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Abstract

The study documented in this thesis investigates the effectiveness of com-
pression in the field of cryptanalysis, specifically for the automatic crypt-
analysis of classical ciphers, initially for the English language. Several new
compression-based cryptanalysis methods are developed against these ci-
phers.

The new methods use the well-known compression scheme—prediction
by partial matching (PPM)—and have been applied to automatic cryptanal-
ysis for three main classical ciphers: simple substitution, transposition and
Playfair ciphers. The extensive set of case studies adopted in this research
have validated the new methods, which have proven to be very effective
in the cryptanalysis of these cases with a high success rate—for substitu-
tion ciphers, 92% of the cryptograms were correctly solved with no errors
and 100% with just three errors or less; a 100% decryption success rate was
achieved for transposition ciphers and 87% was achieved for Playfair ciphers.
This study led to the decipherment of more challenging cases, such as very
short ciphertexts with no probable words. The Gzip compression scheme
has also been applied to the automatic decryption of simple substitution
and transposition ciphers, but the results showed that Gzip, in comparison
to PPM, was not as effective. A third compressor, Bzip2, could not be used
as the nature of that scheme made its use unfeasible.

The PPM compression-based cryptanalysis methods offered significant
improvements in decryption accuracy in a diverse range of experiments while
being computationally more efficient compared to previously published tech-
niques. In addition, extensive investigations were conducted to determine
the most appropriate type of PPM scheme to be applied in the cryptanaly-
sis of these ciphers. These findings have highlighted why better models are
of vital importance in cryptology. In particular, the study has shown how

a good model of the source (i.e. the PPM compression model)—a method



that shows a high level of performance when applied to different language
modelling tasks—can also be effectively used in the automatic decryption of
different classical ciphers.

As spaces have been traditionally omitted from ciphertext, a full crypt-
analysis mechanism which also automatically adds spaces to decrypted texts,
again using a compression-based approach, has also been proposed to achieve
readability.

This work has also investigated whether the newly devised cryptanalysis
methods are applicable to another language (specifically Arabic as it is a
language non-related to English). Arabic is a rich morphological language
with its own characteristics that differentiate it from other languages. The
current study has specifically adapted new compression-based methods for
the automatic cryptanalysis of classical Arabic ciphers (simple substitution,
transposition and Playfair ciphers). Although the experiments conducted
with Arabic ciphers have generally been less effective than those with clas-
sical English ciphers, excellent results have been achieved—for Arabic sub-
stitution ciphers, 72% of the cryptograms were successfully solved without
any errors and over 91% with just three errors or less; a 97% decryption
success rate was achieved for Arabic transposition ciphers, with this result

being 73% for Arabic Playfair ciphers.
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Chapter 1

Introduction

1.1 Background and Motivation

Compression can be used in several ways to enhance cryptography and crypt-
analysis. It has been recognized that directly encrypting redundant texts
has weaknesses and is vulnerable to statistical attacks (Wilson, 1994; Irvine,
1997). One way to protect a cipher system against this type of attack is by
using compression which works by removing redundancy from a text. In
this study, the converse proposition investigated is that compression models
can be used to break cryptosystems. Various approaches and algorithms are
used for cryptanalysis. Using compression methods as one way to tackle the
plaintext recognition problem is still a relatively new approach with com-
paratively few publications. This observation has provided the motivation
for the research described in this thesis.

The current study has investigated the effectiveness of compression for
the automatic cryptanalysis of classical ciphers for English and Arabic. It
develops several new compression-based cryptanalysis methods against these
ciphers. These methods use compression to tackle the plaintext recognition
problem for cryptanalysis. They are based on using prediction by partial
matching (PPM) compression models, in addition to other standard com-

pression methods, such as Gzip, for the automatic decryption of the three



main classical ciphers: simple substitution, transposition and Playfair ci-
phers.

The ciphertext only cryptanalysis of simple cipher systems heavily de-
pends on the statistical features of the source language, and it is not a trivial
issue to get computers performing this analysis. Although computers have
been routinely used for a variety of tasks in cryptanalysis since their inven-
tion, the automatic recognition of valid decryptions has been acknowledged
as a taxing problem. Several previously published cryptanalysis methods
can not run without human intervention or they assume at least known
plaintext because of the difficulty of quickly recognizing a correct decryp-
tion in a ciphertext only attack (Irvine, 1997). In general, a known plaintext
attack is considered to be easier to develop than a ciphertext only attack.
However, for many classical ciphers, there is no effective automatic known
plaintext attack, nor any published automatic ciphertext only attack (Lasry,
2018).

Modern ciphers are considered to be more complicated and secure than
classical systems. However, despite this fact, classical ciphers remain a prob-
lem that has defied many different automated cryptanalysis methods (Lucks,
1990). A recently published article in the magazine Scientific American by
Professor Bauer (2017) emphasizes why classical ciphers should matter to

code breakers. Bauer stated that:

“Whereas encryption algorithms are continually being improved, upgrades
are not always automatic. There are plenty of old systems still in use.
And when it comes to ciphers used by bad guys of all sorts, old can mean
centuries. Some criminals believe the National Security Agency can break
all of the current systems so they fall back on older, weaker ciphers ... The
FBI’s Cryptanalysis and Racketeering Records Unit (CRRU) regularly sees
Vigenére ciphers, for example, despite the fact this method goes back to
the 16th century and a method for deciphering it was published in 1863 ...
Criminals don’t just fall back on older ciphers out of paranoia; in some cases
they don’t have access to the technology needed to keep their encryption up

to date. A great example of this is law-breakers serving time. About 80



percent of the CRRU’s workload consists of prison ciphers. Old paper-and-
pencil-type ciphers are still important ... Once again, ‘historical’ ciphers

stayed relevant.”

Professor Bauer continues:

“In the digital world and the throwaway society we’ve become, where only
the latest and greatest devices and technology will suffice, it can be easy to
think of everything in the same way. But codes and ciphers have a long
track record of being recycled, and professionals must realize that what’s old
is new again ... Yes, technology is always changing. But there are hundreds
of examples of centuries-old ciphers that still remain unsolved to this day.
They illustrate that newer is not always better as well as the importance of

thinking holistically when approaching the mysteries that remain before us.”

In addition to the motivation identified in Bauer’s (2017) statements
above, five other main sources of motivation lie behind investigating these
ciphers. Firstly, the principles of these ciphers form the basis for many of the
modern cipher systems. Most good cryptographic algorithms still combine
elements of substitution and transposition (Schneier, 1996; Lasry, 2018).
Hence, this study’s focus is on the basic building blocks presented in many
modern cryptographic systems, namely, substitution ciphers and transposi-
tion ciphers. Playfair ciphers, a more sophisticated version of substitution
ciphers, are also investigated.

Secondly, these classical ciphers are regarded as a good test-bed to use
for trying out new ideas for cryptanalysis. To understand and examine the
basics of a new idea, it is more reasonable and useful to implement that idea
on simpler cipher systems before proceeding to more difficult systems. It is
hoped that the knowledge obtained from these analyses will lead to successful
attacks on more difficult cryptographic methods. The new compression-
based approach for the cryptanalysis of the ciphers described in this thesis is
the first step towards understanding how to tackle the plaintext recognition

problem that arises during cryptanalysis using compression. (The plaintext



recognition problem is where the correct decrypted text is identified during
cryptanalysis when compared to alternative decrypted texts).

Thirdly, despite these classical ciphers often not providing much secu-
rity and they can be readily broken in many cases, there are some special
circumstances where this is not the case. For example, short Playfair mes-
sages without a probable word are extremely difficult, if not impossible, to
break (Cowan, 2008). In addition, some of the more challenging classical
ciphers and historical messages have not yet been successfully solved. Crypt-
analytic techniques exist for other cases, but only for special cases such as
long ciphertexts. The modern cryptanalysis of classical ciphers can help to
solve these challenging cases.

Fourthly, the study of classical ciphers in education settings is often
considered a major way in which to generate student interest in studying
cryptology and, in general, computer science. The best introduction to and
understanding of the principles of modern ciphers are often in the context of
classical cipher examples. As well as providing opportunities for increased
motivation and immediate rewards, classical cryptography can provide in-
teresting code breaking exercises and challenges. Lessons can also be drawn
from past failures of classical ciphersystems, such as excessive reliance on
the complexity of a cryptosystem instead of focusing on its security. As
modern and historical techniques often depend on using the same statistical
properties, the study of the cryptanalysis of classical cipher systems can also
help in gaining an understanding of classical code-breaking methods (Lasry,
2018).

Ultimately, the use of these ciphers provided the current study with the
opportunity to examine if our new compression-based cryptanalysis meth-
ods are applicable to languages other than English, especially non-related
languages. As a result of the analysis, we were able to explore if another lan-
guage, namely Arabic, could offer more resistant encryption than English.
Arabic is a language non-related to English with its own special character-

istics that differentiate it from other languages. For these reasons, simple



substitution, transposition and Playfair Arabic ciphers are examined in this
research. The study of classical Arabic ciphers is the first step towards

investigating and solving some historical Arabic cryptograms.

1.2 Research Questions

The primary research questions for the study documented in this thesis are

as follows:

1. Can compression models be used for effective cryptanalysis? Specifi-
cally, can we develop new effective methods for the automatic crypt-
analysis of simple substitution, transposition and Playfair ciphers us-

ing compression?

2. Does the prediction by partial matching (PPM) compression method
perform better than other common compression methods for crypt-

analysis?

3. Can the newly devised methods be applicable to a language non-
related to English (specifically Arabic) and how effective are these

methods?

A related secondary research question is as follows:

4. Can compression models be used effectively to achieve readability of
decrypted texts for cases when spaces have been omitted from cipher-

texts?

1.3 Aim and Objectives

The primary aim of this study is to develop novel cryptanalysis methods
using compression; specifically, to investigate the application of the PPM
compression method to the automatic decryption of different classical ci-

phers and to determine the effectiveness of these novel approaches. There-



fore, this study’s objectives in investigating the research questions are as

follows:

1. Produce a literature review on the area of cryptology and compression

with a specific focus on the relationship between them (see Chapter 2).

2. Develop new compression-based cryptanalysis methods for the auto-
matic decryption of simple substitution, transposition and Playfair
ciphers using PPM, and compare their effectiveness with alternative

compression schemes such as Gzip and Bzip2 (see Chapters 3, 4 and 5).

3. Evaluate and validate the newly devised cryptanalysis methods using
an extensive set of cryptograms, especially the more challenging cases,
such as short ciphertexts, and investigate the effectiveness of these

methods (see Chapters 3, 4 and 5).

4. Construct a full cryptanalysis mechanism which also automatically
adds spaces to decrypted texts, again using a compression-based ap-

proach, to improve readability (see Chapters 4, 5 and 6).

5. Develop and evaluate new compression-based decryption methods ada-
pted for the automatic cryptanalysis of Arabic ciphers: simple substi-
tution, transposition and Playfair ciphers in Arabic, and investigate
whether Arabic, which is a language non-related to English, is more

difficult for cryptanalysis purposes (see Chapter 6).

As stated, our study’s focus is on the more challenging cases, such as
short ciphertexts with no probable words. However, advantageous cases,

such as long ciphers, will also be examined.

1.4 Contributions

The study reported in the thesis has made several contributions. Substantial

positive evidence is presented for the proposition that compression models



can be used to break cryptosystems. This evidence comprises mainly the
effectiveness of a variety of new cryptanalysis methods on several different
ciphers. These methods are general enough to make them applicable to
other encryption systems.

Specifically, the significant contributions of this study can be listed as

follows:

1. The feasibility of using compression-based approaches, specifically the
PPM compression method, in the field of cryptanalysis has been fur-

ther investigated.

2. An effective new method for the automatic cryptanalysis of simple
substitution ciphers using PPM compression has been devised. Results
on 110 cryptograms ranging from 20 to 300 characters have shown a
very high success rate with about 92% of the cryptograms correctly

decrypted without any errors and 100% with just three errors or less.

3. A new PPM compression-based method for the automatic cryptanal-
ysis and plaintext recognition of transposition ciphers has been in-
vestigated with excellent results produced. The algorithm was able to
achieve a 100% success rate on different amounts of ciphertext ranging

from very short messages (12) to 625 characters.

4. An effective new PPM compression-based cryptanalysis method for
the automatic decryption of Playfair ciphers has been proposed and
investigated. The method was tried on various cryptograms of different
lengths (from as short as 60 letters up to 815) and a success rate of 87%
was achieved, with 100% of ciphers of lengths over 120 letters being
solved. Furthermore, successful decryption of an extended Playfair

cipher for a 6 x 6 key matrix was achieved.

5. The most efficient PPM variants for these cryptanalysis methods have

been determined. The PPM methods without update exclusions have
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proven to be very effective in the cryptanalysis of all three ciphers with

state-of-the-art results produced.

The applicability of our new compression-based cryptanalysis methods
to a language other than English (Arabic) has been verified. Experi-
mental results confirmed that these methods worked well for Arabic, a
language non-related to English, while previous experiments had only

been conducted for English.

The entropy of a computer model for Arabic text has been estimated

which is 1.923 bits per character.

Efficient PPM compression-based cryptanalysis methods adapted for
the Arabic language ciphers have been developed and promising results
have been obtained. For Arabic simple substitution ciphers, the results
showed that 72% of the Arabic cryptograms were successfully solved
without any errors and over 91% were decrypted with three errors
or less. A success rate of 97% was achieved for Arabic transposition
ciphers. The results for Playfair ciphers showed that 73% of the Arabic
ciphertexts were effectively decrypted, and ciphers longer than 250

letters were all solved with no errors.

Successful word segmentation methods using the PPM compression
method have been applied to achieve readability. Experimental results
showed that these methods were very effective in producing a recall and

precision of over 95% for the different ciphertexts that were examined.

It has also been discovered that the Gzip compression method per-
forms poorly in both decryption and segmentation processing when

compared to PPM.

A third compressor, Bzip2, could not be used because the nature of

this method makes its use unfeasible for cryptanalysis.



1.5 Thesis Outline

This thesis is organized into seven chapters. Beginning with the background
and motivation, Chapter 1 then indicates the research questions and the
study’s aim and objectives. Research contributions and published papers are
also highlighted in this chapter. To outline the overall thesis, the contents
of individual chapters are briefly reviewed:

Chapter 2 reviews the general concepts of cryptology and data compres-
sion. In this chapter classical cryptology is presented primarily. Classical
ciphers are investigated and different kinds of attack are highlighted. This is
followed by an introduction to text compression and its main adaptive tech-
niques. The PPM text compression method and its different variants are also
introduced in detail. The relationship between these two main approaches—
cryptology and compression—is illustrated. The chapter then presents the
Arabic language and its specific linguistic characteristics that distinguish it
from other languages. The PPM compression method, as adapted for the
Arabic language, is also described.

Chapter 3 presents the first practical part of the thesis. This chapter de-
tails the new automated cryptanalysis methods that use compression against
simple substitution ciphers. The following compression methods, PPM, Gzip
and Bzip2, are used as a basis for this attack. Various PPM variants and
PPM’s different models are investigated to verify the most effective variant
to be used in the automatic decryption of this cipher. The chapter reviews
previous works on the automatic cryptanalysis of simple substitution ci-
phers. The results show how the PPM compression model achieves a very
competitive performance and can be used effectively to automatically break
this kind of cipher.

Chapter 4 introduces new compression-based cryptanalysis methods for
transposition ciphers. Previous attacks against this cipher are also intro-
duced. In this chapter, different PPM models and variants for cryptanalysis

are examined. The Gzip compression method is also investigated. As spaces



are traditionally omitted from ciphertext, two segmentation methods, also
based on using compression methods, are explored. These methods, as a
second step, focus on automatically inserting spaces into decrypted texts
and then ranking them to find the correct solution. Excellent results are
achieved using these PPM compression-based methods.

Chapter 5 proposes a novel PPM compression-based automatic attack
against Playfair ciphers. A combination of two main approaches—text com-
pression and simulated annealing—is used in the decryption of this cipher.
This chapter also reports on the application of word segmentation methods.
A review of the relevant work is also provided. The results show how the
proposed method is efficiently able to break this cipher and can even break
shorter cryptograms.

Chapter 6 reviews simple substitution, transposition and Playfair ciphers
in Arabic and introduces the automatic attacks of these ciphers. This chap-
ter proposes new adaptations of the compression-based cryptanalysis meth-
ods of these ciphers. Different Arabic corpora of different sizes are reviewed.
To measure the effectiveness of the Arabic compression models, the entropy
of Arabic is calculated. Related works are also presented in this chapter.
The overall results show how the newly proposed methods can break these
Arabic ciphers, even though this is with slightly less efficient performance
compared to the English language. The results also indicate how well the
new adaptive PPM methods perform the task of Arabic word segmentation.
Chapter 7 reconsiders the overall results and their significance in relation
to the original aim and objectives. The conclusions derived from this study

are discussed. Directions for further research are suggested.

1.6 Publications

Parts of this thesis have already been published in one journal and two
refereed conference proceedings. Of the other two journal papers, one is

being accepted for publication and the other is in the process of submission
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(see Table 1.1).

The first of these publications is a journal paper entitled “An Automatic
Cryptanalysis of Simple Substitution Ciphers Using Compression”. Chap-
ter 3 of this thesis is based on this paper. The paper has been published
in Information Security Journal: A Global Perspective, one of the Taylor
& Francis journals. A link to this paper can be found with the reference
for Al-Kazaz et al. (2018b).

The first conference publication, entitled “An Automatic Cryptanalysis
of Transposition Ciphers Using Compression”, forms the basis of Chapter 4
in this thesis. This paper was presented at the 15th International Conference
on Cryptology and Network Security (CANS2016) held in Milan, Italy, and
was published as a long paper by Springer in the Lecture Notes in Computer
Science (LNCS) series. A link to this paper can be found in the reference
for Al-Kazaz et al. (2016).

The second conference publication is another long paper entitled “An
Automatic Cryptanalysis of Playfair Ciphers Using Compression”. Chap-
ter 5 of this thesis is based on this paper which was presented at the In-
ternational Conference on Historical Cryptology (HistoCrypt 2018) held in
Uppsala, Sweden. The paper was published as part of the Northern Eu-
ropean Association for Language Technology (NEALT) Proceedings Series
by Link6ping University Electronic Press, as a freely available Gold Open
Access paper. Publications in the Linképing Electronic Conference Proceed-
ings are ranked on the Norwegian register for scientific journals, series and
publishers as Level 1 publications. A link to this paper can be found in the
reference for Al-Kazaz et al. (2018a).

The second journal paper “An Automatic Cryptanalysis of Arabic Trans-
position Ciphers Using Compression” reflects part of the work in Chapter 6.
This paper has been accepted for publication in the International Journal
of Advanced Computer Science and Applications (IJACSA)-Volume 9, No
11 November 2018.

The third journal paper “Automatic Cryptanalysis of Classical Arabic
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Table 1.1: Publications

Title An Automatic Cryptanalysis of Simple Substitution Ci-
phers Using Compression
Authors Noor R. Al-Kazaz, Sean A. Irvine, and William J. Tea-
han
In Information Security Journal: A Global Perspective
Year 2018
Status Published
Title An Automatic Cryptanalysis of Transposition Ciphers
Using Compression
Authors Noor R. Al-Kazaz, Sean A. Irvine, and William J. Tea-
han
In Proceedings of Lecture Notes in Computer Science by
Springer (LNCS)
Year 2016
Status Published
Title An Automatic Cryptanalysis of Playfair Ciphers Using
Compression
Authors Noor R. Al-Kazaz, Sean A. Irvine, and William J. Tea-
han
In Proceedings of the Northern European Association for
Language Technology (NEALT) by Link6ping Univer-
sity Electronic Press (ECP)
Year 2018
Status Published
Title An Automatic Cryptanalysis of Arabic Transposition
Ciphers Using Compression
Authors Noor R. Al-Kazaz, and William J. Teahan
In International Journal of Advanced Computer Science
and Applications (IJACSA)
Year 2018
Status Accepted
Title Automatic Cryptanalysis of Classical Arabic Ciphers
Using Compression
Authors Noor R. Al-Kazaz, and William J. Teahan
In Cryptologia
Year 2018
Status In progress
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Ciphers Using Compression” considers parts of the work in Chapter 6. This
paper is currently in progress and will be submitted to the journal Cryp-
tologia.

The integration of the cryptanalysis methods covered in this thesis into
CrypTool 2 is being explored. CrypTool 2 (CT2) (Esslinger, 2008) is an
open-source software tool developed by the research group ’Applied In-
formation Security (AIS)’ at Kassel University in Germany for illustrat-
ing cryptanalytic and cryptographic concepts, and for educating about and
experimenting with cryptologic techniques. CT2 is part of the CrypTool
project (Wikipedia, nd), with CrypTool a widely used e-learning tool in the
fields of cryptography and cryptanalysis.
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Chapter 2

Background and Related
Work

2.1 Introduction

Cryptology is crucial to ensure the protection of information. The main goal
of this science is to provide secure confidential systems that guarantee data
integrity and privacy. This is achieved by providing well-established cryp-
tographic algorithms that meet the objectives of securing the information
system.

Text compression involves removing redundancy from a text source by
reducing the space required to store the text and the time required to trans-
fer this text without losing any information from the original source. Com-
pression has always been related to cryptography. Many cryptosystems can
be broken by exploiting statistical properties or redundancy in the cipher-
text. Clearly for this reason, compression is highly recommended before the
encryption process, as it removes redundancy from a text.

The general concepts of cryptology and compression are presented in this
chapter. The relationship between them is also discussed. Different cipher
systems are surveyed and various text compression techniques are reviewed.

This fulfils objective 1 that was listed in Section 1.3. Since experiment-

14



ing with a language non-related to English is one of our main objectives
(objective 5), an overview of the Arabic language is also presented.

This chapter is structured as follows. Section 2.2 focuses on cryptology
while Section 2.3 targets at compression. The use of compression in cryptol-
ogy is addressed in Section 2.4. Section 2.5 highlights some characteristics
of Arabic and the compression method used for Arabic. A brief summary is

provided in the last section.

2.2 Introduction to Cryptology

The subject of cryptology is the study of security. This science has always
been branched into two major lines of study: cryptography and cryptanalysis.
Cryptography is the art and science of designing and implementing security
algorithms that serve as primitives to provide certain security services such
as integrity, confidentiality and authentication. Cryptanalysis is the art
and science of analysing the security algorithms and defeating their security
claims.

More details about cryptology and the historical development of ciphers,
different kinds of attack and various cryptosystems are reviewed in the fol-

lowing subsections.

2.2.1 Terminology

This section presents the terminology used later to describe the work that
is subsequently presented. The message (or data) which, prior to encoding,
contains intelligible information is called plaintext. The output of encoding
or encryption after being transformed to a “secret” unreadable message is
known as ciphertext or a cryptogram. The set of functions which maps plain-
text to ciphertext is called encryption. The key and the reverse algorithm,
which generally refer to the secret information, are known as the decryption
process. Decrypting the ciphertext restores the plaintext. An algorithm for

performing encryption or decryption is known as a cipher. In many sys-
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tems, the encryption and decryption keys are the same. Such systems are
called symmetric; otherwise, the system is asymmetric. Figure 2.1 illustrates

symmetric key cryptography.

Sender Receiver
Message Plaintext Encryption Ciphertext o | Decryption Plaintext
g Algorithm 71 Algorithm
Secret Key Secret Key
Key

Figure 2.1: Symmetric key cryptographic system.

2.2.2 Cryptology: Where Did it Begin?

Cryptology is the science that has contributed to a variety of disciplines and
cultures. The existence of this science can be traced back to the late fourth
millennium BC where it was detected in one of the earliest writing systems,
Sumerian scripts, in the form of logographic and syllabic units. Cryptology
was also encountered around 1900 BC in Egyptian hieroglyphs. The hi-
eroglyphic writing system combines logographic and alphabetic components
that were essentially used to describe the religious literature of that era. For
a long period of time, these two writing systems were considered to be an
approach used for hidden communication between two different civilizations.

In the fifth century, the Egyptian Horapollo made one of the best efforts
to detect these scripts. In the form of “decipherment” in the Greek text of
Hieroglyphica, 200 hieroglyphic symbols were revealed (Horapollo, 1950). In

addition, in the fifth, 15th and 17th centuries, collective efforts were made in
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the Arabic, Persian, English, Italian, Danish and German languages during
various periods of time to decipher Sumerian texts.

A crucial role was played by the Greeks in constructing ancient cryp-
tology. The use of ciphers or secret codes for the transmission of sensitive
messages, whether military, diplomatic or even personal, was reported as
early as the era of ancient Greece (Kahn, 1973; Bauer, 2016).

At this time, a communication channel between the sender and receiver
was established as a further step to establish a level of confidentiality within
cryptology. Secret messages were sent in a garbled way and remained confi-
dential from unauthorised parties. The Caesar substitution cipher was used
by the Roman general, Julius Caesar, to communicate secretly with his army
during times of war. This cipher is one of the most widely known encryp-
tion techniques with each plaintext letter replaced by a letter using a certain
shift from its original position in the alphabet. This cipher is referred to as
a monoalphabetic substitution cipher as a fixed substitution is applied to
the entire plaintext (Alkhzaimi, 2016).

Techniques for cryptanalysis developed in parallel to the evolution of
cryptography. Statistical analyses were the most effective forms of attack
against classical ciphers. In the 800s AD, the Arabic scientist Al-Kindi
introduced the first cryptanalysis method against monoalphabetic substitu-
tion ciphers using the frequency analysis method (Broemeling, 2011). In
these types of attacks, statistical analysis is performed on the number of
occurrences of specific letter/word combinations. A correlation of cipher-
text frequencies with plaintext frequencies and letter distributions helps the
opponent to guess the original message (Alkhzaimi, 2016).

In order to increase the cryptographic security of ciphers and to over-
come the limitations of single substitution, an evolution of this concept was
introduced. Several substitution alphabets were used in the newly developed
ciphers. Homophonic and polyalphabetic substitution ciphers are examples
of these ciphers. In the homophonic substitution cipher, plaintext letters are

mapped to more than one ciphertext letter. The number of potential sub-
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stitutes is proportional to the frequency of the letter (the highest frequency
plaintext letters are given more equivalents than lower frequency letters).
The polyalphabetic substitution cipher uses multiple substitution alphabets.
The best known example of this cipher is the Vigenere cipher, known as the
“le chiffre indéchiffrable” and invented by Blaise de Vigenere in the 16th
century. In this cipher, the letters are shifted by different amounts, usu-
ally by using a phrase or word as the encryption key. In the 19th century,
the first general method of decrypting this cipher was published. Statistical
analyses of digrams or trigrams in addition to the examination of repetitions
were included in this attack.

More developed versions of substitution ciphers were introduced by armies
during times of war and for diplomatic communications, such as the Play-
fair cipher. During World War I (WWTI), the use of combined substitution-
transposition ciphers was introduced to hide the language statistics. Crypt-
analysis of the new cryptosystems has proven to be more challenging and
has required more sophisticated statistical techniques. In most cases, crypt-
analysis of these ciphers is extremely difficult especially for short messages
with no depth.

In order to overcome the limitations of manual ciphers, several elec-
tromechanical cipher machines were introduced from the 1920s through to
the early 1960s. These machines, known as rotor cipher machines, are
essentially polyalphabetic substitutions which change for each letter en-
coded (Deavours and Kruh, 1985). The most famous rotor machine is un-
doubtedly the Enigma machine used extensively by Nazi Germany during
WWII. In rotor machines, a number of wheels, the rotors, turn. When
the first rotor completes a revolution, the second rotor is moved on by one
position and so on.

The encryption machines introduced in the 1920s and 1930s also led
to the invention of other cryptanalysis machines hat were used against the
encryption that they produced. These machines played a major role in

cryptanalysis while many cryptosystems were still decrypted by hand. The
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Polish bomba and the Turing bombe are the two main examples of these
machines. A team of Polish cryptographers broke a simplified version of
the Enigma machine. The attack was extended to the full Enigma machine
by British cryptanalysts, including Alan Turing, working at Bletchley Park,
United Kingdom (UK) (Kahn, 1973).

In the 1960s and 1970s, fully electronic encryption devices and computer-
based encryption were introduced. The invention of computers drove the
faster cryptanalysis of the classical cryptosystems. This invention, at the
same time, opened the door to the emergence of much more complex encryp-
tion systems which were impossible to implement by hand. The advent of
the Data Encryption Standard (DES) is the most noteworthy event. These
developments, in addition to the introduction of public key cryptography,
marked the end of the era of classical cryptography (Lasry, 2018). In gen-
eral, even though the principles of classical ciphers form the basis for many
of the modern cryptosystems, however, modern ciphers are outside the scope

of this research.

2.2.3 Attacks Against Ciphers

When decrypting a cryptosystem, the attacker can be interested in obtaining
the plaintext for a given ciphertext or in detecting the key used to produce
the ciphertext. As a key may have been used to encode many messages,
detecting the key, in general, is the more rewarding activity.

It is usually assumed that an attacker has full knowledge of the algorithm
used. This knowledge may be obtained by methods such as reverse engineer-
ing, reading the appropriate literature and so on. Identifying the details of
the encryption system is quite easy if a cipher manual comes into the hands
of the cryptanalyst trying to break a cipher. However, the attacker’s ability
may be limited in other ways which are independent of the algorithm. For
example, the attacker may not be able to perform exhaustive key searches
in a reasonable time owing to the limited computational ability available for

their use, or they may only be able to intercept but not transmit messages.
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Various kinds of attack are classified according to these restrictions.

Cryptanalytic attack can be divided into the following categories:

o Exhaustive search. The most obvious generic attack is the exhaus-
tive key search or brute force attack which simply involves trying all
possible keys. The difficulty of the attack corresponds to the size of
the key space; thus, a very large key space can make this attack un-
feasible. This attack was implemented using machines starting from

the 1930s, such as in the cryptanalysis of the Enigma systems.

e Ciphertext only attack. The attacker only knows the ciphertext
from which the plaintext or key is to be obtained. The difficulty of
this attack is based on the redundancy present in the ciphertext and
the available ciphertext length. This type of attack will yield no in-
formation about the plaintext (except its length), in cases where no
redundancy exists in the ciphertext. Decryption methods of this type
make heavy use of the source language statistics and often involve a

guess of the likely parts of plaintext.

e Known plaintext attack. In this case, the attacker knows some
plaintext with its corresponding ciphertext. This information, for
many classical ciphers, allows the key to be trivially detected. This
helps in reading other messages enciphered using the same or similar
keys. Ranging form a piece of plaintext known to occur somewhere
in the ciphertext to knowing the exact correspondence between some

plaintext and ciphertext, these attacks are varied.

e« Chosen plaintext attack. With this method, the attacker can
choose his own set of plaintexts to be encoded. This enables the
attacker to select a particular plaintext or plaintexts which might in-
crease the opportunity of determining the key. In adaptive chosen
plaintext attack, the attacker bases their next choice of plaintext on

their observations from the previous encryptions.
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e Chosen ciphertext attack. Here the attacker is able to choose
ciphertexts to be decrypted in order to obtain their corresponding
plaintexts. This attack is used only when the cryptanalyst wants to
determine the key being used. Public key ciphers are often vulnerable

to this form of attack.

o Chosen key (related-key) attack. In this case, the attacker knows
the key in advance (Biham, 1994). During the design of a cipher, the
effect of different keys on the same plaintext is investigated in this

form of attack.

When evaluating the security of modern cryptosystems, it is usual to as-
sume that a known plaintext attack and a chosen plaintext attack (in most
cases) are feasible. Security always depends on several different factors while
the importance of the message to be transmitted will determine the precau-
tions to be taken. The strength of a cryptosystem is a negative quality in
that security relies on the inability of attackers to find a feasible way to
break it. The best way to prove the difficulty of breaking a cryptosystem
is to show that its decryption operation is equivalent to solving some gen-
erally agreed computational problems that do not have a polynomial time

solution (Irvine, 1997).

2.2.4 Development of Attacks Against Classical Ciphers

Cryptanalytic methods can also be divided according to their use of technol-
ogy. Manual cryptanalysis is performed by hand using pen and paper only.
Generally, hand approach methods are a combination of frequency analy-
sis, pattern matching and word recognition. During WWI, these methods
were the only option available at that time to use in breaking cryptosys-
tems. The use of hand cryptanalytic methods remained extensive during
WWII and continued until the invention of computers. A wealth of in-
formation about these methods has been provided by a large number of

studies in the literature dating back to the early 19th and 20th centuries, as
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well as by National Security Agency (NSA) material that has recently been
declassified. Several expositions on strategies for hand analysis have been
published (Gaines, 1956; Williams, 1959; Ball, 1960; Friedman, 1976; Sacco,
1996).

In the 1930s, electro-mechanical machines and mechanized methods were
developed. The Polish Bomba was developed to assist in building catalogues
of the Enigma. More sophisticated machines were developed during WWII
to perform processes that could not practicably be done by hand, such as
the Turing bombe. Details about codebreaking machines designed before
and during WWII have been published by Budiansky (2000) and Copeland
(2010).

Computerized methods have been developed more recently through the
adoption and use of early mainframe computers, super computers and per-
sonal computers. Starting from the 1950s, general purpose computers have
been extensively used by cryptographic agencies such as the National Secu-
rity Agency (NSA). Some of the material recently declassified by the NSA
points to the evolution of computing simultaneously in industry and aca-
demic worlds from WWII to the 1970s, as well as the NSA’s increasingly
significant use of computer technology. Specifications for the newest com-
puter systems and technology have often been driven by this cryptographic
agency (Lasry, 2018). However, no information is available about the NSA’s
use of computers and methods to solve specific cryptosystems (Burke, 2002),
and even fewer details are available about the computerized cryptanalysis of
cryptograms. From the 1980s, a wide range of research about the comput-
erized cryptanalysis of classical cryptosystems has become available to the

public.

2.2.5 Classical Ciphers

Classical ciphers generally fall into two main categories: substitution ciphers
and transposition ciphers. Classical ciphers are frequently used as building

blocks in larger state-of-the-art cryptographic systems. Consequently, it
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is very important to understand the vulnerability of these simple cipher-
ing systems, to help with building more complex ciphers (Grundlingh and
Van Vuuren, 2003). Modern encryption systems have now superseded the
classical systems; however, the cryptanalysis of classical ciphers remains
the most popular cryptological application and implementation for meta-
heuristic search research. The essential concepts of substitution ciphers and
transposition ciphers are still widely used today in the Advanced Encryption
Standard (AES) and the International Data Encryption Algorithm (IDEA).
As long as the operations and concepts of classical cipher systems are the
basic building blocks of more secure modern ciphers, then classical ciphers
will typically be the first ciphers considered in the case of investigating and
examining new attacks (Garg and Sherry, 2005).

The rest of this section provides some examples of the classical cryp-
tosystems used in our research. These examples illustrate different types of

encoding.

2.2.5.1 Simple Substitution Ciphers

A simple substitution cipher (also called a monoalphabetic cipher) replaces
each character in the plaintext with another predetermined character to form
the ciphertext (Denning, 1982). Formally, let A be a plaintext alphabetic
character of size n, where A € {ag,ay,...,a,—1 } and C is a ciphertext alphabetic
character of size n, C € {f(ay), f(ai1),...,f(an—1)}. Each symbol of A has a
one-to-one mapping to the corresponding symbol of C, f : A — C. Generally,
C is a simple rearrangement of the lexical order of the symbols in A, for

example:

A:ABCDEFGHIJKLMNOPQRSTUVWIXYZ
C:IRUSNVDWOXAPGTIJYBKELMFCZAQH
Then the message ‘CRYPTOGRAPHY DEMOQ’ is encoded as:

Plaintext CRYPTOGRAPHY DEMO
Ciphertext | UKQYLJDKIYWQ SNGJ
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The permutation selected represents the key.

For an alphabet with n characters, there are n! possible permutations;
for example, for the 26 letter English alphabet, there are 26! possible per-
mutations or 4.03e+26. Therefore, with this large number of possibilities,
finding the correct permutation through an exhaustive search is considered
to be unfeasible.

This type of cryptosystem is easy to implement and to use. However, it is
not difficult to crack, as it does nothing to conceal the statistical properties
of the language. Hence, it does not provide much security and can be easily
broken by frequency distribution analysis.

By using frequency analysis of individual letters, the cryptanalyst can
readily decrypt a ciphertext manually if it uses this cryptosystem. This
will still happen even if the character frequencies of the ciphertext are dif-
ferent from those of normal English text. With a few attempts and after
trying some of the possibilities, the cryptanalyst will be able to find the cor-
rect substitution (Irvine, 1997; Eskicioglu and Litwin, 2001). Digram and
trigram distributions provide more useful information that can also be ac-
cessed by the cryptanalyst. Many digrams could occur more frequently than
some single letters while other digrams such as ‘qj’ rarely occur in English.
Typically, different languages have different letter frequencies. Thus, it is
possible to determine the plaintext language before starting to decrypt the
ciphertext if the ciphertext provided is of sufficient length.

Despite the fact that simple substitution ciphers are not typically used
today in real-world encoding systems, many effective and secure modern
ciphers use substitution ciphers in combination with other ciphers, for ex-
ample, transposition ciphers, modular arithmetic, Boolean algebra and so
on. This powerful combination is an important innovation as it results in a
method that is stronger than its original components (Eskicioglu and Litwin,
2001).

Different cryptanalysis methods have been developed against simple sub-
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stitution ciphers starting with manual methods (Ball, 1960; Friedman, 1976;
Gaines, 1956) and leading to computerized methods. Various automated at-
tacks using different searching algorithms and different scoring methods are
used to break this cipher (Peleg and Rosenfeld, 1979; Lucks, 1990; Hart,
1994; Clark, 1998; Hilton, 2012; Ravi and Knight, 2009; Nuhn et al., 2013).
Further description of these methods and other methods for the automatic

solution of simple substitutions are discussed in detail in Section 3.2.

2.2.5.2 Transposition Ciphers

In cryptography, a transposition cipher is a method of encryption by which
the content of a message is concealed by rearranging groups of letters, there-
fore resulting in a permutation. The concept of transposition is an essential
one and has been used in the design of modern cipher systems (Stamp and
Low, 2007). Originally, the message was written out into a matrix in row-
order and then read out by column-order (Irvine, 1997). The technique can
be expanded to d dimensions, by dividing a message into blocks or groups
of fixed size d (called the period) and performing a permutation over these
blocks. This permutation represents the key. The size of the key is the same
as the length of the block. Generally, if f:Z; — Z; is a permutation over
Z4, Zg ={1,...,d}, then, according to f, blocks of fixed length (d characters)
are encrypted by applying a permutation to the characters (Shannon, 1949;
Denning, 1982). For example, if d =4 and plaintext x = 1234, then the
encrypted message (ciphertext) f might have the permutation: f(x):4213.
Here, the first character in the original message is moved to the third posi-
tion, the third character in the block to the fourth position, and the fourth
character to the first position. Thus, the original message ‘cryptography-

demo’ is encrypted as:

Position: 1234 1234 1234 1234
Plaintext: cryp togr aphy demo
Ciphertext: prcy rotg ypah oedm

25



This ciphertext is divided into blocks of four letters and in order to hide
the key size (period), a stream of characters is transmitted continuously. In
the case of a short block at the end, it would be encrypted by moving the
letters to their relative permutation positions with dummy letters added or
simply left blank.

Transposition ciphers are a class of ciphers that, in conjunction with sub-
stitution ciphers, form the basis of all modern symmetric algorithms (Giddy
and Safavi-Naini, 1994). These algorithms, such as block and stream ciphers,
are also used in conjunction with the above to form more complex transfor-
mations, notably for providing diffusion. Although the field of cryptology
has undergone a revolution after the introduction of the asymmetric crypto-
graphic cipher in 1976, symmetric ciphers still form the basis for secure data
transmission today, owing to their superior speed and efficiency (Grundlingh
and Van Vuuren, 2003).

In general, transposition ciphers are considered much harder to crack
than other basic cryptosystems such as simple substitution ciphers. Many
statistical tools have been developed to aid the automated cryptanalysis of
simple substitution ciphers while the automatic cryptanalysis of transposi-
tion ciphers has proven more difficult. Generally, cryptanalysis of transpo-
sition ciphers is highly interventionist and demands some knowledge of the
probable contents of the encrypted text to give an idea of the rearrange-
ment order that has been used (Matthews, 1993). Related techniques for

the automatic solution of this cipher are discussed in detail in Section 4.2.

2.2.5.3 Playfair Ciphers

The Playfair cipher is a symmetric encryption method which is based on bi-
gram substitution. It was first invented by Charles Wheatstone in 1854. The
cipher was named after Lord Lyon Playfair who published it and strongly
promoted its use. It was considered to be a significant improvement on
existing encryption methods. A key is written into a 5 x 5 grid and this

may involve using a keyword (as in the example below). For the English
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language, the 25 letters are arranged into the grid with one letter omitted
from the alphabet. Usually, the letter ‘I’ takes the place of letter ‘J’ in the
text to be encrypted.

To generate the key that is used, spaces in the grid are filled with the
letters of the keyword and then the remaining spaces are filled with the rest
of the letters from the alphabet in order. The key is usually written into the
top rows of the grid, from left to right, although some other patterns can be
used instead. For example, if the keyword ‘CRYPTOLOGY’ is used, the key

grid would be as below:

o = O o Q
< 28 o=
=z =3 Q0
O = o= U
N » — W 4

To encrypt any plaintext message, all spaces and non-alphabetic charac-
ters must be removed from the message at the beginning, then the message
is split into groups of two letters (i.e. bigrams). If any bigrams contain re-
peated letters, an ‘X’ letter is used to separate them. (It is inserted between
the first pair of repeated letters, and then bigram splitting continues from
that point). This process is repeated (as necessary) until no bigrams with
repeated letters are left. If the plaintext has an odd number of letters, an
‘X’ is inserted at the end so that the last letter is in a bigram (Klima and

Sigmon, 2012). For example, the message:

“To be or not to be that is the question”

would end up as:

“TO BE OR NO TX TO BE TH AT IS TH EQ UE ST IO NX”.

Three basic encryption rules are to be applied (Klima and Sigmon, 2012):

e If both letters of the bigram occupy the same row, replace them with
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letters to the immediate right, respectively, wrapping from the end of

the row to the start if the plaintext letter is at the end of the row.

e If both letters occupy the same column, then replace them with the
letters immediately below them. So ‘IS’ enciphers to ‘SZ’. Wrapping
in this case occurs from the bottom to the top if the plaintext letter

is at the bottom of the column.

e If both letters occupy different rows and columns, replace them with
the letters at the free end points of the rectangle defined by both
letters. Thus ‘TO’ enciphers to ‘CB’. The order is important—the
letters must correspond between the encrypted and plaintext pairs (the
one on the row of the first letter of the plaintext should be selected
first).

Following these rules, the encrypted message would be:
“CB LI LC KG PZ CB LI PI BP SZ PI HM VD ZB DB QW”.

The Playfair cipher is one of the most well-known multiple letter enci-
phering systems. However, despite the high level of efficiency demonstrated
by this cipher, it suffers from a number of drawbacks. The existing Play-
fair method is based on 25 English alphabetic letters with no support for
any numeric or special characters. Several algorithms have been proposed
aiming to enhance this method (Srivastava and Gupta, 2011; Murali and
Senthilkumar, 2009; Hans et al., 2014). One particular extended Playfair
cipher method (Ravindra et al., 2011) is based on 36 characters (26 alpha-
betical letters and 10 numeric characters). Here, a 6 X 6 key matrix was
constructed with no need to replace the letter ‘J’ with ‘I’. By using the same
previous keyword ‘CRYPTOLOGY’, the key matrix in this case would be:
Plaintexts containing any numerical values, such as contact number, house
number or date of birth, can be easily enciphered using this extended method

(Ravindra et al., 2011).
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Several methods for the automatic cryptanalysis of Playfair ciphers have
been developed (Negara, 2012; Hammood, 2013; Stumpel, 2007; Cowan,
2008). Further description of these methods are discussed in detail in Sec-
tion 5.3.

The next section provides an introduction to the area of text compression

as this is an important part of our research.

2.3 Introduction to Text Compression

The primary motivation for data compression has always been making mes-
sages smaller so they can be transmitted more quickly or stored in less space.
Compression is achieved by removing redundancy from the message, result-
ing in a more ‘random’ output. In practical terms, the two main classes of
adaptive text compression techniques that are commonly used are: dictio-
nary and statistical approaches (Bell et al., 1990). The dictionary approach
is usually found to be faster than the statistical approach. In contrast,
statistical based approaches are usually better than dictionary approaches
in terms of compression rate. A third class based on block-sorting using
the Burrows-Wheeler algorithm (Burrows and Wheeler, 1994) has emerged
which approaches the compression rates of statistical algorithms but at much

faster speeds, although not as fast as dictionary-based approaches.

2.3.1 Dictionary-Based Compression

In dictionary-based compression techniques, individual symbols (phrases)

are replaced with variable length codewords (indices). By replacing long
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strings (phrases) with shorter codewords (indices), compression is achieved.
Good compression is achieved with these techniques as many characters are
represented by a single dictionary reference. There is an equivalent statis-
tical scheme for every dictionary scheme that achieves the same compres-
sion (Bell et al., 1990). The use of these systems is still widespread as they
provide a fast decompression process.

One of the most important aspects of this scheme is the construction
of the dictionary. Good compression will be provided when the dictionary
closely matches the text to be compressed. In this system, the length of
stored phrases may be fixed or unbounded. Having a dictionary with longer
phrases will offer better compression. Dictionary systems from the Ziv—
Lempel family of compressors (Ziv and Lempel, 1977) are the most popular.
Data are compressed in this coding scheme by providing references to the
data that existed earlier (Irvine, 1997).

Gzip is one of the most important compression methods: it was written
by Jean-Loup Gailly and Mark Adler, and created for the GNU project (Gzip,
2012). Gzip is a commonly used lossless compression scheme on the Internet
and the Unix operating system. It uses a dictionary-based approach, which

is based on the Ziv—Lempel coding scheme.

2.3.2 Block-Sorting Compression

In this scheme, which is also called the Burrows—Wheeler transform, a
character string is rearranged into runs of similar characters (Burrows and
Wheeler, 1994). A message is considered in blocks. For each block, the
transformation which is reversible makes the transformed block easier to
compress using traditional techniques such as run-length encoding.

Bzip2 is a well-known compression scheme that was written by Julian
Seward (Bzip2, 2016). It is a lossless compression method which uses a
block-sorting approach (the Burrows—Wheeler block-sorting compression al-
gorithm). The compression performance of this method (Bzip2) is usually

better than the Gzip; however, its speed is slower. It approaches the per-
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formance of the best compression techniques such as those produced by

prediction by partial matching (PPM) (Bzip2, 2016).

2.3.3 Statistical Coding and Prediction by Partial Matching
(PPM)

The best compression is achieved by another type of compressors which
is based on an adaptive statistical coding approach (Bell et al., 1990).
These compressors comprise two different processes: modelling and cod-
ing (Rissanen and Langdon, 1981). The model generates a probability dis-
tribution of the symbols that may occur next based on the symbols seen
before in the text, while the coder is used to encode the symbol that actu-
ally occurred using this probability distribution (Teahan, 1998). Prediction
by partial matching (Cleary and Witten, 1984b) and dynamic Markov com-
pression (DMC) models (Horspool and Cormack, 1986) are two examples of
this approach. However, PPM is proven to be more effective than DMC.

Prediction by partial matching (PPM) has set the performance standard
in lossless compression of text throughout the past three decades (Teahan,
1998). It is an adaptive statistical coding approach which dynamically con-
structs and updates fixed order text compression models depending on the
previous symbols being processed. The initial method was first published
by Cleary and Witten (1984b). This class of text compression models per-
forms well on English and it rivals the predictive ability of humans in com-
parison to other computer models (Teahan and Cleary, 1996). It has shown
a high level of performance in many natural language processing tasks, such
as language identification, text correction and optical character recognition
(OCR) spelling correction (Teahan and Cleary, 1997)

Models that set their predictions on a few prior symbols are termed
finite-context models of order k, where k denotes the number of previous
symbols used. The order of the model represents the maximum context
length used to predict the next symbol.

Prediction probabilities for each model are calculated from all characters
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or symbols that have followed every subsequence observed from 1 to length
k, and from the number of times that each character has occurred. From
each model, the probabilities associated with each symbol or character that
has followed the preceding k characters (in the past) are estimated to predict
the upcoming character. Prediction by partial matching modelling systems
have been found to be very efficient at compressing English text (Teahan
and Cleary, 1996).

Usually each character or symbol in the model will be encoded by using
arithmetic coding depending on its associated probability (Witten et al.,
1987). According to the PPM scheme, it begins from the highest context
order k. Where this context predicts the upcoming symbol, then each symbol
will be encoded according to its associated probability. In the case that
a previously unseen character or symbol is observed in this context, the
context model will not be able to encode this character and an alternative
solution must be adopted. An “escape” symbol for which the probability is
predicted by the PPM compression method will be transmitted to signal the
encoder to switch to the next context model of order k— 1. The operation
will continue until it reaches the order in the compression model in which
the upcoming character is not novel. If needed, when a completely novel
symbol is encountered, the method will escape down to the k = —1 (order

—1) default model. This is the lowest-order context in the model where all

€

] where A denotes the

symbols will be encoded with equal probability of
size of the alphabet.

By using this escape mechanism, different order models are effectively
blended to ‘smooth’ the probability estimates. Many previous results have
shown that typically no further improvement can be achieved in the com-
pression results by increasing context lengths greater than five for English
texts (Cleary and Witten, 1984b; Cleary et al., 1995b; Teahan, 1998). Fur-
ther improvements can be achieved when escaping has occurred by excluding

all symbols already predicted by higher-order contexts since these symbols

would have already been encoded using a higher-order context if they had
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occurred. This mechanism is called “full exclusion”.

Moffat (1990) devised another simple mechanism that further improved
results which is called “update exclusion”. This mechanism is based on how
the symbol counts for each context model are updated. When encoding with
update exclusions, the predicted symbol count is incremented only if it is not
already predicted by any higher-order context. This means that the counts
are updated only for the higher-order contexts that are actually used to
predict them. Thus, the counts better reflect which symbols are likely to be
excluded by the higher-order contexts. This mechanism typically improves
the compression rate by up to 2% as stated by Bell et al. (1990). On the
other hand, when encoding without update exclusions, all the counts for
all orders of the model are updated. The counts are incremented even if
they are already predicted by a higher-order context. The use of both these
mechanisms is investigated in our research: PPM without update exclusions;

and PPM with update exclusions (standard PPM).

2.3.3.1 Variants of PPM

Several variations of the PPM compression scheme have been invented, such
as PPMA, PPMB, PPMC, PPMD, PPM* and PPMO, depending on the
methods proposed for calculating symbol probabilities. Each differs by the
escape method used. For example, PPMC uses escape method C, and PPMD
uses escape method D. Also, the maximum order of the context models may
be included when the variant is described in the literature; for example,
PPMD4 refers to a fixed-order 4 PPM model using escape method D. Pre-
vious experiments showed that PPMD, in most cases, performs better than
the other variants. Thus, PPMD is explored in our study in addition to
PPMC which serves as a comparison. An example illustrating how these
two variants work is provided below.

In the following formal description of each method, e represents the
probability of the escape symbol and p(s) denotes the probability for symbol

s. In addition, c(s) is the number of times the context was followed by
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the symbol s; n is the total number of times that the current context has

occurred; and ¢t denotes the total number of types.

e PPMA. This variant of PPM uses method A, which applies an addi-
tional count to the novel (escape) probability event. In this method,
as the number of occurrences of the context increases, the escape prob-
ability decreases (Cleary and Witten, 1984a,b). For example, if a spe-
cific context has occurred seven times before, the escape probability

will be equal to %:

1 c(s)
e p——l an p(s) p——

« PPMB. This variant uses method B. It classifies a symbol as being
unusual or novel if it has occurred once before. This is done by sub-
tracting one from all the counts. The idea is to filter unusual events—
no prediction is made unless the symbol has occurred more than once
in the current context (Cleary and Witten, 1984a,b). For example, if
a context has occurred seven times with three symbols (a, b and ¢): a
following five times, b and ¢ once each, then the probability of a will

be % and there is no predictions for » and ¢ at all:

= — d =
e=- an p(s) .

o PPMUC. This variant was developed by Moffat (1990) and has become
the benchmark version. The probability of this method (method C)

is based on using the number of symbols that have occurred before,
known as the number of types. This is similar to method B with the

exception that symbols are predicted immediately:

t c(s)
=7 o pl)=o

For example, if two symbols (a and b) followed a context, twice by a

and once by b, then the probability of the escape event will be % In
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this case, 2 represents the number of types (there are two types, a and
b) and 5 refers to the number of types plus the number of tokens (a

occurs twice and b once, so the number of tokens is equal to 3).

e PPMD is another improved variant. It was first developed by Howard
(1993). The PPMD variant usually shows better performance than the
other PPM compression variants such as PPMA, PPMB and PPMC.
This variant is similar to PPMC except that the probability of the new
symbol is estimated differently. The new symbol’s treatment becomes
more consistent (Howard and Vitter, 1992) by adding J to both the

symbol and escape counts:

e=— and p(s) =

For example, if a specific context has occurred three times before, with
three symbols a, b and ¢ following it once, then the probability for each

is equal to % and the escape symbol probability is %.

o Other variants titled PPMP, PPMX, PPMXC (Witten and Bell,
1991), PPM?* (Cleary et al., 1995b), PPMZ (Bloom, 1998), PPMT
(Teahan and Harper, 2001), PPMII (Shkarin, 2001) and PPM-ch (Wu
and Teahan, 2005) have also been proposed.

To illustrate the process of the PPM method, Table 2.1 presents the
state of the PPMC and PPMD models where k =2,1,0 and —1 after the
input string ‘stressless’ has been processed. For illustration purposes for
this example, the highest context order is for k = 2. If the next symbol or
character is estimated successfully by the modelling context, the probability
p will be used to encode it, while ¢ denotes the occurrence counts. Referring
to the example, if the input string ‘stressless’ is followed by the character

1

‘I’, the probability of the prediction ‘ss’—‘I” in order 2 (which is 5) would

be used to encode it, requiring only one bit as a result (—logz% =1).
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Table 2.1: PPMC and PPMD models after processing the string “stressless”

with maximum order of 2.

Order k=2 Order k=1 Order k=0 Order k=-1
Prediction ¢ p | Prediction ¢ p | Prediction ¢ p | Prediction ¢ p
PPMC
st - r 1 lls — t 1 1! - s 5 2 - A 1 4

— Esc 1 1! - s 2 2 - t 1 L

- 1 1 ! - r 1 &
tr — e 1 ! — Esc 3 3 - e 2 %

— Esc 1 1! —- 1 1 L

t —- r 1 ! — Esc 5 &
re - s 1 1 — Esc 1 I

— Esc 1 !

r - e 1 I

es — s 2 Z — Esc 1 1}
—  Esc 1

e — s 2 2

ss — 1 1 ! — BEsc 1 }

— Esc 1 !

1 - e 1 I
sl = e 1 — Esc 1

— Esc 1 1!
le - s 1 }

— Esc 1 1
PPMD
st - r 1 t]ls — t 1 1} - s 5 - A 1 4

— Esc 1 1! - s 2 3 - t 1 4

- 1 1 1} - r 1 4
tr — e 1 ] — Esc 3 } - e 2 %

— Esc 1 ! —- 1 1 5

t —- r 1 I — Esc 5 3
re — s 1 1 — Esc 1 1}

— Esc 1 1!

r - e 1 I

es — s 2 3 — Esc 1 1}
—  Esc 1

e — s 2 3

ss — 1 1 1 — Esc 1 !

— Esc 1 1

1 - e 1 I
sl - e 1 ] — Esc 1 I

— Esc 1 1
le - s 1 }

— Esc 1 1!
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Assume instead that the character ‘¢’ follows the string ‘stressless’. As
the order 2 model does not predict this character, the escape probability of
% will be encoded for this order, and the encoder will move from the order
two model (k=2 in the first column) down to the order one model (k=1 in
the second column). In this context, ‘s’—‘t" predicts the character ‘#’, with
the probability % Therefore, the total probability needed to encode the ‘¢’
character is % X %, or 3.8 bits. Actually, in this context, a more accurate
probability estimation is gained by noticing that the character ‘¢’ cannot be
encoded using this context as, if it did, it would have been already encoded
by the order two context. Therefore, we can exclude the already predicted
symbols: this is what is termed the full exclusion mechanism, which corrects
the probability for this context to é. Finally, the total probability will be
% X % with 3.6 bits required for the compression codelength.

However, if the next character has never been seen before, such as ‘m’,
the escape will be repeated down through the models to the default order —1
context (k= —1), where all symbols or characters have equal probabilities
with ﬁ where A refers to the size of the alphabet. Supposing that the
alphabet size is 256 for the English language encoded using 8-bit American
Standard Code for Information Interchange (ASCII). Consequently, the total
probability for encoding the ‘m’ character will be % X % X % X ﬁ, or 11.8 bits,
when encoded using arithmetic coding. The full exclusion mechanism can be
used to obtain a more accurate probability estimation, which will exclude
characters already appearing in higher-orders. When this is applied, the
new probability for the ‘m’ character will be equal to % X % X % X ﬁ, with
the total codelength of 10.6 bits.

The same procedure applies to the second part of Table 2.1 when using
the PPMD compression variant but using the modified symbol and escape
counts as discussed above. For example, the probability of the prediction
‘es’—*s” in order 2 for PPMD how now changed to % from % and the context’s

1

escape probability has changed to % from 3 owing to the different way the

probabilities are now being calculated.
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The PPM method can also be applied to streams of word-based symbols
as opposed to character-based streams. Several word-based systems have
been proposed (Horspool and Cormack, 1992; Bentley et al., 1986; Moffat,
1989; Teahan, 1998). The word-based approach typically provides faster
compression compared to the character-based models as fewer symbols are
being encoded.

Similar to the previously described character-based models, word-based
models use the preceding words to predict the next word using a similar
PPM encoding mechanism with escapes to lower-order models. A number
of methods for estimating the escape probability for the word-based models
have been explained (Witten and Bell, 1991; Teahan, 1998). An escape to an
order —1 word context signifies that the word needs to be encoded character
by character. In this case, each symbol or character in the word (even the
space character that marks the end of each word) is separately encoded.
After a word has been encoded once, a word symbol associated with that
word that uniquely identifies it can now be encoded instead. Essentially, the
word symbols are added to an expanding alphabet of word symbols as the
new words are encountered.

Previous experiments have shown that the performance of the word-
based scheme degrades with higher-orders. The performance of the order 2
word bigram models is slightly worse than that of the order 1 word unigram
models. Order 3 trigram word models and higher follow the same trend.
Experimental results show that, for the English language, the performance
of the word-based schemes is slightly better than that of the character-based
ones. However, the character-based models are more economical in terms of
memory space and are more easily applied to various applications in natural
language processing which require the correction of character sequences such
as OCR, spelling correction and cryptology (Teahan, 1998). In our work,
we make use of these two models, further details of which are provided in
Chapter 3.

One problem in using an adaptive compression method such as PPM
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is that at the beginning the models are empty with insufficient data to
effectively compress the texts resulting in different permutations producing
similar codelength values. To overcome this problem, a simple expedient is
to prime the models using training texts that are representative of the text
being compressed. In our experiments, we also use static (semi-adaptive)
models that is once the models have been primed using the training texts,

they are not further updated when processing the ciphertexts.

2.3.3.2 Entropy using PPM-Based Models

Both entropy and cross-entropy can be related directly to text compression.
Entropy represents information content which imposes a lower bound on the
number of bits per symbol that is needed to encode a long sequence of text
derived from a language. Cross-entropy is an upper bound to the entropy
(in this case, a particular model is used as an approximation to a language).
Entropy can be used to measure how well statistical models can predict.
Shannon (1951) performed experiments with humans predicting text and
found that humans were able to predict English text at approximately 1
bit per character. Teahan (1998) argued that text compression provides a
direct means for estimating the upper bound to the entropy. As a result, text
compression can be used to directly compare performance between computer
models and humans (Teahan and Cleary, 1996).

PPM codelength is the length of the compressed text, in bits, when it
has been compressed using the PPM language model. It can be used to
estimate the cross-entropy of the text. This is calculated according to the
following formula (Chang, 2008):

H(S") = log, pr(ciler - civ1)

1
ni3

n
=

where S* is a sequence of symbols of length n; S = cjc;...c, in language L;

and py is a model for that language. The average number of bits required

to encode the text is calculated using the model p;, where ¢; denotes the ith
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character of SE.

2.4 Using Compression for Cryptology

As mentioned earlier, compression can be used in several ways to enhance
cryptography. For example, many cryptosystems can be broken by exploit-
ing statistical regularities or redundancy in the source (Lucks, 1990; Wilson,
1994). Redundancy is the bane of cryptography (Shannon, 1949). As com-
pression removes redundancy from a source, it is immediately apparent why
compression is advocated prior to encryption (Irvine, 1997). Several publi-
cations on cryptology have written about the use of this approach. Schneier
(1996) devoted a page to compression, one chapter addresses compression
in the book by Van Tilborg (2012), and it is described in various other
publications (Gavaskar et al., 2012; Sangwan, 2012; Jasuja and Pandya,
2015; Sharma and Bollavarapu, 2015; Yilei et al., 2015; Devi and Mani,
2018). Sandoval and Feregrino-Uribe (2005) presented a hardware architec-
ture that combines lossless compression and public key cryptography.
Considering whether data compression methods can be used to provide
security has been investigated by several researchers (Witten and Cleary,
1988; Bergen and Hogan, 1993; Cleary et al., 1995a; Irvine et al., 1995; Irvine,
1997; Lim et al., 1997; Ishibashi and Tanaka, 2001; Bose and Pathak, 2006;
Wang, 2006; Wen et al., 2006; Kim et al., 2007; Zhou et al., 2008; Sun et al.,
2009; Wong et al., 2010; Chen et al., 2011; Duan et al., 2011; Katti et al.,
2011; Kodabagi et al., 2015; Xiang et al., 2016). Most of these researchers
have found that the compression schemes are insecure and some modifi-
cations have been proposed in a number of these trying to improve these
methods. For example, Irvine (1997) explored the possibility of combining
the two currently separate activities of compression and encryption, possi-
bly leading to a faster and simpler communication system, through the use
of compressors as cryptosystems. Different lossless compression algorithms

were examined in this work. Irvine concluded that each of these algorithms
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has security flaws to the extent that none of these compressors should be
used as security devices. However, at the same time, this work stressed that
compression remains important as an adjunct to encryption, and that all
critical information should be compressed before encryption to reduce the
chance of ciphertext only attack.

Using compression schemes as one way to tackle the plaintext recognition
problem for cryptanalysis is an approach that has resulted in relatively few
publications compared to the many other methods that have been proposed
for breaking ciphers. As far as we know, Irvine (1997) has been the only
researcher to have previously used a text compression technique to decrypt a
cryptosystem (in this case, simple substitution ciphers). Irvine used a vari-
ation of the PPM modelling system (combined with simulated annealing)
for the automatic solution of simple substitution ciphers, with good results
achieved compared to other methods, with 60% of ciphertexts solved with-
out any errors, with 83% solved with less than four errors. These results
were comparable to those achieved with other methods for the automatic
cryptanalysis of such ciphers, and with fewer limitations. These findings
have provided the motivation for the research described in this dissertation
which further investigates this effective technique in order to construct new
and effective cryptanalysis methods against different ciphers.

The next section presents an overview of the Arabic language. The
reason is that, in a later chapter, Chapter 6, we explore the development
of new automatic compression-based cryptanalysis methods specifically for

the Arabic language as this is one of the research objectives (objective 5).

2.5 Introduction to the Arabic Language

The Arabic language is one of the most widely spoken languages around the
world, with as many as 290 million people in Asia and North Africa and
more than 400 million people around the entire world speaking Arabic. It is

the fifth most spoken language (Gary and Fennig, 2018). In addition, Arabic
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has had a large effect on other languages like Kurdish, Persian, Pashto and
Sindhi and on European languages such us Spanish, Sicilian and Portuguese
(Weekley, 2012). The Arabic language is one of the Semitic languages be-
longing to the Afroasiatic language family. People who speak Semitic lan-
guages were the first to introduce the alphabet to the world, with the Greeks
then borrowing it, after which it spread the whole world (Katzner, 2002).
The Arabic language is not related to English (Comrie et al., 2009). This
language is also the original language of the holy book of Muslims, “the
Holy Qur’an”, with a strong cultural desire seeking to preserve the vital-
ity of the language. The importance of this language is not restricted to
Muslims only, but extends to Christians as well as Jews. Some Christian
and Jewish holy books and the names of some old churches were written in
Arabic, the al-Muallagah church being one example.

The Arabic language has distinct characteristics, differentiating it from
other languages such as Romance languages; since for example, it is written
and read from right to left. It consists of 28 consonant letters with the vowels
represented by marks below and above the letters. It also has distinctive
variations to represent singular, dual and plural forms and to represent male
and female forms. In addition, written Arabic often exhibits triglossia with
classical, modern and mixed forms frequently appearing together. These
characteristics, as well as its rich morphology, present challenges for natural
language processing and cryptographic systems.

In this section, a general overview of the Arabic language, with some of
the structural characteristics of its printed text, and the Arab contributions
to cryptology, is presented. A description of the PPM compression method
for the Arabic language and calculations of the codelength metric used for

plaintext recognition is also introduced.

2.5.1 Arabic Letters

Arabic letters have developed over time. the Arabic language generally

consists of 28 basic letters and another eight derived letters, which have
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been mostly derived from the first alphabetic letter “1”. Spaces are used to
separate words. the Arabic language is a vowelised language, but it can
be read and written either in a vowelised form or not, the vowelised marks
being included to assist readers to read words or a whole text in the proper

way. Table 2.2 presents all 36 of the Arabic alphabet letters.

Table 2.2: Arabic alphabet letters.

Basic letters S0 dd3 bbb o p i)
Derived letters 5@5‘6T1§

As stated, the Arabic language is a rich morphological language (Ng
et al., 2009). The morphological decomposition represented by the same
Arabic word can be found in different forms in the same text. Words can
take on one or more of four distinct forms. A word without any prefixes
and suffixes is the first form, a word with a prefix added to it represents the
second form, while the third form denotes a word with a suffix attached to it,
and the fourth form is a word with both prefixes and suffixes. For example,
the word “-”, means “girl”, while the word “.JI” with the prefix “J!”
means “the girl”. The word “0lky” with the suffix “0\” attached means “two
girls” and the word “ok.J\” with both the prefix and suffix “J|,0)” means
“the two girls”. Furthermore, two or more prefixes and/or suffixes can be

added to each word; for example, the word “cJls” with the two prefixes “

and “J)” means “and the girl”.

2.5.2 Arabic Encoding Methods

Each letter in the Arabic script denotes a unit of the language. Unlike the
English language, there is no upper case or lower case in Arabic and each

word comprising more than one letter is written joined together (cursive

) “\77

writing), with an exception being the letters “s 5 , ;”, and only if they
appear at the beginning of the word.
Different encoding methods are used to represent Arabic characters dig-

itally including the ISO 8859-6 standard, Windows-1256 and UTF-8 encod-
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ing. UTF-8 encoding has been the pre-eminent character encoding scheme
for the World Wide Web, with 89.8% of Web pages using it for encoding
(W3Techs, 2013). UTF-8 encoding is defined by the Unicode standard and
it is a compromise encoding method. It can be compact (with only one
byte) like ASCII to represent an English character, but it can also represent
any Unicode character with more than one byte (two to four bytes). The
efficiency and compatibility shown by UTF-8 encoding for both ASCII text
and Unicode scripts (that need more than one byte to represent each char-
acter, such as Chinese, Arabic and Japanese) have given it priority in many

applications, websites and operating systems (Alhawiti, 2014).

2.5.3 Arabic Text Characteristics

This section provides a simplified presentation of the frequency statistics
for both Arabic characters and words. The main purpose of this work is to
investigate the number of times that each character has occurred in a text.

Each character’s percentage can be calculated using this formula:

number of times each character has occurred 100
X .

character percentage =
p & total number of characters

For example, in the following sentence “p SV ol 1,5 Je @"‘U”, which
comprises five words and 23 letters (excluding spaces), the letter “I” occurs
four times while the letter “«” occurs twice. Therefore, the character per-
centage of these two letters will be (4/23)x100 =17.39% and 8.70%, respec-
tively, according to the previous formula. The Arabic character percentage
of the large Mixed Arabic corpus (further details concerning this corpus are
described in Section 6.2) is explored in Table 2.3. According to this table,
we can see that the characters “s,cs ,J,)" in addition to “spaces” (A, L, I and
M in Roman alphabet characters), show the highest frequency percentage;
in contrast, the letters “1” and “'C” show a lower frequency.

The secondary purpose here is to investigate the number of times that

each n-graph occurs in an Arabic text. Table 2.4 presents the 30 most fre-
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quent n-graphs from statistics obtained from the large Mixed Arabic corpus.

These statistics indicate that the occurrence of many bigraphs is much more

(194

C ,‘J;ﬂ”
and “L”. For about 21% of the corpus, characters are represented by the top

frequent than for some single characters (unigraph), for example,

30 bigraphs, with evidence that the Arabic words contain many repeated
bigraphs. On the other hand, the top 30 trigraphs and 4-graphs represent
6.1% and 1.4% of the corpus.

A third purpose is to investigate the number of times that each word
occurs in a text and to explore its frequency statistics. Arabic words are
segmented using spaces with Arabic language considered to be a segmented
language. As shown in Table 2.5, the 30 most frequent words represent 19%
of the total number of all words in the large Mixed Arabic corpus. Previous
experiments have shown that longer Arabic word lengths are used in modern

texts than in classical texts (Alhawiti, 2014).

Table 2.3: Character frequency statistics for the large Mixed Arabic corpus.

‘ Ranking ‘ Character ‘ Frequency ‘ Char.% H Ranking ‘ Character ‘ Frequency ‘ Char.% ‘

1 space 50068492 18.12 20 C 4073862 1.47
2 | 32428109 11.73 21 z 3124170 1.13
3 J 26533527 9.60 22 < 2270425 0.82
4 ¢ 15669503 5.67 23 | 2103371 0.76
5 ¢ 15002587 5.43 24 o 2041576 0.74
6 o 13388995 4.84 25 o 1959720 0.71
7 3 12364000 4.47 26 3 1955052 0.71
8 B 9616532 3.48 27 ¢ 1889753 0.68
9 o 8944004 3.24 28 b 1616842 0.59
10 o 8907282 3.22 29 & 1422756 0.51
11 ¢ 8012969 2.90 30 j 1296130 0.47
12 ° 7314024 2.65 31 o 1285156 0.47
13 > 6896282 2.50 32 ¢ 890614 0.32
14 ) 5976089 2.16 33 & 819141 0.30
15 3 5832666 2.11 34 ¢ 762100 0.28
16 i 5634256 2.04 35 b 569376 0.21
17 aé 5306169 1.92 36 $ 301583 0.11
18 s 5237184 1.89 37 T 287076 0.10
19 Kl 4573856 1.65
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Table 2.4: N-graph frequency statistics for the large Mixed Arabic corpus.

‘ Ranking ‘ Bigraphs ‘ Frequency

% | Trigraphs | Frequency | % | 4-graphs | Frequency | % |

1 i 13813035 | 4.998 N 2202894 | 0.797 all 457753 | 0.166
2 o 3070976 | 1.111 i 965693 | 0.349 (.‘xu 269599 | 0.098
3 Iy 2159228 | 0.781 Jls 950919 | 0.344 als 259414 | 0.094
4 L 2136023 | 0.773 ] 883656 | 0.320 | ol 241614 | 0.087
5 v 2067632 | 0.748 g 681822 | 0.247 Wi 208514 | 0.075
6 & 2042190 | 0.739 J 668007 | 0.242 A 203404 | 0.074
7 o 2034040 | 0.736 M 621789 | 0.225 | .l 202942 | 0.073
8 ol 1890177 | 0.684 Je 567484 | 0.205 ) 201791 | 0.073
9 o 1599212 | 0.579 & 564649 | 0.204 | Js 179130 | 0.065
10 F 1573396 | 0.569 N 542462 | 0.196 | s 173196 | 0.063
11 Je 1572128 | 0.569 S 535931 | 0.194 & 172629 | 0.062
12 B 1451793 | 0.525 o 505206 | 0.183 ol 164416 | 0.059
13 o 1424476 | 0.515 S 489851 | 0.177 |  dases 149102 | 0.054
14 ol 1364743 | 0.494 Ju 481989 | 0.174 N 138154 | 0.050
15 0 1344070 | 0.486 A 473191 | 0.171 ol 131793 | 0.048
16 Js 1314876 | 0.476 ols” 466279 | 0.169 [uf 130967 | 0.047
17 1S 1292222 | 0.468 R 457210 | 0.165 ol 127967 | 0.046
18 \ 1239435 0.448 dj' 454139 | 0.164 J.,.U 126343 | 0.046
19 By 1194421 0.432 ] 453178 | 0.164 ,,Jv 114558 | 0.041
20 o 1187878 | 0.430 g 424796 | 0.154 Lol 113851 | 0.041
21 o 1175349 | 0.425 o 387279 | 0.140 &l 112495 | 0.041
22 ol 1175147 | 0.425 Iy 381336 | 0.138 | sl 107738 | 0.039
23 L 1139828 | 0.412 Y 380671 | 0.138 s 107233 | 0.039
24 N 1133952 | 0.410 & 369063 | 0.134 | de 106746 | 0.039
25 4 1126393 | 0.408 BN 323774 | 0.117 | 106094 | 0.038
26 N 1124790 | 0.407 al 316654 | 0.115 |  sdow 105385 | 0.038
27 A 1103885 | 0.399 Bl 315786 | 0.114 | <Y 103763 | 0.038
28 u 1090113 | 0.394 S 306671 | 0.111 N 101789 | 0.037
29 S 1020244 | 0.369 {\1 290369 | 0.105 i 100990 | 0.037
30 L 974597 | 0.353 (VS 289711 | 0.105 oY) 99889 | 0.036
‘ Total ‘ ‘ 56836249‘20.563‘ ‘ 16752459‘6.061‘ ‘ 4819259‘1.744

2.5.4 The Arabic Origins of Cryptography

In this section, we explore the Arabic origins of cryptography. We wish to
emphasize some important early contributions to the field, and why contin-
ued research into Arabic cryptography is important in light of this historical
context since we feel that research in this area is under-represented in the
literature. In his famous book, The Codebreakers, David Kahn (1967) states
that “Cryptology was born among the Arabs”. In fact, Arab cryptology is
older than Kahn’s account indicates, and Arab contributions in this field are

more broad than already detailed. Newly discovered old documents demon-
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Table 2.5: Word frequency statistics for the large Mixed Arabic corpus.

‘ Ranking ‘ Word ‘ Frequency ‘ Word% H Ranking ‘ Word ‘ Frequency ‘ Word%

1 & 1333465 | 2.663 16 p 180100 |  0.360
2 o 1180861 | 2.358 17 Le 165011 | 0.330
3 o 791876 | 1.582 18 ol 163659 |  0.327
4 e 641074 | 1.280 19 sda 152062 |  0.304
5 S 526264 | 1.051 20 o 143260 |  0.286
6 ol 502106 | 1.003 21 3 137709 | 0.275
7 ) 410227 | 0.819 22 desen 135957 | 0.272
8 oF 381667 | 0.762 23 N 129812 | 0.259
9 Ju 302264 | 0.604 24 o 128512 | 0.257
10 L 274505 | 0.548 25 ey 128352 | 0.256
11 Y 269069 | 0.537 26 o 120425 | 0.241
12 I 233672 | 0.467 27 o 120329 | 0.240
13 s 217670 | 0.435 28 o 119567 | 0.239
14 A 189731 | 0.379 29 o 114368 | 0.228
15 e 187072 | 0.374 30 oS’ 107100 | 0.214

Total 9487746 | 18.950

strate that one of the important origins of cryptology is ascribed to the
eighth century Arab researcher Al-Kindi. His investigation of cryptology is
one of the oldest available books on the subject, although his antecedent
Al-Khalil (718-786) is reported to have written Kitab Al-Mu’amma “The
Book of Cryptographic Messages” about a century sooner. Unfortunately
this book has not been found (Al-Kadit, 1992).

The word ‘cipher’ derives from the Arabic word sifr for the digit “zero”
(0), which developed into European technical terms that mean encryp-
tion (Al-Kadit, 1992). Kahn (1967) stated that “Between AD 800 and 1200
Arab scholars enjoyed a vigorous period of intellectual achievement. At the
same time, Europe was firmly stuck in the Dark Ages. While Al-Kindi was
describing the invention of cryptanalysis, Europeans were still struggling
with the basics of cryptography”.

The 8th century heralded the golden age of Islamic civilization. Both
the sciences and arts prospered in equal measure. The heritage of Arabic

scientists is noticeable from the number of words that infuse the lexicon of
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modern science, with ‘algebra’ and ‘zenith’ being two examples. Organised
and wealthy society at the time depended on an effective system of ad-
ministration, and consequently the administrators depended on secure com-
munication achieved through the use of encryption (Singh, 2000). Among
the most important factors that led to progress in Arab cryptology were
linguistic studies, translation, administrative sciences, public literacy and
advanced mathematics.

Cryptography has been practised to disguise texts since antiquity by var-
ious civilizations, including the ancient Egyptians, Mesopotamians, Greeks,
Romans, Chinese and Indians. However in none of these was there any
cryptanalysis; cryptography only existed (Kahn, 1967). Cryptology, the sci-
ence of making ciphers (cryptography) and decrypting them (cryptanalysis),
became more prominent just after the ascent of the Arab Islamic empire.
They broke the mono-alphabetic substitution cipher after many years of its
successful use (Singh, 2000). Many Arab scholars wrote on, and surpassed
in practising, both two branches of cryptology such as: Al-khalil, Al-Kindi,
Ibn adlan, Ibn dunaintr and Ibn ad-duraihim (Al-Kadit, 1992). We will fo-
cus on the contribution of one of the earliest Arab cryptologists, Al-Kindi,
in the following paragraphs.

Abu Yusuf Yaqub Al-Kindi, the author of one of the oldest known books
on cryptology, was born in Al-Kufah around the year 801 AD. and grew up in
Baghdad, where he received his education. He excelled in many fields such
as: medicine, philosophy, mathematics, music, astronomy and linguistics.
He was known as “The Philosopher of the Arabs”. His oldest available book
on cryptology, Risala fi Istikhraj Al-Kutub Al-Mu’amah (“A Manuscript
on Deciphering Cryptographic Messages”) was recently discovered in the
Ottoman Archive in Istanbul. It was published by the Arab Academy of
Damascus in 1987 (Mrayati et al., 1987). Al-Kindi (c.801-873 AD) pre-
sented a tree-diagram classification of the major types of cipher systems
and described how to cryptanalyze them. He classified Arabic phonetics

into consonants, long vowels and short vowels. Al-Kindi also introduced a
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comprehensive study of Arabic syntax and demonstrated possible and im-
possible letter combinations.

The above contributions are striking, but one of the most important
of Al-Kindi’s contributions includes the description and use of statistical
techniques in cryptanalysis. He explained clearly how to use letter frequency
statistics of the ciphertext in order to solve it. He also described how to find
these letter frequencies (by utilizing an example of the same language) (Al-
Kadit, 1992; Lasry, 2018). This method, which is called frequency analysis,
led to the first great breakthrough in cryptanalysis (Singh, 2000).

Equally important is the condition he set on the length of the cryptogram
under consideration. Al-Kindi showed that the texts should be long enough
in order to allow letter frequency statistics to be meaningful. If the texts are
short (less than one hundred letters), the decryption will be very difficult.
This concept, presented by Al-Kindi over 1100 years ago, is very important
in statistics today. Later in his book Al-Kindi set out the first count of
Arabic letter frequencies. His example comprised “seven pages of Arabic”
totalling 3667 letters. Al-Kindi also managed to analyse his results (Al-
Kadit, 1992). These frequencies have been corrected latter by Ibn Dunaynir
and Ibn Adlan, who worked on the text (Habeeb, 2016).

Al-Khalil’s combinatorics and Al-Kindi’s statistics are, most likely, one
of the world’s first writings in the field of linguistics. So, it can be argued
that Al-Kindi is a forefather not only of cryptology but of statistics and
linguistics as well (Al-Kadit, 1992).

It is worth mentioning that the sudden and quick descent of Arab civ-
ilization led to the absence of many books and manuscripts related to the
subject, and also may have set back cryptology (Kahn, 1967). That quick
descent had a significant negative effect on the progress of human knowledge

and caused a serious delay in many other fields.
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2.5.5 PPM Compression Method for Arabic

In this section, we describe the PPM method that we used for our crypt-
analysis solution in order to encode Arabic text efficiently. In the PPM
compressor, as stated above, the previously transmitted symbols are used
to condition the probability of the next symbol. The predictions are based
on simple frequency counts of the transmission to that point. The primary
decision to be made is the context length that is modelled. The use of both
PPM without update exclusions and PPM with update exclusions (standard
PPM) for the Arabic language are investigated in this research.

To explain the process of the PPM method for Arabic, Table 2.6 illus-
trates the state of the PPMD model where k =2,1,0 and —1 after the string
¥ ey 27 has been processed. For illustration purposes for this exam-
ple, the highest context order is for k = 2. If the next character is estimated
successfully by the modelling context, the probability p will be used to en-
code it, while ¢ denotes the occurrence counts. Concerning the example, if
the input string “_wwhewy 2" is followed by the character ‘J’, the proba-
bility of the prediction ‘_uw’—‘J” in order 2 (which is 1) would be used to
encode it, requiring only one bit as a result (—logzé =1).

Assume instead that ‘.’ follows the string ‘_jwwluws zo’ As the order
2 model does not predict this character, the escape probability of % will be
encoded for this order, and the encoder will move from the order 2 model
down to the order 1 model. In this context, ‘ »’—‘c’ predicts the character
‘e’ with a probability of %. Thus, the total probability needed to encode
the ‘w’ character is % X %, requiring four bits.

In order to deal with Arabic texts, in which each character needs two
bytes to be represented, an adaptive PPM compression model for Arabic
language has been presented by Alhawiti (2014). This method is called
Character Substitution of Arabic for PPM (“CSA-PPM”). The use of this
method has not only shown a considerable improvement in Arabic text com-

pression but also for other texts that use Arabic script, such as Persian and
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Table 2.6: PPMD model after processing the string “_wwlacw 2e” with max-

imum order of 2.

Order k=2 Order k=1 Order k=0 Order k=-1
Prediction ¢ p | Prediction ¢ p |Prediction ¢ p | Prediction ¢ p
cw = 5 1L il = o 1 g = » 55| = A 1 4

— Esc 1 1 - o 23| - <o 1 %

- J 1 - 4, 1 4
;5 = ¢ 14 — Esc 3 3| = ¢ 2 3%
— Esc 1 | - J 1 4
o = 4, 1 1) —= Esc 5§ 3
s, = o 13 — Esc 1 I
— Esc 1 1
> =g g
o o 3 — Esc 1 }
— Esc 1 1}
¢ s i
o = Jd 1 — Esc 1 1!
— Esc 1 1
J ¢ 14
S s 13 — Esc 1 }

— Esc 1 I
S = o L3
T Ese 1}

Kurdish. There are two important operations in this method, which are
the pre-processing and post-processing, used in conjunction with the PPM
method. Each two-byte Arabic character is substituted with an equivalent
number of the UTF-8 encoding scheme in the first reversible operation and,
as a result, one output file is generated. In contrast with the post-processing
operation, a reverse operation is performed by replacing the numbers with

the original equivalent characters.

2.6 Summary

In this chapter, an overview of the historical development of cipher sys-
tems is presented. Various kinds of attacks and different cryptosystems,
some modern but most classical are introduced. Modern text compression
techniques are surveyed and described. This is followed by a discussion of

the PPM compression method and how the codelength metric is calculated.
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The use of compression for cryptology is also illustrated. Different funda-
mental characteristics of the Arabic language and its encoding methods are
reviewed. Arabic contributions to cryptology and the PPM compression

method for the Arabic language are also described in this chapter.
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Chapter 3

Designing and Evaluating a
New Automatic
Cryptanalysis of Simple
Substitution Ciphers Using

Compression

3.1 Introduction

In this chapter, we propose a new compression-based approach for the au-
tomatic cryptanalysis of simple substitution ciphers with no need for any
human intervention. This helps to address research questions 1 and 2 in
Section 1.2, and fulfils objectives 2 and 3 that were listed in Section 1.3.
This chapter considers the application of compression to tackle the plain-
text recognition problem for cryptanalysis of simple substitution ciphers.
Our automatic cryptanalysis method uses a new variation of the pre-
diction by partial matching (‘PPM’) text compression scheme. This work

also investigates different variants of PPM to ascertain the most efficient
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type when applied to the problem of decrypting simple substitution ciphers
automatically using compression. The use of other well known compression
schemes, Gzip and Bzip2, are also explored in this chapter.

The work in this chapter has been published in ‘Information Security
Journal: A Global Perspective’, one of the Taylor and Francis journals (Al-
Kazaz et al., 2018b).

This chapter is organised as follows. Section 3.2 provides a summary
of the previous research used in the solution of simple substitution ciphers.
Section 3.3 motivates the use of compression as an automatic cryptanalysis
method and reviews the codelength metric calculations used in our approach
which is based on the PPM, Gzip and Bzip2 compression methods. The
pseudo-code and the full description of our method are presented in sec-
tion 3.4. Experimental results are discussed in section 3.5. The final section

provides the conclusion.

3.2 Related Work

Several cryptanalysis techniques have been devised for the solution of simple
substitution ciphers, starting with a number of strategies for hand analy-
sis, leading to automated cryptanalysis methods. In this section, we will
concentrate on previous approaches for automated cryptanalysis.

Typically, human experts who have experience in cryptanalysis can solve
a sentence-long ciphertext in a few minutes. Many hand analysis strategies
have been described (Ball, 1960; Friedman, 1976). These strategies are gen-
erally a combination of three main classes: zero order frequency analysis, a
pattern matching approach and word recognition. However, none of these
strategies are explicit enough to be called an algorithm. Other different so-
lutions have been devised over the last few decades with varying degrees of
success (Schatz, 1977; Anderson, 1989).

The following summarises some of the more interesting or important

automatic cryptanalysis methods and their drawbacks. The purpose is to
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highlight the breadth of research that has previously been applied to the
problem.

In particular, most of the previous attempts for automated cryptanal-
ysis are based on two main approaches: a probabilistic approach (Peleg
and Rosenfeld, 1979; King and Bahler, 1992) and a pattern matching ap-
proach (Lucks, 1990; Hart, 1994). Automatic solutions for decrypting substi-
tution ciphers using iterative methods were presented by Peleg and Rosen-
feld (1979) and King and Bahler (1992). In these methods, breaking the
cipher is considered as a probabilistic problem. Joint letter probabilities
are used to update symbol probabilities, and after a number of iterations,
hopefully there is an improvement in the estimations that lastly lead to
solve the ciphertext. In the paper by Peleg and Rosenfeld (1979), the joint
letter probabilities were based on trigram frequencies. Two examples were
examined and decrypted in this paper: a 996 character long ciphertext using
a paragraph from a technical report and a 1149 character long ciphertext
using Lincoln’s Gettysburg Address. With a 400 character long ciphertext,
the method (King and Bahler, 1992) was able to correctly recover 93% of
the ciphertext symbols within an average execution time of 13 minutes.

On the other hand, pattern matching algorithms (Lucks, 1990; Hart,
1994) work better on short ciphertexts, but can not solve ciphertexts for
which there are no words in the dictionary being used by the algorithm.
They are not able to handle trivial variations, like examples with spaces
removed. According to the pattern matching approach, each word in the
ciphertext is structurally compared with words in a dictionary. The accu-
racy of this approach and the time required to break the ciphertext depends
on the size of the dictionary. A dictionary size of over 19,000 entries was
used, and a hundred different examples chosen at random from magazines
and newspapers were examined (Lucks, 1990). A success rate of 60% was
achieved; however, about 30% of the trials required further human interven-
tion. The second algorithm (Hart, 1994) had been tried on over a hundred

short ciphertexts and generally provided readable solutions in a matter of
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seconds. Both methods (Lucks, 1990; Hart, 1994) did not produce complete
or unique solutions. That is because either there were some words that did
not appear in the dictionary or multiple possibilities were deciphered.

All these previous approaches (Peleg and Rosenfeld, 1979; Hart, 1994;
Lucks, 1990) deal with just twenty six alphabet English letters and consider
that the spaces between words are already identified or not ciphered. In
contrast, our method described in the next sections deals with twenty seven
English characters (twenty six alphabetic letters and space).

Lee et al. (2006) introduced an enhanced English frequency analysis
technique which uses a combination of unigram frequencies and dictionary
checking. Two ciphertexts were examined, one with 9006 letters and the
other with 2802 letters, and the method was able to achieve good decryption
results. Another dictionary-based attack was demonstrated by Olson (2007).
Twenty one cryptograms were examined and all of them were successfully
solved. However, the algorithm also struggled on short cryptograms.

A genetic algorithm for the cryptanalysis of simple substitution ciphers
was published by Spillman et al. (1993). A genetic algorithm is a metaheuris-
tic that is commonly used to generate high-quality solutions to optimization
and search problems. Genetic algorithms repeatedly modify a population of
individual solutions. Modifications in the population basically are achieved
using two main operators: mutation and crossover. At each step, the genetic
algorithm chooses individuals from the current population to be parents
based on their fitness as measured by a fitness function and uses them to
produce the children for the next generation. Over successive generations,
the population “evolves” toward an optimal solution.

To evaluate the quality of a key using the genetic-based cryptanaly-
sis method (Spillman et al., 1993), a fitness function was used based on
character unigram and digram FEnglish frequencies. There was no specific
description about the test set characteristics that they used in this paper,
and the exact key was not always found.

A simulated annealing approach was used with the evaluation based on
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using bigram statistics (Forsyth and Safavi-Naini, 1993). With a very long
ciphertext (5000 characters), the algorithm performed quite well, but it was
less efficient with shorter ciphers. Simulated annealing (inspired by a pro-
cess similar to metal annealing) is a probabilistic method for approximating
the global optimisation of a given function in a large search space. It is a
descendant of the hill-climbing technique. This latter technique is based on
starting with a random key, followed by a random change over this key such
as swapping two letters, to generate a new key. If the change produces a bet-
ter solution, the new key replaces the current one. This process is repeated
until there are no further improvements. Simulated annealing is similar to
hill-climbing with a small modification that often leads to an improvement
in performance. In addition to accepting better solutions, simulated an-
nealing also accepts worse solutions in order to avoid the local optima. This
approach permits it to jump from local optima to different locations in order
to find new optima.

The use of a genetic algorithm, simulated annealing and tabu search
for the cryptanalysis was also presented (Clark, 1998; Garg and Sherry,
2005). Tabu search is a metaheuristic search method that takes a potential
solution to a problem and check its immediate neighbors in the hope of
finding an improved solution. For this purpose, the tabu search has a short-
term memory system. The short-term memory system (tabu list) stores
previously visited solutions and has a set of rules to prevent the reversal
of recent moves and sometimes allows non-improving solutions in order to
escape the local optimum.

Character unigram, digram and trigram frequencies were adapted as the
basis for the fitness function by Clark (1998) and Garg and Sherry (2005).
The results obtained were very similar for each of the three algorithms. For
a cryptogram of 800 characters, 25 out of 27 key elements were recovered,
and for a cryptogram of length 500, it was able to recover 23 keys (Clark,
1998). For a ciphertext of 200 characters, the amount of recovered keys was

about 12 whereas with a 1000 character long ciphertext, about 24 keys were
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successfully recovered out of 27 (Garg and Sherry, 2005).

Other genetic algorithm based solutions (Grundlingh and Van Vuuren,
2003; Mudgal et al., 2017) were successfully implemented. Just one long
ciphertext of 2519 characters was examined, and the fitness function was
based on character unigram and bigram analysis (Grundlingh and Van Vu-
uren, 2003). Many previous works in this area were summarized, and the use
of genetic algorithms was specifically explored by Delman (2004). Attempts
to extend these works were unsuccessful. This resulted in the conclusion
that the genetic algorithms approach did not merit further effort, since al-
though the traditional cryptanalysis methods require more execution time,
they were easier to implement and much more successful.

A fast automated attack using hill climbing was presented (Jakobsen,
1995). Digram frequencies were used as the basis for calculating the scoring
function. With a ciphertext of 100 characters, the algorithm achieved a
success rate of 50%, and with a ciphertext of 400 characters in length, a
success rate of 98% was reached. The time needed to cryptanalyze a cipher
ranged from half a second to two seconds.

Other attacks using Hidden Markov Models (HMM) and hill climbing
were presented (Lee, 2002; Vobbilisetty et al., 2017). Lee (2002) showed
that the proposed method systematically outperformed the iterative meth-
ods using character bigram models. It achieved a 95% decoding rate for
cryptograms of 500 characters, whereas just 80% was achieved by the relax-
ation iterative methods. A 70% accuracy rate was achieved (Vobbilisetty
et al., 2017) as a result of solving a ciphertext of 200 letters in length. With
ciphertexts of 300 and 400 letters, a 95% accuracy rate was achieved. Ci-
phertexts of 1000 and 2000 characters were used in the paper by Chen and
Rosenthal (2012). An accuracy rate of 93% against a 2000 character long
ciphertext using bigram was achieved.

Attacks based on different local search metaheuristics were published
by several researchers (Uddin and Youssef, 2006; Hilton, 2012; Corlett and
Penn, 2010; Luthra and Pal, 2011; Jain et al., 2018). Character unigram
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and bigram statistics were both used for the evaluation function (Uddin
and Youssef, 2006). Using bigram statistics resulted in a 45% success rate
for a ciphertext of 100 characters, and 95% for a cipher of 400 characters.
The use of character unigram, bigram and trigram statistics were investi-
gated (Hilton, 2012). About six correct keys were recovered out of 26 for
a 100 character long ciphertext, and 20 correct keys for a cryptogram with
a length of 500. According to Corlett and Penn (2010), a character-level
trigram model was used to rank solutions. Texts with different sizes (1000,
3500, .. 13500) were tested. With a 3500 character long ciphertext, the
accuracy was 96% with an execution time of 38 minutes. For ciphertexts
of 500 characters (Luthra and Pal, 2011), the researchers were able to re-
cover 21 correct keys out of 27, and 22 correct keys from ciphertexts of 1000
characters in length. Bigrams based cost function was used in the paper
published by Jain et al. (2018). 200 different ciphertexts of size 100, 200,
300,..., 800 characters were examined. For a cryptogram of 100 characters, 9
out of 26 key elements were recovered, and for a cryptogram of length 800,
it was able to recover 24 keys.

Cryptanalysis methods based on using different order n-gram models
and different search algorithms were proposed (Knight et al., 2006; Ravi
and Knight, 2008; Nuhn et al., 2013; Kambhatla et al., 2018). For example,
a cryptanalysis method using low order n-gram models (1-gram, 2-gram and
3-gram models for English) was presented (Ravi and Knight, 2008). Fifty
ciphers of different lengths were examined, on a 52-letter cryptogram, with
the solution from this method resulting in 21% error. With a ciphertext of
64 letters, this method gave 10% error with an average execution time of
approximately 76 minutes, and 5% error for a ciphertext of 128 letters using
3-gram models.

Another method based on using high order n-gram models (3-gram, 4-
gram, 5-gram and 6-gram) and a beam search to the problem of solving
substitution ciphers was introduced (Nuhn et al., 2013). Beam search is

a heuristic search algorithm that explores a graph by expanding the most
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promising node in a limited set. Beam search uses a technique like breadth-
first search to build its search tree. At each level of the tree, it generates all
successors of the states at the current level, sorting them in increasing order
of heuristic cost. However, it only stores a predetermined number of best
states at each level (called the beam size). Only those states are expanded
next. The greater the beam size, the fewer states are pruned. With an
infinite beam size, no states are pruned and beam search is identical to
breadth-first search.

Short cryptograms (up to 256 letters) were tested by Nuhn et al. (2013).
A cryptogram of length 64 was decrypted with less than 5% error with a re-
ported decryption time of two and a half minutes using 6-gram models. On
a 128-letter cryptogram, the solution from this method resulted in 0.05%
error. Decipherment of simple substitution ciphers with neural language
models and a beam search was published by Kambhatla et al. (2018). The
method gave 0.07% error for a 64-letter cipher and 0.02% for a 128-letter
cryptogram. The beam size used in these methods was very large—100,000.
Other smaller sizes were also explored, however, with less efficient perfor-
mance demonstrated. For example, with a 1000 beam size, the solution from
the previous method resulted in about 5% error on a 64-letter cipher and
about 10% for a 128-letter ciphertext.

In comparison to the all previously mentioned studies, our evaluation
analyses the decryption of different ciphertext lengths, including very short
cryptograms with just 20 characters, whereas the cryptograms used in most
of the previous research were not less than 100 characters long. Shorter
ciphers (less than 100) usually required a long time to execute with a higher
error rate compared to our method. Many previous approaches (Ravi and
Knight, 2008; Nuhn et al., 2013; Kambhatla et al., 2018) assumed that the
space character has already been known. Nuhn et al. (2013) stated that this
assumption makes the problem much easier, and previous methods showed
much higher computational demands for lengths beyond 256 letters when

space is not assumed to be known. In addition, the beam size used in
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these researches (Nuhn et al., 2013; Kambhatla et al., 2018) was very large
(100,000); using smaller sizes resulted in a higher error rate. In contrast,
in our proposed method, we did not assume that the space symbol was al-
ready identified. Our compression-based method deals with twenty seven
English characters (twenty six alphabetic letters and space), and many dif-
ferent short ciphers of 20 characters or so have effectively been decrypted.
Furthermore, the beam size used in our method is very small being just
500, which is much more smaller than the previously used size, and all the
cryptograms of length longer than 44 have successfully been solved without
any errors with state of the art results produced.

Irvine (1997) has been the only researcher to have previously used a
text compression method to decrypt a cipher system (simple substitution
ciphers). Irvine used a variation of the PPM modelling system combined
with simulated annealing for the automatic cryptanalysis of simple substi-
tution ciphers. Over a hundred ciphertexts were examined, and good results
were achieved compared to other methods with 60% of ciphertexts solved
without any errors, and 83% with less than four errors. In this chapter,
we investigate more deeply the use of PPM compression method by propos-
ing a new variation for tackling the problem of the automatic decryption of
simple substitution ciphers. However, our approach uses a different search
algorithm (beam-style search) and a new modified version of PPM, which
achieves a high success rate close to 100%. The use of other compression
schemes (Gzip and Bzip2) are also examined. In this chapter, we present dif-
ferent PPM compression variants and investigate which variant is the most
effective when applied to the problem of automatically decrypting simple

substitution ciphertexts.

3.3 Automated Cryptanalysis Using Compression

The ciphertext only cryptanalysis of simple cryptosystems relies heavily on

the statistical properties of the source language. Getting computers to per-
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form this analysis is not a trivial matter. Although computers have been
routinely used for a variety of tasks in cryptanalysis since their invention,
the automatic recognition of valid decryptions has remained a taxing prob-
lem (Irvine, 1997). Several previously published cryptanalysis methods can
not run without human intervention or they assume at least known plain-
text because of the difficulty of quickly recognizing a correct decryption
in a ciphertext only attack (Schneier, 1996; Wiener, 1993). In general, a
known plaintext attack is considered to be easier to develop than a cipher-
text only attack. However, for many classical ciphers, there is no effective
automatic known plaintext attack, nor any published automatic ciphertext
only attack (Lasry, 2018).

In the cryptanalysis of classical ciphers, there are several scoring methods
that are commonly used such as those based on n-gram statistics, however,
the design of a new scoring function or even the selection of an appropriate
one is not an easy issue. The most critical element for successful searching
algorithms is the scoring function. This function evaluates the quality of
each permutation (or a candidate key) and allows the search algorithm to
determine whether one permutation is better than others (Lasry, 2018).

Having a computer model that is able to predict and model natural lan-
guage as well as a human is critical for cryptology (Teahan, 1998). Teahan
and Cleary (1996) demonstrated that the PPM modeling system has the
ability to predict text in a way that is close to achieving human performance
level. The essential idea of our technique is to use PPM for calculating the
compression ‘codelength’ value of each possible permutation (which is used
to measure the amount of information in each (Irvine, 1997)). Permuta-
tions with smaller codelength values help to determine better decryptions.
We present how to use this to automatically and easily recognise the valid
solution in a ciphertext only cryptanalysis against simple substitution sys-
tems. Also, further investigations on different variants of PPM compression
method are performed in this chapter. Other compression methods (Gzip

and Bzip2) as a basis method for calculating the codelength metric are also
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tried. This is to ascertain the most effective compression method to use to

automatically break simple substitution cryptosystems.

3.3.1 PPM Compression Codelength Metric

As stated above, the fundamental concept of our cryptanalysis method is
based on using a PPM compression model to calculate codelength values of
each possible permutation. The ‘codelength’ of a permutation for a cryp-
togram is the length of the compressed cryptogram, in bits, when it has been
compressed using the PPM language model. The hope is that the smaller
the codelength value, the more closely the ciphertext resembles the text used
to train the language model.

In our work, we make use of two PPM based models, one character-
based and the other word-based, which provide effective results in terms
of compression rate and lead to significant improvements both in terms of
compression rate as published in previous experiments (Teahan et al., 2014)
and in terms of the reduction in the number of decryption errors as per
the experimental results discussed below. The first model, which is labeled
C|C3 in Table 3.1, represents an order 5 PPM character model (order 5 and
order 4 models are used in our experiments) where the predictions are based
on the stream of character symbols. So, the probability of S (where S is a

sequence of length m characters ¢;) is given by:

m

p(S) =[P (cilei-sci-aci-3ci-aci1)
i1

where p’ is the probabilities estimated by the order 5 PPM model. A max-
imum order of 5 is usually used in most of the experiments (Teahan, 1998;
Liu et al., 2014; Almahdawi and Teahan, 2017) and order 5 has also been
found effective for both English and Arabic text (Alkahtani et al., 2015).
(Note: the symbol < in the table represents an escape).

The second model, which is labeled W|W, represents an order 1 PPM
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Table 3.1: Models for predicting character and word streams (Teahan, 1998).

C|C*Model W|W Model
plcilciosci—aci-zciaci-1) | p(wilwi-1)

— p(cilci—aci—zciaciz) | = p(wi])

— p(cilci—zci—aci—y) — Character model
— p(cilci—aciz)
= p(cilei-1)

= p(ail)

= Peg(cil)

word bigram model. The predictions of this model are based on the stream

of word symbols as shown in the next formula:

m

p(S) =T]p (wilwi-1)

i=1

where p is the probability of S, S is a sequence of m words w; and p’ is the
probabilities estimated by the word model (Teahan, 1998).
The compression codelength can be used to estimate the cross-entropy
of the text and can be calculated according to the following formula:
m
h(S) = —log, p(S) = —log, [ [P/ (cilei-sci-aci-sciacio1)

i=1

where Ah(S) is number of bits required to encode the text.

3.3.2 Calculating Compression Codelengths Using Gzip and
Bzip2

We have also investigated alternative compression methods for performing
the codelength calculations—Gzip and Bzip2. The essential reason for ex-
perimenting with other compression schemes in our work is to find out which
is the most effective scheme that can be used in the automatic solution of

simple substitution cryptosystems using a compression based technique.
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In this chapter, the calculation of the codelength metric for these two
compression methods (Gzip and Bzip2) is based on using a relative entropy
calculation which allows us to use ‘off-the-shelf’ software without the need
to re-implement the methods themselves. The codelength metric can be
calculated using the relative entropy technique by the following formula

(first described in (Al-Kazaz et al., 2016)):

ht = hT+t - hT

where T denotes the training text (which will usually be large in size), ¢
denotes the testing text, and hy refers to the size of the compressed file T.
Essentially, the codelength for a particular compression scheme is calculated
as being the difference between the compressed size of some large training
text with testing text concatenated after it compared to the compressed size

of just the training text by itself.

3.4 The New Method

A full description of our new method for the automated solution of simple
substitution ciphers is presented in this section. The main idea of our ap-
proach is based on trying to break a cryptogram by essentially substituting
one letter at a time throughout the text, starting with the most frequent.
Then one of the compression methods is used to compute the codelength
value used for automatically scoring the possibilities. PPMD, PPMC, Gzip
and Bzip2 are the compression schemes used in our experiments.

The pseudo-code for our approach is presented in Algorithm 1. At the
start (see line 1 in the pseudo code), we remove all non-alphabetic charac-
ters from the ciphertext and keep only letters and spaces (i.e.our approach
processes only 27 characters). However, the methods presented here can be
adapted to arbitrary alphabets (whether or not spaces are included). After
that, all the remaining characters in the ciphertext are examined in order

to determine frequencies, and arranged from the most frequent character
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to the least frequent (see line 2). The search is initialised by setting each
character in the ciphertext to a special symbol (a full-stop) that is not an
English alphabetic character or space (see line 3). Then by replacing one
ciphertext character cc at a time (see lines 6 to 22) for each permutation
of the ciphertext in the list ‘Q1’ (lines 8 to 20), it simply tries each unused
character in turn as a candidate for cc (see lines 9 to 11). The compression
codelength is calculated for each possibility using PPM, Gzip or Bzip2 (see
line 12). The ciphertexts are then ranked using a sorted list according to the
codelength values (see lines 13 to 17). As we find permutations with smaller
compression codelength values, we are closer to finding the valid decrypt.
We keep at most only the 500 best results at each stage in the sorted list.
The maximum size of the sorted list provides a means for trading off be-
tween greater speed (when the size of the list is reduced) and less decryption
errors (when a greater size is used). Experimental results show (see below)
that a size of 500 provides a good compromise.

Our method builds up the solution incrementally, replacing one crypto
character, cc, at a time, dealing with the most frequent cc first. So starting
with a new cryptogram, it picks the most frequent symbol (say x) in the
cryptogram (most likely this corresponds to space or perhaps the letter ‘e’).
It tries substituting x with one of the English alphabetic characters ‘a’ to
‘2’ or space. (Note: At this stage, all of these will be tried since the size of
the alphabet, 27, is less than the maximum size of the sorted list i.e. 500).
Then it picks the next most common crypto symbol to substitute, say y, for
each of the previous 27 possibilities, substituting y with one of the English
alphabetic characters or space (but excluding any already substituted char-
acters). This gives 702 (=27 x 26) possibilities, so at this stage solutions
start getting discarded if only a maximum of 500 possibilities are kept in
the sorted list. This is repeated for each remaining character from the most
frequent characters down to the least frequent character.

In order to get further improvements in our results, a word-based PPM

compression system is applied to the output produced from Algorithm 1.
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Algorithm 1: Pseudo code of the automatic cryptanalysis of simple

substitution ciphers.

Input : ciphertext

Output: decrypted text(s)

remove all non-alphabet characters—except space—from the ciphertext;

examine the ciphertext to create a sorted list of the zeroth order frequencies for
the alphabet;

replace the characters in the ciphertext with the special symbol ¢’;

initialise Q1 (list) with a modified ciphertext;

maximum size of Q2 (sorted list) < 500;

foreach crypto character ‘cc’ in the zeroth order frequent characters (starting

from the most to the least frequent characters) do

7 | Q2 + empty;
8 | foreach ciphertext in Q1 do
9 foreach alphabetic and space character ‘ac’ do
10 if ‘ac’ is not used before as a replacement of the previous crypto characters
then
11 replace each crypto character ‘cc’ in the ciphertext with the unused
character ‘ac’ as a candidate for ‘cc’;
12 calculate codelength value of the ciphertext using the PPM, Gzip or
Bzip2 compression model,;
13 if the size of the sorted list Q2 < 500 then
14 add the ciphertext to Q2;
15 else if the codelength value of the last element in Q2 > codelength value
of the current ciphertext then
16 remove the last element in Q2;
17 add the ciphertext to Q2;
18 end
19 end
20 |end
21 | replace Q1 with Q2;
22 end

23

return QI containing the best solutions (the ‘decrypted text(s)’);

The pseudo-code for this is provided in Algorithm 2. For each text in ‘Q1’,

the codelength value is re-calculated using the word-based model.
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these are stored in a new list as they provide a potentially more accurate

estimate of their quality (lines 2 to 5).

Algorithm 2: Pseudo code of word-based ranking algorithm.
Input : the list Q1 (output from Algorithm 1)

Output: decrypted text(s)
1 maximum size of Q3 (sorted list) <+ 500;
2 foreach text in Q1 do
3 calculate compression codelength value of the text using the PPM word-based
compression method;
4 store the text in the sorted list Q3;
5 end

6 return Q38 containing the best solutions (the ‘decrypted text(s)’);

Two variants of the PPM modelling system, PPMD and PPMC models
have been used in our method. Also two forms of these schemes are exam-
ined, one with update exclusions (i.e the standard PPMD or PPMC) (Teahan,
1998) and one without update exclusions. Both of these variants are further
investigated with a new variation of the PPM algorithm where a specific
high codelength value is assigned to all contexts for which an escape down
to an order —1 context has occurred when the symbol being predicted has
not already occurred in any higher order context. The idea behind assign-
ing a high codelength value for these order —1 contexts is to penalise these
cases during the search as they provide strong evidence of being of lower
predictive quality. During the execution of Algorithm 1, these contexts oc-
cur frequently at the start since all the characters in the ciphertexts are
initialised to the special symbol (full-stop) which is a symbol not found in
the 27 character alphabet that is used for the training text. When an order
—1 context occurs, the probability can be estimated as % where N is the
size of the text already processed. Also according to the PPM models that
we use, the probability of previously unseen characters such as the special
full-stop character does not subsequently change as the ciphertext is being

processed. Therefore, we can simply use a fixed codelength value for all the
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order —1 contexts which is equal to —log, % (The size of the training data
we use in our experiments is N = 21,824,832 so the specific codelength value
we assign for order —1 contexts is 24.38.)

To organize and clarify our results, our experiments are divided into
different variants as presented in Table 3.2. For the PPM-based variants,
both order 4 and order 5 models are used in our experiments as discussed
below. Experiments with a full range of variations have been conducted
(PPMC, or PPMD, with and without update exclusions, with and without
explicit order —1 codelengths; Gzip; and Bzip2). However, for the purposes
of this chapter, only the results for the seven variations in the table are shown
in order to illustrate either the best performing schemes or to illustrate

interesting results for comparison.

Table 3.2: Compression method variants used for the automatic cryptanal-

ysis of simple substitution ciphers.

Name Compression method

Variant A | PPMD without update exclusions

. PPMD without update exclusions with the same specific codelength
Variant B

value assigned to all order —1 context predictions
Variant C | Standard PPMD (i.e with update exclusions)

. Standard PPMD with the same specific codelength value assigned
Variant D

to all order —1 context predictions

. PPMC without update exclusions with the same specific codelength
Variant E . o
value assigned to all order —1 context predictions
Variant F | Bzip2

Variant G | Gzip

According to the first experimental variant in Table 3.2, Variant A,
PPMD5 without update exclusions is applied to compute the codelength
values. In Variant B, a new variation of the PPM method is used which is
PPMD without update exclusions with specific order —1 codelength values.
Both order 4 and order 5 PPMD models are examined. The standard ver-
sion of the PPMD5 compression method with update exclusions is used for

Variant C. The fourth variant, Variant D, is the standard order 5 PPMD
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model but with specific order —1 codelength values being used instead of the
standard PPM order —1 encoding method. Another new version of PPM is
used for variant E, PPMC without update exclusion but using the order —1
codelength method. Both order 4 and order 5 PPMC models are examined.
For the last two variants, variants F and G, we examine the effectiveness
of using the other compression methods Gzip and Bzip2 for computing the

codelength metric using the relative entropy calculation as discussed above.

3.5 Experimental Results

In this section, we discuss experimental results for Variants A to G (as de-
tailed in Table 3.2). In our experiments described in this chapter and in the
next two chapters, we use the Brown corpus (Francis and Kucera, 1982) and
nineteen of the twenty novels used by Irvine (1997) except the novel ‘Prin-
ciples of Computer Speech (book2)’ (Witten, 1982), which was unavailable,
in order to train our models. These texts were used to train the models
in this chapter using 27 character English text. A corpus of 110 different
ciphertexts chosen at random from many different resources (including news-
papers, magazines and examples from Hart (1994); Lucks (1990)) as testing
texts are used, samples of which are listed in Appendix I. The lengths of
these ciphers range from 20 characters to almost 300 characters. Table 3.3a
and table 3.3b present samples of decryption.

Table 3.3a shows the output sample showing the execution of the algo-
rithm for the ciphertext ¢ zjyvgelyzjgquyzjykoaakbyjgaejvb’ including
intermediate results. Compression codelengths with the lowest five results
are listed in bits. Table 3.3b presents the ten best solutions as a result of our
method of the automatic ciphertext only attack of the simple substitution
cipher when using the new version of the PPMD modelling system (labeled
as Variant B). In this case, text with the shortest codelength value (the best
solution), represents the valid decrypted text. According to the example (in

Table 3.3b), the best solution was ‘so much sound so little outcome’,
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Table 3.3a: Example output.

Ciphertext: zjyvgelyzjgqwyzjykoaakbyjgaejvb
Processing the 1st most frequent character 'j';
Buffer length is: 27.

Codelength = 636.168: . ....... ..... ........ e
Codelength = 640.479: .e....... e..... €.viin e...e.
Codelength = 642.719: .t....... t..... t.o.o.oooL t...t.
Codelength = 643.671: .a....... a..... - I a...a.
Codelength = 643.956: .o....... O..... Ovevennnn 0...0.
Processing the 2nd most frequent character 'y';
Buffer length is: 500.

Codelength = 532.282: . t....t. ...t. t...... t ...
Codelength = 532.948: .e I B e...e
Codelength = 532.951: .t t t ... t...t
Codelength = 534.603: .s .... .s... .8 ...... S...s
Codelength = 535.227: . s....s. ...8. S...... S ...
Processing the 3rd most frequent character 'g';
Buffer length is: 500.

Codelength = 467.465: .t .h.. .th t ... th..t
Codelength = 470.531: . t.a..t. a..t. t...... t a
Codelength = 470.643: .t .o.. .to t ... to..t
Codelength = 471.204: .e .n.. .en.. .e ...... en..e
Codelength = 471.567: . t.i..t. i..t. t...... ti..

Processing the 4th most frequent character 'a';
Buffer length is: 500.

Codelength = 404.402: .t .h.. .th.. .t ..ee.. the.t..
Codelength = 408.380: .ti.h..i.th..i.ti.. ..ith .t..
Codelength = 408.697: .ht.e..t.he..t.ht.. ..the .h..
Codelength = 408.945: .er.d..r.ed..r.er.. ..red .e..
Codelength = 409.339: .t .h.. .th.. .t ..oo.. tho.t..

P¥ocessing the 8th most frequent character 'b';
Buffer length is: 500.

Codelength = 216.382: hetor..ther..theti. inter .eon
Codelength = 217.041: e sai..se i..se so.ttons it. an
Codelength = 217.069: so mu.. sou.. so l.ttle out.ome
Codelength = 217.460: t sai..st i..st se.nners in. ar
Codelength = 217.894: to un.. ton.. to d.eeds one.ous

Processing the 9th most frequent character 'e';
Buffer length is: 500.

Codelength = 167.839: so muc. sou.. so l.ttle outcome
Codelength = 172.087: t shad.st a..st si.nnies and he
Codelength = 173.728: t spad.st a..st se.nners and pr
Codelength = 174.211: he san. hea.. he o.rrot earnest
Codelength = 176.220: he rat. hea.. he i.ssin eastern

Processing the 10th most frequent character 'q';
Buffer length is: 500.

Codelength = 145.242: so muc. soun. so l.ttle outcome
Codelength = 147.082: so muc. sour. so l.ttle outcome
Codelength = 147.961: so muc. soug. so l.ttle outcome
Codelength = 150.597: so muc. soup. so l.ttle outcome
Codelength = 151.714: t shad.st al.st si.nnies and he

P¥ocessing the 13th most frequent character 'w';
Buffer length is: 500.

Codelength = 63.884: so much sound so little outcome
Codelength = 72.105: so much sourd so little outcome
Codelength = 73.876: so much soung so little outcome
Codelength = 75.474: so muck sound so little outcome
Codelength = 75.519: so much sound so lyttle outcome
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Table 3.3b: Example output (ten best solutions).

Ten best solutions

63.884 | so much sound so little outcome
72.105 | so much sourd so little outcome
73.876 | so much soung so little outcome
75.474 | so muck sound so little outcome
75.519 | so much sound so lyttle outcome
76.426 | so much sound so lattle outcome
76.677 | so mucy sound so little outcome
79.165 | so muck sough so little outcome
79.350 | so much sourg so little outcome
79.896 | so much souvy so little outcome

which has the shortest compression codelength value 63.884 and is the valid
decrypt.

To encrypt the plaintext (original text), a random key is generated for
each run. Afterwards, the attack is performed on the cryptogram. Various
ciphertexts with different lengths (even very short) have been examined in
our experiments. We experimented with 110 different ciphertexts. In order
to measure the success and the accuracy of our automatic cryptanalysis al-
gorithms, alphabetic substitution errors (mapping errors) are counted. The
results of our experiments showed that only when using the new PPM vari-
ants (Variants B and E), as a method of calculating the codelength values
were almost all the ciphertexts decrypted successfully. In contrast, the other
PPM variants produced a significantly greater number of errors. The same
was repeated when using the Gzip and Bzip2 algorithms in the last two
variants (F and G). Example output produced by the different variants is
shown in Table 3.4.

For variant A, Figure 3.1a presents the number of errors for each testing
cryptogram as a result of our automatic cryptanalysis method using PPMD
without update exclusions. Clearly, we can see that the number of errors
for most tested cryptograms are high. In this case, just one cryptogram is

solved with no errors, and only four examples are found to have ten errors
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Table 3.4: Sample of solved cryptograms by different variants.

Variants Number Example decrypted message

of errors

Variant A 17 ladylamandems dejaegonzalpsteyemainerosecine scheynero-
sle domickepoleontre oetonw

Variant B 0 retirement must be wonderful i mean you can suck in your
stomach for only so long

Variant C 20 nod nineosiukosqnsprean tuysdsincesbrushceskuhlsdesbru
skorichmstr sreybskrsyrex

Variant D 19 spaxsprpia roma hp cviupsloe x rpyi tvo nyi monk xi tvos
mavrynw lvs viet mv evid

Variant E 2 retirement must be wonderful i mean you can such in your
stomack for only so long

Variant F 21 myr myaywruatiruzyugvwhymotbu uaydwuxvtuedwuitenu
wuxvtmuirvadekuovmuvwbxuivubvwe

Variant G 11 detadement mrst he pongedbrl a mein for cin srck an ford

stomicy bod onlf so lonj

or less. The results show that over 75% of the decrypted cryptograms have
more than ten errors and 20% have greater than twenty errors.

For variant B, both order 4 and order 5 PPMD models are examined. For
the order 4 model, the results show that 81% of the ciphertexts are correctly
solved with no errors (that is, the best solution with minimum codelength
value is the correct solution). About 19% of the examples are decrypted
with just three errors or less. For the order 5 model, the results show better
performance with over 87% of the cryptograms correctly solved without any
errors. Also 12% of the ciphers are decrypted with just one or two errors,
and only one example had three errors as shown in Figure 3.1b. Moreover,
in almost all these examples, the correct solution can also be found within
the ten best solutions. It is clear that the number of errors for this variant

is much lower than other variants.
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Figure 3.1: Errors produced from different variants
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Figure 3.1c illustrates the number of errors for each cryptogram for vari-
ant C. We can see that almost all the decryption errors are more than ten,
with just two examples being solved with ten errors. Over 71% of the cryp-
tograms are decrypted with greater than ten errors, and over 26% of the
examples have more than twenty errors. None of the examples produced no
errors.

In variant D, the results show that most of the errors are greater than
10 with just four of the ciphertexts solved without errors. Over 58% of
the decrypted cryptograms have ten errors or more, and approximately 32%
have twenty errors or more with just 6% having less than ten errors.

Variant E produces slightly worse results than variant B, with 80% of
examples having been successfully solved without any errors and 20% de-
crypted with four errors or less when using the order 4 model. The order
5 PPMC model produces slightly better results. When we examine only
the best solution, 86% of examples are successfully decrypted without any
errors, and 13% solved with one or two errors, and one of the decrypted
cryptogram having four errors. When we examine the ten best solutions,
almost all the examples have no errors. Figure 3.1e presents the results of
variant E using the order 5 model.

We also experimented with using our relative entropy calculation method
using Bzip2 for Variant F. But due to the block-sorting nature of the Burrows-
Wheeler algorithm, the calculation of some of the relative entropy code-
lengths ended up being negative. (It is not clear why this is so but it maybe
due to the additional text aiding the run-length encoding of the blocks).
Thus these results could not provide us with a complete picture with re-
gards to the average number of errors. However, none of the positive results
for Variant F did show any success, with a quite high number of errors.

The number of errors produced form variant G is shown in Figure 3.1f.
It is clear that the number of errors for each decrypted ciphertext is much
higher, with most of the errors being greater than 15. Also none of the

cryptograms offered no errors and just seven cryptograms were decrypted
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with the number of errors being less than 10.

Results regarding the average number of automatic cryptanalysis errors
for the 110 cryptograms we tested with each of the variants are presented in
Tables 3.5a and 3.5b. Table 3.5a presents the average number of errors when
just examining the best solution, and Table 3.5b shows the average errors for
the ten best solutions. Clearly, the best performing model overall is PPMD35
without update exclusions using the order —1 correction model (Variant B).
However, Variant E, which used PPMC5 without update exclusions along
with order —1 correction, presents excellent results as well. On the other
hand, the other Variants A, C and D produce poor results. Interestingly,
the PPM without update exclusions method, which typically shows slightly
worse performance at the compression task, shows better performance at

decryption here.

Table 3.5a: Average number of errors for each different variant when exam-

ining the best solution.

Variants A B C D E F G
Average errors 17.37 0.20 18.29 16.21 0.22 - 16.59

The average number of errors produced for Variant G (using Gzip2)
is presented in the last column in the table. The results show that the
Gzip compression scheme is not an effective way of recognising the valid
decryptions as it also results in a high number of errors. In addition, the
time that is needed to break the ciphers (by using Gzip and Bzip2) using the
relative entropy calculation is considerably longer (as it involves repeatedly

compressing the training text), and thus also makes the use of these methods

Table 3.5b: Average number of errors for each different variant when exam-

ining the ten best solutions.

Variants A B C D E F G
Average errors 17.45 1.38 1831 16.28 1.40 - 16.83
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impractical.

Like other cryptanalysis approaches, very short cryptograms can often
not always be solved correctly, even with a better model of English as Irvine
claimed in his thesis (Irvine, 1997). This is because these cryptograms are
inherently ambiguous as a simple substitution unicity distance is about 26,

according to this equation:

H(k)  log27!
R log27—-12

U= 26.2

where U represents the unicity distance, H (k) denotes the entropy of the key
space and R is the plaintext redundancy in bits per character (Irvine, 1997).
For an order 4 model, the unicity distance is equal to 33.2, since the

entropy of this model is Hy = 1.953. For an order 5 model,

log27! log27!

= = =31.8.
log27—Hs log27—1.822

So, we can not expect to correctly decrypt cryptograms shorter than this
number of symbols. However, in our approach (Variant B), many different
ciphertexts with short lengths (ranging from 20 to 40) have been tried,
and in almost all cases the right solution (without any errors) was found.
Table 3.6 lists some examples of different cryptograms with short lengths

and the successfully decrypted text.

Table 3.6: Examples of decryption of short cryptograms (length from 20
to 40 characters; the compression codelength 4 and compression codelength
ratio H = h/n, where n is the number of characters in the text, are shown in

the first two columns).

h H |Ciphertext Successfully decrypted text
30.77|1.538|fvwdwradbsdfvwdobija the end of the world
37.76|1.716|yniseiyre sgosynisbrvy the return of the suit
64.71|2.231|fbapipuymswykpdbpubjypvumttyt how i learned to love glasses
68.50(2.140|cgjgulg flrmuglfv clomxli clwhyf never eat more than you can lift

74.84|2.138|vlmvhhvwwnlemtnwqljqgmrlmekl mjrlasrw |an appalling silence on gun control

77.12|2.142|larrpmvcernjil jm txm mc sspmtaw mpa r  |merry christmas and a happy new year

72.72|1.818|igecq crgirwqerkbenfrnbfrwhr wq xcbinfgwq|silence is one great art of conversation
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The average execution time that is needed to determine the correct solu-
tions of the different ciphertexts that were experimented with is presented in
Table 3.7. The time which is required to automatically break each ciphertext
is based on the execution of the PPMD model without update executions and
with specific order —1 codelength value (Variant B). The average elapsed
time in seconds for each cryptogram is computed by running the program
ten times on a Dell Inc.-Inspiron 5537 laptop computer (Intel(R) Core(TM)
i7-4500U CPU @ 1.80GHz) and then calculating the average. The results
show that our method only requires a few seconds on average to decrypt the
ciphertexts, and usually the solution is found in less than six seconds of CPU
time. This is compared with an average execution time of approximately
76 minutes for a ciphertext of 64 letters in the research by Ravi and Knight
(2008), and with a reported decryption time of two and a half minutes for a
ciphertext of the same length in the paper by Nuhn et al. (2013). However,
these are not directly comparable because different processors are being used

in these experiments using different set-ups.

Table 3.7: Average time needed to automatically cryptanalyse different sim-

ple substitution ciphertexts.

Cipher Length | 20 50 | 150 | 300
Time (Sec) 2.22 | 2.61 | 3.26 | 5.57

3.5.1 Experiments with Different Buffer Sizes

Our search method requires maintaining a current sorted list of the best
solutions using a buffer of fixed size. In order to determine which is the
best or the most appropriate buffer size for obtaining the best results, we
performed four further experiments using different buffer sizes: 100, 200, 500
and 1000. Table 3.8a and 3.8b present results regarding the average number
of errors for the 110 ciphertexts when using the different buffer sizes.

According to these tables, it is clear that buffer sizes of 500 and 1000
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Table 3.8a: Average number of errors when using different buffer sizes when

examining just the best solution.

Array size 100 | 200 | 500 | 1000

Average errors | 1.35 | 0.70 | 0.20 | 0.20

Table 3.8b: Average number of errors when using different buffer sizes when

examining the ten best solutions.

Array size 100 | 200 | 500 | 1000

Average errors | 2.33 | 1.70 | 1.38 | 1.38

produced the smallest average number of errors. In contrast, using a buffer
size of 100 resulted in a greater number of errors (1.35 compared to 0.20).
However, a trade-off in favour of a smaller buffer size is that it uses up less
memory and execution speed is faster. The program has not been optimised
for memory usage and execution speed; however, we have noticed that the

execution time doubled with the size of the buffer.

3.5.2 Improving Results Using a Word-based PPM Com-
pression Method

This section discusses the experimental results obtained when using a further
word-based model for the automatic cryptanalysis. As word-based schemes
(W|W as described in Table 3.1) for the English text outperform character-
based ones in terms of compression rate, the order 1 word-based model is
used here to examine the effect of applying this model in a secondary post-
processing stage (Algorithm 2 as above) on the output from Algorithm 1
to see if this results in better cryptanalysis. This model is used to re-
order the solutions produced from Algorithm 1 according to the codelength
value calculated for each solution using the same model. The smaller the
codelength value, the more closely the solution represents the valid decrypt.

Some sample output is shown in Table 3.9 for the ciphertext ‘cgjgulg
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Table 3.9: The ten best character-based solutions compared to the ten best

word solutions for the ciphertext ‘cgjgulg flrmuglfv clomxli clwhyf’

Ten best character solutions: |Ten best word solutions:

65.994 |never eat more than you can dist 64.041 |never eat more than you can lift
66.439 |never eat more than you can spit 68.016 |never eat more than god pan just
68.030 |never eat more than you can sixt 68.219 |never eat more than you can list
68.388 |never eat more than you can 1lift 69.054 |never eat more than you can gift
68.453 |never eat more than you can gift 69.441 |never eat more than god can just
68.528 |never eat bore than you can dist 69.804 |never eat more than you can fist
68.745 |never eat more than you can list 70.263 |never eat more than you can spit
68.974 |never eat bore than you can spit 70.456 |never eat more than you can wilt

70.333 |never eat wore than you can dist 70.678 |never eat more than you can jist

70.565 |never eat bore than you can sixt 70.804 |never eat more than you can gilt

flrmuglfv clomxli clwhyf’ which compares the ten best character-based so-
lutions found by Algorithm 1 with the ten best word-based solutions found
by Algorithm 2. The sample shows that the correct solution was found by
the word-based method (with the semantically correct last word ‘lift"), but
in comparison this was ranked in fourth place using the character-based
method. Interestingly, both methods have found similar solutions except
for the third and last words which in most cases are correctly spelt although
semantically incorrect.

This technique was tried only for variants found to be the best per-
forming, Variants B and E. For variant B, five examples out of fourteen
(which had been found by the character-based method to have three errors
or less), were successfully solved with no errors when this secondary word-
based method was applied. For variant E, six examples out of fifteen (which
had been found to have three errors or less), are also solved with no errors
using the same method.

After applying this word-based method, 92% of cryptograms were now
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solved without any errors, with an improvement of 5% and 6% for both
variants B and E over when just using the order 5 character-based model.
Furthermore, all the cryptograms of length longer than 44 are successfully
solved without any errors. Table 3.10 shows how the word-based approach

improves the average number of errors for the best solutions.

Table 3.10: Average number of errors when examining the best solution.

Order 4 Order 5
. ‘Word-based
Variants | character | character
(W|W) model
model model
Variant B 0.29 0.20 0.13
Variant E 0.31 0.22 0.13

Table 3.11 presents the summary of results when using our new method
Variant B (the best performing method) on the ciphertexts that we experi-
mented with. Overall, the results show that we are able to attain a very high
success rate, with about 92% of cryptograms being correctly solved with no

errors and 100% being decrypted with just three errors or less.

Table 3.11: Summary of results for Variant B.

Order 4 character model | Order 5 character model | Order 4/5 character
Frrors & word-based models
No. of | Cumulative No. of | Cumulative No. of | Cumulative
ciphertexts | percentage |ciphertexts| percentage |ciphertexts | percentage
(%) (%) (%)

0 89 80.91 96 87.27 101 91.82
<1 101 91.82 105 95.45 106 96.36
<2 108 98.18 109 99.09 109 99.09
<3 110 100.00 110 100.00 110 100.00
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3.6 Conclusions

In this chapter, a new method for the plaintext recognition and automated
cryptanalysis of substitution ciphers in a ciphertext only attack has been de-
scribed. An efficient use of the compression-based approach for cryptanalysis
has been demonstrated. The fundamental idea behind our approach relies
on using a compression method as an accurate way of measuring information
in the text. Results on 110 cryptograms ranging from 20 to 300 characters
have shown a very high success rate with approximately 92% of the cryp-
tograms correctly decrypted without any errors and 100% with just three
errors or less (which were due to alphabetic mapping errors). This efficient
method works well on even very short ciphertexts and eliminates any need
for human intervention. This is a significant improvement over the earlier
work done by Irvine (1997) which used a different version of PPM and a
different search algorithm.

Three main compression methods have been investigated: prediction by
partial matching (or PPM), Gzip and Bzip2. Various character-based PPM
variants were investigated as well, in order to ascertain the most effective
scheme when applied to the problem of automatically breaking simple sub-
stitution ciphers. The following variants of PPM were used: PPMD and
PPMC, with further variations such as the use or not of update exclusions,
a technique found to improve compression but which we have found leads
to better decryption if it is removed. Both of these variants were further
investigated with a new variation of the PPM algorithm where a specific
codelength value is assigned when encoding all order —1 contexts. The ex-
perimental results showed that this new combination, PPM without update
exclusions using specific order —1 codelength values, noticeably outperforms
other compression schemes including Gzip and Bzip2. We have also applied
a word-based PPM model as a post-processing stage which led to further

improved results.

82



Chapter 4

Designing and Evaluating a
New Automatic
Cryptanalysis of
Transposition Ciphers Using

Compression

4.1 Introduction

In this chapter, we propose a novel compression-based approach applied to
the problem of automatically decrypting transposition ciphers. This seeks to
address research questions 1 and 2 that were detailed in Section 1.2, and ful-
fils objectives 2 and 3 in Section 1.3. In essence, we investigate how to devise
better solutions to the plaintext recognition problem by using transposition
ciphers as a test bed. Furthermore, we propose further methods also based
on using compression to automatically insert spaces back into the decrypted
texts in order to achieve readability (as we perform our experiments on En-

glish alphabetic characters). This helps to address both research question 4
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and objective 4 that were listed in Chapter 1. Specifically, the use of PPM
and Gzip compression methods are examined in this chapter.

A preliminary form of the work in this chapter was published in the Pro-
ceedings of the 15th International Conference on Cryptology And Network
Security (CANS2016), Springer International Publishing (Al-Kazaz et al.,
2016).

This chapter is structured as follows. Section 4.2 gives a brief description
of the previous research into the cryptanalysis of transposition ciphers. In
Section 4.3, we illustrate the motivation for the use of our compression-based
approach as a method of tackling the plaintext recognition problem and the
word segmentation problem. Section 4.4 presents the new computerized
method and the pseudo-code we developed for this work. Our experimental

results are discussed in section 4.5. Section 4.6 summaries the results.

4.2 Related Work

Various cryptanalysis methods have been used to break transposition ci-
phers, starting with traditional attacks such as exhaustive search and ana-
gramming, and then leading to genetic algorithm based methods. Anagram-
ming is a well-known traditional cryptanalysis method. It is the method
of repositioning disarranged letters into their correct and original posi-
tions (Sinkov, 1966; Seberry and Pieprzyk, 1989). Although, the traditional
attacks are more successful and easy to implement, but automating these
types of attack is not an easy issue. It requires an experienced and trained
cryptanalyst. Mathematical techniques have been used in these attacks but
the main role tends to be on the human expert. The final decision is made by
the human cryptanalyst with regards to which algorithm is used in attack.

Many researchers have been interested in developing and automating
cryptanalysis against transposition ciphers. One of the earliest papers was
published by Matthews (1993). He presented an attack on transposition

ciphers using a genetic algorithm. The fitness function was based on the
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frequency of the common English digrams and trigrams that appear in the
deciphered text. A test text with a length of 181 characters was selected,
and three targeted keylengths (7, 9 and 11) were experimented with. This
attack was successful at key size of 7, with no successes at key length of 11.

Clark (1994) published three algorithms that used simulated annealing,
genetic algorithm and tabu search in the cryptanalysis of transposition ci-
phers. The fitness function used also depended on the frequencies of digrams
and trigrams. By using a genetic algorithm, the success rates of block sizes
of 4 and 6 ranged from 5 to 91%. Tabu search was faster than the other
algorithms while simulated annealing was the slowest but with a high per-
formance of solving ciphertexts especially with large periods. It was able to
correctly recover 26 of the key elements, for a transposition cryptosystem of
period 30 with 1000 ciphertext characters. For periods less than 15, each of
the algorithms could effectively recover the key (Clark, 1998). Dimovski and
Gligoroski (2003) came to similar conclusions presented in Clark’s publica-
tion. For a key of length 15, a ciphertext of at least 800 letters are required
to recover 12 key elements out of 15. For a key of length 30, at least 1000
ciphertext letters are required to recover 25 key elements out of 30. The
fitness function that was used in their paper was based on bigram statistics
due to the expensive task of calculating trigram statistics.

Toemeh and Arumugam (2007) used a genetic algorithm and a slightly
modified list of the most common trigrams than were used in Clark paper to
break transposition ciphers. Three additional trigrams were included with
the Clark table. The recovered key for a ciphertext of 1000 letters was 15
out of 15 key elements.

Genetic algorithms for the cryptanalysis of transposition ciphers were
published by Grundlingh and Van Vuuren (2003); Bergmann et al. (2008).
The fitness function they used in their research was based on the discrepan-
cies between the expected number of occurrences of a digram in a natural
language text (per N characters), and the observed count of this digram in a

ciphertext of length N. Grundlingh and Van Vuuren (2003) concluded that
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genetic algorithmic attacks were not effective against columnar transposi-
tion ciphers since this cipher is more robust than substitution ciphers. This
attack was only successful at a key size of 7 with a ciphertext of 2519 charac-
ters (Grundlingh and Van Vuuren, 2003). A transposition cipher (Bergmann
et al., 2008) with a key size of up to 12 and 500 characters in length was
able to be deciphered correctly using the proposed algorithm.

Giddy and Safavi-Naini (1994) used a simulated annealing approach and
bigrams based cost function for the automatic decryption of transposition
ciphers. A success rate of at least 80% was obtained in the following cases:
for a key of length 15 with a ciphertext of 255 characters, key of lengths 20,
25 with a ciphertext of 500 characters. The algorithm was not be able to
correctly decrypt short ciphers of 100 characters or less, which they noted is
the supposed behaviour of all cryptanalysis schemes. Ciphertexts that have
dummy characters added to them were decrypted poorly as well. (In the
case of a short block at the end, a dummy character, sometimes an ‘X’, is
used to fill in the blank cells).

The use of genetic algorithms was specifically explored by Delman (2004).
Different key lengths ranging from 2 to 30 with different ciphertext lengths
were examined. None of these algorithms were able to correctly recover all
the plaintext and achieve full success. Delman (2004) concluded that the
genetic algorithm-based approach did not deserve further effort and further
investigation in traditional cryptanalysis techniques was warranted rather
than for genetic algorithms.

Other local search metaheuristics for the automatic cryptanalysis of
transposition ciphers were proposed by a number researchers (Russell et al.,
2003; Chen and Rosenthal, 2012; Wulandari et al., 2015; Jassim, 2017). Russell
et al. (2003) used a dictionary to recognise the plaintext and bigrams to in-
dicate adjacent columns. This attack was able to decipher a ciphertext of
300 letters with a key of length 15, a ciphertext of 400 letters with a key
of length 20 and a ciphertext of 625 letters with a key of length 30. Chen
and Rosenthal (2012) used bigram statistics as the basis for calculating the

86



score function. This method showed a very high accuracy rate with a key
of length 20 and 2000 ciphertext characters. To solve a key of length 30
with 80% probability of success, a ciphertext of 2000 letters were required.
The fitness function used in the paper published by Wulandari et al. (2015)
was based on bigram and trigram statistics. Texts with different sizes (665,
822, 980, 2316, 3812) were tested. This algorithm was able to decrypt the
ciphertexts correctly with key lengths up to 9; with key length of 10, it was
able to find half of the correct answers.

An enhanced hill climbing algorithm with two phases for the automatic
cryptanalysis of the columnar transposition cipher was proposed by Lasry
et al. (2016). It implemented specialized adaptive scoring, using two new
developed scoring methods: the adjacency score and the alignment score.
The calculation of these scores was based on using bigram statistics. For
shorter keys, an improved implementation of the scoring methods using
trigram statistics was performed. These methods were used in the first
phase in order to achieve better resilience to errors. Quadgram statistics,
which have a very good selectivity, was used as a basis for calculating the
score function in the second phase. This work addressed much longer keys,
for example, it was able to recover key with length of 30 elements with 180
ciphertext letters.

Irvine (1997) has been the only researcher to date to have used a com-
pression algorithm to break a cipher system, substitution ciphers. However,
a similar approach has yet to have been applied to other ciphers systems,
including transposition ciphers.

In this chapter, we propose a novel compression-based approach for the
automatic recognition of the plaintext of transposition ciphers with a 100%
success rate. We use different key lengths (ranging from 2 to 12) and dif-
ferent ciphertext lengths, even very short messages with only 12 characters
while the shortest messages used in most of the previous research were not
less than 100 characters. In this chapter, we present both a method for

automatically decrypting transposition ciphertexts and then automatically
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achieving readability subsequently. This automatically inserts spaces into
the decrypted text, while most of the previous works did not address or refer

to this fundamental aspect of the cryptanalysis.

4.3 Compression as a Cryptanalysis Method, us-
ing PPM Compression Codelength Metric and
the Gzip Compression Method

Our approach adopts a similar method found successful for simple substitu-
tion ciphers as described in the previous chapter. One of the critical factors
for a successful attack, and often the most critical one, is the evaluation
function (scoring function). In our approach here, compression schemes are
used as effective scoring methods and calculate the compression codelength
value for each possible permutation in order to evaluate the quality of each
of them. Achieving readability is the second step of our approach which in
turn also depends on compression methods. We use PPM with the Viterbi
algorithm for the word segmentation problem and this is explained in the
next subsection. (Another new method that has been developed again using

PPM for segmenting words is described in detail in the next section).

4.3.1 Word Segmentation Using the Viterbi Algorithm

Word segmentation is the process of determining the smallest unit (word)
in a meaningful context (Alhawiti, 2014). It is an important task for some
natural language processing applications, such as speech recognition.
Character-based PPM models with the use of the Viterbi algorithm
(Viterbi, 1967) has achieved a high accuracy rate for the word segmentation
of English text (Teahan, 1998). This model works by searching through all
alternative segmentations of the text (by inserting spaces after each letter
for each possible segmentation). For each letter, there are two possible seg-

mentations: the letter itself and the letter followed by a space. The segmen-
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tation is chosen by selecting the one that has the best encoding performance
as determined by the PPM compression model.

There are 2" possible sequences to be searched, where n denotes the
sequence length. However, much of the search space is eliminated using
the Viterbi algorithm through the substantial pruning of underperforming
sequences. How this works is shown in Figure 4.1. For each similar context,
after the processing of each letter, only one path should remain using the
PPM model. For example, the substring “tob” would have eight search
possibilities and the most probable segmentations would be identified by
the PPM model as illustrated in Figure 4.1. An order 2 PPM model is used
in the example and the poorer performing paths which have the same order
2 context are discarded. The best encoding sequence for the three order 2
contexts “ob, _b and b_" are 16.3, 20.9 and 21.3 bits respectively. These
sequences are the highest probability paths that are kept and subsequently
expanded with the remaining five poorer performing paths being discarded
(as shown in the figure), as these paths can not perform better than the

other paths.
(Bits)
- tob 16.3

to
/ T tob 213

t
\ ___~tob 209
to
T teb 282
(null)
t—ob— 191
tio / j—
/ Tt eb 251
t_
—o—b—264
/ e
t_ o
Tt o b 281

Figure 4.1: Segmentation search tree (Teahan, 2018).
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4.4 The New Method

In this section, we give a full description of the new approach for the auto-
matic cryptanalysis of transposition ciphertexts. As before, the basic idea of
our approach depends on using a compression model as a method of comput-
ing the ‘codelength’ of each possible permutation. This compression model
and the codelenghth metric represent the evaluation function that can be
relied on it to automatically rank alternative permutations and recover cor-
rect messages. In our method, the PPMD, PPMC and Gzip compression
methods are used in the experiment.

Our new approach consists of two essential phases. The main idea of the
first phase (Phase I) depends on trying to break a ciphertext automatically
using a transposition of specified size by exhaustively computing all possi-
ble transpositions. The second phase (Phase II) focuses on inserting spaces
automatically (segmenting words) into the decrypted message which is out-
putted from the first phase (since we remove spaces from the ciphertext at
the beginning of Phase I, as is traditional).

The pseudo code for the first phase of our method is presented in Al-
gorithm 3. The first step in this algorithm focuses on removing all the
non-alphabetical characters (including spaces) from the ciphertext (see line
1). At this stage, the text comprises just 26 alphabetic English characters.
The algorithm then starts to try all possible key sizes and for each key
size a permutation is performed over each cryptogram block trying to get
a permutation with a smaller codelength value which represents the correct
solution (lines 4 to 13). Each cryptogram is divided into blocks according
to the key size (lines 5 and 6). Then, a permutation is performed over each
cryptogram (line 7). For each possible permutation, a codelength value is
calculated (lines 8 to 11). The text is compressed using PPM with an order 5
character-based model of English trained on nineteen novels and the Brown
corpus as this has been found the most effective (line 9). The resultant size

of the compressed text is used to accept or reject the particular permutation.

90



Gzip is also used for calculating the codelengths. Permutations with smaller
codelengths are kept in the priority queue as shown in line 10. The hope is
that the cryptogram that has the smallest codelength value will represent
the valid decrypted message. We have found in fact that the smaller the

codelength, the more closely the cryptogram resembles the model.

Algorithm 3: Pseudo-code of the main decryption phase (Phase I)

for transposition ciphers.

Input : ciphertext

Output: decrypted text
1 remove all non-alphabet characters and spaces from the ciphertext;
2 maximum size of Q (priority queue) + 3;
3 maximum key-size of transposition < 12;

4 foreach key-size do

5 if ciphertext-length mod Key-size = 0 then
6 divide the ciphertext into blocks according to key-size;
7 perform a permutation over each ciphertext blocks;
8 foreach possible permutation do
9 calculate codelength value using PPM or Gzip compression model;
10 store a permutation with smaller codelength value in Q;
11 end
12 end
13 end

14 return the priority queue ‘Q’ (the ‘decrypted text’)

As the output of the previous phase are texts without any spaces, the
second phase focuses on segmenting words. Two alternative ways have been
investigated in this phase. The first method which is called “Phase II-A”,
examines all further decrypted message possibilities when a space is inserted
after each character. In this new method, possibilities with smaller code-
length values (best performing possibilities) are kept in a priority queue, and
those which showed poor codelength values are pruned (see Algorithm 4).
For each of the text produced as output from Algorithm 3 (lines 3 to 19), it
repeatedly tries to improve the codelength of each solution (lines 5 to 17) by
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adding a space after each character. For each character in the text, another
new solution is created after a single space character is added (lines 8 to
12). Compression codelength then is applied to rank the solutions. PPM
and Ggzip compression models are also used again in this method.

Referring to Algorithm 4 in more detail, a number of queues are used
during the processing. Queue ‘Q’ is the output produced from Algorithm 3.
Q1 contains text permutations of possible segmentations (i.e. alternative
space insertions) for a text being processed from Q. Q3 is being dynamically
built through an iterative improvement process (lines 3 to 19) and is used
to produce the output from the algorithm. Alternative segmentations are
searched on lines 7 to 13, and these are placed in a temporary queue Q2.
If there is an improvement in codelength value, then Q2 is swapped for Q1
(line 15). This iterative improvement process is repeated (lines 5 to 16) until
there is no further improvement. Then the first text in Q1 is added to Q3
which is returned by the algorithm (line 20).

The second method, which is called Phase II-B, uses the Viterbi algo-
rithm to find the best possible segmentation (see Algorithm 5). For each of
the text produced as output from Algorithm 3, the Viterbi algorithm is used
to search for the best segmentation sequence and this then is stored in Q1
(lines 2 to 5) which is used to return the result (line 6). PPM compression
model is used again here.

In our method, we have used two variants of the PPMD and PPMC mod-
els, one without update exclusions (Teahan, 1998) and the standard PPMD.
This was done to investigate which is the most effective model when applied
to the problem of the automatic cryptanalysis of transposition ciphers.

In order to clarify and organize our experiments and results, we divide
our different experiments into different variants with a specified label as
shown in the Table 4.1.

According to Table 4.1, the first variant is called Variant A. In this
variant, PPMD and PPMC without update exclusions are used to calculate

the compression codelength values. This is used for the main decryption
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Algorithm 4: Pseudo code of the second phase (Phase II-A) for trans-

position ciphers.

10

11

12

13

14

15

16

17

18

19

20

Input : the priority queue ‘Q’ from Phase I
Output: segmented decrypted text

maximum size of Q1, Q2 (priority queues) < 5;
maximum size of Q3 (priority queue) <+ 1;

foreach text in Q do

Q1 + text;
repeat
Q2 <+ empty;
foreach text in Q1 do
foreach character in a text do
create a new text with a single space added;
calculate codelength value for the new text using PPM or Gzip
compression model;
store new message that have a smaller codelength value in Q2;
end
end
if there is any improvement in the codelength value then
Ql « Q2
end
until there is no improvement in the codelength value;
add the first text in Q1 to Q3;
end
return the best segmented decrypted text from Q3;

Algorithm 5: Pseudo code of Phase II-B for transposition ciphers.

Input : the priority queue ‘Q’ from Phase I
Output: segmented decrypted text
maximum size of Q1 (priority queue) + 1;
foreach text in @ do
use the Viterbi algorithm to search for the best segmentation sequences;
store the text that have the best segmentation which present in Q1;
end

return the best segmented decrypted text from Q1;
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Table 4.1: Variants used in our experiments

Variants | Phase 1 Phase II-A Phase I1I-B
PPM with no PPM with no
Variant A
update exclusions | update exclusions
PPM with no PPM with no
Variant B
update exclusions update exclusions
Variant C | PPM PPM
Variant D | PPM PPM
Variant G | Gzip Gzip

phase—Phase I and for Phase 1I-A as well. All cryptograms can be solved
using an order 5 model. In the second variant, Variant B, PPMD5 and
PPMC5 without update exclusions are used in both phases, Phase I and
Phase II-B. The Viterbi algorithm is used in the second phase.

Different versions of PPMD and PPMC compression models are used
in the third variant, which is named “Variant C”. The standard PPMD5
and PPMC5 (with update exclusion) are used as the method for calculating
the codelength values for both phases (Phase I and Phase II-A). Variant D
uses the standard order 5 PPMD and PPMC, as well in the calculation of
the codelength values. For the second phase, Phase II-B, these compression
models are also used as a basis for segmenting the words.

For variant G, we examine the effectiveness of another type of compres-
sion method which is the Gzip compression system. The Ggzip algorithm is
used in the main decryption phase and for the second phase “Phase II-A”,

as the basis for computing the codelength metric.

4.5 Experimental Results

In our method, the order 5 PPMD and PPMC models were trained on

nineteen novels and the Brown corpus using 26 and 27 character (including
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space) English text. In our experiments, we use a corpus of 90 cryptograms
(samples of which are in Appendix II) with different lengths from different
resources as testing texts. The lengths of the ciphertexts that have been
examined in our experiments range from 12 letters to over 600 letters. Ta-

ble 4.2 presents a sample of decryption.

Table 4.2: Output sample from the different phases for the ciphertext ‘prcy
rotg ypah oedm’. (Compression codelengths are listed in bits with the lowest

5 results presented for Phase-II-A.)

Phase I Phase II-A Phase II-B

53.73 cryptographydemo | 42.85 cryptography demo | cryptography demo
50.94 cryptographyde mo
59.41 cryptographyd emo
59.68 cryptograph ydemo
67.64 c ryptographydemo

A random key is generated to encipher the original text (plaintext) for
each run. After that, the attack is performed on the ciphertext. Different
key sizes (period or permutation size) and different ciphertexts with differ-
ent lengths have been experimented in our method. The results of the first
phase—Phase I, by using the PPM method, showed that all the valid de-
cryptions were recognised and all the ciphertexts were able to be decrypted
successfully with no errors. In our method for all the different variants,
except Variant G, we were able to achieve a success rate of 100%. We have
used different key size (block sizes) from two to twelve. We experimented
with 90 different ciphertexts with different lengths (including very short)
and all can be solved correctly. In contrast, by using the Gzip algorithm in
the last variant (G), we were only able to achieve a success rate of 94% as
result of Phase I.

For each variant, we have performed two types of experiments (except
for Variant G). Since in Phase I we deal with texts without any spaces

included, our first experiment is done by using PPMD and PPMC models
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after being trained on 26 English characters (instead of 27) as the basis
for calculating codelengths. In the other experiment, PPMD and PPMC
compression models trained on 27 character English texts were used. As
stated, the output result from these two experiments is the same achieving
a 100% success rate.

For the second phase, we used the Levenshtein distance as a metric
for measuring the differences between the plaintext and the decrypted text
with spaces. Levenshtein distance is a commonly used string metric for
counting the differences between two strings (such as insertions, deletions or
substitution) (Levenshtein, 1966). In our approach, in almost all cases the
correct (readable) solution was found. The next table (Table 4.3) provides

example output (with spaces) produced by the different variants.

Table 4.3: Example of solved cryptograms with spaces by different variants.

Variants Number Decrypted message (with spaces)

of errors

Variant A 2 an excuse is worse and more terrible than a lief or an excuse
is a lie guarded

Variant B 0 an excuse is worse and more terrible than a lie for an excuse
is a lie guarded

Variant C 3 anexcuse is worse and more terrible than a lief or an excuse
is a lie guarded

Variant D 1 anexcuse is worse and more terrible than a lie for an excuse
is a lie guarded

Variant G 14 anexcuseisworse andmoreterrible thanalieforanexcuseisalie-

guarded

Figure 4.2 illustrates segmentation errors produced from the different
variants when the PPMD models are used. For variant A, Figure 4.2a shows
the number of errors for each testing text as a result of the second phase.
Clearly, we can see that most of the space insertion errors are less than two.

The results show that 50% of texts have correctly inserted spaces with no
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errors, and more than 45% of the cryptograms are solved with three errors or
less. The errors that occurred in some of the solved cryptograms were minor
ones, all involving spaces only. There are just three examples that showed
either 6 or 7 errors, the main reason being that each of these examples had
unusual words on particular topics not occurring in the training data.

Variant B produces less errors than other variants. The results show
that 59% of the decrypted texts have correctly added spaces with no errors.
Furthermore, over 36% of the examples are spaced with just two or one
errors, and about 4% with three errors. Just two examples had six errors
and all of these are shown in Figure 4.2b.

Variant C produces slightly worse results, with just 46% of examples
having successfully inserted spaces without any errors with about 45% are
spaced with three errors or less. In addition, nine of the solved cryptograms
have four errors or more. Figure 4.2c shows the results of variant C. On the
other hand, variant D presents very good results, producing similar results
to variant B but with a few minor differences.

Figure 4.2¢ presents the number of errors for variant G as a result of
phase two. Clearly the number of errors for each solved cryptogram is much
higher, in this case with most of the space insertion errors being greater
than 15. Moreover, none of the examples produced no errors and there is
just five decrypted texts that were spaced with less than 10 errors.

The average number of space addition errors for each variant using both
main models, PPMD and PPMC, is presented in the next two tables (Ta-
ble 4.4 and Table 4.5). These represents the average number of errors for
the 90 testing text that have been experimented in this work. Slightly better
results are gained from using PPMD models than using PPMC. It is clear
that variant B produces the best results although other variants produce
good results as well. Again, what is interesting is that the PPM method
without update exclusions, which usually does slightly worse at the task of
compression, does better here at decryption. The last column in the table

presents the number of average errors for variant G. The results show that
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Table 4.4: Average number of errors for the phase two variants. (The PPMD

model is used for the first four variants.)

Variants A B C D G

Average errors 1.02 0.69 1.30 0.81 21.62

Table 4.5: Average number of errors for the phase two variants. (The PPMC

model is used for the first four variants.)

Variants A B C D G

Average errors 1.08 0.71 1.33 0.83 21.62

the Gzip algorithm is not a good way for finding the right solutions with a
high average number of errors.

In order to investigate further the accuracy of our spaces insertion algo-
rithms in segmenting the 90 decrypted texts, we used three further metrics:
recall rate, precision rate and error rate. Recall is calculated by dividing
the number of correctly segmented words (using a compression model) by
the total number of words in our original 90 testing texts. The error rate
metric is calculated by dividing the number of incorrectly segmented words
by the total number of words in the testing texts. Precision is calculated by
dividing the number of correctly segmented words by the total number of
words which are correctly and incorrectly segmented.

According to Table 4.6, it is clear that the first four variants, which are
based on PPMD compression models, achieved very high recall and precision
rates for segmenting the 90 decrypted texts. All the errors generated, which
are quite low, are those on unusual words not found in the training texts.

The average elapsed time (for variant B) that is required to find the valid
decryptions of the transposition ciphertexts with different lengths for differ-
ent key size is presented in Table 4.7. This table shows the average execution

time for decrypting three ciphertexts of different lengths, for both the main
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Table 4.6: Recall, precision and error rates for the different variants on

segmenting words.

Recall Precision Error

Variants rate% rate%  rate%
Variant A 95.08 95.08 4.92
Variant B 96.30 96.38 3.70
Variant C ~ 93.91 94.34 6.09
Variant D 95.71 95.91 4.29
Variant G 3.96 16.11 96.04

decryption and spaces insertion phases combined (labelled as ‘Both’ in the
table) and just for the main decryption phase (Phase I). The time which is
needed to insert spaces automatically into the decrypted text (the second
phase) is based on the execution of Phase II-A (slightly additional time is
needed when using Phase II-B). The average execution time in seconds for
each ciphertext is calculated by running the program ten times and then

calculating the average.

Table 4.7: Average time required to automatically cryptanalysis ciphertexts

with different lengths for different keys size.

Key size
Ciphertext
Time (in seconds)
length
5 6 7 8 9 10
(Letter)
Both | Phase I | Both | Phase I | Both | Phase I | Both | Phase I | Both | Phase I | Both | Phase I
40 0.72 0.68 0.73 0.69 0.77 0.75 0.97 0.93 2.40 2.38 12.07 12.06
150 1.12 0.70 1.14 0.73 1.20 0.80 1.77 1.35 13.75 10.06 48.07 47.07
300 3.39 0.71 3.62 0.75 3.71 0.87 4.86 1.97 23.01 20.41 95.32 92.41

In summary, the results showed that we are able to achieve 100% success
rate as a result of the first phase (Phase I) either by using standard PPM
or PPM with-no update exclusions models. We manage to recognise all the
plaintexts and solve all the cryptograms in this phase without any errors.

In the second phase, we add spaces to these texts to improve readability

by using two methods. The first method is based on a priority queue while
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the second method uses the Viterbi algorithm to segment words. Our results
show that almost all decrypted texts are segmented correctly. The maxi-
mum average number of errors (due to space insertions in incorrect places),
using PPM compression models, is just slightly > 1.0 (for Variant C). This
variant depends on the standard PPM compression model as a basis for cal-
culating the codelength values in Phase II-A. The results showed that by
using the Viterbi algorithm (Phase II-B), we can gain slightly better results
than the other method (Phase II-A), but it needs slightly more execution
time. Variant B showed the best results. This variant depends on using
a PPM without update exclusions model using the Viterbi method as the

basis for segmenting words.

4.6 Conclusions

We have introduced another use of the compression-based approach for
cryptanalysis. A novel universal automatic cryptanalysis method for trans-
position ciphers and plaintext recognition method have been described in
this chapter. Experimental results have shown a 100% success rate at au-
tomatically recognising the true decryptions for a range of different length
ciphertexts and using different key sizes. This effective algorithm completely
eliminates any need for human intervention. In this chapter, we provided
pseudo-code for two main phases: automatically decrypting ciphertexts and
then automatically achieving readability using compression models to auto-
matically insert spaces into the decrypted texts, as we performed our exper-
iments on ciphertexts for alphabetic English characters, while most previous
works did not address this essential problem.

Two compression schemes have been investigated in our research which
are Predication by Partial Matching (PPM) and Gzip. The experimental
results showed that PPM notably outperforms the other compression scheme
Gzip. We also found that both PPM models (PPMD and PPMC) and both

PPM variants were able to recognise all the valid decryptions. Concerning
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automatically adding spaces (word segmentation) afterwards, PPM without
update exclusions performs slightly better than the standard PPM method
(with update exclusions). Also, slightly better results are obtained from the
using of PPMD models rather than PPMC.

The algorithm was able to achieve a 100% success rate using the PPM
compression model on different amounts of ciphertext ranging from very
short messages (12) to 625 characters, and with different key lengths ranging
from 2 to 12. Larger key sizes and longer ciphertext length can be used, but

of course it will need longer execution times to perform the decryptions.
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Chapter 5

Designing and Evaluating a
New Automatic

Cryptanalysis of Playfair
Ciphers Using PPM

5.1 Introduction

The purpose of this chapter is to explore the use of a compression model for
the cryptanalysis of Playfair ciphers. Our new approach to the automatic
decryption of Playfair ciphers uses PPM compression to tackle the plaintext
recognition problem. This helps to address research question 1 in Section 1.2,
and fulfils objectives 2 and 3 that were listed in Section 1.3. We rank the
quality of the different plaintexts using the size of the compressed output
in bits as the metric. A cryptanalysis of an extended Playfair cipher for
a 6 x 6 grid is also examined. We also use another PPM-based algorithm
to automatically insert spaces into the decrypted texts in order to achieve
readability; this accomplishes both research question 4 and objective 4 in

Chapter 1.
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The work in this chapter is based on a conference paper that has been
presented at the International Conference on Historical Cryptology (His-
toCrypt 2018) and published as part of the Northern European Association
for Language Technology (NEALT) Proceedings Series by Linkoping Uni-
versity Electronic Press (Al-Kazaz et al., 2018a).

This chapter is organised as follows. The next section covers a discus-
sion of Playfair’s weaknesses. Section 5.3 presents related work and prior
cryptanalytic methods against Playfair ciphers. Our PPM based method
and the simulated annealing search we use for the cryptanalysis of Playfair
ciphers are explained in section 5.4. A detailed description of the main prin-
ciples of the new methodology is provided in this section. Section 5.5 covers
the experimentation and results obtained with the conclusions to our find-
ings presented in the final section. The PPM-based cryptanalysis method
achieves considerable improvement over previous methods with state of the

art performance.

5.2 Playfair’s Weaknesses

The Playfair cipher suffers from some major weaknesses. An interesting
weakness is that repeated bigrams in the plaintext will create repeated bi-
grams in the ciphertext. Furthermore, a ciphertext bigram and its reverse
will decipher to the same pattern in the plaintext. For example, if the cipher-
text bigram “CD” deciphers to “IS”, then the ciphertext “DC” will decrypt
to “SI”. This can help in recognising words easily, especially most likely
words. Another weakness is that English bigrams that are most frequently
occurring can be recognised from bigram frequency counts. This can help
again in guessing probable plain words (Smith, 1955; Cowan, 2008).
Breaking short Playfair ciphertexts (less than 100 letters) without good
depth of knowledge of previous messages or with no probable words has
proven to be a challenge. Past research has often used much longer ci-

phertexts—for example, Mauborgne (1914) developed his methods by de-
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ciphering a Playfair ciphertext of 800 letters. Also, the Playfair messages
that were circulating between the Germans and the British during war had
enough depth with many probable words to make them easily readable be-
tween these two sides, with no predictor of decrypting success for short
messages on anonymous topics (Cowan, 2008). However, the two conditions
that the message is short with little depth (no probable words) apply to
cryptograms published by the American Cryptogram Association.

5.3 Related Work

Different cryptanalysis methods have been invented to break Playfair ci-
phers using computer methods. A genetic algorithm was proposed by Negara
(2012), where character unigram and bigram statistics were both used as a
basis for calculating the fitness function. The efficiency of the algorithm
is affected by different parameters such as the genetic operators, cipher-
text length and fitness function. Two ciphertexts were examined and de-
crypted in this paper: one with 520 characters and the other with 870 char-
acters. Hammood (2013) presented an automatic attack against the Playfair
cipher using a genetic algorithm. The fitness function calculation was based
on character bigram, trigram and four-gram statistics. A ciphertext of 1802
letters was examined in this paper and 22 letters out of 25 were successfully
recovered using this method.

Simulated annealing was successful at solving lengthy ciphers as reported
by Stumpel (2007). However, he found that short Playfair ciphers of 100
letters or so were unable to be solved. Simulated annealing was also used
with a tetragraph scoring function for the automatic cryptanalysis of short
Playfair ciphers by Cowan (2008). Cowan managed to solve seven short ci-
phertexts (80-130 letters) that were published by the American Cryptogram
Association.

In summary, several different cryptanalysis methods have been proposed

aiming to break Playfair ciphers with varying degrees of success. However,
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most of these methods were focused on long ciphertexts of 500 letters or
more, except Cowan’s method (Cowan, 2008). A large amount of informa-
tion that is provided by long ciphertexts makes breaking them easier while
short Playfair ciphers are extremely difficult to break without some known
words. In our work, even Playfair ciphertexts as short as 60 letters (without
a probable crib) have been successfully decrypted using our new universal
compression-based approach. We use simulated annealing in combination
with compression for the automatic decryption. Moreover, we have also ef-
fectively managed to break extended Playfair ciphers that use a 6 x 6 key

matrix.

5.4 The New Method

This section describes our new method for the automated cryptanalysis
of the Playfair cipher. In this chapter, we show how to use the PPM
compression-based approach to quickly and automatically recognise the valid
decrypt in a ciphertext only attack specifically against Playfair ciphers.
The scoring function should be precisely adapted to the cipher type and
its related problem as Lasry (2018) confirmed in his thesis. Moreover, the
use of several scoring methods might be required at different stages of the
cryptanalysis method to end up with an effective and successful attack. Re-
covering the first correct key is the most challenging step of an attack espe-
cially for hill climbing starting with random keys. These keys often contain
a very high number of errors and a large keyspace. At this stage, developing
a scoring function that provides better resilience to errors is preferred. After
recovering some of the correct keys, a more selective scoring method is more
applicable. Higher order n-grams is an example of this method. Thus, it is
often necessary to develop an adaptive specialized scoring method that pro-
vides a good trade off between resilience and selectivity when the standard
scoring methods are not effective Lasry (2018). However, in our adaptive

statistical compression approach, the PPM scoring method can handle and
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tackle all these issues in one effective method. The PPM compression model
is used as a single scoring metric for ranking the quality of each putative
decryption.

In our experiments described below, we use nineteen novels and the
Brown corpus converted to 25 letter English by case-folding to upper case
with I and J coinciding for the 5 x5 grid and 36 alphanumeric characters
for the 6 x 6 grid to train our models.

Our new method is divided into two main phases. The first phase (Phase
I) is based on trying to automatically crack a Playfair ciphertext using a
combination of two approaches, which is the compression method for the
plaintext recognition and simulated annealing for the search. The second
phase (Phase II) is based on achieving readability by automatically adding
spaces to the decrypted message produced from phase I, as the spaces are
omitted from the ciphertext traditionally.

A variation of an order 5 PPMD model without update exclusions has
been used in our experiments for both Phase I and Phase II. This variation
is where symbol counts are updated for all contexts unlike standard PPM
where only the highest order contexts are updated until the symbol has
been seen in the context. In our experiments, this variation has proven
to be the most effective method that can be applied to the problem of
automatically recognising the valid decryption for Playfair ciphers, but also
in other experiments with simple substitution and transposition ciphers.

Simulated annealing is a probabilistic method for approximating the
global optimisation of a given function in a large search space. It is a de-
scendant of the hill-climbing technique. This latter technique is based on
starting with a random key, followed by a random change over this key such
as swapping two letters, to generate a new key. If this key produces a better
solution than the current key, it replaces the current one. Different n-graph
statistics were used as the scoring function to judge the quality of solu-
tions. After millions of distinct random changes, this technique attempts to

discover the correct key.

107



The weakness of this approach lies in the possibility of being stuck in
local optima, where the search has to be abandoned and it is necessary to
restart all over again. Simulated annealing (inspired by a process similar to
metal annealing) is similar to hill-climbing with a small modification that
often leads to an improvement in performance. In addition to accepting
better solutions, simulated annealing also accepts worse solutions in order
to avoid the local optima. This approach permits it to jump from local
optima to different locations in order to find new optima. The probability
of the acceptance of the specific solution is dependent on how much the
score value is worse. The formula for calculating the acceptance probability
is (Cowan, 2008):

1

Pa="am

where e is the exponential constant 2.718, d denotes the difference between
the score of the new solution and the score of the current solution, and
T is a value called temperature (further details concerning this parameter
are described below). Whenever the difference is small, the probability of
accepting the new solution is high, while if this solution is much worse
than the current one (the difference is large in magnitude), the probability
becomes small. The probability value is also influenced by the temperature
T. Initially, the algorithm starts with a high temperature value, then it is
reduced (‘cooled’) at each step according to some annealing schedule, until it
reaches zero or some low limit. As the temperature drops, the probability of
acceptance also decreases and when T is set to zero, the simulated annealing
becomes identical to the hill climbing technique.

The main idea of using simulated annealing for the breaking of Playfair
ciphers is to modify the current key in the hope of producing a better key.
This is based on an approach proposed by Cowan (2008). This can be done
by randomly swapping two characters. However, this random change is not

enough to effectively break the Playfair cipher by itself. It will usually re-
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sult in a long search process that often gets stuck within reach of the final
solution. So other modifications are needed such as randomly swapping two
rows, swapping two columns, reversing the key, and reflecting the key ver-
tically and horizontally (flipping the key top to bottom and left to right).
Using a mix of these modifications can lead to the valid solution. For ex-
ample, swapping two rows will help rearrange rows if they are out of order,
as it is very important that rows be in the correct order according to the
encipherment rules (Lyons, 2012).

During the whole search process, the hope is that the best plaintext
solution that appears is also the correct plaintext. Alternatively, the whole
process must be restarted all over again and the value of the temperature
should be reset to its original high value (Cowan, 2008). An important
aspect of this whole process is the metric that is used to rank the different
plaintexts (such as our PPM method). A good metric needs to be able to
distinguish effectively between good and poor plaintexts.

Algorithms 6 and 7 present the pseudo code for the first phase of our
method. In a preprocessing step prior to the applications of these algorithms,
all non-letters including spaces, numbers and punctuation were removed
from the ciphertext if a grid of 5 x5 is chosen. If a 6 x 6 grid-width is selected,
all non alphabetic letters and numbers were removed from the ciphertext
instead. According to selected grid-width, a random key is generated (line
1) and the deciphering operation is initiated using this key. In order to
rank the quality of the solutions, the PPM compression method is used by
calculating the codelength value for each possible solution (lines 3 and 4).
For each iteration, a sequence of changes is performed over the generated key
in order to find a solution with a smaller codelength value which represents
the valid decryption (lines 5 to 33). The greater the number of iterations,
the more likely a solution will be found, but longer execution time will be
needed. It is important to note here that we have used negative scores based
on the PPM codelengths values in order to maximize rather than minimize

scores for the simulated annealing process as per the standard approach

109



adopted in various solutions (Cowan, 2008; Lyons, 2012).

The temperature for the simulated annealing based algorithm is initially
set to 20 and reduced by 0.2 in subsequent iterations. (The smaller this
amount is, the more likely a solution will be found but this will also result
in longer execution time). The initial temperature value is essentially de-
pendent on the cryptogram’s length. The shorter the ciphertext, the lower
the temperature will be needed and vice versa. We have found in experi-
ments with different length ciperhetexts that for cryptograms of a length of
around 70, an initial temperature will need to start at around 10, but for
the cryptogram of 700 characters, a temperature at 20 or so is effective.

For each temperature, 10,000 keys are tested then a reduction in the
temperature is performed (see lines 9 to 32 in the algorithm). A loop is
executed 10,000 times (lines 10 to 31) that modifies the key in the hope of
finding a better key with a smaller codelength value. A sequence of differ-
ent modifications over the key is performed in lines 11 to 17. The encrypted
text is then deciphered using the modified key and the codelength value is
calculated using the PPM compression method (lines 19 and 20). Then, the
difference is calculated between the new codelength value and the previous
one. If the new value (line 21) is better (that is, the codelength value is
smaller), then the maximum score is set to the new score (line 22), other-
wise a probability of acceptance is calculated (line 24) if the temperature is
greater than 0 (line 23). In this case, a random number between 0 and 1
is generated, and if the calculated probability is greater than this number,
the modified key is accepted (see lines 26 to 27). If we have a new best

score, then the old one is replaced (line 29) and systematic rearrangements
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are performed by calling Algorithm 7.

Algorithm 6: Pseudo code of the main decryption phase (Phase I)
for Playfair ciphers.

Input : ciphertext, Playfair grid-width to be either 5x5 or 6 x6
Output: deciphered-text

1 generate a random key according the Playfair grid-width selected

2 currentBestKey < randomKey

3 decipher the ciphertext using the currentBestKey and calculate the codelength value
using the PPM compression method

4 currentBestScore < — PPM-codelength score (decipher-text)

5 for Iteration +— 0 to 99 by 1 do

6 maxKey < currentBestKey
7 decipher and calculate the codelength value using the PPM compression method
8 maxScore < — PPM-codelength score (decipher-text)
9 for Temp < 20 downto 0 by 0.2 do
10 for Count < 0 to 9999 by 1 do
11 modify maxKey by choose a random number between (1,50):
12 if the number is 0 then swap two rows, chosen at random
13 if the number is 1 then swap two columns, chosen at random
14 if the number is 2 then reverse the key
15 if the number is 3 then reflect the key vertically, flip top to bottom
16 if the number is 4 then reflect the key horizontally, flip left to right
17 if any other number then swap two characters at random
18 newKey < modified-maxKey
19 decipher and calculate the codelength value using the PPM compression
method
20 newScore < — PPM-codelength score (decipher-text)
21 calculate diff < newScore — maxScore
22 if dif f >=0 then {maxScore < newScore; maxKey < newKey}
23 else if Temp >0 then
24 calculate probability < exp(dif f/Temp)
25 generate a random number between (0,1)
26 if probability > randomNumber then
27 ‘ {maxScore < newScore; maxKey < newKey}
28 if maxScore > currentBestScore then
29 currentBestScore < maxScore; currentBestKey < maxKey
30 Make systematic rearrangements(ciphertext, currentBestKey,
| currentBestScore)
31 end
32 end
33 end

34 return the deciphered text with the best key

111



Algorithm 7: Make systematic rearrangements

Input : ciphertext, currentBestKey, currentBestScore

Output: currentBestKey, decipher-text

1 flag < true
2 while flag do
3 flag < false
4 perform systematic mutations over the currentBestKey:
5 decipher and calculate the codelength value using the PPM compression method
6 newscore < — PPM-codelength score (decipher-text)
7 if newscore > currentBestScore then
8 flag < true
9 currentBestScore <— newScore; currentBestKey < newKey
10 continue outer While loop
11 perform systematic row-swaps and column-swaps over the currentBestKey:
12 decipher and calculate the codelength value using the PPM compression method
13 newscore < — PPM-codelength score (decipher-text)
14 if newscore > currentBestScore then
15 flag < true
16 currentBestScore < newScore; currentBestKey < newKey
17 continue outer While loop
18 perform swapping of four characters:
19 decipher and calculate the codelength value using the PPM compression method
20 newscore < — PPM-codelength score (decipher-text)
21 if newScore > currentBestScore then
22 flag < true
23 currentBestScore <— newScore; currentBestKey < newKey
24 continue outer While loop
25 end

26 return currentBestKey, decipher-text

These include mutations (lines 4 to 10 in the new algorithm, Algo-
rithm 7), row swapping and column swapping (lines 11 to 17) and an exhaus-
tive search over all 4! possible permutations of each group of four symbols
(lines 18 to 24). Swapping single pairs of letters results in the search getting
stuck in local maxima too often, so we added the swapping of all possible
combinations of 4 symbols to try to avoid that. Trying 3, 5, or even more
combinations of symbols is possible, but of course the higher the number,
the search starts getting very expensive, so 4 provides a reasonable compro-

mise. Finally, the deciphered text is returned with the smaller codelength
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value which represents the best solution found (line 34, Algorithm 6). This
has proved adequate for the solution of most ciphers, but if necessary, it is
still possible to iterate the attack several more times.

Concerning the second phase of our approach, Algorithm 8 illustrates the
pseudo code for this phase ‘word segmentation phase’. PPM is again applied
to rank the solutions. Two alternative methods have been investigated in this
phase (the same as for the transposition ciphers experiment in the previous
chapter). However, only the Viterbi method is presented here as it showed a
slightly better result than the other method. The Viterbi algorithm is used in
this phase to find the best possible segmentation. In this algorithm, looping
over the deciphered text (that was produced as output from Algorithm 6)
is performed in line 2. A word segmentation algorithm based on the Viterbi
algorithm is then used to search for the best performing segmentations to
keep in a priority queue, and those which showed poor codelength values are
pruned (see lines 3 to 5). The best segmented deciphered text is returned

in the last line (line 6).

Algorithm 8: Pseudo code of Phase II for Playfair ciphers
Input : the deciphered text from Phase I

Output: segmented deciphered text

1 maximum size of Q1 (priority queue) < 1;

2 do
3 use the Viterbi algorithm to search for the best segmentation sequences;
4 store the text that have the best segmentation which present in Q1;

5 while the end of the deciphered text;

6 return the best segmented deciphered text from Q1

5.5 Experimental Results

In this section, we discuss the experimental results of our approach. As
stated, in our method the order 5 PPMD model has been trained on a
corpus of nineteen novels and the Brown corpus using 25 English letters

(when a 5 x5 grid is used) and 36 alphanumeric characters (when a 6 x 6
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grid is used). Regarding the cryptograms test corpus, 75 different cryp-
tograms were chosen at random from different resources including cryp-
tograms published by the American Cryptogram Association, cryptograms
published by geocache enthusiasts, Royal NZ navy historical cryptogram
and examples from Mauborgne (1914), Gaines (1956), Friedman and Lam-
bros (1985), Singh (2000) and Negara (2012). Samples of which are listed
in Appendix III. Cryptogram lengths ranged from 60 to 815 letters.

A sample trace of a decryption is shown in Figure 5.1 for the cryptogram:
‘dohrxnwpscqusfrwchrnpctsehagvpstsfaprdtuipwolacgqupfwptslagsizbedxq-
usfwscosfraevstngqu’. This shows the best score as it changes during the
execution of Algorithm 7 for the main decryption phase. The scores are in-
creasing (i.e the codelengths are decreasing). The solution of this ciphertext
is a proverbial wisdom that has been attributed to Damon Runyon: “It may
be that the race is not always to the swift nor the battle to the strong but that is
the way to bet”. This ciphertext is one of the short cryptograms (82 character
long) that have been published by the American Cryptogram Association,
which usually publishes 100 ciphertexts every two months including one or
more Playfair ciphers, as a challenge to its members (Cowan, 2008). Cowan
has stated that it is extremely difficult to break short messages of 100 letters
or so, especially when there are no suspected probable words or cribs and
very little depth of knowledge of previous messages. However, our method
is able to solve the following examples in addition to the other cryptograms
that were listed by Cowan as well as even shorter ciphertexts of 60 letters

or so.
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Iteration: 35

Mutation gain: -235.55 rkdavmetontxtherndacobotalwaystothescruflqrthemrtxt-
letothestfmpbiktxthatokthewaytomatx
key: znmbcwagerfhilduvxyktsqpo

Mutation gain: -232.89 rkdavmetontxtherndacobotalwaystothescrufbtrthemrtxt-
letothestmfpbzktxthatokthewaytomatx
key: inmbcwagerfhzlduvxyktsqpo

Mutation gain: -230.84 ridavmetontxtherndacobotalwaystothescrufyorthemrtxt-
letothestxdpbzitxthatoithewaytomatx
key: knmbcwagerfhzlduvxyitsqpo

Mutation gain: -226.48 ridavmetontxtherndacobotalwaystothescrufyorthemrtxt-
letothestucpbkitxthatoithewaytomatx
key: znmbcwagerfhklduvxyitsqpo

2-Mutation gain: -225.29 ridayketobtxtherbdeconotalwaystothescrufyorthekrtxt-
letothestucnamitxthatoithewaytoketx
key: zbkncwagerfhmlduvxyitsqpo

Mutation gain: -221.66 ridaybetoktxtherkdeconotalwaystothescrufyorthebrtxt-
letothestucngmitxthatoithewaytobetx
Key:zkbncwagerfhmlduvxyitsqpo

Mutation gain: -220.15 ridaybetvstxthersaeksnotalwaystotheskrufyorthebatxt-
letothestukngmitxthatksthewaytobetx
Key: zcbnkwagerfhmlduvxyitsqpo

Mutation gain: -215.91 ridaybetvstxthersaemsnotalwaystothesmrufyorthebatxt-
letothestumngkitxthatmsthewaytobetx
Key: zcbnmwagerfhklduvxyitsqpo

Mutation gain: -207.60 rmdaybetvstxthersaeisnotalwaystothesirufnorthebatxt-
letothestningkmtxthatisthewaytobetx
Key: zcbniwagerfhklduvxymtsqpo

Mutation gain: -204.66 itzaybetvstxthersaeisnotalwaystotheswiufnorthebatxt-
letothestorngbutxthatisthewaytobetx
Key: dcbniwagerfhklzuvxymtsqpo

Mutation gain: -195.04 itmaybetvstxthersaeisnotalwaystotheswiufnorthebatxt-
letothestomngbutxthatisthewaytobetx
Key: dcbniwagerfhklmuvxyztsqpo

Row-swap gain: -184.98 itmaybethvtxthervaeisnotalwaystotheswiftnorthebatxt-
letothestzongbutxthatisthewaytobetx
Key: dcbniwagerfhklmtsqpouvxyz

Row-swap gain: -162.46 itmaybethatxtheraceisnotalwaystotheswiftnorthebatxt-

letothestrongbutxthatisthewaytobetx

key: dcbnifhklmtsgpouvxyzwager

Figure 5.1: Example trace of decryption of a cryptogram of 82 letters from

the American Cryptogram Association.
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A second example in Figure 5.2 illustrates the robustness of our compres-
sion approach by showing how it is able to solve a very short cryptogram.
The ciphertext is a 60 letter sentence (a quote by Garrison Keillor): Cats
are intended to teach us that not everything in nature has a purpose. The
best solution for this example is ‘catsareintendedtoteachusthatnotexeryt-
hinginxnaturehaoapurposew” with the best codelength value -137.68 result-

ing in only two errors: x—v in ‘exerything’ and o—d in ‘hao’

Iteration: 89
-164.32 catsareintencectoteakiusthhonotexerythinginxnature-
hatapurposid

Mutation gain: -161.21 catsareintencectoteakiusthaonotexerythinginxnature-
hatapurposid

Mutation gain: -160.36 pltsapeintencectoteadbusthahnotexerythinginxnature-
oatapurposid

Mutation gain: -159.28 pltsapeintendedtoteacbusthahnotexexbthinginxnature-
oatapurposic

Mutation gain: -156.08 datsareintendedtoteakiusthaonotexexfthinginxnature-
hatapurposic

Mutation gain: -165.29 katsareintendedtoteakiusthatnotexexythinginxnature-
haoapurposic

Mutation gain: -154.12 ratsakeintendedtoteakiusthatnotexeocthinginxnature-
hasapukposic

Mutation gain: -150.31 ratsileintendedtotealausthatnotexeokthinginxnature-
hasapudiospc

2-Mutation gain: -149.97 ratsileintendedtotealhusthatnotexevcthinginxnature-
hasapudiosev

Mutation gain: -143.16 ratsaceintendedtoteachusthatnotexelvthinginxnature-
hasapucposev

Mutation gain: -138.52 catsareintendedtoteachusthatnotexerythinginxnature-
haoapurposev

Mutation gain: -137.68 catsareintendedtoteachusthatnotexerythinginxnature-
haoapurposew

Figure 5.2: Example trace of decryption of a short cryptogram of 60 letters.

A third example is a Royal New Zealand navy historical case of length
102 letters: KXJEY UREBE ZWEHE WRYTU HEYFS KREHE GOYFI WTTTU OLKSY

CAJPO BOTEI ZONTX BYBWT GONEY CUZWR GDSON SXBOU YWRHE BAAHY USEDQ.
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On the second of August, 1943, Japanese destroyer Amagiri rammed and
sank the American patrol boat PT-109, which was under the command of
US Naval Reserve Lieutenant and future President John Kennedy. After
arriving ashore, Kennedy sent this ciphertext, which was encrypted using a
Playfair cipher (Klima and Sigmon, 2012). The execution trace is shown in

Figure 5.3.

Iteration: 12
-310.41 dteoatoniogeninevostinactionineaacketxtstraitxtkombri-
sswderesucopeuwrewoftgeanixrequistanyinformatbohx

Mutation gain: -305.07 dteoatonioveninegostinactioninaracketxtstraitxtkombri-
sswderesucopexyrewoftvegaixrequistanyinformatbohx

Mutation gain: -303.05 dteoatonioveninepostinactioninbracketxtstraitxtkomari-
sswderesucogeqcrewoftveghixrequistanyinformatbohx

Mutation gain: -299.99 dteoatoniogeninepostinactionineaacketxtstraitxtkomari-
sswderesucoveuwrewoftgeanixrequistanyinformatbohx

Mutation gain: -291.27 dteoatonioleninepostinactioninbpacketxtstraitxtkomari-
sswderesucovexcrewoftlepvixrequistanyinformatbohx

Mutation gain: -290.34 dteoatoniopeninelostinactioninblacketxtstraitxtkomeai-
sswderesucovexcrewoftpelvixrequistanyinformatbohx

Row swap gain: -267.17 dtboatoneopeninelostinactioninblacketxtstraitxtwomeae-
sswderesucovexcrewoftpelvixrequestanyinformatiohx

Mutation gain: -262.98 ptboatoneoweninelostinactioninblacketxtstraitxtwomile-

sswperesucovexcrewoftwelvexrequestanyinformationu

Figure 5.3: Example trace of decryption of the 102 letter Royal NZ navy

historical ciphertext.

The following example is a puzzle cryptogram of 96 letters from the geo-
cache world (https://beaching.wordpress.com/2008/08/08/puzzles-part-3/): ‘sa
cb av hm ka do st th ps mn gqs fr hm sx bt su tw tg wg mh mc ok sd
oz ts fy tw ts vc ec gs gt wl dl sr oz tb tl ps tg ex cm co dl kh
wl wg mh ex av’. Figure 5.4 presents the intermediate results and the final
solutions produced by each iteration for this cryptogram. According to this
example, iteration 89 produced the best solution with the best score with a

compression codelength value of 215.81 and is the valid decrypt.
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Iteration:

Iteration:

Iteration:

Iteration:
Iteration:

Iteration:

Iteration:

Iteration:

Iteration:

Iteration:

0

Mutation gain:

Mutation gain:

24

30

Row swap gain:

89

Row swap gain:

100

-424.28 oftmxozhxkftpoobinzifiqazhyapenfvdvbgyhzirlapflhopw-

svdoptorthybvuvutialhepcvinvbreriolutazuvgyhzrexo
-311.85 tuemuirecolstaurytrtforxreafmstoopanilercekgbsulaty-

dopatiekedanalondtfulsmonytancheckandeqloilerchui

-311.01 adpcdhowwhsvalarcaucedofowleyldmailiumwoseheatrelar-

bailaonmemlilgatstorelylscalikeesectswpgaumwokedh

-309.15 hkxepmmaskbitesratokhdtvmabasedaeferelamlamntbinetn-

refetlpgwhereeceithinesevaterbcalxleismecelambcpm

-304.26 amsegplaysonasarealmcarblaterstcrustitalsniymeinsa-

hirusaezkstatsorodtbinsrmreastpensnkodyboritalpegp

-215.81 thecoxordinatesarenorthfortydegrexeszeropointfiveth-

rexetwowestseventyfivedegreestwopointfivezerotwox

Figure 5.4: Solutions produced during selected iterations for a puzzle cryp-

togram of 96 letters.

Our method was also able to solve a 6 x 6 Playfair cipher with a few
minor errors. The next sample is a cryptogram that was posted on a puz-

zles forum originating from geocache enthusiasts (http://members2.boardhost.

com/barryispuzzled /msg/1500564217.html):
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lpgtj zfpvf ndsvb joamd j4mva nrfeu nbhis nhcru chhfs otble kbueg
gejtv kgscn kq3ez kgwix eavej nstda usbfj cvkgs cbtqz 5nmga ncOjc
xeiue nhtnb rbwhg krabz 1jOmn dierf rabfq vjvkf dnrbk nkdOu cbwhn
dsdlv vpvha gvucb bnyjc vtzpf brrab gtmga j4fmt ryjbu vldtq fsnts
awfhl pvthc Ohpvv obvmd jvra7 zhfew irgh3 8qpck r5z7r gawlk biyjg
h3w8w qfau3 v7dra bfnbe jgkke kvhfc Odsjy raghx bjbgm bhhgc hnwyj
bxgkk ekvhf dcvjo uebxr rschl jwmvu bxlbi nmraw ckbnh gljrn dtchl
vipur raihj 4fmoq jbrbj zfmtr yjbur acjck vughh tchjv rauxc hrzkc
hchff elnob mvvjh cgerf rgawu xchrz uxvfb fcgbt mdfjh chgrf sujep

gbrej yjrgy jchmv eseue ckgau ejrbr uvlej mqljv mhOmv txhz

Part of the execution trace is shown in Fig. 5.5.

Iteration: 1

-1604.59 jolxlygoodandwelldoneyouhavecrackedanextendedplayfaircipherusinga-
sixbysixgridtheadvantageofusingall3Oslphanumericxcharactersisthatyoucangivet-
hecoxordinatesasnumbersandnotwordsbutbecarefultogetthefullkeycorxrecttoavoid-
awastedjourneynowofftonorthztdegrexesx3poinwytzwest3degrees5x9xointix2atheca-
cheishidxdenunderthestilepleaseensureitishidxdenfromviewxwhenyouputitbackjus-
tincaseyouhavenotgotxthekeycompletelycorxrecttheminutesarenorthtwentyninedec-
imalfouronefivewesttwentytwodecimaloneonesevenwehopetherewereenoughcribsinth-

etexttohelpyouonyourway

-1594.57 jolxlygoodandwelldoneyouhavecrackedanextendedplayfaircipherusinga-
spbbysixgridtheadvantageofusingall50klphanumericxcharactersisthatyoucangivet-
hecoxordinatesasnumbersandnotwordsbutbecarefultogetthefullkeycorxrecttoavoid-
awastedjourneynowofftonorthztdegrexesw3poinxytzwestbdegreeswp3pointiw2atheca-
cheishidxdenunderthestilepleaseensureitishidxdenfromviewxwhenyouputitbackjus-
tincaseyouhavenotgotxthekeycompletelycorxrecttheminutesarenorthtwentyninedec-
imalfouronefivewesttwentytwodecimaloneonesevenwehopetherewereenoughcribsinth-

etexttohelpyouonyourway

Figure 5.5: Example solutions produced for a 6 x 6 Playfair cryptogram.

The experimental results of Phase I, when the order 5 PPM method
without update exclusions is used, showed that most of the cryptograms are
successfully decrypted with no errors. Table 5.1 presents the results from

testing ciphertexts for various lengths. The results overall showed that we
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are able to attain very high success rates and 65 ciphertexts out of 75 were
efficiently solved. Also, 100% of ciphers of length greater than 120 were
decrypted. The results achieved have outperformed the previous state-of-

the-art results (Cowan’s results).

Table 5.1: Results when testing ciphertexts with different lengths.

Ciphertext| 60-79 | 80-99 [100-119(120-149|150-199(200-815

Length

No. of 9 21 16 11 8 10
Ciphertexts

Success 67 81 81 100 100 100
Rate (%)

Referring to the second phase of our method, as the spaces are omitted
from the ciphertext traditionally, this phase focuses on segmenting the de-
crypted messages that are outputted from the first phase. The edit distance
(or Levenshtein distance) metric is used to evaluate how the decrypted mes-
sage is differentiated from the original message by counting the minimum
number of the removal, insertion, or substitution operations required to
transform one message into the other (Levenshtein, 1966). In almost all
cases, the correct readable decryptions were efficiently found as illustrated
in Figure 5.6.

The number of space insertion errors for each testing cryptogram is plot-
ted in Figure 5.7. We can see that the number of errors for most cryptograms
are very low and the correct segmentations are obtained in most cases. The
average space insertion errors for the ciphertexts that were experimented

with in Phase II is less than one error.
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Ciphertext
Decrypted text

Ciphertext

Decrypted text

Ciphertext

Decrypted text

Ciphertext

Decrypted text

Ciphertext

Decrypted text

Ciphertext

Decrypted text

byntlbneonnuimmzgnhpbkxngmfqoqnmugclgmeuersugqpnzigqbqyipilqtku
cats are intended to teach us that not exerything in nature ha

o a purpose

kuinbrnuikcngmhuvgtnnmybkgbromrukngmmnknqdmpvgniignkoneumokgp-
gxytqgsu
experience is the worst teacher it gives the test before

presenting the lesson

paghgncnndqyhfqugqgmeusxgmfqdpkggbitqdkunurqioinnlpgvqvpbmlwh-
uqoimigbzka
a n egotist is a man who thinks that if he hadnt been born

people would have wondered why

qmghblxytkyfihogkunugiqogmgngmgincimtlgmmpnuikiwszgmgiknliqrb-
hafgtigtldnnqgtxz
the grass may be greener on the other side of the fence but

there s probably more of it to mow

hmfnuwfntufdbgushmtugmckgnutfpmatuzfmbfntylxqpthrkucnrkrmcqda-
mibarurntumucoffdummbrnki
the likeliness of a thing happening is inversely proportional

to its desirability fin agles first law

dohrxnwpscqusfrwchrnpctsehagvpstsfaprdtuipwolacgqupfwptslaqsi-
zbedxqusfwscosfraevstngqu
it may be that the race is not always to the swift nor the

battle to the strong but that is the way to bet

Figure 5.6: Example of solved ciphertexts with spaces inserted after Phase

II1.

Figure 5.7: Segmentation errors produced as a
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Table 5.2 lists the high recall and precision rates and the low error rate

produced by our segmentation algorithm.

Table 5.2: Recall, precision and errors rates for our method for word seg-

menting the decrypted output produced from Phase I.

Recall (%) Precision (%) Errors (%)
97.19 96.7 2.81

The execution times required to decrypt a number of Playfair ciphertexts
by our method are presented in Table 5.3. This table shows the decryption
time in seconds for Phase I of our method. The results indicate that our
method produces reasonable decryption times, and in most cases the suc-
cessful decrypts of longer ciphertexts were obtained after only one or two

iterations.

Table 5.3: Decryption times for Phase I for different ciphertexts.

Ciphertext 60|71|86(100(124(185(|235|526|730
Length (Letter)
Time (Sec) 457(539|507| 93 | 36 | 17 |135|107|101

5.6 Conclusions

An automatic cryptanalysis of Playfair ciphers using compression has been
introduced in this chapter. A new effective method has been developed
for a number of challenging classical cryptographic cases. In particular, a
combination of simulated annealing and PPM compression was used in the
automatic decryption method. The compression scheme was found to be an
effective method for ranking the quality of each possible permutation as the
search was performed. In 65 of the 75 ciphertexts that were experimented
with (without using a probable word) for different lengths (from as short
as 60 letters up to 815), almost all the correct solutions were found. The

exception was just a few very short ciphers which resulted in one or two
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minor errors in the decrypted output. Moreover, we have also managed to
decrypt an extended Playfair cipher for a 6 x 6 key matrix.

In addition, a compression-based method was used to segment the de-
crypted output by insertion of spaces in order to improve readability. Ex-
perimental results show that the segmentation method was very effective
producing on average less than one space insertion error with a recall and

precision of over 96% for the ciphertexts that were tested.
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Chapter 6

Automatic Cryptanalysis of
Classical Arabic Ciphers

Using Compression

6.1 Introduction

The previous chapters investigated the automatic cryptanalysis of differ-
ent ciphers for the English language, and then the PPM compression-based
method used was found to be very effective. This chapter seeks to address
an open question, which is related to one of our main research questions
(research question 3) in Chapter 1, which was to find out whether this new
approach is applicable to other languages. This question is important be-
cause a solution for one language does not necessarily mean it will be a corre-
sponding solution to other languages, especially for non-related languages.
In order to overcome this gap in the research related to our cryptanaly-
sis approach, we need to apply this new approach to another non-related
language. We choose the Arabic language specifically because it has charac-
teristics that differentiate it from other languages and because Arabic has a
rich morphology which presents challenges for natural language processing

and cryptographic systems. Furthermore, we choose this language specifi-
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cally to ascertain whether the Arabic language provides a greater challenge
for decryption.

Despite the large number of Arabic speakers and with Arabs being
among the first to use encryption systems as well as having success in break-
ing them, unfortunately encryption systems and cryptanalysis methods for
Arabic are very few in comparison to other languages such as English. The
purpose of this chapter is to generate three main Arabic ciphers (substi-
tution, transposition, Playfair) and explore the use of compression models
for the automatic cryptanalysis of these ciphers; this fulfils objective 5 in
Section 1.3. Using compression schemes adapted for the Arabic language
as one way to tackle the Arabic plaintext recognition problem, as we do
in our work, is a completely new approach and not tried before in the lit-
erature. The automatic cryptanalysis of these ciphers is the first step to
solve some historical Arabic ciphertexts. In addition, further algorithms
also based on using an adapted PPM compression model of Arabic text are
also introduced to automatically insert spaces to the decrypted texts in or-
der to achieve readability. This helps to address both research question 4
and objective 4 that were outlined in Chapter 1.

In this chapter, different Arabic corpora used in our experiments are de-
scribed in section 6.2. In order to measure the effectiveness of compression
models and to facilitate the solution of short cryptograms using our method,
the entropy of Arabic is investigated in Section 6.3. An overview of related
work on the cryptanalysis of Arabic ciphers is presented in Section 6.4. Sam-
ples of simple substitution, transposition and Playfair ciphers using Arabic
language are reviewed as well in this chapter. Cryptanalysis methods for the
three different Arabic ciphers and their experimental results are described.

The conclusions are stated in the last section.
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6.2 Arabic Language Corpora

A corpus can be defined as a body of structured texts that is typically stored
in machine-readable form for the purpose of statistical analysis (Teahan,
1998). Different Arabic corpora are introduced in this section in order to
explore the most effective corpus to be used in our cryptanalysis methods for
the Arabic language ciphers. These corpora are varied to include classical,
modern and mixed Arabic texts. Classical Arabic is the language of the pri-
mary religious book of Islam—Holy Quran—(1,400-year-old) and other ancient
books from that epoch (Dukes and Habash, 2010), while modern Arabic is
the language of most of the current Arabic publications and printed Arabic
media (Alghamdi and Teahan, 2017). In terms of corpora size, our generated
corpora range from small to large encoded using a UTF-8 scheme.

Concerning the classical Arabic text, three different corpora have been
set up with different sizes (small, medium and large) as presented in Ta-
ble 6.1. These corpora consist of various classical text files of different gen-
res that have been extracted from the BACC corpus (Teahan and Alhawiti,
2013). The Bangor Arabic Compression corpus (BACC) is a 31-million
words corpus collected from different sources such as magazines, books and
websites. This corpus contains texts from a wide range of genres containing
both classical and modern Arabic.

Three different corpora with different sizes and genres are also con-
structed to represent modern Arabic text. Further details are presented
in Table 6.1. These modern corpora are derived from Corpus A (Alkahtani,
2015). Corpus A is a modern corpus recently published with different gen-
res which covers several current modern standard Arabic areas. This corpus
is collected from the bilingual newspaper Al-Hayat website, and from the
open-source online corpus, OPUS. It consists of 27-million Arabic words.

Referring to the last corpora type (Mixed), classical and modern Arabic
texts are used to produce the corpora. The small and the medium size Mixed

corpora are elicited from both the BACC and the Corpus A. The large Mixed
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Arabic corpus is a combination of the BACC, Corpus A and a selection of
files from the King Saud University Corpus of Classical Arabic (KSUCCA)
(Alrabiah et al., 2013). KSUCCA is a corpus made up of classical Arabic
texts with the purpose of studying the lexical semantics of the Holy Qu’ran.
It is a 50-million word corpus covering several genres. The overall file size of
our large Mixed Arabic corpus is 513,291,607 bytes and consists of 58,068,493
words. Further details concerning the large Mixed Arabic corpus are shown

in Table 6.2.

Table 6.1: Different examined corpora.

Corpus type | Category | Size in bytes | Description

Small 31,018,170 | Collection of classical books and
Classical Medium 201,693,734 | novels

Large 252,159,806

Small 28,362,790 | Collection of modern books and
Modern Medium 149,984,803 | novels

Large 252,338,294

Small 98,663,231 | Collection of classical and modern

Mixed Medium 257,172,190 | books and novels
Large 513,291,607

Table 6.2: Details of sub-corpora used to construct the large Mixed Arabic
corpus used to train the PPM models.

Corpus name | Size in bytes | List of topics
BACC 256,867,247 | sports, culture, economics, education, art

and music, political literature and her-

itage, history, religion

Corpus A 252,338,294 | business, cinema, opinions, conferences,

economics, politics
KSUCCA 4,086,066 | religion, linguistics, literature, science, so-

ciology, biography

The most important step in our implementation, as stated, is the train-
ing step. During the training phase, a large set of training text is used to

prime the models. Training text is chosen that is hopefully representative
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of the text being compressed and consequently better able to predict it.
Experiments with English text show that training can improve performance
dramatically as when skipping the training phase, there is not enough and
sufficient data at the beginning to effectively compress the texts. PPM’s
performance substantially improves when large amounts of priming text is
used (Teahan and Cleary, 1996). In our experiments, all previously men-

tioned corpora are used to train the models.

6.3 The Entropy of Arabic using PPM

In order to deal with Arabic texts, in which each character needs two bytes
to be represented, an adaptive PPM compression model for Arabic language
(“CSA-PPM?”, as discussed in Section 2.5.5) has been explored. Another en-
coding method commonly used is also investigated as a comparison, which is
the Buckwalter Arabic transliteration. It is an ASCII transliteration system
that follows the standard encoding schemes to represent Arabic texts for
computers. In this transliteration scheme, Arabic orthographical characters
are strictly substituted one to one. For example, the Arabic word “_S™”,
which means “book”, is represented by the letters “ktab” (Habash et al.,
2007). When this transliteration is used as a pre/post-processing step with
PPM compression, we call this method “BA-PPM”.

The performance of the “CSA-PPMD?” and the “BA-PPMD” methods is
compared with PPMD on raw Arabic text in Table 6.3. The table shows the
Arabic encoding methods and the compression ratios for the trained PPM
using order 5 models. Previous experiments have shown that order 5 models
perform best at compressing the Arabic text (Alhawiti, 2014; Alkahtani,
2015). The text was converted to 37 character Arabic (36 Arabic letters and
space). In this case, the training text used was the classical and modern
Arabic texts that were used to produce the large Mixed Arabic corpus.
The raw Arabic text file positions and its equivalent size in characters for

the CSA-PPM and BA-PPM methods are presented in the first and third
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columns of the table. The codelength values in bytes are shown in columns
two and four. Column five provides the codelength ratios for PPM on raw
Arabic language, while column six exhibits the codelength ratios in bits per
character for both the CSA-PPM and BA-PPM methods. This table shows
that the best result occurs for both the CSA-PPM and BA-PPM methods.
The importance of using these two adaptive PPM methods for the Arabic
language is clearly illustrated in this table with a significant improvement
in the codelength compression ratio, as presented in the last column of the
table (and in Figure 6.1). The results also indicate that the compression
ratio produced by both the BA-PPM and CSA-PPM methods are exactly
the same. (For this reason, we will keep on using the CSA-PPM method in
the upcoming experiments).

Figure 6.1 illustrates the reduction in the codelength ratio versus file
position for the PPMD on raw Arabic language and CSA-PPMD methods.
This is a measure of how well the different compression methods would
perform at compressing the same text. The figure shows that there is a sig-
nificant improvement in the performance of the CSA-PPM method over the
performance of the standard PPM for the raw Arabic text. The compression
for the CSA-PPM model generally increases to reach the best compression
ratio at 1.923 bpc at file position 10000000, followed by a steady increase in
the compression ratio. This is because in the training data, several corpora
were concatenated together to create the training text and it is at this point
where one corpus completes and a new one starts.

Using trained PPM with character-based encoding on the large Mixed
Arabic corpus of size 513 megabytes results in an estimate of 1.923 bits
per character. This compares with 1.812 bits per character for the English
text obtained by concatenating several small corpora (the Brown Corpus,
the Wall Street Journal, the LOB Corpus, the King James Version of the
Bible and the complete works of Jane Austen) of size 35 megabytes (Teahan,
1998).
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Table 6.3: Comparing compression results between PPMD on Raw Arabic

language, CSA-PPMD and BA-PPMD methods.

Raw file | Raw PPM | CSA/BA-| CSA/BA- | Raw PPM CSA/ Improv-

position | codelength | PPM size | PPM codel. | codelength | BA-PPM | ements
(input) | (output) (input) (output) ratio codelength | (%)

(byte) (byte) (char.) (byte) (bpc) ratio (bpc)

500 177 273 152 5.187 4.454 14.13
1000 331 545 298 4.859 4.374 9.98
5000 1379 2743 1299 4.022 3.789 5.79
10000 2561 5502 2414 3.724 3.510 5.75
50000 11246 27628 10338 3.256 2.993 8.08
100000 21422 55298 19483 3.099 2.819 9.04
500000 98807 276718 88229 2.857 2.551 10.71
1000000 200092 554274 173946 2.888 2.511 13.05
5000000 888126 2783077 711847 2.553 2.046 19.86
10000000 1699941 5573232 1339915 2.440 1.923 21.19
50000000 9290505 | 27742681 7389196 2.679 2.131 20.46
100000000 19123851 | 55405677 14993021 2.761 2.165 21.59
500000000 99643963 | 274864694 74594365 2.900 2.171 25.14

6.4 Related Work

Despite the fact that the science of cryptology was born among the Arabs
and they managed to break the mono-alphabetic substitution cipher after
many years of its successful use (Singh, 2000), only some publications have
investigated the use of the Arabic language for encryption/decryption sys-
tems and none for the problem of solving transposition and Playfair ciphers.
For example, Scharwéchter and Vogel (2015) used Hidden Markov Models
(HMMSs) for the problem of solving simple substitution ciphers for Arabic op-

tical character recognition (OCR). Bigram and trigram character language
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Figure 6.1: The reduction in the codelength ratio versus file position for the

PPMD on raw Arabic language and CSA-PPMD/BA-PPMD texts.

models were used. Two different Arabic documents were examined in this
work: the first 500 lines of the Quran (42,170 characters) and the first page
of a book about the Arabic language (18 lines, 700 characters) provided by
the Arabic Language Technology Centerl (ALTEC). Results showed that
the proposed algorithm worked well in deciphering these two documents.
Algahtani et al. (2013) explored the use of the Vigenére cipher on mod 39
as a new approach to Arabic encryption and decryption. They adapted the
classical cipher of modular 26 and altered it with modular 39 according to the
28 Arabic letters, space and digits. Habeeb (2016) presented an algorithm
that uses genetic algorithms to cryptanalyze an encrypted Arabic text using
the Vigenere cipher. Character unigram and bigram statistics were both
used as a basis for calculating the fitness function. Different ciphertext
lengths (400, 600, 1000 letters) and different key lengths (5, 10, 20) were

experimented with. A success rate of 90% was achieved when a key length
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of 10 letters was used to crack a cryptogram of 1000 letters. In addition to
other publications which also investigated the use of the Arabic language for
encryption/decryption systems (Rihan and Osma, 2016; Muanalifah, 2017;
Shaban and Najimaldin, 2017).

In our approach, Arabic substitution, transposition and Playfair ciphers
are generated and then new adapted methods using compression for the
automatic cryptanalysis of Arabic ciphers are proposed. As far as we know,
this is the first work to demonstrate an effective automatic cryptanalysis
for transposition and Playfair ciphers in Arabic. Various Arabic ciphertexts
with different lengths, from very short ciphers to ciphers of length 750 letters,

are then tested in our experiments described below.

6.5 An Automatic Cryptanalysis of Arabic Simple
Substitution Ciphers

As stated in Section 2.2.5.1, in a simple substitution each character of the
alphabet is replaced by another predetermined letter of the alphabet. For

example, using the substitution:

Plaintext letter ‘955&545)“*“(‘&55d‘)iﬁﬁj’d’u"uﬁ‘w})s;CCCQQ%’Tlm
Ciphertext letter: QdTi)!AJ(J)'qJCCJb‘Ub&)Jﬂijupéticg.‘);déiun.b
the message ‘a2 Luail” would be encoded as *jdseis b allos’.

In this section, compression models are used to automatically break
simple substitution ciphers for the Arabic language. A description of our

method is given, followed by some results.

6.5.1 The Method

This section presents a full description of our new method for the automated
decryption of Arabic simple substitution ciphertext. At the beginning, we
have generated an Arabic simple substitution cipher in Unicode. Then, our

new cryptanalysis approach is performed. The main idea of our approach,
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as mentioned in Chapter 3, is based on substituting one letter at a time
throughout the text (starting with the most frequent), then one of the com-
pression methods is used to calculate the codelength value using a similar
technique to what was used for English in Chapter 3. PPMC, PPMD and
Gzip compression schemes are used in our experiments.

The pseudo code of our approach is introduced in Algorithm 9. This
is based on the same approach that was adopted for English. What is
different here compared to that approach is that after removing all the non-
alphabetical Arabic characters (excluding spaces) from the ciphertext in line
1, the text at this stage only comprises 37 Arabic letters. Also, the number
of the best results to keep at each stage is set to be 1000 as shown in line 5.
Experimental results concerning the Arabic language (as described below in
the next section) show that keeping the 1000 best results in a buffer at each
stage of the algorithm provides a good compromise. This compares with
500 best results that are kept for the English language.

Another important difference is that in order to calculate the codelength
value for each Arabic permutation, a pre-processing operation is performed
either using the Buckwalter Arabic transliteration ‘BA-PPM’ or an Arabic-
specific encoding method using UTF-8 numbers ‘CSA-PPM’ (see line 13).
(Since the results from Section 6.3 indicate that the compression ratio pro-
duced by both BA-PPM and CSA-PPM are exactly the same, we will keep
on using the CSA-PPM method in our experiments). Since the Arabic lan-
guage contains plenty of repeated bigraphs (as shown in Section 2.5.3), an
adaptive bigraph substitution method for Arabic has also been investigated.
Bigraph Substitution for PPM (BS-PPM) simply involves substituting the
most frequent Arabic bigraphs with unique single symbols. Previous exper-
iments have shown that substituting the top 100 bigraphs and expanding
the alphabet by 100 more symbols produces better compression (Alhawiti,
2014). CSA-PPM and Gzip are character-based compression models and
are adopted to calculate the compression codelength (lines 14 and 15) and

BS-PPM uses a bigraph character-based method, and is adopted on lines 16
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to 21. The final results are returned on line 29.

Algorithm 9: Pseudo code of the automatic cryptanalysis of Arabic

simple substitution ciphers.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Input : ciphertext
Output: decrypted text(s)
remove all non-Arabic alphabet characters excluding spaces from the ciphertext;
examine the ciphertext to create a sorted list of the zeroth order frequencies for the
Arabic alphabet;
replace the characters in the ciphertext with the special symbol <’;
initialise Q1 (list) with a modified ciphertext;
maximum size of Q2 (sorted list) < 1000;
foreach crypto character ‘cc’ in the zeroth order frequent characters (starting from the
most to the least frequent characters) do
Q2 < empty;
foreach ciphertezt in Q1 do
foreach alphabetic and space character ‘ac’ do
if ‘ac’ is not used before as a replacement of the previous crypto characters then
replace each crypto character ‘cc’ in the ciphertext with the unused character ‘ac’
as a candidate for ‘cc’;
compute compression codelength:
perform pre-processing operation by using Arabic-specific encoding method
on the ciphertext;
if character-based compression method is performed then
calculate codelength value of the preprocessed-ciphertext using the CSA-PPM
or Gzip compression model;
else if bigraph character-based compression method is performed then
divide the preprocessed-ciphertext into bigraphs;
foreach bigraph in the preprocessed-ciphertext do
if a bigraph within the 100 most frequent training text bigraphs then
replace the birgraph with the unique symbol;

calculate codelength value of the preprocessed-ciphertext using the BS-PPM

compression model;

return codelength value;

if the size of the sorted list Q2 < 1000 then
add the ciphertext to Q2;

else if the codelength value of the last element in Q2 > codelength value of the
current ciphertext then
remove the last element in Q2;

add the ciphertext to Q2;

replace Q1 with Q2;

return QI containing the best solutions (the ‘decrypted text(s)’),
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In Algorithm 10, a word-based PPM compression model is applied to
the output produced from Algorithm 9. This model potentially provides a
more accurate estimation of the quality of the solutions. The codelength

values are re-calculated using this word-based model for Arabic.

Algorithm 10: Pseudo code of word-based ranking algorithm for the

Arabic substitution.
Input : the list Q1 (output from Algorithm 9)

Output: decrypted text(s)

1 maximum size of Q3 (sorted list) < 1000;

2 foreach text in Q1 do

3 perform pre-processing operation by using Arabic-specific encoding method
on the text;

4 calculate compression codelength value of the preprocessed-text using the
CSA-PPM word-based compression method;

5 store the text in the sorted list Q3;

6 end

7 return Q3 containing the best solutions (the ‘decrypted text(s)’);

Table 6.4 presents the different variants that we have used in our exper-
iments with the label assigned to each one. Order 5 CSA-PPM models have
been employed. Experiments with a full range of variations have been con-
ducted (CSA-PPMC, or CSA-PPMD, with and without update exclusions,
with and without explicit order —1 codelengths; and Gzip). The specific
codelength value we assign for order —1 contexts for the new variation of
the PPM model is 28.90 (= —log, 1\1,, where N is the size of the Arabic train-
ing data, N =513,291,607).

6.5.2 Experimental Results

Experimental results for the different corpora and variants are discussed in
this section. Different Arabic corpora types (classical, modern and mixed)
with different sizes (small, medium and large) are used in our experiments
to explore which is the most effective corpus to use in the automatic crypt-

analysis of the Arabic language ciphers. These corpora were adopted to
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Table 6.4: Some compression method variants used for the automatic crypt-

analysis of Arabic simple substitution ciphers.

Name Compression method

Variant A | CSA-PPM without update exclusions

CSA-PPM without update exclusions with the same specific
Variant B

codelength value assigned to all order —1 context predictions

Variant C | Standard CSA-PPM (i.e with update exclusions)

i Standard CSA-PPM with the same specific codelength value
Variant D

assigned to all order —1 context predictions

Variant G | Gzip

train the PPM models using 37 character Arabic text. A corpus of 120
different Arabic ciphertexts chosen at random from many various resources
with different lengths (ranging from 44 characters to almost 750 characters)
are used as testing texts. Samples of which are listed in Appendix IV.

Table 6.5 presents the average number of errors for the different corpora
used in our experiments. These corpora are used to train a new variation
of the PPM algorithm where a specific codelength value is assigned when
encoding all order —1 contexts (Variant B). This variant showed better
performance than the others. The results indicate that in most cases the
larger corpora produce a lower number of errors than the smaller corpora.
The results also show that the Mixed corpora performs better than the
other corpora type. In addition, the buffer size of 1000 provides a good
compromise between the size of memory used and the number of errors
produced.

Table 6.6 presents results regarding the average number of errors for the
120 Arabic ciphertexts when using the 1000 buffer size. It is clear that the
Large Mixed corpus performs better than the other corpora with an indica-
tion that the Large Mixed corpus is the best corpus to use in the automatic
cryptanalysis of Arabic ciphers. Figures 6.2, 6.3 and 6.4 demonstrate the

number of errors for the different corpora for different cryptogram lengths.
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Table 6.5: Average number of errors for our different corpora with different

categories and different buffer size.

Corpus | Category | Buffer | Texts without | Avg. # errors | Avg. # errors
type ‘ size errors for best for best ten
(out of 120) solution solutions
500 19 5.57 6.05
Small 1000 19 5.26 5.73
2000 19 4.87 5.43
500 50 2.60 3.30
Classical | Medium 1000 50 2.40 3.08
2000 51 2.07 2.71
500 49 2.78 3.53
Large 1000 49 2.28 3.03
2000 49 2.13 2.81
500 48 2.62 3.33
Small 1000 49 2.43 3.12
2000 51 2.19 2.94
500 54 2.42 3.27
Modern Medium 1000 57 2.12 2.97
2000 57 2.01 2.81
500 59 2.15 3.11
Large 1000 62 1.91 2.90
2000 63 1.67 2.64
500 60 1.98 2.77
Small 1000 62 1.54 2.34
2000 62 1.51 2.30
500 61 1.78 2.69
Mixed Medium 1000 62 1.60 2.44
2000 62 1.42 2.37
500 63 1.53 2.34
Large 1000 66 1.14 2.05
2000 66 1.14 2.01

Table 6.6: Average number of errors for the different corpora with different

categories when examining the best solution and a 1000 buffer size.

Category | Classical corpora | Modern corpora | Mixed corpora
Small 5.26 2.43 1.54

Medium 2.40 2.12 1.60
Large 2.28 191 1.14
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Figure 6.2: Errors produced from different classical corpora when using

buffer size of 1000 for variant B.

As stated, various 120 Arabic ciphertexts with different lengths have
been examined in our experiments. In order to measure the success and the
accuracy of our automatic cryptanalysis algorithms, alphabetic substitution
errors (mapping errors) are counted. Referring to the different variants
described in Table 6.4 and by using the large Mixed corpus as a training text,
the results showed that only when using the new CSA-PPM variant (Variant
B) as a method of calculating the codelength values resulted in successfully
decrypted texts. On the other hand, the other CSA-PPM variants produced
a significantly greater number of errors. The same was repeated when using
the Gzip algorithm in the last variant (G). Arabic example output produced
by the different variants is shown in Table 6.7.
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Figure 6.3: Errors produced from different Modern corpora when using

buffer size of 1000 for variant B.

Table 6.7: Sample of solved Arabic simple substitution ciphertexts by dif-

ferent variants.

Number
Variants Decrypted message

of errors
Variant A 15 Oleslsdl 531 plebadin Y1y 0y 1) o) 1y Lol
Variant B 0 wlyslally 7Yy ohlema¥l a gyl allazy B1 A

Variant C 17 S yﬁwﬁw;}ugﬂw el | r;&ib“ﬁ
Variant D 19 angs plbsn p-(ﬁw aig) uﬁww}bijj Z.bgejjn
Variant G 19 creoiigiils g il i) il Lo gblee Jaminlys
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Figure 6.4: Errors produced from different Mixed corpora when using buffer

size of 1000 for variant B.

Figure 6.5 illustrates the number of errors for each testing ciphertext
for the different variants (A to G) as a result of our cryptanalysis method.
It is clear that the number of errors for all the variants, except Variant B,
is very high. In Variant B, a new variation of CSA-PPM without update
exclusions with the same specific codelength value assigned to all order —1
context predictions is used. The results show that 55% of the ciphertexts
are correctly solved with no errors (that is, the best solution with minimum
codelength value is the correct solution). Also, a further 28% of the examples
are decrypted with just one or two errors. All the cryptograms of length

longer than 300 are successfully solved without any errors.
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Figure 6.5: Errors produced from different Arabic variants.

The average number of automatic cryptanalysis errors for each variant for

the 120 cryptograms using the CSA-PPMD models is presented in tables 6.8a

and 6.8b. Clearly, the best performing variant overall is Variant B. Variant

141



G came up with the worst result with a high average number of errors.
Note that the CSA-PPMC models produced slightly worse results than the
CSA-PPMD models.

Table 6.8a: Average number of errors for each different Arabic variant when

examining the best solution.

Variants A B C D G
Average errors  23.10 1.14 25.18 24.63 25.38

Table 6.8b: Average number of errors for each different Arabic variant when

examining the ten best solutions.

Variants A B C D G
Average errors  23.11 2.05 25.19 24.68 25.41

Irvine (1997) stated that a better language model would not help on
shorter cryptograms because they are inherently ambiguous. This is because
the unicity distance for an Arabic simple substitution is about 44, since the

entropy of the order-5 Arabic model is Hs = 1.923 (see Section 6.3),

So, according to Irvine we cannot consistently expect to solve Arabic
cryptograms shorter than this number of characters. We have confirmed this
in our experiments here, where we have found that various short cryptograms
of 44 characters or so can be effectively solved but not less. On the other
hand, this is not the case for the English language in Chapter 3, where
many different short cryptograms, shorter than the unicity distance, were
effectively decrypted using our approach.

As stated earlier in Chapter 2, the occurrence of many bigraphs is much
more than some single characters in the Arabic language. Thus, we also
investigate the use of Bigraph Substitution method for Arabic (BS-PPM)
to explore if this results in better cryptanalysis. Results in Table 6.9 and
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Figure 6.6 show that the number of ciphertexts that are correctly decrypted
without errors has increased to reach 62.5% by using the bigraph-based
method. However, the results also indicate that eight of the decrypted texts

showed a very high number of errors.

Table 6.9: Average number of errors for the character-based and bigraph-

based models for Variant B.

Text without

Average best

Average best 10

Models errors solution errors | solutions errors
Character-based 66 1.14 2.05
Bigraph-based (BS-PPM) 75 1.60 2.50

20 20
.
.
15 15
.
o » N
8 s + +
5 5
510 | 510+ +
g + + g +
g + o+ E +
=4 z
5+ + 5+
o+t + i + +
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+ o+ A o+
HH i + i+ + +
0 - e +H o+ + 4 0+ - A =+ +
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String length String length

(a) Character-based model errors. (b) Bigraph-based model (BS-PPM) errors.

Figure 6.6: Errors produced from character-based and bigraph-based models

for Variant B.

6.5.2.1 Improving Results using a Word-based PPM Compres-
sion Method for Arabic

Further investigation concerning how to improve our cryptanalysis method is
introduced in this section. A word-based model combined with the character-
based method led to further improved results for the English language exper-
iments in Chapter 3. The effectiveness of applying this model as a secondary
post-processing stage is also examined here to see if this also results in better

cryptanalysis for Arabic.

143



The average number of errors for both character-based and word-based
models is shown in Table 6.10. Results in Table 6.10 and Figure 6.7 in-
dicate that the secondary word-based method showed better cryptanalysis
performance than the character-based model alone in Variant B when the
order 5 CSA-PPMD model is used. After applying this word-based method,
about 72% of cryptograms are now solved without any errors, with an im-
provement of 17%. The results in Table 6.10 also show how the word-based
approach improves the average number of errors for the best solutions and

for the ten best solutions.

Table 6.10: Average number of errors for the character-based and word-based

models.

Text without

Average best

Average best 10

Models errors solution errors | solutions errors
Character-based 66 1.14 2.05
Character-based&word-based 86 0.76 1.99
10 10
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(a) Character-based model errors. (b) Character-based model & word-based

model errors.
Figure 6.7: Errors produced from the character-based and word-based mod-

els for Variant B.

Results regarding the bigraph-based and word-based models are pre-
sented in Table 6.11 and Figure 6.8. It is clear that when the bigraph-based

method is combined with the word-based method, it did not lead to much
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further improved results.

Table 6.11: Average number of errors for the bigragh-based and word-based

models.

Text without

Average best

Average best 10

20

.
@

Number of errors
=
o
T

o
T

Models errors solution errors | solutions errors
Bigraph-based 75 1.60 2.50
Bigraph-based& word-based 74 1.59 2.48
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(a) Bigraph-based model errors. (b) Bigraph-based model & word-based

model errors.

Figure 6.8: Errors produced from the bigraph-based and word-based models

for Variant B.

A comparison between the different Arabic models when examining the

best solution is showed in Table 6.12. Clearly, we can see that the lowest

average number of errors is obtained from an efficient combination between

the character-based model (Variant B) and the word-based model in column

three.
Table 6.12: Average errors for the different Arabic methods.
Models Character Bigraph Char.&word-based Bigraph&word-based
Avg. errors 1.14 1.60 0.76 1.59

The results also showed that the time needed to break Arabic ciphertexts

is almost double the time required to break English cryptograms as presented
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in Table 6.13. This is because the size of the buffer of the best results that
are kept at each stage for the Arabic language is twice that of English. As

well, the extra steps that are needed to perform the preprocessing operation.

Table 6.13: Average time required to automatically break different Arabic

simple substitution ciphertexts.

Cipher Length 50 100 200 400
Time (Sec) 6.03 | 7.12 | 10.56 | 15.23

The summary of results regarding our best performing character-based
method (Variant B) and when it is combined with the word-based method
is presented in Table 6.14. The results clearly show that the best cryptanal-
ysis performance was achieved by using the character-based PPM method
followed by the word-based PPM method. About 72% of the Arabic cryp-
tograms are successfully broken without any errors and over 91% are de-

crypted with just three errors or less.

Table 6.14: Summary of results.

Errors Character-based model Character & word-based models
No. of ciphertexts| Cumulative percentage | No. of ciphertexts| Cumulative percentage
(%) (%)

0 66 55.00 86 71.67
<1 88 73.33 99 82.50
<2 100 83.33 106 88.33
<3 108 90.00 110 91.67
<4 113 94.17 115 95.83
<5 115 95.83 117 97.50
<6 115 95.83 117 97.50
<7 118 98.33 119 99.17
<8 120 100.00 120 100.00

These results indicate excellent performance with Arabic language on

substitution ciphers. The next section examines transposition ciphers.

146



6.6 An Automatic Cryptanalysis of Arabic Trans-
position Ciphers

This section now reviews Arabic transposition ciphers and the automatic
cryptanalysis of this cipher specifically. In a transposition cipher, the con-
tent of a message is obscured by rearranging groups of symbols; a transpo-
sition is thus a permutation. Originally, matrices were used. For example,
encoding “ M\MT”, which means “encryption systems”, using a 3 x 4 ma-

trix, Figure 6.9, produces r.an_eLMa\” if the columns are read off in order.

i
5

G &

¢ J
&) |
J <

Figure 6.9: Example of a matrix transposition cipher.

By reading the columns in a different order, say 3-2-1-4, different cipher-
texts can be obtained, such as J:.«..is‘\é\.:c&”. The technique can be extended
to d dimensions. In transposition ciphers, a plaintext block is encrypted
into a ciphertext block using a fixed permutation (Giddy and Safavi-Naini,

1994). For example, if

3 ifx=1

2 ifx=2
flx) =

4 ifx=3

1 ifx=4

\
then, “ 45 <l (,.Jé.j” would be encoded as “ .23, Jsb Ll

Our cryptanalysis method regarding Arabic transposition ciphers is de-
scribed in detail in the next subsection, followed by the experimental results

that were produced.
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6.6.1 The Method

As with the previous solution as detailed in Section 6.5.1, a compression
scheme is also used to calculate the codelength value to use as a metric for
ranking the quality of each possible permutation.

First, we have generated an Arabic transposition cipher in Unicode, then
the cryptanalysis method is performed. Our new cryptanalysis method con-
sists of two main phases, the same as for the English language experiment.
The first phase (Phase I) is based on trying to automatically crack an Arabic
ciphertext using a transposition of specified size by exhaustively computing
all possible transpositions, while the second phase (Phase II) is based on
achieving readability.

The pseudo code for the first part of our approach is presented in Algo-
rithm 11. This algorithm is similar to what was used for English. What is
different is that the text now consists of only 36 Arabic letters after remov-
ing all the non-alphabetical Arabic characters (including spaces) from the
ciphertext as presented in line 1. Also, in order to calculate the codelength
value for each permutation, a pre-processing operation using an Arabic-
specific encoding method is performed in line 4. Then, all possible transpo-
sitions are generated, and the compression codelength recomputed at each
stage (lines 5 to 14).

The second phase of our approach, as mentioned before, focuses on
achieving readability. The second assessment step is performed in this phase
through adding spaces automatically to the decrypted messages that was
produced from Phase I, and then assessing the quality of the solutions by
computing the codelength values for each possible message. As we did for
the English language experiment, the two alternative ways of achieving read-
ability have also been investigated here for the Arabic language. In the first
method, Phase II-A, according to the decrypted message permutation which
is outputted from the previous phase, all further possibilities are explored

where a space is inserted after each character. Underperforming possibili-
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Algorithm 11: Pseudo code of the main decryption phase (Phase I)

for the Arabic transposition.

Input : ciphertext
Output: decrypted text

1 remove all non-Arabic alphabet characters and spaces from the ciphertext;

2 maximum size of Q (priority queue) + 3;

3 maximum key-size of transposition < 12;

4 perform pre-processing operation by using Arabic-specific encoding method on
the ciphertext;

5 foreach key-size do

6 if ciphertext-length mod Key-size = 0 then
7 divide the ciphertext into blocks according to key-size;
8 perform a permutation over each ciphertext blocks;
9 foreach possible permutation do
10 calculate codelength value using the CSA-PPM or Gzip compression
model;
11 store a permutation with smaller codelength value in Q;
12 end
13 end
14 end

15 return the priority queue ‘Q’ (the ‘decrypted text’);

ties which have bad codelength values are pruned from the priority queue
and only the best performing possibilities are returned at the end. In the
second method, Phase II-B, the Viterbi algorithm is used to search for the
best probable segmentation sequences. In both these two methods, a post-
processing operation is performed afterwards, by using the Arabic-specific
decoding method.

Two Arabic adapted variants of the PPM modelling system, CSA-PPMD
and CSA-PPMC, have been used in our method. Also two forms of these
schemes are examined, one with update exclusions (i.e the standard CSA-
PPMD and CSA-PPMC) and one without update exclusions. The use of the
Gzip compression scheme is examined as well, in order to explore the most

effective method that can be applied to the problem of automatically rec-
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ognizing the valid decryption. Only five variations are shown in Table 6.15
either to illustrate the best performing schemes or to illustrate interesting

results for comparison.

Table 6.15: Arabic variants used in the automatic cryptanalysis of Arabic

transposition ciphers.

Variants | Phase I Phase II-A Phase II-B

A CSA-PPM without up- | CSA-PPM without up-
date exclusions date exclusions

B CSA-PPM without up- CSA-PPM without up-
date exclusions date exclusions

C CSA-PPM with update | CSA-PPM with update
exclusions exclusions

D CSA-PPM with update CSA-PPM with update
exclusions exclusions

G Gzip Gzip

6.6.2 Experimental Results

The experimental results are discussed in this section. In our experiments,
the order-5 CSA-PPM models have been trained on a corpus of many dif-
ferent Arabic books and novels from different topics using 36 and 37 Ara-
bic character (when space is included). As explained above, classical and
modern Arabic texts are used to produce this large Mixed Arabic corpus.
Regarding the cryptograms test corpus, 125 different Arabic cryptograms
were chosen at random from different resources to be used as testing texts.
Cryptogram lengths ranged from 17 to almost 750 letters (samples of which
are in Appendix V).

A sample of decryption is shown in Table 6.16 for the Arabic cryptogram
‘rosed I S 5285 0uaiiSe’. Compression codelengths are listed in bits with
the lowest three results presented for the different phases.

We have created a transposition cipher for the Arabic language that

depends on using the Unicode encoding. For each run, a random key is
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Table 6.16: Output produced for the sample cryptogram ‘S s=Ss 0dziiSs
et 17,

Phase I | Phase IL-A | Phase ILB

Variants A and B

108.64 1 £1aS e SleanSads | 111.03 el o Hydey Mg p i | Ll o Spdey Mg r it
110.62 ¢ 1S, S 1a pteSitanaSs | 116,22 ¢ 1 oS 1,58 g Slists o & | e 1y LSpte Sias o
11137 S 1518 poaSoasnSy | 12121 i Dl LS pue ditms o ik | 1008 1S agae il o 2l
Variants C and D
108.15 ¢ o $1551eSe ptpoboasSen | 11238 8161 o Syiey Mg o Shios | 181 o Sytey Sl e it
110.76 ST ASS syt yutoannSs | 122.53 kST ASS Wagdey pko o B | LuSTASS agdey s o 28
110.85 41 £haS pas SlgmaSaks | 12441 51 0 STy s Segs gdo oSon | 10 STy s Slegs g (S

generated to encrypt the original message (plaintext). Then, we have applied
our cryptanalysis method to automatically break this message (ciphertext).
Different permutation key sizes (from 2 to 12) and different cryptograms
with different lengths have been examined in our experiments.

In order to measure the differences between the original texts and the
decrypted texts that resulted from our decryption method, the Levenshtein
distance metric is used (Levenshtein, 1966). The experimental results of
Phase I show that for the first two variants A and B, when the CSA-PPM
method without update exclusions is used, 97% of the cryptograms are suc-
cessfully decrypted without any errors. For the other two variants C and D,
when the standard CSA-PPM method is used, the results showed that 95%
of the ciphertext are solved with no errors. For the last variant, Variant G,
by using the Gzip scheme, a success rate of 90% was achieved.

The results of Phase II show that for the two variants A and B, 97% of
the cryptograms are successfully decrypted and segmented. For the other
variants (C and D), which resulted in a 95% decryption success rate from
Phase I, now 97% of the ciphertexts are effectively decrypted and segmented
as a result of Phase II.

It is important to note that the second phase of our approach has the
ability to find better solutions not found by the first phase. For example,

referring to Table 6.16, the best two solutions as output from using Variants
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C and D shown in column one are not correct (the third solution is the
correct one). However, after the second phase has been applied, the best
segmentation of the third solution in column one now appears as the best
solution in columns two and three which is correct.

Arabic word segmentation is considered a difficult problem (Zeki, 2005).
As the Arabic language is a rich morphological language, this characteristic
represents a real challenge for identifying the correct segmentation among

”

many possible corrected alternatives. For example, the word “ ¢5,4” could

be segmented into “ e5,9 7 and “ o3, 4”7, which means “rose” and “and his
reply”. Both of these segmented forms are correct, but with completely
different meanings and contexts. However, according to our approach and
results, in almost all cases the proper readable solutions were obtained for
all different variants, except for the last variant (Variant G).

Output examples (with spaces) produced from different variants are ex-
hibited in Table 6.17. For example, this table shows how ‘Jl sl s yad] Jau el
V_QLQ.;T |50 slad) 21:SU 5087, which is the best result produced from Phase I for a
sample cryptogram, is effectively segmented with no errors using both vari-
ants B and C, one and two errors using variants A and C, while Variant G
shows poor performance with nine segmentation errors.

Figure 6.10 presents scatter-plots for the number of errors (on the y axis)
versus the string lengths of cryptograms (on the x axis) for the different vari-
ants when the PPMD models are used. For example, Figure 6.10a presents
the number of word segmentation errors for each decrypted message that
was output from Variant A. This figure shows that most of the errors are less
than four. About half of the cryptograms are correctly segmented without
any errors and a third with four errors or less. However, three of the cryp-
tograms suffered from more than ten errors, and one cryptogram of length
400 letters produced 23 errors.

Variant B offered better performance than the other variants. More than
63% of the testing texts have been correctly segmented with no errors and

a further quarter of them with three errors or less. Just four cryptograms
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Table 6.17: Example of solved Arabic transposition ciphertexts with spaces

inserted by the five different variants.

Number
Variants Decrypted message (with spaces)
of errors
Variant A 1 Sl ) Sy oSy oS ) s Y Al o)

Variant B 0 oSl ) S oSy (Sly (oS00 J) e Y )
Slasls

Variant C 2 b ksl )y Sy Spely oS s )y Y Al 0)
¢ llesly

Variant D 0 oSl )l oSOy oSy (Spe ) e Y Al )
Sasly

Variant G 9 Sl 5 i) Jo STy (S ol o o] Ja Sl )

ended up with seven, eight or nine errors. Figure 6.10b exhibits this variant’s
results. Variant C showed similar results to Variant A with slight differences
as shown in Figure 6.10c. On the other hand, Variant D showed a slightly
worse result than Variant B. Fifty three percent of the cryptograms were
effectively segmented with no errors and forty percent were segmented with
four errors or less. Only one cryptogram consisting of 353 letters ended with
more errors (ten). Figure 6.10d outlines Variant D results. The number of
errors produced from Variant G is shown in Figure 6.10e. It is clear that the
number of errors for each decrypted ciphertext in this case is much higher,
with most of the errors being greater than 20. Also none of the cryptograms
finished with no errors.

Table 6.18 presents results concerning the average number of space inser-
tion errors for the 125 texts we experimented with for each of the variants.
The CSA-PPMD model is used for the first four variants. It is clear that
the average number of errors for all the variants, except Variant G, is quite
low with Variant B performing best. Slightly worse results were obtained

when the CSA-PPMC models are used.
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Figure 6.10: Segmentation errors produced from the five different variants

for

the Arabic transposition.

Table 6.18: Average number of errors for the Phase-1I variants.

Variants

A

B

C D G

Average errors

2.09

1.10 2.03

1.23 30.43
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To investigate more about the accuracy of the compression methods that
we used in segmenting the 125 Arabic decrypted texts, three main metrics
are used: recall rate, precision rate and error rate. The results presented
in Table 6.19 indicate that the variants which depend on the CSA-PPMD
compression methods were able to achieve very high recall and precision
rates, reflecting the quality of the Arabic word segmentation. The error

rates resulted from unusual words not included in the training text.

Table 6.19: Evaluating the quality of the Arabic word segmentation.

Variants Recall rate%  Precision rate% Error rate%

Variant A 93.38 93.52 6.62
Variant B 96.35 95.94 3.65
Variant C 93.08 94.15 6.92
Variant D 95.50 95.67 4.50
Variant G 1.53 10.02 98.47

The average time that is needed to recognize the correct solutions for
the different Arabic transposition cryptograms with different block sizes
is shown in Table 6.20. This table presents the average elapsed time for
the automatic cryptanalysis of three different length cryptograms, for both
Phase I and Phase II. For each cryptogram, the average elapsed time in
seconds is shown after running the approach ten times. The results show
that the average time increases as the key size increases but overall the
method is reasonably efficient.

In summary, experimental results showed that for the first phase ‘Phase
I’, a successful decryption rate of 97% was achieved when the CSA-PPM
method without update exclusions was used and a 95% when the standard
CSA-PPM model (with update exclusions) was used. Two methods have
been used in the second phase in order to achieve readability. The first one
is based on using a priority queue and the second depends on the Viterbi al-
gorithm. A successful decryption rate of 97% was achieved using CSA-PPM

models with the use or not of update exclusions as a result of this phase. In
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Table 6.20: Average time required (across 10 runs) to automatically break
Arabic transposition cryptograms with different lengths and different keys

size.

Ciphertext Key size
length Time (in seconds)
(Letters) 5 6 7 8 9 10
40 0.85 | 0.87 | 0.90 | 1.08 | 2.60 | 12.30
150 1.23 | 1.27 | 1.42 | 1.90 | 13.93 | 48.20
300 3.54 | 3.77 | 3.89 | 4.94 | 23.13 | 95.50

addition, almost all the decrypted examples were effectively segmented with
a quite low average number of errors. Marginally better results are gained
from using the Viterbi algorithm but with a slightly slower execution time
(almost one error on average as a result of Phase II-B, and slightly greater
than two errors on average for Phase II-A). In comparison with the English
language, slightly worst results were obtained for the Arabic language (the
average number of errors for the English texts is less than one). The best
findings resulted from using Variant B, when the CSA-PPM model without
update exclusions with the Viterbi method is performed.

The next section examines Playfair ciphers to further confirm whether
the efficient performance with Arabic language on substitution and trans-

position ciphers is also reproduced for another cryptosystem.

6.7 An Automatic Cryptanalysis of Arabic Play-
fair Ciphers

For Playfair ciphers, the English alphabet is arranged in a 5 x 5 key matrix
based on secret key. For Arabic, 36 alphabetic letters are arranged into a
6 x 6 grid. For example, if the keyword ‘.is4)" is used, the key grid would
be as below:

To encrypt the plaintext message “ & Y ;8 deldl)”, the encrypted mes-
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oY =2t T C
S RS B TS S
L b ¢ C s 4
¢ © o B | !
T s s 3 &

sage would be: “ L (¢l |5 da |y Ls [

If any bigrams contain repeated letters, an ‘§’ letter is used to separate
them. If the plaintext has an odd number of letters, an ‘§’ is also inserted
at the end so that the last letter is in a bigram.

The automatic cryptanalysis method of the Arabic Playfair cipher is
presented in the next subsection. Experimental results are then discussed

in the subsection that follows.

6.7.1 The Method

Using a similar approach as detailed in Chapter 5, the decryption method
consists of two main phases. Phase I tries to automatically crack an Ara-
bic Playfair ciphertext using a combination of the PPM compression method
and a simulated annealing approach while Phase II tries to achieve readabil-
ity. A variation of an order 5 CSA-PPMD model without update exclusions
has been used in the experiments for both Phase I and Phase II.
Algorithm 12 presents the pseudo code for the first part of the method.
This algorithm is similar to that for English in Algorithm 6 but differs in a
number of respects. First of all, in a preprocessing step prior to the applica-
tion of this algorithm, all non Arabic letters including spaces were omitted
from the ciphertext (the text now consists of 36 Arabic letters). Then, in or-
der to calculate the codelength value for each permutation, a pre-processing
operation using an Arabic-specific encoding method is performed in line 1.

The text is compressed using CSA-PPMD with an order 5 character-based
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model and the codelength value is produced. Also, for each temperature,

Algorithm 12: Pseudo code of Phase I for the Arabic Playfair.

Input : ciphertext, Playfair grid-width
Output: deciphered-text

1 perform pre-processing operation by using Arabic-specific encoding method on the
ciphertext

2 generate a random key

3 currentBestKey <— randomKey

4 decipher the ciphertext using the currentBestKey and calculate the codelength value
using the CSA-PPM compression method

5 currentBestScore < — CSA-PPM-codelength score (decipher-text)

6 for Iteration + 0 to 99 by 1 do

7 maxKey < currentBestKey
8 decipher and calculate the codelength value using the CSA-PPM compression
method

9 maxScore < — CSA-PPM-codelength score (decipher-text)
10 for Temp < 20 downto 0 by 0.2 do
11 for Count + 0 to 19999 by 1 do
12 modify maxKey by choose a random number between (1,50):
13 if the number is 0 then swap two rows, chosen at random
14 if the number is 1 then swap two columns, chosen at random
15 if the number is 2 then reverse the key
16 if the number is 3 then reflect the key vertically, flip top to bottom
17 if the number is 4 then reflect the key horizontally, flip left to right
18 if any other number then swap two characters at random
19 newKey < modified-maxKey
20 decipher and calculate the codelength value using the CSA-PPM compression

method
21 newScore < — CSA-PPM-codelength score (decipher-text)
22 calculate dif f < newScore — maxScore
23 if dif f >=0 then {maxScore < newScore; maxKey < newKey}
24 else if Temp >0 then
25 calculate probability < exp(dif f/Temp)
26 generate a random number between (0,1)
27 if probability > randomNumber then
28 ‘ {maxScore < newScore; maxKey < newKey}
29 if maxScore > currentBestScore then
30 currentBestScore <— maxScore; currentBestKey <— maxKey
31 Make systematic rearrangements(ciphertext, currentBestKey,
L currentBestScore)

32 end
33 end
34 end

35 return the deciphered text with the best key
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20,000 keys are tested instead of 10,000 keys used for English (line 11). Al-
gorithm 7 then is called to perform some systematic rearrangements (see line
31). Finally, the deciphered text is returned with the smallest codelength

value which represents the best solution found (line 35).

It is worth noting that negative scores based on the CSA-PPMD code-
lengths values are also used here in this algorithm, in order to maximize

rather than minimize scores for the simulated annealing process.

The second phase of our approach, as stated before, is focused on achiev-
ing readability. The Viterbi algorithm is used in this phase, afterwards a
post-processing operation is performed, by using the Arabic-specific decod-

ing method.

6.7.2 Experimental Results

In this section, the experimental results of the new approach are discussed.
An order 5 CSA-PPMD model has been trained on the large Mixed Ara-
bic corpus using 36 Arabic letters. Seventy different Arabic cryptograms
(samples of which are in Appendix VI) were randomly chosen from different

resources as testing texts. These cryptograms range from 100 to 500 letters.

Our first example, Figure 6.11, illustrates the robustness of the compres-
sion based approach. The ciphertext is a 122 letter quote by ‘Amani Alenzi’:
QY1 EV I CIWICH I E g V.ojib Ul o Ay U STy VJ ("“’J‘ PN PRCHCRTRER PR
Lol Ly LeSSly ety LVl sz slad) oda 3 L™ ~

The result shows how our new method is »able to solve this short Arabic
cryptogram without any errors. The execution trace is shown in the fig-
ure with the best score as it changes during the execution of the Phase I

algorithm. The scores are increasing (i.e the codelengths are decreasing).
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Iteration: 75
Mutation gain: ATLTE paladgdlgodacks siSldians JUlinesdnl SinakadWlo) Y 5L STAUSTSY
Tolsd) ) iza iS5 glaaShesslglin VLt 2unoll
Key: dm)aw;wb)y—\luw
Mutation gain:  -468.82 _.alladgslgmeleetsyiShiens LUl lint Sl 1Y 5L S Wets Y
"s;w,uuuwjuwgwws\
Key: cIlitablSod 3oe 3450l 3Tty oo
Mutation gain: -466.58 wuww,&w)wwmb;wwwuwyL;m,»\!
8o s eza U s S ylea V)
Key: duw&éjiwgwbyﬁ:‘l@m
Mutation gain: 458.96  sJladgiligrnake yiShiand JUblielins S inakd bl IV 5L S UlaisY
'a;w\)wuﬁjuwgm{ws\
Key: ;JLAM&):M;WLJWTMLJJM}
Mutation gain: -443.95 fquwwﬁw)ubwmb;www\)N,b;M&
o e Syl gVt )
Key: cllisalahSos jiaaaioal 5Tl oo
Row swap gain: -433.97 @Jui@éw)j_ﬁW)QUL&,;TMUJSWNWLJN):L_;M)V
FRRRRE: e | glw M| glia Y Ltinas)
Key: VJW)JM};TAJL@,‘A\J}&JW
Row swap gain:  -426.53 _sulsdgsbgndaekeyiSiinend bl linl S ina Ll o LN 5 Sl Y
Lol S Sl Yt
Key: g,JL,é_i,j‘JEE‘L@;«\‘; ,,-Ja.)ﬁ.«.c & i3y Feoe
2-Mutation gain: -423.31 CS\AJQWJ;U“QW)LUW@U}WL«JWNN}:Q;MJY
2ol LS glaa S eVt szasly
Key: cJlas iTingull nabiSae 3ty fooer
Mutation gain: -416.59 CJBJ@%&MW}LUW;MU}WNWLAN}QﬁMJY
£l S e s Vst 2ty
Key: qJW}TQS;wli,,]a'JQ_{A&“')SJMM
Mutation gain: -415.48 @uwwwﬂuw,mu;wwwuwju_;md
£l LSl glaw S eVt zasly
Key: JmLTm;MBM;ﬁWm
Mutation gain: -414.25 CSLAAQWW)QUMJMU;WUWM\YjQ;M)V
£l LS glaa o eVt zasly
Key: JW;&T@L@»D}M@@;MM
Mutation gain: -405.73 CS\AJ\.@,;\;MWJ}LUWJMU;WNWLJN}:Q;MJY
Lol 53 LSS glato glia Yl nasly
Key: u,JL,A&;gﬁS}pﬁ,daJai&' 28 5302y e

Figure 6.11: Part of a trace of the PPM cryptanalysis of an example Arabic
Playfair cryptogram of 122 letters.
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A second example, a sentence from ‘Al-Arab newspaper’ (https://alarab.
couk): “ 5l JILS o5 sl 5 A baally feally codl 8 Loasdl Olilaza¥l s 187
Fldl 555 cass Julpall oda @} ey o) B3 s 5 LS il gl
erlaadl Ol 8 8l V1)) e 2 oadly 8 ST Cins b ey”, s also successfully
solved by our model, (see Figure 6.12). Exampies of the text at intermediate
stages of the algorithm are shown in the figure, along with the compression
codelength in bits. The correct solution with the best score is obtained from

iteration 30.

Iteration: O

2-Mutation gain: -1019.53  dilllimadlin gk leiSibaslly pules Aot B Sdblluaa Y s s
ozl S lemsalalioldts b i d s adams s basdlegezol s
g L JINSe § g0 55040 5128 IS W Ma Lt

Iteration: 6
21009.66 ol 1S SN gl sltoas Tl dls s ST s Sl by lelosa Y LS
et bl s alalall ot ol i o e bl e s
OiMMaill Suslasblolas Jlo sgilalll
Iteration: 7
2-Mutation gain: -966.42  Luag T blaelasidlis g ailledl sl pllit gilin slas WllebazaYlains
Il inge! g e Jloulis sl Jloins a2 sollain et

oI e Mgl fydm | ) omimens

Iteration: 27

Mutation gain:  -908.45  lubses meboeer e 5 sdliblehinn 5Ll aalls o1 U bl bloboss Vi
S ol STaizas posloselios Anandalal s e dgtrongion dudis 3,85 |S35
el s bali) e

Iteration: 30

Mutation gain: -569.68 oS3l a5 5 LIS 5 55 8 il ginall slaal g JLddn 5 JULeLaxa 15 87
DT L g D e Y
S laadbladls aladll)) oo o5

Figure 6.12: Example solutions produced by selected iteration for an Arabic

cryptogram of 189 letters.
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Part of the execution trace in the third example is shown in Figure 6.13.
This example is a quote by ‘Ali ibn Abi Talib’ “Jsb (Sle Sl Lo Uyl )
S e a6l g Lls ¢ 8 s Y1 b LB s el g Wy ¢ LY
155 5S6 ¢ O Lagin sty ST ¢ dbide o ddl 055 50y ¢ 50 s 05 Ll ol VL.
\1} e Sji-—:}“j ¢ olas Y) JAS« D’"J\ O? ¢ Ll ;Lj o \j;jgl ‘}U SJ.&-—:Y\ ;Lj o
Jes". The valid decrypt for this long cryptogram is obtained by the first
iteration with the best codelength value -607.69.

Iteration: O

Mutation gain:  -655.15 sl 55 SVl Vo Lol s oL VY o S eilis s 2.
1355585 g IS0l 65 5V 8 300 55500 Vol s
oYl 5V LY e UL e i 5,85Y 5 5V s

Mutation gain:  -644.88 Ll 53 YLl VY bl s e Lt Ju VY oo Sl s 45 )
135558 o ganioon S0 sk 85 5 3855 0 58500y Wi o
ooVl 5Vl Y shane JUBL e Lolinl 5,85 55 5V e e

Mutation gain:  -607.69 el 5T g5 SVl VY bl s oLt oYY o il s 2.
\;ﬁﬁwsbblﬁjwt@sﬁw\ﬁjM}SH\EL:S.UU\JY‘LZ;JL&M
oY gl 5Vl ¥ homn s UL Wle linl 5 S 45 5 Ve Lo

Figure 6.13: Example solutions produced for an Arabic cryptogram of 221

letters.

The overall results of the main decryption phase ‘Phase I’ are presented
in Table 6.21. This table exhibits the number of ciphertexts with different
lengths that we have experimented with. The success rates achieved are also
stated in this table. The results indicate that 51 ciphertexts out of 70 were

effectively decrypted using our new method, and examples longer than 250

Table 6.21: Results when testing different Arabic Playfair ciphertexts with
different lengths.

Cipher [100-149|150-199(200-249|250-299(300-500
Length

No. of 19 20 17 8 6
Ciphers

Success 53 65 82 100 100
Rate (%)
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letters were all successfully solved with no errors. However, short Arabic
cryptograms of 110 letters or less were unable to be solved.

Concerning the second phase of our approach, which focuses on inserting
spaces to the solved ciphertext that is outputted from Phase I, Figure 6.14
plots the segmentation results. Overall, these results indicate that most of
the Arabic texts were efficiently segmented with no errors or with few errors.

Figure 6.15 presents samples of segmented texts.

10

8 +
2]
s6f +
5
— +
o
g4t
S
3 + +H
z

2 +++ +

+HH A+ + A+ H+ + +
0Fr W H + +
0 100 200 300 400 500 600
String length

Figure 6.14: Segmentation errors produced as a result of the Phase II algo-

rithm for the Arabic Playfair.
The high recall and precision rates and the low error rate produced by
our segmentation method are listed in Table 6.22.

Table 6.22: Recall, precision and errors rates produced by our segmentation

method for the Arabic decrypted texts produced from Phase 1.

Recall (%) Precision (%) Errors (%)
95.23 95.40 4.77

The execution time needed to break the Arabic Playfair ciphertexts is
almost double the time needed to crack the English texts. This is due to
double the number of keys that were tested for each temperature used for
Arabic and the preprocessing and postprocessing operations required when

using the Arabic-specific encoding method. Table 6.23 lists the decryption
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time in seconds for Phase I of our method.

Table 6.23: Decryption times for different Arabic Playfair ciphertexts.

Ciphertext Length | 122 | 189 | 221 | 365 | 500
(Letters)
Time (Sec) 79 45 248 | 195 | 183

Ciphertext Lol stmiomaenSlgasles | 3o i L i e Lgagradole ozl sl (G
SloeS 3|l 3l - Lol i 5.

Decrypted text  ilas Jas 5 o 02 34 Bl sy dy U Sy o S g;p\.d\ Yy o s sy Y
Lol L LSGly Loy LoVl pttiae Lol oda b La

Ciphertext Lo S8 o alato o deoe LS g il g o Lo st i 2 2L
s g rslalatolablid oe Tl st i 2B U S ISt ko
o 3bliailolads et il U Lo s

Decrypted text e tlos 5SS O g ) f 05T O pege 5l ) 055 OV g
ol 355 ol s W L E;u,, }\"f)w o}_<5~ov oY & a E;sﬁlx;;,@
AN el Ll el

Ciphertext s ealaleS eln il s plosk o alond sl o il Aol T IS ML g 3
(oo ldongibslnolinaly sledilendoimm j gladl sl 218 S 54208036 jonandlprslidalS”
;MJ;L@M;&,@;:!‘L;»W

Decrypted text  shilly sl WS o5 el A byaally Jaally cod) § Lagd) SlolaxaVl 528
e g o) ST s g J.«\;,J\ oda mpar widey padl s;ﬁ- o 55 LS il
il Ol 5,8l ) 1le zadly 5 S Cinos b o

Ciphertext o fln st ol grn ol sanlan el e pelialonie LS L el el
S rs Bl LS Tt Ll o glsnne bk st g bl srnlisboless g s
35Sl sl o samsagoit ‘

Decrypted text — J a8 andds L 03,800 om Y Flr! S 5 LY Ol L o) lasdl e
SV g L V1 07131y ooy sl o0 03 ks ol 6 i sl o 028 o s
by 890 3l ki (B b ololl dmall Je 0L 050

Ciphertext oS bl U155 35 sl g sls i8S sabolo Mliaa s le it ontlio ki it
Ol 5 o o bl 3 5 Moo snn glaSlaad ieslds b3l g5 ol llalse gl blonls
o lanlo 16 el o ian ST s sloseallioss 50 e i35

Decrypted text CL‘ | LJ} S);'-’Y\ e J.:Y\ Jsb L sl CL;U J.:Y\ Jsb (,_(..Lo Ol L Jf-\ ol
sy STy dlde el 15550y 5,0 g 8 L) ol YT Gl e e )
55315 ola Yy Jes o) 0B Lol el o 15,85 Yy 8,5 6l o 15555 05 Lagae
J -~ \b ol

Figure 6.15: Examples of solved Arabic ciphertexts with spaces inserted

after Phase II.
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6.8 Comparison with English Experiments

The purpose of this section is to compare the results that were conducted
in this chapter with the results of the English experiments that have been
obtained in chapters 3, 4 and 5.

Based on Teahan (1998), the entropy for English using PPM compres-
sion was estimated as 1.812 bpc. This compares with 1.923 bpc that we
have obtained for the Arabic language. These results were based on using
a large corpus of classical and modern Arabic texts of 513 megabytes size
compared to a much smaller English training text of size 35 megabytes.
However, even though a larger training text would probably lead to a signif-
icant improvement, the result we obtained was not as good as the English
experiment.

Based on this result, there is some indication that the Arabic language
is potentially a more challenging language for cryptanalysis which is also
supported by the experimental results in sections 6.5.2, 6.6.2 and 6.7.2. The
reason for this is that Arabic is a richer morphological language compared
to English. The results indicate that substantially more training data is
required to get performance comparable to English and we have used this
insight in order to design our Arabic cryptanalysis systems.

The Arabic language is one of the most used languages in the world, but
unfortunately the techniques used to encrypt and decrypt information in
the Arabic language are rare with few publications. In particular, we have
not been able to find any cryptographic system, either previously used or
currently, that have researched these three main ciphers in Arabic: simple
substitution, transposition and Playfair.

According to Arabic substitution ciphers, an efficient combination be-
tween the character-based model and the word-based model (when the CSA-
PPM variation was used) resulted in the best cryptanalysis performance.
The results showed that 72% of the Arabic cryptograms were successfully

solved without any errors and over 91% were decrypted with just three er-
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rors or less. This compares with 92% of the cryptograms correctly decrypted
without any errors and 100% with just three errors or less for the auto-
matic cryptanalysis of simple substitution ciphers for the English language
as shown Chapter 3.

Referring to Arabic transposition ciphers, 97% of the cryptograms were
decrypted without any errors using the different CSA-PPM models with a
high level of performance in segmenting words. This compares with 100%
achieved for the automatic cryptanalysis of transposition ciphers for the
English language as seen in Chapter 4.

For the Arabic Playfair ciphers, 51 ciphertexts out of 70 were successfully
decrypted and segmented; examples longer than 250 letters were all solved
with no errors. This compares with 65 English ciphertexts out of 75 that
were efficiently solved and 100% of ciphers of length greater than 120 that
were decrypted, as shown Chapter 5.

6.9 Conclusions

In this chapter, Arabic simple substitution, transposition and Playfair ci-
phers are introduced and the automatic cryptanalysis of these ciphers are
also investigated. An experimental analysis of an adapted approach to the
automatic decryption of these Arabic ciphers based on the PPM compression
scheme has been conducted. In addition, this has also been compared with
the Gzip compression method for the first two cipher systems. The CSA-
PPM compression variants showed better performance than Gzip in both
decryption and segmentation processing. The CSA-PPMC models showed
slightly worse results than the CSA-PPMD models. Again, the CSA-PPM
without update exclusions method, which typically shows slightly worse per-
formance at the compression task, performs better at decryption here. Var-
ious Arabic ciphertexts with different lengths have been successfully de-
crypted and effectively segmented.

The different corpora that we have built and experimented with are also
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described in this chapter. Arabic entropy is estimated in order to measure
the effectiveness of compression models and to use in our cryptanalysis in-
vestigations. The codelength ratio has been calculated for the raw Arabic
texts, the ‘CSA-PPM’ and the ‘BA-PPM’ methods. We have found how
the use of the adaptive PPM compression models for the Arabic language
is more effective than the use of standard PPM for the Arabic language in
terms of compression rate.

Concerning Arabic substitution ciphers, different Arabic corpora types
with different sizes as training texts were examined. The large Mixed cor-
pus, which is a large combination of classical and modern Arabic texts, has
proven to be an effective corpus to be used in the automatic cryptanalysis
of Arabic ciphers. The results also showed that only when using the new
CSA-PPM variation (CSA-PPM without update exclusions with the same
specific codelength value assigned to all order —1 context predictions) re-
sults in successfully decrypted texts being produced. Character-based PPM
compression models, bigraph-based models and word-based models were also
explored in our experiments.

Referring to Arabic transposition ciphers and according to the main
decryption phase, the CSA-PPM method with no update exclusions showed
a better performance than the standard CSA-PPM models with 97% of the
Arabic cryptograms were successfully decrypted with no errors comparing
to 95%.

A variation of an order 5 CSA-PPMD model without update exclusions
has been used in the cryptanalysis of the Arabic Playfair cipher. This varia-
tion has proven to be the most effective method for automatically recognising
the valid decryption for Arabic Playfair ciphers.

It is worth noting that the data that was used to train the PPM mod-
els adapted for the Arabic language is significantly larger (more than 500
megabytes) than the much smaller training texts that were used for English
(just 20 megabytes). This difference is significant especially because the

larger model should give a better approximation to the language. However,
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even with the use of the large training model for Arabic, we were not able
to achieve the same decryption results that were achieved for English.

In conclusion, experiments have confirmed that the compression-based
cryptanalysis method works for another language, Arabic that is non-related
to English, while the only previous experiments have been done for En-
glish. The results also highlight why we need to apply our new cryptanalysis
method to other languages, and the Arabic language specifically, with in-
dication that it is potentially a more challenging language for cryptanalysis

and more difficult than for English.
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Chapter 7

Conclusions

7.1 Introduction

This chapter discusses the work reported in this thesis and the experiments
that have been performed. It also highlights the most important results,
while reviewing the research questions and the study’s initial aim and ob-
jectives. Suggestions for future research along with personal and professional

recommendations are addressed at the end of this thesis.

7.2 Summary and Conclusions

Many electronic communications are compressed and encrypted separately
before transmission. It is recognized that compression before transmission
not only reduces transmission cost but also provides greater security. This
study investigated the feasibility of using compression-based approaches in
the field of cryptanalysis. Investigating the effectiveness of compression in
tackling the plaintext recognition problem for cryptanalysis was the main
concern of this study. Several new methods for the automatic cryptanalysis
of classical ciphers using compression have been proposed. Considerable
improvements in decipherment accuracy have been achieved. In general,

automatic cryptanalysis of classical ciphers using compression is part of the
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wider field of the study of the history of cryptography and particularly of
the study of historical ciphers. This provides a deeper understanding of the
history of the development of both ciphers and cryptanalysis methods.

This research firstly reviewed classical cryptology. Classical systems were
primarily discussed whereas modern ciphers were beyond the research scope.
The historical development of ciphers and attacks were explained. Secondly,
modern compression systems that tend to use adaptive models have been
described. An extensive discussion of the prediction by partial matching
(PPM) compression scheme and how the codelength metric is calculated
have also been subsequently presented. We have surveyed different PPM
models and have compared major PPM variants. This was followed by a
review of how compression is usually used for cryptology. As experimenting
with a language non-related to English was one of this study’s main ob-
jectives, several fundamental characteristics of the Arabic language and its
encoding methods have been described. In addition, the PPM compression
scheme for the Arabic language has been explained.

In Chapter 3, the use of three compression schemes—PPM, Gzip and
Bzip2—were explored to design an automatic compression-based cryptanal-
ysis method against simple substitution ciphers. The basic idea of our ap-
proach depended on using these compression schemes as the basis for calcu-
lating the compression codelength metric which is an accurate way of mea-
suring information in the text. The calculation of the codelength metric is
described in detail in this chapter. Extensive investigations were performed
to determine the most appropriate type of PPM scheme that could be ap-
plied to the problem of automatically breaking substitution ciphers. A new
character-based PPM variant was proposed for the automatic decryption
of this cipher. An efficient combination of this new variant and a beam-
style search algorithm was introduced in this chapter. The experimental
results showed how the newly devised PPM method significantly outper-
formed other schemes including the standard Gzip and Bzip2 compression

schemes. Due to the nature of the Bzip2 scheme, some of the codelength cal-
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culations ended up being negative, making the use of this scheme unfeasible.
The PPMD compression model tended to perform slightly better than the
PPMC method. We also applied a word-based PPM variant which, when
combined with the character-based method, led to further improvement in
results. Experimental results showed that about 92% of the cryptograms
were decrypted correctly without any errors and 100% with three errors or
less.

Chapter 4 investigated the use of the PPM and Gzip compression schemes
in the automatic cryptanalysis of transposition ciphers for the English lan-
guage. The approach used in this investigation was similar to that used in
Chapter 3. A compression-based approach was used as the basis for cal-
culating the codelength value and then recognizing the valid decryption.
As spaces are traditionally omitted from ciphertext, automatically achiev-
ing readability using compression methods was also proposed in this chap-
ter. The Gzip compression scheme tended to perform worse than the PPM
scheme on both decryption and segmentation processes. Ciphertexts of dif-
ferent sizes (ranging from 12 to 600 letters) were tested. A 100% decryption
success rate was achieved by using the PPM compression models, in addi-
tion to the high-quality performance achieved in segmenting the decrypted
texts. Again, slightly better results were obtained in the word segmentation
step using PPMD models than for PPMC models.

Chapter 5 applied the PPM compression model to the problem of au-
tomatically decrypting Playfair ciphers. This cipher is generally considered
to be more secure and cryptanalytically challenging than the previously
examined ciphers. An efficient combination of text compression and simu-
lated annealing was proposed for the automatic cryptanalysis of this cipher.
The experimental results showed that the performance of the PPM-based
cryptanalysis method was superior to previously published methods. The
method was tried on various cryptograms of different lengths (starting from
60 letters) and a substantial majority of these ciphers were rapidly solved

without any errors, with 100% of ciphers of lengths over 120 letters being
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solved. In efforts to achieve readability, the solutions were ranked, again us-
ing the PPM compression models. Almost all the decrypted examples were
effectively segmented with a low average number of errors. Furthermore, we
were able to break a Playfair cipher for a 6 x 6 grid using the newly devised
method. To date, and in terms of its performance, this attack is state of the
art.

In Chapter 6, we further investigated our English-based cryptanalysis
work to examine if it was applicable to another language and to justify
whether the Arabic language would provide a greater challenge for decryp-
tion. We also specifically chose this language as it has characteristics that
differentiate it from other languages and as Arabic is non-related to En-
glish. This chapter introduced new compression-based methods for the ef-
fective automatic cryptanalysis of Arabic simple substitution, transposition
and Playfair ciphers. A PPM model was successfully used as the basis for
these methods. The use of the Gzip compression scheme was also investi-
gated in this chapter with less efficient performance demonstrated by this
method. To achieve readability, two more compression-based approaches
for the insertion of spaces were evaluated with a high success rate achieved.
To the best of the author’s knowledge, this is the first work to demonstrate
an effective automatic cryptanalysis for these three ciphers in Arabic. In
addition, the entropy of the Arabic language was estimated in this chapter.

A comparison between the Arabic experimental results and the English
results was also provided in Chapter 6. The results showed that 72% of the
Arabic simple substitution cryptograms were successfully solved without any
errors and over 91% were decrypted with three errors or less. Methods for
English were found to be more likely to perform well than those for Ara-
bic, with 92% of the cryptograms correctly decrypted without any errors
and 100% with three errors or less. Regarding transposition ciphers, a suc-
cess rate of 97% was achieved by using different Arabic PPM compression
variants. This compares with the 100% success rate achieved in the auto-

matic cryptanalysis of transposition ciphers for the English language. The
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results for Playfair ciphers showed that 73% of the Arabic ciphertexts were
effectively decrypted and segmented; ciphers longer than 250 letters were
all solved with no errors, while a success rate of 87% was achieved for the
English Playfair ciphers with 100% success achieved for the decryption of
examples longer than 120 letters. The size of the training texts used to
prime the PPM models adapted for the Arabic language was more than
500 megabytes (MB) while the size used for English was only 20 MB. Even
though the use of a larger model should give a better approximation to the
language, our study’s results indicated that we could not achieve the same
decryption results in Arabic as we achieved for English. This suggests that

Arabic language ciphers are more difficult to break.

7.3 Review of Research Questions

The research questions of this study, as listed in Section 1.2, have all been
addressed. The research work illustrated the successful application of com-
pression in the domain of automatic cryptanalysis of classical ciphers with
challenging settings. Some cryptanalysis methods described in this thesis in-
volved novel methods not previously described in the literature. The PPM
compression scheme that has performed well in different language modelling
tasks can also be successfully applied to the automatic decryption of these
classical ciphers in both English and Arabic.

The specific research questions detailed in Section 1.2 have been ad-

dressed as follows:

e Can compression models be used for effective cryptanalysis? Specifi-
cally, can we develop new effective methods for the automatic crypt-
analysis of simple substitution, transposition and Playfair ciphers using

compression?

Results in Chapters 3, 4 and 5 confirmed that the PPM compres-

sion scheme produced outstanding results for all three ciphers. These
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results presented strong evidence that compression models can be ex-
tremely effective for cryptanalysis. Chapters 3, 4 and 5 introduced
new effective cryptanalysis methods and their variants based on com-
pression. The results of simple substitution ciphers showed that ap-
proximately 92% of the cryptograms were correctly solved with no
errors, with 100% being decrypted with just three errors or less. A
100% decryption success rate was achieved for transposition ciphers
and 87% for Playfair ciphers. Moreover, using this efficient approach,
successful decryption of an extended Playfair cipher for a 6 x 6 key

matrix was achieved.

Does the prediction by partial matching (PPM) compression method
perform better than other common compression methods for cryptanal-
ysis?

Compared to other compression methods, namely, Gzip and Bzip2,
the PPM scheme achieved much better results with high accuracy. In
particular, the PPM method without update exclusions, which gener-
ally showed slightly worse performance at the compression task, was
found to be the most effective variant at decryption. The Gzip method
showed very poor performance at the decryption of simple substitu-
tion ciphers but good results were obtained for transposition ciphers.
A third compressor, Bzip2, could not be used, as shown in Chapter 3,
as, due to the nature of that scheme, some codelength calculations
ended up being negative. However, none of the positive results for

Bzip2 showed much success, with a high number of errors.

Can the newly devised methods be applicable to a language non-related

to English (specifically Arabic) and how effective are these methods?

Experiments reported in Chapter 6 confirmed that the compression-
based cryptanalysis approach worked well for Arabic, a language non-
related to English, while previous experiments had only been con-

ducted for English. Very promising results were obtained using the
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newly devised PPM-based cryptanalysis methods adapted specifically
for Arabic language ciphers. For Arabic simple substitution ciphers,
72% of the cryptograms were successfully solved without any errors,
and over 91% were decrypted with just three errors or less. For Ara-
bic transposition ciphers, a success rate of 97% was achieved, with this

result being 73% for Arabic Playfair ciphers.

o Can compression models be used effectively to achieve readability of
decrypted texts for cases when spaces have been omitted from cipher-

texts?

Very effective word segmentation methods using PPM compression
models have been used, with excellent results achieved as shown in
Chapters 4, 5 and 6. The Gzip scheme was found to be ineffective in
terms of segmentation performance for both English and Arabic, as

presented in Chapters 4 and 6.

7.4 Review of Aim and Objectives

The aim and objectives of this study, as outlined in Section 1.3, have all been
successfully achieved. The study has proposed new techniques to automat-
ically break simple substitution, transposition and Playfair ciphers using
compression, mainly PPM. These methods have proven to be very effective
in terms of performance. With these new attacks, the current study has
been able to decipher several challenging cryptograms, such as very short
messages.

More specifically, the objectives, as presented in Section 1.3 that were
used to investigate the study’s research questions, have been achieved as

follows:

e Produce a literature review on the area of cryptology and compression

with a specific focus on the relationship between them.
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This objective has been achieved in Chapter 2 in which the general
concepts of cryptology and compression were presented. Different ci-
pher systems and various techniques of text compression were reviewed

and the use of compression in cryptology was addressed.

Develop new compression-based cryptanalysis methods for the auto-
matic decryption of simple substitution, transposition and Playfair
ciphers using PPM, and compare their effectiveness with alternative

compression schemes such as Gzip and Bzip2.

This objective was achieved in Chapters 3, 4 and 5. To achieve this
goal, new methods were developed for effective cryptanalysis of these
three classical ciphers using compression. The performance of the
PPM model was superior to the other standard compression schemes,

Gzip and Bzip2.

Fvaluate and validate the newly devised cryptanalysis methods using
an extensive set of cryptograms, especially the more challenging cases,
such as short ciphertexts, and investigate the effectiveness of these

methods.

This objective was achieved in Chapters 3, 4 and 5. The wide range
of case studies adopted in this research were used to evaluate and val-
idate the newly devised methods. The new PPM-based methods have
proven to be very effective in the cryptanalysis of these cases with
state-of-the-art results produced. This study has included the decryp-
tion of classical ciphers within challenging settings, such as very short
ciphertexts with no probable words. It has also included cryptograms
published by the American Cryptogram Association and Royal New
Zealand (NZ) Navy historical ciphertexts, as well as cryptograms pub-

lished by geocache enthusiasts.

Construct a full cryptanalysis mechanism which also automatically

adds spaces to decrypted texts, again using a compression-based ap-
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proach, to improve readability.

This objective was achieved in Chapters 4, 5 and 6. A full cryptanalysis
mechanism was constructed consisting of two main parts: automati-
cally decrypting ciphertexts and then automatically achieving read-
ability. Compression models were used as a basis for these two parts.
Readability was achieved through the development of new PPM-based
methods that automatically segmented the decrypted outputs by rein-

serting spaces.

e Develop and evaluate new compression-based decryption methods adapted
for the automatic cryptanalysis of Arabic ciphers: simple substitution,
transposition and Playfair ciphers in Arabic, and investigate whether
Arabic, which is a language non-related to English, is more difficult

for cryptanalysis purposes.

This objective was achieved in Chapter 6. New methods, especially
adapted for the automatic cryptanalysis of these three Arabic ciphers
using compression, have been successfully developed. In order to mea-
sure the effectiveness of PPM compression models and to facilitate
the cryptanalysis investigation, the entropy of Arabic was estimated.
These models were trained on a large Arabic corpus that was built
specifically for this purpose. The results achieved showed a slightly
worse performance for Arabic than for English, with an indication
that Arabic is potentially a more challenging language for cryptanal-

ysis than English.

7.5 Future Work

Based on this research, several questions have arisen which deserve further

investigation. The issues can be summarized as follows:

e The use of larger training text should be explored. This should lead

to further improvement in modelling which leads to improved attacks
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against other ciphers.

Further extensions to our automatic cryptanalysis methods and an
investigation into its applicability to other ciphers are required. Possi-
bilities include extending the automatic attack to Vigenere, Beaufort,
ADFGVX, bifid, homophonic and polyalphabetic substitution ciphers.
On the other hand, it is not clear whether the compression-based
cryptanalysis approach is applicable to modern ciphers and further

investigation should be performed.

The use of the PPM compression-based approach for the task of iden-
tifying the ciphertext language, and the problem of identifying the
encryption algorithm which generated the ciphertext needs to be ex-

plored.

Further investigation needs to be performed regarding other Arabic
ciphers and the automatic decryption of these ciphers to ascertain
whether this language really provides a greater challenge for crypt-

analysis.

The decipherment of some historical cases and challenging classical
ciphers that have not yet been solved, such as German diplomatic and

Navy messages, would be useful to investigate.

It would be nice to explore other different search algorithms also based
on the compression approach for the automatic decryption of the three
main classical ciphers: simple substitution, transposition and Playfair

ciphers.
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Appendix I: Samples of substitution cryptograms and their valid

decrypted texts.

# | Cryptograms Decrypted texts (produced by the software) Source
1 | vukjksrjeojvukjneiwr the end of the world Skeeter Davis
(song)
2 | fsdigzgdubisqmgfbmlgobmgisqzdtmtz what s another word for thesaurus Steven Wright
3 | nmiyuljrtujgxaljcdjmoojylumrjbping danger the spur of all great minds George Chapman
4 | zwkkebvaiivebknxbecpecnkebegntefacx wall street slips of oil s big drop New York Times
5 | qdbyjjb dlvo juyzxdavkdz qkbfd e kfvz a little something for nearly everyone New York Times
6 | mfzblzfxzofmzmfzblzmvpmzrdzmvlzecldmrfo |to be of not to be that is the question William
Shakespeare
7 | zll jfuzgjrfrdbxorfbkfrjkbsifuzkzpjujko apple makes shifts in senior management New York Times
8 | eyeixjayrxajdmzayakimxacytalwajlyrlahxwhpx |babies are such a nice way to start people Don Herold
9 | smzpdsilmnnhdyulgmsqjmhelcgpjmzulmccdhql | nations approve landmark climate accord in New York Times
pslnmhpi paris
10 | zpvlnvedmoasqd britain would vote to stay in the eu if asked The Independent
olydlodjlnkdvedluydyadvcdnjhyqdlognk today
11 | asmmgchejkt nsshmcmahejktzsnkhgsjcm sleepy mandrill eyes mandolin player singing Michael Lucks

hankxnkxhgzghazkxa

pop songs

12

rbu ih fdk fivk sbt cyy ebbw vkr fb gbvk fb fdk
ciw bs fdkit pctfl

now is the time for all good men to come to the
aid of their party

Charles E. Weller

13

rieitislkibadipdldgbehghakdlamdabkdldrbamikib
adldebclzhdlamdabkdldnl ybg

civilization is a movement and not a condition a
voyage and not a harbour

Arnold Toynbee

14

iheunrkpkgreugeunerlkejzrzpketk
vzgkeuevieomunoermegcknyerlkepkgremjeihed
ujkerlkpk

my interest is in the future because i am going to
spend the rest of my life there

Charles Kettering

15 | epuluovluoeyxosbkkbxqobgeulu there are two million interesting people in new | Neil Simon
ebqtoiuxikuobqoquyofxlrovqdoxgkfo york and only seventy eight in los angeles
uhugefoubtpeobqokx ovqtuku

16 | srnevwxnowernwvzniwpzmwdnnwvzevwdalrlv | great men are they who see that spiritual is Ralph Waldo
gekwldwdvrmosnrwvzeowxevnrlekwumrgqnwvz |stronger than material force that thoughts rule Emerson
evwvzmgszvdwrgknwvznwpmrkb the world

17 | sghguuxgxgcqgsnnunuxk uvhqzsxgqtvaacxhq  |i shoot the hippopotamous with bullets made of | George Hart
klequeqnakxspv platinum because if i use leaden ones his hide is
qtcwkvhegsegsqvheqacklcpqupchqgshqgslegshq | sure to flatten em
hvfcgqxuqeakxxcpqc

18 | yosnmgmesnysccvnkvnyfncfxsnfkwndsgbomfw | the bible tells us to love our neighbors and also | Gilbert Keith
vnhdznhcvfnyfncfxsnfkwnsdslgsvnuwfmhmegn Chesterton

msjhkvsnyosqnhwsnbsdswhccqnyosnvhlsnusfuc
s

to love our enemies probably because they are
generally the same people

19

poltjdgmujzsumujmjs
jblmtbjdljuqlcjrlpjglcjsjzptagjlijzhmbqdjrlptbjiln
eujfmfjimtfjsjaqs omltjsj
stjcmdgjzlrujstfjpbmhnujlijgmujlct

upon this basis i am going to show you how a
bunch of bright young folks did find a champion
a man with boys and girls of his own

Ernest Vincent
Wright

20

gjbuypbigbwgufsegplzkglseucbufieuvihbugsusk
pudskeywgbpwuleuspobpugsu pb
ipbugjbvutspugjbulebalgizrbulwugsulvzkbuleug
jbvuiuybeklebuwbewbustuioabegkpbuclgjskgug
jiguwbewbusebuvidubiwlrduobw
ilpuieoucbuebboupigjbpuobw bpigbrdugjbu
iglbefbuieoufskpiybustuvbeuieoucsvbeucjsupbtk
wbugsuobw ilp

the greatest contribution we can make to our
youngsters in order to prepare them for the
inevitable is to imbue in them a genuine sense of
adventure without that sense one may easily
despair and we need rather desperately the
patience and courage of men and women who
refuse to despair

Edward Eddy
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Appendix II: Samples of transposition cryptograms and their valid

decrypted texts.

# | Cryptograms Decrypted texts (produced by the software) Source
1 |Ibbiobgsagni bilbo baggins Phrase
2 | ogcyrptremahoydp cryptography demo Phrase
3 | ousmhcosnusdlotiltoetuocem so much sound so little outcome The Guardian
4 | iusictmsehomtsxeepsnvioeafllosisen music is the most expensive of all noises Josef Hofmann
5 |awthitshucnoytnrdesemiosfrresepeceherwtoihsl |what this country needs is more free speech worth | Hansell Duckett
ntietnog listening to
6 | dkitelirhaeeofmhtsuterufeteetbhartnthihtseyootf |i like the dreams of the future better than the Thomas
rpahtse history of the past Jefferson
7 |eillaficomnorswesteeidalnnoetdwdeyhtoodnluht | if all economists were laid end to end they would | George Bernard
acerlancocxuonis not reach a conclusion Shaw
8 | tehhnwisydaednaaacuhtgoiwitothedlubuhnietpt |when they said canada i thought it would be up in | Marilyn Monroe
uoanmosnmsirhweee the mountains somewhere
9 | oluiwdhtaretebrhnamewobohutthghorbeonylkb |i would rather be the man who bought the Will Rogers
gdirenahttamehnsohwotidl brooklyn bridge than the man who sold it
10 | itrreetnmmueebswotrenfudemlanicuyanokcsinu | retirement must be wonderful i mean you can Burt Reynolds
ruystocaohfmnoolyrolsngo suck in your stomach for only so long
11 | tttamaihhwergeaeuoalfyifenuotetdtlwealthlkisin |im at that age where if you flattened out all the Robert Orben
reesnebedvttlleefa wrinkles i d be seven feet tall
12 | tcaiotmmheetiisahgncwthiekaweesahtkwoadoo |a committee is a thing which takes a week to do | Elbert Hubbard
otondegdamnnocaunioarnh what one good man can do in an hour
13 | atngsoeitaiawmsnhnohsitktfhteiahhbanetdenpbr | a negotist is a man who thinks that if he hadn t Dan Post
onoepulwdoelhoaedwvnehrdxwey been born people would have wondered why
14 | ndilrceheneuparreactbdlireunvyeotwowhkansnc | children are unpredictable you never know what | Franklin P. Jones
osiineynctthegoegiynrytcacthotnineoxu in consistency they re going to catch you in next
15 | infaremnodfintweeteotohdrbtcoaaiuotrnignigsa |a friend of mine went to the doctor about a Charlie Callas
hnieeotrhdratcogiaevhmlsunnieretda ringing in his ear the doctor gave him an unlisted
ear
16 | ouacyneaadlhrsteooatrewbtbfeuoeyuorpshihum |you can lead a horse to water but before you push | George Gobel
njsuittoapsnthnidkowwahehosrtemellss him in just stop and think how a wet horse smells
17 | eystnidinsomtateorfcahncietiasmatterfochiocetii | destiny is no matter of chance it is a matter of William
sontahtintgobweaietdfroitsiatihngotbedahiveec | choice it is not a thing to be waited for it is a Jennings Bryan
thing to be achieved
18 | lutesbeveryelcartnohiamsttirefwocendnmepelpo | let us be very clear on this matter if we condemn |Lyndon B.
etnioeqlauitniyouosrciyteweslaocdnoemhtnemi | people to inequality in our society we also Johnson
otneauqliiytnoerucomony condemn them to inequality in our economy
19 | uplbethvaaehicasitnnicerulabtitysiowovenokhtn |the public have an insatiable curiosity to know Oscar Wilde
iyerectpxgeitwsawhkhontorjguonwiilmsarncsoi | everything except what is worth knowing
ncotfihoushdvansartdaginnailmesbatihkeppiluss | journalism conscious of this and having
ehritesnasdmde tradesman like habits supplies their demands
20 | artehekwroetfsiondsuilmproerscdoenspttiongk | there are two kinds of impulses corresponding to | Bertrand Russell

whoetfsiondtdgsoorehaeresespoivsesielmspuhis
cwhaaatimiicrquernrgonntiaiaigvprdotoegcastth
boatnneaersheedsthrtceenihientelmspuproofpny
earteedrthecarreovaetitnrscovtriuclpeuimiwshes
aicmhagitnbrtiinngoeowthmorrldanagkiblvaaiu
olrefkhseetgoifndnsoiodtcwhhisehiervrniopdaa
ncysonsopnieoss

the two kinds of goods there are possessive
impulses which aim at acquiring or retaining
private goods that cannot be shared these center
in the impulse of property and there are creative
or constructive impulses which aim at bringing
into the world or making available for use the
kind of goods in which there is no privacy and no
possession
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Appendix III: Samples of Playfair cryptograms and their valid

decrypted texts.

# | Cryptograms Decrypted texts (produced by the software) Source
1 |byntlbneonnuimmzqnhpbkxngmfqoqnmugclgmeue | cats are intended to teach us that not exerything in | Garrison
rsuqpnziggbqyipilgtku nature ha o a purpose Keillor
2 | kuinbrnuikcngmhuvgtnnmybkgbromrukngmmnknq | experience is the worst teacher it gives the test Vernon Law
dmpvgniignkoneumokgpgxytqsu before presenting the lesson
3 | rbdpkiommndnrtunhfmgdngbyuinonebseeuerabonn |i refect get it done make it happen thinking i want | Jerry Brown
qoyqvgmeukortuqtqeptigitnpgmzkghdmnnmev to slow things down so i understand them better
4 | qmginetkvgkiigirgftiqgyndtyybndqoeuiheuhlpdcoodf | there is more credit and satisfaction in being a first |Bertie C.
gmnivksibrugigmpqfqnugmblnmkukiznruku rate truck driver than a tenth rate eecutive Forbes
5 | gmgpcegpeukntqpygmeuhkylinueoecneuugcogpflg | the likeliness of a thing happening is inversely American
vIndorngpfonrtimncblcrprsfpdgporknpdcoofba proportional to its desirability fin agles first law Cryptogram
Association
6 | dncnongmhiviimottingbffsqbzmbrugegtefbblqmgid |it isn t the burdens of today that drive men mad Robert
ncnigogmnvlgipktngibflsdlhpgvdztgvggvxz rather it is regret over yesterday or fear of tomorrow | Hastings
7 | qogndzkgpdcoqftigttndelndopgszqmeukoltbldbdnrd | one of the first and most important things for a William
ngpglbuegkgqvnqoykunipuimnmdsmifqgmmnkgfqgi | critic to learn is how to sleep undetected at the Archer
theater
8 | pglbbkphvrvocnndtnkgihtnewqcpgbfspvghfsipggbu | an archaeologist is the best husband any woman can | Agatha
ggqmgnfrgigkghmntnkggtigeunmigtnmikgcneukgev | have the older she gets the more interested he is in | Christie
her
9 | fherndqopgvlgihftngieumrknrbmngrgurpdpenicpku | ambition an overmastering desire to be vilified by | Ambrose
nedknaqrpgprueuhltihfimbririxrvxncaldentiqxkgtih | enemies while living and made ridiculous by Bierce
pcz friends when dead
10 | bkbptkpbqytnivdsvigndzkgikonblpogilvxnxctngeltd | chiasma is a structure of the central nervous system | American
gmicagmkigvxyncoevlgitlpdihcoldtgneqmgincimngq | formed by the crossing over of fibers from either Cryptogram
gmgngmgi side to the other Association
11 | gmghnugiyadnlsplbrsikndpgmkpuhigtnbryuinrtdzk |the generality of princes if they were stripped of American
grbipilpgpqidygnoyhmieunqqmhuvgfrvqvpirkzegirf | their purple and cast naked into the world would Cryptogram
ggpcxeumsqnkgrvuhtnblsetltqdrmncy immediately sink to the lowest rank of society Association
12 | izbroeqohukugmigikonafqznusfqznlgiikontllivoblkt | during one week recently twenty two percent of American
gocbdnenmqgpgucnrnqugiginihpnttlgmknmnuhonf | programs on british television were repeats of these | Cryptogram
svginbdnuqzgiginihpnttliginfqqytitqqo twenty two percent were repeats of repeats and so | Association
on
13 | rsoeblnzayndqoxcnvugrtundngmgpsrfqrntpvggmen | congratulations you ve done it the location for this | Geocache
bybkcnyqltyvrvxqogdomadpsfqmigmngbkumugiqo | cach is as follows north fifty three three zero nine | Puzzle
eumnvqgohuknnqunewtiigmzebdokunugmrbsfnehk |two one we stone hundred thirteen thirty eight eight
nmremqueunumgy nine zero
14 | gmniayfppbbdeikgbrqyznggbrummdvggegihgsipxn |the playfair cipher is authorized for emergency use |Helen
keugmhpdgaczndpgmgineoxgifkxikbgbsigndtknqy |in the army but if there is very much chance of Fouche
hgqcneoeeunmbdninmmzkggaaxvgrtquebbkgmkiei | messages being intercepted the key word on which | Gaines
kgconwlbneqcyqmigknvfrihbkpghgrtdznugmenhfm | the cipher square is based should be changed often
gtnkgblieczimdraegiegoncapupwgmvgdumiincoqot | this makes the rapid decipher ment by unauthorized
kvgmidppdixfoyafogbsdpqihgginmdvgeuqmensfint | persons more difficult all that can be hoped for in
Idraegi this type of cipher
15 | nugelsznlntngbqckunuibrunuhbksnqebtkpbopeugnl | enemy outpost has been driven back to its main line | William F.
dknengfsigkenbrhkzdayseqbqckunuimpduenmafrvb | of resistance its right flank has been definitely Friedman

ynmbfodglirpudsrntprukunehkntgunubfqkiabrtqunc
obyfnvimiihrvoenqqmrbicfqqfprqonczsebtppqodfsk
gexqfnmgmfqgmnecokiqoicfqqfprqocngqgfreuhlpru

naqrdeayqnktqugbgrpyocuumgvpdugbfqkfqkgfyyo

qtqfnmgmfqqmkpubyvarginetpvgikmztryfcaeupyon
clpgbfdorppgclldtggmkuhptn

located at road junction five eight seven dash b
prisoners captured belong to third battalion sixth
infantry they state that their second battalion is
holding a line which passes over hill six zero five
dash a they also state that they will be reinforced
today by infantry and artillery from the east
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Appendix IV: Samples of Arabic substitution cryptograms and

their valid decrypted texts.

# | Cryptograms Decrypted texts (produced by the software) | Source
1 el PMale caalaiine] ) [lagh Pla)all sy Sl e (s e s3am LS andl (e alll aasy| g prall Ml g
2 beclanyblayils go gith b g ailandalayibilita s T Lol (e ey i 5 gl (o @iy ¥ egd] Lgare a2
3 | Sowarlhomizpo punlis fo o filbe sin fhazde > <l plally Z ¥y ol JodiaM) (o 230 albaty Gl 2l saall 8oy
4 | 253055 Proinmbroaiit bar daiakit 355linSintat | Gaje S5y o) alll S liogally Oriagal) ikl G| Al e 02 seme
JaSodietiirdais T diofeg| Mhwsade dll (o
5 Covalaaiy|iicaniiatigobimayitibiaind| e la) () 358 geizall (b &y Sall il ) 3Ll By
3glabolilaiat 35>isadily 42559
6 abaraSeuaaSySiy ey Lol (958 Y yuiidly dyguod] 8 g padly (gins Y a5l o
alagsanSiiy A3gn.SysSomarbaySlagtasly s WS
7 Jbasli>tlallantlle | (Susls () o oSJg (Sgely oS g ) s Yalll o) | bl s O 20me
laty gl b gl ae il abal ot el et S R B
8 Jeelrelaboumin log o Blinlalizlpbntuailisens | e bl ol US Jlasl e j5-bie laic] go Loy, pail) Sl ol
9 | Llatyaudaglige duirilas ponlaglbge s sasbibslun | (g guall Jazr ol olle znll (Jar (i dalsal LSy
™ JA.JQLLM HTRE TN WIE EA P TIN aipls of b|AAL!_§)L.";SJY|
10 | atsededlalsagingae LaSButlhitra alSialisgs S| (b ObS, dndie clelad peay pseatl] (e § Jard) sl B3
Brie palSGalataty e ISl o1 2t ) dilaiad) Jga axgi
11 418 $210 530l Jaz e (52196 eAdamgunygaocis | dallls Ul J f1 g ikS Ao S (1o )_\_\SJi | glaxi P.UBAJI ) i)
Ol egaliaai e bumasad egsagir s sl ainiilasdae eand| i i) i) WS
12 a1 galaifgind zg&w‘ﬁwwww &é(\@&l,u}lg‘@wwﬂjﬂ\@gﬁ.ﬁm} 5l b pole P>
o pogiralLadd ¢ oagialhi nuogizanrinblgil he civuall ars (e (Jodl binall (48 Loall
13| plos i das A ailgids Al il (sog) g 3| 13l5 olall o oo OS) o Salae pioll) tany @ plas
Lill jis il (gallas A il jislas Caagils 5Saia | o pleiy aiaSd olel) 3agall (e ¥ (1) ) i) Lo
L_>3'>J.‘m
14| tathodele loeajoile froSias fibSibue Slsic s bie pans|  (izay Lok b gy sl i) gaizall (b 3gey i) sl e
L;mﬁz_\.r_gx;.gmﬁmguﬁ.@a L‘g’[é.’dl a‘jhﬁa&q&i@zh&ba\@g}” a‘jl‘.ﬁ
I3 aise i e e 55 fagiislaSilan siagus] zee Sl
15 W)MMMS&GAM yj Ladl Y ) u.ujd....uu_\.: o Js?u Y]~_|>u ) Guet
o3l gt e Biighy o585 ot ity 535S aaSailissSuad| o 2SN Lale I (e 3T (o sl Yy T Vg aylis il
i3S B a9 g5 sapung s oSt pan | 5 Ailay) i Yy Ogammgl) Baldl Vg dyipall
2o5igly
16 ASLLnJMJ;s&LLaLaJS;J)AET;DJ&DMF PSEY] u,di el e ol Tz L’);SJ Qi «;mj 3l sl pualy)
aaAma]umaay\mbya‘M;Cmﬁ :\_.4)‘95 Yl i S g Baladly jrss Ailas o goladl (8
‘_ushz.c.u awsm‘bmwm dzgin)) Guid e Juaxin
17) ol i3S das o W A0 (i3S ias plegoyd| 855 il Gle o n e Jui e Jgul) 0a | miliis £
i JS P32 (s imn b I 2 25 TpS,5 b JosT| Lglaolis IS, Bl alolgo sl of e wlais
Bl L o sl 31 435 paS Agle 3] 25 dabe g | Lglac ad ami laial] (8 Liglos gl (6 o U3 g
PP
18| Sl pul> piulistas s puls Sloblbalinssbiali paelas| Jobo L coogll g lsly Jo¥ Jobo (Sle ol L cigsd o) | il ol 0 e
of poalaslpll olibantiar lits grallaalubuacsls, | Ol W G50l O aad gl gl Llg8 2 (s LY Pl axle

Lo sl ol 553 il palis 3l lLogoilis o
tllal o ol ebiligyaalies 5

i Ll faslis fits g5l

sl Jsarbin g Jlanbis Igile Bularublogsl

oy JSJg aluie ciludl a8 8 2N g6 pae cdgi 28 Liadl
Liall el e 150655 Y5 8 5 elil (1 159555 Qg Lagie
Jae Yy ol 5530y ol Yy Jae el o
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Appendix V: Samples of Arabic transposition cryptograms and

their valid decrypted texts.

# | Cryptograms Decrypted texts (produced by the software) Source

1 Hasagls laalli) J5 b J) s e i) | il al O e

el ande

2 Lpagpigh i lgages olgas 90l sl g e | Op il Olax

3 ) SsasS ac Slo graSisaad A£T e Agac s Algs (o Aigas | o ol o e

U] arle

4 8 llisaagri)giSalsric laialsgUs Bld) (e giay aiSUg chgall (o ziay Y Cigsd) Ligize i

5 rarlilbraiiankagiaa i el ot ) el Jo ) e (uaine bl dyie¥) g2 Y it 3l 8y
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Appendix VI: Samples of Arabic Playfair cryptograms and their

valid decrypted texts.

# |Cryptograms Decrypted texts (produced by the software) Source
1| ekl padle Lalaadhs il s Lalilbsataluslilizatlgialiola | Of (slillyoliatile (de ot Jo¥ olish) o Ole g da oM
oLaogiS it SSL LI goadat B S glagisbosgs|  Of am i) iyl i gl o asy ) eiliies
Sl 2 lgrn cuisad OS3
2 | baggalosade plo laiaasbllilailss fillipalidlarise % Bl iy 322 L S35 o ol (palod) ¥y il S50 Ja85 3 ol oLl
) pinkaLactigils o tigils) Mometivs MLt 5o ggaSiilai liviaia| oWy (pafitiie 3Loud) oo (b L (paile Yl U3 (o 0 Il
o, olsdl 13 LS5l LoVl
3| M litaba s it poraid Jislaec daaladan sasllan aailaseile | Lagd Jib aagl¥) 1Yl pole (e (la s Julally axl QL 13)| sl Ol
oyl pasiatas bt lisasalnslls ity aiSaa) i it sdinistas| Y] Joam ¥ ple 130 @ Jgi o 2y W Jand) 350> (e Jula))
A3 o 130 o J&5 3sally
4 | oo eSS bnic il ppSilen b giaibonoling @izl e 085 Ol e agal Ganl 0555 Ol (fagd] A Ol
s el Bagidecnll o g agaslan JatiSgusa) (hagd &) ant g3 oot v e U553 Ol i)
AoligailSususe brgaotsliviebratal el Gl 9553 O Lis Gag Lo lse o) o e 0553 O
ool Bl ay aslay)
5 | edasgaillbiatlal Labs o 52 Yodgilal fasligllitgise LS 9o 7 et (llals o (0 30 Sb Of ol B3l
il Lo saibolpardiailaygian]) 5l lui Sl id featyind joregiioly asaslly Gaally oY 25 e Lpsd Lo e Jsial) 5 il
ol salilsdarglalil ol 0e; e Y S a¥ Jaazg adlog G et JSI uancilly
6 | ayliSluiiz sibailal s budail sdata) o) slasaialil alisg) Jlax | &yadly ot Sy 805 e laiz Vg &yalaid¥) o USsal) ot B,
il el gy i aglmaliizenaie losals fo giitllilailaia| Sy sazie Jikis 550 Ui dasd lay elagaad) 3 J831 Jga o) bl
Dbl balasbilols pasiad Lo ptslls siiol>lp tiazr dagail) JSLaal) 3agar Yol Lz giSall agd sty yuanl)
7 | Bl jlabes] fitiliolar fous|s-Usiaailals e dls mtalilids)  Lalic) Ups layg) layg, dple 1 lamglly ol fois¥) o jlo sl
5 it lsen sl o sglatlals aglagle yaila ot alay il i) (8 dnt ) Cpuglind) o (e @l Lolam 3 oY) @
L bt lne WS e s ilae oVl sagilligi s a3l yi2d| (b Bl arady (Ioall 5l (sdomall (sgivall sle elgu ay i)
Sl
8 | >iialalaifrtia tgrsdlians il lilligh] Joablighilaadad|  )gaiss lsiou) Juasl Jgzdls Yy aulxtl) |gmlol qalatl] Igmlaal| st Sodl
mwxmmw}m@ﬂwbmj,x Onalatall Jazs () Laalatl] zoliad) (5 dasd) Ll e zp
auslalglaliasasdala) o)l Lsos o) lpge e ) o aliattS a3l ol Igadats o Opmabaiog gl o6 i 385 ) o) B) g il i3
otelaliislaior Jse i o oSy O e M 1Sy Of Sy
9 | Lorgsital paLss joggintaliat s s aull|lsala] plosilonses | Lgal 5 ) Lagially Janlly sl (8 Zragd) bolosal) 84S gl
gl pollig) phlanlusy il e s W) lalibaailo g sitlitnls|  pgid) Bag> (e 35 WS Cuaaslall Glitly yigd) () WIS (safs asail]
__uLALLNJ)J‘W‘?L]MJH]B)ALDLBWU @ o g gleall 385 e a5 Jelgad) 038 zraz aSay
([P [ETNE Corliall Gt 5 alls ) 1) o o230l 3 SIA) Cins
10 | Lol lsSasisdlyns YoaflignsagisnallipsigipnallaiilipiunsSagel 505l 548 axls o s o] Job o Ols o) 5 0 Oy ]| oo
aenndledailligitl il oSz Lag) polo5 il 1AL SSSL) domsine by i b pos G st ¥ il Jlo g3 Lns| 2900
Baraliiloonis failgilonsnolalods jaifliilaaSisllt sl ) Bagis lally el Logis (Lal) Jalt] alardy Logs anle
fiplorcilo> ) s b flayy al) Liagis Jo-lall (e Ll Liisd) g
11 b&;ﬁjbuybﬁm)mhclwa&bp)mm&hw Sy Y ‘}LLQ.\}' Q.\lfyb L)L..AY‘ L)] Lg_u (\.l...n.l] Bl Co| zlidll 32y >
ol nslialilglan b it gidg s lialel s lie diSilliiate | as¥ aniz el (yo 008 2o Ltand) () a3 ue ardas Jy 03 jiey
wﬂj@iﬁ&)ﬂjﬂﬁbﬂ}v‘h IE 'ﬁb_m}:.]l saclilliial wilalla ‘é..L...;Y\ tLu?Y\ uls |J‘3 al>buy cb,}] e 63840 )?L;
JLslplallras| 8500 Bl i (43 988 salad] aumad] e Ol s 900
Sagi
12 | st glaflo) Lansaillofisio ot gibalal pilollaalolge lgimal L) snall 130 (6 83mly alSLs (e badly 6 ol O 03yl | il o>
mjt.,\pgms,amm,m@u Lblkalgladanses iblabsl o lSiiall ilear S 13 jaswall i) (8 Iginey
L,sauuu)ww)m,%mwwyu@ﬂ PUSII (48 S ol (b Ilats O Loy i 381,00 = pilod)
3 st alisall| ) bV i (b emad Jlgbls US> iy Lay g eleataly
irall i
13 Mg‘L&u]lW;@jﬂ:L:MY:LM}YPLLMLL an go (el Caaxills (pall o) Caedally sl @3Me Y| 8 fa e

5o Tsgin i) S gl Jplaloes .t Blaa ity 50 i
Jassolalred s sgtile sl bilgliliggsLaalei s ol |
acnallaglo LUl Mgl s liat ala gblalgldngiliaiilalivs

gl Lol sLlate Y alsisns Lo Lis a8l Liluial

i) oo go cisldal Cvanillg all Cuans 5o ol i) o Bagiad
e ) pgiog 3l pgie Jasell e pgios ejall pgie
Soes g py i lazd Canilly 13y sar)] gios gl
aailll] P S (8 adald) o g8 9o (sinall lagy 3300
i Ol (e 35 Lo of liga ey selaiz) (gl pllas

203




	Introduction
	Background and Motivation
	Research Questions
	Aim and Objectives
	Contributions
	Thesis Outline
	Publications

	Background and Related Work
	Introduction
	Introduction to Cryptology
	Terminology
	Cryptology: Where Did it Begin?
	Attacks Against Ciphers
	Development of Attacks Against Classical Ciphers
	Classical Ciphers
	Simple Substitution Ciphers
	Transposition Ciphers
	Playfair Ciphers


	Introduction to Text Compression
	Dictionary-Based Compression
	Block-Sorting Compression
	Statistical Coding and Prediction by Partial Matching (PPM)
	Variants of PPM
	Entropy using PPM-Based Models


	Using Compression for Cryptology
	Introduction to the Arabic Language
	Arabic Letters
	Arabic Encoding Methods
	Arabic Text Characteristics
	The Arabic Origins of Cryptography
	PPM Compression Method for Arabic

	Summary

	Designing and Evaluating a New Automatic Cryptanalysis of Simple Substitution Ciphers Using Compression
	Introduction
	Related Work
	Automated Cryptanalysis Using Compression
	PPM Compression Codelength Metric
	Calculating Compression Codelengths Using Gzip and Bzip2

	The New Method
	Experimental Results
	Experiments with Different Buffer Sizes
	Improving Results Using a Word-based PPM Compression Method

	Conclusions

	Designing and Evaluating a New Automatic Cryptanalysis of Transposition Ciphers Using Compression
	Introduction
	Related Work
	Compression as a Cryptanalysis Method, using PPM Compression Codelength Metric and the Gzip Compression Method
	Word Segmentation Using the Viterbi Algorithm

	The New Method
	Experimental Results
	Conclusions

	Designing and Evaluating a New Automatic Cryptanalysis of Playfair Ciphers Using PPM
	Introduction
	Playfair's Weaknesses
	Related Work
	The New Method
	Experimental Results
	Conclusions

	Automatic Cryptanalysis of Classical Arabic Ciphers Using Compression
	Introduction
	Arabic Language Corpora
	The Entropy of Arabic using PPM
	Related Work
	An Automatic Cryptanalysis of Arabic Simple Substitution Ciphers
	The Method
	Experimental Results
	Improving Results using a Word-based PPM Compression Method for Arabic


	An Automatic Cryptanalysis of Arabic Transposition Ciphers
	The Method
	Experimental Results

	An Automatic Cryptanalysis of Arabic Playfair Ciphers
	The Method
	Experimental Results

	Comparison with English Experiments
	Conclusions

	Conclusions
	Introduction
	Summary and Conclusions
	Review of Research Questions
	Review of Aim and Objectives
	Future Work

	References
	Appendices

