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SUMMARY 

Blot's theory - which explains how sediments respond to stresses - 
has been applied to different sea-bed sediments. To successfully use 
Blot's theory as a predictive tool. sensitivity studies showed the 
following experimental measurements are required: the frame bulk modulus. 
the shear modulus, the tortuosity, the permeability and the porosity. 
These properties were determined for turbidite sediments from the North 
Atlantic Ocean (Site 1). and carbonates from the Western Indian Ocean -. 
(Site 2). 

The following experimental observations " were made: the 
permeability varies over 7 orders of magnitude for turbidites from Site 1 
due to technique dependent and intrinsic reasons; in-situ shear moduli are 
4 times greater than values determined from samples in the laboratory; 
shear modulus results from resonant column and bender element transducer 
techniques agree well: experiments designed for obtaining the frame bulk 
modulus are problematic, and it is difficult to determine pore size / 
geometry parameters apart from the tortuosity. 

Blot's theory was used to predict the response of sea-bed 
sediments to hydrodynamic and ultrasonic stresses. A new low frequency 
hydrodynamic boundary-value solution was developed from Blot's theory, 
allowing predictions of tidally-induced pore-pressures. Comparisons 
between predictions and in-situ measurements at Site 1 were favourable, 
verifying Blot's theory at low frequencies. 

At ultrasonic frequencies, Blot predictions of the velocity and 
attenuation of fast and slow compressional waves were compared to 
experimental measurements. The slow wave was argued to be induced at 
free-flow boundaries. and was found to be very difficult to detect in soft 
water-saturated sediments. A qualitative agreement was shown between Blot 
fast wave attenuation predictions and new experimental attenuation 
measurements on a bar of sandstone. 

For Sites 1 and 2, Blot predictions for the increases in the fast 
wave velocity for high porosity - permeability sediments agreed with 
experimental measurements. Elsewhere in the literature, this behaviour has 
been linked to an increase of the frame bulk modulus with increases in 

porosity. Alternatively, it was argued such increases in fast wave 
velocity can be attributed to Blot's dispersion mechanism. and hence are a 
verification of his theory at high frequencies. 
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1 INTRODUCTION 

1.1 Backeround 

Between the years 1941 and 1962, M. A. Biot developed a theory 

relating the propagation velocity of sound waves at different frequencies, 

to various physical and geotechnical properties of sea-bed sediments. The 

importance of understanding this link between the propagation of sound 

through sea-bed sediments and the properties of those sediments are shown 

by four different examples from areas as diverse as defence, oil 

exploration. engineering design and environmental pollution control. 

The ability to track and communicate to submarines relies upon 

sound transmission through the sea. The manner in which sound waves 

interact with sea-bed sediments considerably affects the efficiency of 

naval surveillance systems. The important aspects of sound transmission 

through sea-bed sediments (of the ocean floor) which are of interest to 

the United States Office of Naval Research are given by Malahoff (1974); 

"Particular emphasis is directed toward studies of ocean floor acoustical 

processes, namely the physics of high frequency reflectivity of the ocean 

floor; the physics of low frequency acoustical propagations through the 

sea floor; the formation of ocean floor acoustic reflectors; and the areal 

variations in these acoustic phenomena". 

Both offshore and onshore oil exploration depend upon identifying 

buried geological structures which hold the promise of trapping oil. Large 

scale mapping of structures can be achieved by the seismic reflection 

method, where sound waves are reflected by the boundaries between 

different layers of sedimentary rocks. However, with the depletion of oil 

resources and the expense of offshore investigations, greater attention is 

being focussed on the fine detail of seismic reflection records and 

attempts to completely define these data through geological and 
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geophysical borehole results (McQuillin et ., 1984). From borehole or 

laboratory studies. the propagation velocity and attenuative properties of 

sedimentary rocks can reveal much diagnostic information, such as the 

lithology, physical state, and degree of saturation (Toksoz and Johnson. 

1981). The transition from large scale seismic reflection surveys to small 

scale borehole and laboratory work requires a move to higher frequency 

sound wave sources; so the frequency dependence of velocity and 

attenuation also becomes important. 

The successful design of offshore structures relies on a knowledge 

of the geotechnical properties of sea-bed sediments and an understanding 

of how they deform under static and dynamic stresses (Muir-Wood, 1980). 

The shear strength, the bearing capacity, the permeability and the dynamic 

shear modulus of sea-bed sediments are all required by the design 

engineer. Conventional high strain amplitude geotechnical tests often do 

not capture the dynamic elastic behaviour of sea-bed sediments at low 

strain amplitudes (Taylor-Smith, 1974). A better understanding of (low 

strain amplitude) sound wave propagation through sea-bed sediments may 

allow prediction of desired geotechnical parameters (Taylor-Smith, 1986). 

Searle gt 11. (1985) describe contributions to a feasibility study 

into the containment of heat emitting radio-active waste beneath sea-bed 

sediments. Central to this work is the determination of the geotechnical 

properties of sea-bed sediments and characterisation of pore-water 

advection within the sea-bed. The shear strength and shear moduli need to 

be known so the feasibility of burial of waste canisters within the 

sea-bed sediments can be assessed. The permeability and excess pore 

pressure need to be measured so that the time taken for any radio-nuclides 

(which might escape from the canisters) to reach the water column can be 

calculated. If this seepage time is greater than the decay time of the 

waste (to enviromentally safe levels), no pollution will occur. 
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1.2 Sound waves in relation to Biot's theory 

"Sound" is the name given to small amplitude stress waves which 

propagate through media, and which are audible to the human ear. "Sound" 

is used to describe compressional stress waves; although there are other 

types of stress waves including shear, rod and interface waves, which are 

not audible. Compressional waves can propagate within three frequency 

bands; below 10 Hz in the infra-sonic range; between 20 Hz and 20 kHz in 

the acoustic range and above 20 kHz in the ultrasonic range. The velocity 

of compressional waves varies with frequency -a phenomenon called 

velocity dispersion - as does its attenuation. 

Biot's (1956 a, b) theory gives relationships for the velocity and 

attenuation of compressional and shear waves as a function of the physical 

constants of the medium through which the waves propagate, and also the 

frequency of the stress waves. Biot's theory predicts two kinds of 

compressional stress wave: the fast wave, which is the usual sound wave, 

and the slow wave which is more obscure in character. 

If the appropriate physical constants of sea-bed sediments are 

measured, then Biot's theory can be used to predict the frequency 

variation of velocity and attenuation of compressional waves travelling 

through those sediments. If velocity and attenuation measurements are 

collected at various frequencies, then Biot's theory can be used in an 

inverse sense allowing predictions of various physical constants of the 

sediment. 

Blot's full (1962 a. b) theory requires 12 physical constants which 

describe the sediment (the input parameters) and gives predictions of the 

velocity and attenuation of fast and slow compressional waves (the output 

parameters). The task of determining the input and output parameters is 

complicated by many factors: retrieving representative samples of sediment 

from the sea-bed with minimal disturbance: the extreme variability of 
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sea-bed sediments both laterally and vertically within the sea-bed; 

anisotropy within the sediments themselves; lastly, the technical 

difficulties in accurately measuring many of the 12 input parameters, 

measuring the fast wave dispersion and attenuation over a wide frequency 

band. and of course. measuring the slow wave at all. 

1.3 Aims of this thesis 

In this thesis, the validity of the following hypothesis is 

examined: a numerical model of the sea-bed (based on measurements of 

sediment ohvsical orooerties) can be used as input for Biot's theory to 

allow predictions of the response of the sea-bed when it is subjected t 

dynamic stresses. The strategy adopted can be outlined as follows: 

1. The importance of the input and output parameters to Biot's 

theory are assessed in the light of their ease of experimental 

determination. 

2. The impracticable aspects of Biot's theory are eliminated 

allowing simplified models of the sea-bed sediments to be defined. 

3. Data are collected to create appropriate numerical models of 

the sea-bed. 

4. Using the models as input for a practical version of Biot's 

theory, predicted and measured responses are compared. 

Models are constructed for two different parts of the 

compressional wave frequency spectrum. The geaocoustic models which are 

used lie in the acoustic to ultrasonic frequency range, where sound wave 

propagation velocities and attenuations can be measured on samples in the 

laboratory. A hydrodynamic model is used at a much lower frequency value 

(in the infra-sonic range) to study the deformation of sea-bed sediments 

under tidally-induced stresses. 
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For the hydrodynamic model of the sea-bed. it is not the velocity 

of compressional waves which are of interest, but the spatial variation of 

the in-situ pore-pressure response induced by the tide. 

The models are based on measurements of the physical properties of 

sediments from two areas of sea-bed. Site 1. which is a sequence of 

turbidite sediments from Great Meteor East in the Northern Atlantic Ocean, 

and Site 2. a sequence of thick carbonate sediments from the Western 

Indian Ocean. Data from Site 3. a deep-sea carbonate area from the Pacific 

Ocean and Site 4. a marine beach area in the UK, are used for background 

information. 

1.4 The structure of the thesis 

Chapters 2 and 3 introduce Blot's (1956 a. b. c) theory of 

poroelasticity and give the necessary analysis which lead to expressions 

for pore-pressures and velocities developed as a consequence of 

deformation of sea-bed sediments. 

Chapters 4 and 5 focus on techniques and experiments involved in 

evaluating the permeability and elastic constants of sea-bed sediments; as 

both are identified as key parameters in geoacoustic and hydrodynamic 

models. 

Chapters 6,7 and 8 cover aspects of compressional wave 

propagation in sediments, concentrating on identifying the physical 

properties which influence the velocity and attenuation of these waves. 

The experimental difficulties involved in measuring both the physical 

properties and the waves are assessed. 

Chapter 9 uses the major results obtained from Chapters 3 to 8 to 

allow the definition of simplified and practical geoacoustic and 

hydrodynamic models which can be analysed using Biot's (1956 a, b. c) 

theory. 

5 



Chapters 10 and 11 describe the geoacoustic models (based on 

experimental data) for Sites 1 and 2, and the hydrodynamic model for Site 

1. Blot's theory is applied to these models allowing comparisons between 

predicted and measured deformations of sea-bed sediments. 

Chapter 12 gives a discussion on the validity of the hypothesis 

(given in 1.3), based on the results of the previous chapters and ends 

with some conclusions and recommendations for future work. 
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2 BIOT'S THEORY OF POROELASTICITY 

2.1 Introduction 

Blot's theory of poroelasticity is an extension of the classical 

theory of elasticity (Appendix 1). Blot developed his theory over a number 

of years, directing his attentions to fluid saturated porous systems. The 

initial work (Blot, 1941) concentrated upon establishing the governing 

equations relating the following primary variables: stress, strain, 

pore-pressure, solid and fluid displacement. Blot (1941) applied these 

equations to the problem of predicting the pore pressure and settlement, 

as functions of time and space, within a sediment column which had a 

static stress applied to it. 

Later, inertial terms were added to the governing equations (Biot 

1956 a, b) allowing an extension of the earlier theory to cover dynamic 

stresses. In these papers, the governing equations were used to obtain 

wave equations for compressional and shearing deformations. The solutions 

to these wave equations yielded compressional and shear wave velocities 

and attenuations as functions of frequency. These results led to the 

interesting discovery that two different types of compressional waves 

could propagate within a porous saturated medium; the fast and the slow 

waves. 

This poroelastic theory (Biot, 1956 a, b, c) was later improved and 

extended to the case of poro-anelastic materials (Blot 1962 a, b). However, 

experimental methods had not improved enough to make full use of this more 

generalised formulism. A simplified more practical version of Biot's 

(1962a) theory for poro-anelastic deformations was offered by Stoll and 

Bryan (1970). The simplified form of Biot's theory of poro-anelasticity 

(which is still comlex! ) is often called the Blot-Stoll theory. This 
A 

version of the theory has been further developed by other workers (e. g. 
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Berryman and Thigpen, 1987) gaining in sophistication, but lacking in 

practicality. 

The Biot-Stoll theory represents one of the most complex forms of 

poro-anelastic theory used in the literature to characterise the behaviour 

of sediments and rocks under dynamic stesses. However, it is often more 

useful to use less complex versions of Biot's theory, as the number of 

experimental measurements required are greatly reduced. A useful 

approximate version of Biot's (1956 a, b) theory was obtained by Geertsma 

and Smit (1961). 

There are numerous examples in the literature where Biot's 

theories of quasi-static poroelasticity (Blot 1941), dynamic 

poroelasticity (Blot 1956 a. b) and dynamic poro-anelasticity (Blot 1962 

a, b), have been used to successfully characterise the behaviour of 

sediments and rocks under different applied stresses. The case of 

quasi-static poroelasticity is the most appropriate to consider first as 

it is straightforward to extend it to the dynamic poroelastic and 

poro-anelastic cases. For simplicity the theories will be presented in 

their one-dimensional form. 

2.2 Ouasi-static aoroelasticity 

2.2.1 A noroelastic medium and its state variables 

A poroelastic medium is an elastic medium containing voids or 

pores which are fluid filled. The fluid may be a gas. Porous sediments or 

rocks can be treated as special cases of poroelastic media. In a porous 

sediment the grains are bonded or pressed together to form an elastic 

"frame", which can be fluid saturated. However. the grains or solid 

materials making up the frame themselves can be treated as elastic, as can 

the pore fluid. The elasticity of the frame, the solids and the fluids, 

are all important in controlling how the sediment behaves under the 

application of stresses. 
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Biot's (1941) theory of quasi-static poroelasticity does not imply 

a frame of sedimentary grains surrounded by a fluid. However, to use 

Biot's theory it is conceptually useful to visualise the sediments in this 

way. Biot's (1941) theory relates the following state variables of a fluid 

saturated porous elastic medium: the total vertical stress (a) , the pore 

fluid pressure (p), the solid displacement (u), the fluid displacement 

(U), the vertical strain component (E) and the relative motion of fluid to 

solid (w). The latter is simply related to U and u by the fractional 

porosity (#): 

w-0. (U - a) 2.1 

2.2.2 The governing eauations for quasi-static noroelasticity 

Biot's theory relates the poroelastic state variables through the 

four governing equations. The constitutive relationship is a modified 

version of the constitutive relationship for elasticity (Appendix 1), 

accounting for the effect of pore pressures. It is a sophisticated version 

of the Terghazi effective stress principle. The equilibrium of stress 

field is the same as for classical elasticity (Appendix 1). The 

equilibrium of fluid flow is given by Darcy's law. Lastly. Biot (1941) 

expressed the continuity of fluid flow in a new way. These equations are: 

s --. - - ap 2.2 
b 

p 2.3 TZ 

ap a" 2.4 
az k 'at 

a 

a2ua2w ap 1 2.5 a'azat + azat '- ät-, q 
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2.2.3 The constants characterising a voroelastic medium 

Nine physical parameters of a poroelastic medium are required for 

Biot's quasi-static governing equations. These are: the frame bulk modulus 

(Kb), the frame shear modulus 

bulk modulus (Kr), the fracti 

(ka), the dynamic viscosity 

density (p). Biot and Willis 

(G), the solids bulk modulus (K ), the fluid 

oval porosity (i), the intrinsic permeability 

(q), the fluid density (pf ) and the total 

(1957) showed that the first five of these 

parameters are related to the elastic constants %, Q and ab in a simple 

way: 

ab (Kb + 4G/3)-1 2.6 

a1- 
Rb 

2.7 
s 

10_011 
+ "R 2.8 Q Kf RS RS -R 

3 

2.2.4 Problems of quasi-static aoroelasticity 

Various practical problems of quasi-static poroelasticity can be 

addressed by using equations 2.1 to 2.8. Biot (1941) solves the boundary 

value problem of one dimensional soil consolidation. finding expressions 

for the pore pressure and solid displacement as functions of time and 

space. He also showed that the consolidation problem solution consists of 

two components: a component given by classical elasticity theory and an 

additional component satisfying a heat conduction type equation. Later, 

Blot (1956c) obtained the general solution for quasi-static poroelasticity 

in a more formal fashion. Using this general solution it is possible to 

solve appropriate boundary value problems. 
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2.3 Dynamic Doroelasticity 

2.3.1 A model of a ooroelastic medium for dynamic deformations 

It is useful to extend the conceptual model of a sediment used in 

the quasi-static analysis to cover Biot's (1956 a, b) dynamic theory. For 

the new model it is assumed that the pore-space, which occurs as a result 

of the packing arrangement of the solid grains, can be represented by a 

series of capillary tubes. The tubes are assumed to be of a constant 

radius (a) and follow a tortuous path through the sediment, characterised 

by a tortuosity (T). This idealised poroelastic medium is shown in Figure 

2.1. 

Figure 2.1 The physical parameters for an idealised poroelastic medium 

i 

ýe 

2a 

GRAIN AND PORE-FLUID PROPERTIES Ks, Ps 

Kt, Pf, f1 

PORE SPACE PROPERTIES T= (le / 1)2 

a, ka =pa2/ 8T 

BULK PROPERTIES : Kb, G, p 

cp = (ps - p) / (ps -Pf) 
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2.3.2 Governing equations for dynamic noroelasticity 

Blot (1956 a. b) extended his theory of quasi-static poroelasticity 

to cover dynamic deformations by adding inertial terms to the governing 

equations. Later, Biot (1962a) recast these new equations in a more 

manageable form. The equations for the equilibrium of the stress field and 

equilibrium of the fluid flow became: 

as a2u a2r 
az - P-atat + 'f-atat 2.9 

_ 
ap 

- 
a2u 

+ n. 
a2 w+2 aw 

g K) 2.10 az pf'atat atat ka'at, ' 

In equation 2.10. a is an inertial coupling factor, ri/k 
a 

is a 

viscous damping factor and P(R) is a complex frequency correction factor 

which allows for the deviation from Poisseuille flow at frequencies (f) 

above a "transitonal frequency (f 
t)" 

(Blot, 1956b). At frequencies below 

ft, P(R) is equal to unity. The quantity within the square brackets 

multiplied by F(R) is Biot's (1962b) viscodynamic operator - which is the 

key to Biot's (1956 a, b, 1962 a, b) theory of dynamic poroelasticity. Note, 

all the primary variables (u, U. a and p) are assumed to be harmonic with 

time and space, having a frequency f. an angular frequency w and a complex 

wave number k (Appendix 2). 

2.3.3 Constants for dynamic noroelasticity and the viscodvnamic operator 

To calculate the viscodynamic operator and, hence, to use Blot's 

theory of dynamic poroelasticity two further material parameters are 

required in addition to those used for the quasi-static formulism (2.2.3). 

The tortuosity (T) is required to calculated the inertial coupling factor 

(m) and an average pore-radius / shape value (a) is needed for the 

frequency correction P(R): 
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na 
ýpf 2.11 

F(m) R. T(R) 2.12 
4- [8. T(A)/iac] 

T(ý) ber'(it) + ibei'(K) 2.13 
ber(R) + 1bei(m) 

r, 
-Bf it = a. 

l 1/ 2 
2.14 

ft = 
727 2 2.15 

Pf 

There still remains some controversy over the exact nature of the 

viscodynamic operator. Cleary (1980) derives an alternative version which 

accounts for the aspect-ratio of the capillary-like pores. Johnson gjt &I. 

(1987) introduce a new constant which is related to the ratio of the 

wetted surface area of pores to the pore volume. However. in both these 

cases additional information to T and a is required to further define the 

microgeometry of the pore-space. There are considerable practical 

difficulties in extracting this type of information for natural sediments 

and rocks. and it is these experimental short-comings which limit the 

usefulness of these more sophisticated versions of Blot's theory. 

2.3.4 The problem of dynamic ooroelasticity: the characteristic equation 

As for classical elasticity (Appendix 1) and classical 

anelasticity (Appendix 2), it is possible to construct an equation which 

has harmonic plane wave solutions. Biot (1956a, 1962a) obtains the 

characteristic equation for dynamic poroelasticity by combining the 

dynamic governing equations (equations 2.2.2.5,2.9,2.10) assuming 

harmonic plane wave solutions. Thus, combining these. one obtains the 

coupled equations: 

13 



? 'u c) 
2 a2u 

2 
a lab 

a2QJ'azaz + aQ'azaz - r-atat + Pf'atat 2.16 

2222u 
aQ'azaz + Q'azaz 'f'atat + 

[m'atat 
+ ka'ät,, 

'F(ý) 2.17 

If the state variables u and w are allowed to become harmonic in 

time and space, characterised by a complex wave number k and an angular 

frequency w (see Appendix 2), then the coupled equations can be combined 

to form the characteristic equation, which is a fourth order polynomial in 

k/w, with complex coefficients: 

4Q2 wa+ä+ 
a2Q - wk 

b L[2aQf [b J[ a + Ipm. F(R) - p2 - wkPF(Ri1 
0 2.18 

a] 

2.4 Solutions to the hara. te astir ecuation 

2.4.1 Exact solutions 

The characteristic equation can be re-expressed as a quadratic in 

(k/w)2 which can be simply solved using the quadratic solution formula. 

Therefore, the four roots of the characteristic equation (zl - z3, z2 = 

- z4) can be determined. Unfortunately, these exact solutions are very 

lengthy and not suitable for explicit expression, but they can be obtained 

by using the computer coding shown in Appendix 4. 

The roots zl and z3 represent fast compressional waves travelling 

in negative and positive directions: z2 and z4 represent slow 

compressional waves. The real and imaginary components of these roots are 

simply related to the velocity (Vi ) and specific attenuation coefficient 

(a3) of each wave (j = 1,2). see Appendix 2: 
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2 
j=1 (fast), j=2 (slow) 2.19 [y ]2 = 

fJ} 
' 

vj [Re(k )j 
j-1.2, Re(k) - Real part of k 2.20 

aj = Im(kj), j=1.2. Im(k) = Irrag part of k 2.21 

2.4.2 Asvmntotic velocity limits 

The exact solutions to the characteristic equation allow the 

velocity and attenuation coefficients of the fast and slow wave to be 

determined as a function of angular frequency (w). Low-frequency 

asymptotic expressions for the fast and slow wave velocites (V 
z and Vzz) 

may be obtained by making the viscous damping factor much larger than the 

inertial coupling factor in the viscodynamic operator. and then expanding 

the characteristic equation: 

a pb 11/2 
zl - -z3 = jl 

+bQ Q2JJJ 
1 2.22 

1/2 
+ z2 = -z4 s [- j. aba2JJ 2.23 

Gassmann (1951) independently obtained an expression for the 

(fast) compressional wave velocity in an undrained poroelastic medium 

(VG ). The undrained or "closed" pore condition means that no fluid flow 

takes place within the poroelastic medium. According to Biot's theory, the 

closed pore condition is almost equivalent to the low-frequency fast wave 

velocity asymptote (VG ), where the viscous drag is so large that little 

relative flow occurs between the fluid and solid components. Therefore it 

is possible to write VZ = VG where Gassmann's equation is: 
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[_l/ab 
+a 

2/ Q 1/2 

VG =p 2.24 

High frequency asymptotic expressions can be obtained by making 

the damping factor much less than the inertial coupling factor; however 

these results are still complex. An alternative method for obtaining an 

approximate high frequency asymptote has been given by Geertsma and Smit 

(1961). 

2.4.3 Approximate velocity solutions 

Geertsma and Smit (1961) obtained high frequency approximate 

velocity solutions to the characteristic equation for the fast (VI) and 

slow (V21) waves. They first assumed that the (imaginary) viscous damping 

terms could be neglected at this limit and also that the quadratic 

2 
equation in (k/w) has simple roots: 

2 
Qo + (1/ab + a2Q). m - 2aQaf 

2.25 
- Pf f . 25 VI - 

2 Q/ab 
v 21 - m. (l/ab + aQa) + Qp - 2aQpf 2.26 

The approximate solutions (equations 2.25 and 2.26) will hold 

providing that: 

Qp + m. (1/a 
b- + a2Q) - 2mgp f 

pm - 

4Q/a 
1/2 

pm- p» pb 
2.27 

Pf fff 
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Geertsma and Smit (1961) also recognised that the frequency 

dependence of the fast compressional wave (V1), between the infinite 

frequency velocity limit (VI), and the low-frequency limit (VZ, which is 

given by equations 2.19,2.20 and 2.22, or equation 2.24), can be 

approximated by the following relationship: 

v4. ((ka . (P= - PfPf)I2 + Vz. [7P12 
2.28 V1 

VI. ((kä . (Pa ' PfPf)l2 + V2. [gp]2 

2.4 Summary 

Biot's theory introduces the governing equations for 

poroelasticity which relate the four primary variables (total stress, pore 

pressure, fluid displacement and solid displacement) through eleven 

physical constants of the poroelastic medium. 

For dynamic problems (where inertial terms are important), a 

characteristic equation can be developed from the governing equations. The 

solution of the characteristic equation gives the propagation velocity and 

attenuation constants of compressional waves travelling through the 

poroelastic medium. Two compressional waves are predicted. one fast and 

the other slow. At the low frequency limit. Biot's fast wave velocity (VZ) 

is equivalent to that given by Gassmann (1951). At the infinite frequency 

limit, an approximate equation for the fast wave velocity (VI) is provided 

by Geerstma and Smit (1961). The velocity dispersion between VZ and VI can 

be given by an approximate solution of the characteristic equation 

(Geertsma and Smit. 1961). 

The equations presented in Chapter 2 are important for all 

subsequent chapters. Of particular significance is the characteristic 

equation, which can be solved to give fast and slow wave velocities and 

attenuation coefficients as a function of frequency (computer coding given 
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in Appendix 4). In Chapter 3, the low frequency general solution to Biot's 

theory will be developed using some of the results from Chapter 2. 

Boundary conditions can be applied to this general solution, resulting in 

a particular solution. The particular solution gives expressions for the 

primary variables as a function of time and space and of the physical 

constants of the poroelastic medium. The boundary value problem of 

tidal-loading of the sea-bed will be presented in Chapter 3. 
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3 GENERAL SOLUTIONS TO BIOT'S THEORY AND A BOUNDARY VALUE PROBLEM 

3.1 Introduction 

The solutions of Chapter 2 allow the velocity and attenuation of 

compressional waves to be determined at various frequencies. These 

solutions do not offer a complete description of the variation of the 

primary variables as functions of time and space. In order to do this, the 

general solutions of poroelasticity need to be developed. These general 

solutions can then be applied to suitable boundary value problems. 

Biot (1956c) developed the general solutions for poroelasticity 

using the Biot (1941) quasi-static formulation of the governing equations. 

Later. Rice and Cleary (1976) obtained similar expressions and applied 

them to problems of crack propagation in poroelastic media. Yamamoto et 

&J. (1978), Zienkiewicz gj L1. (1980), Mel and Foda (1981) and Okusa 

(1985), amongst other authors, derived general solutions of poroelasticity 

from quasi-static or dynamic formulations. These authors then applied 

their solutions to problems such as wave loading of the sea-bed and the 

earthquake response of the footings of dams. In many of these cases the 

analysis is more complex than necessary, introducing slight errors in some 

results. 

It is of interest to illustrate the equivalence of the general 

solutions obtained from quasi-static and dynamic formulations of Biot's 

(1941,1956a) theory in a simple and clear fashion. Once this equivalence 

has been shown, the simplified results can be used to solve various 

boundary value problems, such as predicting pore pressures developed in 

the sea-bed due to stresses imposed on it by tidal forces. This particular 

problem is of significance as experimental data, recording the variation 

of dynamic pore-pressures developed in the sea-bed due to tidal pressures, 

have recently become available (Schultheiss and McPhail, 1985). 
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If the simplified general solutions can be successfully applied to 

the boundary value problem of tidal loading of the sea-bed, then the 

magnitude of the sea-bed parameters which control these deformations can 

be inferred. This is of great interest, as any (inverse) in-situ 

determination of a particular property of the sea-bed is valuable for 

comparative purposes with laboratory measurements of that property. 

it-s tu determinations of geotechnical parameters are especially valuable 

for civil engineering design purposes. 

3.2 General solutions of noroelasticity 

3.2.1 quasi-static formulation 

The general solutions to poroelasticity give expressions for the 

primary variables u, w, p and a, as functions of time and space. To obtain 

these general solutions, the (1 dimensional) governing equations (2.2 to 

2.5) are combined to form a characteristic equation, which can be simply 

_ solved. Superimposition of the roots of this equation gives the general 

solutions. Combining equations 2.2 to 2.5 gives: 

azäz'i7 at' + a2abl + aab. 
ac IQ 

J 
3.1 

Operating on equation 3.1 with 
ä2 
Z2 and rearranging gives: 

a22. Fa? p apt 121 
dz azaz dt'ka +a ab= 0 3.2 

The solution to equation 3.2 is given by the sum of the solutions 

of the following two equations (Biot, 1956c): 
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alp 
adz 0 3.3 

213 

azäz s at'k + a2abJ l 3.4 

a 

Equation 3.3 is Laplace's equation and is associated with the fast 

wave. whilst 3.4 is a diffusion equation which is associated with the slow 

wave. Assuming a harmonic solution gives: 

kl (-k3) = 0,3.5 

J] 1/2 
k2 (-k4) er 

fik. lQ 
+ aZab 3.6 

L 

with, p= p0exp[i(wt+kz)] 

ww 

The wave numbers kl and k3 represent fast compressional waves 

travelling in opposite directions with infinite phase velocity and zero 

attenuation. (In practice the fast wave velocity is finite at the low 

frequency limit and is given by equation 2.24, but it can be considered 

instantaneous with respect to the slow wave velocity). The wave numbers k2 

and k4 represent slow waves travelling in opposite directions. 

Biot (1941 and 1956a) noted that it takes some finite time for 

fluid flow to occur (equation 2.4) and therefore there is no fluid flow 

(hence viscous attenuation) for the effectively instantaneous fast wave. 

is set equal to zero in the governing equations 2.4 and 2.5, the If at 

following relationship for the ratio of pore-pressure to the total stress 

can be found: 

a aQ 
Q +býb a2 

(= pl p3) 3.7 
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Note, equation 3.7 is equivalent to the expression obtained by 

Blot (1941) for the instantaneous pore pressure developed in a sediment 

which has a static load applied to it. Now adding together the 

pore-pressure contributions from equations 3.5 and 3.6 gives the general 

pore-pressure solution for harmonic deformations of a poroelastic medium 

obtained from the quasi-static formulation of Blot's theory of 

poroelasticity: 

J-4 
p-Z Pj ezx[i(wt+kjz)] 

J. 1 
3.8 

Here, P2 and P4 are constants which are determined by the boundary 

conditions of the particular problem for which the general solution is 

used. and P1 and P3 are set by equation 3.7. There are similar 

relationships to equation 3.8 for the other primary variables u, w, and a, 

with constants U1-4' V1-4' and Z1-4, which can be determined by using 

equations 2.2 to 2.5,2.16,2.17 and 3.8 along with the boundary 

conditions of the problem in question. 

3.2.2 Dynamic formulation 

The general solutions for poroelasticity can also be obtained from 

the dynamic governing equations (2.2,2.5,2.9 and 2.10). These solutions 

would be expected to be more useful than those obtained from the 

quasi-static formulation as they would be applicable over the entire 

frequency range, accounting for the dispersive and attenuation behaviour 

of both fast and slow waves. 

Deresiewicz and Rice (1962) and Geertsma and Smit (1961) use 

general solutions obtained from the Biot's (1956 a. b) dynamic governing 

equations to study the reflection and transmission of compressional waves 
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at different porous / non-porous boundaries at both low and infinite 

frequency asymptotes. Zienkiewicz et .. (1980) and Mei and Foda (1981) 

use general solutions obtained from simplified dynamic governing equations 

(which are taken in the low-frequency range - hence z is set to zero and 

F(R) to unity in equation 2.10) to study the transmission of low-frequency 

compressional vibrations on land and the sea-bed. 

The same approach to obtaining the general solution for the pore 

pressure, as used for the quasi-static formulation (3.2.1), is used for 

the dynamic formulation. Simply, the solutions to the dynamic 

characteristic equation (2.18,2.19) are used to define the wave numbers 

kl-4, which are combined as in equation 3.8. 

To check that the quasi-static and dynamic formulations give 

similar results, the low frequency asymptote solution of the dynamic 

characteristic equation is compared with the quasi-static solution. The 

equivalence of the k2 and k4 solutions from quasi-static and dynamic 

characteristic equations can be observed by comparing equation 3.6 to 2.23 

and 2.19. However. If equation 3.5 is compared to 2.22 and 2.19 the 

deficiencies of the quasi-static analysis becomes apparent. The 

quasi-static analysis suggests that the fast wave travels with infinite 

velocity with kl = k3 = 0, which is clearly not true. The fast wave 

velocity is virtually instantaneous with respect to the slow wave 

velocity, but the fast wave velocity is finite and is given by equation 

2.24. 

The next step to show the equivalence between the two formulations 

is to obtain a relationship similar to equation 3.7 from the dynamic 

governing equations. This is achieved by first obtaining a relationship 

between the constants II1-4 and W1-4 at low frequencies. Therefore, 

equation 2.16 can be rewritten (using equation 2.19): 
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[1/ab+ a2Q]. zý- 
2-p 

II3 2j°1,2.3,4 
3.9 

3 Pf - aQ. zi 

(assuming u- u0exp[i(wt+kz)] and w- w0exp[i(wt+kz)]) 

Using the low-frequency solution for the fast wave (equation 2.22) 

in equation 3.9 (j - 1,3), gives the following relationship between the 

ratio of the relative fluid motion and solid motion amplitudes for the 

fast wave: 

II1=Ü3.0 

13 
3.10 

Equation 3.10 shows that for this low-frequency limit there is 

virtually no relative motion between the solids and fluids it- 01 for 

the fast wave. This is proof of Biot's (1941) intuitive observation (see 

3.2.1) and is a result which was used by Geertsma and Smit (1961) in their 

analysis of reflection of compressional waves at boundaries. Next, the 

result 
ät 

-0 for fast wave deformations is substituted back into the 

governing equations (2.2,2.5,2.9,2.10) which gives: 

--b_p 
pf 
0 

{1+Qaba2 
ap 3.11 

This equation is essentially the same as equation 3.7, which again 

backs up the agreement between quasi-static and dynamic analyses. However, 

there is the additional result in equation 3.11, which relates the elastic 

constants Q, ab and a to the density components p and pf. Cleary (1980) 

identifies this as the much misunderstood Biot (1956a) compatibility 

relationship, which allows for the propagation of the fast and slow 
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compressional waves without any relative motion between fluid and solid 

Eät = 0]. Also, it can be verified that at = 0. by obtaining a similar 

equation to 3.9 from 2.17, substituting in the low-frequency fast wave 

solution (2.22) and finally using 3.11. 

In summary, the results given in equations 2.22.2.23 and 3.11. 

obtained. from the dynamic analysis. agree favourably with their 

counterparts, 3.5.3.6 and 3.7. obtained from the quasi-static analysis. 

This agreement gives an equivalent general solution for the pore pressure 

(as shown in equation 3.8) obtained from both formulations. This agreement 

is valid only at low-frequencies. As the frequency approaches ft (equation 

2.15) the inertial terms of the viscodynamic operator and the frequency 

correction factor F(R) affect the general solution obtained from the 

dynamic formulation. 

3.3 Boundary value problem 

3.3.1 Tidal loading of the sea-bed 

The general solution for the variation of the pore-pressure as a 

function of time and space, obtained for a poroelastic medium which is 

subjected to harmonic stresses (3.2), can be used to solve the simple 

boundary value problem of tidal loading of the sea-bed. The boundary 

conditions assumed for this problem are shown in Figure 3.1. 

The tide is assumed to exert a uniaxial harmonic hydrostatic 

stress on the sea-bed, of magnitude q, angular frequency w and wavelength 

At. The sea-bed is assumed to comprise a layer of elastic sediments of 

thickness Lg (« A 
t). overlying a rigid. impermeable basement. The single 

important boundary condition is that the effective stress at the surface 

of the sea-bed is zero, i. e. the pore pressure at the surface of the 

sea-bed (p0) is equal and opposite to the tidal pressure (q). These 

boundary conditions are used. along with the general solution for the pore 
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pressure, to obtain an expression giving the dependence of pore pressure 

with depth p(z), in the sediment. As L8 « At, only the downward 

components of the pore-pressure general solution are required. Therefore, 

the following simplification of equation 3.8 is obtained: 

rý 12 1/2 
p (z) 

. exp (iw t)= 
[p1 

+ P2 . exp 
(-z 

Lk$ 
[Qýa 

abý 
1 }}. 

exP(iwt) 3.12 

Using the boundary condition at the surface of the sea-bed, p(z=0) = -q: 

abaQ 
Pl 

+ abaaQ" 
(-)l 3.13 

abaQ 
P2 = -Q " 

[1 
-1+ ab=QJ 3.14 

Figure 3.1 Boundary conditions for tidal loading of the sea-bed 

TIDAL PRESSURE: 

Q= q0 expi(wt t kz) 

SEA 

........... .......... ........... .......... 

INDUCED PORE 

PRESSURE: P(Z) 

SURFACE BOUNDARY 
CONDITION: p(zc0) _-q 

SEA-BED 
EDIMENTS 

r '. 108m 

1_\/1 
ý`' 

-'-\. 
11 _1 \ý . 

"i ; ter'\' 
Wit, 

BASEMENT 

26 



The solution of the problem is given by equations 3.12 to 3.14. 

Physically this solution has a simple interpretation. The driving force 

(amplitude q) can be thought of as a very low frequency compressional wave 

which travels through the water column as a fast wave. on impinging on the 

sea-bed surface, this wave generates fast and slow pore pressure waves 

(amplitudes P1 and P2). The fast wave component has an amplitude P1 which 

is only slightly smaller than q, and travels through the sediment layer 

without attenuation. The slow wave has a much smaller initial amplitude 

(P2). which equalises the pressure between the water column and the top of 

the sea-bed. However, the amplitude of the slow wave attenuates rapidly 

with depth, with an attenuation factor which depends on the elastic 

constants (a. Q and ab), the permeability (ka) and the angular frequency 

of the wave (w). The total pore-pressure developed in the sea-bed at any 

depth p(z) is the sum of the fast and slow pore-pressure components. This 

pressure will be dominated by the fast wave component (P1) at all depths. 

If the results of equations 3.12,3.13 and 3.14 are compared to 

the solutions of similar problems by Mei and Poda (1981) and Zienkiewicz 

a_j. (1980), some interesting contrasts exist. Mei and Foda (1981) 
. CLI 

obtain similar equations to 3.12 - 3.14, except they treat the slow wave 

(diffusion) component as a boundary layer correction superimposed upon the 

fast wave (elastic) component. They make a numerical study of the 

pore-pressure induced in the sea-bed by one dimensional microseisms due to 

standing sea waves, and conclude that the fast wave completely dominates 

the pore-pressure solution unless there is gas in the sea-bed. 

Zienkiewicz 11 Al. (1980), who studied the one dimensional case of 

a saturated soil layer (on land) subjected to periodic loading. make an 

unfortunate error in their construction of the general solution getting 

the signs wrong for the coefficients of the characteristic equation. This 

invalidates their boundary problem analysis for the pore pressures induced 
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in the soil layer (which appear suspicious at first sight as the magnitude 

of the induced pore pressures are greater than the applied stress). 

3.3.2 Numerical examples for the tidally-induced Dore pressure 

The solutions given in equations 3.12 - 3.14. along with the 

equations defining the elastic constants ab, a and Q (equations 2.6 to 

2.8). can be easily coded on a computer and the pore pressure profiles for 

various values of the parameters generated. Two numerical examples of 

predicted tidally-induced pore-pressure profiles are given: the first is 

for surficial turbidite sediments in a deep-water environment (Table 3.1); 

the second is for muddy surficial sediments in a shallow water environment 

where free gas is likely to be present in the sea-bed. 

The values shown in Table 3.1 are used in equations 2.6 - 2.8 and 

3.12 - 3.14 to calculate pore-pressure profiles (Figure 3.2). The 

predicted pore pressures are expressed as a percentage of the hydrodynamic 

pressure exerted on the surface of the sea-bed. It can be seen that well 

over 999 of the hydrodynamic pressure is transferred to the sea-bed. 

Table 3.1 Physical parameters characterising a surficial turbidite 
deep-water sediment - data set TURB_M1 

1. Porosity 0.7 

2. Fluid density 1030 kg/m3 

3. Grain density 2650 kg/m3 

4. Fluid modulus (2.25). 109 Pa 

5. Grain modulus (3.6). 1010 Pa 

6. Dynamic viscosity 10-3 Pa. s 

7. Circular frequency (1.454). 10 Hz 

8. Shear modulus 107 Pa 

9. Frame bulk modulus 107 Pa 
2 -13 -16 10. Permeability m 10 to 10 

1.10 Schultheiss and Gunn (1985) 
2-6 Ogushwitz (1985) 
7 Diurnal tidal frequency 
8 and 9 Arbitrary estimates 
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Figure 3.2 'Predicted tidally-induced pore-pressure profiles 
for a deep-water soft turbidite sea-bed 
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Figure 3.3 Predicted tidally-induced pore-pressure profiles 
for a gassy shallow water muddy sea-bed 
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The four different pore-pressure profiles shown in Figure 3.2, 

representing four different values of the permeability of the sea-bed, 

consist of two components: P1 and P2. ezp[ ] in equation 3.12. The Pl 

component primarily depends upon the "stiffness" of the sea-bed and 

dictates the asymptotic value to which the four curves tend to at depth. 

The PZ. exp( ] component is the slow wave boundary correction component and 

only affects the upper few metres of the sea-bed. The magnitude of the 

slow wave pore-pressure component depends upon the magnitude of the 

permeability; for larger permeabilities more (slow wave) fluid diffusion 

occurs near the sea-bed interface - hence the pore-pressure induced near 

the sea-bed surface is greater than for smaller permeabilities. 

The second numerical example is for a shallow water muddy sea-bed 

with gas present in the surficial sediments. The numerical values given in 

Table 3.1 are used again. except a constant permeability of (3.0). 10-14 

m2. constant shear and frame bulk moduli of 20 MPa. and a range of fluid 

bulk moduli (Kf) are used. Allowing Kf to vary has the same effect upon 

the induced pore-pressure profile as changing G and Kb, which dictate the 

stiffness of the sea-bed. The new value for Hf (denoted Kf') accounting 

for various saturations of gas is given by equation 3.15, where Kg - 105 

Pa - the bulk modulus of the gas, and S= the fraction of gas present in 

the fluid: 

s 
Kf' 1Kf+ Kg, 3.15 

Calculating a range of values for Kf, for different S, and using 

Kf' Instead of Kf in equation 3.12. with the other parameters as shown in 

Table 3.1. gives the pore pressure profiles shown in Figure 3.3. These 

curves show the dramatic effect that a tiny percentage of free gas has 

upon the pore pressure developed in the sea-bed. With increasing gas 
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content, less of the tidal pressure is transferred directly to the pore 

pressure (the P1 component in equation 3.12 becomes less significant). The 

pore pressure becomes entirely due to the "slow wave" diffusive flow (also 

see Chandler and Johnson, 1981). 

3.4 Summary 

The general solutions of poroelasticity give expressions for each 

of the primary variables (pore-pressure, total stress, fluid and solid 

displacements) as functions of time, space and the material constants of 

the poroelastic medium. Only the general solution for the pore-pressure is 

of interest. For one dimensional deformations travelling in one direction, 

the general solution has a fast and a slow wave component. The velocity of 

the fast wave deformations can be considered instantaneous with respect to 

slow wave deformations. 

At low frequencies, there is no fluid flow for the fast wave 

deformations. This means the poroelastic medium will act in an undrained 

way for the fast wave, and the fast wave pore pressure component induced 

in the medium will be a simple fraction of the stress applied to the 

porous medium. This leaves a residual pore-pressure difference between the 

inside and the outside of the poroelastic medium. This difference is 

dissipated by the slow wave, depending upon the boundary conditions at the 

interface. If no drainage is allowed across the boundary ("closed pore 

condition") then no slow wave will result. If drainage is allowed ("open 

pore condition"), then close to the boundary, there will be an additional 

slow wave component to the total pore-pressure developed in the medium. 

These results are applied to the boundary value problem of tidal 

loading of the sea-bed. For this case. a simple expression is obtained for 

the variation of (tidally induced) pore-pressure with depth in the 

sea-bed. which is expressed as a ratio of the amplitude of the applied 
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tidal stress. Two simple numerical examples are considered using this 

equation. one for a deep-sea soft sea-bed and one for a shallow water soft 

sea-bed containing gas. In the first case. the permeability of the sea-bed 

is shown to vary the shape of the pore-pressure versus depth curve 

somewhat. In the second case, the presence of the gas greatly affects the 

shape of the pore-pressure versus depth profile. In the deep-sea 

environment, where no free gas is present, increasing the frame moduli of 

the sea-bed would similarily affect the pore-pressure versus depth 

profile. 

The numerical examples for the hydrodynamic problem of 

tidally-induced pore-pressures in the sea-bed isolate the permeability and 

frame moduli as being important parameters. It transpires (Chapters 6 to 

8) that these parameters are of equal importance to (higher frequency 

dynamic studies of) acoustic and ultrasonic compressional wave propagation 

in sea-bed sediments. In Chapters 4 and 5 various experimental and 

laboratory techniques for evaluating the permeability and frame bulk 

moduli of sediments are assessed. In Chapters 9 and 10, the hydrodynamic 

tidal boundary value problem is returned to; after a better 

characterisation of the permeability and frame moduli of deep-sea 

sediments have been made. 
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4 THE PERMEABILITY OF DEEP-SEA SEDIMENTS 

4.1 Introduction 

In this thesis "permeability" will be used as an abbreviation of 

intrinsic permeabilty (ka - with units of area). This must not be confused 

with the hydraulic conductivity (kv), which has units of velocity, but 

elsewhere is often called the permeability. If the dynamic fluid viscosity 

(q), the fluid density (pp) and the acceleration due to gravity (g) are 

known. the intrinsic permeability and hydraulic conductivity are simply 

related by: 

kv .q k= 
a Pf. 9 

4.1 

The intrinsic permeability of deep-sea sediments is a fundamental 

sediment parameter for Biot's dynamic theory of poroelasticity. The 

permeability is usually measured by laboratory tests on deep-sea sediment 

samples recovered from the sea-bed. There are a few data for the 

permeability of deep-sea sediments in the literature. Recent reports on 

new laboratory measurements are given by Schultheiss and Gunn (1985) and 

Silva et al. (1981). However, it is questionable whether such laboratory 

tests, carried out on small discrete samples, give true representations of 

the in-situ permeability of the sea-bed. 

Two methods for obtaining the in-situ permeability - which use 

pore-pressure data from a piezometer buried in the sea-bed - have recently 

been developed. The first in-situ technique uses the decay of the pore 

pressure transient caused by insertion of the probe (Bennett et al.. 

1985). The second technique uses the dynamic pore pressure signal in the 

sediment which is induced by the tide, along with the boundary problem 

solution developed in Chapter 3. 
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In order to compare laboratory and in-situ determinations of 

permeability, various unpublished raw data from Site 1 (Schultheiss, 

personal communication) are used. After a description of the expermental 

test procedures. the raw data are analysed using the appropriate theories. 

The disparities between permeability, evaluated from the different 

techniques, are then discussed. 

4.2 Laboratory oermeability: consolidation and direct flow tests 

4.2.1 Samples: the sample cell and sammle nrenaration 

Laboratory experiments on eight samples from Site 1 (see 4.3.2. 

4.4) were performed by Schultheiss and Gunn (1985) using the sample cell 

shown in Figure 4.1. A further six experiments were carried out on samples 

using a modified version of this cell (5.3.1) on samples from Site 2 (see 

11.2.3). Both cells had a back pressure facility to ensure full 

saturation. 

Figure 4.1 Schematic diagram of the back-pressured consolidation cell 
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The samples from Site 1 were taken from whole-round 65 mm diameter 

gravity core-sections. For each sample. 6 cm lengths of core were cut and 

the sediment extruded from the liner. Sample rings of 50 mm diameter and 

20 mm in length were gently pushed into the extruded sediment. Excess 

sediment was trimmed off with an electo-osmotic knife. The trimmed samples 

were stored in their rings under water at 4 degrees centigrade, until they 

were weighed then loaded into the cell. A similar sample preparation 

procedure was used for the samples from Site 2, which were obtained using 

advanced hydraulic piston coring techniques (Mayer, 1982), from the 

drilling ship JOIDES RESOLUTION (ODP Leg 115). 

4.2.2 The consolidation and oermeability system 

To perform consolidation and direct-flow permeability tests the 

sample cell, containing a sample, was set-up in the system shown in Figure 

4.2. Samples were placed under a back pressure of 30 kPa using the air 

compressor. This ensured full saturation as any free gas would be forced 

into solution at this pressure. The hydraulic conductivity (converted to 

intrinsic permeability using equation 4.1) of the sediment in the cell 

could be determined by applying a hydraulic gradient across the sample and 

measuring the rate of flow of water through the sample under this known 

gradient. The hydraulic gradient was applied by varying the heights of the 

air-water interfaces, and the rate of flow was measured by timing the 

discharge through a capillary tube of known volume. 

Using a cantilevered loading arrangement, axial stresses were 

applied in increments to the samples. On the application of each stress 

increment the sample consolidates, resulting in a reduction in the height 

of the sample and the build-up and dissipation of a differential pore 

pressure across the sample. Variations in displacement and pore pressure 

were monitored automatically using transducers connected to a scanner and 

a micro-computer (Figure 4.2). 
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Figure 4.2 Laboratory consolidation/permeability system 
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4.2.3 Consolidation and permeability test procedure 

After each sediment sample had been weighed and loaded into the 

consolidation system, it was left for a day to equilibrate and settle 

under a small load, before testing began. The test procedure consisted of 

a number of consolidation stages, at successively greater stress 

increments, with a direct-flow permeability test at the end of each 

consolidation stage. Each consolidation stage was started by the 

application of an incremental stress, and the settlement and 

pore-pressures were monitored until primary consolidation was completed. 

This was indicated by a zero differential pore pressure across the sample 

and a levelling out of the displacement. 
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The loading increments usually followed the pattern 12.5.25,50. 

100,200,400,800,1600,3000,25 kPa. After all loading stages had been 

completed the sample was weighed, dried in an oven for 24 hours at 105 

degrees centigrade, then weighed again. Using the wet and dry sample 

weights, and the initial sample volume, the initial void ratio e0 was 

calculated. The void ratio (e) after each loading stage could be calcuated 

using e0 and the change in volume due to the application of the cumulative 

load. Also. the constrained consolidation modulus Dc was calculated from 

the ratio of incremental stress applied at a loading stage to the strain 

developed due to the incremental stress. The strain was given by the 

change in height of the sample over the loading stage divided by the 

original height of the sample at the beginning of the loading stage. 

4.3 Method 1: Permeability from 
consolidation (ku) 

4.3.1 Procedure for analysis of test data 

The hydraulic conductivity can be calculated in a straightforward 

way from consolidation data. Standard Casagrande interpretation of 

settlement data from each loading stage of the consolidation test (e. g. 

Vickers, 1978) gives the time taken for 50% consolidation. which is known 

as t50. Using t50 and the height of the sample h, the vertical coefficient 

of consolidation Cv can be calculated using the Terzaghi relationship 

(equation 4.2). Then. the hydraulic conductivity can be calculated by 

using Cv, the unit weight of water (7 and the constrained consolidation 

modulus D 
C 

C-0.197 
h 

4.2 
v t50 

C .1 kv vD x 4.3 

C 
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4.3.2 Permeability analysis for samples from Site 1 

Consolidation and direct-flow permeability tests were carried out 

on eight samples from Site 1 by Schultheiss and Gunn (1985). Test results 

for void ratio and direct-flow permeability are presented in their report. 

Using the raw data from these tests (Schultheiss, personal communication). 

permeabilities were evaluated from the consolidation method (4.3.1). A 

summary of the results for the permeabilities obtained from the 

consolidation data are presented in Table 4.1. 

Table 4.1 Summary of data from laboratory permeability / consolidation 
tests on samples from Site 1, (based on analysis of data from 
Schultheiss and Gunn, 1985) 

Porosity 
Sample no. e0 Dc Cv kal ka2 rebound 

(kPa) (m2/s) (m2) (m2 ) (%/MPa) 

D10695/6/28 3.86 440 (3.6). 10-6 (8.6). 10-16 (8.0). 10-15 1.03 
D10695/2/14 3.65 400 (1.2). 10-7 (3.1). 10-15 (2.8). 10-15 2.51 
D10695/3/28 3.00 400 (1.7). 10-6 (4.5). 10-14 (6.0). 10-16 1.23 
D10325/7 2.54 300 (2.3). 10-6 (8.1). 10-16 (9.0). 10-16 4.85 

S126/4-5 5.20 100 (7.0). 10-6 (7.4). 10-15 (1.5). 10-14 1.71 

S126/4-4 4.76 200 (1.2). 10-6 (6.5). 10-16 (1.5). 10-14 1.85 
S126/4-10 3.72 800 (6.0). 10-6 (7.8). 10-16 (3.5). 10-15 0.90 

S126/2-3 2.43 340 (6.8). 10-6 (2.1). 10-15 (1.7). 10-15 2.48 

Averages Ranges 

D= 370 kPa 
c 

kal = (2.24). 10-15 m2 (6). 10-16 to (8). 10-15 m2 

ka2 = (4.5). 10-15 m2 (6). 10-16 to (1.5). 10-14 m2 
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For each sample, the permeability at the initial void ratio was 

calculated from CV and Dc values extrapolated from a best line fit through 

the data from all the stages of the consolidation test. An example of the 

Cv and Dc values for sample D10325/7 obtained from this method is shown in 

Figure 4.3. This method was adopted as it best used the data from all of 

the stages of the consolidation test, and also because the Cv and DC 

values obtained over the first few loading increments were typically 

erratic. 

Figure 4.3 Consolidation data for sample D10325/7 
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4.4 Analysis and results for method 2: Permeability from direct-flow 

tests (ks2) 

The hydraulic conductivity (converts to intrinsic permeability 

using Equation 4.1) can be simply determined from the direct-flow raw data 

using Darcy's law (equation 2.4). Direct-flow permeability results from 

Schultheiss and Gunn (1985) are shown in Table 4.1. 

4.5 In-situ nermeability: niezometer experiments 

4.5.1 In-situ pore pressure instrument PUPPI 

The In-situ permeability of the sea-bed can be determined by 

analysing measurements from piezometers such as PUPPI (Pop Up Pore 

Pressure Instrument). PUPPI is a simple device which measures the 

differential pore-pressure between the surface of the sea-bed, and a point 

up to 6 metres below the surface. PUPPI consists of a probe (which 

penetrates the sea-bed) with a pore-pressure port at its tip, another port 

open to the sea, a pore-pressure transducer between the ports and a 

logging / buoyancy assembly (Figure 4.4). The instrument free-falls to the 

sea-bed, the probe penetrates, and complete burial is prevented by a 

retarding cone. The logger records the output of the differential 

pore-pressure transducer at a pre-determined count-rate. When the 

transient pore-pressures induced by the insertion of the probe have 

equilibrated, the pipe joining the tip-port to the sea is opened. This 

acts as a calibration as it exposes both sides of the differential 

pressure transducer to the same pressure, and any differential pressures 

existing across the transducer before opening the pipe will cause an equal 

and opposite signal to be registered. The measurements are then complete 

and the logging/buoyancy assembly is returned to the sea-surface after it 

has been separated from the probe by a remote controlled release. Full 

details are given in McPhail and Schultheiss (1986). 
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Figure 4.4 Schematic diagram of the piezometer PUPPI 
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Figure 4.5 Schematic in-situ PUPPI differential 
pore-pressure record 
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4.5.2. Description of In-situ Dore pressure data 

PUPPI has been deployed more than 20 times at Site 1 in the N. 

Atlantic Ocean. giving a comprehensive data set for the variation of 

pore-pressures over time scales of seconds to months at this site 

(Schultheiss and McPhail. 1985). The instrument. which was designed to 

measure differential pore pressures in the sea-bed, proved to be sensitive 

enough to detect cyclic tidal pore pressures after the transient insertion 

pressure had decayed. A typical set of data from one deployment is shown 

in Figure 4.5. Analysis of these data (4.6,4.7) gives the in-situ 

permeability, as well as other sea-bed sediment parameters. 

4.6 Method 3: permeability from Dore-pressure decay (ka$) 

4.6.1 Procedure for analysis of PUPPI data 

Bennett gI gl. (1985) have shown it is possible to calculate the 

in-situ permeability of the sea-bed by analysing piezometer insertion 

pressure decay transients using radial consolidation theory (Soderberg, 

1962). A similar principle is used as for calculating the permeability 

from uni-axial consolidation tests (4.3.1). The rapid insertion of the 

probe into the sea-bed causes a radial stress to be applied to the 

sediment around the probe. This stress is translated to the pore-fluid and 

an insertion pressure pi is measured by the piezometer. This pore-pressure 

decays exponentially as the sediment undergoes radial consolidation, and 

the time for 50% consolidation (t50) is given at pi/2 (Figure 4.5). Using 

t5o and the radius of the probe (ro), the horizontal and vertical 

coefficients of consolidation (Ch, Cv) are given by the approximate 

equation 4.4. Using the value of Cv obtained in this way along with the 

(high strain) constrained modulus obtained from laboratory consolidation 

tests (DC. see 4.3), the permeability can be calculated from equation 4.3. 

2 Ch = Cv = ro /t 
so 

4.4 
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4.6.2 Permeability analysis for Site 1 

PUPPI piezometer data for fourteen deployments at Site 1 

(Schultheiss. personal communication) were analysed using the procedure 

outlined in 4.6.1. The results for t50, Ch and ka3 are presented in Table 

4.2. In calculating ka3 an average value of Dc = 340 kPa was used (from 

the results shown in Table 4.1). 

Table 4.2 Summary of data from PUPPI deployments at Site 1 (analysis 
of data from Schultheiss, personal communication) 

Station Probe Probe t50 Ch ka3 pp/pt 

number depth radius 
(m) (m) (s) (m2/s) (m2) % 

CD6/1 4.0 0.01 180 (5.6). 10-7 (1.73). 10-16 1.0 
CD6/2 4.25 0.01 202 (5.0). 10-7 (1.54). 10-16 0.8 
CD6/3 4.0 0.01 -- -- -- 1.0 
CD9B/8 2.5? 0.01 1665? (6.0). 10 8 (1.86). 10-17 0.4 
CD9B/11 2.0 0.025 675 (9.5). 10-7 (2.49). 10-16 0.3 

4.0 0.01 158 (6.3). 10 
7 (1.95). 10-16 1.2 

CD9B/28 2.0 0.025 180 (3.6). 10-6 (1.11). 10-15 0.3 
4.0 0.01 1260 (7.9). 10-8 (2.54). 10-17 0.8 

D11317 6.1 0.01 720 (1.4). 10 7 (4.33). 10-16 0.4 
D11320 4.3 0.01 45? (2.2). 10-6 (6.81). 10-16 
D11329 4.0 0.01 202 (5.0). 10-7 (1.54). 10-16 0.3 
D11381 2.25 0.025 -- -- -- 1.0 

4.25 0.01 180 (5.6). 10 7 (1.73). 10-16 0.9 
D11382 4.0 0.025 1260 (5.1). 10-7 (1.57). 10-16 0.2? 

6.0 0.01 1485 (6.7). 10 8 (2.08). 10-16 ? 
D11388 2.33 0.025 945 (6.8). 10-7 (2.10). 10-16 0.3 

4.33 0.01 1710 
_ 

(5.8). 10-8 (1.79). 10-17 0.3? 

D11391 2.0 0.025 1417 (4.6). 10 7 (1.42). 10 16 0? 

4.0 0.01 200 (5.00. 10-7 (1.54). 10-16 0.2 

Average Range 

ka3 - (2.28). 10-16 (1.79). 10-17 to (1.11). 10-15 m2 

p/pt @4m = 0.7 % 0.3 to 1.2 % 

pp/Pt @2m - 0.3 % 0.4 to 0.0 % 
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4.7 Method 4: permeability from tidal cycles (ka4) 

4.7.1 Procedure for analysis of PUPPT data 

The solution for the boundary value problem of tidal loading of 

the sea-bed developed in Chapter 3 can be used to analyse the dynamic 

tidal pore-pressure signals recorded by PUPPI. The solution can be used to 

predict the pore-pressure induced in the sea-bed due to the tidal forcing 

function. By assuming various physical constants for the sea-bed at Site 1 

(Table 4.3), the shear modulus (G) and the intrinsic permeability of the 

sea-bed can be found by a process of adjustment such that the best fit is 

obtained between the experimental and predicted pore-pressures. 

Table 4.3 Physical parameters characterising Site 1 used to calculate 
(tidal) permeability and shear modulus - data set TURB M2 

1. Porosity 0.8 

2. Fluid density 1024 kg/m3 

3. Grain density 2670 kg/m3 
4. Fluid modulus (2.4). 109 Pa 
5. Grain modulus (3.6). 1010 Pa 
6. Dynamic viscosity 10-3 Pa. s 
7. Circular frequency (1.454). 10 4 Hz 
8. Shear modulus (10) to (50). 106 Pa 
9. Frame bulk modulus 2.17 G 

10. Permeability 10 15 
to 10-12 m2 

Best fit G= 17 MPa 

Best fit ka - (2). 10-13 in2 

1-6 Schultheiss (personal communication) 
7 Diurnal tidal frequency 
8,9,10 Possible range of values from inverse theory 

4.7.2 permeability analysis for Site 1 

The PUPPI tidal differential pressure results shown in Table 4.2 

are expressed as a percentage of the absolute tidal pressure (100pp/p0 

which was recorded by a tide-gauge. Typical PUPPI and tide-gauge records 

are shown in Figure 4.6. 
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Figure 4.6 Tide gauge and tidally-induced in-situ pore-pressure 
PUPPI records at Site 1 
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As the PUPPI measurements shown in Figure 4.6 were obtained close 

to the bit resolution of the differential pressure transducer there is a 

fair spread in the results shown in Table 4.2. Therefore, it is this range 

of values which is used for comparison with the predicted percentage 

differential tidal pressure at any one depth. A further consideration is 

that there are two free variables in the prediction (ka and G) so data 

from two ports at different depths must be used in the comparison. (Note 

that the predicted solution has phase information also and if the temporal 

resolution of the PUPPI system were improved this result could act as an 

independent check on the pore-pressure amplitude analysis). The comparison 

between experimental and predicted percentage differential pore-pressure 

results are shown in Figure 4.7. The best-fit values for ka and G are 

- 13 2 (2). 10 m and 17 MPa respectively. 

4.8 Method 5: Permeability from grain size (k 
a5) 

4.8.1 The Kozenv-Carman equation 

The model of a sediment as a bundle of capillary tubes of 

tortuosity T and radius a. as described in Chapter 2, was used by Kozeny 

in deriving a permeability (equation 4.5) using a hydraulic radius theory 

(as described in Bear, 1972). This hypothetical capillary tube radius (a) 

is taken to represent some kind of "average pore radius" of a sediment. 

Often a is unknown. but it may be approximated (equation 4.6) if an 

average grain-diameter (dm) and the porosity (0) are known: 

2 
ka 

8. T 4.5 

d .e 
aa 3(1-4) 

4.6 
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In Kozeny's permeability equation (4.5) a pore-shape factor of 0.5 

is used. Through various experimental measurements Carman proposed that a 

pore-shape factor of 0.2 was better than Kozeny's value of 0.5: therefore 

multiplying equation 4.5 by 0.4 gives the Kozeny-Carman equation (Bear, 

1972). Note, that this relationship should hold for sands and fine silts, 

but it may not hold for clays. 

4.8.2 Permeability results for Site 1 

A detailed grain-size study for the sediments at Site 1 was 

undertaken by Weaver and Rothwell (1987). Average values of the grain 

diameter (da) for the turbidites and the silty bases of the turbidites are 

given in Table 4.4, along with the calculated permeabilities using the 

Kozeny-Carman relationship using a porosity of 0.7 and a tortuosity of 

1.5. 

Table 4.4 Permeabilities of sediments from Site 1 calculated using the 
Kozeny-Carman equation 

Sediment type Average grain Average pore" Permeability* 2 

diameter (m) radius (m) (m2) 

Turbidite (1.9). 10-6 

Fine silty turbidite (3.9). 10-6 

Silty turbidite (3.1). 10-5 

(1.5). 10-6 (8.4). 10-14 
(3.0). 10 6 (2.2). 10-13 

(2.4). 10-5 (1.4). 10111 

*1 
calculated using equation 4.6 

*2 
calculated using equation 4.5 multiplied by 0.4, (both *1 

and 
*Z 

use # 

= 0.7, T-1.5. and da data from Weaver and Rothwell, 1987) 
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4.9 Method 6: Permeability from dispersion (ka6) 

4.9.1 Use of Biot's (1956 a. b) theory to predict aermeability 

The permeability is a key parameter in determining the frequency 

range over which fast compressional wave dispersion occurs (Chapter 7). If 

experimental velocity measurements are less than the infinite frequency 

velocity, predicted by Biot's theory (see Chapter 2), then this 

discrepancy may be due to an incorrect value of the permeability used in 

the prediction. If it is assumed that this discrepancy is entirely due to 

a wayward permeability, the permeability input into the theory can be 

allowed to vary and it can be tuned to give the best agreement between the 

predicted and experimental velocities. Such an approach was adopted by 

Hamdi and Taylor-Smith (1982) and Taylor-Smith (1986). 

4.9.2 Permeability results for Site I 

The results for permeability, obtained by forcing theoretical 

compressional wave velocities to agree with experimental data (as near as 

possible) for 47 samples from Site 1 using the method outlined in 4.9.1. 

are shown in Figure 4.8. The experimental measurements for Vp, p, and G 

for these samples, are shown in Table 10.1. These values were used along 

with the parameters shown in Table 10.2 to calculated the permeability 

from inverse Biot dispersion analysis (using Biot's 1956 a. b theory). 

Looking at Figure 4.8. the turbidite samples with experimental 

velocities close to the compressional velocity in water (1530 m/s) show 

little dispersion, and the theoretical and experimental velocities can be 

made to coincide by using permeabilites of between (3). 10-14 and (3). 10-13 

m. The silty bases of the turbidites at Site 1 show greater dispersion 2 

(Chapter 10) and these, sediments require greater permeabilities of between 

(1). 10-12 to (2). 10-12 m2 to make experimental and theoretical velocities 

to agree. 
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Figure 4.8 Predicted permeabilities from inverse dispersion analysis 
for turbidites and pelagic sediments from Site 1 
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4.10 Discussion 

4.10.1 A comparison of the results from the six methods used to determine 

the termeability of the turbidite sediments of Site 1 

Average values and ranges of the permeabilities of sediments from 

Site 1. determined by the six different methods, are shown in Figure 4.9. 

It is very interesting to note that these results span over 6 orders of 

magnitude - which requires some explanation! 

4.10.2 Permeability from laboratory consolidation analysis (method-11 

The disturbance of the sample before and during the consolidation 

test pose the greatest problems for this method. As for all tests 

performed on sediments recovered from the sea-bed (methods 1,2,5,6), the 

samples will have undergone considerable disturbance prior to testing. 

Deformation of the sediment will occur during coring (Mayer, 1982). Such 

deformation may introduce small cracks or fissures in the sample. As the 

cores are rapidly brought to the sea-surface through the water column the 

sediment will expand due to the pressure release (Hamilton, 1976a) causing 

a small increase in the porosity and (presumably) the permeability. 

Careless storage of the sediment on land and the subsequent splitting and 

sub-sampling of cores chn also cause an unknown degree of disturbance. 

Note, all these effects are qualitative and that it is virtually 

impossible to return any sediment sample to its original in-situ state. 

The consolidation test itself introduces sample disturbance as the 

sediment undergoes elasto-plastic deformations during consolidation. This 

violates the assumption that the coefficient of consolidation (Co) remains 

constant during the test (Znidarcic at -ad., 
1984). Consequently, lower Co, 

hence lower permeabilities (equation 4.3) are obtained from the test. 

Further problems causing unreliable values of Cv during these tests were 

caused by the erratic nature of the settlement and pore pressure versus 
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time plots from which the constant t50 was obtained (see 4.3). This latter 

problem can be attributed to "sticking" of the loading ram (Figure 4.1) 

and/or irregular drainage from the sample due to seepage down the sides. 

In fact Nickerson (1978) suggested that clogging of the porous discs often 

causes an impedance to the free drainage of samples in consolidation 

tests, hence giving an effectively lower recorded permeability than 

actually exists. This is plausible, but there was little evidence for this 

in these series of tests. 

The constrained modulus (DC) derived from a consolidation test is 

a high strain non-elastic value and is considerably smaller than its low 

strain elastic counterpart (Taylor-Smith, 1974). Therefore, the average 

value of Dc - 370 kPa used to calculate the permeabilities for the 

consolidation data from Site 1 (4.3.2), could be made an order of 

magnitude or so greater for a true elastic test. Paradoxically this would 

make the permeability even smaller (see equation 4.3). 

4.10.3 e eability from laboratory direct flow analysis (method 21 

Although the direct flow tests suffer from the same sample 

disturbance problems that all laboratory experiments experience (see 

4.10.2), the tests themselves are very accurate. The tests are good 

because of the low amplitude stresses (hence linear elastic strains) which 

are applied to the sample by a small static head of water. It may be 

argued that a little amount of consolidation occurs on the instantaneous 

application of the head, but this can be assumed to be small. Therefore, 

data from such tests (4.4) represent a very good determination of the 

intrinsic permeability of the sediment samples tested. However, these data 

may not be that representative of the in-situ permeability of the sea-bed 

due to the sample disturbance problems and also because of the inadequacy 

of small-scale samples to capture large scale features that influence the 

in-situ permeability. 

51 



4.10.4 Permeability from niezometer insertion pressure (method 3) 

Problems arise here from the sudden insertion of the piezometer 

probe in the sea-bed causing the sediments immediately surrounding the 

probe to be highly plastically deformed. As well as this plastic 

deformation. radial stress release fractures may occur which would have a 

major effect on pore pressures measured just after insertion (such 

fractures may well close up after equilibrium of the initial pore pressure 

has been attained). This latter fracture problem will depend upon the 

in-situ shear strength of the sea-bed - which is a controversial quantity 

(Lee, 1985). 

Accepting that considerable plastic deformation occurs around the 

probe (and ignoring any possible fracturing), there remains the problem of 

modelling these elasto-plastic deformations accurately. Although the 

analysis presented in 4.6 does take into account the components due to 

plastic deformation of the sediment (Bennett 11 nj., 1985, Soderberg, 

1962) such theories still require considerable refinement (Hardin, 1978) 

Questions may also be raised as to whether the probe has sealed 

itself well within the sea-bed, and whether there is vertical seepage 

along its length. However, the vertical entry, the in-situ lateral stress 

and the surface roughness of the probe make these unlikely (Schultheiss, 

personal communication). Also the data from successive deployments are 

remarkably similar; suggesting that if seepage does occur it happens in 

the same way for each deployment (which is unlikely). There is also a 

problem with the time response of the differential presssure transducer 

and logging rate of the piezometer, in that the system is often too slow 

to measure the entire magnitude of the initial insertion pressure (pi). If 

pi is incorrectly determined then so will be t50. and ultimately the 

permeability will be affected (equations 4.3.4.4). 
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4.10.5 Permeability from Diezometer tidal cycle analysis (method 4) 

For the tidal cycle analysis, n-situ values for the permeability 

are obtained using the elastic (linear) response of the sea-bed to a well 

defined dynamic forcing function. after the probe has reached static 

equilibrium. The attraction towards this determination of permeability is 

due to the stability of the sea-bed environment (no pressure-release or 

temperature drifting effects which affect laboratory measurements) and the 

fact that permeabilities are obtained from purely elastic deformations. 

Also, this technique does not just sample the sediment immediately around 

the lower pressure port on the probe (Figure 4.4), but measures the total 

(integral) effect of the deformation of the sea-bed between the bottom 

port and the sea-bed surface. This latter point is important as larger 

scale features, which are not detected by point measurements, will be 

exhibited (see Chapter 10). It is interesting to note that the 

permeabilities from this method (4) are up to two orders of magnitude 

greater than those obtained from the high quality laboratory point 

mearurements (method 2). 

This method (4) also has its limitations; in both the theory and 

the experimental measurements. The simple theory used does not account for 

permeability and shear modulus gradients - which undoubtedly exist over 

the upper few metres of the sea-bed. An extension along these lines is 

possible, but not really warranted as the quality and quantity of the 

PUPPI tidal pore pressure data is lacking. Also, seepage along the probe 

(4.10.4) would greatly affect the measured pore-pressure response. 

However. this method does give a determination of the permeability 

obtained under stable in-situ conditions. Further development of the 

theory and of the measuring system PUPPI (e. g. increasing the number of 

ports and the length of the probe) could greatly enhance the effectiveness 

of this simple method. 
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4.10.6 Permeability from Qrain size analysis (method 5) 

The main probem with this method arises from the uncertainties 

introduded by use of the Kozeny-Carman relationship (4.8.1). which assumes 

a crude model of the pore-space of sediments. Further problems arise when 

this relationship (obtained from measurements on sands) is used for high 

porosity silty to clayey turbidite sediments. The equation relating pore 

size to grain diameter (equation 4.6) breaks down for porosities exceeding 

0.75; as it gives pore radii greater than the grain diameter! Also, it is 

a poor assumption that clay-rich turbidite acts as a regular array of 

spheres of constant radius. However, Goldsberry (1985) has reported the 

application of the Kozeny-Carman relationship for some more sandy marine 

sediments with some success. 

4.10.7 Permeability from compressional wave dispersion (method 6) 

This method suffers from the assumption that the apparent 

dispersion observed in experimental compressional velocity can be entirely 

attributed to variations in the permeability of the samples in question. 

There are a number of parameters which affect the apparent dispersion; in 

fact the tortuosity of the sediment has the greatest influence and the 

shear and frame bulk moduli are also important (Chapter 7). 

From the results presented in Figures 4.8.10.3 and 10.4) some 

velocity dispersion can be inferred; but whether this can be entirely 

accounted for by variations in the permeability is questionable. 

Alternatively, it could be argued that the increase in compressional wave 

velocity in the silty bases of the turbidites is due entirely to increased 

shear moduli of these coarser grained sediments (Hamilton gt Al.. 1982) 

and has nothing to do with dispersion. real or apparent. This point is 

pursued further in Chapters 7 and 11. 
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4.11 Definitions and uses of "large-scale". "small scale" and "micro" 

nermeabilities 

From the discussions in 4.10.1 to 4.10.7, it is apparent that the 

effect of large-scale features (cracks or fissures) need to be accounted 

for if the in-situ permeability of the sea-bed is required. However, 

accurate direct-flow laboratory measurements will give a good indication 

of the intrinsic (small-scale) permeability of sediment samples. but will 

not capture the effect of large-scale features. Hence, such "large-scale" 

permeabilities over the scale of metres will be greater than the 

"small-scale" permeabilities which are appropriate to scales of 

millimetres. 

The small-scale direct flow permeability is different to the 

permeability required for Blot's theory of stress wave propagation, which 

deals with fluid-flows of the order of the pore-size of sediments (i. e. 

micrometres). Berryman (1986) and Berryman and Thigpen (1987), show that 

the micro-permeability of sediments will always be significantly greater 

than the small scale permeability (they use the terms "local" and "global" 

respectively). This argument can be appreciated by considering a porous 

material which comprises n parallel layers of thickness 13 and 

permeability kJ. and with all other physical parameters remaining 

constant. The effective flow permeability (keff) across such a material 

can be found by applying Darcy's law across the series of layers: 

n 
k12 

k3 4.7 
eff j` j 

1: 51ý 4.8 

55 



Here, keif is equivalent to the small-scale or global 

permeability. Now, for Biot's theory of acoustical propagation, the 

permeability of each layer has to be considered individually, and the 

effective permeability for Biot-type dispersion and attenuation is given 

by the mean micro-permeability (keff)' 

n 

keif 1 ljkj 

j 

4.9 

As, keff ý keff the small-scale permeability will give the lowest 

possible limit of the micro-permeability. In practice, the 

micro-permeability will be somewhat larger than the small-scale 

permeability. In many of the dispersion and attenuation examples discussed 

later (in Chapters 7,8,9,10 and 11), there are no available data for 

the micro-permeability. In these cases, the small-scale permeability is 

used, remembering that this will be lower than the true micro-permeability 

of the porous media. 

From Figure 4.9, it appears that permeabilities obtained from 

different techniques (which operate over different length scales) vary 

considerably in magnitude. Whether this range in the data is due to each 

technique measuring a different intrinsic "type" of permeability, or 

whether the range is strictly a function of length-scale is uncertain. It 

can be appreciated that the consolidation permeability derived from 

elasto-plastic "squeezing" of sediments is arrived at by a different 

process than elastic Darcian flow permeabilities. Furthermore. the 

permeability obtained from the micro-oscillation of pore-fluids within the 

pore-space, induced by the passage of stress waves (permeability from Biot 

dispersion analysis), is again a different "type" of permeability. The 

problem is further complicated by the relative accuracy of each of the 
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various experimental techniques in measuring the different "types" of 

permeability. 

As the term "type of permeability" is rather ambiguous, the spread 

in all the data shown in Figure 4.9 will be assumed to be due to 

differences in length-scale and experimental uncertainties. The 

"large-scale" permeability is greater in magnitude than the "small-scale" 

permeability due to gross features (cracks, etc). However, the 

"micro-permeability" is greater than small-scale permeability (equations 

4.7 to 4.9). 

4.12 Summ 

Six different methods were used to determine the intrinsic 

permeability (ka) of deep-sea sediments; kal from consolidation, ks2 from 

direct-flow tests, ka3 from pore-pressure decay, ka4 from inverse tidal 

cycle analysis, ks5 from grain size and ka6 from inverse dispersion 

analysis. The permeabilities determined by the six different methods range 

from 10-17 m2 to 10-12 m2 for the turbidite sediments from Site 1 (Great 

Meteor East in the North Atlantic Ocean). In order of decreasing magnitude 

these are; kW kas, ka5, ka2. kal and kW 

The scale of the problem for which the permeability is required is 

important in choosing which method is most appropriate. "Large scale" 

in-situ problems over lengths of metres require that large scale 

inhomogeneities are considered, such as cracks or Eisures. For this type 

of problem the permeabilities determined from in-situ experiments, such as 

those obtained from the tidal cycle analysis (ka4), are most appropriate. 

For "small-scale" problems on the scale of millimetres, the appropriate 

permeabilities are those obtained from most laboratory studies (e. g. kal 

and ka2). For problems involving Blot's theory of wave propagation, the 

"micro-permeability" on the scale of micro-metres is best. 
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It can be shown that the micro-permeability is greater or equal to 

the small-scale permeability; this means that permeabilities obtained from 

Biot dispersion or attenuation studies will be expected to be larger than 

the small-scale permeabilities. This is indeed the case, as ka6 > kal, 

ka2. 

For the fast wave dispersion and attenuation studies in Chapters 

7,8.9,10 and 11, no direct measurements of the micro-permeability of 

sediments exist. For these cases, direct flow permeability (ka2) 

measurements are used wherever possible, remembering that these values 

will give the lower permeability bound of the micro-permeability. Where no 

direct-flow permeability data exist, the permeability is determined from 

the grain size of the sediments (ka5). It is interesting to note that ka5 

= ka6, and therefore permeability from the grain size will be expected to 

be roughly of the same order of magnitude as the micro-permeability, which 

is required for Blot acoustic propagation studies. 

The extensive studies investigating the permeability of deep-sea 

sediments were prompted by the importance of this paramater for the 

boundary problem of tidal loading of the sea-bed (Chapter 3). It 

transpires (Chapters 6,7 and 8), that this parameter is also important 

for acoustic propagation in sea-bed sediments. It is shown in Chapters 6, 

7 and 8, that the frame moduli of deep-sea sediments are also very 

important for acoustic propagation problems. In Chapter 5, the available 

methods for determining the frame modulus of deep-sea sediments are 

assessed. 
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5 THE ELASTIC CONSTANTS OF DEEP-SEA SEDIMENTS 

5.1 Introduction 

In order to apply elastic theory (Appendix 1), poroelastic theory 

(Chapter 2) or anelastic theory (Appendix 2), to deep-sea sediments, two 

"frame" elastic constants of the sediment are required. In principle it 

should be possible to measure these constants using a simple experimental 

set-up where a known stress is applied to a sediment sample and the 

elastic strain deformation which the sample undergoes is measured. In 

practice there are considerable experimental difficulties in attaining 

this goal, as there are eleven identified experimental variables which 

affect the magnitude of the elastic constants (Hardin and Black, 1968). 

Often, it is difficult to assess whether results showing variability in 

the elastic "constants" are due to experimental oversights (e. g. 

uncorrected temporal temperature drift), or to other intrinsic variations 

(e. g. temporal creep). All this makes comparison of data for different 

sediments, obtained using different experimental methods, very difficult. 

The most straightforward frame elastic constant to experimentally 

determine is the shear modulus (G) through shear wave propagation tests. 

Unfortunately, propagating shear waves through small scale laboratory 

samples is not simple, although the development of new shear-wave bender 

element techniques do assist with this problem (Shirley and Hampton, 1978. 

Schultheiss, 1981). Bender element methods allow G to be obtained simply 

and quickly, although a large measure of uncertainty is introduced as the 

bender element technique has remained largely uncalibrated. Bennell gt Al. 

(1984) incorporated bender elements into a resonant column system. which 

is the ASTM recognised experimental method for obtaining G. Therefore. a 

series of experiments comparing results from the two techniques should act 

as a good test of the merits of the bender element method. A favourable 
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comparison would allow G to be obtained for a variety of sediments with 

relative ease and confidence, by using bender element techniques alone. 

The second frame elastic constant is considerably more difficult 

to obtain than G. Of the various experimental methods available. the 

mechanical uniaxial (laterally constrained) consolidation test and the 

triaxial shear-strength test have been repeatedly used in geotechnics to 

obtain the constant Dc. However, it has been recognised for some time 

(e. g. Taylor-Smith, 1974) that sediments do not behave elastically under 

large amplitude (>10-3) mechanically derived strains, whilst they do 

behave elastically (more or less) under small amplitude (10-6) strains. 

Therefore, large-strain elasto-plastic Dc measurements do not give a true 

representation of the elastic properties of sediments. The elastic 

behaviour of sediments at small strain amplitudes can be investigated by 

using acoustical waves, or by using very sensitive mechanical devices 

(such as the resonant column). 

The decrease in the magnitude of a modulus (e. g. G), with 

increasing strain amplitude from its value at low strain amplitude Gam, 

is called modulus degradation. The question remains as to whether elastic 

constants obtained at high strain amplitudes have any bearing on their low 

amplitude counterparts. This question can be addressed by using a variable 

strain amplitude device, such as described by Bennell &t &1. (1984), which 

applies longitudinal or rotational stresses on a sediment sample which is 

not laterally constrained. allowing G and the Young's modulus (E) to be 

determined at different strain amplitudes. 

Lastly, the question as to whether the elastic constants are 

really "constant" requires some attention. Allowing for the experimental 

conditions which affect the magnitude of the elastic constants (Hardin and 

Black. 1968), only the variation of the "constants" with frequency or time 

will characterise their anelastic (non-constant) nature (Appendix 2). 
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5.2 Resonant column method for obtaining E and G 

5.2.1 The Drinclule of the resonant column 

The resonant column is a device which allows a small sediment 

sample to be vibrated in extensional or torsional modes (Figure 5.1). If 

the wavelengths of vibrations are selected such that they are some integer 

multiple of the length (L) of the sample, the sample will resonante at one 

of these normal modes. These resonant angular frequencies (wr) are 

attained when the applied dynamic stress is exactly in phase with the 

resulting dynamic strain. At these normal modes, standing waves will be 

set up and the velocity of these waves will be related to the frequency of 

the applied vibrations, the dimensions of the sample and the elastic 

constants of the sample. Therefore, if the sample dimensions, the 

frequency of the applied stress and the phase angle between stress and 

strain are known, it is straightforward to calculate the elastic constants 

G and E for torsional and extensional resonant vibrations. 

Figure 5.1 Principle of the resonant coulumn device 
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In practice the situation is complicated slightly by the inertia 

of the system applying the stress and measuring the strain, which sits on 

top of the sample (Figure 5.1). It is straightforward to allow for this 

additional mass when calculating G or E by using a simple correction 

equation (Drnevich et 11., 1967). Accounting for this correction and 

solving the wave equation for the fixed-free boundary conditions gives the 

following relationships (Bennell e.. 1984): 

G=p. Vs2 = 
p'e2wr 

2 
5.1 

I 
IO = a. tand 5.2 

E sp. V 2 
=p. 

Lür2 
rß5.3 

=s = ß. tanß 5.4 
a 

Here. G is the shear modulus, p is the density of the sample, Vs 

is the shear velocity, I is the mass polar inertia of the sample, 10 is 

the mass polar inertia of the additional mass, E is the Young's modulus, 

Vr is the rod wave velocity, as is the weight of the sample and ta is the 

weight of the added mass. 

5.2.2 The resonant column system 

The resonant column system used to investigate the elastic 

properties of various sediments from Sites 1 and 4, is shown in Figure 

5.2. The system consists of a resonant column cell which accommodates the 

sample, a back-pressured hydraulic confining apparatus and a mechanical 

electronic system which applies stress and measures strain in the sample. 
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Figure 5.2 Schematic diagram of the resonant column testing system 
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The cell houses a sample which is sealed in a rubber membrane and 

confined by water. The bottom of the sample rests on a permeable disc on 

the base of the cell. A top-cap containing drive-coils and an 

accelerometer is affixed to the top of the sample. Permanent magnets are 

arranged around the top-cap and torsional or longitudinal stresses are 

applied to the sample via the drive coils. The resulting sample motion is 

recorded by the accelerometer. A displacement transducer is attached to 

the top-cap to monitor changes in the sample's length during consolidation 

stages. 

The back-pressured confining system (Figure 5.2) allows triaxial 

hydraulic pressures up to 1 MPa to be applied to the sample. Also, 

pore-pressures may be applied to the sample, allowing the sample to be 

placed under various effective stresses by the appropriate adjustment of 
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the confining and back pressures. On the application of a confining 

pressure the sample will undergo consolidation, with drainage occurring 

from the base of the sample. The confining pressure can be stepped up on a 

logarithmic incremental basis allowing a triaxial consolidation test to be 

performed (see 4.2 for details on uni-axial consolidation). 

The input signals to the drive coils are generated by a variable 

frequency sine-wave oscillator, amplified, passed through a power 

resistor, then fed to the coils. The voltage drop across the resistor 

(which is directly proportional to the applied stress) is connected in 

parallel to the X axis of an oscilloscope. The output signal from the 

accelerometer is integrated twice then fed to the Y axis of the 

oscilloscope. The phase angle between the applied stress and measured 

strain is given by the area of the hysterisis curve produced on the 

oscilloscope (see Appendix 2). 

Due to the versatility of this resonant column system, it is also 

possible to determine the damping characteristics of the sample and the 

variation of E and G with strain amplitude and frequency. The 

damping-ratios for extensional and torsional vibrations at resonance (DE 

and DS) can be obtained by measuring the decay of the strain amplitude 

with time as a sample relaxes after the driving stress is shut off at 

resonance (Appendix 2). Also, if the sample is driven at various 

non-resonant frequencies with a constant driving force (hence constant 

strain amplitude), then the variation of E or G with frequency can be 

determined by the magnitude of the applied stresses and measured strains. 

For this case, the driving stress is fed (in parallel) to the Y axis of a 

X-Y pen plotter, the measured strain is fed to the X axis, and the modulus 

and damping characteristics of the sample are obtained from the hysterisis 

curve. Lastly, using the X-Y plotter again, the variation of E. G, DE and 

DS at a fixed frequency and variable strain amplitude can be investigated. 
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5.2.3 Samples. samDle preparation and resonant column test Drocedure 

Resonant column tests were performed on 7 samples; 2 from Site 4 

and 5 from Site 1 (Appendix 3 for sample descriptions) by J. D. Bennell. 

The sample description and some low-amplitude test results for one of the 

sand samples from Site 4 are given in Bennell gt 11. (1984). Also, some 

high strain amplitude results on a very similar sample are given by Davis 

and Bennell (1986). A selection of the test results for the two sand 

samples from Site 4 and the samples from Site 1 (Bennell, personal 

communication) are presented in this chapter. 

The samples from Site 1 were taken from 65 mm diameter gravity 

core-sections recovered on RRS Discovery cruise 153. Samples of 70 mm in 

length and 35 mm in diameter were trimmed from sediment sections extruded 

from the core-liner. A rubber membrane was fitted tightly around each 

sample and each sample was placed, in turn, into the resonant column cell 

[a slightly different procedure was adopted for the two sand samples (see 

Bennell ., 1984 and Davis and Bennell, 1986)]. Once a sample was in 

the cell the top-cap and associated driving/measuring assembly was affixed 

to it. The hydraulic confining system was connected to the cell and a 

confining pressure of 210 kPa along with a back-pressure of 200 kPa was 

applied to the sample. The sample was left to consolidate and equilibrate 

under this small effective stress of 10 kPa before testing began. A back 

pressure of 200 kPa was chosen as it would force any free air in the 

sample into solution. 

The initial consolidation stage was taken as being complete when 

the pore-pressure across the sample had dissipated (4.2). The effective 

stress was noted and then low-strain amplitude resonant column tests were 

performed on the sample giving experimental values for Gam, Ems, DS and 

DE. Then a series of high strain amplitude tests were performed on the 

sample at various frequencies and strain amplitudes. 
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After any measurement at a high strain amplitude (>10-3) a low-strain 

measurement was taken immediately after to allow quantification and 

correction for any sample disturbance caused by the high (elasto-plastic) 

strains. After the high amplitude sequence of tests had been completed, 

the sample was left to recover and equilibrate before a higher confining 

pressure was applied to it and the testing repeated at the new effective 

stress. Details of test procedures are given in Bennell et al. (1984). 

5.3 Bender element method for obtaining G 
max 

5.3.1 Mounting bender elements in soil testing devices 

Ceramic bender transducers were first used to measure shear wave 

velocities in unconsolidated sediments by Shirley and Hampton (1978). 

Schultheiss (1981) mounted bender transducers in the end-caps of a 

consolidation cell, to allow determination of the shear velocity (hence 

Gam) at various effective stresses. Since then, bender transducers have 

been incorporated in other soil testing devices (Figure 5.3) Including 

triaxial cells (De Alba gt . 
J., 1984) and resonant column cells (Bennell 

et al., 1984 and Dyvik and Madshus, 1986). 
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Figure 5.3 Shear wave mode bender 
element mounted in the 
end-cap of a soil test 
device 
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Three soil testing devices were adapted to incorporate bender (and 

other) transducers for various experiments. The first was the resonant 

column cell described by Bennell . , aal. (1984). the second was a 65 mm 

sample diameter triaxial cell (see Figure 6.1) and the third was a 50 mm 

sample diameter back-pressured consolidation cell (similar to that shown 

in Figure 4.1). In each of these cases the bender transducers were mounted 

into the top and bottom end-caps of the cells (Figure 5.3). The bender 

elements protrude through the porous drainage discs of the end-caps into 

the sediment sample. 

5.3.2 Driving / measurement system 

The wires from the outer faces of the piezoelectic crystals which 

make up the bender transducers (for details see Schultheiss, 1981) were 

connected to driving and measuring electric circuits. The electronic 

driving pulse was a 10 volt square wave, repeated at a frequency of about 

1 kHz, which was also used to trigger the time base of an oscilloscope. 

The received signal was put through a variable gain amplifier then input 

into the oscilloscope. The oscilloscope was set up with a variable delay 

time for the triggering pulse, so the resultant display of the input 

signal could be presented on a high resolution time-base. 

5.3.3 Factors affecting received bender signals 

The character of the received signal from bender transducers 

embedded into a material is strongly affected by many experimental 

variables: coupling between sediment and transducers, type of material. 

stresses (effective or otherwise) acting on the material, separation of 

transducers, amplitude of driving voltage and any amplification / 

filtering of the received signal. The word "character" is taken to mean 

the amplitude and distribution of the various spectral components of the 
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signal which are present in the time-domain display (on an oscilloscope). 

Schultheiss (1981) shows the effect of an increase in the frequency of the 

received signal with an increase in the effective stress applied to a sand 

sample. This change in signal character with effective stress is due to 

the greater constraint applied to the transducer at higher stresses, which 

makes it resonate at higher frequencies. Any such subtle alteration in the 

sediment-transducer coupling can have a large effect upon the received 

signal character. This coupling effect poses the greatest problem as the 

"degree" of coupling is difficult to define or measure, let alone repeat. 

5.3.4 Interpretation of received bender signals: Droblems 

The art of determining shear wave velocities from the received 

signals of bender elements depends upon the correct interpretation of the 

signal. In theory (Shirley and Hampton, 1978 and Schultheiss, 1981) the 

shear wave velocity is obtained from the ratio of the separation of the 

bender transducers to the "onset time" of the shear wave component of the 

received signal. Interpreting this "onset" is made most difficult by the 

fact that it is unclear what one is meant to be looking for. In general. 

(Shirley and Hampton, 1978 and Schultheiss. 1981) the onset of the shear 

wave is taken as the place in the time-domain signal where the first 

zero-crossing of a large low-frequency positive or negative sinusoidal 

peak occurs. If the peak is not present it is taken that there is poor 

coupling between the sediment and the transducer so the shear wave (hence 

shear wave peak? ) is not measured. Another possibility is that the shear 

wave peak may always be present but it may be obscured by other features 

in the received signal which have a larger amplitude but a similar 

frequency. Energy coupled into compressional waves, which arrive earlier 

than the shear wave, cause the greatest interference problem. 
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5.3.5 Benefits of signal conditioning 

There is some evidence to show that the compressional waves 

produced by bender elements are generated at a distinctly different 

frequency to the shear wave component (e. g. Schultheiss. 1981). In 

principle. if the appropriate kind of filtering is applied to a received 

signal from a bender transducer. then the different spectral components 

could be isolated and identified. Various experiments have shown that 

digital filtering in the frequency domain and/or analogue filtering in the 

time domain of the received signals from bender transducers does not 

particularly enhance the (suppressed? ) shear wave peak. It was concluded 

that it was best to use the more complex. but undistorted, unfiltered 

signals for interpretation. 

5.3.6 Characterisation of received bender signals in different media 

In an attempt to better understand the character of received 

signals, experiments were carried out using bender transducers in 

different media. Typical results for received signals in six different 

media are shown in Figure 5.4. These signals were sketched from the 

received voltage - time display of the oscilloscope to which the output of 

the bender transducers were fed. The time-base and voltage amplitude of 

these signals are immaterial as it is the relative character which is 

important. 

The signal for an unconsolidated sediment was typical of many 

received signals obtained in various bender transducer experiments on 

sediments at low effective (<200 kPa) stresses. It consists of three 

distinct components: a (fast) high frequency small amplitude component 

associated with the fast compressional wave (P1), a slower much lower 

frequency component (P2? ) which was tentatively linked with Biot's slow 

wave by Schultheiss (1981), and lastly a much slower intermediate 
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frequency high amplitude component (S) which is associated with a shear 

wave. Signals such as this degenerate with increasing effective stress and 

the isolation of the three components becomes unclear (Schultheiss. 1981). 

The signal for water (with a very high amplification) has a fast 

compressional wave component (P1), a slower lower frequency component (P? ) 

- which appears to be associated with a delayed lower frequency "ringing" 

or some resonance within the transducer. This observation of the slower 

lower frequency component in water, which is similar to that observed in 

unconsolidated sediments, suggests that these components should not be 

associated with Biot's slow wave as only the fast wave should exist in a 

fluid. 

Figure 5.4 Shear-wave bender element signals for 
propagation through different media 
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There next follows a series of signals for a wax sample which was 

initially melted, but was left to solidify. The signal for the melted wax 

is similar to that in water. The signal for near-solid wax is much 

altered; with the P1 component becoming lower in frequency and increasing 

in amplitude. and also the emergence of a similar frequency but distinctly 

larger amplitude component (S) associated with the shear wave. Lastly, for 

the solid wax the P1? component and the S? component have merged to 

produce a signal which is virtually uninterpretable. This latter signal is 

typical of many unconsolidated sediments placed under effective stresses 

of greater than 200 kPa. Note, that the lower frequency component observed 

in the melted wax is unidentifiable for the near-solid and solid cases. 

The last signal is for "Play-doe", which is a plasticine type 

material. Here the P1 component is identifiable, but the slower S 

component is more obscure. "Play-doe" was chosen for various experiments 

testing the repeatability of measurements (as it could be simply remoulded 

into its initial form). These experiments showed that there was still a 

great variation in the character of the signal depending on the way in 

which the transducers had coupled themselves upon insertion. In some cases 

the S component would become more distinct, but in other cases both P and 

S components would be combined. 

5.3.7 Criteria for interpreting received bender signals to obtain Vs And 

G 
max 

Based upon the observations discussed in 5.3.3 - 5.3.6, the 

following criteria were established to interpret received bender signals 

to allow the calculation of the shear wave velocity (V 
s) 

in a consistent 

manner: 

1. Unfiltered signals are used for interpretation 

2. Low-frequency, low amplitude negatively directed peaks are not 
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associated with S waves (or Biot's slow wave). 

3. The "onset time" of the shear wave is determined by the first 

occurrence of a sharp higher frequency peak in a positive direction, which 

is superimposed upon the low-frequency peak described in 2. 

4. Picking of the "onset time" of the shear wave at high effective 

stresses will be more subjective, if at all possible. 

5. The separation distance between transducers is taken as the 

distance between the tips of the two transducers. 

6. The shear wave velocity is determined from the ratio of the 

separation to the onset time. 

5.3.8 Samples tested using bender elements 

A number of different samples were tested using bender elements 

mounted in various cells. The 5 samples from Site 1 and one sample from 

Site 4 (SAND 1). used in the resonant column (5.2.3), were tested using 

bender elements mounted in the device (5.3.1). Six carbonate samples from 

Site 2 at sub-bottom depths ranging from 20 to 120 m (see Appendix 3) were 

tested in a consolidation cell modified to contain bender transducers. 

Consolidation and permeability results for these samples are given in 

11.2.3. Other bender element experiments which were carried out on other 

samples included tests in a modified triaxial cell on a marine sand 

(discussed in Chapter 6) and experiments in split-core sections of 

carbonate sediments from Site 2 (results given in 11.2.2). 

5.4 Gaax an Ea results for sediments from Sites 1.2 and 4 

5.4.1 Failure of E experiments on samples from Site 1 
wax 

Longitudinal resonant experiments conducted on the soft samples 

from Site 1 were not successful, but they were successful for a sand 

sample from Site 4. The soft samples could not be aligned perfectly 
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in the resonant column cell and these samples could not move freely (in a 

longitudinal direction) past the magnets surrounding the sample top-cap 

(5.2.2). This was not a problem for the sand sample. However. the soft 

Site 1 samples did appear to "free" themselves during high amplitude 

longitudinal tests (5.6). A selection of the low-amplitude resonant column 

results for sample SAND 1 are shown in Table 5.1. 

5.4.2 Comparison of Ga= from resonant column and bender techniques 

One of the draw-backs of using bender techniques for obtaining Vs, 

hence Gmax, is that calibration of the transducers in a medium with known 

Vs is difficult (unlike compressional wave transducers which are simply 

calibrated in water). However, mounting a set of bender transducers in a 

resonant column device (5.3.1) allows G... from bender techniques to be 

compared with Gmax from the resonant column. The closeness of G results 
MAIM 

between the two techniques tests the effectiveness of the criteria 

established for interpreting the bender signals (5.3.7), allowing a 

calibration of bender techniques. 

Gmax results from four different samples at various effective 

stresses, using bender and resonant column techniques from Sites 1 and 4. 

are given in Tables 5.1 and 5.2. and shown in Figure 5.5. The agreement 

between the two techniques is striking. particularly when there are many 

factors which can introduce errors in Gmax determined from bender 

techniques (5.3). It is encouraging to note that a similar independent 

comparison by Dyvik and Madshus (1986) was also favourable. The results in 

Figure 5.5 show that bender elements can be used to obtain Gmax 

successfully, (but a degree of caution should always be taken when using 

bender results alone) and also that there is little apparent shear wave 

velocity dispersion between the two sets of results, although this 

difference may be swallowed up by experimental uncertainties. 
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Table 5.1 Resonant column Geax and Emax results and bender element Gmax 

for sample SAND 1, Site 4 

Effective G 
max 

stress res'col bender DS E DE Vb P 
max 

(kPa) (MPa) (MPa) % (MPa) % (kg/m3) 
20 34.8 31.3 1.29 87.6 4.3 0.40 1590 
30 46.7 43.1 0.98 115.3 4.5 0.34 1590 
50 66.0 61.4 1.29 150.0 3.3 0.22 1590 
75 83.0 78.1 0.76 183.0 3.4 0.17 1590 

100 97.0 91.7 0.68 248.7 9.8 0.36 1590 
125 -- 104.2 0.71 272.0 7.7 -- 1590 
150 118.6 115.3 0.84 293.0 4.3 0.30 1590 
200 136.0 134.6 0.91 326.3 3.3 0.27 1590 
250 149.1 150.1 0.65 360.0 3.5 0.21 1590 
300 160.7 164.3 0.55 388.0 4.0 0.20 1590 
400 182.8 185.8 0.54 427.8 5.4 0.18 1590 
500 201.0 205.1 0.52 454.1 9.0 0.15 1590 
600 216.2 220.7 0.61 474.4 9.8 0.11 1590 
700 230.7 232.7 0.63 -- -- 0.08 1590 

Table 5.2 Resonant column and bender element G results for Site 1 
max 

Effective Gm 
ax 

Sample stress res'col bender E p 

(kPa) (MPa) (MPa) (MPa) (kg/m3) 
CLAY 35 8.0 6.0 61.9 1420 
CLAY 100 14.7 10.9 84.1 1478 
CLAY 300 27.2 23.6 143.0 1538 
CARB 20 36.1 42.0 159.9 1818 
CARB 50 59.2 65.5 240.4 1835 
CARB 150 114.8 119.1 395.7 1860 
CARB 450 189.5 198.2 633.6 1888 
TURB 2 60 18.4 16.5 96.8 1620 
TURB 2 125 30.7 27.3 134.2 1668 
TURB 2 260 77.1 67.4 256.4 1772 
TURB 3 20 5.2 6.5 44.4 1529 
TURB 3 60 19.7 19.2 92.0 1568 
TURB 3 165 45.7 45.8 202.7 1642 
TURB 4 580 91.9 82.6 44.0 1532 
TURB 4 50 8.4 6.5 64.0 1541 
TURB 4 100 9.8 9.1 191.0 1678 
TURB 4 295 46.8 45.7 278.0 1722 
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Figure 5.5 Comparison of Gs, x results from resonant column and bender 
element techniques for sediments from Site 1 
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Figure 5.6 G1, x versus effective stress resonant column results 
for sediments from Site 1 
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5.4.3 Gmax versus effective stress and sub-bottom deoth at Sites 1.4 

The variation of Gmax (obtained from the resonant column) with 

effective stress, for 5 samples from Site 1 and a sand sample from Site 4 

are shown in Figure 5.6. The three turbidite samples were taken from the 

same core at a vertical separation of less than eight metres (Appendix 3) 

and should all behave virtually the same under the application of the 

effective stresses used in the resonant column test. Figure 5.6 shows some 

experimental spread for the data for these turbidites; but they do behave 

in a similar fashion with a slow increase in Gmax with increasing 

effective stress. The clay sample from Site 1 also behaves like the 

turbidites. The sand sample from Site 4 and the near-surface carbonate 

sample from Site 1 show a remarkably similar dependence of Gmax with 

effective stress. This apparent similarity between the elastic properties 

of these two samples is useful; as longitudinal resonant column results 

were not successful on the carbonate sample (5.4.1) so they can be assumed 

to be similar to the longitudinal results for the sand. 

The effective stress range within the dashed box shown on Figure 

5.6 applies to sub-bottom depths up to 20 metres. Results for 6I= at 

given effective stresses can be converted to equivalent depth values by 

using the effective-stress / depth profile at Site 1 (see 10.2.2). The 

Gmax results within the box are converted in this way and are shown in 

Figure 5.7 with G results obtained from three other techniques at Site 
max 

1. The data points labelled T1 are G experimental results obtained by 
max 

Lovell and Ogden (1984) who used a turbidite sample from Site 1 mounted in 

a consolidation cell with bender elements. Results T2 - T4 are taken from 

Table 5.1. The linear equation of Gmax versus depth is taken from results 

of Whitmarsh and Lilwall (1982), who obtain inverse in-situ G 
Paz 

determinations from Stoneley wave dispersion experiments at Site 1. 

Lastly. G- 17 MPa is determined from the (inverse) analysis method. max 
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Figure 5.7 G, ax versus depth for surficial turbidite sediments, Site 1 

Gma, 
(MPa 

20 

10 

0 

SAMPLES: 

T1 - TURBIDITE 1 (LOVELL AND OGDEN, 1984). (1 M) 
T2 - TURBIDITE 2, (17 M) 
T3 - TURBIDITE 3, (9 m) 
T4 - TURBIDITE 4. (17 m) T3 

o TECHNIQUE: jT2 

ACOUSTIC (10 kHz) 
G 17 MP/-- 

RESONANT COLUMN (100 Hz) 
NVERSE (TIDAL) MODULUS ýß (MPa) =z (m) 

SHEAR FROM STONELEY. - 

G(MPs)= 1.7 + 3.53z(m)  T1 
(WHITMARSH AND 

LILWALL, 1982) aT T4 

oýT3 

 T1 

"T1 

05 10 15 20 

DEPTH (m) 

The results of G versus depth at Site 1 (Figure 5.7) are max 

interesting. The laboratory results for different turbidite samples using 

different techniques (bender and resonant column) and different observers, 

all provide Gmax data from which the simple linear relationship GI= (MPa) 

= 106 z (m) would be deduced (from Figure 5.7). However, this is a far cry 

from the Whitmarsh and Lilwall (1982) relationship which predicts Gmax 

linearly increasing more rapidly with depth. Sample disturbance during 

coring etc (see discussion in 4.10.2) degrading G for the laboratory 

measurements and/or uncertainties in the analysis of Whitmarsh and Lilwall 

(1982) are obvious reasons for this discrepancy. However, the rather crude 

average in-situ G result from the tidal cycle analysis (see 4.7.2) does 
max 

appear to be of similar magnitude to the in-situ results of Whitmarsh and 

Lilwall (1982). 
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It is interesting to note that a linear increase of G with 
max 

depth is given by both the laboratory measurements and the in-situ results 

of Whitmarsh and Lilwall (1982) in Figure 5.7. This contrasts strongly 

with results from a recent review of G data in near-surface sediments tax 

(Taylor-Smith. 1986), where Gaax is found to increase in a parabolic 

fashion with depth. It is most likely that the actual in-situ relationship 

between Gaax and depth at Site 1 is also parabolic (for the surficial 

sediments) and that the linear relationships seen in Figure 5.7 are over 

simplifications. From all these results, the general observation that 

laboratory measurements of G are considerably less than in-situ 
max 

determinations, seems fair. 

5.4.4 G 
max 

versus effective stress results at Site 
-Z 

From an experimental view-point the quality of the bender signals 

obtained for the samples at Site 2, (which were tested in a modified 

consolidation cell), was far inferior to the quality of signals obtained 

on samples from Site 1 (in the modified resonant column cell). This may 

have been simply due to the difference in materials; however the much 

smaller separation between the bender elements in the consolidation cell. 

as compared that in the resonant column cell (15 mm : 65 mm). may have had 

some influence on the quality of the bender signals. 

G for 6 samples from Site 2, spanning over 100 m of core (see 
MWX 

Appendix 3). were obtained from bender experiments in a modified 

consolidation cell. The results of G versus effective stress for these max 

samples are shown in Figure 5.8 and Table 5.3. Samples taken at shallow 

depths would be expected to have G values less than deeper samples, at IMX 

low effective stresses. and also the shape of the G versus effective 
max 

stress curve would be expected to be different for each sample. 
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Figure 5.8 Gp; x versus effective stress bender element results 
for carbonate sediments from Site 2 
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Table 5.3 Bender element G results for carbonates from Site 2 
max 

Sample 0eff vs P G 

(kPa) m/s kg/m3 (MPa) 
CARB 1 50 151 1719 39.2 
CARB 1 100 167 1740 48.5 
CARE 1 200 183 1755 58.8 
CARB 1 450 217 1780 83.8 
CARB 1 1000 277 1819 140.0 
CARE 2 12.5 130 1612 27.2 
CARE 2 25 140 1617 31.7 
CARE 2 50 142 1621 32.7 
CARB 2 400 190 1664 60.1 
CARB 3 12.5 135 1664 30.3 
CARB 3 100 154 1689 40.1 
CARE 3 200 202 1704 69.5 
CARE 3 400 245 1724 103.0 
CARE 4 12.5 82 1664 11.2 
CARB 4 100 105 1689 18.6 
CARE 4 200 125 1704 26.6 
CARB 4 400 179 1724 55.2 
CARE 4 800 246 1758 106.0 
CARB 5 12.5 92 1515 12.8 
CARE 5 25 121 1528 22.4 
CARB 5 50 141 1539 30.6 
CARB 5 150 134 1541 27.7 
CARB 5 250 162 1554 40.8 
CARB 5 2000 191 1699 62.0 
CARE 5 3000 250 1748 109.0 
CARE 6 12.5 81 1552 10.2 
CARE 6 25 87 1556 11.8 
CARB 6 50 80 1559 10.0 
CARB 6 200 185 1585 54.3 
CARE 6 400 191 1612 58.8 
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Neither of these traits are observable in the results shown in Figure 5.8, 

and any subtle variations between the behaviour of different samples is 

disguised by scatter In the data. As no differences can be resolved, all 

the G data are lumped together and a single curve fitted through them. 
Imax 

5.5 Anelastic behaviour of sediments: 0 and shear modulus disnersion 

5.5.1 Band limited constant 0 model of sediments 

As all materials are never absolutely elastic, it should be 

possible to investigate the anelasic properties of sediments. Anelastic 

materials will exhibit dispersion of compressional and shear waves, creep 

and stress relaxation (Appendix 2). Note, these effects will be 

independent of dispersion and attenuation in poroelastic materials which 

is due to dissipation of energy due to Blot's (1941,1956 a, b) 

viscous-flow mechanism (Chapter 2). Blot (1962 a, b) accounted for these 

additional anelastic effects In his poro-anelastic theory, by using 

results from anelastic theory, such as those offered by the band limited 

constant Q (BLCQ) model (Kjartansson. 1979). 

The BLCQ model is semi-empirical. It relies on the experimental 

observation that the specific shear (say) attenuation (1/QS) (see Appendix 

2) remains constant over a specified frequency band width. Constant Qs 

implies a series of loss (stress relaxation) mechanisms, each of which is 

triggered at a successive discrete frequency. Each mechanism causes 

attenuation (and associated dispersion) of an equal amplitude Q. If the 

discrete series of mechanisms is blurred into a spectrum of equal 

amplitude mechanisms over the band width, then the BLCQ model results. The 

exact nature of the loss mechanisms, e. g. thermal losses, fluid flow 

between pores, frictional sliding, need not be specified (or modelled), as 

it is only the BLCQ result which is required. 
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Once the BLCQ model has been invoked it is possible to calculate 

the magnitude of the associated dispersion by standard anelastic theory 

(Norwick and Berry, 1972). [Alternatively, it is possible to calculate 

both Q and the dispersion from expressions obtained from experimental 

creep measurements (characerising attenuation in the time as opposed to 

frequency domain - see Appendix 2. Norwick and Berry, 1972 and 

Kjartansson. 1979)]. Neglecting the analysis and just quoting the results 

gives the following expression for the shear modulus (G) dispersion from 

the BLCQ model: 

f 
2/(AQ3) 

G GO " Lip] 
5.5 

Here. G0 and f0 are reference shear modulus and frequencies and 

1/Qs is the specific shear attenuation. Note, 1/Qs is simply related to 

the damping ratio (Appendix 2). 

Therefore, if constant Qs can be experimentally determined, and 

measured shear wave dispersion characterised successfully by equation 5.5. 

the BLCQ model will hold for the sediment/material in question. This would 

allow determination of the complex anelastic modulus G, and similar 

longitudinal analysis would allow the complex anelastic modulus 
i 

to be 

determined. It would then be possible to follow Stoll's (1974) example and 

to substitute these complex anelastic moduli for the elastic moduli in 

Biot's (1956 a, b) theory. Biot (1962a) recognised that sediments would 

behave poro-anelastically, but he expressed the anelastic moduli as 

complex operators, which are more rigorous than Stoll's (1974) complex 

moduli, but less physically identifiable. 
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5.5.2 Shear modulus dispersion analysis at Site 1 

In theory it should be possible to obtain 1/Qs and G at various 

frequencies by using the stress-strain loop method (Appendix 2) offered by 

the resonant column device (5.2.2). Unfortunately, the stress - strain 

loop data for the samples tested (5.2.3) could not be amplified 

sufficiently to allow 1/Qs to be resolved from the area of the stress - 

strain loop. G measurements (from the slope of the major axis of the 

stress - strain loop) were obtained at various frequencies. However, even 

these measurements must be analysed carefully as they were obtained at 

high strain amplitudes (>10-3) and will therefore be somewhat degraded. 

Although no continuous 1/Qs versus frequency data were collected, 

1/Q3 was measured at the resonant frequency (10 Hz) (by using the 

amplitude decay technique, see 5.2.2). Using this 1/Qs value, and assuming 

a BLCQ down to the lowest stress - strain loop frequency (0.01 Hz), it is 

possible to predict shear modulus dispersion using equation 5.5. 

Experimental results for the variation in G with frequency, at 

three different effective stresses (aeff), for a selected sample from Site 

1 are given in Figure 5.9 and Table 5.4. Shear modulus dispersion 

predictions from equation 5.5 are also shown. Predicted dispersions for 

different aeff are calculated using the G values at resonance (10 Hz) as 

the reference moduli, and with experimental values of 1/1Qs: (3.183). 10-3 

(2.228). 10-3 and (2.037). 10-3 used at aeff of 20,60 and 165 kPa. 

Initially it appears that there is a good agreement between the 

measured G values at low-frequencies and those predicted by the dispersion 

equation (especially at the effective stress of 20 kPa). However, a closer 

look at the predictions show they have a significantly different gradient 

to lines fitted through the experimental data at low-frequencies. 

Furthermore, the higher frequency measurements (at resonance) are not 

always greater than their lower frequency counterparts (e. g. for 60 kPa). 
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Table 5.4 G and D versus frequency: TURB 3, Site 1 
s 

Effective strain 
stress f G D amplitude p 

s 

(kPa) (Hz) (MPa) % kg/m3 
20 0.011 4.86 5.7 0.0025 1529 
20 0.029 5.08 5.7 0.0025 1529 
20 0.111 5.34 5.7 0.0025 1529 
20 0.200 5.49 5.7 0.0080 1529 
20 0.500 5.67 5.7 0.0080 1529 
20 10.000 5.70 5.7 0.0080 1529 
60 0.011 18.40 3.6 0.0018 1568 
60 0.029 19.10 3.6 0.0018 1568 
60 0.111 19.60 3.6 0.0018 1568 
60 0.200 20.10 3.6 0.0045 1568 
60 0.500 20.50 3.6 0.0045 1568 
60 20.000 19.20 3.6 0.0045 1568 

165 0.011 40.30 2.1 0.0016 1642 
165 0.029 41.30 2.1 0.0016 1642 
165 0.111 42.60 2.1 0.0016 1642 
165 0.200 43.00 2.1 0.0037 1642 
165 0.500 44.30 2.1 0.0037 1642 
165 25.974 45.70 2.1 0.0037 1642 

Figure 5.9 G versus frequency for sample TURB 3, Site 1 
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There are a number of possible reasons for the differences between 

the low-frequency stress-strain loop G values and the higher frequency 

resonance G values. The low-frequency relatively high strain amplitude G 

values may suffer modulus degradation (lowering G- see 5.6.1), but also 

dispersive increases in G. For the G values obtained at resonance, 

degradation will be less and also the modulus dispersion will be greater; 

resulting in higher G values. Another possible cause is that the 

assumption of constant Qs across this total band width is invalid. Another 

possible cause is that the accuracy of the measurements at lower and 

higher frequencies are widely different. not allowing a practical 

resolution of differences in G. There are many permutations of these 

arguments. 

In practice, the limitations of this data set (and others not 

shown) mean that no clear conclusion can be drawn on the measured or 

predicted values for G for the sediments from Site 1 tested on this system 

(5.2.2). Furthermore. extensional stress - strain measurements are not 

currently possible on this system and therefore attempting to conjure up E 

or Kb values for use in the Blot - Stoll theory is unwise (Chapter 2). 

5.6 Determining a second elastic constant E or vb for Sites 1 and 4 

5.6.1 E results for Sites 1 and 4: degradation and experimental problems 

As noted in 5.4.1. experimental problems meant that E values 
max 

could not be measured on the "soft" samples from Site 1 using the 

resonance technique. However, it was possible to carry out higher strain 

amplitude longitudinal tests (5.2.2) allowing E to be determined for these 

samples. Typical results for E and G. versus strain amplitude for one 

sample at Site 1, are shown in Figure 5.10 and Table 5.5. These results 

must be interpreted with care. 
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Table 5.5 High strain amplitude E and G results: TURB 3, Site 1 
(at an effective stress of 55 kPa) 

Strain E G vb p 

amplitude kg/m3 
(MPa) (MPa) 

(3). 10-2 32.1 14.9 0.08 1560 
(1). 10-2 47.6 17.8 0.34 1560 

(3). 10-3 56.4 19.8 0.42 1560 

(1). 10-3 62.1 20.5 0.51 1560 

(3). 10-4 64.8 20.9 0.55 1560 

(1). 10-4 66.6 21.0 0.58 1560 

(3). 10-5 66.6 21.0 0.58 1560 

1 

Figure 5.10 High strain amplitude E and G results for sample 
TURB 3, Site 1 at an effective stress of 55 kPa 
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The shear results of G and Ds versus strain amplitude show the 

well known effect of modulus degradation with accompanying increases in 

the damping ratio (not shown) (Hardin and Drnevich, 1972). The main 

feature of these results are that G remains constant at its low strain 

amplitude (elastic) value (G ) up to some critical strain amplitude. max 

whereupon it decreases smoothly with increasing strain amplitude. The 

critical strain amplitude is around (3). 10-3 for G (there is a 

corresponding increase in Ds at larger strain amplitudes). These two 

phenomena are connected: decreasing G being caused by slipping of grains 

as the sample undergoes elasto-plastic deformation at higher strain 

amplitudes, and increasing attenuation caused by the greater energy loss 

in the plastic (non-recoverable) deformations. 

In principle the longitudinal results should be similar to the 

shear results. However, the sample "sticking" problem encountered in the 

resonance tests (5.4.1) was still present for the data collected at 

low-strain amplitudes in these tests; giving excessively high values for E 

and low values for DE. This problem appeared to disappear at higher strain 

amplitudes as the sample became "shaken free" (Bennell, personal 

communication), whereupon it follows the expected behaviour of a smooth 

decrease in E and increase in DE. Therefore, when extrapolating back to 

obtain a low-strain amplitude value of E. this "sticking" problem must be 

accounted for (Bennell. personal communication). Smooth lines are fitted 

through the E and G data, at high strain amplitudes, allowing for a 

corrected extrapolation of Emax (see Figure 5.10). Some E and G points are 

taken off these lines, at equal strain amplitudes, are given in Table 5.5. 

No such "sticky" problems were found for the sand sample (SAND 2) 

from Site 4. The experimental E and G values for this sample show the 

normal dependence on strain amplitude (Figure 5.11). Smooth lines are 

fitted through the data and equal strain amplitude E and G data are shown 

in Table 5.6. 
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Table 5.6 High strain amplitude E and G results: SAND 2, Site 4 
(at an effective stress of 100 kPa) 

Strain E G vb p 

amplitude 

(MPa) (MPa) kg/m3 

229.3 101.0 0.14 1580 

(3). 10-3 270.4 108.8 0.24 1580 

(1). 10-3 294.1 113.3 0.30 1580 
-4 (3). 10 309.0 116.0 0.33 1580 

-4 (1). 10 315.3 116.5 0.35 1580 
-5 (3). 10 317.8 117.0 0.36 1580 

1 

Figure 5.11 High strain amplitude E and G results for sample 
SAND 2, Site 4 at an effective stress of 100 kPa 
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5.6.2 Calculating the elastic constant vb for samples from Sites 1.2 

and 4 

As discussed in 5.1. two elastic constants are required to 

describe the elastic properties of the "frame" of a sediment or rock. So 

far, usable data for the elastic constant Gmax have been presented for 

sediments from Sites 1,2 and 4 at different effective stresses (5.4.3 and 

5.4.4). Some fair data have been presented for the elastic constant EM= 

for a sample at Site 4 at different effective stresses (5.4.1), and some 

poor data for E1 for samples at Site 1 have also been given (5.4.1). 

Additionally, some data for the variation of E and G with strain amplitude 

have been presented for one sample from Site 1 and one from Site 4 

(5.6.1). 

It would appear that G has been fairly well characterised for 
max 

the sediments from Sites 1,2 and 4. Further, if the good quality E or 

Emax data is selected from the remaining experimental results, then the 

elastic properties of the frame of these sediments could be defined. One 

good way to test if the E or E results lie within the bounds of reason max 

is to calculate the frame Poisson's ratio (vb) from E (or Ems) and G (or 

Gm). For a non-fluid, the frame Poisson's ratio has the limits 0< vb < 

0.5, and any calculated value outside this range is physically 

unacceptable. If reasonable values for the frame Poisson's ratio (vb) are 

calculated, then the frame bulk modulus (Kb) can be simply calculated from 

vb and G (see Appendix 2): 

vb2G-1 5.6 

2G. (1 + b) 
5.7 

3. (1 -2 b) 
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Note that the "frame" Poisson's ratio (vb) and the "frame" bulk 

modulus (Kb) of a sediment are different quantities to the Poisson's ratio 

(v) and the bulk modulus (K). The latter quantities are properties 

characterised by "undrained" deformation of sediments. The bulk modulus of 

sediments (K), will always exceed the bulk modulus of the saturating 

pore-fluid: so for soft, water saturated sea-bed sediments (1) K> Kf » 

G. However, the "drained frame" bulk modulus (Kb) is considerably smaller 

than Kf for soft sea-bed sediments and will typically lie within the range 

(2) 2G/3 < Kb < 5G. Therefore, using inequality (2) in equation 5.7 gives 

0< vb < 0.4, and using inequality (1) in equation 5.7 (sustituting K for 

Kb and v for vb) gives v>0.48. It is useful to note that v is close to 

0.5 for most soft sediments (Davis and Schultheiss, 1980), while Vb takes 

on a value less than 0.4 for the same type of sediments. 

Tackling the suspect E data for Site 4 (see Table 5.2). it can Max 
be seen that (E 

MM 
/2G )>1.5 for all the samples, therefore vb will 

always be physically unacceptable. If the better Emax data for Site 1 are 

considered, then the vb values are all reasonable (see Table 5.1). Also, 

the E and G data for Site 4 give sensible values for vb (see Table 5.6). 

However. the G and corrected E data from Site 1 do not all give phyiscally 

acceptable values for vb (see Table 5.5), although using the corrected E 

values give calculated vb values nearer the bounds of reality. It is 

important to note Vb (equation 5.6) is very sensitive to small 

uncertainties in the values of E and G. Therefore, calculated vb values 

which lie just outside the physical limits of acceptability may be due to 

subtle errors in E or G. 

As there are no E (hence vb data) for Site 2, and that the vb 

values for Site 1 are mostly physically unacceptable. the (reasonable) vb 

values for Site 4 will be assumed to hold for Sites 1.2 and 4- with the 

assumption that the variation between the elastic properties of each site 
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is characterised by the differences in GM= alone. There appears some 

justification in equating the elastic properties of some samples; the 

similarity of the Gmax behaviour of the carbonate sample from Site 1 and 

the sand sample of Site 4 (see Figure 5.6) is striking. The extension of 

the applicability of vb from Site 4 to Site 2 can be argued as the 

carbonates at Site 2 are similar to the carbonate sample from Site 1. The 

extension to the other samples at Site 1 can only be justified through the 

lack of any reasonable vb data for these samples. 

The task of finding a second elastic constant for Sites 1.2 and 4 

is therefore reduced to sensible interpretation of the vb data from Site 

4. Values of vb calculated from the high strain amplitude E and G results 

given in Table 5.6 are shown in Figure 5.11. It would appear that vb tends 

to a low-amplitude value of around 0.36 at 100 kPa. Next, the vb values 

calculated from E and GMaX (Table 5.1) are shown in Figure 5.12. These 
MAX 

results appear to show a trend of decreasing vb with increasing effective 

stress, with a jump in the data at 100 kPa. The jump in vb is caused by 

the jump in E (incidentally, this shows the sensitivity of calculated Pb 

on small changes in E), which was probably due to an accidental change in 

the sample's properties (due to some knock etc) during experimentation. 

Also shown on Figure 5.12 are the span of high amplitude data. It must be 

a coincidence that the Eaax result from Table 5.1 and the low amplitude E 

result from Table 5.6 both have vb = 0.36: they were obtained on slighlty 

different sand samples and the low amplitude E result may have been 

different if the experiment had run smoothly. 

So. narrowing down the choice of E and vb data to those presented 

in Figure 5.12. still does not give a clear definition of vb versus 

effective stress for Sites 1.2 and 4. For most purposes. Mb will be 

required for effective stresses up to 100 kPa. which roughly translates to 

sub-bottom depths up to 20 metres (see 10.2.2). Therefore. an average 
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value of vb = 0.3 is calculated from the Ea" and G data from Site 4 
sax 

over this effective stress range. A value of vb = 0.3 gives Kb - 2.17G 

(equation 5.7). 

It is assumed that this value of vb - 0.3 holds for the sediments 

from Sites 1 and 2. The influence of the exact value of vb in hydrodynamic 

and acoustic deformations of the sea-bed at Sites 1 and 2 is addressed in 

Chapters 9,10 and 11 allowing the relative importance of this crude 

approximation of vb to be tested. The only case where a value of vb is 

required at effective stresses greater than 100 kPa is for the analysis of 

the carbonate sediments from Site 2 (see Chapter 11). For this case it is 

interesting to note that in a similar analysis of acoustic propagation in 

carbonate sediments Ogushwitz (1985) chose a constant value of vb - 0.3 in 

his calculations. 

Figure 5.12 Frame Poisson's ratio, Emax and Gmax resuts versus 
effective stress for sample SAND 1, Site 4 
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5.7 Summar 

The shear modulus (G) of soft deep-sea sediments can be determined 

using bender transducer techniques, providing that the received signals 

are interpreted correctly. Criteria have been established to interpret 

received signals in a consistent fashion and G was obtained for different 

sediments from a number of sites. The bender transducers were mounted in a 

resonant column cell. which allowed G to be determined simultaneously and 

independently from resonance techniques. A favourable agreement was found 

for the G measurements between the techniques. This suggests that bender 

techniques can be used in a routine way to obtain G with some degree of 

confidence. 

Measurements of the shear modulus obtained from laboratory 

u resonant column and bender transducer methods were compared with In-sit 

determinations of G at Site 1 (Great Meteor East, N Atlantic Ocean). The 

in-situ determinations were obtained in an inverse way from Stoneley wave 

experiments (Whitmarsh and Lilwall, 1982) and from the tidally-induced 

pore-pressure boundary problem introduced in Chapter 3. The laboratory 

measurements of G for surficial sediments were up to a factor of 4 less 

than the in-situ determinations. This was attributed partially to 

disturbance during the coring and recovery process for the laboratory 

samples (reducing G), and to the inherent uncertainties in the inverse 

in-situ methods. With no simple reconciliation of the differences, both 

in-situ and laboratory G measurements are used in a specific case study at 

Site 1 (10.4), and the importance of these differences In G are assessed. 

Results from low strain-amplitude torsional resonant column tests 

showed that the deep-sea sediments tested all behaved anelastically. 

However, the anelastic behaviour was only fairly well characterised by a 

band limited constant Q (BLCQ) model of the sediments. As only a 

reasonable fit between BLCQ predictions and experimental measurements was 
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obtained, it was not possible to define a frequency dependent anelastic 

shear modulus G with confidence. Furthermore, experimental frictional 

problems during low-strain amplitude tests meant that neither E or 
i 

could 

be determined for the soft deep-sea sediments tested. 

High strain amplitude torsional experiments on deep-sea sediments 

showed degradation of the shear modulus occurring at strain amplitudes of 

around 10-3. At these high strain levels, the frictional problems 

encountered in the low strain amplitude extensional tests were overcome. 

However, the high strain amplitude E and G measurements were of limited 

use when E and G were combined: they often yielded physically unacceptable 

values of the frame Poisson's ratio vb. Therefore. no useful E (hence ub 

and Kb) measurements were obtained on the deep-sea sediments tested. 

It is essential to have a sensible determination of vb for any 

study involving poroelasticity (Chapter 2). Successful low amplitude 

resonance tests giving both E and G were performed on a marine sand 

sample. Combining E and G from these results gave an average value of vb 

0.3 for effective stesses up to 150 kPa. In absence of reliable vb 

measurements for the deep-sea sediments, they were assigned a value of 

0.3. leaving the intrinsic differences between samples to be characterised 

by variations in the shear modulus alone. A value of vb = 0.3 gives Kb 

2.176. Therefore, the task of characterising the frame moduli of deep-sea 

sediments has been simplified to determining G from bender transducer 

techniques and calculating Kb assuming vb - 0.3. Some G results from Sites 

1 and 2 presented in this chapter are used in later analysis (Chapters 10 

and 11). The G and Kb results for the marine sand from Site 4 are used in 

Chapter 6. 

The studies investigating the available methods for determining 

the frame moduli of sediments in this chapter have followed similar 

investigations for the permeability (k 
at 

Chapter 4). These experimental 
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studies were prompted by the analysis of Chapter 3, which showed that Kb' 

G and ka were important in a quasi-static boundary value problem solved 

using Blot's theory. The next step in isolating the important aspects of 

Blot's theory is to examine dynamic deformations where other variables in 

addition to Kb, G and ka come into play. In Chapter 6 the character of 

Blot's slow wave is investigated. In Chapters 7 and 8 the parameters 

influencing Biot fast wave velocity and attenuation predictions are 

studied. After these three chapters, the parameters important to dynamic 

deformations can be identified alowing the construction and use of 

practical geoacoustic and hydrodynamic models (Chapters 9,10 and 11) at 

Sites 1 and 2. 
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6 CHARACTERISATION OF BIOT'S SLOW WAVE 

6.1 Introduction 

Blot's theory has been successful in predicting the quasi-static 

consolidation behaviour of soils (Riot. 1941, Rice and Cleary, 1976) and 

it has also been applied to various low frequency harmonic problems (see 

Chapter 3). It is of interest to investigate if the theory still holds at 

higher (acoustic - ultrasonic) frequencies. Three diagnostic phenomena 

will occur if Blot's theory holds: viscous-flow dispersion of the fast 

wave (see Chapter 7); viscous-flow attenuation of the fast wave (see 

Chapter 8), and the existence of a propagative slow compressional wave. 

Attenuation and dispersion may be due to many reasons (see Chapter 5), but 

the existence of the slow wave can only be explained by Blot's theory. 

The fast wave is the compressional wave which is normally observed 

in fluid saturated poroelastic media. The slow wave remained an elusive 

phenomenon in water saturated porous media until Plona's (1980) 

observations in sintered porous materials. Soon after, Berryman (1980) 

heralded these results as confirmation of Biot's theory. However, in the 

field of absorption of sound by air-saturated porous media, experimental 

existence of the slow wave has been documented for many years (see review 

by Attenborough, 1982). Interestingly, for this latter case it is the fast 

wave which is difficult to measure. 

Neither of the observations of the slow wave outlined by Plona 

(1980). or Attenborough (1982), pertain to water-saturated natural 

sediments. Although there have been some tentative observations of the 

propagating slow wave in natural sediments (Patterson, 1956, Schultheiss. 

1981). there is no overwhelming evidence to prove its existence. There 

also remain some misconceptions in visualising what the slow wave is. 

Perhaps the slow wave has become elusive because the most appropriate type 

of measurements required to detect it are not being made? 
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It is of interest to attempt to follow up the experiments of 

Patterson (1956), Plona (1980) and Schultheiss (1981) to see if any 

experimental insight into the slow wave can be gained. Furthermore, it is 

worthwhile attempting to study Biot's theory to see if any light can be 

shed on the physical character of the slow wave. Should a straightforward 

method be obtained to measure the slow wave, then it would be a useful 

acoustical probe supplementing the information obtained from fast 

compressional and shear waves. 

6.2 Previous studies involvine Biot's slow wave in unconsolidated 

fluid saturated natural sediments 

6.2.1 Features of Blot's slow wave 

Through various numerical examples, Biot (1956 a, b) realised that 

the slow wave would suffer from very high attenuation. This attenuation 

increases as the frequency approaches the characteristic frequency (fC) - 

where Blot's viscous flow mechanism is most apparent: 

fc-k 
a2zrpf 

6.1 

In addition, the slow wave is diffusive in nature until the 

characteristic frequency is reached, whereupon it becomes propagative. 

Cleary (1980) noted that the propagative slow wave would be best observed 

within a very narrow frequency band: large enough to be greater than the 

critical frequency, but not too large to give massive attenuation. 

Another very important factor which controls the amplitude of the 

slow wave is the stiffness of the frame of the poroelastic material in 

which the wave is propagating. Johnson and Plona (1982) showed that for 

very stiff (almost rigid) poroelastic materials. the pore fluid becomes 

completely uncoupled from the frame. In this case, the fast wave 
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propagates through the frame of the poroelastic material, and the slow 

wave propagates through the fluid infiltrated channels within the 

material. In this way. they interpreted Plona's (1980) observation of the 

slow wave as a "fluid wave". Conversely. Johnson (1982) showed that for a 

poroelastic material with a very weak frame (nearing a suspension), such 

as a gel, that the slow wave travels through the frame of the gel. 

For the case of an unconsolidated sediment of intermediate frame 

stiffness, the frame and pore fluid do not completely decouple. The slow 

(and fast) waves cannot therefore be viewed as simply frame and fluid 

waves, but they will propagate due to deformations of both frame and 

pore-fluid. However. it may be that the slow wave resides more within the 

frame than in the pore-fluid. At this stage of the argument this question 

remains unanswered. 

6.2.2 Experimental observations of the slow wave in unconsolidated 

sediments? 

There have been very few reported observations of the propagating 

Biot's slow wave in water saturated poroelastic materials. This is not 

entirely surprising as the slow wave suffers severe attenuation: it 

arrives after the fast (and sometimes the shear) wave and therefore is 

interfered with by the signal from these waves. 

Plona (1980) observed the slow wave propagating through a 

fluid-saturated sintered glass bead block. He used a refraction method to 

isolate the fast, shear and slow waves passing through the block (see 

6.3.5). The frequency used was 500 kHz, which puts it neatly within the 

required frequency band for this material. Also the sintered glass bead 

material is virtually rigid, so the slow compressional wave is a decoupled 

fluid wave. 
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Patterson (1956) reports two compressional waves propagating 

within a confined unconsolidated fluid saturated sand. His observations 

were made at 50 kHz, which lies within the desired frequency band, and his 

results show the arrival of two distinct events recorded on an 

oscilloscope. The first event Patterson calls a fluid wave and associates 

it with the normal fast wave. The later event, which is of equal amplitude 

and half the frequency of the first event, Patterson calls a frame wave 

(this is an unfortunate misnomer which has been propagated through the 

literature). Cleary (1980) links Patterson's (1956) frame wave to Biot's 

slow wave. However. attempts to repeat Patterson's experiments have not 

been successful (Taylor-Smith, personal communication), and verification 

of Patterson's results are still lacking. 

Schultheiss (1981) carried out shear wave experiments in sands at 

10 kHz using bender techniques. He observed three distinct events which 

could be separated in terms of arrival time and frequency. He associated 

the first and last events with the fast and shear waves, and, taking 

Patterson's (1956) lead, tentatively associated the other event with a 

frame wave. 

A closer examination of similar shear mode bender experimental 

data (Chapter 4) has shown that this other event can also be detected in 

fluids - therefore it has nothing to do with a frame wave. However, 

Schultheiss' work (1981) showed that the shear mode bender techniques were 

ideal for coupling much energy into the frame of an unconsolidated 

sediment. Therefore. bender element materials mounted in a compressional 

mode would be a suitable choice for coupling compessional energy into the 

frame of an unconsolidated sand. Using this idea, attempts were made to 

see if Biot's slow wave could be associated with a frame wave, with the 

frame wave being produced by compressional mode bender transducers (see 

6.3). 
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6.3 Experimental attemnts to detect Blot's slow wave 

6.3.1 Design of a new compressional mode bender transducer 

If Blot's slow wave can be thought of as a frame wave in 

unconsolidated fluid saturated sediments, then a transducer which is well 

coupled to the frame of the sediment would transfer most energy into this 

mode. If such a transducer were to be abbuted against a sediment sample 

then two design criteria require consideration. The major criterion is 

that the compliance of the transducer is closely matched to that of the 

sediment -a feature which is evident in shear wave bender element studies 

(Schultheiss. 1981). A second criterion is that free drainage should be 

allowed around the face of the transducer to maximize the relative motion 

of the frame to the fluid. With these points in mind, a new transducer was 

made up by mounting a bender element in a compressional mode within a 

triaxial end-cap (Figure 6.1). This transducer was mounted alongside a 

shear mode bender transducer and a conventional 500 kHz compressional wave 

transducer (Figure 6.1). 

Figure 6.1 Triaxial cell end-cap modified to contain shear 
and compessional mode bender transducers 
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6.3.2 Experimental set-uD for using the new compressional wave 

transducer in sand. at different effective stresses 

Some initial experiments on a sand sample from Site 4 were 

undertaken using the new compressional transducer. A rubber membrane was 

fitted around the lower triaxial end cap and filled up with dry sand. The 

top cap was then placed on top of the sand column, the transducers were 

aligned, and the membrane fitted around the top cap. The sample was then 

placed within a triaxial cell, saturated with water, subjected to a back 

pressure of 200 kPa, then placed under a small effective stress. This part 

of the sample preparation is virtually identical to the preparation for 

the sand sample used in the resonant column cell (see 5.2.3). By varying 

the back pressure and confining pressure, the sample could be subjected to 

effective strsses of up to 600 kPa. 

The transducer leads from top and bottom end caps were connected 

to a switch box allowing any one set to be used. The shear or 

compressional mode bender transducers were driven by the rising edge of a 

10 V square wave. The conventional compressional transducer was driven by 

a 240 V spike. The received signal was passed through an amplifier and a 

filter, then displayed on the time base of a digital oscilloscope which 

was triggered by the rising edge of the square wave. Arrival times of 

events on the time domain were obtained from the calibrated digital 

display. Velocities of events were calculated, after electronic delay 

times had been corrected for. by using the transducer separation and the 

interpreted arrival times. 

A typical time domain signal of the new compressional wave 

transducer in sand from some preliminary experiments is shown in Figure 

6.2. The first portion of the signal is greatly distorted by electronic 

pick-up. This distortion initially could not be removed, and was ignored 

(this was a poor judgement, as it can lead to some misinterpretation of 

subsequent experimental results - as discussed in 6.3.3 and 6.3.4). 
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Figure 6.2 Typical received signal from the compressional 
mode bender transducer 
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6.3.3 Some initial results using the new transducer in saturated sand at 

different effective stresses 

Some initial experiments were carried out using the new 

compressional transducer in saturated sand at different effective 

stresses. Received signals were similar to those shown in Figure 6.2. and 

the onset of a sinusoidal wave-train arriving after the decay of the 

electronic pick-up was interpreted as the onset of a travelling wave. The 

travel time for this event was recorded and its velocity was calculated. 

Temporarily. this velocity will be denoted Vframe - implying an 

association with a compressional wave travelling through the frame. 

Shear wave velocities and compressional wave velocities (using the 

conventional transducers) were also calculated. The measured results of 

Vfraae and Vs in the sand, at different effective stresses, are shown in 

Figure 6.3. Also shown are predictions of the shear velocity (Vs) and the 

slow wave velocity (V2) obtained from Biot's theory. The input parameters 

for the predictions are given in Table 6.1 and are based upon other 

experimental data collected on similar sand samples from Site 4. 

Table 6.1 Physical parameters characterising data set SAND_M1 

1. Porosity 

2. Fluid density 

3. Grain density 

4. Fluid modulus 

5. Grain modulus 

6. Dynamic viscosity 

7. Circular frequency 

8. Shear modulus 

9. Frame bulk modulus 

10. Permeability 

11. Pore radius 

12. Tortuosity 

1-6.10.12 Lovell and Ogden (1984) 
8.9 from from Table 5.1 
11 Hovem and Ingram (1979) 

0.42 

1000 kg/m3 

2670 kg/m3 

(2.0). 109 Pa 

(5.0). 1010 Pa 

0.001 Pa. s 

2x. 104 Hz 

(3.8). 107 to (2.7). 108 Pa 

2.17 G 

(4.2). 10-11 m2 
(4.3). 10-5 m 
1.36 
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There appears to be a good Pit between the experimental and 

predicted shear wave velocities. Further. the predicted slow wave velocity 

V2 and the Vframe event do not appear too dissimilar. However, there are 

some flaws in drawing a direct comparison. Firstly, the compressional mode 

bender transducer should be expected to produce a very high amplitude fast 

compressional wave - in addition to a possible frame wave. This fast wave 

component would be expected to interfere destructively with any later 

event. Secondly, the predicted attenuation of the slow wave is over 40 

dB/m, which means that the pressure of the slow wave will decay to less 

than 2% of its initial amplitude over the 100 mm path length within the 

sample. Also, the fact that the compressional mode bender transducer may 

be producing energy coupled as a shear wave must not be overlooked. 

Therefore, before concluding that the Vframe event is linked to Blot's 

slow wave, a more detailed study of the character of the received signal 

must be undertaken, along with a verification that Blot's slow wave does 

propagate predominantly through the frame of an unconsolidated sediment. 

These points are looked at in 6.3.4 and 6.4. 

6.3.4 Experiments using the compressional mode bender transducer in 

different media 

A major problem with the results from the compressional mode 

bender transducer presented in 6.3.3 is that significant information may 

be obscured by the electronic pick up at the start of the signal. The 

origin of this pick up was found (accidentially) to be due to an 

electronic short within the transducers caused by water seeping into the 

air-filled compartment behind the transducer face (Figure 6.1). This fault 

was repaired by re-sealing the bender element with a new layer of epoxy 

resin. This repair had a dramatic affect upon the types of signals 

received by the compressional mode bender transducers in different media. 
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Some results of the received signals from the faulty and repaired 

transducer sets are show in Figure 6.4. In unconsolidated saturated sands 

and in water the faulty set give the familiar signals with a large amount 

of electronic pick up. However, when this is removed in the repaired set, 

the signal for water is very revealing. It shows that there is a high 

frequency early event which is superimposed upon a lower frequency 

reverberation. Therefore, this lower frequency event has nothing to do 

with any "frame" (as water is a pure fluid! ), so any linking of this type 

of feature with a frame wave. or Biot's slow wave, as suggested in 6.3.3 

is wrong. 

Figure 6.4 Received signals from faulty and repaired compressional 
mode bender transducer sets in different media 
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6.3.5 Problems with attempts to detect Blot's slow wave in 

unconsolidated sediments 

The unsuccessful attempts to detect Biot's slow wave using a 

compressional mode bender transducer described above highlight some of the 

problems of detecting this wave. Although the compressional wave 

transducer operates within the correct frequency band (near the critical 

frequency). the problem of isolating the slow wave component from the fast 

compressional wave and shear components (present in any received signal) 

is evident. This is compounded by the small amplitude of the (highly 

attenuated) slow wave which requires resolution. 

An ideal way of seperating the fast, slow and shear wave 

components of a signal passing through a porous medium is described by 

Plona (1980). A schematic diagram of Plona's (1980) refraction experiment 

is shown in Figure 6.5. Attempts were made to first repeat Plona's 

observations of a slow wave in a sintered glass bead block, with thoughts 

of extending the principle to unconsolidated sediments. A similar 

experiment to Plona's (1980) was set-up using his sintered glass block. 

Figure 6.5 Schematic diagram of Plona's (1980) slow wave 
refraction experiment 
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Unfortunately, the signals obtained from these experiments were 

far more noisy and unclear in comparison with Plona's. This was probably 

due to the poorer quality transducers used in the experiment which had 

poorer directivity and sensitivity than Plona's. Also, problems were 

encountered in fully saturating the glass bead block in a non-back 

pressured system. Some attempts were made to try the experiment upon 

unconsolidated sand samples (which were confined within a thin metal box). 

but with no success. 

The experimental problems discussed so far were compounded by an 

ignorance of the physical character of the slow wave in unconsolidated 

sediments. The premise that the slow wave can be linked with some kind of 

frame wave, was not verified by the experimentation described in 6.3.1 to 

6.3.4. A better idea of the physical character of the slow wave would be 

given by obtaining general solutions for the pore pressure and the total 

stress. If the magnitude of the slow wave contributions to the pore 

pressure and total stress can be assessed, then it would be possible to 

determine whether the slow wave resided mainly in the frame or in the 

fluid of the sediment. This would allow the design of more appropriate 

experiments to detect the slow wave. 

6.4 General solutions and a boundary value problem for a oronaeatine 

slow wave 

6.4.1 Explicit form of a general solution for orooa atin slow waves 

In principle it should be possible to obtain an explicit form of 

the general solutions for the primary variables (u. U. p and a) at all 

frequencies. Such a solution was obtained in Chapter 3 for low 

frequencies, where the slow wave is diffusive and is uncoupled from the 

fast wave. However, great problems arise if attempts are made to extend 

this analysis to higher frequencies where the slow wave becomes 

propagative. 
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Is 

At low frequencies the assumption A that the slow wave resides 

purely in the fluid. This is because all fluid-flow is left to the slow 

wave, as no fluid-flow occurs for the fast wave (see equation 3.10). 

However, at higher frequencies fluid-flow occurs for the fast wave also 

(which is verified if higher frequency solutions for zj are substituted in 

3.9). Without this simplification (equation 3.10), explicit definition of 

the general solution for the primary variables at high frequencies is 

difficult, but at least possible in principle (Cleary, 1980). However, an 

alternative numerical approach of Mengi and McNiven (1976) can offer some 

insight into the physical nature of the slow wave. 

6.4.2 Boundary problem of a fluid-filled porous medium subjected to a 

Mengi and McNiven (1976) used approximate numerical methods to 

predict the pore pressure and total stress induced in a fluid-filled 

porous medium which was subjected to a transient input. This problem is 

essentially similar to the tidal-cycle boundary problem addressed in 

Chapter 3, but is significantly more difficult as the fast and slow waves 

are not decoupled. Without any attempt to repeat Mengi and McNiven's 

analysis, it is of interest to study their results to observe the role of 

the fast and slow waves on the pore pressure and total stress induced in 

the porous medium. 

The case in question considered by Mengi an McNiven (1976) is 

shown in Figure 6.6. A transient ramp-shaped pulse is subjected to the 

frame of a poroelastic medium along the length of a freely drained plane 

boundary. As the pulse travels through the frame of the medium it will 

reach stations A. B and C (see Figure 6.6) at different times, and will 

have changed shape slightly due to dispersion and attenuation effects. 
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However. the pulse does not travel through the frame of the medium alone. 

and induces a coupled response in the pore fluid - which is exhibited by 

variations in the pore pressure at each of the stations as the pulse 

passes them. If the shape of the total stress and pore pressure pulses at 

the different stations are examined, then it is possible to elucidate the 

relative character of the fast and slow waves. 

Figure 6.6 Pore-pressure and total stress responses of a poroelastic 
medium subjected to a transient load (after Mengi and 
McNiven, 1976) 
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Figure 6.6 shows the results of Mengi and McNiven (1976) giving 

the shape of the total stress (a) and pore pressure (p) pulses at each of 

the stations A, B and C. At station A, the stress in the frame is 

equivalent to the input signal and the pore pressure is zero - showing the 

free drainage at the interface. At station B, the shape of the a pulse is 

slightly smoothed - due to attenuation of the higher frequency components 

and slight velocity dispersion along the time base. The p pulse at station 

B shows an increase in the pore pressure, followed by a very slow smooth 

decay. The p pulse at station B can be interpreted to consist of two 

components; a fast wave arriving at TB1, and an antiphase slow wave 

arriving at TB2. Similarily at station C, the a and p pulses are smoothed 

and stretched out more along the time base. The p pulse at station C can 

be interpreted to consist of a fast wave arriving at TC1 and a slow wave 

at TC2. 

If the interpretation of Mengi and McNiven's results given above 

is correct, then the following conclusions can be drawn: (1) the slow wave 

does not contribute significantly to the stress in the frame; (2) 

dispersion of the fast wave causes the time domain pore-pressure signal to 

be stretched; (3) the arrival of the slow wave is marked by a reduction in 

the pore pressure from a maximum peak; (4) the rate of this reduction 

depends upon the amplitude of the slow wave; (5) the slow wave amplitude 

decreases with increasing distance, (6) hence the pore pressure reduction 

is at a slower rate at greater distances from the boundary. Therefore, if 

the above interpretation is correct, the slow wave appears to reside 

mainly in the fluid and acts as a transient pore pressure release to the 

pressure developed by the passage of the fast wave. The fast wave causes 

stresses to be developed within the frame as well as the pore-fluid. The 

critical observation made above, that the slow wave does not contribute to 

the stress in the frame, was assumed by Cleary (1980) in similar studies. 
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6.4.3 On the Question: Is Blot's slow wave a fluid or frame wave? 

There is little argument that Biot's slow wave is a propagative 

fluid wave in poroelastic materials with a stiff frame (Johnson and Plona, 

1982). Further. at much lower frequencies in the stiff frame limit, the 

slow wave reduces to a diffusive pore pressure pulse (Chandler and 

Johnson. 1980). With sediments which are not at the stiff frame limit the 

slow wave is still a diffusive pore pressure pulse (Blot, 1941 and see 

Chapter 3). Therefore, the extension that the slow wave is a propagative 

fluid wave at higher frequencies within non-rigid sediments seems fair, by 

implication. This hypothesis is backed up by the failure of the 

experiments linking Blot's slow wave to a frame wave (6.3) and also by the 

interpretations of Mengi and McNiven's (1976) results (6.4.2). The 

exception to this hypothesis is offered by Johnson's (1980) claim that for 

very weak framed poroelastic materials (such as gels), the slow wave is a 

diffusive frame wave. 

It appears that the propagative slow wave is dominated by the 

pore-pressures in the fluid and should not be linked with a frame wave in 

sediments and rocks. Therefore. the best way to detect a slow wave would 

be through a pore-pressure transducer and not a stress motion sensor 

coupled to the frame of the sediment. A similar conclusion was made by 

Cleary (1980). 

6.5 Summa 

The character of Blot's slow wave has been investigated. Initial 

assumptions that the slow wave was analagous to a wave travelling through 

the frame of a sediment were not substantiated by results from a new 

compressional mode transducer developed for this purpose. The results of 

Mengi and McNiven (1976), who obtained numerical solutions for a dynamic 

free-flow boundary value problem involving the slow wave, were examined. 
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Interpretation of these results led to the conclusion that the slow wave 

was dominated by pore-pressure induced flows of the fluid in a sediment. 

and should not be linked with a frame wave. The amplitude of the slow wave 

was shown to be greatest near the free-flow boundary of the sediment. The 

attenuation of the slow wave was shown to be large. rapidly diminishing 

the amplitude of the slow wave from its originally small value. It is 

unlikely that the slow wave would be propagated far through a sediment 

sample. and it would be very unlikely to be detected by a stress motion 

sensor abutted against the end of such a sample. 

The small amplitude of slow waves, their rapid attenuation and 

their restriction to regions close to free-flow boundaries mean that they 

are of little interest to acoustical problems with long propagation 

distances and few interfaces. In the geoacoustical problems considered in 

Chapters 9,10 and 11. the length scales of the problems mean that the 

slow wave is of little consequence and can be ignored. However, for other 

geoacoustical problems involving the reflection of acoustical energy from 

hard, high permeability sea-beds, the effect of slow waves will be similar 

those of "shear wave softenening" of the sea-bed (see Akal, 1980 and Stoll 

and Kan, 1981). 

Considering the difficulties involved in measuring Blot's slow 

wave, it is not considered in the practical geoacoustic problems outlined 

in Chapters 9.10 and 11. The next step is to examine Biot's fast wave. 

Two important phenomena are predicted for the fast wave by Biot's theory; 

dispersion (the variation of velocity with frequency) and attenuation. The 

significance of these two phenomena is studied in Chapters 7 and 8. 
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7 DISPERSION OF BIOT'S FAST WAVE 

7.1 Introduction 

Dispersion is the term which describes the variation of the 

velocity of a stress wave with frequency. If a stress wave suffers 

attenuation it must also exhibit velocity dispersion. Although there are 

many experimental examples showing attenuation of compressional waves in 

rocks and sediments (see Chapter 8), there are few measurements of 

compressional (fast) wave velocity dispersion. This is mainly due to the 

difficulty in collecting velocity data over orders of magnitude of 

frequency on the same sediment sample. Some authors dismiss compressional 

wave velocity dispersion as being negligible within the acoustic to 

ultrasonic frequency range (e. g. Hamilton. 1972). However, other authors 

recognise that in order to account for attenuation of compressional waves. 

velocity dispersion must also be considered (Kjartansson, 1979, Wingham, 

1985). 

A number of authors have made indirect and direct measurements of 

velocity dispersion in sediments over the acoustic to ultrasonic frequency 

range (e. g. Spencer, 1981, Hamdi and Taylor-Smith, 1982, Bedford et Al., 

1982, Wingham, 1985 and Winkler, 1985). Of these cases, Hamdi and 

Taylor-Smith (1982), Bedford 
_qj. 

(1982) and Winkler, (1985) compare 

their results with predictions from Blot's (1956 a, b) theory (in one guise 

or another), whilst White (1986) and Dunn (1986) compare Spencer's (1981) 

results with predictions from Blot's (1956 a. b) theory. It is of interest 

to use the experimental data from some of these (and other) studies to 

identify the key parameters in Blot's (1956 a, b) theory which control the 

fast wave dispersion, and to allow an assessment as to whether Blot's 

(1956 a. b) theory can satisfactorily predict fast compressional wave 

velocity dispersion in sediments and rocks. 
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The following data sets, each denoted by a different data set 

code, are used to study Biot fast wave dispersion in this chapter: CARB M1 

-a generic data set for deep-sea (5000 m) carbonate sediments; CARE M2 - 

a data set for intermediate (1000 m) to deep-sea (3000 m) carbonate 

sediments from the Ontong-Java plateau after Johnson Cj (1977); 

SILT_M1 -a data set for fine marine silts after Hamdi and Taylor-Smith, 

(1982); SAND M4 -a beach sand after McCann and McCann (1985); SAND M2 -a 

beach sand after Wingham (1985) and SAND M3 -a sand after Bedford &I _aj. 

(1982). A full description of these data sets is given in Appendix 3. 

7.2 Parameters affecting the magnitude of fast wave dispersion 

7.2.1 The effect of tortuosity 

In their studies of compressional wave dispersion modelling using 

Geertsma and Smit's (1961) approximate version of Biot's theory, Hamdi and 

Taylor-Smith (1982) recognised the need to account for the tortuosity of 

their sediments. Later, Taylor-Smith (1986) re-analysed this experimental 

data using additional measurements for the tortuosity (T) - concluding 

that T should not be ignored in predicting velocity dispersion using the 

approximate version of Biot's theory. It is useful to examine the full 

version of Biot's theory in order to elucidate the role of the tortuosity 

in fast wave velocity dispersion. 

The tortuosity (T) may be calculated from electrical resistivity 

measurements as discussed by Brown (1980). Following Brown, Taylor-Smith 

(1986) uses electrical resistivity results from Jackson et . (1978) to 

calculate tortuosities for marine clays, silts and sands. The resulting 

values range between 1.4 and 1.6. which are not inconsistent with Stoll's 

(1974) values of 1.25 for sands. In the absence of any T measurements for 

surficial carbonate sediments, a range of values between 1.25 and 2 are 

used to study how the tortuosity affects predicted fast wave velocities in 
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these types of sediments. Note, that the tortuosity (by definition) must 

have a value greater than unity. Using a value of T=1 in Biot's theory 

is incorrect for natural sediments (see 7.4.2). 

The data set CARB M1. shown in Table 7.1. characterises the 

physical properties of near surface carbonate sediments. It was assembled 

from a number of sources; Hamilton (1976a), Ogushwitz (1985). Johnson It 

. 
J. (1977), Bear (1972), Hamilton (1976b) and results from Chapter 5. The 

parameters from CARB_M1 were input into a computer program (Appendix 4), 

based upon Biot's (1956 a, b) theory of poroelasticity (Chapter 2). The 

program gives the velocity and attenuation coefficients of the fast and 

slow waves as a function of frequency. 

Table 7.1 Physical parameters characterising near surface carbonate 
sediments - data set CARE M1 / CARB M2 

1. Porosity 

2. Fluid density 

3. Grain density 

4. Fluid modulus 

5. Grain modulus 

6. Dynamic viscosity 

7. Circular frequency 

8. Shear modulus 

9. Frame bulk modulus 

10. Permeability 

11. Pore radius 

12. Tortuosity 

13. Grain size 

0.72 - (9.87z). 10-4 + (8.3z2). 10 
7 

1024 kg/m3 

2720 kg/m3 

(2.39). 109 Pa 

(6.3). 1010 Pa 

0.001 Pa. s 

4n. 105 Hz 

p. 16400z0.65 Pa 

2.17 G 

(1.59). 10-12 m2 

(5.14). 10-6 m 

1.25 to 2 

(6). 10 
6m 

1 Hamilton (1976a) 
2-6 Ogushwitz (1985) 
7.13 Johnson It Al. (1977) 
8 Hamilton (1976b) 
9 from Table 5.1 
10 equation 4.5 
11 arbitrary values 
12 equation 4.6 
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The fast wave velocity predictions from Biot's theory for the data 

set CARB_M1, at a depth of 1m (z =1 in Table 7.1), are shown in Figure 

7.1, for values of T between 1.25 and 2. The shape of the dispersion 

curves for the different tortuosity values are the same - rising steeply 

from the zero frequency velocity limit (VZ) at about 1/10th the critical 

frequency (see equation 6.1), and then rapidly flattening off to tend to 

the infinite frequency limit (VI). The increase in predicted fast wave 

velocity from VZ to VI happens over only two orders of magnitude. The 

dashed curve in Figure 7.1 was calculated including Biot's (1956b) 

frequency correction function term (equations 2.12 to 2.14). The effect of 

this is to smear out the dispersion over a wider frequency band-width. The 

importance of the frequency correction factor will be addressed in 7.4.2. 

Note, the infinite frequency limit velocity (VI) is strongly dependent 

upon the tortuosity; this can be verified by examining equation 2.25. 

Figure 7.1 V. predictions versus frequency for the data set CARB_M1 
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7.2.2 Effect of shear modulus on dispersion in surficial sediments 

It is well known that the shear modulus increases rapidly with 

increasing depth in surficial sediments of the sea-bed (see Hamilton. 

1976b and Taylor-Smith, 1986). Conversely, the porosity usually decreases 

only by a few percent with increasing depth in surficial sea-bed 

sediments. The relative importance of the changes in porosity and shear 

modulus upon the magnitudes of the predicted fast wave velocity and fast 

wave velocity dispersion, in the upper ten metres of a typical 

carbonate-type sea-bed, is assessed by using the data set CARB_M1. The 

importance of the shear modulus on predicted fast wave velocities and 

dispersion for deeper sediments is looked at in Chapter 9. 

Various predictions for the magnitude of the fast wave velocity in 

the upper ten metres of a carbonate sea-bed are shown in Figure 7.2. The 

predictions are made at a frequency of 200 kHz and use a tortuosity of 

1.5, with the other parameters given in Table 7.1 (1 <z< 10). Blot's 

(1956b) frequency correction factor is not used. 

In Figure 7.2. predictions from the Blot theory are given by the 

solid lines marked VZ and VI and also the three different sets of symbols; 

corresponding to predictions using different permeabilities (7.3.3). The 

two other solid lines in Figure 7.2 refer to the velocity of the sea-water 

(1530 m/s at an arbitrary temperature of 30 C and pressure of 400 kg/cm 
3. 

Wilson, 1960) and the velocity of a cohesionless (fluid-suspension) 

sea-bed (1477-1480 m/s). The line for the suspension is given by setting 

the shear and frame bulk moduli to zero in the data set CARB_M1. This 

velocity prediction is the same as is given by Wood's (1941) equation 

which isolates the effect of the changes in porosity upon predicted 

velocities. As can be seen, the velocities predicted from Wood's equation 

vary little over the upper 10 metres of the sea-bed. 
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Figure 7.2 V predictions versus depths up to 10 metres, for the 
data set CARB M1 
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The increase in the shear modulus with depth affects both the VZ 

and VI limits. At any one depth the maximum possible (predicted) 

dispersion is given by VI - VZ. At a depth of 1 m, VI - VZ - 68 m/s. while 

at 10 in, VI - VZ - 52 m/s. As the sediment becomes stiffer with increaing 

depth V1 - VZ tends to a constant value; however the relative importance 

of the dispersion becomes less as (VI - VZ) / VZ becomes small (see 

9.4.2). Therefore. Blot fast wave dispersion will be most apparent and 

important in low rigidity, high porosity/permeability, surficial sea-bed 

sediments. 
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7.3 Parameters affecting the location of fast wave dispersion in the 

freauencv band 

7.3.1 Inferences from the characteristic eauation 

Looking at the characteristic equation (2.18), the angular 

frequency (w), the permeability (ka) and the viscosity (q) are all 

included in the imaginary viscous damping term. It is this term which 

controls the frequency at which the viscous dispersion occurs. In this 

term. the roles of w, ka and 1/q are all interchangable - so increasing w 

by an order of magnitude is equivalent to increasing ka or 1/q by an order 

of magnitude. Therefore. sweeping ka or 1/r, through orders of magnitude 

will result in similar curves as for a frequency sweep (e. g. Figure 7.1). 

Blot (1956a) recognised the importance of the parameters 4a ka and 1/q upon 

the viscous damping mechanism. and he combined them in the definition of 

the critical frequency (fc see equation 6.1). For frequencies 

approaching, or greater than fc. the damping mechanism will operate 

causing dispersion and attenuation of the fast compressional wave. The 

critical frequency is equal to 70 kHz for the example shown in Figure 7.1 

(fc being calculated from equation 6.1 using the parameters given in Table 

7.1). 

The second component which makes up the viscous damping term in 

the characteristic equation is the frequency correction function F(ei). 

This correction function is strongly dependent upon the pore-radius (a) of 

the sediment, and to a lesser degree the viscosity of the pore fluid (see 

equations 2.12 - 2.15). Therefore, a will be expected to affect the fast 

wave dispersion. Further, the pore radius. the permeability and the grain 

size are all intrinsically linked in some fashion (see Chapter 4). So 

varying the grain size will almost certainly change the permeability and 

the pore radius. 
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7.3.2 Effect of oermeability 

As discussed at length in Chapter 4, there is a large range in the 

magnitude of the permeability of deep-sea sediments arising from 

differences in methodology as well as intrinsic differences within 

sediments. A conclusion from Chapter 4 was that the micro-permeability - 

which would appear to be the appropriate parameter for dispersion - cannot 

be easily measured. However. laboratory direct flow methods for obtaining 

the small-scale permeability can give the lower bounds to the 

micro-permeability (4.11). Unfortunately, these types of measurements are 

not always available, and one is forced to use permeabilities determined 

empirically from the grain-size. However, the accuracy of such empirical 

methods is usually poor, but in some cases the permeability obtained from 

grain-size analysis is comparable to the micro-permeabilities obtained 

from inverse Biot dispersion analysis (see Figure 4.9). 

7.3.3 ect of train siz 

The mean grain diameter d  affects Biot fast wave dispersion 

indirectly, by influencing the permeability (ka) and pore-radius (a) of 

sediments. Semi-empirical equations such as 4.5 and 4.6 can be used to 

roughly estimate ka and a. Permeability estimates using these equations 

for fine-silt grade sediments compare well with direct-flow measurements, 

but for silt-sand grade sediments the estimates are about five times 

greater than measured values (Goldsberry. 1985). Another observation made 

by Goldsberry (1985) is that for a bimodal sand-silt sediment a grain 

diameter of 2/3 da gives the best fit between measured and experimental 

permeabilities. Lastly, Stoll (1974) uses a permeability calculated using 

a pore radius given by a- da/6. In the following examples calculating 

fast wave dispersion in bimodal silt-sand grade materials, three 

semi-empirical methods for obtaining permeability are used: 
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A. ka calculated from equations 4.5 and 4.6 and the result divided 

by 5. 

B. da set to 2/3d= and then ka calculated from 4.5 and 4.6 

C. a set to da/6 and ka calculated from 4.6. 

For the surficial carbonate data set CARB M1 (Table 7.1) the 

following permeabilities are calculated using the empirical methods 

outlined above: A. (7.14). 10-13 m2, B. (1.59). 10-12 m2, C. (1.35). 10-13 

2 
m, which span over an order of magnitude. The critical frequencies for 

these permeabilities (equation 6.1) are: A. 150 kHz, B. 70 kHz, C. 830 

kHz. 

Predicted velocities for the data set CARB M1, calculated using 

the three permeability estimates given above are shown in Figure 7.2. 

These different permeabilites give a wide range in the predicted 

velocities - due to the fact that the f values are close to the 
c 

compressional wave frequency of 200 kHz used in the data set. Therefore. 

if attempting to calculate compressional wave velocities in surficial 

carbonate sediments similar to the data set CARB M1, around frequencies of 

200 kHz, the grain-size / permeability may be critical in determining the 

amount of Biot velocity dispersion present. This point is well illustrated 

by the next data set CARB_M2. 

The data set CARB_M2 uses data from Johnson gt ý. (1977), who 

obtained measurements of wet bulk density (p). mean grain size (da) and 

compressional wave velocity (Vu) on 54 surficial carbonate sediment 

samples, given in Table 7.2. Data set CARB_M2 comprises the values shown 

in Table 7.1 except: p and d= values from Table 7.2; permeabilities 

calculated using method A (above). and a constant shear modululs of G (Pa) 

- 5625. p, (based upon an extrapolation of the results given in Table 5.1 

at an equivalent depth of z-1 m). 
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Figure 7.3 VD experimental measurements (Johnson, et al., 1977) and 

predictions versus grain diameter for the data set CARB M2 
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Figure 7.3 shows the predicted compressional wave velocities from 

the Biot theory using the data set CARB_M2, along with the experimental VP 

results from Johnson j _qj. 
(1977). Smooth lines were fitted through the 

Vp predictions. Predicted velocities are made at two different 

tortuosities of 1.25 and 1.5, and the predicted curves show a similar 

trend of an increase in velocity with an increase in grain size as 

exhibited by the experimental data. The role of the permeability in these 

predictions is critical. At small grain sizes (d= < 40m) the predicted 

velocities are close to VZ. and as the grain size increases to 10 Nm, the 

predicted velocities increase sharply to VI. The increase in velocity over 

this grain size interval is due to the corresponding increase in the 

permeability (equations 4.5 and 4.6), which takes the predicted velocities 

from VZ, through to Vi, at frequencies near fc. Although no attempt was 

made to "fit" the predicted and experimental velocities, an appropriate 

selection of the tortuosity could make the match better. 
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Table 7.2 Velocity, grain size and density data after Johnson . j. 1977 

Sample V p d 
p a 

ID (m/s) (kg/m3) (m) 
77.00 1553 1481 0.0000064 
77.17 1550 1508 0.0000044 
77.41 1550 1510 0.0000070 
79.00 1579 1482 0.0000087 
79.19 1615 1496 0.0000209 
79.40 1575 1519 0.0000077 
83.00 1582 1447 0.0000176 
83.20 1605 1503 0.0000249 
83.40 1583 1486 0.0000123 
88.00 1604 1479 0.0000278 
88.16 1610 1525 0.0000183 
88.20 1611 1513 0.0000245 
92.00 1604 1510 0.0000315 
92.15 1613 1528 0.0000268 
92.26 1611 1515 0.0000212 

102.00 1596 1496 0.0000235 
102.14 1599 1519 0.0000199 
102.25 1597 1532 0.0000187 
108.00 1564 1488 0.0000088 
108.20 1565 1474 0.0000096 
108.33 1550 1501 0.0000061 
112.00 1598 1493 0.0000245 
112.20 1604 1523 0.0000208 
112.31 1598 1511 0.0000145 
120.00 1591 1482 0.0000213 
120.18 1601 1483 0.0000215 
120.31 1597 1495 0.0000151 
123.00 1580 1469 0.0000130 
123.21 1593 1478 0.0000167 
123.34 1589 1490 0.0000144 
125.00 1565 1461 0.0000078 
125.18 1582 1479 0.0000105 
125.34 1549 1467 0.0000039 
128.00 1554 1470 0.0000067 
128.24 1568 1471 0.0000094 
128.41 1541 1491 0.0000060 
129.00 1554 1488 0.0000063 
129.20 1545 1467 0.0000045 
129.35 1549 1509 0.0000047 
131.00 1533 1423 0.0000041 
131.21 1530 1477 0.0000022 
131.31 1552 1484 0.0000035 
135.00 1562 1474 0.0000076 
135.22 1572 1475 0.0000112 
135.38 1565 1516 0.0000079 
136.00 1558 1495 0.0000074 
136.23 1559 1484 0.0000072 
136.34 1538 1492 0.0000048 
139.00 1550 1485 0.0000051 
139.22 1551 1524 0.0000048 
139.36 1545 1524 0.0000052 
141.00 1531 1513 0.0000057 
141.20 1536 1516 0.0000063 
141.38 1525 1456 0.0000060 
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7.3.4 Effect of Dore radius 

As seen in 7.3.3. the pore radius can influence the predicted 

compressional wave velocity indirectly through the permeability, but as 

discussed in 7.3.1 it has a direct affect upon the frequency correction 

function - which also influences the predicted velocity. The importance of 

the pore radius term in the high frequency range f> ft, where ft is the 

transitional frequency (equation 2.15). Is shown by the following analysis 

on the data set SAND M2. based on the measurements of Wingham (1985). 

Wingham (1985) measured fast wave attenuation and dispersion in 

sands over the frequency range 50 - 350 kHz. The attenuation measurements 

will be examined later (see 8.3.3), the compressional wave dispersion 

results are compared with predictions from Biot's theory in Figure 7.4. 

which is based on the data set SAND M2. This data set is shown in Table 

7.3, and is based on measurements of properties on sands of grain diameter 

240 - 250 pm (Wingham, 1985, Bedford = j, 1982 and data from Table 5.1). 

Table 7.3 Physical parameters characterising data set SAND M2 

1. Porosity 

2. Fluid density 

3. Grain density 

4. Fluid modulus 

5. Grain modulus 

6. Dynamic viscosity 

7. Circular frequency 

8. Shear modulus 

9. Frame bulk modulus 

10. Permeability 

11. Pore radius 

12. Tortuosity 

13. Grain size 

0.432 

1000 kg/m3 

2650 kg/m3 

(2.22). 109 Pa 

(3.6). 1010 Pa 

0.001 Pa. s 

Orr. 105 Hz 

(4.85). 106 Pa 

2.17 G 

(2.17) to (4.68). 10 
11 

m2 
(4.17) to (6.34). 10-5 m 
2 

(250). 10 6m 

1.3,7,13 Wingham (1985) 
2,4,5,6,12 McCann and McCann (1985) 
8,9 from Table 5.1 
10,11 methods A and C (7.3.3) 
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In Figure 7.4, fast wave velocity predictions are given for the 

data set SAND M2 using the following ka and a combinations: 

1. ka = (2.169). 10-11 m2 - calculated from method A (7.3.3) and 

a= (6.34). 10-5 m- calculated from equation 4.5 

2. ka - (4.68). 10-11 m2 - calculated from method C (7.3.3) and 

a= (4.17). 10-5 m- calculated from equation 4.6. 

Curves 1 and 3 are calculated without Biot's (1956b) frequency 

correction function, while curves 2 and 4 make use of this correction. It 

is apparent that the curves 1 and 3 do not match the experimental data 

very well; however the experimental data falls between curves 2 and 4. The 

influence of the small change in pore radius on the predicted curves which 

include the frequency correction function (curves 2 and 4), is great. 

Therefore, the magnitude of the pore-size is critical to the shape of the 

fast wave dispersion curve in the high frequency range. 

Figure 7.4 V. experimental measurements (Vingham, 1985) and predictions 
versus frequency for the data set SAND M2 
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7.3.5 Effect of fluid viscosity 

Apart from varying ka, (dm), or w, another way to investigate Biot 

fast wave dispersion can be achieved by varying the fluid viscosity (q). 

Experimental data on fast wave attenuation and dispersion in sands have 

been collected by Bedford Ct . (1982). They also collected other 

measurements characterising the physical properties of these sands, and 

made fast wave attenuation and velocity predictions using a modified form 

of Biot's (1956 a, b) theory, proposed by Hovem and Ingram (1979). 

Unfortunately, this modification of Biot's theory is incorrect (see 7.4.2) 

and it is worthwhile repeating the analysis of the data collected by 

Bedford gI al. (1982) using Biot's original theory. 

The data set SAND M3 shown in Table 7.4 is based upon the 

measurements of Bedford eI &j. (1982). In their experiments, they changed 

the viscosity of the pore fluid by adding small amounts of glycerine to 

it. The changes In q, Pfe and Kf# for various percentage concentrates of 

glycerine are shown in Table 7.5. Using the values given in Tables 7.4 and 

7.5 predicted fast wave velocities can be compared with the experimental 

values as shown in Figure 7.5. Also shown in Figure 7.5 are the (incorrect 

see 7.4.2) velocity predictions made by Bedford g1 , a,. (1982) and the 

(correct) zero frequency velocity limit (VZ). It can be seen that the 

(correct) predicted fast wave velocties (V1) lie about 50 m/s below the 

experimental values over the entire range of glycerine concentrations. 

More significantly, the difference V1 - VZ is virtually constant over this 

range too. This means that increasing the glycerine concentration from 0 

to 28% has little effect upon the Biot dispersion predictions. The 

increases of predicted and experimental velocities are mainly due to the 

effect of the increase in the fluid bulk modulus with increasing 

concentration (Table 7.5) rather than dispersion effects: the viscosity is 

only decreased by a factor of two over the concentration range and fc only 

changes from 2.2 kHz to 4.7 kHz. 
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Table 7.4 Physical parameters characterising a sand - data set SAND M3 

1. Porosity 0.365 

2. Fluid density 1000 kg/m3 

3. Grain density 2500 kg/m3 

4. Fluid modulus (2.17). 109 Pa 

5. Grain modulus (3.5). 1010 Pa 

6. Dynamic viscosity 0.001 Pa. s 

7. Circular frequency 228x. 103 Hz 

8. Shear modulus (8.0). 107 Pa 

9. Frame bulk modulus (8.0). 107 Pa 

10. Permeability (2.64). 10 11 
m2 

11. Pore radius (3.39). 10 
5m 

12. Tortuosity 2 

13. Grain size (117). 10 
6 

in 

1-10,12.13 Bedford al Al. (1982) 
11 equation 4.5 

Table 7.5 Physical parameters characterising glycerine diluted water 
(after Bedford e ,. t 1982) 

Saturation Pf q Rg 

% (kg/m3) (Pa. s) (G Pa) 

0 993 0.00100 2.175 
2 997 0.00105 2.217 
4 1002 0.00110 2.259 
6 1007 0.00116 2.303 
8 1012 0.00122 2.348 

10 1016 0.00129 2.394 
12 1021 0.00136 2.441 
14 1026 0.00144 2.489 
16 1030 0.00153 2.538 
18 1035 0.00163 2.589 
20 1039 0.00174 2.640 
22 1044 0.00185 2.692 
24 1049 0.00198 2.746 

26 1054 0.00212 2.800 
28 1059 0.00228 2.856 
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Figure 7.5 V. experimental measurements (Bedford et al., 1982) and 
predictions versus percentage glycerine saturation of 
the pore-fluid for the data set SAND M3 
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Figure 7.6 V experimental measurement (Hamdi and Taylor-Smith, 1982) 
and predictions versus frequency for the data set SILT M1 
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The limited range in fc, along with the problems of the increases 

in velocity due to the increased fluid bulk modulus, rather restricts the 

usefulness of experiments of this type. 

7.4 Dispersion Dredictions using variations of Biot's theory 

7.4.1 The approximate theory of Geertsma and Smit (1961) 

Hamdi and Taylor-Smith (1982) and Taylor-Smith (1986) use Geerstma 

and Smit's (1961) approximation to Biot's theory (see 2.4.3) to examine 

the relationship between fast wave dispersion and permeability. The 

approximate theory is far simpler to use than the exact theory and is not 

complicated by Biot's (1956b) frequency correction function. It is of 

interest to re-analyse Hamdi and Taylor-Smith's (1982) data using full 

(Blot, 1956 a, b), approximate (Geertsma and Smit, 1961) and modified 

approximate (Geertsma and Smit with frequency correction) theories. 

Predictions for velocity dispersion using these theories are shown in 

Figure 7.6 for the data set SILT M1 (which is based upon data from Hamdi 

and Taylor-Smith, 1982 and Taylor-Smith, 1986) shown in Table 7.6. 

Table 7.6 Physical parameters characterising data set SILT_M1 

1. Porosity 0.6 

2. Fluid density 1024 kg/m3 

3. Grain density 2650 kg/m3 

4. Fluid modulus (2.38). 109 Pa 

5. Grain modulus (3.6). 1010 Pa 

6. Dynamic viscosity 0.001 Pa. s 

7. Circular frequency 2rr. 106 Hz 

8. Shear modulus (1.2). 107 Pa 

9. Frame bulk modulus (6.7). 106 Pa 

10. Permeability (3.0). 10-14 m2 

11. Pore radius (7.75). 10 6m 

12. Tortuosity 1.5 

13. Grain size (4.4). 10 
6m 

1-10,13 Hamdi and Taylor-Smith (1982) 
11 equation 4.5 
12 Lovell and Ogden (1984) 
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The critical and transitional frequencies for these predictions 

shown in Figure 7.6 are fc - 3.1 MHz, ft = 1.3 MHz, while the experimental 

velocity data point was collected at 1 MHz. From Figure 7.6 it can be seen 

that all four velocity prediction curves give similar results up to fC 

(all agreeing well with the single experimental data point), after which 

they diverge. 

For frequencies greater than fC, the GeeXstma and Smit and Biot 

velocity predictions are of very similar shape, for both frequency 

corrected (3 and 4) and not frequency corrected (1 and 2) curves. However, 

velocities obtained from the Geertsma and Smit theory are slightly higher 

than the Biot predictions for f> fc. For this set of data, the difference 

between the two is not that significant. but in some cases this difference 

may exceed 100 m/s and be highly significant. The reason for this 

difference is due to a breakdown of the high-frequency approximate 

asymptote for critical values of the elastic constants and density terms 

in equation 2.25. The approximate theory holds providing the elastic 

constants and density terms satisfy equation 2.27. Therefore, this 

inequality must be checked before using the approximate theory. 

7.4.2 The non-tortuous viscous flow theory of Hovem and Ingram (1979 

Hovem and Ingram (1979) modified Biot's theory incorrectly; and 

their analysis is criticised in passing by Cleary (1980) and by Johnson 

and Plona (1982). With reference to Table 7.7. the Hovem and Ingram (1979) 

analysis differs in two ways from that derived by Biot (1956 a, b). Hovem 

and Ingram (1979) assume a tortuosity equal to one; which is physically 

unacceptable for a natural porous sediment or rock (see Figure 2.1). To 

compensate for the zero inertial coupling [p 
12 = 0, in Biot (1956a) 

notation] that this gives, Hovem and Ingram use Biot's (1956b) frequency 

correction over both high and low frequency ranges; in particular, they 
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assume that P1 00 for f< ft. This latter assumption contradicts the 

definition of F(x) given by Biot (1956b); for f< ft, Fr =1 and Fi = 0; 

for f> ft, Fr and Fi are given by equations 2.12 to 2.14. Note, that 

Hovem and Ingram (1979) do re-introduce the tortuosity into their 

analysis, through their semi-empirical definition of the permeability 

(similar to equation 4.5). However, this does not make up for the 

consequences of their initial incorrect assumption that T=1, hence there 

is no inertial mass coupling. 

Table 7.7 Comparison of Blot's (1956 a, b) theory and the modifications 

of Hovem and Ingram (1979) 

Hovem and Ingram 

Definition of p12 =0 

mass coupling (assuming T 1) 

Biot 

p12 = (1 - T)pf# 

Complex mass p12 -- 
wFi+ 

i= Fr 

coupling 

Limit at low p12 4f + ib 

frequencies (assuming Fi ý 0) 

bb 
r P12 = p12 - wF1+ 

1F 

wL 

p12fp12+iwY 

In Table 7.7 the notation of Blot (1956 a, b) has been adopted, 

along with Gardner's (1962) definition of the complex mass coupling 

coefficient. To convert to the notation used elsewhere in this thesis, use 

the following definitions: 

P12 = p! 0 - pp2/a" and b=2,7 
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7.4.3 The variable Dore-size theory of McCann and McCann (19851 

Another variation of Biot's theory was offered by McCann and 

McCann (1985) who calculated fast wave velocity and attenuations using a 

distribution of pore-sizes and hence permeabilities. They assumed that a 

unit element of sediment of thickness 1, could be divided up into a series 

of thin sections of constant area each characterised by a different 

pore-size. The total intrinsic permeability across 1 is then equal to the 

combined permeability effect from each of the thin sections. They 

calculated the volume of pore space which each pore-size occupied (V), 

and assumed that the volume of each of the sections was proportional to 

a/Vt, where Vt is the total volume of the pore-space. In this way the 

thickness and permeability effect of each section is weighted by the 

relative volume of pore-space occupied by each pore-size in the selected 

pore-size distribution. 

Undoubtedly the micro-permeability and pore-size of a sediment 

will not be characterised by single values, but rather spectra of 

different permeabilities and pore-sizes. The Lees (1970) pore-size 

distribution model is weighted according to pore-volume considerations. 

Pore-size models which rely on the volume or the surface area of the 

pore-space are a problem when considering Biot-type dispersion; as it is 

the radii of the inter-pore connections which affect the micro- 

permeability of sediments and not the size of the pores themselves (7.5). 

McCann and McCann (1985) use the Lees (1970) pore-size 

distribution model in their modification of Blot's theory. Unfortunately, 

they use Hovem and Ingram's (1979) incorrect version of Blot's theory to 

make their velocity and attenuation predictions. The permeability 

distribution method described by McCann and McCann (1985) with the correct 

version of Blot's theory was tested using the data set SAND M4 (Table 

7.8), which is based on the measurements of McCann and McCann (1985). 
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Table 7.8 Physical parameters characterising a glass bead pack 
- data set SAND-M4, after McCann and McCann (1985) 

1. Porosity 0.4 

2. Fluid density 1000 kg/m3 

3. Grain density 2860 kg/m3 

4. Fluid modulus (2.23). 109 Pa 

5. Grain modulus (3.6). 1010 Pa 

6. Dynamic viscosity 0.001 Pa. s 

7. Circular frequency 71.106 Hz 

8. Shear modulus (7.0). 106 Pa 

9. Frame bulk modulus (1.2). 109 Pa I 

10. Permeability (7.9). 10 12 
m2 

11. Pore radius (1.77). 10-5 m 

12. Tortuosity 2 

13. Grain size (250). 10-6 m 

1-9,12.13 McCann and McCann (1985) 
10 equation 4.5 
11 equation 4.6 

Figure 7.7 V experimental measurements (McCann and McCann, 1985) and 
predictions versus frequency for the data set SAND M4 
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The predictions of compressional wave dispersion using the data 

set SAND M4 with the correct version of Biot's theory and (Hovem and 

Ingram's) incorrect version are shown in Figure 7.7. The curves are 

calculated for both a single permeability and a spectrum of permeabilities 

(based on McCann and McCann's 1985 technique). It can be seen that the 

(incorrect) theory of Hoven and Ingram (1979) using a single pore size 

(curve 1) gives a predicted velocity far in excess of the measurement at 

0.5 MHz; whereas with McCann and McCann's spectrum of permeabilities, the 

prediction (curve 2) does indeed agree with the velocity data point at 0.5 

M Hz - but for the wrong reasons. Using the (correct) Biot theory, along 

with McCann and McCann's (1985) permeability distribution gives a 

predicted velocity some 20 m/s lower than the experimental data point 

(curve 3). whereas the single pore size prediction (curve 4) agrees with 

the measurement! 

A normal distribution of pore-sizes, hence permeabilities, was 

tested in addition to the Lees (1970) distribution on which McCann and 

McCann based their work. For both distributions the dispersion is smeared 

out over a larger band-width which tends to agree more with experimental 

observations. Therefore, a distribution of pore sizes and permeabilities 

does appear to advance Biot's dispersion theory somewhat, although the 

difficulties in determining the appropriate experimental measurements may 

make such advances of little practical use. 

7.5 A discussion on the annlicability of Riot's theory for accounting 

for fast wave dispersion in sediments 

There is no doubt that dispersion of the fast wave must exist in 

sediments which exhibit attenuation, as dictated by causality 

considerations (e. g. Kjartansson, 1979, Wingham, 1985). However, there are 

few experimental data characterising the magnitude and the shape of 
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dispersion curves. The data from Wingham (1985), and the results for shear 

modulus dispersion shown in Figure 5.9, tend to suggest that dispersion is 

dependent on log (frequency), over limited frequency bands. - However, there 

is still the lack of a complete data set over many orders of magnitude 

which experimentally characterises dispersion for different types of 

sediment. These data sets do not really give enough scope in the frequency 

domain to satisfactorily test Blot's theory. 

An alternative method for testing Blot's theory in an indirect 

fashion is through varying the permeability or the viscosity parameters 

over orders of magnitude. Unfortunately, as was seen for the analysis of 

data from Bedford et . (1982), dispersive effects due to changing the 

viscosity of the pore fluid may be overwhelmed by velocity contrasts due 

to corresponding changes in the bulk modulus of the fluid. The last 

option, of varying the permeability of sediment samples whilst keeping the 

frequency fixed, is possible but problematic. Ideally, it would be best to 

vary the permeability of the same sample by orders of magnitude. while 

keeping the other parameters required for Blot's theory constant. 

Experimentally, this is not possible as the best method for changing the 

permeability is through consolidation experiments; but such experiments 

also change the porosity W. the shear modulus (G) and the frame bulk 

modulus (Kb). Therefore, it is best to attempt to use data from different 

samples where 0, G and Kb are roughly equivalent, but where ka varies over 

orders of magnitude. Such a data set is offered by Johnson g a1. (1977). 

The problem with using data sets, such as given by Johnson ! Lt al. 

(1977) in Biot fast wave dispersion analysis is that the permeabilities of 

the sediment samples have to be calculated from the sample's grain size. 

The Kozeny - Carman relationship and variations thereof used for this 

purpose are by no means fool-proof methods for determining ka. Therefore, 

one would expect Biot dispersion analysis based on such methods to reveal 
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general trends, but not to give accurate velocity predictions. Looking at 

the analysis of the data of Johnson g al. (1977), presented in Figure 

7.3, a fair agreement of trends can be inferred between predictions and 

experimental velocities. No attempt was made to give a "best fit" between 

the experimental and predicted velocities, although a better agreement 

could be attained by suitable adjustment of various input parameters. The 

relative importance of the different input parameters are illustrated by 

Figures 7.1 to 7.7. 

From Figures 7.1 and 7.3 (and 7.7) the tortuosity can be seen to 

play an important part in fixing the high frequency limit velocity (VI). 

From Figure 7.2, the shear modulus affects not only VI, but also the zero 

frequency limit velocity VZ. For near-surface sediments the variations in 

the shear modulus do not have an overwhelming effect upon the total amount 

of dispersion possible (VI - VZ). and for deeper (more rigid) sediments 

(VI - VZ) / VZ becomes small (see 9.4.2). From Figure 7.4, the magnitude 

of the pore-radius can be seen to affect the band-width over which the 

dispersion is smeared at frequencies f> fc. Similarly, a distribution of 

pore-sizes (Figure 7.7) smears the dispersion over an even greater 

band-width. 

In all these discussions it has been glibly assumed that the 

permeability, tortuosity and pore-radius are all real parameters which can 

be feasibly determined experimentally. However, it is worth while 

considering what is meant by these terms in the context of Blot's theory, 

and further, to consider whether the experimental determinations for ka. T 

and a are appropriate for use in Blot's theory. It is useful to make the 

idealised model of a poroelastic medium, as shown in Figure 2.1, slighlty 

more complex (Figure 7.8); to better simulate the microgeometry of the 

pore-space for Blot's (1956 a. b) theory. 
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Figure 7.8 Micro-geometry of pore-space for Biot's (1956 a, b) theory 
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The permeability terms in Biot's theory refer to the permeability 

of capillary-like tubes which interconnect the pores (see Figure 7.8). 

This "local" micro-permeability may indeed be far different from "global" 

permeability as obtained from laboratory measurements on samples. Berryman 

(1986) and Berryman and Thigpen (1987) suggest that "global" permeability 

measurements should not be used in Biot's theory, rather a "local" value 

which is determined from digital image analysis of SEM photographs of the 

sediment (see 4.10). 

The pore-radius in Biot's theory actually refers to the radii of 

the apertures of the capillary-like tubes which interconnect the pores 

(Figure 7.8). The determination of a pore-radius from the Kozeny's 

relationship (equation 4.5) is rather inappropriate - as this is based on 

"specific wetted surface" theories of the pore-space (Bear, 1972). 
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Therefore. pore-radii determined from such methods relate to the surface 

area of the pores themselves, which will not necessarily have any bearing 

upon the radii of the pore apertures. Also, experimental determinations of 

pore radius distributions using mercury injection techniques are based 

upon the the specific volume of the pore-space (Wardlaw and McKeller. 

1981), which will not necessarily represent the radii of the apertures. It 

could be argued that SEM image processing methods could give a more 

appropriate determination of the radii of the apertures; however the 

extension from 2-D to 3-D models is not obvious (Chatzis and Dullen, 

1977), especially for the case of interpreting 2-D images for 3-D 

parameters. Further, the additional problem of characterising a properly 

weighted pore aperture radius distribution complicates matters more. 

In conclusion, Blot's fast wave dispersion mechanism may indeed 

mimic some trends shown in experimental observations. However, the 

experimental and theoretical difficulties in obtaining an accurate 

description of the pore-space of sediments mean that Biot-type dispersion 

predictions will be limited in their accuracy. More sophisticated versions 

of Blot's (1956a) theory are theoretically more attractive, but 

practically more difficult to use. It is thought best to sacrifice in 

theoretical elegance and opt for the cruder Blot (1956a) version of 

poroelasticity, where only ka and T are required above the usual elastic 

and density parameters required for Gassmann's (elastic) equation. To make 

use of more theoretically attractive versions of Blot's original work 

(e. g. Berryman and Thigpen, 1987), better experimental techniques' to 

characterise the pore-space of sediments are required. Some progress is 

being made through image analysis techniques (e. g. Berryman and Blair 

1986). The problem here is that such techniques are complex, costly and 

not practical for common-place use. 
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7.6 Summary 

The parameters controlling the magnitude, shape and location (in 

the frequency band) of fast wave dispersion predicted by Biot's theory 

have been studied. The role of Biot's (1956b) frequency correction 

function has also been assessed. The relative successes of extended and 

approximate forms of Biot's theory have been examined. Lastly, the ability 

of Biot's theory to account for measured (or inferred) fast wave 

dispersion has been looked at. 

The tortuosity and shear modulus were found to be the most 

important parameters controlling the magnitude of fast wave dispersion in 

high porosity deep-sea sediments. It is clear that the micro-permeability 

of the sediments controls the frequency at which Blot dispersion occurs. 

At a fixed frequency, sediments with a significantly high enough 

micro-permeability will show greater predicted dispersion than similar 

sediments with a low micro-permeability. The increases in compressional 

wave velocity with increasing grain size shown by the experimental results 

of Johnson It _q1. 
(1977) can be explained by a Blot type dispersion 

effect. Sediments with a small grain size have a smaller intrinsic 

permeability than that for larger grain size sediments, when calculated by 

the empirical Kozeny method (Chapter 4). The dispersion for the larger 

grain-size (larger permeability) samples causes an increase in the 

compressional wave velocity above the predicted value for the smaller 

grain-size samples. The Blot predictions are in fairly good agreement with 

the experimental results. 

The roles of the viscosity (q) of the pore fluid and the pore-size 

(a) parameter upon predicted dispersion depend on whether or not the Blot 

(1956b) frequency correction function (F(s)) Is used. If F(R) is not used 

then q has an inverse effect to the intrinsic permeability, and a does not 

enter the prediction. If F(R) is used, then the effect of changing a or q 
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is to smear the predicted dispersion out by differing amounts over the 

frequency band. This smearing effect introduced by F(x) brings the shape 

of the predicted velocity versus frequency curve more into line with the 

experimental dispersion measurements of Wingham (1985). However, the exact 

shape of the smeared predicted curve is very sensitive to the value of the 

pore-size parameter. 

The approximate dispersion theory of Geertsma and Smit (1961) was 

shown to give similar predictions to Blot's (1956a) theory (providing the 

inequality given in equation 2.27 holds). Furthermore, if F(R) is included 

then Geertsma and Smit's approximate prediction is very similar to that 

from the full Blot (1956 a, b) theory. Hovem and Ingram's (1979) 

modification of Blot's theory was shown to be incorrect. Using McCann and 

McCann's (1985) variable pore-size distribution idea with Blot's (1956 

a, b) theory, predicted velocities were much lower than experimental 

velocity measurements. 

It was concluded that Blot's fast wave dispersion mechanism can 

explain some experimental trends, but prediction of the magnitude of fast 

wave dispersion may be difficult. The simpl; st method to calculate 

dispersion uses Biot's (1956a) theory, where only ka and T are required in 

addition to the usual elastic - density parameters. Other modifications of 

this theory require that the pore-space be described in more detail. and 

are of limited practical benifit. 

Having looked at Biot fast wave dispersion predictions and 

eliminated the less practical aspects in this chapter, the next step is to 

look at Blot attenuation (Chapter 8). Once the ability of Blot's theory to 

predict fast wave attenuation has been assessed, practical geoacoustic and 

hydrodynamic models of the sea-bed can be defined in Chapter 9, based on 

the studies of Chapters 2 to 8. 
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8 ATTENUATION OF BIOT'S FAST WAVE 

8.1 Introduction 

A recent review by Stoll (1985) summarises experimental fast 

compressional wave attenuation data collected over the last two decades 

(see Figure 8.1). From these data, the empirical observation that the 

attenuation coefficient is linearly dependent upon frequency (Hamilton, 

1972). appears to be roughly confirmed. Stoll (1985,1974) prefers to use 

Blot's (1962a) theory to explain these data, and his attenuation 

predictions (shown in Figure 8.1) appear to give a fair fit. Stoll's 

(1985) analysis uses complex viscoelastic moduli (Kb and G- see Chapter 

5). He uses resonant column measurements to give G and assumes values for 

Kb. As discussed in Chapter 5, it was concluded that the use of the more 

sophisticated Blot (1962a) theory was generally unwise in the absence of 

actual measurements for both Kb and G. This chapter is concerned with 

testing Blot's (1956 a, b) theory with minimal assumptions. 

Figure 8.1 Experimental and predicted fast wave attenuation versus 
frequency for an assemblage of sediments, after Stoll (1985) 
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In earlier work Stoll (1974) and Stoll and Bryan (1970) noted 

that. without additional viscoelastic contributions, Blot's (1956 a. b) 

theory predicted attenuations substantially less than measured values. In 

more recent studies using modified versions of Blot's theory (e. g. McCann 

and McCann, 1985. Berryman, 1986 and Berryman and Thigpen, 1987), the 

authors argue that, providing the pore-space is appropriately defined, 

Blot's (1956 a, b) viscous flow attenuation mechanism can satisfactorily 

explain experimental attenuation results without the need of viscoelastic 

moduli. Further. White (1986) and Dunn (1986) showed that the experimental 

attenuation measurements of Spencer (1981) could be (partly) explained by 

using unmodified versions of Blot's (1956 a, b) theory. In order to 

rationalise such conflicting opinions, it was thought worthwhile to 

attempt to make some new attenuation measurements and analyse these (and 

other) experimental data using Blot's (1956 a, b) theory in various forms. 

The following data sets, each denoted by a different code, are 

used to study Biot fast wave attenuation in this chapter; SAND M5 - new 

experimental resuts for attenuation measured on a Berea sandstone sample; 

SAND M2, SAND M3 and SAND_M4 (see Chapter 7). 

8.2 Extensional wave attenuation in porous rods 

8.2.1 Low-freauencv attenuation / modulus experimental set-ua 

In theory, longitudinal resonant column experiments can give 

information on the anelastic extensional properties of sediments and 

rocks. However, such experiments rarely give good experimental data for 

the complex Young's modulus E (see discussion in Chapter 5 and also Stoll, 

1985). An alternative approach for measuring the anelastic properties of 

(lithified) sandstone samples was described by Spencer (1981). Spencer's 

technique uses a set-up in which a sinusoidal stress is applied to the 

free end of a fixed-free rod of sandstone. Very accurate measurements are 
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made of the amplitude and phase of the applied stress and resultant 

strain. The phase difference between the stress and the strain gives a 

measurement of the attenuative properties of the sandstone (Ei), while the 

ratio of stress to strain gives Er (see appendix 2). Therefore. E can be 

determined over a fairly wide frequency band with the upper limit 

constrained by the fundemental resonance of the bar. This "forced 

vibration" method is more attractive than resonance methods. which are 

restricted to discrete frequencies. However, the strain amplitude of the 

vibrations must be kept below 10-4 otherwise plastic deformations will 

occur (see Chapter 5). Spencer (1981) claims an operational frequency 

range of 4-400 Hz (fundemental resonance occurs at >10 kHz for his 

sample's dimensions), with strain amplitudes near 10-. 7 

A duplicate of Spencer's (1981) apparatus was set up with the aim 

of investigating the low frequency anelastic properties of various 

sandstones. The apparatus is described in 8.2.4 and schematic diagrams are 

shown In Figures 8.3 and 8.4 (full details are given by Spencer, 1981 and 

Manghnani g, j Ill, 1987). However, numerous problems were encountered In 

using the apparatus due to the extreme accu%racy and sensitivity required 

of the measurements (see 8.2.4 and 8.2.5). In fact, some doubt is raised 

on the validity of Spencer's initial measurements. These points are 

discussed after a brief resume of Spencer's (1981) results and the 

analysis which White (1986) applied to them using Biot's (1956 a. b) 

theory. 

8.2.2 The Blot-Gardner theory of extensional waves in porous rods 

Gardner (1962) extended Biot's (1956 a, b) plane wave theory to the 

case of extensional waves in fluid saturated rods. Both fast and slow 

(extensional) waves propagate along the rod. The main feature of Gardner's 

(1962) analysis is that the attenuation of the fast and slow extensional 
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waves are strongly affected by the boundary conditions along the sides of 

the rod. If drainage is allowed across this boundary ("open pore" 

condition) then strong viscous-flow dissipation (Blot 1956 a, b) will occur 

across it. Conversely, if no drainage is allowed across the boundary 

("closed pore" condition), then the normal viscous flow dissipation will 

occur resulting in normally attenuated fast and slow waves propagating 

extensionally along the rod. Therefore, Gardner (1962) calculates the 

velocity and attenuation of extensional waves for the closed boundary 

condition in the normal fashion (see Chapter 2 for compressional fast and 

slow waves), and applies a boundary correction for the open pore 

condition. 

White (1986) and Dunn (1986) used Gardner's (1962) results to 

analyse Spencer's (1981) experimental data in the light of Biot's theory. 

Following White's simplification of Gardner's (1962) equations, it is 

possible to define the complex (fast wave) extensional modulus 
j 

for the 

open pore boundary condition (see equations 8.1 to 8.4). Instead of 

re-calculating Gardner's (1962) complex boundary correction function (9). 

White read off numerical values from Gardner's (1962) Figure 1. These 

values are shown in Table 8.1. 
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Table 8.1 Complex boundary correction function for a porous rod with 
an "open pore" boundary condition (after White, 1986) 

wr 
Vz "r "i 

0.0 1.00 0.00 
0.4 0.99 0.03 
0.8 0.97 0.08 
1.2 0.94 0.17 
1.6 0.89 0.27 
2.0 0.83 0.35 
2.8 0.61 0.37 
3.2 0.53 0.35 
3.6 0.48 0.32 
4.0 0.43 0.30 
4.4 0.39 0.28 
4.8 0.36 0.26 
5.2 0.33 0.24 
5.6 0.31 0.22 
6.0 0.29 0.21 

wr 
Here, V2Z is a dimensionless parameter, w is the circular 

frequency, r is the radius of the porous rod and V2Z is the (low 

frequency) asymptote of the slow wave velocity, see Chapter 2 

8.2.3 White's (1986) analysis of Spencer's (1981) results 

White (1986) used equations similar to 8.1 to 8.4 and the results 

of Table 8.1 to analyse Spencer's (1981) experimental results for the 

extensional anelastic properties of Navajo sandstone saturated with 

different pore-fluids. White's predictions for E and 1/QE show similar 

trends to the experimental data of Spencer (see Figure 8.2). The main 

features of the predictions are that they show attenuation peaks centred 

near 1 kHz: these vary in magnitude and shift along the frequency axis 

depending on the viscosity of the saturating pore fluid. The experimental 

data can be interpreted as rising limbs of attenuation peaks. The data do 

not span any of these assumed peaks, but the centre frequency location and 

magnitude of these peaks depend upon the properties of the saturating 

fluid (Spencer. 1981). 
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White (1986) selects appropriate values of the physical properties 

of Navajo sandstone to allow good agreement between the predicted and 

experimental modulus dispersion curves (not shown). The attenuation 

predictions (Figure 8.2) are not so close, being under half the magnitude 

of the experimental data. However, the general trends of the experimental 

and predicted data sets are similar. In both White's (1986) and Spencer's 

(1981) analyses, the attenuation data are assumed to reach peaks around 1 

kHz and then fall off. White attributes these attenuation peaks to the 

"open-boundary" dissipation from the Biot-Gardner theory, while Spencer 

(1981) attributes them to other (intrinsic) attenuation mechanisms. 

Neither arguments are completely convincing as the experimental data do 

not span any of the (assumed) peaks. 

Figure 8.2 Experimental measurements (Spencer, 1981) and predicted 1/QE 
for a rod of Navajo sandstone with different saturating fluids, after White (1986) 
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8.2.4 Calibration of the low freauencv attenuation anoaratus 

The low frequency modulus / attenuation apparatus shown in Figures 

8.3 and 8.4 is an absolute measuring device. Providing that a sample is 

held rigidly within the sample jig, the only calibrations which are 

required are for the force and displacement transducers (E and F in Figure 

8.3). Initial calibration constants for both these transducers were found 

to be within 5% of the manufacturers figures. The next step taken was to 

check that the apparatus could accurately determine the elastic properties 

of a standard aluminium rod. A sample of 6061-T440 aluminium with 

manufacturers values of E- 69 GPa and 1/Q =0 was used. If any phase lag 

between the applied stress and measured strain were detected and if the 

magnitude of stress to strain did not give a value close to 69 GPa, the 

apparatus would not be performing in the desired way. 

An exhaustive series of experiments over a period of 14 months was 

carried out using the aluminium bar in the low frequency attenuation 

apparatus. Over this period, the apparatus only briefly gave consistent, 

almost correct, results for the aluminium bar. Some other results for a 

sandstone bar, which were made when the apparatus was well-behaved. are 

described in 8.2.5. However, the reasons for the apparatus suddenly 

becoming well behaved were not entirely understood. Overall, the system 

did not behave satisfactorily and it was not possible to determine the 

properties of the aluminium, or other calibration rods with accuracy and 

reliability. Some of the problems which were encountered are briefly 

described below, and a detailed account can be found in Manghnani et. 

(1987). 

The main problem with the device was inconsistency of results from 

consecutive runs which made identification and diagnosis of faults 

difficult. Some errors were traced to the processing of the data (aliasing 

and filtering problems), but apart from these, consistent results could 
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not be obtained from (what would appear to be) identical experimental 

conditions. Local environmental conditions were found to contribute 

somewhat to the erratic nature of results (temporal thermal drift, power 

surges and mechanical vibrations within the building), but the main cause 

was thought to lie within the device itself. As the device (Figure 8.3) 

worked at displacements of a few Angstroms and at stresses of a few kPa, 

very subtle differences within the experimental arrangement could cause 

variability of results from consecutive tests. 

Without going into the detail of the cause and effect of altering 

the experimental set-up slightly, the following factors were found to 

strongly affect the consistency and accuracy of results: electrical 

leakage from the force transducer due to moisture - remedied by baking in 

an oven: the nature of the mechanical connections between force 

transducer, shaker and sample - altered by the amount of torque used to 

tighten connections and dust/dirt on the contact faces; the bonding 

between sample end caps and sample - compliance/repeatability of epoxy 

bond: and the static - dynamic compliance of the "fixed end" condition - 

altered by the torque used to secure the sample and dirt/grease within the 

threads of the locking rings. Most of these problems are mechanical in 

origin and are in series with the longitudinal measuring system. Perhaps 

the greatest problem is that of compliance within the "rigid fixed end". A 

static compliance correction can be introduced; however the magnitude of 

this correction was found to vary for no apparent reason. Furthermore, 

there was no way of testing whether or not the static correction was 

appropriate for the dynamic measurements. A strong critism of Spencer's 

(1981) results is that he chose to ignore the effect of the measured 

compliance of his "rigid end" condition. Indeed, Spencer (personal 

communication) and Dunn (personal communication) noted that this problem 

appeared to be an experimental paradox! 
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Figure 8.3 Low frequency attenuation sample shaker 
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Figure 8.4 Schematic diagram of the low-frequency attenuation 
measuring system 
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8.2.5 Preliminary results for attenuation in wet and dry Be 

Some preliminary results for attenuation measurements made on a 

bar of Berea sandstone using the low frequency attenuation system (see 

8.2.4) are shown in Figure B. S. The measurements were made under both 

vacuum-dried and water-saturated conditions. For the dry sample the 1/QE 

appears to be fairly constant over the frequency range of 0.1 to 200 kHz. 

However, the data for the wet sample, although rather scattered, increase 

with increasing frequency, possibly rising to a peak at near 200 Hz. These 

attenuation results for wet and dry Berea sandstone are qualitatively 

similar to Spencer's (1981) results for wet and dry Navajo sandstone. 

Also shown in Figure 8.5 are 1/QE predictions for the wet Berea 

sandstone sample made using the Blot-Gardner theory for the "open pore" 

condition (see 8.2.2). The parameters used for the predictions are taken 

from the data set SAND M5, given in Table 8.2. The magnitude of the 

predicted attenuation is disapointingly low in comparision with the 
0. 

measured values. Also, the location of the predicted 1/QE peak is greater 

than 1 kHz; the measured values tend to a peak located well below 1 kHz. 

Figure 8.5 1/QE experimental measurements and predictions_ 
for a vet and dry Berea sandstone rod 
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Table 8.2 Physical parameters characterising Berea sandstone 
- data set SAND M5 

1. Porosity 0.20 

2. Fluid density 1000 kg/m3 

3. Grain density 2650 kg/m3 

4. Fluid modulus (2.2). 109 Pa 

5. Grain modulus (3.5). 1010 Pa 

6. Dynamic viscosity 0.001 Pa. s 

7. Circular frequency 0.1 to 1000 Hz 

8. Shear modulus (4.2). 109 Pa 

9. Frame bulk modulus (3.23). 109 Pa 

10. Permeability (1.0). 10-13 m2 
11. Pore radius (3.16). 10-6 m 

12. Tortuosity 2.5 

13. Grain size (150). 10-6 m 

1,8,9.10 Winkler (1983) 
2-6 White (1986) 
7 experimental range 
11,12 equations 4.5,4.6 
13 Mesured 

The discrepancy between the magnitudes of the predicted and 

measured attenuations seen in Figure 8.5 could be partially explained by 

the short-comings of the Biot-Gardner theory (see Figure 8.2). 

Alternatively, it could be argued that the other attenuation mechnisms are 
A 

controlling the attenuation (Spencer, 1981, Murphy eLt al., 1986). Another 

possibility is that the measurements are not correct and the attenuation 

peak is simply a feature of the measuring system created by frequency 

variations in the compliance of the "fixed end"; there could be many 

reasons (see 8.2.4). Unfortunately, no clear-cut conclusions can be made 

from the measurements/analysis presented in 8.2.1 to 8.2.5. Therefore, it 

is desirable to use more reliable experimental attenuation data from the 

literature, to further investigate the ability of Biot's theory to predict 

compressional wave attenuation in sediments and rocks. 

150 



8.3 Factors affecting the magnitude and location of fast wave 

attenuation in the freauencv band 

8.3.1 Inferences from the characteristic ecuation 

Unlike fast wave dispersion, the role of the various parameters 

controlling fast wave attenuation are not so easily deduced from the 

characteristic equation. If the frequency correction function F(R) is 

ignored, the attenuation given by Biot's theory rises proportionally to 

the square of the frequency at low frequencies, trending to a constant 

value at very high frequencies (Stoll and Bryan, 1970). In this case of F 

= 1, the magnitude of the high frequency attenuation coefficient asymptote 

(aI) can be deduced from Geertsma and Smit's (1961) approximate analysis 

(note the following equation only holds if the inequality given by 

equation 2.27 is satisfied): 

1VI2- VZ Z 
ý ai kJ. 

V 3. Tpf _2 I 
i4 Pfl 

8.5 

From equation 8.5, it can be seen that both the permeability (ka) 

and the fluid viscosity (q) affect the magnitude of the high frequency 

attenuation limit. Therefore, the simple inter-dependence of the frequency 

/ permeability / viscosity terms. as noted for fast wave dispersion (in 

section 7.3.1), does not apply for fast wave attenuation. However, the 

situation is complicated further when F(s) is introduced. In this case, 

the pore-size parameter and the frequency become important, and the 

attenuation no longer tends to a constant value at high frequencies, but 

increases as the square root of frequency (Stoll and Bryan, 1970). 
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8.3.2 Effect of shear modulus. tortuositv and norosity 

Due to the complex relationship that each parameter has with the 

fast wave attenuation (8.3.1). it is difficult to isolate the role which 

any one parameter has upon the shape of predicted attenuation versus 

frequency curves. Stoll and Bryan (1970) attempted to determine the 

relative importance of the porosity, tortuosity, permeability and 

pore-size parameters on attenuation - frequency predictions given by 

Blot's (1956 a, b) theory. They concluded that the tortuosity and porosity 

had a minor affect upon the shape and magnitude of predicted attenuation - 

frequency curves, but the pore-size and permeability parameters were 

significant. The role of these latter two parameters for attenuation 

predictions using some of the data sets introduced in Chapter 7 will be 

discussed in 8.3.3. 

It is interesting to note the role which the shear modulus plays 

upon the magnitude of the fast wave attenuation. Using the data set 

CARB M1 (Table 7.1), attenuation predictions are made to a depth of 100 

metres, for a typical carbonate sediment sea-bed. The shear modulus and 

porosity are the only parameters which are allowed to vary with depth (see 

Table 7.1 for exact dependence). 

Predicted attenuation - depth curves are shown in Figure 8.6 for 

three different permeability/pore size values (see 8.3.3). The decreases 

of predicted attenuations with depth are predominantly due to the 

increases of shear modulus with depth. This can be indirectly inferred 

from equation 8.5: as the shear modulus increases (V12 - VZ2) will 

decrease (see 7.2.2), and therefore the predicted attenuation will 

decrease. However, over the complete depth range, the predicted 

attenuation does not appear to be particularly sensitive to variations in 

the shear modulus. 
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Figure 8.6 ap predictions versus depth for the data set CARB M1 
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8.3.3 Effect of permeability and Dore radius 

Stoll and Bryan (1970) show some of the effects of varying the 

permeability and pore-radius on predicted fast wave attenuations. It is of 

interest to go one step further and compare attenuation predictions with 

experimental mesurements for data sets which have already been analysed 

for fast wave dispersion. This is done for the data sets studied in 

Chapter 7, using similar ranges of permeability and pore size parameters 

which were used for the dispersion analysis. In Figure 8.6, predicted 

attenuations for the data set CARB_M1 are shown for the three permeability 

/ pore size combinations: 

A. k (1.58). 10 
12 

m2, a= (5.1). 10-6 m 
a 

B. k= (1.35). 10 
13 

m2. a (1.5). 10-6 m 
a 

C. k= (7.14). 10-13 m2, a= (3.5). 10-6 m 
a 
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For each of the three ka a combinations, predictions are made 

using the frequency correction function (curves 2,4, and 6 in Figure 8.6) 

and without the correction function (curves 1,3 and 5 in Figure 8.6). Two 

interesting observations from Figure 8.6 can be made: firstly, that the 

predicted attenuations calculated using the frequency correction factor 

are greater than those calculated without; and secondly, that the largest 

ka a combination (A, curves 1 and 2) does not yield the greatest 

attenuation. Therefore. it is apparent that the predicted attenuation will 

vary considerably with only minor changes in ka and a. 

In 7.3.4 the experimental dispersion measurements of Wingham 

(1985) were seen to fall between predictions using Biot's theory at 

permeabilities of (2.17). 10-11 m2 and (4.68). 10-11 m2 with respective pore 

sizes of (6.34). 10-5 and (4.17). 10-5 m (see Figure 7.4). The predicted 

fast wave attenuations (with and without frequency correction function) 

using these permeability and pore-size values (along with values of the 

other parameters shown in Table 7.3) are shown in Figure 8.7. Also shown 

in Figure 8.7 are the attenuation measurements of Wingham (1985). The very 

important role of the frequency correction function can be seen: the 

attenuation predictions fall far below the measured values for the cases 

where the correction function is not used (curves 1 and 3). Further, when 

the frequency correction function is introduced, the pore-size can be seen 

to play an important part in controlling the magnitude of the predicted 

attenuation. The attenuation predictions when the frequency correction 

function is used, along with ka = (4.68). 10-11 and a= (4.17). 10-5 (curve 

2), are sufficiently close to the experimental measurements to claim a 

fair agreement; indeed, a better agreement could be obtained by suitable 

adjustment of ka and a. The main point is that Biot's theory can offer an 

adequate explanation of the experimental dispersion and attenuation 

measurements of Wingham (1985), given appropriate values for k and a. 
a 
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Figure 8.7 ap experimental measurements (Wingham, 1985) and predictions 
versus frequency for the data set SAND M2 
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Figure 8.8 ap experimental measurements (McCann and McCann, 1985) and 
predictions versus frequency for the data set SAND M4 
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In 7.4.3 the experimental velocity measurements of McCann and 

McCann (1985) were compared with predictions from Biot's theory, and a 

modification of Biot's theory using a spectrum of pore-sizes and 

permeabilities. Fast compressional wave attenuation predictions using 

these two theories are shown in Figure 8.8, along with the experimental 

measurements of McCann and McCann (1985). Also shown are the attenuation 

predictions made by McCann and McCann (1985) (curve 2), which - due to the 

reasons outlined in 7.4.2 - are unfortunately incorrect. It can be seen 

that the attenuation prediction using the pore-size / permeability 

spectrum (curve 3) is closer to the experimental results than the 

prediction which uses a single pore size and single permeability (curve 4) 

without. However, the opposite is true for the dispersion analysis (Figure 

7.6); with the single pore size prediction being closer than the value 

predicted using spectra of ka and a. 

8.3.4 Effect of fluid viscosity 

Bedford &I . (1982) obtained compressional wave velocity and 

attenuation measurements in a fluid-saturated sand for different fluid 

viscosities. The velocity measurements were compared with predictions from 

Blot's theory in 7.3.5; predicted velocities were about 50 m/s lower than 

experimental values. The experimental attenuation measurements are shown 

along with predictions from Blot's (1956 a, b) theory (with the frequency 

correction fuction) in Figure 8.9 (curve 2). Also shown (curve 1) are the 

attenuation predictions given by Bedford g1 &j. (1982), which are 

incorrect for the reasons outlined in 7.4.2. Again the fast compresional 

wave attenuation predictions from the correct version of Blot's (1956 a, b) 

theory are significantly less than the measured values. 
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Figure 8.9 a experimental measurements (Bedford et al., 1982) and 
predictions versus percentage glycerine saturation of 
the pore-fluid for the data set SAND M4 
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8.4 A discussion on the aoolicability of Biot's theory to account 

for fast wave attenuation in s diments 

Figure 8.1. from Stoll (1985) shows a fair agreement between Biot 

(1962a) attenuation predictions and experimental results. However. Stoll 

supplements the Biot (1956 a. b) viscous-flow attenuation by unspecified 

"internal friction" mechanisms, which require the use of complex anelastic 

moduli. In Chapter 5 it was shown that experimental determination of such 

anelastic frame moduli was very difficult and it was thought unwise to use 

estimated values for them for any predictive theory. Without the use of 

anelastic moduli, Stoll and Bryan (1970) showed that Biot (1956 a, b) 

attenuation predictions were significantly lower than experimental values. 

This observation is supported by the analysis of the data from Bedford g, 

al. (1982) and McCann and McCann (1985) presented in 8.3.3 and 8.3.4. 
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White's (1985) analysis of Spencer's (1981) data shows that 

attenuation predictions using the Biot (1956 a, b) theory are lower than 

measured values for a sandstone bar infiltrated with different fluids 

(Figure 8.4). However, Biot's (1956a) viscous-flow mechanism does appear 

to explain some of Spencer's experimental observations especially the 

existence, frequency location and amplitude of an attenuation peak which 

changes character depending upon the viscosity of the infiltrating fluid. 

However. additonal experiments along the same lines as those of Spencer's 

(see 8.2) did not satisfactorily confirm his observations of a 

viscosity/frequency dependent attenuation peak, and some doubt has to be 

raised as to the accuracy of Spencer's results. 

Of the numerical examples studied, Biot's (1956 a, b) theory was 

only successful in accounting for both dispersion and attenuation in one 

case: the analysis of the data of Wingham (1985) (8.3.3). In this case, 

the values of the pore-size parameter and permeability were crucial in 

determining the character of the dispersion and attenuation versus 

frequency curves. As has been discussed in 7.5, these two parameters are 

by no means straightforward to experimentally determine, especially for 

the case of the pore-size parameter. Berryman and Thigpen (1987) argue 

that the difficulty associated with measuring these parameters does not 

detract from the validity of Biot's theory, and that discrepancies between 

measured and predicted fast wave attenuation are due to experimental 

shortcomings, rather than any inherent inadequacies within the theory. 

This may be so, but there is no way to support these claims. 

It was argued (7.5) that dispersive effects could be somewhat 

accounted for because the critical controlling parameters (permeability 

and tortuosity) could be fairly well assessed by Darcian direct-flow 

(Chapter 4) and by electrical conductivity (Brown. 1980) experiments. The 

same cannot be said for Biot type attenuation, as it appears virtually 
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impossible (at current levels of technology) to experimentally measure the 

all important pore-size parameter. This does not mean that nothing has 

been gained from the analysis presented in this chapter: an understanding 

of the roles which each parameter plays in seismic wave propagation is an 

important step towards focussing attention on the critical parameters. 

This allows realistic guide-lines to be set for future studies and 

technical development. Clearly, significant experimental progress is 

required into numerically characterising the pore-space of sediments in 

terms of the tortuosity, micro-permeabilty, pore-size parameter etc, 

before firm attenuation predictions can be made with Biot's (1956 a. b) 

theory. However, there is a case to argue that present levels of 

experimental sophistication can provide fair predictions of dispersion 

using Biot's (1956 a, b) theory (see 7.5). 

8.5 Summa 

Experimental attempts have been made to measure low frequency 

attenuation in wet and dry sandstone rods. Verification of Biot-type 

attenuation was not possible due to additional attenuation contributions 

from the measuring system. The parameters controlling the magnitude, shape 

and location (in the frequency band) of fast wave attenuation predictions 

from Biot's theory have been studied, and the ability of the theory to 

account for measurements of attenuation was assessed. 

Calibration of a low frequency attenuation experiment was 

attempted using a (virtually elastic) aluminium bar. Significant 

attenuation was introduced through the static and dynamic anelastic 

compliance of the "fixed end" condition. The intrinsic attenuation of 

samples of sandstone could not be reliably separated from the additional 

contributions from the system. Therefore, experimental attenuation results 

on wet and dry sandstone samples were well above predictions from Biot's 
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theory. Even the qualitative agreement between Biot predictions and 

experimental results that White (1986) demonstrated for a similar set of 

experiments could not be achieved. These attenuation measurements appear 

to be of little practical use. 

An investigation into the importance of each of the parameters on 

predicted fast wave attenuation showed that the tortuosity and porosity 

had a minor effect. Increases in shear modulus reduce the amplitude of 

predicted attenuation slightly. However, the micro-permeability, pore-size 

parameter and viscocity all affect both the magnitude and shape of the 

attenuation versus frequency predictions from Biot's theory. If the 

frequency correction function is not employed. then the pore-size 

parameter is not important, and the predicted attenuation tends to an 

asymptotic value (which Is controlled by the permeability) at high 

frequencies. However, empirical equations show that a near-linear increase 

of attenuation with frequency is expected and so a constant asymptotic 

attenuation limit is unrealistic. If the frequency correction function is 

used, the attenuation increases proportionally to the square root of the 

frequency. The exact dependence is controlled by the magnitudes of the 

pore-size parameter (a) and micro-permeability (ka). The shape and 

amplitude of predicted attenuation versus frequency curves are very 

sensitive to slight variations in ka and a. 

In general. predicted attenuations, without the frequency 

correction function, are significantly lower than experimental 

measurements. Using the frequency correction function. predicted 

attenuations can be forced to match experimental measurements by using 

appropriate and reasonable values of ka and a. However, the problem of 

accurately defining and experimentally measuring a still exists. In the 

studies of Biot dispersion in Chapter 7, it was concluded that it was best 

to ignore the frequency correction function, hence avoiding the need for 
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measurements of a. Excluding a means that the attenuation predictions of 

Biot's theory will be poor. Biot's viscous loss mechanism can 

qualitatively explain some attenuation phenomena, but the difficulties in 

measuring ka and a make reliable attenuation predictions impracticable in 

most cases. 

In this chapter it has been shown that experimental constraints 

make reliable measurements and predictions fast wave attenuation 

difficult. Furthermore, the studies of Chapter 7 have shown that 

dispersion predictions should be restricted to Biot's (1956a) theory. 

Using such observations from the studies on dynamic poroelasticity in 

Chapters 6 to 8, along with the results of experimental studies of the 

frame moduli and permeability of sediments in Chapters 4 and 5, and the 

studies of quasi-static poroelasticity from Chapters 2 and 3, practical 

geoacoustic and hydrodynamic models of the sea-bed can be defined in 

Chapter 9. 
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9 COMPONENTS OF GEOACOUSTIC AND HYDRODYNAMIC MODELS OF THE SEA-BED 

9.1 Introduction 

Hamilton (1980) defines a geoacoustic model as "a model of the 

real sea-floor with emphasis on measured, extrapolated, and predicted 

values of those properties important in underwater acoustics and those 

aspects of geophysics involving sound transmission". For the purposes of 

this thesis, a qualifier is added to this definition: the appropriate 

properties must be characterised in the model to allow predictions of the 

fast compressional wave velocity from Biot's theory. A hydrodynamic model 

of the sea-bed can be defined similarily, except that it is pore-pressures 

which need to be predicted from Biot's theory. These definitions are 

thought more useful as they allow not only for a description of the 

sea-bed, but also give the necessary information for the stress response 

of the sea bed, and the inter-relationships between the measured physical 

properties, to be explored in a non-empirical way. 

The predicted responses of such geoacoustic and hydrodynamic 

models of the sea-bed to the application of stresses will depend upon the 

frequency, magnitude and direction of the stresses and also any specified 

boundary conditions. For simplicity, the geoacoustic models will be used 

to study the propagation velocity of the fast compressional wave. Complex 

boundary value problems involving reflection and transmission of stress 

waves are not considered. Hydrodynamic models will be used to study the 

induced pore pressures for the boundary value problem of tidal loading of 

the sea-bed. 

Using some of the results obtained from previous chapters, it is 

now possible to design geoacoustic and hydrodynamic models on which Biot's 

theory can be used. First, a brief review of the salient points from 

Chapters 2 to 8 will allow practical constraints on the sophistication of 
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the models to be made. Next, the experimental parameters for the models. 

required for the particular selected form of Biot's theory, are defined. 

Lastly, some simple studies are undertaken to examine the sensitivity of 

each of the experimental parameters on predictions from the theory. Once 

the experimental parameters required for well constrained models of the 

sea-bed have been isolated, appropriate measurements can be made on 

sea-bed samples. With the measurements made. Biot's thoery can then be 

used to predict the response of the sea-bed to applied stresses. This is 

done for Sites 1 and 2 in Chapters 10 and 11. 

9.2 Practical constraints on possible components of eeoacoustic and 

hvdrodvnamic models 

9.2.1 Permeability 

The permeability was identified as an important parameter for 

controlling the magnitude of fast wave velocity dispersion in Chapter 7, 

and for controlling the magnitude of tidally-induced pore-pressures in 

Chapter 3. The experimental investigations of the permeability in Chapter 

4 showed that it was possible to obtain a large range in measured 

permeability values for sediments from one location. depending upon the 

experimental methods used. It was suggested that one reason for this range 

in measurements was that each method determined the permeability over a 

different length scale (orders of magnitude in difference), and it was 

argued that the permeability would not necessarily remain the same over 

such lengths. Three different length-scale permeabilities were introduced; 

the large-scale permeability - referring to length scales of metres; the 

small-scale permeability - referring to length scales of millimetres, and 

the (dispersive) micro-permeability - referring to length scales of 

micrometres. Therefore. when using the permeability in a geoacoustic or 

hydrodynamic model the appropriate length scale must also be considered. 
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9.2.2 Elastic constants 

The elastic constants G and Kb were shown to be important in 

determining the magnitude of tidally-induced pore-pressures in Chapter 3; 

important for controlling the magnitude of the fast and slow compressional 

wave velocities (Chapters 6 and 7). but of limited importance to the 

magnitude of fast wave attenuation (Chapter 8). The experimental studies 

in Chapter 5 showed that G could be determined fairly well by simple 

shear-wave bender techniques. However, the experiments of Chapters 5 and 8 

showed it was very difficult to obtain reliable measurements of Kb, and 

only one set of data collected on a sand were of any use. These data give 

the approximate relationship Kb = 2.17 G, which is assumed to hold for 

most sea-bed sediment types (5.6.2). This assumption may well introduce 

significant uncertainties in geoacoustic or hydrodynamic models in which 

it is used. 

The anelastic frequency dependence of G and Kb was also studied in 

Chapters 5 and 8. It was observed experimentally that possibly some 

low-frequency G dispersion existed, with associated attenuation, but no 

clear-cut conclusions could be made. Also, no successful Kb dispersion 

measurements were obtained making it impossible to define complex 

anelastic moduli G and Kb with confidence. This, therefore, rules out use 

of Biot's (1962 a, b) or the Biot-Stoll (Stoll, 1974) theories (which 
AA 

require G and Kb), leaving Biot's (1956 a, b) theory as the only viable 

option. 

9.2.3 The slow wave 

The studies of Chapter 6 showed that, in the acoustic - ultrasonic 

frequency range, the propagative slow wave is highly attenuative and can 

best be observed under a very limited set of circumstances. However, the 

results of Chapters 3 and 6 show that, at very low frequencies, the slow 
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wave is a simple pore-pressure diffusion process which is induced at 

boundaries of porous media where flow is allowed. In both high and low 

frequency cases the slow wave is predominantly a boundary effect which 

disappears a short distance from the boundary. Therefore, the length scale 

of the geoacoustic / hydrodynamic model must be considered. along with the 

boundary conditions. to determine if the slow wave is of any consequence. 

For the case of a geacoustic model in which boundary conditions 

are not considered (see Chapters 10 and 11). the slow wave has no 

significance. Therefore, no attempt need be made to detect it, and the 

parameters which influence the magnitude of the slow wave (T. G and ka) 

will not necessarily have to be included in the model (but T. G and ka are 

in fact needed for fast wave considerations - see 9.2.4). Studies 

involving reflection from sea-bed lithological boundaries may need to take 

account of the generation of slow waves. For instance, the fast 

compressional wave reflection loss of the sea-bed will be increased if 

slow waves are considered: the generation of the slow wave causes an 

additional loss of energy which reduces the intensity of the reflected 

fast compressional wave. This process is somewhat similar to "shear wave 

softening" of the sea-bed (see Akal, 1980 and Stoll and Kan 1981). 

The slow wave does play a part in the magnitude of pore-pressures 

predicted by Biot's theory for the case of tidal loading of the sea-bed. 

It's effect on the total induced pore pressure is controlled by the 

diffusive pore pressure boundary correction which depends upon the 

permeability of the sea-bed. The numerical examples given in Chapter 3 

show that the diffusion effect occurs over a length-scale of metres. 

Therefore, in a hydrodynamic model where slow wave (diffusive) effects are 

to be studied, it is the global permeability term (see 9.2.1) which is 

required. Also, in-sit u pore-pressure measurements are required if 

comparisons with the predictions from Biot's theory are to be made. 
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9.2.4 Fast wave and fast wave dispersion 

Experimental measurements of the fast wave velocity are an 

essential component of geoacoustic models. but are not necessary for 

hydrodynamic models of the sea-bed. The importance of fast wave dispersion 

is somewhat debatable. From the results of Chapter 7 it was found that the 

magnitude of fast wave dispersion is controlled primarily by the 

tortuosity, the permeability and the shear modulus of sediments. For high 

permeability sediments with relatively low values of the shear modulus, 

significant dispersion of the order of 100 m/s is predicted by Biot's 

theory for fast waves in the acoustic - ultrasonic frequency range. 

Although none of the experimental data presented in Chapter 7 were taken 

over a wide enough frequency band to directly verify the magnitude of 

predicted dispersion, there was some indirect evidence to support 

Biot-type dispersion predictions. The indirect evidence consisted of 

variations in measured fast wave velocities for sediment samples of 

differing grain sizes and, hence, permeabilities: the finer sediments had 

low permeabilities and exhibited negligible velocity dispersion, whilst 

the converse occurred for the larger grain size sediments. 

The roles of the frequency correction function F(R) and the 

pore-size paramater a were investigated in 7.3.4. It was shown that when 

F(R) was employed, the dispersion / frequency curve was smoothed out over 

a larger band-width, and that using F(R) with varying a had a considerable 

affect upon the shape of this curve (Figure 7.4). However, it was 

concluded (7.5) that F(R) and a could not be theoretically and 

experimentally tied down well enough to warrant their use. 

As discussed in Chapters 4 and 7. the micro-permeability is most 

appropriate for the fast wave dispersion predictions. However, it was 

concluded that the best way to attempt to measure this micro-permeability 

was through 2-D imaging processing methods - which would be too complex 
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for routine use. In the absence of such measurements, the small-scale 

permeability can be used as an approximate substitute. Using this value, 

along with G and T. allows the magnitude of the predicted dispersion to be 

assessed at any one frequency. This dispersion could be important to 

geoacoustic models. as laboratory-based fast wave measurements at 

ultrasonic frequencies  ay exhibit dispersion: whilst in-situ measurements 

at acoustic frequencies  ay be non-dispersive. Therefore. to check the 

applicability of (ultrasonic) laboratory fast wave data to geacoustic 

models. which are used for (acoustic) In-situ problems, dispersion should 

be considered. This is especially true for high permeability low shear 

modulus surficial sediments which exhibit maximum (Blot predicted) 

dispersion. and whose velocity structure happens to be of great importance 

to In-situ bottom interacting acoustic problems (Kuperman and Jensen, 

1980). 

9.2.5 Past wave attenuation 

Fast wave attenuation is a necessary component of any geoacoustic 

model which is used to study problems involving the intensity of fast 

waves. However, the results of Chapter 8 show that Blot fast wave 

attenuation depends primarily upon the micro-permeability and pore-size 

parameters. Both micro-permeability and an average value for the pore-size 

parameter could be determined by complex image analysis of the sediment. 

In the absence of such measurements. it was shown in Chapter 8 that Blot 

type fast wave attenuation predictions (based on the small-scale 

permeability and a semi-empirically derived pore size) were not in that 

good agreement with experimental attenuation measurements. The limitations 

of the experimental measurements for the pore-size and micro-permeability 

mean that it is unwise to attempt to include these parameters in practical 

geacoustic models for making Blot attenuation predictions. 
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The practical problems in Chapters 10 and 11 which use geaocoustic 

models. do not require fast wave intensity information. Therefore, the 

complexities and uncertainties introduced by fast wave attenuation are 

avoided by not including this parameter in geoacoustic (or hydrodynamic) 

models. 

9.3 The components of Qeoacoustic and hvdrodvnamic models 

9.3.1 A reoacoustic model for use with Blot's theory 

In section 9.1. the following parameters were isolated as being 

important for geoacoustic models: 

VP- compressional wave velocity (measured at frequency f) 

G- shear modulus 

Kb - frame bulk modulus 

T- tortuosity 

ka - micro-permeability 

0- porosity 

Parameters which are of secondary importance are: 

pf - fluid density 

ps - solids density 

Kt - fluid bulk modulus 

E- solid bulk modulus 
s 

q- fluid viscosity 

It is possible to construct a geoacoustic model of the sea-bed, if all 

these parameters are known. Using such a model it is possible to use 

Blot's theory to predict the yk1' fast compressional wave velocity at a 

given frequency. In addition. the geoacoustic model may act as a data base 

which can be applied to various practical problems. Such problems 

involving acoustical interactions with the sea bed may be very widespread 

and complex In character (see Kuperman and Jensen, 1980 and Akal and 

Berkson. 1986). 
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As the sea-bed commonly comprises a series of sedimentary layers, 

a realistic geoacoustic model of the sea-bed will have to account for this 

layering. Each layer (of known thickness) will be defined by a change in 

the lithology of the sea-bed. For each layer. the variation of the 11 

parameters (given above) with depth. should be known. In practice. Xf" Pf 

and q can be found from tables (if the appropriate water depth is known). 

and if the composition of the sediments Is known (and remains simple and 

constant). then ps and K3 can also be looked up. These five parameters are 

assumed to remain constant with depth. as will Kb* which will commonly 

have to be assumed itself. 

Measurements of the other six parameters should be made at 

different depths within each layer. This is most simply achieved by 

conducting laboratory experiments on samples taken from cores of the 

sea-bed. The experimental measurements taken in each layer should be taken 

at appropriate intervals such that any sharp changes of a parameter, or 

any gradual gradient of a parameter within the layer, are recognised. As 

well as showing significant variations of a parameter within a layer. 

average values should be given also. Whether the averaged values or the 

individual measurements are used will depend upon the problem for which 

the model is intended. Note. It is sometimes problematic to use the 

individual measurements as they are often collected at different depths 

within layers. This introduces interpolation / smoothing / filtering 

problems especially if a large amount of experimental data exists for each 

parameter. 

An additional useful component for geoacoustic models is an 

effective stress versus depth profile. This profile allows any 

experimental data of a parameter (for example the shear modulus) collected 

as a function of effective stress. to be translated to an equivalent 

in-situ depth. 
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If the porosity Is known as a function of depth f(z), and the 

grain and fluid densities (ps and pf) are also known, then the effective 

stress (°eff) at a depth z, is given by: 

z 

aeff(z) 
$ 1. (9.811 dz 9.1 

0 

Other information, in addition to the effective stress profile, 

such as the water depth, geographical location and the lithology of the 

sea-bed / basement are important. Also, some corrections of the 

laboratory-determined experimental data may be required to give a more 

accurate representation of In-sItu conditions. Pressure and temperature 

corrections have to be applied to Vp, pressure corrections to VS 

measurements, and porosity rebound corrections to laboratory # values. A 

very important quantity to know is the ratio Vlab : Vin-situ' where Vlab 

is the velocity of sound in sea-water measured in the laboratory and 

Vin-situ is the velocity of sound in the sea-water at the bottom of the 

sea. Using this ratio. VP measurements collected in the laboratory can be 

temperature corrected to in-situ conditions (Hamilton. 1971). 

If the geacoustic model is to be used not just as a descriptive 

data base, but is to be applied to a specific practical problem at the 

geographical location. then additional measurements which relate to the 

problem are required. For example. Haumeder (1985) uses bottom reflection 

loss measurements collected from the Mediterranean sea-bed. He constructs 

a geoacoustical model of the sea-bed at this location, predicts frequency 

dependent bottom reflection losses (based on Blot's 1956 a. b theory), and 

compares predicted with experimental results. 
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When constructing a geoacoustic model for a specific practical 

problem. careful consideration of the type of problem and the length 

scales involved must be made. For example. In Chapter 11 a geoacoustic 

model is used to create a synthetic seismogram for a pulse with frequency 

near 50 Hz. The wavelength of such a pulse is of the order of 30 metres; 

so, for normal incidence, the absolute minimum depth separation required 

of experimental data points is 15 metres; for such an example it is 

pointless constructing a very detailed geoacoustic model with data points 

every 10 cm (say). Furthermore, for this same example, the computer 

program which calculates the synthetic seismogram does not handle 

attenuation losses of energy in the sea-bed. Therefore information on the 

attenuative properties of the sea-bed are not required. 

9.3.2 A hvdrodvnaiic model for use with Biot's theory 

In Chapter 3. an expression (equation 3.12) was developed which 

gave the pore-pressure induced in the sea-bed due to hydrodynamic tidal 

pressures. This expression must be used with a rather straightforward 

hydrodynamic model of the sea-bed; one in which the component parameters 

are constant with depth. The physical constants required are: G. Kb. ka. 

0, Kfz Ks. q and w. However. for near-surface sediments the following 

inequality applies; G. Kb « Kf < Ks. In practice this makes the Ks terms 

negligible in equations 2.7 and 2.8 and it is possible to make the 

simplifications a-1 and 1/Q - "/Kf. Therefore, only seven constants are 

required. and this can be further reduced to four; with w being simply 

calculated and Kt and q taken from tables. A simple hydrodynamic model of 

the sea-bed can be constructed if average values of the four constants G. 

Kb. f and ka are known. Such a simple model can be constructed by using a 

table of values (e. g. Table 4.3). 
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The permeability term required for the hydrodynamic model is the 

large-scale kind (see Chapter 4). which will include the effect of any 

fissures or cracks or channels which exist in the sea-bed. As for 

geoacoustic models. It is important to consider the length-scale of 

deformations. In order to give guide lines for the amount and separation 

of measurements. The numerical examples in Chapter 3 showed that, for a 

typical deep-sea sea-bed. the slow wave / diffusion component of the total 

induced pore-pressure was restricted to the near surface sediments (less 

than 10 metres). Further. the maximum depth of experimental pore pressures 

measured by the instrument PUPPI is 6 metres (see Table 4.2). Therefore, 

it is appropriate to restrict measurements to the upper ten metres (this 

also allows the simplifications a-1 and 1/Q - e/Kf). and to construct a 

hydrodynamic model from average values of these physical constants. 

One further Important consideration in constructing a hydrodynamic 

model is to account for the presence of any free-gas which may exist in 

the sea-bed. As was shown in Chapter 2, free-gas in the pore fluid 

significantly decreases the effective fluid modulus giving dramatic 

reductions in the predicted pore-pressures in the sea-bed (Figure 2.3). 

However. as the water depth increases free gas present in the pore fluid 

is forced into solution. For the deep-sea environment, the great 

hydrostatic pressure will ensure that the volume (and effect) of any free 

gas will be negligible. Of course, free gas will play havoc with any 

geoacoustic model of the sea-bed as well. Some experimental and 

theoretical attempts have been made to study the behaviour of acoustic 

waves in partially saturated sediments and rocks (e. g. Murphy, 1982). Such 

studies have shown that. for compressional waves, the attenuation will 

increase dramatically if any gas is present. and the velocity will 

decrease significantly. To avoid such complications. both geacoustic and 

hydrodynamic models of the sea-bed will be restricted to deep-sea 

environments where the free-gas problem is not important. 
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9.4 Sensitivity of predictions from Blot's theory to the uncertainties 

in the parameters in veoacoustic and hvdrodvnamic models 

9.4.1 Sensitivity analysis for reaocoustic model 

In Chapters 10 and 11. Blot's theory will be used in conjunction 

with geacoustic models (for two different locations) to predict 

compressional wave velocity at different depths in the sea-bed. Having 

isolated the significant parameters for this task in 9.1. it is useful to 

attempt to rank then in order of importance. The numerical examples of 

Chapter 7 have already shown that the tortuosity, permeability and shear 

modulus are Important in influencing the magnitude of compressional wave 

dispersion; i. e. controlling the quantity VI - VZ, where VZ is the 

(non-dispersive) zero-frequency limit predicted velocity and V1 is the 

predicted velocity at some finite frequency (f). However, there may well 

be the possibility that the uncertainty in the prediction of VZ (AVZ), is 

In fact greater than V1 - VZ. In such a case, the uncertainty involved in 

predicting VZ will be such that any dispersive effects (if present) could 

lie within the uncertainty band of VZ, and hence need not be considered. 

The most appropriate method for determining the sensitivity of 

each of the parameters upon the uncertainty in the zero frequency velocity 

limit (equation 2.24) is to apply a standard error analysis (e. g. Squires. 

1968) to equations 2.6 - 2.8 and equation 2.24. Such an analysis requires 

that expressions giving the partial differentials of the equation for VZ. 

with respect to each parameter, be established. Also. an estimate for the 

uncertianty associated with each parameter is required. For example, 

equations 2.6 - 2.8 are differentiated with respect to the porosity (say) 

to give aQ/a.. aab/a.. etc. Then. equation 2.24 is differentiated with 

respect to Q. ab. etc. to give aVZ/aQ, avZ/aab. etc. These results can be 

combined (using the chain-rule) to give aVz/ae. The error or uncertainty 

of VZ calculated with a porosity of "i. with an uncertainty of 4]. is 

simply given by A, 012"(aVz/a#)2)" 
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A similar analysis can be applied for the other parameters G. R 

Rs. Kt, Pf and ps. The total uncertainty in VZ then is given by: 

r 11/2 
VZ - 

[[zJ2.4Gl2 

+1 ZJ .4 1+ .. 9.2 

She normalised uncertainty which each parameter contributes to the 

total uncertainty in VZ (dVZ) is defined (for the porosity, for example) 

by: 

2 [4.12 f 12 
ýZ. i] . 

[1/dvZ] I 
9.3 

The other normalised uncertainties 0G. etc, can be defined 

likewise. and the sum of all these normalised uncertainties will be equal 

to one. 

The equations required to perform such sensitivity / uncertainty 

analysis are lengthy and are not suitable for explicit expression. These 

equations are summarised in a computer code which is given in Appendix S. 

It should be possible to extend this analysis to the roots of the 

characteristic equation (equations 2.18 - 2.20) at frequencies other than 

the zero frequency limit. However. this would require very lengthy 

algebraic manipulations to obtain the required partial differential 

equations. A simpler way to look at the sensitivity of each parameter 

Individually at non-limiting frequencies is to include the uncertainties 

In calculations of the velocity. For example, to find AV01. two 

calculations are performed using 0--e+1 and el+efl giving V; 1 -, * 1 and 

Therefore it is possible to write: 

AVz at 
1 
2. 

[v. 

1-v, 1_4.1 
9.4 
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This procedure is recommended for simple expressions. However, it 

would prove to be rather tedious to do this for all the permutations and 

combinations of the 12 parameters and their uncertainties. required for 

solution of the characteristic equation at non-limiting frequencies. 

9.4.2 A numerical example of a Qeoaeoustie model for a carbonate sea-bed 

In Chapters 7 and 8 the data set CARB M1 was used to study 

dispersion and attenuation in near-surface sediments for a carbonate 

sea-bed. In Chapter 7. fast wave dispersion was predicted to a depth of 10 

metres and the effect of shear modulus and porosity gradients upon 

predicted velocities for three different permeability values was shown 

(Figure 7.2). In Figure 9.1. the same analysis is extended to a depth of 

100 metres: the increases in shear modulus again strongly influence the 

predicted velocities. 

Figure 9.1 V9 predictionsfor versus depths up to 100 metres 
for the data set CARE M1 
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It is of interest to find the uncertainty in the predicted zero 

frequency velocity limit for the predictions shown in Figure 9.1. The 

sensitivity analysis described in 9.4.1 was applied to the data set 

CARB_M1. The parameters required to calculate the zero frequency velocity 

are given In Table 7.1. Each parameter has some uncertainty associated 

with it and the following values were assigned to the relevant parameters: 

41 " 0.051. AKf " 0.01Kg . AKs - 0.2Ks , AG - 0.25G. 4Kb - 0.25Kb, dpf - 

O. Olpf and dp$ " 0.01ps. The uncertainty in VZ (AVZ) and the normalised 

uncertainties U.. UG. etc. were calculated using equations 9.2 and 9.3. 

The predicted values for VZ. Vz+AVZ and VZ -AV Z are shown in Figure 9.2 to 

a depth of 100 metres and the normalised uncertainties are likewise shown 

in Figure 9.3. 

Looking at Figure 9.2. it can be seen that the uncertianty in VZ 

is less than 13 m/s for surficial sediments. Increasing to 29 m/s at a 

depth of 100 metres. This uncertainty completely swamps the dispersive 

effects for the permeabilty of (1.35). 10-13 m2 shown by the crosses in 

Figure 9.1. The uncertainty in VZ also covers the dispersive effects for 

the permeability of (7.1). 10-13 "2 (diamonds), at depths greater than 50 

metres. and it also threatens the dispersive effects of the permeability 

of (1.59). 10-12  2 (triangles) at depths near 100 metres. Therefore, for 

this particular set of uncertainties in the parameters for the geoacoustic 

model (listed above). dispersive effects will only be discerned if the 

permeability is high enough to put the calculated dispersive velocity (V1) 

close to the infinite frequency limit. Further, any residual dispersive 

effect (V1-Vz-AVZ). will be most apparent in near surface sediments. 

Figure 9.3 shows how the various normalised uncertainties 

contribute to the total uncertainty in VZ for depths up to 100 metres. The 

normalised uncertainties have been added accumulatively in Figure 9.3. so 

the magnitude of any one normalised uncertainty is given by the thickness 
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Figure 9.2 Uncertainty in the V. prediction versus depth 
for the data set GARB Hi 
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of the band which it occupies on the y-axis. It can be seen that UKb 

contributes the greatest to AV2, U is the next most important for 

near-surface sediments, but is relegated in importance by UG at depths 

greater than 30 metres. The other normalised uncertainties contribute less 

than 25% towards the total normalised uncertainty. and so their importance 

Is secondary to the normalised uncertainties UKb. UG and U. Note that 

this ranking of the normalised uncertainties is only valid for the 

particular values of the parameters shown in Table 7.1 and their 

associated uncertainties given on page 175. Indeed, a different ranking of 

importance may emerge for a real data set where the parameters and their 

associated uncertainties (obtained from experimentation) may differ 

somewhat to the values used in this numerical example (see Chapter 11). 

However. It can be concluded. for a typical data set forming a geoacoustic 

model for carbonate sediments. that the frame bulk modulus, shear modulus 

and porosity should be determined as accurately as possible to restrict 

the magnitude of 4V2. The studies of Chapter 5 revealed that it is 

precisely the frame bulk modulus and shear modulus which are the most 

difficult parameters to measure or to predict with confidence! 

9.4.3 SensItivity analysis for a hydrodynamic model 

In 9.3.2. five parameters (Kf. G. Kb. ka and e) were identified as 

being important for controlling the magnitude of tidally-induced pore 

pressures predicted from equation 3.12. The uncertainty in the predicted 

pore-pressure (4P) can be found using a procedure similar to that outlined 

in 9.4.1. For the hydrodynamic case. it is again convenient to introduce 

normalised uncertainties: UGI(aP/aG)2. (dG)2/(dP)2. etc. If the appropriate 

partial differential equations of 3.12 are obtained, and the uncertainties 

dXf. 4G. etc are known. then the relative importance of each of these 

uncertainties on the magnitude of dP can be established. 
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The following uncertainties can be assigned to the relevant 

parameters given in Table 4.3;, J# - 0.050,4Kf = 0.01K f, AG = 0.25G. = 

0.25% and Aka - 0.5k 
a' 

Using the values given in Table 4.3 in association 

with these uncertainties in the appropriate equations gives the following 

values for the uncertainty in predicted pore pressure and the normalised 

uncertainties; JP " 0.181%. UKb = 0.7243, UG = 0.2734, Uka = 0.0012, UKf _ 

0.0010. UU < 0.0001. The predicted pore-pressure along with the 

uncertainty in the prediction are shown in Figure 9.4. It is interesting 

to note that the uncertainties in Rb and G dominate AP: i. e. the predicted 

pore pressure is most sensitive to variations in Kb and G (for the 

particular values of Kb. G, AKb and AG used). Therefore, inverse 

determinations of K or G (obtained by comparing predicted and 

experimental pore-pressures - see Chapter 5) will be obtained with 

relative precision. 
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Figure 9.4 Experimental and predicted tidally-induced pore-pressure 
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9.5 Summar 

A review of the salient results of Chapters 3 to 8 has allowed 

identification of the important components for geoacoustic and 

hydrodynamic models of the sea-bed. which can be used as input for a 

simplified version of Blot's theory. The uncertainties of the predictions. 

obtained by using the uncertainties of the components, have beem studied. 

Two numerical examples were given: the first showed the uncertainty of VI 

predictions for a carbonate-type sea-bed. The second showed the 

uncertainty in the pore-pressure prediction for the hydrodynamic tidal 

boundary value problem introduced in Chapter 3. The following points from 

earlier chapters were used: 

1. The solution for the tidally-induced hydrodynamic pore pressure 

problem obtained from Blot's theory is sensdtive to the values of 

Kb. G and ka (Chapter 3). 

2. The length scale of problems dictates which type of permeability 

(ka) is required (i. e. large scale, small scale or micro- 

permeability, Chapter 4) 

3. Experimental problems mean it is not possible to describe 
AA 

anelastic frame moduli Kb and G. but G can be routinely obtained 

from bender element techniques and Kb calculated using vb = 0.3 

(Chapter 5) 

4. The slow wave is a boundary induced effect which attenuates 

rapidly. is difficult to measure. and is not significant for most 

problems (Chapter 6) 

5. Fast wave dispersion can be reasonably characterised by Blot's 

(1956a) theory providing the micro-permeability, tortuosity and 

shear modulus are known (Chapter 7) 

6. Experimental limitations mean that fast wave attenuation is 

difficult to measure and reliable predict using Biot's theory 

(Chapter 8) 
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The important components for a geoacoustical model were shown to 

be VP. G. Kb. T. ka and f. with pf. pg. Kf. R8.17 obtained from tables. 

Using such a model. Blot fast wave velocity dispersion predictions can be 

made. The important components for a hydrodynamic model were shown to be 

G. Kb, ka and ", with Kf obtained from tables. Using such a hydrodynamic 

model. the magnitude of tidally-induced pore-pressures can be predicted. 

A sensitivity analysis was performed on the equation for Blot's 

low frequency velocity limit (VZ) and coded for a computer (Appendix 5). A 

numerical example studying the uncertainty in predicted VZ values (AVz) 

for near-surface sediments for a carbonate sea-bed was given. For this 

example dVz/VZ st 0.1%. with the uncertainties in the frame moduli and the 

fluid bulk modulus having the maximum contributions towards AVZ. In a 

similar way. a sensitivity analysis was performed on the equation for the 

solution to the tidal pore-pressure problem. A numerical example was given 

showing the uncertainty in predicted pore pressures Ap for the sea bed at 

Site 1. For this example dp/p = 0.2%. with the uncertainties in the frame 

moduli completely dosintating 4p. 

Having looked at the importance of the different components of 

geaocoustic and hydrodynamic models of the sea-bed on predictions using 

Blot's (1956a) theory, the next step is use these findings in practical 

examples. In Chapter 10. the hydrodynamic tidal boundary value problem at 

Site 1 (already introduced in Chapters 3 and 9) Is looked at in more 

detail. Also in Chapter 10, a geoacoustical model of near surface 

sediments of Site 1 is constructed from experimental measurments, and a 

Blot dispersion related problem addressed. In Chapter 11, geoacoustical 

models of Site 2 are constructed from new experimental data collected 

on-board a drilling ship. and from a few carefully conducted post-cruise 

experimental measurements. The variation of predicted velocity with depth 

and the importance of Blot dispersion is studied for both models. 
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10 A CASE STUDY: BIOT'S THEORY APPLIED TO HYDRODYNAMIC AND 

GEOACOUSTIC MODELS OF THE SEA-BED OF THE NORTH EAST ATLANTIC OCEAN 

10.1 Introduction 

Great Meteor East (GME) is an area of the Madeira Abyssal Plain 

situated. in the North East Atlantic Ocean. Extensive geological and 

geophysical studies have been carried out on this area to assess its 

suitability for heat-emitting radioactive waste disposal (Searle e ., 

1985). Many surficial sediment cores have been retrieved and the 

sedimentological (Weaver and Rothwell. 1987), geotechnical (Schultheiss 

and Gunn, 1985 and Shepard gt . j., 1987) and acoustical (Searle et al., 

1985) properties of the sea-bed have been extremely well characterised. 

This wealth of background information, along with the availability of 

core-samples for laboratory experiments, makes this an area for which 

tightly constrained geoacoustical and hydrodynamic models can be made. 

0 The area of GME between 30.5 N and 32.5 N, and 23 W and 26 W, 

is referred to as Site 1 in this study. Supplementing the background 

information for GME with laboratory experimental results (see results of 

Chapter 5 and also results presented in this chapter), hydrodynamic and 

geoacoustic models on which Blot's theory can be used (Chapter 9), can be 

constructed. Using these models, two particular problems can be addressed. 

The first allows comparison between measured tidally-induced pore-pressure 

obtained at Site 1 (Schultheiss. personal communication) and predictions 

from Blot's theory using the hydrodynamic model. The second allows 

assessment of the frequency dependence of reflection profile records: 

specifically, does Biot type dispersion significantly affect the 

reflection coefficients of beds of widely differing permeabilities? If so. 

can reflection coefficients based on laboratory (ultrasonic) measurements 

be satisfacorily applied to analysis of in-Li ' (acoustic) experiments? 
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10.2 Background information for Site 1 

10.2.1 The eeoloev of Site 1 

Site 1 can be classified as a deep-water, soft sea-bed 

environment, where thick (100 metres) turbidite and pelagic sediments 

overlie a hard basaltic basement. For the hydrodynamic and geoacoustic 

models presented in 10.3 and 10.4. it is only the geology of the upper 20 

metres of sediment which is important. Within this upper 20 metres of 

sediment. Weaver and Rothwell (1987) have identified nine different 

turbidite units (lettered a to k). up to 5 metres in thickness, which are 

often separated by thin (20 cm) pelagic units. The turbidites vary 

laterally in thickness, and it is rare for the thinner units to be present 

at any one location. The upper (a to i) turbidites have a carbonate 

composition between 40 - 60%. the lower two units have a carbonate 

composition of around 70%. The non-carbonate fraction is mostly clay. 

Most turbidite units are remarkably homo%geneous, but some exhibit 

strong graded bedding towards the base: coarsening from clay-size 

particles 
+*o 

silt size particles. The distinctive silty bases of the 

turbidites are normally less than 15 cm in thickness, but are not always 

present for each unit. The silty bases, whic) are easily identified from a 

compressional wave velocity profile at any one location, have been used by 

Weaver and Rothwell (1987) to map the distribution of the turbidites 

across GME; turbidites b and d/e dominate the upper ten metres of 

sediments in this area. A more detailed sedimentological and 

distributional description of these sediments can be found in Weaver and 

Rothwell (1987). 

The geology of the upper part of the sea-bed at GME would appear 

to be very simple; comprising many thin graded turdidite deposits which 

have spilled from the N. W. African continental margin. Within the area 

shallow faults exist (Williams, 1987). Also, long vertical open burrows 
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within the upper few metres of the sea-bed (Weaver and Schultheiss, 1983b) 

have been detected. Both these features may have a significant effect upon 

the hydrology of the upper part of the sea-bed. The effect of the burrows 

is discussed in 10.3. 

10.2.2 results from laboratory eeotechnical / acoustical experiments on 

sediments recovered from Site 1 

Numerous geotechnical experiments have been carried out on 

sediments recovered from Site 1 (Lovell and Ogden, 1984, Searle e al., 

1985, Schultheiss and Gunn, 1985, Lovell, 1985, Davis and Bennell, 1986, 

Shepard 11 &1., 1987). Appropriate experimental data can be taken from 

these studies, supplemented by further experimental measurements (see 

below), to construct hydrodynamic and geoacoustic models for Site 1 (10.3 

and 10.4). 

Results from the permeability and consolidation experiments of 

Schultheiss and Gunn (1985), for pelagic and turbidite sediments from Site 

1, have been introduced in Chapter 4. The turbidites have an average 

porosity of 80%, and have (direct-flow) permeabilities lying between 

(6). 10 
16 

and (1). 10 -14 m2, with an average value of (7). 10-15 m2 (see 

Table 4.1). The pelagic sediments have an average porosity of 72%, with an 

average permeability of (1). 10-15 m2. 

Considering the much greater thicknesses of the turbidites with 

respect to the pelagic sediments at Site 1. and the not too dissimilar 

porosity and permeability of the pelagic sediments, it is to be expected 

that the pelagic sediments will play a minor role in geoacoustic and 

hydrodynamic models. The same cannot be assumed for the silty bases of the 

turbidites. which typically have porosities of 60% and permeabilities 

ranging between 10-14 and 10-12 m2 (Searle g& al., 1985). 
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Laboratory compressional wave experiments were carried out on a 

number of cores from GME using a prototype manual version of the whole 

core automated logger described by Schultheiss and McPhail (in press). The 

velocity profiles obtained on the following two cores are significant; 

core D01695 - from which some of the permeability / consolidation samples 

described in Chapter 4 were taken (Schultheiss and Gunn, 1985) and core 

D11174 - from which some of the resonant column samples described in 

Chapter 5 were taken. Figure 10.1 gives the velocity profiles for cores 

D11174 and D10695 and the dominance of tubidite units b and d/e can be 

seen. The measured compressional wave velocities for core D10695 are given 

in Table 10.1 and are used as the basis of a geoacoustical model for this 

Site (see 10.4). One important point to note, illustrated by comparing the 

logs for the two cores in Figure 10.1. is that the thickness of tubidite b 

in core D10695 Is some two metres less than in core D11174. On the basis 

of coring records for D10695 and D11174, it is possible that the upper two 

metres of core D01695 were not retrieved. In fact, the whole subject of 

the ability of coring techniques to retrieve an accurate section of the 

sea-bed is one open to argument (see Weaver and Schultheiss. 1983a and 

Lee. 1985). 

A number of 20 cm3 samples were taken from split sections of core 

D10695 and wet-bulk densities were evaluated using gravimetric methods as 

outlined by Boyce (1976). These results are shown in Table 10.1. An 

average grain density of 2670 kg/m3 was also computed. Using this grain 

density value and a sea-water density of 1024 kg/m3, gives porosities 

ranging between 84 and 58% with an average value of 76%, for the densities 

given in Table 10.1. This average porosity value, which is lowered by the 

silty bases of the turbidites and the pelagic material, is not far from 

the 80% value for the turbidite samples given in Table 10.1. 
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Figure 10.1 VP experimental results for cores D10695 and D11174, Site 1 
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Table 10.1 Experimental physical and acoustical measurements 
for turbidites and pelagic sediments from Site 1 

Depth V P G k 
P a 

m m/s kg/m3 MPa m2.10-15 
0.15 1542 1322 0.15 2.0 
0.31 1539 1236 0.31 2.0 
0.77 1542 1283 0.77 2.0 
1.46 1542 1337 1.46 2.0 
1.62 1541 1343 1.62 2.0 
2.00 1548 1377 2.00 3.0 
2.05 1548 1380 2.05 5.0 
2.06 1628 1495 2.06 9.0 
2.11 1686 1685 2.11 30.0 
2.19 1707 1460 2.19 30.0 
2.22 1717 1460 2.22 100.0 
2.23 1750 1592 2.23 200.0 
2.31 1555 1327 2.31 80.0 
2.36 1584 1502 2.36 0.9 
2.39 1598 1575 2.39 0.8 
2.43 1573 1462 2.43 0.7 
2.51 1552 1537 2.51 0.6 
2.96 1545 1465 2.96 0.6 
3.17 1523 1460 3.17 0.6 
3.37 1545 1502 3.37 0.6 
3.45 1538 1472 3.45 0.6 
3.53 1531 1318 3.53 0.6 
3.54 1528 1323 3.54 0.6 
3.62 1531 1422 3.62 0.6 
3.82 1528 1438 3.82 0.6 
4.39 1530 1386 4.39 0.6 
5.01 1523 1386 5.01 0.6 
5.78 1529 1396 5.78 0.6 
6.24 1535 1402 6.24 0.7 
6.47 1545 1437 6.47 4.0 
6.55 1557 1515 6.55 20.0 
6.62 1616 1740 6.62 50.0 
6.70 1555 1410 6.70 8.0 
6.93 1540 1392 6.93 1.0 
7.62 1538 1407 7.62 0.8 
8.16 1547 1404 8.16 0.7 
9.13 1550 1407 9.13 0.6 
9.32 1550 1425 9.32 0.6 
9.81 1554 1417 9.81 0.8 
10.4 1556 1413 10.4 5.0 
10.7 1550 1456 10.7 10.0 

10.83 1559 1465 10.83 200.0 
10.86 1747 1770 10.86 500.0 
10.93 1551 1455 10.93 80.0 
11.17 1536 1393 11.17 5.0 
11.66 1537 1392 11.66 1.0 
12.12 1540 1386 12.12 0.9 
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An effective stress - depth profile can be simply calculated from 

the density values given in Table 10.1 and by using Equation 9.1. This 

profile is not plotted as it can be simply represented by the linear 

empirical equation Qeff (kPa) = 3.7z (m). This equation can be used to 

convert experimental data collected at different effective stresses, to 

equivalent in-situ depths at Site 1. 

The experimental compressional wave velocities given in Table 10.1 

have been corrected to in-situ conditions. First an effective stress 

correction of AV (m/s) - 0.5z (m) (for 0<z< 20). obtained from 

measurements by Lovell and Ogden (1985), was added to the laboratory 

velocities. Then, in-situ temperature and hydrostatic pressure corrections 

were made by multiplying the experimental velocities by Vin-situ /Vlab 

(Hamilton, 1971). Here the bottom sea water velocity (Vin-situ) of 1537 

m/s and a laboratory sea-water velocity (Vlab) of 1530 m/s were used. 

Ideally the density values shown in Table 10.1 should be corrected 

to their in-situ conditions to allow for porosity rebound effects 

(Hamilton, 1976a). Using the consolidation data collected on samples from 

Site 1 by Schultheiss and Gunn (1985), porosity rebound corrections were 

calculated using Hamilton's (1976a) method. These results are shown in 

Table 4.1 and give average porosity rebound corrections of (3.7). 10-5 / 

kPa for the pelagic sediments and (1.5). 10-5 / kPa for the turbidite 

sediments. Therefore, for a turbidite sample from a depth of 12 metres, 

with an equivalent effective stress of 45 kPa, has a porosity rebound 

correction less than 0.1%, which is negligible in comparision to the 2% 

error in determining the porosity (Boyce, 1976). Hamilton (1976a) does not 

give porosity rebound corrections for turbidite sediments, but his 

correction for a pelagic sediment for an equivalent effective stress of 45 

kPa is 0.3%, which agrees favorably with the value of 0.2% calculated 

using the correction value obtained from Table 4.1. This fair agreement 

188 



shows that the calculated porosity rebound corrections from Table 4.1 are 

indeed of the correct magnitude, but their importance is still negligible. 

Note. a bigger correction in porosity may be needed due to the 1.5 - 2% 

expansion of pore-water, as samples are recovered from water depths of 

around 5 km. 

Lovell (1985) performed electrical resistivity experiments on 

turbidites and pelagic sediments from Site 1. His results gave formation 

factors (FF) ranging from around 1.7 for porosities of 80%, to FF - 2.7 

for porosities of 60%. These values are simply converted into tortuosities 

(T) of 1.36 and 1.62 using Brown's (1980) relationship; T- FF. #. As there 

is no straightforward empirical relationship between FF and 0 for 

turbidite sediments from Lovell (1985), all the sediments from Site 1 are 

assigned a tortuosity of 1.5. 

In Chapter 5, resonant column results on turbidite and pelagic 

samples from core D11174 were presented. Figure 5.7 shows measurements of 

G versus depth at Site 1 for various turbidite samples. Based on resonant 

column and shear-bender results. the simple empirical equation G (MPa) =z 

(m) appears to hold (where z is the depth in the sediment column). As was 

discussed in detail 5.6.2. no useful measurements of the second elastic 

constant Kb were obtained for the turbidites. A compromise value of Kb = 

2.17G was decided on, based on experimental Kb measurements on a sand. 

10.2.3 In-situ eeotechnical / geophysical experiments at Site 1 

Hydrodynamic (10.3) and geoacoustic (10.4) models of Site 1 can be 

constructed from the laboratory measurements described in 10.2.2. 

Predictions of in-situ tidally-induced pore pressures and compressional 

wave velocities can be made by using these models in conjunction with 

Blot's theory. The validity of these predictions can be examined if 

appropriate in-situ and remote sensing measurements exist. 
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In-situ tidally-induced pore pressures can be measured by the 

piezometer PUPPI (Schultheiss and McPhail, 1985, McPhail and Schultheiss. 

1986). The instrument is described briefly in 4.5.1, and the data which it 

collects is described in 4.5.2. A summary of the PUPPI deployments at Site 

1, along with the measurements of maximum tidally-induced differential 

pore pressure, are given in Table 4.2. 

Many remote acoustical experiments have been carried out at Site 

1. Of particular interest are the 3.5 kHz sub-bottom profile records which 

map the topography of the sea-bed as well as returning information on 

acoustical "reflectors" within the upper 20 metres of sediments. The 

profiles consist of uncalibrated acoustical intensity returns from the 

sea-bed, provided by a1 second repeated 28 millisecond burst of sound 

swept from 3 to 4 kHz (centred at 3.5 kHz). The signals reflected from the 

sea-bed from any one tone burst are fed through a dispersive delay-line 

(DDL). The DDL analyses the frequency spectrum of reflected signals and 

isolates overlapping reflections (in the time domain) by recognising the 3 

kHz leading component of the tone burst. After recognising and filtering 

out (on the basis of frequency) a reflected event, the 28ms burst from 

that event is compressed to a 2ms peak. The intensity of the 2ms peaks 

arising from different sea-bed reflections, from one source tone burst, 

are automatically plotted on a chart recorder. This gives a time domain 

profile of the reflected intensity returns from the sea-bed below the 

location of the source. 

As the source moves horizontally along the sea to a new location, 

the reflected intensity profile from the next (1 second repeated) tone 

burst is plotted at the new location. In this way, successive profiles are 

plotted adjacent to each other for every new source location and a 

continuous record of the intensity of the 3.5 kHz energy reflected from 

the sea-bed is built up. Such a record can give the vertical temporal 
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distribution of sea-bed reflectors which are caused by vertical variations 

in the impedance of the sea-bed. The impedance is the product of the 

density and compressional wave velocity at any point. 

The uncalibrated 3.5 kHz records do not give a direct measurement 

of the velocity of sediments in the upper sea-bed. However, the vertical 

temporal distribution of reflectors can be converted to a vertical spatial 

distribution if the compressional velocity of the sea-bed sediments is 

known. Physical vertical impedance contrasts, calculated from laboratory 

measurements of density and compressional wave velocity, can then be 

compared to the vertical spatially-corrected acoustic intensity from the 

3.5 kHz records. Searle Lt . (1985) do this for various locations in 

Site 1 and show that there appears to be some spatial agreement with 

strong intensity reflectors from 3.5 kHz profiles and impedance contrasts 

caused by the silty bases of the turbidites. This and other points are 

addressed in 10.4 with reference to a 3.5 kHz record taken over core 

D10695 (Searle 
, gt al.. 1985) and the laboratory and density measurements 

shown in Table 10.1. The spatial distribution of the measurements given in 

Table 10.1 can be simply converted to two-way times (TWT) by using the 

velocity structure of the sea-bed. which is also given in Table 10.1. 

The last set of in-situ experiments of note are those of Whitmarsh 

and Lilwall (1982). Their experiments give the shear velocity. hence shear 

modulus (G 
max 

) for surficial sediments at Site 1. These results are shown 

in Figure 5.7, and it should be noted that their G=ax values are up to 4 

times greater than the laboratory measurements of Gam. Whitmarsh and 

Lilwall (1982) give the following relationship between the shear modulus 

(G) and the depth in the sediment column (z): G (MPa) = 1.7 + 3.6z (m). 

Some reasons for the differences between the laboratory and In-situ 

measurements of G are discussed in 5.4.3. 
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10.3 A hydrodynamic model of Site 1 and comparisons between measured 

and predicted tidal Dore-pressure responses 

A possible hydrodynamic model for Site 1 can be defined by Table 

4.3. The major features of this model are that G, Kb and ka are constant 

and G and ka are significantly higher than their laboratory-determined 

values. This model is used, with Biot's theory, to give the predicted 

tidally-induced pore-pressure profile shown in Figure 9.4. These 

predictions are in fair agreement with measured tidal pore-pressures 

obtained from the piezometer PUPPI. Before claiming that Biot's theory 

accurately predicts the pore-pressure response of the sea-bed, the In-situ 

values for G. and ka used in the hydrodynamic model for Site 1 have to be 

justified. 

As discussed in 9.4.3, the frame bulk modulus (Kb) and shear 

modulus (G) are the most important components of a hydrodynamic model of 

the sea-bed in deep water environments such as found at Site 1. The "best 

fit" values of Kb and G used for Figure 9.4 are 37 and 17 MPa respectively 

(assuming a frame Poisson's ratio of 0.3). However, the results shown in 

Figure 9.4 can be reproduced by using Kb - 48 MPa and G-9 MPa, and using 

Kb - 58 MPa and G-2 MPa. The figure of G=9 MPa is an average value for 

the top four metres of sediment after the results of Whitmarsh and Lilwall 

(1982) (see Figure 5.7), while G-2 MPa is an average over this interval 

from laboratory resonant column experiments (see Figure 5.7). The 

important point to note is that with Kb being (unavoidably) assumed, there 

are many reasonable combinations of Kb and G which give a similar 

predicted pore-pressure profile. 

The permeabilty of (2). 10-13 m2 used in the hydrodynamic model is 

a "large scale" in-situ permeabilty which takes account of the effects of 

any cracks, fissures, etc within the sea-bed. This value is about two 

orders of magnitude greater than the average intrinsic (small-scale) 
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laboratory determined permeability of surficial sediments from Site 1 (see 

Figure 4.9). However, Weaver and Schultheiss (1983b) observed the 

widespread existence of long vertical open worm burrows in surficial 

sediments from Site 1, and noted that these would have a profound effect 

upon the in-situ permeability of the sea-bed. This effect is examined 

numerically below for Site 1. 

Weaver and Schultheiss (1983b) characterised the vertical open 

burrows observed in Site 1 sediments as follows; burrow length was up to 2 

metres, burrow radii (rb) ranged from 0.1 to 0.2 cm, number of burrows per 

square centimetre (ab) ranged from 0.2 to 0.5 in the upper two metres of 

sediment, falling to zero by a depth of four metres. If ka is the small 

scale permeability of the unburrowed sediment, the large scale 

permeability ks in the direction of the burrows is given by (Weaver and 

Schultheiss. 1983b): 

ks = ka(1 - nbrb2r) + nbrb4A /8 10.1 

Using a simple small-scale permeability structure of the top four 

metres of sediment at Site 1 (see Figure 10.2), and letting the relative 

0.2nb abundance of burrows vary as nb for 0 to 1 in, 0.6nb for 1 to 2 in, 

for 2 to 3m and 0.01nb for 3 to 4 in, and using the rb and nb limits given 

above in Equation 10.1, gives the large-scale permeabilities shown in 

Figure 10.2. These large scale permeabilities are effective permeabilites 

calculated using equations 4.7 and 4.8. The average effective permeability 

gives an indication of the average permeability over the top four metres 

of the sea-bed. As can be seen from Figure 10.2, the average effective 

permeabilities for the four rb, nb combinations range from (5.1). 10-14 m2 

to (1.9). 10-12 m2. as compared with a small-scale permeability (without 

-15 2 
the effect of burrows) of (2.7). 10 m. 
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Figure 10.2 The effect of worm burrows on the large scale effective 
permeability of the upper four metres of Site 1 
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Looking at Figure 10.2, it can be imagined that an appropriate 

distribution of burrows of radii somewhere between 0.1 and 0.2 cm could 

account for the two orders of magnitude difference between the small-scale 

laboratory permeability and the large scale permeabilities at Site I 

m, which is required to give a good agreement between the (2.0). 10- 
13 2 

theoretical and experimental pore-pressures at Site 1 (see Figure 9.4). 

10.4 A Qeoacoustic model of Site 1 and comparisons between predicted 

and measured compressional wave velocities 

A geoacoustic model for Site 1 is defined by the data given in 

Tables 10.1 and 10.2. Biot's theory is used in conjunction with this model 

to see if an impedance profile calculated at ultrasonic frequencies is 

applicable at acoustic frequencies. The calculated impedance profile then 

is compared to a 3.5 kHz record and the observation that the silty bases 

of turbidites correspond to "reflectors" on the 3.5 kHz record (Searl 
. 

jLl.. 1985) is commented on. 
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Table 10.2 Physical and acoustical parameters characterising a 
geoacoustical model for Site 1, data set TURB_M3 

1. Wet-bulk density 

2. Fluid density 

3. Grain density 

4. Fluid modulus 

"5. Grain modulus 

6. Dynamic viscosity 

7. Circular frequency 

8. Shear modulus 

9. Frame bulk modulus 

10. Permeability 

11. Tortuosity 

Table 10.1 

1024 kg/m3 

2650 kg/m3 

(2.39). 109 Pa 

(3.6). 1010 Pa 

0.001 Pa. s 

2a. 10 6 Hz 

0.15 to 12.12 GPa 

2.17 G 

(6). 10 
16 

to (5). 10-13 m2 

1.5 

1.8.10 Table 10.1 
2-6 Ogushwitz (1985) 
9 From table 5.1 
11 From Lovell (1985) 

Additional Information: Vin-situ/flab ° 1537/1530 

Shear modulus - depth relationship: G (MPa) -z (m) 

Alternative shear modulus - depth relationship: G (MPa) = 1.7+3.6z (m) 

Effective stress - depth relationship: aeff (kPa) = 3.7z (m) 

Fast wave velocity predictions are made by using the parameters 

given in Tables 10.1 and 10.2. Zero (VZ) and infinite (VI) frequency limit 

velocity predictions and experimental fast wave velocities for surficial 

sediments from Site 1 are shown in Figure 10.3. For the silty bases of the 

turbidites (denoted by the subscript "silt") both VZ. 
silt 

and Vl, 
silt 

predictions increase sharply at depths of 2.6,8 and 11 metres and remain 

fairly constant at the remaining depths. The increases in V11 for the 

silty bases are directly correlated to the increased density at these 

depths. Before assessing the importance of any dispersive effects, the 

uncertainties in the experimental and zero frequency limit predicted 

velocities have to be considered. 
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Figure 10.3 V. experimental results 
and predictions of Vz 
and V=, core D10695 
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Experimental velocities (Ve) obtained using P-wave logging 

techniques can be of a precision of less than 0.1%. but may be accurate to 

only 0.2% (Schultheiss and McPhail, in press). To avoid cluttering, the 

uncertainties in Ve and in VZ predictions are not shown in Figure 10.3 

(uncertainties in VZ are around 0.1% - see 9.4.2). 

For the fine grained non-silty parts of the turbidites (denoted by 

the subscript "turb") an average predicted VZ. 
turb value of 1490 m/s with 

an uncertainty of t 15 m/s can be taken. For the experimental measurements 

for these sediments an average Ve. 
turb value of 1520 m/s with a (maximum) 

error of t 30 m/s can be taken. With these values, the uncertiänties in 

CVt 
measured and predicted values overlap and there no grounds for 

considering dispersive effects. However, for the silty bases with an 

average VZ. 
silt 

value of 1530 m/s f 15 m/s and an average experimental 

velocity (Ve. 
silt) 

value of 1700 m/s t 34 m/s, there is a real discrepancy 

betvOleen Ve. 
silt and VZ. 

silt' which may be due to dispersion. 

In Figure 10.4. the experimental velocity data are shown alongside 

two sets of predicted (V1) data, which are calculated for the ultrasonic 

frequency at which the experimental data were collected. (see Table 10.1). 

The lowest velocity predictions (curve 1) are calculated with the 

(laboratory derived) relationship G (MPa) -z (m), and the higher set 

(curve 2) are calculated with the (in-situ derived) relationship G (MPa) = 

1.7+3.6z (m). Note that the predicted velocities calculated using the 

latter relationship are closer to the experimental values. For the 

non-silty turbidites, there is no way of knowing which is the best G 

versus z relationship to use - as the uncertainties in V 
e. turb overlap 

V1, 
turb predictions using both relationships. However, for the silty 

turbidites. the discrepancy between VZ. 
turb and V still exists if G 

e. silt 

(MPa) = 1.7+3.6z (m) is used (not shown in Figure 10.4). Therefore, 

dispersion effects still cannot be discounted for the silty turbidites. 
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Comparison of Figures 10.3 and 10.4 show that for the G (MPa) =z 

(m) predictions for the non-silty turbidites, V1. 
turb VZ. turb' 

This 

means that the non-silty turbidites are of a low permeability, such that f 

<fc, and so Biot's dispersive mechanism is not operating. However, the 

silty turbidite bases are of high enough permeability to make f> fC, 

hence Blot dispersion takes place and Vi, 
silt 

tends to VI, 
silt' 

Now the 

magnitude of VI is predominantly set by the tortuosity (T) (see Chapter 

7), which was assigned a value of 1.5 for the silty turbidites. A slight 

reduction in T would result in VI increasing substantially (for example 

see Figure 7.1). Therefore, a simple interpretation of these results could 

be that Blot dispersion does not take place for the non-silty turbidites, 

but it does take place for the silty bases. Furthermore, by taking values 

of T<1.5 for the silty turbidite bases, predicted velocities would 

better approach experimental values. Experimental verification that T< 

1.5 for the silty bases (using electrical conductivity tests) is needed. 

At ultrasonic frequencies the average velocity prediction for the 

silty turbidite V1, 
silt 

is 1600 m/s; giving a predicted velocity 

dispersion of 70 m/s over VZ. 
silt' 

However, at acoustic (e. g 3.5 kHz) 

frequencies, V1. 
silt 

tends to VZ. 
silt. 

Although the experimental values 

for Ve. 
silt 

and Ve. 
turb are not coincident with predictions Vl'silt and 

ý1. 
turb 

(see Figure 10.4), it is of interest to use the predictions 

Vl. 
silt 

and V1. turb at ultrasonic and acoustic frequencies to examine if 

dispersion is important to calculated reflection coefficients. 

Consider the case of a non-silty turbidite with V1, turb = 1490 

m/s. p= 1350 kg/m3 and predicted impedance Z 
1, turb = (2.01). 106 kg/s/m2, 

which overlies a silty turbidite with V1, 
silt a 1600 m/s, p= 1620 kg/m3. 

Zl. 
silt = (2.59). 10 

6 kg/s/m 2 
calculated at ultrasonic frequencies and, 

Vl. 
silt = 1530 m/s. Zi. 

silt = (2.48). 106 kg/s/m2 calculated at acoustic 

frequencies. 
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Defining the normal incidence reflection coefficient R for the 

interface between the layers as the magnitude of the difference of the 

impedances divided by the sum of the impedances, gives R-0.126 at 

ultrasonic frequencies and R=0.105 at acoustic frequencies. Therefore, 

the frequency dependence of the reflection coefficient due to fast wave 

dispersion is low. 

Discounting dispersion effects as being negligible, the impedance 

E 

. U 
O 

s 
ö 

3 

profile (in the time domain) calculated from the experimental measurements 

for sediments from Site 1 core D10695 is shown in Figure 10.5 alongside 

the 3.5 kHz record taken over the core-site. There appears to be a loose 

correlation between the time domain location of the large impedance (silty 

turbidite bases) spikes and the strong reflectors from the 3.5 kHz record 

(Searle g a. 1., 1985). 

Figure 10.5 Calculated experimental impedance profile for core D10695 
and 3.5 kHz record at Site 1, after Searle et al. (1985) 
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In principle, it should be possible to convolve the wavelet from 

the 3.5 kHz source with the impedance profile to give a synthetic 3.5 kHz 

record; this could be compared to the measured record at this core-site, 

confirming whether or not the strong reflectors are due to the silty bases 

of the turbidites. However, this task is made very difficult by the signal 

processing of reflected events by the DDL (see 10.2.2). 

It is worth considering briefly some interference effects which 

may be present in the 3.5 kHz records at Site 1. With reference to Figure 

10.5, the silty turbidite-base layers 2,4, and 6 can be taken as being of 

negligible thickness in comparison to the non-silty turbidite layers 1,3 

and 5. Assume that the 3.5 kHz source is not swept between 3 to 4 kHz (see 

10.2.2) but is located just at 3.5 kHz. Now, with a time domain pulse 

length of 28 ms, which is equivalent to a pulse 45 metres in length, and 

with the wavelength of the 3.5 kHz sound being approximately 0.5 metres, 

the possibility of interference effects in layers 1,3 and 5 arises. 

If layers 1,3 or 5 are an odd number of half wavelengths, then 

reflections from interface 2-3, and interface 4-5 (say) will interfere 

destructively. The resultant combined received signal will start off with 

the reflection for a few cycles, which will then dis%appear as the out of 

phase reflections from 4-5 will cancel it out in the latter portion of the 

28ms pulse. If layers 1.3 or 5 are an even number of wavelengths, then 

constructive interference will occur in a similar way. Such interference 

effects will introduce artefacts in the 3.5 kHz profile and will obscure 

the true reflectors. 

This interference mechanism may be important in explaining why the 

"reflectors" on the 3.5 kHz records from GME often appear to "disdappear" 

then "re-appear" again: a phenomena which cannot be explained by simple 

sedimentological reasoning. 
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10.5 Summary 

A case study has been conducted for Site 1. a sequence of 

turbidites, located in the N. E. Atlantic Ocean. Blot's theory was applied 

to geoacoustical and hydrodynamical models of the sea-bed at Site 1 and 

predicted compressional wave velocities and pore-pressures compared to 

experimental measurements. The effect of Biot-type dispersion on 

reflection coefficients calculated from the layered sea-bed at Site 1 was 

studied. 

Samples from cores from Site 1 were used for permeability studies 

in Chapter 4 and frame moduli studies in Chapter 5. A simple hydrodynamic 

model for Site 1 has already been introduced in Chapters 3 and 9 in 

connection with the tidal boundary value pore-pressure problem. Laboratory 

experimental measurements of the compressional wave velocity and wet-bulk 

density allowed a geoacoustical model of Site 1 to be constructed. 

Additional information on in-situ tidally-induced pore-pressures and 3.5 

kHz profiles were used to supplement these models. 

Comparisons between predicted tidally-induced pore-pressures and 

those measured at Site 1 have already been shown in Chapter 9. In this 

chapter, it was shown that various combinations of the frame bulk moduli 

Kb and G gave equivalent pore-pressure predictions. Therefore, the inverse 

in-situ determination of G presented in Chapter 5, is only one of a number 

of possible values. The large scale permeability required to match 

predicted and measured pore pressures (hence is an inverse permeability 

determination) was shown to be over 2 orders of magnitude greater than 

small scale permeabilty. However, independent studies revealed the 

existence of long worm burrows in the upper few metres of the sea-bed at 

Site 1. Calculations showed that the large scale permeability increased by 

2-3 orders of magnitude due to the presence of the burrows, which may 

explain the differences between large and small scale permeabilities here. 
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Compressional wave velocities were predicted by Biot's theory 

using data from the geoacoustical model for Site 1. In general, 

predictions were lower than experimental values if dispersive effects were 

ignored. However, including such effects brought predictions significantly 

closer to the experimental values for the silty bases of the turbidite 

units of this site. The apparent dispersion had little effect upon 

reflection coefficients calculated at ultrasonic and acoustic frequencies. 
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11 A CASE STUDY: BIOT'S THEORY APPLIED TO GEOACOUSTIC MODELS OF THE 

SEA-BED OF THE WESTERN INDIAN OCEAN 

11.1 Introduction 

The Ocean Drilling Project (ODP) and its predecessor the Deep Sea 

Drilling Project (DSDP) have contributed to much of our knowledge of the 

geological and geophysical processes occurring within the sea-bed. A 

recent leg (115) of the ODP, focussed on an area near the Seychelles Bank 

in the Western Indian Ocean, in order to study a paleoceanographic problem 

related to production and dissolution of carbonate sediments. A number of 

new bore-holes were drilled in this area, and the first (high quality) 

"Advanced Piston Coring System" cores were recovered from the Indian Ocean 

sea-bed. Extensive ship-board experiments were conducted on the sediments 

from these cores, ranging from lithostratigraphical, biostratigraphical, 

palaeomagnetic. geochemical, physical, acoustical and geophysical studies 

(Backman, Duncan, et a1., in press). Of particular significance to this 

study are the physical and acoustical properties of these sediments 

obtained from ship-board measurements (Hurley and Hempel. in press). Also 

of interest are the results from various post-cruise laboratory 

geotechinical experiments some of which are presented in Chapter 5 and in 

this chapter. 

Using the extensive set of ship-board and post-cruise laboratory 

data characterising the sediments obtained from Leg 115, a number of 

geological / geotechnical and geophysical problems can be studied. In this 

chapter. two problems will be addressed. In the first, a geoacoustic model 

of the sea-bed is constructed using selected ship-board data. and the 

ability of Biot's theory to predict compressional wave velocities at 

ambient laboratory temperatures and pressures is assessed. In the second. 

a geoacoustic model of the sea-bed is constructed from post-cruise 

203 



laboratory measurements, and the ability of Biot's theory to predict the 

dependence of compressional wave velocity with depth in the sea-bed is 

studied. Attention is focussed on data from two near-by bore hole-sites 

000 
(707 and 709). These ODP Sites are located at 7.5 S, 59.0 E and 3.9 S, 

0 
60.5 E respectively, and this area is referred to as Site 2 here. 

11.2 Background Information for Site 2 

11.2.1 The eeoloQV of Site 2 

ODP Sites 707 and 709 are located at water-depths of 1552 and 3048 

m respectively. The sediments from ODP Site 707 consist of a typical ooze 

- chalk - limestone sequence of carbonate sediments. The 376 metres of 

sediments are divided up into 5 lithological units: 

Unit 1 (0.0-151.0 metres below sea floor, mbsf) is a 

nannofossil-bearing foraminiferal ooze 

Unit 2 (151.0-213.3 mbsf) is a nanno-fossil ooze 

Unit 3 (213.3-25 1.4 mbsf) is a nanno-fossil ooze/chalk 

Unit 4 (251.4-280.3 mbsf) is a radiolarian (silica) bearing chalk 

Unit 5 (280.3-375.6 mbsf) is a complex chalk / limestone sequence 

The 354 metres of sediments recovered from ODP Site 709 consist of a 

single major lithostratigraphic unit comprising alternating clay-bearing 

nannofossil ooze and nannofossil ooze. This single unit corresponds 

(roughly) to units 1 and 2 at ODP Site 707. 

From the lithological description, Site 2 consists of a simple 

sequence of carbonate oozes which have undergone gradual lithification and 

diagenesis into chalks and limestones at depth. The carbonate composition 

for Site 2 is high. with an average of 92% at ODP Site 707 and 90% at ODP 

Site 709. The non-carbonate fraction consists mainly of opaline silica. 

The mean grain-size is dominated by the carbonate microfossils; varying 

from 50-200 pm for the upper foraminiferal oozes to 1-5 pm for the lower 

nannofossil oozes. 
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11.2.2 Results from shin-board laboratory physical DroDerties 

measurements on sediments recoverd from Site 2 

An extensive suite of ship-board laboratory experiments were 

carried out to determine various physical properties of the sediments 

recovered from Site 2 (Hurley and Hempel, in press). The measurements 

significant to this study are; the wet-bulk density (p) the compressional 

(fast) wave velocity (Vp) and the shear wave velocity (V8). The 

experimental procedures used to determine these parameters are outlined by 

Hurley and Hempel (in press) and are based on the methods outlined in 

Boyce (1976) and Schultheiss (1985). Selected experimental measurements 

for Vp, Vs and p for ODP Holes. 707A, 707B, 709A, 709B and 709C are shown 

in Tables 11.1 - 11.3. The experimental errors in p, Vp and VS were 

approximately 5%. 1% and 20% respectively (Hurley and Hempel, in press). 

Other important ship-board measurements taken were the porosity. 

using a gamma ray attenuation porosity evaluator (GRAPE porosity), the 

grain density, and the carbonate content. The average carbonate content 

was above 90% and average grain densities for ODP Sites 707 and 709 were 

2670 and 2730 kg/m3 with standard errors of 210 and 70 kg/m3. With such 

high carbonate contents, the average grain density for Site 2 would be 

expected to be close to that for calcite (2720 kg/m3), obtained from 

tables. 

The major reason for the discrepancy between the value for calcite 

from tables and the measured values of the grain density of these high 

carbonate sediments, is due to the fairly large uncertainties introduced 

by the experimental technique employed (see Hurley and Hempel, in press). 

These experimental grain density values are used in the geoacoustic models 

constructed for Site 2 in preference to the value from tables. not because 

they are more accurate. but they help illustrate the importance of 

sensitive accurate experimentation. 
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The ship-board wet-bulk density and average grain density 

measurements allow vertical effective stress ((3 
eff) versus depth (z) 

profiles to be calculated for ODP Sites 707 and 709 using equation 9.1. 

These profiles are fairly similar for depths up to 150 metres and are 

simply characterised by a linear gradient of reff (kPa) = 6.16z (m). 

As well as ship-board measurements of the physical properties at 

Site 2, seismic air-gun lines were shot and 3.5 kHz profiles were taken. 

In addition, Hole 707C was geophysically logged. Unfortunately, some of 

the geophysical logging instruments malfunctioned, but n-situ values of 

the compressional wave velocity and the electrical resistivity of the 

sediments were obtained between depths of 140 and 350 mbsf. 

The bore-hole electrical resistivity measurements (pbh) were used 

to give the tortuosity (T) using the following procedure: with bore-hole 

measurements of the temperature, salinity and pressure of the pore-fluid, 

the electrical resistivity of the pore-fluid (ppf) was determined using 

tables from Riley and Skirrow (1965); the formation factor (FF) was then 

evaluated by the ratio of the Pbh'ppf and these calculated FF values were 

used with GRAPE porosity values (corrected for porosity rebound) in 

Brown's (1980) formula: T- FF. ". 

Plotting FF versus 0 for these experimental data and obtaining an 

-1 
empirical equation according to Archie's (1942) law gives FF = '. 

543 

-0.543 
which gives T=0. Therefore, for a porosity of 70% T=1.21, and 

for a porosity of 80% T-1.12. As the average porosity for Site 2 

sediments is just above 70%. an average value of T=1.2 is taken for all 

the sediments at this site. Note, the results of Jackson et jl. (1978) for 

a marine sands and clays gave a porosity exponent of -2 for #>0.6 and 

-1.5 for #<0.6. Therefore, the exponent of -1.543 appears to be slightly 

low in comparison. 
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Table 11.1 Physical properties for ODP Holes 707A and 707B at Site 707 

Hole 707A Hole 707B 

Depth V P V Depth V P V 
p s p s 

(m) (m/s) (kg/m3) (m/s) (m) (m/s) (kg/m3) (m/s) 
85.93 1502 1600 150 40.53 1531 1510 54 
88.96 1540 1680 - 43.75 1560 1610 97 
91.55 1539 1560 - 49.75 1555 1530 - 

104.83 1583 1540 - 53.14 1545 1550 - 
105.15 1509 1540 - 60.44 1802 1520 - 
110.80 1555 1630 - 63.23 1473 1570 - 
113.70 1487 1540 - 66.23 1561 1570 - 
124.04 1561 1590 - 72.83 1560 1580 - 
126.97 1665 1530 - 75.34 1510 1680 - 
133.68 1513 1460 - 79.44 1482 1530 - 
136.64 1522 1460 188 82.05 1470 1570 - 
143.32 1511 1680 56 93.61 1571 1620 - 
148.33 1571 1640 78 103.16 1531 1540 - 
152.25 1594 1610 106 103.42 1537 1580 - 
178.13 1557 1690 167 198.23 1547 1750 62 
189.31 1540 1740 72 202.37 1528 1730 88 
191.74 1556 1740 177 226.20 1567 1760 225 
197.50 1565 1740 116 226.51 1553 1790 162 
200.49 1556 1690 153 236.52 1557 1700 117 
208.05 1548 1770 110 238.16 1481 1820 132 

252.68 1604 1720 - 
266.67 1539 1720 178 
198.23 1547 1750 62 
202.37 1528 1730 88 
226.20 1567 1760 225 
226.51 1553 1790 162 
236.52 1557 1700 117 
238.16 1481 1820 132 
252.68 1604 1720 - 
266.67 1539 1720 178 
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Table 11.2 Physical properties for ODP Holes 709A and 709B at Site 709 

Hole 709A 

Depth V P V 
p s 

(m) (m/s) (kg/m3) (m/s) 
2.07 1531 1560 - 
5.07 1541 1550 - 
8.07 1558 1580 - 

12.16 1549 1590 - 
15.16 1519 1550 - 
18.14 1513 1660 - 
24.66 1517 1520 57 
27.66 1530 1610 79 
31.37 1526 1610 79 
34.37 1500 1610 - 
50.45 1551 1660 77 
53.45 1526 1640 106 
56.45 1514 1610 - 
60.36 1530 1590 88 
63.36 1473 1540 115 
66.36 1516 1650 - 
70.07 1515 1650 74 
73.07 1518 1680 71 
76.07 1510 1680 87 
79.67 1524 1680 126 
82.80 1506 1670 - 
85.67 1519 1700 - 
90.98 1553 1680 263 
95.32 1540 1680 347 
99.26 1544 1650 188 

101.93 1533 1700 121 
106.01 1539 1690 113 
117.90 1521 1720 145 
123.90 1531 1710 104 
127.37 1522 1680 86 
133.38 1537 1720 78 
139.03 1530 1720 76 
144.78 1539 1760 72 
149.06 1548 1730 54 
153.21 1523 1720 51 
156.90 1519 1660 65 
159.90 1544 1710 78 
165.40 1522 1730 - 
169.90 1562 1780 49 
172.90 1538 1750 42 

178.00 1533 1780 77 
185.97 1535 1710 - 
190.50 1523 1670 37 
201.57 1518 1710 104 

Hole 709B 

Depth V P V 
p S 

(m) (m/s) (kg/m3) (m/s) 

2.10 1509 1510 116 
5.80 1505 1530 54 

10.30 1522 1530 65 
16.97 1511 1560 44 
26.67 1501 1620 103 
31.17 1514 1570 94 
36.50 1500 1590 91 
40.22 1524 1570 113 
40.70 1507 1610 - 
45.96 1533 1600 63 
50.46 1509 1610 70 
55.40 1503 1610 81 
59.90 1495 1640 67 
60.86 1500 1610 67 
65.25 1525 1610 68, 
69.80 1517 1600 92 
74.90 1515 1630 129 
79.40 1511 1650 35 
80.22 1512 1640 85 
94.45 1536 1650 86 
98.88 1512 1710 82 

104.13 1527 1650 87 
113.80 1543 1710 130 
123.34 1542 1710 88 
127.69 1551 1750 78 
133.08 1555 1730 121 
137.40 1529 1680 157 
141.24 1531 1700 78 
152.45 1544 1750 99 
156.68 1554 1730 87 
162.11 1548 1680 90 
166.43 1537 1730 82 
171.77 1559 1760 99 
176.20 1575 1790 134 
210.06 1517 1680 - 
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Table 11.3 Physical properties for ODP Hole 709C at Site 709 

Depth V P Depth V p 
p p 

(m) (m/s) (kg/m3) (m) (m/s) (kg/m3) 
70.90 1576 1670 137.07 1541 1700 
70.98 1514 1640 156.48 1522 1490 
80.60 1516 1630 167.29 1548 1720 
90.20 1516 1670 167.48 1570 1730 
90.32 1510 1660 196.40 1515 1620 
98.37 1516 1680 244.78 1584 1870 
98.45 1536 1660 274.37 1537 1750 

109.48 1532 1650 289.32 1563 1780 
119.10 1548 1760 346.11 1684 1940 
128.52 1534 1700 350.57 1605 1690 
128.67 1543 1730 352.91 1647 1680 
136.89 1523 1700 

Table 11.4 Small-scale permeabilities, porosity and preconsolidation 
pressure for samples from ODP Hole 709C (Site 2). 

Sample I-D Depth 

3H-05-147 

5H-05-146 

7H-06-146 

1OH-05-146 

13H-05-146 

(m) 

20.87 

40.24 

60.96 

90.36 

119.27 

Table 11.5 

Permeability f/f 
c 

(m2) 

(2.54). 10-14 0.233 

(6.21). 10-15 0.057 

(1.92). 10-15 0.018 

(1.28). 10-15 0.012 

(1.05). 10-15 0.010 

Porosity 

0.70 

0.68 

0.65 

0.62 

0.60 

a PC 

(kPa) 

300 

400 

400 

400 

800 

Averaged compressional velocity. shear velocity and density 
versus effective stress for samples from ODP Hole 709C 

a Depth V P V 
eff P s 

(kPa) (m) (m/s) (kg/m3) (m/s) 
12.5 2.03 1529 1635 110 
25.0 4.06 1532 1642 116 
50.0 8.13 1536 1645 124 

100.0 16.25 1541 1655 137 
200.0 32.50 1547 1669 156 
400.0 65.00 1559 1693 182 
800.0 130.00 1580 1740 220 
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11.2.3 Results from Dost-cruise laboratorv eeo 

A number of whole-core samples were brought back from Leg 115 for 

laboratory geotechnical and geoacoustical tests. Consolidation and 

permeability tests were carried out on five samples from different depths 

in the bore-hole using the procedures outlined in 4.2.3. Note, six samples 

were tested in all, but the permeability / consolidation test failed on 

one occasion. A summary of the void ratio versus vertical effective stress 

experimental results are shown in Figure 11.1. A summary of the 

direct-flow permeability data (obtained using the methods outlined in 

4.4.1) are. shown in Table 11.4. Compressional wave velocities and shear 

wave velocities were measured during the consolidation test using a 

modified back-pressured consolidation cell (similar to that described by 

Schultheiss, 1981). The results for the shear wave velocity versus 

effective stress for the samples from Site 2 have already been presented 

and discussed in 5.4.4: averaged values of shear wave velocity and density 

at different effective stresses are shown in Table 11.5. 

Some interesting observations can be made from Figure 11.1, where 

the e-log oeff curves for samples from Site 2 are plotted. The first is 

that there is negligible porosity rebound when the effective stress is 

reduced from 3000 kPa to 30 kPa. The second is that the pre-consolidation 

stress (apc) is not well defined for any of the curves. Using Casagrande's 

method (Vickers, 1978), °pc' (which relates to the past maximum effective 

stress to which the sample has been subjected to) is given by the stress 

on the e-log Qeff curve at which the gradient becomes linear. Interpreted 

opc values for the five samples are given in Table 11.4. The important 

point to note is that these values should increase in a step-wise fashion 

with increasing sample depth; but this is not obvious due to the 

insufficient resolution of the e-log aeff curves. 
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Figure 11.1 Experimental void ratio versus effective stress 
for samples CARE 1 to CARB 6, Site 2 
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VERTICAL EFFECTIVE STRESS (kPa) 

The third observation from Figure 11.1 is that the e-1og aeff 

curves do not tend to the same asymptote at high effective stresses. This 

means that a sample from 60 mbsf subjected to a stress of 3000 kPa (say) 

has a different void ratio to a sample from 40 mbsf (say) at the same 

stress. Such high effective stresses far exceed the opt for these two 

samples, and it might be expected that both samples would tend to the same 

void ratio. In practice. the sample from 40 mbsf has a lower void ratio at 

3000 kPa than the sample from 20 mbsf. This suggests that there is some 

other processes (e. g. cementation - reprecipitation) which makes the 

sample from 40 mbsf act in a fundementally different way to the sample 

from 20 mbsf. The upshot of this Is that an unrealistic void ratio 

effective stress profile would be obtained if only data from one sample 

were considered. However, the e-log aefg profile for the sample from 60 

mbsf appears to give some kind of average representation of the suite of 

samples. As a simple compromise, this profile is used to characterise the 

e-log aeff relationship for Site 2. 
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The experimental results for compressional wave velocity versus 

effective stress for the five samples tested are generally of a poor 

quality exhibiting a large amount of experimental scatter, and a best line 

fit was put through all the data. Any inherent differences in the Vp 

versus aeff profiles - which may have existed for the samples from 

different depths - were masked by the scatter in the data. The Vp values 

obtained from this best-fit line were corrected to n-situ depths. First, 

effective stresses were converted to depths using the empirical equation 

given in 11.2.2. Then velocities were corrected to in-situ temperature and 

pressure conditions by multiplying them by the ratio Vin-situ /Vlab' where 

Vlab is the velocity of sea-water in laboratory and Vin-situ is the 

sea-bottom water velocity. Here Vlab a 1526 m/s, and Vin-situ is 1485 m/s 

(from Tables from Wilson, 1960, for a water depth of 1500 m and bottom 

0 
water temperature of 3C and salinity 35 ppt. ). These in-situ corrected VP 

results are shown in Table 11.5, along with average shear wave velocities 

obtained from Figure 5.8, and density values from Figure 11.1. The density 

values are simply calculated from the void ratio data taken for the sample 

3 
from 60 mbsf and using a grain density of 2720 kg/m. 

11.3 A Eeoacoustical model of Site 2 based on shin-board measurements 

and comparisons between measured and predicted values of VP 

A geoacoustic model for Site 2 based upon ship-board laboratory 

measurements can be defined by Tables 11.1-11.3 and 11.6. In Table 11.6, 

ka is an average value for calcareous foraminiferal and nannofossil oozes 

(after Silva gt 11.. 1981). Using this ka value in equation 6.1 gives f/fc 

0.1. Dispersion effects are apparent at f/fc > 0.1 (Figure 7.1), 

therefore some dispersion may be present in the laboratory Vp 

measurements, but it will only be significant if the true 

micro-permeabilities of these sediments are greater than (1.2). 10 
14 

m2 
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Table 11.6 Physical parameters characterising carbonate sediments for 
geoacoustical models for Site 2- data set CARB_M3/M4 

1. Wet-bulk density 

2. Fluid density 

3. Grain density 

4. Fluid modulus 

5. Grain modulus 

6. Dynamic viscosity 

7. Circular frequency 

8. Shear modulus 

9. Frame bulk modulus 

10. Permeability 

11. Pore radius 

12. Tortuosity 

Tables 11.1 to 11.3 and 11.5 

1024 kg/m3 

2677 to 2734 kg/m3 

(2.39). 109 Pa 

(6.3). 1010 Pa 

0.001 Pa. s 
2u. 10 6 Hz 

p. v 2 Pa 

2.17 G 

(8). 10-15 m2 

(3.3). 10-7 m 

1.2 

1,8 Tables 11.1 to 11.3 and 11.5 
2,5,6 Ogushwitz (1985) 
3,7,12 measured 
9 from Silva (1981) 
10 from Table 11.4 
11 equation 4.5 

Additional Information: VIn-situ /Vlab = 1485/1526 

Effective stress - depth relationship: aeff (kPa) = 6.16z (m) 

The zero and infinite frequency Blot velocity limits (VZ and VI) 

were calculated for the measurements given in Tables 11.1 - 11.3 and 11.6. 

The error in this VZ prediction (AVz) was also calculated, assuming the 

following errors in the input parameters; d# = 0.050, AKb = 0.25Kb, dG = 

0.25G, 4Ks = 0.21Ks . 4Kf = O. OlKf, dp f=O. Olpg , dpS = 0.07ps (for ODP 

Site 707) and dps = 0.03Ps (for ODP Site 709). Smooth curves were drawn 

through the VZ + AVZ and VZ - dVZ predictions, which are plotted in 

Figures 11.2 and 11.3. along with the experimental ship-board velocity 

data from Site 2. and the VI predictions. 
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Figure 11.2 VP experimental measurements and predictions, with 
uncertainties, versus porosity, for ODP Site 707 

using data set CARB M3 (Site 2 Ship-board model) 
7. / 
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Figure 11.3 VP experimental measurements and predictions, with 
uncertainties, versus porosity, for ODP Site 709 
using data set CARB_M3 (Site 2 Ship-board model) 
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The Site 2 data have been split up into ODP Sites 707 and 709, as 

the quantities 4VZ for the two ODP Sites are rather different. In Figures 

11.2 and 11.3 Vp is plotted versus e calculated from the p values in 

Tables 11.1 - 11.3 and appropriate ps values from 11.2.2. The porosity 

was chosen as the abscissa in preference to the depth of burial (z), as 

the ship-board velocities and Blot predictions were made for laboratory 

temperature and pressure conditions making z rather inappropriate. 

There are some interesting observations which can be made from 

Figures 11.2 and 11.3. For e<0.6 the experimental velocities (Ve) lie 

within the error band of VZ. However. for 0>0.6, there is a tendency for 

the experimental velocities to exceed VZ + AVz and approach VI. Error bars 

(4Ve) have been drawn for Ve values which are well above VZ + 4VZ. and 

there is still a residual positive velocity difference between (Ve - AV 
e) 

- (V 
z+ 

AVz) for some cases. This suggests that for higher porosities, 

there is an additional (dispersive) contribution to the experimental 

velocities which is not lost in the uncertainties in measurements and 

predictions. This would appear to make some sense. as the assumed 

permeabilities of these sediments puts f/fc - 0.1, so Biot type dispersion 

may be present. This argument also relies on the assumption that the 

permeabilty increases with with increasing porosity (for these sediments), 

making dispersive effects more apparent in higher porosity cases. The 

assumptions, on the magnitude of ka, and the relationship between ka and " 

are confirmed by experiments on samples from Site 2 (Table 11.4). 

In Figures 11.4 and 11.5, the normalised components of the 

uncertainty in the zero-frequency velocity (AVZ) (see 9.4.1 for 

definitions) are shown for ODP Sites 707 and 709. From Figure 11.4, it can 

be seen that the AV2 predictions for ODP Site 707 are dominated by the 

uncertainty in the grain (or solids) density U. Whereas, for ODP Site 

709, shown in Figure 11.5. Ups. UU and UKf are all important. 
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Figure 11.4 Normalised VZ uncertainty components versus porosity 
ODP Site 707 - (Site 2 Ship-board model) 
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Figure 11.5 Normalised VZ uncertainty components versus porosity 
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The differences between Figures 11.4 and 11.5 are due mainly to 

the difference between the values of ps and dps used for the predictions: 

ps = 2670 kg/m3 with dps = 200 kg/m3 was used for ODP Site 707 (Figure 

11.4) and ps = 2730 kg/m3 with 4ps = 70 kg/m3 was used for ODP Site 709 

(Figure 11.5). Two important points are illustrated by these differences. 

The first is that accurate laboratory determinations of the grain density 

are vital if the uncertainty introduced into VZ due to 4ps is to be 

minimised for these particular cases. The second point, is that it is not 

obvious which parameters will be most important in affecting the magnitude 

and break-down of 4VZ. prior to sensitivity analysis for the particular 

case in question. This point is emphasised by looking at Figure 9.4, where 

the components URb and UG are dominant and Ups is only of minor import ^ 
e. 

Therefore the magnitude and break-down of dVZ cannot be characterised by a 

simple rule of thumb. 

As an example of the practical uses of the geoacoustical model 

developed for Site 2, a comparison between a synthetic seismogram and a 

field generated seismogram is shown in Figure 11.6 (from Hempel, personal 

communication). The impedance record at ODP Site 709 is generated from the 

measurements given in Tables 11.2 and 11.3, after the velocities and 

densities have been converted to in-situ conditions. The impedance-depth 

profile is then converted to an impedance-TWT profile, using the 

velocity-depth structure given in the model. The source wavelet (centred 

between 20-200 Hz) is convolved with the impedance profile to give a 

synthetic seismogram for ODP Site 709. Comparisons can be made between the 

major reflectors in synthetic and field records, allowing identification 

of the samples which cause these reflectors. Stratigraphical studies 

(Backman. Duncan g _a. 
1.. in press) give the ages of these samples and, 

hence, the reflectors can be associated with sediments of certain ages, 

allowing mapping of sediment isochrone from seismic records. 
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Figure 11.6 Synthetic and Field 
seismograms using a 
geoacoustical model 
for Site 2 (Hempel, 
personal comm. ) 

11.4 A veoacoustical model of Site 2 based on post-cruise measurements 

and comparisons between measured and predicted values of V 
P 

A simple geoacoustical model of Site 2 can be defined by the 

values given in Tables 11.5 and 11.6 from post-cruise experiments on a few 

samples. Here. experimental information on the subtle variations of 

velocities and density with depth (as given in Tables 11.1 - 11.3 and used 

in 11.3) is sacrificed in order to investigate the effect of the gradients 

of these properties with depth upon predicted fast wave velocities. The 

quantities VZ + AVZ, VZ - 4VZ and VI are calculated from Tables 11.5 and 

11.6 and the predictions are shown in Figure 11.7 along with the 

experimental velocities from Table 11.5. 
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Figure 11.7 V. experimental measurements and predictions, with 
uncertainties, versus depth, for post-cruise model 
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Figure 11.8 Normalised VZ uncertainty components versus depth 
for post-cruise model, Site 2 
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At depths of less than 30 metres. the experimental velocities 

shown in Figure 11.7 lie above the band VZ dVZ to VZ+dVZ. This suggests 

there is some weak velocity dispersion present in the measurements. Using 

the intrinsic permeabilities for these sediments given in Table 11.4 and 

calculating the ratio f/fc, one finds f/fC = 0.23 for the sample from 

20.87 mbsf and f/fc = 0.06 for the sample from 40 mbsf. Recalling Figure 

7.1, slight velocity dispersion would be expected for f/fc > 0.1 and 

negligible velocity dispersion would be expected for f/fc < 0.1. This 

argument fits with the observations from Figure 11.7. 

It is of interest to compare laboratory experimental velocities 

(which have been corrected to in-situ conditions) to in-situ velocities 

measured in the bore-bole at ODP Site 707. The first in-sit u velocity 

measurements occur at a depth of 150 m which is 30 m below the lowest 

laboratory value shown in Figure 11.7. The average in-situ measured 

velocity is 1495 m/s for the interval 150-250 m. This is only 10 m/s above 

the velocity of the sea-water at the surface of the sea-bed. There are two 

possible reasons for the discrepancies between the experimental velocities 

shown in Figure 11.7 and those measured in-situ. Firstly, the in-situ 

bore-hole device may be simply measuring the velocity of the sea-water in 

the bore-hole, or in-situ drilling disturbance around the bore-hole is 

causing a non-representative velocity to be given. Secondly, thein-situ 

corrections of laboratory data may be incorrect. 

In Figure 11.8 the normalised uncertainty components of AVZ are 

plotted. These were calculated using the following uncertianties; deb = 

0.05#, AKb - 0.25Kb. AG = 0.25G, AKs = 0.2K 
S, 

dps = 0.01ps, AKf = O. OlKf, 

dpf = O. Olpf. Figure 11.8 is somewhat similar to Figure 9.4, where the 

normalised uncertainty components for a generic carbonate sea-bed were 

investigated. However, the magnitude of the normalised uncertainty 

components are different. 
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11.5 A discussion on the usefulness of eeoacoustic models of Site 2 and 

The large amount of data used in the geoacoustical model of Site 2 

based on ship board measurements (11.3). allows small-scale variations in 

physical properties to be characterised. This is useful, as the variations 

in density and compressional wave velocity can be used to create detailed 

impedance profiles, from which synthetic seismograms can be formed (Figure 

11.6 Hempel. personal communication). However, there are some 

disadvantages in using this large data set which was collected rapidly in 

a ship-board laboratory environment. Firstly, the errors associated ##e 

with 
hip-board 

experiments are greater than those collected in stable 

post-cruise laboratory conditions. Secondly. the ship-board experimental 

data were collected at atmospheric pressure and require a subsequent 

pressure correction. Thirdly, the data set is incomplete as no ship-board 

permeability tests were conducted on the samples. 

The geoacoustical model based on post-cruise measurements (11.4) 

has the advantage of using high quality data: carefully conducted accurate 

measurements of permeability, compressional wave velocity, shear wave 

velocity and density measurements were made on the same samples; 

experiments were conducted under appropriate effective stresses so this 

correction is not required. This model has the disadvantage of missing out 

the small-scale variations in the parameters with depth as captured by the 

geoacoustic model based on the ship-board measurements. 

Clearly, for many studies a combination of both models would be 

ideal (for example for the creation of in-situ effective stress corrected 

synthetic seismograms). Such a combination has not been attempted here, as 

the problem of ascertaining whether Blot type dispersion is validated with 

these models is of primary interest. 
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For the results from the ship-board geoacoustical model (Figures 

11.2 and 11.3) it would appear that Blot dispersion possibly occurs for 

high porosity samples (see 11.3) with many experimental velocity values 

lying between the low frequency asymptote and the high frequency 

asymptote. This observation (of possible dispersion in high porosity 

samples). is somewhat backed-up by the results from the post-cruise 

geoacoustical model (Figure 11.7); with the experimental velocities for 

samples at shallow depths (hence high porosities) lying between the high 

and low frequency asymptotes. Looking at Figures 11.2,11.3 and 11.7, for 

both ship-board and post-cruise geoacoustic models. the uncertainties 

associated with the experimental and low frequency asymptotic velocities 

are rather large. This means that Blot's theory would not be very 

effective if used in an inverse way. For example, permeabilities obtained 

by matching experimental and predicted velocities would have considerable 

errors associated with them. It is interesting to note that when such a 

matching is carried out, the permeabilities obtained are some two orders 

of magnitude greater than the direct-flow permeabilities measured on 

samples from Site 2 (Table 11.4). A similar observation was made in 

Chapter '4 for the sediments from Site 1 (see Figure 4.9), and it was 

concluded that the larger magnitude micro-permeability controlled Blot 

dispersion as opposed to the lesser small-scale values. Therefore, there 

are grounds to not consider Blot dispersion for practical geoacoustical 

models, bearing in mind the difficulty in determining the micro- 

permeability of sediments. 

If Blot dispersion is dropped from these geoacoustic models (along 

with the slow wave and the fast wave attenuation - Chapter 9) there 

becomes no distiction between Biot's theory and the simple poroelastic 

theory of Gassmann (Chapter 2). If this approach is adopted, then the 

experimental velocities should fall within the low-frequency velocity 
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uncertainty band. If the velocities lie outside this band (which they do 

in Figures 11.2,11.3 and 11.7) then a possible explanation is that an 

Inappropriate values for the shear modulus and frame bulk modulus have 

been used for the predictions. This argument could be applied to similar 

observations from Figures 7.3.7.4.7.6,7,7,10,2 and 10,3. Hamilton e, 

&J. (1982), in discussion of the data of Johnson et al. (1977), (which are 

shown in Figure 7.3), use the non-dispersive version of Biot's theory. To 

obtain a good fit between predicted and experimental velocities, their 

analysis requires extremely high values of the frame bulk modulus 

(Hamilton, 1971), which are not consistent with the limited results 

presented in Chapter 5. It is not possible to show if the non-dispersive 

high frame modulus (Kb) approach of Hamilton 
_q. 

(1982) is any more 

correct than the dispersive (high) micro-permeability (ka) approach 

presented here, as both Kb and ka are extremely difficult to 

experimentally determine (Chapters 4,5 and 7). 

11.6 Su mar l 

A case study has been conducted for Site 2, located in the W 

Indian ocean, defined by the area of sediments between ODP Sites 707 and 

709. Biot's theory was applied to two geoacoustical models of the sea-bed, 

one based upon ship-board measurements and the other upon post-cruise 

measurements. For both models, predicted compressional wave velocities 

were compared with experimental values and the role of Biot-type 

dispersion was assessed. 

Site 2 consists of a thick sequence of ooze-chalk carbonate 

sediments, whose physical and acoustical properties were comprehensively 

determined (at atmospheric pressures) by ship-board laboratory 

measurements. A number of samples were taken for post-cruise laboratory 

measurements, and experiments were performed to give the shear velocity, 
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permeability, compressional wave velocity and density as a function of 

effective stress. Two geoacoustic models were constructed from these two 

sets of data. 

For the geoacoustical model based upon ship-board measurements. 

predicted compressional wave velocities were compared to experimental 

velocities. It was found that. for porosities exceeding 60%, there was 

some evidence for Biot-type dispersion, as experimental velocities lay 

well above the non-dispersive prediction uncertainty band. This argument 

fits with the observation that higher porosity carbonate sediments have 

higher permeabilities (note, this observation does not exend to high 

porosity clays), hence exhibit greater dispersion. The magnitude and 

break-down of the uncertainty in the non-dispersive prediction was 

studied; revealing that the uncertainty in the grain density was the 

important controlling parameter. 

For the geoacoustical model based upon post-cruise measurements, 

the experimental velocities were fairly close to the non-dispersive 

prediction. There was some evidence to suggest Biot-type dispersion being 

greater for shallow sediments. which fits the observation that shallower 

sediments have greater permeability. The uncertainty in the non-dispersive 

velocity (WVz) was dominated by the uncertainties in the fluid modulus, 

the frame bulk modulus and the grain density. 

Geoacoustical models based on data from post-cruise and ship-board 

experiments, were used to investigate Biot dispersion in the carbonate 

sediments of Site 2. in addition to other related problems. The following 

conclusions were drawn from these studies: 

The errors associated with performing experiments in a 

ship-board environment - especially the grain-density 

determination - mean that the exist, nce of Biot-type dispersion 

can not be simply verified. 
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2 Small-scale permeability measurements, obtained from careful 

post-cruise laboratory permeability experiments, were too small to 

account for Blot-type dispersion (the argument touched on in 

Chapter 4. that the micro-permeability is the appropriate 

parameter for Blot-dispersion. was recalled). 

3 The combination of data from ship-board and post-cruise 

geoacoustical models can be usefully applied to other problems: 

such as the creation of synthetic seismograms for stratigraphical 

studies. 
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12 THE APPLICATION OF BIOT'S THEORY TO SEA-BED SEDIMENTS 

12.1 The findings of this thesis 

There have been few attempts to apply Biot's theory to models of 

sea-bed sediments. This has been due to conceptual problems in 

implementing the theory and/or technical problems in measuring the 

appropriate sediment physical properties for the models. The studies 

described in this thesis have clarified the following conceptual and 

technical points: 

(1) The permeability of deep-sea turbidite sediments has been 

shown to vary over 7 orders of magnitude due to technique dependent and 

intrinsic reasons. 

(2) In-situ determinations of the shear modulus of turbidite 

sediments are up to a factor of 4 greater than those obtained from 

laboratory techniques. 

(3) Using the resonant column method as a standard, bender 

transducer methods have been shown to give good determinations of the 

shear velocity of sediments, and there is little evidence for dispersion. 

(4) Longitudinal low frequency forced and resonance methods for 

determining the extensional elastic and anelastic properties of sediments 

and rocks have been shown to be experimentally problematic, yielding 

unreliable results. 

(5) Currently available techniques for accurately assessing the 

micro-geometry and size of pore space and inter-pore space are inadequate. 

(6) Through Biot's theory, a new solution has been developed for 

the magnitude of tidally-induced pore-pressures in the sea-bed. 

(7) Biot's propagative slow wave has been argued to be a fluid 

and not a frame wave. induced at free-flow boundaries, and must be 

difficult to measure. 
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(8) A quantified verification of Biot-type fast wave dispersion 

has been shown for high porosity/permeability carbonate sediments. 

(9) Sensitivity analysis has allowed identification of the 

physical properties which influence the magnitude of the uncertainty in 

Biot velocity predictions at low frequencies. 

(10) A qualitative verification of Biot-type fast wave attenuation 

has been shown for some sandstones and unconsolidated sands. 

12.2 Annllcations of the findings of this thesis 

The points outlined in 12.1 are all of great importance to the 

various problems of defence. exploration, design and pollution control. 

which were introduced in 1.1. Some of the points are of particular 

significance to the individual problems: 

For naval defence requirements, points (7) and (8) are important 

for calculating high frequency reflection coefficients from the sea-bed: 

(7) will reduce reflection coefficients. while (8) contributes to an 

increases in reflection coefficients for high porosity/permeability 

sediments. Addtionally, points (4) and (9) contribute to the understanding 

of low-frequency sound wave propagation through sea-bed sediments. 

For oil exploration problems, points (1), (5), (8) and (10) are of 

high significance: (1) (5) and (10) show that ultrasonic (and other) 

techniques for probing the size and shape of the pore-space (where the oil 

resides! ) do not give fool-proof results, for intrinsic and 

technique-dependent reasons; point (8) is important for tying down 

discrepancies between high frequency bore-hole and laboratory 

compressional velocities. and the lower frequency seismic results. 

For geotechnical design purposes, points (1) to (4) are especially 

important: (1) is crucial in deciding which permeability to use in design 

calculations; points (2) to (4) show the "pros and cons" of laboratory 
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testing techniques for evaluating the dynamic moduli of sea-bed sediments. 

For sea-bed radio-active waste disposal, points (1) and (6) are 

significant: (6) is of interest in obtaining an inverse determination of 

the in-situ large-scale permeability of the sea-bed sediments; (1) is of 

interest in allowing comparisons of small-scale laboratory determined 

permeabilities with in-situ predictions. as a correct in-situ permeability 

is needed to calculate flow rates of contaminated pore-fluids. 

12.3 A statement on the problems involved with the successful 

anoli. ation of Blot's theory to sea-bed sediments 

This thesis has focussed on the following problem: can a numerical 

model of the sea-bed (based on measurements of sediment physical 

properties) be used as input into Biot's theory to allow predictions of 

the response of the sea-bed when it is subjected to dynamic stresses? 

There is not a straightforward all-embracing answer to this problem: the 

quality of the prediction will strongly depend upon the accuracy of the 

experimental determinations of the appropriate input and output 

parameters. However. the findings outlined in 12.1 allow some useful 

guide-lines to be drawn-up for simple models, which can be used with a 

simple version of Biot's theory, as a practical predictive tool. 

Points (1) to (5) in 12.1 highlight the difficulties in 

experimentally determining the input parameters to Blot's theory. Point 

(4) shows it is not possible to characterise the anelastic properties of 

sediments: this means that the simpler Blot (1956 a, b) poroelastic theory 

should be used in preference to Blot's (1962 a. b) poro-anelastic theory. 

Point (4) also means that a relationship between shear and frame bulk 

moduli has to be estimated (such as Kb = 2.17G). Point (5) indicates the 

problem in assessing the size of inter-pore connections: this means that 

Blot's (1956b) frequency correction cannot be applied to predictions (made 
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with Biot's, 1956a theory), with confidence. Point (1) shows that the 

permeability used/predicted in/by Biot's (1956a) theory will be a 

"micro-permeability". which will be greater than "small-scale" direct-flow 

laboratory permeabilities. 

Points (7) and (10) show that fast wave attenuation and the 

propagating slow wave are difficult to measure or predict with confidence. 

This means these phenomena will not need to be considered for simple 

practical models of the sea-bed. Point (9) shows that the uncertainties in 

Kb. G and the solids density (ps) are important in controlling the 

magnitude of the uncertainty in the predicted low frequency velocity. 

whereas the uncertainty introduced through the solids bulk modulus (Ks) is 

minimal, allowing K to be safely estimated. Point (10) shows that the 

tortuosity (T) and micro-permeability (ka) of sediments control the fast 

wave dispersion. 

For a simple geoacoustical model of the sea-bed, which can be used 

along with Biot's (1956a) theory as a predictive tool, the following 

parameters are required: measurements of G, T. ka, ps and Vp (fast wave 

velocity at a frequency f); values for the fluid modulus (Kr). density 

(pf) and viscosity (q) found from tables, and the estimates Kb = 2.17G and 

K- co. Using these parameters. Biot's (1956a) theory can be used to 
s 

predict VP at any frequency. Alternatively, the theory can be used in an 

inverse way to predict any one of the other parameters using measurements 

of Vp. Such a simplified approach will lack many of the requirements of 

sophisticated problems of acoustical interactions with sea-bed sediments, 

but will act as a good base to start any such investigations. 

For a simple hydrodynamic model, which can be used along with 

Biot's (1956a) theory. less parameters are required: measurements of G, 

ka. ps and the dynamic tidal pore-pressure (pp); K. pf' ', Kb and Ks 

estimated or from tables. These parameters can be used along with a new 
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tidally-induced pore-pressure solution (Point 9 in 12.1) to predict the 

in-situ dynamic pore-pressure. Alternatively, using measurements of pp. 

inverse in-situ predictions of any of the other parameters can be made. 

Such predictions will be gross estimates - due to the simplicity of the 

model and solution - but will yield valuable in-sit estimates of the 

geotechnical properties of the sea-bed. This is especially important for G 

and k. which are difficult to measure in-situ. 
a 

12.4 The wav forward 

Blot's (1956 a. b) gives an over-simplified view of stress waves in 

sediments and rocks. The theoretical developments since (Blot, 1962 a, b, 

Cleary, 1980, McCann and McCann, 1985, Berryman and Thigpen, 1987) have 

lead to a better conceptual understanding of the manner of stress wave 

propagation in sediments. Such theoretical developments may continue, but 

a wider acceptance of Blot's ideas requires significant experimental 

progress. Only through accurate experimental determination of the 

appropriate physical parameters of sediments will satisfactory Biot-type 

predictions be made. The simplified models given in 12.3, using Blot's 

(1956a) theory. are the virtual practical limit today. 

The key input parameters which require measurement are the frame 

bulk moduli (Kb and G) and the variables controlling the microscopic flow 

of pore-water (ka. T and a). Measurements of the fast wave attenuation and 

velocity at different frequencies are required for comparison with the 

output parameters. Improved dynamic pore-pressures measurements (for 

hydrodynamic models) and also measurements of the slow wave velocity would 

be useful. 

The resonant column method for determining Kb and G should be 

pursued. A redesign of the system described in Chapter 5 may overcome the 

inability to make reliable Kb measurements. The end-compliance problems of 
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low-frequency shaker experiment described in Chapter 6 need to be overcome 

to yield sensible data relating to the longitudinal anelastic properties 

of sedimentary rocks. Of course. such laboratory determinations of Kb and 

G are second-best to In-sit u measurements. There are many good current 

methods for measuring shear modulus In-sit - through shear wave 

experiments - but there is no simple way to measure Kb in this way. 

Laboratory tests have to therefore be pursued along side an in-sit u field 

experiment program. 

Improved methods to characterise the pore-space variables ka and a 

are more difficult to visualise. The best route is probably through SEM 

image analysis. This is rather undesirable, as it requires new technical 

advances and it would be not be practical for routine studies. 

Furthermore, this technique relies on laboratory measurements, which again 

brings up the question of the in-situ applicability of laboratory derived 

data. Perhaps more effort is needed to establish better empirical 

relationships (along the lines of the Kozeny equation), relying on proven 

(if not crude) experimental techniques. Incidentally. one is probably safe 

in measuring the tortuosity from electrical conductivity measurements. 

Measurements of fast wave attenuation and dispersion over many 

orders of magnitude are required. This could be achieved by extension of 

the frequency band of the "low-frequency shaker" experiment described in 

Chapter 8. Measurements of the slow wave in unlithified sediments may be 

possible through the use of a dynamic pore-pressure sensor as discussed in 

Chapter 6. Lastly, improving the piezometer PUPPI by using a longer probe 

with a greater number of pore-pressure ports would significantly help for 

the hydrodynamic modelling studies. 

The predictive powers of Biot's theory are great: they allow 

elastic and anelastic deformations of sediments (and any other porous 

material) to be characterised over the entire spectrum of frequencies. 
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The potential of Biot's thoery will only be realised through an increased 

awareness of the relative importance of the different input and output 

parameters and how to attempt to accurately experimentally measure those 

parameters. Good luck if you intend to contribute to this area of science! 
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APPENDIX 1 Elasticity theory 

A1.1 Introduction 

The classical theory of elasticity is a basic component of all 

theories concerning the deformation of solids. The following precis is 

based upon a number of standard text books (Kolsky, 1963. Norwick and 

Berry, 1972, Nye. 1979, Bourne and Kendall, 1979 and White. 1983). 

A1.2 The state variables and co-ordinate system 

A1.2.1 The Cartesian axes system 

The principle Cartesian axes are defined as three mutually 

perpendicular vectors (Oxi) of unit length originating from a fixed point 

0. Standard Cartesian vector and tensor notation is adopted (see Bourne 

and Kendall, 1977). 

A1.2.2 The stress tensor 

The stress at any point P in a material is defined by the second 

rank tensor [aij]. The stress tensor describes the forces acting on the 

faces of an infinitesimally small cube surrounding P. There are three 

normal stress components (I-j) and six shear stress components (i#j) 

A1.2.3 The Strain tensor 

When stresses are applied to a material it will deform. and the 

distances between adjacent points will change. The variation of 

displacement (ui) with position (xi) can be used to define nine components 

of an antisymmetrical tensor (eij]: 

eil - axi 
(i. j s 1.2.3) A1.1 
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The three components i=j, represent extensions per unit length 

parallel to the three principal axes (Oxi). The six other components i*j, 

represent the following rotations: e12 is the rotation of a line element 

parallel to Ox 
2' about Ox3, towards Ox1; e21 is the rotation of a line 

element parallel to 0x1. about Ox 
3' towards Ox2. etc. 

The strain tensor [Eil] is defined as the symmetrical part of 

[eij]: 

e. - 
2, (eij + eji) A1.2 

A1.3 The fundamental relationshio between state variables 

A1.3.1 The constitutive equation 

The stress tensor is related to the strain tensor through the 

constitutive equation: 

aIj s Mijkl'6kl A1.3 

Mijkl is a fourth rank tensor with 81 coefficients. Due to 

symmetry considerations. the number of coefficients can be reduced to 36 

(Nye. 1979). For an isotropic material only two independent elastic 

constants. denoted A and G. are required to calculate the remaining 

coefficients. Using these elastic constants it is possible to rewrite the 

constitutive relationship in the more familiar way as Hooke's law, where . 

is the dilatation: 

aij = 2GEij + bijhE (aid=1. i-j; Sii=o, A1.4 

E11 + 622 + E33 A1.5 
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A1.3.2 The elastic constants 

The two elastic constants A and G. completely describe the 

behaviour of an isotropic material. However, for convenience, five 

interrelated constants are used: Young's modulus (E), Poissons's ratio 

(v), the bulk modulus (K), the shear modulus (G) and the constrained 

modulus (D). The definitions and a table of all the interrelationships 

between these elastic constants are summarised by White (1983). Some of 

the relationships are: 

D-K+3. G -A+ 2G -1 
Ev- v2v. 

v 
A1.6 

A1.4 Static and dvnamic deformations 

A1.4.1 The eaullibrium of the stress field 

Neglecting body forces, if all parts of a body are in static 

equilibrium. then the stress field is zero: 

j 
ij=0 
i 

A1.7 

Neglecting body forces, if dynamic stresses act upon the body, 

inertial forces have to be considered, and the stress field becomes: 

.2 
a1s 

atat' A1.8 

A1.4.2 Classification of dynamic responses 

If periodic stresses of angular frequency (u), are applied to a 

body, then the ratio w/wr. where wr is the resonant angular frequency of 

the body, controls the type of dynamic response induced. The following 

responses are defined: 
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W << wr - subresonance: w= wr - resonance, and w» wr - supraresonance. 

If the dynamic force Fa acts on the body, there will be a restoring force 

Fs. due to the displacement of the mass (a ) of the body. The restoring 

force must enter the stress equilibrium equation, which can be re-written 

as the equation of motion for the body: 

Fa - Fs Z. 
a2u 

atati A1.9 

This equation can be simply solved for each dynamic response (e. g. 

Norwick and Berry, 1972) using the following simplifications: for 

subresonance the presence of the inertia of the body is not important (Fa 

= Fs); for resonance. the force applied to the body is not important (Fa = 

0) and at supraresonance the restoring force is not important (Fs = 0). 

The solutions show that for subresonance, the response is simply governed 

by the constitutive relationship; for resonance the resonant frequency is 

given by: 

2 C. Mijkl A1.10 

where C is a constant depending on the shape and dimensions of the 

body. Lastly, for supraresonance. the solutions describe the propagation 

of stress waves in the body. 

A1.5 The wave equations 

A1.5.1 The wave equation for compressional deformations 

For supraresonance deformations the equations A1.4 and A1.7 can be 

combined to give the three-dimensional equations of motion: 

2 
P. 

a ui (G + A)ax + Gv2ui 
atat i 

A1.11 
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2s s2 
v axi Al. 12 

Differentiating A1.11 and summing on i gives the wave equation for 

the propagation of the dilatation f- (Equation A1.13). If harmonic 

solutions are assumed, then it is straightforward to show that the 

dilatation propagates with a velocity Vp: 

2 

atat - (2G + . 4)., V 
E 

A1.13 

Vp s 
2G +A 

1/2 
A1.14 

A1.5.2 The wave equation for shear deformations 

The wave equation for shearing deformations can be found by using 

the rotation (U1 ). which is defined: 

Aij . 
Z, (eij - eji) Al. 15 

Differentiating the equations of motion (Equation A1.11) with 

respect to directions perpendicular to i, gives three pairs of coupled 

equations for the antisymmetrical strain components eia. with i=j. Using 

the definition for the rotation (Equation A1.15) and subtracting one 

equation from the other in each pair gives the wave equation for shearing 

deformations (Equation A1.16). If harmonic solutions are assumed then the 

rotational deformation propagates with a velocity Vs: 

p, 
r 

tij - a32ejil ' G. v2. (eij - eji) A1.16 
La 

1/2 

Vs s 
lTJ 

A1.17 
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APPENDIX 2 Anelastic theory 

A2.1 Introduction 

In practice all real materials are never completely elastic. but 

are non-elastic in some fashion. Materials which do not obey Hooke's law 

are non-elastic. Of the various types of non-elastic behaviour anelastic 

theory is the most straightforward to use and the most applicable for 

small strain amplitude deformations of rocks and sediments. The following 

precis is based mainly on Norwick and Berry (1972). 

A2.2 Ouasl-static anelastic deformations 

Anelastic deformations are not instantaneous but are time (hence 

frequency) dependent. Over long periods of time (e. g. days or years) it is 

most convenient to work in the time domain. while the opposite is true for 

higher frequency deformations. 

If a static stress is applied to an anelastic material, then it's 

strain response will be quasi-static, and creep will occur after the 

initial elastic deformation. Conversely. if a static strain is applied to 

an anelastic material, stress relaxation will occur after the initial 

elastic deformation. In the latter case, the modulus given by Hooke's law 

(equation A1.3), can be allowed to become time dependent: relaxing with 

increasing time (see Figure A2.1). 

In Figure A2.1, the decay of the modulus from its "unrelaxed" 

state (MU). to it's "relaxed" state (Mr). Is some function of time, the 

simplest case being an exponential decay characterised by a single 

relaxation time constant r; 

M(t) - Mr + (Mu - Mre A2.1 

Mu - M(0). Mr M((*) A2.2 
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A2.3 Dynamic anelastic deformations 

It is useful to treat dynamic anelastic deformations in the 

frequency domain. In a similar way as for classical elastic deformations 

(see A1.4.2), anelastic deformations can be classified into subresonanct. 

resonant and supraresonant divisions, depending upon the frequency of the 

deformations. 

For subresonant deformations. a complex frequency dependent 

dynamic modulus a(w) can be defined for a harmonic strain disturbances 

(E). With reference to Figure A2.2. if a harmonic stress (a) is applied to 

an anelastic material at a frequency w, then the strain (a) induced in the 

material will lag behind the stress by an angle $, known as the loss 

angle. The complex dynamic modulus is defined by the ratio of the stress 

to the strain: 

iwt 

E0. e 
A2.3 

The complex dynamic modulus can be simply divided into real and 

imaginary components (mr(w) and ai(w)), for which the following 

relationships hold for small c: 

s(0) - m(w) + im1(0) A2.4 

(ml2 . mr2 + nit A2.5 

tan(+) -  r/a1 29 + A2.6 

; (co) - x. -  (0) a Mr A2.7 
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In a similar way, complex dynamic anelastic moduli G. E. R and D. 

can be defined after the elastic moduli G, E, K and D. Note, the 

convention of dropping from upper case for time-domain moduli, to lower 
AA .ý 

case for frequency dependent moduli (e. g. M to  ) is not adopted for G, E. 

K and D. 

A2.6 Experimental methods for characterising dynamic an elasticity 

Extensional-mode experiments can yield the longitudinal anelastic 

properties (denoted by the subscript E) of materials. Torsional-mode 

experiments can give the shearing anelastic properties (denoted by the 

subscript S). Analysis is presented for the extensional case. However, 

similar analysis hold for shearing deformations. 

At subresonant frequencies anelastic properties of materials can 

be determined from applying a known stress (a) to the material and 

measuring the resultant strain (E). If a is plotted versus E as in Figure 

A2.3, then a hysteresis curve will be produced. The gradient of the major 

axis of the curve will give 121 
, while a good approximation for the loss 

angle can be found by the shape of the curve. Hardin ate. (1967). If At 

is the area of the shaded triangle in Figure A2.3 and Al is the area 

inside the hysteresis loop then a good approximation for the extensional 

damping ratio DE is given by: 

Al 
DE 4W. At 

+/2 A2.8 

At resonant frequencies (w 
r), 

IiI can be found if the dimensions 

and shape of the anelastic body are known (see Equation A1.10). At 

resonance. two methods can be used to determine parameters which are 

related to the loss angle. For the first method, the extensional specific 
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attenuation (1/QE) is deduced from width of the "Lorenzian" resonance peak 

(4w) at 1/�2 the maximum displacement amplitude at wr (Norwick and Berry, 

1972, White, 1983). For the second method, the logarithmic decrement is 

determined from amplitude of the displacement of two successive cycles (An 

and An+1) as the body is allowed to relax freely from resonance 

I/QE = 2&Alwr = +E A2.9 

aE = In(An/AA+1) = 71. +E A2.10 

A2.7 Anelastic wave nronagation 

A2.7.1 The anelastic wave eauation 

The three dimensional elastic wave equation for the dilatation s 

(Equation A1.13) can be simply extended for an anelastic material: 

atat - n. v2ý A2.11 

D 2G +A A2.12 

E- t0. e1«4t+kx) A2.13 

The dilatation travels with a complex wave number k. which is 

related to the real and imaginary components of the modulus D. as well as 

to the velocity (Vp) and attenuation coefficient ap of the wave. It is 

straightforward to show that the following relations exist (e. g. Norwick 

and Berry, 1972): 

kr + ik1 
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kr A2.16 
r6r] 1/2 

1/2 
ki 2DT . 

[Dr, 
A2.17 

V- w/k r 
A2.18 

aP = ki Z' A2.19 

here, ap is in Nepers per unit length. The attenuation coefficient 

may also be expressed in decibels per unit length: 

ap (dB/m) = 8.686ap (Np/m) A2.20 
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Figure A2.1 Time dependent anelastic modulus relaxation 
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Figure A2.2 Anelastic modulus complex phase diagram 
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Figure A2.3 Stress - strain hysteresis loop 
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APPENDIX 3 Description and geoeraDhical location of data sets and 

samples 

Table titles: 

A3.1 Description and location of data sets used in Blot's theory 

A3.2 Description and location of samples used for resonant column tests 

(Sites 1 and Site 4). 

A3.3 Description and location of samples used for consolidation / 

permeability tests at site 1 (after Schultheiss and Gunn, 1985) 

A3.4 Description and location of samples used for consolidation. 

permeability. VP and Vs tests at Site 2 

A3.5 Location of PUPPI deployments at Site 1 

Table A3.1 Description and location of data sets used in Biot's theory 

Data set Sediment type 

TURB M1 Clay/carbonate 
_ turbidite 

TURK M2 Turbidite 

TURB 
_M3 

Turbidite 

CARB 
_Ml/M2 

Carbonate ooze 

CARB 
_M3/M4 

Carbonate ooze 

SILT M1 Fine silt 

SAND M1 Beach sand 

SAND M2 Sand 

SAND M3 Sand 

SAND M4 Glass beads 

Site Table Reference 

1 3.1 

1 4.3 Hydrodynamic model Site 1 

1 10.2 Geoacoustical model Site 1 

3 7.1.7.2 Johnson al. (1977) 

2 11.1-11.6 Geoacoustical models Site 2 

4 6.5 Hamdi and Taylor-Smith 
(1982) 

4 5.1 

- 6.2 Wingham (1985) 

- 6.3.6.4 Bedford j. (1982) 

- 6.6 McCann and McCann (1985) 
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Table A3.2 Description and location of samples used for resonant column 
tests (Sites 1 and Site 4). 

Sample No. / Sediment Sub-bottom Latitude Longitude Site Water 
Sample code type depth (m) NW depth (m) 

D11174/11/70 turbidite*1 15.7 31ý 26ý .5 2449 .6 1 5439 
TURB 2 (nanno marl) 

D11174/06/80 turbidite 8.3 
o 

31 
' 

26 .5 

o 

24 49 .6 1 5439 
TURB 3 (nanno marl) 

D11174/11/12 0 turbidite 16.2 
o 

31 26 .5 
o 

24 49 .6 1 5439 
TURB 4 (nanno marl) 

D11192/03/40 carbonate 3.4 
o 

31 
I 

29 .1 
o 

24 03 .8 1 5378 
CARB (nanno ooze) 

D11192/07/90 red clay 9.9 
o 

31 29 .1 
0 

24 03 .8 1 5378 
CLAY (nanno ooze) 

Newborough marine sand*2 surface New bor ough, Angle sey, U. K. 
sand (SAND) 

*1 
see Weaver and Rothwell (1987) for further description 

*2 
see Bennell 21 Al. (1984) for further description 

Table A3.3 Description and location of samples used for consolidation / 
permeability tests, Site 1 (after Schultheiss and Gunn, 1985) 

Sample No. Sediment Sub-bottom Latitude Longitude Site Water 
type depth (m) N W depth (m) 

D10695/6/28 turbidite*1 7.94 31 23 .7 24 46 .3 1 5433 
(nanno marl) 

D10695/2/14 turbidite 1.68 
o 

31 
t 

23 .7 
o 

24 46 .3 1 5433 
(nanno marl) 

D10695/3/28 turbidite 3.90 
o 

31 
t 

23 .7 
o 

24 46 .3 1 5433 
(nanno marl) 

D10325/7 pelagic 0.44 30 22 .9 24 05 .8 1 5407 
(foram nanno marl) 

S126/4-5 turbidite 1.02 31 31 .7 24ý 25 3 1 5446 
(nanno marl) 

S126/4-4 turbidite 0.74 
o 

31 
I 

31 .7 
o 

24 
s 

25 .3 1 5446 
(nanno marl) 

S126/4-10 turbidite 3.44 
o 

31 
i 

31 
.7 

o 
24 25 .3 1 5446 

(nanno marl) 

S126/2-3 pelagic 0.62 31 32' .2 24 50 .5 1 5446 
(foram nanno marl) 

*1 
see Weaver and Rothwell (1987) for further descriptions 
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Table A3.4 Description and location of samples used for consolidation. 
permeability. VP and Vs tests at Site 2 

Sample No. / Sediment Sub-bottom Latitude Longitude Site Water 
Sample code type depth (m) N W depth (m) 

115 709C 1311 05 147 119.27 
oº 

3 54 .7 
o 

60 
º 

33 
.2 2 3048 

CARB 1 (nanno ooze) 

115 7098. 7H 06 144 60.96 
oº 

3 54 
.7 

o 
60 33 .2 2 3048 

CARB 2 (nanno ooze) 

115 709C 1011 05 144 90.36 
º CO 

3 54 .7 
o 

60 
º 

33 .2 2 3048 
CARE 3 (nanno ooze) 

115 709C 10H 05 147 90.39 
oº 

3 54 .7 
o 

60 
º 

33 .2 2 3048 
CARB 4 (nanno ooze) 

115 709C 03H 05 146 20.87 
o 

3 54 
.7 

o 
60 

º 
33 

.2 2 3048 
CARB 5 (nanno ooze) 

oI o º 

115 709C 0511 05 144 40.24 3 54 .7 60 33 .2 2 3048 
CARE 6 (nanno ooze) 

Table A3.5 Location of PUPPI deployments at Site I 

Station No. Longitude Latitude 
N W 

CD6/1 
o 

31 17 .6 

o 

25 19 .8 
CD6/2 

o1 
31 18 .2 

o 
25 18 .7 

CD6/3 
oI 

31 18 
.9 

o 
25 18 .5 

CD9B/8 
oI 

31 30 
.2 

o 
25 03 

.6 
CD9B/11 

o0 
31 26 

.7 
o 

24 53 
.8 

CD9B/28 
o 

31 31 .7 
o 

25 53 .0 
D11317 

o' 
30 43 .8 

o 
24 29 .3 

D11320 
o1 

31 21 
.4 

o 
25 25 .1 

D11329 
o' 

31 20 .7 
CO f 

25 27 .1 
D11381 

oI 
31 20 

.9 
ot 

25 25 
.7 

D11382 
o' 

31 20 .8 
01 

25 25 .8 
D11388 

01 
31 27 .9 

ot 
26 17 

.8 
D11391 31 20 .9 25 25 .8 
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APPENDIX 4 BASIC code for solving Biot's characteristic equation 

20 PRINT ýs******s****s*************************************s********** .. 

30 PRINT 
40 PRINT " Program BIOT_FRQ. BAS It 

50 PRINT " This program calculates the velocity and attenuation from the" 
60 PRINT " Blot theory as a function of frequency. The file containing 
70 PRINT " the input and output file names. and the default parameter 
80 PRINT " values is specified by the user. 
90 PRINT 
100 PRINT " Note. 1. set CAPITALS LOCK on. 
110 PRINT " 2. use BASIC/D (double precision basic) only 
120 PRINT 
130 PRINT 
140 PRINT 
150 PRINT " M. T. Hurley 
160 PRINT 
170 PRINT " August 1987 
180 PRINT 
190 PRINT "sss: sssssssssss*ss*sss*ssss*s: *s*::: s*:: *: ****: *****: **: **: ** ". 
200 PRINT 
210 REM 
220 REM Notes 
230 REM 
240 REM a. Geertsma and Smit approximation will break down if the 
250 REM Blot frequency correction function is used. Set F1=1 and 
260 REM F0=0 for approximate analysis. 
270 REM b. Infinite frequency asymptote is subject to the same 
280 REM limitations as stated in a.. as it is calculated after 
290 REM Geertsma and Smit 
300 REM 
310 REM 1.0 Wait to start 
320 REM 
330 GOSUB 4810 
340 REM 
350 REM 1.1 Dimension and define variables 
360 REM 
370 DEFDBL A-E : DEFDBL X-Y 
380 PI=3.14159265£ : E=2.7182818£ 
390 DIM IN(30.2) : DIM 01(20): DIM 00(20) 
400 DIM NP(40) : DIM A(40) : DIM VR(40) : DIM VS(40) 
410 REM 
420 REM 1.2 Set input parameters and model type 
430 REM 
440 GOSUB 4110 : REM GET INPUT FILE NAME FROM USER 
450 GOSUB 4200 : REM READ INPUT PARAMETERS FROM FILE 
460 GOSUB 4380 : REM SET PROGRAM VARIABLES 
470 GOSUB 4510 : REM DISPLAY MODEL TYPE ON MONITOR 
480 GOSUB 4880 : REM READ DATA FROM FILE 
490 GOSUB 4960 : REM RESET PROGRAM VARIABLES 
500 REM 
510 REM 2.0 SOLVE FREQUENCY EQUATION 
520 REM 
530 GOSUB 680: REM - SWEEP PARAMETER ADJUST 
540 GOSUB 780: REM - SET VARIABLES AND PRINTER 
550 GOSUB 940: REM - PORE SIZE SPECTRUM 
560 GOSUB 1560: REM - FREQ CORRECTION FUNCTION 
570 GOSUB 2090: REM - VISCOELASTIC COMLEX MODULI 
580 GOSUB 2400: REM - VISCOELASTIC COEFFICIENTS 
590 GOSUB 2710: REM - SOLVE QUADRATIC 

247 



600 IF M$(2)<>"" THEN 550 
610 GOSUB 3690: REM - ASYMPTOTIC SOLUTIONS 
620 GOSUB 5160: REM - OUTPUT RESULTS 
630 IF MS(5)-"D" THEN 650 
640 IF SWEEPS<>"DONE" THEN 530 
650 IF MS(6)<>"" THEN 480 
660 STOP 
670 REM 
680 REM 3.0 Adjust parameters for sweep 
690 REM 
700 REM 3.1.1 Frequency sweep 
710 -REM 
720 IF MS(5)<>"A" THEN RETURN 
730 F-10-FPOW 
740 IF FPOW>FMAX THEN SWEEPS="DONE" 
750 FPOW-FPOW+1/FINC 
760 RETURN 
770 REM 
780 REM 3.1.2 Set variables 
790 REM 
800 W=2*PI*F : DT=N*DF+(1-N)*DS 
810 FC=(NU*N)/(2*PI*DF*K) 
820 FT=NU*PI/(16*DF*A°2) 
830 IF SWEEP<>0 THEN 870 
840 FCP-FC : FTP=FT : AP=A 
850 KP-K : DP-D 
860 REM 
870 REM 3.1.3 Calculate frame modulus 
880 REM 
890 IF MS(9)<>"YES" THEN 920 
900 SIG=POIS 
910 KB1=2*G1*(1+SIG)/(3*(1-2*SIG)) 
920 RETURN 
930 REM 
940 REM 3.2 Pore size spectrum 
950 REM 
960 REM 3.2.1 SET PORE DISTRIBUTION 
970 REM 
980 REM 3.2.1.1 LEES DISTRIBUTION 
990 REM 
1000 IF MS(2)="N" THEN 1180 
1010 IF M$(2)<>"L" THEN RETURN 
1020 IF S>O THEN 1310 
1030 A(0)=1 : A(1)-. 414 : A(2)-. 225 : A(3)-. 175 
1040 A(4)-. 117 : VS(0)-0! : VS(1)=. 0525 
1050 VS(2)-. 017 : VS(3)-. 032 : VS(4)-. 011 
1060 VR(O)-. 2595 : VR(1)-. 207 : VR(2)=. 19 
1070 VR(3)-. 158 : VR(4)-. 149 
1080 FOR I-0 TO 4 : A(I)=A(I)*D : NEXT I 
1090 FOR I-1 TO 8 
1100 FOR J-1 TO 4 
1110 A(4*I+J)=A(4*I+J-1)*A(J)/A(J-1) 
1120 VS(4*I+J)=VR(4*I+J-1)*VS(J)/VR(J-1) 
1130 VR(4*I+J)_VR(4*I+J-1)-VS(4*I+J) 
1140 NEXT J 

1150 NEXT I 

1160 GOTO 1310 
1170 REM 
1180 REM 3.2.1.2 NORMAL MODAL DISTRIBUTION 
1190 REM 
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1200 NP(1)-. 4772 : NP(2)-. 4641 : NP(3)=. 4452 
1210 NP(4)-. 4192 : NP(5)-. 3849 : NP(6)-. 3413 
1220 NP(7)=. 2881 : NP(8)-. 2258 : NP(9)=. 1554 
1230 NP(10)=. 0793 : NP(11)-O 
1240 FOR I= 1 TO 10 
1250 A(11-I)=AMOD+AMOD*2*I/30 : VR(0)=1 
1260 A(10+I)-AMOD-2*AMOD*I/30 
1270 VS(I)=(NP(I)-NP(I+1)) 
1280 VS(21-I)=(NP(I)-NP(I+1)) 
1290 NEXT I 
1300 REM 
1310 REM 3.2.2 INTEGRAL PORE SIZE SOLUTIONS 
1320 REM 
1330 IF S<3 THEN 1370 
1340 VD=V(1)-V(O): V(O)=V(1) 
1350 IF VD<>0 THEN 1370 
1360 FIN-1 
1370 IF FIN=O THEN 1420 
1380 V1A-V1A+V(1)*(1-TVS) 
1390 V2A=V2A+V(2)*(1-TVS) 
1400 AC1A=ACTA+AC(1)*(1-TVS) 
1410 AC2A=AC2A+AC(2)*(1-TVS): GOTO 1470 
1420 V1A=V1A+V(1)*VS(S)/VR(0) 
1430 V2A-V2A+V(2)*VS(S)/VR(0) 
1440 TVS-TVS+VS(S)/VR(0) 
1450 AC1A=ACTA+AC(1)*VS(S)/VR(O) 
1460 AC2A-AC2A+AC(2)*VS(S)/VR(0) 
1470 AC(1)=AC1A : AC(2)-AC2A 
1480 S=S+1: K=A(S)-2*N/(8*2) : A-A(S) 
1490 IF FIN<>1 THEN 1530 
1500 V(1)=V1A : V(2)-V2A 
1510 Q(1)-W/(2*V(1)*AC(1)) 
1520 SWEEPS="DONE" : GOTO 620 
1530 IF K<>0 THEN RETURN 
1540 FIN-1: GOTO 1360 
1550 REM 
1560 REM 3.3 FREQUENCY CORRECTION FUNCTION 
1570 REM 
1580 REM 3.3.1 FREQUENCY RANGE 
1590 REM 
1600 FC-(NU*N)/(2*PI*DF*K) 
1610 IF M$(8)="" THEN F1=1 AND FO=0 : GOTO 2070 
1620 FT=NU*PI/(16*DF*A*2) 
1630 IF F<FT THEN F1=1: FO=0 : GOTO 2070 
1640 IF X=((W*DF/NU)". 5)*A/2 THEN 2070 
1650 X=((W*DF/NU)-. 5)*A/2 
1660 BERP=0 : BEIP=0 : BERN=0 : BEIN=0 
1670 IF X>5 THEN 1850 
1680 REM 
1690 REM 3.3.2 BESSEL FUNCTIONS FOR X<5 
1700 REM 
1710 FOR I=0 TO 10 
1720 GOSUB 5230: IFAC=FAC: I=I+1: REM - CALC I! 
1730 GOSUB 5230: JFAC=FAC: I-I-l: REM - CALC (I+1)! 
1740 TRMO=((-1)'I*(-1)+i)/2 
1750 TRME=((-l)-(I)+l)/2 
1760 EXPO=X"(2*I+1) 
1770 ESPE-X"(2*I) 
1780 SIGX-(-1)"(INT(I/2)*1) 
1790 BERP-BERP+(TR. MO*SIGN*EXPO/(IFAC*JFAC)) 
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1800 BEIP=BEIP-(TRME*SIGN*EXPO/(IFAC*JFAC)) 
1810 BERN-BERN-(TRME*SIGN*EXPE/(IFAC-2)) 
1820 BEIN=BEIN-(TRMO*SIGN*EXPE/(IFAC"2)) 
1830 NEXT 
1840 GOTO 1950 
1850 REM 
1860 REM 3.3.3 BESSEL FUNCTIONS FOR X>5 
1870 REM 
1880 TS1=. 7071*X*2 : TS2=. 3927 
1890 TS3=1.1701 : TS4-1.9635 
1900 BERN=SIN(TS1+TS3)+(SIN(TS1+TS2))/(16*X) 
1910 BEIN=SIN(TS1-TS2)+(SIN(TS1-TS3))/(16*X) 
1920 BERP=SIN(TS1+TS4)-(SIN(TS1+TS3))/(16*X/3) 
1930 BEIP=SIN(TS1+TS2)-(SIN(TS1-TS2))/(16*X/3) 
1940 REM 
1950 REM 3.3.4 COMPLEX CORRECTION 
1960 REM 
1970 Xl=BERP : X2=BEIP : X3=BERN : X4=-BEIN 
1980 GOSUB 5300 : REM COMPLEX * 
1990 Y1=X5 : Y2=X6 : Y3=(X3*X3)+(X4*X4) 
2000 T1=Y1/Y3 : TO=Y2/Y3 
2010 Xl=-X*TO/2 : X2=X*T1/2 
2020 X3=-T1/X : X4-(TO/X)-1 
2030 GOSUB 5300 : REM COMPLEX 
2040 Y1=X5 : Y2=X6 : X1=X3 : X2=-X4 
2050 GOSUB 5300 : REM COMPLEX * 
2060 Y3=X5 : Y4-X6 : F1=Y1/Y3 : FO=Y2/Y3 
2070 RETURN 
2080 REM 
2090 REM 3.4 FREQ DEPENDENT COMPLEX MODULI 
2100 REM 
2110 IF M$(3)="Q" THEN 2260 
2120 IF M$(3)<>"Z" THEN RETURN 
2130 REM 
2140 REM 3.4.1 STANDARD VISCOELASTIC SOLID 
2150 REM 
2160 TS1=VSR : TS2=QSR : TS3=STOR 
2170 GOSUB 2200 : G1=Ml : GO=M2 
2180 TS1-VER : TS2=QER : TS3=ETOR 
2190 GOSUB 2200 : KB1=M1 : KBO=M2 : RETURN 
2200 VR=TS1/(1+(1/(2*TS2))) 
2210 K1=VR'2*DT : K2=2*K1/TS2 
2220 TS4=W*TS3/(1+(W*TS3)-2) 
2230 M1=K1*(1+K2*W*TS3*TS4/K1)'2 : M2=K2*TS4 
2240 RETURN 
2250 REM 
2260 REM 3.4.2 BAND LIMITED CONSTANT "Q" 
2270 REM 
2280 TS1=VSL : TS2=QSL*2*PI : GOSUB 2140 
2290 G1=M1 : GO=M2 
2300 TS1=VEL : TS2=QEL*2*PI : GOSUB 2140 
2310 KB1=M1 : KBO=M2 : RETURN 
2320 TS4=W*(S2-S1) : TS5=W'2+S1*S2 
2330 TS6=S2-2*(S1'2+W'2) : TS7=S1"2*(S2"2+W-2) 
2340 TS8=S2'2*(S1-2+W'2) : TS9=S1'2*(S2'2+W'2) 
2350 VR=TS1/(1+(1/TS2)*LOG(TS8/TS9)) 
2360 M1-VR-2*DT*(1+(1/TS2)*LOG(TS6/TS7)) 
2370 M2=VR'2*DT*4*(ATN(TS4/TS5))/TS2 
2380 RETURN 

2390 REM 
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2400 REM 3.5 COMPLEX VISCOELASTIC COEFFICIENTS 
2410 REM 
2420 REM 3.5.1 "P" 
2430 REM 
2440 X1=(1-N-KB1/KS)*KS*(1-N)+(N*KS*KB1/KF) 
2450 X2=-KBO*(N-1)+(N*KS*KBO/KF) 
2460 X3=(I-N+N*KS/KF-KBl/KS) 
2470 X4-KBO/KS 
2480 GOSUB 5300 : REM COMPLEX 
2490 Y1-X5 : Y2-X6 : TS1=X1 : X1=X3 : X2--X4 
2500 GOSUB 5300 : REM COMPLEX 
2510 - Y3=X5 : Y4-X6 : GE=G1 
2520 PE=TS1/X3+4*GE/3 
2530 P1=Y1/Y3+4*G1/3 
2540 PO=Y2/Y3+4*GO/3 
2550 REM 
2560 REM 3.5.2 
2570 REM 
2580 X1=(1-N-KB1/KS)*KS*N : X2=-N*KBO 
2590 GOSUB 5300 : REM COMPLEX 
2600 Y1=X5 : Y2-X6 : QE=X1/X3 
2610 Q1-Yl/Y3 : QO=Y2/Y3 
2620 REM 
2630 REM 3.5.3 "R" 
2640 REM 
2650 XI=N-2*KS : X2=0 
2660 GOSUB 5300 : REM COMPLEX 
2670 Y1-X5 : Y2-X6 : RE=Xl/X3 
2680 Rl=Y1/Y3 : R0-Y2/Y3 
2690 RETURN 
2700 REM 
2710 REM 3.6 SOLVE QUADRATIC 
2720 REM 
2730 REM 3.6.1 MASS AND INERTIAL TERMS 
2740 REM 
2750 B=N-2*NU/K 
2760 TS1--(T-1)*N*DF-FO*B/W 
2770 TS2=(I-N)*DS-TS1 
2780 TS3=N*DF-TS1 : TS4=B*F1/W 
2790 REM 
2800 REM 3.6.2 NORMALISE COEFFICIENTS 
2810 REM 
2820 H=PE+2*QE+RE 
2830 Y(1.1.1)=P1/H : Y(1.1.0)=PO/H 
2840 Y(1.2.1)=Q1/H : Y(1.2.0)=QO/H 
2850 Y(2.2.1)=R1/H : Y(2.2.0)=RO/H 
2860 X(1.1.1)=TS2/DT : X(1.1.0)=TS4/DT 
2870 X(1.2.1)=TS1/DT : X(1.2.0)=-TS4/DT 
2880 X(2.2.1)=TS3/DT : X(2.2.0)=TS4/DT 
2890 REM 
2900 RE. M 3.6.3 QUADRATIC COEFFICIENTS A, B. C 
2910 REM 
2920 REM 3.6.3.1 COEFFICIENT A 
2930 REM 
2940 Al=0 : B1=O : C1=0 
2950 AO=0 : BO=0 : CO=O 
2960 FOR I=1 TO 2 
2970 X1=X(l. I. 1) : X2=X(1. I. 0) 
2980 X3=X((3-I). 2.1) : X4=X((3-I), 2 0) 
2990 . GOSUB 5300 : REM COMPLEX * 
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3000 Al=A1+(X5*(-1)^(I+1)) : A0=AO+(X6*(-1)"(I+l)) 
3010 NEXT I 
3020 REM 
3030 REM 3.6.3.2 COEFFICIENT B 
3040 REM 
3050 FOR I-1 TO 3 
3060 Z1=1 : Z2=1 : Z3-2 : Z4-2 : IF I-1 THEN 3090 
3070 Z1-2 : Z2-2 : Z3=1 : Z4-1 : IF I=2 THEN 3090 
3080 Z1=1 : Z2=2 : Z3-1 : Z4-2 : IF I=3 THEN 3090 
3090 TS1-((Z1-Z2)*3+1) 
3100 X1=X(Z1. Z2.1)*TS1 : X2=X(Z1. Z2,0)*TS1 
3110 X3-Y(Z3. Z4.1) : X4=Y(Z3. Z4.0) 
3120 GOSUB 5300 : REM COMPLEX 
3130 B1-Bl+X5 : BO=BO+X6 
3140 NEXT I 
3150 REM 
3160 REM 3.6.3.3 COEFFICIENT C 
3170 REM 
3180 FOR I-1 TO 2 
3190 X1=Y(1. I. 1) : X2=Y(1. I, 0) 
3200 X3=Y((3-I). 2.1) : X4=Y((3-I). 2, O) 
3210 GOSUB 5300 : REM COMPLEX * 
3220 C1=C1+(X5*(-1)-(1+1)) : CO=C0+(X6*(-1)-(1+1)) 
3230 NEXT I 
3240 REM 
3250 REM 3.6.4 PARTIAL QUADRATIC SOLUTION 
3260 REM 
3270 X1=Bl : X3=B1 : X2=BO : X4=BO 
3280 GOSUB 5300 : REM COMPLEX 
3290 Y1-X5 : Y2-X6 : X1=A1 
3300 X2=AO : X3=C1 : X4=CO 
3310 GOSUB 5300 : REM COMPLEX 
3320 EI=Y1-4*X5 : EO=Y2-4*X6 
3330 TS1-(E1+SQR(E1*E1+E0-2)) 
3340 IF TS1>0 THEN 3370 
3350 K=A(S-1)-2*N/(8*2) 
3360 A=A(S-1): FIN=1: RETURN 
3370 D1=SQR((E1+SQR(E1*E1+E0"2))/2) 
3380 DO=E0/(2*D1) 
3390 REM 
3400 REM 3.6.5 VELOCITY AND ATTENUATION SOLUTIONS 
3410 REM 
3420 FOR I-1 TO 2 
3430 X1=B1-((-1)'I*D1) : X2=BO-((-l)-I*DO) 
3440 X3=A1 : X4--AO : TS1=2*(A1"2+AO-2) 
3450 GOSUB 5300 : REM COMPLEX 
3460 El-X5/TS1 : EO=X6/TS1 
3470 TS1=(E1+SQR(E1"2+EO 2)) 
3480 IF TS1>0 THEN 3510 
3490 K=A(S-1)-2*N/(8*2) 
3500 A-A(S-1): FIN-1: RETURN 
3510 C(I. 1)-SQR((E1+SQR(E1"2+EO 2))/2) 
3520 C(I. 0)=EO/(2*C(I. 1)) 
3530 TS1=C(I. 1)/(C(I. 1)-2+C(I. O)-2) 
3540 TS2=-C(I. 0)/(C(I, 1)'2+C(I, 0)-2) 
3550 K(1.1)=((DT/H)". 5)*W*TS1 
3560 K(I. 0)-((DT/H)-. 5)*W*TSZ 
3570 V(I)-W/K(I. 1) : AC(I)=K(I, O)*8.686001 
3580 Q(I)=W/(2*V(I)*AC(I)) : D(I)=PI/Q(I) 
3590 TS1=AC(I) 
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3600 REM 
3610 REM 
3620 
3630 
3640 REM 
3650 REM 
3660 REM 
3670 REM 
3680 REM 
3690 
3700 
3710 
3720 
3730 
3740 
3750 
3760 
3770 REM 
3780 REM 
3790 REM 
3800 
3810 
3820 
3830 
3840 
3850 
3860 REM 
3870 REM 
3880 REM 
3890 
3900 
3910 
3920 
3930 
3940 
3950 
3960 REM 
3970 REM 
3980 REM 
3990 
4000 
4010 
4020 
4030 
4040 
4050 
4060 
4070 
4080 
4090 
4100 REM 
4110 REM 
4120 REM 
4130 
4140 
4150 
4160 
4170 
4180 
4190 

IF TS1<O THEN K=A(S-1)'2*N/(8*2) 
IF TS1<O THEN A-A(S-1): FIN-1: GOTO 1420 

NEXT I 
RETURN 

3.7 ASYMPTOTIC APPROXIMATIONS 

3.7.1 NON DISSIPATIVE STIFF FRAME 

FOR I-1 TO 2 
TS1-DT*X(1.1.1) : TS2=DT*X(1.2.1) 
TS3=DT*X(2.2.1) : TS4=PE*RE-QE-2 
DELT=PE*TS3+RE*TS1-2*QE*TS2 
TS5=TS1*TS3-TS2-2 
TS6=SQR(DELT'2-4*TS4*TS5) 
VE(I)=SQR((DELT-((-1)"I*TS6))/(2*TS5)) 

NEXT I 

3.7.2.1 WHITE LOW FREQUENCY SLOW WAVE 

TS1=N/KF+(1-N)/KS-KB1/(KS"2) 
TS2-(1-KB1/KS)-2: K1-KB1+TS2/TS1 
TS1-(KB1+G1*4/3)/(K1+G1*4/3) 
TS2-(N/KF+(1-N)/KS-KB1/(KS"2)) 
KA-TS1/TS2: VA(1)=(2*W*K*KA/NU)". 5 
ARGO=W*. 019/VA(1) 

3.7.2.2 BIOT LOW FREQUENCY SLOW WAVE 

VC=(R/DT)-. 5 : X1=C1 : X2=CO 
X3. X(1.2.1)+X(2.2.1) 
X4--X(1.2.0)-X(2.2.0) 
GOSUB 5300 : REM COMPLEX 
Y1-X5 : Y2-X6 : X1-X3 : X2=-X4 
GOSUB 5300 : REM COMPLEX * 
VA(2)_VC*((2*F*Y1/(FC*X5))". 5) 

3.8 Geertsma and Smit Approximation 

KE=PE-2*G1-(QE-2)/RE : ME-RE/N'2 
LE_N*(QE+RE)/RE : HE-KE+LE-2*ME+2*G1 
DC=DT*X(2.2.1)/N-2 : GL-DF/DT 
GC-DC/DT : SK-LE*ME/HE : SL-ME/HE 
WCG_F1*NU/((GC-GL'2)*K*DT) 
TS1=GC+SL-2*GL*SK : TS2=GC-GL-2 
V1Z-(HE/DT)-. 5 
V1Is((HE*TS1)/(DT*TS2))-. 5 
TS1-(WCG/W)"2 : TS2=V1I-2 : TS3-VIZ-2 
V1G-SQR((TS2-2+TS3-2*TS1)/(TS2+TS3*TS1)) 
RETURN 

4.0 Get file name from user 

CLS : PRINT : PRINT : PRINT 
PRINT SPC(10) "Input set file name 
INPUT SETS : PRINT : PRINT SPC(10) 
PRINT SPC(10) "Hit R to re-enter. 
GOS-INKEYS : IF GOS-"" THEN 4170 
IF GOS-"R" THEN 4130 
RETURN 

We A: 289C SET. DAT)"; 
"Set file is "SETS 

anything else to continue" 
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4200 REM 
4210 REM 4.1 Set model type and open files 
4220 REM 
4230 OPEN SETS FOR INPUT AS £1 
4240 FOR J-1 TO 2 
4250 FOR 1-0 TO 29 
4260 INPUT£1. IN(I, J) 
4270 NEXT I 
4280 NEXT J 
4290 FOR I=1 TO 9: INPUT£1. M$(I): NEXT I 
4300 CLOSE £1 
4310 IF MS(6)=""THEN 4330 
4320 OPEN M$(6) FOR INPUT AS £1 
4330 IF M$(7)-""THEN 4350 
4340 OPEN M$(7) FOR OUTPUT AS £2 
4350 RETURN 
4360 REM 
4370 REM 4.2 Reset parameters 
4380 REM 
4390 N-IN(l. 1) : KF-IN(2.1) : KS-IN(3.1) : T-IN(4.1) 
4400 G1-IN(5.1) : GO=IN(6,1) : KB1-IN(7.1) : KBO=IN(8,1) 
4410 DF-IN(9,1) : D=IN(10.1) : DS=IN(11.1) : A=IN(12,1) 
4420 NU=IN(13.1) : K=IN(14,1) : F-IN(15.1) : POIS-IN(16.1) 
4430 S2-IN(17.1) : S1-IN(18.1) : VSL-IN(19.1) : VEL=IN(20.1) 
4440 QSL-IN(21,1) : QEL=IN(22.1) : VSR-IN(23.1) : VER=IN(24.1) 
4450 STOR=1/IN(25,1) : ETOR=1/IN(26,1) : FPOW-IN(17,2) 
4460 FINC=IN(18.2) : FMAX=IN(19,2) : SIG=IN(20.2) 
4470 SMAX=IN(21.2) : SINC=IN(22.2) 
4480 RETURN 
4490 REM 
4500 REM 4.3 Display selected program mode 
4510 REM 
4520 TS1-VAL(M$(1)) 
4530 IF TS1<4 THEN D$(1)="BIOT POROELASTIC" 
4540 IF TSl=4 THEN D$(1)="BIOT-GARDNER ROD WAVES" 
4550 IF TS1-5 THEN DS(1)="ASYMPTOTIC POROELASTIC SOLUTIONS" 
4560 IF M$(2)<>"" THEN D$(2)="YES" 
4570 IF M$(3)<>"" THEN D$(3)-"YES" 
4580 IF M$(4)<>"" THEN D$(4)="YES" 
4590 IF M$(5)="A" THEN D$(5)-"FREQUENCY" 
4600 IF M$(5)="B" THEN D$(5)-"POISSON'S RATIO" 
4610 IF MS(5)="C" THEN D$(5)="CONVERGENCE" 
4620 D$(6)=MS(6) : D$(7)-"PRINTER" 
4630 IF M$(7)<>"P" THEN D$(7)=M$(7) 
4640 IF M$(8)<>"" THEN DS(8)="YES" 
4650 IF MS(9)<>"" THEN D$(9)-"YES" 
4660 CLS : PRINT : PRINT 
4670 PRINT SPC(12) "Selected program mode read from ": SETS 
4680 PRINT : PRINT 
4690 PRINT SPC(10)"MODEL : "D$(1) 
4700 PRINT SPC(10)"PORE SIZE DISTRIBUTION : "D$(2) 
4710 PRINT SPC(10)"VISCOELASTIC COEFFICIENTS : "D$(3) 
4720 PRINT SPC(10)"KOZENY-CARMAN PERMEABILITY : "D$(4) 
4730 PRINT SPC(10)"SWEEP : "D$(5) 
4740 PRINT SPC(10)"FILE INPUT : "D$(6) 
4750 PRINT SPC(10)"FILE OUTPUT : "D$(7) 
4760 PRINT SPC(10)"FREQUENCY CORRECTION : "D$(8) 
4770 PRINT SPC(10)"CALCULATE FRAME MODULUS : "D$(9) 
4780 PRINT : PRINT 
4790 PRINT SPC(12) "Edit SET file to alter mode" 
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4800 PRINT SPC(12) "Press any key to continue" 
4810 GOS=INKEYS : IF G0$="" THEN 4810 
4820 CLS: PRINT: PRINT: PRINT: PRINT: PRINT 
4830 PRINT SPC(16) "PROGRAM BIOT_FRQ. BAS IN OPERATION": PRINT 
4840 PRINT SPC(14) "(note this program is quite slow)" 
4850 RETURN 
4860 REM 
4870 REM 4.4 Read data from disc 
4880 REM 
4890 IF MS(6)="" THEN RETURN 
4900 N-(DT-DS)/(DF-DS) 
4910 G1=DT*VSHEAR-2 
4920 V(1)-O: INC=. 1 
4930 RETURN 
4940 REM 
4950 REM 4.5 Reset program variables 
4960 REM 
4970 S-0 : AMOD=A : W=2*PI*F : SWEEPS="" : CONVS="" 
4980 FPOW=IN(17,2) : FINC-IN(18.2) 
4990 SIG-IN(20,2) : SINC=IN(22.2) 
5000 IF MS(5)="C" THEN SINC=. 1 
5010 S=0 : V1A=0 : V2A=0 : TVS=0 
5020 AC1A=0 : AC2A=0 : FIN=0 
5030 V(1)=0 : V(2)=0 : AC(1)=0 : AC(2)=0 
5040 V(0)=0 : VD=0 : AC(0)=0 : AMOD=IN(12.2) 
5050 REM 
5060 REM 4.5.1 Kozeny Carman permeability 
5070 REM 
5080 IF MS(4)<>"D" THEN 5110 
5090 A=D*N/((1-N)*3) 
5100 K=A"2*N/(8*T) 
5110 IF MS(4)<>"A" THEN 5130 
5120 K=A'2*N/(8*T) 
5130 RETURN 
5140 REM 
5150 REM 4.6 Output results to disc 
5160 REM 
5170 PRINT DEPTH; VMEAS; V(1); V1G; VC; VE(1); V1I; F/FC 
5180 WRITE £2. DEPTH; VMEAS; V(1); V1G; VC; VE(1); V1I; F/FC 
5190 RETURN 
5200 REM 
5210 REM 5.0 Trivial mathematical subroutines 
5220 REM 
5230 REM 5.1 Calculate I factorial 
5240 REM 
5250 FAC=1 
5260 FOR J=1 TO I : FAC=J*FAC: NEXT 
5270 RETURN 
5280 REM 
5290 REM 5.2 Multiply two complex numbers 
5300 REM 
5310 XS=(Xl*X3)-(X2*X4) 
5320 X6=(X1*X4)+(X2*X3) 
5330 RETURN 
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APPENDIX 5 BASIC code for uncertainty in Blot's Vz prediction 

20 PRINT "ssssssssssssssssss: ss: ss: ss: ssss*ss*sss*. *: s: s: sssss**sssss: * � 
30 PRINT 
40 PRINT " Program BIOT_ERR. BAS 
50 PRINT " This program calculates the errors In velocity due to the 
60 PRINT " errors in the input parameters In the Blot model. 
70 PRINT 
80 PRINT " Note. 1. set CAPITALS LOCK on. 
90 PRINT " 2. use BASIC/D (double precision basic) only 
100 PRINT 
110 PRINT " August 1987 " 
120 PRINT 
130 PRINT " M. T. Hurley 
140 PRINT 
150 PRINT "s****ss*sssssssssssssssssssssssssssssssssssssssss: sssssssssss � 
160 PRINT 
170 REM 
180 REM 1.0 Wait to start 
190 REM 
200 GOSUB 5480 
210 REM 
220 REM 1.1 Dimension and define varibles 
230 REM 
240 DEFDBL A-E : DEFDBL X-Y 
250 PI-3.14159265£ : E=2.7182818£ 
260 DIM IN(30.2) : DIM O1(20): DIM 00(20) 
270 DIM NP(40) : DIM A(40) : DIM VR(40) : DIM VS(40) 
280 REM 
290 REM 1.2 Set Input parameters and model type 
300 REM 
310 GOSUB 4780 : REM GET INPUT FILE NAME FROM USER 
320 GOSUB 4870 : REM READ INPUT PARAMETERS FROM FILE 
330 GOSUB 5050 : REM SET PROGRAM VARIABLES 
340 GOSUB 5180 : REM DISPLAY MODEL TYPE ON MONITOR 
350 GOSUB 5540 : REM READ DATA FROM FILE 
360 GOSUB 5640 : REM RESET PROGRAM VARIABLES 
370 REM 
380 REM 2.0 Set coefficients 
390 REM 
400 GOSUB 480: REM - Calculate variables 
410 GOSUB 640: REM - Complex coefficients 
420 GOSUB 950: REM - Elastic-density coefficients 
430 GOSUB 1120: REM - Error analysis 
440 GOSUB 5990: REM - Output results 
450 IF MS(6)<>"" THEN 350 
460 STOP 
470 REM 
480 REM 2.1 Frequency variables 
490 REM 
500 W=2*PI*F : DT=N*DF+(1-N)*DS 
510 FC=(NU*: N)/(2*PI*DF*K) 
520 FT=BTU*PI/(16*DF*A-2) 
530 IF SWEEP<>O THEN 570 
540 FCP=FC : FTP=FT : AP=A 
550 KP=K : DP=D 
560 REM 
570 REM 2.2 Calculate frame modulus 
580 REM 
590 IF MS(9)<>"YES" THEN 620 

256 



600 SIG=POIS 
610 KB1=2*Gl*(1+SIG)/(3*(1-2*SIG)) 
620 RETURN 
630 REM 
640 REM 2.3 COMPLEX VISCOELASTIC COEFFICIENTS 
650 REM 
660 REM 2.3.1 "P" 
670 REM 
680 X1=(1-N-KB1/KS)*KS*(1-N)+(N*KS*KB1/KF) 
690 X2=-KBO*(N-1)+(N*KS*KBO/KF) 
700 X3=(I-N+N*KS/KF-KBi/KS) 
710 X4=KBO/KS 
720 GOSUB 6130 : REM COMPLEX 
730 Y1=X5 : Y2=X6 : TS1=X1 : X1=X3 : X2=-X4 
740 GOSUB 6130 : REM COMPLEX 
750 Y3=X5 : Y4=X6 : GE=G1 
760 PE=TS1/X3+4*GE/3 
770 P1-Y1/Y3+4*G1/3 
780 PO=Y2/Y3+4*GO/3 
790 REM 
800 REM 2.3.2 
810 REM 
820 X1=(1-N-KB1/KS)*KS*N : X2=-N*KBO 
830 GOSUB 6130 : REM COMPLEX 
840 Y1=X5 : Y2=X6 : QE=Xl/X3 
850 Q1=Y1/Y3 : QO=Y2/Y3 
860 REM 
870 REM 2.3.3 "R" 
880 REM 
890 Xl=N"2*KS : X2=0 
900 GOSUB 6130 : REM COMPLEX 
910 Y1=X5 : Y2=X6 : RE=Xl/X3 
920 Rl=Y1/Y3 : R0-Y2/Y3 
930 RETURN 
940 REM 
950 REM 2.4 SET ELASTIC AND MASS COEFFICIENTS 
960 REM 
970 REM 2.4.1 MASS AND INERTIAL TERMS 
980 REM 
990 B=N-2*NU/K 
1000 TS1=-(T-1)*N*DF-FO*B/W 
1010 TS2=(l-N)*DS-TS1 
1020 TS3=N*DF-TS1 : TS4=B*F1/W 
1030 REM 
1040 REM 2.4.2 NORMALISE COEFFICIENTS 
1050 REM 
1060 H=PE+2*QE+RE 
1070 X(1.1.1)=TS2 
1080 X(1.2.1)=TS1 
1090 X(2.2.1)-TS3 
1100 RETURN 
1110 REM 
1120 REM 3.0 ERROR ANALYSIS 
1130 REM 
1140 REM 3.1 P. D. of coefficients w. r. t. porosity 
1150 REM 
1160 REM 3.1.1 P. D. of P w. r. t. POROSITY (dP/dN) 
1170 REM 
1180 V1=N: V2=KS: V3=KS*((KB1/KS)+(KB1/KF)-2) 
1190 V4=KS-KB1 : V5=1-(KB1/KS) : V6=(KS/KF-1) 
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1200 U1=(V3+2*V2*V1)/(V5+V6*V1) 
1210 U2-(V6*(V4+V3*V1+V2*V1*V1))/((V5+V6*V1)"2) 
1220 DPDN=UI-U2 
1230 REM 
1240 REM 3.1.2 p. d. of Q w. r. t. POROSITY (dQ/dN) 
1250 REM 
1260 V1-N : V2=KS-KB1 : V3=KS : V4=1-KB1/KS : V5=(KS/KF)-1 
1270 U1=(V2-2*V1*V3)/(V4+V1*V5) 
1280 U2-(V5*(V1*V2-V1*V1*V3))/((V4+V1*V5)"2) 
1290 DQDN=UI-U2 
1300 REM 
1310 REM 3.1.3 p. d. of R w. r. t. POROSITY (dR/dN) 
1320 REM 
1330 V1-N : V2: 1-KB1/KS : V3=KS/KF-1 : V4=KS 
1340 U1=2*V1*V4/(V2+V3*Vl) 
1350 U2=V1*V1*V4*V3/((V2+V1*V3)"2) 
1360 DRDN-Ul-U2 
1370 REM 
1380 REM 3.1.4 p. d. of mass-terms w. r. t. POROSITY 
1390 REM 
1400 DD11DN-T*DF-DS-DF 
1410 DD12DN-DE-T*DF 
1420 DD22DN=T*DF 
1430 REM 
1440 REM 3.2 p. d. of coefficients w. r. t. SOLID MODULUS 
1450 REM 
1460 REM 3.2.1 P. D. OF P W. R. T. SOLID MODULUS (dP/dKS) 
1470 REM 
1480 V1=KS: V2=(l-N)"2+N*KB1/KF : V3=-KB1*(1-N) 
1490 V4=1-N : V5=KB1 : V6=N/KF 
1500 U1=V2/(V4-(V5/V1)+V6*V1) 
1510 U2=(V1*V2+V3)*(V5/(V1'2)+V6) 
1520 U3=(V4-V5/V1+V6*Vl)-2 
1530 DPDKS=UI-U2/U3 
1540 REM 
1550 REM 3.2.2 P. D. OF Q W. R. T. SOLID MODULUS (dQ/dKS) 
1560 REM 
1570 V1=KS : V2=N*(1-N) : V3=1-N 
1580 V4=N/KF : V5-KB1 : V6=-N*KB1 
1590 U1=V2/(V3+V1*V4-V5/V1) 
1600 U2=(V1*V2+V6)*(V4+V5/(V1*Vl))/((V3+V1*V4-V5/V1)"2) 
1610 DQDKS=UI-U2 
1620 REM 
1630 REM 3.2.3 P. D. OF R W. R. T. SOLID MODULUS (dR/dKS) 
1640 REM 
1650 V1=KS : V2=N*N : V3-1-N : V4=N/KF : V5=KB1 
1660 U1=V1*V2 : U2=V3+V1*V4-V5/V1 
1670 DUIDKS=V2 : DU2DKS=V4+V5/(V1*V1) 
1680 DRDKS=(DUIDKS/U2)-(U1*DU2DKS)/(U2*U2) 
1690 REM 
1700 REM 3.3 p. d. of coefficients w. r. t. FRAME MODULUS 
1710 REM 
1720 REM 3.3.1 P. D. OF P W. R. T. FRAME MODULUS (dP/dKB1) 
1730 REM 
1740 V1=KBl : V2-N*KS/KF+N-1 : V3=KS*((1-N)"2) 
1750 V4=1-N+N*KS/KF : V5=KS 
1760 U1=V2/(V4-V1/V5) 
1770 U2-(V1*V2+V3)/((V5)*((V4-V1/V5)'2)) 
1780 DPDKB1=U1TU2 
1790 REM 

258 



1800 REM 3.3.2 P. D. OF Q W. R. T. FRAME MODULUS (dQ/dKB1) 
1810 REM 
1820 V1=KB1 : V2-N*KS*(1-N) : V3=N 
1830 V4=1-N+N*KS/KF : V5=KS 
1840 U1--V3/(V4-V1/V5) 
1850 U2-(V2-V1*V3)/((-V5)*(V4-V1/V5)'2) 
1860 DQDKB1=U1-U2 
1870 REM 
1880 REM 3.3.3 P. D. OF R W. R. T. FRAME MODULUS (dR/dKB1) 
1890 REM 
1900 Vl=KB1 : V2=N*N*KS : V3=1-N+N*KS/KF : V4=KS 
1910 DRDKB1=V2*(-1/V4)/((V3-V1/V4)"2) 
1920 REM 
1930 REM 3.4 p. d. of coefficients w. r. t. FLUID MODULUS 
1940 REM 
1950 REM 3.4.1 P. D. OF P W. R. T. FLUID MODULUS (dP/dKF) 
1960 REM 
1970 V1-KF : V2=KS*KB1*N : V3=KS*(1-N)-2-KB1*(1-N) 
1980 V4=1-N-KB1/KS : V5=N*KS 
1990 U1=V2/V1+V3 : U2=V4+V5/V1 
2000 DUIDKF=-V2/(V1*V1) : DU2DKF=-V5/(V1*V1) 
2010 DPDKF-(DUIDKF/U2)-(U1*DU2DKF/(U2*U2)) 
2020 REM 
2030 REM 3.4.2 P. D. OF Q W. R. T. FLUID MODULUS (dQ/dKF) 
2040 REM 
2050 V1=KF : V2=(1-N-KB1/KS)*N*KS 
2060 V3-1-N-KB1/KS : V4=N*KS 
2070 DQDKF=V2*V4/(((V3+V4/V1)"2)*V1*V1) 
2080 REM 
2090 REM 3.4.3 P. D. OF R W. R. T. FLUID MODULUS (dR/dKF) 
2100 REM 
2110 V1-KF : V2=N*N*KS : V3-1-N-KB1/KS : V4=N*KS 
2120 DRDKF=V2*V4/(Vl*V1*(V3+V4/V1)'2) 
2130 REM 
2140 REM 3.5.1 P. D. OF P W. R. T. SHEAR MODULUS (dP/dGl) 
2150 REM 
2160 DPDG1-4/3 
2170 REM 
2180 REM 3.5.2 P. D. mass-terms w. r. t. FLUID DENSITY 
2190 REM 
2200 DD11DDF=-N+T*N 
2210 DD22DDF=T*N 
2220 DD12DDF=N-T*N 
2230 REM 
2240 REM 3.5.3 P. D. mass-terms w. r. t. SOLID DENSITY 
2250 REM 
2260 DD11DDS=1-N 
2270 REM 
2280 REM 3.5.4 P. D. mass-terms w. r. t. TORTUOSITY 
2290 REM 
2300 DD11DT=N*DF 
2310 DD22DT=N*DF 
2320 DD12DT=-N*DF 
2330 REM 
2340 REM 4.1 Error in zero velocity asymptote 
2350 REM 
2360 REM 4.1.1 P. D. of Vz w. r. t elastic coefficeints 
2370 REM 
2380 H1=P1+R1+2*Q1 
2390 DT=X(1.1.1)+X(2.2.1)+2*X(1.2.1) 
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2400 TS1=. 5*(H1/DT)-(-. 5) 
2410 DVZDP-TS1/DT : DVZDQ=TS1*2/DT : DVZDR=TS1/DT 
2420 REM 
2430 REM 4.1.2 P. D. of Vz w. r. t mass coefficeints 
2440 REM 
2450 DVZDD11--TS1*H/(DT-2) 
2460 DVZDD12=-TS1*2*H/(DT'2) 
2470 DVZDD22=-TS1*H/(DT"2) 
2480 REM 
2490 RES! 4.1.3 P. D. of Vz w. r. t porosity 
2500 REM 
2510 TS1=DVZDP*DPDN : TS2=DVZDQ*DQDN : TS3=DVZDR*DRDN 
2520 TS4-DVZDD11*DD11DN : TS5=DVZDD12*DD12DN : TS6-DVZDD22*DD22DN 
2530 DVZDN=TS1+TS2+TS3+TS4+TS5+TS6 
2540 REM 
2550 REM 4.1.4 P. D. of Vz w. r. t elastic constants 
2560 REM 
2570 TS1=DVZDP*DPDKS : TS2=DVZDQ*DQDKS : TS3=DVZDR*DRDKS 
2580 DVZDKS=TS1+TS2+TS3 
2590 TS1=DVZDP*DPDKF : TS2-DVZDQ*DQDKF : TS3=DVZDR*DRDKF 
2600 DVZDKF-TS1+TS2+TS3 
2610 TS1-DVZDP*DPDKB1 : TS2-DVZDQ*DQDKB1 : TS3=DVZDR*DRDKBI 
2620 DVZDKB1-TS1+TS2+TS3 
2630 REM 
2640 REM 4.1.5 P. D. of Vz w. r. t mass constants 
2650 REM 
2660 TS1-DVZDD11*DDIIDDS : TS2-DVZDD12*DD12DDS : TS3=DVZDD22*DD22DDS 
2670 DVZDDS=TS1+TS2+TS3 
2680 TS1=DVZDD11*DD11DDF : TS2=DVZDD12*DD12DDF : TS3=DVZDD22*DD22DDF 
2690 DVZDDF-TS1+TS2+TS3 
2700 TS1=DVZDD11*DD11DT : TS2=DVZDD12*DD12DT : TS3=DVZDD22*DD22DT 
2710 DVZDT=TS1+TS2+TS3 
2720 REM 
2730 REM 4.1.6 Delta Vz 
2740 REM 
2750 TS1-DVZDN-2*IN(1.2)"2 : TS2-DVZDKF"2*IN(2.2)'2 
2760 TS3=DVZDKS-2*IN(3.2)-2 : TS4-DVZDT'2*IN(4.2)'2 
2770 TS5-DVZDG1-2*IN(5.2)"2 : TS6-DVZDKB1'2*IN(7.2)-2 
2780 TS7=DVZDDF"2*IN(9,2)'2 : TS8=DVZDDS'2*IN(11.2)-2 
2790 DELVZ-(TS1+TS2+TS3+TS4+TS5+TS6+TS7+TS8)". 5 
2800 VZ=(H1/DT)-. 5 
2810 REM 
2820 REM 4.2 Error in Vi 
2830 REM 
2840 REM 4.2.1 P. D. of Vi w. r. t P 
2850 REM 
2860 U1-R1*X(1.1.1)-2*Q1*X(1,2,1) : U2=U1 : U4=Q1*Q1 
2870 U5=X(1.1.1)*X(2,2,1)-X(1,2.1)*X(1.2.1) : U3=U5 
2880 V1=(Pl*X(2.2.1)+U2)-2 : V2=4*U3*(P1*R1-U4) 
2890 V3=(V1-V2)-. 5 : V4=P1*X(2,2,1)+Ul 
2900 DV1DP=2*(P1*X(2.2.1)+U2)*X(2.2.1) 
2910 DV2DP-4*U3*R1 : DV4DP=X(2.2.1) 
2920 DV3DP=. 5*(DV1DP-DV2DP)*(V1-V2)"(-. 5) 
2930 TS1=. 5*((V4+V3)/(2*U5))'(-. 5) 
2940 TS2=(DV4DP+DV3DP)/(2*U5) 
2950 DVIDP=TS1*TS2 
2960 REM 
2970 REM 4.2.2 P. D. of Vi w. r. t R 
2980 REM 
2990 U1=P1*X(2.2.1)-2*Q1*X(1.2,1) : U2=U1 : U4=Q1*Q1 
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3000 U5=X(1.1.1)*X(2.2.1)-X(1.2.1)*X(1.2.1) : U3=U5 
3010 V1=(R1*X(1.1.1)+U2)-2 : V2=4*U3*(P1*R1-U4) 
3020 V3=(V1-V2)". 5 : V4=Rl*X(1.1,1)+U1 
3030 DV1DR=2*(Rl*X(1.1.1)+U2)*X(1.1.1) 
3040 DV2DR=4*U3*P1 : DV4DR=X(1.1.1) 
3050 DV3DR=. 5*(DV1DR-DV2DR)*(V1-V2)"(-. 5) 
3060 TS1=. 5*((V4+V3)/(2*U5))"(-. 5) 
3070 TS2=(DV4DR+DV3DR)/(2*U5) 
3080 DVIDR=TS1*TS2 
3090 REM 
3100 REM 4.2.3 P. D. of Vi w. r. t q 
3110 REM 
3120 Ul-Rl*X(1.1,1)+P1*X(2.2.1) : U2=Ul : U4=P1*Rl 
3130 U5=X(1.1.1)*X(2,2,1)-X(1.2.1)*X(1,2.1) : U3=U5 
3140 Vl=(-2*Q1*X(1.2,1)+U2)"2 : V2=4*U3*(U4-Q1*Q1) 
3150 V3=(V1-V2)-. 5 : V4=-2*Q1*X(1,2.1)+U1 
3160 DV1DQ=2*(-2*Q1*X(1.2.1)+U2)*(-2*X(1.2.1)) 
3170 DV2DQ=-8*U3*Q1 : DV4DQ=-2*X(1.2.1) 
3180 DV3DQ=. 5*(DV1DQ-DV2DQ)*(V1-V2)-(-. 5) 
3190 TS1=. 5*((V4+V3)/(2*U5))'(-. 5) 
3200 TS2=(DV4DQ+DV3DQ)/(2*U5) 
3210 DVIDQ=TS1*TS2 
3220 REM 
3230 REM 4.2.4 P. D. of Vi w. r. t dii 
3240 REM 
3250 U1=P1*X(2,2,1)-2*Q1*X(1.2.1) : U2=U1 : U4=P1*R1-Q1*Q1 
3260 U5=X(1.2,1)*X(1,2,1) : U3=U5 
3270 V1=(R1*X(1,1,1)+U2)-2 : V2=4*U4*(X(1,1,1)*X(2.2.1)-U3) 
3280 V3-(V1-V2)-. 5 : V4=2*X(1,1.1)*X(2.2.1)-2*U5 
3290 V5=R1*X(1.1.1)+U1 : V6=(V5+V3)/V4 
3300 DV1DD11=2*(R1*X(1.1.1)+U2)*R1 
3310 DV2DD11=4*U4*X(2.2.1) 
3320 DV3DD11=. 5*(DV1DD11-DV2DD11)*(V1-V2)-(-. 5) 
3330 DV4DD11=2*X(2.2.1) : DV5DD11=R1 
3340 DV6DD11=((DV5DD11+DV3DD11)/V4)-DV4DD11*(V5+V3)/(V4*V4) 
3350 DVIDD11=. 5*V6-(-. 5)*DV6DD11 
3360 REM 
3370 REM 4.2.5 P. D. of Vi w. r. t d22 
3380 REM 
3390 U1=R1*X(1.1.1)-2*Ql*X(1.2.1) : U2=Ul : U4=P1*R1-Q1*Q1 
3400 U5=X(1,2.1)*X(1.2.1) : U3=U5 
3410 V1=(P1*X(2.2.1)+U2)"2 : V2=4*U4*(X(1.1.1)*X(2.2.1)-U3) 
3420 V3=(V1-V2)". 5 : V4=2*X(1,1,1)*X(2,2,1)-2*U5 
3430 V5=P1*X(2,2.1)+U1 : V6=(V5+V3)/V4 
3440 DV1DD22=2*(P1*X(2.2,1)+U2)*P1 
3450 DV2DD22=4*U4*X(1.1.1) 
3460 DV3DD22=. 5*(DV1DD22-DV2DD22)*(V1-V2)-(-. 5) 
3470 DV4DD22=2*X(1.1,1) : DVSDD22=P1 
3480 DV6DD22=((DV5DD22+DV3DD22)/V4)-DV4DD22*(V5+V3)/(V4*V4) 
3490 DVIDD22=. 5*V6-(-. 5)*DV6DD22 
3500 REM 
3510 REM 4.2.6 P. D. of Vi w. r. t d12 
3520 REM 
3530 U1=P1*X(1,1.1)+R1*X(2.2.1) : U2=U1 : U4=P1*R1-Q1*Q1 
3540 U5=X(1.1.1)*X(2.2.1) : U3=U5 
3550 V1=(-Ql*2*X(1.2,1)+U2)-2 : V2=4*U4*(-X(1.2,1)*X(1.2,1)+U3) 
3560 V3=(V1-V2)'. 5 : V4=-2*X(1.2.1)*X(1,2,1)+2*U5 
3570 V5=-2*Q1*X(1.2.1)+U1 : V6=(V5+V3)/V4 
3580 DV1DD12=2*(-2*Q1*X(1.2.1)+U2)*(-2*Q1) 
3590 DV2DD12=-8*U4*X(1,2,1) 
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3600 DV3DD12=. 5*(DV1DD12-DV2DD12)*(VI-V2)-(-. 5) 
3610 DV4DD12=-4*X(1.2.1) : DV5DD12=-2*Q1 
3620 DV6DD12=((DV5DD12+DV3DD12)/V4)-DV4DD12*(V5+V3)/(V4*V4) 
3630 DVIDD12=. 5*V6-(-. 5)*DV6DD12 
3640 REM 
3650 REM 4.2.7 P. D. of VI w. r. t porosity 
3660 REM 
3670 TS1-DVIDP*DPDN : TS2=DVIDQ*DQDN : TS3=DVIDR*DRDN 
3680 TS4=DVIDD11*DD11DN : TS5=DVIDD12*DD12DN : TS6=DVIDD22*DD22DN 
3690 DVIDN-TS1+TS2+TS3+TS4+TS5+TS6 
3700 REM 
3710 *REM 4.2.8 P. D. of VI w. r. t elastic constants 
3720 REM 
3730 TS1=DVIDP*DPDKS : TS2=DVIDQ*DQDKS : TS3=DVIDR*DRDKS 
3740 DVIDKS=TS1+TS2+TS3 
3750 TS1=DVIDP*DPDKF : TS2=DVIDQ*DQDKF : TS3=DVIDR*DRDKF 
3760 DVIDKF-TS1+TS2+TS3 
3770 TS1=DVIDP*DPDKBI : TS2=DVIDQ*DQDKB1 : TS3=DVIDR*DRDKBI 
3780 DVIDKBI-TS1+TS2+TS3 
3790 REM 
3800 REM 4.2.9 P. D. of Vi w. r. t mass constants 
3810 REM 
3820 TS1=DVIDD11*DDIIDDS : TS2=DVIDD12*DD12DDS : TS3=DVIDD22*DD22DDS 
3830 DVIDDS=TS1+TS2+TS3 
3840 TS1=DVIDD11*DDIIDDF : TS2=DVIDD12*DD12DDF : TS3=DVIDD22*DD22DDF 
3850 DVIDDF-TS1+TS2+TS3 
3860 TS1=DVIDDII*DD11DT : TS2=DVIDD12*DD12DT : TS3=DVIDD22*DD22DT 
3870 DVIDT=TS1+TS2+TS3 
3880 REM 
3890 REM 4.2.10 Delta Vi 
3900 REM 
3910 TS1=DVIDN-2*IN(1,2)-2 : TS2=DVIDKF'2*IN(2.2)-2 
3920 TS3=DVIDKS-2*IN(3.2)-2 : TS4=DVIDT-2*IN(4.2)-2 
3930 TS5=DVIDG1-2*IN(5.2)-2 : TS6=DVIDKB1-2*IN(7.2)-2 
3940 TS7=DVIDDF-2*IN(9.2)-2 : TS8=DVIDDS'2*IN(11.2)-2 
3950 DELVI-(TS1+TS2+TS3+TS4+TS5+TS6+TS7+TS8)". 5 
3960 REM 
3970 REM 4.3 Gassmann error analysis 
3980 REM 
3990 REM 4.3.1 p. d. of VO w. r. t KF 
4000 REM 
4010 G-G1 
4020 U1s4*G/3+KB1 : U2-(1-KB1/KS)'2 : U3=N 
4030 U4-(1-N)/KS-KB/(KS-2) : U5=N*DF+(1-N)*DS 
4040 V1=U1/U5 : V2-U2 : V3=U5*(U3/KF+U4) : V4=V1+V2/V3 
4050 DV3DKF=-US*U3/KF-2 : DV4DKF=-V2*DV3DKF/V3-2 
4060 DVODKF=. 5*DV4DKF*V4-(-. 5) 
4070 REM 
4080 REM 4.3.2 p. d. of VO w. r. t KS 
4090 REM 
4100 Ul=4*G/3+KB1 : U2-KB1 : U3=N/KF 
4110 U4=(1-N) : U5=KB1 : U6=N*DF+(1-N)*DS 
4120 V1=U1/U6 : V2=(1-U2/KS)-2 
4130 V3=U6*(U3+U4/KS-U5/KS-2) : V4=V1+V2/V3 
4140 DV2DKS=(U2/KS-2)*2*(1-U2/KS) 
4150 DV3DKS=(-U6*U4/KS-2)+(2*U5*U6/KS-3) 
4160 DV4DKS=DV2DKS/V3-DV3DKS*V2/V3-2 
4170 DVODKS=. 5*DV4DKS*V4-(-. 5) 
4180 REM 
4190 REM 4.3.3 p. d. Of VO w. r. t KB1 
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4200 
4210 
4220 
4230 
4240 
4250 
4260 
4270 
4280 
4290 
4300 
4310 
4320 
4330 
4340 
4350 
4360 
4370 
4380 
4390 
4400 
4410 
4420 
4430 
4440 
4450 
4460 
4470 
4480 
4490 
4500 
4510 
4520 
4530 
4540 
4550 
4560 
4570 
4580 
4590 
4600 
4610 
4620 
4630 
4640 
4650 
4660 
4670 
4680 
4690 
4700 
4710 
4720 
4730 
4740 
4750 
4760 
4770 
4780 
4790 

REM 
U1=4*G/3 : U2=KS : U3=N/KF+(1-N)/KS 
U4=KS-2 : US=N*DF+(1-N)*DS 
Vl=(KB1+U1)/U5 : DVIDKBI=1/U5 
V2=(1-KB1/U2)'2 : DV2DKB1=-2*(1-KB1/U2)/U2 
V3=U5*(U3-KBl/U4) : DV3DKB1=-U5/U4 
V4=V1+V2/V3 : DV4DKB1_DVIDKB1+DV20KB1/V3-DV3DKB1*V2/(V3"2) 
DVODKB1=. 5*DV4DKB1*V4-(-. 5) 

REM 
REM 4.3.4 p. d. of VO w. r. t G 
REM 

Ul=N*DF+(1-N)*DS : U2-KB1 : U3=(l-KB1/KS)-2 
U4-(N/KF+(1-N)/KS-KB1/KS-2) 
DVODG-(2/(3*U1))*(4*G/(U1*3)+U2/U1+U3/(U1*U4))'(-. 5) 

REM 
REM 4.3.5 p. d. of VO w. r. t N 
REM 

U1=KB1+4*G/3 : U2=(l-KB1/KS)'2 : U3=KF 
U4=KS : U5-1/KS-KB1/KS-2 
Ml=-(1/U3-1/U4) : M2=U2 
M3=(N/U3-N/U4+U5)"2 
DMDN=M1*M2/M3 : DDDN=DF-DS 
M-U1+U2/(N/U3-N/U4+U5) : D=N*DF+(1-N)*DS 
V1=M/D : DV1DN=DMDN/D-DDDN*M/D'2 
DVODN=. 5*DV1DN*V1"(-. 5) 

REM 
REM 4.3.6 p. d. of VO w. r. t DS 
REM 

Ul=KB1+4*G/3 : U2=N*DF : U3=(1-N) 
U4=(l-KB1/KS)-2 : U5=N/KF+(1-N)/KS-KB1/KS-2 
U6=N*DF : U7=(1-N) 
V1=U2+U3*DS : DV1DS=U3 
V2=U5*(U6+U7*DS) : DV2DS=U5*U7 
V3=U1/V1+U4/V2 : DV3DS=-DVIDS*U1/V1'2-DV2DS*U4/V2-2 
DVODS=. 5*DV3DS*V3"(-. 5) 

REM 
REM 4.3.7 p. d. of VO w. r. t DF 
REM 

Ul_KB1+4*G/3 : U2=(l-N)*DS : U3=N 
U4-(1-KB1/KS)-2 : US=N/KF+(1-N)/KS-KB1/KS-2 
U6s(I-N)*DS : U7-N 
V1=U2+U3*DF : DV1DF-U3 
V2=U5*(U6+U7*DF) : DV2DF=U5*U7 
V3=U1/Vl+U4/V2 : DV3DF=-DVIDF*U1/V1'2-DV2DF*U4/V2-2 
DVODF-. 5*DV3DF*V3-(-. 5) 

REM 
REM 4.3.8 Delta VO 
REM 

TS1_DVODN-2*IN(1.2)-2 : TS2=DVODKF"2*IN(2.2)"2 
TS3=DVODKS-2*IN(3.2)-2 : TS4=DVODT'2*IN(4.2)"2 
TS5=DVODG"2*IN(5.2)"2 : TS6=DVODKBI'2*IN(7.2)"2 
TS7=DVODF'2*IN(9.2)-2 : TS8=DVODS-2*IN(i1.2)"2 
DELVO-(TS1+TS2+TS3+TS4+TS5+TS6+TS7+TS8)". 5 
SUM=DELVO-2 
DELN=TSl/SUM : DELKF=TS2/SUM : DELKS=TS3/SUM : DELT=TS4/SUM 
DELG=TSS/SUM : DELDT=TS6/SUM : DELDF=TS7/SUM : DELDS=TS8/SUM 
RETURN 

REM 
REM 5.0 Get file name from user 
REM 
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4800 CLS : PRINT : PRINT : PRINT 
4810 PRINT SPC(1O) "Input set file name (e. g. 289C_SET. DAT)"; 
4820 INPUT SETS : PRINT : PRINT SPC(10) "Set file is "SETS 
4830 PRINT SPC(10) "Hit R to re-enter, anything else to continue" 
4840 GOS-INKEYS : IF GO$-"" THEN 4840 
4850 IF GO$-"R" THEN 4800 
4860 RETURN 
4870 REM 
4880 REM 5.1 Set model type and open files 
4890 REM 
4900 OPEN SETS FOR INPUT AS £1 
4910 FOR J-1 TO 2 
4920 FOR I=0 TO 29 
4930 INPUT£1. IN(I. J) 
4940 NEXT I 
4950 NEXT J 
4960 FOR I=1 TO 9: INPUT£1. M$(I): NEXT I 
4970 CLOSE £1 
4980 IF M$(6)-""THEN 5000 
4990 OPEN MS(6) FOR INPUT AS £1 
5000 IF M$(7)-""THEN 5030 
5010 M$(7)-MID$(M$(7). 1.5)+"ERR. DAT" 
5020 OPEN M$(7) FOR OUTPUT AS £2 
5030 RETURN 
5040 REM 
5050 REM 5.2 Reset parameters 
5060 REM 
5070 N-IN(1.1) : KF-IN(2.1) : KS-IN(3,1) : T-IN(4.1) 
5080 G1-IN(5.1) : GO-IN(6,1) : KB1=IN(7.1) : KBO-IN(8,1) 
5090 DF-IN(9.1) : D-IN(10.1) : DS=IN(11,1) : A-IN(12.1) 
5100 NU=IN(13.1) : K=IN(14.1) : F=IN(15.1) : POIS=IN(16.1) 
5110 S2-IN(17,1) : S1-IN(18,1) : VSL=IN(19,1) : VEL-IN(20.1) 
5120 QSL=IN(21.1) : QEL=IN(22.1) : VSR=IN(23.1) : VER-IN(24,1) 
5130 STOR=1/IN(25.1) : ETOR=1/IN(26,1) : FPOW-IN(17,2) 
5140 FINC=IN(18.2) : FMAX=IN(19.2) : SIG=IN(20.2) 
5150 SMAX-IN(21.2) : SINC=IN(22.2) 
5160 RETURN 
5170 REM 
5180 REM 5.3 Display selected program mode 
5190 REM 
5200 TS1-VAL(MS(1)) 
5210 IF TS1<4 THEN D$(1)-"VELOCITY ERROR ANALYSIS" 
5220 IF TS1=4 THEN D$(1)-"BIOT-GARDNER ROD WAVES" 
5230 IF TS1=5 THEN DS(1)-"ASYMPTOTIC POROELASTIC SOLUTIONS" 
5240 IF M$(2)<>"" THEN D$(2)-"YES" 
5250 IF Mä(3)<>"" THEN DS(3)="YES" 
5260 IF M$(4)<>"" THEN D$(4)="YES" 
5270 IF M$(5)-"A" THEN Dä(5)="FREQUENCY" 
5280 IF M$(5)="B" THEN D$(5)-"POISSON'S RATIO" 
5290 IF MS(5)="C" THEN D$(5)-"CONVERGENCE" 
5300 D$(6)-M$(6) : D$(7)-"PRINTER" 
5310 IF MS(7)<>"P" THEN D$(7)=M$(7) 
5320 IF M$(8)<>"" THEN D$(8)="YES" 
5330 IF M$(9)<>"" THEN D$(9)="YES" 
5340 CLS : PRINT : PRINT 
5350 PRINT SPC(12) "Selected program mode read from ": SET$ 
5360 PRINT : PRINT 
5370 PRINT SPC(10)"MODEL : "D$(1) 
5380 PRINT SPC(10)"PORE SIZE DISTRIBUTION : "DS(2) 
5390 PRINT SPC(10)"VISCOELASTIC COEFFICIENTS : "D$(3) 
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5400 PRINT SPC(10)"KOZENY-CARMAN PERMEABILITY : "D$(4) 
5410 PRINT SPC(10)"SWEEP : "D$(5) 
5420 PRINT SPC(10)"FILE INPUT : "D$(6) 
5430 PRINT SPC(10)"FILE OUTPUT : "DS(7) 
5440 PRINT SPC(10)"FREQUENCY CORRECTION : "D$(8) 
5450 PRINT SPC(10)"CALCULATE FRAME MODULUS : "D$(9) 
5460 PRINT : PRINT 
5470 PRINT SPC(12) "Edit SET file to alter mode" 
5480 PRINT SPC(12) "Press any key to continue" 
5490 GO$"INKEY$ : IF GO$="" THEN 5490 
5500 CLS: PRINT: PRINT: PRINT: PRINT: PRINT 
5510 PRINT SPC(16) "PROGRAM BIOT_ERR. BAS IN OPERATION": PRINT 
5520 RETURN 
5530 REM 
5540 REM 5.4 Read data from disc 
5550 REM 
5560 IF M$(6)-"" THEN RETURN 
5570 INPUT £1, DEPTH. VMEAS. DT. VSHEAR 
5580 N-(DT-DS)/(DF-DS) 
5590 G1=DT*VSHEAR-2 
5600 REM A-(DIA*. 000001)/2 
5610 V(1)-O: INC=. 1 
5620 RETURN 
5630 REM 
5640 REM 5.5 Reset program variables 
5650 REM 
5660 S=0 : AMOD=A : W-2*PI*F : SWEEPS="" : CONVS="" 
5670 FPOW-IN(17.2) : FINC=IN(18,2) 
5680 SIG-IN(20.2) : SINC=IN(22.2) 
5690 IF M$(5)="C" THEN SINC=. 1 
5700 S=0 : V1A=O : V2A=0 : TVS=0 
5710 AC1A=O : AC2A=0 : FIN=0 
5720 V(1)=O : V(2)-O : AC(1)=O : AC(2)=O 
5730 V(0)-O : VD-O : AC(O)-O : K=IN(14.1) : AMOD=IN(12.2) 
5740 REM 
5750 REM 5.5.1 Kozeny Carman permeability 
5760 REM 
5770 IF M$(4)<>"D" THEN 5800 
5780 A=D*N/((1-N)*3) 
5790 K=A"2*N/(8*T) 
5800 IF M$(4)<>"A" THEN 5850 
5810 A=D*N/((1-N)*3 
5820 REM 
5830 REM 5.5.2 Errors in G1. KB1 and N 
5840 REM 
5850 DELDT=DT*. 05: U=DS-DT : V=DS-DF : DNDDS=1/V-U/V'2 
5860 DNDDF-U/V-2 : DNDDT=-1/V : TS1=IN(11.2)-2*DNDDS-2 
5870 TS2=DELDT-2*DNDDT -2 : TS3=IN(9,2)-2*DNDDS-2 
5880 IN(1.2)-(TS1+TS2+TS3)-. 5 
5890 DELVS-VSHEAR*. 1 : DGDVS=2*VSHEAR*DT : DGDDT-VSHEAR"2 
5900 TS1-DELVS-2*DGDVS-2 : TS2=DELDT-2*DGDDT-2 
5910 IN(5.2)=(TSI+TS2)-. 5 
5920 SIG-POIS : U=2*Gl*(1+SIG) : V-3*(1-2*SIG) 
5930 DUDSIG=2*G1: DVDSIG--6 
5940 DKBDSIG-DUDSIG/V-DVDSIG*U/V-2 : DKBDG=U/(V*G1) 
5950 TS1=IN(5,2)-2*DKBDG-2 : TS2=IN(16,2)"2*DKBDSIG"2 
5960 IN(7,2)-(TS1+TS2)-. 5 
5970 RETURN 
5980 REM 
5990 REM 5.6 Output results to disc 
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6000 
6010 
6020 
6030 
6040 
6050 
6060 
6070 
6080 
6090 
6100 
6110 
6120 
6130 
6140 
6150 
6160 
6170 

REM 

REM 

PRINT DELN: DELKF; DELKS; DELT: DELG; DELDT; DELDF; DELDS; DELVO; VZ 
WRITE £2. DELN; DELKF; DELKS; DELT; DELG; DELDT: DELDF; DELDS: DELVO; VS 
RETURN 

REM 6.0 Trivial mathematical subroutines 
REM 
REM 6.1 Calculate I factorial 
REM 

FAC=1 
FOR J-1 TO I : FAC=J*FAC: NEXT 
RETURN 

REM 
REM 6.2 Multiply two complex numbers 
REM 

X5=(X1*X3)-(X2*X4) 
X6_(Xl*X4)+(X2*X3) 
RETURN 
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