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Key Points: 12 

 Sea level rise alone does not explain marsh lateral changes over the past 150 years 13 

 Sediment flux is by far the strongest indicator of long-term lateral changes in 14 

saltmarsh extent.  15 

 Small increases in fetch length may boost marsh expansion through stimulating wind-16 

driven sediment transport onto marshes 17 

Abstract 18 

Salt marshes often undergo rapid changes in lateral extent, the causes of which lack common 19 

explanation. We combine hydrological, sedimentological and climatological data with analysis 20 

of historical maps and photographs to show that long-term patterns of lateral marsh change can 21 

be explained by large-scale variation in sediment supply and its wave-driven transport. Over 22 

150 years, northern marshes in Great Britain expanded while most southern marshes eroded. 23 

The cause for this pattern was a north to south reduction in sediment flux and fetch-driven 24 

wave sediment resuspension and transport. Our study provides long-term and large-scale 25 

evidence that sediment supply is a critical regulator of lateral marsh dynamics. Current global 26 

declines in sediment flux to the coast are likely to diminish the resilience of salt marshes and 27 

other sedimentary ecosystems to sea level rise. Managing sediment supply is not common-28 

place, but may be critical to mitigating coastal impacts from climate change. 29 

 30 

Plain Language Summary 31 

Salt marshes are valuable ecosystems for human societies, and are especially vulnerable to 32 

losses caused by human activity and climate change. Little is known about how the size of 33 

marshes has changed in response to disturbance over large- and long-term scales. We used 34 

historical maps and aerial photographs to capture 150 years of change in marsh area extent in 35 

25 estuaries and ~100 marshes across Great Britain. We then related the rates of marsh change 36 

to existing data on hydrology, biology, climate, sediment supply and other variables, to find 37 

out which elements best explained patterns of erosion and expansion for the period between 38 

1967 and 2016. We found a shift from long-term marsh erosion in the south-east, to long-term 39 

marsh expansion in the north-west of Great Britain, and that this pattern was explained by a 40 

south-to-north gradient of increasing sediment flux into marshes and wave fetch lengths which 41 
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helps transport sediment onto marshes. Our study demonstrates how sediment supply should 42 

be monitored and managed to preserve saltmarsh extent into the future. 43 

 44 

1 Introduction 45 

The threat of sea level rise has dominated theoretical and empirical saltmarsh research for more 46 

than thirty years, from concerns that over 90% of global marshes could drown by 2100 (Crosby 47 

et al., 2016; Spencer et al., 2016; Horton et al., 2018; Valiela et al., 2018). Recent results show 48 

that marshes are adept at keeping pace with sea level rise by growing vertically when sediment 49 

is available to settle onto the marsh surface (Kirwan et al., 2016a); an irony, given that fear of 50 

marsh loss by drowning has had an overriding influence on conservation policy since the 1970s 51 

(Hatvany et al., 2015). Despite the vertical resilience to sea level rise, there are many 52 

documented cases from Europe, North America and Asia where marshes have undergone 53 

extensive lateral changes in cover, expanding or eroding hundreds of metres in just a few years 54 

(Yang et al., 2001; Lotze et al., 2006; Fagherazzi et al., 2013; Gunnell et al., 2013; Leonardi et 55 

al., 2016). This study heeds the call to investigate the drivers causing lateral marsh change 56 

(Kirwan et al., 2016a; Kirwan et al., 2016b; Schuerch et al., 2018), shifting the current 57 

emphasis away from a predominant focus on vertical growth dynamics alone (Mariotti & 58 

Fagherazzi, 2010; Kirwan et al., 2016b). The causes for lateral marsh change need to be 59 

understood if natural coastal protection by marshes is to be effectively managed (Bouma et al., 60 

2014; Kirwan et al., 2016b; Ganju, 2019). 61 

 62 

Marsh loss by lateral retreat is thought to be the consequence of wind-wave attack (Mariotti & 63 

Fagherazzi, 2010, 2013; Marani et al., 2011; Mariotti & Carr, 2014). Sea level rise and 64 

increased severity of storm and river flooding collectively act to raise water depths and 65 

wave/current scour over tidal flats, thereby increasing the likelihood of initiating lateral marsh 66 

erosion (Mariotti & Fagherazzi, 2010; Mariotti & Carr, 2014; Hu et al., 2015b). Previous 67 

studies have indicated that sediment supply from marine or riverine sources can diminish this 68 

erosion risk when the replenishment of sediment is sufficiently large to cause tidal flats to 69 

elevate through accretion. For example, marshes in the macrotidal Bay of Fundy, Canada, are 70 

resilient to erosion because new sources of sediment from ice rafting are transported to the 71 

saltmarsh edge by large-amplitude tides (van Proosdij et al., 2006). In contrast, some marshes 72 

in the microtidal Venice Lagoon, Italy, are erosion-prone because of low river sediment supply, 73 

as well as limited tide-driven sediment mobilisation and transport (Day et al., 1999; Marani et 74 

al., 2007; Fagherazzi et al., 2013). Along sediment-starved coastlines, erosion of adjacent tidal 75 

flats can provide a local sediment source for marsh accretion (Schuerch et al., 2019) even if 76 

tidal flat loss eventually exposes marshes to long-term lateral erosion (Bouma et al., 2016). 77 

Marsh change is also associated with human activity. Land reclamation has reduced the extent 78 

of marshes globally (Gedan et al., 2009), while the introduction of invasive marsh building 79 

plants (Spartina species) has expanded marshes (Ranwell, 1967; Gedan et al., 2009). Large 80 

fluctuations in marsh cover have also been linked to changes in hydrology and sediment 81 

transport driven by coastal development and land-use change (Yang et al., 2001). 82 

 83 

While numerical models have pioneered the mechanistic understanding of lateral marsh 84 

dynamics (Mariotti & Fagherazzi, 2010; Mariotti & Carr, 2014; Hu et al., 2015a; D’Alpaos & 85 

Marani, 2016; Kirwan et al., 2016b; Schuerch et al., 2018), empirical evidence has lagged 86 

behind and been limited to process-based studies (Feagin et al., 2009; Francalanci et al., 2013), 87 

isolated sites (Chauhan, 2009; Gunnell et al., 2013; McLoughlin et al., 2014) and single 88 

explanatory drivers of change (Weston, 2013; Gabler et al., 2017). We aimed to change this 89 
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situation. Here we ask which key climate, biotic, and anthropogenic drivers best explain long-90 

term (150-year), large-scale (across Great Britain) lateral marsh change. 91 

 92 

2 Methods 93 

2.1 Study sites  94 

We measured change in saltmarsh extent for 25 estuaries and embayments located in 6 regions 95 

across Great Britain (GB): the Solway, Morecambe and Cardigan regions located along the 96 

west coast, in the Irish Sea; and the Wash, Essex-Kent and Solent regions along the east/south-97 

east, in the North Sea and English Channel (Figure 1). In total, these estuaries occupied around 98 

19,000 ha of salt marsh (~40% of the total marsh area in GB) (Phelan et al., 2011; Haynes, 99 

2016). Estuaries were shallow, generally well-mixed with semidiurnal meso- to macro-tidal 100 

ranges. Flood-dominance was common along the west coast, the Wash region and many of the 101 

Essex-Kent regions, whereas in the Solent region, all the estuaries were ebb-dominant 102 

(Manning & Whitehouse, 2012). Typical estuary morphology ranged from bar-built to 103 

embayment/coastal plains (Pye & Blott, 2014). Relative sea level rise (RSLR) generally 104 

increases along an axis from the north-west to the south-east due to isostatic adjustment of the 105 

British Isles following deglaciation at the end of the Last Glacial Maximum (Bradley et al., 106 

2009). Along a similar axis, tidal amplitude and estuary depth generally decrease, and sediment 107 

type changes from sand- to silt/clay-dominance (Goudie, 2013). All regions have historically 108 

seen some sea wall construction, with extensive stepwise reclamation occurring in the Wash 109 

and the Essex-Kent regions (Davidson et al., 1991). Fluvial suspended sediment supply to the 110 

coastline across the UK has been historically low (Worrall et al., 2013). 111 

 112 

2.2 Change in saltmarsh extent 113 

We quantified saltmarsh area for the entirety of each estuary approximately every 30 years 114 

between 1846 and 2016 using a combination of Ordnance Survey (OS) maps and aerial 115 

photographs. OS maps were accessed via the EDINA Digimap Resource Centre. Survey dates 116 

of maps were taken from Oliver (2013) and used as timestamps. For the Cardigan regions, 117 

aerial photographs were taken from the Royal Commission on Ancient Historical Monuments 118 

Wales. Photographs were scanned and georeferenced onto OS 1:25,000 rasters in the British 119 

National Grid projection. Pixel size corresponded to ca. 0.25 × 0.25 m in the field. Marsh extent 120 

measurements for the Solent and Essex-Kent regions, originally delineated from aerial 121 

photographs, were taken from Baily and Pearson (2007) and Cooper et al. (2001) respectively. 122 

 123 

Marsh extent from OS maps and aerial photographs were delineated manually at a scale of 124 

1:7,500 by placing vertices along the marsh edge approximately every 5 m. To account for 125 

boundary precision of the seaward marsh edge, visual comparisons between our georeferenced 126 

images to reference shapefiles (Phelan et al., 2011; Haynes, 2016) was done to ensure accuracy 127 

of the georeferencing procedure. We also looked for site-specific literature to verify whether 128 

observations of significant change in marsh extent could be considered ‘real’ or were likely 129 

caused by differences in map surveyors’ interpretation of where the marsh edge lay (see 130 

supporting information, Table S1). In the case of the Wash, large areas of marshland were 131 

reclaimed over the study period. To account for this, we calculated the area of reclaimed land 132 

and subtracted it from the marsh extent in the previous map revision. The new value was 133 

included as an additional measurement of marsh area between map revisions. See supporting 134 

information, Text S1, for methods used to calculate an error term for each measure of marsh 135 

area.  136 

 137 
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A linear rate of saltmarsh change per year was calculated for each estuary and used as the 138 

response variable in statistical modelling. Due to the highly non-linear change of marsh extent 139 

in the Wash region, an average rate of marsh change was calculated following each reclamation 140 

phase. See supporting information, Table S2, for the rates of marsh change, and the dates over 141 

which this rate was taken. We also contrasted observed rates of lateral marsh change with 142 

published empirical measurements of vertical accretion on the nearby marsh surface. All 143 

accretion rates were measured in the low-marsh zone using Caesium radio-isotope dating, 144 

Sediment Elevation Tables or Marker Horizons (see references in Table 1). See supporting 145 

information, Table S2, for dates over which accretion rates were measured. 146 

 147 

2.3 Predictor variables of lateral marsh change 148 

For each estuary, we collated data on key hydrological, sedimentological and climatological 149 

variables known to structure saltmarsh extent within estuaries. Annual net sediment flux per 150 

unit area of marsh was calculated by using the ratio of vegetated and unvegetated surfaces 151 

within each estuarine marsh complex (UVVR), which has been shown to be a proxy for 152 

external sediment supply (Ganju et al., 2017). See supporting information, Text S2, for 153 

information on how net sediment flux was calculated and validated. Estimated bedload 154 

sediment flux volume (in or out of the estuary) were taken from HR Wallingford (2002), Brown 155 

and Davies (2010), Halcrow (2010), and NFDC (2017). Due to differences in the precision of 156 

modelled bedload sediment flux estimates between studies, all values were rounded to their 157 

nearest 10th value, representing a magnitude flux either into (positive) or out (negative) at the 158 

estuary mouth. Long-term tide gauge records were used to calculate the rate of RSLR for each 159 

estuary. Trends of RSLR are linear rates calculated from monthly-averaged records with a 160 

minimum 30-year timespan (NOAA, 2019). Where nearby tide gauges were unavailable, we 161 

took the average RSLR rate from two nearest equidistant stations. Admiralty Tide Tables were 162 

used to determine the mean tidal range of each estuary, taken from Manning and Whitehouse 163 

(2012). Frequency of storm events were calculated using daily averaged wind speed data from 164 

the UK Met Office Integrated Data Archive System (Met Office, 2012). Stations were selected 165 

based on their proximity to each estuary. The temporal range for each station varied 166 

considerably, although at most limited to between 1957 and 2016. As a consequence, some 167 

stations nearby had low number of samples and were rejected for further analysis. The final 168 

representation of stations was limited to one per region, and storm events recorded by that 169 

station were assumed to be representative of all estuaries for the respective region. Prior to 170 

analysis, wind speed data was screened for quality and completeness (see Watson et al. (2015) 171 

for method). Frequency of storm events were then estimated from annual datasets as a count 172 

above an absolute threshold of 23 ms-1 (‘strong gale’ on the Beaufort scale), and rate of change 173 

in number of events per year was used in the statistical analysis. Prevailing wind directions 174 

within 10-degree compass bearing intervals of each station were also used to calculate fetch 175 

length of each estuary (the distance over which wave-generating winds blow). The Waves 176 

Toolbox for ArcGIS 10.1 (Rohweder et al., 2012) with an ‘SPM-Restricted’ method was used 177 

to calculate fetch length every 200 m along the seaward marsh edge of each estuary (using a 178 

national marsh shapefile taken from Phelan et al. (2011) and Haynes (2016)). The median fetch 179 

lengths for each estuary were recorded. Rate change in river flood frequency events were 180 

calculated using number of Peaks-Over-Threshold per water year data provided by the National 181 

River Flow Archive (Robson and Reed, 1999). Predictor variables, and the timescale over 182 

which they were measured, are noted in supporting information, Table S2. Dates of Spartina 183 

townsendii and Spartina anglica (henceforth Spartina spp). Colonisation (Figure 2; grey 184 

shading) were taken from Goodman et al. (1959), Hubbard and Stebbings (1967), and Harwood 185 

and Scott (1999). Information on significant infrastructure projects (Figure 2; arrows) were 186 
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taken from Kestner (1962), Marshall (1962), and Burd (1992) for the Solway, Wash and Essex-187 

Kent regions. 188 

 189 
2.4 Statistical treatment 190 

All statistical analyses were implemented in R. Predictor variables were checked for outliers, 191 

and log- or cube-transformed to meet assumptions of normality and equal variance. Predictor 192 

variables were also checked for collinearity, and dropped if Variance Inflation Factors 193 

exceeded 3 (Zuur et al., 2009). To identify groupings across our study sites, we used pairwise 194 

Euclidean distances between all 25 estuaries and found 6 clearly defined regions (Figure 1). 195 

We then used region as a random variable to test for spatial autocorrelation, but did not find a 196 

significant effect. A Stepwise Linear Regression model was therefore used to select the 197 

minimal adequate model. See supporting information, Text S3, for details on the full statistical 198 

analysis used. 199 

 200 

4 Results and Discussion 201 

Our analysis of marsh extent change revealed a stronger tendency for seaward lateral marsh 202 

expansion than for marsh erosion. Five of the six regions increased in marsh cover by 29% to 203 

158% between 1846 and 2016 (Figures 2a–e and 2h) and marshes overall expanded by 11%. 204 

South-east Britain was the only region to consistently lose marsh cover (Figures 2f and 2g). 205 

The largest lateral expansion occurred in the south, where Solent marshes had grown 307% by 206 

the 1970s before declining to their current levels; 29% greater than in 1868 (Figures 2d and 207 

2h). The north-eastern Wash region lost large areas of salt marsh on four occasions due to land 208 

reclamation (Figure 2e; arrows), however new marshes always expanded laterally on the 209 

seaward side of walls, leading to a 52% overall increase in marsh area. 210 

 211 

Effects of Spartina colonisation on long-term marsh change appeared to be limited. In estuaries 212 

where marsh areal extent had been increasing, trends of marsh expansion generally preceded 213 

the arrival of invasive Spartina (Figures 2a–c; grey shading), with the exception of the Solent 214 

region (Figures 2d and 2h; grey shading), where Spartina invasion has been substantial 215 

(Hubbard, 1965). Causes for erosion post-1970 in the Solent are unclear (Baily & Pearson, 216 

2007), however studies have reported marsh loss through lateral marsh erosion which indicates 217 

losses may be related to dynamics at the salt marsh- tidal flat interface (Johnson, 2000). In the 218 

Essex-Kent region, eroding marshes saw a prolonged period of little marsh change between 219 

1900 and 1970 during which Spartina was first recorded and several sea walls were breached 220 

by storms (Figures 2f and 2g; grey bars and white arrows). Overall, coastal works also had 221 

little effect on long-term marsh change. In the Wash and Solway regions, marshes expanded 222 

despite losses through reclamation (Figure 2e; black arrows) and canalisation (Figure 2a; grey 223 

arrows) respectively. The prevailing hydrological and sedimentological environment appeared 224 

to be conducive to achieving a new dynamic equilibrium in marsh extent (Kestner, 1975). Both 225 

the effects of the introduction of Spartina and coastal works appear to have only temporarily 226 

offset a long-term trend of marsh decline. We therefore conclude that long-term patterns of 227 

marsh lateral change were not driven by direct human impact alone. 228 

 229 

We next considered which key drivers were responsible for lateral marsh change for the period 230 

between 1967 and 2016. Results from a Stepwise Linear Regression model showed that 231 

sediment flux per unit area and median fetch length in combination best explained (62% of 232 

variation) the rate of marsh lateral change in estuaries across Great Britain (Table S3). Marshes 233 

shifted from eroding to expanding when sediment flux and fetch length concurrently increased 234 
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(Figure 3). Bedload sediment flux was retained in the best fit model, but was not significant 235 

(Table S3). 236 

 237 

From a range of key hydrological, sedimentological and climatological variables known to 238 

influence lateral marsh dynamics, we find that sediment supply plays a crucial role in 239 

explaining large-scale, long-term trends of lateral marsh change (Figure 3a). Whilst increases 240 

in fetch length are typically associated with marsh loss rather than expansion (Callaghan et al., 241 

2010), the relatively sheltered meso- to macro-tidal estuaries in our study had small fetch 242 

lengths (averaging 1.2 km) compared to the ~10 km threshold fetch lengths needed to trigger 243 

runaway marsh erosion along microtidal U.S. coastlines (Mariotti & Fagherazzi, 2013). Since 244 

wave action is also responsible for sediment resuspension and transport (Green & Coco, 2014), 245 

it is likely that moderate increases in fetch length enhances sediment transport to the coast, 246 

thereby facilitating marsh accretion (Figure 3b) as observed along other macro-tidal coastlines 247 

(Pringle, 1995; van de Groot et al., 2011). Across Great Britain, marshes with larger wave fetch 248 

lengths also tended to have longer foreshore widths (Taylor et al., 2002). The presence of a 249 

wide foreshore can attenuate incoming waves, reducing the potential for marsh edge erosion 250 

(Bouma et al., 2014 and references therein). Additional field-based measurements would be 251 

required to ascertain whether a shift from marsh erosion to expansion across Great Britain is 252 

primarily influenced by increased wave-driven sediment transport to the coast, or greater wave-253 

protection from wider foreshores. Nevertheless, our results provide empirical support for large-254 

scale and long-term shifts in the lateral extent of marshes driven by sediment supply and 255 

transport, in agreement with numerical models (Mariotti & Fagherazzi, 2010). 256 

 257 

Global declines in sediment supply to the coast could lead to large-scale marsh loss through 258 

lateral erosion, as observed along the eastern U.S. coast (Weston, 2013). A spatial shift over 259 

the 1967-2013 period, from marsh complexes with a positive sediment flux to marshes that 260 

have been exporting sediment (Figure 3a) implies there might have been differences in 261 

sediment availability across Great Britain. There is no evidence that fluvial suspended sediment 262 

flux to the UK coast has changed since 1974 (Worrall et al., 2013) and there is also no 263 

indication that marine sediment sources have depleted over the past 50 years (HR Wallingford, 264 

2002; Halcrow, 2010; NFDC, 2017). Intertidal flats, which can provide a local sediment source 265 

for marsh accretion (Mariotti & Carr, 2014; Schuerch et al., 2019), have reduced in size across 266 

GB since 1843 (Taylor et al., 2004; Pontee, 2011). More severe reductions in tidal flat widths 267 

along south and eastern England (Taylor et al., 2004) may have impaired their capacity to 268 

supply marshes with enough sediment to keep pace with sea level rise, exposing the marsh 269 

edge to long-term lateral erosion (Figure 2d and 2f-h). Estuaries with a greater capacity for 270 

sediment remobilisation and transport by wave action (Figure 3b) may have allowed marshes 271 

to continue to expand at the expense of tidal flat erosion (Figure 2a-c and 2e). Without increases 272 

in sediment supply to the coast, trends of lateral marsh erosion are likely to continue (Figure 273 

2d and 2f-h) and may reverse trends of marsh expansion currently observed in the northern 274 

regions of Great Britain (Figure 2a-c and 2e). 275 

 276 

Given that studies of marsh stability have tended to focus on whether or not vertical growth is 277 

equal to or greater than local sea level rise (Crosby et al., 2016; Kirwan et al., 2016a; Spencer 278 

et al., 2016; Horton et al., 2018; Schuerch et al., 2018; Valiela et al., 2018), we also compared 279 

our rates of lateral marsh change with the rates of vertical marsh accretion (references within 280 

Table 1) versus RSLR for each region. We found that all marshes had a positive accretion 281 

balance (Table 1). Marshes can erode at their flanks, but still accrete with RSLR, because 282 

lateral erosion provides a sediment source for vertical accretion (Mariotti & Carr, 2014). 283 

Coupled lateral and vertical marsh dynamics may therefore better predict saltmarsh resilience 284 
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than comparing marsh vertical growth against RSLR alone (Mariotti & Carr, 2014; Gonneea 285 

et al., 2019; Kirwan et al. 2016a; Kirwan et al. 2016b). 286 

 287 

Schemes involving managed realignment of the coastline with engineering solutions to control 288 

sediment supply and tidal inundation can be used to build large-scale and long-term marsh 289 

resilience in historically eroding systems including San Francisco Bay, U.S.A. (Stralberg et al., 290 

2011), and the Scheldt estuary, Netherlands (Vandenbruwaene et al., 2011). Despite such large 291 

investments into the restoration of saltmarsh flood protection, the monitoring of short-term 292 

sediment dynamics at the marsh edges (Bouma et al., 2016) and profile changes of tidal flats 293 

(Taylor et al., 2004; Pontee, 2011; Murray et al., 2014) is rarely done. This hampers the ability 294 

to predict whether marsh restoration schemes are likely to succeed or fail. Having shed light 295 

on the key drivers of long-term saltmarsh lateral change, researchers should now capitalise on 296 

advances in satellite remote sensing (Dorji et al., 2016) and novel and cheap instruments to 297 

quantify the short-term sediment dynamics at the coast (Hu et al., 2015c) to evaluate coastal 298 

resilience against human- and environment-induced change at a global scale. The evidence 299 

presented here contributes to an emerging emphasis on investigating the causes for spatial 300 

shifts in coastal systems, including mudflats (Murray et al., 2014), seagrass beds (Suykerbuyk 301 

et al., 2015) and mangroves (Gabler et al., 2017). Though important, a shift away from a focus 302 

on sea level rise alone to consider also the influences of other anthropogenic and macroclimatic 303 

drivers of coastline change should be a priority. 304 

 305 
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 691 

Table 1. Rates of lateral and vertical marsh change per region. Mean  S.E values per region for marsh 692 
lateral expansion rates, and the rate of marsh vertical accretion, minus the rate of relative sea level rise, 693 
to give the ‘accretion balance’. Measures of vertical marsh accretion rates were unavailable for the 694 
Morecambe region. 695 

Region 
Lateral expansion 

(ha yr-1) 

Accretion balance 

(mm yr-1) 

Solway 0.88 ± 1.17 15.41 ± 14.53 (Marshall, 1962) 

Morecambe 2.94 ± 0.37 n.a. 

Cardigan 2.31 ± 1.37 8.25 ± 4.06 (Kestner, 1975) 

Wash 1.27 ± 0.00 46.17 ± 26.87 (Shi, 1993) 

Essex-Kent -6.42 ± 3.55 3.20 ± 3.56 (Cundy & Croudace, 1996) 

Solent -3.59 ± 1.65 2.91 ± 0.84 (van der Wal & Pye, 2004) 

 696 
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 697 

Figure 1. Estuaries examined within each region. A total of 25 estuaries separted into 6 regions 698 
across Great Britain. 699 
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 702 

Figure 2. Change in estuarine-scale marsh extent across Great Britain. Regional- (blue line) and 703 
estuarine-scale (orange line) change in areal extent of salt marshes between 1856 and 2016 from 704 
photographs (filled circles) or maps (hollow circles). Arrows indicate occurrences of embankment 705 
(solid arrow), canalisation (grey arrow) or collapse of sea walls after storms (hollow arrow). Grey 706 
shading indicates Spartina spp. Colonisation in each region. Vertical error bars indicate 95% confidence 707 
intervals in marsh area extent. Horizontal lines indicate the dates over which surveys of marsh extent 708 
were carried out. Essex-Kent and Solent regions have been subdivided for ease of presentation. 709 
Regional-scale marsh change (blue line) only includes marsh extent measures for all estuary in a given 710 
region and year. Marsh change in Southampton estuary (panel d: dashed line) was excluded from the 711 
regional-scale marsh change line due to paucity of contiguous cover in saltmarsh extent across multiple 712 
years. 713 
 714 

 715 
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Figure 3. Relationships of estuarine-scale lateral marsh change with two significant predictor variables 716 
identified from a best-fit linear regression model on data for 1967 to 2016 (n = 22): a sediment flux per 717 
unit area and b median fetch length. Data points represent distribution of standardised partial residuals. 718 
Solid lines represent model-fit though the data, bounded by 95% confidence intervals (solid grey 719 
shading). Tick marks along the bottom of each plot denote deciles of the distribution of each predictor 720 
value. 721 
 722 
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Region 
Area of rapid 

change 
Description and reference 

Solway 

Rapid expansion 
and erosion phases 
of all major marshes 
in each estuary 

OS maps record the expansion and erosion of these larger marshes throughout the Solway region, with 
a net increase in marsh extent. A study by Marshall (1962) reaches a similar conclusion from interpreting 
maps (1856-1864) and aerial photographs (1946). Marshall (1962) also investigated aspects of saltmarsh 
morphology (accretion rates, areas of erosion and expansion and channel configuration) to corroborate 
their findings and conclude that there is close agreement between phases of expansion and erosion 
observed in the field and change recorded from maps. Rapid expansion of Caerlaverock is also described 
by Bridson (1980) from maps dating back to 1654, in agreement with Marshall (1962). Firth et al. (2000) 
and CCO (2011) describe the rapid expansion and erosion of different parts of Rockcliffe marsh (Inner 
Solway) and the marshes in Moricambe Bay since 1776 and 1864 from literature searches and site visits, 
which we observe in the OS maps. 

Morecambe 
Rapid erosion and 
expansion phases in 
all estuaries 

OS maps record the overall expansion of marshes throughout the Morecambe Bay region, with individual 
marshes undergoing extensive erosion and accretion phases. Of the most drastic change, phases of 
erosion in Silverdale marsh have been documented by Pringle (1995) from repeat transect measurements 
between 1983 and 1992, which is out of phase with marsh expansion at Grange-over-Sands on the 
opposite side of the estuary, described in field surveys by Gray (1972). All estuaries in Morecambe Bay 
region are considered dynamic and have experienced rapid changes in saltmarsh extent determined from 
site visits, historical records and modelling data (CH2M HILL, 2013a, 2013b, 2013c; Dixon-Gough, 2006). 
These observations support marsh change observed in OS maps. 

Cardigan 
Rapid expansion of 
marshes in the 
outer estuary 

OS maps reveal that marshes throughout the Cardigan Bay region have expanded gradually, with more 
rapid rates of expansion around the 1950s. Field sketches made by Yapp (1917) include detailed 
vegetation surveys of the Dyfi estuary in the mid 1910s which show a similar extent of saltmarshes to the 
OS maps. Rapid expansion of the marshes in the outer estuary in the late 1940s is documented by Chater 
& Jones (1957) from site surveys. Both studies are in agreement with observations of marsh change from 
OS maps. 

Wash 
Rapid expansion 
following 
reclamation 

OS maps document the step-wise loss of marshlands to reclamation, followed by phases of new marsh 
growth in front of seawalls throughout the Wash embayment. Kestner (1962) reconstructed past area 
cover of salt marsh extent for the Wash by knowing the dates when seawalls were constructed. Kestner 
(1975) later described the mechanism by which sediment deposits in front of the sea wall, allowing 
marshes to rapidly colonise and expand. These phases of reclamation and new marsh growth are in 
agreement with marsh change determined from OS maps. 

Essex-Kent 

Gradual erosion 
across all estuaries, 
with some areas of 
rapid marsh 
expansion 

OS maps record the gradual erosion of marshes across Essex-Kent, with small areas of rapid expansion or 
erosion subject to embankment/deembankment. Burd (1992) report in detail the numerous areas of 
embankment and deembankment from history books, parish and estate records, property deeds, maps 
and historical surveys from the 17th century onwards. Areas of reclaimed and deembanked marshland is 
reported by Wolters et al. (2005). Burd (1992) also report that the government at the time were aware 
of marsh erosion and more frequent flooding due to land subsidence and rising sea levels. Kirby (2013) 
and Spearman et al. (2014) also document marsh decline from historical maps and illustrations in the 
northern and southern parts of the region respectively. 

Solent 
Rapid expansion 
across all estuaries 

OS maps record the expansion of marshes across the Solent region. Baily & Inkpen (2013) account for the 
rapid expansion because of the colonisation and spread of the pioneer-marsh hybrid Spartina townsendii, 
and later, fertile allotetraploid species Spartina anglica, onto tidal flats across the region. Baily & Inkpen 
(2013) support this argument by referring to a number of articles published during this period that 
document the nature and spread of Spartina spp. across the region. Baily & Inkpen (2013) did find issues 
with the accuracy of maps compared to aerial photographs, however much of the error was due to not 
knowing the date a map was surveyed (only when it was published) when comparing to an aerial 
photograph, and revision errors where marshes were copied over to successive map editions thus not 
representing the true marsh extent of that year. Both error terms were accounted for in our study and 
described in Text S1. 

Table S1. Literature searched to determine whether marsh change from maps can be considered 754 
‘real’. 755 
 756 
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Table S2. Site characteristics for all 25 estuaries divided into 6 regions. Parentheses indicate the timescales over which rates were measured, or 
in which empirical data was used to derive values. These dates are representative of either the entire Great Britain, a whole region, or a specific 
estuary. 
  

 Lateral expansion 
(ha yr-1) 

Vertical accretion (mm yr-1) ± 
S.D. 

Relative sea level rise 
(mm yr-1) 

Net sediment flux 
(kg m-2 yr-1) 

Suspended sediment conc.  
(mg l-1) 

    (2006-2009) (2000) 

Solway (1970-2016) (1961) (1960-2015)   
   Outer Solway 0.14 21.43 ± 10.56 2.28 ± 0.65 0.313 404.22 
   Upper Solway 2.22 11.79 ± 18.12 2.28 ± 0.65 0.302 404.22 
   Moricambe 0.27 25.40 ± 0.00 2.28 ± 0.65 0.281 404.22 
Morecambe (1967-2010)  (1960-2015)   
   Duddon 2.84 NA 2.34 ± 0.68 0.211 291.49 
   Leven 3.35 NA 2.34 ± 0.68 0.173 313.42 
   Kent 2.62 NA 2.34 ± 0.68 0.251 313.42 
Cardigan (1969-2013)  (1938-2016)   
   Glaslyn-Dwyryd 1.56 NA 2.27 ± 0.30 0.212 89.37 
   Mawddach 1.48 NA 2.27 ± 0.30 0.155 NA 
   Dyfi 3.89 10.29 ± 4.06 (1988-1989) 2.27 ± 0.30 0.239 111.03 
Wash (1972-2016)  (1955-2016)   
   Wash 1.27 48.00 ± 26.87 (1956-1962) 1.83 ± 0.38 0.257 295.97 
Essex-Kent (1973-1998)  (1933-2016)   
   Orwell -1.85 NA 1.89 ± 0.27 -0.003 64.46 
   Stour -6.39 NA 1.89 ± 0.27 -0.017 64.46 
   Hamford -9.98 NA 1.89 ± 0.27 -0.517 59.51 
   Colne -3.81 NA 1.89 ± 0.27 0.059 78.69 
   Blackwater -7.99 4.84 ± 5.00 (1963-1998) 1.22 ± 0.19 -0.200 122.68 
   Crouch -6.50 6.70 ± 0.00 (1897-1994) 1.22 ± 0.19 -0.011 106.40 
   Thames -3.93 3.93 ± 1.38 (1963-1998) 1.22 ± 0.19 -0.060 NA 
   Medway -13.22 4.05 ± 2.05 (1989) 1.22 ± 0.19 -0.031 86.05 
   Swale -4.11 NA 1.22 ± 0.19 0.026 NA 
Solent (1971-2001)  (1961-2016)   
   Lymington -4.86 5.2 ± 0.00 (1893-1995) 1.62 ± 0.46 -0.134 42.54 
   Beaulieu -2.44 3.3 ± 0.00 (1893-1995) 1.62 ± 0.46 -0.224 54.12 
   Southampton -4.31 4.8 ± 0.14 (1870-1995) 1.62 ± 0.46 -0.093 102.87 
   Portsmouth -2.72 NA 1.62 ± 0.46 -1.509 83.39 
   Langstone -1.45 1.5 ± 0.00 (1907-1995) 1.62 ± 0.46 -0.643 79.57 
   Chichester -5.77 NA 1.62 ± 0.46 -0.590 78.56 
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Table S2. Continued.  

 Bedload sediment flux 
(m3 yr-1) 

Wind storm frequency 
(n yr-1) 

River flood frequency 
(n yr-1) 

Median fetch length 
(m) 

Tidal range  
(m) 

    (2006-2009) (2006-2009) 

Solway (2010) (1961-2008)    
   Outer Solway 10,000,000 0.02 1.34 (1979-2014) 3,120 5.92 
   Upper Solway 100,000 0.02 -1.36 (1963-2014) 2,520 5.92 
   Moricambe 0 0.02 0.00 1,880 5.92 
Morecambe (2010) (1957-2015)    
   Duddon 10,000 0.01 0.79 (1968-2014) 1,000 6.12 
   Leven 1,000,000 -0.15 0.44 (1939-2014) 1,440 6.36 
   Kent 10,000,000 -0.15 0.28 (1968-2014) 3,960 6.36 
Cardigan (2010) (1957-2015)    
   Glaslyn-Dwyryd NA 0.09 0.34 (1961-2014) 520 3.04 
   Mawddach NA 0.09 NA 1,040 2.94 
   Dyfi -1,000,000 0.09 0.02 (1962-2013) 1,360 2.90 
Wash (2002) (1969-2015)    
   Wash 10,000,000 -0.01 0.04 (1939-1996) 2,840 4.42 
Essex-Kent (2002) (1957-2015)    
   Orwell 10,000 0.04 0.11 (1964-1996) 400 2.64 
   Stour 10,000 0.04 -0.13 (1928-1992) 600 2.64 
   Hamford 1,000 0.04 0.00 560 2.64 
   Colne 10,000 0.04 0.07 (1959-2014) 720 3.24 
   Blackwater 10,000 0.04 0.10 (1932-1968) 520 3.48 
   Crouch 1,000,000 -0.50 0.21 (1976-2014) 560 3.76 
   Thames -1,000,000 -0.50 0.27 (1883-2014) 600 5.00 
   Medway 100,000 -0.13 -0.02 (1956-2014) 600 4.08 
   Swale 10,000 -0.13 0.00 760 3.90 
Solent (1998) (1957-2015)    
   Lymington 0 0.06 0.57 (1960-2014) 1,440 1.56 
   Beaulieu 0 0.06 NA 240 2.26 
   Southampton 10,000 0.06 0.05 (1972-2014) 440 2.72 
   Portsmouth 1,000 0.06 0.26 (1951-2014) 680 2.82 
   Langstone 1,000 0.06 0.11 (1979-2014) 1,680 2.98 
   Chichester 1,000 0.06 0.04 (1967-2014) 1,120 2.98 
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Model variables Estimate SE t-Value P value R2 

Best model fit (AIC = 116.79, F = 9.95, df = 3, 18, P < 0.001***, R2 = 0.62) 
   Net sediment flux (kg m-2 yr-1) 3.547 1.332 2.662 0.016* 0.48 
   Median fetch length (km) 3.549 1.323 2.682 0.015* 0.46 
   Bedload sediment flux (m3 yr-1) -0.014 0.010 -1.495 0.152 n.s. 0.06 

P < 0.05*, P < 0.01**, P < 0.001***, n.s. = P > 0.05. 757 

Table S3. Predictor variables explaining lateral saltmarsh change (1967-2016) identified by best fit 758 
models (Stepwise Linear Regression) for 25 estuaries across Great Britain. 759 

 760 

 761 

Text S1. Estimating error in saltmarsh area cover. 762 

 763 
We calculated change in the areal extent of salt marshes across Great Britain using maps and aerial 764 
photographs. Analysis was done in ArcGIS 10.1. In order to quantify an error term associated with 765 
these measurements, we calculated the Root Mean Squared Error (RMSE) which describes the 766 
average deviation of observed points from their true positions (Wernette et al., 2017). Four 767 
independent RMSE sources are associated with geographical data: displacement of the basemap, to 768 
which historical maps and aerial photographs are referenced, from its ‘true’ location on the Earth’s 769 
surface (RMSEB); distortions in historical maps and aerial photographs that introduce error when 770 
georeferencing to a basemap (RMSEG); interpreter error when digitising the salt marsh at a given 771 
scale (RMSEI), and; errors introduced by the cartographer when presenting spatial data on a map 772 
(not relevant for aerial photographs) (RMSEM). Because each error source is independent, they can 773 
be added for a total error estimate. To determine distances, in metres, below which 95% of the 774 
positional errors in delineated salt marsh edges are expected to fall, FGDC (1998) recommend the 775 
added RMSE values are multiplied by 1.7308 in order to calculate RMSE95, given as:   776 
 777 

𝑅𝑀𝑆𝐸95 = 1.7308 (√(𝑅𝑀𝑆𝐸𝐵
2 + 𝑅𝑀𝑆𝐸𝐺

2 + 𝑅𝑀𝑆𝐸𝐼
2 + 𝑅𝑀𝑆𝐸𝑀

2)) 778 

 779 
Maps produced between 1842 and 1952 (Six-inch County Series Edition) the Ordnance Survey (OS), 780 
the national mapping agency of the UK, were produced using ground surveys. Demarcating the 781 
seaward limit of the salt marsh accurately is dependent on the cartographer’s capacity to survey 782 
difficult-to-reach or dangerous areas, and distinguish the edge of the marsh which is often ‘fuzzy’ 783 
(due to patchy growth of plants) (Baily & Collier, 2010; Baily, 2011; Baily & Inkpen, 2013). OS 784 
standards on the quality and accuracy of saltmarsh surveying were not stringent (Baily & Inkpen, 785 
2013) therefore the marsh edge is sometimes represented as a stamped symbol without a clearly 786 
defined margin (Baily & Inkpen, 2013). OS maps produced after 1952 (National Series Edition maps) 787 
were compiled using a combination of ground surveys and aerial photographs. Delineating the 788 
marsh edge from aerial photographs accurately depends on surveyor capacity to correctly 789 
distinguish plants from other features (such as macroalgae patches) as well as the quality of the 790 
aerial image. There is no specific guidance set by the OS on demarcating the marsh edge from aerial 791 
photographs (OS, pers. comm., 2018). Baily and Inkpen (2013) assessed how successful OS ground-792 
surveys were at determining the marsh edge by comparing maps with aerial photographs captured 793 
near the map publication date. Where maps were surveyed at similar times to when images were 794 
taken, both media were in close agreement. 795 
 796 
A value for the positional error of digitised marsh edge (map or photo) from the true position 797 
(RMSEI) was not given by Baily and Inkpen (2013). To calculate RMSEI, we selected an example marsh 798 
boundary (a 5 km section saltmarsh edge in the Wash) to digitise at very high resolution (vertice 799 
placed every metre) at high magnification to capture the ‘true’ marsh edge from an OS map. 800 
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Resolution of the map was then scaled to 1:7500, and the marsh edge was digitised once again to 801 
capture the ‘interpreted’ marsh edge. Distance from the ‘interpreted’ line to the ‘true’ line was 802 
calculated every 20 metres along perpendicular lines from the ‘true’ line. This is the same procedure 803 
used when assessing interpreter error for maps and aerial photographs. RMSEI is given as: 804 
 805 

𝑅𝑀𝑆𝐸𝐼 = √(
∑ 𝑑2

𝑛
) 806 

 807 
Where:  808 
 d is the distance between the ‘true’ and ‘interpreted’ marsh edge 809 
 n is the number of distance measurements. 810 
 811 
An additional error term, associated with maps produced from ground surveys only, is the 812 
interpretation of the surveyor of where the marsh edge lies which is then reproduced on a map as a 813 
line or stamp (RMSEM). Given that marsh edges from maps and photos have been shown to be in 814 
close agreement (Baily & Inkpen, 2013), RMSEM, is assumed to be of the same magnitude as RMSEI:  815 
 816 

𝑅𝑀𝑆𝐸𝑀 =  𝑅𝑀𝑆𝐸𝐼 817 
 818 
Both RMSEM and RMSEI should be included for estimates of marsh extent taken from maps that have 819 
drawn from ground surveys. 820 
 821 
RMSEG in maps and aerial photographs can arise during and after the survey. For maps, inaccuracies 822 
arise when noting positions from traditional trigonometry surveys or modern Geographical 823 
Positioning Systems. After publication, historical maps can distort over time through shrinkage and 824 
stretching before digitisation occurred. For aerial photographs, tilt, pitch and yaw of the aeroplane 825 
will affect the angle at which images were taken. Unevenness of the topography being captured will 826 
also cause distortions to the image. After acquisition, both the original film and reprints can distort 827 
over time once produced. These issues reduce the accuracy of features on maps and aerial 828 
photographs once images are georeferenced. Georeferencing distortion can be calculated by the 829 
distance from which the source deviates from a reference position (Jongepier et al., 2016) as 830 
follows:   831 
 832 

𝑅𝑀𝑆𝐸𝐺 =  √
(∑ 𝑉𝑥𝑦

2)

𝑛 − 2
 833 

 834 
Where n is the number of points and Vxy, is a displacement vector made up of vector distances vx and 835 
vy (in metres) between the distorted points and the reference positions. Both Vx and Vy are 836 
calculated as follows:  837 
 838 

𝑉𝑥𝑦 =  √(𝑣𝑥
2 + 𝑣𝑦

2) 839 

 840 
RMSEG was calculated for all maps and photographs to OS 1:2500 basemaps as reference, using 841 
MapAnalyst (Jenny & Hurni, 2011). 12 well-distributed control points were identified in both the 842 
source and OS 1:2500 maps and the RMSEG between them was calculated using a Helmert 843 
transformation (Jongepier et al., 2016). Measurements of marsh extent for the Essex-Kent and 844 
Solent regions were taken from Cooper et al. (2001) and Baily & Pearson (2007). Cooper et al. (2001) 845 
does not report RMSEG for their survey, however Baily and Pearson (2007) report a precision value 846 
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of between ± 3 and 5 m. An average RMSEG of 4 metres was taken for their survey and applied to 847 
Essex-Kent and Cardigan Bay regions where aerial photography was used to delineate marsh extent.  848 
 849 
The OS 1:2500 maps used as a reference for measuring distortions in older maps and aerial 850 
photographs in this study are themselves subject to some positional error between the ‘real life’ 851 
position and that recorded on the map known as RMSEB. For the OS 1:2500, RMSEB of 1.1 metres has 852 
been calculated (HMLR, 2016). RMSE95 is a linear measure (units in metres). In order to express 853 
RMSE95 for areal measures, we constructed a buffer area around the inner and outer circumference 854 
of each marsh where the width was RMSE95 calculated for each source (Wernette et al., 2017). The 855 
buffer area indicates the minimum and maximum size of the marsh to provide an error term for 856 
each extent measurement, representing a 95% confidence interval. Calculating a buffer area was not 857 
possible for values taken from Cooper et al. (2001) and Baily and Pearson (2007), and no error term 858 
is reported by these authors. A marsh buffer area was therefore estimated for each study. The 859 
buffer area was estimated by resampling marsh extent from aerial photographs of Cardigan Bay, but 860 
at the image scales used by Cooper et al. (2001) and Baily and Pearson (2007) (1:5,000 and 1:10,000 861 
respectively). RMSE95 was recalculated, then the percentage difference in area extent between 862 
delineated marsh extent and maximum/minimum area buffers were calculated for each scale. Marsh 863 
extent was found to vary by ±18.4 and ±20.0% at scales of 1:5,000 and 1:10,000 respectively. These 864 
error margins were applied to the values of marsh extent taken from Cooper et al. (2001) and Baily 865 
and Pearson (2007) as the RMSE95 error term. The final error term for marsh area extent can be 866 
considered conservative, because accuracy in delineating the marsh edge in many cases will be 867 
much higher. For example, where the back of the marsh is bounded by a clearly-defined seawall that 868 
can be mapped to a high degree of accuracy.  869 
 870 
After the OS produced first edition maps (County and National Series), revisions were soon needed 871 
to keep maps up-to-date in a rapidly developing landscape. However, revisions did not always 872 
include complete re-surveys of an area. Revisions tended to be made only for areas heavily used by 873 
people, whilst less important features were simply copied over from the previous edition known as 874 
‘partial-revisions’ (Baily & Inkpen, 2013). Salt marshes were not always resurveyed during map 875 
revisions, and when revisions occurred, the specific area that had been revised was not always 876 
recorded (Baily, 2011). In our study, revision error was accounted for by comparing map revisions 877 
against first editions of each marsh in each estuary. On the assumption that the marsh boundary is 878 
likely to change during a ~30 year period, marshes that had near-identical boundaries in both first 879 
and revised editions were considered copied, so areal extent was not calculated.  880 
 881 
All RMSE values are contained within the attributes table of the marsh extent change GIS layer 882 
accessible via the Environmental Information Data Centre repository (DOI: 10.5285/03b62fd0-41e2-883 
4355-9a06-1697117f0717).  884 

 885 

 886 
Text S2. Calculating and validating net sediment flux. 887 
 888 
Sediment supply is a key predictor of long-term marsh stability (e.g. Kirwan et al., 2016), yet 889 
empirical measurements of sediment flux across marshes are sparse (Ganju et al., 2015). Recent 890 
work has shown that the ratio of unvegetated surfaces such as tidal channels, saltpans and marsh 891 
edges (sites of sediment erosion) to vegetated marsh areas (sites of sediment accretion) can act as a 892 
proxy for external sediment supply (Ganju et al., 2017). We calculated the UVVR values for all 893 
marshes in our study and used regression fits from (Ganju et al., 2017) to derive measures of net 894 
sediment flux. We also validated the flux rates against estimated measues of suspended sediment 895 
concentration for UK estuaries.  896 
 897 
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We used a combined Great Britain-wide saltmarsh extent shapefile (collated by the UK Environment 898 
Agency [EA] and the Scottish National Heritage [SNH]) to calculate the UVVR for each estuary. Both 899 
the EA and SNH shapefiles represent the vegetated portions of marshes across Great Britain and 900 
distinguish vegetated marshes from tidal channels and salt pans. The EA captured colour aerial 901 
images with 10 cm resolution for the UK coastline between 2006 and 2009. Images were 902 
georeferenced with root mean square error ranging from 10 cm to 1 m. Marsh delineation was done 903 
manually, and digitally using various feature-identification techniques. Creeks less than 1.5 m wide 904 
and marshes less than 5m2 were overlooked. In cases where there was low confidence in mapping 905 
results, site visits were made to ground-truth the digitised marsh surface (Phelan et al., 2011). The 906 
SNH mapped salt marshes larger than 3 ha from colour aerial photographs captured between 2003 907 
and 2009 at a 1:4,000 scale across the Scottish coastline. All creeks, salt pans, and other marsh 908 
features were mapped when above the mapping resolution. Marsh edges were compared to field 909 
surveys to ensure accuracy (Haynes, 2016).  910 
 911 
In a GIS, we used both saltmarsh extent shapefiles to calculate the area of vegetated portions for 912 
each marsh complex within our target estuary. We then applied a workflow of ArcGIS 10.1 tools to 913 
outline the overall marsh complex, thereby effectively separating tidal channel and salt pan features 914 
from the vegetated marsh surface. The original shapefile was then subtracted from this ‘boundary’ 915 
layer to calculate the area of unvegetated portions within the marsh complex (e.g. Figure S1). UVVR 916 
was then calculated (AUV/AV) for all 25 estuaries. We then regressed the values of UVVR and net 917 
sediment flux reported in Ganju et al. (2017) to give us an equation for predicting net sediment flux 918 
(y = -0.855 ln x +0.330). We fitted the values of UVVR calculated for each marsh complex in our study 919 
into the regression equation to derive measures of net sediment flux. 920 
 921 
 922 

 923 
Figure S1. Example of how vegetated and unvegetated portions of a marsh are identified for the 924 
Blackwater estuary, south-east Great Britain. Unvegetated areas are shown in blue, vegetated 925 
surfaces are shown in green. Saltmarsh extent was taken from the UK Environment Agency, and the 926 
marsh boundary was determined using a series of polygon processing tools in ArcGIS 10.1. Imagery 927 
from the ArcGIS World Imagery Basemap. 928 
 929 
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To validate our use of sediment flux estimated from UVVR as a predictor of lateral marsh change, we 930 
correlated sediment flux values against an estimated measure of estuarine maximum static time- 931 
and depth-averaged fine cohesive suspended sediment concentration (SSCE) (Manning & 932 
Whitehouse, 2012). SSCE is indicative of sediment supply, and has been shown to broadly represent 933 
real conditions in validation studies (Prandle et al., 2005, see Figure 4). We used a Pearson 934 
correlation to find that SSC and sediment flux were significantly positively correlated (R = 0.68, p 935 
<0.001) (Figure S2). We therefore consider our use of net sediment flux a suitable indicator of 936 
external sediment supply. SSCE values for each estuary are shown in Table S2. 937 

 938 
Figure S2. Pearson correlation between sediment flux and estimated suspended sediment 939 
concentration (R = 0.68, p <0.001). 940 
 941 

 942 
Text S3. Data analysis and model selection. 943 
 944 

In this section, we present the statistical analysis used to determine which 945 

environmental drivers best describe rate of saltmarsh change across Great Britain. 946 

All statistical analyses are carried out using the ‘R’ software package. The data used 947 

in the statistical analysis is accessible via the Environmental Information Data Centre 948 

repository (DOI: 10.5285/03b62fd0-41e2-4355-9a06-1697117f0717).  949 

 950 

Prior to selecting a statistical model, we tested the necessary assumptions of each 951 

statistical model. We begin by loading the dataset, graphics package ggplot2, and 952 

some additional functions held in the additional_functions.R file: 953 

library(ggplot2) 954 
source("/Users/Home/Code/additional_functions.R") 955 
marshes<-read.csv("/Users/Home/Data/PredictorVariables.csv",header=T) 956 

There are 4 cases in the dataset where data on river flood frequency change and 957 

bedload sediment flux were unavailable of a given estuary. We therefore subset the 958 

dataset by removing NAs: 959 

marshes_RM<-marshes[complete.cases(marshes),] 960 

Using the subset dataset without NAs (marshes_RM), we begin our data exploration 961 

by investigating how each predictor variable relates to rate of saltmarsh change. To 962 
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make this easier, we create a new object containing the response and predictor 963 

variables only: 964 

library(dplyr) 965 
library(tidyr) 966 
 967 
marshcheck<-marshes_RM[-c(1:3)] 968 
 969 
marshcheck %>% 970 
  gather(-LateralRateChange,key="var",value="value") %>% 971 
  ggplot(aes(x=value,y=LateralRateChange))+ 972 
  geom_point(shape=1)+ 973 
  facet_wrap(~var,scales="free_x")+ 974 
  theme_bw() 975 

 976 

It appears that increases in fetch distance, sediment flux per unit area in/out of the 977 

marsh, relative sea level rise rate, and tidal range, may all be associated with shifts 978 

from marsh erosion to expansion. The other predictor variables do not appear to 979 

have a relationship with lateral marsh change. 980 

We used Cleveland dotplots to identify any extreme outliers in our dataset. Outliers 981 

may have a significant impact on the results. The data is organised along the y-axis 982 

only by row name (i.e. the order in which it was entered into the dataframe): 983 

par(mfrow=c(2,2)) 984 
 985 
lapply(X=c("StormFreq","FloodFreq","TidalRange","BedloadFlux","MedianFetch986 
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","RSLR","NetSedFlux"), FUN=function(s) 987 
  dotchart(sample(marshcheck[, s]), xlab=s,ylab="Row number")) 988 
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989 

 990 
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Large variation from the centre of data clusters suggests the presence of outliers. 991 

StormFreq, FloodFreq, BedloadFlux, and NetSedFlux however none appears to 992 

be unprecedented. These are not unprecedented amounts, but may affect our 993 

model results. We will consider their effect when testing the final model 994 

assumptions. 995 

To check whether the response variable has a normal distribution, we build a 996 

boxplot, and scale the y axis to make their ranges comparable: 997 

boxplot(scale(marshes_RM$LateralRateChange), 998 
              xlab="LateralRateChange") 999 

 1000 

shapiro.test(marshes_RM$LateralRateChange) 1001 

##  1002 
##  Shapiro-Wilk normality test 1003 
##  1004 
## data:  marshes_RM$LateralRateChange 1005 
## W = 0.96174, p-value = 0.5253 1006 

There is no evidence of skew. We next consider the distribution of all predictor 1007 

variables: 1008 

boxplot(scale(marshes_RM[,5:11])) 1009 
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 1010 

There is some evidence of skew in the predictor variables, notably for StormFreq, 1011 

BedloadFlux, MedianFetch, and RSLR. Some of these are likely influenced by 1012 

outliers in the data. Transformations using log- and cube-root- (capable of 1013 

transforming both negative and positive values. See the Math.cbrt function in the 1014 

additional_functions.R file) may produce more normal populations suitable for 1015 

parametric modelling. We apply the transformations and add these to our 1016 

dataframe: 1017 

marshes_RM$StormFreq_cbrt<-Math.cbrt(marshes_RM$StormFreq) 1018 
marshes_RM$BedloadFlux_cbrt<-Math.cbrt(marshes_RM$BedloadFlux) 1019 
marshes_RM$MedianFetch_log<-log(marshes_RM$MedianFetch) 1020 
marshes_RM$RSLR_log<-log(marshes_RM$RSLR) 1021 
marshes_RM$NetSedFlux_cbrt<-Math.cbrt(marshes_RM$NetSedFlux) 1022 

We next inspect the distribution of the transformed predictor variables: 1023 

boxplot(scale(marshes_RM[,12:16])) 1024 
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 1025 

The transformed predictor variables now have a more symmetric distribution. We 1026 

consider the distribution of our data suitable for parametric modelling. 1027 

Prior to using a parametric model to determine which suite of variables best explains 1028 

rate of saltmarsh areal extent change, we need to check for high collinearity 1029 

between predictor variables, and reduce it if necessary. We can examine the 1030 

Variance Inflation Factor associated with each predictor variable (see corvif 1031 

function in additional_functions.R file) to assess how much variance of an 1032 

estimated regression coefficient increases if variables are correlated. Values over 3 1033 

are a cause for concern (Zuur et al., 2009): 1034 

corvif(marshes_RM[,c("StormFreq_cbrt","FloodFreq","TidalRange","BedloadFlu1035 
x_cbrt","MedianFetch_log","RSLR_log","NetSedFlux_cbrt")]) 1036 

## Correlations of the variables 1037 
##  1038 
##                  StormFreq_cbrt   FloodFreq TidalRange BedloadFlux_cbrt 1039 
## StormFreq_cbrt       1.00000000 -0.06642290 -0.4471729       -0.2730783 1040 
## FloodFreq           -0.06642290  1.00000000  0.1015293        0.2630995 1041 
## TidalRange          -0.44717292  0.10152926  1.0000000        0.4555946 1042 
## BedloadFlux_cbrt    -0.27307833  0.26309947  0.4555946        1.0000000 1043 
## MedianFetch_log     -0.01892536  0.07428223  0.5719886        0.5589768 1044 
## RSLR_log             0.41207815  0.06286752  0.4446737        0.2756686 1045 
## NetSedFlux_cbrt     -0.21050716  0.02345964  0.7079982        0.4041456 1046 
##                  MedianFetch_log   RSLR_log NetSedFlux_cbrt 1047 
## StormFreq_cbrt       -0.01892536 0.41207815     -0.21050716 1048 
## FloodFreq             0.07428223 0.06286752      0.02345964 1049 
## TidalRange            0.57198855 0.44467372      0.70799815 1050 
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## BedloadFlux_cbrt      0.55897675 0.27566864      0.40414564 1051 
## MedianFetch_log       1.00000000 0.59019663      0.58825538 1052 
## RSLR_log              0.59019663 1.00000000      0.60255965 1053 
## NetSedFlux_cbrt       0.58825538 0.60255965      1.00000000 1054 
##  1055 
##  1056 
## Variance inflation factors 1057 

## Warning in summary.lm(object): essentially perfect fit: summary may be 1058 
## unreliable 1059 

##                      GVIF 1060 
## StormFreq_cbrt   3.519783 1061 
## FloodFreq        1.099187 1062 
## TidalRange       3.490519 1063 
## BedloadFlux_cbrt 1.751466 1064 
## MedianFetch_log  2.334006 1065 
## RSLR_log         4.365753 1066 
## NetSedFlux_cbrt  2.883363 1067 

There is high collinearity caused by RSLR_log (VIF = 4.37). We test whether 1068 

collinearity has dropped to acceptable levels after excluding RSLR_log: 1069 

corvif(marshes_RM[,c("StormFreq_cbrt","FloodFreq","TidalRange","BedloadFlu1070 
x_cbrt","MedianFetch_log","NetSedFlux_cbrt")]) 1071 

## Correlations of the variables 1072 
##  1073 
##                  StormFreq_cbrt   FloodFreq TidalRange BedloadFlux_cbrt 1074 
## StormFreq_cbrt       1.00000000 -0.06642290 -0.4471729       -0.2730783 1075 
## FloodFreq           -0.06642290  1.00000000  0.1015293        0.2630995 1076 
## TidalRange          -0.44717292  0.10152926  1.0000000        0.4555946 1077 
## BedloadFlux_cbrt    -0.27307833  0.26309947  0.4555946        1.0000000 1078 
## MedianFetch_log     -0.01892536  0.07428223  0.5719886        0.5589768 1079 
## NetSedFlux_cbrt     -0.21050716  0.02345964  0.7079982        0.4041456 1080 
##                  MedianFetch_log NetSedFlux_cbrt 1081 
## StormFreq_cbrt       -0.01892536     -0.21050716 1082 
## FloodFreq             0.07428223      0.02345964 1083 
## TidalRange            0.57198855      0.70799815 1084 
## BedloadFlux_cbrt      0.55897675      0.40414564 1085 
## MedianFetch_log       1.00000000      0.58825538 1086 
## NetSedFlux_cbrt       0.58825538      1.00000000 1087 
##  1088 
##  1089 
## Variance inflation factors 1090 

## Warning in summary.lm(object): essentially perfect fit: summary may be 1091 
## unreliable 1092 

##                      GVIF 1093 
## StormFreq_cbrt   1.502641 1094 
## FloodFreq        1.093159 1095 
## TidalRange       2.869967 1096 
## BedloadFlux_cbrt 1.739354 1097 
## MedianFetch_log  2.257387 1098 
## NetSedFlux_cbrt  2.257476 1099 
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All VIF scores are below 3, so we therefore proceed with investigating which 1100 

predictor variables best explain lateral marsh change using General Linear Models 1101 

(GLMs). Before proceeding with model selection, we need to account for any spatial 1102 

autocorrelation that might invalidate our model. We use hierarchical clustering to 1103 

identify groups in our data. 1104 

Accounting for spatial autocorrelation can dramatically improve model performance, 1105 

and help to avoid biased estimates of Type I error. We will examine whether there 1106 

are groupings between our estuaries, based on their pairwise Euclidean distances. If 1107 

so, this will form a random factor in the model structure. 1108 

We start by creating the matrix of Euclidean distances between estuaries: 1109 

library(gmt) 1110 
 1111 
distance_estuary_matrix=matrix(NA,length(marshes_RM$Estuary),length(marshe1112 
s_RM$Estuary)) 1113 
for(est1 in 1:length(marshes_RM$Estuary)){ 1114 
   for(est2 in est1:length(marshes_RM$Estuary)){ 1115 
 1116 
distance_estuary_matrix[est1,est2]=geodist(marshes_RM$Latitude[est1],marsh1117 
es_RM$Longitude[est1], 1118 
marshes_RM$Latitude[est2],marshes_RM$Longitude[est2], units="km") 1119 
   }} 1120 
distance_estuary_matrix=as.dist(t(distance_estuary_matrix)) 1121 
full=hclust(distance_estuary_matrix,method="complete") 1122 

We can extract the cophenetic distance between groups to select a value for the 1123 

inflection point in intra-estuary group variance and use Elbow plots to validate our 1124 

selection. First, we prepare our data: 1125 

dist_clust<-data.frame(data.frame(unique(as.numeric(cophenetic(full))))[or1126 
der((unique(as.numeric(cophenetic(full)))),decreasing=T),]) 1127 
names(dist_clust)<-"distance" 1128 
dist_clust$group<-seq.int(nrow(dist_clust)) 1129 
add_zero<-c(0,26) 1130 
dist_clust<-rbind(dist_clust,add_zero) 1131 

Now we can plot the number of groups against distance to form the clusters: 1132 

ggplot(dist_clust,aes(distance,group))+ 1133 
  geom_step()+ 1134 
  geom_vline(xintercept=90,linetype="longdash")+ 1135 
  xlab("Distance for cluster formation (km)")+ 1136 
  ylab("Number of groups") 1137 
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 1138 

Number of groups reduces exponentially with distance, and we see an ‘evening out’ 1139 

at around 90 km, suggesting this is a suitable inflection point to distinguish our 1140 

groups. This ends up producing 6 distinct hierarchical clusters. We validate our 1141 

selection of 6 clusters using Elbow plots with k-means clustering method: 1142 

wss<-(nrow(subset(marshes_RM,select=c(Longitude,Latitude)))-1)*sum(apply(s1143 
ubset(marshes_RM,select=c(Longitude,Latitude)),2,var)) 1144 
for (i in 2:15) wss[i] <- sum(kmeans(subset(marshes_RM,select=c(Longitude,1145 
Latitude)), 1146 
                                     centers=i)$withinss) 1147 
 1148 
plot(1:15, wss, type="b", xlab="Number of Clusters", 1149 
     ylab="Within groups sum of squares") 1150 
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 1151 

Sum of squares within groups flattens out at 6 groups. This is in agreement with the 1152 

previous plot, so we can justify grouping our estuaries into 6 hierarchical clusters. 1153 

We now cut the hierarchical clustering analysis tree at the 90 inflection point to form 1154 

our 6 groups and bind as a new column to our dataframe: 1155 

group=cutree(full, h=90)  1156 
marshes_RM=cbind(marshes_RM,group) # column bind the dataset and the previ1157 
ously determined grouping  1158 
marshes_RM$group<-as.factor(marshes_RM$group) 1159 

If we inspect the dataframe marshes, we see that group identity is the same as the 1160 

region in which each estuary occurs. We will now build a linear model and determine 1161 

whether inclusion of region as a random factor improves the model. 1162 

Before selecting an appropriate GLM, we consider whether inclusion of location 1163 

(represented by group from the hierarchical clustering analysis) as a random effect 1164 

term significantly improves a maximal model fit using a Restricted Maximum 1165 

Likelihood (REML) approach (Zuur et al., 2009). 1166 

We construct two models, one with a random effect, and one without. Anova tables 1167 

can be used to see if there is a significant difference between the models. Since the 1168 

model is using REML, we need to adapt the significance level using the L Ratio (Zuur 1169 

et al., 2009): 1170 

library(nlme) 1171 
 1172 
m1<-gls(LateralRateChange 1173 
        ~ 1 + StormFreq_cbrt+FloodFreq+TidalRange+BedloadFlux_cbrt+MedianF1174 
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etch_log+NetSedFlux_cbrt, 1175 
        method = "REML", 1176 
        control="optim", 1177 
        data=marshes_RM) 1178 
 1179 
m2<-lme(LateralRateChange 1180 
        ~ 1 + StormFreq_cbrt+FloodFreq+TidalRange+BedloadFlux_cbrt+MedianF1181 
etch_log+NetSedFlux_cbrt, 1182 
        random = ~1|group, 1183 
        method = "REML", 1184 
        control="optim", 1185 
        data=marshes_RM) 1186 
 1187 
anova(m1,m2) 1188 

##    Model df      AIC      BIC    logLik   Test  L.Ratio p-value 1189 
## m1     1  8 117.1529 122.8173 -50.57646                         1190 
## m2     2  9 117.3425 123.7150 -49.67127 1 vs 2 1.810397  0.1785 1191 

0.5*(1-pchisq(1.810397,1)) 1192 

## [1] 0.08923031 1193 

Though close (p=0.089), there is no significant difference between the models. We 1194 

can therefore use the more parsimonious model (m1, without accounting for spatial 1195 

groups). 1196 

Stepwise Linear Regression can be used to identify which suite of predictor variables 1197 

best explain the response variable, based on whichever models produce the lowest 1198 

AIC scores. We apply a Stepwise Linear Regression to our data, using a forwards-and-1199 

backwards selection criterion to drop terms based on AIC scores. We switch from 1200 

gls to lm to do this: 1201 

m3<-lm(LateralRateChange 1202 
       ~ StormFreq_cbrt+FloodFreq+TidalRange+BedloadFlux_cbrt+MedianFetch_1203 
log+NetSedFlux_cbrt, 1204 
       data=marshes_RM) 1205 
 1206 
step(m3,direction="both") 1207 

## Start:  AIC=56.25 1208 
## LateralRateChange ~ StormFreq_cbrt + FloodFreq + TidalRange +  1209 
##     BedloadFlux_cbrt + MedianFetch_log + NetSedFlux_cbrt 1210 
##  1211 
##                    Df Sum of Sq    RSS    AIC 1212 
## - FloodFreq         1     4.115 154.22 54.842 1213 
## - TidalRange        1     4.605 154.71 54.911 1214 
## - StormFreq_cbrt    1     9.586 159.69 55.609 1215 
## <none>                          150.11 56.247 1216 
## - BedloadFlux_cbrt  1    16.489 166.59 56.539 1217 
## - NetSedFlux_cbrt   1    37.316 187.42 59.131 1218 
## - MedianFetch_log   1    39.266 189.37 59.359 1219 
##  1220 
## Step:  AIC=54.84 1221 
## LateralRateChange ~ StormFreq_cbrt + TidalRange + BedloadFlux_cbrt +  1222 
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##     MedianFetch_log + NetSedFlux_cbrt 1223 
##  1224 
##                    Df Sum of Sq    RSS    AIC 1225 
## - TidalRange        1     5.309 159.53 53.586 1226 
## - StormFreq_cbrt    1    10.152 164.37 54.244 1227 
## - BedloadFlux_cbrt  1    13.370 167.59 54.671 1228 
## <none>                          154.22 54.842 1229 
## + FloodFreq         1     4.115 150.11 56.247 1230 
## - NetSedFlux_cbrt   1    35.490 189.71 57.398 1231 
## - MedianFetch_log   1    37.604 191.82 57.642 1232 
##  1233 
## Step:  AIC=53.59 1234 
## LateralRateChange ~ StormFreq_cbrt + BedloadFlux_cbrt + MedianFetch_log 1235 
+  1236 
##     NetSedFlux_cbrt 1237 
##  1238 
##                    Df Sum of Sq    RSS    AIC 1239 
## - StormFreq_cbrt    1     5.686 165.22 52.357 1240 
## - BedloadFlux_cbrt  1    12.994 172.52 53.309 1241 
## <none>                          159.53 53.586 1242 
## + TidalRange        1     5.309 154.22 54.842 1243 
## + FloodFreq         1     4.820 154.71 54.911 1244 
## - MedianFetch_log   1    52.575 212.10 57.853 1245 
## - NetSedFlux_cbrt   1    70.467 230.00 59.635 1246 
##  1247 
## Step:  AIC=52.36 1248 
## LateralRateChange ~ BedloadFlux_cbrt + MedianFetch_log + NetSedFlux_cbr1249 
t 1250 
##  1251 
##                    Df Sum of Sq    RSS    AIC 1252 
## <none>                          165.22 52.357 1253 
## - BedloadFlux_cbrt  1    20.510 185.73 52.931 1254 
## + StormFreq_cbrt    1     5.686 159.53 53.586 1255 
## + FloodFreq         1     4.912 160.30 53.693 1256 
## + TidalRange        1     0.843 164.37 54.244 1257 
## - NetSedFlux_cbrt   1    65.049 230.26 57.660 1258 
## - MedianFetch_log   1    66.010 231.23 57.752 1259 

##  1260 
## Call: 1261 
## lm(formula = LateralRateChange ~ BedloadFlux_cbrt + MedianFetch_log +  1262 
##     NetSedFlux_cbrt, data = marshes_RM) 1263 
##  1264 
## Coefficients: 1265 
##      (Intercept)  BedloadFlux_cbrt   MedianFetch_log   NetSedFlux_cbrt   1266 
##         -2.12177          -0.01429           3.54861           3.54688 1267 

The predictor variables that should be retained in the minimal adequate model are 1268 

BedloadFlux_cbrt, MedianFetch_log, and NetSedFlux_cbrt. We assign the 1269 

predictor variables to a minimal adequate model: 1270 

m4<-lm(LateralRateChange 1271 
       ~ BedloadFlux_cbrt+log(MedianFetch)+NetSedFlux_cbrt, 1272 
       data=marshes_RM) 1273 
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We check for heteroscedacity and bias in the model residuals, to check whether 1274 

assumption of Heterogeneity of Variance have been violated: 1275 

plot(m4) 1276 

1277 

1278 
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1279 

 1280 

There are no major issues with the model assumptions. We can now report the 1281 

model results. We use anova tables to identify significant factors in our model using 1282 

‘Type I’ sums of squares, and consider which terms of the model are significant, the 1283 

AIC score, and use the relaimpo package to calculate relative importance for the 1284 

linear model using R^2 partitioned by averaging over orders: 1285 

library(relaimpo) 1286 
anova(m4) 1287 
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## Analysis of Variance Table 1288 
##  1289 
## Response: LateralRateChange 1290 
##                  Df  Sum Sq Mean Sq F value    Pr(>F)     1291 
## BedloadFlux_cbrt  1  22.987  22.987  2.5044 0.1309427     1292 
## log(MedianFetch)  1 185.898 185.898 20.2533 0.0002768 *** 1293 
## NetSedFlux_cbrt   1  65.049  65.049  7.0870 0.0158758 *   1294 
## Residuals        18 165.216   9.179                       1295 
## --- 1296 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 1297 

summary(m4) 1298 

##  1299 
## Call: 1300 
## lm(formula = LateralRateChange ~ BedloadFlux_cbrt + log(MedianFetch) +  1301 
##     NetSedFlux_cbrt, data = marshes_RM) 1302 
##  1303 
## Residuals: 1304 
##     Min      1Q  Median      3Q     Max  1305 
## -7.5047 -1.5047 -0.3771  1.8486  4.9780  1306 
##  1307 
## Coefficients: 1308 
##                   Estimate Std. Error t value Pr(>|t|)   1309 
## (Intercept)      -2.121770   0.758995  -2.795   0.0120 * 1310 
## BedloadFlux_cbrt -0.014293   0.009561  -1.495   0.1523   1311 
## log(MedianFetch)  3.548614   1.323257   2.682   0.0152 * 1312 
## NetSedFlux_cbrt   3.546880   1.332338   2.662   0.0159 * 1313 
## --- 1314 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 1315 
##  1316 
## Residual standard error: 3.03 on 18 degrees of freedom 1317 
## Multiple R-squared:  0.6238, Adjusted R-squared:  0.5611  1318 
## F-statistic: 9.948 on 3 and 18 DF,  p-value: 0.0004326 1319 

AIC(m4) 1320 

## [1] 116.7899 1321 

calc.relimp(m4,type=c("lmg"),rela=T) 1322 

## Response variable: LateralRateChange  1323 
## Total response variance: 20.91194  1324 
## Analysis based on 22 observations  1325 
##  1326 
## 3 Regressors:  1327 
## BedloadFlux_cbrt log(MedianFetch) NetSedFlux_cbrt  1328 
## Proportion of variance explained by model: 62.38% 1329 
## Metrics are normalized to sum to 100% (rela=TRUE).  1330 
##  1331 
## Relative importance metrics:  1332 
##  1333 
##                         lmg 1334 
## BedloadFlux_cbrt 0.06176616 1335 
## log(MedianFetch) 0.45986451 1336 
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## NetSedFlux_cbrt  0.47836933 1337 
##  1338 
## Average coefficients for different model sizes:  1339 
##  1340 
##                          1X          2Xs         3Xs 1341 
## BedloadFlux_cbrt 0.01246703 -0.007295296 -0.01429271 1342 
## log(MedianFetch) 4.44960924  3.960577731  3.54861396 1343 
## NetSedFlux_cbrt  5.08045110  4.288503610  3.54687976 1344 

MedianFetch_log and NetSedFlux_cbrt are both significant terms, whereas 1345 

BedloadFlux_cbrt is not. The AIC score of the minimal adequate model is 116.79. 1346 

The proportion of variance explained by the model is 62.38%, and of that variance, 1347 

MedianFetch_log and NetSedFlux_cbrt account for nearly half each (46% and 48% 1348 

respectively). Finally, visualise the significant terms of the regression model using the 1349 

visreg package. Marshes shift from a trend of expansion to erosion in response to 1350 

increased fetch length and sediment supply: 1351 

library(visreg) 1352 
 1353 
visreg(m4,"NetSedFlux_cbrt", 1354 
       ylim=c(-11,7), 1355 
       scale="response", 1356 
       partial=T, 1357 
       rug=T, 1358 
       line=list(col="black"), 1359 
       xlab=expression("Sediment flux per unit area, cube-transformed (kg 1360 
m"^-2*" yr"^-1*")"), 1361 
       ylab=expression("Lateral marsh change (ha yr"^-1*")")) 1362 
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 1363 

visreg(m4,"MedianFetch", 1364 
       ylim=c(-11,7), 1365 
       scale="response", 1366 
       partial=T, 1367 
       rug=T, 1368 
       line=list(col="black"), 1369 
       xlab="Median fetch length (km)", 1370 
       ylab="") 1371 
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