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Abstract  17 

The southern North Sea is a particularly important area for understanding the behaviour of the British-Irish Ice 18 
Sheet (BIIS) during the last glacial cycle. It preserves a record of the maximum extent of the eastern sector BIIS 19 
as well as evidence for multiple different ice flow phases and the dynamic re-organisation of the BIIS. However, 20 
to date, the known ice sheet history and geochronology of this region is predominantly derived from onshore 21 
geological evidence, and the offshore imprint and dynamic history of the last ice sheet remain largely unknown. 22 
Using new data collected by the BRITICE-CHRONO project this paper explores the origin and age of the Dogger 23 
Bank; re-assesses the extent and age of the glaciogenic deposits across the shallow areas of the North Sea 24 
between the Dogger Bank and the north Norfolk coast and; re-examines the dynamic behaviour of the BIIS in 25 
the southern North Sea between 30 – 21.5 ka. 26 
 27 
Analysing over 540km of sub-bottom profile data and forty vibro-cores, as well as deriving new optically 28 
stimulated luminescence and radiocarbon ages to constrain ice sheet history, this paper shows the core of the 29 
Dogger Bank to be composed glaciolacustrine sediment deposited between 31.6 – 25.8 ka. Following its initial 30 
formation the western end of the Dogger lake was overridden with ice reaching ~ 54°N where the ice margin is 31 
co-incident with the southerly extent of subglacial tills previously mapped as Bolders Bank Fm. Ice override and 32 
retreat northwards back across the Dogger lake was rapid and complete by 23.1 ka, but resulted in widespread 33 
compressive glaciotectonism of the lake sediments and the formation of thrust moraine complexes and ice 34 
marginal deposits on both the southern and northern edges of the newly formed Dogger Bank. Along the 35 
northern edge of the bank moraines are on-lapped by later phase glaciolacustrine and marine sediments but do 36 
not show evidence of subsequent ice override. The new seismic data supports the previous notion that Dogger 37 
Bank is a thrust moraine complex and is a product of ice marginal instability promoted by ice sheet interaction 38 
with the Dogger Lake which would have initiated drawdown and provided ideal conditions for the development 39 
of a subglacial deforming bed and, hence, flow instability.  40 
 41 
With the Dogger Bank acting as a positive relief feature, the shallow seafloor to the west and southwest 42 
records several later phases of ice advance and retreat as the North Sea Lobe flowed between the Dogger Bank 43 
and the Yorkshire/Lincolnshire coasts and reached North Norfolk. New optically stimulated luminescence (OSL) 44 
ages from Garrett Hill on outwash below an upper till limit the arrival of the BIIS on the Norfolk coast to 22.8 – 45 
21.5 ka. Multiple till sheets and chains of moraines on the seafloor north of Norfolk mark dynamic oscillation of 46 
the North Sea Lobe margin as it retreated northwards. This pattern of behaviour is broadly synchronous with 47 
the terrestrial record of deposition of subglacial, glaciofluvial and glaciolacustrine sediments along the 48 
Yorkshire coast which relate to post Dimlington Stadial ice marginal oscillations between after 21.5 ka 49 
 50 
With respect to forcing mechanisms it is likely that during the early phases of the last glacial maximum (~30-51 
23ka) the interaction between the southern margin of the BIIS and the Dogger Lake was critical in influencing 52 
flow instability and rapid ice advance and retreat. Glaciotectonism of the However, during the latter part of the 53 
last glacial maximum (22 - 21 ka) late-phase ice advance in the southern North Sea became restricted to the 54 
western side of the Dogger Bank which was a substantial topographic feature by this time. This topographic 55 



confinement, in addition to decoupling of the BIIS and the Fennoscandian Ice Sheet (FIS) further north, enabled 56 
ice to reach the north Norfolk coast, overprinting the seabed with late-phase tills of the Bolders Bank Fm.  57 
 58 
Keywords: Quaternary, Glaciation; Europe; Geomorphology; British-Irish Ice sheet; North Sea; Dogger Bank 59 
 60 
 61 
1.0 Introduction 62 

Investigating the external and internal forcing factors that control ice sheet behaviour is an 63 

important scientific and societal challenge if present and future changes to the cryosphere are to be 64 

understood and contextualised over decadal to millennial timescales (Sejrup et al., 2016; Bamber et 65 

al., 2009; De Conto and Pollard, 2016). During the Last Glacial Maximum (LGM; MIS2) the British-66 

Irish Ice Sheet (BIIS) was a very dynamic ice sheet, being situated at low latitude and in close 67 

proximity of the North Atlantic, where oceanic and atmospheric changes could rapidly influence 68 

mass balance (McCabe et al., 1998; Hubbard et al., 2009). The eastern sector of the last BIIS was 69 

particularly important in influencing both the advance and retreat behaviour of the ice sheet (Carr et 70 

al., 2006; Davies et al. 2009; Graham et al., 2011). In the central and northern North Sea coalescence 71 

between the BIIS and the Fennoscandian Ice Sheet (FIS) radically changed ice sheet dynamics in the 72 

build-up to the LGM/MIS2 (~ 30 – 21 ka for BIIS; see Chiverrell and Thomas, 2010 for overview). Ice 73 

sheet coupling forced ice flow north into the Atlantic to a marine-terminating margin at the 74 

Norwegian shelf break (see Graham et al. 2011 for overview), whilst southerly directed flow 75 

terminated in the southern North Sea in a more stable terrestrial setting (global eustatic sea-level 76 

fall having produced a land-bridge between Europe and the UK). Furthermore, as the last glacial 77 

cycle waned decoupling between the two ice sheets triggered ice divide migration in the northern 78 

and central sectors of the BIIS inducing rapid flow re-organisation in the North Sea (Livingstone et al. 79 

2012; Clark et al. 2012), though the timing of this remains uncertain (Sejrup et al., 2016).  80 

 81 

The central and southern North Sea is a particularly important area because its geomorphic and 82 

sedimentary archives preserve a record not only of the maximum extent of the eastern sector of the 83 

BIIS (Fig. 1), but critically, a record of multiple ice streams draining the centre of the BIIS which were 84 

thought to be sensitive to both external and internal forcing (Livingstone et al. 2012). For many years 85 



it has been known that stratigraphic sequences along the coast of the western North Sea basin 86 

contain a record of an ice sheet prone to rapid, dynamic marginal instabilities and possible surges 87 

(Eyles et al., 1994; Evans et al., 1995; Boston et al., 2010; Evans and Thomson; 2010; Roberts et al. 88 

2013; Dove et al. 2017), and more recent onshore mapping and optically stimulated luminescence 89 

(OSL) chronologies confirm notions of a dynamic, complex ice sheet margin oscillating on sub-90 

millennial timescales (Bateman et al., 2011; 2015; Evans et al., 2017).  91 

 92 

However, despite these recent research efforts, key aspects of the offshore imprint and dynamic 93 

history of the eastern sector of the BIIS are largely unknown. The BIIS limit is poorly defined and the 94 

multiphase, flow history of the ice sheet, particularly the North Sea Lobe (NSL), has only been 95 

partially reconstructed onshore. The maximum extent of ice during MIS 2 has been mapped along 96 

the North Norfolk coast and inferred to extend offshore to link with the Bolders Bank Fm (BDK) 97 

(based on stratigraphic correlation) (Long et al., 1988; Cameron et al., 1992), but these hypotheses 98 

have never been tested by chronometric dates. Enigmatic offshore features such the Dogger Bank 99 

(Carr et al., 2006), tunnel valleys (Ehlers and Wingfield, 1991) and large ridges of possible morainic 100 

origin (Sejrup et al., 2016) lack clear morpho-stratigraphic integration with the onshore glacial 101 

history of the east English coast (Boston et al., 2010). Only recently have Dove et al. (2017) made a 102 

significant step forward in identifying broad moraine arcs and BDK till sheets on the seafloor north of 103 

Norfolk, whilst Cotterill et al. (2017) have demonstrated that the Dogger Bank is composed of series 104 

of glacitectonised glaciolacustrine and outwash sediments (Dogger Bank Formation). Hence, there 105 

are stratigraphic and geomorphic indicators from the offshore record that point to dynamic and 106 

complex BIIS behaviour during the last glacial cycle, but they remain largely unintegrated with 107 

current ice sheet reconstructions.  108 

 109 

Using new onshore and offshore geophysical, sedimentological and geochronological data collected 110 

by the BRITICE-Chrono project this paper aims to investigate the offshore glacial history of the 111 

southern North Sea to provide an integrated model for ice sheet advance and retreat in the region. It 112 



specifically explores the origin and age of the Dogger Bank; re-assesses the extent, age and 113 

diachroneity of the MIS 2 limit and associated BDK tills in the southern North Sea and; re-examines 114 

the dynamic behaviour of the BIIS in the southern North Sea between 30 – 19ka. 115 

 116 

2.0 Setting and BIIS history in the North Sea during MIS 2 117 

The southern North Sea is a subsiding, tectonic basin. Throughout the Plio-Pleistocene it was a major 118 

depo-centre becoming infilled with deltaic, prodeltaic, glacial and marine deposits by the Middle 119 

Pleistocene (Rea et al. 2018). In the southwest, Jurassic and Cretaceous strata forming the edge of 120 

the basin outcrop close to the seabed with only a thin veneer of Quaternary sediments in places. 121 

Further east in the central basin, ~ 1200 metres of Neogene and Quaternary sediments make up the 122 

seafloor (Cameron et al., 1992). The Dogger Bank lies just north of 54°N and runs SW to NE from 123 

~1°E to 5°E. It is almost 300 km long and 130 km wide and forms a marked geomorphic high on the 124 

seabed. It is located in 50 to 15 m water depth (Fig. 1). Large sand ridges up to 25 m in amplitude 125 

and several 10’s kilometres in length mark the NW and SW edges of the Dogger Bank, before the 126 

seafloor drops off to between -80 to -40 m OD toward the Durham and Yorkshire coasts.  127 

 128 

To the south of the Dogger Bank, toward the Norfolk coast and the Wash, the seafloor has several 129 

features of note. A large depression, the Outer Silver Pit, runs west to east immediately south of the 130 

western end of the Dogger Bank. South of this, several arcuate-shaped depressions/channels cross 131 

cut the seafloor trending N/NW to S/SE (e.g. Inner Silver Pit, Sole Pit; Well Hole; Coal Pit, Markhams 132 

Hole; Figs. 1 and 2). In places, the southern ends of these channels coincide with subtle, 133 

discontinuous, linear ridges (3-5 m amplitude) on the seafloor that trend west to east and which 134 

mark the southern edges of till sheets and subtle moraines (Dove et al., 2017). The most prominent 135 

positive topographic features of the southern North Sea are large sand ridges up to 40 m in 136 

amplitude and 40 to 60 km in length trending NW to SE (Fig. 2). Water depths shallow to 5 to 10 m 137 

immediately offshore from Norfolk, which forms a low-elevation rolling landscape immediately 138 

onshore.  139 



 140 

The ice sheet history of the southern North Sea has been pieced together over the last one hundred 141 

years but several key questions regarding ice sheet extent, dynamic behaviour and chronology still 142 

remain (see Graham et al., 2011 for a full review). During the last glacial cycle both the BIIS and FIS 143 

entered the North Sea. There is evidence for at least two major periods of basin-wide ice-sheet 144 

growth with early ice sheet build up in MIS 4 and a later MIS 2 event (Carr et al., 2006; Graham, 145 

2007). The coupling and decoupling of these two ice sheets heavily influenced the imprint of 146 

glaciation in the North Sea basin (Sejrup et al., 2005; Bradwell et al. 2008; Clark et al., 2012; Graham 147 

et al; 2011). Erratic dispersal patterns and flow line reconstructions from Britain clearly show ice 148 

feeding into the North Sea from Scotland and Northern England (Harmer 1928; Raistrick 1931; Catt 149 

1991; Davies et al., 2009; 2011; Roberts et al., 2013; Busfield, 2015). Ice streams sourced from major 150 

east coast catchments, such as the Moray Firth, Firth of Forth, Tweed, Tyne and Eden-Stainmore, 151 

funnelled ice into the western sector of the North Sea at different times between 30-15ka (Fig. 1) 152 

(Boulton et al., 1985; Boulton and Hagdorn, 2006; Hubbard et al., 2009; Livingstone et al., 2012; 153 

Hughes et al. 2014). 154 

 155 

As a result of BIIS and FIS coalescence ice would have flowed north to a marine margin situated 156 

along the continental shelf margin between Shetland and Norway (Sejrup et al., 2000; Bradwell et 157 

al., 2008). In contrast, a terrestrial glacial margin formed in the southern the North Sea as a result of 158 

global eustatic drawdown (Straw, 1960). Our knowledge of the dynamic behaviour of the southeast 159 

sector of the BIIS during this time has been limited because the imprint of the ice sheet on the 160 

seafloor is largely unexplored, and while regional seismo-stratigraphic data provide a framework for 161 

Quaternary sedimentation in the North Sea (Fig. 3a), they do not provide detail on complex patterns 162 

of sediment distribution, lithofacies architecture or the timing of events (Cameron et al., 1987; 163 

Balson and Jeffrey, 1991; Cameron et al., 1992).  164 

 165 



During the latter phases of the LGM, most reconstructions of ice extent in the North Sea point to 166 

BIIS/FIS coupling between 30-24 ka followed by decoupling and late stage re-advance of the NSL 167 

down the east coast of the UK between 21 - 17 ka (Rose, 1985; Carr et al., 2006; Sejrup et al., 2009; 168 

Evans and Thomson; 2010; Graham et al. 2011). More recently Clark et al. (2012) and Sejrup et al. 169 

(2016) have proposed that the BIIS and FIS were still coupled in the central North Sea until as late as 170 

19 ka. At some point between 30-17 ka ice undoubtedly reached as far south as the Norfolk coast 171 

(Holkham Till Member/Bolders Bank Fm; Straw 1960; Brand et al., 2002), and the distribution of the 172 

BDK arguably suggests ice extended south of the Dogger Bank, but there is a lack of chronological 173 

control on those limits, other than provided by stratigraphic correlation based on lithological 174 

similarities to onshore sites. Radiocarbon and OSL ages along the east coast (predominantly 175 

Yorkshire) have shown that ice re-advances occurred as late as 21.6–18 ka (Skipsea Till Member) and 176 

~16.8 ka (Withernsea Till Member; both Holderness Formation) (Bateman et al. 2018). Hence, there 177 

is compelling evidence from the central east coast of England to suggest that the BIIS was highly 178 

dynamic during the later stages of the LGM. 179 

 180 

With the exception of a handful of papers (Carr et al., 2006; Davies et al., 2009; Graham et al., 2011; 181 

Clark et al., 2012; Sejrup et al., 2016; Dove et al., 2017), there has been no systematic assessment of 182 

the offshore extent of the BIIS or its dynamic behaviour in the southern North Sea during MIS 2. 183 

From early seismic records Cameron et al. (1992) described the internal properties of the Dogger 184 

Bank (Dogger Bank Fm; DBF) as composed of a tabular stratigraphic unit with predominantly sub-185 

parallel internal reflectors and proposed it to be a proglacial, water-laid body, probably 186 

glaciolacustrine or glaciomarine. This would fit with several different strands of evidence or 187 

arguments that support the development of a large proglacial lake in the southern North Sea during 188 

several different glacial cycles (Belt, 1874, Gibbard, 1988; Ehlers and Gibbard, 2004; Clark et al., 189 

2012; Murton and Murton, 2012; Cohen et al., 2014; Sejrup et al., 2016). Alternatively, based on 190 

micormorphological and palaeoontological work, Carr et al. (2006) proposed a glaciomarine origin 191 

for the DBF. Furthermore, Carr et al. (2006) demonstrated the sediments to have been deformed 192 



into a large push moraine complex; a concept previously put forward by Veenstra in 1965. There are 193 

no apparent glaciogenic surface features of significance on the current Dogger Bank, however, the 194 

push moraine concept has been developed further by Cotterill et al. (2017) and Phillips et al. (2018) 195 

who suggest the entire western sector of the bank is composed of glacial, glaciofluvial, 196 

glaciolacustrine and periglacial sediments, which are dissected by several palaeo-land and 197 

ravinement surfaces, but heavily glaciotectonised (Fig. 3b). However, the age of the bank and its 198 

association with regional grounded ice limits remain only partially understood.  199 

 200 

Ice margin positions have been drawn both north and south of Dogger Bank, but it is not always 201 

clear how these limits have been formulated (e.g. Veenstra, 1965; Holmes, 1977; Sejrup et al., 2000; 202 

Fitch et al., 2005; Gibbard and Clark, 2011; Fig. 1). Sejrup et al. (2016) proposed that large sand 203 

ridges adjacent to the NW and SW sectors of the Dogger Bank originated as moraines recording an 204 

ice margin near the bank (Fig. 2), but such features have not been proven as glaciogenic, or shown to 205 

be related to the genesis of Dogger Bank itself. Neither have they been dated.  206 

 207 

West and south of the Dogger Bank the BDK (subglacial), the Well Ground Fm (glaciofluvial) and 208 

Botney Cut Fm (deglacial/postglacial marine) are mapped on the seafloor between Yorkshire and the 209 

north Norfolk coast (Veenstra 1969; Long et al., 1988; BGS 1991; Cameron et al., 1992). The BDK 210 

clearly wraps around the western end of the Dogger Bank, suggesting the passage of an ice lobe that 211 

did not penetrate the Dogger Bank (if till limits are to be used to mark ice extents). It is often 212 

mapped as the southerly limit of the MIS 2 BIIS in the North Sea (Fig. 1; Jansen et al. 1997; Boulton 213 

et al., 1985; Ehlers and Gibbard, 2004) but the age of the BDK is unconstrained along its southern 214 

limit offshore.  215 

 216 

The BDK limit may on-lap the Norfolk coast (Straw, 1960; Brand et al., 2002; Pawley et al., 2006), but 217 

marine processes have removed it from the seafloor close to shore making stratigraphic correlation 218 

untenable. Glacial sediments on the Norfolk coast were first described by Woodward (1884), 219 



Whitaker and Jukes-Browne (1899), Solomon (1932), Baden-Powell (1944) and Chatwin (1954) and a 220 

maximum ice limit reconstructed by Straw (1960). This was largely based on the distribution of the 221 

‘Holkham Till’ and a subtle geomorphic assemblage of low-lying sand and gravel mounds and 222 

marginal meltwater features just inboard of the coast. Recent work has further defined the onshore 223 

extent of the ice between Stiffkey and Wells-next-the-Sea (Brand et al., 2002; Riding et al., 2003; 224 

Pawley et al., 2006), but the only dating control on the Holkham Till is the underlying raised beach at 225 

Morston, dated to MIS 5e by Gale et al. (1988). This has therefore led to a broad designation of the 226 

Holkham Till as a MIS 2 deposit. It has also been correlated with the Skipsea Till Member of the 227 

Holderness Fm (a correlative of the BDK), which was deposited after 22.3 -20.9 ka (Catt and Penny, 228 

1966; Rose, 1985; Bateman et al., 2011, 2015).  229 

 230 

Dove et al. (2017) identify at least four subtle moraine belts on the seafloor which mark punctuated 231 

northwards ice margin withdrawal from the Norfolk coast, but they have no direct dating control. 232 

Tunnel valleys (e.g. Inner Silver Pit, Sole Pit, Well Hole) associated with these moraine belts point to 233 

excessive meltwater discharge (Fig. 2), and several sandy areas on the seafloor along the southern 234 

edge of the BDK have been mapped as glaciofluvial deposits and outwash corridors (Well Ground 235 

Fm; BGS 1991; Gaffney et al., 2007) clearly denoting deglaciation in a terrestrial environment. 236 

Botney Cut Fm channels that dissect the BDK may be subglacial or proglacial in origin. Some are 237 

floored by BDK till, while others contain deglacial glaciolacustrine sediments. Many have upper 238 

sedimentary infills that denote a switch to shallow marine conditions during Early Holocene marine 239 

transgression (Cameron et al., 1992). 240 

 241 

3.0 Methods 242 

This study relies on data collected by the BRITICE-CHRONO project during cruise JC 123 on the RRS 243 

James Cook in summer 2015. It includes new geophysical and sediment core data collected across 244 

the seafloor north of the Norfolk coast and across the Dogger Bank, as well as onshore field 245 

investigations of ice marginal landforms and glacial sediments in North Norfolk carried out in 2015. 246 



 247 

3.1 Seismic and bathymetric data  248 

Co-registered sub-bottom profile and bathymetric data were collected using a hull-mounted 249 

Kongsberg SBP120 sub-bottom profiler system and EM710 multibeam system on the RRS James 250 

Cook. The EM710 is a 70-100 khz system and it is used for mapping in shallower waters (5-1500 m). 251 

Appanix POS-MV is used as primary positioning and motion sensor while Seapath200 is the 252 

secondary system. A Sonardyne Ranger USBL system provided underwater positioning during coring 253 

operations. Additional bathymetric was sourced from the UKHO Data Archive Centre website and is 254 

gridded to 25 m horizontal resolution. We present several seismic profiles (SP 1 - 9; Fig. 2) that were 255 

acquired across the Dogger Bank and south toward the north Norfolk coast and the Wash. Acoustic 256 

facies are characterised using both the stratigraphic architecture of the deposits and their internal 257 

characteristics (e.g. Dove et al., 2017). Interpretations are supported by sedimentological analysis on 258 

core material collected on the cruise JC 123 and from BGS archives (http://www.bgs.ac.uk/data/ 259 

bmd.html). 260 

 261 

3.2. Sediment cores and field logging  262 

Coring operations utilised a 6 m long BGS vibrocorer. In all 40 cores were collected from the study 263 

area (Fig. 2). These were scanned through a multi-sensor core logger, split, and described 264 

sedimentologically (Evans and Benn, 2004). The sediments varied widely from over-consolidated 265 

diamicts, to laminated fines to coarse shelly sands and represent a wide range of glaciogenic and 266 

postglacial environments. Sediment descriptions were used to validate acoustic facies 267 

interpretations. Onshore sediment sections where excavated by mechanical digger. Several 268 

exposures were investigated in the vicinity of Garret Hill on the north Norfolk coast. 269 

Sedimentological analysis followed a lithofacies approach with sediments classified on the basis of 270 

colour, particle size, clastic lithologies and sedimentary structures (Evans and Benn, 2004). Shear 271 

vane measurements using a hand held Torvane was carried out on-board. 272 

 273 



3.3 Radiocarbon and optically stimulated luminescence age determination 274 

3.3.1 Radiocarbon dating  275 

Samples for radiocarbon were collected from glaciomarine sediments overlying subglacial tills (in 276 

order to provide minimum ages deglaciation) and from estuarine and peat sediments to constrain 277 

later marine incursion. A mixture of paired bivalves, mixed benthic foraminifera samples, shell 278 

fragments and peats were collected for radiocarbon dating. Shell fragments and whole bivalves were 279 

cleaned with deionised water and dried at 40°C in an oven. Foraminifera were sieved through 280 

500µm, 180µm and 63µm sieves and dried at 40°C. Foraminifera were picked dry from the 500-180 281 

µm fraction. Only whole, unabraded specimens were picked. Conventional ages were calibrated 282 

using the Marine13 curve with an inbuilt marine reservoir correction of 400 years and a ΔR of 0 years 283 

(Calib v7.0 software; Reimer et al, 2013). It is likely the samples would be subject to large and 284 

variable local ΔR during the LGM and late glacial period. Marine reservoir values may have also 285 

varied as Holocene marine conditions stabilised. Ages are reported in the text as the calibrated 1σ 286 

median result (see Table 2). 287 

 288 

3.3.2 OSL Sampling 289 

Seven sand units from sediments interpreted to be glaciolacustrine or  glaciofluvial were collected 290 

from the offshore Dogger Bank cores for optically stimulated luminescence (OSL) dating in order to 291 

constrain the age of ice marginal/proximal environments formed during glacial advance or retreat. 292 

These cores were collected in black core liners to avoid light exposure. Each core was cut 293 

longitudinally under red light and sand units were targeted for OSL dating. In addition, material ~20 294 

cm above and below the OSL sample position was also taken to allow more accurate determination 295 

of the background dose-rate received by the OSL sample.  296 

 297 

For these samples the background dose rate and elemental concentrations were measured by 298 

inductively coupled plasma mass spectroscopy (ICP). The material sampled for OSL was used to 299 

calculate the beta contribution. This material, in conjunction with that from adjacent sediments, 300 



provided the gamma contribution to dose rate. Sample moisture content, given the samples part of 301 

their burial history in a terrestrial environment and part in a marine environment, were calculated as 302 

an average by considering the two stages. For the pre-inundation period the moisture of the 303 

sediment was assumed partially saturated (17%) and for post-inundation burial time a fully 304 

saturated water content value was assumed to be representative (33%). The time of inundation was 305 

predicted using the GIA model of Bradley et al. (2011) and palaeotidal model of Ward et al. (2016) 306 

and the present-day positions and water depths of the cores. From this, an average moisture 307 

through time for each core was calculated. Calculated cosmic dose rates followed the expression of 308 

Prescott and Hutton (1994) taking into account both an assumed linear accumulation through time 309 

of sediments and the duration and depth of the water column as determined from the inundation 310 

model. Total dose rates were calculated using the conversion factors of Guerin et al. (2011) and 311 

attenuated for grain-size and the average moisture content (Table 1). 312 

 313 

Additionally two samples were collected from freshly excavated vertical exposures onshore at Garret 314 

Hill. These were collected in opaque PVC tubes. For these samples beta dose rates are based on ICP 315 

measurements of U, Th and K concentrations and gamma dose rates are based on field 316 

measurements using an EG&G MicroNomad gamma spectrometer. Cosmic radiation contributions 317 

were based on the work of Prescott and Hutton (1994) and attenuation by moisture assumed a 318 

moisture content of 10% given the sites free draining situation.  319 

 320 

For all OSL samples the palaeodose measurement (De), samples were sieved to extract the fraction 321 

180-250 µm and prepared to isolate and clean the quartz fraction as per Bateman and Catt (1996). 322 

Measurement of the De was based on multiple replicates of small multigrain aliquots (SA, containing 323 

~20 grains each) which have been shown to provide similar resolution to single grain measurements 324 

and are therefore appropriate to measure samples potentially affected by incomplete bleaching 325 

(Evans et al., 2017). All luminescence measurements were carried out at the University of Sheffield 326 

luminescence laboratory using the SAR protocol (Murray and Wintle 2003). Most of the Dogger 327 



samples had normal De distributions and low overdispersion (OD) suggesting they were well 328 

bleached before burial so ages are based on a De values derived from the Central Age Model (CAM, 329 

Galbraith, 1999). Samples, Shfd15177 and Shfd15178 along with those from Garret Hill (Shfd13033 330 

and Shfd13034) had scattered De distributions and high OD values suggesting incomplete bleaching 331 

and so ages are based on a De values derived form a minimum age approach. Such an approach has 332 

been shown to be appropriate to estimate accurate ages for incompletely bleached glacial 333 

sediments (Bateman et al., 2017).  334 

 335 

4.0 Ice extent in the southern North Sea 336 

Three geographic areas are explored in order to reconstruct the nature of MIS 2 ice sheet activity in 337 

the region; 1) the seafloor in the vicinity of the Dogger Bank; 2) the seafloor between North Norfolk 338 

and Dogger Bank; and 3) the previously mapped ice limit for MIS 2 ice onshore in north Norfolk.  339 

 340 

4.1 The Dogger Bank 341 

Five sub-bottom profiles were gathered as part of cruise JC123 (SP 1 - 5) (Fig. 2). Reconstructed 342 

lithofacies associations based on acoustic and core data are given the prefix offshore Dogger Bank 343 

(DB) and visualised in Figures 4 - 11. High resolution images detailing the acoustic facies architecture 344 

for SP 1, 2 and 3 are provided in supplementary information. 345 

 346 

SP1 covers the central Dogger Bank and runs NW to SE (Fig. 2). It captures the elevation change from 347 

the central Dogger Bank to the seafloor to the south (-20 to -50 m OD). There is a clear lower 348 

reflector approximately 40 m below the seafloor that undulates and has an indented surface with 349 

small indistinct channels (DB 1; Figs. 4 and 5). Above this there is an acoustically massive, semi-350 

transparent unit that is 2 - 4 m in thickness to the south, but thickens substantially northwards to ~ 351 

15 m (DB 3c). It has a sharp upper surface depicted by strong irregular reflector. Conformably 352 

overlying this is a sub-horizontally, stratified sediment package which exhibits higher acoustic 353 

energy, that is 20 - 25 m thick (DB 3b; note DB 2 does not outcrop along SP1). To the north the strata 354 



become folded (chevron folds) and upturned sub-vertically and the sequence is clearly truncated by 355 

an overlying sand sheet (DB 7) (Fig. 5). Between 23 and 47 km along SP1 a dark (high acoustic 356 

energy), opaque unit (DB 3a) with unusual transparent, lensoid packages up to 1 km long and 5 m 357 

thick is visible (Figs. 4 and 5b). Two cores (150 and 151VC; Fig. 5b) penetrated DB 3b at the north 358 

end of this transect where the internal bedding is up-turned and folded. In core 150VC, 171 cm of 359 

sediment was recovered. A lower sand unit (171-140 cm) is overlain by interstratified sandy silts and 360 

silty clays (140-80 cm), in turn overlain by 54 cm of shelly sand and capped by 23 cm of shell hash 361 

(Fig. 5c). The lower sand unit provided an OSL date of 29.5 ± 1.9 ka (Shfd15175). In 151VC, a slightly 362 

shorter core (148 cm) with similar stratigraphy provided a basal OSL date of 26.2 ± 2.1ka 363 

(Shfd15176). As these samples are taken from the upper part of DB 3b the OSL ages suggest DB 3c 364 

and DB 3b were deposited prior to 29.5 to 26.2 ka  365 

 366 

SP 2 runs east to west linking SP1 and SP3 (see Fig. 2 plus supplementary information for full 367 

enlargement). It is not interrogated in detail herein but DB 3b + 3c can be traced acoustically and are 368 

clearly folded, inclined and disturbed in a number of areas. There are occasional surficial lenses of 369 

DB 4b, channel infills (DB 5) and DB 7 forms the top of the sequence. 370 

 371 

Several acoustic facies can be traced northwards across Dogger Bank along SP3 (Fig. 2 for location; 372 

Fig. 6 seismic stratigraphy). Several sub-facies of DB 2 can be mapped (DB 2 a-d; Fig. 6). Unit DB 2b 373 

was sampled in cores 138VC, 139VC, 140VC and 141VC. It is a red/brown, over-consolidated, 374 

massive, matrix supported, fine grained diamict with distinctive chalk and flint clasts. Shear 375 

strengths range between 100-75 kPa. At 185- 186 km along the profile a large ridge formed in DB 2d 376 

is draped by an on-lapping sequence of stratified sediments with two phases of infill evident (one to 377 

the south and one to the north) (see Fig. 7a for enlarged image). On its southern edge the lower 378 

section of the ridge appears displaced laterally (a low angle failure plane) and overlies stratified 379 

sediments. Furthermore, there are a series of small ridges south of the main ridge (between 186 and 380 

188 km) which may be rucked/folded sediment (Fig. 7a). 381 



 382 

Four structureless, tabular unit associated with DB 2 can be seen in the profile between 155 and 190 383 

km (DB 2a-d; Fig. 6). Deep channels often over 1 km in width cut down through all these sub-units. 384 

They are infilled with stratified sediment (DB 5a) that mainly represent a later depositional event 385 

postdating the deposition of DB 2, though occasional they are capped by sub-units of DB 2 386 

suggesting synchronous deposition. 387 

 388 

Between 164 and 169 km there is a second buried ridge complex beneath the seafloor (Figs. 6 and 389 

7b for enlarged image). Five possible diamict units are evident in the stratigraphy (DB 2a - d and DB 390 

4b). They are separated by DB 3b which is attenuated from the north (Fig. 6). At 167 km DB 3b and 391 

2b and 2c are crosscut by a sub-vertical fault dipping north. The upper surface of DB 3b also clearly 392 

undulates (2 to 3 m high ridges; Fig. 7b). At this location (164-169 km) there are four identifiable 393 

acoustic units over DB 3b. DB 4a is composed of three units that have a fan-like geometry with flat 394 

tops (Fig. 7b). Between 165 and 168 km in particular there are very clear internal reflectors off-395 

lapping and dipping south. Immediately to the north, and interleaved with DB 4a is a dark opaque 396 

unit (DB 4b) which has a sheet-like geometry and on-laps DB 4a (Fig 7b). DB 4b also outcrops above 397 

DB 2a between 153 and 162 km (Fig. 6). Importantly, between 155 and 163 km, the stratigraphic 398 

relationship between DB 2a, DB 3b and DB 4b can be discerned with DB 3b clearly originating from 399 

the north and being attenuated southwards above DB 2a and below DB 4b (Fig 6). Further north 400 

along SP3 between 140 and 150 km there are clear set of channels (DB 5a) incised into DB 3b (Fig.6). 401 

They are draped by overlying sand sheets (DB 7). 402 

 403 

Between the 140 and 35 km in the sequence the acoustic signal is very poor and the stratigraphy 404 

becomes difficult to analyse (see SP 3 in supplementary information). There are perhaps three 405 

important stratigraphic features to note. Firstly, between 93 and 97 km the lower stratified unit (DB 406 

3b) is contorted in a chevron-fold pattern. DB 3a can also be mapped. In some areas it is deformed, 407 

mimicking DB 3b below (Fig. 7c), but in other areas it is sub-horizontally stratified and infills surface 408 



depressions in DB 3b (see 80 – 85km along SP3 in supplementary information). Secondly, DB 4 may 409 

outcrop sporadically at the top of the sequence between 79 and 30 km, though cores 143VC-146VC 410 

failed to penetrate diamictic material. At times the exposed surface undulates, forming a series of 411 

low amplitudes broad ridges (e.g. 75 to 60 km; see SP 3 in supplementary information). Thirdly, at 98 412 

km core 143VC recorded 244 cm of shelly sands with occasional reworked peat intraclasts resting 413 

over a channel infill. A sample of peat from 239cm has a calibrated radiocarbon age of 19395 ± 208 414 

cal. yrs BP (SUERC-72882; Table 2). 415 

 416 

At 38 km the upper surface of the Dogger Bank loses elevation and drops down from -30 m to -60 m 417 

OD. This surface appears to be composed mainly of DB 3 (with discontinuous pockets of DB 4) and 418 

forms low amplitude ridges between 35 - 20km m covered by surface sand (Fig. 8a). Two very large 419 

sand ridges at 30 and 26km have internal reflectors that suggest they sit over a core of material 420 

below (e.g. DB 3 or DB 4). There are also multiple smaller ridges between 20 - 25km along SP3 and a 421 

very clear buried ridge can also be seen at 11  -10 km (Fig. 8a). It is ~15-20 m high and 500 m wide 422 

and overlain by a thick sequence of interstratified sediments which conformably drape the northern 423 

edge of the Dogger Bank (DB 5b; Fig. 8). Core 155VC shows the sediments to be composed of 424 

brown/red, massive clays to interlaminated silts/clays and sands (Fig. 8b). This sediment is barren of 425 

forams. A single OSL date from 357cm down the core provided an age of 23.1 ± 2.3 ka (Shfd15178; 426 

Table 1). 427 

 428 

To the west of the Dogger Bank, transect SP4 exhibits DB 3b, 4b, 5b and 7 (Figs. 2 and 9). DB 3b is 429 

heavily folded and its upper contact boundary forms a sharp, undulating contact to an overlying 430 

diamictic unit (DB 4b). DB 4b was cored in cores 171VC, 172VC and 174VC. It is a red/brown, massive 431 

diamict with distinctive chalk and flint clasts that occurs between 2.50 and 4.50 m below the sea-bed 432 

(Fig 9b). Shear strength values range between 80—150 kPa. Overlying the diamict in these cores is a 433 

dark grey, interlaminated clay, silt and sand unit containing well preserved marine gastropods (DB 434 

5a). At this locality DB5a has a fan/delta – like geometry that off-laps to the south (Fig. 9a).  435 



 436 

SP5 is situated 100 km southeast of the SP 3 (Fig. 2). The sub-bottom profile data shows five acoustic 437 

facies (Fig. 10). The lowest acoustic facies is denoted as faint lower horizontal reflector above which 438 

is a sub-horizontally stratified sediment ~ 8 m in thickness (DB 1a, 1b). DB 1b can be traced over 16 439 

km along the survey line. It could be equivalent to DB 1 as seen in SP1 but this is uncorroborated. DB 440 

1b is overlain by two acoustically structureless, tabular units that vary in their degree of opaqueness 441 

and in thickness between 2-4 m. The upper unit was recovered in cores 176VC and 177VC. It is a 442 

brown, massive diamict with distinctive chalk and flint clasts (Fig. 10b). These two units are 443 

designated as DB 2d and 2c. Between 24 and 22 km along the transect two channels incise through 444 

DB 2d but are capped by DB 2c. The internal reflectors in these channels are sub-horizontal. The 445 

upper diamict (DB 2c) is also dissected in places by shallow, broad, transparent channels. Larger, 446 

deeper channels ~15 – 20 m deep and over 1 km wide also crosscut the entire sediment pile (e.g. 19 447 

km; Fig. 10a). They exhibit conformable interstratified sediment fills (DB 5a).  448 

 449 

The seafloor is capped by a coarse shelly sand (DB 7) and several sand ridges up to 6 m high are 450 

evident from SP5 data (e.g. 23- 21 km; 28.5-27km). Several cores have thin peats (DB 6) recorded 451 

just below the upper sand (DB 7). In core 178VC DB 7 and DB 6 are underlain by a lower brown/grey 452 

laminated clay silt with sandy inclusions (30-259 cm) (Fig. 10c). The peat is truncated by 23 cm of 453 

shelly sands. An OSL date from 145 cm (beneath the peat) yielded an age of 25.8 ± 2.4 ka 454 

(Shfd15179; Table 1; Fig. 10c). From the acoustic data the OSL sample overlies a diamict (DB 2c). The 455 

same can be said for core 179VC where 240 cm of shelly sands overlay 12 cm of well sorted medium 456 

sand at the base of the core which is devoid of shell material or marine microfossils and which in 457 

turn overlies a diamictic unit (DB 2c) (Fig 10c). The lower 12 cm sand unit yielded an OSL age of 31.6 458 

± 2.1 ka (Shfd15180). These sediments lie in small hollows on the surface of DB 2c (Fig. 10a). 459 

Peats from the uppermost sections of cores 175, 176 and 178VC yielded Early Holocene ages (~ 9.9 - 460 

9.7 ka) with the exception of the lowest sample in core 175VC which provided a bulk radiocarbon 461 

date of 20,190 ± 229 cal. yrs BP (Table 2).  462 



 463 

4.1.1 The Dogger Bank: key interpretations 464 

In Figure 11 we summarise the above observations into a model of the lithofacies architecture of the 465 

Dogger Bank. From our observations DB 1 clearly underlies the eastern the Dogger Bank (e.g. Fig. 466 

5b). The upper surface of DB 1 forms a strong acoustic reflector incised by small channels, but it has 467 

few distinctive internal characteristics. A strong lower reflector also characterises parts of the 468 

southern end of SP3 (Fig. 6), and in other localities in western Dogger Bank this reflector is mapped 469 

as a decollement surface (Cotterrill et al., 2017; Phillips et al., 2018). DB1 was not cored during this 470 

research but various deposits have been reported from this stratigraphic position in the vicinity of 471 

the Dogger Bank (Cameron et al. 1992; Laban 1995, Busschers et al. 2008; Moreau et al. 2012). DB1 472 

could be either the Cleaver Bank or Egmond Ground Formations given the lateral continuity and 473 

tabular geometry of the deposit. The other possible options include Swarte Bank deposits though 474 

these usually occur in channels (see Cotterill et al. 2017), or the Eem and Brown Bank Fms (shallow 475 

marine and brackish environments (Cameron et al., 1992).  476 

 477 

In the east (SP1) DB 3 directly overlies DB 1 (Fig. 5), as DB 2 is restricted across the study to the west. 478 

The lower sub-unit, DB 3c has faint stratification and a sharp, but conformable upper contact 479 

boundary with DB 3b. DB 3b is sub-horizontally stratified but becomes more deformed towards the 480 

northern and western part of the Dogger Bank. This can be clearly seen in SP1 where the sediment 481 

becomes folded and upturned at cores sites 150 and 151VC (Fig. 5b). There are also several places 482 

along SP 2 and SP 3 where DB 3b appears to exhibit open, chevron folding (e.g. Figs. 6 and 7;  plus 483 

see high resolution images in supplementary information). This is indicative of compressive stress in 484 

interstratified sediments of high rheological contrast (alternating sands and clays) (Ramsey, 1974). 485 

DB 3b can be traced laterally and continuously through the core of the Dogger Bank (i.e. comprises 486 

the main element of relief to the Bank) from north to south. In cores 150VC and 151VC, the upper 487 

strata in DB 3b are characterised by interstratified sands and clays, which are barren of forams and 488 

dated to 26.2 and 29.5 ka (Table 1). Therefore, DB 3b is interpreted as an interstratified 489 



glaciolacustrine deposit that has been glaciotectonised from the north sometime after 26.2ka. This 490 

assessment concurs with the recent work of Cotterill et al. (2017) who classify the DB 3 c-a as the 491 

Basal, Older and Younger sub-facies of the Dogger Bank Formation (DBF) and separate these 492 

elements into glaciolacustrine and glaciofluvial sediments. The Basal and Older subfacies are 493 

mapped as stiff to very stiff clay/silt which fits a glaciolacustrine origin. DB 3b in particular (Older 494 

DBF), can be traced across SP1, SP 2 and SP3 which makes this a regionally extensive glaciolacustrine 495 

sub-facies ( >150 km). In the western Dogger Bank area in particular the Basal and Older DBF are 496 

intensely folded and thrust into multiple thrust moraine complexes (Fig. 11) and this concurs with 497 

the recent work of Phillips et al. (2018) (Fig. 3b). 498 

 499 

At the southern end of SP1, DB 3a is tabular, partially stratified and has several transparent lenses 500 

(Fig. 5b). In places, DB 3a is 4-5 m thick and the lenses hundreds of meters in width. Where it occurs 501 

over the central Dogger Bank it is often deformed (Fig.7c). The lateral and vertical conformability of 502 

DB 3b and DB 3a point to continued shallow glaciolacustrine conditions, though Cotterill et al. (2017) 503 

and Phillips et al. (2018) note a transition in DB 3a to conformable outwash sediments, particularly in 504 

low-lying areas between moraines (Fig. 3b). The transparent lenses in DB 3a could mark gas pockets 505 

or potentially areas of patterned ground. Eisma et al. (1979) have suggested that the southern North 506 

Sea was an extensive periglacial surface or tundra plain during the LGM, hence the lenses could 507 

represent patterned ground if the shallow lake dried out. Cotterill et al. (2017) suggest that 508 

periglacial and tundra-like conditions were common in subaerially exposed areas adjacent to the ice 509 

margin across the Dogger region, and hypothesise that bright seismic reflectors within the Dogger 510 

Bank Formation are indicative of desiccated, subaerial surfaces.  511 

 512 

During this investigation no diamicts where recognised above or below DB 3 in the east part of the 513 

Dogger Bank (Fig. 5). However, diamicts both underlie and overlie DB 3 to the west (along SP 3, 4 514 

and 5) suggesting the BIIS was pushing over the Dogger area from west to east (Fig. 11). Importantly, 515 

cores 178 and 179VC along SP5 (Fig. 10) have OSL ages which limit the deposition of subglacial tills to 516 



the south of Dogger to before 25.8 and 31.6ka. These fit broadly with the OSL ages from cores 517 

151/150VC which suggest proglacial lake formation was coincident with ice margin advance and 518 

retreat (26.2 and 29.5 ka; Table 1).  519 

 520 

These relationships can be seen best at 165 - 167 km in SP 3 where several tills and a buried moraine 521 

complex sit just beneath the seafloor (Figs. 6 and 7b). The axis of the buried moraine runs 522 

approximately southwest to northeast. The lower two till units are clearly faulted and relate to 523 

compressional stress transfer through the sediment pile from northwest to southeast. The 524 

undulating upper surface of DB 3b at this locality suggests a series of small moraines formed in its 525 

upper surface (Fig 7b). Above this, a series of coalesced fans (DB 4a) are interpreted as ice-contact 526 

outwash fans fed from an ice margin retreating sequentially to the north. The most southerly fan 527 

clearly off-laps the moraine to the south, with bedding angle becoming less steep to the south as the 528 

fan aggrades (Fig. 7b). DB 4b is interpreted as a (re)advance till deposited on the proximal side of the 529 

moraine. Small shallow surface channels in the surface of DB 4b are interpreted as proglacial 530 

channels marking the passage of meltwater streams as ice retreated northwards. However, deep 531 

channels that underlie tills sheets more likely represent subglacial channels cut beneath active ice.  532 

 533 

DB 4b is most clearly expressed in cores 171, 172 and 174VC on SP 4 which record a brown, chalk-534 

rich, consolidated diamict across the upper part of the central southwest Dogger Bank area (Fig. 9) 535 

DB 4b therefore overlies, not underlies DB 3 (Fig. 11). Along SP 4 the base of 171VC shows a 536 

downward transition from diamict to massive clays, hinting at the emplacement of a subglacial till 537 

over glaciolacustrine deposits. This interpretation is further corroborated by the acoustic 538 

stratigraphy as DB 4b clearly overlyies folded and deformed DB 3b (Fig. 9).  539 

 540 

Given these stratigraphic relationships we equate DB 2 with the previously reported BDK tills. Cores 541 

138-141VC sit within the mapped limits of the BDK (Fig. 1) and these brown, chalk-rich subglacial 542 

diamicts are known to occur close the seabed to the southwest Dogger Bank (Cameron et al., 1992; 543 



Dove et al., 2017). The presence of diamict relatively high up on the SW Dogger Bank in cores 171-544 

174VC is also important. Again, DB 4b is a brown/red, over consolidated, chalk/flint rich diamict 545 

which we assign to a younger sub-unit of the BDK, but its occurrence over the upper surface of the 546 

western Dogger Bank points to ongoing, dynamic, and episodic oscillation of ice moving in and out of 547 

the western Dogger region and sourced from the British mainland. DB 2 and DB 4 are essentially the 548 

same lithofacies (BDK) but they represent different phases of subglacial till deposition as the NSL 549 

oscillated across the region. This would fit the assertion that the Humber area and Dogger Bank 550 

were subjected to numerous re-advances from the northwest and underwent significant 551 

glaciotectonism and moraine formation during the late MIS 2 (Boulton et al., 1985; Rose, 1985; Long 552 

et al., 1988; Cotterill, et al., 2017; Dove et al., 2017; Phillips et al., 2018).  553 

 554 

Along SP3 the north half of the Dogger Bank appears to show either DB 3 or DB 4 at the seabed (Fig. 555 

11), except where there is mobile sand (DB 7). On the northern flank of the Dogger Bank there are 556 

two important morphostratigraphic relationships. The first is that a series of ridges can be seen in 557 

the acoustic profiles (Figs. 8a and 11). These ridges could not be cored but are composed of either 558 

DB 3 or DB 4 based on their acoustic properties. They are therefore interpreted as moraines. Several 559 

of them are one or two kilometres wide and 10-20 m in amplitude. Where they are close to the 560 

seafloor they undoubtedly act as anchor points for sand ridges (DB 7) as suggested in Sejrup et al. 561 

(2016), and are best manifested in the acoustic record between 0 and 30 km in line SP3 (Fig. 8a).  562 

 563 

On-lapping the north sector of the Dogger Bank and the moraines described above is DB 5b (Fig. 11). 564 

This red/brown interlaminated fine sediment is undoubtedly a low energy waterlain deposit that on-565 

laps the northern edge of the Dogger Bank. The sediments mapped previously as Botney Cut Fm 566 

(BGS  - Dogger Bank Quaternary Sheet). Their basinal geometry in between the moraines and lack of 567 

foraminifera strongly suggest a glaciolacustrine origin. The upper part of the sequence is dated by 568 

OSL in core 155VC to 23.1 ± 2.2 ka. From the acoustic and core data adjacent to 155VC this 569 

lithofacies does not have an overlying diamictic unit indicative of overriding by ice. 570 



 571 

To the western end of the Dogger Bank, further evidence for the late phase draping of sediment 572 

across the bank can be seen in SP 4 (Fig. 9). At this locality DB 3 is highly deformed due to folding 573 

and is overlain by DB 4 (subglacial till; sub unit of BDK). Capping the sequence is DB 5a; a dark grey, 574 

interlaminated clay, silt and sand unit which coarsen upwards. The shells within the sediments 575 

suggest they are shallow marine/estuarine sediments of the Botney Cut Fm, deposited in a surface 576 

hollow in the upper surface of the Dogger Bank thrust moraine complex during Holocene marine 577 

transgression. Peats and shallow marine sands (DB 6 and 7) above the outwash sands from cores 578 

175, 176 and 178 mark the switch to shallow estuarine and marine conditions at the opening of the 579 

Holocene (9.7 – 9.9 cal. yrs BP; Table 2). 580 

 581 

In summary, DB 1 is a pre MIS 2 stratigraphic unit. In the Dogger region it is most likely to be Egmond 582 

Ground or the Cleaver Bank Fm. DB 2 is interpreted as a series of subglacial tills (early sub units of 583 

BDK) that outcrop mainly to the south and west of Dogger Bank. They were deposited prior to 31.6 - 584 

25.8 ka. DB3 is glaciolacustrine in origin, with an upper sub-facies of glaciofluvial sediments in places. 585 

In some acoustic sections it is over 40 m thick. The areal extent and depth of this lithofacies points to 586 

a large, regional, ice dammed lake. It was formed prior to 29.5 - 26.2 ka. In the east it becomes 587 

progressively deformed to the north. To the west DB 3 has been intensively proglacially 588 

glaciotectonised and subsequently overrun. An upper till (DB 4; later sub unit of the BDK) and 589 

moraine complexes mark as ice retreat northward across Dogger Bank (Fig. 11). Glaciolacustrine 590 

sediments (DB 5b) that on-lap the northern edge of the western Dogger Bank were deposited prior 591 

to 23.1 ka. Importantly, core 155VC demonstrates that DB 5b is not capped by a till, inferring Dogger 592 

Bank was not directly over run by ice post 23.1ka 593 

 594 

4.2 The imprint of the BIIS on the seafloor between North Norfolk and Dogger Bank 595 

Four geophysical survey lines are presented from the area off shore from Norfolk (Fig. 2). SP6 and 596 

SP7 run north/south and east/west close to the Inner Silver Pit. SP8 runs northwest/southeast 597 



terminating ~20 miles north of the Norfolk coast. Further east, SP9 also runs northwest/southeast 598 

close to the Sole Pit. This shallow area was targeted to provide correlation between glacial deposits 599 

onshore in Norfolk, Lincolnshire and Yorkshire and offshore sediments previously mapped as relating 600 

to MIS 2 glaciation (BGS, 1991; Cameron et al., 1992; e.g. Bolders Bank Fm; Well Ground Fm).  601 

 602 

The lithofacies from this area are given the prefix Offshore North Norfolk (ONN) (Fig.12). Sub-bottom 603 

profile data from SP6 clearly shows Cretaceous chalk (ONN 1) at the base of the Inner Silver Pit (Figs. 604 

12 and 13a). At this location it is overlain by a conformable, on-lapping stratified sedimentary unit. In 605 

core 164VC this is a brown/beige/black, interlaminated, clay/silt deposit with occasional black 606 

organic laminae (ONN 2). This deposit was restricted in areal extent to the base of the Inner Silver 607 

Pit. Along SP 7 and SP 8, the chalk surface varies from flat and to irregular, and is often incised. It is 608 

overlain in many places by a brown/red, massive, matrix-supported, fine grained, over-consolidated 609 

diamict with distinctive chalk and flint clasts (ONN 3; Figs. 12 and 13b, c). In a number of locations 610 

there are at least two layers visible in the sub-bottom profile data (e.g. Fig. 13b between 29 - 32 km).  611 

 612 

Just north of 159VC the sub-bottom profile data shows a ‘ridge’ and a ‘wedge’ structure on the 613 

seafloor. They are labelled Moraine 1 and 2 respectively (Fig. 13 b). Acoustically, Moraine 1 displays 614 

a distinctive, triangular cross section associated with a complex set of attenuated sediment units. 615 

Two diamict units (ONN 3e + 3f) can be traced from core 159VC beneath the ridge. They become 616 

attenuated folded beneath moraine 1 and overlain by two acoustically stratified units (ONN 3c + d) 617 

that are also heavily attenuated and boudinaged (See Fig. 14a for interpretation panel). The ‘wedge’ 618 

(Moraine 2) has a lower, truncated boundary overlying a least five acoustic units (Figs. 13b and 14b). 619 

ONN 3c to 3f are relatively sub-horizontal and tabular in form. They are crosscut by three channels 620 

with weak internal acoustic stratification. ONN 3c + 3d thin out northward and are truncated below 621 

the wedge. A small discontinuous, tabular, transparent unit which forms a very strong reflector lies 622 

along the bottom of the wedge 3 - 4 km along the section (ONN 3b; Fig. 14b). Internally the wedge is 623 

folded to the south and has high angle dipping reflectors along its northern edge. Several other ridge 624 



or mound structures can be seen in the acoustic stratigraphy on survey lines SP 8 and SP 9. They 625 

include simple diamictic ridges or mounds, and more complex ridges that can be mapped across the 626 

seafloor (Fig. 14c). 627 

 628 

Cores 156 and 157VC contain two other important acoustic facies that outcrop in the region (Fig. 629 

13b). Above ONN 3 in both cores there is a dark grey, massive to interlaminated sequence of sandy 630 

silts and clays (ONN 4; Fig. 12). These are best shown acoustically at core site 157VC along SP8 where 631 

a channel cuts through the upper diamicts to the chalk below (Fig. 13b). Clearly this is an erosional 632 

feature, but the sedimentary infill (ONN 4) is draped and conformable. Channels are common along 633 

transect SP8, often dissecting ONN 3 into the chalk below. They range from <100m to >2000 m wide 634 

and ~ 5 to 40 m deep. Core 166VC from SP 9 recovered 5.2 m of grey interlaminated sands, silts and 635 

clays infilling one such channel (Fig. 15). In places rhythmic bedding is very clear but it is noticeable 636 

that laminae thickness decreases while frequency increases up core. Forams within the whole 637 

sediment sequence are predominantly estuarine with an increasing marine influence (e.g. 638 

Ammonium aberdoveyensis/beccarri/batavus; Elphidium williamsoni/magellanicum 639 

excavatum/incertum; Quinqueloculina). Several Littorina Littorae shells were also recovered from 640 

the lower part of the core (Fig 15; 589 and 593 cm) and provide radiocarbon ages of 9535 ± 82 and 641 

9141 ± 129 cal. yrs BP respectively (Table 2). The upper unit in many of the cores along SP8 and SP9 642 

is a moderately to poorly sorted, brown/orange/grey, shelly sand often with a cap of shell hash. It 643 

varies in depth between 0.5 to 1.0 m and is clearly visible on the sub-bottom data as a transparent, 644 

upper unit across much of the seafloor (ONN 5; Figs. 12 and 13b). 645 

 646 

4.2.1 The seafloor between North Norfolk and Dogger Bank: key interpretations  647 

The sedimentary sequence in this region of the seafloor is underlain by ONN 1, which is The Chalk 648 

(Cameron et al., 1992). This is most clearly seen in the base of the Inner Silver Pit (Dove et al., 2017), 649 

but it also outcrops on the seafloor towards the Norfolk coast, or is overlain by a thin veneer of 650 

sediment. ONN 2 is an interlaminated, clay/silt/sand, conformable, on-lapping stratified sedimentary 651 



unit. This unit it has been previously mapped as Egmond Ground Fm; a shallow marine sediment 652 

indicative of cool temperate seas following MIS 12 glaciation (Cameron et al., 1992) which fits with 653 

the observations made herein. 654 

 655 

The diamict facies and associated deposits (ONN 3) reported from many boreholes has the typical 656 

hallmarks of subglacial tills assigned to BDK which almost on-laps the Norfolk coast (Long et al., 657 

1988; BGS, 1991 – Spurn Sheet; Cameron et al., 1992; Carr et al., 1999; Davies et al., 2011). This 658 

diamictic facies is a red/brown, massive, fine-grained diamict with small clasts (sub-rounded to sub-659 

angular). It has abundant locally derived chalk and flint clasts with a far travelled erratic, and 660 

palynological and heavy mineral assemblages from Northern England and Scotland (Carr et al., 1999; 661 

Davies et al., 2011). Dove et al. (2017) note that it exhibits a prominent reflector over the chalk, 662 

perhaps denoting erosion, and that multiple till units are recognisable from seismic data. These 663 

characteristics are duplicated in the offshore data presented here. 664 

 665 

The stratigraphic architecture of ONN 3 becomes complex in areas associated with ice sheet still 666 

stand or re-advance. Dove et al. (2017) report on the occurrence of over-lapping till wedges/sheets 667 

associated with subtle moraines across this sector of the seafloor and the moraine complexes 668 

identified in the JC123 seismic data coincide with the many of moraine ridges mapped by Dove et al. 669 

(2017) (Fig. 14c). The ‘ridge’ structure (Moraine 1) to the north of 159VC is a thrust moraine complex 670 

exhibiting deformed lower till units (ONN 3) and attenuated/boudinaged stratified sediments (Fig. 671 

14a; van der Wateren 1995, 2003; Benn & Evans 2010). It is defined geomorphologically by a 672 

prominent well defined ridge up to 10 m in altitude with dipping reflectors. The ‘wedge’ (Moraine 2) 673 

displays a different geometry and is a possible hill-hole pair and/or large glaciotectonic raft (Aber et 674 

al. 1989; Rise et al. 2016 Fig. 14b). The geomorphology of the seafloor immediately north of Moraine 675 

2 has a depression indicative of a hill-hole pair, and rafts of chalk and glacial sediment several kms 676 

long and ~10 to 15 m thick have been reported from MIS 12 glacial sections along the North Norfolk 677 

coast (Banham, 1988, Roberts and Hart; 2005; Phillips et al., 2008; Burke et al. 2011). These 678 



moraines thus relate to distinct standstill or re-advance limits of the NSL and the deposition of 679 

discrete stacked/overprinted sheets of BDK till layers.  680 

 681 

The interlaminated sediments reported from the channel fills (ONN 4) in both the core and seismic 682 

data are interpreted as low energy, shallow, temperate marine sediments of the Botney Cut Fm 683 

(Cameron et al. 1992). Many channels in this region clearly dissect glacial sediments and chalk below 684 

(Fig. 13b). This most likely infers a subglacial origin (Ehlers and Wingfield; Gaffney et al., 2007). Some 685 

authors have hypothesised the low energy sediment infill in many channels may have originated in 686 

glaciolacustrine or lacustrine settings following deglaciation, inferring ponding in freshly exposed 687 

over-deepened channels but the upper sequences are characterised by a switch to marine 688 

sedimentation as the southern North Sea became inundated in the early Holocene (Cameron et al. 689 

1992). The foraminifera and marine shell assemblage in core 166VC support a marine origin for the 690 

upper component of these channel infills. The increasing, high frequency of the sand/silt/clay 691 

laminae and their clear rhythmicity suggest an inter- or subtidal environment (Daidu et al. 2013). The 692 

radiocarbon dates of 9.5 and 9.1 ka are compatible with the estimated time of submergence of the 693 

land bridge in this sector of the North Sea (Sturt et al., 2013) and shallow estuarine environments 694 

have been widely reported from this region during Holocene marine transgression. Many of the 695 

channel infills mapped as DB 5a relate to this phase of deposition.  696 

 697 

The upper unit across the seabed (ONN 5) is interpreted as the contemporary, active seafloor. 698 

Mobile sand waves and ridges are common in this region of the southern North Sea (Tappin et al., 699 

2011) due to strong tidal current and shallow water depths which bring the seafloor above storm 700 

wave base (-5 to -20 m OD). Many of the cores show a shelly sand/shell hash that has truncated the 701 

underlying BDK, indicating strong scour by current and wave activity. 702 

 703 

4.3 The MIS 2 limit in North Norfolk 704 

 705 



Pawley et al. (2006) described the MIS 2 limit at Garret Hill near Stiffkey where a NE-SW trending 706 

sand and gravel ridge forms one of a chain of ice marginal landforms adjacent to the Stiffkey valley. 707 

Of the four lithofacies identified within the ridge, two were assigned a pre MIS 2 origin (LFA 1 and 2 708 

Paw) but an upper diamict (LFA3Paw) and outwash sediment (LFA4Paw) were interpreted as 709 

representing MIS 2 glaciation. This section reports briefly on the results of a re-investigation of the 710 

Garret Hill site in order to derive a new geochronology for the putative ‘MIS 2’ ice limit in Norfolk. 711 

 712 

Five sections were exposed in the SW side of Garret Hill (Fig. 16). Lithofacies associations mapped at 713 

this site are assigned the prefix “GA”. GA 1 forms the base of the sequence and is a chalky, massive, 714 

matrix-supported diamict containing abundant chalk and flint clasts. Overlying this is a variably 715 

stratified sand and gravel deposit (GA 2) that appears to form the core of the ridge and coarsens 716 

upward. In Logs 1-5 the stratigraphy of this unit tends to vary between sub-horizontally stratified 717 

sands (with gravelly lags and lenses) and coarser matrix-supported, tabular gravel units that are 718 

massive to weakly stratified. Palaeo-current directions on fluvial bedforms suggest flow to the NW. 719 

In Log1 the lower sands are well sorted and sub-horizontally stratified, with occasional laminated 720 

fines and ripples. Two OSL dates from GA 2 in Log1 returned dates of 21.5±1.3 (shfd15033) and 721 

22.8±1.8 ka (Shfd15034) at 9.0 m and 8.6 m OD respectively (Fig. 16; Table 1). GA 3 caps the 722 

sequence and is a brown, massive, poorly consolidated, silty/sandy diamict (pedogenically altered in 723 

the top 20-30 cm). Pawley et al. (2006) report a range of local and far travelled erratics in this 724 

diamict that included low-grade schist, basaltic/andesitic porphyries, dolerites, Devonian Old Red 725 

Sandstone, granite, acid porphyry, Carboniferus Millstone grit, crystalline limestone, coal, Triassic 726 

red/green mudstones, Jurassic sandstones and Lower Cretaceous glauconitic sandstone and 727 

Carstone. 728 

 729 

4.3.1 Garret Hill: key interpretations  730 

GA 1 is interpreted as a subglacial till similar to the lithofacies reported by Pawley et al. (2006), who 731 

suggested it was a correlative of the MIS 12 Weybourne Town Till because of its chalky content and 732 



deformation structures. GA 2 is interpreted as a glaciofluvial outwash deposit. The coarsening 733 

upward of the sequence suggests increasing ice proximity to the site, but palaeo-current data 734 

contradicts this with current flow towards the northwest. As this unit is dated to 22.8 – 21.5 ka it 735 

cannot relate to a pre MIS 2 glacial environment as proposed by Pawley et al. (2006). Instead, it 736 

represents a proglacial fluvial system operating in advance of the arrival of an ice sheet on the 737 

Norfolk coast shortly after 22.8 – 21.5 ka with meltwater draining west/northwest following the local 738 

topography. GA 3 is interpreted as a subglacial till predominantly because it bears all the hallmarks 739 

of the Holkham Till previously reported by Straw (1960) and Pawley et al. (2006); being brown, 740 

massive, poorly consolidated, silty/sandy, and pedogenically altered. The assemblage of erratics 741 

indicate emplacement by British-sourced ice (Pawley et al., 2006). Taking the new OSL ages into 742 

account the arrival of the BIIS on the Norfolk coast during MIS 2 is thus constrained to immediately 743 

after 22.8 – 21.5 ka. This suggests that it was deposited at around the same time as the Skipsea Till in 744 

Yorkshire (Bateman et al., 2011, 2015; 2017). 745 

 746 

5.0 Discussion 747 

5.1 The Dogger region and the nature of the BIIS ice sheet margin during early MIS 2 748 

In transects SP1, SP2 and SP3 a tabular, stratified unit (DB 3) can be seen to form the core of the 749 

Dogger Bank and off-laps to the south. DB 3 has also been recognised by in other areas of the central 750 

Dogger Bank (Tranche A and B in Cotterill et al. 2017; Basal/Lower/Upper Dogger Bank Fm). The 751 

lateral continuity of this acoustic facies supports the notion that it represents a regional lake in the 752 

central North Sea as hypothesied previously (Veenstra, 1965; Cameron et al., 1992; Laban, 1995).  753 

 754 

In order to form a lake in this region of the North Sea, ice must have been damming the regional 755 

drainage to the north (e.g. Fig. 17). In addition, the southern North Sea was located in the peripheral 756 

depression of a regional forebulge with respect to both the FIS and BIIS (Lambeck et al. 2006; Brooks 757 

et al., 2008; Bradley et al. 2011). A large regional lake is hypothesised to have formed south of the 758 

Dogger area in previous glacial periods (e.g. MIS 12 and MIS 6; see Murton and Murton; 2011; Cohen 759 



et al., 2014) and across the Dogger region in the last glaciation but its extent is very poorly 760 

constrained (Clark et al. 2012; Sejrup et al. 2016). The extensive glaciotectonism of the lake 761 

sediments (inclined, open folding; upturned strata; thrusts) indicates that ice advanced into the lake. 762 

Our work demonstrates that DB3 is undeformed to the southeast, but becomes progressively more 763 

deformed in the central, northern and western parts of the bank. Cotterill et al. (2017) and Phillips et 764 

al. (2018) identify several separate phases of glaciotectonism in response ice advance and retreat in 765 

the vicinity of SP3. In the central part of the Dogger Bank, OSL samples from cores 151 and 150VC 766 

indicate lake formation pre-dated 29.5 ka inferring the impedance of regional drainage during the 767 

switch from MIS 3 to MIS 2, though BIIS and FIS coalescence in the North Sea at this time is 768 

unsubstantiated (Hijma et al. 2012; Cohen et al., 2014; Patton et al., 2017). 769 

 770 

Underlying the south western Dogger Bank lake sediments there are subglacial tills (DB 2) indicative 771 

of ice advance into the region prior to lake formation (Fig. 11). These lower tills (DB 2) can be traced  772 

close to the mapped limit of the BDK south of Dogger Bank (Fig. 1) and in cores 179VC and 178VC 773 

OSL ages suggest that these two tills where deposited prior to 31.6 – 25.8 ka. These age estimates 774 

overlap with the dates for lake deposition from 150VC and 151VC and suggest that early 775 

glaciolacustrine environments (DB 3) developed as ice first retreated from close to the BDK limit. 776 

Hence, the later till that overlies the Dogger Bank to the west (DB 4), and the moraine/fan complex 777 

near core 142VC (Figs. 6 and 11), demonstrate ice re-advanced across western Dogger at a later 778 

stage. That re-advance event is limited by the OSL date from core 155VC, because DB 5b (a later 779 

phase of glaciolacustrine sedimentation), is dated to 23.1 ± 2.3 ka and clearly drapes the upper till 780 

(DB 4) that forms moraines along the northern edge the Dogger Bank (Fig. 11). Therefore, based 781 

upon the OSL dates, ice advance/retreat/re-advance/retreat across Dogger appears to have been in 782 

a window between 31.6 and 23.1 ka (Fig. 17). 783 

 784 

Wide, deep channels infilled with sediments to the south of Dogger Bank have a polygenetic origin. 785 

Many are subglacial in origin and capped by till pointing to contemporaneous deposition during 786 



glaciation (e.g. channels between 191 and 193 km on SP3; Fig. 6). In contrast, other channels are 787 

infilled to the seabed by interstratified sediment (e.g. 180 - 185 km km along SP3; Fig. 6). Many such 788 

examples across the region have been shown to be filled with Holocene marine sediments ( and 789 

designated as Botney Cut Fm (DB 5a). The Botney Cut Fm is mapped across the seafloor in many 790 

areas across Dogger Bank and the seafloor to the west (Cameron et al., 1992). Some authors have 791 

suggested that lower sedimentary infills can contain BDK tills, which would be compatible with a 792 

subglacial channel hypothesis for their origin (Ehlers and Wingfield, 1991; Dove et al., 2017). 793 

However, glaciolacustrine sediments may be present in the lower parts of some channels, 794 

representing early deglacial proglacial conditions. This is the case for DB 5b which on-laps the 795 

northern edge of the bank and drapes near surface moraines formed as ice retreated northwards 796 

(Fig. 8). Other shallow channels in the surface of DB 4b along SP3 may represent surface meltwater 797 

streams (Figs. 6 and 11) and similar channels at the seabed have been interpreted as proglacial, 798 

glaciofluvial outwash and mapped as Well Ground Fm (Cameron et al., 1992; Fitch et al, 2005; 799 

Gaffney et al., 2007). The sands sampled for OSL ages in cores 178VC and 179VC originated in such 800 

glaciofluvial settings. An outwash model is further reinforced by Cotterill et al. (2017) who identified 801 

several phases of glaciofluvial activity related to ice retreat across the Dogger Bank. Hence, as the 802 

BIIS retreated its margin switched between glaciolacustrine and glaciofluvial conditions as the 803 

interplay between ice margin configuration, morainic topography and drainage pathways controlled 804 

patterns of sedimentation. 805 

 806 

5.2 Late stage re-advance of the BIIS and the MIS 2 limit 807 

North of the Norfolk coast the lower sequence of sediments above the chalk is dominated by 808 

multiple tills. Both this study and that of Dove et al. (2017) demonstrate the stacked and 809 

discontinuous geometry of these till units with ice marginal thickening, glaciotectonism and 810 

thrusting producing moraine complexes (Fig. 14).  811 

 812 



The age of these limits can be bracketed using the onshore information from Garret Hill and further 813 

OSL deglacial dates from the Yorkshire coast. The arrival of ice on the Norfolk coast during MIS 2 814 

must post date 22.8 - 21.5 ka (Table 1). This broadly supports OSL ages along the eastern England 815 

coast, which indicate a post Dimlington Stadial southward advance of the NSL after 21.6 ka 816 

(Bateman et al., 2017). The retreat limits mapped herein and reported by Dove et al. (2017) 817 

immediately north of the Norfolk coast therefore provisionally match the retreat and marginal 818 

oscillation behaviour described from the Yorkshire coast, with dynamic marginal oscillations 819 

reconstructed after 21.7 ka (Skipsea Till and Withernsea Tills/Holderness Formation)(Bateman et al., 820 

2017). This clearly postdates ice advance and retreat across the Dogger Bank, which occurred in a 821 

time window of ~31.6 - 23.1 ka, and therefore suggests that the BDK ‘tills’ cannot be a contiguous till 822 

sheet stretching from west to east across the region as they are often mapped. The BDK is a series of 823 

overlapping and off-lapping till sheets that mark several generations of ice advance and retreat 824 

across the southern North Sea between ~ 30 and 22ka; it does not solely represent the late phase 825 

imprint of the NSL after 21.5 ka. 826 

 827 

5.3 Understanding the behaviour of the BIIS in the southern North Sea during MIS2 828 

The OSL dates in cores in cores 179 and 178VC and the tills beneath constrain initial ice advance into 829 

the central North Sea prior to 31.6 and 25.8 ka; around the onset of MIS2 (Fig 17; Phase 1). The 830 

window between 31.6 and 25.8 ka is rather earlier than many previous reconstructions which tend 831 

to show the BIIS ice reaching its maximum extent between 25-24 ka (Sejrup et al. 2005; 2015; 832 

Hubbard et al., 2009), though alternative models do consider pre MIS2 ice sheet build up, and there 833 

is evidence that the FIS reached the eastern edge of the North Sea between 36-33 ka and 31-29 ka 834 

(Houmark and Kjaer 2003; Hijma et al. 2012). OSL dates from the Dogger Bank lake sediments 835 

suggest lake formation started at some time prior 29.5 to 26.2 Ka BP. Hence, it is feasible that 836 

Dogger Lake developed and extended as BIIS ice moved westwards and coalesced with the FIS (Fig. 837 

17; Phase 2). BIIS/FIIS coalescence and glacioisotatic depression of the central/southern North Sea 838 

would have facilitated Dogger lake development during this time but delimiting the exact extent of 839 



the lake is beyond the scope of this paper. For simplicity, lake extent is restricted to the edge of 840 

Dogger Bank in areas where DB 3 has been mapped.  841 

 842 

Sejrup et al. (2016) have recently suggested that there was no coupling over the Fladen ground 843 

between 26-23 ka, but our study partially refutes this and demonstrates the western Dogger Bank 844 

region was in contact with the ice margin between 25.8 and 23.1 ka (Fig. 17; Phase 3). Moraine 845 

complexes composed of folded and thrust Dogger lake sediment (DB3) and subglacial till (DB 4) over 846 

the lake sediments mark the active oscillation and recession of ice across western Dogger as 847 

proposed by Phillips et al. (2018). The OSL date on lakes sediments on-lapping the north edge of 848 

Dogger Bank (core 155VC; Table 1) suggest ice underwent a significant step back by 23.1 ± 2.3 ka 849 

(Table 1; Fig. 17; Phase 3), and at this point a ribbon lake would have developed between the ice 850 

margin and the newly formed Dogger Bank push moraine complex.  851 

 852 

Taken together, the OSL ages and widespread glaciotectonism of the lake sediments suggest marked 853 

periods of advance and retreat and pronounced ice marginal instability. This may have been 854 

promoted by ice sheet interaction with the Dogger lake which would not only have initiated 855 

drawdown and ice marginal calving (cf. Stokes & Clark, 2004) but also would have been 856 

characterized by saturated, fine grained, unconsolidated sediments, thereby providing ideal 857 

conditions for the development of a subglacial deforming bed and potential flow instability (Evans 858 

and O Cofaigh, 2003). Similar ice-marginal oscillations have been reported by Bateman et al. (2018) 859 

for the NSL where it contacted Glacial Lake Humber in the Humber Estuary (see Fig. 1). The position 860 

of the ice margin to the west between Dogger Bank and the Yorkshire/Lincolnshire coast between 861 

31.6 and 23.1 ka (Fig. 17; Phases 1-3) cannot be constrained accurately, though there are several 862 

locations along the east coast where on-going stratigraphic work and new OSL ages point to till 863 

deposition post MIS 5e but pre 23ka. The Basement Till, which sits stratigraphically below the 864 

Sewerby raised beach (MIS 5e) on the Yorkshire coast predates these MIS 2 ice advances (Catt, 865 

2007).  866 



The OSL ages from Garret Hill confirm that the ice limit on the Norfolk coast represents a much later 867 

phase of BIIS advance than that reconstructed for Dogger Bank. This later advance occurred after 868 

22.8 - 21.5 ka (Table 1; Fig. 17; Phase 4). There are several reasons why the NSL may have been 869 

restricted to the western side of the North Sea during this late phase re-advance. Firstly, the Dogger 870 

Bank was a substantial moraine complex by this time (Phillips et al., 2018) standing ~30 - 50 m above 871 

the surrounding ground surface and, therefore, could have deflected a low gradient ice sheet 872 

southwestwards. This suggests that ice was thin and had a very low profile, supporting previous 873 

assertions that the NSL was an over-extended, surge-type glacier lobe during the end of the last 874 

glacial cycle (Eyles et al, 1994; Evans et al 1995; Boston et al, 2010; Evans & Thomson 2010; Roberts 875 

et al., 2013; Fairburn and Bateman, 2016; Bateman et al., 2017). A key trigger for ice advance in the 876 

southern North Sea at this time may been have the decoupling of the BIIS and FIS around 22 – 21ka 877 

due to a catastrophic outburst flood from Dogger Lake. The ice sheet wide feedbacks of such an 878 

event would have generated regional scale flow re-organisation of the BIIS. However, 22 – 21ka is 879 

earlier than recently suggested by Sejrup et al. (2016) and Hjelstuen et al. (2018) who fix this event 880 

at ~18.7 ka. The stacked tills and marginal retreat positions on the seafloor immediately north of 881 

Norfolk relate to the NSL margin stepping back towards the Lincolnshire and Yorkshire coast (Fig. 14; 882 

Dove et al., 2017), and moreover, these fit well with extensive onshore stratigraphic and geomorphic 883 

evidence that demonstrates phased retreat of the NSL after 21.5 ka along the Yorkshire coast 884 

(Bateman et al., 2008; 2011; Evans et al. 2017; Fig 17; Phase 5)  885 

 886 

The character of the NSL as it retreated from the Norfolk coast post 21.5 ka was likely a result of 887 

several major controls: i) ice divide migration over northern Britain prompted by decoupling 888 

between BIIS and the FIS; ii) flow re-organisation of the main ice streams entering the North Sea, 889 

particularly the Forth Ice Stream (the major feeder for the NSL) nourished from central and eastern 890 

sectors of the Scottish Highlands, and; iii) marine inundation of the BIIS margin in the northern and 891 

central North Sea, causing grounding line and flow instabilities. Indeed, Roberts et al. (submitted) 892 

track the final retreat of the NSL northwards passed the Durham and Northumberland coast and into 893 



the Firth of Forth between 19 - 17 ka under glaciomarine conditions, marking the cessation of MIS 2 894 

terrestrial glaciation in the southern North Sea. 895 

 896 

6.0 Conclusions 897 

New acoustic, bathymetric and geochronological data from the southern North Sea casts fresh light 898 

on the dynamic history of the eastern sector of the BIIS. Offshore mapping of several acoustic facies 899 

shows the core of the Dogger Bank to be composed glaciolacustrine sediment deposited between 900 

31.6 and 23.1 ka. In the east these sediments are not overlain by subglacial tills, but to the west ice 901 

overrode the Dogger Lake and deposited subglacial tills as far south as ~ 54°N. Both advance and 902 

retreat northwards back across the Dogger lake was rapid and complete by 23.1 ± 2.3 ka, but 903 

resulted in widespread compressive glaciotectonism of the lake sediments and the deposition of 904 

several off-lapping subglacial till sheets and smaller moraine complexes on both the southern and 905 

northern edges of the newly formed Dogger Bank. Along the northern edge of the Dogger Bank 906 

several moraines point to temporary stabilisation of the ice margin on the shallow bank, but these 907 

are draped by later phase glaciolacustrine and marine sediments which reflect topographic damming 908 

of ice marginal drainage and later the Holocene sea-level transgression. These interpretations 909 

support the previous notion that Dogger Bank is a large thrust moraine complex and is a product of 910 

ice marginal instability promoted by drawdown and calving as well as a slippy, deforming bed 911 

provided by the lake floor. 912 

 913 

Following formation of the Dogger Bank, the seafloor to the west and southwest of the Dogger Bank 914 

records several later phases of ice advance and retreat as the NSL flowed between the Dogger Bank 915 

and the Yorkshire/Lincolnshire coasts and reached Norfolk. New OSL ages from Garrett Hill now date 916 

the deposition of the Holkham Till on the Norfolk coast to after 22.8 - 21.5ka, and while a direct 917 

stratigraphic correlation with the Holkham Till onshore and the tills offshore is not possible, it does 918 

appear that as the ice retreated northwards from the coast it deposited several distinct till sheets 919 

and chains of moraines that signify temporary standstills and minor re-advances. This pattern of 920 



behaviour is broadly synchronous with the deposition of subglacial and ice marginal sediments along 921 

the Yorkshire coast which relate to ice sheet activity post-dating 21.5 ka. 922 

 923 

During the early phases of MIS 2 galciation (~30 to 23 ka) it is clear that interaction between the 924 

southern margin of the BIIS and the regionally extensive Dogger lake was important in influencing 925 

flow instability and rapid ice advance and retreat. Glaciotectonism of the Dogger lake bed was 926 

pivotal in the formation of the moraine complex now referred to as Dogger Bank. Following its 927 

formation it is apparent that late phase ice advance in the southern North Sea became restricted to 928 

the western side of the Dogger Bank which was a substantial topographic feature standing some 30-929 

50m above the terrestrial land surface. The topographic influence of the Dogger Bank and the 930 

potential squeezing of the NSL between the Yorkshire coast and the bank potentially enabled it to 931 

overextend and reach the north Norfolk. It was also a control on the spatial ‘footprint’ of the BDK 932 

which extends southeast around the Dogger Bank. It should be noted that this final phase of NSL 933 

expansion was only one of many that deposited a till attributed to the BDK during the last glacial 934 

cycle. 935 
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Fig Captions 1208 
 1209 
Figure 1: The physiographic setting of the North Sea with previous mapped ice limits for the LGM 1210 

(coupled and uncoupled FIS/BIIS). The Dogger Bank sits in the central/southern North Sea. The 1211 
coast lines on Norfolk, Lincolnshire and Yorkshire are situated south and west of the DB 1212 
respectively. Major drainage basins feeding ice streams into the North Sea include the Moray 1213 
Firth, Firth of Forth, Tweed (Tw), Tyne Gap (Ty) and the Eden-Stainmore (Ed-St) gap. The 1214 
Humber Gapis also marked. (Image based on reconstruction of Dove et al., 2017). 1215 

 1216 
Figure 2: Seismic profiles and core locations collected from the southern North Sea for BRITICE-1217 

CHRONO on cruise JC123 in 2015. The Dogger Bank is covered by seismic lines SP 1 – 4. SP5 is 1218 
south of the Dogger Bank. The blue line denotes the position of a regional-scale BGS seismic 1219 
survey line (Cameron et al., 1992; see Fig 3a). The yellow line denotes the location of Line 12 1220 



from Philips et al. (2018; see Fig. 3b). The shallow coastal areas north of the Norfolk coast and 1221 
the Wash are covered by SP 6- 9. Garret Hill on the Norfolk coast is marked GH. 1222 

 1223 
Figure 3: a) The Quaternary geology of the southern North Sea and the Dogger Bank (Cameron et al., 1224 

1992). b) The internal stratigraphy of the Dogger Bank (re-drawn from Phillips et al. 2018). Note 1225 
sediments of the Dogger Bank Formation is split into three units (Basal, Lower and Upper). They 1226 
are described as glaciolacustrine and glaciofluvial deposits. The Basal and Lower units are folded 1227 
and thrust due to glaciotectonics. 1228 

 1229 
Figure 4: Acoustic facies associated with the Dogger Bank sub-bottom profiles (SP 1- 3). DB 1 to DB 7 1230 

are identified using both geophysical acoustic properties and sediment properties from gravity 1231 
cores.  1232 

 1233 
Figure 5: a) Fence diagram of SP 1 - 3 across Dogger Bank. High resolution versions of SP 1, 2 and 3 1234 

are available in the supplementary information. b) The acoustic stratigraphy of SP1. Note the 1235 
preglacial unit (DB 1) overlain by three sub-units of DB 3. DB5 represent channels infills and the 1236 
sequence is capped by DB 7. c) Core logs 150 and 151VC. The basal sediments in both cores are 1237 
interpreted as folded glaciolacustrine (DB 3b) and provided OSL ages of 29.5±1.9 and 1238 
26.2±2.1ka respectively (Shfd15175 and Shfd15176). 1239 

 1240 
Figure 6: Acoustic facies mapped along the southwestern end of SP3 between (see Figure 2 for 1241 

location). A high resolution image of the complete line is available in supplementary 1242 
information. A series of lower diamicts (DB 2) can be traced above the preglacial sediments. 1243 
These are overlain in turn by deformed clays (DB 3b) and upper diamicts and sands (DB 4) that 1244 
coincide with a buried moraine/outwash fan at 165 - 168 km. Multiple, infilled channels dissect 1245 
the sequence (DB 5) and the seafloor is capped by a shelly, sand (DB 7). 1246 

 1247 
Figure 7: Specific geomorphic and stratigraphic relationships along SP3. a) A buried moraine 1248 

composed of DB 2 is draped by overlying interstratified sediments (DB5) with low angle thrust 1249 
inferring north to south displacement. There are also ssmaller moraines to the south of the 1250 
main moraine. b) A moraine complex with faulted and stacked/deformed tills (DB 2) which are 1251 
overlain by an outwash/fan complex and upper tills (DB 4a and b). c) Well developed folds 1252 
(chevron) in the core of the Dogger Bank with DB 3b clearly having undergone compressional 1253 
glaciotectonics. A sub-unit of DB 3a is also highlighted; its bedding aspect is more sub-horizontal 1254 
and less deformed. 1255 

 1256 
Figure 8: a) Moraines underpinning sand ridges on the northern edge of the Dogger Bank. b) Core 1257 

155VC: A 6m core of interlaminated silts/clays (DB 5b) from a basin on-lapping the moraines on 1258 
the northern edge of Dogger Bank. An OSL sample from 357cm down core returned an age for 1259 
23.1±2.3 ka. No till was recorded over DB 5b at this site. 1260 

 1261 
Figure 9: a) SP4 on the western edge of the Dogger Bank showing deformed and folded DB 3b, and 1262 

overlying till (DB 4b) and an on-lapping infill of stratified silts and clayst (DB5b). b) Cores 171 – 1263 
174VC record a red/brown, massive, matrix-supported, diamict with chalk and flint erratics (DB 1264 
4b) sitting above DB 3b inferring ice override of this area of western Dogger Bank. 1265 

 1266 
Figure 10: a) Acoustic facies mapped along SP5 Dogger Bank where diamicts are overlain by localised 1267 

pockets of outwash/glaciolacustrine sediments. b) Brown, red diamicts interpreted as subglacial 1268 
tills of the Bolders Bank Fm. c) Well sorted sands sitting above DB 2 are pockets of outwash 1269 
sediment that were dated in cores 178 and 179 VC provided OSL ages of 31.6±2.1 and 25.8±2.4 1270 
ka respectively (Shfd15179 and Shfd15180). Upper peats in core 178VC returned ages of 9.7 and 1271 
9.8 ka respectively. 1272 

 1273 



Figure 11: A schematic model of the acoustic stratigraphy of the eastern and western Dogger Bank. 1274 
North is to the left and the plots are vertically exaggerated. To the east (SP1) there is evidence 1275 
for proglacial glaciotectonism of the northern part of the Dogger Bank and associated lake 1276 
sediments, but a lack of till suggests the bank was not overrun. To the west (SP3, 4, 5) there is 1277 
evidence for ice advancing/retreating over the area and depositing multiple subglacial tills and 1278 
as well as causing widespread proglacial glaciotectonism. 1279 

 1280 
Figure 12: Individual acoustic facies from the seafloor north of the Norfolk coast found along 1281 

transects SP 6-9. 1282 
 1283 
Figure 13: a) Seafloor acoustic stratigraphy from SP 6 and SP 8. Several acoustic facies can be 1284 

mapped with pre MIS2, subglacial, glaciolacustrine and marine sediments covering chalk 1285 
bedrock which is very close to the seafloor. b) Multiple cores retrieved acoustic facies ONN 3. 1286 
Whci recovered a brown/red, massive, matrix-supported, fine grained, over-consolidated 1287 
diamict with distinctive chalk and flint clasts. It is mapped across the seafloor as Bolders 1288 
Bank Fm and the same type of diamict is observed further north around the western 1289 
Dogger Bank (DB 2; see Figure 9b). 1290 

 1291 
Figure 14: a) High resolution seafloor bathymetry from the area north of the Norfolk coast.  1292 

Moraines are clearly distinguishable in the bathymetric data (marked in yellow) and can be 1293 
mapped acoustically in the seismic data (collected on cruise JC 123). Tunnel valleys (orange) and 1294 
ice marginal/proglacial channels (red) are also be mapped. This geomorphic pattern relates to 1295 
an oscillating ice margin migrating northwards (image sourced from Dove et al., 2017). b and c) 1296 
Moraine 1 is a thrust moraine complex exhibiting deformed lower till units (ONN 3) and 1297 
attenuated and boudinaged stratified sediments. Moraine2 further to the north displays a 1298 
different geometry and is interpreted as a possible a hill-hole pair.  1299 

 1300 
Figure 15: Core 166VC exhibiting interlaminated sands, silts and clays. Note decreasing laminae 1301 

thickness and increase laminae frequency up core. Rhythmites are particularly clear 1302 
between 200 - 500cm in the core. Two Littorina Littorae samples from the base of the core 1303 
(589 and 593cm) provide a minimum date of deposition at 9.5 and 9.1 ka. 1304 

 1305 
Figure 16: a) Location of Garret Hill, North Norfolk. The MIS 2 ice limit is marked running west to 1306 

east (Straw, 1962). b) Sediments sections from the northwest side of the Garret Hill 1307 
showing gravelly diamict separated by stratified sand and gravels. OSL dates from the lower 1308 
sands provide ages of 21.5±1.3 and 22.8±1.8 ka (Shfd15033 and Shfd15034; Table 1). 1309 

 1310 
Figure 17: Phase 1: The advance of the BIIS at the MIS3/2 transition? Ice margin position poorly 1311 

constrained. Phase 2: Coalescence of the BIIS and FIS blocks regional drainage and the Dogger 1312 
lake forms west to east along the southern edge of the ice sheet. An unstable, oscillatory ice 1313 
margin would have triggered multiple minor advance/retreat cycles over western Dogger 1314 
between 30 - 23 ka leading to widespread glaciotectonism of lake sediments. Phase 3: A single 1315 
OSL age of 23.1ka and on-lapping gl’lacusrine sediments in core 155VC constrains ice retreat to 1316 
the northern edge of Dogger and infers ribbon lake development behind the Dogger bank thrust 1317 
moraine complex. Phase 4: The later phase advance of the NSL was restricted to the western 1318 
side of the North Sea basin after 22 to 21 ka. Ice dynamics in the southern North Sea at this 1319 
time may have been influenced by decoupling of the BIIS and FIS triggered by Dogger lake 1320 
outburst flood to the north. Estimates on decoupling vary widely from 23 - 22 ka (Patton et al. 1321 
2017) to 18.7 ka (Hjelsstuen et al. 2018). Phase 5: Ice retreat along the east coast toward NE 1322 
England between 21 - 19ka. Marine inundation of the central North Sea would have aided 1323 
deglaciation, while areas to the south of Dogger Bank remained terrestrial until the opening of 1324 
the Holocene. 1325 

------------------------------------------------------------------------------------------------------------------------ 1326 



 1327 
Table 1: OSL age data including total dose rate, number of aliquots measured (in brackets) and accepted, the 1328 
derived estimated equivalent doses (De) and resulting ages.  1329 

Region 
Lab code Core 

Total dose 
rate 

(Gy/ka) 

nmeasured 
(ntotal) 

 
OD           
(%) 

De (Gy) Age (ka)  

Dogger Shfd15174 142VC 1.14±0.06 72 (80) 16 11.3±0.2 9.9±0.6 

 Shfd15175 150VC 1.23±0.07 70 (72) 21 36.2±1.0 29.5±1.9 

 Shfd15176 151VC 1.28±0.07 48 (50) 29 33.5±1.9 26.2±2.1 

 Shfd15177 154VC 1.12±0.08 43 (50) 42 117.5±8.0 105.0±7.2 

 Shfd15178 155VC 3.1±0.15  47 (55) 51 71.6±6.2 23.1±2.3 

 Shfd15179 178VC 1.67±0.09 41 (52) 27 43.1±3.3 25.8±2.4 

 Shfd15180 179VC 2.06±0.11 42 (50) 22 65.1±2.5 31.6±2.1 

Norfolk Shfd15033 GAR14-
1-1 1.52±0.07 80 (41) 41 32.7±1.2 21.5±1.3 

 Shfd15034 GAR14-
1-2 1.20±0.05 70 (47) 55 27.4±1.8 22.8±1.8 

          

 1330 
Table 2: Radiocarbon ages form cores 143, 166, 175, 176 and 178VC 1331 

Lab code Transect 
No/core/ 

sample depth 

Conventional 
Radiocarbon 

Age (years 
BP) 

Error ± 1α 
 (radiocarbon 

yrs BP) 

Calibrated 
C14 age 

(cal yrs BP) 

Error ± 1α 
(cal yrs BP) 

SUERC-72882 T2-143VC-239 16477 66 19395 208 
SUERC-72162 T2-175VC-44 9084 40 9801 171 
SUERC-72884 T2-175VC-52 9143 45 9917 202 
SUERC-72885 T2-175VC-80 17138 74 20190 229 
SUERC-72886 T2-176VC-83 9151 40 9934 188 
SUERC-72887 T2-178VC-28 9025 40 9705 161 
SUERC-72891 T2-178VC-47 9089 39 9809 171 
SUERC-68002 T2-166VC-589 8887 35 9535 82 
SUERC-68003 T2-166VC-593 8515 37 9141 129 
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