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Abstract  

 

Policies to tackle today’s fisheries sustainability challenges generally utilize an ecosystem approach, 
one that incorporates interactions between fishes, fishers and the environment. Fishing alters coral 
reef fish trophic structure, but properly assessing those impacts requires an understanding of how and 
why that structure varies naturally across scales. Using a combination of small-scale and large-scale 
surveys we generate biomass pyramids for 21 uninhabited Pacific islands, concluding: (1) the 
distribution of reef fish biomass across trophic levels is highly scale dependent; trophic structures that 
appear top-heavy at small scales can take a variety of different states when data are integrated 
across the broader seascape; (2) reefs can be ‘middle-driven’, forming ‘convex’ systems with greatest 
biomass at intermediate consumer levels and; (3) in unfished coral reef systems, trophic structure is 
strongly predicted by energy into the base and middle of the food web, as well as the interacting effect 
of temperature.  

 

Introduction 

 

With approximately 20% of the world’s 7 billion people living in the coastal tropics, the dependence 
upon and vulnerability of small-scale fisheries is high (Bell et al. 2009; Sale et al. 2014; Golden et al. 
2016). Coral reef ecosystems and their associated fisheries are impacted by climate-change, habitat 
degradation and fishing (Mora et al. 2011; Bell et al. 2013; Hughes et al. 2017; Cinner et al. 2018), 
stressors that are predicted to intensify (Cheung et al. 2010). Adaptations to maintain the food 
security of coastal communities might include the transfer of fishing effort over to more productive 
species  (Robinson et al. 2019), while limiting the harvest of species that perform critical ecosystem 
functions, like herbivory (Bell et al. 2013; Chung et al. 2019). However, environmental gradients also 
drive substantial variation in reef ecosystem configurations (Williams et al. 2015, Heenan et al. 2016). 
Management, such as catch limits, or fisheries baselines, must therefore account for these natural 
bounds set by reefs’ environmental contexts.  

Although few marine ecosystems are completely unaffected by humans (Halpern et al. 2008), 
minimally impacted ecosystems offer insight into natural ecological limits. Among those are remote 
Indo-Pacific coral reefs located several hundreds of kilometres from the nearest human population 
centres. Studies from these near-pristine ecosystems can inform benchmarks of ecosystem status 
suitable for fisheries management (Holt and Irvine 2013). For example, that the fisheries potential of 
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subtropical reefs is lower than tropical ones (McClanahan et al. 2019). From microbes through to top 
predators, natural gradients in wave energy, temperature and primary production are key 
determinants of coral structure and function (Williams et al. 2019).  

The standing biomass of reef fishes can double along gradients of increasing oceanic productivity, 
and accounting for this is key to quantifying fishery depletion (Williams et al. 2015). Similarly, 
differences in temperature along a subtropical to tropical gradient have substantial effects on the 
functional composition of herbivorous fish assemblages (Heenan et al. 2016). Collectively, 
incorporating environmental and habitat drivers, such as those along with coral cover and wave 
exposure, greatly improves our ability to estimate local carrying capacity and thus scope for recovery 
(Goropse et al. 2018, Harborne et al. 2018). More generally, studies of remote reefs have reported 
highly variable trophic structure. Those include bottom-heavy systems in the Indian Ocean (Graham 
et al. 2017b), as well as extremely upper-trophic level dominated ‘inverted pyramids’ on some Pacific 
reefs (Friedlander and DeMartini 2002; Sandin et al. 2008; DeMartini et al. 2008). However, it is not 
clear how much and in what ways variability in coral reef fish assemblage trophic structure is driven 
by environmental factors. This warrants attention as the basis for robust small-scale fisheries 
management accounting for environmental context.   

We tested whether the trophic structure of coral reef fish assemblages is related to temperature, as 
has been shown for temperate marine systems (Frank et al. 2007), and energetic setting (i.e. oceanic 
production and irradiance). Primary production in the coastal ocean is limited by sunlight, which 
decreases with depth and latitude (Campbell and Aarup 1989). Light influences benthic primary 
producers on coral reefs (Gattuso et al. 2006) and high irradiance is linked to increased fish biomass 
(McClanahan et al. 2019). How this affects consumers and, ultimately, trophic structure remains 
unknown. Energetic subsidies from outside the defined ecosystem appear to facilitate increased 
biomass in upper trophic levels (McCauley et al. 2018), as coral reef planktivore and piscivore 
biomass is positively related to nearshore oceanic production (Williams et al. 2015). A recent multi-
method study emphasized the importance of both pelagic and cryptobenthic energy pathways in 
supporting coral reef fish assemblage productivity (Morais and Bellwood 2019). It has also become 
clear that small-bodied cryptic fishes such as blennies and gobies are a key energetic resource 
sustaining overall reef fish production (Brandl et al. 2019). Because of their low detectability in visual 
surveys (Kulbicki et al. 2010), these small fishes tend to be grossly underestimated by survey 
programs. Thus, there is not only high natural variability in reef fish trophic structure, but also potential 
for method choice to impact conclusions about the status and role of different ecosystem components 
in driving overall production.  

Here we integrated data from two co-located methods, a conventional survey method for which divers 
record all fishes within small areas, with a broader-scale survey that targets larger-bodied, roving, and 
generally rare or patchily distributed species not well sampled by smaller-scale methods (Richards et 
al. 2011). We did this at 21 remote islands and atolls (hereafter ‘islands’) that are largely isolated from 
direct human impacts to i) document the degree of variation in trophic structure among different reef 
ecosystems, and; ii) quantify the environmental drivers of this variation. Understanding the sources of 
uncertainty introduced by method choice, alongside the natural constraints set by coral reefs’ 
energetic settings, will improve scope to identify sustainable levels of fisheries exploitation and 
recovery potential.  

 

Panel 1. The artefacts of measurement scale in community assessments 

  

It has long been recognised that scale determines the range of ecological patterns and processes 
described by a study (Wiens 1989). Yet, few investigations provide biological justification for the scale 



at which measurements are taken (Jackson and Fahrig 2015). Indeed ecologists frequently generalize 
their findings beyond the scale of observations, as part of a wider tendency to underappreciate scale-
related ecological issues (Estes et al. 2018).  When studying a single species, the extent and grain 
size (size of individual units of observation units - i.e., quadrat or transect) can be matched to the 
scale at which inferences are made (Wiens 1989). However, that is not feasible when conducting 
ecosystem-wide assessments involving multiple species. From blennies to barracuda, the resource 
patch size of the multitude of species within an ecosystem varies considerably. Also, traits, such as 
home range, school size, swimming speed, mobility, curiosity, coloration, patterning, and whether 
species are cryptic or not, impact detectability and introduce sampling bias (Kulbicki et al. 2010). 
When observations are collected at a scale that doesn’t align with the variety of species within an 
ecosystem, results can be confounded by artefacts of measurement scale, undermining ability to 
identify real patterns and processes. As such, there is no single ‘best’ scale or method for ecosystem-
wide surveys.  

 

One potential approach is to use multiple survey methods differing in scale. Here, we surveyed fish 
communities using two in situ methods of contrasting grain size (WebPanel 1). The stationary point 
count (SPC) surveys all species observed within paired 15 m diameter cylinders (total area 352 m2 per 
survey). The second method, the towed-diver survey, targets large-bodied (> 50 cm TL) and roving 
species within a bigger survey area (averaging ~2.2 km long * 10 m-wide). 

 

Of the ~600 taxa recorded, 66 were recorded on both method (WebTable 1). These species included 
large-bodied low trophic level species (parrotfish and surgeonfish), massive mid-trophic planktivorous 
species (Manta rays), and predators (barracuda, groupers, jacks and sharks). Some fishes, such as 
the semi-cryptic sabre soldierfish (Sargocentron spiniferium) were rarely recorded by either method, 
and possibly neither methods censuses them well. For most of those species, encounter rates were 
lower but densities higher on SPC compared to tow surveys (WebTable 1). The lower encounter 
rates, particularly of rare species, reflect differences in the total area covered per method (total area 
surveyed on SPC ~ 37 hectares and tow ~2130 hectares) and introduces high uncertainty in their 
density estimates (Jennings and Polunin 1995). For example, 120 manta ray (Mobula spp.) were 
observed on tow, compared to 25 on a similar number of SPC surveys. The tow estimate of biomass 
for this species at Baker island of 20.9 +/- 9.8 g m-2, is less than half the estimates from SPC (45.9 +/- 
39.2 g m-2) as well as being much less variable. Conversely, for a few species, such as the 
camouflage grouper (Epinephelus polyphekadion) and longface emperor (Lethrinus xanthochilus), 
encounter rates were 7-70 times higher on the SPC, and density estimates 75-120 times higher 
(WebTable 1). This is likely due to those species being much easier to detect by SPC divers, carefully 
searching small areas, than by constantly moving tow-divers travelling approximately 1 m above the 
bottom. 

  

For some fishes, like the Giant trevally (Caranx ignoblis) and Great barracuda (Sphyraena 
barracuda), the SPC encounter rate was similar to that of the tow (0.76-0.88), but density estimates 
were ~ fifty times higher (i.e. similar numbers seen in much smaller areas). Other species that were ~ 
half or less frequently encountered on SPC, including the Galapagos shark (Carcharhinus 
galapagensis), bluefin trevally (Caranx melampygus) and green jobfish (Aprion virescens) had SPC 
biomass estimates ~25-60 times tow estimates (WebTable 1). High estimates on SPC are likely 
driven by attraction of some species to divers (Parrish and Boland 2004), which can lead to 
systematic overestimates in density, particularly for small-areas surveys involving stationary divers 
(Colvocoresses and Acosta 2007). Notably, the initial 5 min species listing period of the SPC provides 
an opportunity for roving predatory fishes to aggregate around divers, as observed at some remote 
locations (Parrish and Boland 2004).  Generally, towed diver surveys generate much lower estimates 



of shark and jack density than smaller-scale belt transects (Richards et al. 2011). Rather than 
ignoring, or simply removing species that are poorly estimated by SPC, which is the typical approach 
to these artefacts of scale and method bias (MacNeil et al. 2015; Williams et al. 2015), here we merge 
the SPC and tow survey data. By doing so, we selectively use both datasets to address known biases 
of the methods. A key benefit of this approach is that it allows us to include all observed coral reef fish 
species in our analyses. 

 

Methods 

Reef fish community surveys – integrating multi-scaled data for a community perspective  
 

We used fish survey data collected using two methods at 21 uninhabited islands in the western 
central Pacific; the stationary point count (SPC) and the towed diver technique (Panel 1, WebPanel 1, 
Figure 1A). From 1034 SPC surveys and 985 towed transects, we calculated individual species 
biomass using their observed size, abundance and published length-weight relationships (Kulbicki et 
al. 2005). Trophic levels were then assigned from FishBase (Froese and Pauly 2016).   

The process to integrate the survey data was based on several assumptions; i) learned diver 
avoidance behaviour was minimal, as these were extremely remote systems, where fishes had few 
previous interactions with people (Januchowski-Hartley et al. 2011); ii) attraction to divers was least 
for the tow method, as towed-divers constantly move at ~3 km hr-1, surveying ahead of them; iii) 
species that were rarely encountered on the SPC are generally poorly estimated by that method. 
Broadly, we largely assume that small-scale SPC density estimates are most accurate for small and 
common fishes, but tow is generally more suitable for large-bodied and rare fishes.  

Given these assumptions, and following a sensitivity analysis on a range of encounter and density 
ratios (WebPanel 1, WebTable 2), the criteria for integrating species observations from those 
methods were: 1) for all observations of species observed on both tow and SPC, we used SPC data 
for fishes smaller than 50 cm; 2) for fishes > 50 cm TL we used; a) the tow dataset when confident we 
overcount a species with SPC (> 5 density of tow): b) the tow dataset for species that are very rarely 
encountered by SPC (SPC encounter rate is < 1/5th of the tow rate); c) the SPC dataset when we are 
confident tow undercounts (SPC density is < 1/5th of the tow density). To assess the difference 
between the biomass estimates per trophic level from just SPC, compared to the integrated data 
based on the merging criteria, we visually inspected island-level plots of proportional and absolute 
biomass per trophic level. 

 

Variation in trophic structure 

 

To understand how the amount of biomass in each trophic level bin varied with absolute total fish 
biomass, we fitted generalized linear mixed effects models of proportional biomass per trophic level 
as a function of total fish biomass (g m-2). The random effect was marine province (Hawaii, Central 
Polynesia, Tropical Northwest Pacific (Spalding et al. 2007) 

 

Many islands lacked species in the 2.5-3, and 3.5-4 trophic bin, so we grouped trophic levels, 2-2.99 
(referred to as 2), 3-3.99 (3) and > 4 (4). There was a clear increase in absolute biomass of 
planktivorous species (trophic level 3) at islands with high total fish biomass (Figure 2, WebPanel 2). 
A metric multi-dimensional scaling (MDS) of the proportional contribution of individual species to 



trophic level 3 biomass per island was used to identify key species in that trophic level. The MDS was 
based on a Euclidean distance matrix, and overlaid vectors represent Pearson’s correlations 
(threshold ≤ 0.7) of the original species variables with the ordination axes, with vector length 
proportional to correlation strength. 

 

Biophysical drivers of coral reef fish trophic structure 

We fitted generalized linear models to investigate the influence that external energy inputs (sunlight 
and oceanic productivity) and temperature had on biomass in each trophic level. Specifically, we 
modelled biomass as a function of irradiance (Einsteins m-2 d-1), sea-surface temperature (° Celsius) 
and chlorophyll-a (mg m-3) - a proxy for phytoplankton biomass and thus oceanic primary production. 
These biophysical drivers were island level satellite-derived climatologies (long-term means) (Gove et 
al. 2013).  All models were fitted in R (www.r-project.org). Model fitting, selection and assessment of 
model performance process are detailed in WebPanel 3.  

  
Results 

The influence of reef fish survey sampling scale on trophic biomass estimates 

The tendency for the SPC data to overestimate higher trophic level piscivores was evident when 
biomass pyramids generated from the SPC data were compared against the integrated SPC and tow 
data (summarized Figure 1; all islands in WebFigure 1).  Top-heavy fish communities (more biomass 
at trophic level 4 and above than below) were evident at 11 islands for SPC data alone (WebFigure  
2). When the data were integrated, only one island, Swains, exhibited trophic inversion (Figure 1). 
This result was robust to a wide range of decision criteria used to merge the two datasets (WebTable 
2); the pooled dataset was therefore used for all subsequent analyses.   

Variation in trophic structure 

Considerable natural variation exists in fish assemblage trophic structure on coral reefs (Figure 2). 
The mean proportion of biomass in trophic levels 2-3 was 0.39, ranging from ~0.20 (at Howland, 
Baker, Jarvis and Kingman in Central Polynesia), to 0.6 at Kure Atoll in the Northwestern Hawaiian 
Islands, the most northerly location surveyed (Figure 2). Swains Island had the lowest proportion of 
biomass in the mid-trophic levels (0.32), relative to the all island mean (0.38), while Baker Island had 
over half of the total biomass in the mid trophic levels. Across all islands, the mean proportion of 
biomass in trophic level 4 and above was 0.22 (range: 0.06 at Kure to 0.43 at Swains). Total fish 
biomass varied greatly among islands, from 31 g m-2 (+/- 6 SE) (Lisianksi) to 140 g m-2 (+/- 36) (Jarvis) 
(Figure 2). The proportion of biomass in low trophic levels (2-3) decreased with total fish biomass 
(WebPanel 2, T-value = -2.39, p-value = 0.03), while the proportion of mid-trophic level biomass (3-4) 
increased (T-value = 2.11, p-value = 0.05) (Figure 2). Locations with highest total biomass (Kingman, 
Jarvis, Baker, Howland and FDP), had high biomass of trophic level 3 species. This included the 
planktivorous rays Manta spp. and anthias (Luzonichthys whitleyi and Pseudanthias olivaceus), small 
wrasses Anampses meleagrides and Labroides didimatus, sweepers Pempheris oualensis and fusilier 
Caesio teres (WebPanel 2). The proportion of biomass in trophic level 4 and above did not vary 
predictably with total fish biomass (T-value = 0.37, p-value = 0.71). 

 

Biophysical drivers of coral reef fish trophic structure 

The biophysical parameters of a reef - temperature, irradiance and oceanic primary productivity – 
were important predictors of fish assemblage trophic structure (WebPanel 4). However, the direction 
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of their effect differed among trophic levels, and in some cases was dependent on one and other. 
With the exception of trophic level 2 biomass, there were clear best performing models in the model 
sets (WebPanel 4). The explanatory power of the models of the trophic level 2 biomass was relatively 
poor (adjusted R-squared: 0.23), suggesting the importance of drivers not considered in this analysis 
(WebPanel 4). Overall, a substantial amount of variation in lower and upper trophic level biomass was 
associated with these three terms (proportional models adjusted R-squares > 0.70). The proportion of 
biomass in trophic level 2 increased with irradiance and decreased with temperature, with an 
interacting effect between irradiance and oceanic primary production (adjusted R-squared: 0.76, 
WebPanel 4, Figure 3). In contrast, the degree to which reefs were top-heavy (more biomass in 
trophic levels 4 and above) increased with temperature. This was true in absolute and proportional 
terms for trophic level 4 (WebPanel 4, Figure 3). Fish communities were more top heavy on coral 
reefs with warmer water and higher oceanic primary production, but this effect of temperature was 
diminished in the most productive locations (WebPanel 4). Absolute mid-trophic level biomass was 
closely positively associated with oceanic primary production (Akaike weight 0.6, marginal R-squared: 
0.84) (WebPanel 4). Similar to trophic level 4, the proportion of biomass in mid trophic levels 
increased with temperature, and decreased with irradiance, but again this was conditional on oceanic 
primary production; the effect of irradiance was lower in more productive locations.  

 

Discussion 

Using a multi-method approach to synthesize data from 21 remote Pacific islands, we show 
considerable variation in reef fish trophic structure and carrying capacity varying in relation to oceanic 
context. Thus, trophic structure of fish assemblages on remote coral reefs can take a variety of forms. 
These include recently described ‘concave’ shapes indicative of bottom-driven systems (Graham et 
al. 2017), as well as, ‘convex’ systems with greatest biomass at intermediate consumer levels. We 
present the first evidence of such ‘middle-driven’ systems for coral reefs. 

Like all complex multi-dimensional structures, inferences on the ecosystem properties of coral reefs 
are sensitive to the choices made about the scale of observation. This is because individual species 
interact with their environment in ways that vary in space and time, meaning there is no single correct 
scale to observe and describe an ecosystem (Levin 1992). For example, spawning aggregations that 
attract and concentrate predators can lead to temporarily inverted trophic pyramids that would not 
exist outside of this specific temporal period (Mourier et al. 2016). Such inverted pyramids have been 
reported from small-scale surveys on remote coral reefs (Friedlander and DeMartini 2002; Sandin et 
al. 2008; DeMartini et al. 2008), prompting debate on their theoretical feasibility (Trebilco et al. 2016; 
Woodson et al. 2018), and criticism that they arise as an artefact of sampling bias (Bradley et al. 
2017; McCauley et al. 2018). However, few have considered the explicit role of sampling scale in how 
we understand what is natural, or how such patterns change across the broader seascape.  

 

Given the variety of reef fish life histories and how that impacts their detectability (Kulbicki et al. 2010, 
Ruppert et al. 2018), it seems unrealistic to quantify the trophic structure of reef fishes at a single 
scale. We therefore integrated data at two scales (approximately meters and kms) to show that 
estimated reef fish trophic distributions were highly scale dependent, and also that trophic structure 
varies widely among locations due to differences in environmental drivers. Our results highlight the 
need to consider scale when making community-wide inference. Integrative multi-scale approaches 
are especially important to provide a full ecosystem perspective for fisheries management.  

 

Recent studies have demonstrated how substantially humans can alter the trophic organization of 
coral reef fish assemblages (Sandin et al. 2008; DeMartini et al. 2008; Graham et al. 2017a; Ruppert 



et al. 2018; McCauley et al. 2018). What has been lacking is an understanding of how gradients in 
natural environmental drivers simultaneously or independently impact spatial variation in reef fish 
assemblage structure. One finding of our study is that bottom-heavy pyramids were associated with 
higher light availability. Similar to other benthic primary producers whose distributions are limited by 
light intensity (Gattuso et al. 2006; Muir et al. 2015), coral reefs have a greater proportion of the reef 
fish biomass in low trophic levels at areas with high irradiance. Presumably, primary consumers 
benefit from the higher rates of benthic primary production as increased irradiance bolsters the base 
of the food web. Higher fisheries production in tropical coral reefs than in the subtropics is in part due 
to higher solar radiation (McClanahan et al. 2019). Thus, coral reef fisheries that target lower trophic 
levels may be more viable where energy into the base of the food web is higher and therefore where 
fish assemblages are more naturally bottom-heavy.  

Our results show that the proportion of biomass in higher trophic levels is higher in warmer waters 
and in areas of higher oceanic primary production. Middle-driven systems - with greatest biomass at 
intermediate consumer levels, like those with high biomass of planktivorous species (WebPanel 2), - 
had greatest total reef fish biomass and capacity to sustain higher trophic levels. Coral reef predators, 
total fish productivity, and therefore associated fisheries, are largely sustained by pelagic and 
cryptobenthic energetic pathways (McCauley et al. 2012; Frisch et al. 2014; Morais and Bellwood 
2019; Brandl et al. 2019). Together, we demonstrate that reef systems can be bottom-heavy in areas 
of high irradiance, and middle-driven when external energetic subsidies, delivered by a panoply of 
biophysical processes, are maximized. Middle-driven systems have the greatest capacity for total reef 
fish community biomass, and in turn greater fisheries productivity. Ecosystem-approaches to 
management would benefit from recognizing that coral reef trophic structures are naturally 
constrained to be top or bottom heavy or indeed middle-driven, and that where any one reef lies on 
this spectrum is influenced by the surrounding energetic environment. When setting management 
targets and adaptation strategies, it is vital to recognize human impacts are superimposed over 
natural constraints on local fisheries carrying capacity and recovery potential. 
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Figure 1. Survey method influences estimated trophic structure of coral reef fish assemblages. 
Two sampling methods were used to survey fishes a) stationary point count (SPC) and b) towed diver 
method (tow). c) The SPC is a generalist survey method optimized to capture all fishes within a small 
(352 m2/survey) area. The d) tow samples large (> 50 cm total length) fish over a large area 
(2200m2/survey). e) Inverted pyramids at Kure atoll and Jarvis, Kingman and Palmyra, are apparent 
with the SPC dataset, but not when the SPC and tow are combined (see all WebFigure 2 for all 
islands). 

 



 

Figure 2. Trophic structure of fish assemblages at coral reef islands. a) Study location b) 
proportion of biomass per trophic level red: 2-3, orange: 3-4, blue: >4, modelled as a function of total 
fish biomass g m-2 c) Total reef fish biomass (grey) per island ranging from 31 g m-2 (Lisianksi) to 140 
g m-2 (Jarvis) andisland trophic pyramids (coloured plots) with biomass per trophic level (TL) 
(proportion of total) (red: 2-2.5, orange: 2.5-3, yellow: 3-3.5, green: 3.5-4, blue: 4-4.5). Mean (dark 
centre bars in pyramids) and 95% quantiles (coloured transparent bars) were generated from a Monte 
Carlo simulation. Individual species biomass were drawn from distributions based on mean and 
standard error from the in situ survey data, and species TL designations from FishBase (fixed 
standard error 0.1).  

 

 



 

 

Figure 3. The relationship between irradiance, oceanic primary productionand temperature on the 
trophic structure of coral reef fish assemblages. a) Predicted proportion of biomass and 95% 
confidence limits for trophic level 2-3 (red), 3-4 (yellow) and > 4 (blue) by Irradiance (Einsteins m-2 d-1) 
temperature (° Celsius) and the interacting effect of oceanic primary productivity (mg m-3) (long dash: 
high chlorophyll-a, dot-dash: low-chlorophyll-a). b) Conceptual diagram of a bottom-heavy and 
middle-driven fish assemblage, with fish colour representing trophic levels (red: 2-3, yellow: 3-4, blue: 
> 4) and inset pyramids from Kure (left) and Kingman (right).  
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WebPanel 1. Methods 

 

Fish survey data 

 

We used data collected by the National Oceanic and Atmospheric Administration (NOAA) Pacific Reef 
Assessment and Monitoring Program (RAMP), a large-scale coral reef ecosystem monitoring program 
that surveys islands in the tropical U.S. and U.S. affiliated Pacific. The dataset spans 2010-2016, 
during which coral reef islands and atolls within four regions, the Hawaiian Islands, the Pacific 
Remote Island Areas, American Samoa and the Mariana Archipelago were visited on a 3-year cycle.  
Our aim was to assess the trophic structure of minimally impacted coral reef ecosystems, therefore 
we selected a subset of islands from the NOAA Pacific RAMP dataset, resulting in 21 island 
replicates. As the surveyed island regions are defined geopolitically, we regrouped them into the 
Provinces based on the marine ecoregions of the world classification scheme; Tropical Northwest 
Pacific, Central Polynesia, Marshall Islands and Hawaii (Spalding et al. 2007).  

The core NOAA Pacific RAMP mandate for monitoring coral reef fish assemblages is to provide 
information on their status and trends at the island scale across these multiple regions. To achieve 
this aim, at each island, two survey methods are performed, the stationary point count (Ayotte et al. 
2015; Heenan et al. 2017) and the towed diver technique (Richards et al. 2011).  The first method, the 
stationary point count (SPC) was used to survey all observed species within paired 15 m diameter 
cylinders (total area 352 m2 per survey). A random depth stratified survey design was used for 
inference at the island scale. Divers conducted ‘closed’ counts i.e. density estimates per taxa were 
based on the number within the survey unit at single snapshots in time. In contrast, the second 
method, the towed-diver survey was designed to target large (> 50 cm TL) and roving species within a 
larger survey area. Divers are towed behind a boat at a target depth of 10-20 m, tow start points are 
haphazardly selected, and divers collected counts of large fishes ahead of them in a moving 10 × 10 
m wide transect (total area per tow ~2200 m2). 

 

From each survey method, we used the diver observations on fish size and abundance to calculate 
the weight per individual fish (g m-2) using length-weight relationships (Kulbicki et al. 2005; Froese 
and Pauly 2016), per survey replicate. A replicate was the average between two SPC paired cylinders 
and for the tow, an individual tow track. For the SPC, island level species biomass estimates were 
calculated from the mean values within each depth stratum per island. Biomass estimates were 
weighted by the total area of each stratum per island and then pooled across years (Heenan et al., 
2017; Smith et al., 2011).  For the tow, counts were summed over segments and used to calculate an 
average biomass estimate per tow track based on the length of each individual tow. Island-level 
species biomass estimates from the tow were calculated as equally weighted means of each tow per 
island across years.   

Sensitivity analysis to integrating the stationary point count and tow diver data 

The SPC surveyed a much smaller area than the tow, and this difference in measurement scale 
influences the encounter and density estimates of species (Panel 1). We addressed this sampling 
method effect by blending the SPC and tow diver data together. To assess what effect the way in 
which these data were integrated had on the resultant estimates of biomass per trophic level, we 



conducted a sensitivity analysis. Specifically, we merged these data based on a range of criteria 
value, based on density and encounter rate ratios between methods, and then determined what effect 
the choice of criteria had on the allocation of biomass across trophic levels (WebTable 2). All slands 
(70-85%) had more biomass at trophic level 2 and trophic level 3 than 4 whichever way these data 
were merged, therefore no major differences are seen based on how these data are integrated. The 
exceptions were the most extreme criteria, where tow was only used when SPC species density 
estimates were 10-20 times higher and encounter rates 1/10th of that on the tow. In this instance, 33-
55% of islands had more biomass at trophic level 2 and 3 than 4. We opted to merge the data based 
on rule set 1: when a species density estimate was 5 times the density of the tow, use the SPC, and 
when a species encounter rate was 1/5th times greater on the SPC, use the tow (row 1, WebTable 2). 
This merged dataset was used for all subsequent analysis.  

Web References 

Ayotte PM, McCoy KS, Heenan A, et al. 2015. Coral Reef Ecosystem Division standard operating 
procedures: data collection for rapid ecological assessment fish surveys. Honolulu HI, Pacific 
Islands Fisheries Science Center; National Marine Fisheries Service. 

Froese R and Pauly D. 2016. FishBase www.fishbase.org. Viewed 1 Oct 2016. 

Heenan A, Ayotte P, Gray A, et al. 2014. Pacific Reef Assessment and Monitoring Program - Data 
Report - Ecological Monitoring 2012-2013 - reef fishes and benthic habitats of the main 
Hawaiian Islands, American Samoa, and Pacific Remote Island Areas. PIFSC Data Report. 

Heenan A, Williams ID, Acoba T, et al. 2017. Long-term monitoring of coral reef fish assemblages in 
the Western central pacific. Sci Data 4: 170176. 

Kulbicki M, Guillemot N, and Amand M. 2005. A general approach to length-weight relationships for 
New Caledonian lagoon fishes. Cybium 29: 235–52. 

Richards BL, Williams ID, Nadon MO, and Zgliczynski BJ. 2011. A towed-diver survey method for 
mesoscale fishery-independent assessment of large-bodied reef fishes. Bull Mar Sci 87: 55–74. 

Smith SG, Ault JS, Bohnsack JA, et al. 2011. Multispecies survey design for assessing reef-fish 
stocks, spatially explicit management performance, and ecosystem condition. Fish Res 109: 25–
41. 

Spalding MD, Fox HE, Allen GR, et al. 2007. Marine ecoregions of the world: a bioregionalization of 
coastal and shelf areas. Bioscience 57: 573. 

  



 

A Heenan et al. - Supporting Information  

WebFigure 1. A comparison of the proportion of biomass per different trophic level bin from 
the stationary point count (SPC) dataset and the integrated SPC and tow dataset. With the 
SPC dataset (dashed outline), 11 islands appear to be inverted, as compared to none with 
the blended dataset (black line). FFS = French Frigate Shoals, P&H = Pearl and Hermes, 
AGS = Alamagan, Guguan, Sarigan. 
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WebPanel 2 The model fitted relationship between absolute (g m-2) and proportional biomass 
per trophic level.  

 

 

 

 

For 
islands 
with high 
total fish 
biomass, 
this was 
largely 
driven by 
an 
increased 

contribution of mid-trophic level (trophic level 3 orange) species, in particular planktivorous species 
(middle graph). The relative contribution of lower trophic levels  (trophic level 2 red) was less   in  
islands with increased absolute fish biomass. 
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The species contributions of mid-trophic level fishes (TL3) to variation in total fish biomass. A 
metric multi-dimensional scaling based on the Euclidean distance matrix of the proportional 
contribution of individual species in trophic level 3 was used to identify which species were driving 
differences in biomass. Islands with the highest total fish biomass, those in Central Polynesia, had 
increased biomass of mid-trophic level species including the planktivorous rays Manta spp. and 
anthias (Luzonichthys whitleyi and Pseudanthias olivaceus), small wrasses Anampses meleagrides 
and Labroides didimatus, sweepers Pempheris oualensis and fusilier Caesio teres.   
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WebTable 2. A sensitivity test to integrate the stationary point count and tow diver data. 
We tested a range of criteria for merging the tow and the SPC datasets together. These criteria 
were based on fish species density and encounter rates within each dataset. After each time the 
data were merged together based on the different criteria (rows), we inspected the outcome this 
had on the total amount of biomass in each trophic level. This is summarized as the percentage 
of islands with more biomass at trophic level 2 (2<3) and 3 (3 < 4) than trophic level 4. The 
islands listed are those with TL2 biomass > TL4. Variations of the data merging rules, e.g. twice 
the density and 1/5th of the encounter rate, or five times the density and 1/10th of the encounter 
rate all resulted in species records being used from the tow dataset, which is equivalent to row 1 
and 2 so are not displayed here. 

Data merging criteria Outcome 

When a species density 
estimate is n times 
greater on SPC, tow 
data is used 

When a species 
encounter rate is n 
times greater on SPC, 
tow data is used 

% Islands* 
with TL2 
biomass > 
TL4 

% Islands 
with TL3 
biomass < 
TL4 

Islands 

5 1/5th 72 0 

Baker, Howland, 
Jarvis, Kingman, 
Swains 

10 1/5th 72 0 

Baker, Howland, 
Jarvis, Kingman, 
Swains 

20 1/5th 55 0 

Agrihan, AGS, 
Baker, FDP, 
Howland, Jarvis, 
Kingman, Swains 

10 1/10th 33 0 

Agrihan, AGS, 

Baker, FDP, FFS, 
Howland,  

Jarvis, Kingman, 
Lisianski, P&H, 
Palmyra, Swains 

20 1/10th 50 0 

Agrihan, AGS, 
Baker, FDP, 
Howland, Jarvis, 
Kingman, Palmyra, 
Swains 
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WebPanel 3 Biophysical drivers in coral reef fish trophic structure -  modelling procedure  

For each trophic level, proportional and absolute biomass (termed herein biomass response metrics) 
was modelled as function of the three biophysical explanatory factors: 1) irradiance (IRR); 2) oceanic 
primary production (CHL) and; 3) sea-surface temperature (SST). Island level climatologies of each 
biophysical parameter were taken from Gove et al. (2013), specifically the mean estimates of 
chlorophyll-a (mg m-3) and irradiance (E m-2 d-1) and lower climatological mean of sea-surface 
temperature (° Celsius). The biophysical predictors were inspected for co-linearity (variance inflation 
factors were < 5 and correlation R2 < 0.75) and normalized (centered and scaled by their standard 
deviations).  

The model fitting process was as follows, the maximal model with and without a random effect of 
Province (Tropical Northwest Pacific, Central Polynesia, Marshall Islands and Hawaii) was fitted, and 
the Akaike’s Information Criterion (AIC) weight used to identify whether a model with a random 
intercept for Province better fit the data than a model with no random term.  

All proportional biomass models, as well as absolute biomass of trophic level 2 and 4 had a higher 
conditional probability with no random effect. The proportion of biomass per trophic level and the 
absolute biomass for trophic level 4 were then fitted as generalized linear models (glm), while the 
absolute biomass of trophic level 3 was fitted as a mixed effects model (glmm). Absolute trophic level 
4 biomass was log-transformed as these data were right skewed. Once we established whether the 
biomass metrics would be fitted via a glmm or glm, we took the following model selection steps. For 
each biomass response metric we ran all possible combinations of the biophysical factors with and 
without interaction terms along with a null model (for the mixed effects models this contained only the 
random effect of Province). For each biomass response metric model set, the AIC weight corrected 
for small sample size (AICc), was used to assess the conditional probability of each model and the 
strength of association between the biomass metrics and the biophysical drivers (Anderson 2008). 
The effect of the predictors terms were then visualized based on a predicted dataset generated from 
the best candidate model. For each trophic level model, values of the response were estimated along 
the range of values of the predictor of interest, after setting the other predictor terms to their median 
value. This was done via the visreg package in R (Breheny and Burchett 2017). 

Anderson DR. 2008. Model based inference in the life sciences: A primer on evidence. Springer 
Science & Business Media. 

 

Breheny P and Burchett W. 2017. Visualizing regression models using visreg. http://cran.r-
project.org/package=visreg: 1–15. 

 

Gove JM, Williams GJ, McManus MA, et al. 2013. Quantifying climatological ranges and anomalies 
for Pacific coral reef ecosystems. PLoS One 8: e61974. 
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WebTable 1. A comparison of the density estimates (abundance and biomass (g) per 
ha) and encounter rates (number of individuals per hectare) of species recorded on 
both the stationary point count (SPC) and tow (TOW) surveys. This comparison was 
made for individuals > 50 cm total length on both method over ~ 1000 surveys of each 
method. TL = trophic level, LMAX = maximum recorded species length, Count = total 
number recorded (over a total area sampled of ~2130 Ha on the tow and 37 Ha on the 
SPC), abundance per Ha (Abund/Ha), encounter rate per survey (Encnt/Surv), biomass of 
fish (g/ha) and encounter rate (Abundunce/ha). 
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A Heenan et al. - Supporting Information  

 

WebPanel 4 Biophysical drivers in coral reef fish trophic structure - modelling outputs 

Summary of the model outputs for each trophic level and each biomass metric (proportion 
and absolute). A table of the conditional probability of each model from the model fitting 
process is presented. SUNL = Irradiance (Einsteins m-2 d-1), PROD = chlorophyll a (mg m-3), 
TEMP = sea surface temperature (° Celsius), k = the number of estimated parameters, , d = 
delta AICc, LogL = log likelihood and w = AICc weights corrected for small sample size. With 
the model entries ‘+’ for additive effects and ‘*’ for interaction terms.   
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Trophic level 2 proportional biomass model performance  

Model K AICc d w LogL 

SUNL * PROD + TEMP 6 -47.39 0.00 0.94 32.92 

PROD + TEMP 4 -40.90 6.49 0.04 25.78 

SUNL + PROD + TEMP 5 -39.25 8.14 0.02 26.77 

SUNL * TEMP + PROD 6 -36.21 11.18 0.00 27.34 

SUNL + TEMP * PROD 6 -35.07 12.32 0.00 26.77 

SUNL 3 -34.78 12.61 0.00 21.14 

SUNL * TEMP * PROD 9 -33.99 13.40 0.00 34.99 

SUNL + TEMP 4 -33.69 13.69 0.00 22.18 

SUNL + PROD 4 -31.83 15.56 0.00 21.25 

PROD 3 -28.57 18.82 0.00 18.03 

NULL 2 -27.53 19.86 0.00 16.12 

 

Trophic level 2 proportional biomass top candidate model 

 

Effect size plot from highest ranked linear model (F statistic (df 4,15): 16.39, p < 0.001), with 
an adjusted R2 of 0.76. Dots represent mean effect sizes, lines are the 95% confidence limit. 
Limits that span the vertical line indicate no effect.  
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Trophic level 2 – proportional biomass – highest ranked model plots. Irradiance 
(Einsteins m-2 d-1), CHL_MEAN = chlorophyll a (mg m-3), sea surface temperature (° Celsius) 
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Trophic level 2 absolute biomass model performance 

 

Model K AICc d w LogL 

PROD 4 124.09 0.00 0.22 -56.62 

SUNL + PROD 5 125.11 1.02 0.13 -55.25 

PROD + TEMP 5 125.41 1.32 0.11 -55.40 

SUNL + PROD + TEMP 6 125.58 1.49 0.11 -53.29 

SUNL * PROD + TEMP 7 125.81 1.72 0.09 -50.81 

SUNL + TEMP * PROD 7 125.87 1.78 0.09 -50.84 

SUNL + TEMP 5 126.53 2.44 0.07 -55.96 

SUNL * TEMP + PROD 7 126.72 2.63 0.06 -51.27 

SUNL * TEMP * PROD 10 127.76 3.67 0.04 -40.13 

SUNL 4 128.03 3.94 0.03 -58.59 

NULL 3 128.27 4.18 0.03 -60.34 

TEMP 4 128.60 4.51 0.02 -58.87 

 

Trophic level 2 absolute biomass top candidate model 

 

The highest ranked linear model (F statistic (df(1,15): 279.90, p < 0.001) had an adjusted R2 

of 0.23 and so had little predictive power to explain the variation in this biomass metric. As 
model performance was low, the effect sizes are not plotted. 
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Trophic level 3 – proportional biomass model performance 

Model K AICc d w LogL 

SUNL * PROD + TEMP 6 -44.13 0.00 0.31 31.30 

PROD 3 -43.72 0.41 0.25 25.61 

NULL 2 -42.63 1.51 0.15 23.67 

PROD + TEMP 4 -41.12 3.01 0.07 25.89 

SUNL 3 -41.06 3.07 0.07 24.28 

SUNL + PROD 4 -40.61 3.52 0.05 25.64 

TEMP 3 -40.10 4.03 0.04 23.80 

SUNL + TEMP * PROD 6 -39.28 4.85 0.03 28.87 

SUNL + PROD + TEMP 5 -38.16 5.98 0.02 26.22 

SUNL + TEMP 4 -38.04 6.10 0.01 24.35 

SUNL * TEMP * PROD 9 -36.91 7.23 0.01 36.45 

SUNL * TEMP + PROD 6 -33.98 10.15 0.00 26.22 

 

Trophic level 3 proportional biomass top candidate model effect size plots 

 

Effect size plot from highest ranked linear model (F statistic (df 4,15): 4.29, p = 0.02) with an 
adjusted R2 of 0.41. Dots represent mean effect sizes, lines are the 95% confidence limit. 
Limits that span the vertical line indicate no effect.  
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Trophic level 3 – proportional biomass – highest ranked model plots. Irradiance 
(Einsteins m-2 d-1), CHL_MEAN = chlorophyll a (mg m-3), sea surface temperature (° Celsius)
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Trophic level 3 – absolute biomass model performance 

For the biomass of trophic level three, the Akaike’s Information Criterion ranking of models 
with and without a random effect identified the mixed effects model as the best fit. The 
candidate models were then fitted with Province as a random effect.  

  

Model K AICc d w LogL 

PROD 4.0 138.4 0.0 0.6 -63.8 

PROD + TEMP 5.0 140.3 1.9 0.2 -62.9 

SUNL + PROD 5.0 141.5 3.1 0.1 -63.5 

SUNL + PROD + TEMP 6.0 144.7 6.2 0.0 -62.8 

SUNL * PROD + TEMP 7.0 146.3 7.9 0.0 -61.1 

SUNL + TEMP * PROD 7.0 149.1 10.7 0.0 -62.5 

SUNL * TEMP + PROD 7.0 149.8 11.4 0.0 -62.8 

SUNL 4.0 149.9 11.5 0.0 -69.5 

SUNL + TEMP 5.0 152.8 14.4 0.0 -69.1 

NULL 3.0 156.1 17.7 0.0 -74.3 

TEMP 4.0 159.1 20.7 0.0 -74.1 

SUNL * TEMP * PROD 10.0 166.2 27.8 0.0 -59.3 

 

Trophic level 3 – absolute biomass – highest ranked model plots.  

 

The highest ranked linear mixed model that had a conditional R2 of 0.84 (variance explained 
by entire model) and marginal R2 of 0.60 (variance explained by fixed effects). The 
productivity coefficient estimate was 11.22 (standard error: 1.83, t-value=6.11 p < 0.01), with 
the Province random effect intercepts of Hawaii (14.83), Central Polynesia (26.68) and the 
Tropical NW Pacific (30.40). Productivity = chlorophyll a (mg m-3). 
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Trophic level 4 –  proportional biomass model performance  

Table of summary statistics for models fitted showing number of estimated parameters (k), 
variance explained (adjusted R2), delta AICc and AICc weights – corrected for small sample 
size. Model name contains variables fitted: '+' for additive effects, '*' for interactions.  

Model K AICc d w LogL 

SUNL + TEMP * PROD 6.00 -55.36 0.00 0.65 36.91 

TEMP 3.00 -52.41 2.94 0.15 29.96 

PROD + TEMP 4.00 -51.95 3.40 0.12 31.31 

SUNL + TEMP 4.00 -49.86 5.50 0.04 30.26 

SUNL + PROD + TEMP 5.00 -48.91 6.45 0.03 31.60 

SUNL * TEMP + PROD 6.00 -46.49 8.87 0.01 32.47 

SUNL 3.00 -45.78 9.57 0.01 26.64 

SUNL * PROD + TEMP 6.00 -44.76 10.59 0.00 31.61 

SUNL + PROD 4.00 -43.18 12.18 0.00 26.92 

SUNL * TEMP * PROD 9.00 -39.69 15.66 0.00 37.85 

NULL 2.00 -39.39 15.97 0.00 22.05 

PROD 3.00 -37.21 18.14 0.00 22.36 
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Trophic level 4 proportional biomass top candidate model 

 

Effect size plot from highest ranked linear model (F statistic (df 4,15): 12.82, p = <0.01) with 
an adjusted R2 of 0.73 Dots represent mean effect sizes, lines are the 95% confidence limit. 
Limits that span the vertical line indicate no effect.

 

 

Trophic level 4 – proportional biomass – highest ranked model plots. Irradiance 
(Einsteins m-2 d-1), CHL_MEAN = chlorophyll a (mg m-3), sea surface temperature (° 
Celsius). 
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Trophic level 4 – absolute biomass model performance  

 

For the biomass of trophic level four, the Akaike’s Information Criterion ranking of models 
with and without a random effect identified the mixed effects model as the best fit. The 
candidate models were then fitted with Province as a random effect.   

 

Table of summary statistics for models fitted showing number of estimated parameters (k), 
variance explained (adjusted R2), delta AICc and AICc weights – corrected for small sample 
size. Model name contains variables fitted: '+' for additive effects, '*' for interactions. 

 

Model K AICc d w LogL 

PROD + TEMP 5.00 136.72 0.00 0.62 0.62 

PROD 4.00 140.33 3.61 0.72 0.72 

SUNL 4.00 140.48 3.76 0.82 0.82 

SUNL + PROD + TEMP 6.00 141.11 4.38 0.89 0.89 

SUNL + PROD 5.00 141.34 4.62 0.95 0.95 

SUNL + TEMP * PROD 7.00 143.68 6.96 0.97 0.97 

SUNL + TEMP 5.00 144.22 7.50 0.98 0.98 

NULL 3.00 145.77 9.05 0.99 0.99 

SUNL * PROD + TEMP 7.00 146.06 9.34 0.99 0.99 

SUNL * TEMP + PROD 7.00 146.22 9.50 1.00 1.00 

TEMP 4.00 148.39 11.67 1.00 1.00 

SUNL * TEMP * PROD 10.00 156.90 20.17 1.00 1.00 

 

Trophic level 4 proportional biomass top candidate model 

The highest ranked linear mixed model had a conditional R2 of 0.71 (variance explained by 
entire model), with the marginal R2 being the same 0.71 (variance explained by fixed 
effects). Dots represent mean effect sizes, lines are the 95% confidence limit. Limits that 
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span the vertical line indicate no effect.

 

Trophic level 4 – absolute biomass – highest ranked model plots. Irradiance (Einsteins 
m-2 d-1), CHL_MEAN = chlorophyll a (mg m-3), sea surface temperature (° Celsius). 
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