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Abstract 

Objectives: The present study aims to investigate the effect of mentally demanding cognitive 

tasks on rowing performance in prepubertal athletes. Design: Randomised, counterbalanced 

and crossover. Method: Seventeen rowers, aged between 10 and 12 years, completed three 

separate testing sessions during which they performed three different cognitive tasks before 

completing a 1500 m time trial on the rowing ergometer. In the two experimental conditions, 

one hour of a standard cognitive task (Stroop task) and an arithmetic school test were used to 

elicit mental effort; in the control condition a time-matched, not demanding activity was carried 

out (painting). Subjective workload and mood were measured before and after the treatments, 

and the motivation was recorded before the time-trial. During the time trial, time, power, speed, 

cadence, heart rate and rate of perceived exertion were assessed. Results: The Stroop task and 

the arithmetic test were rated more mentally demanding (P < 0.001), effortful (P < 0.001) and 

frustrating (P = 0.001) than the control task, but the items fatigue (P = 0.437, P = 0.197) and 

vigour (P = 0.143, P = 1.000) after the cognitive tasks were not significantly different from the 

control. The performance of the time trial did not differ between conditions (time: P = 0.521; 

power: P = 0.208; speed: P = 0.341); physiological (P = 0.556) and perceptual (P = 0.864) 

measures recorded during the physical task were not affected by the conditions. Accordingly, 

pacing profiles (P = 0.312) and cadence (P = 0.062) did not differ between the conditions. 

Conclusions: Mentally demanding activities did not affect the subsequent physical 

performance in prepubertal athletes.  

Keywords: cognitive fatigue; endurance performance; young rowers; rpe  
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Introduction 

Acute mental fatigue is defined as a psychobiological state that may arise during or after 

prolonged cognitive activities and is characterized by the feelings of tiredness or even 

exhaustion, a decreased commitment and increased aversion to continue the current activity 

(Boksem, & Tops, 2008). It has been shown that acute mental fatigue has a detrimental effect 

on cognitive performance (Lorist, Boksem, & Ridderinkhof, 2005; Van der Linden, Frese, & 

Meijman 2003) and in other performance settings, such as driving (Craig, 2001) and physical 

performance (Van Cutsem et al., 2017). 

Different studies reported that mental fatigue induced with prolonged cognitive tasks impaired 

the subsequent performance of constant load (Marcora, Staiano, & Mannning, 2009), self-

paced (Brownsberger, Edwards, Crowther & Cottrell, 2013) and intermittent (Smith, Marcora, 

& Coutts, 2015) endurance tasks. These findings were replicated in different whole-body 

exercises, i.e. cycling (Martin et al., 2016) and running (MacMahon, Schücker, Hagemann, & 

Strauss, 2014; Pageaux, Lepers, Dietz, & Marcora, 2014). In addition, research reported 

impairment in the performance of local muscular exercise (Pageaux, Marcora, & Lepers, 2013) 

and isometric endurance handgrip (Bray, Martin Ginis, Hicks, & Woodgate, 2008; Grham & 

Bray, 2015) that followed demanding cognitive tasks. Recently, the detrimental carryover 

effect of mental fatigue has been extended to whole-body resistance exercises (Graham, Martin 

Ginis, & Bray, 2017; Head et al., 2016) and soccer-specific physical performance (Smith et al., 

2016). 

The studies associated the decline in the endurance performance with an increased rate of 

perceived exertion during exercise at constant load or a decreased workload/rate of perceived 

exertion ratio during self-paced exercise. On the contrary, the cognitive tasks did not affect the 

physiological variables commonly associated with endurance performance (i.e. heart rate, 
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cardiac output, oxygen consumption) (see Van Cutsem et al., 2017). However, it still under 

debate whether mental exertion could alter the neuromuscular functions during the physical 

task that follows. In this regard, Bray et al. (2008) reported that muscular activation assessed 

with the EMG during an isometric submaximal contraction was increased after an ego-

depletion task compared to the control condition. On the same line, Pageaux, Marcora, Rozand 

and Lepers (2015) found a higher EMG of the vastus lateralis during a whole-body cycling task 

following a mentally demanding task compared to the control condition. Conversely, it seems 

that mental exertion did not impair maximal muscular activation on a maximal strength task 

(Rozand, Pageaux, Marcora, Papaxanthis, & Lepers, 2014) nor affect the decline of maximal 

muscular activation induced by the endurance task (Pageaux et al., 2015). The last results 

indicated that the mental effort did not increase the development of central fatigue induced by 

physical exercise, though it may influence motor control (Pageaux et al., 2015).  

Most of the studies mentioned above involved recreational or well-trained athletes. 

Interestingly, Martin et al. (2016) suggested that training history and performance level may 

interact with the effect of mental fatigue. Specifically, they compared the effect of mental 

fatigue on the following endurance performance in recreational and in elite cyclists. Their 

results showed that working for 30 min on a modified Stroop task diminished the performance 

in the recreational cyclist's group, while it did not affect the time trial of the elite athletes. Also, 

they reported that elite cyclists performed faster during the Stroop task then recreational, 

suggesting a potential association between resistance to mental fatigue and increased inhibitory 

control in professional cyclists. In accordance with that, it has been shown that faster ultra-

endurance runners were better than the slower group in inhibiting the motor response (go-no 

go trials) and suppressing interference in a dual-task paradigm (Cona et al., 2015). These 

preliminary findings suggested that inhibitory control may be crucial for the success of the 
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endurance athletes. However, it is unknown whether this characteristic is genetic or acquired 

through experiences.  

Inhibitory control is part of the executive functions constituting the higher cognitive processes 

involved in the control of goal-directed behaviors, and it refers to the ability to overcome the 

preponderant response to guide behavior toward the task goal. Behavioral studies showed that 

although infants are able to suppress the more automatic response to generate appropriate task 

responses, the rate of inhibition improved across childhood until late adolescence. Hence, the 

neural mechanism underlined response inhibition are available early in the development, but 

the systems and the processes are less efficient and slower in children compared to adults 

(Luna, Padmanabham, & O’Hearn, 2010). Consequently, it is possible that children may exert 

further effort to perform the same task compared to adults. However, prolonged cognitive 

performance in children has received little attention and to our best knowledge, the only 

published article that evaluated the effect of mental fatigue in healthy children dated back to 

1912 (Winch, 1912a, 1912b).  

Throughout school days young athletes are engaged in mentally demanding activities such as 

classes, exams and homework that they alternate with training sessions and/or competitions. 

Therefore, it would be relevant for these athletes establishing the impact of activities that 

require mental effort on their physical performance. Furthermore, performance at school and 

adjusting training to school have been cited as potential factors leading to burnout among junior 

tennis player (Gould, Tuffey, Udry, & Loehr, 1996) and golfer (Cohn, 1990). Hence, the study 

of the relationship between acute mental fatigue and physical performance in young athletes 

could promote adequate strategies to monitor fatigue and foster a positive young athlete’s 

development. 
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Based on the results reported by Martin and colleagues (2016), investigations on the effect of 

mentally demanding tasks on the physical performance of prepubertal athletes could also 

provide additional information on when elite athletes’ performance becomes less sensitive to 

prior mental effort offering future perspectives for talent identification and young athletes’ 

development plans. Moreover, the interplay between mental and physical effort in children 

could also give an insight into the reciprocal effect of physical activity and cognitive 

performance.  

Because of the large number of research attesting that mental fatigue impaired endurance 

performance in adults, the main aim of this exploratory study was to test whether this effect 

extended to the rowing performance of prepubertal children. At this age, the neural system and 

processes underlying inhibitory control are still immature. Hence, we hypothesised that 

working on demanding cognitive tasks known to elicit response inhibition would increase the 

feeling of fatigue and negatively affect the subsequent endurance performance compared to the 

control condition where a low demanding task was carried out.   

The second aim of the study was to compare the effect of a standard computerised cognitive 

task as used by previous research (Van Cutsem et al., 2017) with everyday cognitive activities 

(i.e. homework, or exams) to assess whether the possible detrimental effect extended to more 

applied tasks.  

Materials and Methods 

Subjects 

Eighteen young rowers (11 males and six females, 11 ± 1.06 year, 46.72 ± 11.14 kg, 154.79 ± 

9.41 cm, > 2 training sessions per week, 1.5 ± 0.85 years of rowing experience) voluntarily 

participated in this study. All participants were recruited from a local rowing club affiliated to 

the Italian Rowing Federation. The required sample size was based on the effect of cognitive 
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tasks on physical performance reported by previous studies using a within-subject design and 

a time trial as a physical task (Mac Mahon et al., 2014; Martin et al., 2016; Pageaux et al., 

2014). The studies reported a large effect size, η2p = 0.31 to 0.683. The priori sample size 

calculation (G*Power version 3.1.9.2) with F(v) = 0.73, α = 0.05, power = 0.80 indicated that 

a sample of 18 would be sufficient for the analysis. One subject did not meet the inclusion, and 

17 subjects were included in the final analysis.  

The athletes have regularly been involved in rowing training and competition for at least 6 

months; during the three months preceding the data collection and throughout the  period of 

the study subjects performed three to five training sessions per week of about 90 min, at least 

two of them were rowing-specific (on the rowing ergometer or outdoor) and one involved 

strength training. Eligibility criteria were as follows: aged 10 to 14 year, free from any known 

medical diseases, injuries, colour vision deficiencies and learning disorders, free from any 

medication. Parental consent was provided for all participants (subjects younger than 18 years), 

and procedures set by the university ethics committee for dealing with minors were followed. 

The study design and procedures were approved by the local research ethics committee of the 

University of Milan and followed the ethical principles for medical research involving human 

subjects set by the World Medical Association Declaration of Helsinki. Participants and their 

parents were not informed about the real aim of the study; however, they were provided with 

written instructions outlining all the procedures involved in the study. 

Experimental design  

A randomised counterbalanced cross-over design was used for the experimental component of 

the present study which involved three separate testing sessions. In two visits, they either 

performed one hr of a computerised cognitive task (Stroop task), or they worked on a 

customised standard school exam for the same duration. A third condition during which 
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subjects performed a low demanding cognitive activity (painting Mandala) was used as a 

control. Physical performance was assessed with a 1500 m rowing ergometer time trial. The 

order of the experimental treatments (intervention 1; intervention 2; control) was randomly 

allocated based on uniformly balanced permutations (123/132/213/321/231/312) generated by 

a web-based computer program (www.randomization.com).   

Experimental procedures  

Subjects were tested individually on four different occasions. The visits were completed at the 

local gym where athletes used to train. The tests were performed within the training hours of 

the clubs when the access to the gym was limited to the athletes and their coach to maintain 

similar external conditions between the sessions. All procedures were carried out in an isolated 

room with standard environmental conditions (i.e. temperature: 18 ± 1 °C) located on the 

second floor of the structure where only the participant and the researchers could access. 

Preliminary sessions. During visit one, participants weight and height were measured, 

thereafter they were familiarised with the tests and measures to be used for the experimental 

sessions, i.e. Stroop task (for the time needed to reach a minimum of 90 % of accuracy), the 

psychological questionnaires and the physical task (subjects were asked to perform the whole-

time trial). 

Experimental sessions. The experimental visits lasted around 90 min and involved 60 min of 

either cognitive tasks or a control task (see section “Experimental treatments”) followed by the 

physical task. The sessions entailed the same procedures (Figure 1), other than the cognitive 

task employed (Stroop task, arithmetic test and control). Before and after each cognitive task 

mood was recorded with the Brunel Mood Scale (BRUMS). In addition, the subjective 

workload was measured at the end of the cognitive task with the NASA task load index (NASA-

TLX) (see section “Psychological measurement”). Within 10 min after the completion of each 
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respective experimental manipulation, subjects performed the physical task on the rowing 

ergometer. It involved 3 min of standardised warm-up followed by 1500 m of the time trial 

(see section “Physical task”). Motivation toward the physical task was assessed right before 

the starting of the warm-up (see section “Psychological measurement”). 

The experimental visits were separated by seven days and performed on the same day of the 

week to maintain the mental workload prior to each test as similar as possible. Each participant 

carried out the visits individually and at the same time of day (within one hr period). Sessions 

starting times ranged from 14:00 to 18:00 among participants. Before each session, all 

participants received the instructions to sleep at least seven hours and to drink 35 mL·kg-1 of 

body weight within the 24 hours before the sessions. Moreover, they were required to refrain 

from homework or others cognitive activities and to avoid caffeine within the 2 hours before 

the visits and to eat a light meal one hour before the experimental sessions maintaining the 

meal consistent among the three visits. They were also asked to declare if they had taken any 

medications or had any injuries or illness. Full compliance with instructions was observed prior 

to testing sessions. 

Experimental treatments  

Intervention 1 – Stroop task 

Participants performed a 60 min modified incongruent Stroop colour-word task. The Stroop 

task demands response inhibition and sustained attention (MacLeod, & MacDonald, 2000) and 

has been employed by previous research on the same topic (Pageaux et al., 2014; Smith et al. 

2016). Four words (red, blue, green, and yellow) were randomly displayed one at a time on a 

computer screen. Participants were required to press one of four coloured buttons on the 

keyboard (red, blue, green, and yellow), with the correct response corresponding to the ink 

colour of the word (red, blue, green, and yellow), rather than the word’s meaning. Therefore, 
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if the word yellow was written in blue ink, the correct response was blue. The words presented, 

and their ink colours were randomly generated and selected by computer software, E-Prime 

(Psychology Software Tools Inc., Pittsburgh, PA) and were 100 % incongruent. Words 

appeared centrally on a white background in 24-point uppercase Helvetica and lasted until 

subject gave a response. Subjects were instructed to respond as quickly and accurately as 

possible. Visual feedback was provided after each trial in the form of correct or incorrect 

response, reaction time and accuracy so far. Participants were familiarised with the Stroop task 

during the preliminary visit and performed 24 practice attempts prior to the experimental task 

to ensure they fully understood the instruction and to reduce the learning effect on performance. 

The total number of correct response for the entire 60 min Stroop task were calculated and the 

reaction time of the correct responses and accuracy (percentage of correct responses) were 

averaged for six blocks of 10 min during the 60 min Stroop task. In addition, the inverse 

efficiency score (IES) were calculated for the entire 60 min Stroop task The IES provides a 

measure for the speed/accuracy trade-off over time on task when accuracy is high (i.e. > 90% 

of correct responses). The index is computed by dividing the mean reaction time by the 

proportion of correct response: RT/ PC (Bruyer, & Brysbaert, 2011). 

Intervention 2 - arithmetic test 

 Participants performed a 60 min customised arithmetic test. The task was a pencil-paper test 

involving arithmetic, mathematical and logic exercises taken from the national test, INVALSI, 

developed by Italian Ministry of Education (Istituto Nazionale per la Valutazione del Sistema 

Educativo di Istruzione e di Formazione). This test is employed as final grade assessment, and 

its questions cover the topics studied throughout the year. Seventeen different forms of the test 

were developed taking arithmetic, mathematical and logic questions from the general test. We 

provided different questions to each subject so that it was possible to adjust the test based on 

the individual age and grade and prevent answer suggestions among participants of the same 
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grade. Every form involved blocks of 15 exercises. Blocks were structured similarly within 

each test and between every individual form and were given to the subject as soon as he 

completed the previous block. Participants were instructed to respond as accurately as possible 

to the questions and complete as many exercises as possible in 1 hr period. However, they were 

asked to leave an exercise blank, if they were not able to solve it. Research staff subsequently 

scored the test. The score was based on the number of correct responses given. This test was 

used to compare the fatigue induced by a typical school exam with that of a standard cognitive 

task. Arithmetic, mathematics and logic exercises were chosen as it has been suggested that 

mathematics skills rely on executive functions (Cragg, & Gilmore, 2014) and more specifically 

involve response inhibition (Gilmore, Keeble, Richardson, & Cragg, 2015).  

Control condition 

The control condition involved performing one hr of a not cognitively demanding task during 

which participants were asked to paint with a grey pencil to control for the effect of colours on 

arousal and performance (Elliot, & Maier, 2014). Participants were provided with a pre-drawn 

Mandala, and they were instructed to colour inside the spaces marked with black points. This 

task was selected because it has been suggested that colouring is a low cognitively demanding 

but engaging activity that did not entail envisioning and planning (Forkosh, & Drake, 2017). 

Participants were instructed to colour pre-selected part of the Mandala to reduce potential effect 

of creative processes on mood and affective state. 

Physical task 

A 1500 m time trial test on the rower-ergometer was used to meet the specific needs of the 

current investigation. Subjects were instructed to complete the time trial as fast as possible. All 

tests were performed on the same rowing ergometer (© Concept2 inc, Model D, Morrisville, 

VT) in the wind resistance mode (a spinning flywheel generates resistance). The distance was 



 

12 
 

chosen to replicate the length of the national races for their age category and their training 

practice. Before starting the trial, they performed three min of standard self-pace warm-up 

during which they were instructed to maintain their perceived exertion between 2 and 3 of the 

11-points CR10 scale developed by Borg (Borg, 1998). During the time trial, all participants 

received information about the distance covered at 500, 1000 and by the end of the test at 1250 

m. However, they did not receive any feedback about their speed, cadence and heart rate (HR). 

No encouragements were provided throughout the trials. Participants reported their perceived 

exertion using the CR10 at every 150m interval. Moreover, HR was recorded throughout the 

whole tests (see section “Physiological measurements”). Power output and stroke rate were 

averaged for the warm-up and every 300 m of time trials. Furthermore, the average speed at 

every 150 m was calculated to assess the pacing strategy. 

Psychological measurements 

Rate of perceived exertion  

The rate of perceived exertion (RPE) was registered in the last 15 s of the warm-up and every 

150 m throughout the time trial with the 11-point CR10 developed by Borg (Borg, 1998). The 

CR 10 is a category–ratio scale that ranges from 0 (no effort at all) to 10 (maximal effort ever 

experienced) with a dot at the end to rate an effort that is higher than the one has ever been 

experienced. The subjects were asked to rate how heavy and strenuous the exercise felt by 

looking at the verbal expressions and then giving the number. Before the warm-up participants 

were given the standard instruction for the scale (Borg, 1998); for example, 3 on the scale is 

moderate it is not especially hard, it feels fine, and it is not a problem to continue exercising, 7 

corresponds to very hard and strenuous exercise. A healthy person can still go on, but he or she 

really has to push him or herself. It feels very heavy, and the person is very tired. Also, they 

were reminded that 10 should correspond to the maximal exertion they have ever experienced 
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in their past training or competitions and that the dot at the end should denote a perceived 

exertion stronger than 10, the highest possible level of exertion (Borg, 1998). A copy of the 

scale was always in full view of the subject. This scale was chosen as the participants were 

already familiar with it and had been using it for at least three months during their daily training 

sessions prior to the tests taking place.  

Mood 

Mood was measured at the beginning of the visit and after the cognitive tasks with the BRUMS 

validated for adolescents (Terry, Lane, Lane, & Keohane, 1999). The questionnaire consists of 

24 items divided into 6 subscales related to mood, Depression, Fatigue, Vigour, Confusion, 

Anger, Tension. Participants were asked to rate each item on a 5-point Likert scale (from 0 = 

not at all, to 4 = extremely) according to their current mood (How do you feel right now?). 

Each subscale score, with four relevant items, could range from 0 to 16. Fatigue and vigour 

were used as subjective markers of mental fatigue after cognitive tasks (Marcora et al., 2009).  

Motivation 

Motivation for the time trials was measured after the warm-up with a single item (I am 

motivated to do the time trial) on a 5-point Likert scale (0 = not at all, 1 = a little bit, 2 = 

somewhat, 3 = very much, 4 = extremely) (Martin et al., 2016).  

NASA Training Load Index – subjective workload  

The subjective workload was recorded after each intervention and after the physical test with 

the Italian version of the National Aeronautics and Space Administration Training Load Index 

(NASA-TLX) (Bracco, & Chiorri, 2006). It involves a multi-dimensional rating procedure with 

6 domains (Mental demand, Physical demand, Temporal demand, Effort, Frustration). Subjects 

were asked to rate each of them on a 0 to 20 scale anchored by bipolar descriptors (high/low). 
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Each score was multiplied per 5 so that the final score of each subscale would range from 0 to 

100.  

Before filling out the questionnaires, athletes were told that they should answer each question 

based on how they currently felt; there were no right or wrong answers, and they would not be 

judged on their answers. 

Physiological measurements  

During the cognitive tasks and the physical tests, HR was recorded with an HR monitor (Polar 

M400, © Polar Electro 2016, Oy, Kempele, Finland) and an HR band synchronised with the 

device. Ten min average and overall mean were used to analyse data of the cognitive task. 

Heart rate data were collected at every 150 m of the time trials. 

Statistical Analysis 

All data are presented as mean ± standard deviation (SD). Prior to the analysis, the Shapiro-

Wilk’s test and the Mauchly’s test were employed to test the normality of the data and 

sphericity assumption respectively. When sphericity was not met, Greenhouse-Geisser 

correction was used to adjust the significance of the F-ratios. One-way repeated measures 

ANOVA was used to determine the differences between the three conditions in the time trials 

performance and in the average HR, power output, cadence and speed during the time trials, in 

the motivation toward the physical tests and in the subjective workload of the interventions 

(NASA-TLX). Two-way fully repeated measures ANOVA (3x2) was used to assess the effect 

of the interventions and time (pre and post interventions) on mood state (fatigue and vigour 

subscales of the BRUMS). Heart rate during the three interventions was averaged every 10 min 

and analysed with a two-way fully repeated measures ANOVA (3x6) to determine the effect 

of condition and time. One-way repeated measures ANOVA was used to assess the effect of 

time on task on the accuracy (% of correct trials) and reaction time during Stroop task. Two-
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way fully repeated measures ANOVA (3 x 10) was run to define the effect of the interventions 

and distance (every 150 mt) on  the HR, RPE and speed during the trials and 2-way ANOVA 

(3 x 5) was run for cadence and power during the time trials (i.e. every 300 m distance).  

In addition, a mixed 3 x3 ANOVA with the visits order listed as the between-subject factor and 

condition as the within-subjects factor was used to exclude a learning effect on the performance 

and bias in the ratings of the psychological questionnaires after the interventions.  

Significant main effects and interactions, when more than two levels were employed, were 

interpreted through pairwise comparisons with Bonferroni correction. Significance was set at 

0.05 (two-tailed) for all analyses, and the effect size for each statistical test is reported as partial 

eta squared (η²p), using the small = 0.02, medium = 0.13 and large = 0.26 interpretation for 

effect size (Bakeman, 2005). Data analysis was conducted using the Statistical Package for the 

Social Sciences, version 23 (SPSS Inc., Chicago, IL, USA) 

Results  

Manipulation check 

Average HR was lower during the Stroop task (85 ± 9 bpm) compared with the control 

condition (91 ± 10 bpm) (P = 0.038). However, it did not differ significantly between the 

arithmetic test (89 ± 11 bpm) and the other conditions (Stroop task: P = 0.209; Control: P = 

1.000). Despite the significant main effect of time on the HR (F (5, 80) = 5.396, P < 0.001, η2p 

= 0.265), the follow-up tests failed to reveal significant differences between the 5 min blocks. 

The analysis of the vigour and fatigue subscales of the BRUMS revealed a main effect of time 

(vigour: F (1,16) = 22, P < 0.001, η2p = 0.580 and fatigue: F (1,16) = 20, P < 0.001, η2p = 

0.556). The fatigue increased over time and the vigour was lower after the interventions 

compared with baseline. Despite the significant interaction conditions X time (vigour: F (1.5, 

25) = 4.107, P = 0.038, η2p = 0.204; fatigue: F (2, 32) = 4.698, P = 0.016, η2p = 0.227), the 
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pairwise comparison of the ratings after the three interventions did not reach the statistical level 

for significance (vigour: control and Stroop task P = 0.143, control and arithmetic test P = 

1.000, Stroop task and arithmetic test P = 0.164; fatigue: control and Stroop task  P = 0.437 

control and arithmetic test P = 0.197, Stroop task and arithmetic P =  0.100). The main effect 

of condition was not significant (vigour: F (1.5, 24) = 2.119, P = 0.151, η2p = 0.117; fatigue:  

F (1, 20) = 2.821, P = 0.102, η2p = 0.150) and the one-way ANOVA of the baseline values did 

not reveal significant differences among the three conditions, F (2, 32) = 1.908, P = 0.165 and 

F (2, 32) = 0.257, P = 0.775 for the vigour and fatigue respectively.   

Thus, the level of fatigue as measured with the BRUMS did not show a significant effect of the 

two cognitive tasks. (Data presented in Table 1). 

 Mood 

 Vigour Fatigue 

 Pre Post Pre Post 

Stroop task 6.7 ± 3.8 4.1 ± 2.6 0.4 ± 1.1 2.5 ± 2.7 

Arithmetic test 7.2 ± 3.3 5.1 ± 3.1 0.2 ± 0.4 0.9 ± 0.8 

Control 6.2 ± 3.6 5.2 ± 3.4 0.4 ± 0.8 1.5 ± 1.6 

Table 1. Mood for the three experimental conditions. Data are presented as mean ± SD. 

 

On the other hand, the subjective workload assessed after the cognitive tasks using the NASA-

TLX showed a main effect of condition for mental demand (F (2, 32) = 22.581, P < 0.001, η2p 

= 0.585), effort (F (2, 32) = 32.740, P < 0.001, η2p = 0.672), temporal demand (F (2, 32)  = 

5.118, P = 0.012, η2p = 0.242) and frustration (F (1, 21) = 8.911, P = 0.004, η2p = 0.358). 

Pairwise comparisons revealed that mental demand (P < 0.001), effort (P < 0.001) and 

frustration (P = 0.001) were higher for both, the Stroop task and the arithmetic test, compared 

to the control condition, whereas the Stroop task and the arithmetic test conditions did not differ 

on these items (mental demand and frustration: P = 1.000, effort: P = 0.527). In addition, the 

temporal demand of the Stroop task was higher than the control task (P = 0.009); while the 
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temporal demand of the arithmetic test did not differ significantly from the Stroop task (P = 

0.922) and the control condition (P = 0.214). Physical demand and the performance did not 

differ between the three conditions (main effect of condition: F (1.5, 25.5) = 1.564, P = 0.229, 

η2p = 0.089 and F (2, 32) = 1.956, P = 0.158, η2p = 0.109). Data of subjective workload are 

reported in Figure 2.  

The NASA-TLX scales of the time trial did not differ significantly between conditions, apart 

from the rating of performance that tended to be higher in the arithmetic test condition 

(performance: F (1.5, 23.5) = 3.847, P = 0.047, mental demand: F (1, 22) = 0.512, P = 0.538, 

physical demand: F (1, 21) = 0.452, P = 0.559, temporal demand: F (2, 32) = 0.299, P = 0.743, 

effort: F (2, 32) = 0.700, P = 0.504, and frustration F (2, 32) = 1.318, P = 0.282). The pairwise 

comparisons did not reveal significant differences between the performance scales (control and 

Stroop task P = 1.000, control and arithmetic test P = 0.198, Stroop task and arithmetic test P 

= 0.121).  

Values of the motivation were 2.7 ±0.77, 2.35 ±0.86, 2.52 ±0.79 for the control condition, the 

Stroop task and the arithmetic test condition respectively. A non-parametric Friedman test was 

used to compare the values of three conditions and rendered a χ2 (2) = 6.636 which was 

significant (P = 0.036). However, none of the pairwise comparisons conducted with Bonferroni 

correction reached the statistical level for significance (control and Stroop task P = 0.435; 

control and arithmetic test P = 1.000; Stroop task and arithmetic test P = 1.000).   

The results of the mixed ANOVA for the order effect on the vigour and fatigue subscales were 

not statistical significant (between subjects effect  for vigour F (5, 11) = 0.315, P = 0.894 and 

fatigue F (5, 11) = 0.678, P = 0.649 and interaction condition X order for vigour P = 0.786 and 

fatigue P = 0.676). Similarly, the order did not have a significant effect on the NASA-TLX 

items (mental demand: F (5, 11) = 1.078, P = 0.423 and F (10, 22) = 0.629, P = 0.773, temporal 
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demand: F (5, 11) = 1.306, P = 0.330, F (10, 22) = 0.791, P = 0.638, effort: F (5, 11) = 0.850, 

P = 0.543, F (10, 22) = 0.386, P = 0.939 and frustration: F (5, 11) = 2.207, P = 0.127, F (7, 15) 

= 0.867, 0.551, respectively between subject effect and interaction condition X order).  

Stroop task performance 

Mean response time (RT) and accuracy (ACC) (percentage of correct responses) for the Stroop 

task were 794.7 ±127 ms and 0.98 ± 0.01 respectively. Repeated measures ANOVA was used 

to assess the effect of time on task on the behavioral responses averaged over 10 min period 

for a total of six blocks. RT tended to increase over time as it was also shown by a decrease in 

the number of trials performed over the six blocks. Specifically, RT was 759.49 ± 92.56 ms in 

the first block and 788.88 ± 104.08 ms in the last one. However, the effect of time did not reach 

the level of statistical significance (F (2, 38) = 2.410, P = 0.094, η2p = 0.131). On the contrary, 

accuracy increased significantly with time (F (3, 48) = 6.799, P = 0.001, η2p = 0.298). Post-

hoc tests revealed that accuracy was significantly lower in the first 10 min (M = 0.96, SD = 

0.02) compared with the third 10 min block (M = 0.977, SD = 0.01, P = 0.045) and the last 10 

min block (M = 0.98, SD = 0.012, P = 0.006). The others comparisons with block 1 were not 

significant (P ≥ 0.09), nor were significant the comparisons among all others blocks (P ≥ 0.9) 

This trajectory suggested that after the first 10 min the accuracy stabilized and did not change 

for the remaining period.   

Compatible with the trend of the RT, the IES increased slightly but, not significantly over the 

six blocks (F (2.5, 39.8)   = 1.089, P = 0.357, η2p = 0.064). 

Arithmetic test performance 

The total number of questions submitted during the arithmetic test was 75.88 ± 32.46. The 

number of correct answers was 38.38 ± 37.06, with a mean accuracy of 46.35 ± 24.83 %. 

Effect of the interventions on time trial performance 
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The mixed ANOVA to assess the effect of order on the time trial tests was not significant 

(between-subjects effect F (5, 11) = 0.316, P = 0.893, interaction condition X order (F (10, 22) 

= 0.931, P = 0.525). This result excluded a carryover effect of the three visits on the 

performance. 

Times to complete the trials were 442.59 ± 63.97 s, 445.29 ± 61.52 s and 446.35 ± 62.30 s for 

the control condition, the Stroop task and the arithmetic test respectively (Figure 3). The 

performances were not significantly different (F (1.5, 26) = 0.604, P = 0.521, η2p = 0.036). 

Similarly, average power (F (2, 32) = 1.650, P = 0.208, η2p = 0.093) and average speed (F (2, 

32) = 1.111, P = 0.341, η2p = 0.065) did not differ significantly and were 121.71 ± 50 W and 

12.44 ± 1.76 km·h-1 after the control task, 118.94 ± 49.69 W and 12.35 ± 1.72 km·h-1 after the 

Stroop task and 118.92 ± 51.89 W and 12.33 ± 1.77 km·h-1 after the arithmetic test respectively. 

The velocity decreased over the trials (main effect of distance F (1, 21) = 105, P = 0.001, η2p 

= 0.868). Post-hoc tests revealed that the speed declined significantly (P ≤ 0.002) until 1050 m 

when it remained stable until the end (pairwise comparisons between the last four 150 m splits 

P > 0.05). The main effect of condition and the interaction condition X distance were not 

significant (F (2, 32) = 0.917, P = 0.410, η2p = 0.054 and F (3, 51) = 1.049, P = 0.382, η2p = 

0.062 respectively).  

Effect of the interventions on RPE, heart rate, pacing strategy and stroke rate during the 

time trials 

RPE increased significantly over the trial (main effect of distance F (1, 22) = 57.637, P < 0.001, 

η2p = 0.783), however, it was not affected by the interventions (main effect of condition F (2, 

32) = 0.147, P = 0.864, η2p = 0.009 and interaction condition X distance F (6, 102) = 0.929, P 

= 0.481, η2p = 0.055). Post-hoc tests to describe the main effect of distance showed that the 

RPE increased significantly until 750 m (P < 0.005), it did not differ significantly between 750 
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and 900 m (P = 0.086), 1050 and 1200 m (P = 0.163) and 1200 and 1350 m (P = 0.202) and it 

was significantly higher at 1500 m compared to all previous ratings (P < 0.05). 

Similairly, the HR did not differ significantly between conditions (main effect of condition: F 

(2, 32) = 0.599, P = 0.556, η2p = 0.038). It increased significantly over the trial (main effect of 

distance F (2, 31.5) = 79.66, P < 0.001, η2p = 0.842) with no significant interaction condition 

X distance (F (6, 94.5) = 1.451, P = 0.201, η2p = 0.088). Post-hoc tests for the main effect of 

distance showed that HR was significantly lower in the first 150 m split compared to the 

subsequent points (P < 0.001); in addition, it differ significantly between 300 (P  ≤ 0.001) and 

450 m (P ≤ 0.002) and all splits following 750 m and between 600 m and all points following 

900 m (P ≤ 0.02)  and at 1200 m, 1350 and 1500 m it was significantly higher compared to all 

previous recordings (P < 0.05).   

One-way repeated measures ANOVA was run for the final point of RPE and the HR to assess 

whether the interventions influenced the end-point of the time-trial. However, the analysis did 

not reveal any significant difference between conditions in the RPE (P = 0.317, η2p = 0.069) 

nor in the HR (P = 0.545, η2p = 0.040). Data of RPE and HR over time are shown in Figure 4. 

Average speed was obtained from each split times of every 150 m and used to assess pacing 

profiles of the trial. Before running the analysis to determine any difference between the 

conditions, a mixed ANOVA (with the order listed as the between-subjects factor) was 

performed to control the effect of the visits order on the pacing strategy. The results of the 

analysis were not significant (between-subject effect F (5, 11) = 0.369, P = 0.859, interactions 

condition X order F (10, 22) = 0.840, P = 0.597, and distance X order F (6, 14) = 0.770, P = 

0.616).  

Results from the 2-way fully repeated measures ANOVA showed a significant main effect of 

distance (F (4, 67.5) = 40.321, P < 0.001, η2p = 0.716) on the average speed of every 150 m 

splits. The main effect of condition (F (2, 32) = 1.209, P = 0.312, η2p = 0.070) and the 
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interaction condition X distance were not significant (F (4.5, 72.4) = 1.484, P = 0.210, η2p = 

0.085). Post-hoc tests for the main effect of distance indicated that a reversed J pacing strategy 

was adopted in all the trials resulting in the first split being the fastest and in a significantly 

slower speed of all the following 150 m splits (P < 0.001). More specifically, the speed 

decreased significantly from split 2 to the following ones (P ≤ 0.03) until the last split when it 

increased to the same value of split 2 (P = 1.000). In addition, it was significantly higher in the 

4th split (600 m) compared to the 6th, 7th and 8th (900 to 1200 m) and in the last split compared 

to the 7th, 8th and 9th (1050 to 1350 m) (Figure 5).   

Average stroke rate was 28.65 ±3.33, 27.94 ±2.97, 28.88 ±3.28 rpm for the control, Stroop task 

and arithmetic test condition respectively. The main effect of condition (F (2, 32) = 3.038, P = 

0.062, η2p = 0.160) and the interaction condition X distance (F (4, 61) = 0.385, P = 0.811, η2p 

= 0.024) were not significant. Post-hoc tests for the main effect of distance (F (1.6, 25.6) = 

8.446, P = 0.003, η2p = 0.345) showed that the stroke rate was higher in the first 300 m split 

compared to the three subsequent splits (P < 0.001, P = 0.006, P = 0.017) and increased to the 

same level of the first split in the last 300 m (P = 1.000), at this point was also significantly 

higher than the previous 300 m split (P = 0.024).   

In the arithmetic test condition, the average stroke rate tended to be higher compared to the 

Stroop task condition. However, one-way repeated measures ANOVA of the average stroke 

rate was not significant (F (2, 32) = 2.728, P = 0.081, η2p = 0.146).   

Discussion 

To our knowledge, this was the first study investigating the effect of mental fatigue on physical 

performance in a sample of prepubertal athletes. A recent review of the effect of mental fatigue 

on physical performance reported that acute mental fatigue before exercise performance could 

negatively affect endurance performance (Van Cutsem et al., 2017). In contrast, the main 
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finding of the present study was that prolonged cognitive activities did not affect rowing 

performance in prepuberal athletes. Accordingly, physiological and perceptual responses 

during the time trials were not different after the three interventions (Stroop task, arithmetic 

test and control task).  

Self-reported measures were recorded before and after the interventions to assess the state of 

mental fatigue. From one side, the mood state was similarly affected by the three interventions 

that resulted in a significant decrease in the vigour and significant increase in the fatigue. Thus, 

the measures from the BRUMS scale suggested that the two cognitive tasks failed to elicit a 

significantly different level of fatigue compared to the control activity. 

On the other hand, the two cognitive tasks were rated as more mentally demanding, more 

effortful and more frustrating compared to the control task in the NASA-TLX.  

Although these results were divergent in defining whether mental fatigue was effectively 

induced, similar findings were reported by previous studies (Pageaux et al., 2014; Pageaux et 

al., 2015). In both studies, the authors employed a modified version of the Stroop task to induce 

mental fatigue and a congruent version of the same task as a control. None of the two tasks 

affected the fatigue scale of the BRUMS, while the vigour score decreased similarly after the 

interventions. However, the ratings of mental demand and effort were significantly higher in 

the NASA-TLX of the incongruent Stroop task compared to the congruent version and most 

importantly, the physical performance was impaired after the more effortful and demanding 

task. Specifically, in the first study, the distance covered during the time trial was significantly 

shorter following the demanding cognitive task compared to the control (Pageaux et al., 2014); 

in the second study, the rate of perceived exertion measured during six min of constant load 

test was significantly higher in the incongruent Stroop condition (Pageaux et al., 2015). Their 

findings suggested that the physical performance may be more sensitive to the subjective 

experience of effort and/or the perceived demand of the previous cognitive task rather than the 
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state of fatigue assessed with the BRUMS. Martin et al. (2016) also reported similar findings 

showing that a different fatigue state did not accompany the reduction in the endurance 

performance found after the Stroop task when compared to a passive activity. In particular, the 

fatigue level measured with the four-dimensional mood scale displayed a significant increase 

in tiredness and a significant reduction in positive energy in both conditions. However, the 

mental demand and the effort rated on the NASA-TLX were significantly higher after the 

Stroop.    

Based on that, it could be argued that the lack of an effect of the more effortful cognitive tasks 

in the present study depended at least in part on the fact that the sample tested was different for 

age or training status to that of previous research. 

To our knowledge, only one other study directly investigated the effect of mental fatigue in 

healthy children (Winch 1912a, 1912b). The author looked at the effect of a school day on a 

memory test performed either in the afternoon or the morning in both 11 and 13 years children. 

Winch (1912a, 1912b) reported little differences between the performance of the two groups 

as well as in the learning effect tested as the improvement in the performance from the 

preliminary test to the final test. Specifically, in the first experiment involving 45 children aged 

13 years old, the average marks were 266 ±34 and 253 ±35.9 (out of 360) for the morning 

group and afternoon group respectively. In the second experiment, which included 61 boys of 

11 years old, the morning group scored 165 ±1.1 and the afternoon group 161 ±1.1 out of 180.  

The same author suggested that children may be immune to mental fatigue and may be able to 

learn in the afternoon in the same way as in the morning.  

The present results showed that the physical performance of young athletes was less sensitive 

to mentally demanding tasks compared with that of adult recreational athletes whose 

performance have been shown to decline after prolonged cognitive tasks (Van Cutseme et al., 
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2017). Hence, it is possible that the children tested were more resistant to mental fatigue 

because of the age, the training background and fitness level or both.  

In the first case, these findings could be explained by the differences in the cognitive processes 

between adults and children. Behavioral and neuroimaging studies reported that brain areas 

underlying response inhibition, the frontal lobe, developed between 12 to 17 years and peak 

around 17 years (Romine, & Reynolds 2005). Over this period, functional neural networks 

develop and task-specific patterns of activation supporting the cognitive performance increase 

(Adleman et al., 2002; Rubia, Smith, & Woolley, 2006). Specifically, Adleman et al., (2002) 

reported increased performance activation of the lateral prefrontal lobe, anterior cingulate and 

parietal brain regions in young adults compared to children when performing the Stroop task. 

The decreased activity in the immature systems of children could be interpreted as reduced 

accessibility to the regions or to the computational abilities that support complex behavior 

(Luna et al., 2010). This lower activation during cognitive tasks may result in a lower 

impairment of the cognitive processes when activated over time, similarly to what occurs with 

exercise-induced peripheral fatigue (Ratel, 2006). The author suggested that children despite 

being physically less efficient compared to adults, i.e. lower maximal power and maximal 

aerobic capacity (maximal oxygen consumption), display less muscular fatigability because 

their muscular activation is quantitatively and qualitatively different.  In particular, their 

underdeveloped anaerobic metabolism and the reduced recruitment of fast twitches result in 

lower accumulation of muscle by-product during high-intensity exercise and higher resistance 

to muscular fatigue (Ratel, 2006).  

Similarly, it could be speculated that the reduced ability to recruit the neural resources during 

cognitive tasks in the children (Luna et al., 2010) may prevent their full exploitation and result 

in reduced fatigability over time, although it leads to a worse performance compared with that 

of adults. However, we are not aware of any study that compared the fatigability of the neural 



 

25 
 

systems in children and adults or investigated the different effect of mental fatigue between 

adults and children; therefore, further empirical studies are necessary to test this possibility. 

A more plausible explanation for the lack of the effect of mental fatigue on the performance 

could be the involvement of the children in endurance sport. In accordance with that, Martin et 

al. (2016) found that elite athletes’ performance was not affected by previous mental fatigue 

and they suggested that elite cyclists could be more resistant to mental fatigue. Our results 

partly supported this hypothesis suggesting that endurance athletes displayed this characteristic 

at an early age.  

Although they suggested that genetic factors likely support this feature, also the engagement 

in aerobic exercise and training routine may promote the development of resistance to mental 

fatigue in endurance athletes.  

A growing body of evidence suggested that aerobic fitness (Buck, Hillmann, & Castelli, 2008; 

Scudder et al., 2014) and level of physical activity (Syväoja, Tammelin, Ahonen, Kankaanpää, 

& Kantomaa, 2014) are positively associated with the cognitive performance across different 

executive functions in prepubertal children (see Donnelly et al., 2016 for a review on this topic). 

These behavioral findings have been corroborated by studies involving the measures of brain 

structure (Chaddock, Erickson, Prakash, Kim et al., 2010; Chaddock, Erickson, Prakash, 

VanPatter et al., 2010) and function (Hillman, Buck, Themanson, Pontifex, & Castelli 2009; 

Hillman, Castelli, & Buck, 2005; Pontifex et al., 2011). Specifically, Chaddock et al. (2010) 

showed in two separate studies that children with higher fitness level outperformed their lower 

fitness peers in a relational memory task and resulted less susceptible to the behavioral 

interference measured with the Flanker task. The two behavioral outcomes were coupled with 

a larger volume in the brain structures underlying tasks’ performance, namely the hippocampus 

and the dorsal striatum (nucleus caudate and putamen) for the relational memory and 

interference control respectively. These results suggested that the relationship between fitness 
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level and cognitive performance may be mediated by direct and selective differences in the 

brain structure and volume. Studies assessing brain function with electroencephalogram have 

confirmed the presence of fitness related differences in the cognitive processes sustaining the 

performance. Specifically, a series of studies reported that children with high fitness level 

presented larger P3 amplitude signalling greater allocation of attentional resources during 

stimulus encoding compared to peers with lower fitness level (Hillman et al., 2009, Hillman et 

al., 2005; Pontifex et al., 2011). In addition to that, the high fitness level group displayed 

reduced ERN amplitude (event-related negativity) that was interpreted as an increased 

evaluative threshold to initiate top-down cognitive control as well as greater ERN differences 

between compatible and incompatible trials that was related to a better ability to modulate 

cognitive control in response to the stimuli (Pontifex et al., 2011).  

Further support to the positive effect of exercise on cognitive performance has been provided 

by empirical studies showing that acute exercise facilitated cognitive performance in 

preadolescent children (Hillman et al., 2009; Chen, Yan, Pan, & Chang 2014).   

Altogether, these results indicate that aerobic exercise involves specific cognitive processes 

that have a potentially positive effect on higher-order brain regions and support the 

development of cognitive functions across childhood and adolescence. Due to the positive 

interplay between cognitive functions and aerobic activities young and well-trained endurance 

athletes may need a low level of effort to sustain prolonged cognitive activities, and this may 

have reduced the effect of the interventions used to elicit mental fatigue.  

In addition, physical activity during school hours is not detrimental to the performance at 

school (Ahamed et al., 2006) and its benefit may translate into improvement in academic 

performance (Marques, Santos, Hillman, & Sardinha, 2017), suggesting that children could 

adapt positively to the alternation between cognitive demand imposed by school routine and 

physical demand of structured sport. Based on that, the athletes of the present study could have 
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been well adapted to shift from cognitive and physical activities. Therefore their performance 

was less sensitive to the intervention. Notably, all but three of them have been involved in 

rowing for at least one year before starting the experiment and they all have a history of at least 

four consecutive years of routinely sports practice prior to rowing. 

Finally, it could be suggested that endurance athletes are predisposed or trained to endure effort 

in general. In this regard, fatigue has been defined as an evolutionary emotion that manifests 

with an increased feeling of effort and is driven by a cost-benefit analysis of the current activity 

(Boksem & Tops, 2008). The phenomenology of effort would allow disengaging from the task 

when the cost of acting overcome task reward and this monitoring system would favour 

efficient goal-directed behavior (Hockey, 2011; Kurzban, 2016). Accordingly, it was shown 

that increasing the reward during prolonged cognitive task counteracted the detrimental effect 

of mental fatigue on the cognitive performance and reversed the subjective feeling of effort 

and aversion to the task (Hopstaken, van der Linden, Bakker & Kompier 2015; Hopstaken, van 

der Linden, Bakker, Kompier, & Leung 2016). Boksem, & Tops (2008) suggested the presence 

of a shared neural system that evaluates and regulates mental and physical effort (see also 

Shenhav et al. 2017) and the detrimental carryover effect of mental fatigue on following 

physical tasks provided support to this hypothesis. Although research has failed to reveal a 

reduction in the motivation toward the physical endurance task that followed the cognitive 

tasks (Van Cutsem et al., 2017), studies consistently reported an alteration in the rate of 

perceived exertion during the exercise. The higher perceived exertion during exercise could 

imply an imbalance in the reward-effort processing elicited by the previous mental effort. Also, 

Brown & Bray, (2017) recently found that monetary incentives associated with the 

performance could offset the adverse effect of a short cognitive task on the performance of the 

subsequent handgrip endurance test, showing that task reward could affect the relationship 

between mental fatigue and physical performance. Inzlicht Shenhav, & Olivola (2018) 
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suggested that effort, although commonly considered as inherently costly, could also add value 

to an activity or be a value itself through learned industriousness or need for cognition. 

Consequently, it could be argued that the young athletes tested in the present study, as well as 

the elite sample tested by Martin et al. (2016), may perceive the physical task as rewarding per 

se because its conditioned association with incentives (success, money) and/or individual 

predisposition to engage in effortful activity. According to the opportunity-cost model of 

mental effort (Kurzban, Duckworth, Kable, & Myers, 2013), this intrinsic value of physical 

exertion would result in little or no effect of the previous mental exertion on the performance 

of these athletes.  

Though, these are speculations that require empirical evidence. Future studies should compare 

the effect of mentally demanding task on the performance of aerobic-trained children and 

sedentary peers, and a neurophysiological and psychological assessment should be 

implemented to test these hypotheses. Research on this topic should also explore potential 

psychological variables that mediate or influence the effect of mental fatigue on performance 

to improve the understanding of this phenomenon and to better interpret the results.  

For example, task self-efficacy was shown to mediate the effect of self-control on the following 

physical performance through a sequentially mediated pathway, that was self-control tasks 

induced fatigue that affected task self-efficacy and, ultimately the performance on the second 

task (Graham, & Bray, 2015; Graham, Martin Ginis, & Bray, 2017). So far, no studies have 

investigated task self-efficacy as a mediator of fatigue-performance relationship in young 

athletes as well as in professional athletes. Hence future investigations should include this 

measure to assess whether they may be more resilient to the decline in self-efficacy induced 

with mental fatigue.   

Similarly, Voce & Moston, (2015) and Wan & Stherntal, (2008) reported that performance 

feedback that allowed to monitor the performance level objectively could vanish the effect of 
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ego-depletion on the subsequent cognitive performance. Performance feedback could represent 

a possible avenue for future research on mental fatigue and physical performance. In particular, 

it may be that with the practice athletes become able to better monitor the performance with 

their subjective feelings even in the absence of external feedback. 

In conclusion, the present findings favour the hypothesis that resistance to mental fatigue could 

be a distinctive characteristic of endurance athletes and it develops at an early age (Martin et 

al., 2016).  

Furthermore, this study showed that children endurance performance was not affected by 

performing a more complex cognitive task involving reasoning, decision-making and planning 

compared with the Stroop task.  

Despite the new insight into mental efforts in trained children, the study presented some 

methodological limitations that should be acknowledged when interpreting the results.  

Firstly, as stated above self-reported measures did not clearly distinguish the level of mental 

fatigue induced by the interventions. Different scales have been employed to assess the 

subjective state of fatigue with contradictory findings (Van Cutsem et al., 2017); however, a 

direct comparison of these assessments and a gold standard measure of the subjective feeling 

of fatigue is still lacking. A multidimensional assessment comprising different 

neurophysiological measures (i.e. electroencephalogram) and a secondary cognitive task may 

be necessary to gauge the cognitive and physiological effects of the cognitive task and elucidate 

the relationship between mental exertion and physical performance (Van Cutsem et al. 2017). 

In this regard,  the present investigation did not include relevant psychological variables that 

were shown to mediate the effect of mental fatigue on physical performance such as task-self 

efficacy (Graham, & Bray, 2015; Graham, Martin Ginis, & Bray, 2017). 

A second element requiring further attention is the type of cognitive tasks employed to induce 

mental fatigue. In the current study, the Stroop task was 100% incongruent, namely colour-
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words and ink-colour did not match in any trial. The incongruent trials of the Stroop task 

require higher cognitive control than the congruent trials as they elicit the inhibition of the 

automatic response to the colour-word (Botvinick et al., 2001). It has been reported that the 

response inhibition required by the incongruent Stroop task could have a negative effect on the 

subsequent physical performance (Englert & Wolff, 2015; Graham & Bray 2015; Martin et al., 

2016; Pageaux et al., 2014). Moreover, Brown and Bray (2017) demonstrated that this effect 

could be elicited for tasks as short as 6 min and persisted up to 10 min of task duration.  

However, it was shown that when the incongruent stimuli were presented at a high rate, the 

interference effect diminished (Lindsay, & Jacoby, 1994). As a consequence, the repetition of 

the incongruent stimuli over one hr period could reduce the interference and strengthen the 

colour-naming response. This could have led to more automatic responses reducing the effort 

required to sustain the task and ultimately, the effectiveness of the intervention. Future studies 

should assess the effect of different types and the lengths of the cognitive tasks on the 

subsequent performances. In addition to that, the manipulation of the second effortful task 

could also be relevant from a theoretical perspective to entangle the research on self-control 

and mental fatigue and their effect on physical performance.  

The experimental sessions were performed on school days from 14:00 to 18:00. Therefore, it 

could not be excluded that the detrimental effect of mental fatigue on physical performance 

had already been exacerbated by other activities limiting the effect of the cognitive tasks.  

However, it should be noted that children were asked to abstain from any cognitive activity for 

at least two hours before starting the experimental sessions and the fatigue scale of the BRUMS 

did not display any level of fatigue in the baseline assessment. Future studies should test the 

same protocol during weekends to exclude the presence of a floor effect on the physical 

performance. 
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In the present study, we implemented a cross-over design where the visits were randomly 

allocated to the subjects based on balanced permutations, yet a Williams design would be more 

appropriate to control for the carryover effects.  

The above limitations highlighted relevant issues for the research in the field of mental fatigue 

and physical performance that should be addressed by future research.  

 

Conclusions 

Several studies reported that mental fatigue has a detrimental effect on endurance performance 

in healthy recreational athletes (Van Cutsem et al., 2017). The current study is the first 

investigating its effect in trained children performance and provides preliminary experimental 

evidence that mental effort, elicited with a Stroop task or an arithmetic test, does not limit the 

following exercise performance in prepubertal endurance athletes. However, it should be noted 

that self-reports of fatigue did not differ between conditions, limiting our ability to determine 

the extent to which fatigue was induced by the more mentally demanding cognitive tasks. 

Therefore, its finding needs to be replicated by further researches implementing a broader 

psychophysiological assessment of mental fatigue. 

Future research should investigate whether this effect depends on the age or the involvement 

in endurance activities comparing the response in sedentary and active children as well as 

across developmental years. Health interventions in paediatric settings, physical education 

programs as well as young athlete’s development framework could take advantage from the 

investigation of the perceptual and functional consequences of prolonged periods of demanding 

cognitive activity and its interplay with physical fatigue during the development. The study of 

the interplay between cognitive functions and endurance performance in young athletes could 

help improve talent identification programs and young athlete’s development programs.  
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Figure captions 

Figure 1. Schematic of the experimental visits. HR – Heart Rate; RPE – Rate of Perceived 

Exertion; ST – Stroop Task; AT – Arithmetic Test; CON – Control. 

 

 

 

 

Figure 2. Effect of prior cognitive tasks (CT) on subjective workload measured with NASA-

TLX scale. **Significant main effect of condition (P<0.01). ***Significant main effect of 

condition (P < 0.001). Data are presented as mean ± SD. 
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Figure 3. Effect of prior cognitive tasks on 1500-m time trial performance. Data are presented 

as mean ± SD (left) and individual responses (right). 
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Figure 4. Effect of prior cognitive tasks on rating of perceived exertion (RPE; A) and heart 

rate (HR; B) during the 1500-m time trial. ### Significant main effects of time (P < 0.001). 

Data are presented as mean ± SD. 
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Figure 5. Effect of prior cognitive tasks on pacing strategy during the 1500-m time trial.  

### Significant main effects of time (P < 0.001). Data are presented as mean ± SD 

 


