method for the optimisation of a parameter space for a physics-based

controller was developed by Wang et al. [107]. Their method demonstrated that even

subtle details in control parameterisation can have a significant impact of the style of

motion. The Euphoria Engine is a system which combines physics-based simulation,

artificial intelligence and hand-made animations created by NaturalMotion [76]. It has

been used to create convincingly reactive game characters such as those which appear in

the Grand Theft Auto and Red Dead Redemption game series by Rockstar Games [47].

The system allows an infinite number of ways for a game’s conditions and applied forces

to influence a character’s animations, which allows them to be knocked off balance,

stumble and fall like digital stunt actors, creating unique end results every time.

Neural networks are often used in muscle-based control methods for simulating bipeds

where the optimisation of both muscle routing and control parameters occurs [24]. A

variety of bipedal creatures can be supported by a generic locomotion control method.

As a result, biomechanical constraints and incorporated into torque patterns. The

method described has the ability to support a variety of creatures, a range of speed,

turning behaviours and robustness to external perturbations and variations in terrain.

Chao et al. proposed a video-based adaptive genetic algorithm which learns specific

driving characteristics of drivers for advanced traffic control [11]. The vehicle’s specific

driving characteristics are calculated with an offline learning process. Their approach

can vividly recreate the traffics flow in a sample video with very high accuracy by using

Related Work 19

the vehicle’s initial status and personalised parameters as an input. This system out

performed existing methods for model calibration as the adaptive crossover and mutation

rates improve the overall search capabilities. Their GA uses roulette wheel selection,

crossover and mutation. However, while their mutation operator simply inverted bits,

this is not an applicable method for our study as the parameters are dynamic and not

binary. Similarly, Ren et al. used a genetic algorithm to compute the optimal parameters

for a dynamic model [85]. Their model simulated a swarm of flying insects and the

way they interact with each other and their environment. They also presented a novel

evaluation metric and statistical validation approach which took into account the various

characteristics of insect motion.

A common problem in computer animation is how to enable virtual characters to

perceive and respond to a 3D virtual environment in a way similar to how biological

humans or creatures perceive their physical surroundings. This could potentially yield

autonomous virtual creatures which are able to behave more like their biological

counterparts. Nakada et al. proposed developing a general-purpose artificial vision

system which will more accurately model a biological system [78].

Due to their scalability and high run-time performances, neural networks are gaining

increasing attention, especially with the advent of deep reinforcement learning. Neural

networks can learn from massive amounts of data, while keeping their own data sizes

smaller. Zhang et al. produced a novel neural networks architecture called Mode-

Adaptive Neural Networks for the control of a quadruped character [116]. Their system

consists of the gaiting and motion prediction networks. As the system is far more

flexible than alternatives, it can learn consistent expert weights across a wider range of

actions in an end-to-end fashion.

Results for evolutionary algorithms are often difficult to describe through text and far too

complex to show using images. Many researchers provide video clips to demonstrate

the system’s functionality, but this does not allow the viewer to adjust the viewing angle

to their preference. Clark et al. present a web-based application for sharing interactive

animations [13]. Their system allows researchers to generate animation log data which

can be loaded into any modern web browser. The camera in these animations can be

controlled by the users such that then can pan, move and zoom in and around the scene.

Related Work 20

A fundamental issue with neural network-based approaches is that the optimised control

systems are black boxes. There is no intuitive understanding of how the neural network is

structured, which makes it difficult to tweak and apply to other models or environments.

For articulated figure animation in particular it can also be difficult to develop flexible

controllers that can perform multiple actions. For example, while a neural network can

learn to balance, walk or jump with accuracy, smoothly switching or blending between

behaviours can be challenging.

2.2.4 Human-in-the-Loop Optimisation

An alternative to automatic optimisation techniques such as neural networks and

evolutionary algorithms is to include a human operator in the optimisation process.

However human-in-the-loop parameter optimisation techniques usually require the

operator to have a proficient knowledge of the underlying system. Compounding this

issue is that complex animation systems often consist of interlinked parameters, where

altering a single parameter could produce unpredictable results.

Generalising controllers for new situations are very important for the development of

larger skills sets for physically-simulated characters [114]. Adapting controllers to

large environmental controllers can be provided by continuation-based methods. These

methods can provide surprisingly large motion adaptions. Johansen’s method used

a set of example motions in the form of keyframes or motion captured walk and run

cycles [53]. The system then automatically analyses each motion extracting required

parameters. Both of these studies argue that a human-in-the-loop method for selecting

appropriate parameters is effective.

Whilst it is possible to fully automate the parameter optimisation process for tasks

like walking in a straight line or across uneven surfaces, or for simple non-humanoid

creatures, in more complex scenarios there largely remains the need for a human-in-

the-loop approach. This is especially true for varied and dexterous systems (such as

the movement repertoire of a virtual dolphin), where the resultant animation is quite

subjective and not easily defined by heuristics.

Related Work 21

2.3 Optimising Characters for VR

While Ivan Sutherland published his pioneering essay “The Ultimate Display” over 50

years ago [100], it has only been relatively recently that technology capable of producing

a ‘looking glass into the mathematical wonderland’ has been possible (see Blascovich &

Bealenson for a historical account [6]). Sutherland’s first head-mounted display (HMD),

nicknamed ‘The Sword of Damocles’ gave user’s fears of bodily harm, as it had to

be bolted to the ceiling due to its size. However, with recent advances in technology,

especially in the mobile phone industry, HMD’s are now viable consumer products. As

this industry grows, it is increasingly crucial to understand how this rapidly evolving

technology effects immersion across diverse applications like video games, training,

marketing, communication and education.

2.3.1 The Concept of ‘Presence’

Slater & Usoh suggested that user’s can maintain a sense of presence that their real

bodies are located within a virtual environment (VE), created through a human’s

perception of visual, audio and kinetic environments generated by the computer. This is

described as the ‘suspension of disbelief’ [94].

Lombard & Ditton began to describe the concepts of ‘presence’ in 1997 as an illusion

that a mediated experience is not mediated [67]. They describe six interrelated, but

distinct conceptualisations of presence found in a diverse set of literature:

1. The presence as social richness or the extent to which a medium is perceived as

sociable, warm, sensitive, personal or intimate when used to interact with other

people.

2. The accuracy of object, people and events representations within a medium is

known as presence in realism. This describes how close the the ‘real’ thing the

representation looks, sounds and feels.

3. Presence in transportation can be broken down into three categories; ‘you are

there’, in which a user is taken to another place; ‘it is here’, in which another

place and/or the object within it are transported to the user; and ‘we are together’,

Related Work 22

in which two or more communicators are transported together to a place which

they share.

4. Immersion presence can be described as “The degree to which a virtual

environment submerges the perceptual system of the user” [5]. This can be

determined by assessing how many of the user’s sense are provided with an input

and the ‘degree’ to which those senses are ‘shut out’ from the real world. For

example, the eyes are covered by a Head Mounted Display (HMD), the ears are

covered by headphones muffling or blocking out any external sounds and the

hands are covered with gloves which enable the user to touch virtual objects.

5. Social actors use direct address camera views to give the feeling that they are

looking at the viewer directly. This is referred to as presence as a social actor

within medium. user’s respond to social cues presented by the actor in parasocial

interaction media even if it is illogical to do so.

6. Social responses to cues provided by themedium itself and not people or characters

is referred to presence as a medium for social actors. Alan Turing’s ‘Turing test’

sparked debates in the 1950s around the potential for modern computers to mimic

humans. Whilst science fiction evokes social responses between humans and

computers, robots and androids (e.g. C3P0 and R2D2 in Star Wars and Data

in Star Trek) the phenomenon also seems to exist in today’s less sophisticated

computers.

The ultimate goal of VR is to produce an authentic experience of being ‘present’; within

an artificial environment, which includes the need to simulate life-like motion and

behaviour. Classically, VR technologies have been created using a cybernetic approach.

This uses multimedia technologies to allow subjects a way of removing all interaction

from the external world by being placed at the core of the feedback control loop [40].

2.3.2 Immersion Within a Virtual Environment

Video games and simulations allow user’s the ability to become fully immersed within

a virtual world. However, there is some debate on what a truly immersive environment

really is. Two prominent terms used within gaming to describe a user’s presence within

Related Work 23

gaming are ‘flow’ and ‘immersion’. While, both of these are separate aspects of a

gaming environment, if one is not correctly implemented then the user’s presence can

be very easily broken. Flow is a psychological theory and when implanted within a

game or simulation presents players with a challenge and through engaging with the

challenge the player can achieve a flow state, the game then tries to maintain this flow

state throughout. Flow state is can be described as ‘hyper focused’ where the individual

is fully engaged in the game play at that moment, the awareness of their surroundings

falls away as each action within the game flows from one to the next almost naturally.

Flow has been referred to as the ‘optimal’ experience when nothing else matters [51].

Where as immersion is, ‘the sense of being in the virtual world’ [96]. It has been argued

that total immersion is not always achievable [52] as it can be classed as ‘sub-optimal’.

Both positive and negative experiences within gaming have been shown to provide an

engaging experience. There is little evidence to show that developers should prioritise

flow over immersion or visa-versa, therefore the terms of flow and immersion can be

used interchangeably [73].

Trying to produce a simulation that allows for a user to transition seamlessly from

reality to virtual reality has proved to be difficult. The idea is that a user can interact

with the virtual world as effortlessly as they would the real world. Some try to get

around this through the use of augmented or mixed reality, where-by the user actually

touches something physical which has a virtual overlay on it to give it the appearance of

something else [4].

Presence and immersion within a virtual world rely heavily on the use of sight and

sound so it follows that a greater focus on optimising animation systems is required

for VR. It is often assumed that a higher level of immersion leads to a greater level of

presence within VEs. Cummings and Bailenson suggested that immersion was found to

have a medium-sized effect on presence, while individual features were found to affect

a user’s presence in varying sizes [15]. A two-step formative process helps to achieve

presence; a user constructs a spatialise mental model of the mediated, and then accepts

this environment over reality as their primary sense of self-reference.

Being able to provide realism at interactive rates still remains a major challenge in

generating high-fidelity VEs. High-fidelity simulations of light and sound are still

Related Work 24

unachievable in real-time, though it is likely inevitable. Harvey et al. investigated

the effect spatialised directional sound has on the visual attention of a user towards a

rendered image [31]. Their results showed that this method performs only significantly

better than simple image saliency or acoustic intensity maps when used as a rendering

strategy.

A Controller’s Effect on Immersion

Over the last three decades a vast amount of research has been performed into how

we interact with computers. For many years the adopted style for human-computer

interaction (HCI) was through windows, icons, menus and pointers. Technology and

a better understanding of the psychological and social aspects of HCI advances have

led to an array of post-WIMP ("windows, icons, menus, pointer") styles [91]. An early

adopter of these methods was the Nintendo Wii controllers released in November 2006.

These controllers allowed for consumers to interact with a virtual environment in a

completely new way. They not only relied on visual and audio signals to arouse a user’s

sense, but also introduced sense to the experience. Furthermore, these new control

methods now allowed users to interact with the virtual world in three dimensions using

their hands.

A decade later VR headsets started to appear with motion controls offering six degrees

of freedom. While Nintendo Wii controllers only accurately tracked rotations, with

some control over positional depth, devices like the Oculus Touch and HTC Vive

controllers allow for full positional tracking with sub-mm accuracy. The prototype

Valve Knuckles EV2 [98] took interaction with hand controls in a virtual world to a

new level, by also tracking the position of each finger as the hand grips the controller.

The controllers also allow the user to ‘let go’ of them due to a strap that attaches them

to the hand. While they still rely very heavily on toggles and buttons for most of the

control mechanisms, the ability to grab or drop objects in a VE by closing or opening

your hand is a big step forward. This feature is also present in other controllers (e.g. the

Oculus Touch Controllers) but these still relied on a button being pressed to simulate the

action. Secondly, the EV2 contains pressure sensors which allows the user to ‘squash’

or ‘crush’ an item in the virtual world if the game allows it.

Related Work 25

As motion controllers continue to develop, the ability to stay ‘truly’ present within the

virtual world will increase. This idea of ‘hand presence’ will further reduce the chances

of immersion being broken due to a mismatch between the user’s real-world actions and

the visual and physical response in VR.

2.3.3 Photo-Realism’s Effect on Presence in Virtual Environments

When developing characters for virtual environments, their design and appearance needs

to be considered. For example, while a photo-real style might be desirable in standard

console video games played on a 2D screen, a character that appears to be almost

photo-realistic can produce negative responses from user’s in VR. This effect (‘The

Uncanny Valley’) was first proposed by M. Mori in 1970 [75]. Mori demonstrated this

theory through his work in robotics. He showed how as human likeness of a character;

the familiarity we have with it increases up to a point. A hypothetical graph (Figure 2.1)

of the viewers impression of pleasantness as a function of the degree of realism was

introduced. If the level of human likeness goes above ∼65% then the familiarity level

rapidly decreases meaning that immersion levels could deteriorate. It should be noted

that if human likeness gets above ∼85% then the familiarity level will start to increase

again but achieving those levels when developing a virtual character is proving more and

more challenging as HMD technology advances. Zibrek et al. attempted to overcome

this challenge by altering the rendering style of a character whilst keeping the realism

or motion and shape constant [119]. They found that rendering styles did not overly

affect the appeal of a character. Their results showed that a realistic appearance was

found to increase co-presence when a characters’s behaviour was also realistic.

Demand for effectively building virtual characters for communication in shared virtual

worlds is also rapidly increasing. This requires that we need a better understanding on

how a character in a virtual world is perceived, such as simulated (or eventually tracked)

facial expressions and micro movements, eye contact, and body language, as a poor

design choice could result in a negative reaction from user’s [118].

Slater et al. designed a study to asseses the level of presence in a VE when influence by a

variety of factors [95]. They tested 24 subjects split into two groups, half of which were

transported between VEs by going through doors and the other half by using virtual

HMDs. Their analysis showed that a positive and significant association with stacking

Related Work 26

Figure 2.1: Mori’s hypothetical graph of the uncanny valley’s effect on human perception of
robots [90]

level depth for those participants who used virtual HMDs for their transportation, and a

negative association for those who went through doors.

It can often be seen that to be truly present within a VE, a user must be reporting that

they feel the sensations of being in the virtual world. The term presence comes from

‘telepresence’ which is a psychological state or subjective perception in which part of

a human’s perception fails to accurately acknowledge the role that technology has on

the experience and instead perceives it to be real [89]. Presence is often measured

on one overriding factor over others, with attention being one of the most common.

Subjective measures (i.e, questionnaires) are the most commonly used metric. As

Witmer and Singer correctly stressed, any measurement of presence should be both

valid (i.e, measuring what is needed to be measured and doing it well) and reliable

(i.e, only dependant on the characteristics under consideration) [112]. An advantage

to questionnaires is that as well as subjective sensations during the VR experience

being measured, you are also able to ask for descriptions of the VR experience and

their own personal behavioural and psychological responses. Other subjective metrics

Related Work 27

for measuring presence include continuous measure, with Ijsselstein and de Ridder

proposing a measure which involved participants adjusting a slider during their VR

experience to indicate the levels of presence experienced in real time [49]. Presence

counters assess the number of transitions from the real to virtual world during an

experience. Slater & Steed’s method relies on data being collected during the virtual

experience itself by counting the number of transitions from the virtual to real world.

From this a Markov chain model was constructed. This model could then be used to

estimate probability of being ‘present’ in the VE [93]. On three measures — vividness,

interactivity and user characteristics. Evidence was found to show these played a major

role in providing a user with presence in a VE.

2.3.4 The Brain’s Response to VR Compared to a 2D Monitor

Kweon et al. conducted a study to assess how the human brain responds to a stimulus

presented in VR compared to a 2D monitor [58]. Their experiment tested 20 subjects’

brain waves whilst viewing content across both mediums. They found when comparing

video between monitor and VR headset that β-wave vibrations are statistically significant

between the two mediums. Overall, β-waves were higher for all genre’s (sports, news &

advertisements) when viewed in VR. Videos felt more realistic to viewers when viewed

in VR as more sense and thinking was stimulated making the videos feel more realistic,

as a result this enhanced the experience of the video itself.

2.4 Chapter Summary and Conclusion

This research has shown that as rapidly increasing VR immersion requires far more

attention to the complexity of animation systems. There is evidence showing that

how we perceive characters in VR is different to a 2D environment. This means that

considerations into how a virtual character is implemented needs to be taken. Procedural

animation systems can potentially be optimised towards a desired outcome effectively

by using the wisdom of the crowd, combined with traditional optimisation systems like

evolutionary algorithms.

Our approach aims to make parameter optimisation abstract, where users rate the

animation on its own terms, and do not see the numbers being adjusted or how they

relate to one another. Furthermore, our system is automatically updated based on crowd-

Related Work 28

sourced data, and takes advantage of both human and computer based optimisation

strategies. In the next chapters we describe two prototype studies into how we perceive

artificial characters across multiple view platforms and whether a simple genetic

algorithm and rating system can be used to tune a creature’s parameter space towards

an intended outcome.

Related Work 29

Chapter 3

The Influence of Virtual Reality on

the Perception of Artificial Intelligent

Characters in Games

The previous Chapter reviewed much of the research done in fields relating to our work,

covering advances in Procedural Animation, Optimisation and Virtual Reality.

One prominent question for the gaming industry is whether it is easier to identify an

AI character through VR or a traditional desktop monitor. For example, many modern

collaborative on-line games seamlessly replace human controlled companions with AI

ones if they leave the game, allowing the player to continue without breaking immersion.

Virtual characters are now at a stage where it is increasingly difficult to make human/not

human distinctions in virtual environments [79], and AI is an important component

of this façade. If VR had an effect on this, developers may need to reconsider their

development choices, or how they implement their AI characters.

For this study we proposed two main research questions:

1. Does virtual reality change the way we perceive non-player characters in games?

2. Do AI controlled characters appear more or less life-like through this viewing

medium?

Essentially, we will explore whether virtual reality make the synthetic behaviour of AI

characters more noticeable.

30

This Chapter describes a study designed to test the influences of virtual reality on

the perception of identifying an AI character within games. This was done through

two experiments both of which involved the participant playing a game (one racing

and the other a first-person shooter) on a 2D monitor and in VR. The task for each

participant was to play the game and determine if their opponent was a human or a

non-player character (NPC). In this Chapter we go into detail describing the set-up of

each experiment and the considerations taken with each.

The following Chapter was primarily published in [34], with additional content coming

from [32], [33].

3.1 Racing Game

To implement the racing game, we used two sample projects available on the Unity asset

store. The first Car Tutorial [102] is a complete package including a track and a physics

driven player car. We augmented this package with the AI car from The Vehicle Physics

Toolkit (VPT) [50] package, which is also freely available. The underlying physics of

both AI and player-controlled cars were based on the same model [102]. The goal of the

racing game was to complete one lap of the track before your opponent. Once the player

reaches the finish line the game is complete, and the result of the race is displayed on

the screen.

Figure 3.1: Players view from inside the car during the game.

The AI car follows a predetermined path along the center of the virtual racetrack. A

variable in the AI car script determines how much it can deviate from that path before it

The Influence of Virtual Reality on the Perception of Artificial Intelligent Characters in Games 31

needs to correct. Varying this value allows us to produce a relatively realistic driving

style. The path itself is constructed from a series of game objects linked together to

form a complete circuit. Within the VPT package, breaking zones (see Figure 3.2) are

placed throughout the track so that the AI car will slow down at sharp corners. These

had to be placed strategically to give the AI car the appearance of a realistic race car.

How much the car slowed down in these sections had to be thoroughly tested as each

corner needed a different speed for the car to successfully make it round, generally the

sharper the corner the more the car was slowed down. If the car either didn’t slow down

enough or slowed down too much it might appear unrealistic to the participant. Each

braking zone was implemented using a box trigger collider, which when triggered by

the AI car would adjust its maxBreakTorque causing the car to slow down. A reset

function was also added so that any AI or player-controlled car that crashed or flipped

over would automatically reset its position and rotation to the middle of the road after

two seconds. This also ensured that neither of the two cars could get stuck on the outer

bounds of the track.

Figure 3.2: The breaking zones along the track which cause the AI car to slow down.

The majority of racing games have a natural rhythm, with players regularly changing

position and overtaking each other, rather than one player dominating the race. This

is a commonly sought-after mechanic by game designers and is usually achieved by

applying a ‘rubber banding’ function that speeds or slows down the AI car if too far

behind or ahead. If the player car gets too far ahead the AI car will temporarily go

above its usual top speed to help it catch up, and if the player falls too far behind then

the AI car will curb its speed to give the player a chance to catch back up. Both of

The Influence of Virtual Reality on the Perception of Artificial Intelligent Characters in Games 32

these allow for closer racing and can prevent the participant getting bored due the AI

car getting too far ahead or falling behind. The same mechanic tends to naturally arise

in similarly-skilled player controlled games due to driver error etc. Rubberbanding was

implemented into our game for the same reason, ensuring that the AI was constantly

battling the player for position regardless of the players ability. A variable was also

added to the AI car to act as ’human error’, this would trigger at random stages during

the race and caused the car to make a mistake, whether this was not decreasing its speed

enough for a corner and going off track or slowing down too much and allowing the

player to catch up or get away. This made the AI car seem more realistic to the player

and made the racing more enjoyable.

The original camera position followed above and behind the car (third person perspective).

This camera angle was not suitable for VR as it is both unnatural and would likely lead

to nausea [84]. The camera was moved to be inside the car, providing a much more

natural perspective. Being surrounded by the car’s interior also helps to reduce nausea

as it provides a static frame of reference. We also added a mini-map (see Figure 3.3) in

the top right of the players vision, this allowed the player to preview the road ahead and

plan their strategy accordingly.

Figure 3.3: The implemented mini-map for participants to get a bird’s eye view of the track

3.2 First Person Shooter

The FPS game required the player to explore a randomly generated maze and destroy an

opponent. The player and NPC used an identical character (see Figure 3.4) during the

The Influence of Virtual Reality on the Perception of Artificial Intelligent Characters in Games 33

game. The character was a simple sphere with a turret weapon. The drone fired smaller

spheres which acted as bullets which reduced the enemy’s health upon a collision. A

small health bar indicated the players health and decreased each time they were shot.

Upon entering the game, the players were placed on opposite corners of the environment

ensuring there would be no advantage to the placement of a player’s character. The

game ended once either player ran out of health (i.e. has been hit by a bullet 10 times).

Figure 3.4: The player and opponent character in the FPS game

To generate the environment, we implemented the Randomised Multiconnected

Environment Generator (RMCM) algorithm headleand1 in Unity. Each environment

(see Figure 3.5) was 50 units square, with one unit equal to the diameter of the enemy

and the player’s avatar colliders.

Figure 3.5: The player’s view within the FPS maze. This is randomly generated using the
RMCM algorithm.

The Influence of Virtual Reality on the Perception of Artificial Intelligent Characters in Games 34

3.2.1 Randomised Multiconnected Environment Generator

Multiconnected environments (also known as conjunct environments, non-perfect

mazes or labyrinths) are good candidates for use as a testing environment. This is

because much of the real-world is a multiconnected environment, including buildings

and road networks. In contrast there are relatively few, real-world examples of linear

environments or perfect mazes.

However, few environment generators in the public domain generate a truly stochastic

environment. In fact, most public domain algorithms produce a relatively standardised

configuration of rooms connected by corridors, conforming to a style which could, in

principle be learnt. While the possibility of learning an environment is unlikely in most

cases, we must always consider external factors, and clearly with embodied agents, the

environmental factor cannot be ignored.

There is also an argument that by conforming to a standard method of generating test

environments, benchmarking exercises could be undertaken.

3.2.2 Procedural Dungeon Generation Algorithms

In the previous section (section 3.2.1) we discussed a multi-connected environment

comprised of a variety of open spaces and connections. The games industry typically

refers to this type of environment as a ‘dungeon’. The Future Data Lab website [59]

provides a list of various procedural dungeon generation algorithms used in the games

development industry, for which we will provide a brief overview.

Random Room Placement: Described as one of the most common dungeon generator

algorithms. This places a room of random size randomly on a grid ensuring there

are no overlaps. The algorithm then loops over the rooms creating connections

using a variant of A* algorithm.

Cellular Automata: This method uses a cellular automaton to create a natural looking

cave system. The main difference between this approach and the others described

is that it avoids the room and corridors archetype, and instead grows a single,

connected space.

The Influence of Virtual Reality on the Perception of Artificial Intelligent Characters in Games 35

BSP Tree: The approach begins with a rectangular, blank dungeon template, which is

then subdivided into two spaces of non-equal size, then these new spaces are also

subdivded into two, with this process continuing for a set number of iterations.

Within each of the newly created sub-spaces, a room is randomly placed, and

connections are made between each of the split rectangles. While this approach

makes a good use of the initial space, the number of rooms and connections are

constrained bu the initial parameters, meaning that the environment is not truly

stochastic

Procedurally Built: This approach tries to model the way a man-made dungeon may

actually be built. First an initial room is created, from this room a random number

of walls are selected, and a door placed along their edge. On the other side of this

door, a feature is placed, either a room or a corridor. This grows the environment

until a terminal condition is reached (such as the generation of a desired number

of rooms). One criticism of this approach is that it makes poor use of space and

leads to a very linear environment with few interconnections.

Custom Dungeon Algorithm

On the back of the research conducted into current algorithms available a new version

was devised for use within this study (see Figure 3.6).

Our new algorithm begins by generating a number of voxels in a 2-dimensional grid, the

number of voxels generated being the product of the width and length of the environment

the user specifies. This block of voxels provides us with a blank environment that we

can develop from.

The next phase involves stamping random room outlines into the blank environment.

Each room is generated at a random initial x, y coordinate, with a size generated as a

random sample between a minimum and maximum room size (that is user defined). All

the voxels within the room are given a label of ‘Room’ and given an ID which represents

the order in which the rooms were generated. The immediate border voxels around the

room are labelled as ‘Wall’ and given a null ID. In Figure 3.7a the voxels labelled as

‘Room’ are displayed in grey, whereas the voxels labelled as ‘Wall’ have been left black.

The Influence of Virtual Reality on the Perception of Artificial Intelligent Characters in Games 36

Generate 2D Grid of Voxels

Counter <
Rooms to
Generate

Generate Wall
Perimeter of Room

ID = Null
Label = "Wall"

Generate Room
Size = Random

Position = Random
ID = counter

Label = "Room"

Select random voxel with
label == "Room"

Set as Focal Point (FP)

Set label of all voxels with the same
id as the FP to "Accessible"

From focal point move one step in 4
headings (U, D, L, R)

Room Found?

Set label of all voxels in new Room,
and all voxels between FP and new

room to "Accessible"

Create new FP in discovered room

Destroy branch

All branches
destroyed?

Delete all voxels with
label == "Accessible"

TrueFalse

False

True

Figure 3.6: The used algorithm as a flow diagram

The algorithm now loops through generating random rooms. Each new randomly

generated room overwrites any voxel data previously defined. In Figure 3.7b we can see

a second generated room which has overwritten the voxel data in the bottom left of the

first room. We can consider this to be overlaying new rooms to generate a patchwork

configuration.

The Influence of Virtual Reality on the Perception of Artificial Intelligent Characters in Games 37

(a) The blank environment with a single room. (b) A second room added to the example
environment.

(c) The result of the random room generation.

Figure 3.7: A visual representation of a random room generation in stages.

This process continues generating rooms randomly within the blank environment. This

provides us with a floor plan which resembles Figure 3.7c. The method provides us

with something which typically fills the majority of the available space organically,

without the need for complex space filling algorithms, or the resultant predictable

layouts generated by the BSP tree approach.

Once the room generation algorithm has concluded, the next phase is the door placement,

ensuring that all rooms within the final environment are accessible to the agent.

This is achieved by first selecting a random voxel with the label ‘Room’ and accessing

its ID. In figure 4, this initial voxel has been identified with a black circle, and we will

The Influence of Virtual Reality on the Perception of Artificial Intelligent Characters in Games 38

refer to this as the ‘focal point’. Then all voxels which share the same ID as the focal

point are instructed to change their label to ‘Accessible’.

Four paths are then generated by stepping through the voxel array in four directions, left,

right, up and down. For each step, the current voxel is sampled, and if its ID is the same

as the ID of the focal point, or if the it’s label is ‘Wall’, then the steps in that direction

continue. If the current voxel is unlabelled, then that path is destroyed, in Figure 3.8a,

this is represented by the dashed red lines.

Alternatively, if the label of the current sample voxel is ‘Room’, then the path has found

a new room, and all voxels with the same room ID as the sampled voxel, have their label

changed to ‘Accessible‘. To determine where a door should be placed, we simply back

track along the path until we find a voxel or voxels with the label ‘Wall‘ and change

their label to ‘Accessible‘. As shown in Figure 3.8, all rooms which have had their label

changed to ‘Accessible‘ are coloured blue, and the paths which have created this route

are coloured black.

In each new room discovered, a new focal point is spawned within that room, and

the process is repeated, as can be seen in Figures 3.8b and 3.8c. Eventually, a focal

point will be spawned, and no new rooms will be found. This has been highlighted in

Figure 3.8c with two white focal points which have four red, dashed lines from each.

This does not necessarily mean that there isn‘t a connected room (as with the bottom

left focal point) but could simply mean that the spawned focal point is just not in a

position to discover it.

There are a few approaches which can be taken to solve this issue. However, the focus of

this algorithm is that the environment is randomised and non-uniform, and a few missed

rooms can add to this effect. However, too many missed locations could be detrimental

to the environment generation. A compromise solution we implemented was as follows

- If a new focal point found no new rooms, it was re-spawned at a different voxel in the

environment with an accessible label. If both the first and second attempts failed, then

that branch of the tree was destroyed.

The Influence of Virtual Reality on the Perception of Artificial Intelligent Characters in Games 39

(a) The first randomly placed focal point,
showing the exploration in four directions.

(b) A second set of focal points are created from
the successful branches of the first focal points.

(c) A second room added to the example
environment.

Figure 3.8: Door placement through the random placement of a focal point in each room to
ensure player accessability.

The search continues until either all the branches from each generated focal point have

been killed or, alternatively the user can set a search depth to limit the size of the

environment generated.

The final process involves iterating through each voxel in the environment. If the voxel

has a label of Accessible, then it is deleted. This removes all the space created by the

rooms and connections. The final result is a multiconnected environment, constructed

out of rooms with non-uniform layouts and a varying number of connections such as the

example in Figure 3.9. The full process can be seen in the flow diagram in Figure 3.6.

The Influence of Virtual Reality on the Perception of Artificial Intelligent Characters in Games 40

Figure 3.9: The final generated environment

Algorithm Summary

Our approach generates an environment which is clearly stochastic, with a large number

of possible rooms and connection configurations. By generating the rooms in a

patchwork manner, we remove the possibility that all rooms will be rectangular with a

standard number of connecting features. This ensures that all generated environments

are truly random and eliminates the possibility that an agent could simply learn a

standard configuration.

Online Environment Generator

Figure 3.10 contains a web-playable example of the environment generator which can

be explored in first person. It also contains a download link for a Unity3D [2] project

which includes the scripts to generate the environment. The script is released under

a standard BSD licence for use by other projects with attribution. It is expected that

we will later include the Random environment generator within a larger benchmarking

software, so this release should be considered a community beta release (V0.1). Updates

to the software will be indexed on this page and maintained for legacy purposes.

An example generated environment and a first-person rendering can be seen in Figures

3.10a and 3.10b respectively.

Limitations in 3D Rendering

As with any voxel-based algorithm draw calls can be high, especially in environments

which utilise dynamic lighting. There are solutions to this issue, such as implementing

The Influence of Virtual Reality on the Perception of Artificial Intelligent Characters in Games 41

(a) An examp,e environment generated with the
new algorithm.

(b) A first person rendering from inside the
environment.

Figure 3.10: An example of a generaed environment and the first person redndering.

occlusion culling, but this may not be suitable for all applications. Another option is to

merge the voxels to create a single geometry or replace large areas of connected voxels

prefabricated units.

However, it should be noted that most modern game engines have built-in optimisation

procedures which solve most of these issues without the need for a further computational

step. In large environments that we experimented with (22500 initial voxels), the Unity

engine was able to render to the player at between 9 and 15 draw calls per frame (without

dynamic lighting).

3.3 The AI Opponent

The player and the opponent were placed at opposite corners of the environment. The

player and the opponent both controlled an identical character, ensuring equivalent

speed and manoeuvring ability. The two entities in the game were armed with the same

projectile weapon and had the same number of lives.

The AI was controlled by a simple finite state machine (see Figure 3.11) operating in

one of three states:

Wander

In the wander state, the AI randomly explores the environment, sensing the world

ahead of it with a vision cone of 120◦. The vision range is limited only by

occlusion from walls in the environment. As the character moves into a new

room, it will detect any exits it can see, select one at random and steer towards

The Influence of Virtual Reality on the Perception of Artificial Intelligent Characters in Games 42

Figure 3.11: The finite state machine controlling the AI character.

it. If it does not see an exit directly ahead, it explores the room using a wander

steering behaviour reynolds1.

Engaged

If the player enters the opponent‘s vision cone, the AI enters the engaged state. In

this state, it will move towards the player firing its weapon. The AI stops moving

forward if the player is within a ‘close range’ vision cone, where the length of the

close-range vision cone is equal to the diameter of the enemy and the player’s

character collider.

Seek

If the AI is in the engaged state, and the player exits its vision cone, it enters a

seek state. The seek state causes the AI to turn and move towards the last point at

which it saw the player. Once there, if it has not seen the player again (activating

the engaged state), it returns to the wander state.

Each time the player was shot, a small health bar provided the player with a visual

indicator of the damage. The game was a single round ending with either the player or

opponent being destroyed.

3.4 Monitor, Headset and Input Device

We used the same camera position and field of view for the VR and monitor versions of

both games. A standard Unity camera was used to render for the monitor versions, The

VR versions used the stereoscopic camera implementation provided by Oculus, that

renders a separate image for left and right eyes.

The Influence of Virtual Reality on the Perception of Artificial Intelligent Characters in Games 43

The Oculus Rift is capable of tracking the player in 3D space using an infrared camera

that tracks the headset’s position. This allowed the player to lean around in the VR

car game, but not in the 2D monitor version. While this could have a small impact on

performance, we deemed positional tracking to be an integral part of VR as it has an

important effect on both nausea reduction and immersion.

As stated in section 3.5 half of the four experiments were run on the Oculus Rift, the

games were controlled using a gamepad (specifically the Microsoft Xbox gamepad).

Once the headset is on, the participant is unable to see the keys of a keyboard, so a

tactile controller is more suitable.

3.5 Experimental Methodology

To explore the research questions, 16 participants (12 male, 4 female) were tasked with

playing two types of game: a racing game, and a first-person shooter (FPS). Both game

types were played through two viewing mediums, an Oculus Rift DK2 and a standard

PC gaming monitor. Every person played all four games.

Games were played in a mixed order, and it was ensured that the same viewing medium

was not repeated twice (resulting in 8 possible orders of play). Each order was therefore

played by two participants

Each participant was told that during the four games, they would play two rounds against

a human, and two against an AI opponent. They were told that their task in each game

was to identify whether the identity of the opponent was an AI or human.

Participants were placed in a segregated booth, unable to see other people during the

experiment. The beginning of each game included a splash screen which implied the

game was connecting to a multiplayer server, in order to add to the facade.

However, regardless of whether the person played through VR or monitor, their opponent

was the same AI (one AI for the racing game, another for the FPS). The purpose of

this deception was to ensure that the players were competing against opponents of

identical competence and that in-game ability was not used as a flag to differentiate

between opponents. This removes one confounding variable from the experiment and

The Influence of Virtual Reality on the Perception of Artificial Intelligent Characters in Games 44

is consistent with the experimental design of studies with similar objectives [72]. By

following this approach, we only identify differences in the perception of AI through

the two-viewing media.

At the end of the experiment, participants filled out a survey. For each of the games,

they were asked to make an assessment of the identity of the opponent they competed

against. This was done on a 1 to 5 scale, with 1 representing high confidence that

the opponent was human and 5 representing high confidence that the opponent was

AI, a score of 3 indicated that the player was unsure either way. The player was then

also asked to rate their enjoyment of the game, and a free text response provided the

participant with the opportunity to provide qualitative data.

3.5.1 Ethical Consideration

There are two principle ethical considerations in this study. The first is that the

experimental design involves deceiving the participants. However, in this case, the harm

caused from the deception is minimal, and it was deemed to be the only practical method

of achieving the goals of the study. The second consideration is that video games have

been shown to induce motion sickness [99] and that use of the Oculus Rift compounds

this nausea in users [17], [18], a condition known as cybersickness. To reduce the risk,

we designed both games to adhere to VR best practices [80]. For example, low frame

rates are the most common source of sickness, and so we ensured both game types were

played on a machine capable of producing a constant 75fps (Frames Per Second), the

native frame-rate of the Oculus Rift DK2 [97]. Efforts were also made to alleviate

motion sickness due to vection [42], including limiting movement speed in the FPS

game.

All participants were informed of the risk before they entered the study and had to

read the health and safety information (produced by Oculus) and sign a consent form.

Participants were also told that if they felt sick, they could ask to end the study at any

time. Additionally, participants were given a short break between each game, and the

participants never played two VR games in a row, limiting extended exposure.

The Influence of Virtual Reality on the Perception of Artificial Intelligent Characters in Games 45

3.6 Experimental Results

The results showed a clear split between the monitor and VR based games. However,

what makes the results particularly interesting is that the split is inverted for the two

game types.

In the VR racing game, players typically reported that the opponent was human. The

mean result for all the racing games played through VR is 2.56, placing the average

player opinion between human and undecided. This is an inconclusive score by itself,

but the mode score of 2 provides further insight into the perception of the players. We

can also observe an obvious bias towards the players reporting the opponent as human

controlled in the distribution of scores (seen in Figure 3.12).

Figure 3.12: The participant’s assessment of their opponent’s identity for the First-Person
Shooter game.

When playing the racing game through a monitor, the players typically reported that

the opponent was an AI. The identification here was more statistically obvious, with a

mean score of 4 and a mode of 4 (13 of the 16 participants voted that they believed the

character was AI). When played in VR, the majority of participants trended towards

believing that their opponent was human controlled (mean score of 2.56 and a mode of

2). However, when playing the game through the monitor, the participants were more

likely to report a belief that the opponent was AI controlled (mean score of 4 and a

mode of 4).

The Influence of Virtual Reality on the Perception of Artificial Intelligent Characters in Games 46

However, we observe an inverse trend in the FPS game. While playing the game in VR,

the majority of participants reported that the opponent was AI controlled (mean score

of 3.68 and a mode of 4). This falls into a similar distribution to the AI reporting in the

racing game, but through the alternate viewing medium (VR rather than monitor).

Figure 3.13: The participant’s assessment of their opponent’s identity for the First-Person
Shooter game.

When the participants played the FPS game through the monitor, they trended towards

reporting that the opponent was human controlled. As with the racing game, this was

reported with significantly less confidence than the reporting of the AI character (mean

score of 2.43 and a mode of 1). When played in VR, the majority of participants trended

towards believing that their opponent was AI controlled (mean score of 3.68 and a mode

of 4). However, when playing the game through the monitor, the participants were more

likely to report a belief that the opponent was human controlled (mean score of 2.43

and a mode of 1).

It is perhaps unsurprising that where participants reported that they believed the

opponent was an AI (monitor for the racing game and VR for the FPS), they responded

with higher confidence. The AI designed for both the games was relatively simple

and contained little sophistication or artificial stupidity to make it respond more like a

human controlled character. However, as the participants voted with relatively strong

conviction in these cases, it is interesting to see participants trending towards reporting

The Influence of Virtual Reality on the Perception of Artificial Intelligent Characters in Games 47

that their opponent was human controlled in the alternative viewing medium (even

though this was with less confidence).

We also asked the players to rate their enjoyment of each of the four games. We were

expecting to see a correlation between the games where the participant believed they

were playing against a human and higher enjoyment. No such correlation existed, with

the games that received the highest rating being the ones played in VR. However, we do

not assume that this trend necessarily means that players will enjoy VR games more

than their monitor based equivalent. The majority of the participants had not played

games through VR before the study. As such, the novelty of the new viewing medium

likely contributed to the enjoyment results we have reported.

We also captured data regarding who won the game, the player or the opponent. In the

racing game, a win was recorded if the player completed two laps in the shortest time.

In the FPS, a win was recorded if the player successfully destroyed the opponent before

they themselves were destroyed.

As can be seen in Figure 3.14, the player was not particularly successful in either game

(6 wins recorded in the racing game, 1 win in the FPS). We assume that this was because

the participants were not provided with the opportunity to practice the game before the

study, and conversations with participants after the experiment adds evidence towards

this suspicion. However, in the racing game, it did appear that the player performed

moderately better through VR. We gained further insight through the free text response.

In eight of the games, the player reported that the game was easier in VR, with several

mentioning that the ability to look around freely was a positive experience.

3.7 Chapter Summary and Conclusion

The important conclusion to draw from this study is that the level of immersion provided

through Virtual Reality appears to clearly impact how we perceive AI characters.

Despite the study being undertaken with a relatively small number of participants, the

results show a clear split in the player’s perception of their in-game opponent. We felt

that the results derived from 16 participants were showing a clear enough trend that we

could progress with further research in this area without having to run a second instance

The Influence of Virtual Reality on the Perception of Artificial Intelligent Characters in Games 48

Figure 3.14: Number of players wins for each of the four game instances.

of this study. Clearly, more participants would have given more accurate data to take

forwards into future studies but as this was conducted very early on in the research, we

prioritised further research into the optimisation of a creature’s parameter space. This

study could be replicated with up to date more advanced VR headsets to assess if the

advances in technology have altered our perception of an NPC or not.

We anticipated that the results for both game types would be the same, demonstrating

that VR either makes AI characters more or less obvious to a human player; clearly,

from our results, this is not the case. This study indicates that there is likely a link

between the way a game is played, and how VR affects the player’s perception of the

world. Further studies need to explore this in greater detail.

Perception through virtual reality could have clear implications for the future

development of AI in games. It appears that VR could have the effect of making

AI characters more or less life-like during play, and this will impact how we design

them. If prolonged presence is the ultimate goal of VR, it is clear that AI will have a

significant role to play. One further consideration is that the Rift DK2 hardware used in

this study did not invoke a sense of presence in most people beyond fleeting moments.

However, in future experiments newer models of the Oculus Rift were used as they were

released, finally ending up with the consumer Oculus Rift headset used in Chapters 5

and 6.

The Influence of Virtual Reality on the Perception of Artificial Intelligent Characters in Games 49

In the next Chapter we describe a second study which uses a specifically designed and

developed crowd sourcing tool to tune a simple procedural animation system towards a

prescribed and desired outcome.

The Influence of Virtual Reality on the Perception of Artificial Intelligent Characters in Games 50

Chapter 4

An Initial Evaluation of Crowd

Sourced Procedural Animation

Optimisation for a Simple Animation

System

In the previous chapter we described two experiments which aimed to evaluate how

players perceive AI characters differently between a standard 2D monitor and VR. To do

this we designed and implemented two games, one where the player races a car around

a track and a first-person shooter set in a randomly generated maze, where players

aim to track down and shoot an AI player. Our results showed that there was a clear

split between the monitor and VR based games. However, the results were inverted

for the two game types. In the VR racing game, the player typically reported that the

opponent was human where as they thought the opponent was AI in the VR first person

shooter. The opposite was true for the 2D monitor versions of the games where the

player perceived the opponent to be AI in the racing game and human in the first-person

shooter. This indicates there is a link between how a game is played and how VR affects

the players perception of the world.

Procedural animation systems are capable of producing vivid organic character behaviour

and motion automatically. However, these systems can consist of hundreds of interlinked

parameters yielding a very large search space for potential animations and emergent

behaviours. This chapter describes the creation of a crowd-sourced optimisation tool

that uses genetic algorithms to anneal the parameters of a simple procedural animation

system. There were three main parts to implement for this study; the procedurally

51

animated creature (see section 4.1), the rating system (see section 4.2) and the genetic

algorithm (see section ??). Great consideration had to be taken with the design of all of

these sections as small alterations could potentially alter the results drastically.

The opening sections of this chapter discuss the overall design and setup of this study

with some of the techniques also used later on in Chapter 5. The final part of this

chapter discusses the results of the study and how our findings informs future research.

Parts of the following Chapter were published in [35], [36], where the former received

the award for ‘Best Poster’.

4.1 A Prototype Snake Model

For this prototype study a primitive snake like creature was created in the Unity 3D

game engine. The idea behind this was to create a very simple creature which can be

physically altered to test the robustness of our genetic algorithm and ratings system. The

snake itself is a sphere game object with a trail renderer attached to it. These combined

give the appearance of a snake like creature (Figure 4.1). The snake is physics driven

with two parameters controlling the speed and turning rate of the creature respectively.

Each snake turns towards an invisible target which is reset to a new position (within

a -20.00 to 20.00 scale on both the x & y axis) at a time scale determined by either

the targetMove parameter or the snake itself colliding with it. trailTime describes

the length of each snake’s tail, using a trail renderer explained in the next section.

Finally, the RGB elements control the colour of the trail renderer itself. The three

colour elements and trailTime work together to create the appearance of the snake itself

whereas, topSpeed, turnSpeed & targetMove adjust the movement of the snake.

4.1.1 Trail Renderers

Unity’s trail renderer generates a trail of polygons behind a moving game object. This

can be used to give a moving object a comet-like tail, and highlight the position or path

taken by that object. A real-world example of a trail renderer would be the contrails

given off by a plane’s engines whilst in flight. It is good practice to have a trail renderer

as the only renderer attached to a game object.

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 52

Figure 4.1: A snake model comprised of a sphere game object and a trail rendered to give the
appearance of a tail. Also, an example of a snake moving towards the sphere target within the
scene.

Our trail renderer uses the setup shown in Figure 4.2. In Table 4.1 we describe the

different properties of this trail renderer, and how it effects the appearance of the snake’s

tail. We have only highlighted the properties which have had an effect on our snake.

Some of these properties have been left to the default value as these were the most

appropriate for our model. All definitions for the properties have been taken from the

Unity Documentation [103].

Table 4.1: Trail Renderer Properties

Property Function Use In The Snake

Cast Shadows Determines whether the trail

casts shadows, whether they

should be cast fromone or both

sides of the trail, or whether

the trail should only cast

shadows and not otherwise be

drawn.

We set this to “On” as it

gives the appearance of a more

realistic snake.

Materials These properties describe an

array of Materials used for

rendering the trail. Particle

Shaders work best for trails.

We created a material (Trail1)

which was then accessed

through a script to alter the

colour of the trail renderer.

Continued on next page

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 53

Time Define the length of the trail,

measure in seconds.

This is one of our adjustable

parameters (Section 4.1.2) to

control the length of the tail.

Can be anywhere within 1.00 -

5.00.

Min Vertex Distance The minimum distance

between anchor points of the

trail.

This is as small as possible

as we wished the renderer to

appear like it was part of the

snake’s body. By making a

smaller number this reduced

any visible gap.

Width Define a width value and a

curve to control the width of

your trail at various points

between its start and end.

The curve is applied from

the beginning to the end of

the trail and sampled at each

vertex. The overall width of

the curve is controlled by the

width value.

The trail gradually decreases

in width towards the end, like

a snake’s tail would. With a

max width of 1.00 as this was

the size of the sphere itself.

Colour Define a gradient to control

the colour of the trail along its

length.

This property gets adjusted

through code to match the

RGB values pulled in from our

server

Continued on next page

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 54

Texture Mode Control how the Texture is

applied to the Trail. Use

Stretch to apply the Texture

map along the entire length of

the trail or use Wrap to repeat

the Texture along the length

of the Trail. Use the Tiling

parameters in the Material to

control the repeat rate.

We stretched the material to

cover the renderer just once,

as its a solid colour this was

this was the most appropriate

selection.

Figure 4.2: Trail Renderer settings as used with the snake

The snake moves in 2D across a 5x5 plane and can never fall off the edge. This

background plane was given a bright grid texture so that the snakes were easily viable

within the environment. We also included text to remind the participant on the purpose

of the study.

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 55

Each snake has 7 adjustable parameters (see section 4.1.2). Outer bounds had to be set

of each individual parameter, and these were initially set using our best judgement as to

what would be perceived as realistic. This was applicable for all parameters apart from

the colour elements (RGB) which have a normalised scale of 0.00 - 1.00.

When initialising the snakes, a parameter file is created and uploaded to the server.

The seven adjustable parameters with the ranges allocated yield 2.4E16 possible

combinations. To test every single possible creature would be impossible so we chose

to take a sample of this for our study. 100 total snakes were created with each parameter

given a random value within the bounds allocated (Section 4.1.2). This means that

these 100 snakes from the initial generation represent 4.166E-15% of all possible

permutations. 100 snakes were used per generation as we aimed to obtain 100 ratings

before the genetic algorithm processes the data.

4.1.2 Snake Models Parameters List

Below is a complete breakdown of the parameters used in the creation of the snakes.

The parameters name as used within the program is stated. The range and granularity

describe the lower and upper bounds and the scale of the parameter respectively.

Associated parameters are any of the other parameters which directly impact or are

impacted by this. Finally, the description provides a summary of what the parameter is

used for.

Top Speed:
Range - 5.00 - 20.00

Granularity - 0.01

Associated Parameters - Turn Speed & Target Move

Description - This parameter controls the speed in which the snake moves around

the environment. The larger this value becomes the faster the snake will move

around. This speed-based value controls the translation of the sphere.

Turn Speed:
Range - 4.00 - 6.00

Granularity - 0.01

Associated Parameters - Top Speed & Target Move

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 56

Description - As this value controls the turning angle of the snake. Therefore, it

will be able to perform a sharper turn as the value is increased. This is a speed

controller and overall controls the rotation of the sphere.

Trail Time:
Range - 1.00 - 5.00

Granularity - 0.01

Associated Parameters - RGB

Description - The value describes the length of the snake’s tail. The tail length

is controlled in seconds, this means that with a value of 5 the tail renderer will

last for 5 seconds before phasing out.

Target Move:
Range - 1.00 - 5.00

Granularity - 0.01

Associated Parameters - Turn Speed & Top Speed

Description - Target move links to an invisible sphere collider within the

environment. The snake is always trying to reach this target. The value controls

how frequently this target is moved, and it can be placed anywhere from -20.0 to

20.0 on both the x & y axis. If the snake reaches and collides with this target this

also causes it to move to a new location.

RGB:
Range - 0.00 - 1.00

Granularity - 0.01

Associated Parameters - Trail Time

Description - These control the Red, Green & Blue elements of the trail renderer.

A combination of these 3 values gives the snake its tail colour. The higher the

value the stronger that colours pigment will appear. For example, if RGB = 0.01,

0.01, 0.99 then the snake will have a very Blue tail.

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 57

4.2 Ratings System

The study relies on crowd sourcing as its method for optimising the parameter space.

We have done this as we wish to obtain as wide a demographic as possible and optimise

towards this. The system is designed to aid developers in creating virtual creatures

which appear realistic to the wider population and not just experts in the field. By

acquiring the views of a wider demographic only further tests the robustness of our

system.

Figure 4.3: The 0 - 5 rating system used within the prototype experiment.

This study used a 0 - 5 rating scale (Figure 4.3). When choosing a rating system, all

possible options had to be considered. A rating scale is a set of categories designed to

draw out information about a qualitative or quantitative attribute. These require a user

to assign a value to an object which is to be rated based upon an attribute. Rating scales

can be classified into three categories:

• Numeric Rating Scale

• Graphical Rating Scale

• Descriptive Rating Scale

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 58

We analysed many relevant ratings systems which could be used within our experiment

(Table 4.2). It was concluded that the most appropriate system was a slight variation of

the Likert Scale. We ask the users to rate the snake on a scale of 0 - 5 (Figure 4.3). This

is similar to the functionality of a Likert Scale as 0/1 represent to the strongly disagree

portion, 2/3 are more neutral with 4/5 being strongly agreeing.

Table 4.2: A Comparison of Different Rating Scales

Rating System Definition

Likert Scale This is a scale used to determine the attitudes of a

participant towards a topic.

Guttman Scale A Guttman scale presents a number of items to which

the person is requested to agree or not agree. This is

typically done in a ‘Yes/No’ dichotomous format.

Thurstone Scale A Thurstone scale has a number of agree or disagree

statements. It is a unidimensional scale to measure

attitudes towards people.

Osgood’s Semantic

Differential Scale

A user is asked to choose on a position on a scale

between two polar opposite adjectives “Good - Evil”

or “Hot - Cold”).

4.2.1 Snake Rating System

As discussed in the previous section we decided upon a 0 - 5 rating scale. As shown

in Figure 4.4 the ratings numbers are textured cube game objects. These acted as the

buttons a participant could use to select their rating. As this study was run in a web

browser, the rating system was designed to be scrolled through using the arrow keys on

the user’s keyboard. Users can scroll up and down and once happy with their selection

move across to the submit button and click enter. We implemented a submit button as

this would reduce the amount of accidental ratings given by participants.

4.2.2 A Users View of the Application

Upon starting the application, users find themselves viewing three snakes roaming

around the environment with a fixed ratings scale on the left (Figure 4.3). In the Figure

the user was required to rate the blue headed snake on how long and purple its tail

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 59

Figure 4.4: The cubes and plane used within the environment for rating selection and snake’s
platform.

is using the aforementioned ratings scale. Each of the three snakes have different

parameters and therefore varying behaviour and appearance. The program randomly

chooses the snakes, one of which will have a blue head and two with red heads. The red

headed snakes are in the environment to be used purely as a comparison.

Each participant was asked to rate each snake on a 0 - 5 scale. If a snake appeared

inactive or broken, then it would receive a rating of 0, with progressively higher ratings

awarded for a longer and more purple tail. We highlighted that there was no right or

wrong answer with this test as we wished to acquire the opinions of the participants

throughout. The ratings could be selected through the use of the arrow keys on a

keyboard, hitting enter once the submit button was highlighted. There was no end point

to this experiment and users could rate snakes for as long as they wished, but we advised

to perform the task for a minimum of 2 minutes as they would be able to rate enough

snakes in this time to form a fair opinion.

We used a server to store and update the generated parameter files and associated ratings.

Using a server allowed for multiple users to run the program and rate creatures at the

same time. When a creature is rated, the time-stamped parameters and associated rating

are recorded. Snakes are selected randomly from the parameter file until there are

sufficient ratings for a new generation. As the selection process is random, a user could

rate the same snake multiple times during the study. As this study does not need any

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 60

details from a participant, there is no signing up or logging in process. Instead, they are

automatically connected to the server and can start rating the creatures immediately.

4.3 Analysis of Experiments Participants

A seasoned gamer could have a biased opinion on what they perceive to be realistic as

they may have been influenced by previous experiences, whereas a non-gamer could

have a very different opinion. It has been found that video game players can often

out perform a non-gamer on measures of perception and cognition [7]. If gamers are

recruited for their experience, they may expect to perform the task well given their

expertise. However, a belief that you should perform well can influence performance

within some environments [61]. Individuals with a longer history of video gaming

have better performance levels within virtual tasks. Those with a navigational gaming

background performed far better to those with a more rounded gaming history when

undertaking a navigational based virtual task [77]. In order to gain as many participants

as possible, our experiment was advertised primarily though social media including

Facebook, LinkedIn, Reddit and Twitter. As this experiment was online and anonymous,

we are unable to map any details about each participant. One issue with anonymous

online crowd-sourcing is that it is very difficult to capture and remove ‘false’ data.

Filtering is one of the more commonly used methods during crowd sourcing applications

and systems [82], [83]. While, these methods are suitable for some experimentation

this would not have been effective for this study as it would have had to be a manual

process of checking each individual result as they came in and this would not have been

feasible given the resources available. Ways to have improved the quality of data could

have included a brief registration system so that once a participant has ‘logged in’ their

data is stored separately until it can be verified and used for the experiment or removed

without influencing the experiments outcome. By implementing a flagging system

which can detect potential anomalies in the data collected the burden on checking each

individual’s data would be reduced. Something to note is that even with an in person

experiment it is difficult to capture ‘false’ data as it is the perception of the participant

that is being assessed which is very subjective and unique to each person. In that case it

would be very difficult to distinguish between someone’s actual opinion and what we

may perceive to be ‘false’ data.

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 61

4.4 Populating Further Generations using a Genetic

Algorithm

A genetic algorithm is a meta heuristic inspired by the process of natural selection.

The idea behind a genetic algorithm is to simulate what nature does. In simple terms

a genetic algorithm can be likened to a simulation of Darwin’s Theory of Evolution

whereby the fittest survive. Genetic algorithms were introduced by John H. Holland in

his book “Adaptation in Natural and Artificial Systems” originally publised in 1975

[44].

A genetic algorithm will vary greatly depending on the complexity required but they all

follow a similar structure (Figure 4.5). Firstly, a population of individuals are randomly

generated at the start of the process. These individuals are then allocated a fitness value

and ranked accordingly. These individuals are then selected depending on their fitness

value. Crossover and mutation procedures are applied to individuals in the population of

each generation according to some probability in order to create genetic variation. The

original population is then replaced by the new generation and this process continues

until some termination is met.

Initialise Population

Satisfied Stop
Criteria?

True

False

Determine Fitness & Rank
Individuals

Select Parents

Perform Crossover & Mutation

Add to New Population

End

Figure 4.5: Flowchart of the general structure of a Genetic Algorithm.

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 62

A genetic algorithm usually comprises of three main parts:

• Selection Method

• Cross Over Method

• Mutation Method

Each of these parts have been explored in greater detail in their relevant sections below.

4.4.1 Selection Methods

An important part of any genetic algorithm includes a selection method. This is

where individual genomes are chosen from a population for breeding using a crossover

operator. Whilst there are multiple options, it was decided that using Roulette Wheel

Selection was the most appropriate for these studies; this and other selection methods

are discussed below.

Roulette Wheel Selection

Roulette Wheel Selection is generally regarded as one of the most commonly used

chromosome selection methods. The fitness allocated to each creature is used to

associate the probability that it will be selected through this methodology. If fi is the

fitness of creature i, the probability (pi) of it being selected is

pi =
fi∑N

j=1 f j
(4.1)

where N is the number of individuals in the population. Within our study this means

that the higher the average rating received for a parameter row the more likely it is going

to be selected as a parent for the cross over method. This can be viewed similarly to a

roulette wheel in a casino. Each parameter row is given a portion of the wheel and that

is sized based on their fitness value (Figure 4.6).

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 63

1
1 2

2

3
5

4
1

5
3

6
4

7
5

2
4Selection

Point

Fittest indiviuals have
largest wheel share

Weakest indiviuals have
smallest wheel share

wheel is rotated

Figure 4.6: A visual representation of Roulette Wheel Selection

Tournament Selection

Another more commonly used selection method is tournament selection. In its simplest

form it selects two chromosomes and puts them against each other to determine which

one gets selected. The winner is determined through its fitness, therefore the fittest of the

two candidates gets selected for the crossover. A more common version of this selection

method chooses N individuals at random from a population, the individual with highest

fitness value from these is selected as a candidate for crossover. The tournament size

is the number of individuals taking part. An advantage of tournament selection is

the computational time required is reduced using this method, strong individuals do

not take over the cross over procedure and no need for a fitness scale or ranking. In

the example (Figure 4.7) the tournament size is three, which means that these three

individuals compete against each other to be selected. The larger the tournament size

the greater the chance of a loss of diversity as individuals with lower fitness values

will struggle to win larger tournament. An issue with this selection is that the weakest

candidate will never be selected as it would never win a tournament unless it was able

to be selected multiple times and was the only one competing in the tournament. This

could mean that the weakest candidate is automatically ruled out of future populations.

Linear Ranking Selection

Ranking selection was originally introduced by Baker in 1985. It was created as a way

to deal with inhibiting premature convergence through the use of the adaptive selection

methods [2]. As with the other selection methods the population is first sorted according

to their fitness value. Each individual is then given a rank, with the fittest individual

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 64

F = 7

F = 5 F = 7F = 2

F = 4 F = 5F = 3F = 2F = 1 F = 6 F = 7

Random

Highest Fitness Value Selected

Figure 4.7: A visual representation of Tournament Selection

given rank N and the least fit receiving rank 1. Each individual is then given a portion

of the selection probability based on its rank (Figure 4.8). Prior to ranking there is

a disproportionate advantage for the higher rated individuals giving the lower rated

individuals a 1% chance of being selected.

pi =
1
N

(
N− + (n+ − n−)

i − 1
N − 1

)
(4.2)

Where pi is the selection probability of ith individual. n+/N is the probability of selection

of the best individual and n−/N is the probability of the worst individual being selected.

An example of rank selection is given below (Table 4.3). Each individual has been

given a hypothetical rating and then placed into rank order based on this rating. After

ranking each individual has a portion which represents their order in the ranking and not

their individual rating, therefore giving a more proportionate chance of being selected.

Table 4.3: Example data for rank selection.

Rating Rank Portion Allocated

Individual 1 15 2 7%

Individual 2 73 4 34%

Individual 3 2 1 1%

Individual 4 93 5 43%

Individual 5 33 3 15%

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 65

(a) Probability of selection prior to ranking. (b) Probability of selection after ranking.

Figure 4.8: A visual representation of Rank Selection

4.4.2 Fitness Function Variation

A selection method within a GA can take many different forms as described previously

(Section 4.4.1. For our study we have relied on the data collected from crowd sourcing

to act as the fitness functions. There are some ways in which the effectiveness of our

genetic algorithm could be improved through the implementation of variants. Fours

approaches of implementing variants into a genetic algorithm have been considered:

1. Elitism: This is a ‘best must survive’ approach. It works by selecting the best

or fittest individual(s) from the parent population then adding it directly into the

next generation. This method can have a dramatic impact on the performance

of a GA because it can ensure that time is not wasted re-discovering previously

discarded solutions. Candidates selected through elitism also remain eligible for

selection as parents when breeding the remainder of the new generation.

2. Adaptive Genetic Algorithms: These are GA’s whose parameters such as the

population size, crossover method, or mutation chances vary whilst the genetic

algorithm is running. An example of this could be: The mutation chance is

altered according to the changes of the new generations. If the population does

not improve at a suitable rate, then the mutation rate could increase to try and

prompt the system to increase its progress. This could then decrease again once

improvements are back to a satisfactory level.

3. Hybrid Genetic Algorithms: These are commonly used when additional

auxiliary information such as derivatives or other knowledge is already known

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 66

about an objective function. The optimisation task could be divided into two

complementing sections: The global optimisation which is conducted by the

genetic algorithm itself and a more local refinement is done by the conventional

method. An example of this could be: The GA performs its population of the

new generations. This is then followed by the local method which for every n

generations the population is compared to and bread with a locally optimised

individual.

4. Self Organisation Genetic Algorithms: These methods do not only rely on data

as its object for evolution. Parameters of the GA such as its genetic operators

and coding functions are optimised too. If this is implemented correctly, the

GA could find its own optimal way for representing and manipulating the data

automatically.

The fitness function value for this study and future studies is based on the rating that the

creature receives. To determine this, we begin by averaging out the ratings for each

individual creature as they could be rated more than once. They are then sorted into

descending order according to their average score with the top 25% automatically being

selected for the new generation. All of the creatures are then used within the selection

method with their average rating acting as their fitness function, i.e. the higher their

average rating then the greater the chance they will be selected to be a parent for use in

the crossover and mutation methods. Algorithm 2 describes the fitness function method

of the optimisation algorithm in pseudo-code.

Fitness Function Algorithm Pseudo-Code

Algorithm 2: Fitness function pseudo-code used within the optimisation algorithm.

1 merge any duplicate creatures
2 calculate the average score for each creature
3 sort the the snakes into descending score order according to average score
4 copy top 25% rated creatures into a new generation
5 use all creatures within selection method based on fitness function

4.4.3 Cross-Over Method

This is a genetic operator used to vary the programming of a chromosome(s) from one

generation to the next. It is based upon biological crossover and reproduction. A cross

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 67

over takes more than one parent and produces one or more offspring from them. We

considered 3 types of cross over method: Single-Point, Two-Point and Uniform Point

crossover. All methods described use two parent chromosomes and swap data points

between them to create two children which get put into the new population.

Single Point Crossover

As the name suggests this method selects a random point within the two parents

and swaps their genomes around after this point, therefore creating two new children

(Figure 4.9).

Figure 4.9: A visual representation of Single Point Crossover

Two Point Crossover

Similarly, to the above random points are selected for the crossover, this time however it

uses two points to decide where to be crossed therefore producing a more mixed child

(Figure 4.10).

Figure 4.10: A visual representation of Two Point Crossover

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 68

Uniform Crossover

Finally, uniform crossover looks at each section of the parents individually and random

decides which child it should be placed into. This method creates the most mixed

children and the offspring could be vastly different from the parents (Figure 4.11).

Figure 4.11: A visual representation of Uniform Crossover

4.4.4 Mutations

A mutation is a key part of any genetic algorithm as it maintains genetic diversity

between generations of chromosomes [28], [45]. The role of a mutation is to potentially

restore lost or unexplored genetic material. This should help to prevent premature

convergence of a genetic algorithm to sub-optimal solutions. Generally speaking, the

chance of a mutation happening is set to be very low otherwise the algorithm could turn

into a generic random allocation. A mutation operator only works on one gene at a time

and this is then given a chance to be modified separately from the rest of the genes [19].

Many studies have shown that having an ever-changeable mutation rate is preferable

when compared to a fixed rate [1], [23], [41]. Having an adaptable mutation rate has

clear benefits as it would allow for a larger parameter space to be searched early on in the

study to ensure population coverage. On the other hand, we prefer more exploitations

towards the end of the study or in later generations would ensure the convergence of the

population towards a global optimum. Due to the simplicity of the GA required for this

study it was concluded that a fixed mutation rate was applicable for this application.

The more important factor for this research was the chance a mutation would occur.

When implemented within our GA the mutation rate was set to 1%. This was due to

the reasons discussed in Section 4.3, it can be problematic attaining enough data to

be able to ensure a large enough population coverage, therefore by having a higher

mutation chance we can allow for much of the parameter space to be tested through each

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 69

generation. Therefore, it was determined that a mutation rate of 1% would be small

enough to not cause any major discrepancies within our results but also large enough to

provide us with a good population coverage. A mutation can be implemented in many

different forms to suit the algorithms needs, below are discussed the ones which are

applicable to our research.

Uniform Mutation

The chosen value (parameter) will be replaced by a random uniform value within the

selected upper and lower bounds of that gene. A random number r is generated, this is

then compared with the mutation rate Pm (a user specified parameter). If r > Pm then

this gene is mutated. When used with floating point numbers the gene is given a random

value within the bounds of that gene. For example, if gene 3 (G3) is selected where G

= [2.312, 4.265, 6.231, 1.423], and the bounds of G3 is [5.000, 7, 000], then after a

mutation has occurred the chromosome may now be G = [2.312, 4.265, 5.923, 1.423].

Non-Uniform Mutation

To reduce the randomness of a Uniform Mutation, Michalewicz presented a dynamic

mutation operator called non-uniform mutation [74]. This works as follows, if gene

Gi was selected for mutation, the offspring would be determined using the following

formula:

Gi =

{
xi + ∆(t,UBi − X) if random digit (a) is > 0.5

xi − ∆(t,Xi − LBi) if random digit (a) is ≤ 0.5
(4.3)

where a is random float between 1 and 0. LBi and UBi represent the lower and upper

bounds or the gene respectively. The function ∆(t,Xi) is defined by

∆(t,Xi) = X
(
1 − r (1−

t
T
b
)
)

(4.4)

where r is also a random number between 0 and 1. T is the maximal generation number,

and b is is pre-determined degree of dependency on iteration number t. The formula

∆(t, x) returns a value in the range of [0, x] such that the probability of ∆(t, x) being

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 70

close to 0 increases as t increases. This property ensures that the newly generated

gene is within the feasible range. Furthermore, it enables the operator to explore the

parameter space very broadly initially with a large mutation step, decreasing to a more

local area at later stages of the process once a suitable gene has been determined.

Boundary Mutation

Boundary mutations works in a similar way to uniform mutation in that a gene is random

given a new value based upon its upper and lower bounds. But with this mutation

method, the new value is set to either the upper of lower bound with equal probability.

For example,

Gi =

{
UBi if random digit (a) is > 0.5

LBi if random digit (a) is ≤ 0.5
(4.5)

where the each of the parameters have the same meaning as in non-uniform mutation.

This operator is especially useful when the optimal solution for a gene lies near too one

or the other boundary in the search space. However, this method would not be useful if

the whole gene space needed to be tested for optimisation.

Creep Mutation

The creep mutation operator was introduced by David in his GA handbook [16]. This

function enables the selected gene to be incremented or decremented by the creep value

(C). The selected gene Xi is mutated using the following formula:

Xi = min(iMax,max(iMin,X1 + rs(iMax − iMin))) (4.6)

where iMin and iMax are the lower and upper bounds of the gene respectively. r is a

random number between [-1, 1] and s is the creep factor which is a user defined number.

There is an equal chance that the gene’s value will be increased or decreased, and the

value is adjusted to be the boundary value if it falls outside of the valid range for that

gene.

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 71

4.4.5 Our Genetic Algorithm

Throughout our prototype snake and dolphin experiments (described in the next chapter),

we used the same genetic algorithm to test the validity across different levels of animation

system complexity.

Once a generation has been successfully rated a python script described in Algorithm 3

automatically produces the next generation to be rated. When a generation has been

sufficiently rated, a script automatically produces the next generation. When creating a

new generation, the current parameter files with their respective ratings are time-stamped

and archived on the server (Line 2). We decided that 100 ratings would be enough for

each generation, as it gives a reasonable chance that most snakes variants have been

rated at least once per generation. Once the snakes have been placed in order of rating

(Lines 3 to 5), the top 25% are automatically selected for the new generation as the

strongest candidates (Line 6). All snake ratings are then given a fitness value and using

a roulette wheel selection method (Lines 8 to 9), two snakes are randomly chosen to

be one of two parents which are used to generate two children for the next generation.

Using a single-point cross-over method (Line 10), a random place within the parameters

of the parents is selected as the crossover point. The children of these two snakes are

then formed by combining the first portion of parent A and the second part of parent

B. The opposite operation is performed to create the second child. These two children

are then added to the new generation (Line 18). The process is repeated until the next

generation’s parameter file is full. Each individual parameter of a creature is given a 1%

chance of mutating (Line 11). If it is selected to mutate, then a new value is calculated

between the upper and lower bounds of that parameter. After the new generation file is

complete, it replaces the previous parameter file on the server (Lines 13 to 14). This

process is automatic, seamless, and the end user will not notice any difference when

rating. Users can start off rating one generation and finish rating a different generation.

4.4.6 Human-in-the-Loop Algorithm Pseudo-Code

4.5 Server Side

We used a server to store and update the generated parameter files and associated ratings.

Using a server potentially allows for multiple users to run the program and rate creatures

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 72

Algorithm 3: Pseudo-code for our human-in-the-loop optimisation algorithm.

1 if at least 100 creatures have been rated then
2 download parameter and saved ratings file for current generation
3 merge any duplicate creature
4 calculate the average score for each creature
5 sort the the snakes into descending score order according to average score
6 copy top 25% rated creatures into a new generation
7 for remaining 75% of new generation do
8 use roulette wheel selection to find parent1
9 use roulette wheel selection to find parent2
10 perform single-point crossover with parent1 and parent2 to produce

child1 and child2
11 perform mutation chance for child1 and child2
12 add child1 and child2 to the new generation
13 create new parameter file from the new generation
14 upload new parameter file to server

at the same time. When a creature is rated, the time-stamped parameters and associated

rating are recorded. Snakes are selected randomly from the parameter file until there are

sufficient ratings for a new generation. As the selection process is random, a user could

rate the same creature multiple times during the study. As this study does not need any

details from a participant, there is no signing up or logging in process. Instead, they are

automatically connected to the server and can start rating the creatures immediately.

4.6 Results

As previously mentioned, we asked participants to rate the snakes based on the

description “purple snake with long tail”.

To judge how successful the system was, we only need to look at the trends in four

of the parameters: TrialTime, and the RGB components of TrailTime. These four

parameters will be analysed in greater detail, whereas the other three parameters

(TopSpeed, TurnSpeed & TargetMove), whilst still changeable, do not directly impact

on the generated specification and will only have an overview of their results. Looking

at the aforementioned four parameters, the model score is represented by the outer

bounds of the parameters model:

TrailTime = 5,Red = 1,Green = 0,Blue = 1

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 73

Therefore, the closer a snake’s parameters match to this the longer and more purple its

tail will be therefore being closer to the “perfect” creature.

To quantify the results, we can observe the trends of these parameters in a number of

ways over the generations. Firstly, we can see how the different parameters change

individually over the generations.

4.6.1 Trail Time

Trail Time is the parameter which controls the length of the creature’s tail. This works

by increasing the duration of the trailRenderer attached to the sphere game object.

The range for this parameter was from 1 - 5 seconds. As previous stated we expected

the results for the trail time to increase across the generations. Figure 4.12 shows that

this has occurred in our experiment. From generation 0 to 9 the length of the snake’s

tail increases from just about 3.1s to roughly 4.4s. There was a short plateau during

generations 3 and 4, which could be down to participants focusing their attention on the

colour of the snake’s tail and not its length, therefore allowing for some shorter tailed

snakes to receive higher ratings than normal.

Generation
0 1 2 3 4 5 6 7 8 9

T
ai

l L
en

gt
h

V
al

ue

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 4.12: Tail Length (trailTime) trends across the generations

4.6.2 RGB

We can analyse the RGB elements of the snake together as these are all linked. They

control the colour of the snake’s tail and all work on a scale from 0 - 1. We expected

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 74

both the Red and Blue elements to increase in value while the Green element decreases

as this would produce a more purple appearance. As Figure 4.13 shows that occured.

The Red element increases from approximately 0.5 to over 0.9. Similarly, with the Blue

element also increasing from 0.5 to over 0.7. The Green element however decreases

from over 0.5 to under 0.2. Overall, this will produce a tail which appears to be more

purple over time.

Generation
0 1 2 3 4 5 6 7 8 9

R
ed

 V
al

ue

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Red trends across the generations

Generation
0 1 2 3 4 5 6 7 8 9

G
re

en
 V

al
ue

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Green trends across the generations

Generation
0 1 2 3 4 5 6 7 8 9

B
lu

e
V

al
ue

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Blue trends across the generations

Figure 4.13: RGB trends across the generations

4.6.3 Other Parameters

Throughout the generations the TopSpeed took a steady decline from 12.10 to 9.38

where as the TurnSpeed and TargetMove both stayed fairly stable throughout (4.97

to 5.19 and 2.04 to 1.74 respectively). So even though TopSpeed was not vital to the

ratings description, it did slowly decrease over subsequent generations.

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 75

4.6.4 Statistical Analysis using Two-Way ANOVA with Replication

The two-way analysis of variance (ANOVA) examines the influence of two different

independent variables (IV) on the dependant variable (DV). The two-way ANOVA

assesses the main effect of each independent variable as well as testing the interaction

between them. We can use this test to determine if the null hypothesis, that the mean

(average value of the dependant variable) is the same for all groups can be rejected or

not.

When choosing to analyse data using a two-way ANOVA, the data needs to “pass” six

assumptions (as described below) that are required to give a valid result [60].

Assumption 1: Your dependent variable should be measured at the continuous level

(i.e., they are interval or ratio variables).

Assumption 2: Your two independent variables should each consist of two or more

categorical, independent groups.

Assumption 3: You should have independence of observations, which means that there

is no relationship between the observations in each group or between the groups

themselves.

Assumption 4: There should be no significant outliers. Outliers are data points within

your data that do not follow the usual pattern.

Assumption 5: Your dependent variable should be approximately normally distributed

for each combination of the groups of the two independent variables.

Assumption 6: There needs to be homogeneity of variances for each combination of

the groups of the two independent variables.

The results of a two-way ANOVA with replication are displayed in a table format as

shown in Table 4.4. The sum of squares (SST) is the total variation of the data can be

calculated as follows (Equation 4.7).

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 76

SST =

n∑
i=1
(yi − ȳ)2 (4.7)

Where: s is the standard deviation, yi is the ith observation, n is the number of

observations and ȳ is the mean of the n observations.

From this we are then able to calculate the mean square (MST) of the data set through

the following formula shown in Equation 4.8. The denominator if this relationship is

the number of degrees of freedom associated with the sample variance. Therefore, the

number of degrees of freedom associated with do f (SST) is (n − 1). It is also known as

the mean square as it involves dividing the sum of squares by the respective do f .

MST =
SST

do f (SST)
=

SST

n − 1
(4.8)

The F-value in ANOVA is a tool which helps to determine whether the variance between

the means of two populations is significantly different. This is the also used to determine

the P-value; the P-value is the probability of getting a result at least as extreme as

the one that was actually observed given that the null hypothesis is true. The F-value

is calculated by using the formula shown in Equation 4.9 and the P-Value as seen

in Equation 4.10, where P(F ≤ fi) is the cumulative distribution function for the F

distribution.

F(n) =
MS(n)

MS(error)
(4.9) p = 1 − P(F ≤ fi) (4.10)

Through the use of two-way ANOVA, we can determine the statistical significance of the

first and final generations parameter spaces. This test requires two independent variables

(Generation 0 & Generation 9) and multiple dependant variables (the 7 Parameters). As

shown in Table 4.4, the P-Value of our sample is 0.003 which is less than the significance

value of 0.05 proving the results are statistically significant. Our f-Value is larger than

the F-Crit Value further proving our results are significant and we can reject the null

hypothesis.

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 77

Table 4.4: 2-Way ANOVAwith Replication Test: Comparing Generation 0 and Final Generation

Sum of

Squares df Mean Square F P-Value F Crit

Sample 17.118 1 17.118 9.114 0.003 3.848

Columns 17526.981 6 2921.163 1555.326 0.000 2.105

Interaction 449.195 6 74.866 39.861 0.000 2.105

Within 2734.613 1456 1.878

Total 20727.906 1469

4.6.5 Euclidean and Manhattan Distances

We can also compare the parameter space between the two mediums by calculating the

Euclidean and Manhattan distances. By calculating the Euclidean (Equation 4.11) and

Manhattan (Equation 4.12) distances using these formula’s, we can compare the two

mediums average snakes through the generations therefore we can observe how close

the parameter spaces are to each other. The Manhattan distance shows the distance

between two points on a grid based horizontal and vertical path, while the Euclidean

distance shows the distance between the two points in a diagonal or in a “as the crow

flies” manner. Before we could calculate these all the data had to be normalised using

Equation 4.13. We compared the data from each generation against the model answer

for the snake like creature.

√√
dist(x, y) =

n∑
i=1
(xi − yi)

2 (4.11) dist(x, y) =
n∑

i=1
|xi − yi | (4.12)

zi =
xi − min(x)

max(x) − min(x)
(4.13)

As shown in Figure 6.6, as the study progressed both the Euclidean and Manhattan

distances gradually got closer to 0. This indicates that the parameter space for the snake

was trending towards the model answer for this study, and therefore verifying that our

system is capable of tuning parameters for a procedurally animated creature.

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 78

Figure 4.14: Euclidean and Manhattan distances for each generation.

4.7 Chapter Summary and Conclusion

In this Chapter we discussed a prototype study designed to test the robustness of a

crowd sourced parameter optimising system using a genetic algorithm. The first step

was the creation a suitable creature which could be optimised in a short time frame. A

snake-like creature was chosen due to being able to easily optimise and measure the

physical appearance of it. The main characteristics the study was interested in was the

length and colour of the snake’s tail (TrailTime & RGB). From this a genetic algorithm

was designed to use crowd sourcing as a means of parameter optimisation. The results

show that after a few generations, anonymous users could successfully trend the average

snake towards a ‘perfect’ outcome, thereby proving the validity of our prototype system.

Even with a limited number of generations and the potential for false data to be added

to the system, the snake has trended towards the desired ‘perfect’ outcome. It would

have been interesting to run this experiment for a second time with an altered GA and a

larger data source to thoroughly test our methodology, but we felt that the results from

this study were substantial enough for this exact system to be tested on a more complex

animation system.

However, the process of tuning a procedurally animated systems is still very subjective

and difficult to automate, and there is no ‘perfect’ behavioural profile. Our aim

is to develop techniques that allow users to interactively rate a creature’s behaviour,

appearance, etc. and therefore guide the development of a complex procedural animation

system. By altering what aspect, the user is rating, the system can produce vastly

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 79

different results. The system could also allow for the simultaneous development

of multiple complex systems. As you can see in Figure 4.15, (where Generation 1

is represented by the red headed snake, Generation 5 the orange headed snake and

Generation 10 by the green snake), this prototype experiment has proven that the genetic

algorithm combined with the ratings system study has been successful and we can now

apply it to more complex systems.

Figure 4.15: The appearance of the average snakes for Generations 1 (red head), 5 (orange
head) & 10 (green head).

The next step is to implement the same systemwithin a much more complex procedurally

animated system which we have been developing in tandem. This system consists

of 37 adjustable parameters and is capable of producing life-like and diverse dolphin

motion and behaviour. The complexity and connectedness of the parameter space of

this system vastly increases the variations of behaviour for each creature compared to

our prototype. This larger parameter space will allow for us to thoroughly test if it is

possible to crowd-source different types of animation behaviours by asking the user

to create a creature based on adjectives such as ‘playful’, ‘angry’, ‘calm’ or ‘friendly’.

As these creature swim through a 3D virtual environment, they will be much harder to

represent in image form, therefore using the same method as described above should

allow us to ascertain the robustness of our system.

A further goal of this study is to test whether a user’s perception of the procedural

creature is altered depending on whether it is viewed on a monitor (2D) or within

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 80

Virtual Reality (VR). Using our crowd-sourcing method, we can see how the dolphins’

parameter space alters through the generations giving developers a better idea as how to

optimise a creature’s parameters in the future. This experiment could potentially reveal

if certain motion characteristics or even single parameters are more or less important

across 2D and VR and provide insights into how best to develop and tune procedural

animation systems for different mediums.

An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation
System 81

Chapter 5

Adapting a Dolphin Animation

System for Crowd Sourced

Procedural Animation Optimisation

Chapter 3 described a prototype study to establish if humans perceive a non-playable

character (NPC) differently depending which medium they are viewed in. This was

achieved through two games (first person shooter and a racing game) running two

versions, one in VR and one on a 2D monitor. Users ran all four versions of the

experiment in a random order and feedback was gathered to establish whether they

perceived their opponent to be human or AI. The experiment showed that there was a

clear split in the player’s perception of their in-game opponent, however these results

were inverted. For the two games with the racing game users typically reported that

the opponent was human when played in VR where as the opposite was true for the

first-person shooter.

The previous chapter describes our prototype experiment in which an online study was

conducted to test the robustness of our crowd sourced parameter optimisation system.

This was assessed through a study which used a suitably simple snake-like creature

which could be optimised in a short time frame towards a desired outcome. We then

developed an online genetic algorithm driven application where users could rate snakes

for a specific appearance. The results gathered proved the validity of our prototype

system, as anonymous users were able to successfully trend the average snake towards a

‘perfect’ outcome of a ‘long tailed purple snake’ after a few generations.

82

This chapter utilises the findings from the previous two chapters to create a study which

tests two things - if it is possible to tune a much more complex animation system towards

a behavioural goal, and if there is any difference in preference across different viewing

platforms. This chapter utilises the methods used in Chapter 4 for the experimental set

up and puts the principles from Chapter 3 through more rigorous testing. This chapter

also describes a study designed to test whether a user perceives a dolphin differently on

a 2D monitor and VR. We are interested to see if there are differences in an annealed

animation system based on medium, specifically if optimal parameters and therefore

desired creature behaviour differ based on whether the person guiding the system is

using a desktop monitor or are immersed with the creatures in VR.

Parts of the following chapter were primarily published in [37], [38]. With [39] forming

the backbone of this chapter.

5.1 A Dolphin Model

There are threemain types of animation systems available: kinematic; dynamic (physics);

or a hybrid of the two. We chose our dolphin model (Figure 5.1) as this was the most

advanced system, we had available. This is a complex kinematic system capable of

synthesising acrobatic and dexterous behaviours. While we could have included a more

accurate physics based model to simulate water, hydrodynamics and virtual muscles, we

chose not do this as we wished to avoid the basic mechanics of motion and concentrate

on the higher level behaviours such as twisting, twirling, barrel rolling, and using tried

and tested steering behaviours to control the global motion of the creature. This model

also contained a set of hand tuned parameters used commercially, which gave us a

decent ground truth animation system to compare against. We also used the parameter

settings from this tuned dolphin as a guide to inform the outer parameter bounds for

this experiment. While the development of this dolphin required several months of

refinement through experience and play testing, we aim to create a system which can

tune a creature to a similar standard in a much shorter time frame.

The dolphin model used in our experiment consists of a polygonal mesh rigged with a

skeleton (Figure 5.2). The skeleton contains a backbone chain representing the torso

and tail, with root bone at the head, and ancillary mouth and fin bones.

Adapting a Dolphin Animation System for Crowd Sourced Procedural Animation Optimisation 83

Figure 5.1: Example virtual dolphin used in our study. Each dolphin is controlled by 33
parameters describing its animation and behaviour.

A target node is created for each bone in the backbone beyond the head and joined

together to form a mass-spring system. During run-time each bone in the backbone

functions like a ball-socket joint, pointing towards their associated target node. The

mass-spring system acts like an elastic guide for the creature’s skeleton to follow, tuned

so that it can stretch and contract slightly. The roll axis of all tail bones are limited in

order to curb twisting of the backbone during more acrobatic motions.

With the mass-spring backbone in place, animation is generated using a combination of

point-mass approximation for global translation and rotation, and local rotations of the

backbone and appendages.

Global motion is instigated by moving the root bone through the water, guided by

steering behaviours [87]. Basic Seek and Arrive behaviours allows the creature to swim

towards and orbit around a target point in the water.

As the root bone moves around in 3D space, the backbone will smoothly follow as if

flowing through water. Varying the parameters of the mass-spring system allows for

Adapting a Dolphin Animation System for Crowd Sourced Procedural Animation Optimisation 84

Figure 5.2: Dolphin model consisting of a polygonal mesh and underlying skeletal rig. The
skeleton consists of mouth and fin appendages attached to a main backbone chain.

control over the rigidity of this motion. For our experiment, the spring and damper

values are set to approximate the elasticity of a dolphin.

Complex creature motion can be generated by mixing waves of various frequencies,

amplitudes and axes on top of this underlying global baseline head motion. For example,

mixing a sine wave of appropriate frequency and amplitude on top of the head’s pitch

rotation synthesises the classic up, down undulations of a dolphin as it swims towards

the global target point. By applying various waves across pitch, yaw and roll axes, it is

possible to synthesise anything from the stationary barrel rolling of a Humpback Whale,

the over-steering of a thrashing shark, or the graceful twisting and twirling of a playful

dolphin.

In procedural animation systems, there is often a balance to be found between realism

and control. In our animation system, the steering behaviours represent full control over

the motion, while the additive waves represent the deviation from this optimal path.

However, with appropriate parameters, it is possible to maintain a global heading while

also synthesising dexterous and organic motion.

The full list of parameters used by our dolphin animation system can be seen in Table

5.1 (for a full detailed list see Appendix B). All aspects of a dolphin’s behaviour is

parameterised, including how they swim through the water, flick their tail, undulate

their bodies, chatter, barrel roll, change target position and interact with the camera.

Adapting a Dolphin Animation System for Crowd Sourced Procedural Animation Optimisation 85

Table 5.1: Parameter list and ranges for the dolphin animation system.

Parameter Range Granularity

Barrel Roll Chance 100 - 1500 1

Barrel Roll Speed Range Max 100 - 600 1

Barrel Roll Speed Range Min 100 - 600 1

Chattering Speed Max 1 - 50 0.01

Chattering Speed Min 1 - 50 0.01

Change Time 1 - 10 0.01

Default Rotate To Target Speed 0.0 - 10.0 0.01

Default Speed 0.0 - 5.0 0.01

Default Turn Speed 0.0 - 5.0 0.01

Fastest Speed 0.0 - 5.0 0.01

Acceleration 0.0 - 10.0 0.01

Speed Decay 0.0 - 1.0 0.01

Speed Change Chance 0 - 500 1

Faithfulness 0 - 1000 1

Friendliness 0 - 1000 1

Near Player Distance 0.0 - 8.0 0.01

Near Player Min Distance 0.0 - 3.0 0.01

Near Player Speed 0.0 - defaultSpeed 0.01

Near Player Repulse Force 0.0 - 1.0 0.01

Mouth Open Chance 0 - 1000 1

Mouth Open Time Range Min 0 - 2 0.01

Mouth Open Time Range Max 0 - 2 0.01

Swim Amplitude Max X 0 - 100 0.01

Swim Amplitude Min X 0 - 100 0.01

Swim Amplitude Max Y 0 - 150 0.01

Swim Amplitude Min Y 0 - 150 0.01

Swim Frequency Max X 0 - 10 0.01

Swim Frequency Min X 0 - 10 0.01

Swim Frequency Max Y 0 - 10 0.01

Swim Frequency Min Y 0 - 10 0.01

Continued on next page

Adapting a Dolphin Animation System for Crowd Sourced Procedural Animation Optimisation 86

Tail Max Amplitude 0 - 120 0.01

Tail Rest Amplitude 0 - 120 0.01

Tail Amplitude Decay 0 - 50 0.01

Several parameters represent the chance of triggering a behaviour—for example, the

friendliness and faithfulness parameters describe how often a dolphin swims towards the

camera and loses interest respectively. Similarly, the variable change time controls how

often the dolphin randomises the animation system’s various frequency and amplitude

parameters to elicit new undulation patterns.

This parameter space represents a vast amount of potential motions. Some will

naturally have an optimal range (such as swim speed and acceleration), while others

will combine in emergent ways to produce complex motions that can be described for

human-in-the-loop purposes using verbs such as ‘relaxed’, ‘friendly’, ‘playful’ and

‘aggressive’.

The dolphin animation system described in this section consists of 33 parameters, many

of which are inter-dependent. For example, the three rotational components blended on

top of the global motion can combine to produce a variety of twists and turns. The 33

parameters were chosen after some manual alterations testing how they affect animation

system and discussions with Dr. Llyr ap Cenydd (the animation systems developer). It

was determined that the chosen parameters covered a large enough proportion of the

dolphin’s characteristics that the experiment could be run. We felt that has more or

all of the parameters been included in the experiment then the number of generations

needed to see drastic improvements is the dolphin’s realism would be increased to an

unattainable level. Once the parameters were chosen then the range and granularity also

needed to be established. Some of the outer bounds for a parameter were restricted by

the animation’s setup, such as Faithfulness and Friendliness which both work on a range

of 0 – 1000, these are used in a percentage chance approach. Whereas, Acceleration (a

range of 0.0 – 10.0) could have a higher upper bound but after manual experimentation

it was concluded that 10.0 was a high enough mark as if a dolphin accelerated at this

rate then it was too difficult to keep track of the creature in both environments. As the

results for Acceleration show the outer bounds were large enough for the participants to

view a wide range of dolphins with both mediums preferring a max acceleration speed

Adapting a Dolphin Animation System for Crowd Sourced Procedural Animation Optimisation 87

of between 4 – 5. One of the challenges in optimising this type of complex animation

system is verifying that the annealing process is working as expected, as realistic or

desired motion patterns, or conversely errors, will emerge slowly through generations

of user ratings.

5.2 Underwater Environment Setup

The environment for the dolphin simulation consists of open water, with the user floating

in the middle of the dolphin’s habitat. It is important that the virtual environment makes

the user feel like they are underwater, to both increase immersion, and to match the

potential perceived realism of the dolphin motion and behaviour.

5.2.1 Water fog effect

A standard exp2 fog effect is added with an appropriate blue colour, representing the

user’s underwater visibility. The camera’s clear colour is also set to this colour value,

and the density of the fog is set so that the fog fades to a vanishing point just before

the far clip plane, so that the water effect fades entirely to the base fog colour before

clipping can be seen. This is important to ensure that the water plane fades completely

before the far clip plane, and that dolphins swimming close to the far clip plane do

likewise.

5.2.2 Atmospheric Scattering

An atmospheric scattering effect is added which aims to approximate how light behaves

as it penetrates the surface and into the deep. This is achieved using a Unity asset

called Fog Volume 3 [101]. Fog Volume 3 is an external Unity asset plugin which aims

to model a wide range of atmospheric effects, including water sub-surface scattering,

using volumetric lighting. The effect is that the colour of the water is brighter at the

water surface and darkens with depth, giving a more realistic underwater effect.

5.2.3 Water Surface

The surface of the water is about 10m above the camera and helps immerse the user in

the environment. It consists of a flat plane with a 100x100 polygon dimension. During

runtime a shader modifies the vertex positions of the plane to produce a subtle wave

Adapting a Dolphin Animation System for Crowd Sourced Procedural Animation Optimisation 88

effect. Two normal maps are also combined and scrolled (the first on the u axis, the

second on the v axis) in the fragment shader, to simulate the finer details on the water

surface. The shader also applies specular highlighting and diffuse noise to the final

colour of the water surface. The shader is a modified version of a now discontinued

Unity asset store shader.

5.2.4 Detritus

A cloud of small particles such as dust motes have long been used in VR to provide a

sense of depth to a scene. In the underwater environment a particle system is used to

create a cloud of detritus billboard particles which randomly float in the water. A wind

modifier is used with a low frequency and amplitude in order to simulate slow moving

currents in the water.

5.2.5 Lighting

The scene is lit using three lights. The first is a light blue directional light that acts

as the main light source of the scene. This is accompanied by a blue ambient light

value which simulates the bouncing ambient light underwater. Finally, a water-specific

directional light is used to light the water surface appropriately.

5.2.6 Light Shafts

To break up the environment and give a greater sense of depth, a crude approximation

of light shafts has also been added to the scene. These consist of a quad mesh with a

light shaft texture, shaded with an additive transparency shader. The light shafts are

spawned randomly around the user, with a minimum and maximum distance of 6m

and 12m respectively. The origin of the quad is offset so that the light shafts appear to

start at the height of the water surface. Light shafts are made to fade in and out after

15-20 seconds by altering the alpha channel, and their positions are randomly updated

between cycles. While there are more physically accurate methods of simulating light

shafts, such as volumetric lighting, the effect given by a quad with additive shader is

adequate for the purposes of the dolphin scene, and the light shafts are far enough away

from the player that their lack of volume is not apparent, which is especially important

in VR. The light shaft effect can be seen in Figure 5.3.

Adapting a Dolphin Animation System for Crowd Sourced Procedural Animation Optimisation 89

Figure 5.3: Screenshot of underwater environment demonstrating sub-surface scattering, water
surface shader and light shaft effects

5.2.7 Caustics

Another effect used to add detail to the scene is the crude simulation of water caustics,

which is where light appears to dance on the surface of underwater objects due to

refraction at the water surface. This is achieved using a Unity projector, which

orthographically projects a tiled and looping animated caustics texture (32 images)

downwards onto anything in the scene. The caustic effect is mostly seen on the bodies

of the dolphins, which helps break up the surface of the skin and greatly enhances the

underwater effect. The caustics are also seen on the surface of the ratings system. The

caustics effect can be seen in Figure 5.4.

Figure 5.4: Screenshot of debug view of underwater environment. Projected caustic effects can
be seen on surface of the spheres

Adapting a Dolphin Animation System for Crowd Sourced Procedural Animation Optimisation 90

5.2.8 Underwater Sound

An ambient underwater sound plays on a loop during the simulation, in order to give a

sense of being submerged in water. Similarly, a scuba breathing audio loop is synched

with two bubble particle systems in order to simulate the user breathing underwater.

5.2.9 Completed Underwater Environment

A screenshot of the completed underwater environment can be seen in Figure 5.5. While

stylised, the effects combine to produce an environment we deem capable of a degree

of realism and immersion that is conducive with optimising a procedural animation

system towards “realistic” motion and behaviour.

Figure 5.5: Screenshot of dolphin models placed in completed underwater environment

5.3 Experimental Methodology

To explore the research questions a study was set up which asked participants to rate a

dolphin on how realistic they appear. There were two versions of the application, one

in VR using a consumer Oculus Rift headset and the other on a standard 2D monitor.

Both versions ran in the exact same way the only differences being the viewing platform

and the procedure for submitting a rating. When using the 2D monitor, participants

used a standard mouse to pan around the environment and then clicked on the rating

they wished to submit. Within VR, they would look around with their head movements

and once they have decided upon a rating, they looked at the corresponding number

and clicked the middle button on the Oculus Remote. In both versions, once a rating is

selected new dolphins would appear in the environment, and the process continue until

Adapting a Dolphin Animation System for Crowd Sourced Procedural Animation Optimisation 91

the time limit had expired. Each participant was given 5 minutes in each environment

with a short break in between. They played the two versions in a random order as to

avoid any bias towards either medium. If at any point a participant started to feel unwell,

they could end the experiment. During both versions they wore over ear headphones,

this was done for two reasons; to drown out any background noise in the room and to aid

immersion in the environment as they could hear dolphin noises, water, breathing, etc.

In the previous chapter we decribed a much simpler procedural animation system

(see Chapter 4), consisting of seven parameters henshall2015towards, [37]. In that

experiment, we asked participants to rate randomly generated creatures on their physical

attributes. Out of the seven changeable parameters, four were vital for the appearance

of the snake (RGB colour elements & tail length).

The experiment described in section is a continuation of the snake’s experiment. With

our process verified, we aimed to use similar techniques on the much more complex

dolphin procedural animation system. However, as opposed to the snake’s model which

was largely morphological (tail length, colour), the dolphin animation system is entirely

behavioural. As this is a much more subjective metric, there is likely to not be a perfect

outcome, as an individual’s perception of the ‘perfect" dolphin may differ. By using a

dolphin’s behaviour within the environment as the metric for this study, we are able to

assess if the user’s perception of realism changes when the viewing medium changes.

Unlike the snake experiment which was solely run on a 2D monitor through a web

browser, the study described was run on both a monitor and a virtual reality headset.

This means that there were multiple research questions for this study:

• Does the GA and system still effectively optimise a more complex animation

system?

• Can we tune a creature to behave in a particular way as opposed to simply altering

its appearance?

• Does the platform in which the creatures are viewed alter the user’s perception of

realism?

Adapting a Dolphin Animation System for Crowd Sourced Procedural Animation Optimisation 92

5.3.1 Creature Initialisation

At the start of the optimisation process, a script creates the first generation of creatures.

For both desktop and VR populations, we started with an identical parameter file,

consisting of 100 dolphins with random parameters. This was done to keep it inline

with the previous study conducted in Chapter 4. As we are potentially limited by the

number of users willing to participate in the study, we have restricted each generation to

100 ratings therefore, creating any more creatures to start with would result in too many

not being rated per generation.

The parameters have varying levels of granularity. For example, defaultSpeed has a

range from 0.0–5.0 with a granularity of 0.01 while barrelRollChance has a range

from 100–1500 with a granularity of 1. Across the 33 parameters, there is a total of

3.67e−101 possible dolphins, with the initial generation encompassing 2.721e−100 of

all possible permutations. A list of the parameters, their range & granularity can be

seen in Table 5.1 and for a more extensive breakdown please see Appendix B.

5.3.2 Rating System

Upon starting the application, users find themselves underwater with three dolphins

(see Figure 5.6). Each trio of dolphins are identical (adopting the same parameters) and

swim around indefinitely. We chose three dolphins for the study because by random

chance each dolphin could be swimming far away from the player. By instantiating

three identical dolphins at a time, we increased the chance of the user being able to

perceive and rate the dolphin’s behavioural repertoire faster and more accurately.

Each participant was told that they were rating dolphins for realism in an entertainment

application, rather than for scientific accuracy. While it would be possible to run this

experiment with dolphin experts, for this study we expected no prior deep knowledge of

dolphin movement or behaviour and wanted to minimise any bias due factors such as

model, lighting or shader quality.

Users were asked to rate the dolphins on how realistic they appeared on a 0–5 scale.

If a dolphin appeared inactive or broken, then it would receive a rating of 0, with

progressively higher ratings awarded for greater realism. In the desktop environment,

Adapting a Dolphin Animation System for Crowd Sourced Procedural Animation Optimisation 93

Figure 5.6: A screenshot of our application showing the virtual environment, dolphins and
embedded 0-5 rating system.

users manipulated the camera and rating selection using the mouse. On the Rift, users

looked around using headtracking and swivel chair rotation, and chose appropriate

ratings using a combination of gaze tracking and an Oculus remote.

Users were asked to rate on the desktop and VR in random order. Each user was given

five minutes in each medium to rate as many or as few dolphins as they liked. We

recommended trying to rate at least five dolphins in this time so that they could build

a more informed idea of the range of phenotypes. There was no quota of ratings and

the application continued to instantiate new dolphins to rate indefinitely. Once the five

minutes had elapsed, the user moved to the second part of the study.

We used a server to store and update the generated parameter files and associated ratings.

Using a server potentially allows for multiple users to run the program and rate creatures

at the same time, as demonstrated in our prototype experiment, though here users rated

dolphins one at a time. When a creature is rated, the time-stamped parameters and

associated rating are recorded. Dolphins are selected randomly from the parameter

file until there are sufficient ratings for a new generation. As the selection process is

random, a user could rate the same dolphin multiple times during the study. As this

study does not need any details from a participant, there is no signing up or logging in

process. Instead, they are automatically connected to the server and can start rating the

creatures immediately.

Adapting a Dolphin Animation System for Crowd Sourced Procedural Animation Optimisation 94

5.4 Subsequent Generations

For this study, we adopted the same genetic algorithm as our optimisation method

between generations (Algorithm 3). When a generation of dolphins has been sufficiently

rated, a script automatically produces the next generation. When creating a new

generation, the current parameter files with their respective ratings are time-stamped

and archived on the server (Line 2) for further analysis later. Once the dolphins have

been placed in order of rating (Lines 3 to 5), the top 25% are automatically selected

for the new generation as the strongest candidates (Line 6), this ensures that the fittest

creatures are always pushed into the next generation to be rated again. All dolphin

ratings are then given a fitness value and using a roulette wheel selection method (Lines

8 to 9), two dolphins are randomly chosen to be one of two parents which are used

to generate two children for the next generation. By using a roulette wheel selection

method, a creature is rewarded for being a stronger candidate, and therefore has a much

higher chance of being selected as a parent for the next generation.

Using a single-point cross-over method (Line 10), a random place within the parameters

of the parents is selected as the crossover point. The children of these two dolphins are

then formed by combining the first portion of parent A and the second part of parent

B. The opposite operation is performed to create the second child. These two children

are then added to the new generation (Line 18). The process is repeated until the next

generation’s parameter file is full. Each individual parameter of a creature is given a 1%

chance of mutating (Line 11). If it is selected to mutate, then a new value is calculated

between the upper and lower bounds of that parameter. This is done to ensure genetic

diversity from one generation to the next. After the new generation file is complete,

it replaces the previous parameter file on the server (Lines 13 to 14). This process is

automatic, seamless, and the end user will not notice any difference when rating. Users

can start off rating one generation and finish rating a different generation.

5.5 Chapter Summary and Conclusion

In this Chapter we have discussed a study designed to test the system against a muchmore

complex procedurally animated system which was developed in tandem. The system

consisted of 33 adjustable parameters and is capable of producing a life-like dolphin in

Adapting a Dolphin Animation System for Crowd Sourced Procedural Animation Optimisation 95

both its behaviour and motion. The process of tuning a procedural animation system is

very subjective and difficult to automate as there is no calculable ‘perfect’ behavioural

profile. One of our aims is to develop techniques that allow users to intuitively guide the

development of a complex procedural animation system towards an ideal controller. As

mentioned in the introduction, the intimate nature of VR experiences requires greater

attention to animation quality and behavioural realism. Users are better able to judge

the motion accuracy in VR and the experience of rating is more intense. Creatures in

close proximity have a real sense of presence and volume and are perceptually quite

different to the same scenario on a normal monitor.

We were able to gather 26 participants in total all of which ran both (2D monitor and

VR) versions of the experiment in a random order. In the next chapter we discuss the

study itself and what insights can be drawn from the results.

Adapting a Dolphin Animation System for Crowd Sourced Procedural Animation Optimisation 96

Chapter 6

An Evaluation of Crowd Sourced

Procedural Animation Optimisation

for the Dolphin Animation System

Chapter 3 described a prototype study designed to assess the influence of VR on the

perception of an AI character in a game. This was achieved through the creation of two

games (racing & first-person shooter). The two games were playing in both VR and on

a 2D monitor and the participant had to determine whether the opponent was human

or an NPC. Our results showed that in the racing game participants typically thought

the opponent in VR was a human whereas the opposite was true in the shooter. This

indicates that there is a link between how a game is played and the players perception of

the world.

In Chapter 4 we created a study designed to assess the robustness of an online crowd

sourced parameter optimisation system. Users were tasked with rating a snake-like

creature on how long and purple its tail appeared. Through the crowd sourcing and a

genetic algorithm, the system was able to tune the creatures towards the intended goal.

The results gathered from this proved the validity of the system and this was tested

further in Chapter 5.

The previous Chapter described the set-up procedure of our final study. By bringing

together the findings from both Chapters 3 and 4, a much more complex animation

system was extended to test the system against. Instead of a user tuning a creature

towards a physical attribute however, we asked users to rate the dolphins based on their

motion and behaviours.

97

6.1 Experimental Methodology

In this chapter we evaluate the results gathered from the study and the findings that can

be drawn from these. This study was run offline as it required participants to use a VR

headset. However, in future it would be perfectly possible for many anonymous users to

optimise a population of VR dolphins remotely, as the rating and evolutionary system is

server-based.

For this study we were attempting to tune the parameter space of a procedurally animated

creature through a genetic algorithm and crowd sourcing. The dolphin model itself is

a kinematic animation system with 33 adjustable parameters. There were 100 unique

dolphins at the start of the study all of which had been randomly generated with each

individual parameter being within an upper and lower bound. The participants were

asked to rate the dolphins for how realistic they perceived them to be. They are looking

at the dolphins for realism in a gaming or simulated environment and not for biological

accuracy. They used two versions of the same experiment for the same length of time

and had to rate as many dolphins as they wished on how realistic they appeared to be.

The two version of the experiment were identical apart from the viewing platform, one

was on a standard 2D monitor and the other in VR using a consumer Oculus Rift. In the

2D version the user used the mouse to navigate the scene and save the ratings. In VR an

Oculus Remote was used as a clicker to save ratings and their head movements panned

around the scene. This study was conducted to assess if we perceive procedurally

animated creatures differently depending on the viewing platform, and if so, how does

this affect the creature’s parameter space.

6.2 Participant Data

To gain as many participants as possible, our experiment was advertised internally

through the University emailing system. We tried to encourage participation by offering

a spot prize for two participants upon completion of the whole experiment. We then

relied on word of mouth to get as many participants as possible to come and take part

in the study. The experiment had 26 participants in total which meant on average it

took 4.33 participants to fill a generation. Ideally, we would have liked to have far

more participants than this, but it proved very difficult to encourage participation even

An Evaluation of Crowd Sourced Procedural Animation Optimisation for the Dolphin Animation
System 98

with a sport prize incentive. Due to the nature of the experiment where we require

participants to attend in person it is very difficult to gain interest, crowd sourcing tends

to be far more successful when used in online studies which can be conducted in the

comfort of the participants own home in their own time, but even then it proves to be

difficult [48]. However, we were still able to see trends and alterations in our parameter

spaces even with the limited number of participants. It is expected that even with far

greater results the same trends would still occur, the biggest difference would be that

each generation could be far larger before a new generation is populated, this would

enable a wider population of creatures to be assessed. Most participants were Computer

Science students and 84.6% male. The average age was 24 years old but ranged from

18–42. 53.8% of the users taking part in the study had never used a VR headset before.

According to a feedback questionnaire we conducted after the users completed the study,

the VR experience received a higher enjoyability rating over the desktop monitor. The

VR experience received 4.42 out of 5 for intuitiveness of the controls whereas only 3.65

was given for the desktop experience, likely due to the difference between mouse-look

and head tracking controls. The participants also felt it was easier to judge the dolphins

in the VR experience.

6.3 Results

As previously mentioned, we asked participants to rate the dolphins on how realistic

they appeared. In this section, we present analysis of how the 33 parameters change

over six generations across both mediums. We also compare differences between the

final generations average parameter using Euclidean and Manhattan Distances, and how

the average rating changed over time.

To compare how the sixth generation parameters differ across desktop and VR, we have

conducted a direct comparison of some of the more divergent or interesting parameters -

defaultSpeed which controls the base speed of the dolphin, barrelRollChance which

is the change of a barrel roll triggering each frame, faithfulness is the chance that the

dolphin will become interested in the player, friendliness is the chance that the dolphin

will lose interest in the player and mouthOpenChance which is the chance every frame

that the dolphin opens its mouth. The latter four parameters represent odds that a

specific behaviour is activated or deactivated, with large numbers representing less

An Evaluation of Crowd Sourced Procedural Animation Optimisation for the Dolphin Animation
System 99

chance of something occurring. For example, using our fixed frame-rate of 90 frames

per second, a barrelRollChance of 300 means that on average the dolphin will perform

a barrel roll every 3.33 seconds, while a value of 900 would trigger a barrel roll on

average every 10 seconds.

6.3.1 Default Swim Speed

The parameter defaultSpeed represents the minimum speed a dolphin can swim. While

dolphins will periodically kick their tail and accelerate, they will naturally slow down

to this default speed at a rate determined by the SpeedDecay parameter. As shown in

Figure 6.1, the default speed parameter was in the range of 0–5, roughly representing

speed in meters per second. The greater the defaultSpeed value, the faster on average

the dolphin will swim around the environment. On the desktop, the parameter on

average remains fairly stable at ≈ 1.75 with outlying values starting to converge on this

value. However, in VR the average default speed rises from ≈ 1.75 to 3.45 across the six

generations. This indicates that users preferred significantly faster dolphins in the VR

simulation. One potential reason for this is that VR allows users to better keep track of

dolphins as they swim around, while faster dolphins might be more difficult to track on

the desktop to the more cumbersome mouse-based camera controls. This result could

also suggest that users can better judge realistic speeds in VR compared to a 2D image

on a monitor. Using a t-test, we can assess if there is a statistical difference between the

final generation parameter space for both Desktop and VR. As shown in Table 6.1, the P

value produced is a lot smaller than the alpha level of 0.05. Therefore, for default speed,

we are able to reject the null hypothesis as the data sets are significantly different.

Generation
1 2 3 4 5 6

D
ef

au
lt

S
pe

ed
 V

al
ue

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(a) Desktop

Generation
1 2 3 4 5 6

D
ef

au
lt

S
pe

ed
 V

al
ue

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(b) VR

Figure 6.1: The Default Swim Speed parameter over the generations. Lower values represent a
slower swim speed and higher is faster.

An Evaluation of Crowd Sourced Procedural Animation Optimisation for the Dolphin Animation
System 100

Table 6.1: Default Speed t-Test: Two-Sample Assuming Unequal Variances

VR Default 2D Default
Speed Gen 6 Speed Gen 6

Mean 2.723 1.899
Variance 2.085 0.773
Observations 105
Mean Diff 0
df 172
t Stat 4.998
P(T<=t) two-tail 1.41861E-06
t Critical two-tail 1.974

6.3.2 Friendliness and Faithfulness

By default, each dolphin swims toward a randomly changing target position in 3D

space. However, under certain conditions they will target the user. The closely linked

friendliness and faithfulness parameters determine how often the dolphins will swim up

to the user, and when they will decide to go back to their usual routine respectively. A

low value for the friendliness parameter means dolphins are more likely to swim up

to the player, while lower values of faithfulness indicates a shorter attention span. As

shown in Table 6.2, we can reject the null hypothesis as the P-value is less than our

alpha of 0.05. Therefore, between VR and 2D Desktop, there is a significant difference

in the data sets.

As the plots in Figure 6.2 show, the faithfulness value in both desktop and VR climb

similarly over the generations, with a final average of ≈ 600 and ≈ 550 respectively.

These values represent an attention span of around 6.39 seconds. In both, the outlying

values start to compress around these averages suggesting that users were happy with

this behaviour.

The friendliness parameter tells a different story. On the desktop, the value trended

downwards to ≈ 300 meaning that the dolphin would approach the user approximately

over 3.33 seconds. In VR however, the friendliness value steadily increased to ≈ 700

indicating that users preferred it when the dolphin came up the them far less regularly.

Again, this could partly be down to the ability to track the dolphins more easily in VR

but could also be a result of a keener sense of personal space in VR. The difference

between mediums could also be explained by a co-dependency with the rise in average

defaultSpeed, with higher average speeds allowing dolphins to reach the player faster

An Evaluation of Crowd Sourced Procedural Animation Optimisation for the Dolphin Animation
System 101

Generation
1 2 3 4 5 6

F
rie

nd
lin

es
s

V
al

ue

0

100

200

300

400

500

600

700

800

900

1000

(a) Desktop

Generation
1 2 3 4 5 6

F
rie

nd
lin

es
s

V
al

ue

0

100

200

300

400

500

600

700

800

900

1000

(b) VR

Generation
1 2 3 4 5 6

F
ai

th
fu

ln
es

s
V

al
ue

0

100

200

300

400

500

600

700

800

900

1000

(c) Desktop

Generation
1 2 3 4 5 6

F
ai

th
fu

ln
es

s
V

al
ue

0

100

200

300

400

500

600

700

800

900

1000

(d) VR

Figure 6.2: Friendliness (a)(b) and faithfulness (c)(d) parameters over the generations. Dolphins
with higher values for friendliness are less likely to approach the user.

when the player is selected thereby increasing the number of close encounters. Unlike

Default Speed and Friendliness, we cannot reject the null hypothesis as the P-value

(Table 6.3) is greater than 0.05. Therefore, the data sets are not significantly different.

This echos our results shown in Figure 6.2 where the faithfulness level for both VR and

2D Desktop displays are very similar.

Table 6.2: Friendliness t-Test: Two-Sample Assuming Unequal Variances

VR Friendliness 2D Friendliness
Generation 6 Generation 6

Mean 654 467
Variance 67742 67779
Observations 105
Mean Diff 0
df 208
t Stat 5.192
P(T<=t) two-tail 4.92914E-07
t Critical two-tail 1.971

An Evaluation of Crowd Sourced Procedural Animation Optimisation for the Dolphin Animation
System 102

Table 6.3: Faithfulness t-Test: Two-Sample Assuming Unequal Variances

VR Faithfulness 2D Faithfulness
Generation 6 Generation 6

Mean 551 558
Variance 68206 47218
Observations 105
Mean Diff 0
df 201
t Stat -0.221
P(T<=t) two-tail 0.825
t Critical two-tail 1.972

6.3.3 Barrel Rolling and Chattering

Two other parameters to consider are barrelRollChance and mouthOpenChance. Both

work in the same fashion as friendliness and faithfulness, where higher values mean

behaviours occur less often.

The parameter barrelRollChance represents how often a dolphin will perform a barrel

roll. After a slight increase, the desktop dolphins ultimately decreased the barrel rolling

to on average every 7.78 seconds. However, the VR dolphins steadily increased the gap

between barrel rolls to an average of 13.30 seconds. While there is a spike in the last

generation, the outlying parameters are also trending upwards in VR, indicating that

VR users prefer the dolphins to perform barrel rolls less often.

The parameter mouthOpenChance represents the chance a dolphin will open its mouth

to “speak”, a behaviour which also triggers clicking and chirping sound effects. While

this is not realistic behaviour, it does give the dolphins extra character, especially

as users will tend to look at the creature’s head more than anywhere else. When

mouthOpenChance triggers, the animation system will use a further four parameters

to control how long the mouth stays open and how fast it oscillates. Looking at the

experimental results, the value of mouthOpenChance increases over the generations on

the desktop while the VR value decreases, suggesting that users prefer chattier dolphins

in VR. While this is likely due to a variety of factors including friendliness, faithfulness

and how close the dolphins appear in VR, it could also be that the sound of dolphin

chatter helps enhance immersion and therefore yield higher ratings.

An Evaluation of Crowd Sourced Procedural Animation Optimisation for the Dolphin Animation
System 103

Generation
1 2 3 4 5 6

B
ar

re
l R

ol
l C

ha
nc

e
V

al
ue

200

400

600

800

1000

1200

1400

(a) Desktop

Generation
1 2 3 4 5 6

B
ar

re
l R

ol
l C

ha
nc

e
V

al
ue

200

400

600

800

1000

1200

1400

(b) VR

Generation
1 2 3 4 5 6

M
ou

th
 O

pe
n

C
ha

nc
e

V
al

ue

0

100

200

300

400

500

600

700

800

900

1000

(c) Desktop

Generation
1 2 3 4 5 6

M
ou

th
 O

pe
n

C
ha

nc
e

V
al

ue

0

100

200

300

400

500

600

700

800

900

1000

(d) VR

Figure 6.3: Barrel roll (a)(b) and mouth open chance (c)(d) parameters over the generations.
Lower values give higher chance of performing barrel rolls and dolphin chatter respectively.

As with Default Speed and Friendliness, we can reject the null hypothesis for both

Barrel Roll Chance (Table 6.4) and Mouth Open Chance (Table 6.5) as they both have

a P-value less than the alpha of 0.05. Therefore, there is a statistically significant

difference between the data sets when comparing VR with 2D Desktop displays.

Table 6.4: Barrel Roll Chance t-Test: Two-Sample Assuming Unequal Variances

VR Barrel Roll 2D Barrel Roll
Chance Gen 6 Chance Gen 6

Mean 760 997
Variance 121318 186342
Observations 105
Mean Diff 0
df 199
t Stat -3.818
P(T<=t) two-tail 0.000
t Critical two-tail 1.972

An Evaluation of Crowd Sourced Procedural Animation Optimisation for the Dolphin Animation
System 104

Table 6.5: Mouth Open Chance t-Test: Two-Sample Assuming Unequal Variances

VR Mouth Open 2D Mouth Open
Chance Gen 6 Chance Gen 6

Mean 493 256
Variance 63831 59420
Observations 105
Mean Diff 0
df 208
t Stat 6.923
P(T<=t) two-tail 5.39388E-11
t Critical two-tail 1.971

6.3.4 Other Notable Parameters

In this sectionwewill discuss some other notable parameters, graphs for all 33 parameters

across both medums can be found in Appendix D. Other noteworthy parameters include

speedChangeChance, which controls how often the dolphin will change speed and

randomise associated undulation frequency and amplitudes. In VR, this value decreases

over the generations, whereas it stays relatively level on desktop. The lower value in VR

could be due to participants wanting the creature to have a more consistent speed and

behaviour whilst swimming around. Conversely the higher chance on desktop could

also be due to the use of the more cumbersome mouse controls, where changes in speed

and motion behaviour are less obvious.

Finally, the changeTime parameter, which denotes how often the dolphin changes its

goal position, differs between the two simulations — increasing across the generations

in VR while decreasing on desktop. This could also be down to aforementioned factors

such as a deeper level of immersion in VR, and more natural camera control allowing

for a greater sensitivity to changes in dolphin movement and swimming direction.

6.3.5 Similar Parameters Across Mediums

Although we have discussed many parameters which showed significant differences

between the two viewing platforms, there are some which displayed very little change

both across the generations and from 2D to VR.

The parameter nearPlayerSpeed is the dolphin’s target speed when near to the player,

this is typically much slower than the dolphin’s default speed. As shown in Figure 6.4

An Evaluation of Crowd Sourced Procedural Animation Optimisation for the Dolphin Animation
System 105

the average parameter value stays relatively stable across all generations and viewing

platforms. The could be down to a few reasons, participants could have been focusing

on other aspects of the dolphin so may not have noticed the speed change when the

dolphin approached. Secondly, participants may have preferred a slightly slower dolphin

when it was close to the camera as it was easier to track with the mouse or headset.

Generation
1 2 3 4 5 6

N
ea

r
P

la
ye

r
S

pe
ed

 V
al

ue

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(a) Desktop

Generation
1 2 3 4 5 6

N
ea

r
P

la
ye

r
S

pe
ed

 V
al

ue

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(b) VR

Figure 6.4: The Near Player Distance parameter over the generations. Lower values represent a
slower swim speed and higher is faster

We compare both tailMaxAmplitude and tailRest Amplitude as they are both very

heavily linked. Although the graphs (Figure 6.5) show that the overall values between

the two parameters are very different, the changes across generations and viewing

platforms are fairly static. The amplitude in which the tail is kicked is controlled by

tailRest Amplitude, this controls the amplitude the tail is kicked at while to dolphin is

in a rested state. tailMaxAmplitude however, activates when changeTime is triggered

causing the dolphin will accelerate to its maximum speed with its tail kicking at this

amplitude. These two parameters may have stayed static due to the participant not

knowing how much a realistic dolphin kicks its tail, other attributes being much more

prominent, or that the initial values were adequate and therefore remained relatively

stable.

6.3.6 Statistical Analysis using Two-Way ANOVA with Replication

The two-way analysis of variance (ANOVA) examines the influence of two different

independent variables (IV) on the dependant variable (DV). The two-way ANOVA

assesses the main effect of each independent variable as well as testing the interaction

between them. We can use this test to determine if the null hypotheis, that the mean

An Evaluation of Crowd Sourced Procedural Animation Optimisation for the Dolphin Animation
System 106

Generation
1 2 3 4 5 6

T
ai

l M
ax

 A
m

pl
itu

de
 V

al
ue

20

30

40

50

60

70

80

90

100

110

120

(a) Desktop

Generation
1 2 3 4 5 6

T
ai

l M
ax

 A
m

pl
itu

de
 V

al
ue

20

30

40

50

60

70

80

90

100

110

120

(b) VR

Generation
1 2 3 4 5 6

T
ai

l R
es

t A
m

pl
itu

de
 V

al
ue

0

20

40

60

80

100

120

(c) Desktop

Generation
1 2 3 4 5 6

T
ai

l R
es

t A
m

pl
itu

de
 V

al
ue

0

20

40

60

80

100

120

(d) VR

Figure 6.5: Tail Max Amplitude (a)(b) and Tail Rest Amplitude (c)(d) parameters over the
generations. Lower values represent a smaller tail amplitude.

(average value of the dependant variable) is the same for all groups can be rejected or

not.

When choosing to analyse data using a two-way ANOVA, your data needs to “pass” the

six assumptions (such as continuous dependent variable, no significant outliers, etc.)

that are required to give a valid result [60].

As with the previous studies the use of two-way ANOVA can determine the statistical

significance of the 2D Monitor and VR parameter spaces. The two independent

variables for this study were 2D Generation 6 & VR Generation 6 and the 33 Parameters

representing the multiple dependant variables. As shown in Table 6.6, the P-Value of

our sample is 0.021 which is less than the significance value of 0.05 proving the results

are statistically significant. Our f-Value is larger than the F-Crit Value further proving

our results are significant and we can reject the null hypothesis.

An Evaluation of Crowd Sourced Procedural Animation Optimisation for the Dolphin Animation
System 107

Table 6.6: 2-Way ANOVA with Replication Test: Comparing 2D Monitor and VR Final
Generations

Sum of
Squares df Mean Square F P-Value F Crit

Sample 65332.671 1 65332.671 5.348 0.021 3.842
Columns 315272801.426 32 9852275.045 806.499 0.000 1.445
Interaction 7680472.786 32 240014.775 19.647 0.000 1.445
Within 83851313.496 6864 12216.100
Total 406869920.379 6929

6.3.7 Euclidean and Manhattan Distances

As with the previous studies we also compared the parameter spaces of both versions by

analysing the Euclidean & Manhattan distances. As shown in Figure 6.6, as the study

progressed both the Euclidean and Manhattan Distances gradually increased. This

indicates that the parameter space for both the 2D and VR dolphins have been tuned

differently. As the study has progressed through the generations, the distances between

the parameter files for the two creatures are trending in different directions. This could

indicate that different parameters come to prominence on different mediums, or that

animation systems might need to be optimised differently across platforms.

Figure 6.6: Euclidean and Manhattan distances at each generation.

6.3.8 Average Ratings

Figure 6.7 shows the average rating given to each generation of dolphin. The average

VR rating starts significantly higher than for the desktop, which could be partly due the

fact that for 53.8% of users, this was their first VR experience. This could also reflect

that virtual creatures are inherently more realistic in VR, which corroborates with the

user feedback.

An Evaluation of Crowd Sourced Procedural Animation Optimisation for the Dolphin Animation
System 108

Somewhat surprisingly for both the desktop and VR dolphins, the average rating trends

downwards over the generations, meaning that on average users are rating dolphins as

being less realistic with each generation. In both mediums, the average rating decreases

between generations 1 – 4 with a sharp uptick in generation 5.

There are a number of reasons that could explain this trend. Perhaps as more generations

are produced, the difference in realism between the “best” dolphin and the “worst” is

less apparent, so users become harsher and more discerning with ratings and continue

to use the scale effectively. As the dolphins become increasingly realistic through

the generations, they are held to a higher standard, so a creature that might have

received a rating of 5 in generation 1 now only receives a rating of 3 in generation

5. As the participants only came in to rate the dolphins once, most only saw a single

generation of dolphins, and therefore could not compare the current generation to

previous generations.

Figure 6.7: Average ratings for each generation.

6.4 Chapter Summary and Conclusion

This Chapter fully analyses the results from the study described in Chapter 5. The

study was conducted on two viewing platforms, a consumer Oculus Rift headset and a

standard 2D monitor. The 26 participants were asked to rate the dolphins on screen for

how realistic they appeared. Each participant ran the two versions in random order as to

avoid any bias towards one or the other.

As our results show there were some big differences between parameters when viewing

in VR and on a 2D monitor. For example, the optimised rate that dolphins opened their

An Evaluation of Crowd Sourced Procedural Animation Optimisation for the Dolphin Animation
System 109

mouths to chatter was very different across the two mediums, with the value increasing

over the generations when viewed in VR and decreasing on the 2D monitor. Similarly,

with the dolphin’s base speed value, its value in VR decreased where as it increased on

a 2D monitor and through a t-Test we showed that there was a significant difference

between the two data sets.

We also ran t-Tests on the entire parameter space for the final generation of VR and

2D to assess the differences between them. Similarly, with the individual parameters

the parameter spaces had a P-Value less than 0.05 which proved there was a significant

difference and furthermore, the f-Value was larger than the F-Crit value emphasising

the difference between the parameter spaces. We also assessed the parameter spaces

as a whole using Euclidean and Manhattan distances, which again proved significant

differences between the two mediums.

A possible impact on experimental results could be the size, quality and resolution of

the monitor used during the experiment. As discussed in the experimental methodology

(Section 5.3) participants used a standard 2D monitor, a mouse and keyboard and

headphones for one part of the study. Had the monitor been small in size or have low

resolution this could alter the results significantly as it could prove more difficult for

the participants to become immersed within the 2D environment. A consideration for

future experiments of this nature need to be the quality of the 2D monitor that is being

used. To be able to perform a direct comparison to the VR version the monitor should

be the same or very similar resolution to the VR headset being used. This would help to

eliminate the bias towards one medium over the other cause through poor image quality.

Hou et al. showed that when a game was played on a larger screen the levels of physical

and self-presence was increased compared to a small screen. They also found that

the larger screen produced a more favourable impression on the game character. They

determined that the interaction between human influence and technological factors can

determine the sense of presence within a game [46].

Ultimately, the results from this chapter and the previous studies indicate that we do

view animation and behavioural attributes differently in VR. This might indicate that

when developing virtual characters for simulations or games, the subtleties of animation

need careful consideration depending on viewing method.

An Evaluation of Crowd Sourced Procedural Animation Optimisation for the Dolphin Animation
System 110

While we prescribed ‘realism’ as the animation and behavioural metric for this study,

the system could also be used to optimise for other descriptions such as ‘playful’,

‘erratic’, ‘fun’, ‘shy’, etc. It would be interesting to see how changing the description for

the dolphin would alter the overall parameter space. Furthermore, would we see the

same disparity between the 2D monitor and VR? We assume that many of the main

parameters would still have similar differences between the two mediums. For example,

how close a dolphin comes to the main camera would likely not change depending on

the ‘mood’ of the creature, as it was likely that this parameter is set to a level where the

user’s personal space is not invaded. On the other hand, some which may alter between

moods could be the dolphin’s faithfulness and friendliness. If we tune towards a ‘sad’

or ‘shy’ dolphin then we would assume that the dolphin would not swim up to the user

as often as a ‘playful’ one for example. These questions and presumptions could be

assessed with future developments of this system.

An Evaluation of Crowd Sourced Procedural Animation Optimisation for the Dolphin Animation
System 111

Chapter 7

Final Summary and Conclusions

7.1 Introduction

In this final chapter we will be concluding all of the previous work, by revisiting the

original thesis objectives and the issues raised through the literature review. Following

this the main findings and contributions of this research will be broken down and some

limitations will be addressed. Finally, we conclude with some final thoughts on the

research and suggest possible avenues for future work.

7.2 Reflection of the Thesis Objectives

At the start of this thesis we introduced the following research objectives:

1. Examine whether crowd sourcing can be used to optimise the parameter space of

a procedural animation system through an online experiment.

2. Conduct an experiment comparing the optimisation of a parameter space across

multiple viewing platforms — 2D Monitor and Virtual Reality.

3. Evaluate the differences in desired animation and behaviour attributes based on

viewing platform.

The first objective was primarily addressed within Chapter 4. We were able to

successfully create a system where by crowd sourcing could be used to optimise the

parameter space of a procedurally animated creature. This was done through the means

of an online experiment in which participants were asked to rate a snake on a scale of

0-5 for how long and purple its tail was. After a few generations our results showed

112

that anonymous users could anneal a creatures parameter space towards the ‘perfect’

outcome. This was backed up further by the following study described in Chapter 5 with

results from Chapter 6. This study was not anonymous but still produced statistically

significant results showing that a parameter space could be tuned towards a behavioural

metric as apposed to a physical one. This research was submitted [35], [36] with the

former claiming the award for best poster.

Our second objective was explored in Chapter 5 where we conducted an experiment

which compared the parameter space of a procedurally animated creature across viewing

platforms (2D monitor and VR). We created the experiment on the back of the results

found in Chapters 3 & 4. By bringing together the findings of both of these studies a

much more complex animation system was created and tested against the optimisation

system. This study looked into comparing the parameters spaces for the dolphin on

both a 2D monitor and within VR using a consumer Oculus Rift. Participants ran two

studies in a random order to avoid ant bias and they were asked to rate the dolphins for

how realistic they appeared to be.

The final research objectives concerned establishing if and what the differences in desired

animation and behavioural attributes were based on the viewing platform. Chapter 6

fully evaluated the results from Chapter 5’s study. The result showed that there were

statistically significant differences between a procedurally animated creatures parameter

space when tuned within different viewing platforms. Parameters were compared

between the two mediums through box plots which gives a visual representation of

each generation’s values for a specific parameter. Through the running of multiple

t-Tests we could also prove there was a difference between the two data sets. Although

these tests only compared individual parameters, we conducted a 2-Way ANOVA with

Replication Test for the whole parameter space to assess how significant the differences

were. Ultimately, the results from this study shows that we do perceive a parameter

space differently depending on the viewing platform. This means that when developing

games or simulations careful consideration into a character’s motions and behaviours

needs to be taken. This research was primarily published in a journal [39] with other

papers coming from early stages of the research [37], [38].

Final Summary and Conclusions 113

7.3 Main Findings and Contributions

In this section we present the main findings and contributions of this research.

Contribution 1 — Virtual Reality’s Influence on the Perception of Artificial

Intelligent Characters

Our first contribution comes from the two experiments which were designed to test the

user’s perception of an AI character across viewing platforms (2D and VR). Chapter 3

described the study and how our perception of an NPC does alter depending on the

viewing platform. Secondly, the level of immersion within VR seems to alter our

perception of an AI character. We also found a link to how a game is played and how

VR then affects a player’s perception of that world.

Contribution 2—A Parameter Optimisation Tool for Crowd Sourced Procedural

Animation Systems

A procedurally animated creature’s parameter space was altered towards a prescribed

goal through our system. This system was developed first as a prototype anonymous

online study (see Chapter 4). The system was then extended to be tested against a

far more complex animation system on both desktop monitor and VR. Both of these

systems used a genetic algorithm along with the online and offline crowd sourcing to

successfully anneal an animation system towards a desired goal.

Contribution 3 — Adapting a Commercial Animation System for use with our

Parameter Optimisation Tool

To thoroughly test the optimisation process we adapted a procedurally animated dolphin

model so that we could interactively tune parameters using our system. By testing the

system against a more complex animation system, we demonstrated that our optimisation

tool is capable of scaling up to commercial sized animation systems, and that we can

use it not only to optimise for morphology (Chapter 4), but also the more subjective

motion and behaviour (Chapter 5).

Contribution 4 — Evaluating Parameter Spaces Procedural Animations

Creatures

In Chapter 6 we provided definitive proof that there is a statistically significant different

Final Summary and Conclusions 114

between the parameter space of a creature when they have been tuned for a specific

viewing platform whether, it was on a 2D monitor or VR. Moreover, this indicates

that the design and creation of a virtual character’s animation system should take the

viewing platform into consideration from the early stages of implementation.

7.4 Limitations

One limitation of this research is that the method of data collection is restricted to

crowd sourcing. As this was the main source for the collection of data, we have not

considered implementing neural networks as an alternative method. Although, neural

networks have been discussed in the literature review (see Chapter 2) they were not

implemented as a part of this research. We ruled this out as an option due to the vast

amount of time and resources needed to create a neural network, their black box nature

and the difficulty of having a testable metric for something as subjective as a dolphin’s

motion and behaviour. We deemed offline and online crowd sourcing to be a distributed

and powerful form of data collection which minimised these problems. However, in

general crowd sourcing at this level can be a very slow process, and getting enough

participants proved to be difficult. In future such a system could be available for anyone

to use online, however the system would need to be designed to counter malicious or

noisy results.

There is potential for the base optimisation process to be faster by altering the genetic

algorithm or generation cycles. Both of these could potentially get similar results faster,

with far fewer participants. Another method could be to have ‘lockable’ parameters or

parameter groups, which would allow for a significant narrowing of the search space,

facilitating the ability to tune the animation system in stages, or delegating the task to

different people.

Throughout the snake and dolphin experiments we kept the genetic algorithm the same.

This was done to test if the simple GA was capable of tuning a more complex animation

system. Work into different versions of the algorithm (changing the selection method

for example) could have been valuable in optimising the algorithm to become its most

effective and efficient state. Doing this however would have taken a lot of time as each

version of the GA would need to be thoroughly tested with a set creature. Ideally, you

Final Summary and Conclusions 115

would create a base starting point for a creature and then tune it across n generations

for each iteration of the GA. This would require a lot of participants to be able to

collect enough data or a rudimentary neural network (or other automated system) to be

implemented.

We limited our research to creatures with relatively simple animation systems. Future

work could explore more complex articulated figures such as quadrupeds and bipeds,

and physically simulated articulated figures. If this system were to be evolved for

more complex characters, it would likely need to be enhanced with some form of

automated system such as a neural network for evolving the base walking motions.

Human-in-the-loop methods could still be used for the optimisation of the higher-level

behaviour and emotions of the characters, with the sub-conscious ambulatory behaviour

being controlled by an automated evolutionary process.

Finally, we could alter the user interface to better suit motion controllers like the Oculus

Touch, which would further enhance the user’s presence within the simulation. By

using the headset to look at a rating and the using the clicker to save the chosen rating

users could have found immersion breaking as the clicker would not have seemed like

a natural thing to be doing within that virtual environment. The use of hand gestures

could have provided greater levels of immersion, and enabled users to rate the dolphins

more effectively due to a more natural user interface. This could even be expanded to

allow users to select the dolphins they wish to tune, or even the part of the dolphin they

want to lock, fine tune or concentrate on (personality, tail animation, speed), which

would facilitate faster and more accurate optimisation.

7.5 Future Work

This thesis has concluded by addressing the research objectives and while these have

all been met there is still scope for further research into this area. On the back of this

research we could now propose a new set of research questions and objectives. Below

we discuss potentially directions this research could be taken in.

Final Summary and Conclusions 116

7.5.1 Framework Modification to Allow Modularisation and

Unified Development

A natural development of this research would be to further enhance the framework

described to enable developers to use it as a whole or integrate their own data collection

and manipulation methods. Allowing a developer to add a custom GA which would

better suit their needs could be a valuable addition to the framework. As shown in this

thesis, a one method fits all approach to the framework may not be the most effective

or efficient way to optimise characters for different situations. For example, whilst the

current framework works for the optimisation of a ‘simple’ animation system with only

33 adjustable parameters. It may not be as usable for a creature with 100+ parameters

as this could require a more advanced crossover method in the genetic algorithm or a

more suitable form of data collection such as a neural network (see Section 7.5.2). By

allowing developers to alter the framework to suit their needs this will further open up

the possible applications of this system.

7.5.2 Neural Networks as a Means for Data Collection

As previously discussed, we used crowd sourcing as the sole means of data collection.

Whilst this proved to be a valid method for this research it proved difficult to attain

enough willing participants to take the study. A way to overcome this would be to

develop a neural network system which utilised massive amounts of data while keeping

its own data sets much smaller. While this could be a superior method for data collection,

careful consideration into the exact methodology used for this would need to be taken.

There are many different ways to implement a neural network and each of them have

their own benefits and intricacies.

7.5.3 Optimising Creatures Towards Different Behaviours

While our research only used the realism of a creature as its animation and behavioural

metric, it could be optimised for other descriptions simultaneously. It would be

interesting to see how a parameter space differs between two dolphins one of which was

tuned to be ‘playful’ and the other ‘shy’. While we assume that many of the smaller less

significant parameters would stay the same some of the larger ones such as f riendliness

or f aith f ulness could have big differences depending on the portrayed emotion. This

Final Summary and Conclusions 117

could also potentially allow us to tune a dolphin to have multiple emotions which can

be blended between. For instance, a dolphin could appear to be very happy and playful

for the first part of a simulation but if more users or creatures were to appear within

the virtual environment it could switch to a more shy or vice-versa. Similary for other

underwater animals, this type of system could be used to tune behaviours like predation,

schooling and socialising.

7.5.4 More Complex Animation Systems

The research presented concentrates on relatively simple animation systems (the snake-

like creature and dolphin) but further work into this area could test the system against

a far more complex creature. Would our system be capable of tuning the parameter

space of a quad or biped creature? Initial development of a suitable creature would be

required with considerations into which of its parameters should be open for tuning.

If we are able to amend the system to fit a more complex animation system this could

open it up for use with any creature whether it is hypothetically real or mythical, as the

system relies on the user’s perception only. All that is required is user interpretation

and perception of the resultant behaviour.

7.5.5 Natural Parameter Manipulation using Motion Controls

Our system allows for multiple users to tweak a parameter system in parallel, either

locally or over the internet. However, while crowd-sourcing like this is powerful,

one of the key weaknesses is that it can require a large number of users in order to

achieve desired results. We are currently exploring techniques for speeding up this

process by modifying the behaviour of our underling evolutionary algorithms, and the

granularity of the rating system. Our overall aim is to allow a single user or small group

of developers to enter VR and tune a virtual creature’s behaviour in a single session.

Key to achieving this goal is to consider ways of speeding up the process of intelligently

searching a potentially vast parameter space. One approach we are currently researching

is the ability to lock individual or sets of parameters, in order to either temporarily

concentrate on a parameter sub-space or to mark certain parameters as optimal. This

could also allow users to split the optimisation task into a series of smaller parameter

spaces.

Final Summary and Conclusions 118

The Oculus Touch motion controllers facilitate ‘hand presence’, allowing users to see

their hands in VR and perform gestures like pointing, waving and thumb motions. In

our initial system as described, users simply selected ratings using arrow keys or a

remote control and had no other control over the optimisation process. With our VR

system, we are also extending our application to support Oculus Touch, allowing users

to interact using context sensitive menus and natural hand gestures.

Our current prototype allows users to select a dolphin using a pointing gesture (see

Figure 7.1), which causes them to swim up to the camera for closer inspection. With a

dolphin selected, users can then bring up an interactive menu and isolate parameters

or tweak parameters using physical sliders. We are also exploring techniques of using

other natural gestures like waving to dismiss and a ‘thumbs up’.

Figure 7.1: Screenshot from the application showing two dolphins swimming near the user
with Oculus touch hands.

Final Summary and Conclusions 119

References

[1] T. Back, ‘The Interaction of Mutation Rate, Selection, and Self-Adaptation Within a Genetic
Algorithm’, in Proc. 2nd Conference of Parallel Problem Solving from Nature, 1992, Elsevier
Science Publishers, 1992 (p. 69).

[2] J. E. Baker, ‘Adaptive Selection Methods for Genetic Algorithms’, in Proceedings of an
International Conference on Genetic Algorithms and Their Applications, Hillsdale, New Jersey,
1985, pp. 101–111 (p. 64).

[3] B. J. van Basten, S. A. Stüvel andA. Egges, ‘AHybrid Interpolation Scheme for Footprint-Driven
Walking Synthesis’, in Proceedings of Graphics Interface 2011, Canadian Human-Computer
Communications Society, 2011, pp. 9–16 (p. 16).

[4] M. Billinghurst, H. Kato and I. Poupyrev, ‘The Magicbook-Moving Seamlessly Between Reality
and Virtuality’, IEEE Computer Graphics and Applications, vol. 21, no. 3, pp. 6–8, 2001 (p. 24).

[5] F. Biocca and B. Delaney, ‘Immersive Virtual Reality Technology’, Communication in the Age
of Virtual Reality, vol. 15, p. 32, 1995 (p. 23).

[6] J. Blascovich and J. Bailenson, Infinite Reality: Avatars, Eternal Life, New Worlds, and the
Dawn of the Virtual Revolution. William Morrow & Co, 2011 (p. 22).

[7] W. R. Boot, D. P. Blakely and D. J. Simons, ‘Do action video games improve perception and
cognition?’, Frontiers in psychology, vol. 2, 2011 (p. 61).

[8] A. Bruderlin and L. Williams, ‘Motion signal processing’, in Proceedings of the 22nd annual
conference on Computer graphics and interactive techniques, ACM, 1995, pp. 97–104 (p. 15).

[9] T. Burrell, A. Montazeri, S. Monk and C. J. Taylor, ‘Feedback Control-—Based Inverse
Kinematics Solvers for a Nuclear Decommissioning Robot’, IFAC-PapersOnLine, vol. 49,
no. 21, pp. 177–184, 2016 (p. 16).

[10] S. R. Buss, ‘Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse and
Damped Least Squares Methods’, IEEE Journal of Robotics and Automation, vol. 17, no. 1-19,
p. 16, 2004 (p. 16).

[11] Q. Chao, J. Shen and X. Jin, ‘Video-Based Personalized Traffic Learning’, Graphical Models,
vol. 75, no. 6, pp. 305–317, 2013 (p. 19).

[12] K.-J. Choi and H.-S. Ko, ‘Online Motion Retargetting’, The Journal of Visualization and
Computer Animation, vol. 11, no. 5, pp. 223–235, 2000 (p. 16).

[13] A. J. Clark and J. M. Moore, ‘A Web-Based Simulation Viewer for Sharing Evolutionary
Robotics Results’, in Proceedings of the Genetic and Evolutionary Computation Conference
Companion, ACM, 2018, pp. 1357–1362 (p. 20).

[14] S. Coros, P. Beaudoin and M. Van de Panne, ‘Generalized Biped Walking Control’, ACM
Transactions on Graphics (TOG), vol. 29, no. 4, p. 130, 2010 (p. 18).

[15] J. J. Cummings and J. N. Bailenson, ‘How Immersive is Enough? A Meta-Analysis of the Effect
of Immersive Technology on User Presence’,Media Psychology, vol. 19, no. 2, pp. 272–309,
2016 (p. 24).

[16] L. Davis, ‘Handbook of genetic algorithms’, 1991 (p. 71).
[17] S. Davis, K. Nesbitt and E. Nalivaiko, ‘A Systematic Review of Cybersickness’, in Proceedings

of the 2014 Conference on Interactive Entertainment, ACM, 2014, pp. 1–9 (p. 45).
[18] ——, ‘Comparing the Onset of Cybersickness Using the Oculus Rift and Two Virtual Roller

Coasters’, in Proceedings of the 11th Australasian Conference on Interactive Entertainment (IE
2015), vol. 27, 2015, p. 30 (p. 45).

120

[19] K. Deb and D. Deb, ‘Analysing Mutation Schemes for Real-Parameter Genetic Algorithms’,
International Journal of Artificial Intelligence and Soft Computing, vol. 4, no. 1, pp. 1–28,
2014 (p. 69).

[20] D. H. Eberly, 3D Game Engine Design: A Practical Approach to Real-Time Computer Graphics.
CRC Press, 2006 (p. 16).

[21] A. C. Fang and N. S. Pollard, ‘Efficient Synthesis of Physically Valid Human Motion’, in ACM
Transactions on Graphics (TOG), ACM, vol. 22, 2003, pp. 417–426 (p. 15).

[22] M. Fêdor, ‘Application of Inverse Kinematics for Skeleton Manipulation in Real-Time’, in
Proceedings of the 19th spring conference on Computer graphics, ACM, 2003, pp. 203–212
(p. 16).

[23] T. C. Fogarty, ‘Varying the Probability of Mutation in the Genetic Algorithm’, in Proceedings
of the 3rd International Conference on Genetic Algorithms, Morgan Kaufmann Publishers Inc.,
1989, pp. 104–109 (p. 69).

[24] T. Geijtenbeek, M. van de Panne and A. F. van der Stappen, ‘Flexible Muscle-Based Locomotion
for Bipedal Creatures’, ACM Transactions on Graphics, vol. 32, no. 6, 2013 (p. 19).

[25] M. Gleicher, ‘Retargetting Motion to New Characters’, in Proceedings of the 25th annual
conference on Computer graphics and interactive techniques, ACM, 1998, pp. 33–42 (p. 14).

[26] F. Glover, ‘Tabu Search—Part I’, ORSA Journal on computing, vol. 1, no. 3, pp. 190–206, 1989
(p. 12).

[27] W. L. Goffe, G. D. Ferrier and J. Rogers, ‘Global Optimization of Statistical Functions with
Simulated Annealing’, Journal of econometrics, vol. 60, no. 1-2, pp. 65–99, 1994 (p. 13).

[28] D. E. Goldberg, ‘Genetic Algorithms in Search, Optimization, and Machine Learning, 1989’,
Reading: Addison-Wesley, 1989 (p. 69).

[29] K. Grochow, S. L. Martin, A. Hertzmann and Z. Popović, ‘Style-Based Inverse Kinematics’, in
ACM transactions on graphics (TOG), ACM, vol. 23, 2004, pp. 522–531 (p. 17).

[30] R. Grzeszczuk and D. Terzopoulos, ‘Automated Learning of Muscle-Actuated Locomotion
Through Control Abstraction’, in Proceedings of the 22Nd Annual Conference on Computer
Graphics and Interactive Techniques, ser. SIGGRAPH ’95, New York, NY, USA: ACM,
1995, pp. 63–70, isbn: 0-89791-701-4. doi: 10.1145/218380.218411. [Online]. Available:
http://doi.acm.org/10.1145/218380.218411 (p. 17).

[31] C. Harvey, K. Debattista, T. Bashford-Rogers and A. Chalmers, ‘Multi-Modal Perception for
Selective Rendering’, in Computer Graphics Forum, Wiley Online Library, vol. 36, 2017,
pp. 172–183 (p. 25).

[32] C. J. Headleand, G. Henshall, L. Ap Cenydd and W. J. Teahan, ‘Randomised Multiconnected
Environment Generator’, Bangor University, 2014 (pp. 6, 7, 31).

[33] ——, ‘Towards Real-Time Behavioral Evolution in Video Games’, in Artificial Life and
Intelligent Agents Symposium, Springer, 2014, pp. 3–16 (pp. 6, 7, 31).

[34] ——, ‘The Influence of Virtual Reality on the Perception of Artificial Intelligent Characters in
Games’, in Research and Development in Intelligent Systems XXXII, Springer, 2015, pp. 345–357
(pp. 6, 7, 31).

[35] G. Henshall, C. Headleand, W. Teahan and L. ap Cenydd, ‘Towards Crowd-Sourced Parameter
Optimisation for Procedural Animation’, Cyberworlds, 2015 (pp. 6, 7, 52, 113, 149).

[36] G. Henshall, W. Teahan and L. ap Cenydd, ‘Crowd-Sourced Optimisation of Procedural
Animation Systems’, Artificial Evolution (EA), 2017 (pp. 6, 7, 52, 113, 150).

[37] ——, ‘Crowd-Sourced Procedural Animation Optimisation: Comparing Desktop and VR
Behaviour’, Cyberworlds, 2017 (pp. 6–8, 83, 92, 113).

[38] ——, ‘Towards Real-Time Animation Optimisation in VR’, Computer Grahpcis & Visual
Computing (CGVC), 2017 (pp. 6–8, 83, 113).

[39] ——, ‘Virtual Reality’s Effect On Parameter Optimisation for Crowd-Sourced Procedural
Animation’, The Visual Computer, Springer, 2018 (pp. 6–8, 83, 113).

[40] B. Herbelin, R. Salomon, A. Serino and O. Blanke, ‘5 Neural Mechanisms of Bodily Self-
Consciousness and the Experience of Presence in Virtual Reality’,Human Computer Confluence
Transforming Human Experience Through Symbiotic Technologies, p. 80, 2016 (p. 23).

REFERENCES 121

https://doi.org/10.1145/218380.218411
http://doi.acm.org/10.1145/218380.218411

[41] J. Hesser and R. Männer, ‘Towards an Optimal Mutation Probability for Genetic Algorithms’, in
International Conference on Parallel Problem Solving from Nature, Springer, 1990, pp. 23–32
(p. 69).

[42] L. J. Hettinger, K. S. Berbaum, R. S. Kennedy, W. P. Dunlap and M. D. Nolan, ‘Vection and
Simulator Sickness’, Military Psychology, vol. 2, no. 3, p. 171, 1990 (p. 45).

[43] J. K. Hodgins and N. S. Pollard, ‘Adapting Simulated Behaviors for New Characters’, in
Proceedings of the 24th annual conference on Computer graphics and interactive techniques,
ACM Press/Addison-Wesley Publishing Co., 1997, pp. 153–162 (p. 2).

[44] J. H. Holland, Adaptation in Natural and Artificial Systems. The University of Michigan Press,
1975 (p. 62).

[45] ——, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications
to Biology, Control, and Artificial Intelligence. MIT press, 1992 (pp. 11, 69).

[46] J. Hou, Y. Nam, W. Peng and K. M. Lee, ‘Effects of Screen Size, Viewing Angle, And Players’
Immersion Tendencies on Game Experience’, Computers in Human Behavior, vol. 28, no. 2,
pp. 617–623, 2012 (p. 110).

[47] S. Houser, D. Houser, T. Donovan and J. King, Rockstar games website, https://www.
rockstargames.com, Accessed: 17/04/2018 (p. 19).

[48] J. Howe, ‘The Rise of Crowdsourcing’,Wired magazine, vol. 14, no. 6, pp. 1–4, 2006 (p. 99).
[49] W. IJsselsteijn and H. De Ridder, ‘Measuring Temporal Variations in Presence’, in Presence in

Shared Virtual Environments Workshop, University College, London, 1998, pp. 10–11 (p. 28).
[50] Indie Bytes, Vehicle Physics Toolkit, [Online]:

https://www.assetstore.unity3d.com/en/#!/content/14868, Sep. 2014 (p. 31).
[51] S. A. Jackson and M. Csikszentmihalyi, Flow in Sports. Human Kinetics, 1999 (p. 24).
[52] C. Jennett, A. L. Cox and P. Cairns, ‘Being "in the Game"’, 2008 (p. 24).
[53] R. S. Johansen, ‘Automated Semi-Procedural Animation for Character Locomotion’, Aarhus

Universitet, Institut for Informations Medievidenskab, 2009 (p. 21).
[54] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, ‘Optimization by Simulated Annealing’, science,

vol. 220, no. 4598, pp. 671–680, 1983 (p. 12).
[55] E. Kokkevis, D. Metaxas and N. I. Badler, ‘User-Controlled Physics-Based Animation for

Articulated Figures’, in Proceedings Computer Animation’96, IEEE, 1996, pp. 16–26 (p. 17).
[56] L. Kovar, M. Gleicher and F. Pighin, ‘Motion Graphs’, in ACM transactions on graphics (TOG),

ACM, vol. 21, 2002, pp. 473–482 (p. 15).
[57] O. Kramer, Genetic Algorithm Essentials. Springer, 2017, vol. 679 (p. 11).
[58] S. H. Kweon, H. J. Kweon, S.-j. Kim, X. Li, X. Liu and H. L. Kweon, ‘A Brain Wave Research

on VR (Virtual Reality) Usage: Comparison Between VR and 2D Video in EEG Measurement’,
in International Conference on Applied Human Factors and Ergonomics, Springer, 2017,
pp. 194–203 (p. 28).

[59] F. D. Lab, Procedural dungeon generation, [Online]:
http://www.futuredatalab.com/proceduraldungeon/, Oct. 2014 (p. 35).

[60] Laerd Statistics. (visited on 21.10.2017). DynamicMotion Synthesis (2011), [Online]. Available:
https://statistics.laerd.com/spss-tutorials/two-way-anova-using-spss-
statistics.php (pp. 76, 107).

[61] E. Langer, M. Djikic, M. Pirson, A. Madenci and R. Donohue, ‘Believing is Seeing: Using
Mindlessness (Mindfully) to Improve Visual Acuity’, Psychological Science, vol. 21, no. 5,
pp. 661–666, 2010 (p. 61).

[62] J. Laszlo, M. van de Panne and E. Fiume, ‘Interactive Control for Physically-Based Animation’,
in Proceedings of the 27th annual conference on Computer graphics and interactive techniques,
ACM Press/Addison-Wesley Publishing Co., 2000, pp. 201–208 (p. 17).

[63] J. M. Lee, ‘Fast K-Nearest Neighbor Searching in Static Objects’, Wireless Personal
Communications, pp. 1–14, 2017 (p. 15).

[64] J. Lee and S. Y. Shin, ‘A Hierarchical Approach to Interactive Motion Editing for Human-Like
Figures’, in Proceedings of the 26th annual conference on Computer graphics and interactive
techniques, ACM Press/Addison-Wesley Publishing Co., 1999, pp. 39–48 (p. 14).

REFERENCES 122

https://www.rockstargames.com
https://www.rockstargames.com
https://statistics.laerd.com/spss-tutorials/two-way-anova-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/two-way-anova-using-spss-statistics.php

[65] Y. Lee, K. Wampler, G. Bernstein, J. Popović and Z. Popović, ‘Motion Fields for Interactive
Character Locomotion’, in ACM Transactions on Graphics (TOG), ACM, vol. 29, 2010, p. 138
(p. 15).

[66] C. K. Liu, A. Hertzmann and Z. Popović, ‘Learning Physics-Based Motion Style with Nonlinear
Inverse Optimization’, ACM Transactions on Graphics (TOG), vol. 24, no. 3, pp. 1071–1081,
2005 (p. 18).

[67] M. Lombard and T. Ditton, ‘At the Heart of it All: The Concept of Presence’, Journal of
Computer-Mediated Communication, vol. 3, no. 2, 1997 (p. 22).

[68] MathWorks, What is Simulated Annealing?, https://uk.mathworks.com/help/gads/
what-is-simulated-annealing.html, Accessed: 2019-02-17 (p. 12).

[69] ——, What is the Genetic Algorithm, https://www.mathworks.com/help/gads/what-
is-the-genetic-algorithm.html, Accessed: 2019-02-17 (p. 10).

[70] W. S. McCulloch and W. Pitts, ‘A Logical Calculus of the Ideas Immanent in Nervous Activity’,
The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, 1943 (p. 13).

[71] M. Meredith and S. Maddock, ‘Real-Time Inverse Kinematics: The Return of the Jacobian’,
Technical Report No. CS-04-06, Department of Computer Science, University of . . ., Tech.
Rep., 2004 (p. 16).

[72] T. Merritt, K. McGee, T. L. Chuah and C. Ong, ‘Choosing Human Team-Mates: Perceived
Identity as a Moderator of Player Preference and Enjoyment’, in Proceedings of the 6th
International Conference on Foundations of Digital Games, ACM, 2011, pp. 196–203 (p. 45).

[73] L. Michailidis, E. Balaguer-Ballester and X. He, ‘Flow and Immersion in Video Games: The
Aftermath of a Conceptual Challenge’, Frontiers in Psychology, vol. 9, 2018 (p. 24).

[74] Z. Michalewicz,Genetic Algorithms + Data Structures = Evolution Programs. Springer Science
& Business Media, 2013 (p. 70).

[75] M. Mori, ‘The Uncanny Valley’, Energy, vol. 7, no. 4, pp. 33–35, 1970 (p. 26).
[76] N. Motion, Dynamic natural motion (2011), http : / / www . naturalmotion . com /

middleware/euphoria/, Accessed: (p. 19).
[77] K. Murias, K. Kwok, A. G. Castillejo, I. Liu and G. Iaria, ‘The Effects of Video Game use on

Performance in a Virtual Navigation Task’,Computers in Human Behavior, vol. 58, pp. 398–406,
2016 (p. 61).

[78] M. Nakada, H. Chen and D. Terzopoulos, ‘Deep Learning of Biomimetic Visual Perception for
Virtual Humans’, in Proceedings of the 15th ACM Symposium on Applied Perception, ACM,
2018, p. 20 (p. 20).

[79] K. L. Nowak and F. Biocca, ‘The Effect of the Agency and Anthropomorphism on Users’
Sense of Telepresence, Copresence, and Social Presence in Virtual Environments’, Presence:
Teleoperators and Virtual Environments, vol. 12, no. 5, pp. 481–494, 2003 (p. 30).

[80] Oculus, VR Best Practices Guide, [Online]:
http://static.oculus.com/sdk-downloads/documents/Oculus_Best_Practices_Guide.pdf, Jan.
2015 (p. 45).

[81] ——, Ocean rift, https://www.oculus.com/experiences/go/1249878741704255/,
Accessed: 28/09/2018 (p. 6).

[82] A. G. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis, A. Ramesh and J. Widom,
‘Crowdscreen: Algorithms for Filtering Data with Humans’, in Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, ACM, 2012, pp. 361–372 (p. 61).

[83] A. Parameswaran, S. Boyd, H. Garcia-Molina, A. Gupta, N. Polyzotis and J. Widom, ‘Optimal
Crowd-Powered Rating and Filtering Algorithms’, Proceedings of the VLDB Endowment, vol. 7,
no. 9, pp. 685–696, 2014 (p. 61).

[84] C. Regan, ‘An Investigation Into Nausea and Other Side-Effects of Head-Coupled Immersive
Virtual Reality’, Virtual Reality, vol. 1, no. 1, pp. 17–31, 1995 (p. 33).

[85] J. Ren, X. Wang, X. Jin and D. Manocha, ‘Simulating Flying Insects Using Dynamics and
Data-Driven Noise Modelling to Generate Diverse Collective Behaviors’, PloS one, vol. 11,
no. 5, e0155698, 2016 (p. 20).

[86] C.W.Reynolds, ‘Flocks, Herds and Schools: ADistributedBehavioralModel’,ACMSIGGRAPH
computer graphics, vol. 21, no. 4, pp. 25–34, 1987 (p. 2).

REFERENCES 123

https://uk.mathworks.com/help/gads/what-is-simulated-annealing.html
https://uk.mathworks.com/help/gads/what-is-simulated-annealing.html
https://www.mathworks.com/help/gads/what-is-the-genetic-algorithm.html
https://www.mathworks.com/help/gads/what-is-the-genetic-algorithm.html
http://www.naturalmotion.com/middleware/euphoria/
http://www.naturalmotion.com/middleware/euphoria/
https://www.oculus.com/experiences/go/1249878741704255/

[87] ——, ‘Steering Behaviors for Autonomous Characters’, in Game developers conference,
vol. 1999, 1999, pp. 763–782 (p. 84).

[88] G. Ridsdale, ‘Connectionist Modelling of Skill Dynamics’, The Journal of Visualization and
Computer Animation, vol. 1, no. 2, pp. 66–72, 1990 (p. 18).

[89] M. J. Schuemie, P. Van Der Straaten, M. Krijn and C. A. Van Der Mast, ‘Research on Presence
in Virtual Reality: A Survey’, CyberPsychology & Behavior, vol. 4, no. 2, pp. 183–201, 2001
(p. 27).

[90] R. Schwarz, 10 Creepy Examples of the Uncanny Valley, https : / / www .
strangerdimensions.com/2013/11/25/10-creepy-examples-uncanny-valley/,
Accessed: 02/2019 (p. 27).

[91] O. Shaer, E. Hornecker et al., ‘Tangible User Interfaces: Past, Present, and Future Directions’,
Foundations and Trends® in Human–Computer Interaction, vol. 3, no. 1–2, pp. 4–137, 2010
(p. 25).

[92] K. Sims, ‘Evolving Virtual Creatures’, in Proceedings of the 21st annual conference on
Computer graphics and interactive techniques, ACM, 1994, pp. 15–22 (p. 18).

[93] M. Slater and A. Steed, ‘A Virtual Presence Counter’, Presence: Teleoperators & Virtual
Environments, vol. 9, no. 5, pp. 413–434, 2000 (p. 28).

[94] M. Slater and M. Usoh, ‘Representations Systems, Perceptual Position, and Presence in
Immersive Virtual Environments’, Presence: Teleoperators & Virtual Environments, vol. 2,
no. 3, pp. 221–233, 1993 (p. 22).

[95] M. Slater, M. Usoh and A. Steed, ‘Depth of Presence in Virtual Environments’, Presence:
Teleoperators & Virtual Environments, vol. 3, no. 2, pp. 130–144, 1994 (p. 26).

[96] M. Slater and S. Wilbur, ‘A Framework for Immersive Virtual Environments (FIVE):
Speculations on the Role of Presence in Virtual Environments’, Presence: Teleoperators
& Virtual Environments, vol. 6, no. 6, pp. 603–616, 1997 (p. 24).

[97] R. H. So, W. Lo and A. T. Ho, ‘Effects of Navigation Speed on Motion Sickness Caused by
an Immersive Virtual Environment’, Human Factors: The Journal of the Human Factors and
Ergonomics Society, vol. 43, no. 3, pp. 452–461, 2001 (p. 45).

[98] Steam VR, Knuckles ev2: What’s new, https://steamcommunity.com/sharedfiles/
filedetails/?id=1411984190, Accessed: 26/09/2018 (p. 25).

[99] T. A. Stoffregen, E. Faugloire, K. Yoshida, M. B. Flanagan and O. Merhi, ‘Motion Sickness and
Postural Sway in Console Video Games’, Human Factors: The Journal of the Human Factors
and Ergonomics Society, vol. 50, no. 2, pp. 322–331, 2008 (p. 45).

[100] I. E. Sutherland, ‘The Ultimate Display’, Multimedia: From Wagner to virtual reality,
pp. 506–508, 1965 (p. 22).

[101] Unity Asset Store, Fog volume 3, https://assetstore.unity.com/packages/tools/
particles-effects/fog-volume-3-81802 (p. 88).

[102] Unity Technologies, Car Tutorial, [Online]:
https://www.assetstore.unity3d.com/en/#!/content/10, Dec. 2012 (p. 31).

[103] ——, Unity Documentation Trail Renderer, https://docs.unity3d.com/Manual/class-
TrailRenderer.html, Accessed: 2015-11-22 (p. 53).

[104] M. Uysal, ‘A Comparison of Heuristic Search Algorithms for Predicting the Effort Component
of Software Projects’, in 2008 International Conference on Computational Intelligence for
Modelling Control & Automation, IEEE, 2008, pp. 92–97 (p. 14).

[105] G. Villarrubia, J. F. De Paz, P. Chamoso and F. De la Prieta, ‘Artificial Neural Networks used
in Optimization Problems’, Neurocomputing, vol. 272, pp. 10–16, 2018 (p. 13).

[106] M. D. Vose, ‘Modeling Simple Genetic Algorithms’, in Foundations of genetic algorithms,
vol. 2, Elsevier, 1993, pp. 63–73 (p. 11).

[107] J. M.Wang, D. J. Fleet and A. Hertzmann, ‘OptimizingWalking Controllers’, ACMTransactions
on Graphics (TOG), vol. 28, no. 5, p. 168, 2009 (p. 19).

[108] D.R.Westhead,D. E.Clark andC.W.Murray, ‘AComparison ofHeuristic SearchAlgorithms for
Molecular Docking’, Journal of Computer-Aided Molecular Design, vol. 11, no. 3, pp. 209–228,
1997 (p. 13).

REFERENCES 124

https://www.strangerdimensions.com/2013/11/25/10-creepy-examples-uncanny-valley/
https://www.strangerdimensions.com/2013/11/25/10-creepy-examples-uncanny-valley/
https://steamcommunity.com/sharedfiles/filedetails/?id=1411984190
https://steamcommunity.com/sharedfiles/filedetails/?id=1411984190
https://assetstore.unity.com/packages/tools/particles-effects/fog-volume-3-81802
https://assetstore.unity.com/packages/tools/particles-effects/fog-volume-3-81802
https://docs.unity3d.com/Manual/class-TrailRenderer.html
https://docs.unity3d.com/Manual/class-TrailRenderer.html

[109] D. Whitley, ‘A Genetic Algorithm Tutorial’, Statistics and computing, vol. 4, no. 2, pp. 65–85,
1994 (p. 11).

[110] L. D. Whitley, A. E. Howe, S. Rana, J.-P. Watson and L. Barbulescu, ‘Comparing Heuristic
Search Methods and Genetic Algorithms for Warehouse Scheduling’, in SMC’98 Conference
Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.
98CH36218), IEEE, vol. 3, 1998, pp. 2430–2435 (p. 14).

[111] A. Witkin and Z. Popovic, ‘Motion Warping’, in Proceedings of the 22nd annual conference on
Computer graphics and interactive techniques, ACM, 1995, pp. 105–108 (p. 14).

[112] B. G. Witmer and M. J. Singer, ‘Measuring Presence in Virtual Environments: A Presence
Questionnaire’, Presence, vol. 7, no. 3, pp. 225–240, 1998 (p. 27).

[113] J.-c. Wu and Z. Popović, ‘Realistic Modeling of Bird Flight Animations’, in ACM SIGGRAPH
2003 Papers, ser. SIGGRAPH ’03, San Diego, California: ACM, 2003, pp. 888–895, isbn:
1-58113-709-5. doi: 10.1145/1201775.882360. [Online]. Available: http://doi.acm.
org/10.1145/1201775.882360 (p. 17).

[114] K. Yin, S. Coros, P. Beaudoin and M. van de Panne, ‘Continuation methods for adapting
simulated skills’, in ACM Transactions on Graphics (TOG), ACM, vol. 27, 2008, p. 81 (p. 21).

[115] K. Yin, K. Loken and M. Van de Panne, ‘Simbicon: Simple Biped Locomotion Control’, in
ACM Transactions on Graphics (TOG), ACM, vol. 26, 2007, p. 105 (p. 19).

[116] H. Zhang, S. Starke, T. Komura and J. Saito, ‘Mode-Adaptive Neural Networks for Quadruped
Motion Control’, ACM Transactions on Graphics (TOG), vol. 37, no. 4, p. 145, 2018 (p. 20).

[117] C. Zhu, K. Muraoka, T. Kawabata, C. Cao, T. Fujimoto and N. Chiba, ‘Real-time Animation of
Bird Flight Based on Aerodynamics’, The Journal of the Society for Art and Science, vol. 5,
no. 1, pp. 1–10, 2006. doi: 10.3756/artsci.5.1 (p. 18).

[118] K. Zibrek, E. Kokkinara and R. McDonnell, ‘Evaluating the Response to Virtual Characters by
Using a Social Behavioral Task’, 2017 (p. 26).

[119] ——, ‘The Effect of Realistic Appearance of Virtual Characters in Immersive Environments-
Does the Character’s Personality Play a Role?’, IEEE transactions on visualization and computer
graphics, vol. 24, no. 4, pp. 1681–1690, 2018 (p. 26).

REFERENCES 125

https://doi.org/10.1145/1201775.882360
http://doi.acm.org/10.1145/1201775.882360
http://doi.acm.org/10.1145/1201775.882360
https://doi.org/10.3756/artsci.5.1

Appendix A

Genetic Algorithm Source Code

import csv

import urllib

import urllib2

import random

import time

import datetime

import os, sys

def getKey(item):

----- Must be position of Rating -----

return item[34]

ts = time.time()

st = datetime.datetime.fromtimestamp(ts).strftime(’%Y-%m-%d.%H-%M’)

pUrl = "http://shadowraider.com/unity/parameters.100_3D.txt"

rUrl = "http://shadowraider.com/unity/nulistcsv.php?type=100_3D"

Parameters = "/Users/Gareth/Dropbox/University/PhD/TestResults/

100_3D/Parameters/" + st + ".txt"

Ratings = "/Users/Gareth/Dropbox/University/PhD/TestResults/100_3D/

SavedRatings/" + st + ".csv"

urllib.urlretrieve(pUrl, Parameters)

urllib.urlretrieve(rUrl, Ratings)

with open(Ratings, ’rb’) as f:

reader = csv.reader(f)

lines = list(reader)

newLines = list()

126

----- Re-ordering the parameters so they are read correctly

lineNo = [0, 21, 8, 12, 18, 19, 13, 28, 9, 14, 20, 7, 24, 22, 25,

23, 29, 30, 31, 32, 11, 10, 26, 1,

2, 3, 35, 34, 33, 5, 4, 15, 16,

17, 6, 27]

i = 0

for line in lines:

newLine = list()

while i < len(lineNo):

newLine.append(line[i])

i += 1

newLines.append(newLine)

lines = newLines

with open(Parameters , ’rb’) as f:

reader = csv.reader(f)

params = list(reader)

counter = int(params[-1][0]) + 1

k = 0

while k < len(lines):

lines[k].pop(0)

k += 1

----- How many results are needed to run the generation -----

if (k > 100):

finalList = list()

avg = 0

while 0 < len(lines):

count = 0

j = 0

currentLine = lines[0][0]

while j < len(lines):

if currentLine == lines[j][0]:

temp = list()

count += 1

----- The position of the Ratings -----

Genetic Algorithm Source Code 127

avg = avg + int(lines[j][34])

temp.append(lines.pop(j))

else:

j += 1

avg = avg / (count * 1.0)

temp[0][34] = avg

finalList.append(temp[0])

avg = 0

finalList = sorted(finalList , key=getKey, reverse=True)

----- Adding the fittest 25\% to the new generation -----

percentage = len(finalList)/float(100)*25

nextGen = list()

i = 0

while i < percentage:

----- The position of the Ratings -----

nextGen.append(finalList[i] [:34])

i += 1

i = 0

tFitness = 0

while i < len(finalList):

----- The position of the Ratings -----

tFitness += finalList[i][34]

i += 1

ID = counter

while ID < counter + 100:

P1 = list()

def RouletteWheel1 (finalList):

i = 0

pick = random.uniform(0, tFitness)

current = 0

while i < len(finalList):

----- The position of the Ratings -----

current += finalList[i][34]

if current > pick:

----- The position of the Ratings -----

Genetic Algorithm Source Code 128

P1.extend(finalList[i][1:34])

break

i += 1

P2 = list()

def RouletteWheel2 (finalList):

i = 0

pick = random.uniform(0, tFitness)

current = 0

while i < len(finalList):

----- The position of the Ratings -----

current += finalList[i][34]

if current > pick:

----- The position of the Ratings -----

P2.extend(finalList[i][1:34])

break

i += 1

RouletteWheel1(finalList)

RouletteWheel2(finalList)

----- Change depending on number of Parameters -----

cp = random.randint(1, 34)

C1 = list()

C1.extend(P1[:cp])

C1.extend(P2[cp:])

C2 = list()

C2.extend(P2[:cp])

C2.extend(P1[cp:])

----- Running a mutation function on each parameter for

both children -----

i = 0

while i < len(C1):

chance = random.randint(1, 100)

if chance == 1:

mutate = random.uniform(-0.01, 0.01)

C1[i] = round(float(C2[i]) + mutate, 2)

Genetic Algorithm Source Code 129

if (C1[i] < 0):

C1[i] = 0

i += 1

else:

i += 1

i = 0

while i < len(C2):

chance = random.randint(1, 100)

if chance == 1:

mutate = random.uniform(-0.01, 0.01)

C2[i] = round(float(C2[i]) + mutate, 2)

if (C2[i] < 0):

C2[i] = 0

i += 1

else:

i += 1

C1.insert(0, ID)

ID += 1

C2.insert(0, ID)

ID += 1

nextGen.append(C1)

nextGen.append(C2)

upload = ""

i = 0

----- Populating the new generation with children -----

while i < len(nextGen):

j = 0

while j < len(nextGen[i]):

upload += str(nextGen[i][j]) + ", "

j += 1

upload += str(nextGen[i][j]) + "\n"

i += 1

url = ’http://www.shadowraider.com/unity/change.php?type=100_3D’

values = {’data’ : upload }

Genetic Algorithm Source Code 130

data = urllib.urlencode(values)

req = urllib2.Request(url, data)

response = urllib2.urlopen(req)

urllib2.urlopen(’http://shadowraider.com/unity/nuclear.php?type=

100_3D’)

else:

os.remove("/Users/Gaz/Dropbox/University/PhD/TestResults/100_3D/

Parameters/" + st + ".txt")

os.remove("/Users/Gaz/Dropbox/University/PhD/TestResults/100_3D/

SavedRatings/" + st + ".csv")

print("Done")

Genetic Algorithm Source Code 131

Appendix B

A Dolphin Models Parameters

To aid the understanding of how each parameter effects the dolphins behaviour they

have been broken down into five section: Body, Brain, Mouth, Tail.

B.1 Body

Barrel Roll Speed Range Min:
Range - 100 - 600

Granularity - 1

Type - float

Description - Minimum speed of a barrel roll (how it spins around the x axis). A

random speed between min and max is chosen every time "change time" triggers.

Barrel Roll Speed Range Max:
Range - barrelRollSpeedRangeMin - 600

Granularity - 1

Description - Maximum speed of a barrel roll (how it spins around the x axis). A

random speed between min and max is chosen every time "change time" triggers.

Default Rotate To Target Speed:
Range - 0.00 - 10.00

Granularity - 0.01

Description - Speed that dolphin rotates towards target in the water.

Default Speed:
Range - 0.00 - 5.00

132

Granularity - 0.01

Description - Base swim speed of the dolphin.

Default Turn Speed:
Range - 0.00 - 5.00

Granularity - 0.01

Description - Speed that dolphin locally rotates body (undulation of backbone,

driven by frequency and amplitude).

Fastest Speed:
Range - defaultSpeed - 5.00

Granularity - 0.01

Description - Fastest swim speed of the dolphin (every time "change time"

triggers, dolphin will accelerate to fastest speed, then slow down until default

speed is reached).

Acceleration:
Range - 0.00 - 10.00

Granularity - 0.01

Description - How fast dolphin can accelerate to target swim speed.

Near Player Speed:
Range - 0.00 - defaultSpeed

Granularity - 0.01

Description - Dolphin’s target speed when near the player (usually much slower).

Swim Amplitude Min X:
Range - 0.00 - 100.00

Granularity - 0.01

Description - Local amplitude of dolphin as it swims through water (side to side).

Swim Amplitude Max X:
Range - swimAmplitudeMinX - 100.00

Granularity - 0.01

Description - Local amplitude of dolphin as it swims through water (side to side).

A Dolphin Models Parameters 133

Swim Amplitude Min Y:
Range - 0.00 - 150.00

Granularity - 0.01

Description - Local amplitude of dolphin as it swims through water (up and

down).

Swim Amplitude Max Y:
Range - swimAmplitudeMinY - 150.00

Granularity - 0.01

Description - Local amplitude of dolphin as it swims through water (up and

down).

Swim Frequency Min X:
Range - 0.00 - 10.00

Granularity - 0.01

Description - Local frequency of dolphin as it swims through water (side to side).

Swim Frequency Max X:
Range - swimFrequencyMinX - 10.00

Granularity - 0.01

Description - Local frequency of dolphin as it swims through water (side to side).

Swim Frequency Min Y:
Range - 0.00 - 10.00

Granularity - 0.01

Description - Local frequency of dolphin as it swims through water (up and

down).

Swim Frequency Max Y:
Range - swimFrequencyMinY - 10.00

Granularity - 0.01

Description - Local frequency of dolphin as it swims through water (up and

down).

A Dolphin Models Parameters 134

B.2 Brain

Barrel Role Chance:
Range - 100 - 1500

Granularity - 1

Description - Chance of triggering a barrel roll each frame.

Change Time:
Range - 1.00 - 10.00

Granularity - 0.01

Description - How often a dolphin changes all its range parameters (barrel roll

speed, target position, chattering speed, mouth open time, local frequency and

acceleration). Also causes it to kick its tail and accelerate to fastest speed.

Faithfulness:
Range - 0 - 1000

Granularity - 1

Description - Chance that dolphin will lose interest in the player, make random

position in water the target.

Friendliness:
Range - 0 - 1000

Granularity - 1

Description - Chance that dolphin will take interest in the player, make player

the target.

Near Player Distance:
Range - 0.00 - 8.00

Granularity - 0.01 Description - Distance to player before it considers itself

close. Used for switching target speed from default to near player speed.

Near Player Min Distance:
Range - 0.00 - 3.00

Granularity - 0.01

A Dolphin Models Parameters 135

Description - The closest the dolphin can get to player before repulse force is

applied to push away.

Near Player Repulse Force:
Range - 0.00 - 1.00

Granularity - 0.01

Description - Force applied when dolphin is too close to it push away.

B.3 Mouth

Chattering Speed Min:
Range - 1.00 - 50.00

Granularity - 0.01

Description - Max speed that dolphin chatters mouth (opens and closes).

Chattering Speed Max:
Range - chatteringSpeedMin - 50.00

Granularity - 0.01

Description - Min speed that dolphin chatters mouth (opens and closes).

Mouth Open Chance:
Range - 0 - 1000

Granularity - 1

Description - Chance every frame that dolphin opens mouth.

Mouth Open Time Range Min:
Range - 0.00 - 2.00

Granularity - 0.01

Description - Min time dolphin chatters.

Mouth Open Time Range Max:
Range - mouthOpenTimeRangeMin - 2.00

Granularity - 0.01

Description - Max time dolphin chatters.

A Dolphin Models Parameters 136

B.4 Tail

Tail Rest Amplitude:
Range - tailRestAmplitude - 120.00

Granularity - 0.01

Description - When "change time" triggers, dolphin will accelerate to max speed,

with tail kicking at this amplitude (frequency is tied to overall swim frequency).

Tail Rest Amplitude:
Range - 0.00 - 120.00

Granularity - 0.01 Description - The amplitude that the tail kicks when at rest.

Tail Amplitude Decay:
Range - 0.00 - 50.00

Granularity - 0.01

Description - Rate that tail decays from max amplitude to rest amplitude.

A Dolphin Models Parameters 137

Appendix C

Snakes Experiment Graphs

This section includes box plots for all 7 parameters used within the snake system.

Figure C.1: All graphs for snake study

Generation
0 1 2 3 4 5 6 7 8 9

T
ai

l L
en

gt
h

V
al

ue

1

1.5

2

2.5

3

3.5

4

4.5

5

(a) Tail Length Trends

Generation
0 1 2 3 4 5 6 7 8 9

T
ar

ge
t M

ov
e

V
al

ue

1

1.5

2

2.5

3

3.5

(b) Target Move Trends

Generation
0 1 2 3 4 5 6 7 8 9

T
ur

n
S

pe
ed

 V
al

ue

3.5

4

4.5

5

5.5

6

(c) Turn Speed Trends

Generation
0 1 2 3 4 5 6 7 8 9

M
ov

e
S

pe
ed

 V
al

ue

5

10

15

20

(d) Move Speed Trends

138

Generation
0 1 2 3 4 5 6 7 8 9

R
ed

 V
al

ue

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) Red 2D Trends

Generation
0 1 2 3 4 5 6 7 8 9

G
re

en
 V

al
ue

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) Green VR Trends

Generation
0 1 2 3 4 5 6 7 8 9

B
lu

e
V

al
ue

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(g) Blue 2D Trends

Snakes Experiment Graphs 139

Appendix D

2D Vs. VR Experiment Graphs

This section includes box plots for all 33 parameters used within the Dolphin system.

They are in alphabetical order with the 2D version on the left and VR on the right.

Figure D.1: All graphs for 2D Vs. VR study

Generation
1 2 3 4 5 6

B
ar

re
l R

ol
l C

ha
nc

e
V

al
ue

200

400

600

800

1000

1200

1400

(a) Barrell Roll Chance 2D Trends

Generation
1 2 3 4 5 6

B
ar

re
l R

ol
l C

ha
nc

e
V

al
ue

200

400

600

800

1000

1200

1400

(b) Barrell Roll Chance VR Trends

Generation
1 2 3 4 5 6

B
ar

re
l R

ol
l S

pe
ed

 R
an

ge
 M

in
 V

al
ue

100

150

200

250

300

350

400

450

500

550

600

(c) Barrel Roll Speed Range Min 2D Trends

Generation
1 2 3 4 5 6

B
ar

re
l R

ol
l S

pe
ed

 R
an

ge
 M

in
 V

al
ue

100

150

200

250

300

350

400

450

500

550

600

(d) Barrel Roll Speed Range Min VR Trends

140

Generation
1 2 3 4 5 6

B
ar

re
l R

ol
l S

pe
ed

 R
an

ge
 M

ax
 V

al
ue

200

250

300

350

400

450

500

550

600

(e) Barrel Roll Speed Range Max 2D Trends

Generation
1 2 3 4 5 6

B
ar

re
l R

ol
l S

pe
ed

 R
an

ge
 M

ax
 V

al
ue

200

250

300

350

400

450

500

550

600

(f) Barrel Roll Speed Range Max VR Trends

Generation
1 2 3 4 5 6

C
ha

tte
rin

g
S

pe
ed

 M
ax

 V
al

ue

15

20

25

30

35

40

45

50

(g) Chattering Speed Max 2D Trends

Generation
1 2 3 4 5 6

C
ha

tte
rin

g
S

pe
ed

 M
ax

 V
al

ue

15

20

25

30

35

40

45

50

(h) Chattering Speed Max VR Trends

Generation
1 2 3 4 5 6

C
ha

tte
rin

g
S

pe
ed

 M
in

 V
al

ue

0

5

10

15

20

25

30

35

40

45

50

(i) Chattering Speed Min 2D Trends

Generation
1 2 3 4 5 6

C
ha

tte
rin

g
S

pe
ed

 M
in

 V
al

ue

0

5

10

15

20

25

30

35

40

45

50

(j) Chattering Speed Min VR Trends

Generation
1 2 3 4 5 6

C
ha

ng
e

T
im

e
V

al
ue

1

2

3

4

5

6

7

8

9

10

(k) Change Time 2D Trends

Generation
1 2 3 4 5 6

C
ha

ng
e

T
im

e
V

al
ue

1

2

3

4

5

6

7

8

9

10

(l) Change Time VR Trends

2D Vs. VR Experiment Graphs 141

Generation
1 2 3 4 5 6

D
ef

au
lt

R
ot

at
e

to
 T

ar
ge

t S
pe

ed
 V

al
ue

0

1

2

3

4

5

6

7

8

9

10

(m) Default Rotate to Target Speed 2D Trends

Generation
1 2 3 4 5 6

D
ef

au
lt

R
ot

at
e

to
 T

ar
ge

t S
pe

ed
 V

al
ue

0

1

2

3

4

5

6

7

8

9

10

(n) Default Rotate to Target Speed VR Trends

Generation
1 2 3 4 5 6

D
ef

au
lt

S
pe

ed
 V

al
ue

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(o) Default Speed 2D Trends

Generation
1 2 3 4 5 6

D
ef

au
lt

S
pe

ed
 V

al
ue

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(p) Default Speed VR Trends

Generation
1 2 3 4 5 6

D
ef

au
lt

T
ur

n
S

pe
ed

 V
al

ue

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(q) Default Turn Speed 2D Trends

Generation
1 2 3 4 5 6

D
ef

au
lt

T
ur

n
S

pe
ed

 V
al

ue

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(r) Default Turn Speed VR Trends

Generation
1 2 3 4 5 6

F
ai

th
fu

ln
es

s
V

al
ue

0

100

200

300

400

500

600

700

800

900

1000

(s) Faithfullness 2D Trends

Generation
1 2 3 4 5 6

F
ai

th
fu

ln
es

s
V

al
ue

0

100

200

300

400

500

600

700

800

900

1000

(t) Faithfulness VR Trends

2D Vs. VR Experiment Graphs 142

Generation
1 2 3 4 5 6

F
rie

nd
lin

es
s

V
al

ue

0

100

200

300

400

500

600

700

800

900

1000

(u) Friendliness 2D Trends

Generation
1 2 3 4 5 6

F
rie

nd
lin

es
s

V
al

ue

0

100

200

300

400

500

600

700

800

900

1000

(v) Friendliness VR Trends

Generation
1 2 3 4 5 6

F
as

te
st

 S
pe

ed
 V

al
ue

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(w) Fastest Speed 2D Trends

Generation
1 2 3 4 5 6

F
as

te
st

 S
pe

ed
 V

al
ue

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(x) Fastest Speed VR Trends

Generation
1 2 3 4 5 6

A
cc

el
er

at
io

n
V

al
ue

0

1

2

3

4

5

6

7

8

9

10

(y) Max Acceleration 2D Trends

Generation
1 2 3 4 5 6

A
cc

el
er

at
io

n
V

al
ue

0

1

2

3

4

5

6

7

8

9

10

(z) Max Acceleration VR Trends

Generation
1 2 3 4 5 6

R
ep

ul
si

on
 D

is
ta

nc
e

V
al

ue

0

0.5

1

1.5

2

2.5

3

(aa) Min Distance

Generation
1 2 3 4 5 6

R
ep

ul
si

on
 D

is
ta

nc
e

V
al

ue

0

0.5

1

1.5

2

2.5

3

(ab) Min Distance VR Trends

2D Vs. VR Experiment Graphs 143

Generation
1 2 3 4 5 6

M
ou

th
 O

pe
n

C
ha

nc
e

V
al

ue

0

100

200

300

400

500

600

700

800

900

1000

(ac) Mouth Open Chance 2D Trends

Generation
1 2 3 4 5 6

M
ou

th
 O

pe
n

C
ha

nc
e

V
al

ue

0

100

200

300

400

500

600

700

800

900

1000

(ad) Mouth Open Chance VR Trends

Generation
1 2 3 4 5 6

M
ou

th
 O

pe
n

T
im

e
R

an
ge

 M
ax

 V
al

ue

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(ae) Mouth Open Time Range Max 2D Trends

Generation
1 2 3 4 5 6

M
ou

th
 O

pe
n

T
im

e
R

an
ge

 M
ax

 V
al

ue

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(af) Mouth Open Time Range Max VR Trends

Generation
1 2 3 4 5 6

M
ou

th
 O

pe
n

T
im

e
R

an
ge

 M
in

 V
al

ue

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(ag) Mouth Open Time Range Min 2D Trends

Generation
1 2 3 4 5 6

M
ou

th
 O

pe
n

T
im

e
R

an
ge

 M
in

 V
al

ue

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(ah) Mouth Open Time Range Min VR Trends

Generation
1 2 3 4 5 6

N
ea

r
P

la
ye

r
D

is
ta

nc
e

V
al

ue

0

1

2

3

4

5

6

7

8

(ai) Near Player Distance 2D Trends

Generation
1 2 3 4 5 6

N
ea

r
P

la
ye

r
D

is
ta

nc
e

V
al

ue

0

1

2

3

4

5

6

7

8

(aj) Near Player Distance VR Trends

2D Vs. VR Experiment Graphs 144

Generation
1 2 3 4 5 6

N
ea

r
P

la
ye

r
S

pe
ed

 V
al

ue

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(ak) Near Player Speed 2D Trends

Generation
1 2 3 4 5 6

N
ea

r
P

la
ye

r
S

pe
ed

 V
al

ue

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(al) Near Player Speed VR Trends

Generation
1 2 3 4 5 6

R
ep

ul
se

 F
or

ce
 V

al
ue

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(am) Repulse Force 2D Trends

Generation
1 2 3 4 5 6

R
ep

ul
se

 F
or

ce
 V

al
ue

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(an) Repulse Force VR Trends

Generation
1 2 3 4 5 6

S
w

im
 A

m
pl

itu
te

 M
ax

 X
 V

al
ue

30

40

50

60

70

80

90

100

(ao) Swim Amplitude Max X 2D Trends

Generation
1 2 3 4 5 6

S
w

im
 A

m
pl

itu
te

 M
ax

 X
 V

al
ue

30

40

50

60

70

80

90

100

(ap) Swim Amplitude Max X VR Trends

Generation
1 2 3 4 5 6

S
w

im
 A

m
pl

itu
te

 M
ax

 Y
 V

al
ue

20

40

60

80

100

120

140

(aq) Swim Amplitude Max Y 2D Trends

Generation
1 2 3 4 5 6

S
w

im
 A

m
pl

itu
te

 M
ax

 Y
 V

al
ue

20

40

60

80

100

120

140

(ar) Swim Amplitude Max Y VR Trends

2D Vs. VR Experiment Graphs 145

Generation
1 2 3 4 5 6

S
w

im
 A

m
pl

itu
te

 M
in

 X
 V

al
ue

0

10

20

30

40

50

60

70

80

90

100

(as) Swim Amplitude Min X 2D Trends

Generation
1 2 3 4 5 6

S
w

im
 A

m
pl

itu
te

 M
in

 X
 V

al
ue

0

10

20

30

40

50

60

70

80

90

100

(at) Swim Amplitude Min X VR Trends

Generation
1 2 3 4 5 6

S
w

im
 A

m
pl

itu
te

 M
in

 Y
 V

al
ue

0

50

100

150

(au) Swim Amplitude Min Y 2D Trends

Generation
1 2 3 4 5 6

S
w

im
 A

m
pl

itu
te

 M
in

 Y
 V

al
ue

0

50

100

150

(av) Swim Amplitude Min Y VR Trends

Generation
1 2 3 4 5 6

S
pe

ed
 C

ha
ng

e
C

ha
nc

e
V

al
ue

0

50

100

150

200

250

300

350

400

450

500

(aw) Speed Chance Chance 2D Trends

Generation
1 2 3 4 5 6

S
pe

ed
 C

ha
ng

e
C

ha
nc

e
V

al
ue

0

50

100

150

200

250

300

350

400

450

500

(ax) Speed Change Chance VR Trends

Generation
1 2 3 4 5 6

S
pe

ed
 D

ec
ay

 V
al

ue

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(ay) Speed Decay 2D Trends

Generation
1 2 3 4 5 6

S
pe

ed
 D

ec
ay

 V
al

ue

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(az) Speed Decay VR Trends

2D Vs. VR Experiment Graphs 146

Generation
1 2 3 4 5 6

S
w

im
 F

re
qu

en
cy

 R
an

ge
 M

ax
 X

 V
al

ue

1

2

3

4

5

6

7

8

9

10

(ba) Swim Frequency Max X 2D Trends

Generation
1 2 3 4 5 6

S
w

im
 F

re
qu

en
cy

 R
an

ge
 M

ax
 X

 V
al

ue

1

2

3

4

5

6

7

8

9

10

(bb) Swim Frequency Max X VR Trends

Generation
1 2 3 4 5 6

S
w

im
 F

re
qu

en
cy

 R
an

ge
 M

ax
 Y

 V
al

ue

1

2

3

4

5

6

7

8

9

10

(bc) Swim Frequency Max Y 2D Trends

Generation
1 2 3 4 5 6

S
w

im
 F

re
qu

en
cy

 R
an

ge
 M

ax
 Y

 V
al

ue

1

2

3

4

5

6

7

8

9

10

(bd) Swim Frequency Max Y VR Trends

Generation
1 2 3 4 5 6

S
w

im
 F

re
qu

en
cy

 R
an

ge
 M

in
 X

 V
al

ue

0

1

2

3

4

5

6

7

8

9

10

(be) Swim Frequency Min X 2D Trends

Generation
1 2 3 4 5 6

S
w

im
 F

re
qu

en
cy

 R
an

ge
 M

in
 X

 V
al

ue

0

1

2

3

4

5

6

7

8

9

10

(bf) Swim Frequency Min X VR Trends

Generation
1 2 3 4 5 6

S
w

im
 F

re
qu

en
cy

 R
an

ge
 M

in
 Y

 V
al

ue

0

1

2

3

4

5

6

7

8

9

10

(bg) Swim Frequency Min X 2D Trends

Generation
1 2 3 4 5 6

S
w

im
 F

re
qu

en
cy

 R
an

ge
 M

in
 X

 V
al

ue

0

1

2

3

4

5

6

7

8

9

10

(bh) Swim Frequency Min X VR Trends

2D Vs. VR Experiment Graphs 147

Generation
1 2 3 4 5 6

T
ai

l A
m

pl
itu

de
 D

ec
ay

 V
al

ue

0

5

10

15

20

25

30

35

40

45

50

(bi) Tail Amplitude Decay 2D Trends

Generation
1 2 3 4 5 6

T
ai

l A
m

pl
itu

de
 D

ec
ay

 V
al

ue

0

5

10

15

20

25

30

35

40

45

50

(bj) Tail Amplitude Decay VR Trends

Generation
1 2 3 4 5 6

T
ai

l M
ax

 A
m

pl
itu

de
 V

al
ue

20

30

40

50

60

70

80

90

100

110

120

(bk) Tail Max Amplitude 2D Trends

Generation
1 2 3 4 5 6

T
ai

l M
ax

 A
m

pl
itu

de
 V

al
ue

20

30

40

50

60

70

80

90

100

110

120

(bl) Tail Max Amplitude VR Trends

Generation
1 2 3 4 5 6

T
ai

l R
es

t A
m

pl
itu

de
 V

al
ue

0

20

40

60

80

100

120

(bm) Tail Rest Amplitude 2D Trends

Generation
1 2 3 4 5 6

T
ai

l R
es

t A
m

pl
itu

de
 V

al
ue

0

20

40

60

80

100

120

(bn) Tail Rest Amplitude VR Trends

2D Vs. VR Experiment Graphs 148

Appendix E

Cyberworlds 2015 Conference Poster

[35]

Introduction
Procedural animation potentially allows for the automatic
generation of limitless and situated organic animation in
real-time. However, as procedural animation systems
become more complex, the parameter space can very
quickly become vast and difficult to optimise. We aim to
crowd-source the tuning of the parameter space using an
interactive web application.

For more details or to take part in
future experiments please take a card
and email me for more information.

Abstract
We describe a web-based simulation that enables multiple users to interactively rate the
animation of a randomly generated population of virtual creatures based on a prescribed
criteria. A record of each individual rating is stored and used to seed subsequent generations,
thereby guiding the system towards exhibiting a desired type of motion or behaviour.

Initial Population
At the start of our simulation, an initial random population
of n candidate snakes are generated. During each instance
of the experiment, the client machine retrieves and checks
out two candidate creatures. For the purpose of ranking,
each snake is identified by a coloured marker.

Ratings System
The candidate creatures are ranked by the user based on a
scale of 0 (low) to 5 (high). Using 0 - 5 ensures that the
system always has a value above or below the median,
forcing the user to make a positive or negative judgement.
At the end of the generation, all raw scores are averaged,
resulting in an overall fitness for each candidate creature.

Subsequent Generations
Subsequent generations are produced through the
process of a simple genetic algorithm. The candidates
are selected to breed the next generation using
roulette wheel selection. This process also allows us
to pre-seed the algorithm with pre-designed, high
quality candidates to further optimise or simply focus
the exploration of the parameter space.

Conclusion
We intend to use our system to tune a much more
complex creature animation system currently being
developed in tandem. The system consists of over 70
parameters and is capable of producing life-like and
diverse behaviour for a variety of marine animals
including dolphins. A further goal of this research is
to also test whether virtual reality affects the user's
perception of a creatures' organicity and behavioural
realism.

Towards Crowd-Sourced Parameter
Optimisation for Procedural Animation

Bangor University, United Kingdom
Gareth I. Henshall, Christopher J. Headleand, William J. Teahan and Llyr Ap Cenydd

149

Appendix F

Artificial Evolution (EA) 2017

Conference Poster [36]

Crowd-Sourced Optimisation of
Procedural Animation Systems

While rendering techniques allow for
increasingly life-like visuals, the animation of the
vast majority of complex characters is still reliant
on pre-created data. Procedural animation
systems on the other hand have the potential to
synthesise life-like motion and behaviour
automatically.

However as procedural animation systems
become more complex, it can be difficult to find
a desired or optimised behaviour within the vast
parameter space. Automatic optimisation can
also be notoriously difficult, due to potentially
hundreds of interlinked parameters and the
subjectivity of the results.

We describe a web-based simulation which
allows a large number of anonymous users to
interactively rate a population of snake-like
creatures to a prescribed criteria, such as “long
purple tail”.

A wide demographic of participants were asked to
rate an initial random population of snakes on a 0
(low) to 5 (high) scale.

A simple genetic algorithm then uses Roulette
wheel selection to breed the next generation,
based on the user ratings. The algorithm chooses
the parents based on their fitness calculated from
their average rating, combined with a small chance
of mutation.

The graphs (right) show RGB colour and tail length
trends across each generation. The results
demonstrate that our system can successfully
allow a crowd of people to tune animation systems
to a required specification.

We are currently developing techniques that allow users to interactively rate much more complex
animation systems, such as for virtual dolphins and sea lions. We are also investigating how our system
can be used to optimise animation systems in and for Virtual Reality (VR), including the ability to tune
parameters using natural motion controller interaction and by collaborative users.

Gareth I. Henshall, William J. Teahan and Llyr ap Cenydd
Email: g.i.henshall@bangor.ac.uk

Participant’s	view	of	the	prototype	study

RGB	&	TrailTime	trends	across	generation

150

	Title Page
	Acknowledgements
	Statement of Originality & Availability
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Hypothesis
	1.3.1 Research Questions
	1.3.2 Objectives

	1.4 Scope & Limitations
	1.5 Contributions
	1.6 Publications
	1.7 Structure of Thesis
	1.7.1 Thesis Structure Overview

	2 Related Work
	2.1 Techniques for Solving Optimisation Problems
	2.1.1 Genetic Algorithms
	2.1.2 Alternative Methods to Genetic Algorithms
	Tabu-Search
	Simulated Annealing
	Artificial Neural Network

	2.1.3 A Comparison of Optimisation Methods

	2.2 Animation Optimisation
	2.2.1 Inverse Kinematics
	2.2.2 Physics Based Approaches
	2.2.3 Neural Network Animation Controllers
	2.2.4 Human-in-the-Loop Optimisation

	2.3 Optimising Characters for VR
	2.3.1 The Concept of `Presence'
	2.3.2 Immersion Within a Virtual Environment
	A Controller's Effect on Immersion

	2.3.3 Photo-Realism's Effect on Presence in Virtual Environments
	2.3.4 The Brain's Response to VR Compared to a 2D Monitor

	2.4 Chapter Summary and Conclusion

	3 The Influence of Virtual Reality on the Perception of Artificial Intelligent Characters in Games
	3.1 Racing Game
	3.2 First Person Shooter
	3.2.1 Randomised Multiconnected Environment Generator
	3.2.2 Procedural Dungeon Generation Algorithms
	Custom Dungeon Algorithm
	Algorithm Summary
	Online Environment Generator
	Limitations in 3D Rendering

	3.3 The AI Opponent
	3.4 Monitor, Headset and Input Device
	3.5 Experimental Methodology
	3.5.1 Ethical Consideration

	3.6 Experimental Results
	3.7 Chapter Summary and Conclusion

	4 An Initial Evaluation of Crowd Sourced Procedural Animation Optimisation for a Simple Animation System
	4.1 A Prototype Snake Model
	4.1.1 Trail Renderers
	4.1.2 Snake Models Parameters List

	4.2 Ratings System
	4.2.1 Snake Rating System
	4.2.2 A Users View of the Application

	4.3 Analysis of Experiments Participants
	4.4 Populating Further Generations using a Genetic Algorithm
	4.4.1 Selection Methods
	Roulette Wheel Selection
	Tournament Selection
	Linear Ranking Selection

	4.4.2 Fitness Function Variation
	Fitness Function Algorithm Pseudo-Code

	4.4.3 Cross-Over Method
	Single Point Crossover
	Two Point Crossover
	Uniform Crossover

	4.4.4 Mutations
	Uniform Mutation
	Non-Uniform Mutation
	Boundary Mutation
	Creep Mutation

	4.4.5 Our Genetic Algorithm
	4.4.6 Human-in-the-Loop Algorithm Pseudo-Code

	4.5 Server Side
	4.6 Results
	4.6.1 Trail Time
	4.6.2 RGB
	4.6.3 Other Parameters
	4.6.4 Statistical Analysis using Two-Way ANOVA with Replication
	4.6.5 Euclidean and Manhattan Distances

	4.7 Chapter Summary and Conclusion

	5 Adapting a Dolphin Animation System for Crowd Sourced Procedural Animation Optimisation
	5.1 A Dolphin Model
	5.2 Underwater Environment Setup
	5.2.1 Water fog effect
	5.2.2 Atmospheric Scattering
	5.2.3 Water Surface
	5.2.4 Detritus
	5.2.5 Lighting
	5.2.6 Light Shafts
	5.2.7 Caustics
	5.2.8 Underwater Sound
	5.2.9 Completed Underwater Environment

	5.3 Experimental Methodology
	5.3.1 Creature Initialisation
	5.3.2 Rating System

	5.4 Subsequent Generations
	5.5 Chapter Summary and Conclusion

	6 An Evaluation of Crowd Sourced Procedural Animation Optimisation for the Dolphin Animation System
	6.1 Experimental Methodology
	6.2 Participant Data
	6.3 Results
	6.3.1 Default Swim Speed
	6.3.2 Friendliness and Faithfulness
	6.3.3 Barrel Rolling and Chattering
	6.3.4 Other Notable Parameters
	6.3.5 Similar Parameters Across Mediums
	6.3.6 Statistical Analysis using Two-Way ANOVA with Replication
	6.3.7 Euclidean and Manhattan Distances
	6.3.8 Average Ratings

	6.4 Chapter Summary and Conclusion

	7 Final Summary and Conclusions
	7.1 Introduction
	7.2 Reflection of the Thesis Objectives
	7.3 Main Findings and Contributions
	7.4 Limitations
	7.5 Future Work
	7.5.1 Framework Modification to Allow Modularisation and Unified Development
	7.5.2 Neural Networks as a Means for Data Collection
	7.5.3 Optimising Creatures Towards Different Behaviours
	7.5.4 More Complex Animation Systems
	7.5.5 Natural Parameter Manipulation using Motion Controls

	References
	A Genetic Algorithm Source Code
	B A Dolphin Models Parameters
	B.1 Body
	B.2 Brain
	B.3 Mouth
	B.4 Tail

	C Snakes Experiment Graphs
	D 2D Vs. VR Experiment Graphs
	E Cyberworlds 2015 Conference Poster contrib4
	F Artificial Evolution (EA) 2017 Conference Poster contrib1

