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1 

Polyculture affects biomass production of component species but not total standing biomass and soil 1 

carbon stocks in a temperate forest plantation 2 

3 

Abstract 

4 

Key message: Overyielding of stand biomass did not occur in a tree polyculture comprised of Betula 

5 

pendula, Alnus glutinosa and Fagus sylvatica selected for contrasting traits. This was due to antagonistic 

6 

interactions between the component species. Fine root dynamics and soil C stocks were unaffected by 

7 

species mixture. 

8 

Context: Increasing CO2 fixation in tree biomass through afforestation and forest management actions has 

9 

potential for cost-effective climate mitigation. The influences of tree mixture on biomass production and 

10 

subsequent soil C accumulation in polyculture still remain uncertain. 

11 

Aims:  We studied the polyculture of Alnus glutinosa (L.) Gaertn, Betula pendula Roth and Fagus sylvatica 

12 

L. in a plantation forest to examine the effectiveness of species mixtures as a tool for increased biomass 

13 

production and soil C accumulation. 

14 

Methods: Tree biomass was estimated by developing species-specific allometric models and three years 

15 

tree measurement. Fine root biomass and production were estimated by root coring and root-mesh methods. 

16 

The ‘Relative Yield of Mixture’ approach was used to examine the mixture effect. 

17 

 Results: In mixture, an additive effect was observed in A. glutinosa (13% increase in basal diameter 

18 

relative to the monoculture), however, there was no overall effect of mixture on total standing biomass due 

19 

to the suppression of F. sylvatica (2.75 g m-2 reduction in woody biomass). Fine root biomass production 

20 

showed no mixture effect. The quantity and quality of soil C (top 0.5 m) was not affected by tree mixture. 

21 

Conclusions: We conclude that the contrasting growth responses of the A. glutinosa, B. pendula and F. 

22 

sylvatica in polyculture resulted in no overyielding of standing biomass despite the complementary traits of 

23 

the component species. 

24 

25 

Introduction 

26 

Afforestation and reforestation are recommended as low-cost strategies to mitigate the anthropogenic 

27 

elevation of CO2 and the associated global impacts of climate change (Valatin and Price, 2014). Increased 

28 

tree growth and biomass production due to higher tree species diversity, has been reported by some 

29 

investigators, indicating positive impacts on the storage and sequestration of atmospheric C in forest 

30 
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2 

ecosystems (Bielak et al. 2014; Gamfeldt et al. 2013; Hulvey el al.2013). In plantation forestry, numerous 31 

management tools help to maximise growth and biomass production. These include species selection (Nord-32 

Larsen and Meilby 2016; Aravanopoulos, 2010), tree composition and diversity (Belote et al. 2011; 33 

Pretzsch et al. 2010), plantation design (Kunert and Cardenas 2015; Goelz, 2001), stand density (Vanclay, 34 

2006) etc. Nonetheless, our mechanistic understanding of species interactions within plant communities is 35 

poor and the degree to which species polyculture enhances biomass production and contributes to ecosystem 36 

C stocks remains unclear. 37 

The potential advantage of species interactions in polyculture (in terms of biomass growth when compared 38 

with monoculture) involves competitive reduction and facilitation mechanisms (Forrester et al. 2005). 39 

Nonetheless, additive/antagonistic mixture effects resulting in no change/lower biomass production in 40 

polyculture vs. monoculture may occur due to lack of sufficient complementarity or through competition 41 

between species (Pretzsch et al. 2010; Kelty and Cameron 1995). In a recent study, Tobner et al. (2016) 42 

reported that 80% of the diversity issues in mixed species plantations were driven by the selection effect and 43 

the remaining 20% were influenced by complementarity effect in a young tree diversity experiments 44 

(www.treedivnet.ugent.be). Species density and the ratio of component species in polyculture can influence 45 

the interspecific interactions and ultimately affect stand development (Kelty, 2006). Similarly, a decrease in 46 

competition-reduction was reported by Pretzsch et al. (2012) when different spatial mixing patterns were 47 

used in a polyculture stand of Picea abies and Fagus sylvatica. These results indicate that biomass 48 

overyielding may not be achieved in polyculture due to inappropriate silvicultural interventions (Vanclay, 49 

2006). Like aboveground biomass, polyculture can influence the biomass and vertical distribution of fine 50 

root due to niche complementarity (Tobner et al. 2013). For example, Laclau et al. (2013) reported that 27% 51 

higher total fine root biomass in a mixed stand of Eucalyptus grandis and Acacia mangium than in 52 

monoculture following a replacement series (50:50) in a 5-year-old mixed plantation. Contrasting results of 53 

no over-yielding in fine root biomass were observed by Jacob et al. (2014) in an 8-year-old temperate mixed 54 

forest of Picea abies, Pseudotsuga menziesii, Fagus sylvatica, Quercus robur. However, it is not clear 55 

whether the belowground responses synchronize the above ground biomass interactions, because only few 56 

studies addressed above and belowground simultaneously. Thus, a comprehensive assessment of above- and 57 

belowground tree biomass is crucial for a better understanding of the role of tree polyculture on ecosystem 58 

C stocks. 59 
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Tree species identity can enhance soil C stock through aboveground litter production and fine root turnover 60 

under the influence of soil and site characteristics. The magnitude of C inputs to soil by above ground litter-61 

flux may depend on the quality and quantity of litter, biodegradation and soil properties (Jandl et al. 2007). 62 

Dead roots and rhizodeposition of tree root systems are likely more potential to stabilize soil C than 63 

aboveground litter due to slow decay rate and mineral interactions (Vesterdal et al. 2013). In addition, many 64 

previous studies reported that the stock and stability of soil C under these processes fluctuate over stand age 65 

(Chen et al. 2013). In general, most of the factors affecting C inputs are species specific, therefore the 66 

impacts of tree plantation on soil C storage are highly variable depending on the species selection. 67 

Similarly, the effect of species mixture on mineral soils C of new plantings is inconsistent. For example, 68 

Forrester et al. (2013) reported the positive influence of an A. mearnsii and E. globulus admixture on soil C 69 

stock in a young plantation forest. However, Wang et al. (2009) found no significant differences in soil C 70 

under mixed plantation of Chinese fir (Cunninghamia lanceolata (Lamb.) and broadleaved Alnus 71 

cremastogyne Burkill in an afforested land after 15 years. Contrasting results indicate that the link between 72 

tree plantation and soil C might be regulated by multiple spatial and temporal factors including tree 73 

functional traits. 74 

Many earlier studies on mixture effect examined the interactions between two component species (Forrester 75 

et al. 2005; Laclau et al. 2013; Bielak et al. 2014). However, a three species interaction is more challenging 76 

because of the variability in competition and growth rates. In the present study, we used two fast-growing 77 

species with a late successional tree in the polyculture stand to study whether the interactions of these 78 

contrasting traits affect the biomass production and soil C stocks compared to monoculture conditions. 79 

Assessing forest biomass currently lacks methodological robustness. Since our study was confined to a 80 

single location, however, the traditional approach of tree harvesting was followed to estimate aboveground 81 

biomass, which is a more reliable method than others (Weiskittel et al. 2015). We measured litter fall to 82 

evaluate the link between active biomass and soil organic C stock under the various species compositions. 83 

The study was designed to investigate whether the polyculture of Betula pendula Roth,  Alnus glutinosa (L.) 84 

Gaertn, and Fagus sylvatica L. increases the accumulation of tree biomass and affect soil C stocks. We 85 

hypothesized that i) combination of trees having different functional traits produces more woody and fine 86 

root biomass in polyculture than monoculture of each species. We predicted that the growth of each species 87 

would be increased in polyculture (species level), which would eventually increase standing biomass (stand 88 

level). ii) Establishment of forests comprised of tree polycultures positively affects the soil organic C stock. 89 
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 Materials and Methods 90 

 Study sites and soil  91 

Henfaes Research Centre, the research station of Bangor University, is located in the village of 92 

Abergwyngregyn, 12 km east of Bangor City, North Wales, UK (geographic position 53o14 N, 4o01 W and 93 

National Grid: SH 653  741 GB). The soil developed under more or less well-drained conditions 94 

(noncalcareous) and from unconsolidated parent materials, traditionally grouped in Britain as Brown earth 95 

(Clarke, 1940). This is classified as Dystric Cambisols according to the FAO system and recognized as the 96 

Rheidol series (Teklehaimanot et al. 2002). The topsoil is slightly acidic (pH 5.4), loamy in texture, brown 97 

and originated from glaciated shales, sandstone and mudstone at the upper portion and from glaci-fluvial 98 

deposits of clay, silt, sand and gravels at the lowland areas. The climate of the area is Hyperoceanic, and the 99 

seasonal temperature is varying between -3 to 10 °C in winter and 12 to 25 °C in summer; the mean annual 100 

rainfall is about 1000 mm (Campbell Automatic Weather Station, Campbell Scientific Ltd, Shepshed, UK). 101 

 102 

Afforestation  103 

The BangorDiverse site was established on 2.36 hectares of former agricultural land in March 2004, with a 104 

range of broadleaved tree species. The site consists of two adjacent blocks (Figure 1) that were previously 105 

used for growing oil seed rape and as a tree nursery. Previous to that the area was grassland.  The plantation 106 

fields were established in four replicated plots of single species or two and three species mixtures of Alnus 107 

glutinosa L., Betula pendula Roth, Fagus sylvatica L., Fraxinus excelsior, Acer pseudoplatanus L., 108 

Castanea sativa Mill., and Quercus robur L. In the present study, we used A. glutinosa, B. pendula and F. 109 

sylvatica, which were selected due to their contrasting shade tolerance, successional chronology and to 110 

represent a range of taxonomic, physiological and ecological types. Two replicated plots of each species 111 

were sited in each block (hence four plots per species) and the minimum distance between any two plots of 112 

the same composition was 35 m. The site was planted with 60 cm saplings of each species with an inter-tree 113 

spacing of 1 m (10,000 trees ha-1). A replacement series (with inter-tree spacing constant between 114 

treatments) with systematic hexagonal planting design (Aguiar et al. 2001) was used to maximize the 115 

mixture effect in the four polyculture plots, where each tree was surrounded by six equidistant neighbor 116 

trees (two conspecific individuals, one and three individuals of the other two species) (Figure 1). In the 117 

current study, we used 16 plots of A. glutinosa, B. pendula and F. sylvatica monoculture and the polyculture 118 

of these three species with equal proportion of component tree species. Hence, each species monoculture 119 
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5 

 

and polyculture had four replicated plots (three single species and one mixed × 4= 16 plots; details of 120 

plantation plots are presented in Table 1). The forest floor vegetation included scattered grass and moss with 121 

a very few perennial herbs such as Utrica dioica, because of canopy cover of densely planted fast growing 122 

trees. 123 

 124 

 Allometric equations for biomass 125 

Ten trees from each species (a total of 30 trees) were harvested in March 2010 to give a range of DBHs 126 

(Diameter at Breast Height, i.e. at 1.3 m above the ground level) to develop the allometric models. Two 127 

trees from each monoculture plots (2×3 species ×4 replicates) and one from mixed plots of each two blocks 128 

(1×3 species × 2 blocks) were randomly selected, given the DBH ranges of 14.5-75.4 mm, 29.9-91.5 mm, 129 

15.0-50.2 mm for B. pendula, A. glutinosa and F. sylvatica respectively. Before harvesting the trees, height, 130 

DBH and basal diameter (at 22.5 cm) were measured using a telescopic measuring pole and digital callipers. 131 

As most of the trees were not perfectly round, the geometric mean of the highest and lowest diameter was 132 

calculated to estimate DBH.  133 

After harvesting the bole, branches, dry leaves (most of the trees were leafless, hence the biomass was 134 

termed as woody biomass) and catkins were separated. The fresh weight of all separated parts was measured 135 

using an electrical balance (OHAUS, 5000 Series, Xtreme W, T51XW), the dry mass of tree components 136 

was determined from oven dried subsamples. For each species, four tree parameters (DBH, basal diameter, 137 

branch dry-mass and tree height) were considered to predict the above-ground woody biomass by 138 

developing allometric models. Based on the goodness of fit indices, basal diameter models were selected for 139 

B. pendula and F. sylvatica and the DBH model for A. glutinosa. The selected two parameters (basal 140 

diameter and DBH) were checked with three non-linear models, viz. power, exponential and logarithm, of 141 

which power models were found as the best fit for predicting woody biomass. The following three equations 142 

were developed for biomass estimation (Appendix Figure S1 and Table A1): 143 

i) For B. pendula  Y=0.0002 d 2.3893 144 

ii) For A. glutinosa  Y=0.0006 D 2.2775 145 

iii) For F. sylvatica  Y= 0.0002 d 2.577 146 

Where Y is woody biomass (kg), d is basal diameter (mm), and D is diameter at breast height (mm). 147 

The height, DBH and basal diameter of all trees in 16 plots were measured for the years 2008, 2009 and 148 

2010 (on average, a total of 1,805 trees were measured during March-May of each year). To estimate the 149 
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standing biomasses of each plot, the basal diameter and DBH data of individual trees were used for the 150 

above-mentioned allometric equations.   151 

Litter collection  152 

Litter was collected using 40 litter traps (35 cm × 35 cm plastic pot with square opening), placing two traps 153 

in each single and four traps in mixed plots. These were later mixed to one sample per plot, constituted 0.49 154 

and 0.25 m2 of trapping area in each mixed and monoculture plots respectively. Annual litter was collected 155 

at 15-day intervals in summer and at one-month intervals in other seasons. Collected fresh litter was sorted 156 

into leaves, branches (< 2 mm diameter), twigs and catkins oven dried.  157 

 Fine root biomass 158 

Fine root biomass (≤ 2 mm) was sampled in April-May 2008 and 2009 before the start of the growing 159 

season using a soil corer (8 cm diameter.) from 16 mono and mixed species plots. Core samples (30 cm, 160 

split into three depth viz. 0-10, 10-20 and 20-30 cm) were collected from three randomly selected locations 161 

of each plot at an equal distance from surrounding trees. In mixed species plots, samples were collected at a 162 

point equidistant from B. pendula, A. glutinosa and F. sylvatica trees. Fine root biomass in each core was 163 

calculated as g m-2, and the average of three cores was presented as biomass per plot. After harvesting, the 164 

samples were transported to the laboratory and stored at 4° C until washing. The whole core sample was 165 

washed through a set of mesh sieves (2.0-0.5 mm) with tap water and the fine roots were sorted following 166 

the handpicking approach based on the physical characteristics of the root matrix. Non-tree roots such as 167 

herbaceous roots  were soft (non-lignified) and lighter in colour than tree roots, grass roots were white, soft 168 

and more elastic, while the moss roots were black and rigid. Some non-tree roots had fine root hairs which 169 

were absent in three tree roots in our study. To distinguish the roots of the different tree species, fine roots 170 

were compared to ‘specimen roots’ of three species collected during the field studies. The roots were 171 

distinguished based one colour, texture and branching pattern, often using a magnifying glass. The sorted 172 

fine roots within each soil core were dried at 70°C till constant weight and dry mass was recorded. 173 

 174 

Root production and turnover  175 

To estimate annual fine root (< 2 mm) production, a root-mesh technique (Godbold et al. 2003; Lukac and 176 

Godbold, 2010) was used. In this method, a nylon mesh strip (7 cm × 25 cm, 1 mm mesh size) was pushed 177 

into the ground vertically with a steel blade and hammer. Four strips were inserted at 50 cm distance from 178 

each target trees (three trees in each monoculture and three component trees in each polyculture plots were 179 
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randomly selected for this experiment) and retrieved after two intervals (6 months each).  The fine roots that 180 

crossed through the net were collected and dry mass was determined. The roots of other species (non-tree 181 

species or other tree species in mixed plot) were carefully separated following the methods described in 182 

previous section. The root biomass turnover rate was calculated as annual root production divided by the 183 

mean standing root biomass. 184 

Mixture effect in polyculture: 185 

To determine the species interaction in polyculture, the standing aboveground woody biomass in 186 

polyculture plots (measured) was compared with a theoretical mixture (predicted) calculated from the 187 

biomass of component species growing in the monoculture plots following Relative Yield of Mixtures 188 

approach (Wilson, 1998; Smith et al. 2013). The following equation shows the predicted biomass (Bmix) 189 

calculation from the biomass of component species in monoculture, based on the tree number of each 190 

species in polyculture (in this case the contribution of each species in polyculture was one third): 191 

B mix = (1/3 * B Betula in mono) + (1/3 * B Alnus in mono) + (1/3 * B Fagas in mono) 192 

Soil sampling and measuring C and N storage: 193 

Representative soil samples were collected in different soil layers by excavating pits (100 × 100 × 100 cm) 194 

in all plantation plots during September 2008. Sixteen pits (4 × 3 monoculture and 4×1 polyculture) were 195 

excavated at the middle of each plot, equidistant from surrounding trees (in polyculture, equal distance from 196 

A. glutinosa, B. pendula and F. sylvatica). Composite soil samples were collected from seven layers (0-10, 197 

10-0, 20-30, 30-40, 40-50 cm soil depth) of each pit. The bulk density of the soil was determined by core 198 

(5.5 cm diameter) sampling method with stone correction (volume of stone was estimated by water 199 

replacement process). Soil organic C and N were determined using a CN analyser (TruSpec® CN, LECO 200 

Inc.) and the stocks were estimated using bulk density data (Soil properties were presented in Appendix 201 

Table A2).  202 

Statistical analysis 203 

Allometric models: Each of the three monoculture and a polyculture forests had four replicated plots (n=4). 204 

Tree sampling was stratified into three DBH classes (14-75, 29-91, and 15-50 mm for B. pendula, A. 205 

glutinosa and F. sylvatica respectively) and from each class ten trees were randomly selected for harvest (n 206 

=10). Species-specific allometric models were developed by linking four independent variables (basal 207 

diameter, DBH, height and branch dry mass) with aboveground woody biomass using the following non-208 

linear power regression model (Smith et al. 2012):  209 
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Y = a X b 210 

Where Y = woody biomass of the tree, X = a tree variable (DBH, Basal diameter, tree height or branch dry 211 

mass), a and b are regression coefficients (log transformed version: ln Y= a + b ln X with a correction factor 212 

CF). In addition, we examined the exponential (Y = a ebx) and the logarithmic (Y = a + b ln X) models to 213 

check the relationship between woody biomass and DBH, basal diameter (data not shown). To evaluate the 214 

performance to various models, we used three ‘goodness of fit’ criteria viz. coefficient of determination 215 

(R2), F- ratio of the regression and the root mean squared error (RMSE) of the models. Development of the 216 

models, curve fit and correlation analyses were performed by the data analytical software SigmaPlot 12 217 

(Systat Software Inc.) 218 

Analysis of variance (ANOVA): A series of one-way between measures ANOVAs were performed to test 219 

for differences in tree and soil measures. All data were checked for normality (Shapiro-Wilk test, because 220 

the number of observation was small) and the homogeneity of variances (Levene’s test). In case the 221 

assumptions for the ANOVA were not met, data were log-transformed. The dependent variables were 222 

woody biomass, fine root biomass, root production, root turnover, soil organic C and N stocks (within 223 

measures). Independent variable or grouping variable (factor) was species type in forest stands with four 224 

attributes viz. Betula, Alnus and Fagus, and mixture (between measures). Tukey’s HSD was used for post-225 

hoc test of multiple comparisons of the means among four factors.   226 

T-test: An independent sample t-test was performed to compare the actual and predicted biomass in the 227 

mixed species plots, assuming the actual and predicted biomass as two different groups of cases. Similarly 228 

species level biomass, tree height and DBH between mono and polyculture plots were examined by t-test. 229 

ANOVA and t-test were conducted with SPSS 16.0 (SPSS Inc., Chicago, IL) and the level of significance P 230 

<0.05 was accepted in all cases.  231 

Correlations: Scattered plots were used to examine the relationship between soil C stock (dependent 232 

variables) and tree components, i.e. woody biomass, litter fall and fine root biomass (independent variables) 233 

and expressed by the correlation coefficient squared (R2) to assess how much of the variability in soil C 234 

stock was shared by those tree inputs (Field, 2009).    235 

 236 

Results 237 

 Tree growth, allometric models and biomass  238 
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All growth parameters (height, DBH, basal diameter, basal area) confirmed a significantly lower growth of 239 

F. sylvatica in the polyculture stand than in monoculture (Table 1). The basal diameter of A. glutinosa 240 

significantly increased in the mixed stand but the increases in DBH and basal area were not statistically 241 

significant.  The growth of B. pendula was not different between the polyculture and monocultures. 242 

 Based on the high coefficient of determination (R2), F value and the comparatively smaller RMSE than 243 

other models, the two parameter power regression curve was the best fit for the plotted values (y = a x b) 244 

(Table 2). For B. pendula and F. sylvatica the basal diameter was the best predictor of woody biomass (R2 = 245 

0.997, F= 2746.4 and R2= 0.985, F=517.5 for two species, respectively). For A. glutinosa, DBH was the best 246 

fit (R2=0.995, F= 1491.3). 247 

At the stand age of 4, 5 and 6 years, the production of aboveground woody biomass in the monoculture of 248 

B. pendula was similar to A. glutinosa stands (Figure 2). The biomass of F. sylvatica in monoculture was 249 

significantly lower than that of the two other species in all years (Figure 2). The annual biomass increment 250 

rates were 37, 44 and 124% for B. pendula, A. glutinosa and F. sylvatica in year 5 and 12, 24 and 39% in 251 

year 6. Despite the highest annual rates of biomass production during those two years, F. sylvatica had a 252 

significantly lower standing biomass stocks than other two species.  253 

Mixture effects on biomass in polyculture:    254 

At the species level, B. pendula and A. glutinosa exhibited no mixture effect on biomass production and the 255 

differences between polyculture and monoculture (increased in A. glutinosa biomass and decreased in B. 256 

pendula) were not statistically significant after four, five and six years of plantation (Figure 3a). However, a 257 

significant increase (13%) in basal diameter of A. glutinosa attributed to biomass increasing trend in 258 

polyculture stand. On the other hand, the woody biomass of F. sylvatica was significantly reduced in 259 

polyculture compared with monoculture over three years of experiments (Figure 3a).Thus after six years A. 260 

glutinosa showed insignificant increase in biomass (2.91 kg m-2 higher than monoculture, p=0.06) but F. 261 

sylvatica demonstrated significantly lower (2.76 kg m-2 lower than monoculture, p= 0.013) (Figure 3a). 262 

At stand level, the difference between measured values (calculating from polyculture stand) and the 263 

predicted values (calculating from three monoculture stands) were very marginal and statistically 264 

insignificant (Figure 3b) indicating the additive mixture effect on standing biomass.   265 

 Fine root biomass, production and turnover rate 266 

Total standing fine root biomass measured to a depth of 30 cm ranged between 59.3 ± 21.9 and 91.0 ± 38.4 267 

gm-2 (Table 3). Overall, there was a significant effect of species (p=0.045) and depth (p=0.001) but no 268 
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species × depth interaction was observed. The fine root biomass of F. sylvatica in the 0-10 cm layer was 269 

significantly lower than that of A. glutinosa (p =0.036). The greatest proportion of total fine roots (78-82 %) 270 

was distributed in the upper 0-20 cm soil layer of the polyculture. Although the fine root production in A. 271 

glutinosa monoculture was substantially higher than both that of F. sylvatica and B. pendula, only the 272 

variation with F. sylvatica was statistically significant (p = 0.047). No significant mixture effect was found 273 

(Table 3).   274 

Soil organic C and N  275 

The C stock in F. sylvatica soil was significantly lower than that in B. pendula at 0-10 cm (p= 0.019) and 276 

lower than that in B. pendula and A. glutinosa at 10-20 cm soil layers (p=0.004 and 0.013, respectively), but 277 

no effect of species polyculture on soil C was observed (Table 4). Soil N stock did not differ among the four 278 

plantations in any layer. Soil organic C stock exhibited stronger relationship with root biomass (R2 =0.42, p 279 

= 0.006) than aboveground biomass and litterfall (Figure 4).     280 

 281 

 Discussion 282 

Between the two fast-growing trees, no significant variation was observed in standing woody biomass, 283 

height and DBH, indicating similar growth of these two species during young age. These results are in 284 

accordance with Claessens et al. (2010) that the growth rate of A. glutinosa and B. pendula is very high 285 

when young, and their height growth is similar up to the age of 40 years. In contrast, the above ground 286 

woody biomass in F. sylvatica was half that of fast-growing B. pendula and A. glutinosa. F. sylvatica is a 287 

shade-tolerant and late successional species, and its low biomass accumulation might be attributed to 288 

inherent characteristics of slow juvenile growth.  289 

Species interactions in polyculture 290 

Species interactions in polyculture can positively affect biomass production only when component species 291 

have contrasting growth characteristics and thus competitive reduction occurs (Kelty, 2006). In the present 292 

study, B. pendula and A. glutinosa are recognized as pioneer, light demanding and early successional and 293 

first growing species while F. sylvatica is a shade tolerant and late successional species. Theoretically, these 294 

characteristics can increase growth by develop complementarity in polyculture, however, the negative 295 

interactions between two species may happen in case of interspecific competition. Species-level comparison 296 

showed that the understory F. sylvatica has a significantly lower biomass and tree height (52% lower) in 297 

polyculture than monoculture. This suggests that, although it is recognized as being shade tolerant and can 298 
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survive well in the understory, the growth of young F. sylvatica is much higher when directly exposed to 299 

sunlight (in monoculture) than growing with diffused light in the understory of a polyculture stand. 300 

Although increased A. glutinosa biomass in polyculture was not statistically significant, the quantity was 301 

substantial when we compared with decreased biomass of F. sylvatica.  The increasing trend in biomass 302 

production, A. glutinosa showed a positive growth trend in polyculture. Therefore our predictions of growth 303 

and biomass increase at species level in polyculture were not fully supported by the tree species we used, 304 

rather A. glutinosa (increased diameter growth) and F. sylvatica (decreased growth and biomass production) 305 

exhibited a contrasting mixture effect whilst B. pendula remained unchanged in polyculture. 306 

Standing biomass in polyculture   307 

Our study demonstrated no woody biomass over-yielding in polyculture stands, which contrasts with the 308 

general expectation of higher growth in such stands compared with monoculture. The measured and 309 

predicted (weighted) biomass in our study revealed that the yield in the polyculture stand was perfectly 310 

predictable by the values from the three monoculture stands, indicating a purely additive mixture effect on 311 

stand level biomass. However, our species level analysis revealed that this was not because of similar 312 

performances of species in mono and polycultures, but due to an opposite responses of A. glutinosa and F. 313 

sylvatica when grown in polyculture systems. This affected the overall stand level yield performances of 314 

these three species combination leading to an additive effect on woody biomass. Here, we provided 315 

evidence of occurring of contrasting interactions simultaneously in polyculture of three broadleaved species.  316 

Although tree species identities in monocultures influenced fine root dynamics, species mixture in 317 

polyculture showed no impact on stand level biomass or fine root production, presumably due to lack of 318 

sufficient root complementarity and/or young stand age. Both causes might be true in our experiment where 319 

complementarity can be insufficient due to young age of the trees (Rothe and Binkley 2001). This agrees 320 

with Domisch et al. (2015), who found no increase in fine root biomass or fine root production in a mixed 321 

stand compared to monoculture, suggesting that lack of sufficient root complementarity and young stand 322 

age could be the reasons. Our data on vertical root distribution showed that 24% of the fine root system in 323 

the polyculture was found at 20-30 cm soil depth, in compare to 19% at the same depth in monocultures. 324 

This could be an indication of niche differentiation due to contrasting rooting traits of the B. pendula and A. 325 

glutinosa in polyculture to access soil resources.  The combined results of above- and belowground biomass 326 

in this study did not support our first hypothesis of increased biomass in the polyculture stands of 327 
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contrasting trees. But the trees exhibited both a synergistic and antagonistic mixture effects, indicating a 328 

complex species interaction in the polyculture systems.  329 

Tree biomass and soil C and N stocks 330 

A species influence on soil C stock was observed only with F. sylvatica soils in the top layers (0-10 and 10-331 

20 cm). This agrees with previous studies that tree species composition affects soil organic C stock 332 

particularly in topsoil (Liu et al. 2016; Wang et al. 2009). There is an agreement that the tree species has 333 

enormous effects on the soil, mainly because of the quality and quantity of organic matter inputs through 334 

litter fall, root and soil microbial activities (Dawud et al. 2016; Vesterdal et al. 2002). Nonetheless, the 335 

impacts may be positive, negative or unpronounced depending on the characteristics of input materials, soil 336 

factors and associated C processes. For example, fresh litter inputs can contribute to organic C accumulation 337 

in soil but also enhance depletion of the soil C stock through the priming effect in plantation forests (Chen 338 

et al. 2016). Differences between SOC storage in the topsoil layers of F. sylvatica and the other two stands 339 

were clearly due to the low litter input and fine root production in the slow-growing F. sylvatica indicating 340 

effect of species identity on observed variations (Appendix Table A3). High soil organic C in mixed stand 341 

are generally attributed to high litter inputs (Forrester et al. 2013), hence no obvious variation in soil C was 342 

observed between mono and polyculture stands in the present study.  343 

The stronger relationship between SOC stocks and fine root biomass (R2=0.42) indicated higher control of 344 

fine roots than of aboveground biomass on the soil C stock at our forest sites. Recent experiments with 13C-345 

labelled leaf and root materials confirmed that C derived from fine roots has more potential for long-term 346 

sequestration than foliar C, presumably due to the recalcitrant nature of root compounds (Hu et al. 2016). 347 

Contrary to our second hypothesis, the influence of aboveground and fine root biomass, induced by 348 

polyculture plantations showed no significant effect on the soil C stock at 50 cm soil depth. 349 

 350 

Limitations regarding stand age and short term experiments  351 

We quantified mixing effects by comparing mono- and mixed species stands on the same site conditions, 352 

however, the young age of trees and the duration of experiment might limit the implication of the observed 353 

changes. The mixing effect may not remain constant during the stand development and the growth ratios of 354 

different species may vary over time (Drossler et al. 2015). For example, at the young stage, the fast 355 

growing and light demanding species capture light more efficiently but after canopy closure, the 356 

competition for light increases in polyculture stand, which may affect the growth of component species. 357 
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Similarly mixing effects on soil organic C stock may change with stand development (Liu et al. 2017). 358 

Therefore the effects of species polyculture on tree biomass and soil C at the young stage cannot be 359 

generalized over the entire life succession of the species, and rather expressed the effects based on the point 360 

of evaluation. Clearly as emphasised by other authors there is a need for longer term experiments (Bielak et 361 

al. 2014; Lu et al. 2018; Pretzsch et al. 2019).  362 

          363 

 Conclusion 364 

Although tree species with complementary traits were selected, we did not find higher growth or biomass 365 

production in polyculture stands. This is contrary to our original hypothesis. The outcome of our experiment 366 

may have been influenced by the planting design with a high planting density (1× 1 m). In our fine-grained 367 

mixture (1:1:1), the two fast-growing species dominated the upper canopy and clearly suppressed the F. 368 

sylvatica in the understory. The dense planting removed the need for extensive weed control. However, 369 

typical management techniques such as thinning may be needed to reduce competition and promote possible 370 

positive interactions in polyculture.  371 
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 470 

Caption of the figures  471 

Fig. 1 Experiment site and plantation design. a) 12 monoculture of B. pendula (Bi), A. glutinosa (Al), F. 472 

sylvatica (Be) and four three-species polyculture (M) plots, distributed over two plantation blocks. b) Sketch 473 

of hexagonal planting design in three species polyculture. Each plant was surrounded by six neighbours of 474 

two conspecific individuals, one and three of the other two species.   475 
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 476 

Fig. 2 Aboveground woody biomass in mono- and polyculture stands of B. pendula, A. glutinosa and F. 477 

sylvatica at the end of the 4th, 5th and 6th growing seasons. Woody biomass was estimated using species-478 

specific allometric equations, developed by the tree harvesting approach after six years of stand age. Bars 479 

mean SE (n = 4). Within one year, bars without the same indices are significantly different (P < 0.05). 480 

 481 

Fig. 3 Mixture effects in three species polyculture (positive and negative values indicate higher and lower 482 

biomass in polyculture than monoculture respectively). A) Species level differences in biomass. F. sylvatica 483 

showed significant mixture effect (-ve differences) but A. glutinosa and B. pendula had insignificant 484 

impacts on biomass. B) Stand-level mixture effect. The differences between measured (in polyculture stand) 485 

and predicted (calculated from monoculture stands) woody biomass, which were not statistically significant. 486 

Bars mean SE (n= 4), * indicates statistically significant differences. 487 

 488 

Fig. 4 Relationships between  soil C stocks and : a) Aboveground woody biomass b) annual litter fall and c) 489 

fine root (< 2 mm) biomass. Soil organic C stocks were measured in 16 mono- and polyculture stands in 0-490 

50 cm depth. 491 

Appendix Fig. S1 Allometric relationship between plant variables and woody biomass (WB) of B. pendula, 492 

A. glutinosa and F. sylvatica. Scattered plots show data from 10 selected plants and the best fitted lines with 493 

basal diameter for B. pendula and F. sylvatica and diameter at breast height (DBH) for A. glutinosa. The 494 

regression equations, coefficient of determination and P values (using ANOVA) are inserted in each panel. 495 
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Table 1 Biometric data and plot size of different tree species in mono and polyculture plantation. Tree height, DBH (at 1.3 m above the ground level), 

basal diameter at 22.5 cm and basal area were estimated in both mono and polyculture plots. In polyculture plot, basal area of individual species was 

calculated separately. Mean, ± SE. To compare between mono and polyculture, data with similar alphabet are not statistically significant.  

  

Parameter B. pendula A. glutinosa F. sylvatica 

Monoculture Polyculture Monoculture Polyculture Monoculture Polyculture 

 

Tree height (m) 

 

5.71 ± 0.30a 

 

5.83 ± 0.32a 

 

6.18 ±  0.46a 

 

6.18 ± 0.33a 

 

3.19 ± 0.14a 

 

2.10 ± 0.06b 

 

DBH (mm) 41.79 ±2.87a 44.75 ± 4.90a 50.77 ± 2.68a 57.58 ±  3.53a 23.91 ± 1.65a 9.53 ± 0.59b 

 

Basal diameter (mm) 58.67  ± 3.77a 63.21  ± 7.70a 67,33 ± 2.05a 76.26 ± 2.72b 36.33  ± 1.80a 18.87  ±0.78b 

 

Basal area (m2ha-1) 20.27 ± 3.42a 22.19 ± 4.72a 25.24 ±  1.66a 36.56 ± 5.18a 6.08 ± 0.42a 1.15 ± 0.19b 

 

Number of tree plot-1 87 ± 10 65  ± 5 

 

84 ± 5 65  ± 5 

 

80 ± 2 65  ± 5 

 

Plot size (m2) (n=4) 74 ± 15 156 ± 9 

 

82 ± 13 156 ± 9 

 

68 ± 4 156 ± 9 

 

 
 
 
 
 
 
 
 
 

table Click here to access/download;table;Table 1.doc

https://www.editorialmanager.com/afsc/download.aspx?id=94761&guid=1531d430-7ebd-4cc0-a454-723306e10152&scheme=1
https://www.editorialmanager.com/afsc/download.aspx?id=94761&guid=1531d430-7ebd-4cc0-a454-723306e10152&scheme=1


 
Table 2 Allometric equations for B. pendula, A. glutinosa and F. sylvatica to estimate woody biomass. General power model y = a x b was used, where y = woody 

biomass (kg) of plant, x = tree variables, i.e. D, d, b and h denotes DBH (at 1.3 m above the ground level), basal diameter (at 22.5 cm), branch dry weight and tree 

height respectively, a and b are regression coefficients. 

 

Plant  Species Tree variables Equations (y = a x b ) r2 F P RMSE* 

B. pendula 

 

DBH (mm) Y = 0.0008 D 2.2322 0.9938 1285.70 < 0.0001 0.3459 

Basal diameter  (mm) Y = 0.0002 d 2.3893 0.9970 2746.41 < 0.0001 0.2370 

Branch dry weight (kg) Y = 4.4302 b 0.7502 0.9345 114.18 <0.0001 1.1256 

Tree height (m) Y = 0.0001 h 5.8014 0.8773 57.227 < 0.0001 1.5406 

A. glutinosa 

 

DBH (mm) Y = 0.0006 D 2.2775 0.9946 1491.32 < 0.0001 0.3807 

Basal diameter (mm) Y = 0.0001 d 2.6453 0.9884 682.81 < 0.0001 0.5610 

Branch dry weight (kg) Y = 6.3385 b1.2229 0.9297 105.93 < 0.0001 1.3815 

Tree height (m) Y = 0.0048 h 3.5841 0.7898 30.07 < 0.0006 2.3900 

F. sylvatica 

 

 

 

DBH (mm) Y = 0.0071 D 1.6883 0.9836 480.28 < 0.0001 0.2151 

Basal diameter (mm) Y = 0.0002 d 2.5770 0.9847 517.46 < 0.0001 0.2073 

Branch dry weight (kg) Y = 2.8883 b 0.8845 0.841 42.32 < 0.0002 0.6706 

Tree height (m) Y = 0.0396 h 2.8864 0.7189 20.47 < 0.0019 0.8912 

       *RMSE, root mean square error. 
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Table 3 Fine root (<2mm diameter) biomass, production and turnover of Betula pendula, Alnus glutinosa and Fagus sylvatica grown in single and mixed species plots. Fine 

root production during the growing season (June–November) was estimated by a root mesh technique. In polyculture, the mesh was deployed to capture the root growth from 

specific trees (not overall). Shown are mean ± SE, (n = 4). Values vertically with similar indices are not statistically significant (P<0.05). 

 
Plantation plots 

 (n=4) 

Fine root biomass at different soil depths 

(g m-2) 

 

Fine root production 

(g m-2) 

Fine root 

turnover  

(rate y-1) 

 

 
0-10 cm 10-20 cm 20-30 cm Total Single plot 

 

Mixed plots 

 

B. pendula 

 

 

31.5 a  

±2.9 

 

25.8 a 

±4.5 

 

12.1 a 

 ±4.0 

 

 

69.4 ab 

±8.3 

 

55.8 a 

±19.2 

 

58.9 ab 

±8.1 

 

1.1 a 

±0.5 

 

A. glutinosa 

 

38.4 a 

±4.8 

35.6 a 

±3.8 

17.0 a 

±1.7 

 

91.0 a 

±2.9 

72.1 a 

±6.0 

83.9a 

±10.5 

      1.0 a 

±0.2 

F. sylvatica 

 

21.9 a 

±2.9 

24.7 a 

±6.5 

12.7 a 

±2.4 

 

59.3 b 

±8.7 

26.6 b 

±6.6 

30.1 b 

±5.6 

0.6 a 

±0.2 

 

Polyculture 

 

27.1 a 

±3.0 

33. 6a 

±7.0 

19.7 a 

 ±4.5 

         80.4 ab  (measured)          - 

          ±12.7 

         73.2 ab (predicted)* 

          ±10.9 

 

- 1.1 a 

±0.2 

 

* Total predicted value for mixed plot was estimated from total values of single species plots. 
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 Table 4 Soil C and N stocks in monoculture stands of different tree species and a polyculture stand. The vertical distribution of stocks are shown for each 10 cm soil layer. 

Values equal mean ± SE (n=4). Values with different lowercase letters indicate statistically significant variation among four forest types (p<0.05).   

Soil depth (cm) Soil C stock  (kg m-2) 

 

Soil N stock  (g m-2) 

 

B. pendula A. glutinosa F. sylvatica Polyculture 

 

B. pendula A. glutinosa F. sylvatica Polyculture 

         

0-10 2.38 ±0.28a 2.04 ±0.09ab 1.59 ±0.23b 2.11 ±0.17ab 234 ±10a 

 

225 ±8a 212 ±18a 226 ±11a 

10-20 1.65 ±0.07a 1.56 ±0.10a 1.17 ±0.12b 1.36 ±0.09ab 185 ±13a 

 

181 ±9a 157 ±10a 174 ±15a 

20-30 

 

1.03 ±0.09a 1.11 ±0.08a 0.94 ±0.16a 0.85 ±0.09a 133 ±9a 

 

156 ±10a 137 ±14a 128 ±12a 

30-50 

 

1.26 ±0.14a 1.21 ±0.12a 0.91 ±0.04a 1.06 ±0.10a 182 ±17a 199 ±3a 183 ±37a 164 ±15a 

Total (0-50 cm)  6.32 ± 0.48a 5.92 ±0.28a 4.61 ±0.37a 5.38 ±0.13a 734 ±21a 

 

744 ±32a 689 ±51a 692 ±33a 
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Appendix Table A1 Exponential and logarithm models to examine the relationship between woody biomass and DBH and basal diameter (diameter at 22.5 cm). 

General model y = a e bx (exponential) and y = y0+ ln x (Logarithm), where y = woody biomass of plant (kg), x = tree variables (here D and d denotes DBH and basal 

dia. (diameter) in mm respectively), a and b are regression coefficients. 

 

Plant  Species Tree 

parameter 

Equation 

types 

Equations  

 

R2 F P RMSE* 

        B. pendula 

 

DBH  Exponential Y = 0.6242 e 0.0407D 0.9757 321.47 < 0.0001 0.6854 

 Logarithm Y = -22.0148 +7.2838 ln D 0.7744 27.47 < 0.0001 2.0891 

Basal dia. Exponential Y = 0.5264 e 0.0323d 0.9831 467.47 <0.0001 0.5706 

 Logarithm Y =-27.6937 + 8.0970 ln d 0.7964 31.30 0.0005 1.9845 

A. glutinosa DBH Exponential Y = 0.8275 e 0.0337D 0.9744 304.64 < 0.0001 0.8340 

 Logarithm Y = -48.0301+13.7332 ln D 0.8775 57.34 < 0.0001 1.8243 

Basal dia. Exponential Y = 0.5916 e 0.0304d 0.9673 273.06 < 0.0001 0.9420 

 Logarithm Y = -63.4545+ 16.4406 ln d  0.8733 55.16 < 0.0001 1.8555 

 F. sylvatica 

 

 

DBH  Exponential Y = 0.4777 e 0.0488D 0.9485 147.59 < 0.0001 0.3811 

 Logarithm Y = -10.1198+ 3.7605 ln D  0.9457 139.36 < 0.0001 0.3917 

Basal dia. Exponential Y = 0.1842 e 0.0595d 0.9807 407.38 < 0.0001 0.2332 

 Logarithm Y = -14.9092+ 4.7496 ln d 0.8823 59.98 < 0.0001 0.5764 

* RMSE, root mean square error
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Appendix Table A2: Soil physico-chemical properties at the experiment site. Values mean ±SE (n=4). 

Soil Depth 

(cm) 

pH 

(H2O) 

Electrical 

conductivity 

(EC) 

(µS cm-1) 

% soil fractions 

 

Textural 

Class 

Bulk 

density 

(gcm-3) 

 

Soil organic matter 

(LOI)* 

% 

C:N ratio 

Sand Silt Clay 

 

0-10 

 

 

5.41 

±0.07 

 

130.5 

±11.4 

 

48.1 

±1.4 

 

33.6 

±0.9 

 

18.3 

±2.2 

 

Loam 

 

 

1.19 

±0.01 

 

 

6.46 

±0.46 

 

9.2 

10-20 

 

 

5.6 

±0.1 

 

67.2 

±6.1 

 

49.3 

±2.3 

 

33.1 

±0.6 

 

17.6 

±2.1 

 

Loam 

 

 

1.29 

 ±0.02 

 

5.74 

±0.43 

8.1 

20-30 

 

 

5.8 

±0.1 

 

48.9 

±3.93 

 

49.5 

±2.47 

 

33.4 

± 0.56 

 

17.2 

±2.05 

 

Loam 

 

 

1.33 

±0.05 

 

4.76 

±0.38 

7.2 

     30-40 

 

 

5.9 

±0.04 

 

38.9 

±3.5 

 

49.4 

±3.1 

 

34.8 

±0.9 

 

15.8 

±2.3 

 

Sandy 

Loam 

 

1.40 

±0.08 

 

              3.84 

±0.37 

6.7 

    40-50 

 

 

      6.0 

±0.1 

 

         36.0  

        ±3.5 

 

51.7 

±4.8 

 

32.3 

±2.5 

 

15.9 

±2.6 

 

Sandy 

Loam 

 

1.47 

±0.11 

 

3.56 

±0.29 

 

6.0 

*Loss on ignition method 
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Appendix Table A3:  Dry mass and C content in of different components of forest litter. Data show the annual quantity of litter fall (June –May). In polyculture plots    quantity 

includes mixture of three species as collected in the traps. Values equal mean, SE (n=4). 

Plantation plot Different component of litter (g m-2) and C content 

Leaves % C % N Branch % C % N Twigs %C % N Catkins % C %N Total litter (g m-2) 

B. pendula 323 ±31 52 1.84 15.2 ±7.6 55 1.08 1.2 ±0.1 54 ND 2.0 ±0.5 58 2.2 342 ±39 

A. glutinosa 349 ±30 54 3.28 10.4 ±2.1 53 1.13                                                                                                                                                                                                                                                                                       26.4 ±10.4 55 1.64 86.0 ±21.9 54 2.03 472 ±64 

F. sylvatica 178 ±20 40 2.62 NF* ND** NF NF ND NF NF ND NF 178 ±20 

Polyculture  326 ±37 53 2.97 22.9 ±2.3 54 1..36 17.7 ±1.0 ND 1.16 46.4 ±11.3 ND 2.13 413 ±51 

*NF, Not found, **ND, Not determined.  
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