
Bangor University

DOCTOR OF PHILOSOPHY

Compression-based Methods for the Automatic Cryptanalysis of Classical Ciphers

Al-Kazaz, Noor

Award date:
2019

Awarding institution:
Bangor University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. Sep. 2019

https://research.bangor.ac.uk/portal/en/theses/compressionbased-methods-for-the-automatic-cryptanalysis-of-classical-ciphers(765bcdca-c69f-485e-95fd-f221f1bde5a5).html

School of Computer Science and Electronic Engineering

College of Environmental Sciences and Engineering

Compression-based Methods for the

Automatic Cryptanalysis of Classical

Ciphers

Noor R. Al-kazaz

Submitted in partial satisfaction of the requirements for the

Degree of Doctor of Philosophy

in Computer Science

Supervisor Dr. William J. Teahan

May 2019

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor Dr.

William Teahan for the continuous support of my Ph.D study and related

research, for his patience, motivation, and immense knowledge. His guidance

helped me throughout my research and when writing this thesis. I could not

have imagined having a better advisor and mentor for my Ph.D study. Also,

I would especially like to thank Dr. Sean Irvine, who is a senior research and

development engineer for Real Time Genomics company in New Zealand, for

collaboration on several of the joint publications.

I would like to thank the Iraqi Ministry of Higher Education and Sci-

entific Research (MOHESR) and Baghdad University for sponsoring and

supporting my Ph.D study.

My sincere thanks also goes to my family: my dear parents, my beloved

husband and to my sisters for their moral support throughout my time at

Bangor, for their love and for having faith in me.

I owe immense thanks to a very special person, my husband, Ali, for his

encouragement and understanding during my pursuit of Ph.D degree. He

was always available, even when I thought that it is impossible to continue,

he helped me to keep things in perspective. I greatly value his contribution

and deeply appreciate his belief in me. Many thanks go to my precious kids

Danya and Mustafa for their great support and encouragement, for being

there for me in both the good and hard times through this rough journey

and for cheering me up and putting a smile on my face when I most needed.

I really appreciate the patience they showed during all these years of study.

Last but not least, I would like to thank my fellow colleagues: firstly,

Nadim Ahmed, for his unfailing assistance, his patience and support in over-

coming numerous obstacles I faced throughout my research, and secondly

to Maha Alamri for the support she gave me throughout my research. Spe-

cial thanks go to both of them for their feedback, cooperation and of course

friendship.

���#�b�i�`���+�i

The study documented in this thesis investigates the effectiveness of com-

pression in the field of cryptanalysis, specifically for the automatic crypt-

analysis of classical ciphers, initially for the English language. Several new

compression-based cryptanalysis methods are developed against these ci-

phers.

The new methods use the well-known compression scheme—prediction

by partial matching (PPM)—and have been applied to automatic cryptanal-

ysis for three main classical ciphers: simple substitution, transposition and

Playfair ciphers. The extensive set of case studies adopted in this research

have validated the new methods, which have proven to be very effective

in the cryptanalysis of these cases with a high success rate—for substitu-

tion ciphers, 92% of the cryptograms were correctly solved with no errors

and 100% with just three errors or less; a 100% decryption success rate was

achieved for transposition ciphers and 87% was achieved for Playfair ciphers.

This study led to the decipherment of more challenging cases, such as very

short ciphertexts with no probable words. The Gzip compression scheme

has also been applied to the automatic decryption of simple substitution

and transposition ciphers, but the results showed that Gzip, in comparison

to PPM, was not as effective. A third compressor, Bzip2, could not be used

as the nature of that scheme made its use unfeasible.

The PPM compression-based cryptanalysis methods offered significant

improvements in decryption accuracy in a diverse range of experiments while

being computationally more efficient compared to previously published tech-

niques. In addition, extensive investigations were conducted to determine

the most appropriate type of PPM scheme to be applied in the cryptanaly-

sis of these ciphers. These findings have highlighted why better models are

of vital importance in cryptology. In particular, the study has shown how

a good model of the source (i.e. the PPM compression model)–a method

that shows a high level of performance when applied to different language

modelling tasks–can also be effectively used in the automatic decryption of

different classical ciphers.

As spaces have been traditionally omitted from ciphertext, a full crypt-

analysis mechanism which also automatically adds spaces to decrypted texts,

again using a compression-based approach, has also been proposed to achieve

readability.

This work has also investigated whether the newly devised cryptanalysis

methods are applicable to another language (specifically Arabic as it is a

language non-related to English). Arabic is a rich morphological language

with its own characteristics that differentiate it from other languages. The

current study has specifically adapted new compression-based methods for

the automatic cryptanalysis of classical Arabic ciphers (simple substitution,

transposition and Playfair ciphers). Although the experiments conducted

with Arabic ciphers have generally been less effective than those with clas-

sical English ciphers, excellent results have been achieved—for Arabic sub-

stitution ciphers, 72% of the cryptograms were successfully solved without

any errors and over 91% with just three errors or less; a 97% decryption

success rate was achieved for Arabic transposition ciphers, with this result

being 73% for Arabic Playfair ciphers.

Contents

�R �A�M�i�`�Q�/�m�+�i�B�Q�M �R

1.1 Background and Motivation 1

1.2 Research Questions . 5

1.3 Aim and Objectives . 5

1.4 Contributions . 6

1.5 Thesis Outline . 9

1.6 Publications . 10

�k �"���+�F�;�`�Q�m�M�/ ���M�/ �_�2�H���i�2�/ �q�Q�`�F �R�9

2.1 Introduction . 14

2.2 Introduction to Cryptology 15

2.2.1 Terminology . 15

2.2.2 Cryptology: Where Did it Begin? 16

2.2.3 Attacks Against Ciphers 19

2.2.4 Development of Attacks Against Classical Ciphers . . 21

2.2.5 Classical Ciphers . 22

2.2.5.1 Simple Substitution Ciphers 23

2.2.5.2 Transposition Ciphers 25

2.2.5.3 Playfair Ciphers 26

2.3 Introduction to Text Compression 29

2.3.1 Dictionary-Based Compression 29

2.3.2 Block-Sorting Compression 30

i

2.3.3 Statistical Coding and Prediction by Partial Matching

(PPM) . 31

2.3.3.1 Variants of PPM 33

2.3.3.2 Entropy using PPM-Based Models 39

2.4 Using Compression for Cryptology 40

2.5 Introduction to the Arabic Language 41

2.5.1 Arabic Letters . 42

2.5.2 Arabic Encoding Methods 43

2.5.3 Arabic Text Characteristics 44

2.5.4 The Arabic Origins of Cryptography 46

2.5.5 PPM Compression Method for Arabic 50

2.6 Summary . 51

�j �.�2�b�B�;�M�B�M�; ���M�/ �1�p���H�m���i�B�M�; �� �L�2�r ���m�i�Q�K���i�B�+ �*�`�v�T�i���M���H�v�b�B�b

�Q�7 �a�B�K�T�H�2 �a�m�#�b�i�B�i�m�i�B�Q�M �*�B�T�?�2�`�b �l�b�B�M�; �*�Q�K�T�`�2�b�b�B�Q�M�8�j

3.1 Introduction . 53

3.2 Related Work . 54

3.3 Automated Cryptanalysis Using Compression 61

3.3.1 PPM Compression Codelength Metric 63

3.3.2 Calculating Compression Codelengths Using Gzip and

Bzip2 . 64

3.4 The New Method . 65

3.5 Experimental Results . 70

3.5.1 Experiments with Different Buffer Sizes 78

3.5.2 Improving Results Using a Word-based PPM Com-

pression Method . 79

3.6 Conclusions . 82

�9 �.�2�b�B�;�M�B�M�; ���M�/ �1�p���H�m���i�B�M�; �� �L�2�r ���m�i�Q�K���i�B�+ �*�`�v�T�i���M���H�v�b�B�b

�Q�7 �h�`���M�b�T�Q�b�B�i�B�Q�M �*�B�T�?�2�`�b �l�b�B�M�; �*�Q�K�T�`�2�b�b�B�Q�M�3�j

4.1 Introduction . 83

4.2 Related Work . 84

ii

4.3 Compression as a Cryptanalysis Method, using PPM Com-

pression Codelength Metric and the Gzip Compression Method 88

4.3.1 Word Segmentation Using the Viterbi Algorithm . . . 88

4.4 The New Method . 90

4.5 Experimental Results . 94

4.6 Conclusions . 101

�8 �.�2�b�B�;�M�B�M�; ���M�/ �1�p���H�m���i�B�M�; �� �L�2�r ���m�i�Q�K���i�B�+ �*�`�v�T�i���M���H�v�b�B�b

�Q�7 �S�H���v�7���B�` �*�B�T�?�2�`�b �l�b�B�M�; �S�S�J �R�y�j

5.1 Introduction . 103

5.2 Playfair’s Weaknesses . 104

5.3 Related Work . 105

5.4 The New Method . 106

5.5 Experimental Results . 113

5.6 Conclusions . 122

�e ���m�i�Q�K���i�B�+ �*�`�v�T�i���M���H�v�b�B�b �Q�7 �*�H���b�b�B�+���H ���`���#�B�+ �*�B�T�?�2�`�b �l�b�B�M�;

�*�Q�K�T�`�2�b�b�B�Q�M �R�k�9

6.1 Introduction . 124

6.2 Arabic Language Corpora . 126

6.3 The Entropy of Arabic using PPM 128

6.4 Related Work . 130

6.5 An Automatic Cryptanalysis of Arabic Simple Substitution

Ciphers . 132

6.5.1 The Method . 132

6.5.2 Experimental Results 135

6.5.2.1 Improving Results using a Word-based PPM

Compression Method for Arabic 143

6.6 An Automatic Cryptanalysis of Arabic Transposition Ciphers 147

6.6.1 The Method . 148

6.6.2 Experimental Results 150

6.7 An Automatic Cryptanalysis of Arabic Playfair Ciphers . . . 156

iii

6.7.1 The Method . 157

6.7.2 Experimental Results 159

6.8 Comparison with English Experiments 165

6.9 Conclusions . 166

�d �*�Q�M�+�H�m�b�B�Q�M�b �R�e�N

7.1 Introduction . 169

7.2 Summary and Conclusions . 169

7.3 Review of Research Questions 173

7.4 Review of Aim and Objectives 175

7.5 Future Work . 177

�_�2�7�2�`�2�M�+�2�b �R�d�N

���T�T�2�M�/�B�+�2�b �R�N�d

iv

List of Figures

2.1 Symmetric key cryptographic system. 16

3.1 Errors produced from different variants 74

4.1 Segmentation search tree (Teahan, 2018). 89

4.2 Segmentation errors produced from the different variants. . . 98

5.1 Example trace of decryption of a cryptogram of 82 letters

from the American Cryptogram Association. 115

5.2 Example trace of decryption of a short cryptogram of 60 letters.116

5.3 Example trace of decryption of the 102 letter Royal NZ navy

historical ciphertext. 117

5.4 Solutions produced during selected iterations for a puzzle

cryptogram of 96 letters. 118

5.5 Example solutions produced for a 6� 6 Playfair cryptogram. . 119

5.6 Example of solved ciphertexts with spaces inserted after Phase

II. 121

5.7 Segmentation errors produced as a result of the Phase II al-

gorithm. 121

6.1 The reduction in the codelength ratio versus file position for

the PPMD on raw Arabic language and CSA-PPMD/BA-

PPMD texts. 131

6.2 Errors produced from different classical corpora when using

buffer size of 1000 for variant B. 138

v

6.3 Errors produced from different Modern corpora when using

buffer size of 1000 for variant B. 139

6.4 Errors produced from different Mixed corpora when using

buffer size of 1000 for variant B. 140

6.5 Errors produced from different Arabic variants. 141

6.6 Errors produced from character-based and bigraph-based mod-

els for Variant B. 143

6.7 Errors produced from the character-based and word-based

models for Variant B. 144

6.8 Errors produced from the bigraph-based and word-based mod-

els for Variant B. 145

6.9 Example of a matrix transposition cipher. 147

6.10 Segmentation errors produced from the five different variants

for the Arabic transposition. 154

6.11 Part of a trace of the PPM cryptanalysis of an example Arabic

Playfair cryptogram of 122 letters. 160

6.12 Example solutions produced by selected iteration for an Ara-

bic cryptogram of 189 letters. 161

6.13 Example solutions produced for an Arabic cryptogram of 221

letters. 162

6.14 Segmentation errors produced as a result of the Phase II al-

gorithm for the Arabic Playfair. 163

6.15 Examples of solved Arabic ciphertexts with spaces inserted

after Phase II. 164

vi

List of Tables

1.1 Publications . 12

2.1 PPMC and PPMD models after processing the string “stress-

less” with maximum order of 2. 36

2.2 Arabic alphabet letters. 43

2.3 Character frequency statistics for the large Mixed Arabic cor-

pus. 45

2.4 N-graph frequency statistics for the large Mixed Arabic corpus. 46

2.5 Word frequency statistics for the large Mixed Arabic corpus. 47

2.6 PPMD model after processing the string “�+�¶�‰�ì�¶�¶���è�“�5” with

maximum order of 2. 51

3.1 Models for predicting character and word streams (Teahan,

1998). 64

3.2 Compression method variants used for the automatic crypt-

analysis of simple substitution ciphers. 69

3.3a Example output. 71

3.3b Example output (ten best solutions). 72

3.4 Sample of solved cryptograms by different variants. 73

3.5a Average number of errors for each different variant when ex-

amining the best solution. 76

3.5b Average number of errors for each different variant when ex-

amining the ten best solutions. 76

vii

3.6 Examples of decryption of short cryptograms (length from

20 to 40 characters; the compression codelength h and com-

pression codelength ratio H = h=n, where n is the number of

characters in the text, are shown in the first two columns). . 77

3.7 Average time needed to automatically cryptanalyse different

simple substitution ciphertexts. 78

3.8a Average number of errors when using different buffer sizes

when examining just the best solution. 79

3.8b Average number of errors when using different buffer sizes

when examining the ten best solutions. 79

3.9 The ten best character-based solutions compared to the ten

best word solutions for the ciphertext ‘�+�;�D�;�m�H�; �7�H�`�K�m�;�H�7�p

�+�H�Q�K�t�H�B �+�H�r�?�v�7’. 80

3.10 Average number of errors when examining the best solution. . 81

3.11 Summary of results for Variant B. 81

4.1 Variants used in our experiments 94

4.2 Output sample from the different phases for the ciphertext

‘prcy rotg ypah oedm’. (Compression codelengths are listed

in bits with the lowest 5 results presented for Phase-II-A.) . 95

4.3 Example of solved cryptograms with spaces by different vari-

ants. 96

4.4 Average number of errors for the phase two variants. (The

PPMD model is used for the first four variants.) 99

4.5 Average number of errors for the phase two variants. (The

PPMC model is used for the first four variants.) 99

4.6 Recall, precision and error rates for the different variants on

segmenting words. 100

4.7 Average time required to automatically cryptanalysis cipher-

texts with different lengths for different keys size. 100

5.1 Results when testing ciphertexts with different lengths. 120

viii

5.2 Recall, precision and errors rates for our method for word

segmenting the decrypted output produced from Phase I. . . 122

5.3 Decryption times for Phase I for different ciphertexts. 122

6.1 Different examined corpora. 127

6.2 Details of sub-corpora used to construct the large Mixed Ara-

bic corpus used to train the PPM models. 127

6.3 Comparing compression results between PPMD on Raw Ara-

bic language, CSA-PPMD and BA-PPMD methods. 130

6.4 Some compression method variants used for the automatic

cryptanalysis of Arabic simple substitution ciphers. 136

6.5 Average number of errors for our different corpora with dif-

ferent categories and different buffer size. 137

6.6 Average number of errors for the different corpora with differ-

ent categories when examining the best solution and a 1000

buffer size. 137

6.7 Sample of solved Arabic simple substitution ciphertexts by

different variants. 139

6.8a Average number of errors for each different Arabic variant

when examining the best solution. 142

6.8b Average number of errors for each different Arabic variant

when examining the ten best solutions. 142

6.9 Average number of errors for the character-based and bigraph-

based models for Variant B. 143

6.10 Average number of errors for the character-based and word-

based models. 144

6.11 Average number of errors for the bigragh-based and word-

based models. 145

6.12 Average errors for the different Arabic methods. 145

6.13 Average time required to automatically break different Arabic

simple substitution ciphertexts. 146

ix

6.14 Summary of results. 146

6.15 Arabic variants used in the automatic cryptanalysis of Arabic

transposition ciphers. 150

6.16 Output produced for the sample cryptogram ‘���Ç���[�Í�È�[�� �¦�Ú�À�ö�Ù�Ü�‰�r
�Q�ö�ó�¦�H�"�‘����’. 151

6.17 Example of solved Arabic transposition ciphertexts with spaces

inserted by the five different variants. 153

6.18 Average number of errors for the Phase-II variants. 154

6.19 Evaluating the quality of the Arabic word segmentation. . . . 155

6.20 Average time required (across 10 runs) to automatically break

Arabic transposition cryptograms with different lengths and

different keys size. 156

6.21 Results when testing different Arabic Playfair ciphertexts with

different lengths. 162

6.22 Recall, precision and errors rates produced by our segmen-

tation method for the Arabic decrypted texts produced from

Phase I. 163

6.23 Decryption times for different Arabic Playfair ciphertexts. . . 164

x

Chapter 1

Introduction

1.1 Background and Motivation

Compression can be used in several ways to enhance cryptography and crypt-

analysis. It has been recognized that directly encrypting redundant texts

has weaknesses and is vulnerable to statistical attacks (Wilson, 1994; Irvine,

1997). One way to protect a cipher system against this type of attack is by

using compression which works by removing redundancy from a text. In

this study, the converse proposition investigated is that compression models

can be used to break cryptosystems. Various approaches and algorithms are

used for cryptanalysis. Using compression methods as one way to tackle the

plaintext recognition problem is still a relatively new approach with com-

paratively few publications. This observation has provided the motivation

for the research described in this thesis.

The current study has investigated the effectiveness of compression for

the automatic cryptanalysis of classical ciphers for English and Arabic. It

develops several new compression-based cryptanalysis methods against these

ciphers. These methods use compression to tackle the plaintext recognition

problem for cryptanalysis. They are based on using prediction by partial

matching (PPM) compression models, in addition to other standard com-

pression methods, such as Gzip, for the automatic decryption of the three

1

main classical ciphers: simple substitution, transposition and Playfair ci-

phers.

The ciphertext only cryptanalysis of simple cipher systems heavily de-

pends on the statistical features of the source language, and it is not a trivial

issue to get computers performing this analysis. Although computers have

been routinely used for a variety of tasks in cryptanalysis since their inven-

tion, the automatic recognition of valid decryptions has been acknowledged

as a taxing problem. Several previously published cryptanalysis methods

can not run without human intervention or they assume at least known

plaintext because of the difficulty of quickly recognizing a correct decryp-

tion in a ciphertext only attack (Irvine, 1997). In general, a known plaintext

attack is considered to be easier to develop than a ciphertext only attack.

However, for many classical ciphers, there is no effective automatic known

plaintext attack, nor any published automatic ciphertext only attack (Lasry,

2018).

Modern ciphers are considered to be more complicated and secure than

classical systems. However, despite this fact, classical ciphers remain a prob-

lem that has defied many different automated cryptanalysis methods (Lucks,

1990). A recently published article in the magazine �a�+�B�2�M�i�B�}�+ ���K�2�`�B�+���Mby

Professor Bauer (2017) emphasizes why classical ciphers should matter to

code breakers. Bauer stated that:

“�q�?�2� �̀2���b �2�M�+�`�v�T�i�B�Q�M ���H�;�Q�`�B�i�?�K�b ��� �̀2 �+�Q�M�i�B�M�m���H�H�v �#�2�B�M�; �B�K�T� �̀Q�p�2�/�- �m�T�;� �̀��/�2�b

��� �̀2 �M�Q�i ���H�r���v�b ���m�i�Q�K���i�B�+�X �h�?�2� �̀2 ��� �̀2 �T�H�2�M�i�v �Q�7 �Q�H�/ �b�v�b�i�2�K�b �b�i�B�H�H �B�M �m�b�2�X

���M�/ �r�?�2�M �B�i �+�Q�K�2�b �i�Q �+�B�T�?�2�`�b �m�b�2�/ �#�v �#���/ �;�m�v�b �Q�7 ���H�H �b�Q�`�i�b�- �Q�H�/ �+���M �K�2���M

�+�2�M�i�m�`�B�2�b�X �a�Q�K�2 �+�`�B�K�B�M���H�b �#�2�H�B�2�p�2 �i�?�2 �L���i�B�Q�M���H �a�2�+�m�`�B�i�v ���;�2�M�+�v �+���M �#� �̀2���F

���H�H �Q�7 �i�?�2 �+�m�`� �̀2�M�i �b�v�b�i�2�K�b �b�Q �i�?�2�v �7���H�H �#���+�F �Q�M �Q�H�/�2�`�- �r�2���F�2�` �+�B�T�?�2�`�b �X�X�X �h�?�2

�6�"�A�ö�b �*�`�v�T�i���M���H�v�b�B�b ���M�/ �_���+�F�2�i�2�2�`�B�M�; �_�2�+�Q� �̀/�b �l�M�B�i �U�*�_�_�l�V � �̀2�;�m�H���`�H�v �b�2�2�b

�o�B�;�2�M��� �̀2 �+�B�T�?�2�`�b�- �7�Q�` �2�t���K�T�H�2�- �/�2�b�T�B�i�2 �i�?�2 �7���+�i �i�?�B�b �K�2�i�?�Q�/ �;�Q�2�b �#���+�F �i�Q

�i�?�2 �R�e�i�? �+�2�M�i�m�`�v ���M�/ �� �K�2�i�?�Q�/ �7�Q�` �/�2�+�B�T�?�2�`�B�M�; �B�i �r���b �T�m�#�H�B�b�?�2�/ �B�M �R�3�e�j �X�X�X

�*�`�B�K�B�M���H�b �/�Q�M�ö�i �D�m�b�i �7���H�H �#���+�F �Q�M �Q�H�/�2�` �+�B�T�?�2�`�b �Q�m�i �Q�7 �T��� �̀��M�Q�B���c �B�M �b�Q�K�2 �+���b�2�b

�i�?�2�v �/�Q�M�ö�i �?���p�2 ���+�+�2�b�b �i�Q �i�?�2 �i�2�+�?�M�Q�H�Q�;�v �M�2�2�/�2�/ �i�Q �F�2�2�T �i�?�2�B�` �2�M�+�`�v�T�i�B�Q�M �m�T

�i�Q �/���i�2�X �� �;� �̀2���i �2�t���K�T�H�2 �Q�7 �i�?�B�b �B�b �H���r�@�#� �̀2���F�2�`�b �b�2�`�p�B�M�; �i�B�K�2�X ���#�Q�m�i �3�y

2

�T�2� �̀+�2�M�i �Q�7 �i�?�2 �*�_�_�l�ö�b �r�Q�`�F�H�Q���/ �+�Q�M�b�B�b�i�b �Q�7 �T�`�B�b�Q�M �+�B�T�?�2�`�b�X �P�H�/ �T���T�2�`�@���M�/�@

�T�2�M�+�B�H�@�i�v�T�2 �+�B�T�?�2�`�b ��� �̀2 �b�i�B�H�H �B�K�T�Q�`�i���M�i �X�X�X �P�M�+�2 ���;���B�M�- �õ�?�B�b�i�Q�`�B�+���H�ö �+�B�T�?�2�`�b

�b�i���v�2�/ � �̀2�H�2�p���M�i�X”

Professor Bauer continues:

“�A�M �i�?�2 �/�B�;�B�i���H �r�Q�`�H�/ ���M�/ �i�?�2 �i�?� �̀Q�r���r���v �b�Q�+�B�2�i�v �r�2�ö�p�2 �#�2�+�Q�K�2�- �r�?�2� �̀2 �Q�M�H�v

�i�?�2 �H���i�2�b�i ���M�/ �;� �̀2���i�2�b�i �/�2�p�B�+�2�b ���M�/ �i�2�+�?�M�Q�H�Q�;�v �r�B�H�H �b�m�{�+�2�- �B�i �+���M �#�2 �2���b�v �i�Q

�i�?�B�M�F �Q�7 �2�p�2�`�v�i�?�B�M�; �B�M �i�?�2 �b���K�2 �r���v�X �"�m�i �+�Q�/�2�b ���M�/ �+�B�T�?�2�`�b �?���p�2 �� �H�Q�M�;

�i� �̀��+�F � �̀2�+�Q� �̀/ �Q�7 �#�2�B�M�; � �̀2�+�v�+�H�2�/�- ���M�/ �T� �̀Q�7�2�b�b�B�Q�M���H�b �K�m�b�i � �̀2���H�B�x�2 �i�?���i �r�?���i�ö�b �Q�H�/

�B�b �M�2�r ���;���B�M �X�X�X �u�2�b�- �i�2�+�?�M�Q�H�Q�;�v �B�b ���H�r���v�b �+�?���M�;�B�M�;�X �"�m�i �i�?�2� �̀2 ��� �̀2 �?�m�M�/� �̀2�/�b

�Q�7 �2�t���K�T�H�2�b �Q�7 �+�2�M�i�m�`�B�2�b�@�Q�H�/ �+�B�T�?�2�`�b �i�?���i �b�i�B�H�H � �̀2�K���B�M �m�M�b�Q�H�p�2�/ �i�Q �i�?�B�b �/���v�X

�h�?�2�v �B�H�H�m�b�i� �̀��i�2 �i�?���i �M�2�r�2�` �B�b �M�Q�i ���H�r���v�b �#�2�i�i�2�` ���b �r�2�H�H ���b �i�?�2 �B�K�T�Q�`�i���M�+�2 �Q�7

�i�?�B�M�F�B�M�; �?�Q�H�B�b�i�B�+���H�H�v �r�?�2�M ���T�T� �̀Q���+�?�B�M�; �i�?�2 �K�v�b�i�2�`�B�2�b �i�?���i � �̀2�K���B�M �#�2�7�Q� �̀2 �m�b�X”

In addition to the motivation identified in Bauer’s (2017) statements

above, five other main sources of motivation lie behind investigating these

ciphers. Firstly, the principles of these ciphers form the basis for many of the

modern cipher systems. Most good cryptographic algorithms still combine

elements of substitution and transposition (Schneier, 1996; Lasry, 2018).

Hence, this study’s focus is on the basic building blocks presented in many

modern cryptographic systems, namely, substitution ciphers and transposi-

tion ciphers. Playfair ciphers, a more sophisticated version of substitution

ciphers, are also investigated.

Secondly, these classical ciphers are regarded as a good test-bed to use

for trying out new ideas for cryptanalysis. To understand and examine the

basics of a new idea, it is more reasonable and useful to implement that idea

on simpler cipher systems before proceeding to more difficult systems. It is

hoped that the knowledge obtained from these analyses will lead to successful

attacks on more difficult cryptographic methods. The new compression-

based approach for the cryptanalysis of the ciphers described in this thesis is

the first step towards understanding how to tackle the plaintext recognition

problem that arises during cryptanalysis using compression. (The plaintext

3

recognition problem is where the correct decrypted text is identified during

cryptanalysis when compared to alternative decrypted texts).

Thirdly, despite these classical ciphers often not providing much secu-

rity and they can be readily broken in many cases, there are some special

circumstances where this is not the case. For example, short Playfair mes-

sages without a probable word are extremely difficult, if not impossible, to

break (Cowan, 2008). In addition, some of the more challenging classical

ciphers and historical messages have not yet been successfully solved. Crypt-

analytic techniques exist for other cases, but only for special cases such as

long ciphertexts. The modern cryptanalysis of classical ciphers can help to

solve these challenging cases.

Fourthly, the study of classical ciphers in education settings is often

considered a major way in which to generate student interest in studying

cryptology and, in general, computer science. The best introduction to and

understanding of the principles of modern ciphers are often in the context of

classical cipher examples. As well as providing opportunities for increased

motivation and immediate rewards, classical cryptography can provide in-

teresting code breaking exercises and challenges. Lessons can also be drawn

from past failures of classical ciphersystems, such as excessive reliance on

the complexity of a cryptosystem instead of focusing on its security. As

modern and historical techniques often depend on using the same statistical

properties, the study of the cryptanalysis of classical cipher systems can also

help in gaining an understanding of classical code-breaking methods (Lasry,

2018).

Ultimately, the use of these ciphers provided the current study with the

opportunity to examine if our new compression-based cryptanalysis meth-

ods are applicable to languages other than English, especially non-related

languages. As a result of the analysis, we were able to explore if another lan-

guage, namely Arabic, could offer more resistant encryption than English.

Arabic is a language non-related to English with its own special character-

istics that differentiate it from other languages. For these reasons, simple

4

substitution, transposition and Playfair Arabic ciphers are examined in this

research. The study of classical Arabic ciphers is the first step towards

investigating and solving some historical Arabic cryptograms.

1.2 Research Questions

The primary research questions for the study documented in this thesis are

as follows:

1. Can compression models be used for effective cryptanalysis? Specifi-

cally, can we develop new effective methods for the automatic crypt-

analysis of simple substitution, transposition and Playfair ciphers us-

ing compression?

2. Does the prediction by partial matching (PPM) compression method

perform better than other common compression methods for crypt-

analysis?

3. Can the newly devised methods be applicable to a language non-

related to English (specifically Arabic) and how effective are these

methods?

A related secondary research question is as follows:

4. Can compression models be used effectively to achieve readability of

decrypted texts for cases when spaces have been omitted from cipher-

texts?

1.3 Aim and Objectives

The primary aim of this study is to develop novel cryptanalysis methods

using compression; specifically, to investigate the application of the PPM

compression method to the automatic decryption of different classical ci-

phers and to determine the effectiveness of these novel approaches. There-

5

fore, this study’s objectives in investigating the research questions are as

follows:

1. Produce a literature review on the area of cryptology and compression

with a specific focus on the relationship between them (see Chapter 2).

2. Develop new compression-based cryptanalysis methods for the auto-

matic decryption of simple substitution, transposition and Playfair

ciphers using PPM, and compare their effectiveness with alternative

compression schemes such as Gzip and Bzip2 (see Chapters 3, 4 and 5).

3. Evaluate and validate the newly devised cryptanalysis methods using

an extensive set of cryptograms, especially the more challenging cases,

such as short ciphertexts, and investigate the effectiveness of these

methods (see Chapters 3, 4 and 5).

4. Construct a full cryptanalysis mechanism which also automatically

adds spaces to decrypted texts, again using a compression-based ap-

proach, to improve readability (see Chapters 4, 5 and 6).

5. Develop and evaluate new compression-based decryption methods ada-

pted for the automatic cryptanalysis of Arabic ciphers: simple substi-

tution, transposition and Playfair ciphers in Arabic, and investigate

whether Arabic, which is a language non-related to English, is more

difficult for cryptanalysis purposes (see Chapter 6).

As stated, our study’s focus is on the more challenging cases, such as

short ciphertexts with no probable words. However, advantageous cases,

such as long ciphers, will also be examined.

1.4 Contributions

The study reported in the thesis has made several contributions. Substantial

positive evidence is presented for the proposition that compression models

6

can be used to break cryptosystems. This evidence comprises mainly the

effectiveness of a variety of new cryptanalysis methods on several different

ciphers. These methods are general enough to make them applicable to

other encryption systems.

Specifically, the significant contributions of this study can be listed as

follows:

1. The feasibility of using compression-based approaches, specifically the

PPM compression method, in the field of cryptanalysis has been fur-

ther investigated.

2. An effective new method for the automatic cryptanalysis of simple

substitution ciphers using PPM compression has been devised. Results

on 110 cryptograms ranging from 20 to 300 characters have shown a

very high success rate with about 92% of the cryptograms correctly

decrypted without any errors and 100% with just three errors or less.

3. A new PPM compression-based method for the automatic cryptanal-

ysis and plaintext recognition of transposition ciphers has been in-

vestigated with excellent results produced. The algorithm was able to

achieve a 100% success rate on different amounts of ciphertext ranging

from very short messages (12) to 625 characters.

4. An effective new PPM compression-based cryptanalysis method for

the automatic decryption of Playfair ciphers has been proposed and

investigated. The method was tried on various cryptograms of different

lengths (from as short as 60 letters up to 815) and a success rate of 87%

was achieved, with 100% of ciphers of lengths over 120 letters being

solved. Furthermore, successful decryption of an extended Playfair

cipher for a 6� 6 key matrix was achieved.

5. The most efficient PPM variants for these cryptanalysis methods have

been determined. The PPM methods without update exclusions have

7

proven to be very effective in the cryptanalysis of all three ciphers with

state-of-the-art results produced.

6. The applicability of our new compression-based cryptanalysis methods

to a language other than English (Arabic) has been verified. Experi-

mental results confirmed that these methods worked well for Arabic, a

language non-related to English, while previous experiments had only

been conducted for English.

7. The entropy of a computer model for Arabic text has been estimated

which is 1.923 bits per character.

8. Efficient PPM compression-based cryptanalysis methods adapted for

the Arabic language ciphers have been developed and promising results

have been obtained. For Arabic simple substitution ciphers, the results

showed that 72% of the Arabic cryptograms were successfully solved

without any errors and over 91% were decrypted with three errors

or less. A success rate of 97% was achieved for Arabic transposition

ciphers. The results for Playfair ciphers showed that 73% of the Arabic

ciphertexts were effectively decrypted, and ciphers longer than 250

letters were all solved with no errors.

9. Successful word segmentation methods using the PPM compression

method have been applied to achieve readability. Experimental results

showed that these methods were very effective in producing a recall and

precision of over 95% for the different ciphertexts that were examined.

10. It has also been discovered that the Gzip compression method per-

forms poorly in both decryption and segmentation processing when

compared to PPM.

11. A third compressor, Bzip2, could not be used because the nature of

this method makes its use unfeasible for cryptanalysis.

8

1.5 Thesis Outline

This thesis is organized into seven chapters. Beginning with the background

and motivation, �*�?���T�i�2� �̀Rthen indicates the research questions and the

study’s aim and objectives. Research contributions and published papers are

also highlighted in this chapter. To outline the overall thesis, the contents

of individual chapters are briefly reviewed:

�*�?���T�i�2� �̀k reviews the general concepts of cryptology and data compres-

sion. In this chapter classical cryptology is presented primarily. Classical

ciphers are investigated and different kinds of attack are highlighted. This is

followed by an introduction to text compression and its main adaptive tech-

niques. The PPM text compression method and its different variants are also

introduced in detail. The relationship between these two main approaches—

cryptology and compression—is illustrated. The chapter then presents the

Arabic language and its specific linguistic characteristics that distinguish it

from other languages. The PPM compression method, as adapted for the

Arabic language, is also described.

�*�?���T�i�2� �̀j presents the first practical part of the thesis. This chapter de-

tails the new automated cryptanalysis methods that use compression against

simple substitution ciphers. The following compression methods, PPM, Gzip

and Bzip2, are used as a basis for this attack. Various PPM variants and

PPM’s different models are investigated to verify the most effective variant

to be used in the automatic decryption of this cipher. The chapter reviews

previous works on the automatic cryptanalysis of simple substitution ci-

phers. The results show how the PPM compression model achieves a very

competitive performance and can be used effectively to automatically break

this kind of cipher.

�*�?���T�i�2�`�9 introduces new compression-based cryptanalysis methods for

transposition ciphers. Previous attacks against this cipher are also intro-

duced. In this chapter, different PPM models and variants for cryptanalysis

are examined. The Gzip compression method is also investigated. As spaces

9

are traditionally omitted from ciphertext, two segmentation methods, also

based on using compression methods, are explored. These methods, as a

second step, focus on automatically inserting spaces into decrypted texts

and then ranking them to find the correct solution. Excellent results are

achieved using these PPM compression-based methods.

�*�?���T�i�2�`�8 proposes a novel PPM compression-based automatic attack

against Playfair ciphers. A combination of two main approaches—text com-

pression and simulated annealing—is used in the decryption of this cipher.

This chapter also reports on the application of word segmentation methods.

A review of the relevant work is also provided. The results show how the

proposed method is efficiently able to break this cipher and can even break

shorter cryptograms.

�*�?���T�i�2� �̀e reviews simple substitution, transposition and Playfair ciphers

in Arabic and introduces the automatic attacks of these ciphers. This chap-

ter proposes new adaptations of the compression-based cryptanalysis meth-

ods of these ciphers. Different Arabic corpora of different sizes are reviewed.

To measure the effectiveness of the Arabic compression models, the entropy

of Arabic is calculated. Related works are also presented in this chapter.

The overall results show how the newly proposed methods can break these

Arabic ciphers, even though this is with slightly less efficient performance

compared to the English language. The results also indicate how well the

new adaptive PPM methods perform the task of Arabic word segmentation.

�*�?���T�i�2� �̀dreconsiders the overall results and their significance in relation

to the original aim and objectives. The conclusions derived from this study

are discussed. Directions for further research are suggested.

1.6 Publications

Parts of this thesis have already been published in one journal and two

refereed conference proceedings. Of the other two journal papers, one is

being accepted for publication and the other is in the process of submission

10

(see Table 1.1).

The first of these publications is a journal paper entitled “An Automatic

Cryptanalysis of Simple Substitution Ciphers Using Compression”. Chap-

ter 3 of this thesis is based on this paper. The paper has been published

in �A�M�7�Q�`�K���i�B�Q�M �a�2�+�m�`�B�i�v �C�Q�m�`�M���H�, �� �:�H�Q�#���H �S�2�`�b�T�2�+�i�B�p�2, one of the Taylor

& Francis journals. A link to this paper can be found with the reference

for Al-Kazaz et al. (2018b).

The first conference publication, entitled “An Automatic Cryptanalysis

of Transposition Ciphers Using Compression”, forms the basis of Chapter 4

in this thesis. This paper was presented at the 15th International Conference

on Cryptology and Network Security (CANS2016) held in Milan, Italy, and

was published as a long paper by Springer in the Lecture Notes in Computer

Science (LNCS) series. A link to this paper can be found in the reference

for Al-Kazaz et al. (2016).

The second conference publication is another long paper entitled “An

Automatic Cryptanalysis of Playfair Ciphers Using Compression”. Chap-

ter 5 of this thesis is based on this paper which was presented at the In-

ternational Conference on Historical Cryptology (HistoCrypt 2018) held in

Uppsala, Sweden. The paper was published as part of the Northern Eu-

ropean Association for Language Technology (NEALT) Proceedings Series

by Linköping University Electronic Press, as a freely available Gold Open

Access paper. Publications in the Linköping Electronic Conference Proceed-

ings are ranked on the Norwegian register for scientific journals, series and

publishers as Level 1 publications. A link to this paper can be found in the

reference for Al-Kazaz et al. (2018a).

The second journal paper “An Automatic Cryptanalysis of Arabic Trans-

position Ciphers Using Compression” reflects part of the work in Chapter 6.

This paper has been accepted for publication in the �A�M�i�2�`�M���i�B�Q�M���H �C�Q�m�`�M���H

�Q�7 ���/�p���M�+�2�/ �*�Q�K�T�m�i�2�` �a�+�B�2�M�+�2 ���M�/ ���T�T�H�B�+���i�B�Q�M�b �U�A�C���*�a���V-Volume 9, No

11 November 2018.

The third journal paper “Automatic Cryptanalysis of Classical Arabic

11

Table 1.1: Publications

�R �h�B�i�H�2An Automatic Cryptanalysis of Simple Substitution Ci-
phers Using Compression

���m�i�?�Q�`�bNoor R. Al-Kazaz, Sean A. Irvine, and William J. Tea-
han

�A�M Information Security Journal: A Global Perspective
�u�2���` 2018

�a�i���i�m�bPublished
�k �h�B�i�H�2An Automatic Cryptanalysis of Transposition Ciphers

Using Compression
���m�i�?�Q�`�bNoor R. Al-Kazaz, Sean A. Irvine, and William J. Tea-

han
�A�M Proceedings of Lecture Notes in Computer Science by

Springer (LNCS)
�u�2���` 2016

�a�i���i�m�bPublished
�j �h�B�i�H�2An Automatic Cryptanalysis of Playfair Ciphers Using

Compression
���m�i�?�Q�`�bNoor R. Al-Kazaz, Sean A. Irvine, and William J. Tea-

han
�A�M Proceedings of the Northern European Association for

Language Technology (NEALT) by Linköping Univer-
sity Electronic Press (ECP)

�u�2���` 2018
�a�i���i�m�bPublished

�9 Title An Automatic Cryptanalysis of Arabic Transposition
Ciphers Using Compression

���m�i�?�Q�`�bNoor R. Al-Kazaz, and William J. Teahan
�A�M International Journal of Advanced Computer Science

and Applications (IJACSA)
�u�2���` 2018

�a�i���i�m�bAccepted
�8 Title Automatic Cryptanalysis of Classical Arabic Ciphers

Using Compression
���m�i�?�Q�`�bNoor R. Al-Kazaz, and William J. Teahan

�A�M Cryptologia
�u�2���` 2018

�a�i���i�m�b In progress

12

Ciphers Using Compression” considers parts of the work in Chapter 6. This

paper is currently in progress and will be submitted to the journal �*�`�v�T�@

�i�Q�H�Q�;�B��.

The integration of the cryptanalysis methods covered in this thesis into

CrypTool 2 is being explored. CrypTool 2 (CT2) (Esslinger, 2008) is an

open-source software tool developed by the research group ’Applied In-

formation Security (AIS)’ at Kassel University in Germany for illustrat-

ing cryptanalytic and cryptographic concepts, and for educating about and

experimenting with cryptologic techniques. CT2 is part of the CrypTool

project (Wikipedia, nd), with CrypTool a widely used e-learning tool in the

fields of cryptography and cryptanalysis.

13

Chapter 2

Background and Related

Work

2.1 Introduction

Cryptology is crucial to ensure the protection of information. The main goal

of this science is to provide secure confidential systems that guarantee data

integrity and privacy. This is achieved by providing well-established cryp-

tographic algorithms that meet the objectives of securing the information

system.

Text compression involves removing redundancy from a text source by

reducing the space required to store the text and the time required to trans-

fer this text without losing any information from the original source. Com-

pression has always been related to cryptography. Many cryptosystems can

be broken by exploiting statistical properties or redundancy in the cipher-

text. Clearly for this reason, compression is highly recommended before the

encryption process, as it removes redundancy from a text.

The general concepts of cryptology and compression are presented in this

chapter. The relationship between them is also discussed. Different cipher

systems are surveyed and various text compression techniques are reviewed.

This fulfils objective 1 that was listed in Section 1.3. Since experiment-

14

ing with a language non-related to English is one of our main objectives

(objective 5), an overview of the Arabic language is also presented.

This chapter is structured as follows. Section 2.2 focuses on cryptology

while Section 2.3 targets at compression. The use of compression in cryptol-

ogy is addressed in Section 2.4. Section 2.5 highlights some characteristics

of Arabic and the compression method used for Arabic. A brief summary is

provided in the last section.

2.2 Introduction to Cryptology

The subject of �+�`�v�T�i�Q�H�Q�;�vis the study of security. This science has always

been branched into two major lines of study: �+�`�v�T�i�Q�;� �̀��T�?�vand �+�`�v�T�i���M���H�v�b�B�b.

�*�`�v�T�i�Q�;� �̀��T�?�vis the art and science of designing and implementing security

algorithms that serve as primitives to provide certain security services such

as integrity, confidentiality and authentication. �*�`�v�T�i���M���H�v�b�B�bis the art

and science of analysing the security algorithms and defeating their security

claims.

More details about cryptology and the historical development of ciphers,

different kinds of attack and various cryptosystems are reviewed in the fol-

lowing subsections.

2.2.1 Terminology

This section presents the terminology used later to describe the work that

is subsequently presented. The message (or data) which, prior to �2�M�+�Q�/�B�M�;,

contains intelligible information is called �T�H���B�M�i�2�t�i. The output of �2�M�+�Q�/�B�M�;

or �2�M�+�`�v�T�i�B�Q�Mafter being transformed to a “secret” unreadable message is

known as �+�B�T�?�2�`�i�2�t�ior a �+�`�v�T�i�Q�;� �̀��K. The set of functions which maps plain-

text to ciphertext is called �2�M�+�`�v�T�i�B�Q�M. The key and the reverse algorithm,

which generally refer to the secret information, are known as the �/�2�+�`�v�T�i�B�Q�M

process. Decrypting the ciphertext restores the plaintext. An algorithm for

performing �2�M�+�`�v�T�i�B�Q�Mor �/�2�+�`�v�T�i�B�Q�Mis known as a �+�B�T�?�2�`. In many sys-

15

tems, the encryption and decryption keys are the same. Such systems are

called �b�v�K�K�2�i�`�B�+; otherwise, the system is ���b�v�K�K�2�i�`�B�+. Figure 2.1 illustrates

symmetric key cryptography.

Figure 2.1: Symmetric key cryptographic system.

2.2.2 Cryptology: Where Did it Begin?

Cryptology is the science that has contributed to a variety of disciplines and

cultures. The existence of this science can be traced back to the late fourth

millennium BC where it was detected in one of the earliest writing systems,

Sumerian scripts, in the form of logographic and syllabic units. Cryptology

was also encountered around 1900 BC in Egyptian hieroglyphs. The hi-

eroglyphic writing system combines logographic and alphabetic components

that were essentially used to describe the religious literature of that era. For

a long period of time, these two writing systems were considered to be an

approach used for hidden communication between two different civilizations.

In the fifth century, the Egyptian Horapollo made one of the best efforts

to detect these scripts. In the form of “decipherment” in the Greek text of

Hieroglyphica, 200 hieroglyphic symbols were revealed (Horapollo, 1950). In

addition, in the fifth, 15th and 17th centuries, collective efforts were made in

16

the Arabic, Persian, English, Italian, Danish and German languages during

various periods of time to decipher Sumerian texts.

A crucial role was played by the Greeks in constructing ancient cryp-

tology. The use of ciphers or secret codes for the transmission of sensitive

messages, whether military, diplomatic or even personal, was reported as

early as the era of ancient Greece (Kahn, 1973; Bauer, 2016).

At this time, a communication channel between the sender and receiver

was established as a further step to establish a level of confidentiality within

cryptology. Secret messages were sent in a garbled way and remained confi-

dential from unauthorised parties. The Caesar substitution cipher was used

by the Roman general, Julius Caesar, to communicate secretly with his army

during times of war. This cipher is one of the most widely known encryp-

tion techniques with each plaintext letter replaced by a letter using a certain

shift from its original position in the alphabet. This cipher is referred to as

a monoalphabetic substitution cipher as a fixed substitution is applied to

the entire plaintext (Alkhzaimi, 2016).

Techniques for cryptanalysis developed in parallel to the evolution of

cryptography. Statistical analyses were the most effective forms of attack

against classical ciphers. In the 800s AD, the Arabic scientist Al-Kindi

introduced the first cryptanalysis method against monoalphabetic substitu-

tion ciphers using the frequency analysis method (Broemeling, 2011). In

these types of attacks, statistical analysis is performed on the number of

occurrences of specific letter/word combinations. A correlation of cipher-

text frequencies with plaintext frequencies and letter distributions helps the

opponent to guess the original message (Alkhzaimi, 2016).

In order to increase the cryptographic security of ciphers and to over-

come the limitations of single substitution, an evolution of this concept was

introduced. Several substitution alphabets were used in the newly developed

ciphers. Homophonic and polyalphabetic substitution ciphers are examples

of these ciphers. In the homophonic substitution cipher, plaintext letters are

mapped to more than one ciphertext letter. The number of potential sub-

17

stitutes is proportional to the frequency of the letter (the highest frequency

plaintext letters are given more equivalents than lower frequency letters).

The polyalphabetic substitution cipher uses multiple substitution alphabets.

The best known example of this cipher is the Vigenère cipher, known as the

“le chiffre indéchiffrable” and invented by Blaise de Vigenère in the 16th

century. In this cipher, the letters are shifted by different amounts, usu-

ally by using a phrase or word as the encryption key. In the 19th century,

the first general method of decrypting this cipher was published. Statistical

analyses of digrams or trigrams in addition to the examination of repetitions

were included in this attack.

More developed versions of substitution ciphers were introduced by armies

during times of war and for diplomatic communications, such as the Play-

fair cipher. During World War I (WWI), the use of combined substitution-

transposition ciphers was introduced to hide the language statistics. Crypt-

analysis of the new cryptosystems has proven to be more challenging and

has required more sophisticated statistical techniques. In most cases, crypt-

analysis of these ciphers is extremely difficult especially for short messages

with no depth.

In order to overcome the limitations of manual ciphers, several elec-

tromechanical cipher machines were introduced from the 1920s through to

the early 1960s. These machines, known as rotor cipher machines, are

essentially polyalphabetic substitutions which change for each letter en-

coded (Deavours and Kruh, 1985). The most famous rotor machine is un-

doubtedly the Enigma machine used extensively by Nazi Germany during

WWII. In rotor machines, a number of wheels, the rotors, turn. When

the first rotor completes a revolution, the second rotor is moved on by one

position and so on.

The encryption machines introduced in the 1920s and 1930s also led

to the invention of other cryptanalysis machines hat were used against the

encryption that they produced. These machines played a major role in

cryptanalysis while many cryptosystems were still decrypted by hand. The

18

Polish bomba and the Turing bombe are the two main examples of these

machines. A team of Polish cryptographers broke a simplified version of

the Enigma machine. The attack was extended to the full Enigma machine

by British cryptanalysts, including Alan Turing, working at Bletchley Park,

United Kingdom (UK) (Kahn, 1973).

In the 1960s and 1970s, fully electronic encryption devices and computer-

based encryption were introduced. The invention of computers drove the

faster cryptanalysis of the classical cryptosystems. This invention, at the

same time, opened the door to the emergence of much more complex encryp-

tion systems which were impossible to implement by hand. The advent of

the Data Encryption Standard (DES) is the most noteworthy event. These

developments, in addition to the introduction of public key cryptography,

marked the end of the era of classical cryptography (Lasry, 2018). In gen-

eral, even though the principles of classical ciphers form the basis for many

of the modern cryptosystems, however, modern ciphers are outside the scope

of this research.

2.2.3 Attacks Against Ciphers

When decrypting a cryptosystem, the attacker can be interested in obtaining

the plaintext for a given ciphertext or in detecting the key used to produce

the ciphertext. As a key may have been used to encode many messages,

detecting the key, in general, is the more rewarding activity.

It is usually assumed that an attacker has full knowledge of the algorithm

used. This knowledge may be obtained by methods such as reverse engineer-

ing, reading the appropriate literature and so on. Identifying the details of

the encryption system is quite easy if a cipher manual comes into the hands

of the cryptanalyst trying to break a cipher. However, the attacker’s ability

may be limited in other ways which are independent of the algorithm. For

example, the attacker may not be able to perform exhaustive key searches

in a reasonable time owing to the limited computational ability available for

their use, or they may only be able to intercept but not transmit messages.

19

Various kinds of attack are classified according to these restrictions.

Cryptanalytic attack can be divided into the following categories:

• �1�t�?���m�b�i�B�p�2 �b�2���`�+�?. The most obvious generic attack is the �2�t�?���m�b�@

�i�B�p�2 �F�2�v �b�2��� �̀+�?or �#�`�m�i�2 �7�Q� �̀+�2 ���i�i���+�Fwhich simply involves trying all

possible keys. The difficulty of the attack corresponds to the size of

the key space; thus, a very large key space can make this attack un-

feasible. This attack was implemented using machines starting from

the 1930s, such as in the cryptanalysis of the Enigma systems.

• �*�B�T�?�2�`�i�2�t�i �Q�M�H�v ���i�i���+�F. The attacker only knows the ciphertext

from which the plaintext or key is to be obtained. The difficulty of

this attack is based on the redundancy present in the ciphertext and

the available ciphertext length. This type of attack will yield no in-

formation about the plaintext (except its length), in cases where no

redundancy exists in the ciphertext. Decryption methods of this type

make heavy use of the source language statistics and often involve a

guess of the likely parts of plaintext.

• �E�M�Q�r�M �T�H���B�M�i�2�t�i ���i�i���+�F. In this case, the attacker knows some

plaintext with its corresponding ciphertext. This information, for

many classical ciphers, allows the key to be trivially detected. This

helps in reading other messages enciphered using the same or similar

keys. Ranging form a piece of plaintext known to occur somewhere

in the ciphertext to knowing the exact correspondence between some

plaintext and ciphertext, these attacks are varied.

• �*�?�Q�b�2�M �T�H���B�M�i�2�t�i ���i�i���+�F. With this method, the attacker can

choose his own set of plaintexts to be encoded. This enables the

attacker to select a particular plaintext or plaintexts which might in-

crease the opportunity of determining the key. In ���/���T�i�B�p�2 �+�?�Q�b�2�M

�T�H���B�M�i�2�t�i ���i�i���+�F, the attacker bases their next choice of plaintext on

their observations from the previous encryptions.

20

• �*�?�Q�b�2�M �+�B�T�?�2�`�i�2�t�i ���i�i���+�F. Here the attacker is able to choose

ciphertexts to be decrypted in order to obtain their corresponding

plaintexts. This attack is used only when the cryptanalyst wants to

determine the key being used. Public key ciphers are often vulnerable

to this form of attack.

• �*�?�Q�b�2�M �F�2�v �U�`�2�H���i�2�/�@�F�2�v�V ���i�i���+�F. In this case, the attacker knows

the key in advance (Biham, 1994). During the design of a cipher, the

effect of different keys on the same plaintext is investigated in this

form of attack.

When evaluating the security of modern cryptosystems, it is usual to as-

sume that a known plaintext attack and a chosen plaintext attack (in most

cases) are feasible. Security always depends on several different factors while

the importance of the message to be transmitted will determine the precau-

tions to be taken. The strength of a cryptosystem is a negative quality in

that security relies on the inability of attackers to find a feasible way to

break it. The best way to prove the difficulty of breaking a cryptosystem

is to show that its decryption operation is equivalent to solving some gen-

erally agreed computational problems that do not have a polynomial time

solution (Irvine, 1997).

2.2.4 Development of Attacks Against Classical Ciphers

Cryptanalytic methods can also be divided according to their use of technol-

ogy. Manual cryptanalysis is performed by hand using pen and paper only.

Generally, hand approach methods are a combination of frequency analy-

sis, pattern matching and word recognition. During WWI, these methods

were the only option available at that time to use in breaking cryptosys-

tems. The use of hand cryptanalytic methods remained extensive during

WWII and continued until the invention of computers. A wealth of in-

formation about these methods has been provided by a large number of

studies in the literature dating back to the early 19th and 20th centuries, as

21

well as by National Security Agency (NSA) material that has recently been

declassified. Several expositions on strategies for hand analysis have been

published (Gaines, 1956; Williams, 1959; Ball, 1960; Friedman, 1976; Sacco,

1996).

In the 1930s, electro-mechanical machines and mechanized methods were

developed. The Polish Bomba was developed to assist in building catalogues

of the Enigma. More sophisticated machines were developed during WWII

to perform processes that could not practicably be done by hand, such as

the Turing bombe. Details about codebreaking machines designed before

and during WWII have been published by Budiansky (2000) and Copeland

(2010).

Computerized methods have been developed more recently through the

adoption and use of early mainframe computers, super computers and per-

sonal computers. Starting from the 1950s, general purpose computers have

been extensively used by cryptographic agencies such as the National Secu-

rity Agency (NSA). Some of the material recently declassified by the NSA

points to the evolution of computing simultaneously in industry and aca-

demic worlds from WWII to the 1970s, as well as the NSA’s increasingly

significant use of computer technology. Specifications for the newest com-

puter systems and technology have often been driven by this cryptographic

agency (Lasry, 2018). However, no information is available about the NSA’s

use of computers and methods to solve specific cryptosystems (Burke, 2002),

and even fewer details are available about the computerized cryptanalysis of

cryptograms. From the 1980s, a wide range of research about the comput-

erized cryptanalysis of classical cryptosystems has become available to the

public.

2.2.5 Classical Ciphers

Classical ciphers generally fall into two main categories: substitution ciphers

and transposition ciphers. Classical ciphers are frequently used as building

blocks in larger state-of-the-art cryptographic systems. Consequently, it

22

is very important to understand the vulnerability of these simple cipher-

ing systems, to help with building more complex ciphers (Grundlingh and

Van Vuuren, 2003). Modern encryption systems have now superseded the

classical systems; however, the cryptanalysis of classical ciphers remains

the most popular cryptological application and implementation for meta-

heuristic search research. The essential concepts of substitution ciphers and

transposition ciphers are still widely used today in the Advanced Encryption

Standard (AES) and the International Data Encryption Algorithm (IDEA).

As long as the operations and concepts of classical cipher systems are the

basic building blocks of more secure modern ciphers, then classical ciphers

will typically be the first ciphers considered in the case of investigating and

examining new attacks (Garg and Sherry, 2005).

The rest of this section provides some examples of the classical cryp-

tosystems used in our research. These examples illustrate different types of

encoding.

�k�X�k�X�8�X�R �a�B�K�T�H�2 �a�m�#�b�i�B�i�m�i�B�Q�M �*�B�T�?�2�`�b

A simple substitution cipher (also called a monoalphabetic cipher) replaces

each character in the plaintext with another predetermined character to form

the ciphertext (Denning, 1982). Formally, let A be a plaintext alphabetic

character of size n, where A2 f a0;a1; :::;an� 1g and C is a ciphertext alphabetic

character of size n, C 2 f f (a0); f (a1); :::; f (an� 1)g. Each symbol of A has a

one-to-one mapping to the corresponding symbol of C; f : A ! C. Generally,

C is a simple rearrangement of the lexical order of the symbols in A, for

example:

A : �� �" �* �. �1 �6 �: �> �A �C �E �G �J �L �P �S �Z �_ �a �h �l �o �q �s �u �w

C : �A �_ �l �a �L �o �. �q �P �s �� �S �: �h �C �u �" �E �1 �G �J �6 �* �w �Z �>

Then the message ‘�*�_�u�S�h�P�:�_���S�>�u �.�1�J�P’ is encoded as:

Plaintext �*�_�u�S�h�P�:�_���S�>�u �.�1�J�P

Ciphertext �l�E�Z�u�G�C�.�E�A�u�q�Z �a�L�:�C

23

The permutation selected represents the key.

For an alphabet with n characters, there are n! possible permutations;

for example, for the 26 letter English alphabet, there are 26! possible per-

mutations or 4:03e+ 26. Therefore, with this large number of possibilities,

finding the correct permutation through an exhaustive search is considered

to be unfeasible.

This type of cryptosystem is easy to implement and to use. However, it is

not difficult to crack, as it does nothing to conceal the statistical properties

of the language. Hence, it does not provide much security and can be easily

broken by frequency distribution analysis.

By using frequency analysis of individual letters, the cryptanalyst can

readily decrypt a ciphertext manually if it uses this cryptosystem. This

will still happen even if the character frequencies of the ciphertext are dif-

ferent from those of normal English text. With a few attempts and after

trying some of the possibilities, the cryptanalyst will be able to find the cor-

rect substitution (Irvine, 1997; Eskicioglu and Litwin, 2001). Digram and

trigram distributions provide more useful information that can also be ac-

cessed by the cryptanalyst. Many digrams could occur more frequently than

some single letters while other digrams such as ‘�[�D’ rarely occur in English.

Typically, different languages have different letter frequencies. Thus, it is

possible to determine the plaintext language before starting to decrypt the

ciphertext if the ciphertext provided is of sufficient length.

Despite the fact that simple substitution ciphers are not typically used

today in real-world encoding systems, many effective and secure modern

ciphers use substitution ciphers in combination with other ciphers, for ex-

ample, transposition ciphers, modular arithmetic, Boolean algebra and so

on. This powerful combination is an important innovation as it results in a

method that is stronger than its original components (Eskicioglu and Litwin,

2001).

Different cryptanalysis methods have been developed against simple sub-

24

stitution ciphers starting with manual methods (Ball, 1960; Friedman, 1976;

Gaines, 1956) and leading to computerized methods. Various automated at-

tacks using different searching algorithms and different scoring methods are

used to break this cipher (Peleg and Rosenfeld, 1979; Lucks, 1990; Hart,

1994; Clark, 1998; Hilton, 2012; Ravi and Knight, 2009; Nuhn et al., 2013).

Further description of these methods and other methods for the automatic

solution of simple substitutions are discussed in detail in Section 3.2.

�k�X�k�X�8�X�k �h�`���M�b�T�Q�b�B�i�B�Q�M �*�B�T�?�2�`�b

In cryptography, a transposition cipher is a method of encryption by which

the content of a message is concealed by rearranging groups of letters, there-

fore resulting in a permutation. The concept of transposition is an essential

one and has been used in the design of modern cipher systems (Stamp and

Low, 2007). Originally, the message was written out into a matrix in row-

order and then read out by column-order (Irvine, 1997). The technique can

be expanded to d dimensions, by dividing a message into blocks or groups

of fixed size d (called the period) and performing a permutation over these

blocks. This permutation represents the key. The size of the key is the same

as the length of the block. Generally, if f : Zd ! Zd is a permutation over

Zd, Zd = f 1; :::;dg, then, according to f , blocks of fixed length (d characters)

are encrypted by applying a permutation to the characters (Shannon, 1949;

Denning, 1982). For example, if d = 4 and plaintext x = 1234, then the

encrypted message (ciphertext) f might have the permutation: f (x) : 4213.

Here, the first character in the original message is moved to the third posi-

tion, the third character in the block to the fourth position, and the fourth

character to the first position. Thus, the original message ‘cryptography-

demo’ is encrypted as:

Position: 1234 1234 1234 1234

Plaintext: cryp togr aphy demo

Ciphertext: prcy rotg ypah oedm

25

This ciphertext is divided into blocks of four letters and in order to hide

the key size (period), a stream of characters is transmitted continuously. In

the case of a short block at the end, it would be encrypted by moving the

letters to their relative permutation positions with dummy letters added or

simply left blank.

Transposition ciphers are a class of ciphers that, in conjunction with sub-

stitution ciphers, form the basis of all modern symmetric algorithms (Giddy

and Safavi-Naini, 1994). These algorithms, such as block and stream ciphers,

are also used in conjunction with the above to form more complex transfor-

mations, notably for providing diffusion. Although the field of cryptology

has undergone a revolution after the introduction of the asymmetric crypto-

graphic cipher in 1976, symmetric ciphers still form the basis for secure data

transmission today, owing to their superior speed and efficiency (Grundlingh

and Van Vuuren, 2003).

In general, transposition ciphers are considered much harder to crack

than other basic cryptosystems such as simple substitution ciphers. Many

statistical tools have been developed to aid the automated cryptanalysis of

simple substitution ciphers while the automatic cryptanalysis of transposi-

tion ciphers has proven more difficult. Generally, cryptanalysis of transpo-

sition ciphers is highly interventionist and demands some knowledge of the

probable contents of the encrypted text to give an idea of the rearrange-

ment order that has been used (Matthews, 1993). Related techniques for

the automatic solution of this cipher are discussed in detail in Section 4.2.

�k�X�k�X�8�X�j �S�H���v�7���B�` �*�B�T�?�2�`�b

The Playfair cipher is a symmetric encryption method which is based on bi-

gram substitution. It was first invented by Charles Wheatstone in 1854. The

cipher was named after Lord Lyon Playfair who published it and strongly

promoted its use. It was considered to be a significant improvement on

existing encryption methods. A key is written into a 5� 5 grid and this

may involve using a keyword (as in the example below). For the English

26

language, the 25 letters are arranged into the grid with one letter omitted

from the alphabet. Usually, the letter ‘I’ takes the place of letter ‘J’ in the

text to be encrypted.

To generate the key that is used, spaces in the grid are filled with the

letters of the keyword and then the remaining spaces are filled with the rest

of the letters from the alphabet in order. The key is usually written into the

top rows of the grid, from left to right, although some other patterns can be

used instead. For example, if the keyword ‘CRYPTOLOGY’ is used, the key

grid would be as below:

C R Y P T

O L G A B

D E F H I

K M N Q S

U V W X Z

To encrypt any plaintext message, all spaces and non-alphabetic charac-

ters must be removed from the message at the beginning, then the message

is split into groups of two letters (i.e. bigrams). If any bigrams contain re-

peated letters, an ‘X’ letter is used to separate them. (It is inserted between

the first pair of repeated letters, and then bigram splitting continues from

that point). This process is repeated (as necessary) until no bigrams with

repeated letters are left. If the plaintext has an odd number of letters, an

‘X’ is inserted at the end so that the last letter is in a bigram (Klima and

Sigmon, 2012). For example, the message:

“�h�Q �#�2 �Q�` �M�Q�i �i�Q �#�2 �i�?���i �B�b �i�?�2 �[�m�2�b�i�B�Q�M”

would end up as:

“TO BE OR NO TX TO BE TH AT IS TH EQ UE ST IO NX”.

Three basic encryption rules are to be applied (Klima and Sigmon, 2012):

• If both letters of the bigram occupy the same row, replace them with

27

letters to the immediate right, respectively, wrapping from the end of

the row to the start if the plaintext letter is at the end of the row.

• If both letters occupy the same column, then replace them with the

letters immediately below them. So ‘IS’ enciphers to ‘SZ’. Wrapping

in this case occurs from the bottom to the top if the plaintext letter

is at the bottom of the column.

• If both letters occupy different rows and columns, replace them with

the letters at the free end points of the rectangle defined by both

letters. Thus ‘TO’ enciphers to ‘CB’. The order is important—the

letters must correspond between the encrypted and plaintext pairs (the

one on the row of the first letter of the plaintext should be selected

first).

Following these rules, the encrypted message would be:

“CB LI LC KG PZ CB LI PI BP SZ PI HM VD ZB DB QW”.

The Playfair cipher is one of the most well-known multiple letter enci-

phering systems. However, despite the high level of efficiency demonstrated

by this cipher, it suffers from a number of drawbacks. The existing Play-

fair method is based on 25 English alphabetic letters with no support for

any numeric or special characters. Several algorithms have been proposed

aiming to enhance this method (Srivastava and Gupta, 2011; Murali and

Senthilkumar, 2009; Hans et al., 2014). One particular extended Playfair

cipher method (Ravindra et al., 2011) is based on 36 characters (26 alpha-

betical letters and 10 numeric characters). Here, a 6� 6 key matrix was

constructed with no need to replace the letter ‘J’ with ‘I’. By using the same

previous keyword ‘CRYPTOLOGY’, the key matrix in this case would be:

Plaintexts containing any numerical values, such as contact number, house

number or date of birth, can be easily enciphered using this extended method

(Ravindra et al., 2011).

28

C R Y P T O

L G A B D E

F H I J K M

N Q S U V W

X Z 0 1 2 3

4 5 6 7 8 9

Several methods for the automatic cryptanalysis of Playfair ciphers have

been developed (Negara, 2012; Hammood, 2013; Stumpel, 2007; Cowan,

2008). Further description of these methods are discussed in detail in Sec-

tion 5.3.

The next section provides an introduction to the area of text compression

as this is an important part of our research.

2.3 Introduction to Text Compression

The primary motivation for data compression has always been making mes-

sages smaller so they can be transmitted more quickly or stored in less space.

Compression is achieved by removing redundancy from the message, result-

ing in a more ‘random’ output. In practical terms, the two main classes of

adaptive text compression techniques that are commonly used are: dictio-

nary and statistical approaches (Bell et al., 1990). The dictionary approach

is usually found to be faster than the statistical approach. In contrast,

statistical based approaches are usually better than dictionary approaches

in terms of compression rate. A third class based on block-sorting using

the Burrows–Wheeler algorithm (Burrows and Wheeler, 1994) has emerged

which approaches the compression rates of statistical algorithms but at much

faster speeds, although not as fast as dictionary-based approaches.

2.3.1 Dictionary-Based Compression

In dictionary-based compression techniques, individual symbols (phrases)

are replaced with variable length codewords (indices). By replacing long

29

strings (phrases) with shorter codewords (indices), compression is achieved.

Good compression is achieved with these techniques as many characters are

represented by a single dictionary reference. There is an equivalent statis-

tical scheme for every dictionary scheme that achieves the same compres-

sion (Bell et al., 1990). The use of these systems is still widespread as they

provide a fast decompression process.

One of the most important aspects of this scheme is the construction

of the dictionary. Good compression will be provided when the dictionary

closely matches the text to be compressed. In this system, the length of

stored phrases may be fixed or unbounded. Having a dictionary with longer

phrases will offer better compression. Dictionary systems from the Ziv–

Lempel family of compressors (Ziv and Lempel, 1977) are the most popular.

Data are compressed in this coding scheme by providing references to the

data that existed earlier (Irvine, 1997).

Gzip is one of the most important compression methods: it was written

by Jean-Loup Gailly and Mark Adler, and created for the GNU project (Gzip,

2012). Gzip is a commonly used lossless compression scheme on the Internet

and the Unix operating system. It uses a dictionary-based approach, which

is based on the Ziv–Lempel coding scheme.

2.3.2 Block-Sorting Compression

In this scheme, which is also called the Burrows–Wheeler transform, a

character string is rearranged into runs of similar characters (Burrows and

Wheeler, 1994). A message is considered in blocks. For each block, the

transformation which is reversible makes the transformed block easier to

compress using traditional techniques such as run-length encoding.

Bzip2 is a well-known compression scheme that was written by Julian

Seward (Bzip2, 2016). It is a lossless compression method which uses a

block-sorting approach (the Burrows–Wheeler block-sorting compression al-

gorithm). The compression performance of this method (Bzip2) is usually

better than the Gzip; however, its speed is slower. It approaches the per-

30

formance of the best compression techniques such as those produced by

prediction by partial matching (PPM) (Bzip2, 2016).

2.3.3 Statistical Coding and Prediction by Partial Matching

(PPM)

The best compression is achieved by another type of compressors which

is based on an adaptive statistical coding approach (Bell et al., 1990).

These compressors comprise two different processes: modelling and cod-

ing (Rissanen and Langdon, 1981). The model generates a probability dis-

tribution of the symbols that may occur next based on the symbols seen

before in the text, while the coder is used to encode the symbol that actu-

ally occurred using this probability distribution (Teahan, 1998). Prediction

by partial matching (Cleary and Witten, 1984b) and dynamic Markov com-

pression (DMC) models (Horspool and Cormack, 1986) are two examples of

this approach. However, PPM is proven to be more effective than DMC.

Prediction by partial matching (PPM) has set the performance standard

in lossless compression of text throughout the past three decades (Teahan,

1998). It is an adaptive statistical coding approach which dynamically con-

structs and updates fixed order text compression models depending on the

previous symbols being processed. The initial method was first published

by Cleary and Witten (1984b). This class of text compression models per-

forms well on English and it rivals the predictive ability of humans in com-

parison to other computer models (Teahan and Cleary, 1996). It has shown

a high level of performance in many natural language processing tasks, such

as language identification, text correction and optical character recognition

(OCR) spelling correction (Teahan and Cleary, 1997)

Models that set their predictions on a few prior symbols are termed

finite-context models of order k, where k denotes the number of previous

symbols used. The order of the model represents the maximum context

length used to predict the next symbol.

Prediction probabilities for each model are calculated from all characters

31

or symbols that have followed every subsequence observed from 1 to length

k, and from the number of times that each character has occurred. From

each model, the probabilities associated with each symbol or character that

has followed the preceding k characters (in the past) are estimated to predict

the upcoming character. Prediction by partial matching modelling systems

have been found to be very efficient at compressing English text (Teahan

and Cleary, 1996).

Usually each character or symbol in the model will be encoded by using

arithmetic coding depending on its associated probability (Witten et al.,

1987). According to the PPM scheme, it begins from the highest context

order k. Where this context predicts the upcoming symbol, then each symbol

will be encoded according to its associated probability. In the case that

a previously unseen character or symbol is observed in this context, the

context model will not be able to encode this character and an alternative

solution must be adopted. An “escape” symbol for which the probability is

predicted by the PPM compression method will be transmitted to signal the

encoder to switch to the next context model of order k� 1. The operation

will continue until it reaches the order in the compression model in which

the upcoming character is not novel. If needed, when a completely novel

symbol is encountered, the method will escape down to the k = � 1 (order

� 1) default model. This is the lowest-order context in the model where all

symbols will be encoded with equal probability of 1
jAj , where A denotes the

size of the alphabet.

By using this escape mechanism, different order models are effectively

blended to ‘smooth’ the probability estimates. Many previous results have

shown that typically no further improvement can be achieved in the com-

pression results by increasing context lengths greater than five for English

texts (Cleary and Witten, 1984b; Cleary et al., 1995b; Teahan, 1998). Fur-

ther improvements can be achieved when escaping has occurred by excluding

all symbols already predicted by higher-order contexts since these symbols

would have already been encoded using a higher-order context if they had

32

occurred. This mechanism is called “full exclusion”.

Moffat (1990) devised another simple mechanism that further improved

results which is called “update exclusion”. This mechanism is based on how

the symbol counts for each context model are updated. When encoding with

update exclusions, the predicted symbol count is incremented only if it is not

already predicted by any higher-order context. This means that the counts

are updated only for the higher-order contexts that are actually used to

predict them. Thus, the counts better reflect which symbols are likely to be

excluded by the higher-order contexts. This mechanism typically improves

the compression rate by up to 2% as stated by Bell et al. (1990). On the

other hand, when encoding without update exclusions, all the counts for

all orders of the model are updated. The counts are incremented even if

they are already predicted by a higher-order context. The use of both these

mechanisms is investigated in our research: PPM without update exclusions;

and PPM with update exclusions (standard PPM).

�k�X�j�X�j�X�R �o���`�B���M�i�b �Q�7 �S�S�J

Several variations of the PPM compression scheme have been invented, such

as PPMA, PPMB, PPMC, PPMD, PPM* and PPMO, depending on the

methods proposed for calculating symbol probabilities. Each differs by the

escape method used. For example, PPMC uses escape method C, and PPMD

uses escape method D. Also, the maximum order of the context models may

be included when the variant is described in the literature; for example,

PPMD4 refers to a fixed-order 4 PPM model using escape method D. Pre-

vious experiments showed that PPMD, in most cases, performs better than

the other variants. Thus, PPMD is explored in our study in addition to

PPMC which serves as a comparison. An example illustrating how these

two variants work is provided below.

In the following formal description of each method, e represents the

probability of the escape symbol and p(s) denotes the probability for symbol

s. In addition, c(s) is the number of times the context was followed by

33

the symbol s; n is the total number of times that the current context has

occurred; and t denotes the total number of types.

• �S�S�J�� . This variant of PPM uses method A, which applies an addi-

tional count to the novel (escape) probability event. In this method,

as the number of occurrences of the context increases, the escape prob-

ability decreases (Cleary and Witten, 1984a,b). For example, if a spe-

cific context has occurred seven times before, the escape probability

will be equal to 1
8:

e=
1

n+ 1
and p(s) =

c(s)
n+ 1

:

• �S�S�J�" . This variant uses method B. It classifies a symbol as being

unusual or novel if it has occurred once before. This is done by sub-

tracting one from all the counts. The idea is to filter unusual events—

no prediction is made unless the symbol has occurred more than once

in the current context (Cleary and Witten, 1984a,b). For example, if

a context has occurred seven times with three symbols (a, b and c): a

following five times, b and c once each, then the probability of a will

be 4
7 and there is no predictions for b and c at all:

e=
t
n

and p(s) =
c(s) � 1

n
:

• �S�S�J�* . This variant was developed by Moffat (1990) and has become

the benchmark version. The probability of this method (method C)

is based on using the number of symbols that have occurred before,

known as the number of types. This is similar to method B with the

exception that symbols are predicted immediately:

e=
t

n+ t
and p(s) =

c(s)
n+ t

:

For example, if two symbols (a and b) followed a context, twice by a

and once by b, then the probability of the escape event will be 2
5. In

34

this case, 2 represents the number of types (there are two types, a and

b) and 5 refers to the number of types plus the number of tokens (a

occurs twice and b once, so the number of tokens is equal to 3).

• �S�S�J�. is another improved variant. It was first developed by Howard

(1993). The PPMD variant usually shows better performance than the

other PPM compression variants such as PPMA, PPMB and PPMC.

This variant is similar to PPMC except that the probability of the new

symbol is estimated differently. The new symbol’s treatment becomes

more consistent (Howard and Vitter, 1992) by adding 1
2 to both the

symbol and escape counts:

e=
t

2n
and p(s) =

2c(s) � 1
2n

:

For example, if a specific context has occurred three times before, with

three symbols a, b and c following it once, then the probability for each

is equal to 1
6 and the escape symbol probability is 3

6.

• Other variants titled �S�S�J�S, �S�S�J�s , �S�S�J�s�* (Witten and Bell,

1991), �S�S�J� (Cleary et al., 1995b), �S�S�J�w (Bloom, 1998), �S�S�J�h

(Teahan and Harper, 2001), �S�S�J�A�A(Shkarin, 2001) and �S�S�J�@�+�?(Wu

and Teahan, 2005) have also been proposed.

To illustrate the process of the PPM method, Table 2.1 presents the

state of the PPMC and PPMD models where k = 2;1;0 and � 1 after the

input string ‘stressless’ has been processed. For illustration purposes for

this example, the highest context order is for k = 2. If the next symbol or

character is estimated successfully by the modelling context, the probability

p will be used to encode it, while c denotes the occurrence counts. Referring

to the example, if the input string ‘stressless’ is followed by the character

‘l ’, the probability of the prediction ‘ss’! ‘l ’ in order 2 (which is 1
2) would

be used to encode it, requiring only one bit as a result (� log2
1
2 = 1).

35

Table 2.1: PPMC and PPMD models after processing the string “stressless”

with maximum order of 2.

Order k=2 Order k=1 Order k=0 Order k=-1

Prediction c p Prediction c p Prediction c p Prediction c p
�S�S�J�*
st ! r 1 1

2 s ! t 1 1
7 ! s 5 5

15 ! A 1 1
jAj

! Esc 1 1
2 ! s 2 2

7 ! t 1 1
15

! l 1 1
7 ! r 1 1

15

tr ! e 1 1
2 ! Esc 3 3

7 ! e 2 2
15

! Esc 1 1
2 ! l 1 1

15

t ! r 1 1
2 ! Esc 5 5

15

re ! s 1 1
2 ! Esc 1 1

2

! Esc 1 1
2

r ! e 1 1
2

es ! s 2 2
3 ! Esc 1 1

2

! Esc 1 1
3

e ! s 2 2
3

ss ! l 1 1
2 ! Esc 1 1

3

! Esc 1 1
2

l ! e 1 1
2

sl ! e 1 1
2 ! Esc 1 1

2

! Esc 1 1
2

le ! s 1 1
2

! Esc 1 1
2

�S�S�J�.
st ! r 1 1

2 s ! t 1 1
8 ! s 5 9

20 ! A 1 1
jAj

! Esc 1 1
2 ! s 2 3

8 ! t 1 1
20

! l 1 1
8 ! r 1 1

20

tr ! e 1 1
2 ! Esc 3 3

8 ! e 2 3
20

! Esc 1 1
2 ! l 1 1

20

t ! r 1 1
2 ! Esc 5 5

20

re ! s 1 1
2 ! Esc 1 1

2

! Esc 1 1
2

r ! e 1 1
2

es ! s 2 3
4 ! Esc 1 1

2

! Esc 1 1
4

e ! s 2 3
4

ss ! l 1 1
2 ! Esc 1 1

4

! Esc 1 1
2

l ! e 1 1
2

sl ! e 1 1
2 ! Esc 1 1

2

! Esc 1 1
2

le ! s 1 1
2

! Esc 1 1
2

36

Assume instead that the character ‘t’ follows the string ‘stressless’. As

the order 2 model does not predict this character, the escape probability of
1
2 will be encoded for this order, and the encoder will move from the order

two model (k = 2 in the first column) down to the order one model (k = 1 in

the second column). In this context, ‘s’! ‘t’ predicts the character ‘t’, with

the probability 1
7. Therefore, the total probability needed to encode the ‘t’

character is 1
2 � 1

7, or 3:8 bits. Actually, in this context, a more accurate

probability estimation is gained by noticing that the character ‘t’ cannot be

encoded using this context as, if it did, it would have been already encoded

by the order two context. Therefore, we can exclude the already predicted

symbols: this is what is termed the full exclusion mechanism, which corrects

the probability for this context to 1
6. Finally, the total probability will be

1
2 � 1

6 with 3:6 bits required for the compression codelength.

However, if the next character has never been seen before, such as ‘m’,

the escape will be repeated down through the models to the default order � 1

context (k = � 1), where all symbols or characters have equal probabilities

with 1
jAj where A refers to the size of the alphabet. Supposing that the

alphabet size is 256 for the English language encoded using 8-bit American

Standard Code for Information Interchange (ASCII). Consequently, the total

probability for encoding the ‘m’ character will be 1
2 � 3

7 � 5
15 � 1

256, or 11:8 bits,

when encoded using arithmetic coding. The full exclusion mechanism can be

used to obtain a more accurate probability estimation, which will exclude

characters already appearing in higher-orders. When this is applied, the

new probability for the ‘m’ character will be equal to 1
2 � 3

6 � 5
8 � 1

251, with

the total codelength of 10:6 bits.

The same procedure applies to the second part of Table 2.1 when using

the PPMD compression variant but using the modified symbol and escape

counts as discussed above. For example, the probability of the prediction

‘es’! ‘s’ in order 2 for PPMD how now changed to 3
4 from 2

3 and the context’s

escape probability has changed to 1
4 from 1

3 owing to the different way the

probabilities are now being calculated.

37

The PPM method can also be applied to streams of word-based symbols

as opposed to character-based streams. Several word-based systems have

been proposed (Horspool and Cormack, 1992; Bentley et al., 1986; Moffat,

1989; Teahan, 1998). The word-based approach typically provides faster

compression compared to the character-based models as fewer symbols are

being encoded.

Similar to the previously described character-based models, word-based

models use the preceding words to predict the next word using a similar

PPM encoding mechanism with escapes to lower-order models. A number

of methods for estimating the escape probability for the word-based models

have been explained (Witten and Bell, 1991; Teahan, 1998). An escape to an

order � 1 word context signifies that the word needs to be encoded character

by character. In this case, each symbol or character in the word (even the

space character that marks the end of each word) is separately encoded.

After a word has been encoded once, a word symbol associated with that

word that uniquely identifies it can now be encoded instead. Essentially, the

word symbols are added to an expanding alphabet of word symbols as the

new words are encountered.

Previous experiments have shown that the performance of the word-

based scheme degrades with higher-orders. The performance of the order 2

word bigram models is slightly worse than that of the order 1 word unigram

models. Order 3 trigram word models and higher follow the same trend.

Experimental results show that, for the English language, the performance

of the word-based schemes is slightly better than that of the character-based

ones. However, the character-based models are more economical in terms of

memory space and are more easily applied to various applications in natural

language processing which require the correction of character sequences such

as OCR, spelling correction and cryptology (Teahan, 1998). In our work,

we make use of these two models, further details of which are provided in

Chapter 3.

One problem in using an adaptive compression method such as PPM

38

is that at the beginning the models are empty with insufficient data to

effectively compress the texts resulting in different permutations producing

similar codelength values. To overcome this problem, a simple expedient is

to prime the models using training texts that are representative of the text

being compressed. In our experiments, we also use static (semi-adaptive)

models that is once the models have been primed using the training texts,

they are not further updated when processing the ciphertexts.

�k�X�j�X�j�X�k �1�M�i�`�Q�T�v �m�b�B�M�; �S�S�J�@�"���b�2�/ �J�Q�/�2�H�b

Both entropy and cross-entropy can be related directly to text compression.

Entropy represents information content which imposes a lower bound on the

number of bits per symbol that is needed to encode a long sequence of text

derived from a language. Cross-entropy is an upper bound to the entropy

(in this case, a particular model is used as an approximation to a language).

Entropy can be used to measure how well statistical models can predict.

Shannon (1951) performed experiments with humans predicting text and

found that humans were able to predict English text at approximately 1

bit per character. Teahan (1998) argued that text compression provides a

direct means for estimating the upper bound to the entropy. As a result, text

compression can be used to directly compare performance between computer

models and humans (Teahan and Cleary, 1996).

PPM codelength is the length of the compressed text, in bits, when it

has been compressed using the PPM language model. It can be used to

estimate the cross-entropy of the text. This is calculated according to the

following formula (Chang, 2008):

H(SL) = �
1
n

n

å
i= 1

log2 pL(ci jc1; :::;ci� 1)

where SL is a sequence of symbols of length n; SL = c1c2:::cn in language L;

and pL is a model for that language. The average number of bits required

to encode the text is calculated using the model pL, where ci denotes the ith

39

character of SL.

2.4 Using Compression for Cryptology

As mentioned earlier, compression can be used in several ways to enhance

cryptography. For example, many cryptosystems can be broken by exploit-

ing statistical regularities or redundancy in the source (Lucks, 1990; Wilson,

1994). Redundancy is the bane of cryptography (Shannon, 1949). As com-

pression removes redundancy from a source, it is immediately apparent why

compression is advocated prior to encryption (Irvine, 1997). Several publi-

cations on cryptology have written about the use of this approach. Schneier

(1996) devoted a page to compression, one chapter addresses compression

in the book by Van Tilborg (2012), and it is described in various other

publications (Gavaskar et al., 2012; Sangwan, 2012; Jasuja and Pandya,

2015; Sharma and Bollavarapu, 2015; Yilei et al., 2015; Devi and Mani,

2018). Sandoval and Feregrino-Uribe (2005) presented a hardware architec-

ture that combines lossless compression and public key cryptography.

Considering whether data compression methods can be used to provide

security has been investigated by several researchers (Witten and Cleary,

1988; Bergen and Hogan, 1993; Cleary et al., 1995a; Irvine et al., 1995; Irvine,

1997; Lim et al., 1997; Ishibashi and Tanaka, 2001; Bose and Pathak, 2006;

Wang, 2006; Wen et al., 2006; Kim et al., 2007; Zhou et al., 2008; Sun et al.,

2009; Wong et al., 2010; Chen et al., 2011; Duan et al., 2011; Katti et al.,

2011; Kodabagi et al., 2015; Xiang et al., 2016). Most of these researchers

have found that the compression schemes are insecure and some modifi-

cations have been proposed in a number of these trying to improve these

methods. For example, Irvine (1997) explored the possibility of combining

the two currently separate activities of compression and encryption, possi-

bly leading to a faster and simpler communication system, through the use

of compressors as cryptosystems. Different lossless compression algorithms

were examined in this work. Irvine concluded that each of these algorithms

40

has security flaws to the extent that none of these compressors should be

used as security devices. However, at the same time, this work stressed that

compression remains important as an adjunct to encryption, and that all

critical information should be compressed before encryption to reduce the

chance of ciphertext only attack.

Using compression schemes as one way to tackle the plaintext recognition

problem for cryptanalysis is an approach that has resulted in relatively few

publications compared to the many other methods that have been proposed

for breaking ciphers. As far as we know, Irvine (1997) has been the only

researcher to have previously used a text compression technique to decrypt a

cryptosystem (in this case, simple substitution ciphers). Irvine used a vari-

ation of the PPM modelling system (combined with simulated annealing)

for the automatic solution of simple substitution ciphers, with good results

achieved compared to other methods, with 60% of ciphertexts solved with-

out any errors, with 83% solved with less than four errors. These results

were comparable to those achieved with other methods for the automatic

cryptanalysis of such ciphers, and with fewer limitations. These findings

have provided the motivation for the research described in this dissertation

which further investigates this effective technique in order to construct new

and effective cryptanalysis methods against different ciphers.

The next section presents an overview of the Arabic language. The

reason is that, in a later chapter, Chapter 6, we explore the development

of new automatic compression-based cryptanalysis methods specifically for

the Arabic language as this is one of the research objectives (objective 5).

2.5 Introduction to the Arabic Language

The Arabic language is one of the most widely spoken languages around the

world, with as many as 290 million people in Asia and North Africa and

more than 400 million people around the entire world speaking Arabic. It is

the fifth most spoken language (Gary and Fennig, 2018). In addition, Arabic

41

has had a large effect on other languages like Kurdish, Persian, Pashto and

Sindhi and on European languages such us Spanish, Sicilian and Portuguese

(Weekley, 2012). The Arabic language is one of the Semitic languages be-

longing to the Afroasiatic language family. People who speak Semitic lan-

guages were the first to introduce the alphabet to the world, with the Greeks

then borrowing it, after which it spread the whole world (Katzner, 2002).

The Arabic language is not related to English (Comrie et al., 2009). This

language is also the original language of the holy book of Muslims, “the

Holy Qur’an”, with a strong cultural desire seeking to preserve the vital-

ity of the language. The importance of this language is not restricted to

Muslims only, but extends to Christians as well as Jews. Some Christian

and Jewish holy books and the names of some old churches were written in

Arabic, the al-Muallaqah church being one example.

The Arabic language has distinct characteristics, differentiating it from

other languages such as Romance languages; since for example, it is written

and read from right to left. It consists of 28 consonant letters with the vowels

represented by marks below and above the letters. It also has distinctive

variations to represent singular, dual and plural forms and to represent male

and female forms. In addition, written Arabic often exhibits triglossia with

classical, modern and mixed forms frequently appearing together. These

characteristics, as well as its rich morphology, present challenges for natural

language processing and cryptographic systems.

In this section, a general overview of the Arabic language, with some of

the structural characteristics of its printed text, and the Arab contributions

to cryptology, is presented. A description of the PPM compression method

for the Arabic language and calculations of the codelength metric used for

plaintext recognition is also introduced.

2.5.1 Arabic Letters

Arabic letters have developed over time. the Arabic language generally

consists of 28 basic letters and another eight derived letters, which have

42

been mostly derived from the first alphabetic letter “��”. Spaces are used to

separate words. the Arabic language is a vowelised language, but it can

be read and written either in a vowelised form or not, the vowelised marks

being included to assist readers to read words or a whole text in the proper

way. Table 2.2 presents all 36 of the Arabic alphabet letters.

Table 2.2: Arabic alphabet letters.

Basic letters �7 �� �± �¦ �¢ �› �‹ �ˆ �~ �x �w �u �t �p �o �f �e �# �" �� �� �U �T �S �C �B �A ��
Derived letters �´ �6 �� �¹ �?�•���’���‘��

As stated, the Arabic language is a rich morphological language (Ng

et al., 2009). The morphological decomposition represented by the same

Arabic word can be found in different forms in the same text. Words can

take on one or more of four distinct forms. A word without any prefixes

and suffixes is the first form, a word with a prefix added to it represents the

second form, while the third form denotes a word with a suffix attached to it,

and the fourth form is a word with both prefixes and suffixes. For example,

the word “���ö��”, means “girl”, while the word “���ö�’�k��” with the prefix “�›��”
means “the girl”. The word “�¦�Ç�“�ö��” with the suffix “�¦��” attached means “two

girls” and the word “�¦�Ç�“�ö�’�k��” with both the prefix and suffix “�›�����¦��” means

“the two girls”. Furthermore, two or more prefixes and/or suffixes can be

added to each word; for example, the word “���ö�’�k����” with the two prefixes “��”
and “�›��” means “and the girl”.

2.5.2 Arabic Encoding Methods

Each letter in the Arabic script denotes a unit of the language. Unlike the

English language, there is no upper case or lower case in Arabic and each

word comprising more than one letter is written joined together (cursive

writing), with an exception being the letters “�� �� �" �#”, and “��” only if they

appear at the beginning of the word.

Different encoding methods are used to represent Arabic characters dig-

itally including the ISO 8859-6 standard, Windows-1256 and UTF-8 encod-

43

ing. UTF-8 encoding has been the pre-eminent character encoding scheme

for the World Wide Web, with 89.8% of Web pages using it for encoding

(W3Techs, 2013). UTF-8 encoding is defined by the Unicode standard and

it is a compromise encoding method. It can be compact (with only one

byte) like ASCII to represent an English character, but it can also represent

any Unicode character with more than one byte (two to four bytes). The

efficiency and compatibility shown by UTF-8 encoding for both ASCII text

and Unicode scripts (that need more than one byte to represent each char-

acter, such as Chinese, Arabic and Japanese) have given it priority in many

applications, websites and operating systems (Alhawiti, 2014).

2.5.3 Arabic Text Characteristics

This section provides a simplified presentation of the frequency statistics

for both Arabic characters and words. The main purpose of this work is to

investigate the number of times that each character has occurred in a text.

Each character’s percentage can be calculated using this formula:

character percentage=
number o f times each character has occurred

total number o f characters
� 100:

For example, in the following sentence “�¢�"�Ç�Ü�ó�k�� �¢���è�Ü�k�� �"�Ú�X ���ì�G �ý���‘�Ç��”, which

comprises five words and 23 letters (excluding spaces), the letter “��” occurs

four times while the letter “�B” occurs twice. Therefore, the character per-

centage of these two letters will be (4/23)� 100 =17.39% and 8.70%, respec-

tively, according to the previous formula. The Arabic character percentage

of the large Mixed Arabic corpus (further details concerning this corpus are

described in Section 6.2) is explored in Table 2.3. According to this table,

we can see that the characters “�¢���7 ���›����” in addition to “spaces” (A, L, I and

M in Roman alphabet characters), show the highest frequency percentage;

in contrast, the letters “�u” and “�x” show a lower frequency.

The secondary purpose here is to investigate the number of times that

each n-graph occurs in an Arabic text. Table 2.4 presents the 30 most fre-

44

quent n-graphs from statistics obtained from the large Mixed Arabic corpus.

These statistics indicate that the occurrence of many bigraphs is much more

frequent than for some single characters (unigraph), for example, “�x ���p”
and “�u”. For about 21% of the corpus, characters are represented by the top

30 bigraphs, with evidence that the Arabic words contain many repeated

bigraphs. On the other hand, the top 30 trigraphs and 4-graphs represent

6.1% and 1.4% of the corpus.

A third purpose is to investigate the number of times that each word

occurs in a text and to explore its frequency statistics. Arabic words are

segmented using spaces with Arabic language considered to be a segmented

language. As shown in Table 2.5, the 30 most frequent words represent 19%

of the total number of all words in the large Mixed Arabic corpus. Previous

experiments have shown that longer Arabic word lengths are used in modern

texts than in classical texts (Alhawiti, 2014).

Table 2.3: Character frequency statistics for the large Mixed Arabic corpus.

Ranking Character Frequency Char.% Ranking Character Frequency Char.%

1 space 50068492 18.12 20 �T 4073862 1.47

2 �� 32428109 11.73 21 �S 3124170 1.13

3 �› 26533527 9.60 22 �? 2270425 0.82

4 �7 15669503 5.67 23 �’�� 2103371 0.76

5 �¢ 15002587 5.43 24 �o 2041576 0.74

6 �¦ 13388995 4.84 25 �f 1959720 0.71

7 �� 12364000 4.47 26 �� 1955052 0.71

8 �" 9616532 3.48 27 �U 1889753 0.68

9 �B 8944004 3.24 28 �t 1616842 0.59

10 �A 8907282 3.22 29 �C 1422756 0.51

11 �w 8012969 2.90 30 �# 1296130 0.47

12 �± 7314024 2.65 31 �p 1285156 0.47

13 �� 6896282 2.50 32 �x 890614 0.32

14 �~ 5976089 2.16 33 �6 819141 0.30

15 �´ 5832666 2.11 34 �¹ 762100 0.28

16 �‘�� 5634256 2.04 35 �u 569376 0.21

17 �ˆ 5306169 1.92 36 �� 301583 0.11

18 �e 5237184 1.89 37 �•�� 287076 0.10

19 �‹ 4573856 1.65

45

Table 2.4: N-graph frequency statistics for the large Mixed Arabic corpus.

Ranking Bigraphs Frequency % Trigraphs Frequency % 4-graphs Frequency %

1 �›�� 13813035 4.998 �h�k�� 2202894 0.797 �w�ì�k�� 457753 0.166

2 �h�k 3070976 1.111 �‘�™�•�� 965693 0.349 �¢�‘�™�•�� 269599 0.098
3 ���� 2159228 0.781 �›���� 950919 0.344 �w�‰�ì�G259414 0.094
4 �Ç�r 2136023 0.773 ���k�� 883656 0.320 ���ó�k�� 241614 0.087
5 �™�• 2067632 0.748 ���ì�G 681822 0.247 �Ç�È�k�� 208514 0.075
6 �ý�N 2042190 0.739 �=�k�� 668007 0.242 �ý�“�k�� 203404 0.074
7 �l�r 2034040 0.736 �a�k�� 621789 0.225 �+�ó�k�� 202942 0.073
8 �¦�� 1890177 0.684 �›�Ç�X 567484 0.205 ���Ú�k�� 201791 0.073
9 �ý�k 1599212 0.579 ���k�� 564649 0.204 �›���Ú�k 179130 0.065
10 �|�� 1573396 0.569 �™�•�� 542462 0.196 �7�Û�k�� 173196 0.063
11 �a�G 1572128 0.569 ���k�’�� 535931 0.194 �=�ó�k�� 172629 0.062
12 ���k 1451793 0.525 �+�k�� 505206 0.183 �l�ó�k�� 164416 0.059
13 �l�� 1424476 0.515 �Ú�k�� 489851 0.177 �Ú�ó�¥�r 149102 0.054
14 �B�� 1364743 0.494 �›�Ç�� 481989 0.174 �h�k���� 138154 0.050
15 �Ç�u 1344070 0.486 �w�ì�k 473191 0.171 �¦�Ç�[�� 131793 0.048
16 �›�� 1314876 0.476 �¦�Ç�[466279 0.169 �Ç�ö�k�� 130967 0.047
17 �Ç�€ 1292222 0.468 �l�k�� 457210 0.165 �¢�Ç�È�k 127967 0.046
18 ���" 1239435 0.448 �N�k�� 454139 0.164 �a�¶�k�� 126343 0.046
19 �"�� 1194421 0.432 ���k�� 453178 0.164 �Í�ó�k�� 114558 0.041
20 ���k 1187878 0.430 �ý�ì�G 424796 0.154 �Ç�ó�k�� 113851 0.041
21 �l�� 1175349 0.425 �w�‰�k 387279 0.140 �Ç�Ù�k�� 112495 0.041

22 �¦�‘�� 1175147 0.425 ���Ú�� 381336 0.138 ���“�ó�k 107738 0.039
23 �Ç�� 1139828 0.412 �’�™�•�� 380671 0.138 �›�Ç�Ù�N 107233 0.039
24 �¢�� 1133952 0.410 ���k�� 369063 0.134 �Ú�¥�“�r 106746 0.039
25 �w�k 1126393 0.408 �Q�k�� 323774 0.117 �7�Ú�k�� 106094 0.038

26 �‘�™�• 1124790 0.407 �D�k�� 316654 0.115 �´�Ú�¥�� 105385 0.038
27 �Ç�X 1103885 0.399 �è�k�� 315786 0.114 �B�™�•�� 103763 0.038
28 �a�k 1090113 0.394 �Í�k�� 306671 0.111 �è�ó�k�� 101789 0.037

29 �7�" 1020244 0.369 �¢�‘�™�• 290369 0.105 ���‘�™�•�� 100990 0.037
30 �Ç�� 974597 0.353 ���Û�€ 289711 0.105 �¦�’�™�•�� 99889 0.036

Total 56836249 20.563 16752459 6.061 4819259 1.744

2.5.4 The Arabic Origins of Cryptography

In this section, we explore the Arabic origins of cryptography. We wish to

emphasize some important early contributions to the field, and why contin-

ued research into Arabic cryptography is important in light of this historical

context since we feel that research in this area is under-represented in the

literature. In his famous book, �h�?�2 �*�Q�/�2�#� �̀2���F�2�`�b, David Kahn (1967) states

that “Cryptology was born among the Arabs”. In fact, Arab cryptology is

older than Kahn’s account indicates, and Arab contributions in this field are

more broad than already detailed. Newly discovered old documents demon-

46

Table 2.5: Word frequency statistics for the large Mixed Arabic corpus.

Ranking Word Frequency Word% Ranking Word Frequency Word%

1 �ý�N 1333465 2.663 16 �� 180100 0.360
2 �l�r 1180861 2.358 17 �Ú�’�G 165011 0.330
3 �l�� 791876 1.582 18 �¦�Ç�[163659 0.327
4 ���ì�G 641074 1.280 19 �±�Û�€ 152062 0.304
5 ���k�’�� 526264 1.051 20 �h�� 143260 0.286

6 �¦�‘�� 502106 1.003 21 ���� 137709 0.275
7 �w�ì�k�� 410227 0.819 22 �Ú�ó�¥�r 135957 0.272
8 �l�G 381667 0.762 23 �w�k 129812 0.259

9 �›�Ç�X 302264 0.604 24 �Í���‘�� 128512 0.257
10 �Ç�r 274505 0.548 25 �7�Û�k�� 128352 0.256

11 �™�• 269069 0.537 26 �ý���‘�� 120425 0.241
12 ���Û�€ 233672 0.467 27 �=�r 120329 0.240
13 �Q�k�� 217670 0.435 28 �l���� 119567 0.239
14 �ý�“�k�� 189731 0.379 29 �h�k 114368 0.228
15 �w�‰�ì�G187072 0.374 30 �¦�Ç�[�� 107100 0.214

Total 9487746 18.950

strate that one of the important origins of cryptology is ascribed to the

eighth century Arab researcher Al-Kindi. His investigation of cryptology is

one of the oldest available books on the subject, although his antecedent

Al-Khalil (718-786) is reported to have written Kitab Al-Mu’amma “The

Book of Cryptographic Messages” about a century sooner. Unfortunately

this book has not been found (Al-Kadit, 1992).

The word ‘cipher’ derives from the Arabic word sifr for the digit “zero”

(0), which developed into European technical terms that mean encryp-

tion (Al-Kadit, 1992). Kahn (1967) stated that “Between AD 800 and 1200

Arab scholars enjoyed a vigorous period of intellectual achievement. At the

same time, Europe was firmly stuck in the Dark Ages. While Al-Kindi was

describing the invention of cryptanalysis, Europeans were still struggling

with the basics of cryptography”.

The 8th century heralded the golden age of Islamic civilization. Both

the sciences and arts prospered in equal measure. The heritage of Arabic

scientists is noticeable from the number of words that infuse the lexicon of

47

modern science, with ‘algebra’ and ‘zenith’ being two examples. Organised

and wealthy society at the time depended on an effective system of ad-

ministration, and consequently the administrators depended on secure com-

munication achieved through the use of encryption (Singh, 2000). Among

the most important factors that led to progress in Arab cryptology were

linguistic studies, translation, administrative sciences, public literacy and

advanced mathematics.

Cryptography has been practised to disguise texts since antiquity by var-

ious civilizations, including the ancient Egyptians, Mesopotamians, Greeks,

Romans, Chinese and Indians. However in none of these was there any

cryptanalysis; cryptography only existed (Kahn, 1967). Cryptology, the sci-

ence of making ciphers (cryptography) and decrypting them (cryptanalysis),

became more prominent just after the ascent of the Arab Islamic empire.

They broke the mono-alphabetic substitution cipher after many years of its

successful use (Singh, 2000). Many Arab scholars wrote on, and surpassed

in practising, both two branches of cryptology such as: Al-khalil, Al-Kindi,

Ibn adlan, Ibn dunaintr and Ibn ad-duraihim (Al-Kadit, 1992). We will fo-

cus on the contribution of one of the earliest Arab cryptologists, Al-Kindi,

in the following paragraphs.

Abu Yusuf Yaqub Al-Kindi, the author of one of the oldest known books

on cryptology, was born in Al-Kufah around the year 801 AD. and grew up in

Baghdad, where he received his education. He excelled in many fields such

as: medicine, philosophy, mathematics, music, astronomy and linguistics.

He was known as “The Philosopher of the Arabs”. His oldest available book

on cryptology, �_�B�b���H�� �} �A�b�i�B�F�?� �̀��D ���H�@�E�m�i�m�# ���H�@�J�m�ö���K���?(“A Manuscript

on Deciphering Cryptographic Messages”) was recently discovered in the

Ottoman Archive in Istanbul. It was published by the Arab Academy of

Damascus in 1987 (Mrayati et al., 1987). Al-Kindi (c.801-873 AD) pre-

sented a tree-diagram classification of the major types of cipher systems

and described how to cryptanalyze them. He classified Arabic phonetics

into consonants, long vowels and short vowels. Al-Kindi also introduced a

48

comprehensive study of Arabic syntax and demonstrated possible and im-

possible letter combinations.

The above contributions are striking, but one of the most important

of Al-Kindi’s contributions includes the description and use of statistical

techniques in cryptanalysis. He explained clearly how to use letter frequency

statistics of the ciphertext in order to solve it. He also described how to find

these letter frequencies (by utilizing an example of the same language) (Al-

Kadit, 1992; Lasry, 2018). This method, which is called frequency analysis,

led to the first great breakthrough in cryptanalysis (Singh, 2000).

Equally important is the condition he set on the length of the cryptogram

under consideration. Al-Kindi showed that the texts should be long enough

in order to allow letter frequency statistics to be meaningful. If the texts are

short (less than one hundred letters), the decryption will be very difficult.

This concept, presented by Al-Kindi over 1100 years ago, is very important

in statistics today. Later in his book Al-Kindi set out the first count of

Arabic letter frequencies. His example comprised “seven pages of Arabic”

totalling 3667 letters. Al-Kindi also managed to analyse his results (Al-

Kadit, 1992). These frequencies have been corrected latter by Ibn Dunaynir

and Ibn Adlan, who worked on the text (Habeeb, 2016).

Al-Khalil’s combinatorics and Al-Kindi’s statistics are, most likely, one

of the world’s first writings in the field of linguistics. So, it can be argued

that Al-Kindi is a forefather not only of cryptology but of statistics and

linguistics as well (Al-Kadit, 1992).

It is worth mentioning that the sudden and quick descent of Arab civ-

ilization led to the absence of many books and manuscripts related to the

subject, and also may have set back cryptology (Kahn, 1967). That quick

descent had a significant negative effect on the progress of human knowledge

and caused a serious delay in many other fields.

49

2.5.5 PPM Compression Method for Arabic

In this section, we describe the PPM method that we used for our crypt-

analysis solution in order to encode Arabic text efficiently. In the PPM

compressor, as stated above, the previously transmitted symbols are used

to condition the probability of the next symbol. The predictions are based

on simple frequency counts of the transmission to that point. The primary

decision to be made is the context length that is modelled. The use of both

PPM without update exclusions and PPM with update exclusions (standard

PPM) for the Arabic language are investigated in this research.

To explain the process of the PPM method for Arabic, Table 2.6 illus-

trates the state of the PPMD model where k = 2;1;0 and � 1 after the string

“�+�¶�‰�ì�¶�¶���è�“�5” has been processed. For illustration purposes for this exam-

ple, the highest context order is for k = 2. If the next character is estimated

successfully by the modelling context, the probability p will be used to en-

code it, while c denotes the occurrence counts. Concerning the example, if

the input string “�+�¶�‰�ì�¶�¶���è�“�5” is followed by the character ‘�›’, the proba-

bility of the prediction ‘�+�5’! ‘�›’ in order 2 (which is 1
2) would be used to

encode it, requiring only one bit as a result (� log2
1
2 = 1).

Assume instead that ‘�B’ follows the string ‘�+�¶�‰�ì�¶�¶���è�“�5’. As the order

2 model does not predict this character, the escape probability of 1
2 will be

encoded for this order, and the encoder will move from the order 2 model

down to the order 1 model. In this context, ‘�e’! ‘�B’ predicts the character

‘�B’, with a probability of 1
8. Thus, the total probability needed to encode

the ‘�B’ character is 1
2 � 1

8, requiring four bits.

In order to deal with Arabic texts, in which each character needs two

bytes to be represented, an adaptive PPM compression model for Arabic

language has been presented by Alhawiti (2014). This method is called

Character Substitution of Arabic for PPM (“CSA-PPM”). The use of this

method has not only shown a considerable improvement in Arabic text com-

pression but also for other texts that use Arabic script, such as Persian and

50

Table 2.6: PPMD model after processing the string “�+�¶�‰�ì�¶�¶���è�“�5” with max-

imum order of 2.

Order k=2 Order k=1 Order k=0 Order k=-1

Prediction c p Prediction c p Prediction c p Prediction c p
���5 ! �" 1 1

2 �e ! �B 1 1
8 ! �e 5 9

20 ! A 1 1
jAj

! Esc 1 1
2 ! �e 2 3

8 ! �B 1 1
20

! �› 1 1
8 ! �" 1 1

20

�è��! �7 1 1
2 ! Esc 3 3

8 ! �7 2 3
20

! Esc 1 1
2 ! �› 1 1

20

�B ! �" 1 1
2 ! Esc 5 5

20

�7�" ! �e 1 1
2 ! Esc 1 1

2

! Esc 1 1
2

�" ! �7 1 1
2

�+�� ! �e 2 3
4 ! Esc 1 1

2

! Esc 1 1
4

�7 ! �e 2 3
4

�+�5 ! �› 1 1
2 ! Esc 1 1

4

! Esc 1 1
2

�› ! �7 1 1
2

�a�5! �7 1 1
2 ! Esc 1 1

2

! Esc 1 1
2

�ý�k! �e 1 1
2

! Esc 1 1
2

Kurdish. There are two important operations in this method, which are

the pre-processing and post-processing, used in conjunction with the PPM

method. Each two-byte Arabic character is substituted with an equivalent

number of the UTF-8 encoding scheme in the first reversible operation and,

as a result, one output file is generated. In contrast with the post-processing

operation, a reverse operation is performed by replacing the numbers with

the original equivalent characters.

2.6 Summary

In this chapter, an overview of the historical development of cipher sys-

tems is presented. Various kinds of attacks and different cryptosystems,

some modern but most classical are introduced. Modern text compression

techniques are surveyed and described. This is followed by a discussion of

the PPM compression method and how the codelength metric is calculated.

51

The use of compression for cryptology is also illustrated. Different funda-

mental characteristics of the Arabic language and its encoding methods are

reviewed. Arabic contributions to cryptology and the PPM compression

method for the Arabic language are also described in this chapter.

52

Chapter 3

Designing and Evaluating a

New Automatic

Cryptanalysis of Simple

Substitution Ciphers Using

Compression

3.1 Introduction

In this chapter, we propose a new compression-based approach for the au-

tomatic cryptanalysis of simple substitution ciphers with no need for any

human intervention. This helps to address research questions 1 and 2 in

Section 1.2, and fulfils objectives 2 and 3 that were listed in Section 1.3.

This chapter considers the application of compression to tackle the plain-

text recognition problem for cryptanalysis of simple substitution ciphers.

Our automatic cryptanalysis method uses a new variation of the pre-

diction by partial matching (‘PPM’) text compression scheme. This work

also investigates different variants of PPM to ascertain the most efficient

53

type when applied to the problem of decrypting simple substitution ciphers

automatically using compression. The use of other well known compression

schemes, Gzip and Bzip2, are also explored in this chapter.

The work in this chapter has been published in ‘Information Security

Journal: A Global Perspective’, one of the Taylor and Francis journals (Al-

Kazaz et al., 2018b).

This chapter is organised as follows. Section 3.2 provides a summary

of the previous research used in the solution of simple substitution ciphers.

Section 3.3 motivates the use of compression as an automatic cryptanalysis

method and reviews the codelength metric calculations used in our approach

which is based on the PPM, Gzip and Bzip2 compression methods. The

pseudo-code and the full description of our method are presented in sec-

tion 3.4. Experimental results are discussed in section 3.5. The final section

provides the conclusion.

3.2 Related Work

Several cryptanalysis techniques have been devised for the solution of simple

substitution ciphers, starting with a number of strategies for hand analy-

sis, leading to automated cryptanalysis methods. In this section, we will

concentrate on previous approaches for automated cryptanalysis.

Typically, human experts who have experience in cryptanalysis can solve

a sentence-long ciphertext in a few minutes. Many hand analysis strategies

have been described (Ball, 1960; Friedman, 1976). These strategies are gen-

erally a combination of three main classes: zero order frequency analysis, a

pattern matching approach and word recognition. However, none of these

strategies are explicit enough to be called an algorithm. Other different so-

lutions have been devised over the last few decades with varying degrees of

success (Schatz, 1977; Anderson, 1989).

The following summarises some of the more interesting or important

automatic cryptanalysis methods and their drawbacks. The purpose is to

54

highlight the breadth of research that has previously been applied to the

problem.

In particular, most of the previous attempts for automated cryptanal-

ysis are based on two main approaches: a probabilistic approach (Peleg

and Rosenfeld, 1979; King and Bahler, 1992) and a pattern matching ap-

proach (Lucks, 1990; Hart, 1994). Automatic solutions for decrypting substi-

tution ciphers using iterative methods were presented by Peleg and Rosen-

feld (1979) and King and Bahler (1992). In these methods, breaking the

cipher is considered as a probabilistic problem. Joint letter probabilities

are used to update symbol probabilities, and after a number of iterations,

hopefully there is an improvement in the estimations that lastly lead to

solve the ciphertext. In the paper by Peleg and Rosenfeld (1979), the joint

letter probabilities were based on trigram frequencies. Two examples were

examined and decrypted in this paper: a 996 character long ciphertext using

a paragraph from a technical report and a 1149 character long ciphertext

using Lincoln’s Gettysburg Address. With a 400 character long ciphertext,

the method (King and Bahler, 1992) was able to correctly recover 93% of

the ciphertext symbols within an average execution time of 13 minutes.

On the other hand, pattern matching algorithms (Lucks, 1990; Hart,

1994) work better on short ciphertexts, but can not solve ciphertexts for

which there are no words in the dictionary being used by the algorithm.

They are not able to handle trivial variations, like examples with spaces

removed. According to the pattern matching approach, each word in the

ciphertext is structurally compared with words in a dictionary. The accu-

racy of this approach and the time required to break the ciphertext depends

on the size of the dictionary. A dictionary size of over 19,000 entries was

used, and a hundred different examples chosen at random from magazines

and newspapers were examined (Lucks, 1990). A success rate of 60% was

achieved; however, about 30% of the trials required further human interven-

tion. The second algorithm (Hart, 1994) had been tried on over a hundred

short ciphertexts and generally provided readable solutions in a matter of

55

seconds. Both methods (Lucks, 1990; Hart, 1994) did not produce complete

or unique solutions. That is because either there were some words that did

not appear in the dictionary or multiple possibilities were deciphered.

All these previous approaches (Peleg and Rosenfeld, 1979; Hart, 1994;

Lucks, 1990) deal with just twenty six alphabet English letters and consider

that the spaces between words are already identified or not ciphered. In

contrast, our method described in the next sections deals with twenty seven

English characters (twenty six alphabetic letters and space).

Lee et al. (2006) introduced an enhanced English frequency analysis

technique which uses a combination of unigram frequencies and dictionary

checking. Two ciphertexts were examined, one with 9006 letters and the

other with 2802 letters, and the method was able to achieve good decryption

results. Another dictionary-based attack was demonstrated by Olson (2007).

Twenty one cryptograms were examined and all of them were successfully

solved. However, the algorithm also struggled on short cryptograms.

A genetic algorithm for the cryptanalysis of simple substitution ciphers

was published by Spillman et al. (1993). A genetic algorithm is a metaheuris-

tic that is commonly used to generate high-quality solutions to optimization

and search problems. Genetic algorithms repeatedly modify a population of

individual solutions. Modifications in the population basically are achieved

using two main operators: mutation and crossover. At each step, the genetic

algorithm chooses individuals from the current population to be parents

based on their fitness as measured by a fitness function and uses them to

produce the children for the next generation. Over successive generations,

the population “evolves” toward an optimal solution.

To evaluate the quality of a key using the genetic-based cryptanaly-

sis method (Spillman et al., 1993), a fitness function was used based on

character unigram and digram English frequencies. There was no specific

description about the test set characteristics that they used in this paper,

and the exact key was not always found.

A simulated annealing approach was used with the evaluation based on

56

using bigram statistics (Forsyth and Safavi-Naini, 1993). With a very long

ciphertext (5000 characters), the algorithm performed quite well, but it was

less efficient with shorter ciphers. Simulated annealing (inspired by a pro-

cess similar to metal annealing) is a probabilistic method for approximating

the global optimisation of a given function in a large search space. It is a

descendant of the hill-climbing technique. This latter technique is based on

starting with a random key, followed by a random change over this key such

as swapping two letters, to generate a new key. If the change produces a bet-

ter solution, the new key replaces the current one. This process is repeated

until there are no further improvements. Simulated annealing is similar to

hill-climbing with a small modification that often leads to an improvement

in performance. In addition to accepting better solutions, simulated an-

nealing also accepts worse solutions in order to avoid the local optima. This

approach permits it to jump from local optima to different locations in order

to find new optima.

The use of a genetic algorithm, simulated annealing and tabu search

for the cryptanalysis was also presented (Clark, 1998; Garg and Sherry,

2005). Tabu search is a metaheuristic search method that takes a potential

solution to a problem and check its immediate neighbors in the hope of

finding an improved solution. For this purpose, the tabu search has a short-

term memory system. The short-term memory system (tabu list) stores

previously visited solutions and has a set of rules to prevent the reversal

of recent moves and sometimes allows non-improving solutions in order to

escape the local optimum.

Character unigram, digram and trigram frequencies were adapted as the

basis for the fitness function by Clark (1998) and Garg and Sherry (2005).

The results obtained were very similar for each of the three algorithms. For

a cryptogram of 800 characters, 25 out of 27 key elements were recovered,

and for a cryptogram of length 500, it was able to recover 23 keys (Clark,

1998). For a ciphertext of 200 characters, the amount of recovered keys was

about 12 whereas with a 1000 character long ciphertext, about 24 keys were

57

successfully recovered out of 27 (Garg and Sherry, 2005).

Other genetic algorithm based solutions (Grundlingh and Van Vuuren,

2003; Mudgal et al., 2017) were successfully implemented. Just one long

ciphertext of 2519 characters was examined, and the fitness function was

based on character unigram and bigram analysis (Grundlingh and Van Vu-

uren, 2003). Many previous works in this area were summarized, and the use

of genetic algorithms was specifically explored by Delman (2004). Attempts

to extend these works were unsuccessful. This resulted in the conclusion

that the genetic algorithms approach did not merit further effort, since al-

though the traditional cryptanalysis methods require more execution time,

they were easier to implement and much more successful.

A fast automated attack using hill climbing was presented (Jakobsen,

1995). Digram frequencies were used as the basis for calculating the scoring

function. With a ciphertext of 100 characters, the algorithm achieved a

success rate of 50%, and with a ciphertext of 400 characters in length, a

success rate of 98% was reached. The time needed to cryptanalyze a cipher

ranged from half a second to two seconds.

Other attacks using Hidden Markov Models (HMM) and hill climbing

were presented (Lee, 2002; Vobbilisetty et al., 2017). Lee (2002) showed

that the proposed method systematically outperformed the iterative meth-

ods using character bigram models. It achieved a 95% decoding rate for

cryptograms of 500 characters, whereas just 80% was achieved by the relax-

ation iterative methods. A 70% accuracy rate was achieved (Vobbilisetty

et al., 2017) as a result of solving a ciphertext of 200 letters in length. With

ciphertexts of 300 and 400 letters, a 95% accuracy rate was achieved. Ci-

phertexts of 1000 and 2000 characters were used in the paper by Chen and

Rosenthal (2012). An accuracy rate of 93% against a 2000 character long

ciphertext using bigram was achieved.

Attacks based on different local search metaheuristics were published

by several researchers (Uddin and Youssef, 2006; Hilton, 2012; Corlett and

Penn, 2010; Luthra and Pal, 2011; Jain et al., 2018). Character unigram

58

and bigram statistics were both used for the evaluation function (Uddin

and Youssef, 2006). Using bigram statistics resulted in a 45% success rate

for a ciphertext of 100 characters, and 95% for a cipher of 400 characters.

The use of character unigram, bigram and trigram statistics were investi-

gated (Hilton, 2012). About six correct keys were recovered out of 26 for

a 100 character long ciphertext, and 20 correct keys for a cryptogram with

a length of 500. According to Corlett and Penn (2010), a character-level

trigram model was used to rank solutions. Texts with different sizes (1000,

3500, … 13500) were tested. With a 3500 character long ciphertext, the

accuracy was 96% with an execution time of 38 minutes. For ciphertexts

of 500 characters (Luthra and Pal, 2011), the researchers were able to re-

cover 21 correct keys out of 27, and 22 correct keys from ciphertexts of 1000

characters in length. Bigrams based cost function was used in the paper

published by Jain et al. (2018). 200 different ciphertexts of size 100, 200,

300,…, 800 characters were examined. For a cryptogram of 100 characters, 9

out of 26 key elements were recovered, and for a cryptogram of length 800,

it was able to recover 24 keys.

Cryptanalysis methods based on using different order n-gram models

and different search algorithms were proposed (Knight et al., 2006; Ravi

and Knight, 2008; Nuhn et al., 2013; Kambhatla et al., 2018). For example,

a cryptanalysis method using low order n-gram models (1-gram, 2-gram and

3-gram models for English) was presented (Ravi and Knight, 2008). Fifty

ciphers of different lengths were examined, on a 52-letter cryptogram, with

the solution from this method resulting in 21% error. With a ciphertext of

64 letters, this method gave 10% error with an average execution time of

approximately 76 minutes, and 5% error for a ciphertext of 128 letters using

3-gram models.

Another method based on using high order n-gram models (3-gram, 4-

gram, 5-gram and 6-gram) and a beam search to the problem of solving

substitution ciphers was introduced (Nuhn et al., 2013). Beam search is

a heuristic search algorithm that explores a graph by expanding the most

59

promising node in a limited set. Beam search uses a technique like breadth-

first search to build its search tree. At each level of the tree, it generates all

successors of the states at the current level, sorting them in increasing order

of heuristic cost. However, it only stores a predetermined number of best

states at each level (called the beam size). Only those states are expanded

next. The greater the beam size, the fewer states are pruned. With an

infinite beam size, no states are pruned and beam search is identical to

breadth-first search.

Short cryptograms (up to 256 letters) were tested by Nuhn et al. (2013).

A cryptogram of length 64 was decrypted with less than 5% error with a re-

ported decryption time of two and a half minutes using 6-gram models. On

a 128-letter cryptogram, the solution from this method resulted in 0.05%

error. Decipherment of simple substitution ciphers with neural language

models and a beam search was published by Kambhatla et al. (2018). The

method gave 0.07% error for a 64-letter cipher and 0.02% for a 128-letter

cryptogram. The beam size used in these methods was very large–100,000.

Other smaller sizes were also explored, however, with less efficient perfor-

mance demonstrated. For example, with a 1000 beam size, the solution from

the previous method resulted in about 5% error on a 64-letter cipher and

about 10% for a 128-letter ciphertext.

In comparison to the all previously mentioned studies, our evaluation

analyses the decryption of different ciphertext lengths, including very short

cryptograms with just 20 characters, whereas the cryptograms used in most

of the previous research were not less than 100 characters long. Shorter

ciphers (less than 100) usually required a long time to execute with a higher

error rate compared to our method. Many previous approaches (Ravi and

Knight, 2008; Nuhn et al., 2013; Kambhatla et al., 2018) assumed that the

space character has already been known. Nuhn et al. (2013) stated that this

assumption makes the problem much easier, and previous methods showed

much higher computational demands for lengths beyond 256 letters when

space is not assumed to be known. In addition, the beam size used in

60

these researches (Nuhn et al., 2013; Kambhatla et al., 2018) was very large

(100,000); using smaller sizes resulted in a higher error rate. In contrast,

in our proposed method, we did not assume that the space symbol was al-

ready identified. Our compression-based method deals with twenty seven

English characters (twenty six alphabetic letters and space), and many dif-

ferent short ciphers of 20 characters or so have effectively been decrypted.

Furthermore, the beam size used in our method is very small being just

500, which is much more smaller than the previously used size, and all the

cryptograms of length longer than 44 have successfully been solved without

any errors with state of the art results produced.

Irvine (1997) has been the only researcher to have previously used a

text compression method to decrypt a cipher system (simple substitution

ciphers). Irvine used a variation of the PPM modelling system combined

with simulated annealing for the automatic cryptanalysis of simple substi-

tution ciphers. Over a hundred ciphertexts were examined, and good results

were achieved compared to other methods with 60% of ciphertexts solved

without any errors, and 83% with less than four errors. In this chapter,

we investigate more deeply the use of PPM compression method by propos-

ing a new variation for tackling the problem of the automatic decryption of

simple substitution ciphers. However, our approach uses a different search

algorithm (beam-style search) and a new modified version of PPM, which

achieves a high success rate close to 100%. The use of other compression

schemes (Gzip and Bzip2) are also examined. In this chapter, we present dif-

ferent PPM compression variants and investigate which variant is the most

effective when applied to the problem of automatically decrypting simple

substitution ciphertexts.

3.3 Automated Cryptanalysis Using Compression

The ciphertext only cryptanalysis of simple cryptosystems relies heavily on

the statistical properties of the source language. Getting computers to per-

61

form this analysis is not a trivial matter. Although computers have been

routinely used for a variety of tasks in cryptanalysis since their invention,

the automatic recognition of valid decryptions has remained a taxing prob-

lem (Irvine, 1997). Several previously published cryptanalysis methods can

not run without human intervention or they assume at least known plain-

text because of the difficulty of quickly recognizing a correct decryption

in a ciphertext only attack (Schneier, 1996; Wiener, 1993). In general, a

known plaintext attack is considered to be easier to develop than a cipher-

text only attack. However, for many classical ciphers, there is no effective

automatic known plaintext attack, nor any published automatic ciphertext

only attack (Lasry, 2018).

In the cryptanalysis of classical ciphers, there are several scoring methods

that are commonly used such as those based on n-gram statistics, however,

the design of a new scoring function or even the selection of an appropriate

one is not an easy issue. The most critical element for successful searching

algorithms is the scoring function. This function evaluates the quality of

each permutation (or a candidate key) and allows the search algorithm to

determine whether one permutation is better than others (Lasry, 2018).

Having a computer model that is able to predict and model natural lan-

guage as well as a human is critical for cryptology (Teahan, 1998). Teahan

and Cleary (1996) demonstrated that the PPM modeling system has the

ability to predict text in a way that is close to achieving human performance

level. The essential idea of our technique is to use PPM for calculating the

compression ‘codelength’ value of each possible permutation (which is used

to measure the amount of information in each (Irvine, 1997)). Permuta-

tions with smaller codelength values help to determine better decryptions.

We present how to use this to automatically and easily recognise the valid

solution in a ciphertext only cryptanalysis against simple substitution sys-

tems. Also, further investigations on different variants of PPM compression

method are performed in this chapter. Other compression methods (Gzip

and Bzip2) as a basis method for calculating the codelength metric are also

62

tried. This is to ascertain the most effective compression method to use to

automatically break simple substitution cryptosystems.

3.3.1 PPM Compression Codelength Metric

As stated above, the fundamental concept of our cryptanalysis method is

based on using a PPM compression model to calculate codelength values of

each possible permutation. The ‘codelength’ of a permutation for a cryp-

togram is the length of the compressed cryptogram, in bits, when it has been

compressed using the PPM language model. The hope is that the smaller

the codelength value, the more closely the ciphertext resembles the text used

to train the language model.

In our work, we make use of two PPM based models, one character-

based and the other word-based, which provide effective results in terms

of compression rate and lead to significant improvements both in terms of

compression rate as published in previous experiments (Teahan et al., 2014)

and in terms of the reduction in the number of decryption errors as per

the experimental results discussed below. The first model, which is labeled

CjC5 in Table 3.1, represents an order 5 PPM character model (order 5 and

order 4 models are used in our experiments) where the predictions are based

on the stream of character symbols. So, the probability of S (where S is a

sequence of length m characters ci) is given by:

p(S) =
m

Õ
i= 1

p0(ci jci� 5ci� 4ci� 3ci� 2ci� 1)

where p0 is the probabilities estimated by the order 5 PPM model. A max-

imum order of 5 is usually used in most of the experiments (Teahan, 1998;

Liu et al., 2014; Almahdawi and Teahan, 2017) and order 5 has also been

found effective for both English and Arabic text (Alkahtani et al., 2015).

(Note: the symbol ,! in the table represents an escape).

The second model, which is labeled WjW, represents an order 1 PPM

63

Table 3.1: Models for predicting character and word streams (Teahan, 1998).

CjC5Model WjWModel
p(ci jci� 5ci� 4ci� 3ci� 2ci� 1) p(wi jwi� 1)
,! p(ci jci� 4ci� 3ci� 2ci� 1) ,! p(wi j)
,! p(ci jci� 3ci� 2ci� 1) ,! Character model
,! p(ci jci� 2ci� 1)
,! p(ci jci� 1)
,! p(ci j)
,! peq(ci j)

word bigram model. The predictions of this model are based on the stream

of word symbols as shown in the next formula:

p(S) =
m

Õ
i= 1

p0(wi jwi� 1)

where p is the probability of S, S is a sequence of m words wi and p0 is the

probabilities estimated by the word model (Teahan, 1998).

The compression codelength can be used to estimate the cross-entropy

of the text and can be calculated according to the following formula:

h(S) = � log2 p(S) = � log2

m

Õ
i= 1

p0(ci jci� 5ci� 4ci� 3ci� 2ci� 1)

where h(S) is number of bits required to encode the text.

3.3.2 Calculating Compression Codelengths Using Gzip and

Bzip2

We have also investigated alternative compression methods for performing

the codelength calculations—Gzip and Bzip2. The essential reason for ex-

perimenting with other compression schemes in our work is to find out which

is the most effective scheme that can be used in the automatic solution of

simple substitution cryptosystems using a compression based technique.

64

In this chapter, the calculation of the codelength metric for these two

compression methods (Gzip and Bzip2) is based on using a relative entropy

calculation which allows us to use ‘off-the-shelf’ software without the need

to re-implement the methods themselves. The codelength metric can be

calculated using the relative entropy technique by the following formula

(first described in (Al-Kazaz et al., 2016)):

ht = hT+ t � hT

where T denotes the training text (which will usually be large in size), t

denotes the testing text, and hT refers to the size of the compressed file T.

Essentially, the codelength for a particular compression scheme is calculated

as being the difference between the compressed size of some large training

text with testing text concatenated after it compared to the compressed size

of just the training text by itself.

3.4 The New Method

A full description of our new method for the automated solution of simple

substitution ciphers is presented in this section. The main idea of our ap-

proach is based on trying to break a cryptogram by essentially substituting

one letter at a time throughout the text, starting with the most frequent.

Then one of the compression methods is used to compute the codelength

value used for automatically scoring the possibilities. PPMD, PPMC, Gzip

and Bzip2 are the compression schemes used in our experiments.

The pseudo-code for our approach is presented in Algorithm 1. At the

start (see line 1 in the pseudo code), we remove all non-alphabetic charac-

ters from the ciphertext and keep only letters and spaces (i.e.our approach

processes only 27 characters). However, the methods presented here can be

adapted to arbitrary alphabets (whether or not spaces are included). After

that, all the remaining characters in the ciphertext are examined in order

to determine frequencies, and arranged from the most frequent character

65

to the least frequent (see line 2). The search is initialised by setting each

character in the ciphertext to a special symbol (a full-stop) that is not an

English alphabetic character or space (see line 3). Then by replacing one

ciphertext character cc at a time (see lines 6 to 22) for each permutation

of the ciphertext in the list ‘Q1’ (lines 8 to 20), it simply tries each unused

character in turn as a candidate for cc (see lines 9 to 11). The compression

codelength is calculated for each possibility using PPM, Gzip or Bzip2 (see

line 12). The ciphertexts are then ranked using a sorted list according to the

codelength values (see lines 13 to 17). As we find permutations with smaller

compression codelength values, we are closer to finding the valid decrypt.

We keep at most only the 500 best results at each stage in the sorted list.

The maximum size of the sorted list provides a means for trading off be-

tween greater speed (when the size of the list is reduced) and less decryption

errors (when a greater size is used). Experimental results show (see below)

that a size of 500 provides a good compromise.

Our method builds up the solution incrementally, replacing one crypto

character, cc, at a time, dealing with the most frequent cc first. So starting

with a new cryptogram, it picks the most frequent symbol (say x) in the

cryptogram (most likely this corresponds to space or perhaps the letter ‘e’).

It tries substituting x with one of the English alphabetic characters ‘a’ to

‘z’ or space. (Note: At this stage, all of these will be tried since the size of

the alphabet, 27, is less than the maximum size of the sorted list i.e. 500).

Then it picks the next most common crypto symbol to substitute, say y, for

each of the previous 27 possibilities, substituting y with one of the English

alphabetic characters or space (but excluding any already substituted char-

acters). This gives 702 (= 27� 26) possibilities, so at this stage solutions

start getting discarded if only a maximum of 500 possibilities are kept in

the sorted list. This is repeated for each remaining character from the most

frequent characters down to the least frequent character.

In order to get further improvements in our results, a word-based PPM

compression system is applied to the output produced from Algorithm 1.

66

���H�;�Q�`�B�i�?�K �R�,Pseudo code of the automatic cryptanalysis of simple

substitution ciphers.
�A�M�T�m�i�, �+�B�T�?�2�`�i�2�t�i

�P�m�i�T�m�i�, �/�2�+�`�v�T�i�2�/ �i�2�t�i�U�b�V

�R �`�2�K�Q�p�2���H�H �M�Q�M�@���H�T�?���#�2�i �+�?���`���+�i�2�`�b���2�t�+�2�T�i �b�T���+�2���7�`�Q�K �i�?�2 �+�B�T�?�2�`�i�2�t�i�c

�k �2�t���K�B�M�2�i�?�2 �+�B�T�?�2�`�i�2�t�i �i�Q �+�`�2���i�2 �� �b�Q�`�i�2�/ �H�B�b�i �Q�7 �i�?�2 �x�2�`�Q�i�? �Q�`�/�2�` �7�`�2�[�m�2�M�+�B�2�b �7�Q�`

�i�?�2 ���H�T�?���#�2�i�c

�j �`�2�T�H���+�2�i�?�2 �+�?���`���+�i�2�`�b �B�M �i�?�2 �+�B�T�?�2�`�i�2�t�i �r�B�i�? �i�?�2 �b�T�2�+�B���H �b�v�K�#�Q�H �õ�X�ö�c

�9 �B�M�B�i�B���H�B�b�2�Z�R �U�H�B�b�i�V �r�B�i�? �� �K�Q�/�B�}�2�/ �+�B�T�?�2�`�i�2�t�i�c

�8 �K���t�B�K�m�K �b�B�x�2�Q�7 �Z�k �U�b�Q�`�i�2�/ �H�B�b�i�V �8�y�y�c

�e �7�Q�`�2���+�?�+�`�v�T�i�Q �+�?��� �̀��+�i�2�` �õ�+�+�ö �B�M �i�?�2 �x�2� �̀Q�i�? �Q� �̀/�2�` �7� �̀2�[�m�2�M�i �+�?��� �̀��+�i�2�`�b �U�b�i���`�i�B�M�;

�7� �̀Q�K �i�?�2 �K�Q�b�i �i�Q �i�?�2 �H�2���b�i �7� �̀2�[�m�2�M�i �+�?��� �̀��+�i�2�`�b�V�/�Q

�d �Z�k �2�K�T�i�v�c

�3 �7�Q�`�2���+�?�+�B�T�?�2�`�i�2�t�i �B�M �Z�R�/�Q

�N �7�Q�`�2���+�?���H�T�?���#�2�i�B�+ ���M�/ �b�T���+�2 �+�?��� �̀��+�i�2�` �õ���+�ö�/�Q

�R�y �B�7�õ���+�ö �B�b �M�Q�i �m�b�2�/ �#�2�7�Q� �̀2 ���b �� � �̀2�T�H���+�2�K�2�M�i �Q�7 �i�?�2 �T� �̀2�p�B�Q�m�b �+�`�v�T�i�Q �+�?��� �̀��+�i�2�`�b

�i�?�2�M

�R�R �`�2�T�H���+�2�2���+�? �+�`�v�T�i�Q �+�?���`���+�i�2�` �õ�+�+�ö �B�M �i�?�2 �+�B�T�?�2�`�i�2�t�i �r�B�i�? �i�?�2 �m�M�m�b�2�/

�+�?���`���+�i�2�` �õ���+�ö ���b �� �+���M�/�B�/���i�2 �7�Q�` �õ�+�+�ö�c

�R�k �+���H�+�m�H���i�2�+�Q�/�2�H�2�M�;�i�? �p���H�m�2 �Q�7 �i�?�2 �+�B�T�?�2�`�i�2�t�i �m�b�B�M�; �i�?�2 �S�S�J�- �:�x�B�T �Q�`

�"�x�B�T�k �+�Q�K�T�`�2�b�b�B�Q�M �K�Q�/�2�H�c

�R�j �B�7�i�?�2 �b�B�x�2 �Q�7 �i�?�2 �b�Q�`�i�2�/ �H�B�b�i �Z�k< �8�y�y�i�?�2�M

�R�9 ���/�/ �i�?�2 �+�B�T�?�2�`�i�2�t�i �i�Q �Z�k�c

�R�8 �2�H�b�2 �B�7�i�?�2 �+�Q�/�2�H�2�M�;�i�? �p���H�m�2 �Q�7 �i�?�2 �H���b�i �2�H�2�K�2�M�i �B�M �Z�k> �+�Q�/�2�H�2�M�;�i�? �p���H�m�2

�Q�7 �i�?�2 �+�m�`� �̀2�M�i �+�B�T�?�2�`�i�2�t�i�i�?�2�M

�R�e �`�2�K�Q�p�2�i�?�2 �H���b�i �2�H�2�K�2�M�i �B�M �Z�k�c

�R�d ���/�/ �i�?�2 �+�B�T�?�2�`�i�2�t�i �i�Q �Z�k�c

�R�3 �2�M�/

�R�N �2�M�/

�k�y �2�M�/

�k�R �`�2�T�H���+�2�Z�R �r�B�i�? �Z�k�c

�k�k �2�M�/

�k�j �`�2�i�m�`�M�Z�R �+�Q�M�i���B�M�B�M�; �i�?�2 �#�2�b�i �b�Q�H�m�i�B�Q�M�b �U�i�?�2 �õ�/�2�+�`�v�T�i�2�/ �i�2�t�i�U�b�V�ö�V�c

The pseudo-code for this is provided in Algorithm 2. For each text in ‘Q1’,

the codelength value is re-calculated using the word-based model. Then

67

these are stored in a new list as they provide a potentially more accurate

estimate of their quality (lines 2 to 5).

���H�;�Q�`�B�i�?�K �k�,Pseudo code of word-based ranking algorithm.
�A�M�T�m�i�, �i�?�2 �H�B�b�i �Z�R �U�Q�m�i�T�m�i �7�`�Q�K ���H�;�Q�`�B�i�?�K�R�V

�P�m�i�T�m�i�, �/�2�+�`�v�T�i�2�/ �i�2�t�i�U�b�V

�R �K���t�B�K�m�K �b�B�x�2�Q�7 �Z�j �U�b�Q�`�i�2�/ �H�B�b�i�V �8�y�y�c

�k �7�Q�`�2���+�?�i�2�t�i �B�M �Z�R�/�Q

�j �+���H�+�m�H���i�2�+�Q�K�T�`�2�b�b�B�Q�M �+�Q�/�2�H�2�M�;�i�? �p���H�m�2 �Q�7 �i�?�2 �i�2�t�i �m�b�B�M�; �i�?�2 �S�S�J �r�Q�`�/�@�#���b�2�/

�+�Q�K�T�`�2�b�b�B�Q�M �K�2�i�?�Q�/�c

�9 �b�i�Q�`�2�i�?�2 �i�2�t�i �B�M �i�?�2 �b�Q�`�i�2�/ �H�B�b�i �Z�j�c

�8 �2�M�/

�e �`�2�i�m�`�M�Z�j �+�Q�M�i���B�M�B�M�; �i�?�2 �#�2�b�i �b�Q�H�m�i�B�Q�M�b �U�i�?�2 �õ�/�2�+�`�v�T�i�2�/ �i�2�t�i�U�b�V�ö�V�c

Two variants of the PPM modelling system, PPMD and PPMC models

have been used in our method. Also two forms of these schemes are exam-

ined, one with update exclusions (i.e the standard PPMD or PPMC) (Teahan,

1998) and one without update exclusions. Both of these variants are further

investigated with a new variation of the PPM algorithm where a specific

high codelength value is assigned to all contexts for which an escape down

to an order � 1 context has occurred when the symbol being predicted has

not already occurred in any higher order context. The idea behind assign-

ing a high codelength value for these order � 1 contexts is to penalise these

cases during the search as they provide strong evidence of being of lower

predictive quality. During the execution of Algorithm 1, these contexts oc-

cur frequently at the start since all the characters in the ciphertexts are

initialised to the special symbol (full-stop) which is a symbol not found in

the 27 character alphabet that is used for the training text. When an order

� 1 context occurs, the probability can be estimated as 1
N where N is the

size of the text already processed. Also according to the PPM models that

we use, the probability of previously unseen characters such as the special

full-stop character does not subsequently change as the ciphertext is being

processed. Therefore, we can simply use a fixed codelength value for all the

68

order � 1 contexts which is equal to � log2
1
N . (The size of the training data

we use in our experiments is N = 21;824;832so the specific codelength value

we assign for order � 1 contexts is 24.38.)

To organize and clarify our results, our experiments are divided into

different variants as presented in Table 3.2. For the PPM-based variants,

both order 4 and order 5 models are used in our experiments as discussed

below. Experiments with a full range of variations have been conducted

(PPMC, or PPMD, with and without update exclusions, with and without

explicit order � 1 codelengths; Gzip; and Bzip2). However, for the purposes

of this chapter, only the results for the seven variations in the table are shown

in order to illustrate either the best performing schemes or to illustrate

interesting results for comparison.

Table 3.2: Compression method variants used for the automatic cryptanal-

ysis of simple substitution ciphers.

�L���K�2 �*�Q�K�T�`�2�b�b�B�Q�M �K�2�i�?�Q�/

�o���`�B���M�i �� PPMD without update exclusions

�o���`�B���M�i �"
PPMD without update exclusions with the same specific codelength
value assigned to all order � 1 context predictions

�o���`�B���M�i �* Standard PPMD (i.e with update exclusions)

�o���`�B���M�i �.
Standard PPMD with the same specific codelength value assigned
to all order � 1 context predictions

�o���`�B���M�i �1
PPMC without update exclusions with the same specific codelength
value assigned to all order � 1 context predictions

�o���`�B���M�i �6 Bzip2
�o���`�B���M�i �: Gzip

According to the first experimental variant in Table 3.2, Variant A,

PPMD5 without update exclusions is applied to compute the codelength

values. In Variant B, a new variation of the PPM method is used which is

PPMD without update exclusions with specific order � 1 codelength values.

Both order 4 and order 5 PPMD models are examined. The standard ver-

sion of the PPMD5 compression method with update exclusions is used for

Variant C. The fourth variant, Variant D, is the standard order 5 PPMD

69

model but with specific order � 1 codelength values being used instead of the

standard PPM order � 1 encoding method. Another new version of PPM is

used for variant E, PPMC without update exclusion but using the order � 1

codelength method. Both order 4 and order 5 PPMC models are examined.

For the last two variants, variants F and G, we examine the effectiveness

of using the other compression methods Gzip and Bzip2 for computing the

codelength metric using the relative entropy calculation as discussed above.

3.5 Experimental Results

In this section, we discuss experimental results for Variants A to G (as de-

tailed in Table 3.2). In our experiments described in this chapter and in the

next two chapters, we use the Brown corpus (Francis and Kucera, 1982) and

nineteen of the twenty novels used by Irvine (1997) except the novel ‘Prin-

ciples of Computer Speech (book2)’ (Witten, 1982), which was unavailable,

in order to train our models. These texts were used to train the models

in this chapter using 27 character English text. A corpus of 110 different

ciphertexts chosen at random from many different resources (including news-

papers, magazines and examples from Hart (1994); Lucks (1990)) as testing

texts are used, samples of which are listed in Appendix I. The lengths of

these ciphers range from 20 characters to almost 300 characters. Table 3.3a

and table 3.3b present samples of decryption.

Table 3.3a shows the output sample showing the execution of the algo-

rithm for the ciphertext ‘ �x�D�v�p�;�2�H�v�x�D�;�[�r�v�x�D�v�F�Q�����F�#�v�D�;���2�D�p�#’ including

intermediate results. Compression codelengths with the lowest five results

are listed in bits. Table 3.3b presents the ten best solutions as a result of our

method of the automatic ciphertext only attack of the simple substitution

cipher when using the new version of the PPMD modelling system (labeled

as Variant B). In this case, text with the shortest codelength value (the best

solution), represents the valid decrypted text. According to the example (in

Table 3.3b), the best solution was ‘�b�Q �K�m�+�? �b�Q�m�M�/ �b�Q �H�B�i�i�H�2 �Q�m�i�+�Q�K�2’,

70

Table 3.3a: Example output.

�*�B�T�?�2�`�i�2�t�i�, �x�D�v�p�;�2�H�v�x�D�;�[�r�v�x�D�v�F�Q�����F�#�v�D�;���2�D�p�#
�S�`�Q�+�2�b�b�B�M�; �i�?�2 �R�b�i �K�Q�b�i �7�`�2�[�m�2�M�i �+�?���`���+�i�2�` �^�D�^�c
�"�m�7�7�2�` �H�2�M�;�i�? �B�b�, �k�d�X
�*�Q�/�2�H�2�M�;�i�? �4 �e�j�e�X�R�e�3�, �X �X�X�X�X�X�X�X �X�X�X�X�X �X�X�X�X�X�X�X�X �X�X�X �X�X
�*�Q�/�2�H�2�M�;�i�? �4 �e�9�y�X�9�d�N�, �X�2�X�X�X�X�X�X�X�2�X�X�X�X�X�2�X�X�X�X�X�X�X�X�2�X�X�X�2�X�X
�*�Q�/�2�H�2�M�;�i�? �4 �e�9�k�X�d�R�N�, �X�i�X�X�X�X�X�X�X�i�X�X�X�X�X�i�X�X�X�X�X�X�X�X�i�X�X�X�i�X�X
�*�Q�/�2�H�2�M�;�i�? �4 �e�9�j�X�e�d�R�, �X���X�X�X�X�X�X�X���X�X�X�X�X���X�X�X�X�X�X�X�X���X�X�X���X�X
�*�Q�/�2�H�2�M�;�i�? �4 �e�9�j�X�N�8�e�, �X�Q�X�X�X�X�X�X�X�Q�X�X�X�X�X�Q�X�X�X�X�X�X�X�X�Q�X�X�X�Q�X�X
�S�`�Q�+�2�b�b�B�M�; �i�?�2 �k�M�/ �K�Q�b�i �7�`�2�[�m�2�M�i �+�?���`���+�i�2�` �^�v�^�c
�"�m�7�7�2�` �H�2�M�;�i�? �B�b�, �8�y�y�X
�*�Q�/�2�H�2�M�;�i�? �4 �8�j�k�X�k�3�k�, �X �i�X�X�X�X�i�X �X�X�X�i�X �i�X�X�X�X�X�X�i �X�X�X �X�X
�*�Q�/�2�H�2�M�;�i�? �4 �8�j�k�X�N�9�3�, �X�2 �X�X�X�X �X�2�X�X�X �X�2 �X�X�X�X�X�X �2�X�X�X�2�X�X
�*�Q�/�2�H�2�M�;�i�? �4 �8�j�k�X�N�8�R�, �X�i �X�X�X�X �X�i�X�X�X �X�i �X�X�X�X�X�X �i�X�X�X�i�X�X
�*�Q�/�2�H�2�M�;�i�? �4 �8�j�9�X�e�y�j�, �X�b �X�X�X�X �X�b�X�X�X �X�b �X�X�X�X�X�X �b�X�X�X�b�X�X
�*�Q�/�2�H�2�M�;�i�? �4 �8�j�8�X�k�k�d�, �X �b�X�X�X�X�b�X �X�X�X�b�X �b�X�X�X�X�X�X�b �X�X�X �X�X
�S�`�Q�+�2�b�b�B�M�; �i�?�2 �j�`�/ �K�Q�b�i �7�`�2�[�m�2�M�i �+�?���`���+�i�2�` �^�;�^�c
�"�m�7�7�2�` �H�2�M�;�i�? �B�b�, �8�y�y�X
�*�Q�/�2�H�2�M�;�i�? �4 �9�e�d�X�9�e�8�, �X�i �X�?�X�X �X�i�?�X�X �X�i �X�X�X�X�X�X �i�?�X�X�i�X�X
�*�Q�/�2�H�2�M�;�i�? �4 �9�d�y�X�8�j�R�, �X �i�X���X�X�i�X ���X�X�i�X �i�X�X�X�X�X�X�i ���X�X �X�X
�*�Q�/�2�H�2�M�;�i�? �4 �9�d�y�X�e�9�j�, �X�i �X�Q�X�X �X�i�Q�X�X �X�i �X�X�X�X�X�X �i�Q�X�X�i�X�X
�*�Q�/�2�H�2�M�;�i�? �4 �9�d�R�X�k�y�9�, �X�2 �X�M�X�X �X�2�M�X�X �X�2 �X�X�X�X�X�X �2�M�X�X�2�X�X
�*�Q�/�2�H�2�M�;�i�? �4 �9�d�R�X�8�e�d�, �X �i�X�B�X�X�i�X �B�X�X�i�X �i�X�X�X�X�X�X�i �B�X�X �X�X
�S�`�Q�+�2�b�b�B�M�; �i�?�2 �9�i�? �K�Q�b�i �7�`�2�[�m�2�M�i �+�?���`���+�i�2�` �^���^�c
�"�m�7�7�2�` �H�2�M�;�i�? �B�b�, �8�y�y�X
�*�Q�/�2�H�2�M�;�i�? �4 �9�y�9�X�9�y�k�, �X�i �X�?�X�X �X�i�?�X�X �X�i �X�X�2�2�X�X �i�?�2�X�i�X�X
�*�Q�/�2�H�2�M�;�i�? �4 �9�y�3�X�j�3�y�, �X�i�B�X�?�X�X�B�X�i�?�X�X�B�X�i�B�X�X �X�X�B�i�? �X�i�X�X
�*�Q�/�2�H�2�M�;�i�? �4 �9�y�3�X�e�N�d�, �X�?�i�X�2�X�X�i�X�?�2�X�X�i�X�?�i�X�X �X�X�i�?�2 �X�?�X�X
�*�Q�/�2�H�2�M�;�i�? �4 �9�y�3�X�N�9�8�, �X�2�`�X�/�X�X�`�X�2�/�X�X�`�X�2�`�X�X �X�X�`�2�/ �X�2�X�X
�*�Q�/�2�H�2�M�;�i�? �4 �9�y�N�X�j�j�N�, �X�i �X�?�X�X �X�i�?�X�X �X�i �X�X�Q�Q�X�X �i�?�Q�X�i�X�X
: : :
�S�`�Q�+�2�b�b�B�M�; �i�?�2 �3�i�? �K�Q�b�i �7�`�2�[�m�2�M�i �+�?���`���+�i�2�` �^�#�^�c
�"�m�7�7�2�` �H�2�M�;�i�? �B�b�, �8�y�y�X
�*�Q�/�2�H�2�M�;�i�? �4 �k�R�e�X�j�3�k�, �?�2�i�Q�`�X�X�i�?�2�`�X�X�i�?�2�i�B�X �B�M�i�2�` �X�2�Q�M
�*�Q�/�2�H�2�M�;�i�? �4 �k�R�d�X�y�9�R�, �2 �b���B�X�X�b�2 �B�X�X�b�2 �b�Q�X�i�i�Q�M�b �B�i�X ���M
�*�Q�/�2�H�2�M�;�i�? �4 �k�R�d�X�y�e�N�, �b�Q �K�m�X�X �b�Q�m�X�X �b�Q �H�X�i�i�H�2 �Q�m�i�X�Q�K�2
�*�Q�/�2�H�2�M�;�i�? �4 �k�R�d�X�9�e�y�, �i �b���B�X�X�b�i �B�X�X�b�i �b�2�X�M�M�2�`�b �B�M�X ���`
�*�Q�/�2�H�2�M�;�i�? �4 �k�R�d�X�3�N�9�, �i�Q �m�M�X�X �i�Q�M�X�X �i�Q �/�X�2�2�/�b �Q�M�2�X�Q�m�b
�S�`�Q�+�2�b�b�B�M�; �i�?�2 �N�i�? �K�Q�b�i �7�`�2�[�m�2�M�i �+�?���`���+�i�2�` �^�2�^�c
�"�m�7�7�2�` �H�2�M�;�i�? �B�b�, �8�y�y�X
�*�Q�/�2�H�2�M�;�i�? �4 �R�e�d�X�3�j�N�, �b�Q �K�m�+�X �b�Q�m�X�X �b�Q �H�X�i�i�H�2 �Q�m�i�+�Q�K�2
�*�Q�/�2�H�2�M�;�i�? �4 �R�d�k�X�y�3�d�, �i �b�?���/�X�b�i ���X�X�b�i �b�B�X�M�M�B�2�b ���M�/ �?�2
�*�Q�/�2�H�2�M�;�i�? �4 �R�d�j�X�d�k�3�, �i �b�T���/�X�b�i ���X�X�b�i �b�2�X�M�M�2�`�b ���M�/ �T�`
�*�Q�/�2�H�2�M�;�i�? �4 �R�d�9�X�k�R�R�, �?�2 �b���M�X �?�2���X�X �?�2 �Q�X�`�`�Q�i �2���`�M�2�b�i
�*�Q�/�2�H�2�M�;�i�? �4 �R�d�e�X�k�k�y�, �?�2 �`���i�X �?�2���X�X �?�2 �B�X�b�b�B�M �2���b�i�2�`�M
�S�`�Q�+�2�b�b�B�M�; �i�?�2 �R�y�i�? �K�Q�b�i �7�`�2�[�m�2�M�i �+�?���`���+�i�2�` �^�[�^�c
�"�m�7�7�2�` �H�2�M�;�i�? �B�b�, �8�y�y�X
�*�Q�/�2�H�2�M�;�i�? �4 �R�9�8�X�k�9�k�, �b�Q �K�m�+�X �b�Q�m�M�X �b�Q �H�X�i�i�H�2 �Q�m�i�+�Q�K�2
�*�Q�/�2�H�2�M�;�i�? �4 �R�9�d�X�y�3�k�, �b�Q �K�m�+�X �b�Q�m�`�X �b�Q �H�X�i�i�H�2 �Q�m�i�+�Q�K�2
�*�Q�/�2�H�2�M�;�i�? �4 �R�9�d�X�N�e�R�, �b�Q �K�m�+�X �b�Q�m�;�X �b�Q �H�X�i�i�H�2 �Q�m�i�+�Q�K�2
�*�Q�/�2�H�2�M�;�i�? �4 �R�8�y�X�8�N�d�, �b�Q �K�m�+�X �b�Q�m�T�X �b�Q �H�X�i�i�H�2 �Q�m�i�+�Q�K�2
�*�Q�/�2�H�2�M�;�i�? �4 �R�8�R�X�d�R�9�, �i �b�?���/�X�b�i ���H�X�b�i �b�B�X�M�M�B�2�b ���M�/ �?�2
: : :
�S�`�Q�+�2�b�b�B�M�; �i�?�2 �R�j�i�? �K�Q�b�i �7�`�2�[�m�2�M�i �+�?���`���+�i�2�` �^�r�^�c
�"�m�7�7�2�` �H�2�M�;�i�? �B�b�, �8�y�y�X
�*�Q�/�2�H�2�M�;�i�? �4 �e�j�X�3�3�9�, �b�Q �K�m�+�? �b�Q�m�M�/ �b�Q �H�B�i�i�H�2 �Q�m�i�+�Q�K�2
�*�Q�/�2�H�2�M�;�i�? �4 �d�k�X�R�y�8�, �b�Q �K�m�+�? �b�Q�m�`�/ �b�Q �H�B�i�i�H�2 �Q�m�i�+�Q�K�2
�*�Q�/�2�H�2�M�;�i�? �4 �d�j�X�3�d�e�, �b�Q �K�m�+�? �b�Q�m�M�; �b�Q �H�B�i�i�H�2 �Q�m�i�+�Q�K�2
�*�Q�/�2�H�2�M�;�i�? �4 �d�8�X�9�d�9�, �b�Q �K�m�+�F �b�Q�m�M�/ �b�Q �H�B�i�i�H�2 �Q�m�i�+�Q�K�2
�*�Q�/�2�H�2�M�;�i�? �4 �d�8�X�8�R�N�, �b�Q �K�m�+�? �b�Q�m�M�/ �b�Q �H�v�i�i�H�2 �Q�m�i�+�Q�K�2

71

Table 3.3b: Example output (ten best solutions).

�h�2�M �#�2�b�i �b�Q�H�m�i�B�Q�M�b
63.884
72.105
73.876
75.474
75.519
76.426
76.677
79.165
79.350
79.896

�b�Q �K�m�+�? �b�Q�m�M�/ �b�Q �H�B�i�i�H�2 �Q�m�i�+�Q�K�2
�b�Q �K�m�+�? �b�Q�m�`�/ �b�Q �H�B�i�i�H�2 �Q�m�i�+�Q�K�2
�b�Q �K�m�+�? �b�Q�m�M�; �b�Q �H�B�i�i�H�2 �Q�m�i�+�Q�K�2
�b�Q �K�m�+�F �b�Q�m�M�/ �b�Q �H�B�i�i�H�2 �Q�m�i�+�Q�K�2
�b�Q �K�m�+�? �b�Q�m�M�/ �b�Q �H�v�i�i�H�2 �Q�m�i�+�Q�K�2
�b�Q �K�m�+�? �b�Q�m�M�/ �b�Q �H���i�i�H�2 �Q�m�i�+�Q�K�2
�b�Q �K�m�+�v �b�Q�m�M�/ �b�Q �H�B�i�i�H�2 �Q�m�i�+�Q�K�2
�b�Q �K�m�+�F �b�Q�m�;�? �b�Q �H�B�i�i�H�2 �Q�m�i�+�Q�K�2
�b�Q �K�m�+�? �b�Q�m�`�; �b�Q �H�B�i�i�H�2 �Q�m�i�+�Q�K�2
�b�Q �K�m�+�? �b�Q�m�p�v �b�Q �H�B�i�i�H�2 �Q�m�i�+�Q�K�2

which has the shortest compression codelength value 63.884 and is the valid

decrypt.

To encrypt the plaintext (original text), a random key is generated for

each run. Afterwards, the attack is performed on the cryptogram. Various

ciphertexts with different lengths (even very short) have been examined in

our experiments. We experimented with 110 different ciphertexts. In order

to measure the success and the accuracy of our automatic cryptanalysis al-

gorithms, alphabetic substitution errors (mapping errors) are counted. The

results of our experiments showed that only when using the new PPM vari-

ants (Variants B and E), as a method of calculating the codelength values

were almost all the ciphertexts decrypted successfully. In contrast, the other

PPM variants produced a significantly greater number of errors. The same

was repeated when using the Gzip and Bzip2 algorithms in the last two

variants (F and G). Example output produced by the different variants is

shown in Table 3.4.

For variant A, Figure 3.1a presents the number of errors for each testing

cryptogram as a result of our automatic cryptanalysis method using PPMD

without update exclusions. Clearly, we can see that the number of errors

for most tested cryptograms are high. In this case, just one cryptogram is

solved with no errors, and only four examples are found to have ten errors

72

Table 3.4: Sample of solved cryptograms by different variants.

�o���`�B���M�i�b �L�m�K�#�2�` �1�t���K�T�H�2 �/�2�+�`�v�T�i�2�/ �K�2�b�b���;�2

�Q�7 �2�`�`�Q�`�b

Variant A 17 ladylamandems dejaegonzalpsteyemainerosecine scheynero-

sle domickepoleontre oetonw

Variant B 0 retirement must be wonderful i mean you can suck in your

stomach for only so long

Variant C 20 nod nineosiukosqnsprean tuysdsincesbrushceskuhlsdesbru

skorichmstr sreybskrsyrex

Variant D 19 spaxsprpia roma hp cviupsloe x rpyi tvo nyi monk xi tvos

mavrynw lvs viet mv evid

Variant E 2 retirement must be wonderful i mean you can such in your

stomack for only so long

Variant F 21 myr myaywruatiruzyugvwhymotbu uaydwuxvtuedwuitenu

wuxvtmuirvadekuovmuvwbxuivubvwc

Variant G 11 detadement mrst he pongedbrl a mein for cin srck an ford

stomicy bod onlf so lonj

or less. The results show that over 75% of the decrypted cryptograms have

more than ten errors and 20% have greater than twenty errors.

For variant B, both order 4 and order 5 PPMD models are examined. For

the order 4 model, the results show that 81% of the ciphertexts are correctly

solved with no errors (that is, the best solution with minimum codelength

value is the correct solution). About 19% of the examples are decrypted

with just three errors or less. For the order 5 model, the results show better

performance with over 87% of the cryptograms correctly solved without any

errors. Also 12% of the ciphers are decrypted with just one or two errors,

and only one example had three errors as shown in Figure 3.1b. Moreover,

in almost all these examples, the correct solution can also be found within

the ten best solutions. It is clear that the number of errors for this variant

is much lower than other variants.

73

�U���V �1�`�`�Q�`�b �T�`�Q�/�m�+�2�/ �7�`�Q�K �p���`�B���M�i ���X�U�#�V �1�`�`�Q�`�b �T�`�Q�/�m�+�2�/ �7�`�Q�K �p���`�B���M�i �"�X

�U�+�V �1�`�`�Q�`�b �T�`�Q�/�m�+�2�/ �7�`�Q�K �p���`�B���M�i �*�X�U�/�V �1�`�`�Q�`�b �T�`�Q�/�m�+�2�/ �7�`�Q�K �p���`�B���M�i �.�X

�U�2�V �1�`�`�Q�`�b �T�`�Q�/�m�+�2�/ �7�`�Q�K �p���`�B���M�i �1�X�U�7�V �1�`�`�Q�`�b �T�`�Q�/�m�+�2�/ �7�`�Q�K �p���`�B���M�i �:�X

Figure 3.1: Errors produced from different variants

74

Figure 3.1c illustrates the number of errors for each cryptogram for vari-

ant C. We can see that almost all the decryption errors are more than ten,

with just two examples being solved with ten errors. Over 71% of the cryp-

tograms are decrypted with greater than ten errors, and over 26% of the

examples have more than twenty errors. None of the examples produced no

errors.

In variant D, the results show that most of the errors are greater than

10 with just four of the ciphertexts solved without errors. Over 58% of

the decrypted cryptograms have ten errors or more, and approximately 32%

have twenty errors or more with just 6% having less than ten errors.

Variant E produces slightly worse results than variant B, with 80% of

examples having been successfully solved without any errors and 20% de-

crypted with four errors or less when using the order 4 model. The order

5 PPMC model produces slightly better results. When we examine only

the best solution, 86% of examples are successfully decrypted without any

errors, and 13% solved with one or two errors, and one of the decrypted

cryptogram having four errors. When we examine the ten best solutions,

almost all the examples have no errors. Figure 3.1e presents the results of

variant E using the order 5 model.

We also experimented with using our relative entropy calculation method

using Bzip2 for Variant F. But due to the block-sorting nature of the Burrows-

Wheeler algorithm, the calculation of some of the relative entropy code-

lengths ended up being negative. (It is not clear why this is so but it maybe

due to the additional text aiding the run-length encoding of the blocks).

Thus these results could not provide us with a complete picture with re-

gards to the average number of errors. However, none of the positive results

for Variant F did show any success, with a quite high number of errors.

The number of errors produced form variant G is shown in Figure 3.1f.

It is clear that the number of errors for each decrypted ciphertext is much

higher, with most of the errors being greater than 15. Also none of the

cryptograms offered no errors and just seven cryptograms were decrypted

75

with the number of errors being less than 10.

Results regarding the average number of automatic cryptanalysis errors

for the 110 cryptograms we tested with each of the variants are presented in

Tables 3.5a and 3.5b. Table 3.5a presents the average number of errors when

just examining the best solution, and Table 3.5b shows the average errors for

the ten best solutions. Clearly, the best performing model overall is PPMD5

without update exclusions using the order � 1 correction model (Variant B).

However, Variant E, which used PPMC5 without update exclusions along

with order � 1 correction, presents excellent results as well. On the other

hand, the other Variants A, C and D produce poor results. Interestingly,

the PPM without update exclusions method, which typically shows slightly

worse performance at the compression task, shows better performance at

decryption here.

Table 3.5a: Average number of errors for each different variant when exam-

ining the best solution.

�o���`�B���M�i�b �� �" �* �. �1 �6 �:

���p�2�`���;�2 �2�`�`�Q�`�b17.37 0.20 18.29 16.21 0.22 – 16.59

The average number of errors produced for Variant G (using Gzip2)

is presented in the last column in the table. The results show that the

Gzip compression scheme is not an effective way of recognising the valid

decryptions as it also results in a high number of errors. In addition, the

time that is needed to break the ciphers (by using Gzip and Bzip2) using the

relative entropy calculation is considerably longer (as it involves repeatedly

compressing the training text), and thus also makes the use of these methods

Table 3.5b: Average number of errors for each different variant when exam-

ining the ten best solutions.

�o���`�B���M�i�b �� �" �* �. �1 �6 �:

���p�2�`���;�2 �2�`�`�Q�`�b17.45 1.38 18.31 16.28 1.40 – 16.83

76

impractical.

Like other cryptanalysis approaches, very short cryptograms can often

not always be solved correctly, even with a better model of English as Irvine

claimed in his thesis (Irvine, 1997). This is because these cryptograms are

inherently ambiguous as a simple substitution unicity distance is about 26,

according to this equation:

U =
H(k)

R
=

log27!
log27� 1:2

= 26:2

where U represents the unicity distance, H(k) denotes the entropy of the key

space and R is the plaintext redundancy in bits per character (Irvine, 1997).

For an order 4 model, the unicity distance is equal to 33.2, since the

entropy of this model is H4 = 1.953. For an order 5 model,

U =
log27!

log27� H5
=

log27!
log27� 1:822

= 31:8:

So, we can not expect to correctly decrypt cryptograms shorter than this

number of symbols. However, in our approach (Variant B), many different

ciphertexts with short lengths (ranging from 20 to 40) have been tried,

and in almost all cases the right solution (without any errors) was found.

Table 3.6 lists some examples of different cryptograms with short lengths

and the successfully decrypted text.

Table 3.6: Examples of decryption of short cryptograms (length from 20

to 40 characters; the compression codelength h and compression codelength

ratio H = h=n, where n is the number of characters in the text, are shown in

the first two columns).

h H �*�B�T�?�2�`�i�2�t�i �a�m�+�+�2�b�b�7�m�H�H�v �/�2�+�`�v�T�i�2�/ �i�2�t�i

30.77 1.538 fvwdwradbsdfvwdobija the end of the world
37.76 1.716 yniseiyre sgosynisbrvy the return of the suit
64.71 2.231 fbapipuymswykpdbpubjypvumttyt how i learned to love glasses
68.50 2.140 cgjgulg flrmuglfv clomxli clwhyf never eat more than you can lift
74.84 2.138 vlmvhhvwwnlemtnwqljqmrlmekl mjrlasrw an appalling silence on gun control
77.12 2.142 larrpmvcrnjil jm txm mc sspmtaw mpa r merry christmas and a happy new year
72.72 1.818 igecq crgirwqcrkbcnfrnbfrwhr wq xcbinfgwq silence is one great art of conversation

77

The average execution time that is needed to determine the correct solu-

tions of the different ciphertexts that were experimented with is presented in

Table 3.7. The time which is required to automatically break each ciphertext

is based on the execution of the PPMD model without update executions and

with specific order � 1 codelength value (Variant B). The average elapsed

time in seconds for each cryptogram is computed by running the program

ten times on a Dell Inc.-Inspiron 5537 laptop computer (Intel(R) Core(TM)

i7-4500U CPU @ 1.80GHz) and then calculating the average. The results

show that our method only requires a few seconds on average to decrypt the

ciphertexts, and usually the solution is found in less than six seconds of CPU

time. This is compared with an average execution time of approximately

76 minutes for a ciphertext of 64 letters in the research by Ravi and Knight

(2008), and with a reported decryption time of two and a half minutes for a

ciphertext of the same length in the paper by Nuhn et al. (2013). However,

these are not directly comparable because different processors are being used

in these experiments using different set-ups.

Table 3.7: Average time needed to automatically cryptanalyse different sim-

ple substitution ciphertexts.

�*�B�T�?�2�` �G�2�M�;�i�?�k�y �8�y �R�8�y �j�y�y

Time �U�a�2�+�V 2.22 2.61 3.26 5.57

3.5.1 Experiments with Different Buffer Sizes

Our search method requires maintaining a current sorted list of the best

solutions using a buffer of fixed size. In order to determine which is the

best or the most appropriate buffer size for obtaining the best results, we

performed four further experiments using different buffer sizes: 100, 200, 500

and 1000. Table 3.8a and 3.8b present results regarding the average number

of errors for the 110 ciphertexts when using the different buffer sizes.

According to these tables, it is clear that buffer sizes of 500 and 1000

78

Table 3.8a: Average number of errors when using different buffer sizes when

examining just the best solution.

���`�`���v �b�B�x�2 �R�y�y �k�y�y �8�y�y �R�y�y�y

Average errors 1.35 0.70 0.20 0.20

Table 3.8b: Average number of errors when using different buffer sizes when

examining the ten best solutions.

���`�`���v �b�B�x�2 �R�y�y �k�y�y �8�y�y �R�y�y�y

Average errors 2:33 1.70 1.38 1.38

produced the smallest average number of errors. In contrast, using a buffer

size of 100 resulted in a greater number of errors (1.35 compared to 0.20).

However, a trade-off in favour of a smaller buffer size is that it uses up less

memory and execution speed is faster. The program has not been optimised

for memory usage and execution speed; however, we have noticed that the

execution time doubled with the size of the buffer.

3.5.2 Improving Results Using a Word-based PPM Com-

pression Method

This section discusses the experimental results obtained when using a further

word-based model for the automatic cryptanalysis. As word-based schemes

(WjW as described in Table 3.1) for the English text outperform character-

based ones in terms of compression rate, the order 1 word-based model is

used here to examine the effect of applying this model in a secondary post-

processing stage (Algorithm 2 as above) on the output from Algorithm 1

to see if this results in better cryptanalysis. This model is used to re-

order the solutions produced from Algorithm 1 according to the codelength

value calculated for each solution using the same model. The smaller the

codelength value, the more closely the solution represents the valid decrypt.

Some sample output is shown in Table 3.9 for the ciphertext ‘cgjgulg

79

Table 3.9: The ten best character-based solutions compared to the ten best

word solutions for the ciphertext ‘�+�;�D�;�m�H�; �7�H�`�K�m�;�H�7�p �+�H�Q�K�t�H�B �+�H�r�?�v�7’.

�h�2�M �#�2�b�i �+�?���`���+�i�2�` �b�Q�H�m�i�B�Q�M�b�,�h�2�M �#�2�b�i �r�Q�`�/ �b�Q�H�m�i�B�Q�M�b�,

65.994 �M�2�p�2�` �2���i �K�Q�`�2 �i�?���M �v�Q�m �+���M �/�B�b�i64.041 �M�2�p�2�` �2���i �K�Q�`�2 �i�?���M �v�Q�m �+���M �H�B�7�i

66.439 �M�2�p�2�` �2���i �K�Q�`�2 �i�?���M �v�Q�m �+���M �b�T�B�i68.016 �M�2�p�2�` �2���i �K�Q�`�2 �i�?���M �;�Q�/ �T���M �D�m�b�i

68.030 �M�2�p�2�` �2���i �K�Q�`�2 �i�?���M �v�Q�m �+���M �b�B�t�i68.219 �M�2�p�2�` �2���i �K�Q�`�2 �i�?���M �v�Q�m �+���M �H�B�b�i

68.388 �M�2�p�2�` �2���i �K�Q�`�2 �i�?���M �v�Q�m �+���M �H�B�7�i69.054 �M�2�p�2�` �2���i �K�Q�`�2 �i�?���M �v�Q�m �+���M �;�B�7�i

68.453 �M�2�p�2�` �2���i �K�Q�`�2 �i�?���M �v�Q�m �+���M �;�B�7�i69.441 �M�2�p�2�` �2���i �K�Q�`�2 �i�?���M �;�Q�/ �+���M �D�m�b�i

68.528 �M�2�p�2�` �2���i �#�Q�`�2 �i�?���M �v�Q�m �+���M �/�B�b�i69.804 �M�2�p�2�` �2���i �K�Q�`�2 �i�?���M �v�Q�m �+���M �7�B�b�i

68.745 �M�2�p�2�` �2���i �K�Q�`�2 �i�?���M �v�Q�m �+���M �H�B�b�i70.263 �M�2�p�2�` �2���i �K�Q�`�2 �i�?���M �v�Q�m �+���M �b�T�B�i

68.974 �M�2�p�2�` �2���i �#�Q�`�2 �i�?���M �v�Q�m �+���M �b�T�B�i70.456 �M�2�p�2�` �2���i �K�Q�`�2 �i�?���M �v�Q�m �+���M �r�B�H�i

70.333 �M�2�p�2�` �2���i �r�Q�`�2 �i�?���M �v�Q�m �+���M �/�B�b�i70.678 �M�2�p�2�` �2���i �K�Q�`�2 �i�?���M �v�Q�m �+���M �D�B�b�i

70.565 �M�2�p�2�` �2���i �#�Q�`�2 �i�?���M �v�Q�m �+���M �b�B�t�i70.804 �M�2�p�2�` �2���i �K�Q�`�2 �i�?���M �v�Q�m �+���M �;�B�H�i

flrmuglfv clomxli clwhyf’ which compares the ten best character-based so-

lutions found by Algorithm 1 with the ten best word-based solutions found

by Algorithm 2. The sample shows that the correct solution was found by

the word-based method (with the semantically correct last word ‘lift’), but

in comparison this was ranked in fourth place using the character-based

method. Interestingly, both methods have found similar solutions except

for the third and last words which in most cases are correctly spelt although

semantically incorrect.

This technique was tried only for variants found to be the best per-

forming, Variants B and E. For variant B, five examples out of fourteen

(which had been found by the character-based method to have three errors

or less), were successfully solved with no errors when this secondary word-

based method was applied. For variant E, six examples out of fifteen (which

had been found to have three errors or less), are also solved with no errors

using the same method.

After applying this word-based method, 92% of cryptograms were now

80

solved without any errors, with an improvement of 5% and 6% for both

variants B and E over when just using the order 5 character-based model.

Furthermore, all the cryptograms of length longer than 44 are successfully

solved without any errors. Table 3.10 shows how the word-based approach

improves the average number of errors for the best solutions.

Table 3.10: Average number of errors when examining the best solution.

�o���`�B���M�i�b

�P�`�/�2�` �9

�+�?���`���+�i�2�`

�K�Q�/�2�H

�P�`�/�2�` �8

�+�?���`���+�i�2�`

�K�Q�/�2�H

�q�Q�`�/�@�#���b�2�/

(WjW) �K�Q�/�2�H

Variant B 0.29 0.20 0.13

Variant E 0.31 0.22 0.13

Table 3.11 presents the summary of results when using our new method

Variant B (the best performing method) on the ciphertexts that we experi-

mented with. Overall, the results show that we are able to attain a very high

success rate, with about 92% of cryptograms being correctly solved with no

errors and 100% being decrypted with just three errors or less.

Table 3.11: Summary of results for Variant B.

Errors
Order 4 character model Order 5 character model Order 4/5 character

& word-based models

No. of Cumulative No. of Cumulative No. of Cumulative

ciphertexts percentage ciphertexts percentage ciphertexts percentage

(%) (%) (%)

0 89 80:91 96 87:27 101 91:82

� 1 101 91:82 105 95:45 106 96:36

� 2 108 98:18 109 99:09 109 99:09

� 3 110 100:00 110 100:00 110 100:00

81

3.6 Conclusions

In this chapter, a new method for the plaintext recognition and automated

cryptanalysis of substitution ciphers in a ciphertext only attack has been de-

scribed. An efficient use of the compression-based approach for cryptanalysis

has been demonstrated. The fundamental idea behind our approach relies

on using a compression method as an accurate way of measuring information

in the text. Results on 110 cryptograms ranging from 20 to 300 characters

have shown a very high success rate with approximately 92% of the cryp-

tograms correctly decrypted without any errors and 100% with just three

errors or less (which were due to alphabetic mapping errors). This efficient

method works well on even very short ciphertexts and eliminates any need

for human intervention. This is a significant improvement over the earlier

work done by Irvine (1997) which used a different version of PPM and a

different search algorithm.

Three main compression methods have been investigated: prediction by

partial matching (or PPM), Gzip and Bzip2. Various character-based PPM

variants were investigated as well, in order to ascertain the most effective

scheme when applied to the problem of automatically breaking simple sub-

stitution ciphers. The following variants of PPM were used: PPMD and

PPMC, with further variations such as the use or not of update exclusions,

a technique found to improve compression but which we have found leads

to better decryption if it is removed. Both of these variants were further

investigated with a new variation of the PPM algorithm where a specific

codelength value is assigned when encoding all order � 1 contexts. The ex-

perimental results showed that this new combination, PPM without update

exclusions using specific order � 1 codelength values, noticeably outperforms

other compression schemes including Gzip and Bzip2. We have also applied

a word-based PPM model as a post-processing stage which led to further

improved results.

82

Chapter 4

Designing and Evaluating a

New Automatic

Cryptanalysis of

Transposition Ciphers Using

Compression

4.1 Introduction

In this chapter, we propose a novel compression-based approach applied to

the problem of automatically decrypting transposition ciphers. This seeks to

address research questions 1 and 2 that were detailed in Section 1.2, and ful-

fils objectives 2 and 3 in Section 1.3. In essence, we investigate how to devise

better solutions to the plaintext recognition problem by using transposition

ciphers as a test bed. Furthermore, we propose further methods also based

on using compression to automatically insert spaces back into the decrypted

texts in order to achieve readability (as we perform our experiments on En-

glish alphabetic characters). This helps to address both research question 4

83

and objective 4 that were listed in Chapter 1. Specifically, the use of PPM

and Gzip compression methods are examined in this chapter.

A preliminary form of the work in this chapter was published in the Pro-

ceedings of the 15th International Conference on Cryptology And Network

Security (CANS2016), Springer International Publishing (Al-Kazaz et al.,

2016).

This chapter is structured as follows. Section 4.2 gives a brief description

of the previous research into the cryptanalysis of transposition ciphers. In

Section 4.3, we illustrate the motivation for the use of our compression-based

approach as a method of tackling the plaintext recognition problem and the

word segmentation problem. Section 4.4 presents the new computerized

method and the pseudo-code we developed for this work. Our experimental

results are discussed in section 4.5. Section 4.6 summaries the results.

4.2 Related Work

Various cryptanalysis methods have been used to break transposition ci-

phers, starting with traditional attacks such as exhaustive search and ana-

gramming, and then leading to genetic algorithm based methods. Anagram-

ming is a well-known traditional cryptanalysis method. It is the method

of repositioning disarranged letters into their correct and original posi-

tions (Sinkov, 1966; Seberry and Pieprzyk, 1989). Although, the traditional

attacks are more successful and easy to implement, but automating these

types of attack is not an easy issue. It requires an experienced and trained

cryptanalyst. Mathematical techniques have been used in these attacks but

the main role tends to be on the human expert. The final decision is made by

the human cryptanalyst with regards to which algorithm is used in attack.

Many researchers have been interested in developing and automating

cryptanalysis against transposition ciphers. One of the earliest papers was

published by Matthews (1993). He presented an attack on transposition

ciphers using a genetic algorithm. The fitness function was based on the

84

frequency of the common English digrams and trigrams that appear in the

deciphered text. A test text with a length of 181 characters was selected,

and three targeted keylengths (7, 9 and 11) were experimented with. This

attack was successful at key size of 7, with no successes at key length of 11.

Clark (1994) published three algorithms that used simulated annealing,

genetic algorithm and tabu search in the cryptanalysis of transposition ci-

phers. The fitness function used also depended on the frequencies of digrams

and trigrams. By using a genetic algorithm, the success rates of block sizes

of 4 and 6 ranged from 5 to 91%. Tabu search was faster than the other

algorithms while simulated annealing was the slowest but with a high per-

formance of solving ciphertexts especially with large periods. It was able to

correctly recover 26 of the key elements, for a transposition cryptosystem of

period 30 with 1000 ciphertext characters. For periods less than 15, each of

the algorithms could effectively recover the key (Clark, 1998). Dimovski and

Gligoroski (2003) came to similar conclusions presented in Clark’s publica-

tion. For a key of length 15, a ciphertext of at least 800 letters are required

to recover 12 key elements out of 15. For a key of length 30, at least 1000

ciphertext letters are required to recover 25 key elements out of 30. The

fitness function that was used in their paper was based on bigram statistics

due to the expensive task of calculating trigram statistics.

Toemeh and Arumugam (2007) used a genetic algorithm and a slightly

modified list of the most common trigrams than were used in Clark paper to

break transposition ciphers. Three additional trigrams were included with

the Clark table. The recovered key for a ciphertext of 1000 letters was 15

out of 15 key elements.

Genetic algorithms for the cryptanalysis of transposition ciphers were

published by Grundlingh and Van Vuuren (2003); Bergmann et al. (2008).

The fitness function they used in their research was based on the discrepan-

cies between the expected number of occurrences of a digram in a natural

language text (per N characters), and the observed count of this digram in a

ciphertext of length N. Grundlingh and Van Vuuren (2003) concluded that

85

genetic algorithmic attacks were not effective against columnar transposi-

tion ciphers since this cipher is more robust than substitution ciphers. This

attack was only successful at a key size of 7 with a ciphertext of 2519 charac-

ters (Grundlingh and Van Vuuren, 2003). A transposition cipher (Bergmann

et al., 2008) with a key size of up to 12 and 500 characters in length was

able to be deciphered correctly using the proposed algorithm.

Giddy and Safavi-Naini (1994) used a simulated annealing approach and

bigrams based cost function for the automatic decryption of transposition

ciphers. A success rate of at least 80% was obtained in the following cases:

for a key of length 15 with a ciphertext of 255 characters, key of lengths 20,

25 with a ciphertext of 500 characters. The algorithm was not be able to

correctly decrypt short ciphers of 100 characters or less, which they noted is

the supposed behaviour of all cryptanalysis schemes. Ciphertexts that have

dummy characters added to them were decrypted poorly as well. (In the

case of a short block at the end, a dummy character, sometimes an ‘X’, is

used to fill in the blank cells).

The use of genetic algorithms was specifically explored by Delman (2004).

Different key lengths ranging from 2 to 30 with different ciphertext lengths

were examined. None of these algorithms were able to correctly recover all

the plaintext and achieve full success. Delman (2004) concluded that the

genetic algorithm-based approach did not deserve further effort and further

investigation in traditional cryptanalysis techniques was warranted rather

than for genetic algorithms.

Other local search metaheuristics for the automatic cryptanalysis of

transposition ciphers were proposed by a number researchers (Russell et al.,

2003; Chen and Rosenthal, 2012; Wulandari et al., 2015; Jassim, 2017). Russell

et al. (2003) used a dictionary to recognise the plaintext and bigrams to in-

dicate adjacent columns. This attack was able to decipher a ciphertext of

300 letters with a key of length 15, a ciphertext of 400 letters with a key

of length 20 and a ciphertext of 625 letters with a key of length 30. Chen

and Rosenthal (2012) used bigram statistics as the basis for calculating the

86

score function. This method showed a very high accuracy rate with a key

of length 20 and 2000 ciphertext characters. To solve a key of length 30

with 80% probability of success, a ciphertext of 2000 letters were required.

The fitness function used in the paper published by Wulandari et al. (2015)

was based on bigram and trigram statistics. Texts with different sizes (665,

822, 980, 2316, 3812) were tested. This algorithm was able to decrypt the

ciphertexts correctly with key lengths up to 9; with key length of 10, it was

able to find half of the correct answers.

An enhanced hill climbing algorithm with two phases for the automatic

cryptanalysis of the columnar transposition cipher was proposed by Lasry

et al. (2016). It implemented specialized adaptive scoring, using two new

developed scoring methods: the adjacency score and the alignment score.

The calculation of these scores was based on using bigram statistics. For

shorter keys, an improved implementation of the scoring methods using

trigram statistics was performed. These methods were used in the first

phase in order to achieve better resilience to errors. Quadgram statistics,

which have a very good selectivity, was used as a basis for calculating the

score function in the second phase. This work addressed much longer keys,

for example, it was able to recover key with length of 30 elements with 180

ciphertext letters.

Irvine (1997) has been the only researcher to date to have used a com-

pression algorithm to break a cipher system, substitution ciphers. However,

a similar approach has yet to have been applied to other ciphers systems,

including transposition ciphers.

In this chapter, we propose a novel compression-based approach for the

automatic recognition of the plaintext of transposition ciphers with a 100%

success rate. We use different key lengths (ranging from 2 to 12) and dif-

ferent ciphertext lengths, even very short messages with only 12 characters

while the shortest messages used in most of the previous research were not

less than 100 characters. In this chapter, we present both a method for

automatically decrypting transposition ciphertexts and then automatically

87

achieving readability subsequently. This automatically inserts spaces into

the decrypted text, while most of the previous works did not address or refer

to this fundamental aspect of the cryptanalysis.

4.3 Compression as a Cryptanalysis Method, us-

ing PPM Compression Codelength Metric and

the Gzip Compression Method

Our approach adopts a similar method found successful for simple substitu-

tion ciphers as described in the previous chapter. One of the critical factors

for a successful attack, and often the most critical one, is the evaluation

function (scoring function). In our approach here, compression schemes are

used as effective scoring methods and calculate the compression codelength

value for each possible permutation in order to evaluate the quality of each

of them. Achieving readability is the second step of our approach which in

turn also depends on compression methods. We use PPM with the Viterbi

algorithm for the word segmentation problem and this is explained in the

next subsection. (Another new method that has been developed again using

PPM for segmenting words is described in detail in the next section).

4.3.1 Word Segmentation Using the Viterbi Algorithm

Word segmentation is the process of determining the smallest unit (word)

in a meaningful context (Alhawiti, 2014). It is an important task for some

natural language processing applications, such as speech recognition.

Character-based PPM models with the use of the Viterbi algorithm

(Viterbi, 1967) has achieved a high accuracy rate for the word segmentation

of English text (Teahan, 1998). This model works by searching through all

alternative segmentations of the text (by inserting spaces after each letter

for each possible segmentation). For each letter, there are two possible seg-

mentations: the letter itself and the letter followed by a space. The segmen-

88

tation is chosen by selecting the one that has the best encoding performance

as determined by the PPM compression model.

There are 2n possible sequences to be searched, where n denotes the

sequence length. However, much of the search space is eliminated using

the Viterbi algorithm through the substantial pruning of underperforming

sequences. How this works is shown in Figure 4.1. For each similar context,

after the processing of each letter, only one path should remain using the

PPM model. For example, the substring “tob” would have eight search

possibilities and the most probable segmentations would be identified by

the PPM model as illustrated in Figure 4.1. An order 2 PPM model is used

in the example and the poorer performing paths which have the same order

2 context are discarded. The best encoding sequence for the three order 2

contexts “ob, _b and b_” are 16.3, 20.9 and 21.3 bits respectively. These

sequences are the highest probability paths that are kept and subsequently

expanded with the remaining five poorer performing paths being discarded

(as shown in the figure), as these paths can not perform better than the

other paths.

....(null).

..t

.

..to

.

..tob 16:3

.

..tob_ 21:3

.

..to_

.

..to_b 20:9

.
..to_b_ 28:2

.

..t_

.

..t_o

.
..t_ob 19:1

.

..t_ob_ 25:1

.

..t_o_

.

..t_o_b 26:4

.

..t_o_b_ 28:1

.

(Bits)

Figure 4.1: Segmentation search tree (Teahan, 2018).

89

4.4 The New Method

In this section, we give a full description of the new approach for the auto-

matic cryptanalysis of transposition ciphertexts. As before, the basic idea of

our approach depends on using a compression model as a method of comput-

ing the ‘codelength’ of each possible permutation. This compression model

and the codelenghth metric represent the evaluation function that can be

relied on it to automatically rank alternative permutations and recover cor-

rect messages. In our method, the PPMD, PPMC and Gzip compression

methods are used in the experiment.

Our new approach consists of two essential phases. The main idea of the

first phase (Phase I) depends on trying to break a ciphertext automatically

using a transposition of specified size by exhaustively computing all possi-

ble transpositions. The second phase (Phase II) focuses on inserting spaces

automatically (segmenting words) into the decrypted message which is out-

putted from the first phase (since we remove spaces from the ciphertext at

the beginning of Phase I, as is traditional).

The pseudo code for the first phase of our method is presented in Al-

gorithm 3. The first step in this algorithm focuses on removing all the

non-alphabetical characters (including spaces) from the ciphertext (see line

1). At this stage, the text comprises just 26 alphabetic English characters.

The algorithm then starts to try all possible key sizes and for each key

size a permutation is performed over each cryptogram block trying to get

a permutation with a smaller codelength value which represents the correct

solution (lines 4 to 13). Each cryptogram is divided into blocks according

to the key size (lines 5 and 6). Then, a permutation is performed over each

cryptogram (line 7). For each possible permutation, a codelength value is

calculated (lines 8 to 11). The text is compressed using PPM with an order 5

character-based model of English trained on nineteen novels and the Brown

corpus as this has been found the most effective (line 9). The resultant size

of the compressed text is used to accept or reject the particular permutation.

90

Gzip is also used for calculating the codelengths. Permutations with smaller

codelengths are kept in the priority queue as shown in line 10. The hope is

that the cryptogram that has the smallest codelength value will represent

the valid decrypted message. We have found in fact that the smaller the

codelength, the more closely the cryptogram resembles the model.

���H�;�Q�`�B�i�?�K �j�,Pseudo-code of the main decryption phase (Phase I)

for transposition ciphers.
�A�M�T�m�i�, �+�B�T�?�2�`�i�2�t�i

�P�m�i�T�m�i�, �/�2�+�`�v�T�i�2�/ �i�2�t�i

�R �`�2�K�Q�p�2���H�H �M�Q�M�@���H�T�?���#�2�i �+�?���`���+�i�2�`�b ���M�/ �b�T���+�2�b �7�`�Q�K �i�?�2 �+�B�T�?�2�`�i�2�t�i�c

�k �K���t�B�K�m�K �b�B�x�2�Q�7 �Z �U�T�`�B�Q�`�B�i�v �[�m�2�m�2�V �j�c

�j �K���t�B�K�m�K�F�2�v�@�b�B�x�2 �Q�7 �i�`���M�b�T�Q�b�B�i�B�Q�M �R�k�c

�9 �7�Q�`�2���+�?�F�2�v�@�b�B�x�2�/�Q

�8 �B�7�+�B�T�?�2�`�i�2�t�i�@�H�2�M�;�i�?mod �E�2�v�@�b�B�x�2 �4 �y�i�?�2�M

�e �/�B�p�B�/�2�i�?�2 �+�B�T�?�2�`�i�2�t�i �B�M�i�Q �#�H�Q�+�F�b ���+�+�Q�`�/�B�M�; �i�Q �F�2�v�@�b�B�x�2�c

�d �T�2�`�7�Q�`�K�� �T�2�`�K�m�i���i�B�Q�M �Q�p�2�` �2���+�? �+�B�T�?�2�`�i�2�t�i �#�H�Q�+�F�b�c

�3 �7�Q�`�2���+�?�T�Q�b�b�B�#�H�2 �T�2�`�K�m�i���i�B�Q�M�/�Q

�N �+���H�+�m�H���i�2�+�Q�/�2�H�2�M�;�i�? �p���H�m�2 �m�b�B�M�; �S�S�J �Q�` �:�x�B�T �+�Q�K�T�`�2�b�b�B�Q�M �K�Q�/�2�H�c

�R�y �b�i�Q�`�2�� �T�2�`�K�m�i���i�B�Q�M �r�B�i�? �b�K���H�H�2�` �+�Q�/�2�H�2�M�;�i�? �p���H�m�2 �B�M �Z�c

�R�R �2�M�/

�R�k �2�M�/

�R�j �2�M�/

�R�9 �`�2�i�m�`�M�i�?�2 �T�`�B�Q�`�B�i�v �[�m�2�m�2 �õ�Z�ö �U�i�?�2 �õ�/�2�+�`�v�T�i�2�/ �i�2�t�i�ö�V�c

As the output of the previous phase are texts without any spaces, the

second phase focuses on segmenting words. Two alternative ways have been

investigated in this phase. The first method which is called “Phase II-A”,

examines all further decrypted message possibilities when a space is inserted

after each character. In this new method, possibilities with smaller code-

length values (best performing possibilities) are kept in a priority queue, and

those which showed poor codelength values are pruned (see Algorithm 4).

For each of the text produced as output from Algorithm 3 (lines 3 to 19), it

repeatedly tries to improve the codelength of each solution (lines 5 to 17) by

91

adding a space after each character. For each character in the text, another

new solution is created after a single space character is added (lines 8 to

12). Compression codelength then is applied to rank the solutions. PPM

and Gzip compression models are also used again in this method.

Referring to Algorithm 4 in more detail, a number of queues are used

during the processing. Queue ‘Q’ is the output produced from Algorithm 3.

Q1 contains text permutations of possible segmentations (i.e. alternative

space insertions) for a text being processed from Q. Q3 is being dynamically

built through an iterative improvement process (lines 3 to 19) and is used

to produce the output from the algorithm. Alternative segmentations are

searched on lines 7 to 13, and these are placed in a temporary queue Q2.

If there is an improvement in codelength value, then Q2 is swapped for Q1

(line 15). This iterative improvement process is repeated (lines 5 to 16) until

there is no further improvement. Then the first text in Q1 is added to Q3

which is returned by the algorithm (line 20).

The second method, which is called Phase II-B, uses the Viterbi algo-

rithm to find the best possible segmentation (see Algorithm 5). For each of

the text produced as output from Algorithm 3, the Viterbi algorithm is used

to search for the best segmentation sequence and this then is stored in Q1

(lines 2 to 5) which is used to return the result (line 6). PPM compression

model is used again here.

In our method, we have used two variants of the PPMD and PPMC mod-

els, one without update exclusions (Teahan, 1998) and the standard PPMD.

This was done to investigate which is the most effective model when applied

to the problem of the automatic cryptanalysis of transposition ciphers.

In order to clarify and organize our experiments and results, we divide

our different experiments into different variants with a specified label as

shown in the Table 4.1.

According to Table 4.1, the first variant is called Variant A. In this

variant, PPMD and PPMC without update exclusions are used to calculate

the compression codelength values. This is used for the main decryption

92

���H�;�Q�`�B�i�?�K �9�,Pseudo code of the second phase (Phase II-A) for trans-

position ciphers.
�A�M�T�m�i�, �i�?�2 �T�`�B�Q�`�B�i�v �[�m�2�m�2 �õ�Z�ö �7�`�Q�K �S�?���b�2 �A

�P�m�i�T�m�i�, �b�2�;�K�2�M�i�2�/ �/�2�+�`�v�T�i�2�/ �i�2�t�i

�R �K���t�B�K�m�K �b�B�x�2�Q�7 �Z�R�- �Z�k �U�T�`�B�Q�`�B�i�v �[�m�2�m�2�b�V �8�c

�k �K���t�B�K�m�K �b�B�x�2�Q�7 �Z�j �U�T�`�B�Q�`�B�i�v �[�m�2�m�2�V �R�c

�j �7�Q�`�2���+�?�i�2�t�i �B�M �Z�/�Q

�9 �Z�R �i�2�t�i�c

�8 �`�2�T�2���i

�e �Z�k �2�K�T�i�v�c

�d �7�Q�`�2���+�?�i�2�t�i �B�M �Z�R�/�Q

�3 �7�Q�`�2���+�?�+�?��� �̀��+�i�2�` �B�M �� �i�2�t�i�/�Q

�N �+�`�2���i�2�� �M�2�r �i�2�t�i �r�B�i�? �� �b�B�M�;�H�2 �b�T���+�2 ���/�/�2�/�c

�R�y �+���H�+�m�H���i�2�+�Q�/�2�H�2�M�;�i�? �p���H�m�2 �7�Q�` �i�?�2 �M�2�r �i�2�t�i �m�b�B�M�; �S�S�J �Q�` �:�x�B�T

�+�Q�K�T�`�2�b�b�B�Q�M �K�Q�/�2�H�c

�R�R �b�i�Q�`�2�M�2�r �K�2�b�b���;�2 �i�?���i �?���p�2 �� �b�K���H�H�2�` �+�Q�/�2�H�2�M�;�i�? �p���H�m�2 �B�M �Z�k�c

�R�k �2�M�/

�R�j �2�M�/

�R�9 �B�7�i�?�2� �̀2 �B�b ���M�v �B�K�T� �̀Q�p�2�K�2�M�i �B�M �i�?�2 �+�Q�/�2�H�2�M�;�i�? �p���H�m�2�i�?�2�M

�R�8 �Z�R �Z�k�c

�R�e �2�M�/

�R�d �m�M�i�B�H�i�?�2� �̀2 �B�b �M�Q �B�K�T� �̀Q�p�2�K�2�M�i �B�M �i�?�2 �+�Q�/�2�H�2�M�;�i�? �p���H�m�2�c

�R�3 ���/�/ �i�?�2 �}�`�b�i �i�2�t�i �B�M �Z�R �i�Q �Z�j�c

�R�N �2�M�/

�k�y �`�2�i�m�`�M�i�?�2 �#�2�b�i �b�2�;�K�2�M�i�2�/ �/�2�+�`�v�T�i�2�/ �i�2�t�i �7� �̀Q�K �Z�j�c

���H�;�Q�`�B�i�?�K �8�,Pseudo code of Phase II-B for transposition ciphers.
�A�M�T�m�i�, �i�?�2 �T�`�B�Q�`�B�i�v �[�m�2�m�2 �õ�Z�ö �7�`�Q�K �S�?���b�2 �A

�P�m�i�T�m�i�, �b�2�;�K�2�M�i�2�/ �/�2�+�`�v�T�i�2�/ �i�2�t�i

�R �K���t�B�K�m�K �b�B�x�2�Q�7 �Z�R �U�T�`�B�Q�`�B�i�v �[�m�2�m�2�V �R�c

�k �7�Q�`�2���+�?�i�2�t�i �B�M �Z�/�Q

�j �m�b�2�i�?�2 �o�B�i�2�`�#�B ���H�;�Q�`�B�i�?�K �i�Q �b�2���`�+�? �7�Q�` �i�?�2 �#�2�b�i �b�2�;�K�2�M�i���i�B�Q�M �b�2�[�m�2�M�+�2�b�c

�9 �b�i�Q�`�2�i�?�2 �i�2�t�i �i�?���i �?���p�2 �i�?�2 �#�2�b�i �b�2�;�K�2�M�i���i�B�Q�M �r�?�B�+�? �T�`�2�b�2�M�i �B�M �Z�R�c

�8 �2�M�/

�e �`�2�i�m�`�M�i�?�2 �#�2�b�i �b�2�;�K�2�M�i�2�/ �/�2�+�`�v�T�i�2�/ �i�2�t�i �7� �̀Q�K �Z�R�c

93

Table 4.1: Variants used in our experiments

�o���`�B���M�i�b�S�?���b�2 �A �S�?���b�2 �A�A�@�� �S�?���b�2 �A�A�@�"

Variant ��
PPM with no

update exclusions

PPM with no

update exclusions

Variant �"
PPM with no

update exclusions

PPM with no

update exclusions

Variant �* PPM PPM

Variant �. PPM PPM

Variant �: Gzip Gzip

phase—Phase I and for Phase II-A as well. All cryptograms can be solved

using an order 5 model. In the second variant, Variant B, PPMD5 and

PPMC5 without update exclusions are used in both phases, Phase I and

Phase II-B. The Viterbi algorithm is used in the second phase.

Different versions of PPMD and PPMC compression models are used

in the third variant, which is named “Variant C”. The standard PPMD5

and PPMC5 (with update exclusion) are used as the method for calculating

the codelength values for both phases (Phase I and Phase II-A). Variant D

uses the standard order 5 PPMD and PPMC, as well in the calculation of

the codelength values. For the second phase, Phase II-B, these compression

models are also used as a basis for segmenting the words.

For variant G, we examine the effectiveness of another type of compres-

sion method which is the Gzip compression system. The Gzip algorithm is

used in the main decryption phase and for the second phase “Phase II-A”,

as the basis for computing the codelength metric.

4.5 Experimental Results

In our method, the order 5 PPMD and PPMC models were trained on

nineteen novels and the Brown corpus using 26 and 27 character (including

94

space) English text. In our experiments, we use a corpus of 90 cryptograms

(samples of which are in Appendix II) with different lengths from different

resources as testing texts. The lengths of the ciphertexts that have been

examined in our experiments range from 12 letters to over 600 letters. Ta-

ble 4.2 presents a sample of decryption.

Table 4.2: Output sample from the different phases for the ciphertext ‘prcy

rotg ypah oedm’. (Compression codelengths are listed in bits with the lowest

5 results presented for Phase-II-A.)

�S�?���b�2 �A �S�?���b�2 �A�A�@�� �S�?���b�2 �A�A�@�"

53.73 cryptographydemo 42.85 cryptography demo cryptography demo

50.94 cryptographyde mo

59.41 cryptographyd emo

59.68 cryptograph ydemo

67.64 c ryptographydemo

A random key is generated to encipher the original text (plaintext) for

each run. After that, the attack is performed on the ciphertext. Different

key sizes (period or permutation size) and different ciphertexts with differ-

ent lengths have been experimented in our method. The results of the first

phase—Phase I, by using the PPM method, showed that all the valid de-

cryptions were recognised and all the ciphertexts were able to be decrypted

successfully with no errors. In our method for all the different variants,

except Variant G, we were able to achieve a success rate of 100%. We have

used different key size (block sizes) from two to twelve. We experimented

with 90 different ciphertexts with different lengths (including very short)

and all can be solved correctly. In contrast, by using the Gzip algorithm in

the last variant (G), we were only able to achieve a success rate of 94% as

result of Phase I.

For each variant, we have performed two types of experiments (except

for Variant G). Since in Phase I we deal with texts without any spaces

included, our first experiment is done by using PPMD and PPMC models

95

after being trained on 26 English characters (instead of 27) as the basis

for calculating codelengths. In the other experiment, PPMD and PPMC

compression models trained on 27 character English texts were used. As

stated, the output result from these two experiments is the same achieving

a 100% success rate.

For the second phase, we used the Levenshtein distance as a metric

for measuring the differences between the plaintext and the decrypted text

with spaces. Levenshtein distance is a commonly used string metric for

counting the differences between two strings (such as insertions, deletions or

substitution) (Levenshtein, 1966). In our approach, in almost all cases the

correct (readable) solution was found. The next table (Table 4.3) provides

example output (with spaces) produced by the different variants.

Table 4.3: Example of solved cryptograms with spaces by different variants.

�o���`�B���M�i�b �L�m�K�#�2�` �.�2�+�`�v�T�i�2�/ �K�2�b�b���;�2 �U�r�B�i�? �b�T���+�2�b�V

�Q�7 �2�`�`�Q�`�b

Variant A 2 an excuse is worse and more terrible than a lief or an excuse

is a lie guarded

Variant B 0 an excuse is worse and more terrible than a lie for an excuse

is a lie guarded

Variant C 3 anexcuse is worse and more terrible than a lief or an excuse

is a lie guarded

Variant D 1 anexcuse is worse and more terrible than a lie for an excuse

is a lie guarded

Variant G 14 anexcuseisworse andmoreterrible thanalieforanexcuseisalie-

guarded

Figure 4.2 illustrates segmentation errors produced from the different

variants when the PPMD models are used. For variant A, Figure 4.2a shows

the number of errors for each testing text as a result of the second phase.

Clearly, we can see that most of the space insertion errors are less than two.

The results show that 50% of texts have correctly inserted spaces with no

96

errors, and more than 45% of the cryptograms are solved with three errors or

less. The errors that occurred in some of the solved cryptograms were minor

ones, all involving spaces only. There are just three examples that showed

either 6 or 7 errors, the main reason being that each of these examples had

unusual words on particular topics not occurring in the training data.

Variant B produces less errors than other variants. The results show

that 59% of the decrypted texts have correctly added spaces with no errors.

Furthermore, over 36% of the examples are spaced with just two or one

errors, and about 4% with three errors. Just two examples had six errors

and all of these are shown in Figure 4.2b.

Variant C produces slightly worse results, with just 46% of examples

having successfully inserted spaces without any errors with about 45% are

spaced with three errors or less. In addition, nine of the solved cryptograms

have four errors or more. Figure 4.2c shows the results of variant C. On the

other hand, variant D presents very good results, producing similar results

to variant B but with a few minor differences.

Figure 4.2e presents the number of errors for variant G as a result of

phase two. Clearly the number of errors for each solved cryptogram is much

higher, in this case with most of the space insertion errors being greater

than 15. Moreover, none of the examples produced no errors and there is

just five decrypted texts that were spaced with less than 10 errors.

The average number of space addition errors for each variant using both

main models, PPMD and PPMC, is presented in the next two tables (Ta-

ble 4.4 and Table 4.5). These represents the average number of errors for

the 90 testing text that have been experimented in this work. Slightly better

results are gained from using PPMD models than using PPMC. It is clear

that variant B produces the best results although other variants produce

good results as well. Again, what is interesting is that the PPM method

without update exclusions, which usually does slightly worse at the task of

compression, does better here at decryption. The last column in the table

presents the number of average errors for variant G. The results show that

97

�U���V �1�`�`�Q�`�b �T�`�Q�/�m�+�2�/ �7�`�Q�K �p���`�B���M�i ���X�U�#�V �1�`�`�Q�`�b �T�`�Q�/�m�+�2�/ �7�`�Q�K �p���`�B���M�i �"�X

�U�+�V �1�`�`�Q�`�b �T�`�Q�/�m�+�2�/ �7�`�Q�K �p���`�B���M�i �*�X�U�/�V �1�`�`�Q�`�b �T�`�Q�/�m�+�2�/ �7�`�Q�K �p���`�B���M�i �.�X

�U�2�V �1�`�`�Q�`�b �T�`�Q�/�m�+�2�/ �7�`�Q�K �p���`�B���M�i �:�X

Figure 4.2: Segmentation errors produced from the different variants.

98

	Introduction
	Background and Motivation
	Research Questions
	Aim and Objectives
	Contributions
	Thesis Outline
	Publications

	Background and Related Work
	Introduction
	Introduction to Cryptology
	Terminology

	Introduction to Text Compression
	Using Compression for Cryptology
	Introduction to the Arabic Language
	Arabic Letters

	Summary

	Designing and Evaluating a New Automatic Cryptanalysis of Simple Substitution Ciphers Using Compression
	Introduction
	Related Work

	Designing and Evaluating a New Automatic Cryptanalysis of Transposition Ciphers Using Compression
	Introduction

	Designing and Evaluating a New Automatic Cryptanalysis of Playfair Ciphers Using PPM
	Automatic Cryptanalysis of Classical Arabic Ciphers Using Compression
	Introduction

	Conclusions
	Introduction
	Summary and Conclusions

	References
	Appendices

