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Abstract  24 

The effects of the spatiotemporal (> 100 years) range of hurricane disturbance intensity on tree 25 

diversity and density patterns are largely unknown, because data on past stand or landscape scale 26 

hurricane impacts are sometimes unavailable. We therefore reconstructed and mapped 27 

topographic exposure (a proxy to disturbance) to twelve category 2–4 hurricanes that affected the 28 

rain forests of the Blue Mountains (BM) and the John Crow Mountains (JCM) in Jamaica, over 29 

155 years. Maps of average topographic exposure and the spatial outputs from a pixel-based 30 

polynomial regression of the cardinal directions of the tracks of past hurricanes (predictor) and 31 

past exposure (response) were then used to represent the aggregate spatiotemporal range of 32 

exposure. Next, we used data collected over the period 1974-2009 from 35, 10 x10 m nested 33 

subplots and 1991-2004 from 16, 200 m
2
 circular plots 

 
for the BM and 2006-2012 from 45, 25 x 34 

25 m plots for the JCM, and Bayesian spatiotemporal, Integrated Nested Laplace Approximation 35 

(INLA) models to determine whether stand-level (≈ 1 km
2
) tree Shannon diversity and density 36 

patterns were primarily influenced by exposure to a single hurricane, the most severe hurricane 37 

or to multiple hurricanes and the duration of hurricane effects on Shannon diversity and tree 38 

density. In the BM, long-term diversity peaked at locations with intermediate values of average 39 

exposure for six hurricanes (five of which made landfall over the period 1903-1988). Short-term 40 

diversity peaked at locations that experienced significantly higher exposure situated to the south 41 

or north of the hurricane’s track when the tracks were to the north or south of the island, 42 

respectively. Short-term density peaked at locations that were always highly exposed. Moreover, 43 

the influence of the most severe hurricane on diversity can last up to 101 years and the influence 44 

of the most recent hurricane (Gilbert) on diversity became evident after 16 - 21 years. The JCM 45 

was more susceptible to hurricanes and this diminished the influence of past hurricanes. 46 
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Consequently, density peaked at sites with the highest average exposure to the four most recent 47 

hurricanes (1988-2007), only one of which made landfall. If historical hurricane disturbance data 48 

are unavailable, reconstructed exposure maps can be used to provide valuable insights into the 49 

effects of past hurricanes on stand-level tree diversity and density patterns.   50 

 51 

Keywords: Bayesian; Integrated Nested Laplace Approximation; intermediate disturbance 52 

hypothesis; topographic exposure; spatiotemporal models; cyclone; forest structure.  53 

 54 

 55 

Introduction  56 

Tropical forests on most islands worldwide are subject to repeated effects of tropical cyclones 57 

(also referred to regionally as hurricanes and typhoons) (Boose et al. 2004; Bellingham 2008). 58 

As a hurricane moves across a forested landscape, meteorological, biological and topographic 59 

factors interact to create complex patterns of damage at different spatial scales (Xi et al. 2008). 60 

At the ecosystem level (e.g. forest stands), hurricanes cause leaf stripping, branch breakage or 61 

loss, snapping of tree crowns and uprooting, and individual and multi-tree blow downs (Boose et 62 

al. 1994; Boose et al. 2004; Rossi et al. 2017). At landscape scales, hurricane impacts are 63 

generally heterogeneous and, as such, there are usually gradients of damage and mortality across 64 

the landscape (Gannon and Martin 2014). The heterogeneity of forest damage is determined by 65 

wind velocity gradients that result from the intensity, size and proximity of a hurricane, and their 66 

interaction with the abiotic and biotic attributes of a landscape (Zimmerman et al. 1994; 67 

Everham and Brokaw 1996; Boose et al. 2004). The abiotic attributes of a landscape that 68 

contribute to the heterogeneity of forest disturbance include soils and geomorphology, both of 69 
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which affect windthrow vulnerability and landslide distribution and local topography which 70 

determines differences in site exposure (Bellingham, 1991; Scatena and Larsen, 1991; 71 

Zimmerman et al. 1994; Everham and Brokaw 1996; Boose et al. 1994; Gannon and Martin 72 

2014). Biotic features such as forest type, species composition, structural attributes and the 73 

characteristics of tree species (stem size [height and diameter], architecture and wood density as 74 

examples) influence the susceptibility and response of trees and forest stands to wind damage, 75 

and contribute to the heterogeneity of forest disturbance (Boose et al. 1994; Zimmerman et al. 76 

1994; Everham and Brokaw 1996; Tanner and Bellingham 2006; McGroddy et al. 2013; Gannon 77 

and Martin 2014).  78 

 79 

The degree of structural change, species composition, and the method and rates of recovery 80 

within forested stands across landscapes are affected by the spatial patterns of hurricane 81 

disturbance (Runkle, 1985). Recovery of the forest canopy following a hurricane is quite rapid (< 82 

10 years) and normally occurs through tree releafing, sprouting, or recruitment of fast-growing 83 

species (Boose et al. 2004). However, depending on the severity of hurricane disturbance, there 84 

may be major structural changes, such as a significant reduction in biomass (Weaver 2002; 85 

Heartsill Scalley 2017), wood volume, basal area, and canopy height (Luke et al. 2016a; Heartsill 86 

Scalley 2017), which may take much longer to recover (> 10 years) (Weaver 2002; Heartsill 87 

Scalley 2017). Additionally, over the long-term, trees may experience sudden or delayed 88 

mortality and variation in growth rates related to the severity of hurricane damage, alterations in 89 

regeneration pathways and successional trajectories, and increased species turnover (Weaver 90 

2002; Boose et al. 2004; Tanner et al. 2014). Moreover, the heterogeneity of disturbance affects 91 

spatiotemporal variability in environmental conditions and resources (Roxburgh et al. 2004). 92 
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This facilitates the recruitment and establishment of species with diverse life history strategies in 93 

the community (Tanner and Bellingham 2006; Luke et al. 2016a). Over time, these effects can 94 

result in an increase in tree diversity and richness in forests (Denslow 1995; Vandermeer et al. 95 

2000; Tanner and Bellingham 2006; Luke et al. 2016a; Heartsill Scalley 2017) and contribute 96 

significantly to tree species coexistence and the maintenance of forest diversity (sensu: the 97 

intermediate disturbance hypothesis [Connell 1978; Sheil 1999; Shea et al. 2004; Sheil and 98 

Burslem 2013]). In addition, there is an increase in stem density in disturbed areas following a 99 

hurricane (Tanner and Bellingham 2006) as a lower density of large trees is replaced by more 100 

small trees (Denslow 1995). This effect on stem density lasts for many years, even after the 101 

canopy has closed (Denslow 1995; Tanner and Bellingham 2006).  102 

 103 

Forest susceptibility to wind damage is also influenced by previous hurricanes, as the impact of a 104 

single hurricane event is not independent of past hurricanes (Webb 1958; Boose et al. 2004; 105 

Hogan et al. 2018; Ibanez et al. 2019). A total of 152 hurricanes struck the islands of the Greater 106 

Antilles, located in the northern Caribbean, between 1851 and 2009 (Gannon and Martin 2014). 107 

The hurricane return interval for affected forest sites in the region is on average10 years, 108 

although the most that any one site (the far west of Cuba) was struck was 34 times (with a 4.6 109 

year hurricane return interval) (Gannon and Martin 2014). As such, trees that live for over 100 110 

years in these forests are likely to be affected by many hurricanes during their lifespan (Weaver 111 

1986). Therefore, the long-term impact of hurricanes on forest stands can only be understood on 112 

a scale of decades to centuries (Boose et al. 1994). Yet, our understanding of hurricane damage, 113 

and the mechanisms of short- and long-term recovery at forest sites in the Caribbean, is largely 114 

based on stand-level assessments, conducted before and/or after a single hurricane event in 115 
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decadal timescales. Meteorological models using data such as historical hurricane track, size, 116 

wind speed and wind direction have been used to reconstruct the spatial patterns of disturbance, 117 

over different periods (3–158 years) and at various scales (landscape and regional) (e.g. Boose et 118 

al. 1994, 2004; Gannon and Martin 2014; Batke et al. 2014; Luke et al. 2016a). However, these 119 

data are unavailable for most sites or they have been largely used to explain stand- or landscape-120 

level disturbance patterns and are not often used to explain stand-level fluctuations in tree 121 

diversity and density. As a result, the cumulative effects of long-term (> 100 year) hurricane 122 

disturbance intensity on forest community responses, such as dynamics and diversity patterns, is 123 

less understood. Moreover, the number of high intensity cyhclones is predicted to increase due to 124 

the effects of global climate change (Elsner et al. 2008; Bender et al. 2010; Knutson et al. 2010). 125 

As a result, forest stands across the Caribbean and in other regions are beginning to become 126 

increasingly affected by multiple high-intensity hurricanes (Luke et al. 2016a; Lin et al. 2017, 127 

Uriarte et al. 2019). These hurricanes could accelerate structural and compositional changes, 128 

particularly at sites that are more exposed to recent and previous hurricane events (Luke et al. 129 

2016a). There is a need to increase our understanding of the impacts of the historical and 130 

contemporary range of hurricane disturbance intensity, over space and time, on community 131 

dynamics and diversity patterns (Boose et al. 1994; Gannon and Martin 2014; Batke et al. 2014).  132 

 133 

Elucidating the effects of past hurricanes on forest stands will require an integrative approach 134 

that combines stand-level (≈ 1 km
2
) observations with past landscape level (≈ 10 km

2
) hurricane 135 

disturbance intensity data (e.g. Xi et al. 2008; Luke et al. 2016a). However, there is usually little 136 

or no data available on past stand or landscape scale hurricane impacts. It is now possible to 137 

generate historical and contemporary landscape scale data on hurricane impacts, due to an 138 
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increase in the processing power of personal computers and the advent and availability of 139 

Geographic Information System (GIS) software, spatial and geographic data and detailed 140 

weather data. In addition, the emergence of the interdisciplinary field of geomorphometry, which 141 

is concerned with the extraction or quantification of topographic parameters from digital 142 

elevation models (DEMs: a digital representation of the terrain or land surface) in a GIS software 143 

environment, has been instrumental (Pike et al. 2008; Batke et al. 2014). Topographic exposure 144 

is a geomorphometric feature that characterises a site based on the degree of protection it 145 

receives from the surrounding landscape and it is the main landscape feature that has been 146 

quantified, mapped and used as a proxy for past wind or hurricane disturbance intensity (Ruel et 147 

al. 2002; Mikita and Klimánek 2010; Batke et al. 2014; Luke et al. 2016a). Topographic 148 

exposure maps have been generated for single and multiple hurricanes (Boose et al. 1994, 2004; 149 

Luke et al. 2016a), and average exposure has been calculated based on multiple wind directions 150 

(Mikita and Klimánek 2010) and wind inflection angles (Batke et al. 2014), which are used to 151 

estimate the wind shadow (Boose et al. 1994). They have also been used to reconstruct > 100 152 

years of hurricane disturbance regimes (Boose et al. 1994, 2004). Additionally, data from 153 

exposure maps have been extracted and used to determine the cumulative effects of disturbances 154 

from three hurricanes on structural changes and diversity at the stand-level (Luke et al. 2016a). 155 

However, reconstructed hurricane exposure maps representing > 100 years of hurricane 156 

disturbance have never previously been used to determine the cumulative effects of the 157 

spatiotemporal range of hurricane disturbances on forest structure and diversity at the stand-158 

level.  159 

 160 
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In this study, we therefore sought to determine the cumulated effects of the spatiotemporal (> 161 

100 years) range of hurricane disturbances on stand-level spatiotemporal patterns of tree 162 

diversity and density. To enable this, we reconstructed topographic exposure maps of hurricanes 163 

that affected two adjacent montane sites with a similar disturbance history, the Blue Mountains 164 

(BM) and the John Crow Mountains (JCM), in Jamaica, over 155 years (1852–2007). Two 165 

methods of aggregating or summarizing the spatiotemporal range or pattern of past hurricane 166 

exposure at the landscape scale (≈ 10 km
2
) were then evaluated. Luke et al. (2016a) summarized 167 

the spatiotemporal range of exposure in the JCM by averaging exposure values extracted from 168 

exposure maps for three hurricanes. However, the spatial pattern of exposure or disturbance is 169 

also influenced by the distance and the angle/ cardinal direction of the hurricane’s eye from and 170 

relative to an island or other landmass (Luke et al. 2016a; Boose et al. 1994, 2004). Therefore, 171 

we aggregated the spatial and temporal ranges of hurricane exposure by averaging the exposure 172 

maps and by modelling the relationship between exposure and the distance or cardinal direction 173 

of the tracks of the eye of each hurricanes from or relative to the study sites, and representing 174 

these relationships spatially. Data from these maps were then extracted and used to determine 175 

whether stand-level (≈ 1 km
2
) tree diversity and density spatiotemporal patterns over the periods 176 

1974–2009 and 1990–2004 for the BM and 2006–2012 for the JCM, were primarily influenced 177 

by exposure to a single hurricane, the most severe hurricane or multiple hurricanes and the 178 

duration of hurricane effects on tree diversity and density patterns. We hypothesized that past 179 

hurricanes will influence current patterns of diversity by maintaining the highest levels of tree 180 

diversity at sites that historically experienced intermediate levels of disturbance. Species 181 

coexistence and/or diversity are expected to peak under intermediate disturbance regimes 182 

because longer-lived species will not persist if there is too much disturbance and pioneers will be 183 
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competitively excluded if there is too little disturbance (Connell 1978; Sheil 1999; Shea et al. 184 

2004; Sheil and Burslem 2013). We also hypothesized that tree density will be highest at sites 185 

that historically experienced the highest levels of disturbance or exposure to hurricanes, on the 186 

basis that stands which are frequently exposed to hurricane winds will have continually high 187 

turnover rates and hence higher stem densities (Denslow 1995).  188 

 189 

Study sites 190 

The study sites are forests located on two mountain ranges in Jamaica, the Blue Mountains (BM) 191 

and John Crow Mountains (JCM)). Together these ranges comprise the Blue and John Crow 192 

Mountains National Park (Figure 1). Data used in this study were measured in plots that were 193 

established close to the Grand Ridge of the BM (18° 05´ - 18° 059´ N, 76° 38´ - 76° 40´W) at an 194 

elevation of 1320–1920 m in an upper montane tropical forest (Tanner 1977; Tanner and 195 

Bellingham, 2006). The data from the JCM were measured in plots established along an 196 

altitudinal gradient (400–800 m) at two different sites (18° 3´ N, 76° 21´ 39.6´´ W) (Figure 1). 197 

The JCM have a maximum elevation of 1143 m asl and the plots were established in both lower 198 

and upper montane tropical forests (Luke et al. 2016a). Both sites have been affected by 199 

hurricanes and the resulting effects on the forests have been documented: Hurricane Gilbert 200 

(1988) (Bellingham 1991; Bellingham et al. 1992; Bellingham and Tanner 2000; Tanner and 201 

Bellingham 2006; Tanner et al. 2014) and Hurricanes Ivan (2004), Dennis (2005) and Dean 202 

(2007) (Luke et al. 2016a,b). 203 

 204 

Method and materials 205 

Reconstructing hurricane topographic exposure vulnerability 206 
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Exposure vulnerability (EV) is a unitless measure that can be used to link the disparity in 207 

hurricane exposure to the responses of tree species and the forest ecosystem at sites where there 208 

is hurricane disturbance (Luke et al. 2016a). The calculation of EV requires hurricane tracks, a 209 

digital surface model (DSM), and information on wind direction and speed (Luke et al. 2016a). 210 

EV maps for three hurricanes (Ivan (2004), Dennis (2005) and Dean (2007)) were generated by 211 

Luke et al. (2016a) and were used in this present study. Wind speed and direction data that were 212 

used to construct the three EV maps were obtained from processed ultra-high-resolution images 213 

of circular hurricane wind bands. These were created from QuikSCAT scatterometer satellite 214 

data that were processed using a Scatterometer Image Reconstruction (SIR) technique (Early and 215 

Long 2001). The images included colour-coded information on wind speed (in knots) overlaid 216 

with wind flags, which point in the direction from which the wind is blowing (see: Luke et al. 217 

2016a). However, QuikSCAT Scatterometer images (available at: 218 

http://www.scp.byu.edu/data/Quikscat/HRStorms.html) are only available for the period 1999–219 

2009 for hurricanes that developed in the Atlantic Ocean and the Caribbean Sea. Therefore, in 220 

the present study, we used a method modified from Luke et al. (2016a) to reconstruct EV maps 221 

for hurricanes that preceded 1999 using information on wind speed and wind direction obtained 222 

from proxy or surrogate images.  223 

 224 

To reconstruct the EV maps of pre-1999 hurricanes, we first downloaded an ESRI point .shp file 225 

of the tracks of all hurricanes recorded in the Caribbean from the National Oceanic and 226 

Atmospheric Administration (NOAA), National Climatic Data Center website 227 

(http://www.ncdc.noaa.gov/ibtracs/index.php?name=wmo-data) and the tracks were re-projected 228 

to the Jamaican datum, JAD 2001. Tracks of hurricanes categorized as category 2, 3 and 4 using 229 



11 

 

the Saffir-Simpson Hurricane Wind Scale (maximum wind speed ≥ 154 km hr
-1

 at their eye as 230 

they passed at their closest points to the coastline of Jamaica) during the period 1852 to 1988 231 

(Table 1), with centers that passed within 0–160 km of the northern or southern coastline of 232 

Jamaica, were then selected. A 160 km threshold was used because Hurricane Emily, which 233 

passed 160 km from the south coast (in 2005), had minimal effect on the JCM forest, as the outer 234 

bands that passed over the JCM had wind speeds < 65 km hr
-1

 (Luke et al. 2016a). Next, where 235 

possible, surrogate/proxy QuikSCAT images representing 'typical' category 2, 3 and 4 hurricanes 236 

over water in the Caribbean were selected and downloaded as a .gif file format and rectified to 237 

the Jamaican datum. These images included Hurricanes Michelle (November 3, 2001; wind 238 

speed: 167 km hr
-1

; location: 18° N 84° W), Charley (August 12, 2004; wind speed: 148 km hr
-1

; 239 

location: 20° N 81° W), Ivan (September 11, 2004; wind speed: 240 km hr
-1

; location: 18° N 80° 240 

W), Jeanne (September 20, 2004; wind speed: 111 km hr
-1

; location: 26° N 72° W), Emily (July 241 

15, 2005; wind speed: 213 km hr
-1

; location: 15° N 23° W), Dennis (July 7, 2005; wind speed: 242 

167 km hr
-1

; location: 18° N 75° W) and Dean (August 20, 2007; wind speed: 240 km hr
-1

; 243 

location: 18° N 81° W). A list of hurricanes for which the EVs were reconstructed, and the proxy 244 

hurricane(s) used to model the EV of each hurricane are presented in Table 1. The best proxy 245 

image for Hurricane Gilbert was determined by comparing several proxy QuikSCAT images to a 246 

rectified satellite image of Gilbert as it passed over Jamaica. Hurricane Ivan closely matched the 247 

satellite image and was therefore used to model the final EV map of Hurricane Gilbert. The EV 248 

of Hurricane Gilbert was also modelled using proxy hurricanes from the same Saffir-Simpson 249 

Hurricane Wind Scale such as Hurricanes Emily and Dean, and the average of all three proxies 250 

(Ivan, Emily and Dean).  251 

 252 
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For each hurricane, the ‘Georeferencing’ function in ArcGIS was used to center the surrogate or 253 

proxy hurricane images on the approximate location of the hurricane’s eye, specifically on track 254 

points found close to or over Jamaica. Wind flags found close to the JCM and BM were digitized 255 

as polylines in ArcGIS. For wind speeds ≥64 km hr
-1

, the upper value/range of the wind bands 256 

that were likely to affect the BM and the JCM were used as estimates of wind speed. There were 257 

no wind speed values for the wind bands closer to the track points (that is, for wind speeds > 93 258 

km hr
-1

). Average wind speed was estimated for these wind bands by averaging the wind speed 259 

at the track point over which the image was centered and 93 km hr
-1

, which was the maximum 260 

wind speed of the wind category below the > 93 km hr
-1

category. The ‘hillshade’ feature in 261 

ArcGIS was used with a digital surface model (DSM; 6.5 m resolution) of the eastern section of 262 

Jamaica, to generate maps of topographic exposure to wind from various directions (following 263 

Mikita and Klimánek 2010 and Batke et al. 2014). The hillshade feature requires the input of an 264 

azimuth angle (wind direction) and an altitudinal angle (range 0
–
90°) (wind inflection angle). A 265 

fixed wind inflection angle of 20
o
 that was used by Luke et al. (2016a), was used to create the 266 

EV maps. Hillshade maps of exposure for each hurricane were generated by inputting the 267 

following formula from Luke et al. (2016a) into the raster calculator in ArcGIS: 268 

EV = (∑ (wind	speed� 	 ∗ 	hillshade	map	of	exposure�)
�
��� )/n,  269 

where i is one of several locations where the surrogate/proxy hurricane image(s) was (were) 270 

centered and evaluated (e.g., location (i) = 1, 2, 3, 4…) and n is the total number of locations 271 

evaluated/hillshade maps created.  272 

 273 

Permanent sample plot data from the Blue and John Crow Mountains 274 
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Data from the upper montane rain forest of the BM are from the “Tanner’s plots” established in 275 

1974 in four sites, within which are contiguous 10 × 10 m plots (Col [0.09 ha], Mor [0.06 ha], 276 

Mull [0.10 ha], and Slope [0.10 ha]; Tanner 1977). The plots were established within 300 m of 277 

each other, at elevations 1580–1600 m (Figures 1 and 6) and covered a total area of 0.35 ha. 278 

Although the plots are small in size and number, they sampled a representative area due to the 279 

low tree species diversity in the BM. Specifically, 33 species that were sampled in the plots in 280 

2009 accounted for 93% and 95% of all the stems (≥ 3 cm DBH) and basal area, respectively 281 

(Chai et al. 2012). For a full description of the sites see Tanner (1977) and Tanner et al. (2014). 282 

All stems ≥ 3 cm diameter at breast height (DBH, measured at 1.3 m aboveground) were 283 

identified to species, scored as live or dead, and measured (DBH) in 1974, 1984, 1989, 1991, 284 

1994, 2004, and 2009 (Tanner et al. 2014). When the plots were re-enumerated after Hurricane 285 

Gilbert in 1989 and 1991, visible signs of hurricane damage and modes of recovery were 286 

documented (i.e., percentage of all stems in the plots scored as defoliated, dead and resprouting; 287 

Bellingham et al. 1995) and these data were used in this study.  288 

 289 

More extensive data from the BM were derived from the “Bellingham’s plots”, specifically, 16 290 

permanent 200 m
2 

circular plots covering a total area of 0.32 ha that were established in 1990, 291 

20-23 months after Hurricane Gilbert, along five, 500-m transects, 1 km apart (Bellingham 1991) 292 

(Figures 1 and 7). The plots were established at elevations 1320–1920 m, and were located 293 

orthogonal to the Grand Ridge of the BM at distances of 0, 250 and 500 m along each transect, at 294 

the northernmost point, the top of the Ridge and the southernmost point, respectively 295 

(Bellingham 1991) (Figures 1 and 7). All stems, living and dead, that were ≥ 3 cm DBH were 296 

measured and identified and the plots were re-enumerated in 1994 and 2004. Types of damage 297 
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caused by Hurricane Gilbert and modes of recovery that were recorded included mortality, 298 

uprooting, breakage, crown defoliation and resprouting (Bellingham 1991). Damage and 299 

recovery (resprouting) were expressed as a percentage of all stems in the plots.  300 

 301 

Table 1. Information on the hurricanes reconstructed in this study, including the date the first 302 

exposure vulnerability map for each hurricane was reconstructed, average wind speed or range of 303 

wind speeds at the eye, distance from the eye of the hurricanes to the closest point along the 304 

coastline of Jamaica, average cardinal direction (or angle) of the track of the eye of the 305 

hurricanes relative to the study sites (used in the Curve Fit and the calc polynomial regressions) 306 

and the proxy hurricanes used to reconstruct their exposure vulnerability. 307 

Hurricane Date Wind speed 

(km hr
-1
) 

Distance 

(km) 

Angle 

(degrees) 

Proxy hurricane(s) 

1852 (unnamed) 06/10/1852 167 73.5 199.08 Jeanne  

1880 (unnamed) 06/08/1880 148 71 195.81 Jeanne 

1903 (unnamed) 11/08/1903 195 0 279.17 Jeanne 

1912 (unnamed) 17/11/1912 93 - 185 0 336.14 Jeanne 

1915 Galveston 13/08/1915 176 13.2 333.19 Jeanne 

1951 Charlie 17/08/1951 139 - 176 0 202.08 Michelle, Charley and Dennis 

1964 Cleo 25/08/1964 232 113.7 40.71 Michelle and Dennis 

1980 Allen 06/08/1980 213 49 300.39 Ivan, Emily and Dean 

1988 Gilbert 12/09/1988 204 - 213 0 215.75 Ivan, Emily and Dean 

2004 Ivan 11/09/2004 241 - 250 40.3 203.44 Ivan 

2005 Dennis 07/07/2005 185 45.9 40.82 Dennis 

2007 Dean 20/08/2007 231 40.9 167.69 Dean 
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 336 

Figure 1. a) Tracks of hurricanes categorized as category 2, 3 or 4 using the Saffir-Simpson 337 

Hurricane Wind Scale, with centers that passed within 0–113 km of the northern or southern 338 

coastline of Jamaica during 1852–2007. Exposure vulnerability of these hurricanes was 339 

reconstructed. Also included are b) maps of the study site, the Blue and John Crow Mountains 340 

National Park (source:  Muchoney et al. 1994), showing the extent of several old growth 341 

vegetation classes, and overlaid with the location of permanent sample plots (ET: Tanner (1977); 342 

PJB: Bellingham (1991) and JCM: Luke et al. (2016a)) established in the Blue and John Crow 343 

Mountains, Jamaica. The colour coded arrows show the direction of the hurricanes. 344 
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 345 

EV model evaluation data 346 

Luke et al. (2016a) used global site factor (GSF) (calculated from hemispheric photographs) data 347 

collected six months after Hurricane Dean (in 2008) in PSPs located in the JCM to test how well 348 

their EV model performed. Specifically, they used a spatially explicit generalized additive mixed 349 

model (GAMM) to showed that the EV values, which were extracted from the EV maps using 350 

the GSF plot location, explained the highest deviance in the GSF data and that GSF increased 351 

significantly with Hurricane Dean EV (Luke et al. 2016a). In the present study, we used a similar 352 

approach. In particular, we used a spatially explicit generalized linear mixed model (GLMM) 353 

and damage and recovery data from Bellingham’s and Tanner’s plots to determine if the 354 

reconstruction method accurately modelled sites that were exposed to Hurricane Gilbert. 355 

Dependent variables used in the GLMM included percentage of stems in the plots that died, had 356 

crown defoliation, and had resprouted in 1990 from Bellingham’s plots. From Tanner’s plots, the 357 

dependent variables included percentage of stems with crown defoliation and resprouting in 1989 358 

and 1991.  359 

 360 

Based on previous stand-level assessments (Bellingham 1991), it was expected that plots with 361 

the highest exposure would suffer greater hurricane damage and show evidence of a higher 362 

percentage of recovering stems. Nevertheless, we evaluated the influence of several independent 363 

variables on the damage and recovery data to determine if EV was the most important predictor. 364 

As such, the independent variables included elevation, aspect, topographic position index (TPI) 365 

and EV values for Hurricane Gilbert, which were extracted at each plot location. Elevation 366 

values were obtained from the DSM, whereas aspect and TPI values were extracted from maps 367 
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that were generated from the DSM. The TPI map was generated using the Land Facet Corridor 368 

Designer Tools for ArcGIS 10 (Jenness et al. 2013). TPI values are continuous and as they 369 

change from negative to positive this is indicative of a transition from valleys to slopes to ridge 370 

tops. Specifically, negative TPI values represent valleys and gullies, TPI values near zero 371 

represent mid-slopes, and positive and comparatively large TPI values represent ridges and ridge 372 

tops (Jenness et al. 2013). To determine the effects of hurricane proxy choice (Hurricane Dean 373 

QuikSCAT Scatterometer image) on EV map accuracy, the model evaluation was repeated for 374 

Gilbert EV maps reconstructed using other proxies such as Hurricanes Dean and Emily and 375 

average EV of the three proxy hurricanes. The accuracy of EV maps generated using the best 376 

single proxy, which was Hurricane Ivan, a proxy from the same Saffir-Simpson Hurricane Wind 377 

Scale category, which is Hurricanes Dean and Emily, and the average of the three proxies, was 378 

then compared. The statistical method used to evaluate the EV model is described below. 379 

  380 

Aggregating the spatial patterns of hurricane disturbance: modelling the influence of 381 

hurricane direction and distance on exposure vulnerability  382 

Unless stated otherwise, statistical tests were performed using the R programming language (R 383 

Development- Core-Team, 2017). The path of the hurricane is determined by the storm forward 384 

speed and direction. Both influence the angle of approach of the hurricane to an island or a 385 

landmass and the cardinal direction of the track of the hurricane. Bivariate plots of EV and 386 

aspect were therefore generated and inspected, and were used to determine the directional 387 

patterns of exposure based on the cardinal direction/angle of the track of a hurricane’s eye. 388 

Before the data were plotted, a raster image of undisturbed upper montane forest in the BM 389 

(Figure 1) was converted to a point .shp file. This was used to extract EV and aspect values from 390 
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the respective maps. The polarPlot function from the 'openair' package (Carslaw and Ropkins, 391 

2012) was then used to construct a bivariate plot of the relationship between EV and aspect for 392 

each hurricane. This process involves creating a smooth surface by fitting a generalized additive 393 

model (GAM) to the data. The level of smoothness is controlled by the smoothing parameter k 394 

and we used the default value (100). The polarPlot function and the resultant bivariate plot are 395 

suitable for a graphical analysis but not for quantitative purposes. As such, directional 396 

information on EV was discerned graphically when the smooth surface was plotted in polar 397 

coordinates. Plots for the JCM were very similar to those of the BM, and therefore, they are not 398 

presented. The relationships between the cardinal direction of the tracks of the eyes of the 399 

hurricanes relative to the study sites and EV and distance from the eyes of the hurricanes to 400 

the study sites and EVwere then explored (Figures 5-8). A polynomial (2nd-degree) model was 401 

found to be the most suitable model for representing this relationship. As such, a pixel-level 402 

(2nd-degree) polynomial regression analysis was conducted using the USGS Curve Fit extension 403 

for ArcMap (De Jager and Fox, 2013). This was used to map the spatial patterns of exposure 404 

based on the angle or cardinal direction of the track the hurricane’s eye and distance to the 405 

hurricane’s eye, over the period 1852–2007. Curve Fit uses a linear or nonlinear regression to 406 

calculate a unique mathematical model at each pixel of the input raster data sets (De Jager and 407 

Fox, 2013). The input for the Curve Fit function included a time series of EV maps for the BM 408 

and JCM (dependent variable), and the average angle or cardinal direction (in degrees) of the 409 

track of the eye of each hurricane relative to the study sites or the distance to the eye of each 410 

hurricane from the study sites, as an independent variable (Table 1).  411 

 412 
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Before the exposure maps were added to the Curve Fit function, they were first clipped to an area 413 

of interest that included only natural old growth (including old secondary) forest of the 414 

predominant forest type found at both sites where the plots were established (Figure 1). This 415 

helped to reduce processing time. The Curve Fit output products generated for this study 416 

included the P-value, adjusted R
2
 and parameter a2 of the fitted polynomial regression, as image 417 

files. The a2 parameter is the regression coefficient for the squared term. If a2 > 0, then the 418 

relationship with the response is convex or concave upward, whereas if a2 < 0, then the 419 

relationship is concave downward. The calc function in R can be used to generate similar outputs 420 

and this was used to generate maps from a fitted pixel-level polynomial regression for the period 421 

1852-1988. At each plot location, these values (from the Curve Fit image files) were extracted 422 

and used in subsequent analyses. Bellingham’s plots were likely to be influenced by hurricanes 423 

that struck the island before the final census was conducted in 2004; therefore, only values from 424 

the calc image files were extracted and used. Although adjacent pixels would likely influence the 425 

EV value of a pixel, the pixel-level regression only considers a single pixel at a time and 426 

generates a model for each pixel. Consequently, there was no spatial autocorrelation, but the data 427 

were likely to be temporally autocorrelated. We therefore used the partial autocorrelation 428 

function (PACF) and the autocorrelation function (ACF) to assess the residuals from polynomial 429 

models developed using EV data extracted using the plot data to confirm that there was no 430 

temporal autocorrelation, that is, they followed a white noise (random) process. 431 

 432 

Bayesian hierarchical spatiotemporal/spatial model structure: EV model evaluation and the 433 

effects of EV and/or topographic features on tree diversity and density 434 
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Tanner’s plots were established according to a nested design, which included several contiguous 435 

subplots nested within four plots or ‘sites’. Also, the layout of Bellingham’s plots followed a 436 

fully systematic design and Luke et al.’s (2016a) plots followed a structured or a stratified 437 

randomized block design. Consequently, Tanner’s subplots were spatially pseudo-replicated and 438 

auto-correlated because they were adjacent to each other in space. Additionally, the plots within 439 

each transect of Bellingham (1991) and within each block of Luke et al. (2016a) were also close 440 

enough to each other to potentially be spatially auto-correlated. Nested, systematic and structured 441 

data can be fitted in a standard linear model with nested, systematic, that is, using each transect 442 

as a block, and structured fixed effects. However, the degrees of freedom must be adapted to the 443 

design of the study, because the errors will likely be spatially correlated and thus violating the 444 

assumption of independent observations or errors. This must be accounted for by a model to 445 

obtain accurate mean sum of squares (Gelman 2005; Schielzeth and Nakagawa 2013). As such, 446 

data from the nested subplots, the transects and structured plots can only be appropriately 447 

modelled using mixed effects models, which cluster the data in groups as a random effect 448 

(Schielzeth and Nakagawa 2013; Zuur et al. 2017) and estimate the standard errors correctly 449 

(Gelman 2005), because the latter will be biased if they are not corrected for clustering. A better 450 

approach is to use a mixed-model with a spatial autocorrelation structure (using the coordinates 451 

of the center of the subplots and plots), as the errors are allowed to be correlated and/or to have 452 

unequal variances (Crawley 2012). However, some of the data were also likely to be temporally 453 

auto-correlated; as a result, the most appropriate models should include spatial and temporal 454 

autocorrelation structures. Nonetheless, the choice of frequentist methods that can cope with 455 

these structures is limited, and the most appropriate methods require Bayesian statistics (Zuur et 456 

al. 2017). Consequently, the models that were developed in this study were fitted using a 457 
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Bayesian approach based on the Integrated Nested Laplace Approximation (INLA), implemented 458 

using the 'INLA' package (Rue et al. 2009; Lindgren et al. 2011; Martins et al. 2013; Lindgren 459 

and Rue 2015; Rue et al. 2017). The method was used due to its flexibility (see below) and 460 

because the posterior marginal probabilities are approximated more efficiently and faster, when 461 

compared with traditional MCMC approaches (Rue and Martino 2007; Rue et al. 2009).  462 

 463 

Two types of model were developed: models with either a spatiotemporal random effect for 464 

overall assessments, regardless of time, and models with a spatial random effect for each 465 

individual census. Models were developed for EV model evaluation and to determine whether 466 

average EV from several hurricanes, topographic parameters or data from the Curve Fit and the 467 

calc function output products could be used to explain spatial and/or spatiotemporal patterns of 468 

tree diversity and density in the BM and JCM. For the JCM, Luke et al. (2016a) reported the 469 

results of assessments of the Shannon–Wiener (H') diversity index versus EV and topographic 470 

parameters for individual censuses. As such, in the present study, only the influence of the Curve 471 

Fit output products was checked for the individual census periods. The models were developed 472 

following a spatially explicit generalized linear mixed model (GLMM) framework. The response 473 

variable at a given plot location and census interval was assumed to have a distribution that 474 

belonged to the exponential family. As such, suitable distributions and link functions were 475 

chosen for the response variables. For the EV model evaluation exercise, the response variables 476 

were expressed as a percentage of the stems found in each plot (percentage defoliated, resprouted 477 

and dead stems) and as such, either a binomial (BIN), or a zero-inflated binomial Type 0 (ZIB.0) 478 

with a logistic link function was used. The ZIB.0 was chosen if the data had four or more zero 479 

values and it was deemed a better fit. The dependent variables in the other models were either H' 480 
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values or density values for each plot that was sampled during the periods 1974-2009 (Tanner’s 481 

plots), and 1991-2004 (Bellingham’s plots) in the BM, and 2006-2012 (Luke et al.’s (2016a) 482 

plots) in the JCM. For H' values derived from Tanner’s plots, a Gaussian distribution was used. 483 

A Gamma distribution and log-link function were used for H' and density values derived from 484 

Bellingham’s and Luke et al.’s (2016a) plot data. A value of 0.00001 was added to the density 485 

values, because a Gamma distribution does not include zeros. 486 

 487 

The parameters of the chosen exponential family (ϕ) were linked to a structured additive 488 

predictor η through their canonical link function g(·), such that g(ϕ) = η. The linear predictor was 489 

defined as: 490 

η = β0 + β1 * Var.1 + β2 * Var.2 + f (Var.3) + f(s,t) 491 

where η was the linear predictor for any one of the response variables, β0 was the intercept, β1 492 

and β2 were the regression coefficients for the predictors Var.1 and Var.2, and Var.3 was also a 493 

covariate/predictor. In general, the semiparametric function f(·) can be used either to relax the 494 

linearity of the covariates/predictors, that is smooth effects similar to a GAM, or it can be used to 495 

define either the spatial or spatiotemporal random effect (Rue et al., 2009). In this study, f(·) was 496 

used to model the smooth, non-linear effects of some covariates/predictors using either a first-497 

order or second-order random walk process (RW1 or RW2) given by f(Var.3). A polynomial 498 

INLA spatiotemporal model was used to confirm that there was a non-linear relationship 499 

between the response and the predictor before smoothing was applied, i.e. that all the degrees or 500 

the orders of the polynomial were important. The f(·) was also used to represent the effects of the 501 

spatial position of each plot location (using the coordinates taken at the center of each plot) by 502 

allowing for the inclusion of a spatially structured random effect f(s), and for the spatiotemporal 503 
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models this followed an autoregressive process f(s,t). The latter represented a Matérn correlation 504 

structure but with a different realization every year (Cosandey-Godin et al. 2014). 505 

 506 

The spatially-structured random effect was modeled by a Gaussian random field (GRF) using the 507 

stochastic partial differential equation (SPDE) approach of Lindgren et al. (2011). A GRF with a 508 

Matérn covariance function can be represented as a Gaussian Markov Random Field (GMRF) 509 

(Lindgren et al. 2011). A GMRF is a spatial process that models the spatial dependence of data 510 

observed on a regular grid, lattice or geographic region (Cameletti et al. 2013). The SPDE 511 

approach is used to find a GMRF with local neighbourhood and sparse precision matrix Q (i.e., 512 

the inverse of the covariance matrix) that best represents the Matérn field (Lindgren et al. 2011), 513 

to avoid the “big n problem” that occurs with large spatiotemporal datasets (Banerjee et al 2004). 514 

The SPDE method achieves this by allowing for the evaluation of the continuous GRF as a 515 

discretely-indexed random process (i.e. a Gaussian Markov Random Field; Lindgren and Rue 516 

2015). In particular, the SPDE method subdivides the domain, in this case the area of interest 517 

where the plots were established (the forests of the BM and JCM), into non-intersecting triangles 518 

creating an index mesh, instead of a regular grid (Lindgren et al. 2011). Linear combinations of 519 

basis functions, defined on the locations of the set of vertices, are used in the triangulation to 520 

represent the field (Lindgren et al. 2011). The meshes that were used to approximate the spatial 521 

fields for the BM and JCM are shown in Appendix S1. The meshes were confined to the area of 522 

interest for both sites. Different mesh sizes were used for both sites, including a mesh that only 523 

encompassed the plot locations. This was gradually extended to include the entire study area for 524 

each site. Also, the mesh should typically be extended beyond the study area to reduce boundary 525 

effects where the variance is twice as large as inside the domain. For this study, the final mesh 526 
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used for either site yielded very similar results as the mesh size increased. As such, the final 527 

mesh that was bounded by the area of interest was used. For a more detailed explanation of the 528 

SPDE approach see Lindgren et al. (2011). 529 

 530 

The sampling times for Tanner’s and Bellingham’s plot censuses were unequally spaced, so for 531 

the models they were treated as data collected over a continuous time domain and were 532 

discretized over a set of knots, with equal spacing over the sample period. When applying 533 

models with spatial correlation, a 2-D mesh is defined (Zuur et al. 2017). When knots are used, a 534 

1-D mesh that is dependent on knot values is constructed (Zuur et al. 2017) and, similar to the 535 

spatial model, piecewise linear basis functions are used, but at a set of time knots (Krainski et al. 536 

2017). The knot values are used to calculate weighting factors that are inversely proportional to 537 

the distance between the sampling year and the knots (Zuur et al. 2017). To fit the space-time 538 

continuous model, the time knots and the temporal mesh need to be determined. Specifically, the 539 

seven and three sample times for Tanner’s and Bellingham’s plot data were discretized over four 540 

and three knots, respectively (Appendix 1). For Tanner’s plots, the knots represented the years 541 

1974, 1985.7, 1997.3 and 2009, whereas for Bellingham’s plots, the knots represented the years 542 

1990, 1997 and 2004. The final model was specified as a SPDE model for the spatial domain and 543 

an AR(1) model for the time dimension. This model allowed for the simulation of the conditional 544 

marginal distribution at each time, that is, it simulated a realization of the spatial random field for 545 

each time. Two space-time models were used: one for discrete time domain (two years for the 546 

JCM) and for the second model, time was discretized over a set of knots (for the BM). 547 

 548 
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Before the statistical tests were performed, significantly correlated independent variables (with a 549 

correlation > 0.5) were identified using Spearman’s rho statistic and test. The Deviance 550 

Information Criterion (DIC), which was computed by R-INLA, was used to compare the 551 

goodness-of-fit of the models. The DIC is comparable to the Akaike Information Criterion 552 

(AIC), but it is more suitable for hierarchical Bayesian models (Spiegelhalter et al. 2002). 553 

Models with the lowest DIC values were generally considered as the best models. In addition, 554 

the marginal R-squared (following Zheng (2000)) was calculated as follows: 555 

100*(1 - (∑ ∑ (������	 − 	� !!��)2�
���

#
#��  /  ∑ ∑ (������	 − 	mean	(������))2�

���
#
#�� )), 556 

where t is time when n subjects were considered, depend is the response variable, and fitted is the 557 

values predicted by the model. The most parsimonious final models that included independent 558 

variables, which were not significantly correlated, were identified and reported. Model fit was 559 

also evaluated using scatter plots of the observed and predicted data and quantile-quantile 560 

residual plots. In addition, INLA performs a ‘leave out one’ cross-validation from which two 561 

indices that can be used to evaluate model predictive performance are computed (Blangiardo and 562 

Cameletti 2015): the probability integrity transform (PIT) (Dawid 1984) and the conditional 563 

predictive ordinate (CPO) (Pettit 1990). The empirical distribution of the PIT can be used to 564 

evaluate model predictive performance (Gneiting et al. 2007). If a histogram of the PIT values 565 

follows a uniform distribution, this means that model predications are coherent with the observed 566 

data (Blangiardo and Cameletti 2015). In addition, when the PIT and CPO indexes are computed, 567 

numerical problems can occur (Held et al. 2010). The ‘failure’ vector automatically provided by 568 

INLA contains a value of 0 or 1 for individual observations (Blangiardo and Cameletti 2015). A 569 

value of 1 indicates that for a particular observation, the predictive measures are not reliable due 570 

to some problems with the calculation (Blangiardo and Cameletti 2015). If the vector is summed, 571 
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a value of 0 indicates that no failures were detected. Final models were not selected unless the 572 

sum of the CPO was equal to 0 and a histogram of the PIT values showed a uniform distribution. 573 

 574 

In most cases, the default and recommended priors were used; specifically, vague priors or 575 

estimations of non-informative priors (Cosandey-Godin et al. 2014). However, to avoid 576 

overfitting, the penalized complexity prior (PC-prior) framework was adopted. A PC-prior 577 

derived by Fuglstad et al. (2019) was used to define the model parameters of the SPDE model as 578 

the practical range and the marginal standard deviation. It is weakly informative, and complexity 579 

is penalised by shrinking the range to infinity and the marginal variance to zero (Fuglstad et al. 580 

2019). For the SPDE, the PC-prior ensured that the spatially structured effect operated at a 581 

similar but not smaller spatial scale as the model covariates/predictors. Otherwise, the spatial 582 

effect would explain the data better than the covariates, rendering the model meaningless while 583 

inflating model accuracy and the marginal R-squared and deflating the DIC, rendering them 584 

useless for model selection. Several values for the range were used (starting with half the 585 

distance between the farthest points), until there was no overfitting. A PC-prior, developed by 586 

Simspon et al. (2017), was also considered for the random walk processes (RW1 and RW2). It 587 

requires defining a reference standard deviation σ0 and the right-tail probability u, as P(σ0 >  σ) =  588 

u (Simspon et al. 2017). The PC-prior controlled the level of smoothness and a value of 1 for σ0 589 

is the suggested starting point. Using lower values will result in a smoother fit and progressively 590 

lower values will give a straight line. 591 

 592 

Before the models were accepted, several ways in which EV could be used to explain 593 

spatiotemporal trends were first explored. Average ‘legacy’ EV calculated from multiple 594 
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hurricanes that affected a site before a census, with no adjustment for time (since each hurricane 595 

affected the sites/plots), was found to be the best predictor of diversity in the JCM (Luke et al. 596 

2016a). In the present study, we found that average ‘legacy’ EV was more suitable for assessing 597 

the overall effects of EV when multiple re-numeration times were used in the models (Figure 9). 598 

However, we used a manual stepwise forward selection approach to identify the best or most 599 

suitable hurricanes and the number of hurricanes for averaging. Specifically, EV values for each 600 

hurricane were first included in a regression model with a response variable (diversity or 601 

density), and important EVs were identified. The two most important EVs (based on DIC and the 602 

marginal R-squared values) were then averaged and model fit, that is the DIC and the marginal 603 

R-squared values, was assessed. If model fit was improved by averaging the two most important 604 

hurricane EVs, that is if the DIC decreased and the marginal R-squared increased, additional EVs 605 

were then included in the average. If model fit did not improve when the EV of a hurricane was 606 

included in the average, it was dropped. This was repeated until an average ‘legacy’ EV that 607 

yielded the lowest DIC and the highest marginal R-squared values was identified. This was then 608 

used to identify the most parsimonious model.  609 

 610 

The most parsimonious final models were identified using a manual stepwise backward selection 611 

approach and were reported. Specifically, important predictors with the highest marginal R-612 

squared and the lowest DIC were identified, and other predictors that were correlated with these 613 

predictors but had a lower marginal R-squared and higher DIC were dropped. If there were > 1 614 

uncorrelated predictors, they were all included in a model and the final model was accepted if 615 

they were all important. If one or more of the predictors were not important when they were 616 

added to the model, they were dropped until the most parsimonious model was identified. These 617 
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models yielded the lowest DIC, the highest marginal R-squared and included independent 618 

variables that were not significantly correlated. 619 

 620 

Results 621 

The nominal range, which is the minimum distance at which data from two plot locations are 622 

uncorrelated (or correlation between the two plots is  ≤ 0.1), varied for the models that were used 623 

to analyze plot data from the two study sites. For all the models that included Tanner’s plot data, 624 

the nominal range was 5.1–8.2 km, for Bellingham’s plot data 4.7–8.4 km and for Luke et al.’s 625 

(2016a) plot data 5.9–8.4 km (Tables 2–8). For the assessments (e.g. EV versus tree diversity or 626 

density) that included all the censures (i.e. assessing the overall effects regardless of time), the 627 

data used were not found to be temporally auto-correlated; but in all cases model fit improved 628 

with the inclusion of spatiotemporal random effects. In addition, for all models, the variance of 629 

the spatial effect was lower than that of the model variance (Tables 2–8). 630 

 631 

EV model evaluation 632 

For the BM, damage and recovery data from Bellingham’s plots, in particular completely 633 

defoliated and reprouting stems, were found to increase significantly with Hurricane Gilbert EV 634 

(Figure 2a,b; Table 2), with marginal R-squared (mR
2
) values of 37.5% and 47.1%, respectively 635 

(Table 2). This indicated that the method used to reconstruct the EV of past hurricanes generated 636 

maps of EV that can be considered as a proxy to damage caused by these hurricanes. In addition, 637 

the best proxy for Hurricane Gilbert, that is an EV map created using metrological data from a 638 

processed QuikSCAT Scatterometer image of Hurricane Ivan, could be used to explain the 639 

damage and recovery data from Bellingham’s plots. Average EV from three proxies (Hurricanes 640 
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Emily, Ivan and Dean; mR
2 

= 36.2%), and the other proxies (mR
2 

= 30.1% (Dean) and mR
2 

= 641 

27.2% (Emily)) could only be used to explain the recovery data (Figures 2c–e; Table 2). 642 

Therefore, in the absence of a single 'best' proxy, proxy images of other hurricanes from the 643 

same Saffir-Simpson Hurricane Wind Scale category or the average of three proxies from the 644 

same wind scale category, could, at the very least, be used to represent forest recovery from 645 

hurricanes. The percentage of dead stems was better explained by elevation, that is dead stems 646 

increased with elevation (mR
2 

= 44.6%) (Figure 2f; Table 2). If data from Tanner's plots were 647 

used, defoliated stems showed an S-shaped non-linear relationship with TPI (mR
2 

= 66.1%),  648 

indicating that the topographic location of the plots had a greater influence on hurricane damage 649 

than was the case for Bellingham’s plots, and in this case, damage was highest at or near ridge 650 

crests (Figure 2g; Table 3). A similar pattern was reported by Bellingham et al. (1992) and 651 

Tanner et al. (2014). Similarly, resprouting in 1989 and 1991 was explained by TPI being highest 652 

at or near ridge crests (mR
2 

= 40.3 and 60.8%, respectively) (Figure 2h & j; Table 3). 653 

 654 
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Figure 2. Observed (closed circles) and posterior mean predicted values (solid lines) and the 

95% credible intervals (shade) obtained from hierarchal Bayesian spatial models used to assess 

the relationship between damage and recovery data obtained from Bellingham's (a–f) and 

Tanner's (g–i) plots several months after the passage of Hurricane Gilbert in 1988, and the 

reconstructed Hurricane Gilbert exposure vulnerability (EV) based on three proxy hurricanes (in 

the order of model fit: Ivan, the average of all three hurricanes, Dean and Emily) and other 

topographic parameters (elevation and topographic position index (TPI)).  
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Table 2. Summary of the marginal posterior distribution for model parameters obtained from 672 

hierarchical INLA Bayesian models used to assess the relationship between damage and 673 

recovery data from Bellingham's plots and Hurricane Gilbert exposure vulnerability (EV), 674 

reconstructed using several proxy hurricanes including Hurricanes Ivan (2004), Dean (2007), 675 

Emily (2005) and average (mean) EV from all three proxies that were found to be the most 676 

important predictors (95% credible intervals did not contain zero) of damage and recovery in the 677 

montane forest of the Blue Mountains, Jamaica, after the passage of Hurricane Gilbert in 1988.  678 

Year Variable Parameters Mean Q0.025 Q0.975 mR
2
 DIC Priors 

1989 Completely  Intercept -3.2 -3.6 -2.7 37.5 155.7  

defoliated  Glibert (Ivan) 0.0002 0.0001 0.0003    

stems (%) obs.var 6.7 2.5 17.5    

ZIB.0 spde.var.nom 0.0000295 -0.0000004 0.0002002   0.0023, 0.5 

 spde.range.nom 6.5 0.7 30.8   3.9, 0.5 

1989 Resprouting 

stems (%)  

Intercept -0.3 -0.6 -0.1 47.1 159.2  

Glibert (Ivan) 0.0001 0.0001 0.0002    

 BIN spde.var.nom 0.0000196 -0.0000004 0.0001245   0.0023, 0.5 

  spde.range.nom 8.1 0.7 41.3   3.9, 0.5 

1989  Resprouting Intercept -0.19 -0.42 0.06 36.2 178.1  

 stems (%) Glibert (Mean) 0.0001 0.0001 0.0002    

 BIN spde.var.nom 0.0000197 -0.0000005 0.0001238   0.0023, 0.5 

  spde.range.nom 8.2 0.8 42.0   3.9, 0.5 

1989  Resprouting Intercept -0.07 -0.28 0.19 30.1 187.8  

 stems (%) Glibert (Dean) 0.0001 0.0001 0.0001    

 BIN spde.var.nom 0.0000251 -0.0000004 0.0001666   0.0023, 0.5 

  spde.range.nom 7.4 0.7 36.6   3.9, 0.5 

1989  Resprouting Intercept -0.06 -0.29 0.30 27.2 192.5  

 stems (%) Glibert (Emily) 0.0001 0.0001 0.0001    

 BIN spde.var.nom 0.0000277 -0.0000004 0.0001863   0.0023, 0.5 

  spde.range.nom 7.1 0.7 34.3   3.9, 0.5 

1989 Dead stems  Intercept -7.2 -9.6 -5.0 44.6   

 (%) Elevation 0.0028 0.0015 0.0042    

 BIN spde.var.nom 0.0000194 -0.0000004 0.0001235   0.0023, 0.5 

  spde.range.nom 7.3 0.7 35.7   3.9, 0.5 

Q0.025, and Q0.975 = quantiles of the credible interval; DIC = Deviance Information Criterion; mR
2
 = 679 

marginal R-squared; ZIB.0 = zero inflated binomial Type 0 likelihood; BIN = Binomial likelihood; 680 

obs.var = model variance; spde.var.nom = nominal spatial variance (priors = prior marginal standard 681 

deviation and right tail probability); spde.range.nom = nominal spatial range (km) (priors = practical 682 

range and right tail probability). 683 

 684 

 685 

 686 

 687 

 688 
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Table 3. Summary of the marginal posterior distribution for model parameters obtained from 689 

hierarchical INLA Bayesian models used to assess the relationship between damage and 690 

recovery data from Tanner's plots and topographic parameters (topographic position index (TPI)) 691 

that were found to be the most important predictors (95% credible intervals did not contain zero) 692 

of damage and recovery in the montane forest of the Blue Mountains, Jamaica, after the passage 693 

of Hurricane Gilbert in 1988.  694 

Year Variable Parameters Mean Q0.025 Q0.975 mR
2
 Priors 

1989 Defoliated stems (%) Intercept -1.94 -2.06 -1.82 66.1  

 ZIB.0 obs.var 183.4 7.5 964.5   

 RW2 TPI.var 0.13 0.04 0.30  0.1, 0.05 

  spde.var.nom 0.0000183 -0.0000004 0.0001149  0.0023, 0.5 

  spde.range.nom 8.2 0.8 42.0  3.9, 0.5 

1989 Resporuting stems (%) Intercept -1.60 -1.76 -1.44 40.3  

 ZIB.0 TPI 0.06 0.05 0.06   

  obs.var 44.1 8.1 166.3   

  spde.var.nom 0.0000406 -0.0000007 0.0002875  0.0023, 0.5 

  spde.range.nom 5.3 0.5 23.4  3.9, 0.5 

1991 Resporuting stems (%) Intercept 0.20 0.13 0.28 60.8  

 ZIB.0 obs.var 183.4 7.5 964.5   

 RW2 TPI.var 0.027 0.009 0.061  0.03, 0.05 

  spde.var.nom 0.0000379 -0.0000005 0.0002664  0.0023, 0.5 

  spde.range.nom 5.1 0.5 22.3  3.9, 0.5 

Q0.025 and Q0.975 = quantiles of the credible interval; mR
2
 = marginal R-squared (%); RW2 = second-order 695 

random walk process (predictor variance is followed by .var, e.g., TPI.var for RW2 and Prior = reference 696 

standard deviation and the right tail probability); ZIB.0 = zero inflated binomial Type 0 likelihood; 697 

obs.var = model variance; spde.var.nom = nominal spatial variance (Priors = prior marginal standard 698 

deviation and right tail probability); spde.range.nom = nominal spatial range (km) (Priors = practical 699 

range and right tail probability). 700 
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 703 

 704 

 705 

 706 

Figure 3. Exposure vulnerability (EV) maps (three-dimensional view) for category 2, 3 or 4 707 

hurricanes, with centers that passed within 0–113 km of the northern or southern coastline of 708 

Jamaica, during the period 1852–1988. The two-dimensional inserts include hurricane tracks and 709 

direction (closed circles with arrows) with information on wind speed at each track location and 710 

wind direction (black arrows). Value = highest and lowest EV values. UN = unnamed hurricane. 711 
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Figure 3. (continued) Exposure vulnerability (EV) maps (three-dimensional view) for category 2, 3 

or 4 hurricanes, with centers that passed within 0–113 km of the northern or southern coastline of 

Jamaica, during the period 1852–1988. The two-dimensional inserts include hurricane tracks and 

direction (closed circles with arrows) with information on wind speed at each track location and wind 

direction (black arrows). Value = highest and lowest EV values. UN = unnamed hurricane. 
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Figure 4. Bivariate polar plots (in polar coordinates) of aspect and exposure vulnerability (EV or 713 

Exposure) for each hurricane with insert maps showing hurricane tracks (brown closed circles) 714 

relative to the island of Jamaica. The polar plots show the aspect (or direction) with the highest 715 

and lowest EV values when each hurricane affected the Blue Mountains. Arrows show the 716 

direction of the hurricane tracks. The map inserts were placed where they can be viewed. 717 
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Long-term exposure in the Blue and John Crow Mountains 721 

EV was found to be directional depending on the angle or cardinal direction of the track of the 722 

eye of each hurricane as it passed relative to the two study sites (Figures 3 and 4). If the track of 723 

a hurricane’s eye passed the sites at angles or cardinal directions ranging from 279° to 41°, it 724 

passed along a trajectory from north-east to north-west of the study sites if it made landfall, or if 725 

it passed along the northern coastline (Figures 1, 3 and 4; Table 1). Due to the counter-clockwise 726 

rotation of hurricane winds, this resulted in southern to western aspects being more exposed 727 

(Figure 4). If the track of a hurricane’s eye passed the sites at angles or cardinal directions 728 

ranging from 167° to 216°, it passed along a south-eastern to a south-western direction relative to 729 

the study sites if it made landfall, or it passed along the southern coastline (Figures 1, 3 and 4; 730 

Table 1). This resulted in north-eastern to south-eastern aspects being more exposed (Figure 4). 731 

Maximum EV was lower for reconstructed hurricanes that made landfall when compared with 732 

the three most recent hurricanes that did not make landfall. The reason for this discrepancy was 733 

that maps for the three most recent hurricanes were created using actual images of each hurricane 734 

and the EV maps were therefore more accurate. If the maximum EV values from the 735 

reconstructed hurricanes were compared, the hurricanes that made landfall all had a higher 736 

maximum EV value, unless wind speed at the eye was lower than that of the eye or outer bands 737 

of other hurricanes.  738 

 739 

 740 

 741 

 742 

 743 
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Figure 5. Observed and predicted values (solid lines) obtained from polynomial regression 744 

models of  the relationship between hurricane direction and a time series of exposure 745 

vulnerability (for 12 hurricanes during 1852–2007 or Legacy exposure), at several of Tanner's 746 

(1977) plot locations (black dots) in the Blue Mountains, Jamaica. Dashed blue lines = standard 747 

error. Blue dots in the larger maps = Bellingham et al.'s (1991) plot locations. 748 

P- value 

Adjusted R
2
 

Parameter a2 

Mor 

Slope 

Col 

Mull 

50 100 200 300

0
5
0
0
0

1
0
0
0
0

1
5
0
0
0

Hurricane angle (degrees)

L
e
g
a
c
y
 e
x
p
o
s
u
re
 (
1
8
5
2
 -
 2
0
0
7
)

1852

1888

1903

1912

1915

1951

1964

1980

1988

2004

2005

2007

y = -0.307x
2

+ 109.23x − 1961.87

Adjusted R
2

= 0.575
P value = 0.009

50 100 200 300

0
5
0
0
0

1
0
0
0
0

1
5
0
0
0

Hurricane angle (degrees)

L
e
g
a
c
y
 e
x
p
o
s
u
re
 (
1
8
5
2
 -
 2
0
0
7
)

1852

1888

1903

1912

1915

1951

1964

1980

1988

2004

2005

2007

y = -0.061x
2

+ 22.29x + 3418.88

Adjusted R
2

= 0.002
P value = 0.401

50 100 200 300

0
5
0
0
0

1
5
0
0
0

Hurricane angle (degrees)

L
e
g
a
c
y
 e
x
p
o
s
u
re
 (
1
8
5
2
 -
 2
0
0
7
)

1852

1888

1903

1912

1915

1951

1964

1980

1988

2004

2005

2007

y = 0.281x
2

− 99.98x + 10383.07

Adjusted R
2

= 0.74
P = 0.001

50 100 200 300

0
5
0
0
0

1
0
0
0
0

1
5
0
0
0

Hurricane angle (degrees)

L
e
g
a
c
y
 e
x
p
o
s
u
re
 (
1
8
5
2
 -
 2
0
0
7
)

1852

1888

1903

1912

1915

1951

1964

1980

1988

2004

2005

2007

y = 0.022x
2

− 7.24x + 5145.49

Adjusted R
2

= -0.18
P value = 0.849



38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Observed and predicted values (solid lines) obtained from polynomial regression 749 

models of  the relationship between hurricane dir ection and a time series of exposure 750 

vulnerability (for 12 hurricanes during 1852–2007 or Legacy exposure), at several of Bellingham 751 

et al.'s (1991) plot locations (black dots) in the Blue Mountains, Jamaica. Dashed blue lines = 752 

standard error.  753 
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 754 

Figure 7. Observed and predicted values (solid lines) obtained from polynomial regression 755 

models of the relationship between hurricane direction and a time series of exposure 756 

vulnerability (for 12 hurricanes during 1852–2007 or Legacy exposure), at several of Luke et 757 

al.'s (2016a) plot locations (black dots) in the John Crow Mountains, Jamaica. Dashed blue lines 758 

= standard error. 759 
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 761 

Figure 8. Three dimensional views of the outputs from the Curve Fit pixel-level polynomial 762 

regression (clipped to the undisturbed forest types in the Blue [top three] and the John Crow 763 

[bottom three] Mountains) that was used to assess the influence of average direction (in degrees) 764 

of each hurricane at its closest point (independent variable) to the coastline of Jamaica, relative 765 

to the center of the Blue and John Crow Mountains, and a time series of exposure vulnerability 766 

maps (for 12 hurricanes during 1852–2007 or Legacy exposure) for the Blue Mountains 767 

(dependent variable). Value = highest and lowest values for Curve Fit maps. 768 
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When the influences of the distance from the eye and the cardinal direction of the track of the 769 

eye on the spatial pattern of EV were considered for all hurricanes, the angle or cardinal 770 

direction of the track of the eye had a much greater influence on the spatial pattern of EV. In 771 

particular, for the Curve Fit P-value cardinal direction map, 78.5% of the pixels had a value of P 772 

< 0.05, whereas for the Curve Fit P-value hurricane distance map, only 7.8% of the pixels had a 773 

value of P < 0.05. Therefore, the distance results were not presented. Angle or cardinal direction 774 

of the tracks of the eyes of hurricanes were more important because most of the hurricanes 775 

considered in this study either made landfall or passed extremely close to the coast of Jamaica 776 

(Figure 1; Table 1). Distance affected the severity of damage caused by the winds, and hence the 777 

magnitude of the EV values, but this was dependent on the strength of the winds at the eye and at 778 

the outer bands of the hurricanes (Figures 3 and 4; Table 1). If wind speed was very high at the 779 

eye and/or at the outer bands, the EV values were usually higher (Figures 3 and 4; Table 1). 780 

 781 

Several outputs from the Curve Fit extension can be used to explain the spatial pattern of long-782 

term EV across the landscape and at the stand-level (Figures 5–8). For example, data extracted 783 

from the parameter a2 map can be used to separate EV based on aspect (Figures 5–8). Negative 784 

and positive parameter a2 values indicate whether the relationship between EV and the cardinal 785 

direction of the hurricane was concave or convex, respectively. This indicated that there was 786 

higher EV when the hurricanes passed to the north or south of a site, respectively (Figures 5–8). 787 

Negative (concave) and positive (convex) parameter a2 values were almost exclusively found on 788 

the northern- and southern- facing slopes, respectively, or on aspects that were more likely to be 789 

exposed when a hurricane passed to the north or south of the site, respectively (Figures 5–8). 790 

Depending on plot location and the cardinal direction of the tracks of the eyes of hurricanes, 791 
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three main patterns of EV can be identified at the stand-level: (1) plots that were highly exposed 792 

to all hurricanes irrespective of the cardinal direction of the tracks of the eyes (R
2
 < 0.3, and P-793 

value ≥ 0.05), (2) plots with an inverted U-shaped (convex) relationship that had significantly 794 

higher EVs when the tracks of the eyes of the hurricanes had a southerly cardinal direction (a2 > 795 

0), and significantly lower EVs when the of the tracks of the eyes of the hurricanes had more 796 

northerly cardinal directions, or (3) plots with a U-shaped (concave) relationship that had 797 

significantly lower EVs when the tracks of the eyes of the hurricanes had more southerly 798 

cardinal directions (a2 < 0), and significantly higher EVs when the hurricanes had more 799 

northerly cardinal directions (Figures 5–7). 800 

 801 

Modelling stand-level tree diversity and density spatiotemporal patterns 802 

Tree Shannon diversity for the period 1974–2009, calculated from Tanner’s plot data, was best 803 

explained (the most parsimonious model) by average ‘legacy’ EV for the period 1903–1988 804 

(hurricanes in 1903, 1913, 1915, 1951, 1964 and 1988) (Figure 9a; Tables 4 and 5). Hurricane 805 

Allen (1980) and hurricanes that affected the site before 1903 and after 1988 were not included 806 

in the calculation of legacy EV because they did not improve model fit. Shannon diversity was 807 

highest at the lowest and intermediate (where it peaked) legacy EV values, but Shannon diversity 808 

was much lower at the highest legacy EV values (Figure 9a). Using data from Bellingham’s 809 

plots, the best predictor of overall Shannon diversity patterns was the P-value output from the 810 

calc function that encompassed 1852–1988 (Figure 9b; Tables 4 and 5). Locations with the 811 

lowest P-values, particularly locations with the strongest relationship between EV and the 812 

cardinal direction of the track of a hurricane’s eye (which were highly exposed when the track 813 

passed either to the north or the south of the sites), had the highest Shannon diversity overall; 814 
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values decreased as P-values increased and became non-significant (sites that are always exposed 815 

to hurricanes, regardless of the angle of the track of eye) (Figure 9b). There were no significant 816 

overall relationships between Shannon diversity values and the parameters that were assessed for 817 

the JCM using data from Luke et al. (2016a). However, Luke et al. (2016a) found that Shannon 818 

diversity values for the 2012 plot data increased as average EV for the three most recent 819 

hurricanes (Ivan, Dennis and Dean) increased.  820 

 821 

Tree (stem) density, calculated using data from Tanner’s plots, was overall best explained by 822 

topographic position index (result not presented here), whereas for Bellingham’s plot data, the 823 

most important predictor of tree density was the adjusted R
2
 values (Figures 9c; Tables 4 and 5). 824 

For the latter, tree density peaked at sites that were always exposed to hurricanes that affected 825 

the site during 1852–1988, regardless of the cardinal direction of their tracks (adjusted R
2
 = 0.2 – 826 

0.4). Tree density in the JCM was highest at more exposed aspects (Luke et al. 2016a). 827 

Therefore, the most important predictor of tree density was average legacy EV (1988–2007), 828 

with higher tree (stem) densities at higher EVs (Figures 9d; Tables 4 and 5). For the individual 829 

censuses of Tanner’s plots, the best predictor of Shannon diversity for the census years 1974, 830 

1984, 1989, 1991 and 1994 was average (legacy) EV for hurricanes that affected the site over the 831 

period 1903–1964 (Figures 9e–i; Table 6). For the year 2009, legacy EV for hurricanes in the 832 

period 1915–1988, was the best predictor (Figures 9j; Table 6). The individual censuses reflected 833 

the overall diversity pattern, with Shannon diversity being highest at lower and intermediate 834 

legacy EV values and lower at the highest values (Figures 9e–j). The marginal R
2
 increased from 835 

33% in 1974 to 43% in 1984, then subsequently decreased in 1989 (40.5%) until 1994 (25.6 %) 836 

(Table 6). It increased again in 2009 (31.8%). There were no important predictors of Shannon 837 
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diversity in 2004. Similarly, for Bellingham’s plots, Shannon diversity in 2004 was best 838 

explained by legacy EV (hurricanes in the period 1903–1988), with the highest diversity values 839 

occurring at intermediate EV values (Figure 9k; Table 6).  840 

 841 

Table 4. The best predictors of overall (regardless of census) tree diversity calculated as 842 

Shannon-Wiener H’ and stem density calculated using data from Tanner's (ET) and 843 

Bellingham’s (PJB) plots in the Blue Mountains (BM), Jamaica, and stem density from Luke et 844 

al.’s plots in the John Crow Mountain (JCM), Jamaica. Important variables included 'legacy' 845 

(average) exposure vulnerability to hurricanes during the period 1903–1988 (Exposure), Curve 846 

Fit (ET and JCM) and calc (PJB) outputs (P-value, Parameter a2, Adjusted R
2
) and topographic 847 

parameters (Aspect). 848 

Site Smoother and/or 

distribution 

Variable Parameters DIC mR
2
 

BM (ET) RW1 H’ Exposure 23.19 25.3 

BM (ET) RW1 H’ Parameter a2 29.36 23.2 

BM (ET) RW1 H’ Adjusted R
2
 31.87 22.9 

BM (ET) RW1 H’ Aspect 34.54 22.0 

BM (PJB) Gamma H’ P-value 22.51 32.9 

BM (PJB) RW2 Gamma H’ Adjusted R
2
 + (Adjusted R

2
)

2
 23.57 34.7 

BM (PJB) RW2 Gamma H’ Exposure 31.87 30.62 

BM (PJB) RW2 Gamma Density Adjusted R
2
 -69.2 85.1 

BM (PJB) RW2 Gamma Density P-value  -54.1 79.0 

BM (PJB) Gamma Density Exposure -17 40.5 

BM (PJB) RW2 Gamma Density Aspect -10.7 37.7 

JCM RW1 Gamma Density Exposure -156.2 27.1 

JCM RW1 Gamma Density Parameter a2 -154.7 26.6 

JCM Gamma Density Aspect -154.8 24.2 

JCM Gamma Density Adjusted R
2
 -142.7 17.6 

DIC = Deviance Information Criterion; mR
2
 = marginal R-squared (%); Gamma = Gamma likelihood; 849 

RW1/RW2 = first or second-order random walk process (smoother). 850 

 851 

 852 

 853 

 854 

 855 

 856 

 857 

 858 

 859 

 860 

 861 
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Figure 9. Observed and predicted mean values (solid lines) and the 95% Bayesian credible 862 

intervals for the posterior distribution (shade) obtained from hierarchal Bayesian space-time 863 

models for the best predictor of overall (regardless of time) a) diversity calculated as Shannon–864 

Wiener diversity index (H’) for the Blue Mountains (BM), Jamaica, using data from Tanner’s 865 

plots, b) H’and c) stem density values for the BM, calculated using data from Bellingham’s plots, 866 

and d) stem density values for the John Crow Mountains (JCM), Jamaica, calculated using data 867 

from Luke et al.’s plots and best predictor of H’ values for each census, calculated using data 868 

from e–j) Tanner’s and k) Bellingham’s plots in the BM. Important variables included 'legacy' 869 

(average) exposure vulnerability for different periods/years and the calc output (P-Value and 870 

Adjusted R
2
). 871 
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 875 

Table 5. Summary of the marginal posterior distribution for model parameters obtained from 876 

hierarchical INLA Bayesian space-time models for the best predictors of overall (regardless of 877 

census) diversity calculated as Shannon-Wiener H’ and stem density calculated using data from 878 

Tanner's (ET) and Bellingham’s (PJB) plots in the Blue Mountains (BM), Jamaica and stem 879 

density calculated from Luke et al.’s plots in the John Crow Mountain (JCM), Jamaica. 880 

Important variables (95% credible intervals did not contain zero) included 'legacy' average 881 

exposure vulnerability to hurricanes during the periods 1903–1988 for the ET plots and 1988–882 

2007 for the JCM plots (Exposure) and calc outputs (P-value). 883 

Site Variable Parameters Mean Q0.025 Q0.975 mR
2
 Priors 

BM  H’ Intercept 2.38 2.34 2.41 25.3  

(ET)  obs.var 0.062 0.051 0.076   

 RW1 Exposure.var 0.003 0.001 0.006  0.009, 0.05 

  spde.var.nom 0.000102 -0.000015 0.000683  0.0023, 0.5 

  spde.range.nom 6.0 0.5 27.9  3.9, 0.5 

  AR.rho -0.02 -0.99 0.98   

BM H’ Intercept 1.0 0.99 1.1 32.9  

(PJB) Gamma P-value -0.2 -0.3 -0.1   

  obs.var 0.01 0.009 0.02   

  spde.var.nom 0.00003 -0.0000004 0.0002  0.0023, 0.5 

  spde.range.nom 4.8 0.5 19.9  3.9, 0.5 

  AR.rho 0.004 -1.0 1.0   

BM Density Intercept -0.7 -0.7 -0.6 85.1  

(PJB) Gamma obs.var 0.04 0.03 0.07   

 RW2 Adjusted R
2
.var 0.09 0.04 0.17  0.065, 0.05 

  spde.var.nom 0.00002 -0.0000003 0.0001  0.0023, 0.5 

  spde.range.nom 7.9 0.7 40.1  3.9, 0.5 

  AR.rho 0.002 -1.0 1.0   

JCM Density Intercept -1.30 -1.37 -1.22 27.1  

 Gamma obs.var 0.14 0.10 0.19   

 RW1 Exposure.var 0.009 0.003 0.021  0.03, 0.05 

  spde.var.nom 0.0000232 -0.0000009 0.0001545  0.002, 0.5 

  spde.range.nom 6.4 0.7 29.9  4, 0.5 

  AR.rho -0.002 -0.988 0.988   

Q0.025 and Q0.975 = quantiles of the credible interval; DIC = Deviance Information Criterion; mR
2
 = 884 

marginal R-squared (%);Gamma = Gamma likelihood; RW1/RW2 = first or second-order random walk 885 

process (predictor variance is followed by .var, e.g., Exposure.var for RW1 and Prior = reference standard 886 

deviation and the right tail probability); obs.var = model variance; spde.var.nom = nominal spatial 887 

variance (Priors = prior marginal standard deviation and right tail probability); spde.range.nom = nominal 888 

spatial range (km) (Priors = practical range and right tail probability); AR.rho = autoregressive parameter, 889 

temporal correlation coefficient. 890 

 891 

 892 

 893 

 894 
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Table 6. Summary of the marginal posterior distribution for model parameters obtained from 895 

hierarchical INLA Bayesian space-time models for the best predictors of diversity calculated as 896 

Shannon-Wiener H-Index from Tanner's (ET) and Bellingham's (PB) plots in the Blue 897 

Mountains, Jamaica, for each census. Average exposure vulnerability (Expos) to hurricanes 898 

during the period 1903–1988 was the most important variable (95% credible intervals did not 899 

contain zero). 900 

Site Variable Parameters Mean Q0.025 Q0.975 mR
2
 Priors 

BM H’ Intercept 2.28 2.20 2.37 33  

ET 1974 obs.var 0.06 0.03 0.10   

 RW2 Expos (1903 -1964).var 0.0732 0.0005 0.3326  0.3, 0.05 

  spde.var.nom 0.0000234 -0.0000003 0.0001544  0.0023, 0.5 

  spde.range.nom 7.3 0.7 35.6  3.9, 0.5 

BM H’ Intercept 2.32 2.24 2.40 43  

ET 1984 obs.var 0.05 0.03 0.08   

 RW2 Expos (1903 -1964).var 0.114 0.010 0.380  0.3, 0.05 

  spde.var.nom 0.0000194 -0.0000004 0.0001249  0.0023, 0.5 

  spde.range.nom 8.1 0.7 40.8  3.9, 0.5 

BM H’ Intercept 2.35 2.27 2.43 40.5  

ET 1989 obs.var 0.05 0.03 0.08   

 RW2 Expos (1903 -1964).var 0.101 0.007 0.345  0.3, 0.05 

  spde.var.nom 0.0000183 -0.0000004 0.0001159  0.0023, 0.5 

  spde.range.nom 7.9 0.7 39.7  3.9, 0.5 

BM H’ Intercept 2.38 2.30 2.46 37.9  

ET 1991 obs.var 0.05 0.03 0.09   

 RW2 Expos (1903 -1964).var 0.0749 0.0023 0.2896  0.3, 0.05 

  spde.var.nom 0.0000181 -0.0000004 0.0001139  0.0023, 0.5 

  spde.range.nom 8.2 0.8 41.8  3.9, 0.5 

BM H’ Intercept 2.41 2.33 2.50 25.6  

ET 1994 obs.var 0.06 0.04 0.10   

 RW2 Expos (1903 -1964).var 0.0479 0.0003 0.4525  0.3, 0.05 

  spde.var.nom 0.0000192 -0.0000004 0.0001230  0.0023, 0.5 

  spde.range.nom 8.1 0.7 41.0  3.9, 0.5 

BM H’ Intercept 2.46 2.38 2.55 31.8  

ET 2009 obs.var 0.06 0.04 0.10   

 RW2 Expos (1915 -1988).var 0.0414 0.0002 0.4477  0.3, 0.05 

  spde.var.nom 0.0000300 -0.0000005 0.0002044  0.0023, 0.5 

  spde.range.nom 5.1 0.6 21.9  3.9, 0.5 

BM H’ Intercept 0.98 0.92 1.04 51.1  

PB 2009 obs.var 0.013 0.006 0.027   

 RW2 Expos (1903 -1988).var 0.0024 0.0003 0.0083  0.05, 0.05 

  spde.var.nom 0.0000185 -0.0000004 0.0001167  0.0023, 0.5 

  spde.range.nom 8.2 0.8 41.3  3.9, 0.5 

Q0.025 and Q0.975 = quantiles of the credible interval; mR
2
 = marginal R-squared (%); RW2 = random 901 

second-order random walk process (predictor variance is followed by .var, e.g., Expos.var for RW2 and 902 

Prior = reference standard deviation and the right tail probability); Gamma = Gamma likelihood; obs.var 903 

= model variance; spde.var.nom = nominal spatial variance (Priors = prior marginal standard deviation 904 
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and right tail probability); spde.range.nom = nominal spatial range (km) (Priors = practical range and 905 

right tail probability); AR.rho = autoregressive parameter, temporal correlation coefficient.  906 

 907 

Discussion 908 

Topographic exposure in the Blue and John Crow Mountains 909 

Topographic exposure models are generally used to identify points on a landscape-scale 910 

topographic surface that are protected from (wind shadow) or exposed to specific wind directions 911 

(Boose et al. 1994). The wind shadow is estimated by assuming that the wind bends downwards 912 

at a fixed inflection angle from the horizontal as it passes over an elevated surface (Boose et al. 913 

1994). It does not however, estimate changes in wind speed or direction caused by local 914 

topography (Boose et al. 1994). In addition, exposure models do not consider the movement of 915 

wind over complex terrain and meteorological conditions usually found near the center of a 916 

hurricane such as steep gradients of pressure velocity, local convective cells and curved wind 917 

paths and rain bands (Boose et al. 1994). Also, exposure models do not consider changes or 918 

alterations in these gradients at fixed locations due to a storm’s forward movement, 919 

intensification or weakening (Boose et al. 1994). These complexities are difficult and 920 

problematic to model (Boose et al. 1994).  921 

 922 

The simple topographic exposure model used in our study therefore lacks complexity, 923 

nevertheless, exposure models work at landscape scales (≈ 10 km) and provide useful predictions 924 

of areas protected from or exposed to damaging winds (Boose et al.1994). Also, reconstructed 925 

landscape-level exposure maps are generally tested by comparing predicted exposure to actual 926 

landscape-level (Boose et al. 1994) or stand-level damage (e.g. Batke et al. 2014; Negrón-Juárez 927 

et al. 2014a and 2014b; Luke et al. 2016a) to determine if they can be used as proxies for 928 
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hurricane damage. Stand-level damage data are generally collected within 2 years within after a 929 

disturbance event, although stand-level damage data have been collected up to 12 years after a 930 

hurricane stuck (Gannon and Martin 2014). In our study, the reconstructed exposure maps for 931 

Hurricane Gilbert were tested or evaluated using stand-level damage and recovery data from 932 

Bellingham’s plots, which were collected 20–23 months after that hurricane struck the BM. 933 

Bellingham’s plots included locations with a wider range of topographic positions (Bellingham 934 

and Tanner 2000) (Figure 7) and were more suitable for the EV model evaluation than those of 935 

Tanner. Tanner’s plots varied more in topographic position than in EV due to the location of the 936 

plots in nearby blocks located in strongly contrasting topographic positions (Figure 7). As such, 937 

Bellingham’s plot data showed a stronger relationship of damage and recovery to EV and have 938 

greater general validity/power for this analysis than do Tanner’s plot data (Figure 2; Tables 2 and 939 

3). The method presented in this study can therefore be used to reconstruct past hurricane 940 

(legacy) EV, which can be used as a proxy for landscape-scale hurricane disturbance/damage at 941 

un-sampled locations and for hurricanes for which no disturbance data are available. We found 942 

that if less ideal proxies were used, at the very least they could be used to produce landscape-943 

level maps that summarize the extent of forest recovery.  944 

 945 

At the landscape scale, the spatial pattern of hurricane exposure that was reported in this study 946 

was consistent other published observations. In the southern hemisphere, disturbance severity is 947 

usually greater on the left side of a cyclone’s path due to clockwise rotation of cyclone winds. 948 

For example, large areas of undisturbed forest were found on the right side of the track of 949 

tropical cyclone Yasi after it struck the northeastern rainforests of Queensland, Australia 950 

(Negrón-Juárez et al. 2014a and 2014b). In contrast, in the northern hemisphere (US Gulf Coast 951 
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forest ecosystems), forest disturbance severity was observed to be greater on the right side of the 952 

tracks of four hurricanes (Negrón-Juárez et al. 2014a) due to counter-clockwise rotation of 953 

cyclone winds. Additionally, in central new England, USA, the most destructive winds of a 1938 954 

hurricane occurred to the east (right) of the eye where the highest wind speeds were produced 955 

from the anticlockwise rotary velocity and forward movement (Foster, 1988). In addition, 956 

damage was lower to the west (left) of the eye where wind speeds were lower (Foster, 1988). 957 

These observations were consistent with those of Boose et al. (1994), who found that as 958 

Hurricane Hugo approached the Luquillo Experiment Forest (LEF), Puerto Rico, from the east, 959 

with a track that was initially oriented to the south of the site, the strongest winds associated with 960 

the leading eye wall were to the northeast (to the right). At the same site, after ≈ 2 hrs, the 961 

trailing eyewall winds were weaker and were from the SSW (Boose et al. 1994). As a result, the 962 

north-facing slopes of the LEF were more exposed and the southern slopes, facing the weaker 963 

trailing eyewall winds from the SW and SSW, were less exposed (Boose et al. 1994) and showed 964 

little damage (Scatena and Larsen 1991). Similarly, after tropical cyclone Yasi struck the 965 

northeastern rainforests of Queensland, forest disturbance was found to be higher at aspects that 966 

were facing away from the dominant surface winds (Negrón-Juárez et al. 2014b).  967 

 968 

In our study, the orientation of the tracks of the eye or center of the hurricanes, even if they made 969 

landfall, passed either to the north or south of the study sites and this influenced the pattern of 970 

exposure (Figures 4–8). We found that when the eye of a hurricane followed a path or track with 971 

a southern orientation, the pattern of exposure was similar to other reported observations; that is, 972 

the right side of the track (the north-eastern to south-eastern aspects) were more exposed 973 

(Figures 4–8). However, when the eye followed a northern orientation, wind bands from the 974 
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leading eye wall were mostly offshore, and it was the wind bands from the trailing eye wall that 975 

passed over the sites, resulting in greater exposure on the left side of the track (the southern to 976 

south-western aspects) (Figures 4–8). Furthermore, there were equal numbers of hurricanes (six 977 

each) that followed a path north or south of the sites, and multiple hurricanes followed a similar 978 

path in relatively quick succession (Figures 1, 3 and 4). For example, two hurricanes, in 1852 979 

and 1889, had tracks to the south of Jamaica and three hurricanes that made landfall over a 980 

period of 12 years (1903, 1912 and 1915) had northerly tracks (Figures 1, 3 and 4). Also, four 981 

hurricanes made landfall over a period of 48 years (1903–1951) or followed a track to the north 982 

of the island in 61 years (1903–1964) (Figures 1, 3 and 4). Since 1988, most hurricanes followed 983 

a track to the south (four in 19 years), although only one made landfall (Gilbert) (Figures 1, 3 984 

and 4). Therefore, since 1852, most aspects at the two sites have been exposed to multiple 985 

hurricanes, with only locations with a north-western aspect being severely exposed to only a 986 

single hurricane (Allen in 1980) (Figure 4). At the two study sites (both on steeply-sloped 987 

mountain ranges), exposure, hence disturbance history at the stand- level, was a function of angle 988 

or cardinal direction of both hurricane tracks and local topography (Figures 5–8). As a result, the 989 

stand-level assessments of hurricane impacts in the BM and JCM were strongly influenced by 990 

plot location. Some plots, despite being located close to each other, had a different disturbance 991 

history or degree of exposure (Bellingham et al. 1991), while the disturbance history and 992 

exposure was similar for some plots that were located far away from each other (Figures 5–7). 993 

 994 

The impact of legacy hurricanes on stand-level spatiotemporal diversity and density patterns 995 

Advances in historical hurricane damage modelling create opportunities for improving estimates 996 

of hurricane impacts (Logan and Xu 2015). Models can now account for temporal correlation 997 
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and spatial dependence simultaneously (Logan and Xu 2015). Therefore, these models can be 998 

used (and were used in this study to evaluate 1) whether individual hurricanes had effects, 2) 999 

whether it was only the most severe hurricanes that made a difference, 3) whether it was the 1000 

cumulative effect of several hurricanes over many years that was more important and 4) whether 1001 

the hurricane effects were temporary or prolonged (Logan and Xu 2015). For the BM, there was 1002 

an increase in tree diversity at the stand-level in the decades following the passage of Hurricane 1003 

Gilbert (Tanner and Bellingham 2006). However, diversity also increased during the pre-Gilbert 1004 

census period and there were mostly light-demanding species present in the canopy in 1974 1005 

(Tanner and Bellingham 2006), possibly due to the effects of previous disturbances, including 1006 

hurricanes. Also, five hurricanes struck in 61 years (1903–1964), four of which made landfall 1007 

over a period of 48 years (1903–1951), and the eyes or centers of four hurricanes followed a 1008 

more northerly track (Figures 1, 3 and 4). The BM were therefore exposed to frequent high-1009 

intensity hurricanes and, as such, the heterogeneity of disturbance caused by, for example, the 1010 

1903 hurricane may have been maintained for an extended period (85 years) by successive 1011 

hurricanes (Figure 4). This may have permitted greater species co-existence at sites with 1012 

intermediate exposure and an increase in diversity to occur over time, even after Hurricane 1013 

Gilbert affected the BM. As a result, the influence of legacy EV on the pattern of diversity, that 1014 

is peak diversity at intermediate exposures, was similar overall (regardless of time) (Figure 9a) 1015 

and for the individual censuses of both Tanner’s and Bellingham’s plots (Figures 9e–k). This is 1016 

despite the two sets of plots differing in the number, size, shape and layout or design. However, 1017 

for Bellingham’s plots, the effects of past disturbance were manifest in a different way. In 1018 

particular, the magnitude of exposure resulting from the cardinal direction or orientation of the 1019 

hurricane’s eye or center (P-value from the calc function) was the most important predictor of 1020 
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tree Shannon diversity and density in Bellingham’s plots (Figure 9b). That is, tree diversity was 1021 

highest at plot locations that were more likely to be exposed when a hurricane’s eye followed a 1022 

track that was either to the north or to the south of the sites, and lowest at sites that were highly 1023 

exposed to all hurricanes . In contrast, tree density peaked at sites that were always exposed, 1024 

regardless of the cardinal direction of the center of the hurricanes (Figure 9c). Both patterns, with 1025 

that for diversity also being found for the clustered Tanner plots, agree with the two hypotheses, 1026 

i.e. tree diversity was highest at sites subject to intermediate levels of disturbance but tree density 1027 

was greatest at sites subject to the highest levels of disturbance. Differences between the two 1028 

data sets in terms of the importance of predictors of exposure may be due to plot location. 1029 

Tanner’s plots were purposefully located in four clusters each placed in a contrasting forest type 1030 

that occurred in close proximity (Tanner 1977), whereas Bellingham’s plots were located in a 1031 

more dispersed sampling design stratified between three topographic positions (Bellingham 1032 

1991) (Figures 5 and 6).  1033 

 1034 

The results from the individual census assessments can be used to determine when the effects of 1035 

a hurricane on tree diversity and density became important or for how long their effects lasted. 1036 

Average legacy exposure of five hurricanes occurring during 1903–1964 was the most important 1037 

predictor of diversity in Tanner’s plots in 1974, and this effect lasted until 1994 or 91 years 1038 

(Figures 9e–i). Exposure vulnerability to Hurricane Gilbert was not important in these plots 1039 

(because it did not improve model fit) until 21 years after the hurricane affected the plots (Figure 1040 

9j). For Bellingham’s plots, average 1903–1988 legacy exposure, which included the EV for 1041 

Hurricane Gilbert, was important in 2004, 16 years after Gilbert struck, and the 1903 hurricane 1042 

was still important 101 years after it struck (Figure 9k). In comparison, the effects of three 1043 
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successive hurricanes that made landfall (in 1928, 1931 and 1932) on forest structure and 1044 

composition in the Luquillo Experimental Forest, Puerto Rico, lasted for nearly 50 years after the 1045 

last hurricane (Weaver 2002). Moreover, stand-level spatiotemporal patterns in tree diversity in 1046 

the BM plots are likely to have been most influenced by the hurricanes that made landfall, with 1047 

their highest wind speeds closest to the study sites. With the exception of Hurricane Cleo in 1048 

1964, all other hurricanes that passed Jamaica at some distance off the coast had little or no 1049 

influence.  1050 

 1051 

Although the BM and JCM had a similar disturbance history, the effects of hurricane disturbance 1052 

were manifest in different ways. In particular, we found that forest type influenced the 1053 

heterogeneity of forest damage across a landscape (Zimmerman et al. 1994; Everham and 1054 

Brokaw 1996; Boose et al. 2004).The ridge-top forest of the BM was found to be the least 1055 

damaged (the least crown breakage and little tree uprooting) of four Jamaican forests that were 1056 

assessed 3–8 months following the passage of Hurricane Gilbert (Bellingham et al. 1992). This 1057 

was attributed to greater resistance of the ridge-top forest to winds, due to a more streamlined, 1058 

aerodynamic and even canopy, because of its exposed topographic position (Bellingham et al. 1059 

1992). Also, there had presumably been a strong selection for tree species and/or structural 1060 

characteristics (shorter canopy and greater ratio of stem width to height (Lawton 1982)) with 1061 

greater resistance to strong winds (Bellingham et al. 1992). In contrast, trees in the lower 1062 

montane forest of the JCM were found to be more susceptible to uprooting than at the other sites 1063 

due to the greater impact of Hurricane Gilbert on this site, the greater average height of trees, and 1064 

poor anchoring of trees due to the limestone substrate (Bellingham et al. 1992). The JCM may 1065 

have also been more affected than the BM by the outer bands of the last three hurricanes that 1066 
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passed 40–45 km from the island (Figures 3 and 4). There were obvious signs of hurricane 1067 

damage in the JCM after Hurricanes Ivan and Dennis struck (pers. obs.), and eight months after 1068 

Hurricane Dean, in 2004, 2005 and 2007, respectively (Luke et al. 2016a), but no obvious 1069 

evidence of damage or disturbance was found in the BM plots during the 2009 census (Tanner et 1070 

al. 2014). As a result, EV from these hurricanes was not an important predictor of spatial 1071 

variation in tree density and/or diversity in the BM (or the effects take longer to become 1072 

manifest). Individual hurricane EV, or the average EV for the last three hurricanes, was however 1073 

an important predictor of stand-level data from the JCM, in particular individual tree and 1074 

community structural changes in 2012, diversity patterns in 2012, and density patterns in 2006 1075 

and 2016 (Luke et al. 2016a), and across both censuses of the plots (2006 and 2012). However, 1076 

individual hurricane EV or the average over past hurricanes could not be used to explain the 1077 

2006 stand-level diversity patterns. Species composition of the JCM plots may have either 1078 

recovered by 2006, after the JCM was struck by Hurricane Gilbert in 1988, or the impact of 1079 

Hurricanes Ivan and Dennis may have masked the effects of Gilbert and other past hurricanes.  1080 

 1081 

The rate of turnover of tree stems and species is another potential explanation for the differences 1082 

between the BM and JCM. Low turnover rates can be equated to greater resistance to hurricane 1083 

damage (Tanner and Bellingham 2006). After Hurricane Gilbert, turnover of tree stems for the 1084 

period 1990–1994 was 2.6% yr
-1

 for Bellingham’s plot data (Bellingham and Tanner 2000), and 1085 

4.06% yr
-1

 for the period 1989–1994 and 1.6% yr
-1

 for the period 2004–2009 for Tanner’s plot 1086 

data (Tanner and Bellingham 2006). In comparison, over the period 2006–2012, turnover was 1087 

2.9% yr
-1

, for trees in the JCM following Hurricanes Ivan, Dennis and Dean (Luke et al. 1088 

2016a,b). As such, turnover at the stand-level for the JCM was within the range of values for the 1089 
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BM after Gilbert made landfall, but higher than the BM during a period that overlapped, when 1090 

three hurricanes passed closed to the island. Additionally, 25–50% of trees 2–10 cm in DBH died 1091 

during the period 2006–2012 in the JCM (Luke et al. 2016b), likely removing some of the trees 1092 

recruited since Hurricane Gilbert (and before). Moreover, in the BM, the mortality of damaged 1093 

trees was 2–8 times higher than undamaged stems 19 years after Gilbert (Tanner et al. 2014). 1094 

Therefore, the greater resistance and recovery of trees in the BM may have resulted in a delayed 1095 

response that was manifest over a longer time. As such, the influence of Gilbert was not evident 1096 

until 2004 and 2009 for tree diversity in Bellingham’s and Tanner’s plots, respectively, and the 1097 

influence of several hurricanes was evident for long periods. In contrast, rapid changes in the 1098 

JCM due to the impacts of the rapid succession of hurricanes during 2004–2007 may have 1099 

removed any signs of the influence of past hurricanes. The rate of turnover of tree stems and 1100 

species at the two sites were different and therefore, the effects of hurricane disturbance were 1101 

manifest in different ways. 1102 

 1103 

Conclusion 1104 

We developed and validated a method to reconstruct and map landscape scale (≈ 10 km
2
) 1105 

exposure to 12 high-intensity hurricanes (category 2–4), which affected the forests of the BM 1106 

and JCM in Jamaica, over the past 155 years. The maps were then aggregated and used to 1107 

identify the spatial patterns of hurricane exposure and to determine if exposure could be used to 1108 

explain current stand-level (≈ 1 km
2
) tree diversity and density patterns. Exposure variability at 1109 

the landscape and local scales was best explained by the orientation or angle of the eye or center 1110 

of the hurricane relative to the coastline of Jamaica. This was used to identify three patterns of 1111 

historical exposure: exposure was significantly higher to the south or north of a hurricane’s track 1112 
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when the track was to the north or south of the island/sites, respectively. In the BM, the pattern 1113 

of exposure determined by the cardinal direction of all hurricane tracks or exposure to six 1114 

hurricanes (over the period 1903–1988), five of which made landfall, was the best predictor of 1115 

stand-level spatiotemporal patterns of diversity and density. In particular, there was co-existence 1116 

of a greater number of species at sites with intermediate exposure (sensu the intermediate 1117 

disturbance hypothesis) and the highest densities were found at sites that were always highly 1118 

exposed. In the JCM, stand-level spatiotemporal variation in overall tree density (highest where 1119 

exposure was highest) was explained by four of the most recent hurricanes, three of which did 1120 

not make landfall. The difference in predictors between the two sites can be explained by forest 1121 

type. The ridge top forest in the BM had a greater resistance to hurricane effects, as tree diversity 1122 

and density were only influenced by the hurricanes that made landfall. The forest of the JCM had 1123 

a lower resistance and, as such, the influence of past hurricanes was reduced by the impact of 1124 

three or four of the most recent hurricanes, due to a high turnover of stems and species in the 1125 

JCM over a short period of time. The reconstructed landscape-scale maps can therefore be used 1126 

to provide valuable insights into the effects of past hurricanes on contemporary patterns of tree 1127 

diversity and density at the stand-level (≈ 1 km
2
) in different forest types.   1128 
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 1426 

Appendix S1.  Two-dimensional mesh/constrained refined Delaunay triangulation used to 1427 

calculate the Gaussian (Markov) random field in the SPDE approach (left) and the knots (dashed 1428 

red lines) used for a one-dimensional mesh for the temporal component of the models (right) for 1429 

the Blue Mountains (top: Tanner’s plots; middle: Bellingham’s plots). The bottom mesh is for 1430 

Year
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Constrained refined Delaunay triangulation
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the John Crow Mountains (Luke et al.’s (2016)) plots. The plots are shown as black closed 1431 

circles. The solid black lines are the censuses. 1432 


