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Abstract 19 

We studied the role of oceanographic conditions and life history strategies on recovery after 20 

extinction in a metapopulation of marine organisms dispersing as pelagic larvae. We combined 21 

an age structured model with scenarios defined by realistic oceanographic conditions and species 22 

distribution along the Irish Sea coast (North Europe). Species life history strategies were 23 

modelled combining the dispersal behaviours with two levels of fecundity. Recovery times were 24 

quantified after simulating extinction in four regions. Two alternative strategies (high fecundity 25 

or larval tidal transport) led to short recovery times, irrespective of the effects of other drivers. 26 

Other strategies and low larval survival exacerbated the effects of oceanographic conditions on 27 

recovery times: longer times were associated with for example the presence of frontal zones 28 

isolating regions of extinction. Recovery times were well explained by the connectivity of each 29 

focal population with those located outside the area of extinction (which was higher in the so-30 

called small world topologies), but not by subsidies (direct connections with populations located 31 

nearby). Our work highlights the complexities involved in population recovery: specific trait 32 

combinations may blur the effects of the habitat matrix on recovery times; k-strategists (i.e. with 33 

low fecundities) may achieve quick recovery if they possess the appropriate dispersal traits. High 34 

larval mortality can exacerbate the effect of oceanographic conditions and lead to heterogeneity 35 

in recovery times. Overall, processes driving whole network topologies rather than conditions 36 

surrounding local populations are the key to understand patterns of recovery.  37 

 38 

 39 

  40 
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INTRODUCTION 41 

Disturbance is a fundamentally important process in all ecological systems, modifying resource 42 

availability and causing disruption to population, community or ecosystem structure (White and 43 

Pickett 1985). A disturbance event by definition occurs over a relatively discrete period of time, 44 

but the spatial scale over which it operates can vary from that of an individual through to whole 45 

ecosystems. For instance, in the marine environment regional scale disturbances covering areas 46 

of the order of 10-103 km may be produced by a range of drivers including summer anoxia at the 47 

sea bed (Bishop et al. 2006, Dias and Rosenberg 2008), storms (Woodley et al. 1981), heat 48 

waves, extreme temperatures (Glynn 1993, Coma et al. 2009) and pathogens (Miller and 49 

Colodey 1983, Lessios 2016). Many disturbance regimes are currently changing, with profound 50 

shifts expected in the coming decades as the consequence of climate change and increasing 51 

encroachment of human activity over previously pristine habitats (Turner 2010). Current climate 52 

change projections, for example, suggest that extreme weather events, including heat waves and 53 

storms are likely to increase in frequency and magnitude (e.g. Burrows et al. 2014, Di Lorenzo 54 

and Mantua 2016) leading to  regional scale levels of mass mortality. Current coral bleaching as 55 

the consequence of the recent El Nino is an example of the spread and importance of regional 56 

scale events (Tollefson 2016). 57 

For marine species, determining the fate of pelagic larvae is central to understanding the 58 

consequences of mass mortalities in terms of population recovery. Benthic or demersal 59 

populations are patchily distributed, often in association with specific habitats, but populations 60 

are connected through a dispersive larval stage (Cowen and Spounagle 2009). It is therefore 61 

appropriate to use the concept of metapopulation, for such populations. Metapopulation theory 62 

was developed with the idea of modelling local extinction and recovery in populations with 63 
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limited connectivity and has provided valuable theoretical framework for conservation ecology 64 

(Hanski and Gaggiotti 2004), but the concept has been expanded to consider cases where 65 

populations are well connected. Hence one may define marine metapopulations as set of local 66 

populations of adults connected through larval dispersal (Arsmworth 2002) with the direction 67 

and magnitude of larval dispersal pathways determining patterns of connectivity and hence the 68 

extent to which different locations receive larval subsidies (Levin 2006, Cowen and Sponaugle 69 

2009).  70 

Given the major logistical challenges of directly quantifying larval connectivity, most effort has 71 

focused on modelling patterns of larval transport through hydrodynamic models (e.g. Cowen et 72 

al. 2006, Paris et al. 2007, Ayata et al. 2010, Robins et al. 2013). In such models, the 73 

connectivity and retention coefficients represent the main characteristic of the habitat matrix (i.e. 74 

the habitat through which organisms disperse and migrate: Wiens 1997, Joly et al. 2001, Shima 75 

and Swearer 2009). These models highlight the importance of local hydrodynamic conditions 76 

and species-specific larval behaviours in driving population persistence (e.g. Cowen et al 2006, 77 

North et al. 2008, Botsford et al. 2009); hence, they should also drive the rate of recovery from 78 

extinction. A critical output of such models is that in situations where the model domain covers 79 

sufficiently large spatial scales (e.g. Cowen et al. 2006, Robins et al. 2013) limitations in 80 

dispersal define regions that are weakly connected with each other. Such spatial patterns may 81 

result in a reduced capacity to recover from mass mortalities if the scale of disturbance matches 82 

the scale of connectivity.  83 

Models coupling dispersal with local processes have helped to understand the conditions of 84 

persistence of populations (Armsworth 2002, Hastings and Botsford 2006, Artzy-Randrup and 85 

Stone 2010).  Such work has recognised pressures on local populations but given the increasing 86 
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regional scale of disturbance events there is in addition an urgent need to understand the drivers 87 

of recovery from regional extinction. Marine metapopulation models should help us to 88 

understand how quickly local populations may recover from mass mortalities especially if they 89 

are applied to realistic metapopulations. Here, we applied an age structured metapopulation 90 

model to a realistic scenario by modelling the dynamics of a coastal species distributed in 91 

fragmented populations in the Irish Sea (Northwest Europe). The Irish Sea, like many other 92 

coastal areas worldwide, is impacted by regional and global scale phenomena (see Robins et al. 93 

2016) exposed to a range of anthropogenic stressors leading to local and regional mortality 94 

events of benthic species (e.g. Malham et al. 2012). Here, we develop a metapopulation model 95 

for coastal species restricted to sheltered bays and estuaries (habitat patches) in order to examine 96 

patterns of recovery from extinction in well-defined regions throughout the Irish Sea. The 97 

following questions were addressed: Given an event of regional extinction: (1) Do specific life 98 

histories (i.e. a combination of traits such as fecundity and larval behaviour) enhance recovery? 99 

In particular, is there any optimal strategy enhancing recovery or are strategies context-100 

dependent, i.e., do they depend on the region within the habitat matrix? (2) What is the role of 101 

the habitat matrix in setting the time scale of recovery?  More specifically, would larval survival 102 

and variations in oceanographic conditions (as captured by the connectivity matrix) lead to 103 

significant spatial or temporal patterns in recovery? (3) What is the importance of the network 104 

topology? In particular, is recovery explained by retention or direct subsidy to a focal population 105 

or is it driven by whole network connectivity to populations located outside the region of 106 

extinction? 107 

 108 

 109 
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METHODS 110 

General procedure 111 

We constructed a metapopulation model of a species occupying shallow, sheltered habitats in 40 112 

populations throughout the Irish Sea and dispersing during the larval stage. Specifically, we 113 

consider a model species living up to five years and starting to reproduce after the first year of 114 

life.  The direction and magnitude of connection among discrete populations is given by larval 115 

transport matrices, accounting for the physical transport of larvae. The larval transport matrices 116 

were modelled based on particle tracking models incorporating realistic three-dimensional 117 

hydrodynamic conditions. Three main larval strategies were considered (Robins et al 2013): (1) 118 

passive transport (no vertical migration); (2) diel vertical migration (upward swimming during 119 

the night and downward swimming during the day); (3) flood tidal migration (upward swimming 120 

during the flood phase and downward swimming during the ebb). Vertical swimming speed was 121 

set to 3 x 10-3 m s-1, representing ciliated larvae (Chia et al. 1984). Robins et al (2013) showed 122 

that dispersal distance, retention or connectivity did not vary in the range of speeds 1-5∙10-3 m s-1 123 

but that speeds <1-5∙10-3 m s-1 such patterns would resemble those obtained for passive transport. 124 

 Regional extinction events were simulated based on total loss of populations in one of four 125 

regions (Fig. 1). Overall, we ran 96 simulations differing in the combination of larval strategy 126 

(three levels), combinations of fecundity and larval mortality (two levels, controlled through a 127 

composite parameter, see below), timing of larval release (two levels-spring and summer), region 128 

of extinction (four regions) and the strength of density-dependent mortality in the benthic phase. 129 

For each simulation, the model was run for 200 cycles (= years) followed by an event of regional 130 
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extinction. Recovery time was then quantified after running the model for an additional 400 131 

years. The model was run in MatlabR (see Appendix S1 for code). 132 

Metapopulation model and dispersal matrices 133 

The model is a modification of the one developed by Armsworth (2002). Using five age classes 134 

and 40 populations the model is as follows: 135 

[

𝑁(𝑡 + 1)1

𝑁(𝑡 + 1)2

⋮
𝑁(𝑡 + 1)200

] =

[
 
 
 

𝑀1

𝑄2,1

𝑄1,2

𝑀2
⋯

𝑄1,40

𝑄2,40

⋮ ⋱ ⋮
𝑄40,1 ⋯0 𝑄40,39 𝑀40 ]

 
 
 
[

𝑁(𝑡)1

𝑁(𝑡)2

⋮
𝑁(𝑡)200

](1) 136 

There are a total of 40 local matrices (M) corresponding to the populations; each local matrix is 137 

based on an age-dependent matrix model:   138 

𝑀 = [

0
𝑔1

𝑓𝜂𝑙𝑝→𝑝σ

0
⋯

𝑓𝜂𝑙𝑝→𝑝σ

0
⋮ ⋱ ⋮
0 ⋯0 𝑔4 0

](2) 139 

In (2) f is the fecundity, η is the larval survival during pelagic dispersal (i.e. due to sources other 140 

than over-dispersion, e.g. predation, stress, food limitation), lp←p is the fraction of larvae that 141 

would return to the original population if mortality were zero and σ is the probability of settled 142 

individuals reaching the first year of age. Notice that we separate physical transport from larval 143 

mortality; hence, larval dispersal would be given by η × lp←p (or η × li←j see below). In addition, 144 

connectivity will be given by σ × η × lp←p (σ × η × li←j: see e.g. Lett et al. 2015). Here for 145 

simplicity, we refer to lp←p and li←j as larval retention and larval connectivity respectively.  In 146 

equation 1, a series of Q matrices (see equation 3) define the number of larvae originating in 147 
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each population that settle and survive over the first year in the local population. Each Q matrix 148 

is a square matrix of 5 × 5 cells (corresponding to the age classes) given by equation 3.  149 

𝑄 = [

a1,1

0

a1,2

0
⋯

a1,5

0
⋮ ⋱ ⋮
0 ⋯0 0 0

](3) 150 

For the upper row, aij = σ× li←j × η × f represents the product of the larval production and 151 

survival, the larval connectivity coefficient (lj←i). 152 

The larval connectivity and retention coefficients were those given by Robins et al. (2013). 153 

Robins et al (2013) used a coupled 3D hydrodynamic and Lagrangian particle tracking model to 154 

simulate scenarios where larvae are released at one time in the year and allowed to disperse for 155 

28 days under realistic wind, temperature, tidal and photoperiod conditions. Importantly, the 156 

connectivity and retention coefficients were obtained from realistic distribution of populations 157 

throughout the region, coastal geography and sea bottom topography, all contributing to the 158 

patterns of dispersal. 159 

The number of larvae competent to settle at the end of the pelagic period is a function of the 160 

number produced (fecundity rate) and the number of these which survive (mortality rate). We 161 

lack any evidence to realistically vary either production or loss of larvae across geographic 162 

locations and age class of adult. Hence, fecundity and larval survival rates were modelled as 163 

density-independent and constant over the whole model domain and were combined to form a 164 

single parameter, ω = f × η; ω may be interpreted as a component of the maternal fitness, i.e. the 165 

product of offspring number and survival. Variation in larval survival has been shown to modify 166 

patterns of connectivity (Paris et al. 2007); hence, the metapopulation model was run using two 167 

values of ω (10 and 10,000 larvae per reproductive adult). The values of ω are chosen in first 168 
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instance to cover a wide range in the parameter space.  Second, such values cover the range of 169 

fecundities and known mortality rates observed in marine invertebrates. For instance, 170 

instantaneous daily mortality rates for marine larvae range from 0.22 (Rumrill 1990) to 0.14 171 

(White et al. 2014), resulting in ca. 0.13% to 1.50% survival over 28 days (used to model the 172 

connectivity matrices). Combining these estimates (η = 1.3 x10-3 - 1.5 x 10-2) with the values of 173 

the term ω used in the model (10, 104), we obtain a realistic range of fecundities (from f = 103 for ω = 174 

10 to f = 107 for ω = 104).  175 

Overall, the model incorporates two sources of mortality, one that was captured in the parameter 176 

η, and one that was caused by dispersal away from suitable habitat (subsequently termed 177 

overdispersion). Overdispersion is reflected in the coefficients of connectivity and retention since 178 

at the end of the simulation any larvae that do not reach the population from which they arose or 179 

reach one of the other 39 populations are considered dead. Overdispersion is affected by larval 180 

behaviour and by temporal changes in oceanographic conditions (Robins et al. 2013). In the 181 

present models, we assume that overdispersion and η do not covary, but we recognise potential 182 

sources of co-variation; for instance, diel vertical migration may lead to specific patterns of 183 

overdispersion while minimising mortality by predation.  184 

The number of larvae arriving to a focal population p, (St, j=p) is defined by the contribution of 185 

the focal population, accounted for in the first row of the M matrix (equation 2), and the subsidy 186 

from other populations, accounted for in the first row of the Q matrices (equation 3). These 187 

contributions are calculated as:  188 

𝑆𝑡,𝑗=𝑝 = ∑ 𝑁𝑡,𝑘,𝑗=𝑝 ∙ 𝜔 ∙ 𝑙𝑝→𝑝 + ∑ ∑ 𝑁𝑡,𝑘,𝑗 ∙ 𝜔 ∙ 𝑙𝑗→𝑝𝑗≠𝑝
5
𝑘=1

5
𝑘=1  (4) 189 
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The first term in the right hand side of equation (4) defines the total number of individuals 190 

retained as the product of the number of adults, fecundity and survival (= ω), and the larval 191 

retention coefficient. The second term defines the input of larvae from other populations 192 

(subsequently termed subsidy), similar to retention, but based on the larval connectivity 193 

coefficients between each particular population, j, and the focal population, p. For simplicity, we 194 

assume that larval retention or connectivity coefficients are constant across ages and through 195 

each event of larval release (no t or k subscripts in eq. 4). Note that when the focal population, p, 196 

goes extinct, recovery is in the first instance governed by the subsidy and hence the first term of 197 

equation 4 is zero. Eventually, once individuals reach the reproductive age, recovery will also 198 

depend on retention coefficients.   199 

Following larval settlement, and over the first year of benthic life, the survival rate, s, in the M 200 

and Q matrices, was modelled as a density-dependent process according to the Beverton-Holt 201 

equation. The number of individuals surviving the first year of life (N1) was: 202 

𝑁1,𝑡+1 =
𝛼0∙𝑆𝑡

1+𝛽0∙𝑆𝑡
 (5) 203 

Where St is the number of larvae arriving to the nursery habitat (eq. 5) and α and β are 204 

parameters; the subscript 0 indicates that these correspond to young of the year. We defined α as 205 

the density-independent survival parameter (since N1/S→ α when S→0); β is the density-206 

dependent parameter (if β = 0, N1 is proportional to St).   207 

In the following years, all individuals experience mortalities depending on the total number of 208 

individuals present in that habitat. The survival rate in the adult habitat (gi in the M matrix) was 209 

also modelled by a Beverton-Holt equation. Therefore, the number of individuals of age k 210 

surviving to the age k+1 is:  211 
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𝑁𝑘+1,𝑡+1 =
𝛼𝑎∙𝑁𝑘

1+𝛽𝑎∙∑ 𝑁𝑘𝑘
 (6) 212 

where the subscript “a” indicates that the parameters of the function that correspond to the 213 

survival of individuals of one or more years of age. The density-dependent coefficient β for both 214 

the first year of life, and subsequent years, was varied between 0.1 and 0.0001 to explore the role 215 

of benthic survival on recovery.  For simplicity, we assume that for all populations α0=α1=1, 216 

β0=β1=β in eqs. 4 and 5. In such a model, for each individual simulation, the variation in the 217 

response variables among populations depended solely on the coefficients of the connectivity 218 

matrix. Taken together, the simplifications of α1, β and ω would result in a “stage-structured” 219 

model composed of a juvenile stage (with zero fecundity and one year duration), and an adult 220 

stage (with non-zero fecundity and four year duration). However, we prefer to present the model 221 

in an “age structured” form shown in eq 1-3 because it is easier to interpret each iteration as 222 

equivalent to one year of duration.  223 

Simulations of extinction 224 

Initially the model was run for 200 years, covering 24 different scenarios, varying in all possible 225 

combinations of larval strategy (diel, tidal, passive), season (spring, summer), the term ω (=10 or 226 

1000 larvae per reproductive adult) and density-dependent coefficient β (=0.1 or 0.0001). Each 227 

model simulation was initialized with 10 individuals per age class at each population. In each 228 

cycle, the model computed, at time t, the number of larvae produced and settled at each site, 229 

using equation 3. The number of settlers was then used, also at the time t, to update St in equation 230 

4. Then, the model computed, at the time t+1, the number of individuals surviving the first year 231 

of life according to equation 5. The number of “first years” was then used to update the term Nk 232 

in equation 6, which is used to compute, at the time  t+2, the number of individuals surviving to 233 
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age = 2 years. At a given year t+i, the terms in the local matrix (eq. 2) depending on eqs. 4-6 234 

were updated simultaneously according to St and the total number of individuals in the adult 235 

habitat. 236 

After the initial 200 year run of each of the 24 simulations, we then simulated extinction and 237 

measured recovery for four regions: (1) Cardigan Bay (populations 4 to 8 in Fig. 1), (2) Anglesey 238 

(populations 9 to 12), (3) Liverpool Bay (populations 13 to 22), and (4) central Ireland 239 

(populations 33 to 37). Each extinction and recovery simulation was run separately for each of 240 

the four regions, giving a total of 96 simulations (=24×4; i.e. only one region suffered an 241 

extinction event at any one time, in a given simulation). We did not simulate extinction in any 242 

population located at the border of the model domain since the recovery of such populations 243 

should be affected by subsidy populations outside the model domain.  Extinction was simulated 244 

by setting abundance to zero for all age classes of the populations in the target ‘extinction’ 245 

region.  The model was then run for a further 400 “years” and the rate of recovery quantified as 246 

T50, the time (in years) required by populations to reach 50% of the asymptotic population size.  247 

We run a series of preliminary simulations in order to check the behaviour of the model: these 248 

results are detailed in Appendix S2.  249 

Statistical analysis 250 

We used a statistical approach to quantify the average effect of each driver (region of extinction, 251 

month of larval release, β and ω) on recovery time (T50). We also studied the time needed for a 252 

population to double its size when rare (Appendix 2, Secction 2.2.) but found that T50 was more 253 

useful as a descriptor of the recovery rates Statistical analyses (on T50) were run in R (R core 254 

team 2013). We followed the recommendations of White et al (2014) and focused on effect sizes, 255 
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since applying significance testing to simulation outputs would not be appropriate in a modelling 256 

exercise. Effect sizes were quantified using two techniques, boosted regression trees (James et al. 257 

2013) and general least squares models (GLS: Zuur et al. 2009, Galecki and Burzykowski 2013); 258 

such techniques have been used to identify key drivers of metapopulation connectivity (Treml et 259 

al. 2015).  260 

Boosted regression trees (BRT) were carried out following Elith et al. (2008). BRT is a 261 

technique of non-linear model fitting based on so called “decision trees”. Decision trees partition 262 

the predictor space (defined here by our drivers of connectivity) into regions of similar values of 263 

the response variable (recovery time) and then fit a constant to each region (Elith et al. 2008). 264 

Boosting is a numerical optimization technique minimising the error through the cumulative 265 

fitting of additional trees to the data (each tree is fitted to the residuals obtaining from the fit of a 266 

previous tree). We use BRT as way to quantify the importance of each predictor, given as their 267 

relative influence (i.e. the proportion of the number of trees where a given predictor is fitted). 268 

BRT were fitted in R, using the package dismo and the function gbm.step; this function enables 269 

the use of a cross-validation method, based on testing the models of the fraction of the data (“bag 270 

fraction” = 0.5 in our case) in order to select optimal number of trees for the model.  We fitted 271 

four models differing in the “learning rate” (range 0.05 to 0.0005), a parameter controlling the 272 

contribution of each tree to the model. All models were fitted with normal residuals and a tree 273 

complexity of 5, i.e., considering the highest (five-way) interaction. All model fits led to similar 274 

patterns in the relative influence of the predictors on the recovery time; we present the results 275 

corresponding to a learning rate of 0.01.  276 

In order to interpret the output of the BRT we present plots of averaged recovery rate in response 277 

to all combination of parameters as well as plots of parameter estimates obtained from a general 278 



14 
 

least square model (GLS). The GLS was fitted using the package nlme (Pinheiro and Bates, 279 

2000) considering variance heterogeneity (VarIdent constructor function) and correlations 280 

among sites (CorCompSymm function). Although our design was fully replicated, our attempts 281 

at fitting the full model for the variance structure led to situations of non-convergence; when this 282 

occurred, we reduced the complexity of the variance structure in the starting model. Models were 283 

fit using restricted maximum likelihood method (REML).The GLS technique was applied to the 284 

logarithmically transformed values of the recovery time. The full model was a 5th order full 285 

factorial for both the variance and the fixed structure (i.e. for the fixed structure: T50 ~ ω x β x 286 

strategy x month x region) and parameter estimates were extracted. 287 

Network topology 288 

In a separate group of models, we evaluated the role of network topology. First, we evaluated 289 

how well recovery time was predicted by local subsidy and retention. In this case we used the 290 

coefficient of determination (R2) as a metric of effect sizes because our focus was on the 291 

importance of subsidy or retention in explaining variation in recovery time. Subsidy was defined 292 

as the sum of the connectivity coefficients indicating input of larvae towards a focal population. 293 

Note that subsidy is calculated as the sum of transport coefficients directly connecting the focal 294 

population to others many of which that may be inside the area of extinction. For instance, for a 295 

focal population located in the centre of the area of extinction the most likely scenario is that 296 

subsidy is entirely dependent on adjacent populations located inside the area of extinction. Larval 297 

connectivity to the outside source may occur indirectly, i.e. through one or more local 298 

populations (e.g. in a stepping stone pattern); it will depend on transport coefficients linking the 299 

focal and other populations with those outside the area of extinction and it is calculated as a 300 

product. Hence, for each focal population we used two different indices of connectivity to the  301 
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sources located outside the region of extinction, the total connectivity (CT) and the one provided 302 

by the path giving the maximum connectivity (CM). CT was defined as the sum of the 303 

connections to the populations located outside the region of extinction either direct or indirect 304 

(the latter is calculated as a product of coefficients).  305 

𝐶𝑇𝑝 = ∑ (∏ 𝑙𝑖𝑗
𝑣

𝑗 ) 𝑣 (7) 306 

In equation (7), each lv
ij is a larval transport coefficient between populations forming a path v 307 

between the focal population and the source populations located outside the region of extinction.  308 

For CT, all paths are considered; one such path, the one used to calculate CM, has the maximum 309 

product of the associated transport coefficients:  310 

𝐶𝑀𝑝 = 𝑀𝑎𝑥(∏ 𝑙𝑖𝑗
𝑣

𝑗 ) (8) 311 

For example, if populations were connected to a source S0 through a single path (a stepping stone 312 

pattern): S0→P1→P2→P3 and larval connectivity were l1←0=10-1, l2←1=10-1, l3←2=10-2 313 

respectively, then CM1=10-1, CM2=10-2 and CM3=10-4. If by contrast S0 were also connected to 314 

P2 with l2←0=10-1 then CM1=10-1, CM 2=10-1 and CM3=10-3, because such alternative path leads 315 

to higher CM for populations 2 and 3. In many cases, transport, between populations i and j is bi-316 

directional because of non-zero coefficients occurring in both directions (lj←i >0 and li←j >0). 317 

Bidirectionality in transport between populations is common although in most cases there are 318 

strong asymmetries because currents flow in a predominant direction.  Where transport between 319 

two populations was more symmetrical (i.e. where differences in coefficients were not large) the 320 

calculation of CM is based in the first instance on connections with populations from that region, 321 

and in the second instance, on the largest coefficient connecting two populations. For example, if 322 

we have S0→P1→P2↔P3 and l3←2 < l2←3 then, for P2, l3←2 would still be the appropriate 323 
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coefficient because l2←3 would only enable subsidy from S0 to P2 once P2 subsidises P3 through 324 

l3←2.  However, in a case of two sources, e.g. S0→P1→P2↔P3 ←S1, then CM for each 325 

population was calculated from the source giving the largest coefficient: if for P2, CM-S1 = l3←S1 326 

∙ l2←3 > l1←S0  ∙  l2←1 =  CM-S0  then we chose CM-S1 for population P2 because CM-S1 >CM-S0 . 327 

Appendix S2 (Section 2.3) gives detailed information about connectivity coefficients used to 328 

calculate CM.   329 

Importantly, CM is influenced by the position of the focal population downstream of the sources 330 

and on whether the network is either “stepping stone” (Carr and Reed 1993) or “small world” 331 

type (Watts and Strogatz 1998; i.e. networks where populations are highly connected with each 332 

other). Here we also used the coefficient of determination (R2) as a metric of effect sizes based 333 

on both the raw data and log-transformed recovery times, i.e. log(T50) and log-transformed 334 

values of CM. 335 

Results 336 

Life history and habitat matrix 337 

The density-dependent coefficient β did not have any important influence on recovery times (Fig 338 

3) and it is not considered further.  The term ω (the product of fecundity and survival: Fig. 2) had 339 

a strong effect on the predicted recovery times (Fig 3). At high ω (=104), the predicted recovery 340 

times were much shorter and had a lower degree of variation among larval strategies and time of 341 

larval release (April vs. August) and regions (Fig. 4). The term ω also seems to influence 342 

variability in recovery time within a region. For instance, for Cardigan Bay (Fig. 5), the 343 

simulation resulted in short recovery times (T50 <25 years) for all strategies with ω of 104, but at 344 

ω of 10 such times varied considerably among larval behaviours or sites (T50 varied from < 25 to 345 
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>100 years). Overall, the model predicted that increased fecundity and larval survival mitigates 346 

the effects of larval strategies and time of release on recovery times. This conclusion is logical 347 

because in equation (4), the term ω operates on settlement through a multiplicative effect (the 348 

effect of the transport coefficients, lj→p , on settlement is increased ω -fold). 349 

In the model, larval behaviour drives recovery times through changes in the coefficients of the 350 

transport matrix (Fig. 2). Larval behaviour had an important effect on recovery time but this 351 

effect depended on other predictors (Figs. 3, 4). In most simulations, tidal migration led to short 352 

recovery times (T50 <25 years); under a tidal migration strategy the effects of ω (month of 353 

release) were smaller than under other migration strategies, at both the scale of regions (Fig. 4) 354 

and within regions (Figs. 5, 6). Passive and diel migration let to regional scale variation in 355 

recovery times (Fig 6, see also Appendix S4: Figs S4-S7) from short (Irish coast: T50 < 5 years) 356 

to longer times (e.g. Liverpool Bay: average T50 20-40 and Cardigan Bay: ~ 40-70 years both   ω 357 

= 10). Taken together, tidal migration and high fecundity/larval survival (i.e. high ω) minimised 358 

the average and the spatial and temporal variability in recovery time. 359 

There was also important regional scale and temporal variation in recovery times (Fig 3 and 4), 360 

driven by oceanography. The Irish coast showed consistently short recovery times (Fig. 6); i.e. 361 

they were short irrespective of tidal strategy and month of larval release.  By contrast, recovery 362 

in other regions was largely affected by tidal strategy and month of release.  In addition, recovery 363 

times were slightly shorter in simulations of release in April as compared with those in August 364 

(Figs. 4, 5). 365 

 366 

 367 
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 368 

Network topology  369 

Network topology refers to the geometric arrangement of the network (Kininmonth et al. 2010) 370 

including its nodes and connections. A key question was whether local subsidies and retention 371 

coefficients, constituting direct connections to each population, were able to explain the patterns 372 

of recovery time. Subsidy and retention were poor as predictors of recovery time (R2<0.10), 373 

although the transport coefficients defining such connections determined recovery times by 374 

design (Fig. 2). In general, populations characterised by high subsidy recovered rapidly but 375 

recovery time varied considerably when subsidy was low (Fig. 7a); examination of scatterplots 376 

showed that subsidy (or retention) had a weak relationship with recovery time (exception:  377 

combination tidal strategy, August release, ω =10: Appendix S4, Figs. S12 and S13). By 378 

contrast, total connectivity (CT) or the maximum connectivity to the source populations outside 379 

the area of extinction (CM) were a strong predictor of recovery times (R2 > 0.7; Fig. 7b,c).  380 

CM represent the connectivity provided by one of the paths considered in CT. Close examination 381 

of populations within regions shows how CM reflects the overall topology of the regional 382 

networks as modified by larval behaviour and month of larval release. For instance, the sub-383 

network of Cardigan Bay (Populations 4-8; Fig. 5) was characterised by a stepping stone pattern 384 

where populations 6 to 8 (P6-8) usually received larvae from P1-3, outside the network, through P4-385 

5. For the spring simulation, in spite of differences associated with larval behaviour, all 386 

connectivity coefficients were moderate to high (mostly > 10-7), and populations recovered 387 

quickly from extinction. However, for the summer simulation, low connectivity coefficients 388 

(mostly <10-7) characterised the passive and diel strategies. In summer, the differences in 389 
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recovery times among populations were high as extremely low recovery rates were predicted for 390 

some locations but not others. For example, for passive dispersal, P7 has a long predicted 391 

recovery rate (T50 >100 years) compared with the adjacent site P5 (rapid recovery: T50 < 5 years) 392 

despite similar levels of subsidy (10-7 vs ~10-8).  However, P5 is strongly and directly connected 393 

with a population (P3), located outside the area of extinction (connectivity P3-P5 ~ 10-7) as 394 

compared with P6 (connectivity P3-P6 <10-18). Stepping stone patterns are not reflected in the 395 

subsidy but CM incorporates both the subsidy from populations that are connected to the source 396 

and the position in the network. Low values of CM are found in populations that are not directly 397 

connected to the sources outside the region of extinction and instead are organised stepping stone 398 

patterns. Stepping stone patterns were not present in all regions; for instance, the subnetwork of 399 

Anglesey (Fig. S5) resembles a “small world” type, especially for the passive strategy (i.e. with 400 

populations closely connected with each other and with the source). Whether the network 401 

structure resembled a stepping-stone or a small world type also depended on the larval strategy 402 

(Figs. S6, S7: Liverpool Bay and West Ireland): in particular, the tidal strategy which led to short 403 

recovery times gave rise to several connections between the source and the populations located 404 

inside the region of extinction.  405 

Discussion 406 

We have carried out a modelling exercise in order to better understand the role of life history 407 

strategies, the habitat matrix and the network topologies in determining the capacity of local 408 

populations to recover from extinction. Recovery in some cases took many decades; this is 409 

consistent with empirical observations of meta-populations over large regions (> 20 years: 410 

Lessios 2016); however, in our case they may reflect the fact that we simulated recovery based 411 

only on a single larval release event each year. Recovery strongly depended on the interactive 412 
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effect of trait combinations and the temporal and spatial variations in the habitat matrix. Real 413 

spatial or temporal patterns will look blurred compared with model outputs because many 414 

species will produce several batches of larvae each year and hence profit from temporal changes 415 

in hydrodynamic conditions. In addition, effects of larval strategy might be blurred because 416 

swimming speeds may not be constant over time or may vary intra-specifically according to the 417 

physiological state of larvae (e.g. body size, nutritional condition). Recovery will also be driven 418 

by Allee effects and the extent to which regional extinction lead to regime shifts in the local 419 

habitat (see Lessios 2016 for discussion). Given these points, we use our results only as a guide 420 

for understanding processes driving recovery from the standpoint of larval survival and dispersal. 421 

In our model, the characteristics of the habitat matrix were driven by oceanographic conditions 422 

and larval survival (manipulated through the term ω). The characteristics of the habitat matrix 423 

contributed to the properties of the regional sub-network, which in turn were driving recovery 424 

time; the correlation between recovery times and the connectivity to the source populations 425 

outside the region of extinction suggested that recovery is driven by whole network properties. 426 

Life history strategies 427 

High fecundity and tidal transport minimised recovery times. High fecundity is known to 428 

increase connectivity (Johansson et al. 2012, Treml et al. 2012) but fecundity varies considerably 429 

among marine species (Ramirez-Llodra 2002). Under the conditions of the model, only the most 430 

fecund species (producing ~106 larvae per female) would be able to produce sufficient survivors 431 

to ensure quick recovery (T50<5 years) irrespective of region and season. Less fecund species 432 

may however avoid low recovery rates by producing multiple broods and releasing larvae over a 433 

protracted period. 434 
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Our model predicts that not only high fecundity but also tidal migration can lead to short 435 

recovery times. In the sea, larval vertical migration vary across species (Shanks and Brink 2005; 436 

Epifanio and Cohen 2016) even within the same habitat (Lindley et al. 1994; Garrison 1999). 437 

While tidal migrations usually promote transport, diel migration can promote retention (e.g. 438 

Shanks 2009; Queiroga et. al 2007); hence, one would expect that variations in larval strategies 439 

among species would lead to important intraspecific variation in recovery times.  Our models 440 

however do not include the fact that diel migrations reduce mortality by predation (Hays 2003) 441 

and would indirectly contribute to shorter recovery times.  442 

The finding that dispersal strategies can be as important as high fecundity is relevant from the 443 

evolutionary standpoint.  First, K-strategists, characterised by low fecundity, but possessing the 444 

appropriate pattern of larval migration, would be able to quickly recolonise habitats post-445 

disturbance. Second, larval behaviour may provide an evolutionary routes to maximise 446 

connectivity (and hence fitness), free from constraints associated with increased fecundity. 447 

Because of energetic constraints, fecundity is linked through a trade-off with per-offspring 448 

investment (Marshall et al. 2007; Kindsvater and Otto 2014). Because maximising fecundity will 449 

come at the costs of reducing larval survival, species may not be able to increase fitness through 450 

increments in ω (= fecundity × larval survival). However, if specific behavioural strategies are 451 

not linked to the energetic constraints, then fitness can be increased through increments in the 452 

larval transport coefficients. The phenotypic links characterising the life histories of marine 453 

organisms (Marshall and Morgan 2011) predict that selective pressures in the adult habitat may 454 

well drive the evolution of larval behaviour, or alternatively that selection for specific larval 455 

behaviours (e.g. for diel migration) may drive the evolution of fecundity and offspring size. 456 
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Advance in this field needs information about the covariation between per offspring investment, 457 

larval swimming speed and behavioural strategies. 458 

The effect of life history variation on recovery times modelled here are also relevant to 459 

understand the structure of meta-communities. When local communities are structured through 460 

priority effects, such trait combinations may determine which species are established first, and 461 

which may inhibit or promote the establishment of a second species (Almany 2003, Chase 2007). 462 

Depending on trait combinations, conditions of the habitat matrix may lead to trait-based 463 

environmental filtering (Lebrija-Trejos et al. 2010). Environmental filtering would occur because 464 

disturbance would select species according to traits promoting rapid recovery, e.g. high fecundity 465 

(Ponge 2013, Seifan et al. 2013) or specific migration strategies. Because the importance of 466 

migration strategies depends on properties of the habitat matrix (e.g. oceanographic conditions in 467 

our specific case), our models indicate that structure of metacommunities may depend on 468 

landscape-dispersal interactions. Landscape-dispersal interaction have been pointed as an 469 

overlooked but potentially important driver of metacommunity structure (Ryberg and Fitzgerald 470 

2016).  471 

Role of habitat matrix and network topology  472 

Our model outputs reinforce the finding by others concerning the role of the habitat matrix in 473 

driving recovery (Hanski 1999, Joly et al. 2001, Haynes and Cronin 2004, Fisher et al. 2005, 474 

Goodsell and Connell 2005).  A component of the habitat matrix is given by those factors driving 475 

larval survival (Shima and Swearer 2009), incorporated as η, in the term ω. Our findings are 476 

consistent with arguments in Paris et al. (2007) on including overall larval survival rates to 477 
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understand the role of connectivity on population recovery and highlight the necessity to 478 

quantify larval survival in the field (Vaughn and Allen 2010, but see White et al. 2014).  479 

Species traits, the quality of the habitat matrix and the spatial configurations of the local 480 

populations contributes to the characteristics of the network topology through effects on the 481 

transport coefficients. We found that effects of network topology on recovery were captured in 482 

the connectivity to the outside source, either as the total connectivity of as the path providing the 483 

maximum connectivity (CM) because high values of CM would occur more frequently in small 484 

world networks than on those characterised by stepping-stone patterns. The fact that CM had a 485 

much higher predictive power than subsidies and retention coefficients suggest focus should be 486 

in understanding the ecological factors driving “emergent” network properties rather than (only) 487 

on conditions surrounding local populations. Network topology varied at two scales, defining 488 

regions linked by weak connections (see e.g. Cowen et al. 2006 as a similar example) and groups 489 

of weakly connected locations within regions. Reduced larval connectivity among regions and 490 

some stepping stone patterns within regions occurred at the time of formation of frontal zones 491 

and thermoclines in summer, which act as conduits of larval transport (Robins et al. 2013). On 492 

the other hand, strong currents promoted a small world type of network in East Ireland. Hence, it 493 

seems that the nature of the habitat matrix is such that it leads to context-dependent recovery.  494 

Overall, we have found high levels of contingency in attempting to determine which biological 495 

and physical factors drive recovery from extinction. Key drivers of contingency were the 496 

temporal variation and spatial heterogeneity of the habitat matrix given by variation hydrology; 497 

the effect of habitat heterogeneity on recovery was exacerbated under low fecundity or high 498 

larval mortality. Having the right larval behavioural strategy may be as important as high 499 

fecundity or low mortality rates in achieving quick recovery time in a heterogeneous habitat. 500 
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Quick recovery was obtained by a strategy providing sufficient connectivity but limited 501 

overdispersion (exemplified by the tidal strategy) which led to small-world type of networks. A 502 

strategy maximising retention (here exemplified by diel vertical migration) at expenses of larval 503 

connectivity may not ensure quick recovery, unless it is coupled with high fecundity or low 504 

larval mortality. Mixed approaches, based on the application of general metapopulation models 505 

to situations characterised by realistic seascapes (exemplified by the Irish Sea) might further 506 

contribute to understand the mechanisms driving recovery from extinction after disturbance 507 

events. This is also relevant for conservation and for understanding invasion dynamics. For 508 

instance, the optimization of networks of protected areas, which depend on understanding 509 

patterns of retention and connectivity (Planes et al. 2009), would require knowledge species trait 510 

combinations. In addition, conservation should address the quality of the habitat matrix (see also 511 

Shima and Swearer 2009), which depends on stressors (e.g. pollutants, toxic algae: Vasas et al. 512 

2007, Shaber and Sulkin 2007, predatory jellyfish: Purcel 2011, Lee et al 2013). These are the 513 

ecological and anthropogenic factors that co-determine whole network topological properties and 514 

influence recovery from extinction. 515 
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Figure captions 696 

 697 

Figure 1. The model domain, the Irish Sea, with the spatial location of the local populations and 698 

the four areas of extinction (A: Cardigan Bay, B: Anglesey; C: Liverpool Bay and D: Irish coast). 699 

Arrows indicate the main pathways of connectivity among regions, depending on the larval 700 

strategy (passive, tidal, diel) as obtained in Robins et al (2013). 701 

Figure 2. Flow diagram summarising the relationships between factors or natural drivers defining 702 

the habitat matrix, the traits and the terms or coefficients determining the recovery time (T50).  The 703 

habitat matrix is characterised by biotic and abiotic factors, affecting larval survival (manipulated 704 

here variations in the term ω) and by oceanographic conditions driving larval transport and hence 705 

the coefficients of the connectivity matrix.  The traits are the fecundity (contributing to the term 706 

ω) and larval behaviour (contributing to the coefficients of the connectivity matrix). The term ω 707 

is the product of larval survival and fecundity; lij denotes the coefficients of the transport matrix. 708 

Figure 3. Importance of region, larval strategy (Str), ω, Month of release, and β for recovery time 709 

from extinction (T50). (a) Percent influence  estimated from boosted regression trees. (b) Difference 710 

between parameter estimates at predictor levels vs the reference, estimated from general least 711 

squares model (from summary output, total of 96 parameters). In (b) the references correspond to 712 

ω =10, β =0.0001, Month = April, Dispersal = passive, region = Cardigan bay. Each dot 713 

corresponds to the difference between the reference level and another level, for a given 714 

combination of predictors. For instance, for ω the additional level is ω =10,000 and there are 48 715 

dots corresponding to the combinations of levels of all other predictors (region, β, month and 716 

strategy: 48 = 4x2x2x3). For ω, β and month there is a single column of symbols because there is 717 

only a single level other than the reference. Notice in (a) that β is the predictor with less relative 718 
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influence; in (b) this coincides with almost no difference between parameter estimates obtained at 719 

the reference (β =0.1) vs. β =0.0001 irrespective of remaining predictors (most dots are on the zero 720 

line). By contrast, ω has a strong relative influence (a); (b) shows that differences vary depending 721 

on other predictor combinations, but they are always negative, indicating that higher ω drives 722 

consistently reduced recovery time. Region (as month and strategy) had high relative importance 723 

(a) but the magnitude depended on the combinations of other parameters (in b, differences are 724 

negative or positive). 725 

Figure 4. Average predicted recovery times (T50; i.e. time required to reach 50% of asymptotic 726 

population size) according to region, month of larval release, larval strategy and values of term ω 727 

(representing the combined effect of survival and fecundity). Boxes and error bars represent 728 

standard error and standard deviation respectively. Abbreviations: CAB: Cardigan Bay, ANG: 729 

Anglesey: LIVB: Liverpool Bay, W-IRE: East Ireland. 730 

Figure 5. Cardigan Bay. Left panels: Prediction of recovery times (T50) under different 731 

combinations of ω, larval strategies and time of larval release (β=0.0001). Right Panels: network 732 

topologies depending on month of release and larval strategy. Boxes: populations (source 733 

populations, outside the region of extinction, in light grey). Numbers associated with arrows:  734 

connectivity coefficients (as order of magnitude: e.g. -3 corresponds to 10-3). For simplicity, we 735 

only show coefficients between adjacent populations and the highest connectivity between two 736 

populations (connections are bi-directional).   737 

Figure 6. Prediction of recovery times (T50: time required to reach 50% of the numbers reached in 738 

year 400) for all regions, under different combinations larval strategy and time of larval release 739 

(ω= 104; β=0.0001).  740 
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Figure 7. Recovery time vs (a) subsidy, (b) total connectivity (CT in log-transformed scale) and 741 

the maximum connectivity (CM in log-transformed scale) to sources located outside the region of 742 

extinction.   743 
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 759 

Figure 1. The model domain, the Irish Sea, with the spatial location of the local populations and 760 

the four areas of extinction (A: Cardigan Bay, B: Anglesey; C: Liverpool Bay and D: Irish coast). 761 

Arrows indicate the main pathways of connectivity among regions, depending on the larval 762 

strategy (passive, tidal, diel) as obtained in Robins et al (2013). 763 

 764 

 765 
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 766 

Figure 2. Flow diagram summarising the relationships between factors or natural drivers defining 767 

the habitat matrix, the traits and the terms or coefficients determining the recovery time (T50).  The 768 

habitat matrix is characterised by biotic and abiotic factors, affecting larval survival (manipulated 769 

here variations in the term ω) and by oceanographic conditions driving larval transport and hence 770 

the coefficients of the connectivity matrix.  The traits are the fecundity (contributing to the term 771 

ω) and larval behaviour (contributing to the coefficients of the connectivity matrix). The term ω 772 

is the product of larval survival and fecundity; lij denotes the coefficients of the transport matrix. 773 

 774 

 775 

 776 

 777 



38 
 

 778 

Figure 3. Importance of region, larval strategy (Str), ω, Month of release, and β for recovery time 779 

from extinction (T50). (a) Percent influence  estimated from boosted regression trees. (b) Difference 780 

between parameter estimates at predictor levels vs the reference, estimated from general least 781 

squares model (from summary output, total of 96 parameters). In (b) the references correspond to 782 

ω =10, β =0.0001, Month = April, Dispersal = passive, region = Cardigan bay. Each dot 783 

corresponds to the difference between the reference level and another level, for a given 784 

combination of predictors. For instance, for ω the additional level is ω =10,000 and there are 48 785 

dots corresponding to the combinations of levels of all other predictors (region, β, month and 786 

strategy: 48 = 4x2x2x3). For ω, β and month there is a single column of symbols because there is 787 

only a single level other than the reference. Notice in (a) that β is the predictor with less relative 788 

influence; in (b) this coincides with almost no difference between parameter estimates obtained at 789 

the reference (β =0.1) vs. β =0.0001 irrespective of remaining predictors (most dots are on the zero 790 

line). By contrast, ω has a strong relative influence (a); (b) shows that differences vary depending 791 
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on other predictor combinations, but they are always negative, indicating that higher ω drives 792 

consistently reduced recovery time. Region (as month and strategy) had high relative importance 793 

(a) but the magnitude depended on the combinations of other parameters (in b, differences are 794 

negative or positive). 795 
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 812 

Figure 4. Average predicted recovery times (T50; i.e. time required to reach 50% of asymptotic 813 

population size) according to region, month of larval release, larval strategy and values of term ω 814 

(representing the combined effect of survival and fecundity). Boxes and error bars represent 815 

standard error and standard deviation respectively. Abbreviations: CAB: Cardigan Bay, ANG: 816 

Anglesey: LIVB: Liverpool Bay, W-IRE: East Ireland. 817 
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 824 

Figure 5. Cardigan Bay. Left panels: Prediction of recovery times (T50) under different 825 

combinations of ω, larval strategies and time of larval release (β=0.0001). Right Panels: network 826 

topologies depending on month of release and larval strategy. Boxes: populations (source 827 

populations, outside the region of extinction, in light grey). Numbers associated with arrows:  828 

connectivity coefficients (as order of magnitude: e.g. -3 corresponds to 10-3). For simplicity, we 829 

only show coefficients between adjacent populations and the highest connectivity between two 830 

populations (connections are bi-directional).   831 
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 832 

Figure 6. Prediction of recovery times (T50: time required to reach 50% of the numbers reached in 833 

year 300) for all regions, under different combinations larval strategy and time of larval release 834 

(ω= 104; β=0.0001).  835 
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 849 

Figure 7. Recovery time vs (a) subsidy, (b) total connectivity (CT in log-transformed scale) and 850 

the maximum connectivity (CM in log-transformed scale) to sources located outside the region of 851 

extinction.   852 
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Role of trait combinations, habitat matrix and network topology in metapopulation 853 

recovery from regional extinction 854 

Luis Giménez Peter Robins and Stuart Jenkins 855 

Supplementary information 856 

S1: Matlab code for model simulation 857 

%% Role of trait combinations, habitat matrix and network topology in 858 

%% metapopulation recovery from regional extinction  859 

%% Luis Giménez1,2, Peter Robins1, and Stuart Jenkins1 860 

 861 

%% 1. School of Ocean Sciences, Bangor University, LL59 5AB, Menai Bridge, 862 
%%Isle of Anglesey, United Kingdom.  863 

%% Biologische Anstalt Helgoland, Alfred Wegener Institute, Helmholtz Centre 864 
%% for Polar and Marine Research, 27498 Helgoland, Germany.  865 

 866 

%% METAPOPULATION DYNAMIC MODEL 867 

% code by Peter Robins. 868 

 %% SECTION 1: INITIAL MATLAB ACTIONS 869 

  870 

clear;                      % clears current MATLAB workspace 871 

clc;                        % clears MATLAB command history since last log-on 872 

fclose('all');              % closes all open MATLAB files 873 

  874 

%% SECTION 2: MODEL INPUT (section to be modified...) 875 

  876 

% Files and directories: 877 

id = 'M:\Myfolder\'; 878 
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file_population_abundance   = 'Population_abundance.xls'; 879 

file_W              = 'W.xls'; 880 

file_density_numerator      = 'Density_numerator.xls'; 881 

file_density_denominator    = 'Density_denominator.xls'; 882 

  883 

% matrix dimensions: 884 

np = 40;                    % np = number of populations 885 

ny = 200;                   % ny = number of years 886 

st = 5;                     % st = number of stages (years) for organism 887 
survival 888 

itest=1;                    % 1=Beverton-Holt, 2=Otro 889 

  890 

% Initial population abundances: 891 

P     = zeros(ny,np,st);    % Initial population abundances 892 

% P(1,:,:) = xlsread([id,file_population_abundance]); 893 

  894 

% W is the product of fecundity and larval surviva;  895 

% it varies with age (due to fecundity) and population of the adults 896 

% neither W nor fecundity or larval survival are density-dependent 897 

w     = zeros(np,st);       % W 898 

%f(:,:) = xlsread([id,file_W]);    899 

for ip=1:np 900 

    P(1,ip,:) = [1000 0 0 0 0]; 901 

    w(ip,:)   = [0 10000 10000 10000 10000]; 902 

end 903 

% sum initial populations: 904 

for ip=1:np  905 

    sum_P(ip)  = sum(P(1,ip,:));      906 
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end 907 

  908 

% Maximum density-dependent survival 909 

% ms(:,:)  = xlsread([id,file_density_numerator]);  910 

ms    = ones(np,st+1);      % Maximum survival parameter  911 

  912 

% Parameter in denominator of density-dependent survival 913 

% pd(:,:)  = xlsread([id,file_density_denominator]);  914 

pd    = ones(np,st+1)*0.0001;     % Parameter in denominator  915 

  916 

% Initialize other arrays: 917 

wc    = zeros(np,np,st);    % [W*connectivity] settlement matrix 918 

wcP   = zeros(np,np,st);    % [W*connectivity*pop_abundances] 919 

fsf   = zeros(np,st+1);     % Final survival function for matrix based on No 920 

M     = zeros(np,np,st,st); % Metapopulation matrix 921 

  922 

%% SECTION 3: CONNECTIVITY: 923 

  924 

id2 = 'M:\Myfolder\IrishSeaPopulations\'; 925 

imat = 1;   % [C1,..,C6 = Apr,..,Sep] 926 

icon = 1; 927 

if(icon==0) 928 

    c(1,:) = [0.15 0.1 0.1]; 929 

    c(2,:) = [0.1 0.2 0.2]; 930 

    c(3,:) = [0.1 0.6 0.6]; 931 

else 932 

    % input Connectivity matrix: 933 

    load([id2,'Cpassive_28d']); 934 
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%     load([id2,'Cdiel_28d_0030ms']) 935 

%     load([id2,'Ctidal_28d_0030ms']) 936 

    if(imat==1); c = C1; end                     937 

    if(imat==2); c = C2; end 938 

    if(imat==3); c = C3; end 939 

    if(imat==4); c = C4; end 940 

    if(imat==5); c = C5; end 941 

    if(imat==6); c = C6; end 942 

  943 

    % Reposition Port Erin: 944 

    rowtemp(:,:) = c(40,:); 945 

    c(28:40,:)   = c(27:39,:); 946 

    c(27,:)      = rowtemp(:,:); 947 

    coltemp(:,:) = c(:,40); 948 

    c(:,28:40)   = c(:,27:39); 949 

    c(:,27)      = coltemp(:,:); 950 

  951 

    % check connectivity of all matrices: 952 

    sumC(imat,:) = sum(c'); 953 

    c=c'; 954 

end 955 

  956 

%% SECTION 4: CALCULATION SETTLEMENT MATRIX: 957 

% Subsidy = W * connectivity 958 

% self-recruitment = W * self-recruitment 959 

  960 

% Year 1: 961 

it = 1; 962 
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for ip=1:np 963 

for jp=1:np 964 

for ist=1:st 965 

    wc(ip,jp,ist)  = w(jp,ist).*c(ip,jp); 966 

    wcP(ip,jp,ist) = wc(ip,jp,ist).*P(it,jp,ist); 967 

end 968 

end 969 

end 970 

% sum wcP matrix: 971 

wcptemp = zeros(np,st); 972 

rowsum  = zeros(np,np); 973 

sum_wcP = zeros(1,np); 974 

for ip=1:np    975 

    wcptemp(:,:) = wcP(ip,:,:);  976 

    rowsum(ip,:) = sum(wcptemp');   977 

    sum_wcP(ip)  = sum(rowsum(ip,:)); 978 

end 979 

  980 

% One year or older individuals survive to the next year following  981 

% density-dependent survival, with density being the total density adults 982 

if(itest==1)  983 

  for ip=1:np      984 

    fsf(ip,1) = ms(ip,1)./(1+pd(ip,1)*sum_wcP(ip)); 985 

    for ist=2:st+1 986 

    fsf(ip,ist) = ms(ip,ist)./(1+pd(ip,ist)*sum_P(ip)); 987 

    end 988 

  end   989 

else 990 
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  for ip=1:np   991 

    fsf(ip,1) = (pd(ip,1)*ms(ip,1))./(ms(ip,1)+sum_fcP(ip)); 992 

    for ist=2:st+1 993 

    fsf(ip,ist) = (pd(ip,ist)*ms(ip,ist))./(ms(ip,ist)+sum_P(ip)); 994 

    end 995 

  end    996 

end 997 

  998 

%% SECTION 5: ITERATE OVER ny YEARS 999 

  1000 

for it=2:ny 1001 

  1002 

% Metapopulation matrix: 1003 

for ip=1:np 1004 

for jp=1:np  1005 

for ist=1:st  1006 

    M(ip,jp,1,ist) = fsf(ip,1)*wc(ip,jp,ist);   % stage = 1 1007 

    if(ist>1)                                   % stages 2-5 1008 

        M(ip,ip,ist,ist-1) = fsf(ip,ist); 1009 

    end 1010 

end 1011 

end 1012 

end 1013 

  1014 

for ip=1:np 1015 

    A = zeros(st,1); 1016 

    B = zeros(st,1); 1017 

for ist=1:st 1018 
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    D = 0; 1019 

    for jp=1:np 1020 

        A(:) = P(it-1,jp,1:5); B(:) = M(ip,jp,ist,1:5); D = D + sum(A.*B); 1021 

    end 1022 

    P(it,ip,ist) = D; 1023 

end 1024 

end 1025 

  1026 

for ip=1:np 1027 

    sum_P(ip) = sum(P(it,ip,:)); 1028 

end 1029 

  1030 

% meta-recruitment = fecundity * connectivity 1031 

% self-recruitment = fecundity * self-recruitment 1032 

for ip=1:np 1033 

for jp=1:np 1034 

for ist=1:st 1035 

    wc(ip,jp,ist) = w(jp,ist)*c(ip,jp); 1036 

    wcP(ip,jp,ist) = wc(ip,jp,ist)*P(it,jp,ist); 1037 

end 1038 

end 1039 

end 1040 

% sum wcP matrix: 1041 

for ip=1:np    1042 

    wcptemp(:,:) = wcP(ip,:,:);  1043 

    rowsum(ip,:) = sum(wcptemp');   1044 

    sum_wcP(ip)  = sum(rowsum(ip,:)); 1045 

end 1046 
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  1047 

% One year or older individuals survive to the next year following  1048 

% density-dependent survival, with density being the total density adults 1049 

if(itest==1)  1050 

  for ip=1:np      1051 

    fsf(ip,1) = ms(ip,1)./(1+pd(ip,1)*sum_fcP(ip)); 1052 

    for ist=2:st+1 1053 

    fsf(ip,ist) = ms(ip,ist)./(1+pd(ip,ist)*sum_P(ip)); 1054 

    end 1055 

  end  1056 

else 1057 

  for ip=1:np;   1058 

    fsf(ip,1) = (pd(ip,1)*ms(ip,1))./(ms(ip,1)+sum_fcP(ip)); 1059 

    for ist=2:st+1; 1060 

    fsf(ip,ist) = (pd(ip,ist)*ms(ip,ist))./(ms(ip,ist)+sum_P(ip)); 1061 

    end 1062 

  end    1063 

end 1064 

  1065 

end % END YEAR LOOP 1066 

  1067 

%% SECTION 6: create additional matrices for visualization 1068 

  1069 

% sum population matrices: 1070 

for it=1:ny 1071 

for ip=1:np 1072 

    POPULATIONS(it,ip) = sum(P(it,ip,:)); 1073 

    TOTAL_POPULATION(it) = sum(POPULATIONS(it,:)); 1074 
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end 1075 

end 1076 

TOTAL_POPULATION=TOTAL_POPULATION'; 1077 

  1078 

Pyear200 = zeros(40,5); 1079 

Pyear200(:,:) = P(200,:,:); 1080 

  1081 

plot(POPULATIONS); 1082 

S2: Preliminary model simulations 1083 

2.1 Asymptotic behaviour and population size 1084 

We first studied the influence of the connectivity coefficients and model parameters on the 1085 

asymptotic behaviour and the population size.  We then used those outputs to select specific values 1086 

of model parameters. The panels of Fig. S1 are maps of the populations in a space defined by the 1087 

retention coefficients (diagonals in the transport matrix) and the subsidy i.e. the sum of the larval 1088 

connectivity coefficients, indicating transport of larvae form any population to the focal population 1089 

(retention coefficient not included). Both retention and subsidy characterise the local populations 1090 

from the perspective of the contributions to recruitment. Predictions (see also Robins et al. 2013) 1091 

from diel vertical migration are that retention prevails over subsidy for most populations, while 1092 

this is not the case for scenarios with passive dispersal and tidal vertical migration. Seasonal 1093 

patterns consist of a reduction in subsidy from spring to summer in all scenarios of larval 1094 

behaviour.  1095 
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 1096 

Figure S1. Map of the subsidy and retention for each population for the April and August scenarios 1097 

for the passive tidal and diel strategies of larval migration. For any given population, subsidy was 1098 
calculated as the sum of the connectivity coefficients indicating input of larvae from other 1099 
populations (note that contrary to the retention, subsidy may by higher than 1). 1100 

 1101 

Simulations showed that population size reached a near asymptotic value after ca 50 years (Fig. 1102 

S2: see P13 as an example). No oscillations were observed, consistent with the fact that the 1103 

equilibrium in this model is always stable (Armsworth 2002). These simulations give confidence 1104 

that the population size observed after 200 years estimates the expected asymptotic population 1105 

size.  1106 

 1107 
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 1108 

Figure S2. An example of a simulation. Models were run for 200 cycles (= years in the model) 1109 

starting from 10 individuals per population. At year 201, the populations of a specific region of 1110 
extinction are set to 0 (other populations are set to the numbers predicted for year 200); this is 1111 
shown with P13 as example. The model is run again for further 400 years. The time of recovery is 1112 

estimated as the time required to reach 50% of the numbers found after running the model for 400 1113 
years. 1114 

The asymptotic population size varied among local populations in response to ω, β and the 1115 

connectivity coefficients. Taking a local population as example (Fig. S3a) models predict that the 1116 

asymptotic size increase with ω (= higher fecundity or lower mortality) up to a maximum and then 1117 

remain constant irrespective of ω; reductions in the strength of density-dependence (= lower β) 1118 

leads to an increase in the asymptotic abundance. The asymptotic population size also depended 1119 

on retention and subsidy (Fig. S3b). Low retention (compare retention in P22 = 0.07 vs. P23= 0.67 1120 

both with subsidy < 0.01) led to low population size, as it did a low subsidy (P40 = 0.09 vs. P12 = 1121 

0.98). These results are consistent with equation 8 and elasticity analyses in Armworth (2002).  1122 

 1123 
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 1124 

Figure S3. Examples of population sizes predicted after simulating 200 years of population 1125 
dynamics. (a) Responses to fecundity and density-dependent coefficient of the Beverton-Holt 1126 

model for population 22; (b) Comparisons of responses to retention and subsidy (ER) for selected 1127 
populations (retention: compare P22 vs P23; subsidy: compare P12 vs P40).  1128 

 1129 

2.2 Recovery when the population is rare 1130 

Here we explore drivers of recovery after extinction when the populations are at the lowest 1131 

abundances. The year after extinction (on year 1), population recovery depend entirely on subsidy. 1132 

All individuals on year 1 are juveniles (Table S1). On year 2, population abundance will depend 1133 

on the survival of individuals present in the previous year plus new recruitment. Recruitment will 1134 

still depend on subsidy because individuals start to reproduce after year 1.  1135 
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Table S1 gives the equations calculating abundance discriminated by age and year after recovery. 1136 

The parameters are as follows: α1, and α2 = density-independent survival probabilities, β = density 1137 

dependent coefficient. S = is the settlement rate (eq 4 in the manuscript), which in the case of 1138 

extinction it is reduced to the subsidy:  1139 

𝑆 =  𝑆𝑡,𝑗=𝑝 =  𝜔 ∙ ∑ ∑ 𝑛𝑡,𝑘,𝑗 ∙ 𝑙𝑗→𝑝𝑗≠𝑝
5
𝑘=1  , (S1) 1140 

Where ω is the product of fecundity and larval survival, nt,k,j is the abundance of organisms in the 1141 

population j and age class k, and lj→p are the transport coefficients between any of the j-populations 1142 

and the target population p.  1143 

Table S1. Equations used to calculate rate of increase after extinction when the population is rare 1144 
(i.e. one year after extinction). The rate of increase is the ratio between the total population size at 1145 

t=2 versus that when t=1, i.e. Nt2/Nt1. Abundance for ages 3-5 are not shown because, over the first 1146 
two years, only the ages 1 and 2 have non-zero abundances. 1147 

Time Age =1 Age =2 Total 

t=0 n1,0=0 n2,0 = 0 Nt0 = 0 

t=1 n1,1 =α0S/(1+β0S) n2,1 = 0 Nt1 = α0S/(1+β0S) 

t=2 n1,2= α0S/(1+β0S)   n2,2 = αan1,1 /(1+βa n1,1) Nt2 = α0S/(1+β0S)  + αan1,1 /(1+βa n1,1) 

 1148 

Calculations are based on the assumption that all populations outside the region of extinction are 1149 

at equilibrium: this is reasonable because we run the model for 200 years previous to extinction in 1150 

order to achieve equilibrium in all populations: under such assumption, n1,1 = n1,2.  1151 

The rate of increase is defined as R= Nt2 /Nt1 and is given by: 1152 

𝑅 =  

𝛼0𝑆

(1+𝛽0∙𝑆)
+

𝛼𝑎𝑛11
(1+𝛽𝑎∙𝑛11)

𝛼0𝑆

(1+𝛽0∙𝑆)

 = 1 + 

𝛼𝑎𝑛11
(1+𝛽𝑎∙𝑛11)

𝛼0𝑆

(1+𝛽0∙𝑆)

 = 1 + 
𝛼𝑎𝑛11(1+𝛽0∙𝑆)

𝛼0𝑆 (1+𝛽𝑎∙𝑛11)
, 1153 
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with S given by eq (S1). By substituting n1,1  (first in the numerator and then in the denominator) 1154 

we get: 1155 

𝑅 = 1 + 
𝛼𝑎𝛼0𝑆(1+𝛽0∙𝑆)

𝛼0𝑆 (1+𝛽𝑎∙𝑛11)(1+𝛽0∙𝑆)
 = 1 + 

𝛼𝑎

(1+𝛽𝑎∙
𝛼0𝑆

(1+𝛽0∙𝑆)
)
 1156 

Under the conditions of our model, we have α0 = αa =1, β 0 = β a = β, we obtain: 1157 

𝑅 =  1 + 
1

(1+
𝛽𝑆

(1+𝛽𝑆)
)
 = 1 + 

(1+𝛽𝑆)

(1+2𝛽𝑆)
 1158 

When the density-dependence parameter is small the population size tends to duplicate between 1159 

year 1 and 2 (Fig. S4: R → 2 as β→0); as the density-dependent parameter increases the rate of 1160 

increase approaches 1.5. The population also tent to duplicates at low values of ω (either low 1161 

fecundity or high larval mortality) and under low larval connectivity (low lj→p) which influences 1162 

the value of subsidy (S). Because TR=2 = 1-2 years for most of the combination of predictors we 1163 

concluded that T50 as a way to study recovery times in response to extinction.  1164 
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 1165 

Figure S4. Changes in rate of increase during the first two years after extinction in response to 1166 
subsidy (S), the density dependent coefficient (β) and ω (the product of fecundity and survival).   1167 

 1168 

 1169 

 1170 

 1171 

 1172 

 1173 

 1174 
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S3. Statistical methods and outputs 1175 

3.1 Effects of connectivity to populations outside the region of extinction  1176 

 1177 

Figure S4. Summary of topology of the sub-network of Cardigan (populations 4-8) for both times 1178 

of larval release (April, August) and the three larval strategies; populations are represented with 1179 
numbered squares connected by arrows; the populations in grey squares are the source populations, 1180 
outside the region of extinction. The topologies depend only on the larval retention (not shown) 1181 
and connectivity coefficients. The larval connectivity coefficients are shown as numbers 1182 

associated to arrows giving the order of magnitude (e.g. -3 corresponds to a connectivity of the 1183 
order 10-3). Numbers highlighted in red were used to calculate CM. 1184 
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 1185 

Figure S5. Summary of topology of the sub-network of Anglesey (populations 9-12) for both times 1186 
of larval release (April, August) and the larval strategies; populations are represented with 1187 

numbered squares connected by arrows; the populations in grey squares are the source populations, 1188 
outside the region of extinction. The topologies depend on the larval retention (not shown) and 1189 
connectivity coefficients. The larval connectivity coefficients are shown as numbers associated to 1190 
arrows giving the order of magnitude (e.g. -1 corresponds to a connectivity of the order 10-1). 1191 
Numbers highlighted in red were used to calculate CM. 1192 

 1193 

 1194 

 1195 

 1196 



61 
 

 1197 

Figure S6. Summary of topology of the sub-network of Liverpool Bay (populations 13-22) for 1198 

both times of larval release (April, August) and the larval strategies; populations are represented 1199 
with numbered squares connected by arrows; the populations in grey squares are the source 1200 
populations, outside the region of extinction. The topologies depend on the larval retention (not 1201 
shown) and connectivity coefficients. The larval connectivity coefficients are shown as numbers 1202 

associated to arrows giving the order of magnitude (e.g. -2 correspond to a connectivity of the 1203 
order 10-2). Numbers highlighted in red were used to calculate CM.  1204 
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 1205 

Figure S7. Summary of topology of the sub-network of west Irish coast for both times of larval 1206 
release (April, August) and the larval strategies; populations are represented with numbered 1207 
squares connected by arrows; the populations in grey squares are the source populations, outside 1208 
the region of extinction. The topologies depend only on the larval retention (not shown) and 1209 

connectivity coefficients. The larval connectivity coefficients are shown as numbers associated to 1210 
arrows giving the order of magnitude (e.g. -3 corresponds to a connectivity of the order 10-3). 1211 

Numbers highlighted in red were used to calculate CM.  1212 

 1213 

 1214 
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S4: Model output for all tested scenarios 1215 

 1216 

Figure S8: Cardigan Bay. Predictions of recovery times (T50%: time required to reach 50% of the 1217 
numbers reached in year 400) for scenarios with combinations of larval strategies, time of larval 1218 
release (bars) the density-dependent coefficient (β) and the term ω. 1219 

 1220 

 1221 

 1222 

 1223 
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 1224 

Figure S9. Anglesey. Predictions of recovery times (T50%: time required to reach 50% of the 1225 

numbers reached in year 400) for scenarios with combinations of larval strategies, time of larval 1226 
release (bars) the density-dependent coefficient (β) and the term ω. 1227 

 1228 

 1229 

 1230 
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 1231 

Figure S10: Liverpool Bay. Predictions of recovery times (T50%: time required to reach 50% of 1232 

the numbers reached in year 400) for scenarios with combinations of larval strategies, time of 1233 
larval release (bars) the density-dependent coefficient (β) and the term ω. 1234 

 1235 

 1236 

 1237 
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 1238 

Figure S11. West Irish Coast. Predictions of recovery times (T50%: time required to reach 50% of 1239 

the numbers reached in year 400) for scenarios with combinations of larval strategies, time of 1240 
larval release (bars) the density-dependent coefficient (β) and the term ω. 1241 

 1242 

 1243 

 1244 

 1245 

 1246 

 1247 

 1248 
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 1249 

Figure S12. Scatterplots showing relationships between recovery time (log-transformed) vs 1250 

subsidy (Top panels) and retention (bottom panels) for ω = 10, and for combinations of larval 1251 
strategy and month of release. 1252 
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 1253 

Figure S13. Scatterplots showing relationships between recovery time (log-transformed) vs 1254 
subsidy (top panels) and retention (bottom panels) for ω = 104, and for combinations of larval 1255 
strategy and month of release. 1256 
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