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Abstract  
 
Many studies have investigated the development of face-, scene-, and body-selective 
regions in the ventral visual pathway. This work has primarily focused on comparing the 
size and univariate selectivity of these neural regions in children versus adults. In contrast, 
very few studies have investigated the developmental trajectory of more distributed 
activation patterns within and across neural regions. Here, we scanned both children (ages 
5-7) and adults to test the hypothesis that distributed representational patterns arise before 
category selectivity (for faces, bodies, or scenes) in the ventral pathway. Consistent with 
this hypothesis, we found mature representational patterns in several ventral pathway 
regions (e.g., FFA, PPA, etc.), even in children who showed no hint of univariate 
selectivity. These results suggest that representational patterns emerge first in each 
region, perhaps forming a scaffold upon which univariate category selectivity can 
subsequently develop. More generally, our findings demonstrate an important dissociation 
between category selectivity and distributed response patterns, and raise questions about 
the relative roles of each in development and adult cognition. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Introduction 
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The functional organization of the ventral visual pathway is strikingly similar across 

people (Kanwisher, 2010), raising the obvious question of how this highly systematic 
structure arises in development (Grill-Spector et al., 2008). To explore this question, 
researchers have primarily focused on the developmental trajectory of the size and 
selectivity of category-selective regions including the fusiform face area (FFA; Passarotti et 
al., 2003; Golarai et al., 2007; 2010; 2015; Scherf et al., 2007, 2011; Peelen et al., 2009; 
Pelphrey et al., 2009; Cantlon et al., 2011; Natu et al., 2016; Nordt et al., 2017), 
parahippocampal place area (PPA; Golarai et al., 2007; 2010; Scherf et al., 2007; 2011; 
Pelphrey et al., 2009; Chai et al., 2010; Meissner et al., 2019), and extrastriate body area 
(EBA; Peelen et al., 2009; Pelphrey et al., 2009). While a great deal has been learned 
about the development of the ventral pathway from these studies, most prior studies rely 
exclusively on univariate neural measures and do not take advantage of more distributed, 
multivariate measures. By contrast, a growing literature in adults has shown that 
multivariate analyses can provide a finer-grained characterization of neural representations 
within and across cortical regions (Haxby et al., 2014). In particular, representational 
similarity analysis offers a window into the representations contained within a cortical 
region through the use of representational dissimilarity martrices (RSMs), which reveal the 
similarities of the response patterns between all possible stimulus pairs (Kriegeskorte and 
Kievit, 2013). To the extent that this method reveals neural representations, it should be an 
important tool for characterizing cortical development.   

 
At this time, only a few studies have examined the development of distributed 

activation patterns across the ventral pathway using representational similarity analysis. In 
one study, Deen et al. (2017) found that the relationship for large-scale patterns for 
different object categories across ventral visual cortex were very different between adults 
and infants. Meanwhile, in another set of studies, Golarai et al. (2010; 2015) compared the 
similarity of activation patterns between older children and adults and found those patterns 
to be strikingly similar between the two groups. This particular set of results stands in stark 
contrast to the numerous studies that have shown that category-selective regions in this 
swath of cortex are still developing both in terms of their size and their selectivity in older 
children (Golarai et al., 2007; Scherf et al., 2007; 2011; Peelen et al., 2009; Meissner et 
al., 2019). Together, these results raise an interesting question: do distributed 
representational structures mature more quickly than category-selective regions? In this 
study, we sought to answer this question.  

 
At first blush, answering this question seems relatively straightforward. The first step 

would simply entail finding category-selective regions in children that are significantly 
smaller than those in adults. The next step would then be to perform representational 
similarity analysis in those neural regions, and show a high correlation between the RSMs 
for children and those for adults.  However, such a conclusion would not be so 
straightforward, and interpreting such a result would actually be surprisingly difficult. 
Because the univariate and multivariate measures are so different from one another, it is 
unclear what pattern of results would enable us to confidently conclude that 
representational similarity precedes category similarity. How much smaller do category-
selective regions need to be in children? What if the regions are significantly smaller in 
children, but are not entirely absent? How strong do the correlations between children and 
adults need to be to conclude that children’s activation patterns are adultlike? What if the 
correlations are statistically significant, but considerable unexplained variance remains?  
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With these difficult questions in mind, we developed a different approach to 
examine this issue with the strongest test we could think of. Specifically, we asked if we 
could find mature representational similarity structures in children that have no category-
selective regions at all (i.e., literally 0 category-selective voxels). We scanned adults and 
children with functional magnetic resonance imaging (fMRI) while they passively viewed a 
variety of object categories. For each participant, we first measured the size of several 
category-selective regions: FFA, PPA, EBA, as well as the occipital face area (OFA), the 
face selective portions of the superior temporal sulcus (STS), the occipital place area 
(OPA), and retrosplenial cortex (RSC). For each region we then selected every child with 0 
category-selective voxels for the defining contrast of that region, and we also identified 
every adult with at least 100 category-selective voxels in each region. Thus, we have a set 
of participants that are maximally different in terms of category-selectivity: the children 
have no selective voxels, while the adults have a substantial amount. Within these 
participants, we then asked whether the representational similarity patterns (i.e., the matrix 
of similarities in the pattern of responses across voxels between each pair of stimulus 
categories) were correlated between children and adults in each region. This procedure 
enabled us to ask whether children who lacked any hint of category selectivity would 
nonetheless have mature representational similarity patterns.  

 
Overall, our results were unambiguous; even when comparing children with no 

category selective voxels to adults with significant category-selective regions, we still found 
strong correlations between the two groups when using representational similarity 
analysis. Thus, distributed representational structures appear to precede the formation of 
category selective regions in the developing ventral visual pathway. Taken together, these 
findings raise new questions about how these univariate structures and multivariate 
patterns develop, their relationship to each other, and their respective causal roles in 
development and behavior. 
 
 
2. Materials and Methods 

 
2.1. Subjects 
 

We scanned 38 adults (mean 25.1 years old; standard deviation 4.48 years) and 41 
children, ages 5-7 years old (mean 6.6 years old; standard deviation 0.91 years). 
Excessive amounts of motion in 4 of the children resulted in their data being excluded from 
all further analyses due to an inability to reconstruct the images. All participants had 
normal or corrected-to-normal vision and no known neurological or psychiatric conditions 
or structural brain abnormalities. Adult participants and the parents of children participants 
provided written, informed consent and all children gave verbal assent to participate in the 
experiment. The Massachusetts Institute of Technology (MIT) Institutional Review Board 
approved of all experimental protocols. 
 
2.2. Stimuli 
 

In order to hold the interest of children we used colored movie clips as stimuli, which 
showed movies of faces, bodies, scenes, objects, and scrambled objects (Pitcher et al., 
2011). Movies of faces and bodies were filmed on a black background, and framed close-
up so that only the faces or bodies of 7 children were visible as they danced, or played 
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with toys or adults that were out of frame. The scene stimuli were mostly pastoral scenes 
shot from the window of a car that drove through suburbs. There were also some stimuli 
that were clips of flying over canyons or walking through tunnels. Moving objects were 
selected that minimized any suggestion of animacy of the object itself or of a hidden actor 
pushing the object. Examples of these objects included mobiles, windup toys, toy planes 
and tractors, balls rolling down sloped inclines, etc. The scrambled objects were created 
by dividing each object clip into a 15x15 box grid and rearranging the location of each of 
the resulting frames. Finally, rather than using a stationary fixation point as baseline, we 
used six uniform color fields that were designed to maintain the interest of children, while 
approximating a fixation baseline condition by avoiding any patterned visual input. All 
stimuli were created using MATLAB and Psychtoolbox (Brainard, 1997; Pelli, 1997) and 
were presented by a liquid crystal display projector onto a screen in the scanner, which 
subjects viewed via a mirror attached to the head coil. 

 

 
 
Figure 1. Sample stimuli. Example frames from movies used as dynamic stimuli  
 
2.3. fMRI Acquisition 
 

All participants were scanned using functional magnetic resonance imaging (fMRI) 
at the Athinoula A. Martinos Imaging Center at the McGovern Institute for Brain Research, 
MIT on a Siemens 3T MAGNETOM Trim Trio Scanner (Siemens AG Healthcare). Two 
weeks before a child’s visit, he or she received a CD and illustrated booklet that introduced 
the experimenters to the child, described the MRI procedure, and included recordings of 
scanner sounds. Earbuds similar to those the child would wear in the scanner were also 
included so that he or she could become accustomed to them. Parents were encouraged 
to review all materials with their child and asked to help him or her practice lying still while 
listening to the noises of the scanner. Immediately before their scanning session, all 
children were trained for 15 to 30 min in a “mock” scanner, designed to simulate the 
appearance, noise, and confinement of the actual scanner. During these training sessions, 
children practiced lying still while watching a movie. The movie was turned off by a motion 
tracking system any time children moved too much in order to teach them how still they 
had to be to get “good brain pictures.”  
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For the children, functional images were acquired using a custom made 32-channel 
phased array head-coil (Keil et al., 2011) optimized to the average head size of 5 to 7 year 
olds, and a gradient echo single-shot echo-planar imaging sequence (32 slices, repetition 
time (TR) = 2 s, echo time (TE) = 30 ms, voxel size = 1x1x1 mm, and 0.6 mm inter-slice 
gap). For the adults, functional imaging parameters were identical to the children, with the 
exception of using a commercially available Siemens 32-channel phased array head-coil, 
which is ideally suited for an adult head. For all scans, slices encompassed the whole 
brain aligned to the AC/PC line. Prior to each scan, four “dummy” scans were acquired and 
discarded to allow longitudinal magnetization to reach equilibrium. High-resolution T1-
weighted anatomical images were also acquired for each participant.    
 
2.4. Experimental Design 
 

Functional data were acquired over four blocked-design functional runs lasting 234 
seconds each. Each functional run contained three 18-second rest blocks, at the 
beginning, middle, and end of the run, during which a series of six uniform color fields were 
presented for three seconds each. Each run contained two sets of five consecutive 
stimulus blocks (i.e., faces, bodies, scenes, objects, or scrambled objects) sandwiched 
between the rest blocks, to make two blocks per stimulus category per run. Each block 
lasted 18 seconds and contained six 3-second movies clips from each of the five stimulus 
categories. The order of stimulus category blocks in each run was palindromic (e.g., 
fixation, faces, objects, scenes, bodies, scrambled objects, fixation, scrambled objects, 
bodies, scenes, objects, faces, fixation), and counterbalanced across runs. Participants 
were asked to passively view the stimuli. 
 
2.5. fMRI Data Analysis 
 

All fMRI data were analyzed using the Freesurfer software package (Dale et al., 
1999; Fischl et al., 1999; 2001) and custom MATLAB scripts. Preprocessing steps 
included 3-dimensional motion correction, linear trend removal, temporal high-pass filtering 
(0.01 Hz cutoff), slice scan-time correction, and spatial smoothing (5 mm FWHM kernel). In 
addition, both children and adult scans were spatially registered using the combined 
volume and surface-based (CVS) non-linear registration method (Postelnicu et al., 2009) 
via the T1-weighted MRI images. The surfaces were constructed from a 1 mm isotropic 
MPRAGE with real-time motion correction using nVas (van der Kouwe et al., 2008; Tisdall 
et al., 2012). This allowed for direct comparisons between the two groups since this 
transformation into a common space normalizes for absolute brain volume. All statistical 
analyses were based on the general linear model (GLM). GLM analyses all included box-
car regressors for each stimulus block, which were convolved with a gamma function to 
approximate the idealized hemodynamic response. For each experimental protocol, 
separate GLMs were computed for each participant, yielding regression-weights (i.e., beta 
maps) for each condition for each subject. 
 
2.6. Defining, characterizing, and measuring category-selective regions of interest 
 

Because category-selective regions of interest (ROIs) are sometimes ambiguous, 
such as when a subject has two FFAs (Weiner and Grill-Spector, 2012), traditional 
methods of identifying functionally defined ROIs sometimes require judgment calls about 
which activation cluster should be taken as the ROI in question, raising the possibility of 
bias. To minimize the subjectivity inherent in hand picking ROIs, our primary analysis used 
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an algorithmic method for ROI selection. All category-selective ROIs were defined using a 
Group-Constrained Subject Specific (GSS) Method (Fedorenko et al., 2010). This analysis 
is based on a previously published parcel atlas that was derived from 42 adult subjects to 
constrain the definition of numerous ROIs (Julian et al., 2012). These parcels are identified 
as relatively large swaths of the cortical surface in which most subjects show activation for 
a particular contrast. Therefore, each of our category-selective ROIs was defined by 
conjoining contrast maps (e.g., faces vs. objects) with a particular parcel. The particular 
contrasts used to define our ROIs were faces vs. objects for FFA, OFA, and STS, scenes 
vs. objects for PPA, OPA, and RSC, and bodies vs. objects for EBA (Figure 2). In all 
cases, for our primary analyses, we combined regions across the two hemispheres to form 
one bilateral region of interest. For all contrasts, we used a statistical threshold of P<0.001 
uncorrected.  

 

 
 
Figure 2. Example of each of the category-selective regions we identified on representative adult 
participants.  
 
 To define and characterize every ROI, two runs were always used to select the 
voxels for a particular region, while the remaining two runs were used to obtain an 
independent measure of the response profile of that region. When quantifying the volume 
of a region, we would measure the number of voxels that passed our statistical threshold 
within each subject for the odd runs and the even runs separately and then average them 
together. For example, in the FFA, if a participant had 500 significant voxels from the two 
odd runs and 300 significant voxels from the two even runs, we would ultimately say that 
participant has an average of 400 significant FFA voxels. Meanwhile, to characterize a 
region, we would use the held out runs (i.e., define on odd runs, measure on even runs; 
and define on even runs, and measure on odd runs), and the results from those analyses 
were then averaged together. These steps were taken to ensure that we avoided any 
issues of statistical non-independence: data used to define a region were never also used 
to characterize a region (Kriegeskorte et al., 2009; Vul et al., 2009).  
 
2.8. Statistical analysis: Representational similarity analysis 
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 To compare the similarity structures between adults and children, we used 
representational similarity analysis to compute a series of brain/brain correlations focused 
on a variety of subdivisions within the visual hierarchy. This analysis requires the formation 
of a representational similarity matrix from neural measures in both adults and children that 
could then be directly compared to one another (Kriegeskorte and Kievit, 2013). A 
representational similarity matrix is the set of pairwise similarities (i.e. correlations) 
between the pattern of response of voxels in a given region to two stimulus classes (e.g., 
the correlation across voxels between the patterns of response to faces and scenes in 
FFA). Once these similarity matrices were computed for each child and each adult, they 
were averaged within each group to create a child group similarity matrix and an adult 
group similarity matrix. We then measured the correlation between those group-level 
matrices. The statistical significance of the observed correlations between two correlation 
matrices, one from adults and the corresponding one from children, was assessed using 
group-level analyses. That is, the condition labels of the data of each group-level matrix 
were shuffled, the newly labeled matrices were correlated with one another, and the 
resulting correlation value was Fisher z-transformed. This procedure was repeated 10,000 
times, resulting in a distribution of correlation values. A particular correlation between 
representational similarity matrices was considered significant if it fell within the top 5% of 
values in this distribution.  

 
When correlating the representational similarity matrices between adults and 

children, it is possible that we would see artificially low correlations simply because of 
unreliable neural data. To assess this possibility, for every correlation we observed 
between adults and children, we also computed a reliability-adjusted correlation. The first 
step of computing these adjusted correlations requires determining the split-half reliability 
for each particular participant. To compute two similarity matrices, we would first use one 
set of runs (i.e., runs 1 and 3) to define an ROI and the other runs (i.e., runs 2 and 4) to 
generate a similarity matrix. We would then switch the runs to generate a second similarity 
matrix (i.e., define an ROI with runs 2 and 4 and generate the matrix with runs 1 and 3). 
The result of this process was an odd and even similarity matrix for each participant and 
ROI. Once these matrices were computed for each participant, they were averaged 
together to form a group level odd and even similarity matrix for both the adults and the 
children. Those group level odd and even similarity matrices were then correlated with one 
another to get an estimate of the reliability of the data for each group of participants. These 
correlation values were then adjusted using the Spearman-Brown formula to estimate the 
reliability of the full data set (Spearman, 1910; Brown, 1910). Finally, to adjust the 
observed correlations as a function of the reliability of the data, we used the correction for 
attenuation formula: the observed correlation between adults and children from a given 
neural region divided by the square root of the product of reliability of the data in that 
region from both adults and children (Nunnally and Bernstein, 1994; Cohen et al., 2017). 
 
2.9. Similarity analysis in category-selective regions and participant selection 
 
 Rather than perform our analyses in every participant we scanned, we examined 
only those children who had zero category-selective voxels for each region and those 
adults who had at least 100 category-selective voxels for each region. The rationale for 
these selection criteria is as follows: If we find significant correlations between the 
representational similarity matrices of children and adults with these two groups, it would 
provide the strongest evidence that representational similarity precedes category 
selectivity in the ventral pathway. If, for example, we find strong correlations between 
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children that do not have a single FFA voxel and adults that have at least 100 FFA voxels, 
then it suggests that distributed representational structures develop before category-
selective regions, since there are no category-selective voxels in these particular children. 
  
 To select the voxels we want to use for these analyses, we first counted the number 
of category-selective voxels in each individual adult and only selected those adults with at 
least 100 voxels (Figure 3A). Once we identified those adults, we then computed the 
average number of category-selective voxels within that group (Figure 3B). In the case of 
the FFA, we found that our selected adults (N=32) had on average 886 significant voxels. 
Then, in order to have the same number of voxels across individuals, we went back to our 
contrast maps and selected the same number of voxels for each individual. Thus, for the 
FFA, this meant selecting the 886 most face-selective voxels in each individual adult 
(Figure 3C). It should be noted that in some cases this meant selecting some voxels that 
did not reach statistical significance in some people and excluding some voxels that did 
reach statistical significance in others. For example, imagine a participant with only 800 
significant FFA voxels (P<0.001 uncorrected). To get to 886 voxels, we chose those 
significant 800 voxels and we also chose the 49 voxels with the lowest P-values even 
though those values were all P>0.001. Conversely, imagine a participant with 900 
significant FFA voxels. To get to 886 voxels with this participant, we would excluded the 51 
voxels with the lowest P-values even though those voxels all had P-values that were still 
P<0.001. It was with these selected voxels that we would create a similarity matrix (Figure 
3D) for each individual participant, which we then averaged together to make a single 
group-level matrix for the adults. 
 
 

 
Figure 3. Visualization of the method used to form representational similarity matrices in adults. In this case, 
we use the FFA as an example. A) First, we measured the size of the FFA in every adult and only selected 
adults with at least 100 voxels. B) Then we determined the average size of the FFA across the selected 
adults (i.e., 886 voxels). C) Next, we selected the top 886 voxels in every adult such that we had the exact 
same number of voxels in every participant. D) Once those voxels were selected, we created a similarity 
matrix in each individual participant, which we then averaged together across participants to make one adult 
group-level matrix. 
 
 Once we identified the adults we wanted to examine and determined how many 
voxels were in each category-selective region for those adults, we then selected our 
children and the voxels we want to use within those children. Since the goal of our 
analyses is to examine representational similarity in children with no category-selective 
voxels, the first step of this process is to identify every child that has zero category-
selective voxels in a given region, again with a threshold of P<0.0001 uncorrected (Figure 
4A). We then consulted the number of category-selective voxels we found in a given 
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region amongst the adults that we selected above (Figure 4B). In the case of the FFA, for 
example, we found an average of 886 FFA voxels. Similar to the procedure described 
above, we then selected that exact number of voxels in every child even though none of 
those voxels were above our statistical threshold. (Figure 4C). In other words, we selected 
the 886 most “selective” FFA voxels in children in spite of the fact that none of those 
voxels are reliably more responsive to faces than objects.  
 

 
Figure 4. Visualization of the method used to form representational similarity matrices in children. A) First, we 
measured the size of the FFA in every child and only selected children with 0 voxels. B) Then we consulted 
how many FFA voxels we found across our group of selected adults (i.e., 886 voxels). C) Next, we selected 
the top 886 voxels in every child (even though none of those voxels reached statistical significance) such 
that we had the exact same number of voxels in every participant. D) Once those voxels were selected, we 
created a similarity matrix in each individual participant, which we then averaged together across participants 
to make one child group-level matrix. 
 
 It should be noted that even though we selected voxels in the children that did not 
significantly respond to faces over objects, it is still possible that once grouped together 
across participants, we would still find significant activation to the preferred category over 
objects in a particular region. For example, imagine that every FFA voxel we selected in 
children had a hypothetical P-value of 0.06 in terms of faces vs. objects. In that case, while 
no single voxel is significantly responsive to faces, once averaged together within and 
across participants, it is likely we would find that the group-level response to faces is 
greater than the group-level response to objects. Such a finding would defeat the purpose 
of these analyses, as the primary goal is to identify children that have zero category 
selectivity. Thus, with the selected children, we performed group-level comparisons of the 
average response to faces/scenes/bodies and the average response to objects. If the 
overall difference between the selected category and objects was P<0.50, we removed the 
participants with the greatest effect size until we reached P>0.50 for the group. This 
procedure was intended to ensure that we not only had selected individual children with no 
category-selective voxels, but that the children we did analyze did not even have a trend of 
a significant preference as a group for the selected category over objects in the different 
category-selective regions. Once we identified those children and those voxels in every 
individual child, we then performed our similarity analyses within those voxels for each 
child and then averaged them together to form a group similarity matrix that we could 
compare to adults (Figure 4D).  
 
2.10. Data and code summary statement 
 
 All data and code are available upon request and this sharing policy complies with 
the requirements of the bodies that funded this research.  
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3. Results 
 
3.1. Size of category-selective region and participant selection 
 
 The number of significant voxels we found in each child and adult for each of our 
seven category-selective-regions is presented below (Figure 5). For the children, this 
resulted in the selection of 19 participants for the FFA, 32 for the OFA, 13 for the STS, 14 
for the EBA, 11 for the PPA, 29 for the OPA, and 17 for the RSC. For the adults, this 
resulted in the selection of 32 participants for the FFA, 19 for the OFA, 31 for the STS, 29 
for the EBA, 29 for the PPA, 8 for the OPA, and 20 for the RSC. 
 

 
Figure 5. Summary distribution of the size of the category-selective regions in every participant. On the x-
axis of every plot is a series of voxel bins in which we group the number of voxels into discrete bins of 100 
voxels. On the y-axis is the number of participants whose category-selective region land within a given bin. 
Across all plots, the colored bars mark the participants selected for further analyses (i.e., children with no 
category-selective voxels and adults with at least 100 category-selective voxels), while the grey bars mark 
participants excluded for further analyses (i.e., children with any category-selective voxels and adults with 
fewer than 100 category-selective voxels).  
 
 Overall, this selection process resulted in our identifying a group of adults within 
each category-selective region with an average total of 886 voxels in the FFA, 805 in the 
OFA, 1.576 in the STS, 2,387 in the PPA, 561 in the OPA, 2,338 in the RSC, and 3,146 in 
the EBA (Figure 6). Naturally, since we selected children with no category-selective voxels, 
there was an average of zero category-selective voxels in each region. 
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Figure 6. Size of each category-selective region. The number of voxels in each region was measured for 
both children and adults and is shown here on the y-axis. Each region was defined using a statistical 
threshold of P<0.001 uncorrected.  There are no bars for the children since we purposefully selected children 
with no category-selective voxels. The error bars for adults denote the standard error of the mean.  
 
3.2. Response properties of category-selective regions 
 

Even though we selected children with no category-selective voxels, it is still 
possible that on average, the response to the selective category (e.g., scenes in PPA or 
bodies in EBA) will still be significantly higher than to the control category (objects) in the 
group analysis. Indeed, we found this exact pattern of results in several of our category-
selective regions in children: PPA: t(10)=2.28, P<0.05; OPA: t(31)=2.62, P<0.05; RSC: 
t(16)=3.55, P<0.01. For OFA, STS, and EBA, the selective category (i.e., faces and 
bodies) were not significantly greater than objects: OFA: t(30)=0.36, P=0.72; STS: 
t(12)=0.87, P=0.40 EBA: t(13)=1.62 P=0.13. Interestingly, in FFA, we actually found that 
the response to objects was slightly higher than the response to faces in the children 
selected with zero FFA voxels, though this effect was not significant (FFA: t(18)=1.26, 
P=0.22). For those category-selective regions in which the difference between the 
preferred category and objects was P<0.50, we identified the children with the largest 
preferences for the selective category over objects (i.e., faces greater than objects in OFA, 
bodies greater than objects in EBA) and removed them one by one until we obtained 
P>0.50. After removing certain subjects, all category-selective regions showed no 
preference for the selective category over objects in children: STS: t(11)=0.51, P=0.62; 
EBA: t(10)=0.29, P=0.78; PPA: t(6)=0.49, P=0.64; OPA: t(24)=0.57, P=0.58; RSC: 
t(6)=0.25, P=0.80. Meanwhile, in adults, each region showed a strong preference for the 
selective category relative to objects: FFA: t(31)=16.23, P<0.001; OFA: t(18)=12.99, 
P<0.001; STS: t(30)=15.18, P<0.001; EBA: t(28)=19.04, P<0.001; PPA: t(28)=14.84, 
P<0.001; OPA: t(7)=7.88, P<0.001; RSC: t(19)=12.86, P<0.001 (Figure 7). Ultimately, after 
this selection process we were left with the following numbers of participants for each 
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region in both groups: FFA: 19 children, 32 adults; OFA: 32 children, 19 adults; STS: 12 
children, 31 adults; EBA: 11 children, 29 adults; PPA: 7 children, 29 adults; OPA: 25 
children, 8 adults; RSC: 7 children, 20 adults. 
 

 
Figure 7. Univariate responses to selective categories (i.e., faces in FFA, OFA, and STS, bodies in EBA, and 
scenes in PPA, OPA, and RSC) in the selected voxels of children and adults. These data show the 
responses in each group after iteratively removing any children until the group analysis across children 
showed no univariate selectivity for the region-defining contrast. In all cases, the grey bars are the response 
in those regions to objects, while the colored bar are the response to the preferred category for the region in 
question, in data independent of those used to define the region. Percent signal change is represented on 
the y-axis. **P<0.01, ***P<0.001 
 
3.3. Representational similarity in category-selective regions 
 
 Once we identified a group of children with no discernible category selectivity and a 
group of adults with strong selectivity (Figures 6 and 7), we then asked if there is a 
significant correlation between the representational similarity matrices of these two groups. 
Again, to perform this analysis in children, we selected the most “selective” voxels for each 
region even though none of those voxels responded significantly more to the preferred 
category for that region than to objects. To determine how many voxels to select, we used 
the size of the adults’ category-selective regions as our benchmark (i.e., the top 886 voxels 
in FFA since on average the adults had 886 FFA voxels). After selecting these voxels in 
both groups, we created representational similarity matrices by correlating the responses 
for each pairing of categories across all voxels in a particular neural region (e.g., the 
correlation across voxels between the patterns of response to faces and scenes in FFA, 
etc.). 
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 Our results were unambiguous. In every category-selective region, we found strong 
correlations between children’s and adults’ matrices: FFA: r=0.78, P<0.05, reliability-
adjusted r=0.91; OFA: r=0.82, P<0.05, reliability-adjusted r=0.92; STS: r=0.82, P<0.05, 
reliability-adjusted r=0.95; EBA: r=0.95, P<0.05, reliability-adjusted r=0.99; PPA: r=0.75, 
P<0.05, reliability-adjusted r=0.97; OPA: r=0.85, P<0.05, reliability-adjusted r=0.89 (Figure 
8). The one region in which there was a trend of a correlation that did not reach 
significance was in RSC (r=0.54, P=0.08). However, this relatively low correlation is at 
least in part due to unreliable data since the reliability-adjusted correlation is higher 
(r=0.65) and more broadly may stem from RSC being more involved in spatial-memory 
retrieval than scene perception (Kravitz et al., 2011). Taken together, these data strongly 
suggest that even in children with no discernible selectivity for the defining contrast for that 
region, those distributed representational structures are already mature in those regions. 
 

 
Figure 8. Representational similarity analysis comparing children and adults. A) Visualization of the similarity 
matrices based on distributed activation patterns in the FFA voxels in adults (top matrix) and children (bottom 
matrix). Each cell corresponds to the correlation of the activation patterns within a particular region for two 
stimulus categories (e.g., the correlation between the pattern of response across voxels to objects and 
bodies in FFA, etc.). B) Correlations between children and adults in each of our neural regions. The y-axis 
shows the correlation between the two groups. For each neural region, the saturated bar represents the 
observed correlation between children and adults while the desaturated bar represents the reliability adjusted 
correlation (see Methods).  
 

Because we found such strong correlations between adult and child similarity 
matrices in every category-selective region, a natural question is whether these regions 
have different representational structures from one another. Are the strong correlations 
between adults and children across all category-selective regions driven by a common 
representational structure? Or do the different regions have dissociable structures that 
vary across the cortex? To address these questions, we calculated the correlations 
between each of our neural regions within our two groups (i.e., correlate FFA and PPA 
within children, or EBA and RSC within adults, etc.). In children, nearly two thirds of the 
neural regions were not significantly correlated with one another: 13 out of 21 possible 
pairings (Figure 9). In adults, meanwhile, almost half of the neural regions were not 
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correlated with one another: 9 out of 21 possible pairings. Thus, while there appears to be 
some common representational structures between certain neural regions, it does not 
appear as if our strong correlations between adults and children are driven entirely by our 
measuring one single structure.  
 

 
Figure 9. Representational similarity analysis comparing the correlations between neural regions in both 
children and adults. In both matrices, each cell corresponds to the correlations between similarity matrices in 
two given neural regions (e.g., correlation the matrices for the five categories in FFA and OFA, etc.). 
Asterisks within each cell denote significant correlations between two regions (P<0.05). 
 
3.4. Does category selectivity ever precede representational similarity? 

 We have focused so far on the development of representational similarity amongst 
a group of children who were specifically chosen because they have no discernible 
selectivity on the defining contrast for the region in question. We have shown that despite 
their total lack of univariate category selectivity, these children nonetheless show mature 
representational similarity patterns in the same regions. Is the opposite true? Do children 
who have no representational similarity with adults have any hint of category selectivity? 
To answer this question, we first correlated the matrix from each individual child from our 
original group (N=37) with the group-level adult similarity matrix, for each category-
selective region. We then selected every child whose individual correlation with the adults 
was r ≤ 0.00 in the region in question (i.e., one group of children were selected for FFA, 
another for PPA, etc.). Next, we measured the average size of the category-selective 
regions in the selected group of children using a statistical threshold of P<0.001 
uncorrected. Overall, we found that for children that did not show a positively correlated 
representational similarity pattern in the region in question, the size of the category-
selective region was never significantly greater than 0 (FFA: 88 voxels, t(7)=1.62, P=0.15; 
OFA: 6 voxels, t(11)=1.06, P=0.31; STS: 31 voxels, t(6)=1.47, P=0.19; EBA: 638 voxels, 
t(2)=1.15, P=0.37; PPA: 42 voxels, t(2)=1.0, P=0.42; OPA: 1 voxel, t(6)=1.0, P=0.36; RSC: 
55 voxels, t(5)=1.10, P=0.32). In other words, this analysis revealed that children who have 
not developed any representational structures that are correlated with adults have also not 
begun to develop category-selective regions (e.g., FFA, PPA, EBA, etc.). Thus, 
representational similarity patterns are present in children who lack the corresponding 
univariate selectivity for the region in question, but not vice versa. Of course, these 
analyses should be interpreted with caution since for several regions, we were only able to 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 16

identify a small number of children whose similarity matrices were negatively correlated 
with adults (e.g., PPA). However, the fact that so few children are negatively correlated 
with adults is itself consistent with our broader claim that distributed activation patterns 
mature earlier than category-selective regions.  
 
4. Discussion  
 
 Here, we report a developmental dissociation between univariate category 
selectivity and distributed similarity patterns: even in children that have no discernible 
selectivity for the defining contrast of a given region (e.g., no voxels that respond 
significantly more to faces than objects in the FFA), the representational similarity patterns 
in that region are already mature. These findings highlight a key dissociation in the 
development of the human visual system: rather than developing in synchrony with one 
another, each region’s distributed activation patterns apparently develop before that 
region’s defining univariate selectivity. These results are consistent with those of Golarai 
and colleagues (2010; 2015), who showed more mature representational similarity across 
the ventral visual pathway in 7-11 year old children. However, our findings build on the 
earlier results by further showing that this more mature representational similarity a) is 
present at the younger age of 5-7, b) exists within each developing category-selective 
region, and c) is present even when the defining category selectivity of a region is absent 
altogether. These results reveal an important dissociation between category selectivity and 
representational similarity 
  
 Our findings raise numerous questions. First, what is the precise time-course of the 
development of distributed representational structures in the ventral visual pathway? Deen 
and colleagues (2017) showed that representational similarity structures are very different 
from adults at 6 months of age, so they could mature any time between infancy and the 5-
7 year old range studied here. Second, what are the neurobiological mechanisms that 
construct representational similarity during development?  Third, given that 
representational similarity appears to mature first, does it play a causal role in the 
development of category selectivity? None of these important questions is answerable with 
the current data set, but in principle all could be addressed in future work.  
 

A major obstacle in speculating about these questions comes from the fact that we 
do not understand the relative significance and causal roles of representational similarity 
and univariate selectivity, or their neurobiological basis, even in adults. Empirically, 
univariate selectivity in the ventral visual pathway is among the most robust and replicated 
phenomena in human cognitive neuroscience, and extensive evidence shows that 
category-selective regions play specific causal roles in behavior (Wada and Yamamoto, 
2001; Pitcher et al., 2009; Dilks et al., 2013; Schalk et al., 2017). But computationally, we 
do not know what goal might be served by category selectivity of specific neural 
populations, or by the spatial clustering of these neural populations at a sufficient grain to 
produce category-selective regions detectable with fMRI. Similarly, representational 
similarity patterns are robust and widely replicated. However, the window they offer into 
neural/mental representations and their causal role in behavior is unclear. The fact that a 
given stimulus classification can be performed based on patterns of response across 
voxels within a particular region of cortex does not guarantee that this information is used 
(i.e. read out by other brain regions Williams et al., 2007). Although representational 
similarity is sometimes correlated with behavior (e.g., Cohen et al., 2014; 2015; 2017), 
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evidence from patients and stimulation studies raise questions about its causal role. For 
example, despite the many studies showing decoding abilities and replicable similarity 
matrices for non-faces objects in the FFA, intracranial electrical stimulation of the FFA 
appears to affect only face percepts, not the perception of non-face objects (Parvizi et al., 
2012; Schalk et al., 2017), suggesting that the pattern information about non-face objects 
in the FFA may not be causally related to perceptual experience and behavioral 
performance. 
 

Even if representational similarity is sometimes epiphenomenal in terms of its role in 
adult perception and cognition, it may nonetheless play an important role in development. 
But how differences in representational similarity could lead to a later change in the 
univariate selectivity of a given region is far from clear. One possibility is that early-
developing representational similarity in the ventral pathway reflects a “protomap” of 
cortical organization that serves as a scaffold upon which further development is built 
(Hasson et al., 2002; Deen et al., 2017, Livingstone et al., 2017). These representational 
similarities could further reflect retinotopic and featural biases (e.g., for curvature versus 
rectilinearity) inherited from earlier stages of visual processing, with these biases 
determining which regions of the ventral pathway will take on which function. Of course, it 
may be that representational similarity plays a relatively minor role in determining a 
region’s selectivity. Instead, that role may be better accomplished by structural 
connectivity, which develops very early, varies systematically across functionally different 
regions (Saygin et al., 2012; Osher et al., 2015), and in at least one case identifies the 
locus of a functionally distinct region before that region’s univariate selectivity arises 
(Saygin et al 2016).  
 

The many questions raised by this study about the role of representational similarity 
in development can be addressed in future work by deriving more detailed similarity 
matrices from a larger set of stimulus types both within and between categories. Richer 
matrices might reveal differences between adults and children that were not evident in our 
study. It will also be important to scan children between the ages of 6 months and five 
years to learn more about the timeline of the development of representational similarity 
structures across distributed populations of voxels and neurons. Finally, to understand the 
role of distributed activation patterns in development, we need to better understand its 
causal role in adult perception, including the fundamental question of the spatial scale of 
the neural codes that are read out in behavior. 
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