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Abstract  
Temporal variability in renewable energy presents a major challenge for electrical grid 
systems. Tides are considered predictable due to their regular periodicity; however, the 
persistence and quality of tidal-stream generated electricity is unknown. This paper is the 
first study that attempts to address this knowledge gap through direct measurements of 
rotor-shaft power and shore-side voltage from a 1MW, rated at grid-connection, tidal turbine 
(Orkney Islands, UK). Tidal asymmetry in turbulence parameters, flow speed and power 
variability were observed. Variability in the power at 0.5Hz, associated with the 10-minute 
running mean, was low (standard deviation 10–12% of rated power), with lower variability 
associated with higher flow speed and reduced turbulence intensity. Variability of shore-side 
measured voltage was well within acceptable levels (~0.3% at 0.5Hz). Variability in turbine 
power had <1% difference in energy yield calculation, even with a skewed power variability 
distribution. Finally, using a “t-location” distribution of observed fine-scale power variability, in 
combination with an idealised power curve, a synthetic power variability model reliably 
downscaled 30 minute tidal velocity simulations to power at 0.5Hz (R2 = 85% and ~14% 
error). Therefore, the predictability and quality of tidal-stream energy may be undervalued in 
a future, high-penetration renewable energy, electricity grid. 
 
Keywords: tidal energy, prediction, turbulence, power quality, Orkney, resource 
characterisation 
 

1. Introduction  
It is vital that countries convert to a sustainable low-carbon electricity system, and yet many 
renewable energy sources exhibit variability in power output over a range of time-scales with 
low predictability compared with traditional electricity sources (Drew et al. 2019). One of the 
key challenges integrating renewable energy into a guaranteed high-quality electricity supply 
is to ensure electricity supply matches demand (e.g. Barton and Infield 2004; Joos and 
Staffell 2018) – thus, reducing expensive storage and system control measures (Carrasco et 
al. 2006; Liserre et al. 2010; Milan et al. 2014).  
 

There are many renewable energy sources, some of which are well established and 
dispatchable (e.g. hydro-electric and biomass), however recent interest in deploying a large 
amount of renewable energy sources (e.g. high penetration of renewable energy in a power 
grid) that are less dispatchable (i.e. the resource, thus electricity, is not always present) is 
discussed in context to the immature/developing tidal-stream energy industry. Fine-scale 
variability in renewable energy supplies arise from, for example, the passing of clouds for 
solar PV and gustiness for wind energy; it is this renewable energy variability that this paper 
discusses in context to tidal-stream energy. The predictability of clouds and therefore the 
persistence of solar energy is considered low (Brouwer et al. 2014; Wan et al. 2015), whilst 
turbulent fluctuations in wind speed (which we experience as gusts) are known to directly 
affect wind energy generation through changing wind turbine rotor speed (Sun et al. 2003; 
Brouwer et al. 2014). The variability of tidal energy is often quoted as low in comparison to 
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some other forms of renewable energy (e.g. Lewis et al. 2015; Neill et al. 2014), therefore 
this article will explore fine-scale tidal-stream energy and implications for electricity supply. 

 
Energy control systems are needed to match supply with demand; hence, power utilities 

and transmission system operators are concerned with the reported temporal variability of 
renewable energy power (POSTnote 2014). Different solutions are available to mitigate this 
concern, for example: the use of ‘spinning reserve’ when demand exceeds generation, and 
curtailment of energy sources when generation exceeds demand – as well as more 
sophisticated control strategies (see Grotz, 2008; Swain et al. 2017; Pinson et al. 2017).  
Both of these solutions result in significant drawbacks: spinning reserves include devices 
such as diesel generators and, therefore, they are potentially polluting and costly. 
Curtailment of energy sources means a reduced income for the owners and may potentially 
discourage further investment in renewable resources. Energy storage may be an alternative 
solution; however, large-scale storage for power grids is presently not widely deployed. 
Therefore, as a result of the variability of renewable energy resources, higher costs are 
expected to be incurred in a future low-carbon electricity system (Slootweg et al. 2003; 
Albadi and El-Saadany 2010; Joos and Staffell 2018).  

 
In addition to variability of electricity supply, the shift of generation from fossil-fuelled 

energy sources to renewable generation creates a concern in relation to system inertia. 
Inertia of a power system is defined as the ability of a system to oppose changes in 
frequency, due to the kinetic energy stored in the rotating masses in synchronous 
generators. In an AC system, any imbalance between electricity supply and demand, will 
result in a change to the frequency; for example, when electricity demand exceeds 
generation, the system frequency will decrease. As a result, utilities and transmission system 
operators are concerned that a continuous decrease in system inertia will compromise grid 
stability (e.g. maximum deviation of 1% is tolerated at a nominal frequency of 50 Hz in the 
UK). Renewable sources that are decoupled from the grid, by means of power converters 
(e.g. solar-PV), do not contribute to system inertia unless specific requirements are 
introduced. For example, in Germany and Denmark (e.g. Joos and Staffell, 2018; Pinson et 
al. 2017), wind energy is contributing to system inertia. Therefore, tidal energy could also 
contribute to regulation of electricity supply. 

 
The periodicity of the tide allows accurate tidal predictions far into the future using 

harmonic analysis or ocean modelling techniques (e.g. Lewis et al. 2017). For hydrokinetic 
turbines, which are used in tidal-stream electricity generation, the power (P) depends on the 
cube of velocity of the current (��) at the site, the density of the fluid (ρ), the swept rotor area 
(A) and its design or “efficiency” (Cp): � = 0.5 ∗ 	 ∗ 
 ∗ �� ∗ �� [Eq. 1]. Following linear wave 
theory for a semi-diurnal system (like the UK), the resource (��) is above 50% of peak flow 
for 67% of the tidal cycle, with the timing of peak flow advances 25.2 minutes each tidal 
cycle. Therefore, tidal energy is often publicised as a predictable and “high-quality” 
renewable energy source (e.g. Lewis et al. 2015).  

 
In strongly semi-diurnal systems, the largest tides of the fortnightly “spring-neap” cycle 

always occur at a similar time of day (see Robins et al. 2015), due to the interaction of the 
phase-locked solar constituent (S2) and the lunar constituent (M2). Furthermore, the 
progression of the tidal wave, as it travels around the UK coastline, means a phase 
difference in the timing of peak tidal electricity production along a coastline could be 
exploited (Hardisty, 2008); for example, three tidal power stations 120° out-of-phase to one 
another would produce a constant amount of power over a tidal cycle for regions with a 
suitable coastline (it is unknown if such tidal systems exists elsewhere in the world as 
research in this area is preliminary, see Neill et al. 2016b). The predictability of tidal power 
could therefore be advantageous for baseload electricity within the UK’s national grid, 
because arrays of tidal-stream turbines could be strategically sited along a coastline to 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
compensate tidal phase differences and produce a firm baseload of electricity (Neill et al. 
2014; 2016). 

 
The spatio-temporal variability of tidal currents can be simulated with ocean models for 

tidal energy resource assessments (e.g. Lewis et al. 2015). Simulated velocities are typically 
resolved every 15 to 60 minutes.  The turbulent closure schemes applied in such models do 
not resolve realistic turbulent fluctuations and, hence, tidal power fluctuations. Turbulence is 
the fluctuation of velocity (��) within a time-mean window (��); thus velocity at a point in time 
(��) is expressed as �� = �� + ��. Turbulence at highly energetic tidal-stream sites is known 
to be relatively high (Thomson et al. 2012); for example, between 12-13% turbulence 
intensity (TI) at turbine hub–height (Milne et al. 2013), with differences noted between the 
flood and ebb tidal phases and surface-wave enhanced turbulence effects (Togneri et al. 
2017; Togneri and Masters 2015).  

 
Turbulent loadings (e.g. Afgan et al. 2013; Blackmore et al. 2016) and turbulence effects 

on thrust and power efficiency (Nishino and Willden 2012), have rightly been a focus of 
research in tidal energy. However, as the industry moves towards commercialization and the 
deployment of grid-connected devices (Magagna and Uihlein 2015), understanding the fine-
scale current speed variability (i.e. turbulence) effects on electricity quality is therefore 
required; for both the development of the industry and integration of renewable energy at 
both national and micro-grid scales. Turbulence intensity at wind energy sites has been 
measured between 10% and 20% (Barthelmie et al. 2005; Barthelmie et al. 2007; Burton et 
al. 2011; Brown et al. 2013) and, therefore, wind turbulence is hypothesized to be slightly 
higher than turbulence at tidal energy sites (Hay et al. 2013; Hay 2018). The combination of 
slightly lower turbulence intensities at tidal-energy sites than wind sites, with the density of 
sea-water being ~800 times larger than air (see Eq. 1), suggests that fine-scale variability of 
tidal-stream energy should be lower than wind energy.  

 
This paper aims to characterize tidal-stream power variability and develop a method that 

can downscale resource model information to efficiently predict electricity production for 
system operators. Using a unique 1 MW tidal-stream turbine data set, described in 
Section 2, we analyzed the variability of electricity and power within a running-average time 
window (Section 3). Our results (Section 4) present the first characterization of the quality of 
tidal-stream generated electricity, together with a method to downscale broad-scale (30 
minute resolution) model data to predict electricity production at 0.5 Hz frequency. Hence, 
we communicate the value of tidal-stream energy in both micro-grid and national-grid 
renewable electricity systems (Section 5). 

 
2. Case study and data  

The tidal-stream energy resource of Orkney (UK) is one of the largest worldwide, recognized 
by the development of the European Marine Energy Centre (EMEC) full-scale tidal test site – 
where the tidal-stream energy device analysed in this study was located. The region has 
been extensively studied (e.g. Goward-Brown et al. 2017), and a number of models exist for 
the region; for example, that of Neill et al. (2014b) which will be applied in Section 4. The 
tidal wave takes around 2.5 hours to propagate in a clockwise direction around the Orkney 
Islands, which generates a strong pressure gradient flow through the Pentland Firth and the 
Firths of Orkney -  tidal straits which link the Eastern-north Atlantic to the North Sea (see 
Figure 1). Tidal currents in the Firths of Orkney exceed 3 m/s in many locations, with water 
depths also suitable for the first generation of tidal turbine developments (Goward Brown et 
al. 2017); see Figure 1.  
 

GE Renewable Energy’s (formally Tidal Generation Ltd) 18 m diameter 1 MW 
turbine, DEEP-Gen IV, was deployed as part of the ETI funded ReDAPT project, in the Fall 
of Warness at the EMEC site (see Figure 1). Real time generator power (measured behind 
the generator within the nacelle) and shore side voltage (measured after the shore 
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transformer) were measured at 50 Hz and 10 Hz, respectively. Power weighted rotor-
averaged velocity and tidal current speed, based on ADCP measurements taken at hub 
height (downstream, i.e. southwest, of the turbine), was measured at 0.5 Hz. The electricity 
generated, measured power and hub height current speed were recorded for a full tidal cycle 
during two dates with similar spring tidal conditions: 26 October 2014 and 26 Nov 2014. 
Further details of the data are given in McNaughton (2015) and Ahmed et al. (2017) and flow 
data is available via the University of Edinburgh’s data share (http://redapt.eng.ed.ac.uk) - 
see Sellar and Sutherland (2016).  

 
Data was provided by GE and has been normalised to protect commercial sensitivity. 

Therefore, figures are presented in this publication as percentages relative to 20% above the 
stated capacity (i.e. maximum power of device, ��, in order to ensure a 1 MW rated power at 
the shore connection) and rated velocity (��), when the instantaneous velocity (��) is 
predicted to provide instantaneous power (��) at the rated turbine capacity (�� = ��). 
Therefore, all data is presented as a percentage relative to the value at rated power: this 

means we express velocity and power respectively as ��� ��� � × 100% and ��� ��� � × 100%. 

 
3. Method and Preliminary Analysis 

All time-series data were linearly interpolated to a common time-series at a frequency of 
0.5 Hz. Some uncertainty in the synchronicity of data-series (of the order of seconds) was 
noted (e.g. McNaughton 2015), but this will not affect our analysis as we explore variability 
from a mean value within averaging windows of the order of minutes to hours. The 
interpolated 0.5Hz time-series of tidal-stream turbine power, shore-side voltage, and current 
velocity (at turbine hub height) allows an investigation into the fine-scale temporal variability 
of tidal-stream energy and potential causes (i.e. mean flow speed, turbulence and waves). 
Characterisation of the distribution of fine-scale turbine power variability, relative to the time-
averaged mean (including sensitivity test to window choice), was performed. The fitted 
distribution of fine-scale turbine power variability allows a statistical method to down-scale 
tidal-stream hydrodynamic resource model information to fine-scale predictions of resource– 
which is presented in Section 4.   

 
The 0.5 Hz (2 cycles per second) time-series of hub height tidal current velocity and 

tidal turbine shaft-power  is shown in Figure 2. The fine-scale temporal variability of tidal 
current and power are highlighted in Figure 2, when compared with 30-minute running 
means (black line of Figure 2). The broader temporal variability of the resource appears to 
be accurately captured using hydrodynamic tidal resource models (e.g. Lewis et al. 2015), 
whilst the fine-scale variability of tidal-stream power is both novel and substantive (see 
Figures 2 and 3). The fine-scale variability of tidal-stream power is clearly shown in the 
power curve of Figure 3, comparing the 0.5 Hz measured power curve with an idealised 
power curve typically used in resource estimation and 30-minute hydrodynamic model data 
(e.g. Lewis et al. 2015). This fine-scale variability in tidal-stream energy, the focus of this 
study, is crucial to understand because it allows systems to be designed to ensure 
renewable electricity can be useful to end users. Moreover, the fine-scale variability of Figure 
2 may be important for uncertainty quantification in resource estimation; thus, improving 
investor confidence in power curve estimation (Figure 3).  

 
It should be noted how the idealised power curve (red line of Figure 3) is similar to 

the power observed at 0.5Hz, even though the idealised power curve is based on a different 
device deployed in a very different tidal environment (Strangford Lough, see Lewis et al. 
2015) and applies 30-minute hydrodynamic model data for current speed (see Eq. 1). 
Therefore, broader-scale and turbulence scales of velocity fluctuations, and the subsequent 
power captured by the turbine, is the difference between the red line and the black dots of 
Figure 3. Finer-scale fluctuations in the 30-minute mean velocity (x-axis of Figure 3) clearly 
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result in fluctuations in power (e.g. see Eq. 1), both above and below the red line as the 30-
minute average velocity is represented in Figure 3 (hence the observed 2-second 
normalised power of Figure 3 are above and below the red line). Some data showed no 
power being measured during high velocity values (~90% to 130% of rated velocity; Figure 
3) – perhaps due to variability in velocity direction resulting in turbine stall. Values of power 
above 100% were also recorded in Figure 3, due to the device rating being associated with 
the shoreside power rather than the turbine rotor shaft power, and hence much data at 
~95% power above rated velocity.  

 
Averaged spectra of the 0.5 Hz data are presented using Fast Fourier Transform 

(FFT) in Figure 4, with power and velocity normalised. These are obtained by computing 
separate spectra for each hour-long subset of the data record, with a half-hour overlap 
between subsets and applying a Hann window to prevent aliasing. Although this FFT 
analysis has limitations, the effect of waves in oceanographic data such as this is routinely 
analysed with FFT (e.g. Lewis et al. 2019) and a clear mode of oscillation is present in 
Figure 4 during a large wave event: There is no significant periodicity to the fine-scale 
variability with the exception of the October time-series: the peak visible in both the velocity 
(panel a) and power (panel c) around 10s (10-1 Hz) coincides with a large wave event. Wave 
data was taken from the ERA interim hindcast data (see Dee et al. 2011) for the 
corresponding model cell, and indicates a daily averaged offshore significant wave height of 
~7 m and mean period of ~10 s for the 26-Oct-14. The apparent effect of waves to power is 
interesting, and Figure 4 implies that the turbine has been able to extract some additional 
energy from the presence of waves, but quantifying this effect is beyond the scope of this 
paper.  

 
To test the sensitivity of our analysis to the choice of averaging window, a  

Kolmogorov-Smirnov test (KS) for goodness of fit (see Massey 1951) was applied with the 
null hypothesis (H) that the two data-series groups come from the same distribution (giving 
an associated P value of confidence in the result). No difference in our results was found 
when using sub-hourly time-averaging windows: see Table 1. Therefore, based on the 
results of Table 1, we find the variability in flood and ebb tidal power significantly different, 
but the October and November dates can be grouped together for analysis if a running 
mean, of the order of minutes, is used.  

 
Differences in the power curve with various moving-average windows, and the 

associated error (difference in the sum of power in the two tidal cycles between the 0.5 Hz 
and the time-averaged power time-series), is shown in Figure 5.  The results of Table 1 and 
Figure 5, along with previous studies of turbulence intensity quantification at tidal-stream 
energy sites (Milne et al. 2013), voltage variability (Larsson 2002; MacEnri et al. 2013) and 
fine-scale wind-power variability (Albadi and El-Saadany 2010), led to a 10 minute moving 
average window being used for analysis in our study (which averages out any wave 
influenced oscillations ) - with data grouped for flood and ebb tides.  

 
The variability of power, relative to the 10-min mean (��), is also expressed as a 

percentage relative to the mean (������) so the distribution of power variability relative to a 
time-averaging window can also be achieved. This variability in observed power, relative to 
the time-averaging window (������), has units of percentage relative to the mean (which 
will therefore be zero, whilst ������ can be negative) see Eq. 2: ������ = 	 !" × 100%		 [Eq. 

2].  Whilst the standard deviation of power within the time-mean window is expressed in 
units of percentage relative to rated power, the power variability (������) is important for 
downscaling resource ocean model information to 0.5 Hz power. All power data was 
therefore included in the distribution of power variability, including outliers when no power 
was recorded even above rated speed (see Figure 2 and 3), because a realistic 
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representation of synthesised power and electricity can therefore be achieved using 
resource model information. 

 
Turbulence Intensity (TI) was calculated using the 10 minute moving mean velocity (��) 

and associated standard deviation (#) of turbulence fluctuations (��) within the moving 
average window using Eq. 3: $% = 	  &� × 100%	 [Eq. 3]. The major impact of energy variability 

on power quality is in relation to the deviation of voltage from the rated value – this will be 
referred to as ‘voltage variability’ in the paper. Voltage variability (F) was calculated as 
normalised root mean squared error associated with the running-mean shoreside measured 
voltage ('") and associated variability ('� − '"* of the shoreside measured voltage; see Eq. 4 
(where b = a+10 mins and n is record length) in line with previous studies of relative voltage 

change (Larsson 2002; MacEnri et al. 2013): + = ,	,∑ (./0.�*1/23/24 		
5 6 ÷ '"6 × 100  [Eq. 4].  

 
4. Results 

Using a 10 minute moving average on the 0.5 Hz data, the mean tidal current and 
associated turbulence intensity (Eq. 3), as well as turbine measured power and voltage 
variability (Eq. 4) was calculated; see Figure 6 and Figure 7 for 26-Oct-2014 and 26-Nov-
2014, respectively. The Kolmogorov-Smirnov test (KS) for goodness of fit results (Table 1) 
indicate the data of the two tidal cycles (Oct and Nov) are similar (at 5% signficance level), 
but significant flood/ebb assymetry is present in both tidal current and turbine power(Figures 
6 and 7). FFT analysis of the 0.5 Hz data (Figure 4) suggests varibility in power around ~10 
seconds, potentially due to waves  and with slightly higher TI values in October (Figure 6), 
the effect is removed with the time-averaging window and hence the similiarity test result of 
Table 1.  
 

In both Figures 6 and 7 the ebb tide appears first in the time series (the conditions 
between zero hours and ~6 hours). The ebb tidal condition has comparatively larger 
associated current speeds than the flooding tide in both dates; with larger broad-scale 
varibility features in the flooding tide (see black line of 10-minute moving average) and 
slightly higher turbulence intensity (TI) values, which is shown in Table 2. No strong linear 
correlation between voltage variability (F), mean flow speed or TI was found (R2 < 9%), with 
the flood and ebb mean F values at ~0.3% (Table 2). A voltage variation below 3% at 1 Hz 
or 0.3% at 8.8 Hz is defined as “tolerable” (MacEnri et al. 2013), which interpolating this to 2 
second data suggests a tolerable level of less than 2.4% voltage variation. Furthermore, 
although some higher F values can be seen in Figures 6 and 7, all F values are well below 
that defined as “tolerable”.  

 
 The hypothesised correlation between current speed variability (defined here as 
Turbulence Intensity, TI) and the variability in tidal turbine power produced is explored 
further in Figure 8, with the linear correlation statistics detailed in Table 3. The strong 
relationship between mean flow speed, TI and variability of tidal turbine produced power 
(������), within the 10-minute running mean, can be clearly seen in Figure 8d. Power 
variability (������) was found to decrease with increasing mean flow speed (Figure 8a), 
largely because it is a percentage of the variability around the mean value and the mean 
power increases with flow speed. However, the more pronounced effect (based on the flood-
ebb distributions in Table 1) of decreasing power variability with increasing flow speed (and 
decreasing TI) on the ebb tides (gradient, m, of Table 3) appears to drive the significant 
differences of the fine-scale power variability between the flood and ebb data (R2 values in 
Table 3). Further, power variability (������) was found to increase with increasing levels of 
TI, as shown in Figure 8c and largely because TI decreases with increasing mean flow 
speeds (Figure 8b); hence the relationship shown in Figure 8d and described in Table 3. 
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A multiple linear regression was performed on the flood and ebb tide grouped data 

when current speed was above ~30% of rated velocity (called the turbine cut-in speed: the 
mean speed at which tidal power starts to be produced); giving the variability of power 
(�	�����), within the 10 minute moving average (as a percentage relative to the mean), with 
respect to mean flow speed (�� as a percentage of rated velocity) and TI. The result of the 
multiple regression is shown in Equations 5 and 6, with an associated R2 of 71% and 77% 
for flood and ebb tides respectively:  ������	(89��:* = 	34.90	– 	0.38�� + 0.52$% + 0.02(�� × $%*			[BC. 5]  
 ������	(�EE* = 	−42.87 + 0.25�� + 9.19$% − 	0.05(�� × $%*			[BC. 6] 
 

Not all variability was captured with a multiple linear regression (Eq. 5 and Eq. 6, and 
Figure 8d), potentially due to turbine behaviour and flow characteristics being measured at 
the turbine hub-height (instead of the entire turbine swept area) - as well as a likely phase 
lag between observed flow variations and power produced by the turbine. Another method is 
therefore required to resolve the fine-scale variability to enable synthetic power production 
models for energy system design. Instead, we explored the distribution of power variability 
(with respect to the 10-min mean power) to understand how to cascade resource 
hydrodynamic model information into fine-scale predictions of electricity production. Indeed, 
bias in the distribution of power variability must be present because there is a clear reduction 
in the net power over the two tidal cycles when using a running average window on the 0.5 
Hz normalised power; as shown in Figure 5c.  
 

The variability of power relative to the 10-min mean (��) and the distribution of power 
varibility within the 10-min running mean of the 2 second data is shown in Figure 9. The 
distribution of the fine-scale variability of power clearly becomes more leptokurtic (sharply 
peaked) with increasing flow speeds in Figure 9; for both flood and ebb tidal conditions the 
power fluctuations become less compared to the mean. However, the shape of the 
distribution in power variability appears to change in Figure 9, which is important to 
understand for bias correction in resource assessment (e.g. see Figure 5c). Characterisation 
of the relative power variability distribution will allow a synthetic power production model to 
be used to represent fine-scale tidal power variability; hence hydrodynamic resource model 
output (typical outputs of 30 to 60 minutes) could be downscaled to predicted power at 0.5 
Hz (of potential use to system operators). 

 
The distribution of tidal velocity and tidal turbine power in Figure 10 shows interesting 

trends when grouped (data grouped between flood and ebb tides – and for tidal current 
speeds: below turbine cut-in speed (i.e. U is ~30% of rated U), between cut-in and rated 
velocity, and above rated velocity). Velocity variance, relative to the time-averaged 10-
minute mean (H̅) (Figure 10a and 10b), was normally distributed, matching a normalised 

Gaussian distribution described by Eq. 7 (where # is standard deviation): J = 	 K
 	√MN 	�0	

OPO�1Q1  
[Eq. 7]. The power variability (relative to the 10-minute mean power) is not normally 
distributed (see Figure 10 and Table 4); hence, there is an over-estimation of energy if we do 
not include the effects of turbulent fluctuation on power (see Figure 5c) and the discretised 
distribution of fine-scale power variability (see Figure 9). The negatively skewed (S) 
distribution of the power variability is shown in Figure 11 and Table 4, alongside the Kurtosis 
(K) of the distribution.   

 
Figure 11 shows how the variability (e.g. standard deviation, # in Fig. 11b) of 

normalised power increases with tidal current speed (U), becoming more negatively skewed 
(Figure 11c) with increasing Kurtosis values (Figure 11d); indicating normalised power 
variability distributions are asymmetric, with heavier distribution-tails and sharper peaks as 
velocity increases – especially pronounced in Ebbing tide data (shown in Figure 10) when 
voltage variability (F) is slightly higher and yet the turbulence intensity is lower (Figure 7 and 
8). The result of the power variability distributions in Table 4 (using the Lilliefors test, with a 
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hypothesis the data is from a normal distributed at the 5% significance level), Kurtosis and 
Skew results for discretised velocity groups, alongside the parameters of the best fitting 
distribution, found fine-scale power variability to best described by the t location scale 
distribution; where distributed velocity groups (H) in a probability distribution (y) is described 
in Eq. 8, with the gamma function (R) and parameters of shape (S), scale (T) and location 
(U); shown in Table 4 (as these parameters, which describe the distribution’s shape, vary 
with current speed): 

 J = V	�WXY1 �
√ZNV	�W1� 	[

Z\	�OP	]^ �1
Z _

0	�WXY1 �
	   [Eq. 8]. 

 
Applying this t location scale distribution (Eq. 8), with the shape (S), scale (T) and 

location (U) parameters (shown in Table 4, and Figure 12 for finer discretisation of velocity 
groups, i.e. 10% U groups), allows synthetic power to be generated using low temporal 
resolution velocity data. Therefore, a fine-scale tidal-stream turbine power time-series can be 
generated using low resolution tidal current data (i.e. from a hydrodynamic resource model), 
which can be used for electrical system and grid integration analysis. To demonstrate this 
synthetic power production model, a realistic fine-scale tidal power time-series (at 2 
seconds) was generated using tidal velocity data output from a hydrodynamic tidal-resource 
model (of Neill et al. 2014b) at a frequency of 30 minutes, and the idealised power curve 
presented by Lewis et al. (2015) - see Figure 3.  

 
The synthesised fine-scale power model is compared to that measured for the 26-

Nov-2014 data in Figure 13. Although the 30 minute hydrodynamic model tidal velocity data 
has none of the characteristics of the tidal-stream energy device (apart from cut-in and rated 
power values; see Figure 3), the distribution of fine-scale power are similar; as shown in the 
“QQ” (quantile-quantile) plot of Figure 13.d, which shows the two distributions are similar (at 
the 5% significance level) with a KS test result of 0.03 (P value <0.01). Therefore, using a 
synthetic power production model (using t location scale distribution, with the shape (S), 
scale (T) and location (`) parameters of Table 4, and in Figure 12), fine-scale realistic power 
can be predicted at 0.5 Hz based on 30 minute velocity data; an important step for grid-
integration within electrical systems. 
 

5. Discussion 
Rapid fluctuations in power generated by renewable energy sources are known to cause 
problems to power system operation because they result in power unbalance and power 
quality issues (e.g. Ellis et al. 2015). Fine-scale variability of power from a tidal-stream 
turbine was observed for a site in Orkney (Figure 3). This variability is shown to have a bias, 
because there is a reduction in the net power in two tidal cycles when the averaging period 
is increased (Figure 5c). However, fine-scale power variability had only a small effect on 
resource estimates (Figure 5), with less than 1% error in the energy harvested by the tidal 
turbine for frequencies typical of resource modelling studies. Hence, a standardized device 
power curve can be applied to coarse hydrodynamic resource model data for accurate 
resource assessment without the need to include fine-scale resource variability (i.e. 
turbulence) or device characteristics (beyond swept area, cut-in and rated speed and 
power). Furthermore, fine-scale power variability (see Figure 3) can be statistically 
characterized, and downscaled, for electricity supply design strategies (Figure 13). 
Therefore, this study provides the first discussion of the power and elec bring produced by 
tidal-stream turbines which could be undervalued in the current renewable energy support 
stratergies. 
 

A strong linear relationship was found between power variability, associated with a 
10 minute running mean, and both turbulence intensity and mean flow speed (see Table 2). 
Power fine-scale varibility characteristics were consistent for a wide range of time-averaging 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
windows (Table 1), but there were clear differences between the flooding and ebbing tide 
data. For example, by applying the multi-regressional result in Equations 5 (flooding) and 
Equation 6 (ebbing), fine-scale rotor-power varibility was estimated to be ±20% (flood tide) 
and ±24% (ebb tide) for the tidal-stream turbine operating in a 2.5m/s mean flow with a 
Turbulence Intensity of 10%. Although very few studies exist, for the two dates when tidal 
power was measured (Table 1), the observed fine-scale power variability was similar to that 
measured in other tidal turbines at different locations (e.g. Khan et al. 2008; MacEnri et al. 
2013). Our observations of fine-scale turbine power variability were higher than those 
measured in a lower turbulence environment (see MacEnri et al. 2013; Thiringer et al. 2011), 
yet average TI values measured in our study were lower than those measured at another 
tidal-stream energy site (Milne et al. 2013; Togneri and Masters 2015): 9-12% compared to 
12-13%.  

 
Flood-ebb asymmetry was found in the tidal currents, with faster ebb current speeds 

and higher turbulence measurements (mean TI of ~9% during the ebb and 12% during the 
flood; Table 2), matching those simulated in the Fall of Warness by Neill et al. (2014b), and 
other sites (e.g. Milne et al. 2013; Togneri and Masters 2015). Fine-scale power variability 
was higher during the flood tide, likely because current speeds are lower then and power 
variability decreased with high current speeds (above rated velocity, when power capping 
also occurred; see Figures 9 - 11). Moreover, an oscillation in the mean current speed and 
power during the flooding tide was observed for both dates (Figure 6 and 7), which may also 
explain the increase in flood-tide power variability. This broad-scale oscillation feature of the 
flood tide was not predicted by the Neill et al. (2014b) model but could be caused by an eddy 
feature, perhaps generated by a neighboring bathymetric or topographic feature and then 
migrating through the site as it is sheds and persists (e.g. Neill et al. 2012). This variability in 
flow direction may be the cause of some recorded power variability, and future work ought to 
resolve current direction as well as magnitude. For example, zero power was recorded for 
some instances of high current speeds (Figure 2C and Figure 3), which may be due to 
changes in tidal current direction causing turbine blade stall, although this event occurred 
during a period of large waves and thus could be due to wave-tide interaction processes 
(see Lewis et al. 2014).  

 
The Fast Fourier Transform (FFT) of tidal turbine power (Figure 4) produced similar 

results to those by Thiringer et al. (2011), with two exceptions: Firstly, the spectral peak 
associated with a ~10 second period, in both power (Figure 4a) and hub height current 
speed (Figure 4c) for the October data. Secondly, the temporal resolution of the power 
measurements in this study were not high enough to resolve the modes of power oscillation 
observed by Thiringer et al. (2011) below 2 seconds, which were potentially due to the 
turbine blade passing the support structure (Mason-Jones et al. 2013). The spectral peak 
within the October data coincided with a large wave event offshore of the site (based on 
ERA-interim data the 0.125° resolution re-analysis product; see Dee et al. 2011), and could 
be scope for future research as waves are known to affect the tidal resource (Lewis et al. 
2014) and measurements of turbulence (Togneri et al. 2017). Indeed, the results of our 
power quality analysis may be considered location- and device-specific (e.g. rotor speed 
control mechanisms, such as pitch control, may differ between devices; Georgilakis 2008), 
and therefore further work is needed to assess the quality of tidal-stream electricity at a 
variety of sites in comparison to other forms of renewable energy. Further work is also 
needed to understand the effect of fine-scale tidal turbine power variability when aggregated 
to the power output from an array of devices (see MacEnri et al. 2013). For example, 
variability in wave energy is well known but can be mitigated by a number of spatially 
separated sites (Fairley et al. 2017).  

 
 The estimated tidal turbine voltage variability (F) matches that measured by MacEnri 
et al. (2013) for the SeaGen tidal device, with values within the limit defined as tolerable (no 
strong linear correlation between F, mean flow speed or TI was found, and mean F values 
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were ~0.3%); especially considering the relative large contribution of a 1 MW turbine to the 
Orkney grid (~5 MW). Therefore, tidal energy voltage and power variability is less severe 
than reported in other forms of renewable energy (Blavette et al. 2011; Kovaltcgouk et al. 
2016). Although further work is needed to fully assess the impact of tidal energy on power 
quality, tidal energy is likely to be more dispatchable than other renewable sources due to 
the higher predictability.  
 

The power variability observed in this study agrees with Uihlein and Magagna (2016), 
who report the variability of tidal energy to be much better than other forms of renewable 
energy, such as wind (e.g. Potter and Negnevitsky 2006) and wave energy (e.g. Blavette et 
al. 2011; Kovaltcgouk et al. 2016). Indeed, storage mechanisms to mitigate the effects of 
renewable power variability (such as flywheel and batteries; e.g. Khan et al. 2011; Rahimi et 
al. 2013) can also be applied to tidal energy; for example, as tidal energy is surrounded by 
water, novel pumped-hydro (Rahimi et al. 2013) and hydrogen (Ren et al. 2017) storage 
solutions could be incorporated.  
 

The characterization of tidal power variability, for storage solution design and 
optimization, is clearly an important research question that future studies should aim to 
resolve (e.g. the size of storage required for electricity users may not be large in comparison 
to other renewable forms). Indeed, tidal energy is considered one of the more expensive 
renewable electricity forms (Neill et al. 2018), and energy storage would increase costs 
further. Therefore tidal energy integration may appear less expensive when the costs of both 
technologies are included (i.e. Levelised Cost of Energy, storage and grid integration 
solutions) – especially within micro-grids with a high penetration of intermittent and less 
controllable renewable energy forms (for example, 100% renewable energy micro-grids for 
remote communities in fuel poverty) 
 

Another method to mitigate the impact of fluctuations in renewable power supplied to 
the power grid, as well as design effective system control measures, is to accurately predict 
power variability. Methods of predicting power variability are well established in the wind 
industry, by using high-fidelity and computationally expensive Large Eddy Simulation (LES) 
models to simulate fine-scale wind field progression through a site, and thus predict 
fluctuations within the wind resource (e.g. Liu et al. 2011). Tidal energy is often stated to be 
predictable, due to the periodicity of the tide (e.g. Lewis et al. 2017), yet predictions of 
turbulent fluctuations in the tidal current would require similar LES methods. Another method 
of predicting fluctuations in the tidal energy resource could be established with a power 
variability probability density distribution, as has also been applied in the wind industry (e.g. 
Ellis et al. 2015). 

 
In our study, tidal velocity characteristics did not fully, and directly, characterize the 

observed power variability (Table 2) – potentially as velocity measurements made at hub 
height cannot represent flow characteristics throughout the entire turbine swept area. 
Therefore not all variability observed in Figure 3 can be quantified due to instrument 
uncertainty and the lack of high-resolution flow data throughout the swept area of the 
turbine, which should be investigated in future studies; however the observed variability of 
measured power can be statistically characterized (Figure 10). Fine-scale power variability 
distributions enable a simple statistical prediction method for energy supplied by a wind 
turbine based on synoptic (i.e. mean flow) information (e.g. Rahimi et al. 2013; Ren et al. 
2017), noted as computationally less expensive (e.g. Ellis et al. 2015), and allow 
comparisons of power quality to be made between wind and tidal turbines.  
 

The tidal turbine power variability (shown in Figure 9 and 10) was found to be 
different to that of wind turbines. This variability can also clearly be seen in Figure 3, and the 
analysis of power variability in Figure 10 (~60%) finds the distribution is similar to that shown 
by Ren et al. (2017), but only the resource (current speed variability), not power, matched a 
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Gaussian distribution found by Ren et al. (2017). Further, the Weibull or Rayleigh 
distributions of power reported by other authors (e.g. Rahimi et al. 2013; Saqib and Saleem 
2015) were not found in this study. Furthermore, wind power variability estimates appear to 
be an order of magnitude greater than observed in our tidal turbine data, due to the Weibull 
or Rayleigh distributions (see Rahimi et al. 2013; Saqib and Saleem 2015).  
 

Fine-scale tidal turbine power variability was found to be well described by the t 
location scale distribution; where distributed velocity groups (H) in a probability distribution 
(y) are described in Eq. 8, with the gamma function (R) and parameters of shape (S), scale 
(T) and location (U); shown in Table 4. Therefore, the likely tidal power at 0.5 Hz can now be 
predicted based on 30-minute-averaged current speeds output from an ocean model (or 
using a tidal prediction algorithm), together with knowledge of cut-in and rated velocity of the 
tidal turbine (the idealised power curve of Lewis et al. 2015 assumes a device efficiency, Cp, 
of 60% within Equation 1). When using the 30-minute hydrodynamic model simulations of 
Neill et al. (2014b) and an idealised power curve of Lewis et al. (2015), the fine-scale power 
variability model performed well (R2 85% and RMSE of 14%, but with an energy difference of 
less than 0.7% for the tidal cycle), and produced a statistically similar distribution (see Figure 
13) of power variability. Therefore, the variability observed in Figure 3 can be resolved, and 
coarse hydrodynamic resource model data can be statistically downscaled to provide 
accurate resource predictions, even at very high temporal resolution and with a idealised 
power curve based on a different tidal turbine (twin rotor MCT device – see Lewis et al. 
2015). Considering the current high cost of tidal-stream energy, compared to other temporal 
variability renewable energy sources, the predictability of tidal-stream energy could be an 
asset in high penetration renewable energy distributed electricity supplies. 

 
Future work could improve on the simple statistical model presented here 

(downscaling resource to 0.5 Hz power), by increasing the observational data and the 
dependency of fine-scale turbulent fluctuations (i.e. the temporal clustering of power 
variability). In the sampling of the statistical distribution, to downscale hydrodynamic model 
30-minute data to 2 second power production, independence between data was assumed 
(i.e. a turbulent fluctuation synthesised at time t will not influence the next iteration at time 
t+δt). Future work should also aim to validate this fine-scale power prediction tool for 
different devices and sites, as well as exploring the use of power supply prediction in micro 
and national-scale grids to determine the true value of tidal power within a future renewable 
energy mix.  
 

6. Conclusion: 
The temporal variability and predictability of tidal-stream power was measured from a grid-
connected 1 MW turbine in a highly energetic tidal site. For example, voltage variability was 
well within tolerable limits and no significant effect to estimates of annual mean energy yield 
were found (i.e. 1% reduction in energy calculated for typical resource assessment 
frequencies). Therefore, resource uncertainty due to fine-scale power variability appears low 
for tidal-stream energy, and idealised power curves (with accurate cut-in and rated flow 
speeds) are suitable for resource assessments – which we show can be statistically 
downscaled to fine-scale (2 Hz) power prediction. The value of tidal energy in power 
systems therefore appears to be undervalued, since this resource is perceived as being 
expensive (e.g. Levelized Cost Of Energy), without accounting for predictability. A skillful, yet 
simple, probability distribution model of power variability was applied to 30-minute 
hydrodynamic model data (tidal velocity at hub height) using the t location scale distribution, 
with parameters based on mean flow speed (which also described turbulence 
characteristics). Therefore, synthetic turbulence and fine-scale tidal turbine power variability 
model can be applied to low-temporal resolution resource data, with an idealised power 
curve, for a computationally efficient prediction of tidal-stream power.   
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TABLES: 
 
Table 1. Similarity of distributions from grouped t idal-stream turbine data. The result 
of a two-sample Kolmogorov-Simrnov test (at 5% sign ificance level); displayed as H 
(the result given as diff or same for the two group s tested), P (asymptotic p-value 
between 0 and 1), and KS (the test statistic as cri tical value).  

  Velocity (various running means) Power (various ru nning means) 

Two groups 
tested  

raw 
2s 

data 

10m 
mea

n 

15m 
mea

n 

30m 
mea

n 

60m 
mea

n 

raw 
2s 

data 

10m 
mea

n 

15m 
mea

n 

30m 
mea

n 

60m  
mea

n 

2 dates 
(all tides) 

H diff sam
e 

sam
e 

sam
e 

sam
e diff sam

e 
sam

e 
sam

e 
sam

e 
P 0.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 

KS 0.05 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 

Floods 
and ebbs 

H diff diff diff diff diff diff diff diff sam
e diff 

P 0.00 0.04 0.00 0.42 0.00 0.00 0.02 0.00 0.38 0.00 
KS 0.22 0.23 0.49 0.20 0.70 0.23 0.25 0.40 0.20 0.70 

Floods: 
Oct and 

Nov 

H diff sam
e 

sam
e 

sam
e 

sam
e diff sam

e 
sam

e 
sam

e 
sam

e 
P 0.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 

KS 0.1 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 

Ebbs: 
between 
Oct and 

Nov 

H diff sam
e 

sam
e 

sam
e 

sam
e diff sam

e 
sam

e 
sam

e 
sam

e 
P 0.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 

KS 0.05 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 
 
Table 2. Mean values of variblity associated with t wo tidal cycles of tidal-stream 
turbine data, also split into flooding and ebbing t ides: voltage variability, calculated 
using the varibility of 0.5 Hz measured voltage wit hin a 10-min running mean (Eq. 4), 
and Turbulence Intensity, calculated using varibili ty within a 10-min running mean of 
the 0.5 Hz flow speed measured at hub height (Eq. 3 ).  

 voltage variability (F)  Turbulence Intensity (TI)  
 flood ebb flood Ebb 

26-Oct-14 0.31% 0.33% 11.7% 11.3% 
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26-Oct-14 0.29% 0.33% 9.7% 9.4% 

 
Table 3: The linear regression data between 10-minu te mean flow speed ( b�), 
Turbulence Intensity (TI calculated from Eq. 3) and  10-min tidal turbine power 
variability ( c	defgh calculated from Eq. 2), for the tidal-stream turbi ne power quality 
data described in Figure 7; when flow speed >35% ra ted. The gradient (m) and 
intercept (c) of the linear regression within form y=mx+c with associated R 2 value, and 
data grouped by date and tidal stage (flooding or e bbing tidal condition). 
Data tested Grouped data Gradient (m) Intercept (c) R2 (%) 

�	����� (y as %) and �� (x as % rated) 
(Figure 8a) 

floods Oct -2.24 258 35 
flood Nov -0.78 96 48 
ebbs Oct -0.46 62 71 
ebbs Nov -0.63 78 39 

Floods -0.39 55 63 
Ebbs -0.75 95 43 

TI (y) and �� (x) 
(Figure 8b) 

floods Oct -0.07 16 62 
flood Nov -0.04 12 35 
ebbs Oct -0.11 20 67 
ebbs Nov -0.11 19 49 

Floods -0.05 14 43 
Ebbs -0.10 19 50 

�	����� (y) and TI (x) 
(Figure 8c) 

floods Oct 30.87 -257 51 
flood Nov 3.68 -7 6 
ebbs Oct 22.77 -173 63 
ebbs Nov 6.66 -34 90 

Floods 4.17 -17 54 
Ebbs 6.98 -38 75 

 
Table 4. The 10-minute probability distribution inf ormation of 0.5 Hz normalised tidal 
turbine power variability for two tidal cycles, and  also grouped by tidal current speed, 
with velocity (U) below turbine cut-in speed (U<30%  of rated velocity, when no power 
is produced), U between cut-in (30%) and rated turb ine velocity (100%), and when 
current speeds are above rated velocity of the turb ine (U>100%). The distribution that 
closest matches that observed is described and the KStest result given (with 
associated P-value), and the parameters required to  describe this distribution given.   

  Velocity (U) Power (P) 
Grouped data result (based on 

velocity U<30% 30%<U<
100% U>100% 30%<U<

100% U>100% 

Flooding 
tide 

Mean (H̅) -0.05 0.00 0.00 0.00 0.00 
S.D. (standard 
deviation, #) 

3.96 6.95 8.86 7.56 10.22 

Kurtosis (K) 3.09 3.43 3.12 6.07 4.16 
Skewness (S) 0.11 -0.10 -0.09 0.58 -0.90 

KStest result and p-
value (in brackets) 

0.01 
(0.07) 

0.01 
(0.01) 

0.01 
(0.02) 

0.11 
(0.00) 

0.16 
(0.00) 

Closest 
distribution: normal normal normal T-

location 
T-

location 
location (U) n/a n/a n/a -0.26 2.09 
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scale (T) n/a n/a n/a 4.01 5.34 
shape (S) n/a n/a n/a 2.04 1.86 

Ebbing 
tide 

Mean (H̅) 0.09 0.00 0.00 0.00 0.00 
S.D. (standard 
deviation, #) 

4.78 7.47 8.08 7.44 11.67 

Kurtosis (K) 3.41 3.53 3.46 5.41 14.87 
Skewness (S) 0.29 -0.07 -0.29 0.17 -1.58 

KStest result and p-
value (in brackets) 

0.04 
(0.00) 

0.02 
(0.00) 

0.02 
(0.00) 

0.07 
(0.00) 

0.24 
(0.00) 

Closest 
distribution: normal normal normal T-

location 
T-

location 
location (U) n/a n/a n/a -0.18 0.30 
scale (T) n/a n/a n/a 5.01 2.29 
shape (S) n/a n/a n/a 3.18 1.14 

 
 
 
Figure Captions: 
Figure 1. The location of the Fall of Warness in th e Orkney Islands (panel a), in 
Scotland, UK (panel b) where the EMEC site is, and a grid-connected 1MW tidal-
stream turbine was installed. 
  
Figure 2. The 0.5 Hz hub height tidal current and t idal turbine power, normalised to the 
rated power conditions and with a 30 minute moving averaging (black line), for a tidal 
cycle in October 2014 (panel a and c) and November (panel b and d).  
 
Figure 3. The normalised 0.5 Hz measured power curv e for the two tidal cycles in 2014 
compared to an idealised power curve (red line of L ewis et al. 2015) used in 
hydrodynamic model resource estimation. 
 
 
Figure 4. Fast Fourier Transform analysis of the no rmalised and smoothed 0.5 Hz hub 
height tidal velocity (U) and turbine measured powe r (P) for two tidal cycles: one on 
26-Oct-14 (panels a and c) and one 26-Nov-14 (panel s b and d). 
 
 
 
Figure 5. The observed variability of the 0.5 Hz me asured power curve and various 
time-average windows (panel a). The standard deviat ion of the associated time-
averaged power (P) and velocity (U) is shown in Pan el b, and the associated error (as 
a percentage) in panel c: this shows the reduction in the sum of the power time-series 
using time-averaged data for the two tidal cycles c ompared to the 0.5 Hz data. 
 
 
Figure 6. Tidal-stream power and turbine produced e lectricity quality for the 26-oct-
2014 tidal cycle. The hub-height tidal current spee d measured at 0.5 Hz, with the 10 
minute moving average (black line) is shown in pane l a. The associated turbulence 
intensity (TI) shown as a blue line in panel b, wit h tidal cycle average as a black line 
(flood and ebb means are dashed lines, with no dise rnable difference at this scale). 
The 0.5 Hz turbine measured power and 10 minute mea n (black line) is shown in panel 
c. The shore-side measured voltage variability (V v ariability) shown as a red line in 
panel d, with tidal cycle average as black line, wi th flood and ebb mean values as 
dashed line. 
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Figure 7. Tidal-stream power and turbine produced e lectricity quality for the 26-nov-
2014 tidal cycle. The hub-height tidal current spee d (panel a) measured at 2 secondsz, 
with the 10 minute moving average (black line). The  associated turbulence intensity 
(TI) shown as a blue line in panel b, with tidal cy cle average as a black line (flood and 
ebb means are dashed lines, with no disernable diff erence at this scale). The 0.5 Hz 
turbine measured power and 10 minute mean (black li ne) is shown in panel c. The 
shore-side measured voltage variability) shown as a  red line in panel d, with tidal 
cycle average as black line, with flood and ebb mea n values as dashed line. 
 
 
Figure 8. The relationship between 10-minute averag ed tidal-stream turbine data and 
grouped by date (26-Oct-14 and 26-Nov-14) and flood  (FD) or ebb (EB) tidal condition 
(see legend). Mean flow speed and 10-min tidal turb ine power variability ( c	defgh 
calculated from Eq. 2) shown in panel a; mean flow speed and Turbulence Intensity (TI 
calculated from Eq. 3) shown in panel b; power vari ability ( c	defgh) and TI shown in 
panel c. All 10-min data is shown in panel d as the  relationship between power 
variability and TI, with mean flow speed shown as c olours. 
 
 
Figure 9. The probability distribution (coloured sc ale) of the relative (compared to the 
mean) variability of tidal-turbine power ( ci), within a 10-minute moving average, 
compared to the flow speed, for the tidal turbine d ata of the 26-Oct-14 and 26-Nov-14 
and grouped into flood (a) and ebb (b) and all (c) tidal conditions. 
 
 
Figure 10. The probability distributions of the 10- minute running mean data grouped 
by flow seed conditions: (1) flow speeds less than cut-in speed of turbine (U<30% of 
rated speed); (2) flow speeds between cut-in and tu rbine rated speed (cut-
in<U<100%); (3) flow speeds greater than turbine ra ted speed; shown as red, blue and 
black lines respectively with thin dashed lines con necting data points (circles) with 
the respective normal distribution (normalised) sho wn as thicker solid line. Flooding 
tide flow speed (panel a) and ebb tide flow speed ( panel b) distributions are shown 
with respective turbine power distributions (panel c and d respectively), with the 10-
minute running mean power curve show in in panel e.   
 
 
Figure 11.  The variability associated with the nor malised 10-min moving window 
power average, measured at 0.5 Hz from a tidal turb ine for two tidal cycles. The 10-
min mean power curve for all data, and grouped into  flooding and ebbing tides (panel 
a), with the standard deviation (S.D.), Skewness an d Kurtosis of the power variability 
distributions in panels b, c and d respectively; an d discretised to the nearest 10% 
velocity (U) group (based on rated tidal velocity o f the turbine *i.e. when 10-min mean 
U is 100% of rated U). 
 
 
Figure 12. the three parameters used to describe th e t-location scale distribution of 
0.5 Hz power, when using a 10-min moving average an d normalising the power by 
rated velocity and the variability around the mean – grouped by flood and ebb tide for 
two tidal cycles (26-Nov and 26-Oct 2014), with dat a normalised by rated velocity and 
power. 
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Figure 13. The synthetic fine-scale power produced from a tidal turbine. The 0.5 Hz 
observed (grey shaded) and 30min frequency hydrodyn amic model predicted (red 
line) hub-height tidal current speed in panel a, wi th the observed 2Hz tidal-turbine 
power in panel b (with red line a 30-min moving ave rage). Panel c shows the 30-
minute hydrodynamic resource model power time-serie s (calculated using idealised 
power curve of Figure 2) and the synthesised 0.5 Hz  power (grey; calculated applying 
the t-location scale distribution parameters of Figure 11), with the si milarity of the 0.5 
Hz synthesised power (P) and that observed (P) in p anel d.  
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• Rotor-shaft power and shore-side voltage from a 1MW tidal-stream turbine analysed 
• Tidal power temporal variability (sub 10-minutes), was considered low 
• Fine-scale temporal variability did not affect present resource assessment methods 
• Statistical model successfully downscaled broad-scale tidal resource model data  
• Predictability and quality of tidal-stream energy may be undervalued at present 


