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Decentralised Defence of a (Directed) Network
Structure

Marco Pelliccia*

Bangor Business School, Bangor University

Abstract

We model the decentralised defence choice of agents connected in a directed graph
and exposed to an external threat. The network allows players to receive goods
from one or more producers through directed paths. Each agent is endowed with
a finite and divisible defence resource that can be allocated to their own security or
to that of their peers. The external threat is represented by either a random attack
on one of the nodes or by an intelligent attacker who aims to maximise the flow-
disruption by seeking to destroy one node. We show that under certain conditions
a decentralised defence allocation is efficient when we assume the attacker to be
strategic: a centralised allocation of defence resources which minimises the flow-
disruption coincides with a decentralised equilibrium allocation. On the other
hand, when we assume a random attack, the decentralised allocation is likely to
diverge from the central planner’s allocation.
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1 Introduction

A vast literature has extensively studied the characteristics of games known as Conflicts on
Multiple Battlefields or Colonel Blotto games1. In these games, one or more defendants defend
multiple locations by optimally choosing how to allocate defence resources across them-
selves, while an intelligent attacker aims to conquer as many of them as possible. One of
the most important results of these models highlights how a centralised defence allocation is
usually more efficient than a decentralised one since it can exploit the negative externalities
across multiple locations in order to attract the attacker toward the least valuable ones; indi-
vidual players fail to internalize the cost of their defence allocation and thus over-invest in
defensive measures.

More recently, new contributions have analyzed these games in a network setting (Ace-
moglu et al. (2016), Dziubiński & Goyal (2017), Goyal & Vigier (2014) and Cerdeiro et al.
(2017)). In these models, the payoff of the players is generally tied to a network structure
which connects some of them. This has been motivated by the fact that connections and the
architecture of social and economic networks impact the decisions of individuals, firms, and
countries in various contexts.2 For example, an agent may find it beneficial to be part of a
large connected component since it may grant him access to a relatively larger amount of
goods or to multiple destinations. On the other hand, a terrorist group may aim to disrupt a
network infrastructure to damage the welfare of a society which depends on it.

Along the same lines, we propose a model of conflicts where a set of players (defendants)
is connected by a directed network structure, and a (unique) attacker aims to maximally
disrupt the network by attacking one of its nodes/players. Each defendant benefits from be-
ing part of the network as it gives him the possibility to receive goods produced by one or
more peers. Each defendant is also endowed with a divisible defence resource which can be
transferred to other players. The game is sequential: in the first stage the defendants simul-
taneously allocate their defence resources, while in the second stage the attacker chooses the
node to attack.

We analyze two scenarios. In the first, which we call the Strategic Scenario (S1), the attacker
is strategic and chooses his attack-strategy in order to maximally disrupt the network given
the choices of the defendants. In the second, the Non-Strategic Scenario (S0), a node is attacked
according to a known probability distribution. By comparing the resulting equilibrium de-

1See Kovenock & Roberson (2010), Bier (2006) and Sandler & Enders (2004) for surveys and the works by
Bier et al. (2007), Lapan & Sandler (1993), Sandler et al. (2003), Keohane & Zeckhauser (2003), Kunreuther &
Heal (2003), and Heal & Kunreuther (2004).

2See Jackson et al. (2008).
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fence allocations in the two scenarios, we remark that the “strategic element” is an important
element to guarantee the efficiency of the decentralized equilibrium.

We first show that when the attacker is strategic, nodes would share defence resources
proportionally to their criticality3. More interestingly, we can show that, under certain condi-
tions, the decentralized defence allocation is efficient; it coincides with the defence allocation
which minimizes the expected network disruption. On the other hand, when the attack is
probabilistic, the players do not necessarily receive defence resources from other peers pro-
portionally to their criticality. In particular, decentralized and centralized defence allocations
coincide only under a unique probability distribution over the players. These results com-
plete and, to some extent, challenge the existing literature.

The intuition behind the results is as follows. The directed nature of the network creates
a topological ordering along each path connecting a player to a producer. This implies that
for each player, his survival and that of any other player in the same path who is crucial to
connect him to a producer are equally important. On the other hand, all things being equal,
a strategic attacker would prefer to eliminate the most critical nodes. Under certain condi-
tions, this will imply that (i) more critical nodes will receive relatively more defence resources
from other peers (Proposition 1), and (ii) the interests of players in the same path will be co-
ordinated, thereby aligning the decentralized allocation to a centralized one (Proposition 2).
Loosely speaking, this is possible when the nodes producing goods are connected to any
other non-producer node and each player is supported by a number of peers proportional
to his criticality. In such a case he would receive enough defence resources so that the at-
tacker finds each node an equally attractive target. When this does occur, this coincides with
the allocation criteria of a planner. On the other hand, when the attacker is not strategic but
probabilistic, each player would allocate defence to a peer only if the peer is essential to him,
and proportionally to his probability of being attacked. In other words, the probability of
being attacked, and not the players’ criticality, is essentially the unique element which affects
a player’s defence allocation choice. Conversely, a planner would still take into account the
criticality of each node. This is the reason why, under random attack, decentralized and cen-
tralized defence allocations coincide only under a unique probability distribution over the
nodes (Proposition 4).

Dziubiński & Goyal (2017), Acemoglu et al. (2016), Goyal & Vigier (2014), and Cerdeiro
et al. (2017) are among the closest papers to ours. They study a sequential game in which
a designer moves first and chooses a defence allocation, and in a second stage the adversary

3As we will show in the next sections, a node is more critical if by removing it from the network it has
relatively larger impact on the utility of the rest of the nodes.
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chooses how to allocate attack-resources across the nodes. In Cerdeiro et al. (2017), the au-
thors also discuss how the designer could optimally design the network in order to solve
possible inefficiencies arising when security choices are decentralized. In particular, the au-
thors show that decentralised security choices could lead to both over and under-investment
in security. In all these works, a strategic attacker targets one node in order to minimise the
connectivity of the structure.4 The main differences with our setting are the following. First,
our assumption over the value of the network as perceived by its nodes differs. In our set-
ting, a player profits from being part of a component as far as it allows him to be connected
to some producers. In the works previously mentioned, the value of a component is function
of its size. A direct consequence of this is that, in our setting, a player might not be affected
by the elimination of a node in the same component if this node is not essential to connect
the player to a producer. Second, the nature of the attack differs. In Cerdeiro et al. (2017), an
attack might eliminate a node and propagate to other peers via existing links, and in Goyal
& Vigier (2014) the attacker can navigate the network by successfully eliminating multiple
nodes in multiple rounds. In our setting, there is no contagion and the game terminates after
an attack is carried out. This implies again that, as long as the target is not crucial to a player
to receive goods, its survival does not impact the player’s utility. Although we do not study
the optimal network design problem, this difference might also have the following intuitive
consequences. In Cerdeiro et al. (2017), under strategic attack, in order to incentivise individ-
ual nodes to not under-invest in security, a central planner might find it optimal to design a
dense network which would make the risk of contagion more likely. In our setting, by making
a network more dense, a central planner would only (weakly) reduce the number of likely
targets, eventually attracting possible attacks uniquely toward the producer(s). Finally, in
the works mentioned, to produce security is costly and the amount of defence produced is a
strategic choice. As pointed out by the same authors, this assumption is particularly suitable
to describe immunization decision problems.5 Instead, we focus attention on the reallocation
of existing security resources between nodes by allowing them to share defence resources.
When studying the problem of decentralized defence of a network structure, two types of
inefficiencies might arise. On one hand, individual players might choose to produce ineffi-
cient levels of security (over or under-investment in defence). This usually might arise when
each player fails to internalize the impact of his choice on the rest of his peers and when se-

4Variations of the same problem have been studied by Varian (2004) and Aspnes et al. (2006).
5There are other notable studies about network flow interdiction problems such as Hong (2011), Wood (1993),

Washburn & Wood (1995), Reijnierse et al. (1996), Kalai & Zemel (1982), Israeli & Wood (2002). There also exists a
vast literature in operations research and computer science about network defence, for instance Alpcan & Başar
(2010), Smith (2010), and Zhu & Levinson (2012).
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curity decisions are strategic complementary. On the other hand, if allowed to share defence
resources with other players, for similar reasons, individual nodes might also inefficiently
allocate defence resources. The first type has been the focus of the works mentioned above.
Here, we concentrate on the second type of inefficiency, and in order to do so, we separate
the individual defence-production problem from the resource-sharing one.

The paper is organised as follows. Section 2 introduces some network notation. Section
3 introduces the model. Section 4 presents the main results. In section 5 we discusses the
impact of some network modification on the welfare of the players. Section 6 concludes.

2 Network notation and definitions

A directed network G(N, L) is composed by a set of nodes N = {1, ..., n} with n ≥ 2 and a
set of directed links L such that ij ∈ L means that there exists a directed link from i to j nodes.
A path between two nodes i and j, Pij, is a sequence of nodes i1, i2, ..., ik such that i1 = i and
ik = j, and ii2, i2i3, ..., ik−1 j ∈ L. Two nodes are connected if there exists a path between them.
A cycle is a path Pij where i = j. We define the set of predecessor nodes, Bi ⊂ N, as the subset
of nodes which can reach i by a path. Similarly the set of successor nodes or follower, Fi ⊂ N,
the subset of nodes which can be reached from i through a path. We say that a node i is a jq-
middleman node if and only if i ∈ Pjq for any Pjq, or there are no paths from j to q which do not
involve node i. Thus, we say that i is a middleman if and only if i is jq-middleman for at least
one ordered pair (j, q) of nodes.6 We define a node i such that Fi = ∅, or who does not have
any followers, a sink node. The out-degree of a node i, δ+i , is the number of links departing
from i, while the in-degree, δ−i , the number of links received by i. A star graph is a graph where
a central node is connected to the rest of the players which are uniquely connected to him. A
core-periphery graph is a graph similar to the star graph where a subset of players composes
the core and are connected to the rest of peripheral players. A directed acyclic graph (or acyclic
digraph) is a directed graph with no cycles. With abuse of notation, we indicate G − i the
graph obtained from G by removing the node i and any related link. We finally define by G
the set of directed networks and Gn the set of directed networks of n nodes.

6This definition of middleman may coincide with the widely studied betweenness centrality. However,
this is not necessary. The betweenness centrality is measured by considering the shortest paths between two
nodes, if more than one, while a node is a jq-middleman if any path from j to q passes through him. In other
words, a jq-middleman would necessarily score a positive betweenness centrality level while a node with positive
betweenness centrality score may not be a middleman.
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3 Model

There is a set of (n+ 1) players, M = N ∪ {A}, where N is the set of players which we simply
call defendants, connected in a directed network G(N, L) with n ≥ 2, and A is a player which
we simply call attacker. We call a non-empty subset of nodes O ⊆ N the set of producers. Each
player s ∈ O produces a quantity xs > 0 of a good, which can travel through the network via
the existing directed paths starting from s. Which is, if there exists a path Psi in the network
G, player i receives the quantity xs produced by s. We say that two producers, s and q, are
homogeneous if xs = xq. Later we will define in details the preferences of each player in N.7

The next definition will be useful for some of our results.

Definition 1. A directed network G is connected if and only if each producer s ∈ O is connected to
any i /∈ O.

Each node is endowed with a unit of a divisible and transferable resource d which we call
defence resource. We define Di = dii + ∑j 6=i dji, the total defence resources owned by i, where
dji indicates the resource transferred by j to i. We assume that d is non-transferrable to third
nodes, which is dji received by i from j cannot be transferred again to q 6= j.

3.1 Conflict

We analyse the two following scenarios:

• Non Strategic Attack (S0): One node in N is randomly attacked according to a proba-
bility distribution over the nodes set P(i) with i ∈ N.

• Strategic Attack (S1): One node in N is attacked by an attacker who aims to maximize
the expected disruption of the network.

We specify the technology of conflict. We assume that the attacker A always attacks with a
finite constant intensity β > 0. A node i owning Di total defence, if attacked, survives with
probability α : R+ → [0, 1) which is defined by a classic Tullock contest function8,

α(Di) =
Dγ

i
Dγ

i + βγ

7To exclude trivial cases, we can assume that any producer has strictly positive out-degree and any non-
producer strictly positive in-degree.

8See Tullock (2001).
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with parameter γ ∈ (0, 1] and β > 0 constant intensity of attack. With probability 1− α(Di),
the node is destroyed and thus removed from G. The function α(Di) naturally captures the
ability to resist an attack making it proportional to the relative defence ability of the targeted
node i and the one of the attacker. Moreover, the restriction imposed on the parameter γ

guarantees strict concavity of α(D) for all D ≥ 0, or diminishing returns to defence.

Define the network value function vi : G ×R+ → R+ as

vi(G) = f

(
∑

s∈Bi∩O
xs

)
(1)

where Bi ∩O is the subset of producers who are also predecessors of i, or the producers who
are connected to i. The function f : R → R is differentiable, strictly increasing on R++, and
f (0) = 0. In words, player i benefits from being part of a component proportionally to the
quantity of goods they receive from some producer. If they are not connected to producers,
then there is no benefit from being part of the network. Thus, we can naturally compute the
network total value function V : R+ → R+ simply as

V(G) = ∑
i∈N

vi(G)

We remark that (1) is a generalization of the network value functions considered in Dz-
iubiński & Goyal (2017), Goyal & Vigier (2014), and Cerdeiro et al. (2017). If we assume
undirected graphs, or a node can reach any other node of the same a component, and each
node is also a producer (O = N), then the argument of the function f is essentially a multiple
of the component’s size. On the other hand, (1) might also describe cases where some path
is not available, or where some node may be a simple receiver or an intermediary, i.e. where
belonging to a network matters as long as it gives access to specific nodes by a path.9

Define a node i’s disruption value as Ṽi = V(G) − V(G − i). In words, Ṽi measures the
potential impact of removing i from G on the defendants’ valuation of the network. It is
always positive, since by removing a player i the total value decreases of at least vi, and it is
maximal when the elimination of a node prevents the rest of the players from receiving any
good.

Finally, define mi as the number of nodes depending on i to be connected to at least one

9This may well describe the cases of trade networks, or infrastructure networks for example. Few countries
own and export natural resources. The value of belonging to the trade network of a natural resource is linked
exclusively to the existence of a trade path from the producer to the final country-consumer.
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producer, or mi = |Mi| where Mi = {j ∈ Fi : vj(G)− vj(G− i) > 0}. We can now describe
the game in more detail.

3.2 Game setup

We consider a two-stage sequential game. In both S0 and S1, in the first stage the nodes si-
multaneously choose their defence allocation, while in the second stage one of the nodes is
attacked. In S0, the target node is randomly picked among N according to a generic distribu-
tion P(i) over N, while in S1, the attacker optimally chooses a probability distribution over
N given the choices of the defendants in the first stage.

Each defendant i ∈ N simultaneously chooses a strategy which is a vector di = (di1, ..., din)

with dij ≥ 0 and dii + ∑j 6=i dij ≤ 1. Thus the strategy space for each i is Si = [0, 1]n and
S = S1 × ...× Sn the set of strategies. A defendant profile is SD = (d1, d2, ..., dn).

We focus now on the strategic scenario S1. Given SD, the attacker chooses an attack profile
SA(SD) = (σ1, ..., σn), where σi is the probability to attack node i, thus SA : S → L(N) where
L(N) is the set of probability distributions over N. When σi = 1, we refer to a pure strategy.
To ease the notation, we simply denote SA the attack strategy SA(SD) when it is clear from
the context the relevant defence strategy.

Given the strategy profile (SD, SA), the expected payoff of a node i is

Ui(G, SD, SA) = ∑
j∈N

σj[α(Dj)vi(G) + (1− α(Dj))vi(G− j)]

In other words, if the attacker attacks and destroys a node j which is critical to i to receive
goods from a producer s, player i gets utility vi(G− j) < vi(G). On the other hand, if j is not
critical and/or j successfully survives the attack, then payoff of i simply reduces to vi(G). We
assume that if i is attacked and removed from G, then Ui(G− i, SD, SA) = 0.

The expected payoff of attacker A under (SD, SA) is described by φ : G × S×L(N)→ R+

as

φ(G, SD, SA) = ∑
i∈N

σi(1− α(Di))Ṽi
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All things being equal, φ is maximal when A attacks and destroys a node i such that V(G−
i) = 0, and lowest when i survives the attack. The minimal disruption given a successful
attack implies Ṽi = vi(G). In other words, the attacker’s expected payoff increases with the
chances of winning the conflict and with the expected disruption caused by the elimination
of a target node. The disruption is minimal when it is equal to the network value of the
node destroyed while maximal when it is equal to the network total value, or, as result of the
successful attack, nobody gets access to any good produced by producers.

A strategy profile (S∗D, S∗A) is a sub-game perfect Nash equilibria (SPNE) if and only if for
every (SD, SA),

• Ui(G, S∗D, S∗A) ≥ Ui(G, SD, S∗A) for all i ∈ N, and

• φ(G, S∗D, S∗A) ≥ φ(G, S∗D, SA).

We focus on the SPNE of the game.

4 Results

4.1 Strategic Scenario (S1)

We start by assuming the strategic scenario S1. The first result shows that in any SPNE and
network G, we expect an equilibrium defence profile which allocates defence resources to the
nodes as proportionally to their disruption values.

Proposition 1. An equilibrium profile (S∗D, S∗A) exists and it is such that for any pair i and j attacked
with positive probability,

D∗i =
(

kD∗γj − βγ(1− k)
) 1

γ

with k ≡ Ṽi/Ṽj, thus i and j are defended proportionally to their disruption values.

Proof: The existence is guaranteed by the fact that in the second stage, S∗A is always a best
response to S∗D, and in the first stage, the game played by the defendants has at least one
NE since Si is a compact, convex subset of [0, 1]n, and Ui(·) is continuous in (S1, ..., Sn) and
quasiconcave in Si. To see that D∗i ≥ D∗j for all i, j ∈ N such that σi = σj > 0 and Ṽi ≥ Ṽj,
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observe that if best response of A is to attack both i and j with positive probability, it must be
that φ(G, S∗D, σi = 1) = φ(G, S∗D, σj = 1), or

(1− α(D∗i ))Ṽi = (1− α(D∗j ))Ṽj

Thus, D∗i ≥ D∗j , with equality holding only in the case Ṽi = Ṽj. Rearranging, we obtain the
expression for D∗i as stated in the proposition.

The intuition is fairly simple. The attacker attacks more than one node with positive
probability only if these nodes are perceived as equally attractive. This means that if the
attacker targets two nodes of different disruption values, it must be that the node with the
higher disruption value is also relatively more defended than the other. Moreover, if multiple
nodes are equally crucial to a player for receiving goods from a producer, he would find it
optimal to transfer resources to them in a way that would make the attacker indifferent to
attacking any particular one of them; if the attacker was instead attacking one of these nodes
with probability one and the player could divert some of his defence resources to this target,
he would profitably do so.

We are going to check if the decentralized equilibrium defence allocation is efficient or if it
coincides with the allocation chosen by a planner aiming to minimize the expected network
disruption.

Consider the following game played by a central planner (CP) against the attacker A. The
CP and A sequentially choose a defence allocation and a probability distribution over the
nodes, respectively. Which is, in the first stage CP chooses a vector D = (D1, ..., Dn) with
Di ≥ 0 for all i ∈ N and ∑i Di = n, and, similarly to the previous setting, in the second stage
A chooses a distribution over N given D. The expected payoff of the attacker is not changed.
The planner’s expected payoff is π(G, D, SA) = −φ(G, D, SA). We study the SPNE of the
game, (De, Se

A). We call an equilibrium defence allocation De an efficient defence allocation.

Proposition 2. For any connected G with homogeneous producers, centralized and decentralized
defence equilibrium profiles De and S∗D coincide if mi > mj for all i, j ∈ N such that Ṽi/Ṽj > 1 and
σe

i = σe
j > 0. The condition is also necessary if Ṽi/Ṽj is large enough.

Proof: We first prove the sufficiency part. Consider a centralized equilibrium profile (De, Se
A)

such that σe
s = σe

i > 0 for at least one pair i, s ∈ N. Assume ms > mi and Ṽs > Ṽi. Without
loss of generality, consider the case of one producer s ∈ O and one non-producer i /∈ O such
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that σe
s = σe

i = 1/2. The argument for more than one producer and in general more targets
would be similar. If σe

s = σe
i , then (1− α(De

s))Ṽs = (1− α(De
i ))Ṽi. Suppose S∗D 6= De. Start

from the case De
i > D∗i . In the decentralized setting, this implies that A would optimally

attack i with probability σ∗i = 1. Best response of mi players depending on i to receive goods
from the producer would be to send resources to i up to mi, thus if De

i > D∗i , it must be that
De

i = mi + 1 + ε > mi + 1 = D∗i , for some ε > 0. This means that in the centralized setting it
is holding

(1− α(n−mi − 1− ε))Ṽs = (1− α(mi + 1 + ε))Ṽi (2)

However, for no ε ≥ 0 this is satisfied when ms > mi. In particular, in order to get σe
s = σe

i ,
less than mi resources need to be allocated to i. This is due to the fact that Ṽq increases linearly
with mq while α increases by less than a unit for each unit defence resource added. Thus, if
De

i = mi + 1 + ε with ε > 0, then σe
s = 1, a contradiction. Consider now the case De

i < D∗i .
This implies that σ∗s = 1. However, since ms = n− 1 > mi, followers of s can profitably divert
resources to s, until D∗i = De

i . Thus S∗D was not a best response, a contradiction. Therefore,
it must be that S∗D = De, or centralized and decentralized defence equilibrium profiles must
coincide.

We now prove the necessity part. Suppose S∗D = De and for a pair i, j ∈ N such that
Ṽi > Ṽj, we have σe

i = σe
j = 1/2. Again, the argument for the case of more than two targets

is similar. If S∗D = De, then De
i = D∗i > D∗j = De

j and (1− α(D∗j ))Ṽj = (1− α(D∗i ))Ṽi. We can
decompose mi and mj followers of the two players as mi = m + m̄j and mj = m + m̄i, where
m ≥ 0 are common followers for whom i and j are both critical and m̄j (respectively m̄i), the
nodes for whom i (respectively j) is uniquely critical. Call k ≡ Ṽi/Ṽj. Observe that, for k > 1
and large enough, there exists a unique m̄∗j > 0 which satisfies

1− α(m̄i + 1)
1− α(m + m̄∗j + 1)

= k

or

kα(m + m̄∗j + 1)− α(m̄i + 1)− (k− 1) = 0

Call the left-hand side g(k, m̄∗j ). It is clear that ∂g(k, m̄∗j )/∂k < 0 and ∂g(k, m̄j)/∂m̄j > 0 for
all m̄j > 0. Thus, there exists a k∗ > 1 such that m̄∗j > m̄i, or mi = m + m̄∗j > m + m̄i = mj.
Therefore, when k ≥ k∗ for any pair i, j ∈ N such that σ∗i = σ∗j > 0, S∗D = De only if it holds
mi > mj.
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Under certain conditions and when the attacker is strategic, the defendants, by following
their individual interests, optimally coordinate their actions and allocate defence resources
minimizing the expected network disruption. We explain the intuition by means of a simple
example. Consider a network of three nodes connected in a line, where a producer sends a
good to the other nodes via the second node. It is evident that the producer has the highest
disruption value, followed by the middleman and the sink node, respectively. Consider a
planner owning three units of defence resources. The planner would allocate the resources
such that, if possible, the attacker would find it equally profitable to attack any one of the
three nodes; any other allocation would attract the attacker toward one of the nodes with
probability one, thus making it profitable for the planner to increase the defence of this node.
The planner can achieve this only by allocating resources proportionally to the nodes’ disrup-
tion values. Consider now the decentralized problem where each node is endowed with a
unit defence and assume that the middleman has received more defence than in the planner’s
allocation. Then, the attacker must find it profitable to attack the producer with probability
one, and consequently the other nodes would find it profitable to reallocate some of their
defence to the producer. A similar argument holds if the node who initially benefited from
more resources was either the producer or the last node of the line. In other words, individ-
ual players would redistribute resources in order to maximize their chance of receiving goods
from the producer, and this problem, under the conditions stated, coincides with minimizing
the expected network disruption, which is the goal of the central planner.

(a) (b)

Figure 1: Two examples where conditions for Proposition 2 do not hold and thus decentralized and centralized
allocations might differ. In (a), player q is the node with highest disruption value despite mq < mi = mj. This
might lead to under-protection of q in a decentralized setting since the producers do not strictly benefit from
sharing defence with q. In (b), producer j does not reach all the players in N but produce more goods than i.
This might lead to under-protection of j in a decentralized setting if xj − xi is large enough (in the picture the

size of the node indicates the level of production). For instance, a planner might be able to make both the
producers equally attractive to the attacker by reallocating optimally n units of defence resources while in a

decentralized setting, j would never receive more than 2 units.
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More specifically, two conditions guarantee the result. One is related to the producers and
one to the followers of targeted nodes. First, if the producers are homogeneous and the net-
work is connected.10 If this does not hold, we might get an outcome similar to the case of two
or more separate components of different size; a planner might still allocate defence such that
the attacker is indifferent to attacking two or more players from distinct components while
in a decentralized setting this might not happen. Intuitively, players from different compo-
nents would not strictly benefit from sharing resources between them, thus decentralized and
centralized allocation might differ (see Figure 1b).

Second, a node with positive disruption value needs enough followers willing to enhance
her defence capability, or the disruption value Ṽi should be proportional to mi for each tar-
geted node i. We clarify this point by giving a simple example where this is not the case.
Suppose two producers sending goods to a unique middleman q, who in turn is transferring
their goods to other mq ≥ 1 players (see Figure 1a). In such a case, the disruption value of the
middleman, Ṽq, is higher than the disruption values of each individual producer. However,
in a decentralized setting, we can only say that q would receive defence with certainty from
himself and mq followers, since the producers do not strictly benefit from sending resources
to q. This implies that if in the centralized setting the planner would optimally allocate De

s < 1
to each producer and De

q > mq + 1 to q, there exists at least one equilibrium in the decentral-
ized setting where the defence allocation differs from the planner’s allocation. This would
not happen if the disruption values of the defendants were proportional to the number of
nodes for whom they are critical.

A way to quantify possible inefficiencies arising in the decentralized equilibria is by com-
puting the price of anarchy (PoA) (Koutsoupias & Papadimitriou (2009)). This is the ratio be-
tween the equilibrium aggregate expected payoff of the defendants in the centralized game
and the minimal equilibrium aggregate expected payoff of the defendants in the decentral-
ized setting. Define W∗(G, S∗D, S∗A) = ∑i∈N Ui(G, S∗D, S∗A) and We(G, De, Se

A) = ∑i∈N Ui(G, De, Se
A).

For a given network G, the price of anarchy is

PoA(G) =
We(G, De, Se

A)

min(S∗D,S∗A)
W∗(G, S∗D, S∗A)

=
∑i∈N σe

i [α(De
i )Ṽi + ∑j∈N vj(G− i)]

min(D∗,S∗A) ∑i∈N σ∗i [α(D∗i )Ṽi + ∑j∈N vj(G− i)]
≥ 1

10If the set of producers O is singleton, this condition is trivially satisfied.
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which is equal to one whenever the centralized and decentralized allocations coincide. Call
γi ≡ α(De

i )∑j∈N Ṽi + ∑j∈N vj(G − i). When De 6= S∗D, it must be that there exists a player
i ∈ N such that De

i > D∗i and σ∗i = 1 > σe
i . Hence, the unique decentralized equilibrium

profile would imply that mi followers of i send all their resources to i, or D∗i = mi + 1, thus
the PoA would necessarily be greater than one and equal to

PoA(G) =
∑i∈N σe

i γi

α(mi + 1)Ṽi + ∑j∈N vj(G− i)
(3)

From (3) we note that, all things being equal, by increasing mi the inefficiency reduces; if
we increase the number of nodes who are willing to defend player i, the defence allocations
in the centralized and decentralized setting converge. On the other hand, by increasing the
disruption value of node i, holding fixed mi, the inefficiency increases. For instance, consider
again the example in Figure 1a. In a decentralized equilibrium where D∗i = D∗j > 0 and
σ∗q = 1, it must be that De

q > D∗q . In such a case, if the number of blue nodes were to increase,
De

q/D∗q would reduce, thus PoA would decrease. On the contrary, if the number of producers
were to increase (white nodes), the disruption value of q would increase while the maximal
number of defence resources received by the same would possibly remain unchanged, hence
De

q/D∗q would increase and so does the inefficiency as measured by the PoA.

4.2 Non-strategic Scenario (S0)

Consider now S0, or assume that each node i ∈ N can be attacked according to a probability
distribution P(i). As previously, we start by discussing the decentralized setting. Recall Mi,
the set of nodes who depend on i to receive goods from some producer.

Proposition 3. For any G and probability distribution P(i) such that pi > 0 for all i ∈ N, the
equilibrium defence profile S∗D is such that each node i receives resources only from the subset of nodes
Mi and proportionally to pi.

Proof: Consider the problem faced by a node j connected to a producer s by a unique path Psj.
Node j would allocate defence resources to herself and to other nodes in order to maximize
the probability of receiving goods from the producer. Since pi > 0 for all i ∈ N, it is never
optimal to allocate resources to nodes which are not crucial in order to receive goods from
a producer. Since we start by assuming a unique path connecting s to j, any node q ∈ Psj is
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essential to j. This means that j would choose an allocation d∗j = (d∗jq) for all q ∈ Psj satisfying

∑q∈Psj
djq = 1, solving

max
dj

P1 = ∑
q∈Psj

pqα(Dq)

for a given P(i) and di with i 6= j. Since P1 is a sum of strictly concave functions, the optimal
allocation d∗j is unique for each di, and such that D∗q is proportional to pq. Consider now
a node k ∈ Mj. Similarly, player k would choose an allocation d∗k which, given the usual
constraint, maximizes the probability of receiving the good from s, thus solving

max
dk

P2 = pkα(Dk) + ∑
q∈Psj

pqα(Dq)

= P1 + pkα(Dk)

Observe that the amount 1− d∗kk optimally allocated by k to the nodes q ∈ Psj would also
maximize P1 and therefore d∗kq would also be unique given di with i 6= k, and such that D∗q is
proportional to pq.

Consider the case of multiple paths connecting producer s to j. Suppose there exists at
least another path P′sj 6= Psj connecting s to j. This means that there are at least two nodes
q ∈ P′sj ∪ Psj who are not crucial to j to receive the good from s. Without loss of generality,
suppose only two alternative paths. Note that the nodes which are essential to j in this case
can only be the nodes which are common to both paths, or z ∈ Psj ∩ P′sj. Player j’s optimal

allocation, d∗
′

j , now solves

max
dj

P′1 = ∑
z∈Psj∩P′sj

pzα(Dz)

Observe that, since s ∈ Psj ∩ P′sj, this set is necessarily non-empty. As previously, this problem

admits a solution d∗
′

j for any di since P′1 is strictly concave, and, given ps > 0, the solution is

also unique since d∗
′

jq = 0 for all q /∈ Psj ∩ P′sj and d∗
′

jz is such that D∗z is proportional to pz for
all z ∈ Psj ∩ P′sj.

11

11It is enough to assume pi > 0 for at least one node i essential to j to be connected to any producer to
guarantee d∗jq = 0. If there is no such node, sending resources to q would never affect the payoff of j, thus we
cannot exclude an equilibrium where d∗jq > 0.



Decentralised Defence of a (Directed) Network Structure 16

Players share defence resources in order to minimize the probability of disruption of cru-
cial paths connecting them to producers. Each node composing a unique path is therefore
equally essential to her followers if they are to receive the good. Thus, the only element deter-
mining the defence received by one of these nodes when each could be attacked with positive
probability is the probability of being attacked, independently of her disruption value. The
example in Figure 2 should clarify this point. Player s is the unique producer while player i is
a middleman node. Consider beliefs {ps > pi > 0, pj = pq > 0}. Since player s is essential to
all players and ps > pi, we expect them to allocate more to s than i (D∗s > D∗i ). Moreover, this
is feasible since more players depend on s than i, or ms > mi, so there will be enough of them
willing to satisfy the condition D∗s > D∗i . Consider instead beliefs {pi > ps = pq > pj > 0}.
We know that player s and player q would allocate d∗qq = d∗ss = 1 to themselves. Player j
will then optimally transfer d∗ji > 0 to i, and i will allocate d∗ii = 1 to himself, so D∗i > 1.
Therefore, we obtain S∗D = (D∗i > D∗s ≥ D∗q > D∗j ), which implies individual equilibrium
defence capabilities not proportional to the nodes’ disruption values.

Figure 2: Node s is a producer node while node i is a middleman node.

This example anticipates the following result. Consider again a planner who aims to
minimize the expected network disruption. Which is, the planner chooses an allocation De =

(De
1, ..., De

n) such that ∑i∈N Di = n and which minimizes the expected disruption, ∑i∈N pi(1−
α(Di))Ṽi for a given P(i).

Proposition 4. For any connected G and P(i) such that pi > 0 for all i ∈ N, the centralized and
decentralized equilibrium defence allocations coincide if and only if P(i) = P̃, where for all pairs
i, j ∈ N, it holds p̃iṼi/ p̃jṼj = 1.

Proof: We prove the proposition for the simple case of n = 2 nodes, where one producer s is
sending goods to a peer i. The argument for the general case of a network with n ≥ 2 nodes
is the same. Call pi the probability of i being attacked and ps = 1− pi the probability of s
being attacked, and assume both strictly positive. A planner would optimally allocate Ds and
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Di such that the expected disruption (1− pi)(1− α(Ds))Ṽs + pi(1− α(Di))Ṽi is minimized
given the constraint Di + Ds ≤ 2. Clearly the constraint will always bind at the optimum,
thus De

i = 2− De
s for any De

s . Since Ṽi = vi and Ṽs = vs + vi = 2vi, the optimal De
s would

satisfy

α′(De
s)

α′(2− De
s)

=
α′(De

s)

α′(De
i )

=

(
pi

1− pi

)
1
2

Consider now the decentralized equilibrium allocation. Given ps > 0, it is easy to see that the
producer would always allocate a unit resource to himself, or d∗ss = 1. Player i would choose
d∗is in order to maximize the probability (1− pi)α(1+ dis) + piα(1− dis). Therefore, d∗is would
satisfy the condition

α′(D∗s )
α′(D∗i )

≤
(

pi

1− pi

)
Note that equality holds if and only if pi < 1/2, while for pi ≥ 1/2 we get the corner solution
d∗is = 0. When pi → 0, it is trivial to see that S∗D = De, or when the producer is attacked
with probability close to one, the equilibrium and efficient allocation would coincide to the
limit. Observe that by increasing pi from 0, the difference De

s − D∗s > 0 increases, or in the
equilibrium allocation s is increasingly under-protected compared to the efficient level. We
show that this is true up to pi = 1/2. Call p̃ the probability of A attacking i and such that
De

s = 1. This probability is unique and it is easy to check that p̃ > 1/2. We also know that
D∗i = 1 for any pi ≥ 1/2 since the equilibrium would imply the corner solution d∗ii = d∗ss = 1.
This means that as far as pi < p̃, it must be De

s > D∗s , while for pi ≥ p̃ it must be that De
s ≤ D∗s ,

with equality holding if and only if pi = p̃. In general, for any G of n ≥ 2 nodes, there exists
a unique distribution P̃ where p̃i > 0 for all i ∈ N and such that for all pairs i, j ∈ N,

p̃i

p̃j

Ṽi

Ṽj
= 1 (4)

Given P̃, the equilibrium efficient allocation De and the decentralized one S∗D then coincide
since De

i = D∗i = 1 for all i ∈ N.

Under S0, when each node can be attacked with some positive probability, decentralized
and centralized equilibrium profiles coincide only when the probability distribution over the
nodes is P̃ such that p̃iṼi/ p̃jṼj = 1 for all pairs i, j ∈ N. This is due to the fact that while
the planner would take into account both P(i) and the disruption value of each node when
allocating defence resources, individual players would base their allocations purely on P(i).
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In particular, we can say that the decentralized equilibrium allocation might be efficient only
in two cases. First, when the producers reach all the nodes (network is connected) and the
only possible targets are the producers. In such a case, it is intuitive to see that the nodes
and the planner all have aligned objectives – to defend the producers. Second, if the attacker
attacks each node with positive probability and according to the probability distribution, P̃.
In such a case, centralized and decentralized equilibrium defence allocations coincide and
imply D∗i = De

i = 1 for all i ∈ N. The intuition goes as follows. The planner would allocate
resources proportionally to both the nodes’ probability of being attacked and their disruption
values. When nodes are attacked with probability inversely proportional to their disruption
values, individuals’ best responses would be to allocate their own resources to themselves.
Therefore, decentralized and centralized allocations coincide if and only if the probability
distribution over the nodes is such that the planner would optimally allocate equal amount
of defence to each node.

Consider for example the network in Figure 2 and assume a random attack such that
pz = 1/n for all z ∈ {s, i, q, j}. Equilibrium allocation S∗D is such that d∗zz = 1 for all z, or
the nodes do not share defence resources. A central planner would instead allocate resources
proportionally to the nodes’ disruption value, or De

s > De
i > De

j = De
q, thus De 6= S∗D. On

the other hand, suppose ps = 1, or the unique producer is attacked with certainty. Then,
D∗s = De

s = n, or the decentralized and centralized equilibrium defence allocation coincide.
Consider now the probability distribution P̃ = {ps = 0.09, pi = 0.18, pj = pq = 0.36}. Then,
S∗D = De and such that D∗z = 1 for all z ∈ N. In fact, P̃ is the unique distribution where pz > 0
for all z such that S∗D = De.

5 Discussion

5.1 Welfare implications of link-modification

In this section, we discuss how link modifications in G may impact the welfare of the defen-
dants. We assume hereafter the strategic scenario S1.

Given an equilibrium strategy profile (S∗D, S∗A), define the set of potential target nodes T ⊆
N as T = {i ∈ N : σ∗i > 0}. This is the set of nodes who, in equilibrium, are attacked with
positive probability by the attacker.

Consider again the welfare function W(G, S∗D, S∗A) given the equilibrium profile (S∗D, S∗A),
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W(G, S∗D, S∗A) = ∑
i∈N

σi[α(D∗i )V(G) + (1− α(D∗i ))V(G− i)]

Observe that any network G which in equilibrium maximizes W(G, S∗D, S∗A) will also mini-
mizes the attacker’s expected payoff φ(G, S∗D, S∗A). This implies that by studying the changes
in the attacker’s equilibrium expected payoff, we can also infer the relative changes in wel-
fare. Moreover, since the total amount of defence resources in N is finite, by increasing the
size of T, we might decrease the total amount of defence owned by a node in T. Therefore, all
things being equal, when the number of potential targets increases, the attacker’s expected
payoff in equilibrium might increase.

To see this more clearly, consider the case of a network with one producer i which is
also the unique target, or T = {i} (see Figure 3a). In particular, consider the decentralized
equilibrium profile where D∗i = n and σ∗i = 1. Let G′ 6= G be the network obtained from G
by modifying its link structure such that the new set of potential targets, T′, is not anymore
singleton and one player, node j, becomes a middleman (see Figure 3b). Thus, in equilibrium,
σ∗i = σ∗j > 0 and D∗

′
i < n since D∗j > 0. In such a case, the attacker’ s expected payoff

in G′ would necessarily be higher than in G since φ(G′, S∗
′

D , S∗
′

A) = (1− α(D∗
′

s ))Ṽs > (1−
αs(D∗s ))Ṽs = φ(G, S∗D, S∗A). In other words, by increasing the possible targets of A, we also
increase the attacker’s likelihood to win the conflict.

Definition 2. A network G ∈ Gn is optimal if W(G, S∗D, S∗A) ≥W(G′, S∗D, S∗A) for all G′ ∈ Gn.

It follows the next result.

Remark 1. A network G is optimal only if, in equilibrium, is such that T = O.

We provide the intuition here. Consider a network where in equilibrium there exists at least
one middleman which is not a producer but which is attacked with positive probability. If
there exists a link-modification which can decrease the disruption value of one node in T, it
would always weakly improve the expected welfare. Since we can always eliminate middle-
men by adding links to the original network, we can always improve the welfare of a network
with middlemen. When T ⊆ O, there is no link modification which can reduce the size of T,
hence an optimal network would necessarily imply an equilibrium where T ⊆ O.
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(a) G (b) G′

Figure 3: In the graph G, the producer i (white node) is also the only potential target node (T = {i}), thus he
will receive defence resources from the rest of the peers (D∗i = 5). In G′, the producer i still has maximal

disruption value but now D∗i = 3.2 since the middleman j (green) is also critical enough for the rest of the
nodes and he will get D∗j = 1.8 (T′ = {i, j}). The expected payoff of the attacker is higher in G′ than in G.

We may also ask whether sharing a fixed level of production among multiple nodes is
welfare improving. Consider the following three alternative architectures of n nodes and
m = (1, n) producers: A core-periphery graph with m core producers, Gcp (Figure 4a), a star
graph with one central producer, Gs (Figure 4b), and a non-full core-periphery graph, Gncp,
where m core producers are connected to each other and to a fraction (n−m)/m of peripheral
nodes each (Figure 4c). Assume that the total amount of goods produced by the producers is
equal to 1, and when m > 1, the total production is equally shared.

Observe that when A attacks with sufficiently high intensity, the unique equilibrium pro-
file in all the three structures is such that A would attack the nodes in the core with positive
probability, and the peripheral nodes transfer all their defence resources to these nodes. The
welfare levels generated by the three architectures are

W(Gs, S∗D, S∗A) = α(n) f (1)n

W(Gcp, S∗D, S∗A) = α
( n

m

)
n +

(
1− α

( n
m

))
f
(

m− 1
m

)
(n− 1)

W(Gncp, S∗D, S∗A) = α
( n

m

)
n +

(
1− α

( n
m

))
f
(

m− 1
m

)(
m− 1

m

)
n



Decentralised Defence of a (Directed) Network Structure 21

(a) Core-periphery (b) Star (c) Non-full Core-periphery

Figure 4: The total production is constant and equally shared between producers when more than one. In (a),
the removal of one producer would have relative small impact since the rest of n− 1 nodes could still receive
half of the production from the second producer. In (b), the unique producer is maximally defended but his

removal gets the highest network disruption. In (c), the removal of one producer gets high disruption although
not as high as in (b).

Among the three, the core-periphery graph with m producers is clearly the disruption-
minimizing network, but it is also the most “expensive” structure requiring m(n− 1) active
links. The star graph has the least number of active links, n− 1, but the disruption in case of
failure of the central node is maximal. The non-full core-periphery graph has (n− 2m + m2)

active links which makes it less expensive than the core-periphery graph but more expensive
than the star graph. In terms of potential disruption, the failure of one of the core nodes in
Gncp would prevent the rest of the nodes to get his share of production, 1/m, and n/m nodes
to receive (m − 1)/m share produced by the rest of the m − 1 producers too. This implies
that the potential disruption created by a successful attack on one of these nodes in Gncp

is between the disruptions expected in Gcp and Gs. In terms of resilience, the star graph is
the most resilient structure since in equilibrium the unique producer can use all the existing
defence resources, while in Gcp and Gncp, each producer would own only a fraction n/m of
the total defence capability of the population.

It is possible to check that the welfare generated by the core-periphery graph W(Gcp, S∗D, S∗A)
is the highest, while W(Gncp, S∗D, S∗A) ≥ W(Gs, S∗D, S∗A) only for m large enough (see Figure
5a). We provide the intuition. By increasing m, the defence ability of a potential target in
Gcp decreases as the quantity n/m decreases. However, the disruption value of the potential
target also decreases as n − 1 nodes would possibly lose a smaller share of total produc-
tion, 1/m. The latter effect is always stronger than the former when we assume α concave,
thus by increasing m, the welfare generated by Gcp would increase monotonically. In Gncp

each producer is also a middleman for the goods produced by the rest of the producers.
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This implies that the disruption value of a potential target would decrease less than in Gcp

since there would still be a fraction (n− m)/m of peripheral nodes depending on one pro-
ducer/middleman to receive the whole production from the core. As consequence of this,
it is possible that when m is sufficiently small, the impact of a drop in individual’s defence
ability would be larger than the impact of a reduction in individual production of goods, and
consequently, that the welfare generated by Gncp would be smaller than the one expected in
Gs (see Figure 5a).

We can finally ask how the size of the network, n, might impact the welfare generated by
the three architectures considered. In particular, we ask if, for a fixed number of producers
m, by increasing n, we expect the differences in welfare to diverge or converge. Let’s first
consider the graphs Gcp and Gs. All things being equal, when n increases, a potential target’s
probability of surviving an attack increases more in Gcp than in Gs and they both converge
to 1. This again is due to the concavity of the α function. Moreover, the disruption created
by the failure of a node in the core increases less in Gcp than in Gs. Hence, all things being
equal, by increasing n, the differences in welfare between these two architectures can only
increase. Consider now Gncp. When n increases, as before, the probability to survive an
attack of a potential target in Gncp and Gs converge. On the other hand, the disruption value
of a potential target in the two structures also converges since each producer in Gncp becomes
a middleman of an increasing number of nodes. Hence, all things being equal, as n increases,
we expect the welfare generated by Gncp and Gs to converge this time, thus both diverging
from the expected welfare in Gcp (see Figure 5b).
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(a) The core-periphery graph generates the highest welfare for all m ∈ (1, n). The star
graph is preferred to the non-full core-periphery graph for relatively small m, or

when the total production is shared among relatively few producers. Here we fix
n = 100, β = 8, and γ = 0.8.

(b) The difference between welfare generated by a core-periphery structure and the
star or non-full core-periphery architectures increases with the number of peripheral

nodes when m is fixed. Here m = 2, β = 8, and γ = 0.8.

Figure 5

Despite these results being specific to the three structures considered, they can still high-
light some important insights. For instance, splitting the production between multiple pro-
ducers might be welfare improving as long as each individual producer would not become
too critical a middleman herself. In other words, when the available defence capability is
finite and there are constraints on the number of links we could possibly activate, a planner
might face a natural trade-off when designing the optimal network structure: to guarantee
high defence ability to each individual target while reducing their individual disruption val-
ues.
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6 Conclusion

One of the main insights from the literature on games of Conflicts on Multiple Battlefields is
that decentralized allocations of defence resources may not be efficient since individual play-
ers fail to internalize the negative externalities of their allocation choices and thus over-invest
in defensive measures. This has also been confirmed under certain conditions in network set-
tings, or when defendants are connected by a network structure which can be attacked and
destroyed by strategic attackers.

We have studied a game from the same family where connected players are endowed with
defence units which can be shared between them. We show that if the attacker is strategic (S1),
under certain conditions on the network structure, the decentralized allocation of defence
resources is efficient, or it coincides with the optimal centralized allocation chosen by a central
planner which aims to minimize the expected network disruption. On the other hand, in
a non-strategic scenario (S0), we expect an efficient decentralized allocation only under a
unique probability distribution over the nodes. This difference is due to the fact that while in
S1 players (non-cooperatively) coordinate their actions by taking into account the disruption
values of the players in the network, in S0 they do not since the likelihood of an attack on a
player is independent of her disruption value.

We also discuss how the network architecture may impact the final welfare of the defen-
dants. Reducing the number of middleman (non producer) players, or players which are
crucial to the flow of the goods through the network, is always welfare improving. When
the production of goods is shared among multiple producers, core-periphery structures with
producers as core players are optimal as their expected disruption is low relative to other ar-
chitectures. Non-full core-periphery architectures (where each core player is linked to other
core players but only to a fraction of peripheral ones) are optimal only when the core is rela-
tively large.
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