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Abstract

Egocentric data refers to collections of images by a user wearing a camera

over a period of time. The pictures taken provide considerable potential for

knowledge mining related to the user’s life, and consequently open up a wide

range of opportunities for new applications on health-care, protection and

security, law enforcement and training, leisure, and self-monitoring. As a

result, large volumes of egocentric data are being continually collected every

day, which highlights the importance of developing video analysis techniques

to facilitate browsing the created video data. Generating condensed yet

informative version from the original unstructured egocentric frame stream

eases comprehending content, and browsing the narratives.

Given the great interest in creating keyframe summaries from video, it

is surprising how little has been done to formalise their evaluation and

comparison. The thesis first carries out a series of investigations related

to automatic evaluation of video summaries, and their comparisons. A

discrimination capacity measure is proposed as a formal way to quantify

the improvement over the uniform baseline, assuming that one or more

ground truth summaries are available. Subsequently, a formal protocol for

comparing summaries when ground truth is available is proposed.

We noticed the mostly used benchmark summarisation methods: random,

uniform, and mid-event selections, are weak competitors. Therefore, we

propose a new benchmark method for creating a keyframe summary, called

“closest-to-centroid”. We examined the presented baseline method on 20

different image descriptors to demonstrate its performance against the typical

choices of baseline methods.

v



Thereafter, the problem of selecting a keyframe summary is addressed

as a problem of prototype (instance) selection for the nearest neighbour

classifier (1-nn). Assuming that the video is already segmented into events of

interest (classes), and represented as a data set in some feature space, we

propose a Greedy Tabu Selector algorithm which picks one frame to represent

each class. Summaries generated by the algorithm are evaluated on a

widely-used egocentric video database, and compared against the proposed

baseline (closest-to-centroid). The Greedy Tabu Selector algorithm leads to an

improved match to the user ground truth, compared to the closest-to-centroid

baseline summarisation method.

Next, a method for selective video summarisation of egocentric video is

introduced. It extracts multiple summaries from the same stream based upon

different user queries. The result is a time-tagged summary of keyframes

related to the query concept. The method is evaluated on two commonly

used egocentric and lifelog databases.

Further to this, it is noted that despite the existence of a large number of

approaches for generating summaries from egocentric video, on-line video

summarisation has not been fully explored yet. This type of summary can

be useful where memory constraints mean it is not practical to wait for

the full video to be available for processing. We propose a classification

(taxonomy) for on-line video summarisation methods based upon their

descriptive and distinguishing properties. Afterwards, we develop an on-line

video summarisation algorithm to generate keyframe summaries during video

capture. Results are evaluated on an egocentric database. The summaries

generated by the proposed method outperform those generated by the two

competitors.
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Chapter 1

Introduction

1.1 Motivation

Wearable camcorders provide consumers with the ability to record their daily

activities all day long. A large amount of research has demonstrated the

potential use of the captured data for monitoring health-related behaviours,

retrieving memory, remembrance cognitive training, preventing functional

declines in elderly people, and navigation for blind people. The applications

are not limited to research purposes anymore, as the affordability of such

devices has grown rapidly in recent years. Mass-market consumers show a

growing interest in recording and sharing every aspect of their lives, despite

the fact that the recorded visual memories may have never be revisited. As

a consequence, the volume of video information stored in on-line or off-line

repositories is increasing. Having a voluminous and at the same time largely

redundant stream of frames makes browsing the videos a disagreeable task.

Therefore, in the past years, there has been a demand to enable automatic

processing, browsing and retrieving of egocentric videos [118, 115, 93].

Thus far, the issue has been addressed in the literature in many aspects: from

indexing and retrieval to summarising the content of the video. While the

literature abounds with methods for summarisation, surprisingly little has

been done towards developing a formal evaluation protocol. Moreover, even

though the goal is to facilitate user’s experience on extracting meaningful

information from the recorded memory, the summarisation methods are often

blind to the user’s interests and preferences.
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This thesis proposes solutions for the aforementioned issues in egocentric

video streams. Due to the variety of subjects in this thesis, related works are

reviewed separately for each subject.

1.2 Aims

The aim of this project is to address deficiencies in the state-of-the-

art egocentric video summarisation evaluation frameworks and user

requirements, by proposing new frameworks, methods and approaches.

1.3 Objectives

To accomplish the aim, we identify the following objectives:

1. Our first objective is to investigate the current approaches for evaluating

and comparing video summarisation methods. Subsequently, we

will aim to propose a new automatic evaluation protocol for video

summarisation.

2. Currently, novel video summarisation methods are compared to simple

(and weak) baseline methods such as: uniform, random, and mid-event

selection. Our second objective is to propose a stronger baseline method

for this collection.

3. Our third objective is to propose a new keyframe summarisation method

which enforces coverage, diversity, and video story-telling. Unlike

the existing methods, the new method should allow for distinguishing

between similar events happening at different times not only between

the selected keyframes.

4. We noticed that the overwhelming majority of keyframe summarisation

methods offer a general summary. Arguing that such a summary would

be of limited use, our fourth objective is to propose a new query-tailored

video summarisation method.

5. Most video summarisation methods work off-line, after the whole video

is available. Our fifth objective is to explore the current state-of-the-art
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in on-line video summarisation, and contribute our own method that

improves on the quality of the existing methods.

1.4 Contributions

The collaborative contributions presented in this thesis can be visualised as a

mind map (Figure 1.1), and listed as follows:

Contributions
to Video

Summarisation

Processing

Off-line

5, 6. On-line

Evaluation

1. Protocol

2. Comparative

Method

Supervised

3. Unsupervised

Summary Type

Generic

4. Query-based

Chapter 3
• Publication #1
• Publication #2

Chapter 4
• Publication #3

Chapter 5
• Publication #4

Chapter 6
• Publication #5

Chapters 7, and 8
• Publication #6
• Publication #7
• Publication #8
• Publication #9

Figure 1.1: A mind map diagram of collaborative contributions to video
summarisation.

1. We propose a generic evaluation protocol for objective comparison of

an automatic keyframe summary, and a set of ground truth summaries.

The development of the protocol was based upon selecting appropriate

visual descriptors, a distance metric, and a matching strategy for pairing

two summaries. Experiments were carried out on a real collection of

video data (Objective #1- Publications #1, and #2).

2. Concerned by the lack of benchmark summarisation methods, we re-

instated an old favourite, which we called “closest-to-centroid”. The

presented baseline was empirically proven to be stronger than other

typical choices of baseline methods such as uniform, random, and
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mid-event selection, tested on egocentric video data (Objective #2-

Publication #3).

3. We developed a method for extracting a keyframe summary from a video

using prototype selection for nearest neighbour classifiers. An edited

nearest neighbour method was designed to ensure coverage, diversity

of events, and video story-telling. The method was demonstrated on

a cartoon example, and tested on egocentric videos (Objective #3-

Publication #4).

4. Acknowledging the limited value of an all-purpose keyframe summary,

we proposed a pipeline enabling users to extract multiple keyframe

summaries from the same stream based upon different queries. The

presented selective summary system acquires a user’s query, carries

out a semantic concept search using a pre-trained Convolutional Neural

Network and visualises the summary as a “compass”. The system was

evaluated on both egocentric videos and lifelogging photo-stream data

(Objective #4- Publication #5).

5. We offer an experimental comparison of on-line video summarisation

methods. Subsequently, we propose a new generic on-line keyframe

summarisation method. The method’s performance was demonstrated

on synthetic and real data (Objective #5- Publications #6, and #7).

6. We contributed a budget-constrained on-line video summarisation

algorithm for egocentric videos. The algorithm is based on control charts

for change detection. Among its main assets are its low computational

complexity, robustness with respect to the feature representation,

and the accessibility of the keyframe summary at any moment of

the recording. Suitable feature descriptors were selected through an

empirical study on egocentric videos (Objective #5- Publications #8,

and #9).

1.5 Publications Related to the Thesis

1. L. I. Kuncheva, P. Yousefi, and I. A. D. Gunn, On the Evaluation of Video

Keyframe Summaries using User Ground Truth, arXiv:1712.06899, 2017.
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2. I. A. D. Gunn, L. I. Kuncheva, and P. Yousefi, Bipartite Graph Matching for

Keyframe Summary Evaluation, arXiv:1712.06914, 2017.

3. L. I. Kuncheva, P. Yousefi, and J. Almeida, Comparing Keyframe

Summaries of Egocentric Videos: Closest-to-Centroid Baseline,

Proceedings of The Seventh International Conference on Image

Processing Theory, Tools and Applications (IPTA 2017), pages 1–6,

Montreal, Canada, 2017. DOI: 10.1109/IPTA.2017.8310123.

4. L. I. Kuncheva, P. Yousefi, and J. Almeida, Edited nearest neighbour for

selecting keyframe summaries of egocentric videos, Journal of Visual

Communication and Image Representation, 52: 118–130, 2018. DOI:

10.1016/j.jvcir.2018.02.010.

5. P. Yousefi, and L. I. Kuncheva, Selective keyframe summarisation for

egocentric videos based on semantic concept search, Proceedings of the

International Image Processing Applications and Systems Conference

(IPAS 2018), pages 19–24, Sophia Antipolis, France, 2018. DOI:

10.1109/IPAS.2018.8708887.

6. C. E. Matthews, L. I. Kuncheva, and P. Yousefi, Classification and

comparision of on-line video summarisation methods, Machine vision

and applications, 30(3): 507–518, 2019. DOI: 10.1007/s00138-019-

01007-x.

7. C. E. Matthews, P. Yousefi, and L. I. Kuncheva, Using control charts

for online video summarisation, Proceedings of the International

Joint Conference on Metallurgical and Materials Engineering (JCMME

2018), vol. 277, page 01012, Wellington, New Zealand, 2018. DOI:

10.1051/matecconf/201927701012.

8. P. Yousefi, L. I. Kuncheva, and C. E. Matthews, Selecting feature

representation for online summarisation of egocentric videos, Poster

session presented at the International Conference on Computer

Graphics and Visual Computing (CGVC 2018), Swansea, UK, 2018. DOI:

10.5281/zenodo.1475097.

9. P. Yousefi, C. E. Matthews, and L. I. Kuncheva, Budget-constrained

online video summarisation of egocentric video using control charts,

Proceedings of the International Symposium on Visual Computing (ISVC
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2018), pages 640–649. Springer, Cham, Las Vegas, USA, 2018. DOI:

10.1007/978-3-030-03801-4_56.

1.6 Thesis Overview

To achieve the aims outlined above, the thesis is organised as follows:

• Chapter 2 presents a background study upon which our research was

drawn.

• Chapter 3 provides an empirical analysis on different components

of a protocol for evaluating the outputs of keyframe summarisation

algorithms.

• Chapter 4 introduces an empirically proven stronger baseline model

for the comparative evaluation of keyframe summaries, instead of the

widely used Uniform and Mid-event selections.

• Chapter 5 targets an instance selection for the nearest neighbour

classifier to generate a keyframe summary, and proposes a generic

video summarisation method.

• Chapter 6 proposes a method to extract a selective, time-aware

keyframe summary for an egocentric video.

• Chapter 7 examines the performance of nine on-line video

summarisation methods using synthetic data and real short videos.

• Chapter 8 proposes a fast and effective on-line summarisation method

for egocentric videos.

• Chapter 9 gives the conclusions drawn overall from this study. It also

indicates the possibility of future work in this area.
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Chapter 2

Background

2.1 What is Video Summarisation?

Video summarisation is a compact way of representing a video by its key

components, converting hours of video into limited series of keyframes or

subshots. This makes video summary a subset of the original video, which

may or may not be presented in a temporal order. Figure 2.1 illustrates two

types of video summaries.

Make a 
summary

Input video

Keyframe summary 

Subshots summary (video skim)

Generating a 
video summary 

Figure 2.1: Illustration of video summarisation types.

2.2 What is Egocentric Vision?

Egocentric vision, also known as first person vision, First Person View (FPV),

refers to video material captured by wearable cameras. Wearable cameras

are small electronic devices that can be placed on the head of the user,
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clipped to the user’s clothes, or worn as accessories. Images are automatically

recorded from the first person perspective without user intervention.

Lifelogging is the process of continuously recording the user’s everyday

experiences, via wearable cameras. Data acquired over a period of time

provide knowledge on the wearer’s life, and consequently enable many

applications. Microsoft’s SenseCam is one of the lifelogging devices, which

has been commonly employed in health related research for several years [68,

13, 26, 130, 27, 132, 83]. Widespread use of wearable devices for health

related research is limited, due to obstacles such as: ethical issues, privacy

concerns, difficulty in collecting a large number of samples, the time-

consuming process of manual analysis, and incorrect positioning of the

camera [45]. Other examples of wearable camcorders are: Narrative Clip (as

photographic cameras); and GoPro, Google Glass, MeCam, and Looxcie (as

video cameras). Photographic cameras have a low temporal resolution which

allows for acquiring images over a long period of time without the need to

recharge the battery. However, motion features cannot be reliably estimated

because of abrupt appearance changes. On the other hand, video cameras

have relatively high temporal resolutions, which allow for capturing the fine

temporal details of interactions. However, due to the abrupt head movements

of the camera wearer, assessing the global motion of the wearer is difficult.

2.3 First Person View Paradigm

Some applications of FPV cameras are listed below:

1. Summarising a person’s life; applications for memory retrieval. To

support a person with dementia, egocentric images captured by an

individual can be used to enhance memory of their recent activities or

forgotten events. The narratives were employed by Piasek et al. [132]

to improve Cognitive Stimulation Therapy (CST) [151] for patients in

the early stage of dementia and carer, to engage them in meaningful

discussions (on images of patient’s life).
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Hodges et al. and Browne et al. [68, 27] conducted single-case studies

to show using wearable cameras would improve the autobiographical

memory1 in comparison with reviewing written diaries for patients

in the early stage of Alzheimers disease (with minor problems with

cognition) and amnesia. The effectiveness of using video summarisation

as a memory aid to enhance users experience has been demonstrated

empirically [87].

2. Extracting the nutritional information about the user’s diet. Being able

to automatically record and analyse visual diaries, the nutritional data

can be created based on: types of nutritious substances; locations of

use; and the conditions of usage by the camera wearer. Using wearable

cameras to capture an individual’s nutritional data seems convincing,

as the study [95] shows people tend to under-report their daily caloric

consumption when they document them manually. Therefore, Bolaños

and Radeva [23] proposed a method to localise and recognise food in

egocentric narratives. Bolaños et al. [20] further explored recognising

food ingredients in conventional images, which makes it possible to

calculate the overall amount and variety of nutrients. However, this

seems to be a challenge using low quality egocentric images.

3. Monitoring diets of athletes. Wearing egocentric cameras assisted

athletes and sport dietitians in increasing the accuracy of dietary reports

and consequently their assessments, by reducing the likelihood of

misreporting the energy intake [122]. The narratives also provide

beneficial information on dietary intake patterns and emphasise a

significant under-reporting of calories consumed by athletes (e.g. eating

leftover food).

4. Acquiring information on sedentary behaviours. Issues such as: memory

recall errors, identification accuracy errors, or impracticality in free-

living, are common when estimating sedentary behaviours based on self-

report tools or hip-worn accelerometers [140, 110, 41]. Because of these

difficulties, lifelog devices are deployed (either along with accelerometer

or by themselves) to obtain direct observations of a person’s stationary-

1Autobiographical memory is a person’s recollection of past incidents and events [27].

Background 9



behaviour [83, 46, 65]. Acquired images give evidence on the type,

context, and duration of sedentary behaviours.

5. Discovering social interactions and relations. Exploring the social life of

an individual can provide useful information about the person’s mental

and physical health [159, 86]. In addition to detecting and generating

a diary of interactions, wearable cameras can be used for memory re-

enforcement. Wearable cameras provide a personal platform to observe

each person’s social interactions (from their point of view), and therefore

attracted many researchers to this area [6, 29, 3, 4, 2].

6. Daily use of body-worn cameras related to law enforcement and security.

Currently, many police officers in the United States, Canada, and parts

of Asia and Europe (including the United Kingdom) are recording their

day to day operations using body-worn cameras. There are many

advantages reported from using body-cams in which police officers

are involved [36]. The narratives are real-life situations, which can

be employed for training purposes. Employing body-worn cameras

can protect officers from false allegations, and also influence good

behaviours for both parties (police and those being recorded). The

recorded events or crimes can be documented and recalled during

investigation and prosecution periods.

7. Creating photo albums of authentic memory of holidays. Egocentric

narratives recorded on vacation are structurally different from daily

living videos. The video mainly contains images of picturesque scenes,

locations, and landmarks of historical significance. These narratives can

be used for personal reasons, such as sharing with family, friends, and

the general public [14].

2.4 Challenges in Egocentric Vision

In recording daily life, a camera wearer has no specific intention on capturing

every single frame. As a result, the acquired frames may be blurred;

underexposed or overexposed; containing tilted, occluded, or off-centred

objects; holding poor composition; or covering non-informative content

(e.g. sky, wall, or ground). In order to clear out frames of low visual
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quality, some authors edited the frames-stream before any further structural

processing. The discrimination can be content blind or based on the visual

information. The problems are solved either by a binary semi-supervised

technique (e.g. training an ‘informative vs non-informative’ classifier [96]),

or by an unsupervised technique (e.g. kernel domain adaptation [172]). The

former requires the frames to be manually labelled into informative and non-

informative for training a discriminative binary classifier [96]. While the latter

attempts to approximate the distribution gap between third-person-taken

images collected from the web, and egocentric frames. It estimates the

likelihood of an egocentric frame being under the distribution of web images

based on the nearest neighbours’ distances [172].

FPV streams are characterised by a smooth transition across scenes and

continuous changes of camera wearer’s focus points. Some researchers

initially partitioned the unconstrained frame stream into events. An event

or segment is defined as a section of the video enclosed between two time

stamps. The advantage of adding event segmentation into video processing

is that the summary can include multiple occurrences of an object or person,

interacted with the camera wearer in the different sequence of the video.

Having that, the summarisation will cover similar events happened in different

time stamps.

The most conventional way to solve the problem of event segmentation,

is to group contiguous frames with similar global appearance together

(even with few unrelated frames in between) [92, 21]. The similarity of

pairwise frames is calculated using their visual feature distances. The visual

representations of frames can be based on colour (e.g. colour histogram);

or a Convolutional Neural Network (CNN, or ConvNet). After similarities are

measured, visually related frames are grouped together using clustering

methods such as Agglomerative Clustering (AC). The grouping strategy

is always accompanied by a temporal analysis to prevent time-related

inconsistency of the segmentation.
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An example of event segmentation method is SR-Clustering [42]. The SR-

Clustering method automatically determines the events using contextual

and semantic information of frames. To Obtain semantic information, similar

concepts are integrated leveraging the posterior temporal segmentation.

Using contextual attributes with temporal coherence, frames with similar

visual and semantic features are clustered together. AC is combined with

the concept drift change detection technique, called ADaptive WINdowing

(ADWIN) [17] to group frames. The ADWIN technique uses sliding windows

whose size is recomputed directed by the rate of change in the data. The

Graph-Cut algorithm is applied to obtain a trade off between these two

approaches, which requires initialising the minimum number of frames in

events. The R-Clustering method has a similar process where the semantic

information is eliminated [155].

Other ways of partitioning videos into events (or subshots) are to detect

generic patterns of camera wearers: activities (this is also called ‘ego-

activity’) [103], or behaviours [161]. For the former category, ego-activities

are classified into: static, meaning body or head are not undergoing a

significant motion; transit, meaning a physical movement from one point

to another; and moving the head, meaning wearer attention is changed to

different part of the scene. For the latter, behaviour patterns are classified

into: body motion, including walking, running, on transit, and wandering; and

body still, containing static, and looking around. The approaches proposed

to analyse camera wearer’s motion patterns assess: a histogram of motion

features (e.g. dense optical flow [98]) and a blurriness score [37] of frames.

Thereafter, it is followed by training a classifier (e.g. Support Vector Machine

(SVM)). This strategy is also associated with temporal analysis to connect

neighbour frames.

2.5 A Review on Video Summarisation

Truong and Venkatesh [158] described and categorised existing solutions

for non-FPV2 video summarisation. Comprehensive surveys also exist for

2The non-FPV data stream includes a Third Person View (TPV)
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application- or approach-specific solutions e.g. egocentric videos [115] and

lifelogging [19], as well as context-based summaries [80].

Figure 2.2 shows a spider diagram of various topics related to video

summarisation. From now on, in all diagrams, we use colour-coded nodes

from Figure 1.1 to signal transition between subjects. Information associated

with the various topics related to video summarisation methods are displayed

in golden nodes fading to grey. Transitions to the collaborative contributions

are changed to: blue-green in colour for summary type, blush colour for

processing, and violent in colour for evaluation.
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Figure 2.2: A classification of various topics related to video summarisation
methods.

Below we explain each leaf of the diagram:
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• Summary form. Generated summary can be represented as a series of still

images (static keyframe summary) [1, 137, 76, 84, 9, 92, 10, 96, 51, 21, 112,

14], or a sequence/collection of subshots (dynamic video skims) [160, 103, 9,

60, 61, 174, 128, 175]. The appropriate choice for the form of the summary

depends on the application. This review is primarily focused on methods that

generate static keyframe sets.

• Feature representations. In most works, video frames are represented

as vectors in an n-dimensional feature space, x ∈ Rn. The choice of

feature space can be a combination of low-level features (e.g. moments

and histograms of colour spaces) [103, 60, 173]; mid-level features (e.g.

complex CNN) [174, 61, 21, 175, 96, 162, 10, 51]; or high-level features [103,

92, 144, 145]. High-level features can be related to semantic information [60];

can be region features describing the objects and faces which the camera

wearer interacts with [103, 92]; or can be concept-oriented features with

visual descriptors [144, 145]. Examples of low-level visual features used

in the literature are RGB histograms [173]; HSV histograms [1, 9, 137];

texture descriptors such as Improved Fisher Vector (IFV) [173], Gist [173, 144,

145], Local Binary Patterns (LBP) [144, 145], dense Scale-Invariant Feature

Transform (SIFT) [173]; CENTRIST feature space [112]; and dense optical flow

as motion descriptors [173].

Appropriate features are selected based on the application of use. For

instance, in an application of on-line video summarisation, features that

are less computationally expensive and require less memory are preferable.

Various choices of feature representations suitable for the different parts of

our research will be discussed in more detail in the respective chapters.

• Method of selection. A summary consists of a concise number or sequences

of frames selected to represent a video. The selection can be executed

through an unsupervised or a supervised method.

In the unsupervised group, the keyframe/shot selection is not guided by

previously available data with examples of good summaries. Many such
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methods were developed in the past [158]. Assuming that the frames are

represented by their visual information, the criterion for selecting keyframes

can be based on different ideas, possibly overlapping, as detailed bellow:

- Grouping strategy: For this category [63, 119, 62, 53, 40, 106], frames

are presented by feature vectors, and the similar ones are grouped

together to form clusters. Choices of the clustering algorithm vary

according to authors’ preferences. The number of clusters can be: set

a priori [178, 67, 127]; computed, as a number of sufficient content

changes3 in sequences of frames [40]; or determined automatically by

the clustering algorithm [106].

- Sufficient content change: Similar to the grouping strategy, close-

content frames can also be identified by detecting significant changes in

the content information [176, 180, 75, 76, 8, 49, 59]; cumulative curve

of frame differences [55]; or motion activities [43].

Finally, for both categories above, keyframes are produced either

through a naive selection related to the frame location within a shot

or based on a predefined objective. The former selection group is as

simple as choosing the first frame [120, 1], the middle frame [137, 55,

8, 106], or the last frame of each shot. While this approach is fast, the

extracted keyframes may not capture the informative visual content.

Moreover, the frames located at the beginning and the end of the shot

are often not stable.

For the sufficient content change method, the objectives are to optimise

some distribution or characteristic function such as: a similarity distance

[184, 178, 119, 40, 84, 21, 127]; a discriminative distance4 [35]; the

entropy of colour distribution [164]; a ranking score [43, 59]; random

walk [21]; or Markov Random Field (MRF) [173]. For application on

3This is obtained by calculating the pairwise Euclidean distances between consecutive
frames. The number of clusters is incremented, when the pairwise distance is positioned
above a threshold.

4The discriminative distance is calculated as a ratio (or subtractive) value to be maximised.
Assuming to have a video segmented into shots, the ratio is computed for every frame to
measure a degree of its similarity with the other frames in that segment, to a degree of
dissimilarity with the other segments (discrimination).
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egocentric data set, a distribution model is adopted in most works [84,

21].

- Cross-Correlation: The criterion in this category is to minimise the cross-

correlations among selected keyframes, which ultimately increases the

dissimilarity of the extracted keyframes from one another [11, 47].

- Reconstruction error: This category formulates video summarisation

as a minimum reconstruction error problem, which maximises the

capability of reconstructing the original frames from as few as possible

selected keyframes [88, 89, 112].

- Ranking strategy: The Ranking strategy optimises an energy function,

which comprises of objective functions (metrics). The energy function

sequentially scores frames or subshots based on how well they present

the predefined objectives. This category mainly used for egocentric

summarisation, e.g. optimising energy function [103, 60, 92, 96, 162],

frames-ranked maximisation with heuristic parameters [14, 175].

- Motion pattern: For this method, the video frames are described by

their motion features, e.g. optical flow [169]. A motion metric based

on the feature representation is computed. Then motion levels of

consecutive frames are analysed, and the frames with minimum motion

(local minima) are extracted as keyframes.

Supervised methods, on the other hand, train a classifier with human-edited

summary instances, either at frame or video levels, to learn how to produce

video summaries related to their predefined criteria. In short, supervised

summarisation acts as a structured binary prediction vector to indicate

whether a frame is to be selected or not.

- Category-Specific training: Knowing the category of a video (related to

the visual content, e.g. birthday party), Potapov et al. [134] trained a

linear SVM classifier with positive video samples from the same category,

and negatives from the other categories (binary for each category).

- Sequential diversity model: Recent approaches such as the ones

proposed by Zhang et al. [181], and Gong et al. [56] model sequential

diversity by probabilistic distributions. Zhang et al. [181] used Long

Background 16



Short Term Memory (LSTM) to model the sequential dependency of video

summary, followed by Determinantal Point Process (DPP) to collect

diverse frames. Sharghi et al. [144, 145] combined Sequential and

Hierarchical Determinantal Point Process (SH-DPP) to select diverse

shots related to the user’s query. Both LSTM and DPP are trained

by summaries based on human annotations. The main drawback of

applying DPP to produce a video summary is its high computational cost,

particularly for a long video [144].

- Submodular maximisation: This method formulates video

summarisation task as a subset selection problem. The final summary

is selected to maximise the predefined objective functions. Using

submodular optimisation, summary is generated by maximising

multiple objective functions at the same time. Objective functions are

often computed by calculating mutual information, or learning objective

weights (learn to rank). The method used in [61, 174] to generate

summary for egocentric video data. Computational cost for generating

a video summary using submodular functions is also high when the

video is long [144].

• Summary type. Summary can be either a generic one, where a single

summary is produced by an automatic method or a query-based one, where

multiple summaries can be extracted based upon different user’s queries.

Chapters 5, and 6 study the properties of each type in details.

• Processing. Video can be analysed and summarised after recording the

entire data set in an off-line setting or during the recording in an on-line

setting. For the traditional video data (TPV), on-line term may also refer to

producing a ‘good quality’ summary within a reasonable time, which allows

for on-line usage [8, 9]. Properties of on-line video summarisation methods

will be discussed in Chapter 7.

• Evaluation. After proposing a new video summarisation method, its

performance must be evaluated. This topic will be discussed in details in

Chapters 3, and 4.
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Researchers may focus on: using more sophisticated selection methods

relying on commonly used features; or designing more complicated features

to encode the semantic contents of frames (in the videos), and instead

proposed relatively simpler methods for summarisation. For instance, Otani

et al. [127] stacked visual representations of frames which were uniformly

sampled from a video, and combined those with the corresponding sentence

representations related to the description of that segment of the video. They

trained a deep neural network (using positive and negative examples) to map

frames into a similar semantic space including objects, actions and scenes.

To generate a generic summary, a given video is uniformly sampled creating

video segments. For each segment, deep features are extracted, mapped

into a semantic space, and clustered. The summary is the selection of frames

corresponding to cluster centres.

A summarisation method can be tested on collections of videos to analyse its

performance. The collection can be obtained from third person perspectives

(denoted as TPV), e.g. Disneyland data set collected from YouTube [173]; or

recorded by first person (wearable) camera (denoted as FPV), e.g. cultural

heritage [162], or University of Texas Egocentric (UTEgo5) [145]. Studying

on first person video summarisation, an acceptable collection must contain

long videos recorded in unconstrained environments by people with wearable

cameras preferably attached to their head [115]. Alternatively, the camera

may be clipped to their clothes, hung around their neck, or attached in

another way to the upper part of the wearer’s chest. Such a collection

have advantages over others obtained by mobile telephones and hand-held

cameras.

It is important to note that videos are recorded for different purposes, which

may require different setup for summarisation in order to extract relevant

data. For instance, the summarisation approach proposed by Xiong et

al. [173] requires a prior knowledge about attraction locations and events, to

collect training sets of images and videos from Google, Flickers and YouTube.

5http://vision.cs.utexas.edu/projects/egocentric/
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These applications are either related to tourist attractions [173, 162] or daily

living [145].

2.6 Conclusion

In this chapter, we classified video summarisation methods based on their

main topics. We also illustrated the wide range of applications of FPV cameras,

and then described challenges of working with egocentric data streams.

Even though a growing amount of literature is dedicated to non-FPV video

summarisation, the proposed TPV summarsiation approaches for traditional

videos may not be suitable for FPV [115, 174]. In TPV, a stream of frames

are captured from a stable point of view, while in FPV the task becomes a lot

more complicated as explained in Section 2.4.

Video summarisation of egocentric data is a relatively new subject of research,

therefore there are several areas that can be improved. First, evaluation of

keyframe summaries extracted by different algorithms is an important but a

little-discussed problem. A further investigation on this area is recommended.

Second, current video summarisation methods may not be able to enforce

diversity of the summary between events. So far, selection methods related to

diversity are concerned with visual differences among the selected keyframes.

A good summarisation method should emphasises the difference between

the events being represented within the summary, which is not necessarily

equivalent to visual differences between the selected frames. Third, reviewing

the literature, we came to the conclusion that generic summaries may not be

very useful, hence selective summaries should be developed instead. Finally,

we identified on-line video summarisation as an interesting direction which is

likely to grow in the near future.

The above areas of improvement were addressed in the following chapters

starting with evaluation of keyframe summaries.

Background 19



Background 20



Chapter 3

Automatic Evaluation Protocol for

Visual Comparison of Keyframe

Summaries

3.1 A Taxonomy of Evaluation Strategies

The success of a system that automatically summarises a video must be

demonstrated by evaluating its results. Thus far, video summarisation

research offers three types of evaluation (Figure 3.1):

◦ Descriptive. Typically, the proposed summarisation method is implemented

on a few videos and the created summaries are either displayed or described,

leaving the judgement to the readers. Some authors may explain the

advantages of their proposed summarisation method/algorithm. This simple

form of evaluation was a popular model for the past decade. Nowadays, it

is usually followed by other forms of evaluation. This form of evaluation

is insufficient in most cases, and gives little ground to generalise the

performance of the proposed method outside of those few videos.

◦ Quantitative metrics. This form of evaluation uses a predefined fidelity

criterion that is computed from the extracted keyframes, and the original set

of frames. The fidelity metric is often linked to the proposed method [158].

◦ User-involved strategy. This evaluation measures whether the obtained

summary maps well to user judgement. Users can be included to create a
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Figure 3.1: A taxonomy of evaluation strategies in the video summarisation
literature.
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summary prior to producing a computer-generated summary (Ground-truth

annotations), or to judge a computer-generated summary (User-study). This

form of evaluation is the most reasonable type.

• User-study. After video summaries are generated, independent users are

employed to judge the quality of the automatic summaries. The original

videos are usually presented to the users in a speed-up version. The

judgements can be expressed by satisfactory scores of the summary, either

in a numerical grading form [49, 84, 96] or a lexical grading form [92]. Each

summary can be rated individually [96] or in comparison against: other

existing summarisation techniques [49, 103, 92, 175, 96]; or baselines [84,

161, 21, 14], in blind-taste tests1. Querying user’s opinions can also be in

the form of selecting the best summary between two summaries (based on a

criterion given to the users) [103, 161, 21, 14, 175]. This type of evaluation

is subjective, difficult to replicate, and time-consuming. It also fails to show

what a ‘good’ summary is.

• Ground-truth annotations. This term refers to creating a ground-truth

keyframe summary manually. Evaluation based on ground-truth annotations

has the advantage of being efficient and repeatable.

The number of annotators can vary from a single user [77] to multiple

users [40, 107, 81]; termed as size in the diagram. Having multiple ground

truth summaries is a typical annotation choice in summarisation, due to

the discrepancies among users on selecting a unique summary from the

same video stream. Consequently, the comparison strategies between the

computer-generated frames, and the multiple user-generated frames are

divided into two groups [70]. The first group compares every individual

ground truth summary with the computer-generated summary, and then

computes the average of the overall performance scores [40, 49, 112]. The

second group aggregates the multiple summaries to produce a final ground

1Blind-taste test is an evaluation procedure where a user selects a preferred summary
among two summaries produced by different methods from the same video, without having
information on the sources. Typically the proposed summary is placed randomly along with
its competitor summaries.
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truth summary that has the maximum agreement with all users. The final

ground truth summary is then compared against the computer-generated

summary [56].

Ground-truth annotations can be collected either as: visual, in which human

annotators directly select frames to make the video summary [40, 84, 60,

174, 175] or lexical, in which the annotators (indirectly) summarise the video

by writing on what the summary should cover [61]. The former is also called

pixel-based or direct ground truth, and the latter is called text-based or

indirect ground truth. The term is indicated as type in the taxonomy.

The automatic comparison involving ground truth can include different

components associated with the type of the ground-truth annotations; termed

evaluative components. The pixel-based ground truth comparison is carried

out by evaluating the degree of match between the ground truth summary

(reference summary), and the summary of interest (candidate summary). The

term is indicated as visual components. This process goes through several

steps, and relies on choices made at each step. The text-based ground truth

comparison measures the overlapping words between the reference and the

candidate summaries, using a lexical metric. Details are given in subsequent

sections.

In this thesis we are interested in proposing a unified protocol for automatic

comparison of two video summaries. To this end, we identify the necessary

components (stages), and carry out a comprehensive study to establish which

of the many available algorithms or approaches fits each component to the

highest degree.

3.2 A Review on Automatic Evaluation

Frameworks

While there is a multitude of works on video summarisation, surprisingly

little has been done toward developing a comprehensive objective evaluation

protocol. The need for such a protocol is widely acknowledged [158, 53, 49, 84,
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135, 96, 115]. Existence of a standard and consistent evaluation framework

is essential in order to determine to what extent the candidate summary

matches the ground truth summary. Such a framework will also allow for a fair

comparison among the increasing amount of novel summarisation methods.

Evaluation of video summaries is difficult partly due to the following

reasons [158]: 1) Unlike other research areas such as object recognition,

the ground truth is not consistent across human evaluators. Studies show

that an ‘ideal’ summary does not exist [60]. Therefore, evaluation of

video summary is not a straitforward task; 2) Summarisation perspective

is application-dependent. For this reason, to compare two summarisation

techniques, their application aspect resemblances must be taken into account;

3) Previous works are often unavailable for comparative evaluations, or

require a certain setting or format for use; 4) Evaluating a large number

of existing summarisation techniques on a commonly accessible, large, and

diverse video data set with long hours is important but very difficult to

accomplish.

Our study is devoted to visual-based keyframe summarisation. Table 3.1

summarises some literature sources which propose new evaluation

frameworks. A standard evaluation protocol could be based on the following

components:

(1) A feature representation. The first step is representing the reference

summary, and the candidate summary as a collection of vectors in some

feature space. Ideally, this should be done using a simple and effective

feature extraction algorithm. Feature representations can be based on colour,

texture, or motion (displacement). Thus each frame is represented as a point

in some metric space Rn.

Proposing an automatic evaluation framework, authors typically presented

frames using a colour histogram, calculated in the Hue-Saturation-Value

(HSV) colour space but quantised into different number of bins. Avila et

al. [40] only employed the hue component with 16 colour bin quantisation,
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while Mahmoud et al. [107] and Kannappan et al. [81] both used all three

components, respectively quantised into 32, 4, 2 and 32, 4, 4 bins of hue,

saturation and value. Mahmoud et al. [107] applied texture features (Discrete

Haar Wavelet Transforms) once after validating the colour similarity of two

frames. Jinda et al. [77] employed colour histogram of the hue channel after

computing the number of the matching points, and number of matching

errors using Speeded Up Robust Features (SURF) features. Khosla et al. [84]

computed the scale invariant feature transform flow [99] features between

two frames selected from the automatic set and the ground truth set.

Table 3.1: Overview of existing automatic evaluation frameworks classified based
on the taxonomy components.
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Avila et al.,2011 [40] X X X X X

Jinda et al., 2013 [77] X X X X X X
Khosla et al.,2013 [84] X X X X X
Mahmoud et al., 2013 [107] X X X X X X

Kannappan et al.,2016 [81] X X X X X

(2) A similarity metric. This metric evaluates the degree of match between

two given frames. If the frames are represented in Rn, the similarity can be

calculated by a linear correlation metric, or a distance metric.

In the next step, distance metrics including Manhattan2, Bhattacharyya3,

and sum-squared pixel-wise distances are used respectively in [40], [107],

and [84] to inspect similarity of two frames. Jinda et al. [77] also calculated

the intersections between the two histogram sets, which is categorised as

pixel-wise similarity metrics, after matching a certain number of keypoints.

Seen against the distance metrics, Kannappan et al. [81] employed correlation

metric, e.g. Pearson Correlation Coefficient to measure the similarity.

2Manhattan distance between two points calculates the sum of the absolute differences of
their Cartesian coordinates.

3In statistics, the Bhattacharyya distance measures the similarity of two probability
distributions.
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(3) A matching strategy. The matching strategy is used to pair the frames

between the two summaries. A temporally-ordered greedy matching

algorithm is used in [40, 107]. Once a match is detected, the matched

cases (frames) are removed from both sets. A bidirectional search, and

the Hungarian matching algorithms are employed by Kannappan, Liu and

Tiddeman [81] and by Khosla, Hamid, Lin and Sundaresan [84], respectively.

(4) An accuracy metric. This metric is applied to calculate the overall similarity

of the two summary sets based on the individual matching scores between

the paired frames.

Typically, the quality of the candidate summary is evaluated by the F -

measure (F -value or F -score), calculated from the number of matched frames

and the cardinalities of the two summaries [107, 49, 60, 56, 61, 174, 112,

77, 81]. Authors also made use of Average Precision (AP) metric [84, 175],

by averaging the precision scores of a ranked-ordered summary. Average

precision score in [84] is obtained by finding the area under the precision-

recall curve, where the curve is plotted by iterative evaluation of precision

and recall values in ascending orders of number of matches. To do so, the

summary obtained by an annotator is arranged from high to low rank (score),

and the number of matches with the automatic summary set is detected.

Subsequently, precision and recall values for each step4, are calculated

by summing the matched (pairwise) distances, and plotted to create the

precision-recall curve.

Another measure of quality is the Comparison of User Summary (CUS). It

consists of Accuracy rate (CUSA) and Error rates (CUSE). They are calculated

as the ratio of the number of matched and non-matched frames with the

ground truth summary [40]. Observing the discrepancy between user

summaries for the same video stream, Li et al. [94] adapted evaluation

metrics from information retrieval to be used as a unified metric in evaluating

4Step values start from one for number of matches to the total number of frames in the
ground truth
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video summaries, termed VERT (Video Evaluation by Relevant Threshold) in

the diagram (Figure 3.1).

(5) A data set. It is important to have access to a data set with its ground truth

allowing researchers to compare their proposed methods against previous

ones.

Majority of the automatic evaluation studies [40, 107, 81] conducted their

experiments on a benchmark set, typically VSUMM (Video SUMMarization)

video collection5. The video collection offers two data bases of videos acquired

from different sources: 1) a video set containing 50 videos in MPEG-1 format

assembled from the open video project6. Video content include several

genres: educational, ephemeral, documentary, historical, and lectures; 2)

a video set collected from YouTube containing 50 videos of several genres

including cartoons, news, sports, commercials, tv-shows, and home videos.

Khosla et al. [84] obtained their video collection by searching the YouTube

for certain title descriptions, while Jinda et al. [77] recorded their own lifelog

data set. Both are referred to as non benchmark in the Table 3.1, indicating

that the data set is not available.

If the ground truth is provided in the form of text (the lexical approach),

the evaluation protocol should follow a different pattern. According to the

text-based evaluation approach [177], the original video is annotated based

on its semantic content. To achieve that, the video is uniformly segmented

into short subshots and one sentence description of each subshot is manually

obtained. A ground truth text summary is also generated by asking a human

annotator to write a text summary of what happened in that video. Once

the candidate summary is generated using a summarisation algorithm, the

associated text annotations of frames are extracted, then concatenated,

and compared against the ground truth text summary. This can be done by

applying the ROUGE metric. ROUGE, Recall-Oriented Understudy for Gisting

5https://sites.google.com/site/vsummsite/home
6https://open-video.org/
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Evaluation, is a standard text summary evaluation algorithm to automatically

determine the quality of a summary by comparing it to another set of ‘ideal’

summaries typically created by humans. The measure counts the number of

overlapping words or n-grams between the computer-generated summary

and the ground truth summary [97].

3.3 Components of the Evaluation Protocol

Our aim is to propose a protocol for visual-based evaluation of a candidate

keyframe summary with respect to a ground truth summary. This section

details our choice of methods and algorithms for every component of the

protocol. We list many alternatives which we will subsequently use in an

empirical study in order to select the best combination.

3.3.1 Feature Representation

Here, we detail feature descriptors with different properties to investigate

their representation influence on judging the similarity between two sets

of keyframes. In the comparison, we include colour based representations

described in the Red-Green-Blue (RGB), HSV, and other standard, though less

popular, colour spaces: Chrominance components (CHR) and Ohta (OHT).

Texture based descriptors and CNN features are also considered.

For the colour-based descriptors, the original image is decomposed into two

channels (CHR) or three channels (RGB, HSV, OHT). Thereafter, each image

channel is uniformly divided into n× n blocks, termed the sub-images. The

feature descriptors considered in our analyses are described bellow:

1. RGB_9blocks : The image is represented in the RGB colour space, and

each image channel split into a 3-by-3 grid. The mean and the standard

deviation of each channel for each sub-image are calculated, and the

values are concatenated to generate a feature vector of 54 dimensions.
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2. CHR_9blocks : The chrominance components for a given pixel are

calculated as [164]:

C1 =
R

q
, C2 =

G

q
, q =

√
R2 +G2 +B2,

where R, G, and B are the red, green and blue intensities of the pixel,

respectively.

The mean and standard deviation of the components C1 and C2 are

computed, and the values are concatenated, producing a 36 dimensional

feature vector.

3. OHT_9blocks : Image is transformed into Ohta space as follows [123]:

I1 =
1

3
(R +G+B)

I2′ = R−B

I3′ =
1

2
(2G−R−B)

The mean and standard deviation of each channel are calculated. A

feature vector of 54 dimensions is created concatenating the computed

values.

4. HSV_9blocks : The image is converted into HSV colour space, and

the mean and standard deviation of each sub-image for all colour

channels are computed. Concatenating the values, a feature vector of

54 dimensions is obtained.

5. H8_9blocks : Using the HSV colour space, only the values obtained from

the hue (H) channel are used. For each sub-image of the 3-by-3 grid,

the values are quantised into 8 bins producing the H-histogram. The

feature vector obtained from this descriptor has 72 dimensions.

6. H16_9blocks : A histogram of only the hue channel is computed. For

each sub-image of the 3-by-3 grid, the values are quantised into 16 bins

producing a 144 dimensional feature vector.

7. H16_4blocks : H-histogram for sub-images of a 2-by-2 grid is computed,

quantising the hue channel values into 16 bins. This generates a feature

vector with 64 dimensions.
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8. H16_1blocks : H-histogram is calculated by quantising hue values into

16 bins, without splitting the image into grids. A feature vector of 16

dimensions is obtained.

9. H32_1block : H-histogram with 32 bins is computed, producing a 32

dimensional feature vector.

Beyond colour based features, the following feature descriptors were added

to the list:

10. SURF : These features are used to match relevant points between two

frames.

11. CNN : The last fully connected layer of a pre-trained CNN was used as a

4096-dimensional feature space [147].

3.3.2 Similarity Metrics

There are many ways to calculate similarity of two frames. A popular approach

is calculating pairwise distance between the point representations of the two

frames in the n-dimensional feature space. Point-wise distance will be our

approach for the feature descriptors specified above, excluding the SURF

features. Here we used the Manhattan and the Euclidean distances.

For the Manhattan distance, we transform both frame representations into

probability distributions so that the values for each frame sum up to 1. For

this choice, the Manhattan distance varies between 0 (identical distributions)

and 2 (completely non-intersecting distributions). This gives us the ground

for selecting the span of possible threshold values for our experiment.

For the Euclidean distance, we took a different approach. This time we did not

normalise the data into two distributions but used the original features. This

is why the thresholds for the Manhattan distance and the Euclidean distance

in our experiments have different scales.
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Another way to calculate the similarity between two frames is keypoint

matching which evaluates the proportion of matched local features such

as SIFT [100], or SURF [77] keypoints.

When employing SURF descriptors, we implement keypoint matching

approach as an alternative example that does not attempt to embed the

frames in Rn.

The SURF features are applied to find similar points (matching keypoints),

therefore number of matches are computed by counting the number of those

keypoints. Different number of keypoints will be identified for each pair of

compared frames. For comparing frames a and b, the following procedure is

applied:

1. Identify the total number of keypoints in frame a (denoted as na), and

assign the number of keypoint matches with frame b to ka;

2. Identify the total number of keypoints in frame b (nb) and assign the

number of matched keypoints with frame a to kb;

3. Calculate the similarity between the two frames as the following

proportion: 2 min{ka,kb}
na+nb

. For consistency with other distance metrics we

introduced a distance between two frames a and b as:

d(a, b) = 1− 2 min{ka, kb}
na + nb

. (3.1)

3.3.3 Matching Strategies

In order to evaluate a candidate summary, the number of matches with a

ground truth summary is determined while accounting for the total number

of frames in both summaries [40, 84, 49, 107, 56, 112].

It is assumed that a distance metric d between two frames has been already

chosen, as discussed in Section 3.3.2. Two frames a and b are sufficiently

similar to be called a match if d(a, b) < θ, where θ is a chosen threshold.
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Let S and GT represent two sets of keyframes, one obtained by an automatic

summarisation approach (the candidate summary) while the other acquired

from a user’s annotation (the ground truth). We are interested in measuring

the degree of similarity between the two sets. The objective is to find a

suitable process of pairing frames, one from each set, so that the number of

matches m between S and GT is accurately calculated.

The cardinalities of the two summary sets are denoted as N1 = |S| and

N2 = |GT |, where S is the computer-generated set of frames (the automatic

summary or candidate summary), and GT is the user selection of frames

(ground truth). A distance matrix D is constructed where element di,j is

calculated as a distance value between frames i ∈ S and j ∈ GT , generating

the total dimension of (N1 ×N2). This matrix will be referred to as a ‘pairwise

distance matrix’ in this chapter. The number of matches returned by a

matching algorithm is denoted by m. Six matching algorithms are examined,

as detailed below.

(1) Naïve Matching (no elimination). The inspection for matching goes through

each item (keyframe) in the computer-generated summary, and looks for a

match in the ground truth summary. If a match is found, the match counter

is incremented, and the next element of the computer-generated summary

is processed. No frame is removed from the ground truth summary. Not

eliminating matched frames from the ground truth summary causes an

obvious problem. If the computer-generated summary set S consists of almost

identical frames which happen to be close to one frame from the ground truth

summary GT , then all frames in the computer-generated summary will be

matched with this one frame. Despite generating a perfect matched number

of m = N1, for an arbitrary N1, such a candidate summary is quite inadequate.

It is neither concise nor representative. Algorithm 1 relies on the presumption

that S is a reasonable summary containing diverse frames.

(2) Greedy Matching. This algorithm is widely used to match keyframe

summaries despite the fact that it is quite conservative. Initially, the pairwise

distance matrix D is calculated. As long as the minimum distance is below the
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Algorithm 1: Naïve Matching.

1 m← 0.
2 for i = 1, . . . , N1 do
3 if any di,j < θ, j = 1, . . . , N2 then
4 increment the number of matches, m← m+ 1.

threshold value, the corresponding frames from the two sets are identified

as a matching pair. Once the match is detected, the items are removed from

both sets, and the iteration passes to the next minimum distance value, as

detailed in Algorithm 2.

Algorithm 2: Greedy Matching.

1 m← 0.
2 Find the smallest distance dmin = minD.
3 while dmin < θ do
4 Increment the number of matches, m← m+ 1.
5 Remove the row and the column of the matched elements from D.
6 Find the smallest distance from the remaining matrix dmin = minD.

(3) Hungarian Matching. The Hungarian algorithm is a common bipartite

graph matching algorithm, used by Khosla et al. [84] (Algorithm 3). After

calculating the pairwise distance matrix D, the algorithm identifies the pairs

such that the sum of the distances of the paired frames is minimum. A

thresholded matching can be naïvely formed from this minimal complete

matching by simply removing all pairings over the threshold distance θ. Thus,

close matches could be missed in an attempt to minimise the total distance.

Algorithm 3: Hungarian Matching.

1 Apply the Hungarian assignment algorithm to D.
2 Identify the matched pairs of frames (i, j), and retrieve the distances di,j

from D.
3 Assign to m the number of these distances which are smaller than θ.

(4) Temporally-ordered Greedy algorithm. This algorithm is used in [40,

107, 105]. The frames in both summaries are arranged in a temporal

order. For each frame in the ground truth set, the nearest match from the

computer-generated set is detected, and eliminated accordingly from both

sets (Algorithm 4). Apart from the temporal ordering, the algorithm is identical

to the Greedy Matching.
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Algorithm 4: Temporally-ordered Greedy Algorithm.

Input: Keyframe summaries S and GT arranged in temporal order, and
threshold θ.

Output: Number of matches m.

1 m← 0.
2 for j ∈ GT do
3 for i ∈ S do
4 if di,j < θ then
5 Increment the number of pairings, m← m+ 1.
6 Remove i from S and j from GT .
7 Break.

(5) Bidirectional Search Algorithm. An interesting alternative approach to the

matching problem is put forward by Kannappan et al. [81]. In their approach,

a keyframe from the candidate set and a keyframe from the ground truth are

matched only if each is the other’s best possible match (Algorithm 5). We

have modified this procedure to make the thresholding equivalent to that of

the temporally-ordered greedy algorithm.

Algorithm 5: Bidirectional Search Algorithm.

1 Initialise a set of pairings M ← ∅.
2 for each frame i ∈ S do
3 for each frame j ∈ GT do
4 if j′ = arg mins∈GT d(i, s) and i′ = arg mins∈S d(s, j) then
5 Add the pair to the matching set M ←M ∪ {(i′, j′)}.

6 Remove M from all pairs for which d(i′, j′) ≥ θ.
7 m← |M |.

(6) Maximal Matching. The greatest possible value of m is given by a maximal

unweighted matching in which frames less than distance θ apart can be paired.

Such a matching is given by the Hopcroft-Karp algorithm [166]. We will use

instead the convenient alternative Algorithm 6, in which we find the lowest-

weight complete matching on a binary matrix D′ obtained by thresholding

D. Entry d′i,j in D′ has value 0 if di,j < θ, and 1 otherwise. After the optimal

assignment is found through the Hungarian algorithm, the number of matches

is determined by counting how many of the matched pairs are at distance

less than θ.
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Algorithm 6: Maximal Matching algorithm.

1 Construct matrix D′ of the same size as D such that d′i,j = 0 if di,j < θ, and
d′i,j = 1, otherwise.

2 Apply the Hungarian assignment algorithm to D′.
3 Identify the matched pairs of frames (i, j), and retrieve the distances di,j

from D.
4 Assign to m the number of these distances which are smaller than θ.

To illustrate the different behaviours of these algorithms, a small bipartite

graph is presented in Figure 3.2. This example shows that even when using

the same distance metric and threshold value, algorithms may return different

matching items and/or different cardinalities. This case also demonstrates

the importance of selecting an appropriate matching algorithm.

f11• 1

0.1
•f21

S f12• 10 •f22 GT

f13•
0.01

100 •f23

Figure 3.2: Example of a small bipartite graph to illustrate behaviour of matching
algorithms. Each of the algorithms will return a different matching for this graph.
The numbers in the figure give the weights of the five edges.

Assume S is the computer-generated summary holding {f11, f12, f13}, while

GT is the ground truth summary containing {f21, f22, f23}, where f indicates

the frame. Degree of similarity between two frames are given as a weight

number of the edges at the bipartite graph. We assume all weights are bellow

the threshold.

Starting with the Naïve Matching algorithm, the algorithm first selects the

edge with weight 1 as a match. Next it moves to the second node of f12

without any elimination, where it finds edge with weight 10 as its second

match. It continues with the third vertex of f13 where the edge of weight

0.01 is selected as a third match. In overall, a match set of cardinality 3 is

identified using the Naïve algorithm.

Considering the Greedy algorithm, first the edge with the lowest weight, 0.01,

is detected as a match. The pair of frames (f13, f22) is eliminated from the

further similarity detection process. The algorithm continues with the second
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lowest weight of 1 and the only remaining possible pair. At this point, no more

weights are available, therefore the matching algorithm stops and a matching

of cardinality 2 is returned.

The Hungarian Matching algorithm will return the only possible one-to-one

matching of cardinality 3 with weights 1, 10 and 100.

The output of the Temporally-ordered Greedy algorithm depends on the order

of vertices submitted to the algorithm. Therefore, the edge with weight 1 is

detected first as a match, followed by the edges with weight 10 and 100. The

algorithm finds a matching of cardinality 3.

Moving to the Bidirectional Search algorithm, a matching of cardinality 1 is

found consisting of frames (f12, f22) joined by an edge with weight 0.01.

Finally, a Maximal Matching algorithm returns a maximal unweighted

matching of 3 given by the set of edges of weights 1, 10, and 100.

Note that other matching algorithms such as dynamic time wrapping [139]

used in speech recognition can be added into the experiment. However, this

algorithm has the potential to find many matches for a single item in the

ground truth set. Therefore, it is quite naive to use such an algorithm in

detecting matches between two sets.

Beside the impact of choosing any of the above-mentioned algorithms for

detecting an accurate number of matches, the selected threshold value

(parameter) also has an immediate effect on identifying similarity of the pairs.

The threshold may vary based on different choices of feature descriptor and

similarity metric. So far, this value has been either intuitively selected [81]

or empirically found [40, 107]. However, to the best of our knowledge, there

is no study which examines the effect of choosing among various values of

this parameter combined with different selection of features and similarity

metrics on estimating the summarisation accuracy.
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For our experiments, we will use a range of thresholds from 0.01 up to 0.7 for

the Manhattan metric. For the Euclidean metric, we will scale the threshold

relative to the distribution of all pairwise distances between frames in the

video. The thresholds will be percentiles of this distribution, from the 0.01th

up to the 3rd percentile. For the SURF metric, we will vary the threshold

between 0.01 and 0.4.

3.3.4 Accuracy Metrics

Once the number of matches m has been found, the value is used to quantify

the effectiveness of the computer-generated summary against the ground

truth summary. We introduce γ to measure how close two sets of keyframes

are together.

Avila et al. [40] propose a pair of measures called Accuracy/Error rate

(CUSA/CUSE). Having S, GT and m respectively for the computer-generated

summary, the ground truth summary, and the number of matches, the two

metrics are defined as:

CUSA =
m

|GT |
, and

CUSE =
|S| −m
|GT |

.

The values ofCUSA range from 0 (when none of the frames from the computer-

generated set matches any frame in the ground truth set) to 1 (when all

frames in the computer-generated set match with the ground truth summary).

Note that value 1 of CUSA does not indicate one-to-one correspondence

between the frames of S1 and S2 because the ground truth summary can

be bigger than the computer-generated summary. On the other hand, the

values of CUSE vary from 0 (when all frames of the computer-generated set

match the ground truth) to N1/N2 (when no frame of the computer-generated

summary matches the ground truth set). The problem with these measures is

that the upper limit of CUSE depends on |S|.
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Alternatively, making use of precision and recall is very popular as shown

in the Table 3.1. Given a number of matches m, the similarity between S

and GT can be quantified using the F -measure, whose advantage is that it is

symmetric on its two arguments [56]. Without loss of generality, choose S for

calculating the Precision, and GT for calculating the Recall. Then

Recall =
m

|GT |
Precision =

m

|S|

F (S,GT ) =
2(Recall× Precision)

Recall + Precision

=
2m

|S|+ |GT |
(3.2)

We have chosen to use this F -measure as our γ (S,GT ) because, unlike CUSA

and CUSE, it is symmetric, limited between 0 and 1, and interpretable.

We note that there is a potential problem when using the F -measure with

the Naïve Matching algorithm and the bidirectional search algorithm because

they do not guard against m > N2, which may lead to F > 1. In such cases

we clipped the value of F to 1.

3.4 Evaluation Protocol

3.4.1 What is a Good Evaluation Protocol?

The fundamental idea for our experiments is that a good measure of similarity

between two summary sets should distinguish as clearly as possible between

content-blind baseline methods, such as uniform summaries, on the one hand,

and a sophisticated algorithmic summary, on the other hand.

Denote by Θ the set of possible choices of feature descriptor, similarity metric,

matching algorithm, and threshold value. As a baseline model we consider a

summarisation method termed Uniform summarisation. This method requires

a single parameter: the desired number of frames K. The video is split into

K equal time-contingent segments, and the middle frame of each segment is
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taken in order to make the summary. The best choice of Θ will ensure that the

difference between computer-generated summaries and uniform summaries

is the largest possible.

3.4.2 Data Set

Operating on the same data set as the state-of-the-art methods, permits to

assess our evaluation protocol on their results, along with the ground truth

sets. For this experiment we used the VSUMM video collection including 50

videos recorded in 30 fps in 352 × 240 pixels. The videos duration varies

from 1 to 4 minutes which provide the approximate of 75 minutes in total.

Each video has been manually summarised by 5 different users providing the

total of 250 user summaries.

The five algorithmic summarisation methods are provided in the VSUMM video

database are:

• Delaunay Triangulation (DT) [119],

• Open Video Project (OV)7,

• STIll and MOving Video Storyboard (STIMO) [53],

• Video SUMMarization1 (VSUMM1) [40], and

• Video SUMMarization2 (VSUMM2) [40].

3.4.3 Discrimination Capacity

To estimate how well a measure distinguishes between baseline designs

and bespoke selection methods, we propose the quantity which we call

discrimination capacity as the difference:

cU
∆
= cU(S, U,GT ) = γ(S,GT )− γ(U,GT ), (3.3)

where GT is a ground truth summary set, S indicates a computer-generated

summery set obtained by an algorithmic method, and U is a baseline

summary, which in our case will be the Uniform summary of the same

cardinality as S. From now on, the accuracy metric of γ is being measured by

7https://www.open-video.org.
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the F -measure (F -score). Large values of cU will signify good choices of the

properties Θ, which could be recommended for the practical implementation

of the proposed protocol as a tool for evaluation of future video summarisation

algorithms.

We stipulated that the evaluation protocol must be independent of the video

summarisation method. Thus, the computer-generated summary can be

obtained using any automatic summarisation approach. For instance, video

can be either divided into shots/events or used in its entirety; representation

of frames can be based on low-level colour, or complex visual features; frame

selection can be supervised or unsupervised.

We also assume that the frames in both sets of computer-generated summary

and the ground truth are not ranked by degree of importance, nor are they

arranged in a temporal order.

Despite some automatic evaluation approaches that fuse multiple annotated

summaries into a single ground truth summary [70, 56], to maintain simplicity

and transferability we decided to use each ground truth separately.

Let GT = {Sgt1, . . . , SgtL} be a set of ground truth summaries obtained from

L users. Let U(s) be a uniform summary with s number of keyframes. We

calculate CU , the average of cU for S and GT , as:

CU =
1

L

L∑
i=1

cU(S, U, Sgti)

=
1

L

L∑
i=1

(F (S, Sgti)− F (U(|S|), Sgti)) , (3.4)

where F is the F -measure. CU measures how well S performs compared

to a uniform keyframe summary with the same cardinality. To make a fair

comparison, we set the cardinality of U as |U | = |S|. As the value for CU

depends on the choices of the properties Θ, we look for a set which maximises
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the discrimination capacity CU across a range of videos and summarisation

algorithms.

𝑐𝑈

𝐹

𝐹

(VSUMM1, User #2)

(Uniform, User #2)

(VSUMM1, Uniform, User #2)

Figure 3.3: An example of calculating CU for the summary generated by VSUMM1

method for Video #22, feature space #8 (H16_1block), Manhattan distance, the
Hungarian Matching method, and threshold 0.5. cU is the difference between the
F -value for matching candidate summary VSUMM1 to User #2 (ground truth #2) and
the F -value matching a uniform summary of the same cardinality as VSUMM1 (4 in
this case) and User #2. CU is the average of the 5 such cU terms in Eq.3.4.

The calculation of CU in Eq.3.4 is graphically illustrated in Figure 3.3 for the

automatic summary obtained from the VSUMM1 approach, and the uniform

summary of the same cardinality. Both summaries are compared with just

one of the user-generated summaries. The value of CU is a measure of how

much closer the automatic summary is to a ground truth summary compared

with a uniform summary of the same size.

The full calculation of CU value for the remaining four user annotations is

shown in Table 3.2. Each entry represents the F -measure value between a

user ground truth, and either the automatic or the uniform summary. The

overall value CU is obtained by averaging the difference between the F -values

across the same user.

Note that the advantage of setting the same cardinality of U and S is to avoid

having a bias toward either of these competitors. Taking into the account that
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in Figure 3.3, graph F (Uniform, User#2) shows an irregular behaviour when

cardinality values are increased, for a fair comparison it is the best to keep

the cardinality of U the same as S. Doing so, F (VSUMM1, GT) and F (Uniform4,

GT) in Table 3.2 have the same cardinality (number of keyframes), and their

values are calculated based on the number of matches found in each set with

the ground truth set.

Table 3.2: An example of the calculation of CU for Video #22, selected from the
VSUMM data set. The automatic summary method is the VSUMM1 keyframe selection
method. Other properties are: feature space #8 (H16_1block), the Hungarian
Matching method, Manhattan distance, and threshold 0.5. The F -values are shown
in the table; the bottom row contains the terms in Eq.3.4; the values for User #2,
marked with * are the ones in Figure 3.3.

user 1 User 2* User 3 User 4 User 5 overall

F (VSUMM1, GT) 0.5000 0.7500* 0.6667 0.2857 0.4444

F (Uniform4, GT) 0.5000 0.2500* 0.2222 0.2857 0.4444

CU terms 0 0.5000* 0.4444 0 0 0.1889

3.4.4 Identifying the Protocol Components

Description of the Experiment

The purpose of the experiment is to determine which combination of values of

Θ maximises CU . The results may serve as a unified evaluation methodology

for comparing a candidate summary with a ground truth summary. We

considered: 11 feature spaces, 6 matching algorithms, 2 types of distance

(Euclidean and Manhattan) for the metric spaces, a proportion-based distance

for the SURF features, and a range of values of the threshold θ for each

distance.

For the uniform baseline, for each video we generated 30 summaries with

cardinalities from 1 to 30.

An overall value of CU for each instance of Θ is calculated as an average

across the values for all users videos and summarisation methods. In this

experiment we will be looking for the best possible combination of properties

Θ to maximise CU .
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In our experiments we calculated CU for every choice of property settings

and every video.

Evaluation of Distance Metrics and Thresholds

The aim of this evaluation is to choose a suitable distance metric along with

its threshold value. The following threshold ranges were evaluated:

1. For the Euclidean distance: θ ∈ {0.01, 0.02, 0.05, 0.1, 0.3, 0.5, 1, 3, 5, 10},

2. For the Manhattan distance: θ ∈ {0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 0.6, 0.7},

3. For SURF feature distance: θ ∈ {0.01, 0.03, 0.05, ..., 0.39}.

In Figure 3.4, we plot CU versus the threshold θ for the 10 feature descriptors

(SURF features is plotted separately), 6 matching strategies, and 5 automatic

summary methods. Therefore, each line in the (θ, CU) graphs corresponds

to a specific combination of a feature descriptor, matching algorithm, and

summarisation method. Note that CU may be negative. This is the undesirable

case where the uniform summary matches the user ground truth better than

the algorithmic (candidate) summary.

The shape of the line graph in relation to the threshold is expected to

be convex with lower values for smaller and larger thresholds. For small

thresholds, there will be very few matches, hence the F -values will be low for

both the candidate summary and the uniform summary, hence the difference

CU will be small. For large values of the threshold, a large number of matches

will be detected in both comparisons, both F -values will be high, and the

difference CU will be small again. The best results (larger CU ) are offered by

the Manhattan distance. The peak for the Manhattan distance is between

θ = 0.3 and θ = 0.5. For the Euclidean distance, there are two different types

of curves. Some peak quite early, at θ between 0 and 0.5, while others stay

stable. The SURF feature curves exhibit consistent and stable patterns, which

will be analysed later.
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(a) Euclidean distance

(b) Manhattan distance

(c) SURF feature distance

Figure 3.4: Discrimination capacity CU as a function of the threshold for the three
types of distances used. Each of plots (a) and (b) contains 300 line graphs (10
feature spaces, 6 matching methods, 5 summarisation methods). Plot (c) contains
30 lines (SURF space, 6 matching methods, 5 summarisation methods. Each line is
the average across 50 videos and 5 users.
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From these findings, we favour the Manhattan distance for our proposed

protocol, and will use this distance for the following evaluation of the feature

spaces.

Evaluation of Feature Representation

Considering the best results obtained by the Manhattan distance in the

previous section, now we look for a feature representation which maximises

CU . Figure 3.5 shows the results for the 11 feature descriptors. Each sub-plot

corresponds to one feature space. As in Figure 3.4 (b), the horizontal axis

is the threshold used with the Manhattan distance, and the vertical axis is

CU . This time, all curves corresponding to the 10 feature descriptors are

shown in each plot at the same time, which makes 30 curves obtained from

the combination of 6 matching algorithms with 5 summarisation methods. In

each graph, the respective feature descriptors are highlighted in black.

Our results show that the simple colour based features (1-4) are not useful in

this context. The hue histograms, on the other hand, give the best results. The

feature descriptor with the largest CU is H32_1block. It is somewhat surprising

to find that a colour based descriptor wins over the texture (SURF) or CNN

feature descriptors. This result hints to the possibility that spending a lot of

computational effort for calculating highly sophisticated properties of images

may be unjustified in some cases. Thus, we propose to use H32_1block for

the purposes of automatic evaluation of keyframe summaries when ground

truth is available.

Evaluation of Matching Algorithms

The results for this part are shown in Figure 3.6. The lines plotted in black are

the ones corresponding to the matching method in the title of the subplot.

It can be seen that, for Euclidean and Manhattan distance, the Naive matching

is slightly inferior to the rest of the matching methods. This is to be expected,

as the Naive labelling method may result is a large number of false positive

matches for both the uniform summary and the summary of interest.
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Figure 3.5: Discrimination capacity CU as a function of the threshold (Manhattan
distance) with the 11 feature spaces. For the first ten graphs, all curves corresponding
to the 10 feature descriptors are shown in each graph at the same time. The
respective feature descriptors are highlighted in black.

This will smear the difference between the F -values, leading to low CU .

The remaining 5 methods are not substantially different. Interestingly, the

conservative matching methods - Greedy and temporally-order greedy, do

not work well with the SURF features. Note that here we view all the results

together, both good and bad. Further analyses show that the variability in

the CU for each matching method is not due to feature representations but to
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(a) Euclidean distance (b) Manhattan distance

(c) SURF feature distance

Figure 3.6: Visualisation of the CU for the 6 matching methods.
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summarisation method. The best such method, VSUMM1, corresponds to the

highest curves.

Based on these results, we can recommend any of the three matching

methods: Hungarian (minimal-weight complete matching followed by

thresholding); bidirectional search (The algorithm of Kannappan et al. [81]);

and Maximal Matching (Hopcroft-Karp: The Hopcroft-Karp algorithm or any

equivalent algorithm returning a maximal unweighted matching from the sub-

threshold pairings). Of these, bidirectional search algorithm has the lowest

computational complexity O(n2) compared with O(n3) for Hungarian, and with

the maximal-matching method whose worst-case is O(n2.5) if implemented as

the Hopcroft-Karp algorithm, or O(n3) if implemented as algorithm 6. Hence

we include the algorithm of Kannappan et al. in our proposed protocol.

3.4.5 The Proposed Protocol

Several authors (e.g. [28, 56, 112]) have followed the choice of feature

descriptor, similarity metric, matching algorithm, and threshold pioneered

by Avila et al. [40]. So far, there is no publication evidence of any theoretical

or experimental basis for these choices. The choice of H16_1block feature

representation, and threshold value θ = 0.5 is reasonable, though the finer-

grained H32_1block features outperforms it on average. The proposed

evaluation framework is described in Table 3.3.

Table 3.3: Description of the proposed framework in terms of the classification
taxonomy.

Property : Value

Feature Representation : H32_1block, 32-bin hue histogram (normalised to sum 1).

Similarity Metric : Manhattan distance

Threshold : θ = 0.3

Matching Strategy (Algorithm) : Bidirectional search algorithm

Accuracy Metric : F -measure

Finally, in order to allow for a fair comparison between different summarisation

algorithms, we propose the use of CU as defined in equation (3.4). Suppose

that there are two algorithmic methods giving summaries P and Q,

respectively. One of them may have a larger F -value for its match to the

ground truth (GT) only by virtue of the number of keyframes within. To guard
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against this, CU evaluates by how much an algorithm improves over a uniform

summary of the same cardinality. Therefore, instead of comparing F (P,GT )

with F (Q,GT ), we propose to compare:

CU(P ) = F (P,GT )− F (U(|P |), GT )

with

CU(Q) = F (Q,GT )− F (U(|Q|), GT ),

where U(s) is a uniform summary with s frames.

If the two rival keyframe summaries P and Q are of the same cardinality, their

relative merit can be evaluated by F (P,GT ) and F (Q,GT ), but the question

will remain whether they improve at all on a uniform (or another) baseline.

3.5 An Example

We now illustrate how the protocol can be used in practice8. Figures 3.7 to

3.11 show the summaries by the 5 algorithmic methods: DT, OV, STIMO,

VSUMM1, and VSUMM2, together with the corresponding uniform summary of

the same cardinality (the (b) plots). The matches are highlighted with a dark-

blue frame. The images in the summaries are arranged so that the matching

ones are on the left (recall that we treat the summary as a set, and not as a

time sequence). The matches are calculated using the choices of methods

and parameters of our proposed protocol. Table 3.4 shows the numerical

results for the five methods, assuming that the only available ground truth

is the summary of User #3. (Both the video and the user were chosen at

random.)

While in this example the overall ranking of the five summarisation methods

is the same according to F (K,GT ) and CU , this will not in general be the case.

Methods with higher CU should be preferred. The F -value alone may lead to

false claim of matching the ground truth, especially if F (U(|K|), GT ) happens

8MATLAB code is provided at: https://github.com/LucyKuncheva/1-nn-editing
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GT

DT

(a) DT summary: 2 matches

GT

U

(b) Uniform summary U(4): one match

Figure 3.7: Proposed protocol for Video #22, DT summarisation method, User #3
as a single ground truth. The matches are highlighted with a dark blue frame.

GT

OV

(a) OV summary: 3 matches

GT

U

(b) Uniform summary U(5): one match

Figure 3.8: Proposed protocol for Video #22, OV summarisation method, User #3
as a single ground truth.
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GT

STIMO

(a) STIMO summary: 3 matches

GT

U

(b) Uniform summary U(7): one match

Figure 3.9: Proposed protocol for Video #22, STIMO summarisation method, User
#3 as a single ground truth.

GT

VSUMM1

(a) VSUMM1 summary: 3 matches

GT

U

(b) Uniform summary U(4): one match

Figure 3.10: Proposed protocol for Video #22, VSUMM1 summarisation method,
User #3 as a single ground truth.
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GT

VSUMM2

(a) VSUMM2 summary: 3 matches

GT

U

(b) Uniform summary U(4): one match

Figure 3.11: Proposed protocol for Video #22, VSUMM2 summarisation method,
User #3 as a single ground truth.

Table 3.4: Calculation of the F -values and CU for the 5 summarisation methods,
based on the matches identified by the proposed protocol and illustrated in
Figures 3.7–3.11.

F (S,GT ) F (U(|S|), GT ) CU

DT 2×2
5+4

= 0.44 2×1
5+4

= 0.22 0.22

OV 2×3
5+5

= 0.60 2×1
5+5

= 0.20 0.40

STIMO 2×3
5+7

= 0.50 2×1
5+7

= 0.17 0.33

VSUMM1
2×3
5+4

= 0.67 2×1
5+4

= 0.22 0.45

VSUMM2
2×3
5+4

= 0.67 2×1
5+4

= 0.22 0.45
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to be high. In some cases CU is negative, which casts a doubt on the validity

of the algorithm producing the keyframe summary K.

3.6 Conclusion

We have experimentally investigated a range of choices for different

components of a protocol for evaluating the outputs of keyframe-extraction

algorithms. A new measure called “discrimination capacity” CU is proposed,

which evaluates by how much a given summary improves on the uniform

keyframe summary of the same cardinality. Using CU and the VSUMM video

collection, we offer empirical recommendations, and propose a full protocol

for comparison of keyframe summaries, listed at the start of sub-section

3.4.5. A 32-bin hue histogram feature space fared better than the high-level

features. Our study also contains a comprehensive collection of algorithms

for matching (pairing) two summaries of different cardinalities.

Our future work will include looking into semantic comparisons between

frames and summaries in addition to matching based solely on visual

appearance. Combinations thereof as well as incorporating the time tag

in the comparisons will be explored.

As an alternative to the ground truth based evaluation discussed above, a

comparative evaluation technique can be used. This will be discussed in the

following chapter.
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Chapter 4

Closest-to-Centroid Baseline Method

4.1 Motivation

Subsequent to evaluating a keyframe summarisation method against the

ground truth summary, the method must be compared with existing rivals.

Comparison with rival methods can be carried out by having access: to

their implementations, or their summary results. The former is not always

straightforward if the method is designed to use a particular type of data. The

latter can be facilitated by using a benchmark video data.

In traditional video, Avila et al. [40] published the results of different

keyframe summarisation methods along with the full video data set, and

user-formulated ground truth (benchmark). Yet, this option does not exist

in the egocentric type of videos. Due to the limitation of using alternative

(rival) summarisation methods, baseline methods can be adopted for this

comparison.

4.2 Story-Line of Evaluating Keyframe

Summarisations

At present, authors often develop a bespoke experimental set-up in which their

proposed method for keyframe selection compares favourably to one or two

alternative baseline methods. Table 4.1 lists chronologically 29 publications

on keyframe video summarisation along with their comparison choice of other

methods. Different choices of rival methods are enumerated in columns 1-5.

The column ‘Rivals’ shows the choices of rival methods while the column
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Table 4.1: An overview of keyframe summarisation methods with respect to their
choices for comparative evaluation (Rivals), and their proposed method (Proposed).
Summarisation studies proposed for FPV data set are highlighted in grey colour. The
level of interest in each method is accumulated at the usage count.
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Zhuang et al. 1998 [184] X
Hanjalic et al. 1999 [63] X
Gong et al. 2000 [57] X
Zhu et al. 2004 [183] X X
Yu et al. 2004 [178] X
Mundur et al. 2006 [119] X X X
Doherty et al. 2008 [44] X X X
Herranz et al. 2009 [67] X
Spyrou et al. 2009 [152] X
Furini et al. 2010 [53] X X X X
Jojic et al. 2010 [78] X X

Avila et al. 2011 [40] X X
Almeida et al. 2012 [8] X X
Ejaz et al. 2012 [50] X X
Ejaz et al. 2013 [49] X X
Guan et al. 2013 [59] X X
Jinda et al. 2013 [77] X X
Khosla et al. 2013 [84] X X X X
Gong et al. 2014 [56] X X X
Lakshmi Priya et al. 2014 [135] X X
Mahmoud et al. 2014 [105] X X
Xiong et al. 2014 [172] X X
Lee et al. 2015 [92] X X X
Lidon et al. 2015 [96] X X
Mei et al. 2015 [112] X X
Ratsamee et al. 2015 [138] X X X
Bolãnos et al. 2015 [21] X X
Bettadapura et al. 2016 [14] X X
Otani et al. 2016 [127] X X X X

Usage count 5 4 3 8 14 13 16

‘Proposed’ shows the methods proposed within the respective publication.

Since we are specifically interested in the Closest-to-Centroid method (CC),

we identified studies where this method has been used as a significant part
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of the proposed keyframe summarisation method. All these studies have a

tick mark in the column ‘Proposed/Closest-to-Centroid’.

We also summarise studies where CC is not the proposed methods. This was

done to explore the choices of rival methods across the whole field. For these

studies, we placed a tick mark in column ‘Proposed/Other’.

In column ‘Rivals’, we distinguish between two types of methods:

commonly accepted baseline methods (‘Rivals/Baseline’) and other methods

(‘Rivals/Other’). State-of-the-art methods were previously published ones.

Bespoke methods were unpublished alternatives proposed within the study

as a weaker variants of the main method.

Summarisation studies proposed for FPV data set are highlighted in this table.

Comparison strategies can be either based on user-study or on ground-truth

annotations.

Typical choices for baseline methods are Random (R), Uniform (U), and Mid-

Event (ME) selection. For R and U selection methods, the number of keyframes

(K) is set in advance. For a fair comparison, the value K is usually equivalent

to the number of keyframes generated by the proposed summary method. In

R selection, K frames are randomly selected from the video frames regardless

of their temporal positions. While for U selection, the video is uniformly

divided into K equal segments, and the middle frame in each segment is

taken for the summary. The ME summarisation method requires the video to

be already segmented into temporally coherent units (events), either by an

automatic event segmentation method, or manually by an user. Thereafter for

each event, the middle frame (time-wise) is chosen to represent the summary

of that event. The information required to implement R and U is only the

number of keyframes, which makes the implementation task relatively easy.

ME, on the other hand, requires prior segmentation of the video into units

(events), which is a difficult task in its own right, even more so for egocentric

and life-logging data.
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As can be observed from column ‘Rivals/Other/State-of-the-art’ of this table,

evaluating a new summarisation method against the other prior techniques

is not generally practised until Avila et al. [40] organised the VSUMM data

set with its annotations in 2011. While this study does not claim that all

papers on the subject are included, we offer an interesting statistic. Out of

the top 11 entries, three studies compared their results with the result of a

state-of-the-art method at the time (27%). After that, 11 out of the 18 studies

report comparisons with state-of-the-art (61%).

For FPV data, authors frequently used the baseline methods, or develop their

bespoke methods alternative to their proposal. These baseline methods are

arguably easy to beat.

The CC method has been often used in the past as witnessed by column

‘Closest-to-Centroid’ of Table 4.1. Using CC, some authors compared their

summary results against U and/or R baselines [84, 21, 127], which suggests

that CC was considered in the past a higher quality of summary compared to

the typical baselines.

The popularity of the use of CC, encouraged us to develop CC into a baseline

keyframe selection method. We choose a large variety of feature descriptors

including: colour, texture, shape, motion, and complex features, and conduct

the experiment to ensure the higher performance of CC compared with U and

ME baselines. It is important to note that R is intentionally not taken forward

because it is deemed to be the weakest baseline [179, 84]. Here the focus is

on evaluation of keyframe video summaries exclusively for FPV data, which

so far includes no consensus on protocols, benchmarks, and baseline models.

Therefore, a generic matching protocol is additionally designed to evaluate

the merit of the keyframe summaries.

4.3 Closest-to-Centroid Baseline

Let V = 〈f1, . . . , fN〉 be the video stream of N frames, where each frame is

indexed by its time tag. Assume video frames are described in some feature
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space, and each frame is represented by a feature vector in an n-dimensional

space, x(fi) ∈ Rn. Frames with similar content have smaller distance among

each other than frames with different content. To simplify notation, we will

use just xi to represent frame fi.

Let Ik ⊂ {1, 2, . . . , N} be the index set of consecutive time tags identifying

event k from the total of K events, k = 1, . . . , K.

The proposed baseline model returns the frame closest to the centroid of each

event. We refer to the events as “clusters” although they may not form a

conventional cluster structure in Rn. Formally, the summary is the collection

of ordered indices S = 〈s1, . . . , sK〉 where

sk = arg min
m∈Ik
{d(xm, ck)}, (4.1)

d(., .) is a chosen distance metric in Rn, and

ck =
1

|Ik|
∑
j∈Ik

xj

is the centroid of cluster (event) k.

4.4 Feature Representations

A crucial component of any keyframe selection method is the choice of feature

representations. Following the literature, features are divided into two groups:

features that describe the content of the frame; and features that evaluate

the image quality or aesthetics1 [44]. Note that the two groups are not

completely non-intersecting; they likely share low-level features. Here we are

interested in the former group.

The content type feature descriptors are further divided into three categories:

1Image quality or aesthetic attributes are either combinations of low-level features [121,
15] such as: sharpness, colour harmony, noise, eye sensitivity, brightness, blurriness, dark
channel, or generated by deep neural network [16, 142].
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• Low-level (context-free) features such as colour, texture, shape, motion,

and regions;

• Mid-level features extracted through deep learning; or

• High-level information (context-involved) such as face recognition

descriptors, and semantic features.

Further, the original feature descriptors may be transformed through Principal

Component Analysis (PCA), Discrete Cosine Transform (DCT) [35], Singular

Value Decomposition (SVD) [58], or Kernel-based Principal Component

Analysis (K-PCA) [178].

Typical choices in the low-level feature group are colour information2 [35,

165, 50, 135], colour histograms [153, 164, 53, 40, 165, 50, 103, 173], edge

feature3 [165, 135], MPEG-7 descriptors4 [152, 67], HOG pyramid [103],

SURF [103], SIFT [100, 165, 150, 56, 173], Gist [103, 34, 145], and

motions [101, 103, 173]. Using convolutional deep learning networks (CNN) is

a leading feature extraction method for video summarisation due to its ability

to learn an advanced set of features [21, 161, 127, 96, 162], and therefore we

include CNN in our experiments. Specific domain high-level features (context-

involved) used in video summarisation can be listed as follows: faces [30, 91,

103, 92, 173], objects [30, 91, 103, 92], famous landmarks [60], and visual

thesaurus [152].

Feature representation for a baseline method must be easy to extract. In this

study we chose the features shown in Table 4.2.

CNN features, although sometimes perceived as ‘high-level’, don’t carry by

themselves semantic information. This is why they are classed as mid-level

in our study.

To extract colour properties, following descriptors are calculated:

2The descriptors can include one or a combinations of colour moments, dominant colour,
scalable colour, and colour correlogram.

3The descriptors can be contained one or a combinations of edge distribution histogram,
and wavelet transform.

4The descriptors are contained of colour layout, colour structure, scalable colour, and edge
histogram.
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Table 4.2: The main characteristics of the evaluated feature representations.

Feature Visual

Type Information Acronym Size

Low-Level

Colour

1. ACC 1024

2. CEDD 144

3. CLD 118

4. FCTH 192

5. FOH 576

6. GIST 960

7. HSVch 32

8. JCD 168

9. RGBch 512

10. RGBcm 54

11. SCD 64

Texture

12. EHD 80

13. Gabor 60

14. LBP 256

15. LBPriu2 36

16. Tamura 18

Shape 17. PHOG 630

Motion 18. HMP 6075

Mid-Level
Corners and edges 19. FV 4096

Objects 20. CNN 4096

1. Auto Colour Correlogram (ACC) [69] measures the spatial correlation of

colour changes between different pixels in the image with respect to the

changes in their distances. This descriptor differs from the colour histogram

which only captures colour distributions. For a given image, colour values

are quantised into bins. Then distances between each pair of pixels are

calculated. In simple terms, a colour correlogram of an image is an indexed

table of colour pairs, where each value of the matrix specifies the probability

of finding the pixel pairs at that distance in the image.

2. Colour and Edge Directivity Descriptor (CEDD) [32] is a global descriptor.

First, the image is divided into rectangular areas. For each block, colour and

texture information are extracted, and represented by a quantised vector.

After calculating the quantised vectors for all blocks, they are combined

(fused) to generate a single feature vector. The final descriptor is generated

after normalising and quantising the feature vector into predefined levels.
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3. Colour Layout Descriptor (CLD) [108] is a resolution-invariant MPEG-7

visual descriptor, which represents the spatial distribution of colours in Y CbCr

colour space. Given an image, it is divided into 8× 8 blocks and the average

colour values of each block is calculated. Using DCT, the average values are

quantised into three sets of 64 DCT coefficients, and a few low-frequency

coefficients are chosen by zigzag scanning. Feature dimension is based on

the number of coefficients for each component.

4. Fuzzy Colour and Texture Histogram (FCTH) [31] is calculated from the

combination of three fuzzy units. A given image is initially segmented into

a number of blocks, and all fuzzy units are passed from each block. The

image is represented into HSV colour space. For the first unit, a Fuzzy-Linking

histogram is extracted by applying a set of fuzzy rules to the image. This

generates a 10-bin histogram. In the second unit, the 10-bin histograms are

expanded into 24-bin histograms applying a two-input fuzzy system. As the

third unit, each block is transformed using Haar Wavelet transform which

generates a set of texture elements. The elements are used to convert the

24-bin histogram into 192-bin histogram.

5. Fuzzy Opponent Histogram (FOH) [141] includes shift-invariant colour

models regarding light intensity. An RGB image is represented with two

colour information channels and one intensity component. Histograms of

each component are calculated, and combined based on the opponent colour

space. A fuzzy system is applied on the histogram to generate the descriptor

vector.

6. GIST [126] is a low dimensional representation of the scene. Initially, the

image is convolved with a 32 Gabor filter of 4 scales and 8 orientations. This

produces feature maps which are later divided into regions. The average

feature values for each region are calculated and concatenated to produce

the feature vector. To extract the GIST features, we used the Lear’s GIST

implementation5.

5The Lear’s GIST implementation is available at: https://lear.inrialpes.fr/src/lear_
gist-1.2.tgz (As of August 2019)
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7. HSV Colour Histogram (HSVch) captures colour distributions. The HSVch

features refer to a colour histogram computed only from the hue value (H) of

the HSV colour space after its uniform quantisation into 32 colour bins.

8. Joint Composite Descriptor (JCD) [33] combines the two CEDD and FCTH

descriptors into one histogram.

9. RGB Colour Histogram (RGBch) [154] is relatively invariant with translations

and rotations about the viewing axis. This descriptor is calculated by

combining three histogram of colour channels R, G, and B.

10. RGB Colour Moments (RGBcm) measure colour distribution in an image.

Image is divided uniformly into a 3-by-3 grid of blocks. Thereafter, the mean

and the standard deviation for each block and each colour are computed (9

blocks × 3 colour × 2 statistics = 54 features).

11. Scalable Colour Descriptor (SCD) [108] is a Haar-transform based

encoding and measures colour distribution over the entire image. A given

image is typically converted into some colour space, and uniformly quantised

to generate a histogram. Thereafter, the histogram values are normalised

and non-linearly mapped into a four bits integer representation. Finally

the histogram is encoded applying Haar-transform across the histogram

bins. When the full resolution is not required, the representation size can

be reduced by limiting the extracted number of Haar coefficients from the

histogram bins of 128, 64 or 32.

The descriptors for encoding texture properties are calculated as follows:

12. Edge Histogram Descriptor (EHD) [108] represents spatial distributions of

edges. An image is split into 4× 4 blocks, and edge histograms are computed

for each block. To calculate the edge histogram, in each block edges are

quantised into 5 bins related to their directions: vertical, horizontal, 45◦

diagonal, 135◦ diagonal, and isotropic.
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13. Gabor features [109] are used for texture representation and

discrimination. A Gabor filter is a sinusoidal signal modulated by a Gaussian,

with predefined frequency and orientation. The filter is passed thought an

image to generate a set of features.

14. Local Binary Patterns (LBP) [124] are a powerful descriptor to extract

texture information. A given image is first divided into blocks. For each pixel

in a block, it compares the pixel value with all of its 8 neighbour values. If the

value is greater than the neighbour value, 0 is written otherwise 1 is written.

Doing this, an 8-digit binary value is obtained, which can also be presented

as a decimal number. For each block, the histogram is generated, normalised

and then concatenated.

15. Rotation Invariant Local Binary Patterns (LBPriu2) [125] measure spatial

structure of image texture. This descriptor is similar to LBP with addition of

circularly shifting the binary code (neighbours) by a predefined number of

steps.

16. Tamura features [156] are motivated by the psychological studies on

human visual perception of textures. Given an image, a feature vector is

calculated by combining six basic texture features of coarseness, contrast,

directionality, line likeness, regularity, and roughness.

For encoding shape information, we use:

17. Pyramid of Histogram of Oriented Gradients (PHOG) [24]. The image is

decomposed into sequence of sub-regions at several pyramid levels where

at each level of the pyramid, there are number of sub-regions. To form a

pyramid at level l, the image is divided into finer spatial grids by doubling

the number of divisions (total of 2l) along each dimension. The feature vector

is computed by combining the histograms of edge orientations gradients of

each sub-regions.

Closest-to-Centroid Baseline Method 64



Descriptors 1-17 (except 6) were extracted using the LIRE library6 [104].

18. Histogram of Motion Patterns (HMP) [7] was also considered as a spatio-

temporal descriptor to encode motion information. Given a MPEG video,

first intra-coded (I-frame) frames are extracted 7. Each I-frame consists of

small processing units called macro-blocks, which can be used to obtain

motion information. For each I-frame, the I-frames positioned in both sides

are scanned (previous-current-next), and their corresponding macro-blocks

are analysed to form an ordinal matrix. The ordinal matrix later encoded into

a histogram to represent a spatio-temporal descriptor.

Finally, we evaluated two mid-level representations. One is based on visual

dictionaries, and the other is CNN, detailed as follows:

19. Fisher Vectors (FV) [73] encode local features as visual words. To create

the visual dictionary, local patches were extracted with a Hessian-affine

detector and described by SIFT descriptors [102], which were reduced using

PCA and then used to create a codebook with 64 visual words learned by

Gaussian Mixture Models (GMM). A global representation of a video frame

is obtained by accumulating the residual vectors. The difference of each

reduced SIFT descriptor and the mean vector of the Gaussian distribution

assigned to each visual word was calculated. These differences were

concatenated into a single feature vector, which was subsequently power

normalised8 and then L2-normalised. The GMM computation and FV encoding

were performed using the Yael library9 [48].

20. CNN are features extracted by a convolutional neural network. The 4096

deep features were extracted right before the classification (soft-max) layer,

from the response of the Fully Connected layer (FC7) of the CNN. The runner-

up in ILSVRC 2014, known as VGGNet architecture [147], was chosen to train

6The LIRE library is available at: http://www.lire-project.net (As of August 2019)
7A MPEG video is composed of mainly three types of frames that serve different purposes:

intra-coded (I-frames), predicted (P-frames), and bidirectionally predicted (B-frames).
8This is obtained by applying the function sign(z)|z|ρ with 0 ≤ ρ ≤ 1 to each dimension of

the FV. It is also called signed square-rooting with ρ = 0.5.
9The Yael library is available at: http://yael.gforge.inria.fr (As of August 2019)
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the network. This network contains 16 hidden (Conv/FC) layers. In order to

extract the neural network features, we used MatConvNet [163].

4.5 An Experiment with an Egocentric Video

Database

The purpose of this experiment is to identify a feature representation among

the chosen 20 representations in Table 4.2, where CC is markedly better than

U and ME. In doing so, we also contribute a method for comparing keyframe

summaries based on the visual appearance of the frames. The assumptions

in this experiments are:

1. The video has been already segmented into temporally coherent events.

2. One frame per event is selected in the summary.

3. There is a ground truth of representative frames (one per event).

4.5.1 Data Set

The UTEgo data set [91] contains 4 videos (each lasting about 3-4 hours) of

subjects performing their daily activities such as driving, shopping, attending

lectures and eating10. The data set is challenging because it contains frequent

changes of the illumination and the camera position. The videos were

recorded at 15 frames/second with 350 × 480 resolution per frame. We

sub-sampled each video taking one frame per four seconds, thus reducing

the number of frames as follows:

• P01 , 3464 frames, 14 events.

• P02 , 4566 frames, 19 events.

• P03 , 2696 frames, 10 events.

• P04 , 4446 frames, 16 events.

10This benchmark data set has been used as a sole experimental test bed in many studies
on egocentric video summarisation.
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Each video was segmented into events using Semantic Regularised Clustering

(SR-Clustering) [42]11. We only used the contextual information extracted

from a pre-trained CNN (AlexNet [85] as the CNN model, and run through the

deep learning framework Caffe [74]).

A ground truth summary was constructed for each video. A user picked a

frame for each event so that the events are faithfully represented and still

discernible within the video.

4.5.2 Matching Procedure

Our matching procedure is intended to pair two frames recorded by egocentric

camera for the same event with respect to their visual appearance. While

there are many possibilities, we chose SURF features [12] on the grey image

to match objects and shapes as done before [77, 138], and HSV histograms

(following the protocol by Avila et al. [40] and explained in the Chapter 3) to

match the colour distribution.

Let f1 and f2 be the frames being compared. Denote by p1 and p2 the number

of SURF points of interest in the respective frames. Let m1 be the number of

matches found from f1 to f2, and m2, the number of matches from f2 to f1.

The matching score from the SURF features is taken to be

SSURF =
m1 +m2

p1 + p2

.

The two frames are considered matching on SURF features if SSURF > θSURF,

where θSURF ∈ [0, 1] is a threshold.

For the HSV feature space, a 32-bin histogram of the hue value was calculated

for each frame. The bin counts were normalised so that the sum was 1 for

each histogram. Let Bj = {bj,1, . . . , bj,32} be the normalised histogram for fj,

j = 1, 2. The L1 distance was calculated by

DH =
32∑
i=1

|b1,i − b2,i|.

11https://github.com/MarcBS/SR-Clustering (As of August 2019)
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The two frames are considered matching on HSV features if DH < θH , where

θH ∈ [0, 2] is a threshold.

To ensure that the frames are a true visual match they must be a match on the

objects/shapes (SURF) as well as colour (HSV). Because of this conservative

rule, we pick threshold values which will allow for a fairly liberal match on

each components: θSURF = 0.05 and θH = 0.6.

To illustrate the matching method, we show in Figure 4.1 the results for

matching the ground truth and the uniform, mid-event and CC (PHOG)

summaries of video P03. The matched frames are highlighted in red.

Mid-Event

GT

Uniform

GT

CC-PHOG

GT

Figure 4.1: Illustration of the results from the matching procedure on the 10 events
for video P03. The matches are highlighted with a red frame.

Finally, the match between the summaries can be calculated as the F-measure,

which in this case reduces to the proportion of matches. For the examples

in Figure 4.1, F = 1
10

= 0.1 for U and ME, and F = 5
10

= 0.5 for CC with PHOG

features.

4.5.3 Results

We identified the CC summary for each descriptor, and quantified its proximity

to the ground truth using the above matching procedure. Additionally, we

prepared three alternative versions for each feature. We applied PCA and

retained components explaining respectively 95%, 90% and 80% of the
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Table 4.3: F-measure (in%) for the 4 videos for the U, ME and CC summaries with
respect to the ground truth.

Features P01 P02 P03 P04 Average

Org P95 P90 P80 Org P95 P90 P80 Org P95 P90 P80 Org P95 P90 P80 Org All

1 ACC 36 36 36 36 21 11 11 11 10 10 10 10 50 44 50 44 26.6 29.2

2 CEDD 14 14 14 36 11 11 11 11 10 10 10 10 50 44 50 44 21.9 21.2

3 CLD 7 7 7 7 16 11 11 5 0 0 0 0 19 25 19 19 9.6 10.5

4 FCTH 14 14 14 21 5 5 16 16 40 30 20 10 38 50 44 44 21.8 24.2

5 FOH 14 14 14 14 0 5 0 11 0 0 10 10 38 38 38 31 14.8 13

6 GIST 21 14 21 7 0 0 0 0 10 10 0 10 31 31 31 31 13.6 15.5

7 HSVch 29 29 21 29 11 11 16 16 30 40 10 20 38 31 38 31 25 27

8 JCD 21 21 21 21 16 21 21 21 0 0 0 20 56 44 44 44 23.2 23.2

9 RGBch 29 29 21 21 5 0 0 0 10 10 10 10 25 19 25 19 14.6 17.2

10 RGBcm 14 14 14 7 16 21 21 16 10 10 20 20 50 31 38 31 20.8 22.5

11 SCD 21 14 21 7 5 5 5 21 0 0 20 10 38 44 25 44 17.5 16

12 EHD 29 29 21 21 16 16 16 16 20 20 10 10 50 44 44 50 25.7 28.7

13 Gabor 21 21 21 21 5 5 0 0 20 10 10 10 19 25 25 25 14.9 16.2

14 LBP 14 21 29 29 11 16 16 11 10 10 10 10 44 38 44 38 21.9 19.7

15 LBPriu2 21 14 14 14 32 21 5 5 10 0 0 10 38 19 19 31 15.8 25.2

16 Tamura 29 14 36 21 5 5 11 11 0 0 10 10 38 25 25 25 16.6 18

17 PHOG 29 29 29 29 11 16 5 0 50 50 40 40 38 44 44 50 31.5 32

18 HMP 21 14 14 0 0 0 5 11 20 20 10 10 44 31 38 38 17.2 21.2

19 FV 29 21 21 21 0 16 16 16 20 20 20 20 44 31 31 31 22.3 23.2

20 CNN 7 7 7 21 0 0 5 5 20 20 20 0 38 38 44 38 16.9 16.2

Uniform 7 16 10 13 11.5

Mid-event 7 11 10 25 13.2

variability of the data. The the CC summaries were obtained, and the F-

measure value was calculated for these additional reduced features. The

results are shown in Table 4.3. The higher the values, the better the descriptor.

We have shown for comparison the F-measures for the two baseline methods

we contrast CC against: the uniform summary (U) and the mid-event summary

(ME). Ideally, all F-values for CC will be higher than those for U and ME.

The results show that many descriptors lead to CC which matches the ground

truth better than U or ME. The effect of PCA is not consistent. Sometimes

the F-measure increases with the transformation and retaining the fewer

features, and sometimes the effect is the opposite, both for the same feature

space and different videos (e.g. the Gabor descriptor). To show the overall

performance of the features, we averaged the F-values across the videos,

first for only the original features and then for the 4 variants of each feature

(across the columns of the table). Figure 4.2 shows the averaged across all

values for the CC baseline method for the 20 feature spaces. The U and ME

baselines are represented by horizontal lines as they do not depend on the

feature spaces.

With small exceptions, the feature spaces are suitable for the CC baseline

as the F-values for CC are higher than those for U and ME. The best feature
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Figure 4.2: Averaged F measure comparing for the proposed baseline method (CC)
and the ground truth for the 20 feature spaces. The F-values for U and ME are also
shown for comparison.

space in this experiment happens to be PHOG. This can be explained with

the fact that the SURF features used as a part of the matching procedure

also account for the shapes in the frames. The same argument can be put

forward for HSVch. The highly acclaimed CNN feature space showed a modest

improvement of CC over U and ME. Note that lower values of the F-measure

do not mean that the respective feature space is flawed. The F-values give

us grounds for recommending a particular feature space for the CC baseline

against which “proper” keyframe selection methods should be compared.

Based on the results of this experiment, we recommend 17. PHOG, 1. ACC,

12. EHD, 7. HSVch and 4. FCTH.

4.6 Conclusion

Here we address one of the most acute problems in video summarisation:

automatic evaluation of keyframe summaries. We propose a baseline model,

Closest-to-Centroid and advocate its use instead of the weaker baselines
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widely used thus far – the Uniform and the Mid-event selections. In addition,

we propose an evaluation framework to compare summaries where each

event is represented by a single keyframe.

The main limitations of CC and the matching procedure are as follows: the

video must be already split into events; the matching procedure addresses

only visual similarity between the frames.

Future experiments may refine the choice of a feature space for CC and

the parameter values for the matching procedure. The CC can be applied

to semantic feature spaces provided that those can be suitably quantified

and equipped with a distance metric. To make the CC baseline even more

competitive, an image quality component can be added to the Closest-to-

Centroid criterion.

The following chapter will examine the use of prototype selection for the

nearest neighbour classifier in selecting a keyframe summary.
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Chapter 5

A Prototype Selection Technique for

Video Summarisation

5.1 Generic Summary

The term ‘Generic’ means here that the summary is not prompted by a specific

theme or purpose. It is meant to represent the whole content of the video.

The main properties to describe a video summarisation method are shown

in Figure 2.2. Three additional topics required to describe a generic video

summarisation, shown in Figure 5.1.
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Figure 5.1: A classification of generic video summarisation methods.

73



• Summary criterion. To select the most appropriate frames for the summary,

certain objectives are defined. Objectives can be characterised as a single

function [60, 21, 175], or multiple functions [103, 61, 92, 96, 174]. These

objectives can also be categorised based on their type into:

- Video coherence, such as uniqueness [92, 144, 96, 145] or

diversity [103, 174] of events; temporal uniformity [61]; temporal

smoothness and co-occurrence relation between story-elements [173];

and influence of consecutive subshots [103];

- Local video structure, such as representativeness [84, 61, 21];

- Visual significance, such as object-driven importance [103, 92, 61, 162],

relevance [96], gaze fixation [174], interestingness [60, 175]; and

- Visual pleasantness, such as aesthetics [14], canonical views [84].

Uniqueness is typically employed in combination with other objectives, and

defined to prevent redundancy in the selected frames. It calculates the

degree of similarity among consecutive frames. Similarly, diversity penalises

sequential subshots with similar scenes. While uniqueness and diversity

are associated with differences of frame representations (distance) or their

relations (covariance), uniformity is related to the frames indexes.

Focusing on the local structure of a video, representativeness selects the

most repetitive frame of an event (in a video).

The visual significance is about the camera-wearer’s visual attention and

interactions. Object-driven importance gives higher scores to frames

containing objects, and people which the camera wearer has interacted

with. Comparably, relevance gives higher scores for frames including a

larger number of salient objects, and faces to implicitly answer generic

summarisation questions such as: What is the user doing? Where is the user?

Whom is the user interacting with? Interestingness is a vague term and can

cover image aesthetics (e.g. colourfulness, rule of third, symmetry), quality

(e.g.image sharpness, blurriness), attention score, presence of landmarks,

faces and significant objects interacted with. As opposed to the interstingness,

A Prototype Selection Technique for Video Summarisation 74



gaze fixation assigns higher scores to the subshots containing more frames

with fixation.

The category-specific term ‘canonical view points’, means having various

views of an object in order to capture informative images or videos. Canonical

views can be advantageous in commercial use (e.g. selling a car) by selecting

the most informative frames on different angles from the same object.

• Calculation of Objective(s). Appropriate frames are discriminated from

the rest of the frames in a video, using objective functions. These can be

calculated explicitly by: learning/ calculating objective weights to rank frames

or subshots individually (learn to rank) [103, 61, 14, 96, 174, 175], computing

similarity [84, 21]; or implicitly by: modelling mutual information [174],

regression [60, 92] or classifier [84].

Assume we have segmented a video into subshots (or events), and have

the ground truth summary which includes selected frames related to the

predefined objective(s). For each subshot, we want to select the most

informative but also concise number of frames. The intersection between the

selected frames and the subshot is measured by mutual information1. Mutual

information reduces the uncertainty of the informativeness of a selected

subset (frames) with respect to the remainder of that sequence.

Similarity term refers to measuring statistical relationship between frames

(similarity, dissimilarity, or correlation) where each frame is represented by it

visual or motion features.

Classifiers are trained to detect frames containing a desired feature such

as presence of landmarks, or objects interacted with by the camera wearer.

After training, a classifier can label frames as ‘presence of feature vs absence

of feature’, while regression predicts the likelihood of the frame containing a

predefined feature.

1A measure of the mutual dependence between two random variables.
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• Summary length. Having a constraint on the number of selected frames is

an additional feature for a generic video summarisation. Therefore, deciding

on the length of a summary can be set as a prior maximal constant to ensure

that the video summary is succinct [60]. Budget-constraint limits the selection

based on a user request on the length budget [92] termed a prior adjustable in

the diagram. Post-processing trims down an excessive keyframe set selected

by a generic summarisation method [10, 160]; termed a posteriori in the

diagram. Lastly, the summary may stay as extracted [1, 137, 149, 158, 9,

103, 84, 61, 112, 128, 21, 14, 51].

With an on-line application, the total number of frames will typically not be

known beforehand. Deciding on the number of keyframes a priori may not be

practical but is often done so as to ensure that the summary is suitable for

the human viewer or complies with the the on-line constraints [10].

5.2 Edited Nearest Neighbour Approach for

Keyframe Selection

The k-Nearest Neighbours (kNN) classifier is one of the most effective

algorithms in data mining and pattern recognition [129, 143]. The classifier

typically involves partitioning the data into training set (TR) and testing set

(TS), where true labels are known [54]. Representing each element of the

data set by its feature vector, the classifier uses the training examples with

their true class labels to train. During the testing process, the class label of

each element in the testing set is predicted.

kNN has relatively high computational complexity because for each new

object to be classified, it has to identify the k nearest neighbours from the

(possibly quite large) reference set. The solution is to reduce the data by

selecting a lower size of training set which can obtain a similar or higher

classification accuracy for the incoming data. This is known by various names

in the literature, such as: Instance Selection [72], Prototype Selection or

Reduction [131, 167] or Data Editing. Data editing has been a long-standing

theme in pattern recognition. Following the two classical methods: Condensed
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Nearest Neighbour [64] and Edited Nearest Neighbour [168], a large number

of data editing approaches and methods have been proposed and periodically

summarised [25, 39, 54, 157, 167].

Using data editing, a subset S is selected from TR, S ⊆ TR. Doing that, KNN

looks for nearest neighbours only from the selected subset S instead of whole

training set TR.

5.2.1 Motivation

Depending on the type, the length of a video may range from less than a

minute to several hours, and the shot lengths can vary dramatically within.

There is consensus among the researchers that a keyframe-based video

summary should be concise, informative, should cover the content of the

video, and should be void of redundancies. While the interpretation of these

categories is domain-specific, they are valid across different video types and

applications.

We illustrate the rationale behind our proposal by the following synthetic

example. Assume that we have a recorded narrative of a day in a set of 4

events: (1) Met Mary, (2) Looked at the door, (3) Met Mary again, (4) Looked

at the door again. The corresponding “video” is shown in Figure 5.2. Each row

shows the frames correspond to one event, from left to right.

The standard approach which selects the frame closest to centre of the cluster

will pick a frame with Mary (without the hat) for both events 1 and 3, and a

frame with the door (without the cat) for both events 2 and 4, as shown in

Figure 5.3 – Summary 1. If, however, the user wants to tell the story about

their day to a friend, the user will likely pick the frames with the hat and the

cat to distinguish events 1 from 3 and 2 from 4 (Summary 2 in Figure 5.3).

Admittedly, a diversity-wise selection method may also be expected to recover

the different frames for events 3 and 4. However, we re-position this task as

an edited nearest neighbour problem, which will not require manual setting

of the balance between diversity and representativeness.
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Figure 5.2: Example: A day with 4 events (each row shows an event).

Summary 1 (traditional): Closest to class centroid.

Summary 2 (proposed): Edited nearest neighbour.

Figure 5.3: Two keyframe summaries of the 4 events in the example in Figure 5.2.

5.2.2 Problem Statement

Using any type of video, we assume it has been segmented into units of

interest2 either manually or by applying any segmentation method. As before,

frames are presented as points in an n-dimensional space Rn. Our approach

strives to select the smallest number of keyframes (one frame per unit) which

2units can be events, scenes, or shots.
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allows for the best discrimination between units. The discrimination quality

between units is defined as the estimated general accuracy of the nearest

neighbour classifier (1-nn) using the selected frames as the reference set,

where each unit is treated as a class.

While the proposed approach does not explicitly maximise the aesthetic

quality [172] or memorability [71] of each image, due to its properties, it can

present the story as a whole. This makes it potentially suitable for memory

reinforcement or video browsing.

Let V be the video including N frames which are temporally ordered. Our

objective is to summarise this video considering coverage and diversity

of the contents. It is assumed that the video is segmented into K units.

Then the frames are labelled into the K segments, U1, . . . , UK , which we

will treat as classes. It is assumed that each frame is presented by an n-

dimensional feature vector, so that the video is represented as a data set

of size N × n containing N class labels. Using S as the reference set and

Ui as the class labels, the objective is to select a subset of frames S, where

S ⊂ V = {f1, . . . , fN}, to obtain the highest possible resubstitution accuracy.

Our hypothesis is that such a keyframe selection will work well for at least

the following reasons:

• This approach ensures that S will contain frames which describe their

own classes as accurately as possible (coverage/representativeness/

relevance) while accounting for the differences between the classes

(diversity).

• The frames are chosen collectively, in relation to one another, which

counteracts redundancy, and contributes towards “story telling”.

A brief description of our approach in term of the components introduced in

Figure 2.2 is shown in Table 5.1.
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Table 5.1: Description of our method in terms of the video summarisation spider
diagram in Figure 2.2.

Property : Value

Summary Form : Keyframes.

Frame Representation : Any.

Method of Selection : Unsupervised.

Processing : Off-line.

Summary Type : Generic Summary.

Summary Length : As prior maximal.

Summary Criterion : Local video structure, and video coherence.

Calculation of Objective(s) : Statistical relationship.

Evaluation strategy : Ground truth annotations.

Evaluation metric : F -measure.

5.3 Greedy Tabu Selector (One-per-Class)

5.3.1 The Algorithm Details

We initially list the universal pattern-recognition/machine-learning terms used

in this chapter:

• Instance or prototype in video summarisation is defined as a frame,

• Class, in here, is defined as a unit or event which contains a sequence

of time-contiguous frames which represent similar content or activities.

The classes were obtained through segmentation of the video (hence

no additional annotation is needed), and

• Selected subset of prototypes in this case is the keyframe summary.

The proposed algorithm is detailed as Algorithm 7. The algorithm starts by

identifying the instance closest to the class centroid for each class. These

c instances are taken together to be the first candidate reference set of

prototypes S. This amounts to applying the CC (described in Chapter 4). The

set is subsequently modified in the following process.

The nearest neighbour classifier (1-nn) is applied on F using S as the

reference set. All classes are declared ‘available’ at the beginning. A

‘privileged’ class is chosen among the available classes as the one with
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the worst proportion of correctly labelled instances. It is subsequently made

unavailable for the next t iterations, where t is the ‘tabu’ parameter, 0 < t < c.

The prototype for the privileged class, say f j, is marked for replacement.

All remaining instances from class j are taken in turn to replace f j in S,

and the resubstitution error of 1-nn is calculated for each new version of S.

Suppose that the reference set with the smallest error was S ′, when f j in S

was replaced by f j∗. The 1-nn error with S ′ as the reference set is compared

with the error with S. If the new error is smaller, the replacement is made

permanent by setting S ← S ′. Otherwise, no change is made to S , and the

algorithm continues by selecting a new privileged class from the available

classes.

Algorithm 7: Greedy Tabu Selector (One-per-Class)

Input: Data set F = {f1, . . . , fN} ⊂ Rn and the corresponding labels into
classes {1, 2, ..., c}. Tabu parameter, an integer t, 0 < t < c.

Output: Selected set of prototypes S ⊂ F with cardinality |S| = c,
containing one instance from each class.

1 for i← 1, . . . , c do
2 Find the centroid of class i and identify the instance f i from this class

closest to the centroid.

3 Construct the initial set of prototypes: S ← {f 1, . . . , f c}.
4 Set all classes as ‘available’.

5 Initialise the minimum-error holder: Emin ← 1.

6 Initialise the ‘no-change’ counter: w ← 0.

7 while w < c do
8 Among the ‘available’ classes, find the class with the highest

proportion of misclassified instances, say class j.
9 Replace temporarily the current instance f j ∈ S with each of the

remaining instances from class j, one at a time. Identify the instance
f j∗ which gives the minimum resubstitution error E.

10 Mark class j as ‘not-available’ for another t iterations.
11 if E < Emin then
12 Emin ← E.
13 Replace f j permanently: S ← S \ {f j} ∪ {f j∗}.
14 w ← 0.
15 else
16 w ← w + 1

17 Return S.
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The stopping condition of the algorithm is implemented as follows. A counter

w of steps without changes is initially set to 0. This counter is incremented

any time a privileged class is checked but no change to S is made (the ‘else’

statement in lines 15 and 16 in Algorithm 7). The counter is reset to 0 every

time a change in S occurs. If there have been c steps without a change, the

greedy approach cannot improve any further on the 1-nn resubstitution error,

the search is terminated, and S is returned.

Note that, after the first t iterations, the choice will be only among the

available c −t classes. Therefore, if we set t = c − 1, the classes will be

ordered during the first pass through all of them, and checked in this order

thereafter.

The distribution of frames varies amongst different video types, which affects

the 1-nn resubstitution error value. For non-egocentric videos, frames

are distributed with a simpler structure and more distinguishable event

boundaries than the egocentric videos. Therefore, the 1-nn resubstitution

error has a lower value for non-egocentric videos compared with the

egocentric videos. Further discussion will be demonstrated in section 5.4.2.

5.3.2 Greedy Tabu Selector for the Cartoon Example

Consider applying the Greedy Tabu Selector (GTS) to the example in Figure 5.2.

To quantify the frame data, we introduce 4 binary features: (1) Mary present,

(2) hat present, (3) door present, and (4) cat present. The labelled data is

shown in Table 5.2.

Set t = c − 1 = 3. At the initialisation step the Greedy Tabu Selector will

pick frames S = {1, 5, 9, 14}, leading to 50% resubstitution error. The first

privileged class will be class 3. After replacing frame 9 with frame 11, the error

drops to 43.75%. Class 3 is banned from checking again in the next 3 steps.

The next privileged class is 4, and frame 14 is replaced with frame 13, leading

to error rate 37.50%. Class 1 and class 2, which are still available are checked

next, and no change to S is made. At this step, class 3 becomes available

again, and the check reveals that no improvement of the error is achieved.
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Table 5.2: Cartoon example data

Frame Features Labels

(1) (2) (3) (4)

1. 1 0 0 0 1

2. 1 0 0 0 1

3. 1 0 0 0 1

4. 1 0 0 0 1

5. 0 0 1 0 2

6. 0 0 1 0 2

7. 0 0 1 0 2

8. 0 0 1 0 2

9. 1 0 0 0 3

10. 1 0 0 0 3

11. 1 1 0 0 3

12. 1 0 0 0 3

13. 0 0 1 1 4

14. 0 0 1 0 4

15. 0 0 1 0 4

16. 0 0 1 0 4

Class 4 becomes available next, and again, no improvement is possible. As

there have been 4 steps (w = 4) with no change to S, the best version is

returned: S = {1, 5, 11, 13}, which corresponds to the desired summary shown

in Figure 5.3 (Summary 2).

5.3.3 An Example with Generated Data

We illustrate the GTS performance on a synthetic data set, consisting of

three classes in 2-dimensional space. Figure 5.4 shows the scatterplot

of a 2D data set labelled in three classes, shown with different markers

and colours. The Greedy Tabu Selector was applied to the data set. The

migration of the prototypes in the original set (instances closest to the class

centroids) is marked by lines. The final prototypes returned by the algorithm

are circled. The error rate at the start is 22.28%, and the one at the end,

with the selected set of three prototypes, is 17.89%, which demonstrates that
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Figure 5.4: An example of 2D data labelled in three classes, shown here with
different markers and colours. The migration of the prototypes in the original set
is marked by lines. The final set of prototypes selected through the Greedy Tabu
Selector algorithm are circled.

substantial improvement on the error can be achieved with a minimal-size

set of prototypes obtained through a simple greedy approach.3

5.4 Experimental Evaluation

5.4.1 Feature Representations

While the generated summary produced by the GTS algorithm is independent

from the video data representations, still some features may represent the

relevant information on frames data better than the others. Therefore, we

examined 7 features as summarised in Table 5.3 to compare their effects on

the summary.

The low-level features include colour, texture, and shape based features.

Among colour based features, we chose RGB colour moments and HSV

histogram descriptors. The RGB representations are extracted as described

in Chapter 4. For the HSV histogram descriptor, the frame was split again into

3MATLAB code for the GTS and the CC algorithms, as well as the data and code and
this example are stored in GitHub: https://github.com/LucyKuncheva/1-nn-editing (As
of August 2019).
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Table 5.3: Feature descriptors

Level Information Notation Size

colour RGB 54

Low colour HSV 144

texture LBP 59

shape HOG 864

Mid complex CNN 4096

complex CNN90 84,89, 86, 74

High semantic SEM 1001

Note: The number of retained principal components was different for the four videos

(described in 4.5.1), as listed in the last column for CNN90.

9 blocks, and a 16-bin colour histogram was computed from the hue value (H)

of the HSV colour space.

From the texture type, we used the local binary patterns (LBP) [125], and for

the shape type, the histogram oriented gradients (HOG) [38].4 The mid-level

feature descriptors were calculated as described in Chapter 4.

We subsequently performed PCA on the CNN feature space (VGGNet) and

retained the components which preserve at least 90% of the variability of the

data in the CNN space. This feature space is denoted as CNN PCA (90%) or

just CNN90. Different number of components were retained for each video;

these numbers are shown in the last column of Table 5.3.

The last feature space in our collection is semantic labelling (SEM) obtained

from the VGGNet classification (soft-max) layer. The output layer of 1000

probability estimates was taken as the feature space, and augmented by one

variable to account for people being present in the frame. A non-zero value

of this variable means that one of following is detected in the frame: a face,

or a human figure.5 The value was rescaled to the magnitude of the largest

posterior probability among the 1000 CNN outputs.

4For both feature spaces we used the respective functions in the MATLAB Computer Vision
toolbox.

5The detection was done by the respective MATLAB functions included in the Computer
Vision toolbox.
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5.4.2 The Challenge of Egocentric Video Data

Egocentric videos offer an extra degree of challenge in video

summarisation [115]. In this section we demonstrate the reasoning behind

using the Greedy Tabu Search algorithm specifically for egocentric video, by

comparing the output summaries obtained from three videos of different

categories: a video professionally prepared as educational material6; a

third-person casual video; and an egocentric video.

For the purposes of this illustration, we segmented the video into units of

interest, and took only four units (shots,segments,events) from each video.7

The videos were as follows:

• Educational material8, video #21 which is also called “The Great Web of

Water-segment 01”;

• A third-person casual video9, “Jumps”; and

• Sub-sampled egocentric video10, video P01.

Figures 5.5 – 5.7 show the results of applying the Closest-to-Centroid and

the GTS method to the three videos. The top plots (subplots (a)) in the three

figures show a montage of 10 frames uniformly spaced within each event.

Each row corresponds to an event. In addition, the events are colour-coded

by the frame borders. The colours are also carried forward in the scatterplots

(c) and (d).

Subplot (b) in all three figures contains two 4-frame summaries. One frame

has been selected from each event. The top row is the result of the Closest-

to-Centroid method, and the bottom row is the result of the proposed GTS

method. Note that, for the purposes of this illustration, in both methods

we used the simple RGB feature space RGBcm described in detail before in

Section 5.4.1.

6This also refers to traditional videos
7We shall term the units of interest ‘events’.
8VSUMM [40]:https://sites.google.com/site/vsummsite/download
9SUMME [60]:https://people.ee.ethz.ch/~gyglim/vsum/

10UTEgo [91]:http://vision.cs.utexas.edu/projects/egocentric/
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(a) Montage of uniformly spaced frames from the four events (shots in this
case).

(b) Summaries of the four events. Top row: closest-to-centroid; bottom row
GTS summary.

(c) Classification regions for the (d) Classification regions for the

close-to-centroid method 1-nn GTS method 1-nn error rate

error rate 7.4% 4.1%

Figure 5.5: Educational video: Keyframe selection through Closest-to-Centroid (CC)
and Greedy Tabu Search (GTS) for a part of video #21 from the VSUMM collection,
RGB space.
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(a) Montage of uniformly spaced frames from the four events (segments in
this case).

(b) Summaries of the four events. Top row: close-to-centroid; bottom row GTS
summary.

(c) Classification regions for the (d) Classification regions for the

close-to-centroid method 1-nn GTS method 1-nn error rate

error rate 9.3% 5.5%

Figure 5.6: Third Person Video: Keyframe selection through Closest-to-Centroid
(CC) and Greedy Tabu Search (GTS) for a part of video "Jumps" from the SUMME
collection, RGB space.
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(a) Montage of uniformly spaced frames from the four events (events in this
case).

(b) Summaries of the four events. Top row: close-to-centroid; bottom row GTS
summary.

(c) Classification regions for the (d) Classification regions for the

close-to-centroid method 1-nn GTS method 1-nn error rate

error rate 55.2% 40.1%

Figure 5.7: Egocentric Video: Keyframe selection through Closest-to-Centroid (CC)
and Greedy Tabu Search (GTS) for a part of video P01 from the UTE collection, RGB
space.
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Finally, subplots (c) and (d) give the classification regions for the 4 events

(treated as classes) for the two summaries. The scattered points correspond

to frames of the video. Different events (classes) are denoted by different

marker shapes and colours. The four selected frames are marked with large

open-circle markers in each plot. The classification regions are shaded with

the colour of the event. They are calculated only in the 2d projection space

obtained as the first two principal components of the RGBcm space. Shown in

the subplot caption are the error rates obtained with the nearest neighbour

classifier using the selected 4 frames as the reference set.

The figures demonstrate the dramatic differences between the types of videos.

Non-egocentric videos are likely to have a much simpler structure in that the

units of interest are represented by visually similar frames, as can be seen

in Figures 5.5 and 5.6. The events are clearly distinguishable in all subplots.

This is especially visible in the scatterplots (c) and (d). Conversely, these

subplots in Figure 5.7 reveal that the classes are highly overlapping. This

fact is also supported by a visual inspection of the frame montage for the

four events. We can broadly label the events in this figure as: (1) Preparing

the kitchen, (2) Cooking, (3) Eating, (4) Washing up. Because of the overlap,

the Closest-to-Centroid summary picks similar frames as shown in the top

row of subplot (b) in Figure 5.7. Our GTS method manages to ‘disentangle’

the events to some extent, as demonstrated by the differences between the

keyframes in the bottom row of the same subplot.

Compare now the differences between (c) and (d) in the three figures. The

regions for the egocentric video change the most, suggesting that GTS has a

much stronger effect for this type of video. Another indication of the suitability

of GTS for egocentric video is the reduction of error rate. The error rates for

the educational video and the third-person video were not very large to begin

with. This means that many similar frames can be chosen as the summary,

and the summary will still be good. For these two types of video, GTS makes a

small improvement on the error rate, but the two rival summaries CC and GTS

are not really distinguishable. This is not the case for the egocentric video.
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The two summaries are indeed different, and the proposed method leads to a

more diverse and meaningful summary.

Hence, while many keyframe selection methods may give equivalent results

for the first two video types, egocentric videos are significantly more

complicated. This explains the abundance of criteria, approaches and

methods for summarisation of this video type. More importantly, given the

vast differences of possible good summaries of the same video, evaluation

seems an impossible task. Matching keyframes in an automatic summary

to a user summary considered to be a ground truth is hardly applicable to

storyboard-type summaries of egocentric videos. As a byproduct of GTS,

we have a standalone measure of the merit of a keyframe summary: the

classification accuracy achieved by using this summary as the reference set

for the nearest neighbour classifier. Lower error will mean that the keyframes

are representative of the events they are meant to summarise, and diverse

enough to allow for these events to be distinguishable.

5.4.3 Experimental Protocol

Data We chose the UTEgo data set [91] to demonstrate the work of the

Greedy Tabu Selector. The data set is challenging because it contains a

variety of daily activities with frequent illumination changes, camera view

shifts, and motion blur.

Method The proposed Greedy Tabu Selector assumes that the video has

already been segmented into units (events). For this experiment, each

video was segmented by a subjective opinion. For each video and feature

representation, we applied the Greedy Tabu Selector, and calculated the 1-nn

resubstitution error. While minimising the error rate is used as a criterion

enforcing coverage and diversity, it does not automatically imply high visual

quality of the summary or adequate semantic content. We assume that

by minimising the error, the obtained summary will be closer to a user-

selected summary of the events. Here we rely on the hypothesis that a user

would naturally select visually diverse frames, as in our cartoon example

in Section 5.3.2. To evaluate this part, we created a user ground truth
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summary for each video. To quantify the similarity between the summaries

obtained from GTS and GT , we used a well-known measure based on the

H-histogram [40], as detailed below. For comparison, we calculated the same

values for the CC summary, which we treat as the baseline. An improvement

on CC will demonstrate the effectiveness of the edited 1-nn for extracting

keyframe summaries.

Matching procedure Our matching procedure is intended to pair two

frames for the same event with respect to their visual appearance.

Let f1 and f2 be the frames being compared. A 16-bin histogram of the hue

value is calculated for each frame. The bin counts are normalised so that

the sum is 1 for each histogram. Let Bj = {bj,1, . . . , bj,16} be the normalised

histogram for fj, j = 1, 2. The L1 distance is calculated by

DH =
16∑
i=1

|b1,i − b2,i|.

The two frames are considered matching if DH < θH , where θH ∈ [0, 2] is a

threshold.

Finally, the F -measure is calculated using the number of matches. As both

compared summaries have the same number of frames, the F -measure

reduces to the proportion of matching frames.

The value of the F -measure depends on θH . The GTS summary itself depends

on the tabu parameter t. We experimented with

• θH ∈ {0.2, 0.3, 0.4, 0.5, 0.6}, and

• t ∈ {c− 3, c− 2, c− 1}, where c is the number of events.

5.4.4 Results

The first visual observation during our experiment was that the CC summaries

were already an excellent match to the ground truth, as also reported in

Chapter 4. In many cases, inspecting the event in the video together with the
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three visually different summaries (user-GT, CC and GTS) leaves doubts as to

which of the three summaries represents the event in the best way. Typically,

the GTS frames gave a more diverse visual account of the storyline of the

video.

Table 5.4 shows the F -values and the classification error (in parentheses) for

the 4 videos for θH = 0.6, and for the three values of the tabu parameter t. We

use the following notations: F (GTS,GT ), abbreviated as FGTS is the F -value

for the comparison of the GTS summary and the user-GT summary. Similarly,

F (CC,GT ), abbreviated as FCC is the F -value for CC and the user-GT. E

denotes the starting resubstitution error obtained with CC as the reference

set, and Emin is the resubstitution error with the GTS summary.

Table 5.4: F -values and classification error (in parentheses, both shown in %) for the
4 videos for θH = 0.6, and for the three values of the tabu parameter t. The entries
in the boxes highlight the cases where GTS is strictly better than CC (FGTS > FCC),
and the underlined values, the cases where GTS is strictly worse.

Tabu parameter t = c− 1

Feature Video P01 (10 events) Video P02 (12 events) Video P03 (9 events) Video P04 (10 events)

space FCC E FGTS Emin FCC E FGTS Emin FCC E FGTS Emin FCC E FGTS Emin

RGB 40 (68) 40 (54) 25 (54) 25 (43) 33 (79) 67 (58) 40 (66) 30 (40)

HSV 50 (49) 30 (38) 58 (48) 50 (38) 78 (62) 44 (45) 50 (56) 30 (33)

LBP 50 (66) 60 (51) 50 (57) 50 (44) 89 (70) 33 (50) 20 (55) 30 (36)

HOG 20 (67) 60 (54) 33 (76) 25 (54) 44 (80) 44 (49) 30 (65) 40 (40)

CNN 50 (47) 70 (34) 42 (27) 58 (20) 56 (64) 78 (29) 30 (40) 50 (20)

CNN90 50 (46) 40 (30) 42 (27) 42 (19) 67 (59) 56 (29) 30 (37) 50 (19)

SEM 40 (67) 40 (50) 42 (56) 33 (45) 44 (72) 33 (37) 30 (58) 10 (48)

Tabu parameter t = c− 2

Feature Video P01 (10 events) Video P02 (12 events) Video P03 (9 events) Video P04 (10 events)

space FCC E FGTS Emin FCC E FGTS Emin FCC E FGTS Emin FCC E FGTS Emin

RGB 40 (68) 30 (55) 25 (54) 25 (43) 33 (79) 56 (60) 40 (66) 30 (41)

HSV 50 (49) 50 (39) 58 (48) 67 (40) 78 (62) 67 (50) 50 (56) 20 (34)

LBP 50 (66) 50 (54) 50 (57) 50 (45) 89 (70) 56 (54) 20 (55) 40 (36)

HOG 20 (67) 60 (58) 33 (76) 25 (69) 44 (80) 44 (73) 30 (65) 30 (44)

CNN 50 (47) 70 (34) 42 (27) 58 (20) 56 (64) 56 (45) 30 (40) 50 (21)

CNN90 50 (46) 60 (34) 42 (27) 33 (20) 67 (59) 67 (44) 30 (37) 50 (19)

SEM 40 (67) 60 (51) 42 (56) 25 (47) 44 (72) 44 (49) 30 (58) 10 (46)

Tabu parameter t = c− 3

Feature Video P01 (10 events) Video P02 (12 events) Video P03 (9 events) Video P04 (10 events)

space FCC E FGTS Emin FCC E FGTS Emin FCC E FGTS Emin FCC E FGTS Emin

RGB 40 (68) 50 (55) 25 (54) 58 (44) 33 (79) 56 (61) 40 (66) 40 (46)

HSV 50 (49) 40 (39) 58 (48) 67 (40) 78 (62) 89 (51) 50 (56) 20 (34)

LBP 50 (66) 50 (55) 50 (57) 58 (45) 89 (70) 56 (58) 20 (55) 40 (41)

HOG 20 (67) 50 (60) 33 (76) 25 (69) 44 (80) 44 (73) 30 (65) 20 (45)

CNN 50 (47) 70 (35) 42 (27) 42 (22) 56 (64) 67 (45) 30 (40) 30 (24)

CNN90 50 (46) 50 (36) 42 (27) 42 (21) 67 (59) 56 (44) 30 (37) 20 (23)

SEM 40 (67) 70 (52) 42 (56) 42 (46) 44 (72) 56 (50) 30 (58) 30 (48)

A Prototype Selection Technique for Video Summarisation 93



Next we examine the effect of parameters θH and t. We note that large values

of θH are more “liberal”, and lead to declaring more matches for the same

summaries, which results in higher F -values. For the purpose of supporting

our point, we look to demonstrate that the F -value for the GTS summary is

larger than the F -value for the CC summary. This will indicate that the GTS

summary is closer to the ground truth (GT) chosen by the user. Thus, we

calculated

∆F = FGTS − FCC ,

and note that high positive values of ∆F are desirable.

Figure 5.8 shows ∆F as a function of θH for the three values of the tabu

parameter t and the 7 feature spaces. Each plot contains the curves for all

7 feature spaces plotted in grey. The curve for the feature space in the title

of the plot is shown in black. This allows for an instant comparison of the

feature space with the remaining ones. For reference, we plot the 0-line (red)

in each plot. If the black curve runs above the 0-line, ∆F is positive, and GTS

improves on CC for the respective feature space.

One conclusion from the results so far is that different feature spaces behave

differently. It can be observed that HOG, and CNN offer improvements on

the baseline for almost all parameter combinations. While CNN and HOG are

not affected much by the value of t, RGB and SEM prefer the GTS summaries

obtained with tabu parameter t = c−3. The PCA selection and the reduction of

the dimensionality does not seem to pay off; the values for CNN90 are lower

than those for CNN. The least successful feature spaces in our experiment

were LBP and HSV.

To evaluate visually the improvement of GTS over CC for each video, we

identified the parameter combination and feature space which lead to the

largest ∆F . The results are shown in Figures 5.9–5.12. Each figure contains

the three summaries: user-GT, CC and GTS. The matches for CC-GT and
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t = c− 1 t = c− 2 t = c− 3

Figure 5.8: Improvement ∆F for the three values of the tabu parameter t and the
7 feature spaces. Each plot contains the curves for all 7 feature spaces plotted in
grey. The curve for the feature space in the title of the plot is shown in black. For
reference, the zero line is plotted in red.

GTS-GT found by our matching procedure are highlighted by the colour of the

rim.11

11A full set of figures for θ = 0.6, all videos and all feature spaces is shown in the
supplementary material of the respective publication.
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(a) Ground truth

(b) Closet-to-Centroid (CC) summary. Matches with GT are highlighted.

(c) Greedy Tabu Search (GTS) summary. Matches with GT are highlighted.

Figure 5.9: Video P01. Summaries: GT, CC and GTS with highlighted matches.
∆F = 0.40 for θH = 0.6, t = c− 1, space HOG.

(a) Ground truth

(b) Closet-to-Centroid (CC) summary. Matches with GT are highlighted.

(c) Greedy Tabu Search (GTS) summary. Matches with GT are highlighted.

Figure 5.10: Video P02. Summaries: GT, CC and GTS with highlighted matches.
∆F = 0.33 for θH = 0.5, t = c− 3, space RGB.

The figures show that our matching algorithm has flaws. Some matches are

missed, and some of the found matches are not convincing. Nonetheless, in

the absence of a perfect matching algorithm, or one which the community

agrees upon, an imperfect algorithm applied across all feature spaces, videos

and parameter choices will have to suffice. Our results are in agreement

with the general view that mid and high-level feature spaces (CNN, SEM) lead

to better summaries. For these spaces, we were able to improve on CC by

applying the proposed GTS method.

Assume that the the F -value is a reasonably faithful estimate of the quality

of the GTS summary. It would be reassuring if the resubstitution error rate

correlated with F . Table 5.5 shows the correlation between F and E for
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(a) Ground truth

(b) Closet-to-Centroid (CC) summary. Matches with GT are highlighted.

(c) Greedy Tabu Search (GTS) summary. Matches with GT are highlighted.

Figure 5.11: Video P03. Summaries: GT, CC and GTS with highlighted matches.
∆F = 0.33 for θH = 0.6, t = c− 1, space RGB.

(a) Ground truth

(b) Closet-to-Centroid (CC) summary. Matches with GT are highlighted.

(c) Greedy Tabu Search (GTS) summary. Matches with GT are highlighted.

Figure 5.12: Video P04. Summaries: GT, CC and GTS with highlighted matches.
∆F = 0.20 for θH = 0.2, t = c− 1, space CNN.

the best-scoring feature space in our experiment, CNN. To calculate each

coefficient, for each video and each t, we concatenated FCC and FGTS for the

5 values of θH for each video, thus obtaining a vector f with 10 values. The

same was done for E and Emin to obtain vector e. The entries in the table are

the Pearson correlation coefficients between 10-element vectors for F and

for E.

Table 5.5: Correlation coefficients between F -values and the error rate E for the
CNN feature space for the 4 videos and the three tabu parameter values.

t = c− 1 t = c− 2 t = c− 3

P01 −0.2040 −0.2040 −0.1601

P02 −0.2261 −0.2261 0.1048

P03 −0.3246 −0.2010 −0.1448

P04 −0.6509 −0.1843 −0.3592
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The negative values in the table (lower error, higher match) supports our

overarching hypothesis is that classification error can be linked to the

interpretability and usefulness of the summary. GTS has a single tuning

parameter, t. In our experiment the results were not significantly different

across the values of t which we examined. We propose that for an egocentric

video split into 9-12 events, t = c−1 is a good choice, based on the correlation

between F and and E in Table 5.5.

We note that overtraining, which is a major concern in pattern recognition, is

not an issue here. Generalisation accuracy of the edited 1-nn classifier is not

a quantity of interest because the aim is to minimise the error on the training

data, given an extremely limited budget of one frame per event.

5.5 Conclusion

In this study we relate the keyframe selection for video summarisation to

prototype (instance) selection for the nearest neighbour classifier (1-nn).

Drawing upon this analogy, we propose a Greedy Tabu Selection method for

extracting a keyframe summary. It is assumed that the video has already

been split into units (segments or events), and each such unit is regarded

as a class. Our hypothesis is that better 1-nn classification accuracy of the

video using the selected set of keyframes as the reference set (resubstitution

accuracy) is linked to a better summary.

We compared 7 feature representations including low level features (colour,

texture, shape) and high-level features (people and objects). According to our

results, the CNN feature space was consistently better than the alternatives.

Applying GTS on the CNN space led to better summaries that the baseline

ones, obtained through the Closest-to-Centroid method.

The difficulties in evaluating summaries for egocentric videos come from

several sources. First, because of the intrinsic diversity of each event,

many selections of representative frames, which may be visually quite

different, could be equally good summaries of the video. Thus a comparison
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with a single user summary may score low potentially good automatic

summaries. Second, the CC baseline is often an excellent summary already,

and improvements on that summary may be difficult to rank. This holds in

general, not only for the present study. Many times, authors of new video

summarisation methods choose a baselines which are not very competitive

(random, uniform, mid-event), and still, the results from user studies are less

impressive than expected. Perhaps this difficulty in distinguishing between

summaries within a narrow margin for improvement, combined with the

subjective uncertainty involved in any such evaluation are the reason for

the lack of large-scale experimental comparisons of video summarisation

methods.

There are several interesting directions for further research. First, with a larger

budget (more than one frame allowed for each segment), new, more accurate

variants of the GTS can be developed. Second, combination of feature spaces

can be explored to find even better summaries. While concatenation of

feature spaces is a straightforward solution, classifier ensembles may be

more effective. Finally, the error-rate criterion for selecting the frames can

be combined with quality-enforcing criteria to boost the aesthetic quality of

the summary in addition to diversity and coverage. Last but not least, we

remark that a lot of effort in developing new summarisation methods may be

fruitless without a standard, widely accepted method for comparing keyframe

summaries.

Taking user’s interest and preferences into account, further study is required

in developing a method to extract multiple summaries from the same stream.

This area will be explored in the next chapter.
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Chapter 6

Selective Search for Producing

Query-Based Summary

6.1 Query-Based Video Summary

Recently, several query-based summarisation methods have been proposed

either by a given lexical query [173, 145, 162], or a video query [116]. This

review is focused on the former group, and mainly on summarisation methods

proposed for egocentric data streams.
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Figure 6.1: A classification of query-based video summarisation methods.
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Following the properties introduced in Figure 2.2, here Figure 6.1 shows two

additional topics required to describe a query-based video summarisation.

• Query form. For each video, user’s preference can be given as an input

query. The lexical query can be either in the form of structured sentence [173];

or a set of fixed [144, 145] or multiple [162] sequences of words.

• Correspondence frames. Video frames associated with the user preference

are estimated to filter out from the rest of frames. The criterion for finding

related frames can be based on a pre-trained classifier [173], an on-the-fly

classifier [162], or a memory network [145].

6.2 Problem Statement

Hitherto, many state-of-the-art approaches were built to summarise

egocentric videos [103, 84, 60, 61, 92, 21, 175, 96]. Typically, each of

these approaches generates just a single summary for all users. A single

generic summary may not suit everyone, given the unconstrained scenarios

in most egocentric videos and lifelogging data streams. This form of summary

can be suitable in some controlled domains such as video surveillance of

a specific area with constant background and predefined salient events.

Moreover, available annotated data show considerable discrepancies between

summaries made by different users [60]. Users may prefer to obtain a

summary related to a specific concept or event. For instance, a user who

follows a diet would be interested in a summary of their eating routine during

the day. An elderly user may want to extract summary of faces of the people

they have met during their day.

Lately, several authors addressed this problem often as a supervised approach

of generating a summary built from a user’s query [173, 144, 145, 162]. Here

we propose a new query-based summarisation approach where we preserve

the frame-time relationship in order to answer the question ‘when?’.
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The study conducted by Le et al. [87] indicates that additional non-visual

contextual details and meta-data (e.g. date and time) would improve

the practicality of using video summarisation on reinforcing the memory.

Therefore, our approach, includes the time tags in constructing the final

keyframe summary set. The proposed method can be useful in retrieving

memories of daily experiences, behaviours of interest or concern, or in

spotting rare occasions when a certain object becomes a part of the view.

We aim to solve the problem of query summarisation as an unsupervised

approach which requires no particular set-up or knowledge of domain, and

can be used for daily living. A brief description of our approach in term of the

components introduced in the diagrams of Figure 2.2, and Figure 3.1 is shown

in Table 6.1.

Table 6.1: Description of our method in terms of the video summarisation diagram.

Property : Value

Summary Form : Keyframes.

Frame Representation : Mid-level (complex CNN).

Method of Selection : Unsupervised.

Processing : Off-line.

Summary Type : Query-based Summary.

Query form : Fixed word.

Correspondence frames : Any pre-trained classifier.

Application domain : Daily living.

Evaluation strategy : Ground truth annotations.

Evaluation metric : F-measure.

6.3 Methodology

6.3.1 Description of the Proposed Process

Figure 6.2 illustrates the proposed approach1, and Figure 6.3 depicts the steps

of the implementation algorithm. First, after obtaining the user’s query, we

identify all frames in the video related to it through semantic concept search.

We call these frames ‘correspondence frames’. The user’s query is given as a

1MATLAB code is available at: https://github.com/pariay/Selective-Summary (As of
August 2019).
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word (e.g. food, phone, laptop, book). Next, the identified frames are grouped

along the timeline to form events.

Selective 
summary

Video data

Wearable
camera

COFFEEQuery:

Event #1 Event #2

0 1h 2h

Figure 6.2: Diagram of the proposed method for selective egocentric video
summarisation. Shaded sectors of the circle are the events detected through the
algorithm.

We apply an algorithm which we call “occurrence-led clustering” to find time

intervals which will be the events to summarise. At the next step, we extract

keyframes from the events. Finally, we visualise the summary using a new

approach, which we term a “compass summary”.

Video data

Semantic concept searchQuery

Time-line clustering

(occurrence-led

event segmentation)

Keyframe selection

Compass summary

Figure 6.3: Flowchart of the proposed method for selective video summarisation.

6.3.2 Semantic Concept Search

In order to compute the object representation, we propose to use the winner

of the ImageNet Large Scale Visual Recognition Competition 2015 (ILSVRC),
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Residual Network (ResNet) [66]. As a result, for each frame, the network

returns a set of lexical concepts of the detected dominant object along with

a prediction score. For example, a dog could be presented as the dominant

object in the frame with score 0.2, measuring the certainty that the identified

object corresponds to the image content.

Inspired by Dimiccoli et al. [42], we used WordNet [113, 114] to post-process

the results and calculate the similarity score between a detected object and

the user’s query. WordNet is a lexical database which groups English words

into a set of synonyms, provides a short definition of the words and shows

usage examples. The value for a given frame is calculated as follows. The

word representing the dominant object detected by ResNet and the query are

entered in WordNet, which then outputs a degree of similarity. This degree

varies from 0 for dissimilarity to 1 for identity. We considered the frame to be

relevant to the user query if the similarity was equal to 1.

The semantic search algorithm returns a vector representing the presence

(Label 1) or absence (Label 0) of the user’s query for each frame in the video.

The CNN (ResNet 50) used here has been pre-trained on images with a

canonical view and correct level of illumination without any motion blur.

These conditions are rarely met in egocentric images. Therefore, we set a

threshold of 0.3 on the probability prediction score of the CNN. Frames with

dominant objects whose score is less than the threshold are considered to be

empty.

Some popular queries have bespoke solutions. An example is ‘food’. For

a user with an eating disorder problem (overeating or under-eating), it is

important to regularly check their dietary routine (by themselves or by a

doctor). Being of a great public interest, the problem of detecting food has

been addressed in the past as a binary classification problem where the

algorithm has to distinguish whether the given image contains food or not [5,

79, 148, 136]. Our approach can make use of such solutions at the semantic

search step, bypassing the need to use ResNet and WordNet.
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An example of the semantic search step is shown below. Figure 6.4 shows a

frame from video P02. ResNet returned description: car mirror. The search

query was “automobile”. The similarity score between the tokenised frame

description and the query was assessed at value 1 by WordNet. According

to our threshold, the frame was given label 1 indicating that it matches the

query.

Label: 1

Query:  AUTOMOBILE

…ResNet

Description    Score

car mirror     (35%)  √

seat belt       (30%)  x

minibus        (12%)   x
WordNet

Figure 6.4: Illustration of the semantic search process using a frame from video
P02 (UTEgo data set) and query ‘automobile’.

The poor quality (e.g. motion blur, composition, illumination) of the images in

egocentric videos often leads to false positive and false negative detections.

Two such examples are shown in Figure 6.5. The image in Figure 6.5 (a) is

a false positive detection for query ‘television’, and the image in Figure 6.5

(b) is a false negative for query ‘food’. The true dominant objects in these

images were respectively ‘car window’ or ‘street’ in Figure 6.5 (a) and ‘food’

in Figure 6.5 (b).

(a) False positive (b) False negative

Figure 6.5: Frames from egocentric videos P02 and P01 (UTEgo data set) mislabelled
by the semantic labelling algorithm. (a): false positive for ‘television’, and (b): false
negative for food.

6.3.3 Occurrence-led Event Segmentation

An Occurrence-led Event Segmentation (OLES) is proposed here as the next

step. The term “occurrence-led” is coined by us to denote the process

of finding temporal clusters on the time line based on presence-absence
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(occurrence). After the frames relevant to the query have been identified,

we cluster only their time occurrences (not the frame content or feature

representation). For a given concept, we prepare a binary vector with

consecutive elements corresponding to the frames in the video. Value 1

indicates that the respective frame contains the concept of interest, and

value 0, that it does not. Hierarchical agglomerative clustering was applied

to cluster time-adjacent frames together based on their geometric centroid.

Consider the toy example in Figure 6.2. The query “coffee” returns the

following vector relating the 13 frames with the searched concept:

1 1 1 1 0 0 0 0 0 0 1 0 1

Event #1 Event #2

The data which we cluster here is the sequence of occurrences of the query

concept on the time line. We apply the single linkage procedure using the

centroid method.

One drawback of nearly any clustering method, including hierarchical

clustering, is that the number of clusters is not known in advance. When we

cluster a single-dimensional time variable, we have the advantage of being

able to interpret the clusters and pose time constraints as deemed necessary.

For the video summarisation purposes, we can argue that an event should not

be shorter than a given time interval, and that the time gap between events

should be no less than a given amount. If two candidate-events are closer to

one another than this gap, they are likely parts of the same event. In the toy

example, imposing the restriction that the centroids of two clusters must not

be closer than 3 frames, the method returns two clusters marked as Events

above.

As to the minimum length of an event, we decided not to pose any restrictions.

The reason for this are twofold. First, even a glimpse of a certain object may

be of high interest. For example, a casual glance at a shelf with wines in the

supermarket may need to be flagged in the summary. Second, the camera

wearer may not be focusing their gaze on a particular object for a long time
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even though they may be interacting with this object. An example of this is a

chat on the phone. The user may look at the screen for a moment to verify

the caller’s identity, and then the phone will be pressed to the user’s ear, and

out of the camera view. For the gap between events, though, we chose a

20-minute threshold. Given the typical length of the egocentric videos (few

hours), and lifelog records, we found that this threshold leads to summaries

of reasonable length.

6.3.4 Keyframe Selection

Once the events have been determined through OLES, the next step is to

select a good subset of keyframes (one keyframe per event). This step needs

a feature representation of all frames. For this representation we chose the

4096 deep features extracted as it is already explained in Chapter 4. Treating

the temporal events as “clusters” in the respective 4096-dimensional space,

the frame closest to the centroid of the cluster was chosen to represent that

cluster.

6.3.5 The Compass Summary Visualisation

We demonstrate the result of our summarisation method using a “compass

view” as shown in Figure 6.6. Consider query “phone” in video P01 from

the UTEgo data set [91]. The semantic concept search identified 90 frames

containing a mobile phone as the dominant object (the actual number of

frames related to the “phone” query is 153).

The duration of the video, rounded up to the closest hour, is represented

by a circle, and the hours are denoted with annotated long spikes. The

individual frames where the query concept is found, are plotted with short

black spikes (90 in this case). Shaded sectors of the circle are the events

detected through the OLES algorithm. Finally, the spikes with the offset

images are the proposed summary. The summary should be read clockwise,

starting from the box ‘Start’ at the top.
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Figure 6.6: An example of a compass summary of the system’s output for video
P01 from the UTEgo database for query ‘phone’. Shaded sectors of the circle are the
detected events. The individual frames related to the query concept are plotted with
short black spikes.

The compass view allows the user to see the whole video at a glance and

indicates the time positions of the summary frames.

6.4 Experimental Results

This section presents quantitative experimental results on two egocentric

data sets. The aim of the experiment is to demonstrate the effectiveness of

the presented selective keyframe summarisation process. In the first leg of

this experiment, we assess quantitatively the semantic concept search. This

part of the pipeline pre-determines the success of the subsequent clustering

and keyframe selection parts (Figure 6.3), dictating to a large extent the

quality of the final summary. Next, we estimate the effectiveness of the whole

selective summary.
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6.4.1 Data Sets

To demonstrate the performance of the approach, two data sets were selected:

the University of Texas Egocentric video (UTEgo) [91]; and the Egocentric

data set of the University of Barcelona-objects (EDUB-obj) [22]. The given

results illustrate that our selective summary approach works on both type of

data (egocentric video and lifelog series of images).

Each UTEgo video was sub-sampled as explained in Chapter 4. The EDUB-

Obj comprises of 4916 images of daily activities: eating, working, attending

meetings and shopping. Images were recorded by 4 different subjects in 8

different days (each of them having captured 2 days). This data set is acquired

by the wearable Narrative camera which captures images in a passive way

every 30-60 seconds. Number of images per subject are as follows:

• Subject 1-1, 588 images.

• Subject 1-2, 721 images.

• Subject 2-1, 589 images.

• Subject 2-2, 557 images.

• Subject 3-1, 726 images.

• Subject 3-2, 437 images.

• Subject 4-1, 610 images.

• Subject 4-2, 684 images.

We prepared a ground truth by identifying the dominant object for each

individual frame for all videos. The most common objects found in both data

sets were: car, food, phone, laptop/computer. In addition there were other

objects such as: glass, beer, coffee, book, desk, light, sign, refrigerator and

television. We are interested in one dominant object per frame, and ignore

any other object in that particular frame.

6.4.2 Effectiveness of the Semantic Search Algorithm

For each video, we identified the most represented objects. Then we applied

the semantic search, separately for each identified object. To do this, the

Selective Search for Producing Query-Based Summary 110



frames were labelled with 0 and 1, as described in Section 6.3.2. The result

from the semantic search was represented in the same format, which allowed

us to calculate Precision, Recall, and the F -measure. For each video we

averaged the Precision, Recall, and the F -measure across the query terms.

The results are shown in Table 6.2.

Table 6.2: Result of the concept search algorithm for different user queries per
video (in %). The Precision, Recall, and the F -measure are averaged across the query
terms.

data set Name Precision Recall F-measure Concepts

P01 92.2 49.2 60.4 food, car, phone, computer, shoe

UTEgo P02 80.4 26.2 36.6 food, car, glass, book, television

P03 88.7 37.5 49.5 food, car, phone, grocery, refrigerator, washbasin

P04 100 20 31.7 food, laptop, book

Subject 1-1 88.5 34.5 39.5 food, car, phone, building

Subject 1-2 80.4 54.1 61.6 food, car, mobile, beer, coffee, glass, cup, sign

Subject 2-1 100 55.5 67.8 phone, computer, light, grocery

EDUB Subject 2-2 83.2 37 47.8 food, phone, glass, laptop, light

Subject 3-1 87.75 40.5 46.5 phone, laptop, book, train

Subject 3-2 99.5 46 58 food, phone, computer, desk

Subject 4-1 100 33.3 48.7 computer, desk, building

Subject 4-2 94.7 24.7 44 car, computer, train

The table shows that our detection algorithm performs well in finding frames

related to the user search (high Precision values), however it also misses a

considerable number of frames which are related to the concept (low Recall

values). Considering that we are using poor quality images (egocentric video),

we regard our semantic search as reasonably successful.

6.4.3 Effectiveness of the Selective Summarisation

Method

The aim of this part are: (1) to determine the success of the Occurrence-led

Event Segmentation algorithm followed by the keyframe selection; and (2)

subsequently to determine the effectiveness of the entire selective summary

method.

To this end, we made a user summary GT for each video and each concept:

‘phone’, ‘food’, and ‘car’. The selected frames account for the events when the

camera wearer is interacting with the object of interest (one frame per event).

An ideal output from our method would match reasonably the number, timing

and content of GT . We must note, however, that many frames of different
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visual content and at different time moments may represent the same event

equally well. Thus, a summary returned by our method may not be an ideal

match for GT and still be of high quality.

Table 6.3: Results of the Selective Summary process for different user queries per
video (in %).

Selective Summary without Selective Summary

Concept Search algorithm method

Data Set Name Precision Recall F-measure Precision Recall F-measure

P01 96.6 87.6 91.4 70 88.4 75.4

UTEgo P02 78.2 100 87.4 72.6 78.4 70.8

P03 95.8 100 97.7 86.2 90.3 86.8

P04 83.3 100 89 85.7 100 91

Subject 1-1 85 91.75 87.5 80 79.25 70

Subject 1-2 81.8 93.8 84.63 54.5 72.9 58.4

Subject 2-1 75 100 83.5 68.3 81.3 61.8

EDUB Subject 2-2 93.4 100 96 70 90 72.8

Subject 3-1 92.5 93.8 92 80 80 70.8

Subject 3-2 74.3 100 82.5 71.8 87.5 71.8

Subject 4-1 100 90.3 94.3 100 73.7 83.3

Subject 4-2 75 100 80 48.7 100 57.7

For the first part of the evaluation, for every concept w, we applied OLES and

the keyframe selection algorithm to the frames manually labelled as w. Thus

we bypass the semantic search part and assume an ideal input for the OLES

and keyframe selection. The resultant keyframe summaries were compared

with those for GT . The left part of Table 6.3 provides the experimental results

for this part. This time, the matches were calculated as follows: a keyframe

containing the object of interest is considered true positive (TP ), if the event

it represents is also represented by a keyframe in GT . Frames in GT which

were not associated with an event returned by OLES were considered false

negative (FN). Finally, a frame representing event which was not included

in GT is considered false positive (FP ). The values are averaged across the

queries.

For the second part, we applied OLES and the keyframe selection algorithm

to the frames returned by the semantic concept search. The results are

presented in the right part of Table 6.3. As expected, the values are lower

than the first part due to the imperfection of the semantic search part of the

pipeline.
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6.5 Summarisation Examples

We provide two examples built with the Selective Summarisation method. The

results are shown next to the user summary GT , and the summary without

the semantic search algorithm.

Figure 6.7 displays an example from the UTEgo video (P03) answering a user’s

query on “food”. Our selective summarisation method misses an event 1.5

hours into the video (Figure 6.7 (c)). We note that the frames returned by

the closest-to-centroid keyframe selection method in Figure 6.7 (b) are very

close to the user selection, both semantically and visually. This indicates

that, should we have a better semantic search algorithm, the selective

summarisation method may be expected to be accurate and useful.

The match counts for this example are as follows: for Figure 6.7 (b): TP = 3,

FP = 0, FN = 0, (F = 100%); and for Figure 6.7 (c): TP = 2, FP = 0, FN = 1,

(F = 80%).

(a) User keyframe selection (ground truth)

(b) Without Semantic Search (c) With Semantic Search

Figure 6.7: An example keyframes of the ground truth summary GT and the
proposed summary for video P03 of the UTEgo data set. The user’s query is ‘food’.
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As a second example, Figure 6.8 shows the results obtained from the EDUB

data set (Subject 1-2) answering query on “coffee”. Our selective summary

system detected an extra event (Figure 6.8 (c)) at 2.2 hours, due to the lower

number of detected frames (low Recall value). Even so, Figure 6.8 (b) still

presents a good match with the user selection.

(a) User keyframe selection (ground truth)

(b) Without Semantic Search (c) With Semantic Search.

Figure 6.8: An example keyframes of the ground truth summary GT and the
proposed summary for Subject 1-2 of the EDUB data set. The user’s query is ‘coffee’.

6.6 Conclusion

We propose a method to extract a selective, time-aware keyframe summary

of an egocentric video. The problem was solved by applying a pipeline of a

semantic concept search, occurrence-led event segmentation, and finally a

cluster centroid keyframe selection. A compass-type diagram was proposed

to visualise the selective summary. We demonstrate the effectiveness of

our system through experiments with user-defined ground truth and two

egocentric video databases.
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We found that the major bottleneck of our approach is the semantic search

part. Identifying objects and their related concepts is a challenge when

the images are blurred, the illumination is poor, and the scene is cluttered.

This is the predominant type of images in egocentric video. Thus, the main

possibility to improve the accuracy of our selective summarisation system

would come from honing the object detection and recognition in egocentric

video.

Comparisons with alternative video summarisation methods would not be

useful here because we are solving a different problem whereby the summary

preserves the time position of the selected frames. We are not aware of other

works proposing summarisation methods for this problem.

Future research direction include incorporating user searches on faces and

people (known persons or general encounter of groups and crowds). This

will involve face detection, people detection and face recognition. We

were not able to explore this aspect with the publicly available databases

because any faces in the frames were purposely blurred for identity protection.

Experiments with own egocentric videos will give us the opportunity to expand

the system in this direction.

Combining feature spaces is also an interesting area to explore for a potential

improvement on keyframe selection.

A commercially built selective summarisation system may be used for

monitoring addictive behaviours, e.g. those related to alcohol, smoking,

and overeating.

Further to exploring off-line video summarisation methods, we examined

on-line video summarisation as discussed in the next chapter.
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Chapter 7

On-Line Video Summarisation

7.1 Motivation

Wearable camcorders provide consumers with the ability to record their daily

activities all day long. Having a voluminous and at the same time largely

redundant stream of frames makes browsing the videos a disagreeable task.

Selecting a summary for such a video on-the-fly would make it possible to

keep recording for a long time within the limited resources of the wearable

device. Such an approach could be useful in applications including monitoring

the daily routines of elderly people [117], memory support [90, 170, 87, 68],

and health behavior monitoring such as sedentary behavior [83] or dietary

analysis [122].

7.2 Problem Statement

Many of the methods used for generating video summaries typically assume

that the full video is available for processing. Here we are interested in on-

line summarisation, where keyframes are selected for the summary before

the entire video has been captured or received. To develop a method fit for

egocentric data stream, it is first instructive to understand and assess existing

on-line video summarisation methods. We wish to identify the aspects of

methods that influence performance and the restrictions inherent in on-line

applications.

In this chapter, we initially classify the on-line video summarisation methods

by identifying their most relevant descriptive properties. We investigate
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nine on-line summarisation methods by specifying them in the terms of the

taxonomy, and subsequently apply them to synthetic data with an objectively

“best” solution available, and to a collection of real videos. At the end of this

experiment, we identify the two methods that perform best in producing an

on-line summary.

Following that, we propose a new on-line video summarisation method

with robust parameters to a different video type. This method meets the

requirements of low computational complexity for feature extraction and

summary selection.

Finally, we compare our new method against the two “winner” methods

(obtained from the last comparative experiment) by running the experiment

on both synthetic and real data sets.

7.3 A Classification of On-line Summarisation

Methods

The main properties to describe a video summarisation method are shown

in Figure 2.2, Page 13. Figure 7.1 shows the additional topics required to

describe an on-line video summarisation. Note all methods contain the same

basic components:

• Set management. In on-line video summarisation the frames are acquired

one by one, as the stream is being processed. We distinguish between

two approaches for the keyframe set management: fixed and dynamic.

According to the “fixed” approach, once a frame has been included in

the summary, it cannot be replaced or removed [1, 9, 51, 112, 128, 137,

158]. Conversely, in the “dynamic” approach, frames may be dropped or

replaced [10]. Dynamic management may not be practical in applications

where latency is a constraint, and keyframes must be transmitted as soon as

they are selected.
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Figure 7.1: A classification of on-line video summarisation methods.

• Method of selection. As it is explained in Chapter 2, a concise number

or sequences of frames will be selected to represent a video. Methods

proposed for on-line video summarisation are mainly unsupervised. Among

the unsupervised methods, grouping strategies are the popular choice. We

detailed grouping strategies and frame selection in below.
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? Grouping strategies. Representative frames are selected from groups of

frames, which may or may not be time-contiguous. The groups can be created

from the data stream either explicitly, e.g. clustering [10, 51], or implicitly,

e.g. change detection [1, 9]. Gaussian mixture models (denoted as GMM)

group the frames into a fixed [128] or variable [149] number of Gaussian

distributions.

? Frame selection. Particular frames are selected to represent each group.

The criterion for selecting a frame can be its location within the cluster;

typically the most central frame is chosen [10, 51]. Alternatively, frames

can be selected based on their location within a shot, e.g. the first [1] or

middle frame [137]. Some methods consider each frame within a group and

progressively select keyframes based on some condition, e.g. the difference

to existing keyframes [128].

• Running memory. Some methods only need to store the current

keyframe set [10, 112, 158], whereas others have potentially larger memory

requirements such as buffering an entire shot in addition to maintaining the

keyframe set [9, 137]. Methods that process frames in batches will need to

hold the full batch in memory [1, 51, 149].

• Calculation of objective(s). Methods proposed for on-line video

summarisation used similarity the most, among the other calculation options

introduced in Chapter 2.

? Similarity. How representative a keyframe is can be measured by how

similar it is to the frames from which it is selected. To evaluate similarity

between frames we can use the feature representation in Rn and metrics

defined on this space. Examples of such metrics are the Euclidean or Cosine

distances [51, 128]; the volume of the convex hull of a set of frames [10];

the correlation between two frames [9]; the degree of linear independence

between batches of frames [1]; the orthogonal projection of a frame onto the

span of existing keyframes [112]; and the intersection of colour histogram

bins [137]. Finally, some methods use statistical measures, such as the
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likelihood that a frame belongs to a distribution of existing frames, or the

equivalence of two sets of frames in terms of mean and variance [149].

7.4 Methods Included in the Comparison

Study

We review and compare nine methods for on-line video summarisation. First

we give a brief description of each method, and then Table 7.1 categorises

the methods according to the classification given in Figure 2.2, and Figure 7.1.

7.4.1 Shot Boundary Detection (SBD)

Abd-Almageed [1] uses change in the rank of the feature space matrix, formed

by a sliding window of frames, to identify shot boundaries. The first frame

in a shot is selected as a keyframe. The method parameters are the window

size and a threshold on the rank for identifying changes.

7.4.2 Zero-mean Normalised Cross-Correlation (ZNCC)

Almeida et al. [9] also look for shot boundaries. They compare the

similarities between consecutive frames, using the zero-mean normalised

cross correlation as a measure of similarity. Zero-mean normalised cross

correlation value is an integer obtained by comparing two grey scale images.

Once shots have been identified, a predefined parameter determines whether

or not the shot should be included in the summary. Keyframes are selected at

uniform intervals throughout a shot. The authors define the desired interval

size in terms of the full video length, which typically will not be known in the

on-line case. They apply their method in the compressed domain, where it

can produce either keyframe sets or skims.

7.4.3 Diversity Promotion (DIV)

The approach taken by Anirudh et al. [10] is to group frames into clusters,

while simultaneously maximising the diversity between the clusters. They

use the volume of the convex hull of the keyframe set as a measure of
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diversity. Incoming frames replace existing keyframes as cluster centres if

doing so increases the diversity of the keyframe set. This diversity measure

introduces a constraint on the number of keyframes in relation to the feature

space size; the number of keyframes must be greater than the feature space

dimensionality. The authors recommend the use of PCA to reduce a high-

dimensional feature space. However, it is not clear how they calculate the

principal components for data in an on-line manner.

7.4.4 Submodular Convex Optimisation (SCX)

Elhamifar and De Paolis Kaluza [51] process frames in batches, and propose

a “randomised greedy algorithm for unconstrained submodular optimisation”

to select representative frames for each batch. These representatives can

be a combination of existing keyframes and new keyframes from within the

batch itself. In their experiment on videos they pre-process the data to

extract shots and use these as batches. An alternative choice, such as a

fixed batch size, will have to be used in a true on-line setting. Similarly, their

experiment defines a regularisation parameter in terms of the maximum

observed distance between frames; a value that will not be available when

running the method on-line.

7.4.5 Minimum Sparse Reconstruction (MSR)

The MSR method [112] uses the orthogonal projection of a frame onto the

span of the current keyframe set to calculate the percentage of reconstruction

for the frame. A predefined threshold then determines whether the frame is

adequately represented by existing keyframes, or it is added to the keyframe

set. The use of the orthogonal projection forces a constraint on the number

of keyframes used for reconstruction, which is limited to the number of

dimensions of the feature space. Once the maximum number of frames is

reached, only the keyframes that best represent the others in the set are

used to calculate the percentage of reconstruction.
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7.4.6 Gaussian Mixture Model (GMM)

Ou et al. [128] use the components of a Gaussian mixture model to define

clusters of frames. Each new frame is assigned to the nearest cluster,

provided it is sufficiently close to the cluster mean, or otherwise forms a

new cluster. The number of clusters is fixed, so any new clusters replace an

existing one. Two parameters for the method interact to determine how long

clusters are remembered for. This memory affects whether non-contiguous,

similar frames are grouped together or not. This method has substantially

more parameters to tune than the other methods. The number of clusters, and

the initial variance and weight for new clusters must be defined, in addition

to the two learning-rate parameters. The authors describe the algorithm as a

method for video skimming rather than keyframe selection.

7.4.7 Histogram Intersection (HIST)

Rasheed and Shah [137] propose a multi-pass algorithm that first detects

shot-boundaries, and then explores scene dynamics. For the on-line scenario

here, we consider just the shot-boundary detection. The detection algorithm

uses the intersection of HSV histograms for consecutive frames. An overlap

below a pre-defined threshold defines a shot boundary. Once a full shot has

been identified, frames from the shot are sequentially added to the keyframe

set if they are not sufficiently similar to any existing shot keyframes.

7.4.8 Merged Gaussian Mixture Models (MGMM)

Similar to Ou et al., Song and Wang [149] sequentially update a GMM to

describe the distribution of a data stream. However, rather than a fixed

number of clusters, their method allows new ones to be added if necessary

and also provides a mechanism for combining statistically equivalent clusters.

The MGMM method is for clustering a generic on-line data stream. For a

comparison with video summarisation methods, we add an additional step of

selecting a representative from each cluster as a keyframe. At each stage of

processing, the frame closest to each cluster mean is stored as the current
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keyframe. Frames may be replaced if a subsequent frame is closer to the

mean. As the cluster means are dynamic, the final set of keyframes may not

be the optimal set that would be chosen if the full data set is kept in memory,

and the keyframes selected at the end of processing.

7.4.9 Sufficient Content Change (SCC)

The change-detection algorithm from Truong and Venikatesh [158] selects

the first frame sufficiently different to the last keyframe as the next keyframe.

Unlike the other change-detection algorithms, this method does not require a

buffer of all frames that have appeared within a shot so far. Only the keyframe

set is stored in memory. The authors describe this algorithm in terms of a

generic content change function. Here we implement the algorithm using

Euclidean, Minkowski1 or Cosine distance.

7.5 Control-Charts Method for On-line Video

Summarisation

Here we propose a method that uses the statistical process of control-charts

to identify shots from a streaming video. Control-charts [146] monitor a

quantity of interest to detect when a process moves out of control. The mean,

µ, of the quantity is used as a baseline value, and the process deemed to be

“in control” while observations remain within a specified limit from the mean,

typically three standard deviations, σ.

7.5.1 Control-Charts Method (CCS)

Assuming that each frame is represented as a point in some L-dimensional

space, we take the Euclidean distance, d, between consecutive frames as the

process to be monitored. A distance d > µ+ 3σ defines a shot boundary. Once

a full shot has been identified, a keyframe is selected as the frame closest to

the centre of the cluster defined by the shot.

1Minkowski distance between two vectors calculates as the Lp norm of their differences. It
is a generalisation of the Manhattan (L1) and Euclidean (L2) distances.
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Potential issues with such a method are that: (1) consecutive shots identified

by the algorithm may be too similar to warrant separate keyframes, and (2)

short transitions may be identified as shots, but are not important to the

summary. We address these issues as follows:

• We define a measure of similarity between frames, as follows [40]. Use

the HSV representation of the frames to obtain 16-bin histograms of the hue

value (H). If the Minkowski distance between the normalised histograms is

less than a threshold of 0.5, the frames are similar.

Table 7.1: Description of the methods included in the comparisons in terms of the
classification in Figure 2.2, and Figure 7.1 (in alphabetical order of the first author).

1 Shot boundary detection (SBD)∗ Abd-Almageed [1].

Property : Value

Summary Form : Keyframes.

Feature Representation : Low-level (colour histograms).

Method of Selection : Unsupervised.

Grouping Strategy : Change-detection.

Frame Selection : Start-shot.

Set Management : Fixed.

Running Memory : Batch.

Calculation of Objective(s) : Similarity.

Similarity : Linear independence.

Summary Length : As extracted.

2 Zero-mean normalised cross-correlation (ZNCC) Almeida et al. [9].

Property : Value

Summary Form : Keyframes or skim.

Feature Representation : Low-level (colour histograms).

Method of Selection : Unsupervised.

Grouping Strategy : Change-detection.

Frame Selection : Mid-shot.

Set Management : Fixed.

Running Memory : Shot.

Calculation of Objective(s) : Similarity.

Similarity : Correlation.

Summary Length : As extracted.
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Table 7.1: CONTINUED

3 Diversity promotion (DIV)∗ Anirudh et al. [10].

Property : Value

Summary Form : Keyframes.

Feature Representation : Mid-level (convolutional neural network).

Method of Selection : Unsupervised.

Grouping Strategy : Clustering.

Frame Selection : Mid-cluster.

Set Management : Dynamic.

Running Memory : Keyframes.

Calculation of Objective(s) : Similarity.

Similarity : Convex hull volume.

Summary Length : A priori & a posteriori.

4 Submodular convex optimisation (SCX)∗ Elhamifar and De Paolis Kaluza [51].

Property : Value

Summary Form : Keyframes.

Feature Representation : Mid-level (convolutional neural networks).

Method of Selection : Unsupervised.

Grouping Strategy : Clustering.

Frame Selection : Mid-cluster.

Set Management : Fixed.

Running Memory : Batch.

Calculation of Objective(s) : Similarity.

Similarity : Euclidean distance.

Summary Length : As extracted.

5 Minimum sparse reconstruction (MSR) Mei et al. [112].

Property : Value

Summary Form : Keyframes.

Feature Representation : Low-level (texture).

Method of Selection : Unsupervised.

Grouping Strategy : Clustering.

Frame Selection : Conditional.

Set Management : Fixed.

Running Memory : Keyframes.

Calculation of Objective(s) : Similarity.

Similarity : Orthogonal projection.

Summary Length : As extracted.
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Table 7.1: CONTINUED

6 Gaussian mixture model (GMM)∗ Ou et al. [128].

Property : Value

Summary Form : Skim.

Feature Representation : Low-level (Colour - MPEG-7).

Method of Selection : Unsupervised.

Grouping Strategy : Gaussian mixture model.

Frame Selection : Conditional.

Set Management : Fixed.

Running Memory : Keyframes.

Calculation of Objective(s) : Similarity.

Similarity : Euclidean distance.

Summary Length : As extracted.

7 Histogram intersection (HIST)∗ Rasheed and Shah [137].

Property : Value

Summary Form : Keyframes.

Feature Representation : Low-level (colour histograms).

Method of Selection : Unsupervised.

Grouping Strategy : Change-detection.

Frame Selection : Mid-shot & conditional.

Set Management : Fixed.

Running Memory : Shot.

Calculation of Objective(s) : Similarity.

Similarity : Histogram intersection.

Summary Length : As extracted

8 Merged Gaussian mixture models (MGMM)∗ Song and Wang [149].

Property : Value

Summary Form : Keyframes.

Feature Representation : Any.

Method of Selection : Unsupervised.

Grouping Strategy : Gaussian mixture model.

Frame Selection : Mid-cluster.

Set Management : Dynamic.

Running Memory : Batch.

Calculation of Objective(s) : Similarity.

Similarity : Statistical.

Summary Length : As extracted.
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Table 7.1: CONTINUED

9 Sufficient content change (SCC) Truong and Venkatesh [158].

Property : Value

Summary Form : Keyframes.

Feature Representation : Any.

Method of Selection : Unsupervised.

Grouping Strategy : Change detection.

Frame Selection : Start-shot.

Set Management : Fixed.

Running Memory : Keyframes.

Calculation of Objective(s) : Similarity.

Similarity : Any.

Summary Length : As extracted.

∗ denotes where the method name is our own.

• After identifying a shot and selecting the representative keyframe, we

compare this frame with the previous keyframe (if available). If the two

consecutive keyframes are similar according to the above measure, we

assume that a shot boundary has been falsely identified. The boundary

is removed, and the two shots are merged. A new keyframe is selected from

the combined shot to replace the two keyframes from the individual shots.

• We define an empirical constant to state the minimum shot length. If a shot

contains fewer frames, the shot is ignored and no keyframe is selected.

The CCS method requires three parameters: a pre-defined threshold θ for

classifying keyframes as similar, a minimum shot length ms, and initial buffer

size B for calculating the starting mean and standard deviation. If we assume

that the number of frames per second will be constant across videos, and

that the duration required for a shot to be of interest is largely independent

of video content, the optimal value for ms should be consistent across videos.

We select two seconds to be the minimum duration of a shot for it to be of

interest. The full control-chart method is given in Algorithm 8.

On-Line Video Summarisation 128



Algorithm 8: On-line control-charts method

Input: Data stream F = {f1, . . . , fN}, fi ∈ RL, minimum shot length ms,
initial buffer size B, threshold for keyframe similarity θ .

Output: Selected set of keyframes P ⊂ F

// Initialisation
1 P ← ∅
2 j ← 1 // Shot number
3 Sj ← {f1, . . . , fB} // First shot
4 for i← {2, . . . , B} do
5 di ← d(fi, fi−1) // Euclidean distance

6 µ← mean(d2, . . . , dB)
7 σ ← std(d2, . . . , dB)

// Process video frame-by-frame
8 for i← {B + 1, . . . , N} do
9 di ← d(fi, fi−1)

10 if di < µ+ 3σ then
// No new shot detected

11 [µ, σ]← update µ & σ with di
12 Sj ← Sj ∪ F (i)

13 else
// New shot detected

14 if |Sj| > ms then
// Shot is sufficiently long

15 pj ← Select-Keyframe(Sj)
16 δ ← Keyframe-Diff(pj, pj−1)
17 if δ < θ then

// Shots are too similar: Merge
18 Sj ← Sj−1 ∪ Sj

// Remove last keyframe from set
19 P ← P (1 : end− 1)
20 pj ← Select-Keyframe(Sj)

21 P ← P ∪ pj
22 j ← j + 1

23 else
// Shot too short: Ignore

24 Sj ← ∅

25

26 Function f = Select-Keyframe (Y )
// Select the frame closest to the mean

27 f ← argmin
x∈Y

d(x, Ȳ )

28

29 Function δ = Keyframe-Diff (f1, f2)
// Compare 16-bin Hue histograms of frames f1 and f2

30 hi = Hist16 (Hue (fi)) // Normalised 16-bin Hue histogram

31 δ =
16∑
j=1

|h1(j)− h2(j)|
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7.5.2 Feature Representation

For an on-line application, two factors must be considered when choosing

a descriptor: (1) the ability of the chosen feature space to identify the

meaningful attributes of the scene; (2) the computational cost of processing

(the extraction process, and algorithm running time associated with the

feature dimensionality).

Our control-charts method may be used with any descriptor. Preferably, we

choose a descriptor which has a low dimensional features with a shorter

extraction time (detailed in Table 7.7). The RGB moments is selected as the

descriptor to use in the CCS method.

Further, to select a suitable descriptor for testing the algorithm, we implement

the extraction of a number of different features, including those used by

existing on-line summarisation methods. We experimentally compare these

features on the CCS method to find a suitable descriptor. The descriptors are

listed as follows:

1. RGB moments. The RGB colour moments are obtained as it is already

described in Chapter 4.

2. Colour Layout (MPEG7) [82]. An input RGB image is uniformly divided

into 8× 8 blocks. The average value of the pixel colours for each block

is calculated. The average RGB colours is converted into YCbCr colour

space and then quantized into three sets of 64 DCT coefficients (total of

192 features).

3. CENTRIST descriptor. CENsus TRansform hISTogram (CENTRIST) [171].

Census Transform compares the intensity value of a pixel with its eight

neighboring pixels. The binary results from the 8 comparisons are

transformed in a decimal number between 0 and 255. A histogram

of these numbers is then generated with 256 bins, one for each

Census intensity. The two end bins (corresponding to 0 and 255) are

removed, leaving a 254-dimensional feature space. We used a MATLAB

implementation to extract the descriptor [18].
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4. HSV histograms. The feature space is extracted by a quantisation of the

HSV color space into a 256-dimensional histogram vector of 32 bins for

Hue, 4 bins for Saturation and 2 bins for Value. To increase speed the

original image is resized to 1/64th of its original size.

5. GIST [126]. This descriptor is computed by convolving an image with 32

Gabor filter (4 scales and 8 orientations), producing 32 feature maps.

Each feature map is divided into 4× 4 regions and the average feature

values calculated for each region. The 16 average values of 32 feature

maps are concatenated resulting 512-dimensional descriptor.

6. and 7. Places205-AlexNet and VGGNet. We included two mid-

level feature descriptors extracted through deep learning neural

networks. The 4096 deep features are extracted right before the

classification (soft-max) layer of two pre-trained CNNs, known as

VGGNet architecture [147] and Places205-AlexNet model [182], using

Caffe deep learning toolbox [74].

7.6 Experiments on Comparing Nine On-line

Methods

7.6.1 Data

We test each of the nine methods on two synthetic data sets, and

subsequently illustrate their performance on the 50 real videos from the

VSUMM collection [40].

The first data set reproduces the example of Elhamifar et al. [52]. The data

consists of three clusters in 2-dimensional space as illustrated in Figure 7.2.

Each point represents a frame in the video. The three clusters come in

succession but the points within each cluster are generated independently

from a standard normal distribution. The order of the points in the stream

is indicated by a line joining every pair of consecutive points. The time tag

is represented as the grey intensity. Earlier points are plotted with a lighter

shade. The “ideal” selected set is shown with red target markers.
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Figure 7.2: Synthetic Data set#1. The time tag is represented as the grey intensity.
Earlier points are plotted with a lighter shade. The “ideal” selected set is shown with
red target markers.

The second synthetic data set, shown in Figure 7.3, follows a similar pattern

but the clusters are less well-defined, they have different cardinalities, and

the features have non-zero covariance. Data set #2 is also larger, containing

250 points, compared to 90 in Data set #1. The difference in cluster size

and total number of points between the two data sets will guard against

over-fitting of parameters that may be sensitive to shot and video length.

Figure 7.3: Synthetic Data set#2. The time tag is represented as the grey intensity.
Earlier points are plotted with a lighter shade. The “ideal” selected set is shown with
red target markers.

For both data sets we add two dimensions of random noise (from the

distribution N (0, 0.5)). A higher-dimensional feature space is used so that

the MSR method is not penalised by being constrained to a maximum of two
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keyframes for reconstruction. The additional dimensions and noise also make

the synthetic examples a more realistic test for the methods.

Finally, we use the 50 videos from the VSUMM collection, and five ground

truth summaries for each video. Since the choice of feature representation

may have serendipitous effect on some methods, we experiment with two

basic colour descriptors: the HSV histogram and the RGB moments. These

two spaces are chosen in view of the on-line desiderata. HSV histograms

and RGB colour moments are among the most computationally inexpensive

and, at the same time, the most widely used spaces. For the HSV histogram,

each frame is divided uniformly into a 2-by-2 grid of blocks (sub-images). For

each of the four resulting blocks we calculate a histogram using eight bins for

hue (H), and two bins each for saturation (S) and value (V). The RGB colour

descriptor is computed as explained in Section 7.5.2.

For the four methods (DIV, SCX, MSR, and GMM) developed using a specific

feature space, other than colour histograms, we extract the original features

(CNN, Centrist, MPEG7 colour layout) for the VSUMM collection. These original

features are used to test whether using an alternative feature space leads to

an unfair representation of the performance of a method.

7.6.2 Evaluation Metrics

The aim of video summarisation is to produce a comprehensive representation

of the video content, in as few frames as possible. If the video is

segmented into units (events, shots, scenes, etc.), the frames must allow

for distinguishing between the units with the highest possible accuracy

(Chapter 5). Therefore we use three complementary objective measures

of the quality of the summary:
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Cardinality : K = |P | (7.1)

Approximation error : J =
N∑
i=1

d(fi,p
∗
i ) (7.2)

Accuracy : A = 1-nn(P ) (7.3)

where F = 〈f1, . . . , fN〉 is the sequence of video frames, N is the total number

of frames in the video, P = {p1, . . . ,pK} is the selected set of keyframes, p∗i

is the keyframe closest to frame fi, d is the Euclidean distance, and 1-nn(P )

is the resubstitution classification accuracy in classifying F using P as the

reference set. To obtain a good summary, we strive to maximise A while

minimising J and K.

For the tests on synthetic data, we can evaluate the results of the

summaries against the distributions used to generate the data. However,

we acknowledge that what constitutes an adequate summary for a video

is largely subjective. If user-derived ground-truth is available for a video,

one possible way to validate an automatic summary is to compare it with

the ground truth. The match between the summaries obtained through the

nine examined on-line methods and the ground truth is evaluated using the

approach proposed by Avila et al. [40]. According to this approach, an F -

measure is calculated (large values are preferable) using 16-bin histograms

of the hue value of the two compared summaries (Chapter 3).

7.6.3 Experimental Protocol

We first tune parameters by training each method on the synthetic Data

set #1. Table 7.2 shows the parameters and their ranges for the nine methods.

Some methods have a parameter that defines the number of frames in a

batch. For these methods, we define an upper limit of the batch size to

represent the inherent on-line constraints of memory and processing. This
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Table 7.2: Parameters for the nine methods tested, the ranges used for tuning the
methods to synthetic Data set #1, and the parameter value that generates the best
result. *The number of keyframes in the representative set is limited to the feature
space dimensionality.

Method Parameter Range Optimum

SBD Batch size (N) 5 - 30 14

Change threshold (e) 0.1 - 0.5 0.18

ZNCC Change threshold (e) 0.01 - 0.5 0.13

Minimum segment length - % (ms) 0.1 - 10 1.2

# keyframes (K) 3 - 10 3

DIV Regularisation (λ) 8 - 12 10

Error to diversity weighting (τ ) 0.2 - 1 0.6

Probability of random update (p) 0.5 - 3 2

SCX Batch size (N) 5 - 30 25

Regularisation (λ) 0.6 - 2 1

MSR Representation threshold - % (e) 0.3 - 0.9 0.3

# representative keyframes (K) 4* 4

Number of clusters (C) 3 - 10 8

Learning rate (α) 0.003 - 0.005 0.004

GMM Selection threshold (e) 0.1 - 0.5 0.2

Initial cluster variance (σ2
0) 2 - 5 3.5

Initial cluster weight (w0) 0.05 - 0.5 0.1

HIST Change threshold (ec) 0.05 - 1 0.05

Selection threshold (es) 0.05 - 1 0.8

MGMM Batch size (N) 5 - 30 30

Significance level for match (ρ) 0.01 - 0.5 0.01

Change threshold (e) 0.1 - 800 1.1

SCC Distance function (fn) Euclidean, Cosine, Cosine

or Minkowski

limit ensures that tuning the batch size does not cause it to increase to an

essentially off-line, full data set implementation.

We extract the Pareto sets for the three criteria described in Section 7.6.2, and

sort them in decreasing order of accuracy, A. Results with equal accuracy are

arranged by increasing values of K (smaller sets are preferable), and then, if

necessary, by increasing values of J (sets with lower approximation error are

preferable). As A and J achieve their optimal values by including all frames

as keyframes, we discount solutions that select more than ten keyframes. An

example of the results of training the SCX method on Data set #1 is shown in

Table 7.3.
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Table 7.3: The Pareto sets for the SCX method trained on Data set #1, describing the
optimal combinations of accuracy, cardinality of the keyframe set, and approximation
error. The parameter values that generated the results are also shown.

Batch Approximation

size Regularisation Accuracy Cardinality error

25 1 1 3 157

20 0.8 1 4 154

15 1 1 5 135

10 0.6 1 7 126

5 0.8 1 8 121

5 0.6 1 10 114

15 0.6 0.99 6 132

25 1.6 0.67 2 339

To assess the robustness of the method parameters across different data

samples, the best parameters for each method, as trained on Data set#1,

are used to produce summaries for an additional 40 randomly generated

data sets: 20 samples following the same cluster size and distributions as

Data set #1 (Figure 7.2), and 20 samples following the cluster distributions of

Data set #2 (Figure 7.3). We can think of the first 20 samples as “training”,

and the latter 20 samples as “testing”, and place more value on the testing

performance.

For all 40 data sets, the results for the methods are ranked one to nine; a

lower rank indicates a better result. Tied results share the ranks that would

have been assigned without the tie. For example, if there is a tie between the

top two methods, they both receive rank 1.5.

We next illustrate the work of the algorithms on real videos separately on

the HSV and the RGB feature spaces described in Section 5.4.1. We tune

the parameters of each method on Video #21 of the VSUMM database. The

ranges described in Table 7.2 are used for parameters that are independent

of the feature space and number of data points. Ranges for parameters

that are sensitive to the magnitude and cardinality of the data are adjusted

appropriately. The parameter combination taken forward is the one that

maximises the average F -measure obtained from comparing the summary

from the method and the five ground-truth summaries. We then select the

more successful of the two feature spaces and use the optimal parameter set
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for each algorithm to generate summaries for the full set of VSUMM videos.

The F -measures are calculated for the comparisons of each video, method

and ground-truth summary, and the average for each method compared.

Finally, we repeat the training and testing on the VSUMM database using

the original features used by the methods, where applicable. As methods

may have been developed and tuned to use a specific feature space, this

procedure ensures that methods are not disadvantaged by using the colour-

based features.

7.6.4 Results

The relative performance of the methods on the synthetic data sets is shown

in Figure 7.4. The merging Gaussian mixture model method consistently

generates one of the best summaries. While MGMM still performs relatively

well on Data set #2 examples, it suffers from some over-fitting of its batch-size

parameter on Data set #1.

Figure 7.4: Average rank for each method for summaries of 40 randomly generated
Data sets (20 each following the cluster distributions of Data sets #1 and #2).
On each data set, summaries from all methods are compared and ranked. Better
methods receive lower rank.

The SCX and SCC methods also perform relatively well, and are reasonably

robust across changes in the data distribution. This robustness is
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demonstrated by the relative sizes of the grey and black parts of the bar for

these methods; the SCX method receives better ranks on Data set #2 than

on Data set #1, and the SCC method performs equally well across the two

data sets.

The relatively poor performance of the GMM method may be due to the fact

that this algorithm is designed to generate video skims, and therefore tends to

return a higher number of keyframes than other methods. The MSR method is

potentially affected by constraints from the low feature space dimensionality.

The comparison of the two features spaces on VSUMM video #21 is shown

in Figure 7.5 and Table 7.4. Sensitivity to the respective feature space can

be observed both in terms of the optimal parameter values found (Table 7.4),

and the quality of the match to the ground-truth summaries (Figure 7.5):

Table 7.4: Method parameters tuned on VSUMM Video #21 using HSV histogram
and RGB moments to represent frames.

Method Parameter HSV RGB

SBD N 20 19

e 0.14 0.13

ZNCC e 0.01 0.05

ms 0.1 0.5

K 6 15

DIV λ 11 9

τ 0.2 0.6

p 1 1.5

SCX N 80 100

λ 1.4 2

MSR e 0.56 0.78

K 10 4

C 10 9

α 0.003 0.003

GMM e 0.5 0.5

σ2
0 2 2.5

w0 0.05 0.05

HIST ec 0.1 0.8

es 0.2 0.1

MGMM N 200 170

ρ 0.1 0.1

e 6 516

SCC fn Minkowski Euclidean
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Figure 7.5: Average F -measure for each method compared to five user ground-
truth summaries for Video #21. Method summaries are generated using HSV and
RGB feature spaces. Summaries are matched using histograms of hue values for the
selected frames.

• Some methods (GMM, ZNCC, SCC, and DIV) perform quite differently

when the two different feature spaces are used, with a significantly

better average F -measure with one of the spaces.

• The two methods that perform relatively well on the synthetic data

sets (MGMM and SCX) generate very similar results when HSV and RGB

features are used.

• For most methods, including those with very different results (e.g. GMM),

the tuned parameters are similar for both feature spaces.

• However, parameters directly related to the feature space are naturally

very sensitive to a change in features. For example, the optimum

distance threshold parameter for the SCC method is 516 in RGB space,

compared to 6 in HSV space.

Most of the methods perform better with the RGB moment features. Therefore,

we use these features and the corresponding tuned parameters to generate

summaries for the full set of VSUMM videos. Table 7.5 shows the average

F -measure across all VSUMM videos, and the median number of frames

selected.
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Table 7.5: Average number of frames and F -measure for summaries generated by
each method of the 50 VSUMM videos using RGB moments, and average F -measure
with the features originally used with the method. The F -measures are also averaged
across the five ground truth summaries for each video.

RGB Original. features

Median Mean Mean

Method number of frames F -measure F -measure

SBD 10 0.52 0.40

ZNCC 1 0.18 0.17

DIV 15 0.39 0.20

SCX 13 0.54 0.54

MSR 2 0.23 0.35

GMM 0 0.03 0.12

HIST 4 0.38 0.39

MGMM 17 0.52 -

SCC 3 0.27 -

The method generating the best results on the synthetic data (MGMM), again

produces relatively good summaries for the videos. The MSR method performs

markedly better on the real videos, with a higher-dimensional feature space,

than on the synthetic data. The SBC method performs differently when feature

spaces are changed. The SCX method has the highest average F -measure.

As an illustration of the results, the summary generated by this method for

Video #29 is shown in Figure 7.6 in comparison to the ground truth summary

from user 3. The method matches 7 of 8 frames selected by this user (shown

next to the SCX frames in Figure 7.6).

There is little difference in the performance of the methods using their original

features, compared to RGB moments, both in terms of average F -measure

and overall ranking. The SCX method maintains the highest average F -

measure, and although the average score for the GMM method improves, it

still remains lower than the other methods. The DIV method scores a lower

average F -measure when the original features are used, highlighting the

importance of considering simple, efficient feature spaces.

Three observations can be made from the video summaries:

• The F -measures in Table 7.5 are generally low compared to those

reported in the literature for other video summarisation methods. This

On-Line Video Summarisation 140



difference is to be expected because here we compare on-line methods

which do not have access to the whole collection of frames.

• Most methods are highly sensitive to their parameter values. The

optimal values tuned on video #21 are not directly transferable to

the remaining videos. Most methods (ZNCC, MSR, GMM, HIST, and SCC)

typically select too few keyframes. This indicates the importance of

tuning. In the on-line scenario, data for tuning will not be available,

especially the segment labels needed for calculating A.

• Most methods are tested using a different feature representation than

that recommended by the authors (HSV histograms are used in only

three of the methods: SBD, ZNCC, and HIST; none of the methods use

RGB features). However, the relative performances do not appear to be

overly sensitive to the choice of feature space.

SCX User #3 SCX User #3

Figure 7.6: Comparison of VSUMM Video #29 summaries from ground truth User #3
and the SCX method. The matches have been calculated using the 16-bin histogram
method with threshold 0.5 [40]. The F -measure for the match is 0.88.
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7.7 Experiments on the Proposed Method

Here we compare the results for the proposed CC method with the two existing

methods, SCX and MGMM, found to perform the best in the Section 7.6.

7.7.1 Results on Synthetic Data

We first consider the performance of the three methods on seven synthetic

data sets. The first data set follows the example of Elhamifar et al. [52], as

explained in Section 7.6.1. Data sets #2 - #5 each contains an additional

two noise dimensions. Data sets #6 and #7 follow a similar structure but

with more dimensions, six and eight, respectively. All data sets are shown

in Figure 7.7. Using synthetic data allows an objective assessment of the

summaries produced.

We train the method parameters on 50 randomly generated data sets

following the distribution of Data set #1. Solutions are evaluated as follows:

• Find the Pareto set for the three criteria A, K and J .

• Exclude any results in the Pareto set with K > 10. This step removes the

solution that selects all frames as keyframes, giving perfect accuracy and no

error.

• Select the summary with the best accuracy. Where multiple summaries tie,

select that with the fewest frames, and use the approximation error to split

any remaining ties.

Taking the 50 optimal parameter sets as a cluster, the set closest to the

cluster centre is chosen as the tuned method parameters.

The methods are then tested on 300 randomly generated data sets, 50

from each of the remaining six data set patterns, using the parameters

tuned on Data set #1. For each data set the accuracy, cardinality and

approximation error are calculated for each method. The methods are then
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#1 #2

#3 #4

#5

Figure 7.7: Synthetic Data sets #1 - #5. The time tag is represented as the grey
intensity. Earlier points are plotted with a lighter shade. The “ideal” selected sets are
shown with red target markers.

ranked. Four paired-sample t-tests are performed, comparing the accuracy

and approximation error for our proposed CC method against the two existing

methods.

Table 7.6: Results of paired-sample t-tests comparing the accuracy (A) and
approximation error (J) for the CCS method summaries and the summaries generated
by the MGMM and SCX methods. The confidence interval for the difference is shown
for significant results (at the 0.05 significance level).

Method Test P-value Confidence interval

MGMM ACCS − AMGMM 1e-5 [0.02, 0.04]

JCCS − JMGMM 6e-4 [-1.7, -0.4]

SCX ACCS − ASCX 0.7 -

JCCS − JSCX 3e-23 [-4.0, -2.7]
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Table 7.6 shows the results of the paired-sample t-tests. At the 0.05 level,

there is no significant difference between the accuracy values for the CCS

and SCX methods (i.e. the difference has a zero mean). All other tests find

a significant difference. The confidence intervals for the mean differences

are less than zero for J , implying that the error tends to be less for the CCS

method, and greater than zero for A, implying that the accuracy tends to be

greater for the CCS method. The CCS method summaries tend to rank best

according to our three criteria; an average of 1.4 across the 300 experiments,

compared to the existing methods that have average ranks of 2.2 and 2.3 for

the MGMM and SCX methods, respectively.

7.7.2 Results on VSUMM Videos

The methods are tested on the VSUMM collection [40]. Whereas the

summaries of the synthetic data can be assessed in relation to a “correct”

result, there is no such objective assessment available for real videos; what

constitutes a good summary is somewhat subjective. Again, we follow

the approach of Avila et al. [40] for similarity and metric, as explained in

Section 7.5.1.

Parameters for each method are tuned on Video #21. We select the

parameters that produce the summary with the highest average F -measure

when compared with the five user ground-truth summaries. These parameters

are used to run the methods on the other 49 videos.

Figure 7.8 shows the F -measure (averaged across the five user summaries)

versus the number of keyframes selected by each method for the VSUMM

videos. Each point on the plot corresponds to a video. The ideal summary has

a high F -measure, and low number of frames. Points in the upper-left corner

of the plots shown in Figure 7.8 therefore represent the better summaries.

The points for all methods are plotted with grey colour on all plots. The

points of the method in the title of the subplot are shown with black markers.

The CCS method generates a higher proportion of good summaries than the

existing two methods. As an illustration of these results, Figure 7.9 shows

the summary of Video #47 produced by the CCS method, compared to the
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Figure 7.8: Number of keyframes (K) and F -measure averaged over five user
ground-truths, for summaries of the 50 VSUMM videos. Filled, grey circles show the
results for all three methods, with the points for the named method highlighted in
black.

summary from User #1. All five frames in the user summary are matched in

the CCS method summary.

7.8 Experiments on Comparing the

Descriptors

The purpose of this experiment is to evaluate the feature spaces in regard to

their suitability for on-line keyframe summarisation, application for egocentric

videos. Thus, we chose to test the algorithm on the Activity of Daily Living

(ADL) data set [133]. The ADL data set was recorded using a chest-mounted

GoPro camera which consists of 20 videos of subjects performing their daily

CCS

User #1

Figure 7.9: Comparison of VSUMM Video #47 summaries from User #1 and the
CCS method. The matches have been calculated using the 16-bin histogram method
with threshold 0.5 [40].
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activities in the house. For the experiment, we consider two aspects: ease of

calculation of the feature space and the quality of the produced summary.

Table 7.7: Comparison of the average time of feature extraction for the toy video
and the average MCC-value for all 20 videos. The best value for each column is
highlighted in Bold.

Image Visual
Size Info.

U
se

d
in

R
e
si

ze
d

O
ri

g
in

a
l

C
o
lo

u
r

S
ce

n
e

D
e
e
p

le
a
rn

in
g

D
im

e
n
si

o
n
s

T
im

e
(s

e
c)

M
C

C
-v

a
lu

e

RGB moments — X X 54 50 0.68
Color Layout [128] X X 192 519 0.52
CENTRIST [112] X X 254 160 0.63
HSV histogram [8] X X 256 30 0.45
Gist — X X 512 232 0.45
Places205-AlexNet — X XX 4096 494 0.46
VGGNet [10] X X 4096 2377 0.43

7.8.1 Extraction Time

All experiments were carried out on a laptop, 2.20 GHz Intel Core i5 CPU, with

8GB RAM. The first part of our analyses compares the processing time to

extract the different features for the toy video. The ‘toy video’ is a selection of

the initial 495 frames from Video #8 of the same data set. For each descriptor,

we calculated the average time of extraction by repeating the process 20

times. The results are shown in Table 7.7. The extraction time for the simple

colour spaces (RGB moments and HSV histograms) is shorter than the time for

the other descriptors, whereas the popular VGGNet has the longest extraction

time.

7.8.2 Performance Measure

We chose the Matthews correlation coefficient (MCC) [111] between the

selected summary S and a given ground truth as a performance indicator.

The MCC defined as:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(7.4)
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where TN is the number of true negatives, and TP , FP , and FN are as

defined in Section 6.4.3. The ground truth for the data set was created as

follows: Each event in the video is distinguished by a number of terms. The

frames in an event are labelled as informative/not informative based on

whether they contain semantic information that is included in the relevant

terms for this event. Consequently, any informative frame from the event

can be considered ground truth for that event.

7.8.3 Quality of the Keyframe Summary

The average MCC-values using the chosen feature space for 20 videos

are shown in Table 7.7. The higher the value, the better the quality of

the summary. The RGB moments has the highest MCC-value, and the

VGGNet descriptor, the lowest value. CENTRIST feature space gave better

performance than CNN, and was also faster to extract. The difference between

MCC-values for the HSV histogram, Gist and the CNN descriptors are not large.

However, the HSV histogram has fewer dimensions and substantially faster

processing time.

7.9 Conclusions

Our experiments highlight the difficulty in pre-tuning the parameters of on-

line video summarisation algorithms. This limitation suggests that algorithms

are needed which are more robust to their parameter fluctuations, and ideally

should adapt with the streaming data.

The relative performance of the methods appears to be independent of the

strategy for grouping the frames into segments or clusters and of the similarity

measure used. We note that, according to our experiments, no strategy

or measure produced consistently good or consistently bad summaries.

The methods that select the cluster centres as the keyframe set produce

better summaries than those that select keyframes conditionally. Perhaps

unsurprisingly, the method that decides the number of keyframes a priori,

tends to perform less well than those that can continue to add keyframes

as required, suggesting that on-line algorithms need flexibility to adapt the
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number of keyframes to the data. This requirement must be balanced with

the memory restrictions inherent in on-line video summarisation.

The videos used for testing in the comparative study have well-defined shots,

providing a relatively easy summarisation task. The performance of the

methods may be different on other types of video, e.g. where the shots are

less clearly defined or the variability within shots is greater. Examples of such

type of data are egocentric videos and lifelogging photo streams.

Our proposed CCS method performs well in comparison to existing methods,

both on small synthetic data sets and real videos. On-line methods require

computationally inexpensive feature spaces. The experiments show that

for our on-line summarisation, simple, colour-based descriptors offer a

substantially more efficient and higher quality summary than the complex

CNN features tested. For the colour-based descriptors, the use of resized

images does not appear to adversely affect the summary quality. Image

compression is therefore an interesting area to explore for on-line video

summarisation, with a potential for further gains in efficiency.

Performance on longer videos must also be considered. For the application

of wearable devices, it may be necessary to introduce a restriction on the

number of keyframes that can be selected.

Similarly, when shots can potentially become very long, or consecutive shots

very similar, a more dynamic approach to sampling, and the shot detection

and similarity thresholds may be beneficial, and will be investigated in future

work.

Following this, we will develop on-line video summarisation method for

egocentric video stream in the next chapter.
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Chapter 8

Control-Charts for Generating

Budget-Constrained On-line

Summary

8.1 Problem Statement

Nine on-line video summarisation methods were described and experimentally

compared on non-egocentric video in Chapter 7. While these methods work

fairly well for non-egocentric videos, it is reasonable to expect that loosely

defined event boundaries in egocentric videos will render their performance

inadequate. Therefore, this chapter proposes a new on-line summarisation

method suitable for egocentric video (Figure 8.1).

. . .

Feature space

Online summaryStreaming video data

. . .

Wearable
camera

Ƹ𝜇

Ƹ𝜇 + 3 ො𝜎

add?
discard previous?

event

keyframe

budget

Figure 8.1: A sketch of the proposed on-line video summarisation method for
egocentric video. The plot shows the Shewhart chart of the distance between
consecutive frames, with the mean µ and the 3σ event-detection boundary, both
calculated from the streaming data.

At any moment of the recording video, a valid summary is accessible up

to that moment. We required that the new method has low computational

complexity and is robust with respect to the feature representation of the
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video frames. We compare our method against the top-performing on-

line summarisation method from the Chapter 7 (called ‘submodular convex

optimisation’ [51]), and a baseline method of uniform sampling of events

(named ‘uniform events’). Moreover, we evaluate results making ground truth

based on annotating frames (of a video) on semantic information rather than

pixel-based comparison with a set of frames representing ground truth (visual

comparison).

8.2 On-line Video Summarisation

Consider a scenario where the user’s daily activities are recorded using

a wearable camera. To create an on-line summary, the video frames are

represented as feature vectors in some feature space. A ‘budget’ is set as

the maximal allowed number of frames in the summary. Next, the system

saves the extracted keyframes generated by the on-line video summarisation

algorithm if the budget allows for this. Should the limit be reached, one or

more of the frames already stored in the summary is removed. Below we

explain the steps of our algorithm.

8.2.1 Budget-Constrained On-line Video Summarisation

In statistics, control charts have been used to monitor and control ongoing

processes over time. In Chapter 7, we introduced the use of control charts to

identify event boundaries from a streaming video. The closest frame to the

center of each event, represented as a cluster in the feature space, is selected

as a keyframe. Here, we additionally, impose a constraint on the number of

keyframes, hence the term ‘budget-constrained’ video summarisation. We

also introduce a dynamic, similarity threshold into the algorithm that varies

the probability of selecting new keyframes according to the number of existing

keyframes and total budget. The pseudo-code of the algorithm is given in

Algorithm 9 1.

1Matlab code is available at: https://github.com/pariay/
Budget-constrained-on-line-Video-Summarisation-of-Egocentric-Video (As of August
2019)
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Algorithm 9: Budget-constrained online video summarisation

Input: Data stream F = {f1, . . . , fN}, fi ∈ RL, initial buffer size b, minimum
event length ms, threshold parameter for keyframe difference θ, desired
number of keyframes β.

Output: Selected set of keyframes K ⊂ F, |K| ≤ β.

// Initialisation
1 K ← ∅
2 E ← {f1, . . . , fb} // initial buffer
3 Calculate the b− 1 distances between the consecutive frames in E.
4 µ← average distance.
5 σ ← standard deviation.

// Processing of the Video
6 for frame number i = b+ 1, . . . , N do
7 di ← d(fi, fi−1) // Calculate distance to previous frame
8 if di <= µ+ 3σ then // Same event
9 [µ, σ]← update µ & σ with di

10 E ← E ∪ fi // Store the frame
11 else if |E| < ms then// Event too short
12 E ← fi // Remove frames in E and start a new event
13 else // Event sufficiently long
14 k ← Select-Keyframe(E)
15 if K empty then // First keyframe
16 K ← k

17 else // k included if sufficiently different to K
18 klast ← last keyframe in K
19 δ ← Keyframe-Diff(k, klast)
20 δmin ← smallest distance among consecutive keyframes in K
21 if |K| < β & δ >Diff-Threshold (|K|, i, θ, β,N ) then // In budget
22 K ← K ∪ k
23 else if δ >= δmin then// Over budget
24 Remove from K one of the keyframes in the closest pair.
25 K ← K ∪ k
26 E ← fi // new event

27

28 Function f = Select-Keyframe (data)
29 f ← argmin

x∈data
d(x,mean(data))

30

31 Function δ = Keyframe-Diff (f1, f2)
32 hi = Hist16 (Hue (fi)) // Normalised 16-bin Hue histogram

33 δ = 1
16

16∑
j=1
|h1(j)− h2(j)|

34

35 Function θnew = Diff-Threshold (nk, t, θ, β, T )
36 nt ← β × t/T // Expected number of keyframes, assuming linear

distribution
37 if nt == β then
38 θnew = 0

39 else

40 θnew ← θ×(β−nk)+(nk−nt)
β−nt
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Given an integer constant β, the purpose is to select a set of no more than β

keyframes which describe the video as fully and accurately as possible. Unlike

the classical summarisation approaches, we derive the summary on-the-go

by processing each frame as it comes and selecting keyframes before the full

video content is available. The algorithm requires only a limited memory to

keep the frames selected thus far, and the frames belonging to the current

event.

A control chart is used to detect the event boundaries [146]. The quantity

being monitored is the difference between consecutive frames, defined by

the distance between the frames in some chosen feature space RL. Assuming

that the frames are represented as points RL, the hypothesis is that different

events in the video are represented by relatively distant clusters. Then

transition from one event to the next will be associated with large distance

between consecutive frames. As both outlier and transition frames may be

detected as an event boundary, we observe a minimum event size, ms. If

the number of frames in an event is less than ms, the algorithm ignores the

candidate-event without extracting a keyframe. This approach is suitable for

clearly distinguishable shots (events), as seen for the traditional video stream

in Chapter 7. For application to egocentric videos, in this chapter we adapt

the approach to allow for less well-defined shots. In addition, the budget

constraint provides a means of defining an expected or desired number of

events to be captured. Egocentric videos are not easily split into coherent

events. To improve the event detection, we compare a selected keyframe

with its immediate predecessor. If the keyframes of the adjacent events are

deemed similar, the new event is ignored, without extracting a keyframe.

The tolerance for accepting similarity between frames varies in relation to

how close to the overall budget the existing set of keyframes is, and how

many more events may be expected in the video. Note that this assumes

prior knowledge of roughly how long the video will be. If the budget for

keyframes is reached while frames are still being captured, keyframes from

any additional events are only saved if the keyframe set is made more diverse

by the substitution of the new keyframe for an existing keyframe.
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Assume a video stream is presented as a sequence of frames, F =

{f1, . . . , fN}, fi ∈ RL, where L indicates the dimensions of the frame

descriptor. For any upcoming frame, the similarity of consecutive frames

fi and fi−1 is calculated using Euclidean distance d(., .) in RL. Denote

di = d(fi, fi−1). In the process of monitoring quality control, the probability p of

an object being defective is known from the product specifications or trading

standards. This probability is the quantity being monitored. For the event

boundary detection in videos, we need to monitor the distance di. The initial

values can be calculated by taking average values of the first b distances:

µ = 1
b−1

∑b
i=2 di, and computing the standard deviation value of the first b

distances as: σ =
√

1/(b− 1)
∑b

i=2(di − µ)2. At time point i+ 1, the distance

value di+1 is calculated and compared with the µ and σ at time point i. A

change is detected if di+1 > µ + ασ. The value of α typically is set to 3, but

other alternatives are also possible.

The measure of similarity between two selected adjacent keyframes follows

the study of Avila et al. [40]. Those keyframes are represented by 16-bins

histograms of the hue value. Keyframes are similar if the Minkowski distance

between their normalised histograms is less than a threshold θ, and are

dissimilar otherwise.

The proposed algorithm requires four parameters: the initial buffer size (b),

the minimum event length (ms), the pre-defined threshold value for keyframe

similarity (θ), and the maximum number of keyframes (β).

8.2.2 Choosing Parameter Values

An empirical value for the desired number of the keyframes, β, has been

obtained following the study by Le et al. [87]. The authors collected a total of

80 image sets from 16 participants from 9am to 10pm using lifelogging

devices. An average of 28 frames per image set were chosen by the

participants to represent their day. Therefore, in our experiment we set

this parameter to β = 28.
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We sample one frame per second for each video. The buffer size b was

selected to be equal to one minute, b = 60. The minimum event length

empirically was set to thirteen seconds, m = 13. The empirical threshold

value for keyframe similarity was set to θ = 0.7.

8.2.3 Feature Representation

The proposed algorithm is not tailor-made for any particular descriptor,

therefore any type of descriptor may be applied. Following the preliminary

experiment in Chapter 7, we chose the RGB feature space as the best

compromise between the two criteria.

8.3 Experimental Results

8.3.1 Data Set

The algorithm performance was evaluated on the Activity of Daily Living (ADL)

dataset2 [133]. This dataset was recorded using a chest-mounted GoPro

camera and consists of 20 videos (each lasting about 30 minutes to one hour)

of subjects performing their daily activities in the house.

8.3.2 Annotation Strategy

Evaluation of keyframe video summarisation for egocentric videos is still a

challenging task [115, 60]. Using visual comparison between a computer-

generated summary and a ground truth set, human annotators show

discrepancies on selecting one ‘ideal’ frame per event to represent the

video summary. Despite that human annotators can simply demonstrate

the semantic information through words [177]. Besides, many frames can

represent one semantic concept of what’s happened in that event whereas

the event can be likely expressed by just one sentence. Yeung et al. [177]

suggested to evaluate summaries through text using the VideoSET method3.

In their experiments, the author provided text annotations per frame for the

video to be summarised. The VideoSet method converts the summary into

2https://www.csee.umbc.edu/~hpirsiav/papers/ADLdataset/ (As of August 2019)
3http://ai.stanford.edu/~syyeung/videoset.html (As of August 2019)
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text representation. Then the content similarity between this representation

and a ground truth text summary was measured through Natural Language

Processing (NLP).

Motivated by [177], we annotated the ADL dataset rather using numbers than

text. The numbers are organised to describe sequences of events. We made

a list of events in each video, using an action list from [133]. The frames

are labelled with their relevant event, or as not informative if the event

cannot be recognised from the frame (semantic information). Consequently,

any informative frame from the event can be considered ground truth for

that event. Given a video summary, the number of matches and then the

F-measure can be subsequently calculated.

8.3.3 Rival On-line Video Summarisation Methods

We compared the following methods:

1. The proposed Budget-constrained Control Chart algorithm (BCC).

2. Submodular convex optimisation [51] (SCX).

3. Uniform Events baseline method (UE). To implement the UE algorithm,

the video is uniformly divided into ε number of events (segments).

The ε value follows the number of keyframes extracted by our on-line

algorithm. The closest frame to the center of each segment (in RL) is

taken to represent the event.

To have a fair comparison we tuned the SCX and the UE for each video to their

best performance. Doing that, the value for ε was adjusted with the number of

keyframes extracted by our on-line algorithm. The same adjustment applied

for the SCX.

8.3.4 Keyframe Selection Results

Table 8.1 shows the F-value for the match between the summaries generated

through BCC, SCX and UE, and the semantic-category ground truth for the 20
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videos. As seen from these results, the proposed on-line method performs

consistently better than the two competitors.

Table 8.1: F-values for the comparison of the proposed method (BCC), and the two
rival methods (SXC and UE) on the 20 videos in ADL video database. The best value
for each video is emphasised in bold.

Video Number of Frames
F-measure Parameters

BCC SCX UE SCX(λ) UE(ε)
P01 1,794 0.73 0.45 0.60 0.33 13
P02 2,860 0.63 0.35 0.67 0.07 27
P03 2,370 0.50 0.37 0.56 0.15 19
P04 1,578 0.52 0.31 0.44 0.25 18
P05 1,475 0.42 0.30 0.42 1 5
P06 1,550 0.67 0.53 0.47 0.2 20
P07 2,643 0.81 0.43 0.54 0.17 18
P08 1,592 0.56 0.40 0.60 0.08 27
P09 1,288 0.67 0.61 0.56 0.15 25
P10 956 0.80 0.40 0.80 0.7 8
P11 493 0.87 0.52 0.78 0.6 10
P12 844 0.69 0.43 0.69 0.3 14
P13 1,768 0.63 0.28 0.51 0.11 24
P14 1,531 0.78 0.54 0.63 0.09 23
P15 1,585 0.59 0.37 0.59 0.25 13
P16 840 0.89 0.64 0.59 0.19 13
P17 885 0.44 0.44 0.22 0.28 9
P18 1,150 0.47 0.47 0.40 0.095 21
P19 3,797 0.77 0.33 0.57 0.08 28
P20 1,609 0.69 0.31 0.50 0.17 16

Figure 8.2 displays the summaries obtained by the BCC, SCX and UE methods,

highlighting matched frames with the ground truth. Our BCC method misses

one event (Event number 7) in the ground truth (see (a) in Figure 8.2) resulting

in the F-value of 0.89.
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Figure 8.2: Example of keyframe summaries obtained by the (a) BCC, (b) SCX and
(c) UE methods and their matched frames with the ground truth, for ADL dataset
video #16. The total number of events in ground truth for this video is 13, and the
BCC just missed one event on eating food/drink.

8.4 Conclusion

The purpose of the chapter was to propose a fast and effective method (BCC)

to extract a keyframe summary from a streaming video. The proposed method

applies control charts to detect event boundaries on-line, and observes a
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maximum limit on the number of selected keyframes (budged-constrained).

Our experiments with 20 egocentric videos from the ADL video database

demonstrate that BCC performs well in comparison with two existing methods,

state-of-the-art SCX and baseline UE. The BCC method uses colour-based

descriptor (e.g. RGB moments), rather than the complex CNN features

because they are significantly faster to extract and able to produce a relatively

high-quality summary.

The requirement to store all frames for an event before the keyframe is

selected could present memory issues in the event of excessively long,

sedentary events, e.g. sleeping. Such events may be relatively common

in application areas such as monitoring daily activity. One way to deal with

this issue is the introduction of a dynamic frame-rate, with far fewer frames

recorded during such events.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

Recent advances in technology enable users to capture every single moment

of their lives with an egocentric camera, leading to an increase in demand

for a summarisation system that retrieves information requested by the user.

The aim of this project was to contribute solutions to some of the problems in

the area of egocentric video summarisation.

Objective 1 was to investigate the current approaches for evaluating video

summarisation methods. To accomplish that, we proposed a new automatic

evaluation protocol for comparing keyframe summaries. We investigated

experimentally a range of choices for the different components of the protocol.

This includes ten feature types, six algorithms for matching (pairing) of two

summaries. We propose a “discrimination capacity” measure, which evaluates

by how much a given summary improves on the uniform keyframe summary

of the same cardinality. Using a benchmark video data, we offer empirical

recommendations.

Our protocol is limited to discovering only visual similarity and ignores time

sequence. Useful extensions could focus on contextual or semantic similarity

as well as comparing the whole “story” captured by the two summaries.

Objective 2 was to propose a stronger baseline method for comparative

evaluation. To complete this, we propose a new baseline model for creating

a keyframe summary, called “Closest-to-Centroid”. Using a widely-used
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egocentric video database, we examine the new baseline model on twenty

feature types. We show that it is a better contestant compared to the two

most popular baselines: uniform sampling, and choosing the mid-event frame.

Random sampling is not taken forward because it is deemed to be the weakest

baseline anyway.

Next objective was to propose a new keyframe summarisation method. To

complete Objective 3, we cast the problem of selecting a keyframe summary

as a problem of prototype (instance) selection for the nearest neighbour

classifier (1-nn). It is assumed that the video has already been split into

units (segments or events), and represented as a data set in some feature

space. We propose a Greedy Tabu Selection (GTS) method for extracting

a keyframe summary. Following a cartoon example, we illustrate that

re-positioning a diversity-wise selection as an edited nearest neighbour

problem requires no manual setting of the balance between diversity and

representativeness/coverage. An experiment with a widely-used egocentric

video database, and seven feature representations illustrates the proposed

keyframe summarisation method. GTS leads to improved match to the user

ground truth compared to the closest-to-centroid baseline summarisation

method.

Considering the need for personalised summary (Objective 4), we proposed a

method to extract a selective, time-aware keyframe summary of an egocentric

video. The problem was solved by applying a pipeline of a semantic concept

search, occurrence-led event segmentation, and finally a cluster centroid

keyframe selection. A compass-type diagram was proposed to visualise the

selective summary. Using our system, a user can query the same video

stream by multiple vocabulary of terms, and obtain multiple time-tagged

summaries related to the query concepts. The system is evaluated in two

commonly used egocentric data sets.

Finally, Objective 5 was to explore the current state-of-the-art on-line video

summarisation. To complete this objective, we investigated nine existing on-

line video summarisation methods. We proposed a classification for on-line
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video summarisation methods based upon their descriptive and distinguishing

properties such as feature space for frame representation, strategies for

grouping time-contiguous frames, and techniques for selecting representative

frames. Subsequently, we propose an on-line video summarisation algorithm

to generate keyframe summaries during video capture. Event boundaries

are identified using control charts and a keyframe is dynamically selected for

each event. The number of keyframes is restricted from above which requires

a constant review and possible reduction of the cumulatively built summary.

The new method was compared against a baseline and a state-of-the-art on-

line video summarisation method. The summaries generated by the proposed

method outperform those generated by the two competitors.

9.2 Future Work

Video summarisation would benefit from extracting computationally

inexpensive features. Further investigation and experimentation into

combining feature spaces is recommended. While concatenation of feature

spaces is a straightforward solution, classifier ensembles may be more

effective.

A future research line includes incorporating user searches on faces and

people. Different to the research by Aghaei et al. [4], it is possible to develop

a pipeline to recognise mostly seen faces, and more importantly detect new

faces with their time tags. Given that specific query, the automatic analysis

of recorded videos or photo streams can be used for improving security for

the elderly or for reinforcing the memory. We were not able to explore this

aspect with the publicly available databases because any faces in the frames

were purposely blurred for identity protection.

An interesting step forward would be to create query-based on-line video

summarisation methods. This is feasible by combining the work we have

reported in Chapters 6 and 8.
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