
Bangor University

DOCTOR OF PHILOSOPHY

Compression-based Parts-of-Speech Tagger for the Arabic Language

Alkhazi, Ibrahim

Award date:
2019

Awarding institution:
Bangor University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. Mar. 2024

https://research.bangor.ac.uk/portal/en/theses/compressionbased-partsofspeech-tagger-for-the-arabic-language(076552a6-32ee-41ff-9255-7abc6489c010).html

School of computer science

College of Physical & Applied Sciences

Compression-based Parts-of-Speech Tagger

for the Arabic Language

Ibrahim Sulaiman B Alkhazi

Submitted in partial satisfaction of the requirements for the

Degree of Doctor of Philosophy

in Computer Science

Supervisor Dr. William J. Teahan

September 2019

2

Table of Content

Table of Content .. 2

List of Figures .. 5

List of Tables ... 6

Acknowledgement .. 9

Abstract ... 10

Introduction ... 12

1.1 Background & Motivation ...13

1.2 Aim and Objectives ..15

1.3 Research Questions ...16

1.4 Contributions ...16

1.5 Publications ...18

1.6 Organisation of this Dissertation ...20

Background and Related Work ... 22

2.1 Arabic Language Background ..23

2.1.1 An Overview ...23

2.1.2 Arabic Internet Users ...25

2.1.3 Formal Written Types of Arabic language ...25

2.1.4 Arabic Encoding methods ...26

2.1.5 Arabic morphology ...27

2.2 Literature Review ...28

2.2.1 PPM Text Compression of Arabic Text ...28

2.2.2 Prediction by Partial Matching ...30

2.2.3 Arabic Text Classification ...37

2.2.4 Arabic Annotated Corpus ...42

2.2.5 Arabic Part-of-speech Tagging ...47

2.3 Summary and Discussion ...55

Tag based Models for Arabic Text Compression .. 56

3.1 Introduction ..57

3.2 Tag Based Compression Experimental Setup ..58

3

3.3 Compression Results ..61

3.4 Summary and Discussion ...72

Classifying and Segmenting Classical and Modern Standard Arabic using Minimum Cross-

Entropy .. 74

4.1 Introduction ..75

4.2 Initial Classification Experiments ...77

4.3 Classifying Arabic Corpora ...79

4.3.1 Document Level Text Classification ..79

4.3.2 Line Level Classification ..82

4.4 Segmenting Mixed Arabic Corpora ..84

4.4.1 Segmenting Mixed Arabic Text ..84

4.4.1 Investigating Mixed Arabic Corpora ...85

4.5 Tag-based Compression Experiments ..87

4.6 Summary and Discussion ...89

BAAC: Bangor Arabic Annotated Corpus ... 90

5.1 Introduction ..91

5.2 The Data Source ...92

5.3 The Annotation Tagset ..92

5.4 Automatic POS Tagging ...95

5.5 The Annotation Tool ..95

5.6 Data Preparation ...97

5.7 BAAC Evaluation ..98

5.8 Corpus Statistics.. 101

5.9 BAAC Applications .. 107

5.9 Summary and Discussion .. 108

Compression-based Tag Models for Evaluating Arabic Parts-of-Speech Taggers 109

6.1 Introduction ... 110

6.2 CA and MSA Tag-based Compression Experiments .. 111

6.3 Different Texts Tagging Assessment ... 112

6.4 Comparing the Performance of Two Taggers ... 113

6.5 Summary and Discussion .. 115

Compression-based Parts-of-Speech Tagger for the Arabic Language 117

4

7.1 Introduction ... 118

7.2 Tawa tag encode models .. 118

7.3 Data Source .. 120

7.4 Silver-standard Data Experiment .. 124

7.5 Gold-standard Data Experiment ... 127

7.6 Summary and Discussion .. 129

Conclusion .. 131

8.1 Summary ... 132

8.2 Review of Aim & Objectives .. 133

8.3 Review of Research Questions .. 135

8.4 Limitations .. 137

8.4 Future Work .. 137

References ... 140

5

List of Figures

▪ Figure 1.1. The most globally used languages. 13

▪ Figure 2.1. A classical Arabic poem which is written only with the non-connecting Arabic letters. 24

▪ Figure 2.2. The largest 10 Arabic Internet users by countries. 25

▪ Figure 2.3. A sport news from aljazeera.net in MSA text. 26

▪ Figure 2.4. The growth of UTF-8 compared to other encoding systems. 27

▪ Figure 2.5. Fifteen variants of the Arabic word "Alam". 28

▪ Figure 2.6. Utilising a model for text compression. 29

▪ Figure 2.7. Using a tagger to compress text. 30

▪ Figure 2.8. A diagrammatic representation of the Tawa Toolkit design. 36

▪ Figure 2.9. The encoding-based ‘Noiseless Channel Model’ used by the Tawa Toolkit. 37

▪ Figure 2.10. A Classical Arabic Poem from the BACC. 42

▪ Figure 2.11. A sample POS tag from the ATB Part 3 v 1.0. 45

▪ Figure 2.12. Simple information retrieval system pipeline architecture. 48

▪ Figure 2.13. A sample of RDRPOSTagger tagging rules. 49

▪ Figure 2.14. The main POS category of the Khoja's Tagset. 51

▪ Figure 2.15. The main POS category of the SALMA tagset. 51

▪ Figure 2.16. Al Shamsi and Guessoum HMM POS Tagger architecture. 54

▪ Figure 3.1. The Madamira segmentation and tagging output for the term "Country". 60

▪ Figure 3.2. Sample segmented verse of the Holy Quran. 63

▪ Figure 3.3. Relation between PPM compression and corpus size. 71

▪ Figure 4.1. Segmenting CA and MSA text using PPM. 85

▪ Figure 4.2. Random segmented samples from the BACC. 87

▪ Figure 5.1. A Social News from the Press sub-corpus in MSA text. 92

▪ Figure 5.2. The Annotation tool. 97

▪ Figure 5.3. Rank versus Tag, Bi-tag and Tri-tag Frequencies for the BAAC. 104

▪ Figure 7.1. Sample Arabic transliterated text. 124

6

List of Tables

▪ Table 1.1. The journal and conference papers which have been associated with this research. 19

▪ Table 2.1. The Most Universally Used Languages. 24

▪ Table 2.2. Processing the string tobeornottobe using PPM. 34

▪ Table 2.3. A table summary of different Arabic annotated corpora. 46

▪ Table 2.4. A table summary of different Arabic tagsets. 50

▪ Table 2.5. Samples of various Arabic tagsets. 52

▪ Table 2.6. A table summary of different Arabic POS taggers. 53

▪ Table 3.1. A sample of the tag-based compression results for the Prague Arabic Dependency Treebank.

 58

▪ Table 3.2. The compression output sizes using unsegmented text for Corpus A. 61

▪ Table 3.3. The compression ratios (in bpc) when compressing the unsegmented text for Corpus A. 62

▪ Table 3.4. The compression output sizes using segmented text for Corpus A. 63

▪ Table 3.5. The compression ratios (in bpc) when compressing the segmented text for Corpus A. 64

▪ Table 3.6. The compression output sizes for the KSUCCA Corpus. 65

▪ Table 3.7. The compression ratios (in bpc) when compressing the KSUCCA Corpus. 66

▪ Table 3.8. The compression output sizes for the ABMC Corpus. 66

▪ Table 3.9. The compression ratios (in bpc) when compressing the ABMC corpus. 67

▪ Table 3.10. The compression output sizes for the Arabic Learner Corpus. 67

▪ Table 3.11. The compression ratios (in bpc) when compressing the Arabic Learner Corpus. 67

▪ Table 3.12. Sample of miss-tagged words. 68

▪ Table 3.13. The compression output sizes for the BACC corpus. 68

▪ Table 3.14. The compression ratios (in bpc) when compressing the BACC corpus. 69

▪ Table 3.15. The compression output sizes the Prague Arabic Dependency Treebank. 69

▪ Table 3.16. The compression ratios (in bpc) when compressing the Prague Arabic Dependency Treebank.

 70

▪ Table 3.17. The compression output sizes for different PPM models and different corpus size. 71

▪ Table 3.18. The compression ratios (in bpc) for different PPM models and different corpus size. 72

▪ Table 3.19. Corpus A compression time when using the PPM character-based and tag-based

compression. 73

▪ Table 4.1. How true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN) are

defined for a confusion matrix. 78

▪ Table 4.2. PPM classification results. 78

▪ Table 4.3. Classification results of the UD corpus. 80

▪ Table 4.4. Classification results of the ABMC corpus. 80

▪ Table 4.5. Classification results of the Arabic Learner Corpus. 80

▪ Table 4.6. Classification results of the BACC. 81

7

▪ Table 4.7. Line level classification results of UD corpus. 82

▪ Table 4.8. Line level classification results of the ABMC corpus. 82

▪ Table 4.9. Line level classification results of the Arabic Learner Corpus. 82

▪ Table 4.10. Line level classification results of BACC. 83

▪ Table 4.11. PPM segmentation results. 84

▪ Table 4.12. Segmentation results of the UD corpus. 86

▪ Table 4.13. Segmentation results of the ABMC corpus. 86

▪ Table 4.14. Segmentation results of the Arabic Learner Corpus. 86

▪ Table 4.15. Segmentation results of the BACC. 88

▪ Table 4.16. Tag-based Compression on CA and MSA Text. 88

▪ Table 5.1. Different Arabic Tagsets. 93

▪ Table 5.2. The number of agreements and disagreements of different tags between the two annotators in

reverse frequency order. 94

▪ Table 5.3. The BACC Agreement Table Part 1. 99

▪ Table 5.4. The BACC Agreement Table Part 2. 100

▪ Table 5.5. The ten most frequent tags by the first annotator. 101

▪ Table 5.6. The ten most frequent tags by the second annotator. 102

▪ Table 5.7. Word unigrams statistics from the BAAC. 103

▪ Table 5.8. Word bigrams statistics from the BAAC. 103

▪ Table 5.9. Word trigrams statistics from the BAAC. 104

▪ Table 5.10. Most frequent Tags from the BAAC. 105

▪ Table 5.11. Most frequent Bi-tag sequences from the BAAC. 105

▪ Table 5.12. Most frequent Tri-tag sequences from the BAAC. 106

▪ Table 5.13. Most frequent Tag of the Khaleej sub-corpus 'News'. 106

▪ Table 5.14. Most frequent Bi-tag sequence of the Khaleej sub-corpus 'News'. 107

▪ Table 5.15. Most frequent Tri-tag sequence of the Khaleej sub-corpus 'News'. 107

▪ Table 5.16. Tag-based Compression Results. 108

▪ Table 6.1. Tag-based compression improvement for various sub-texts in Corpus A. 112

▪ Table 6.2. The BACC Text Type and Tag-based compression improvement. 112

▪ Table 6.3. KSUCCA Text Type and Tag-based compression improvement . 113

▪ Table 6.4. The most frequent corrected tags. 114

▪ Table 6.5. A Sample of corrected tags. 115

▪ Table 7.1. Models for tag-based compression. 120

▪ Table 7.2. The TTT processing of the string "to be or not to be to be or not to be that is the question". 122

▪ Table 7.3. The TTT processing of following tag sequence "TO VB CC RB TO VB TO VB CC RB TO VB

DT VBZ DT NN" which is translated into "tvcrtvtvcrtvdzdn". 123

▪ Table 7.4. A sample of the new character mapping. 124

▪ Table 7.5: Top 10 most incorrectly assigned tags for TAPT trained on silver-standard Madamira model.

 126

8

▪ Table 7.6: Top 10 most incorrectly assigned tags for TAPT trained on silver-standard Stanford model.

 126

▪ Table 7.7. The character-based and the tag-based compression results of the Madamira and TAPT trained

on silver-standard corpus. 127

▪ Table 7.8. The decrease in the tag-based compression performance of TAPT trained on silver-standard

text compared to the Madamira tagger. 127

▪ Table 7.9. The most frequently assigned tags by TAPT trained on gold-standard text. 128

▪ Table 7.10. Top 10 most incorrectly assigned tags for TAPT trained on gold-standard corpus. 129

▪ Table 7.11 The character-based and the tag-based compression results of the Madamira and TAPT trained

on gold-standard corpus. 130

▪ Table 7.12. The tag-based compression improvement of TAPT trained on gold-standard corpus compared

to the Madamira tagger. 130

9

Acknowledgement

All praise and gratitude to Allah The All-powerful for His blessings and guidance. Peace and

blessings of Allah be upon the Prophet Muhammad.

I would like to express my sincere appreciation to my mother, Shama Saleh, for her constant

motivation and prayers. I also would love to express my deep thankfulness for my wife, Bador,

for supporting me to obtain great confidence and faith in myself. Many appreciations to my

beloved children Alanoud and Alhanouf for being there for me throughout this journey and for

drawing a smile on my face when I needed it the most. I would also like to show my

appreciations to Ms Khawla S Alkhazi for the time and effort she spent contributing to this

research.

I would love to express my heartfelt and genuine appreciation to my PhD supervisor Dr. William

J. Teahan for his assistance, support and patience which led to the completion of this research.

Thank you, Dr. William, for granting me the opportunity to complete this research.

Many thanks to my sponsor, the University of Tabuk, for the financial aid and for Tabuk Public

Library, for providing the facilities required to complete the field trip.

I also would love to express my appreciation to my colleagues, Dr Mansor Alhgamdi and

Mohammad Altamimi for their help and support.

10

Abstract

The Arabic language is a morphologically complex language that causes various difficulties for

various NLP systems, such as POS tagging. The motive of this research is to investigate the

development and training of a compression-based Arabic POS tagger using the PPM algorithm.

The adoption of the algorithm for Arabic POS tagging may increase the efficiency and reduce

the Arabic language ambiguity problem.

The best text compression algorithms can be applied to NLP tasks often with state-of-the-art

results. This research examines the use of tag-based compression of larger Arabic resources

to re-evaluate the performance of tag-based compression which may reveal POS linguistic

aspects of the Arabic language. We also found that tag-based text compression for the Arabic

text can be utilised as a means of evaluating the performance and quality of the Arabic POS

taggers. The results of the experiments show that the tag-based compression of the text can

effectively be used for assessing the performance of Arabic POS taggers when used to tag

different types of the Arabic text, and also as a means of comparing the performance of two

Arabic POS taggers on the same text.

With the rapid growth of Arabic text on the Web, studies that address the problems of

classification and segmentation of the Arabic language are limited compared to other

languages, most of which implement word-based and feature extraction algorithms. This

research adopts a PPM character-based compression scheme to classify and segment

Classical Arabic (CA) and Modern Standard Arabic (MSA) texts. An initial experiment using the

PPM classification method on samples of text resulted in an accuracy of 95.5%, an average

precision of 0.958, an average recall of 0.955 and an average F-measure of 0.954, using the

concept of minimum cross-entropy. Segmenting the CA and MSA text using the PPM

compression algorithm obtained an accuracy of 86%, an average precision of 0.869, an

average recall of 0.86 and an average F-measure of 0.859.

This research describes the creation of the new Bangor Arabic Annotated Corpus (BAAC)

which is a Modern Standard Arabic (MSA) corpus that comprises 50K words manually

annotated by parts-of-speech. For evaluating the quality of the corpus, the Kappa coefficient

 11

and a direct percent agreement for each tag were calculated for the new corpus and a Kappa

value of 0.956 was obtained, with an average observed agreement of 94.25%. The corpus was

used to evaluate the widely used Madamira Arabic POS tagger and to further investigate

compression models for text compressed using POS tags. Also, a new annotation tool was

developed and employed for the annotation process of the BAAC.

 12

CHAPTER 1

Introduction

Contents:

1.1 Background & Motivation ... 13

1.2 Aim and Objectives ... 15

1.3 Research Questions ... 16

1.4 Contributions... 16

1.5 Publications ... 18

1.6 Organisation of this Dissertation .. 20

 13

1.1 Background & Motivation

The Arabic language “العربية” is among the most popular languages in use today, as shown in

Figure 1.1. In the United Nations, it is among the five official languages and it is the primary

language of 330 million people living in 22 countries in Asia, North Africa and the Middle East

along with it being a secondary language of 1.4 billion people [185]. Arabic is a morphologically

rich language having a mutual structure with Semitic languages such as Tigrinya, Hebrew and

Amharic. It is a morphologically complex language that causes various difficulties for Natural

Language Processing (NLP) [74], [161], [104], [38]. Diacritics are used in the Arabic language

to disambiguate terms. However, Modern Standard Arabic text is very commonly written without

diacritics and the contextual information is used by the reader of the text to disambiguate the

meaning of the term. As a result of this Arabic language ambiguity problem, there has been an

increase in the adoption of statistical approaches in the Arabic NLP field to solve the uncertainty

of Arabic text [180].

Figure 1.1. The most globally used languages [185], [135].

Natural language processing (NLP) is a computer science area of study which examines the

process of understanding and manipulating human natural language speech or text to perform

beneficial tasks, such as machine translation, part-of-speech tagging and speech recognition

[70]. NLP started in the 1950s and involves research at the junction of linguistics and artificial

intelligence [155].

A parts-of-speech (POS) tagger is a computer system that accepts text as input and then

assigns a proper grammatical tag, such as VB for a verb, JJ for an adjective and NN for a noun,

0

200

400

600

800

1000

1200

 14

as output for every token or term according to its appearance, position or order in the text. POS

tagging is normally an initial step in any linguistic analysis and a very significant early step in the

process of building several natural language processing (NLP) applications, such as information

retrieval systems, spell auto-checking and correction systems and speech recognition systems

[10].

The motive of this research is to investigate the development and training of a compression-

based Arabic part-of-speech tagger. The new tagger utilises the Prediction by Partial Matching

text compression scheme (PPM), which uses an adaptive statistical language model to make

predictions about upcoming text and has been successfully applied to several Arabic NLP tasks,

such as authorship attribution [46], [45], cryptology [15], text correction [19] and text

compression [26], [29], but it has yet to have been applied to POS tagging. The adoption of the

algorithm for Arabic POS tagging may increase the efficiency and reduce the Arabic language

ambiguity problem.

PPM is an online adaptive text compression system that utilises the prior context to predict the

coming symbol or character with given fixed context length. Previous experiments were

performed by Alhawiti [26] to compare the three PPM models, character-based, word-based

and tag-based, when used to compress the Arabic text and the size of resources used to

estimate the tag-based text compression were small due to resource limitation. Since PPM is

an online adaptive system that needs relatively large amounts of training data, this research

investigates the use of the tag-based compression of larger Arabic resources as a method to

evaluate the performance of different Arabic POS taggers.

Almost all Arabic language NLP tasks, such as part-of-speech tagging, are designed for Modern

Standard Arabic text (MSA) [84]. Most of the popular Arabic POS taggers were trained on MSA

text [141], [38], [37]. Contrastingly, tagging Classical Arabic text (CA) using MSA POS taggers

will significantly reduce the quality of the tagging as reported in various studies [38], [37], [42],

[40]. This research introduces the utilisation of compression-based techniques to classify and

segment the two types of Arabic text to overcome the problem of code-switching in Arabic text

and improve the performance of NLP tasks that are designed for specific type of Arabic text.

 15

Corpora play a significant factor in the development, improvement and evaluation of many NLP

applications. The limited availability of some existing resources, such as annotated corpora, and

the cost of acquiring others are one of the main reasons that contribute to resource scarcity

which prevents researchers from progressing further in their efforts. This need for annotated

corpora, in particular, provided the motivation to create a manually POS annotated corpus for

the Arabic language.

1.2 Aim and Objectives

The primary aim of this research is to investigate the development and training of a novel

compression-based Arabic part-of-speech tagger using PPM. Therefore, this research's

objectives are:

• Investigate the most efficient PPM compression method of Arabic text (see chapter 3).

• Investigate the applications of PPM tag-based compression to several Arabic NLP tasks

(see chapters 3, 4, 6 and 7).

• Develop novel methods for classification and segmentation of Classical Arabic and

Modern Standard Arabic text using PPM (see chapter 4).

• Create and evaluate a new POS manually annotated Arabic Corpus (see chapter 5).

• Develop novel compression-based criteria for evaluating Arabic part-of-speech taggers

and use them to evaluate the new tagger (see chapter 6).

• Develop and train a novel compression-based Arabic part-of-speech tagger based on

PPM (see chapter 7).

The main objective of this research is the development and training of a novel compression-

based POS tagger for the Arabic language which is based on the PPM compression system

(see chapter 7). The new tagger is evaluated with novel criteria based on the tag-based

 16

compression results (see chapters 3 and 6). To train the new tagger, a new POS manually

annotated Arabic Corpus must be created and evaluated (see chapter 5). Since the new tagger

is developed to tag MSA text, the new corpus must be classified and segmented using a novel

compression-based classification method (see chapters 3 and 4).

1.3 Research Questions

The specific research questions are as follows:

• Can the PPM compression models be used to help reveal linguistic universals across

languages?

• What is the best PPM compression model for compressing Arabic text?

• Can the tag-based compression of the Arabic text be utilised to measure the

performance of various Arabic POS taggers?

• Can two types of non-colloquial written text for the Arabic language be classified using

the PPM compression models?

• Can a new POS annotated corpus be used to develop and train a new compression-

based Arabic part-of-speech tagger that is effective at tagging Arabic text?

• Will the adoption of the PPM compression models to tag the Arabic text increase the

performance of tagging MSA text compared to other Arabic taggers?

1.4 Contributions

The contributions of this research are as follows:

• A novel compression-based Arabic part-of-speech tagger based on PPM.

The main contribution of this research is the development and training of a novel

compression-based POS tagger for the Arabic language which is based on PPM

compression system. The results of the tagger were presented in two experiments. The

 17

first used models that were trained using silver-standard data from two different POS

Arabic taggers, the Stanford [100] and the Madamira taggers [161]. The results of this

experiment show that using silver-standard data to train the new tagger decreases the

quality of the tag-based compression of both the CA and MSA text compared to the

Madamira tagger. The second experiment trained a model using the corpus that was

developed specifically for this research and forms the second contribution (see next

point), where the new tagger achieved an accuracy of 93%.

• A new POS annotated corpus for the Arabic language.

The second contribution is the creation of a manually annotated POS Arabic corpus. It

is an MSA corpus that contains 50K words manually annotated by part-of-speech tags.

The annotated corpus used the same tagset utilised by the Madamira tagger and

followed the annotation guidelines proposed by Maamouri for annotating the POS tags.

Also, a new annotation tool was developed and employed for the annotation process of

the new corpus which obtained a Kappa value of 0.956, and an average observed

agreement of 94.25%. The newly created corpus was used to train the new tagger and

to evaluate it, and also to evaluate existing Arabic taggers.

• A new method of classifying CA and MSA text based on the PPM algorithm.

The third contribution of this research is the development of a compression-based

Arabic text classifier. This method was required to classify and segment the text of the

newly developed corpus. The adoption of a PPM character-based compression scheme

to classify and segment Classical Arabic (CA) and Modern Standard Arabic (MSA) texts

resulted in an accuracy of 95.5%, an average precision of 0.958, an average recall of

0.955 and an average F-measure of 0.954, using the concept of minimum cross-

entropy. Segmenting the CA and MSA text using the PPM compression algorithm

resulted in an accuracy of 86%, an average precision of 0.869, an average recall of 0.86

and an average F-measure of 0.859.

• A novel compression-based method for evaluating the performance of Arabic POS

taggers.

The final contribution of this study is the development of a novel compression-based

method for evaluating the performance of Arabic POS taggers. This method utilises the

 18

quality of the tag-based compression of the tagged Arabic text as an indication for the

quality of the tagger. This method was applied to evaluate the new tagger, and the

results conclude that the use of the newly created corpus to train the new tagger

increases the quality of the tag-based compression when the new tagger is used to tag

MSA text.

1.5 Publications

Based on this research, three journal papers and two conference papers have already been

published. All the publications are based on jointly-authored papers, where I'm the main

contributor to all primary contributions presented in these publications and the co-author(s)

worked in a consulting capacity, giving feedback, overall supervision and/or commentaries.

Table 1.1 shows the particular journal and conference papers which have been associated with

this research. The first, entitled "Tag-based models for Arabic Text Compression", explores the

approach of compressing the Arabic text using parts-of-speech (tags) along with the text to give

significantly better compression results when compared to current variations of PPM, both word-

based and the character-based. First, the paper explains the concept of Prediction by Partial

Matching and its use for compressing natural language text. Secondly, it details the experiments

on using PPM tag-based modelling to compress Arabic text. Finally, the paper mentions the

results and limitations of those experiments. The paper was presented at the Intelligent Systems

Conference 2017, held in London, UK, and published by IEEE. The conclusions of this paper

were an essential basis for this research, as presented in chapters 3 and 7.

The second publication is titled "Compression-based Tag models for Evaluating Arabic Parts-

of-speech taggers", which investigates the method of employing the compression results of the

Arabic text that utilises both the POS (tags) and the text to evaluate the performance and the

quality of two of the most commonly recognised Arabic POS taggers, the Madamira [161] and

Stanford Arabic taggers [100]. First, the paper discusses details of the PPM tag-based

compression experiments, then mentions the outcomes and limitations of these investigations.

This conference paper was presented at the 2019 IEEE Jordan International Joint Conference

on Electrical Engineering and Information Technology Conference, held in Amman, Jordan.

 19

The research in this paper was utilised to measure the performance of the main contribution of

this thesis, as shown in chapter 7.

1

Title Tag based models for Arabic Text Compression

Authors Ibrahim S Alkhazi, Mansoor A Alghamdi and William J. Teahan

Submitted to Intelligent Systems Conference 2017

Year 2017

Status Published

2

Title
Classifying and Segmenting Classical and Modern Standard Arabic using Minimum

Cross-entropy

Authors Ibrahim S Alkhazi and William J. Teahan

Submitted to International Journal of Advanced Computer Science and Applications (IJACSA)

Year 2017

Status Published

3

Title BAAC: Bangor Arabic Annotated Corpus

Authors Ibrahim S Alkhazi and William J. Teahan

Submitted to International Journal of Advanced Computer Science and Applications (IJACSA)

Year 2018

Status Published

4

Title Compression-based Tag models for Evaluating Arabic Parts-of-speech taggers

Authors Ibrahim S Alkhazi and William J. Teahan

Submitted to
2019 IEEE Jordan International Joint Conference on Electrical Engineering and

Information Technology Conference

Year 2019

Status Published

5

Title Compression-based Parts-of-speech tagger for the Arabic Language

Authors Ibrahim S Alkhazi and William J. Teahan

Submitted to International Journal of Computational Linguistics (IJCL)

Year 2019

Status Published

Table 1.1. The journal and conference papers which have been associated with this

research.

 20

The third publication is titled "Classifying and Segmenting Classical and Modern Standard

Arabic using Minimum Cross-entropy". This paper explores the approach of classifying Arabic

text using PPM. First, the paper explains the PPM text compression scheme and its use for

compressing, classifying and segmenting natural language text. Secondly, it details the findings

of PPM character-based modelling experiments used to classify and segment Arabic text.

Finally, the results and limitations of those experiments are discussed in detail. The paper was

published in the International Journal of Advanced Computer Science and Applications

(IJACSA) in 2017. This research was needed to find out the most effective way of classifying

and segmenting the newly developed corpus, as presented in chapter 4.

The fourth paper titled "BAAC: Bangor Arabic Annotated Corpus" describes the creation of the

new Bangor Arabic Annotated Corpus (BAAC) which is a Modern Standard Arabic (MSA)

corpus that comprises 50K words manually annotated by parts-of-speech. In this paper, the

new corpus was used to evaluate the widely used Madamira Arabic part-of-speech tagger and

to further investigate compression models for text compressed using part-of-speech tags. Also,

this paper presented a new annotation tool which was developed and employed for the

annotation process of the new corpus. The paper was published in the International Journal of

Advanced Computer Science and Applications (IJACSA) in 2018. This paper was needed to

complete the main contribution of this thesis, as presented in chapters 5 and 6.

The main contribution of this thesis was published in the fifth paper, entitled "Compression-

based Parts-of-speech tagger for the Arabic Language". The paper explores the use of

compression-based models to develop and train a part-of-speech (POS) tagger for the Arabic

language. The paper details the use of several models to train the new tagger. The paper also

evaluates the performance of the new tagger on the two types of the Arabic text utilising the tag-

based results and the newly annotated corpus, as presented in chapter 6. The paper was

published in the International Journal of Computational Linguistics (IJCL) in 2019.

1.6 Organisation of this Dissertation

• Chapter 1 is an introduction to this research. It introduced the background and

motivation of this study. It also introduced the aim and objectives of this research. Finally,

the contributions and publication also have been listed.

 21

• Chapter 2 surveys the literature associated with this study. First, it presents an Arabic

language overview, followed by details on the PPM text compression of Arabic text.

Then, the chapter reviews Arabic text classification and its applications. Next, a review

on the status of the Arabic annotated resources is presented. Finally, the chapter

reviews the status of the current Arabic part-of-speech taggers.

• Chapter 3 explores the approach of compressing Arabic text using parts-of-speech

(tags) along with the text to give significantly better compression results when compared

to current variations of PPM.

• Chapter 4 explores the approach of classifying and segmenting Classical and Modern

Standard Arabic text using PPM.

• Chapter 5 describes the creation of the new Bangor Arabic Annotated Corpus (BAAC)

which is a Modern Standard Arabic (MSA) corpus that comprises 50K words manually

annotated by parts-of-speech.

• Chapter 6 investigates the method of employing the compression results of the Arabic

text that utilises both the POS (tags) and the text to evaluate the performance and the

quality of two of the most commonly recognised Arabic POS taggers.

• Chapter 7 explores the use of compression-based models to develop and train a part-

of-speech (POS) tagger for the Arabic language. The chapter details the use of several

models to train the new tagger and also evaluate the performance of the new tagger on

the two types of Arabic text utilising tag-based results and the newly annotated corpus.

• Chapter 8 presents a summary of the thesis with suggestions for future work.

 22

CHAPTER 2

Background and Related Work

Contents:

2.1 Arabic Language Background ... 23

2.1.1 An Overview .. 23

2.1.2 Arabic Internet Users ... 25

2.1.3 Formal Written Types of Arabic language ... 25

2.1.4 Arabic Encoding methods .. 26

2.1.5 Arabic morphology .. 27

2.2 Literature Review .. 28

2.2.1 PPM Text Compression of Arabic Text .. 28

2.2.2 Prediction by Partial Matching .. 30

2.2.3 Arabic Text Classification ... 37

2.2.4 Arabic Annotated Corpus .. 42

2.2.5 Arabic Part-of-speech Tagging .. 47

2.3 Summary and Discussion ... 55

 23

Arabic is a morphologically complex language that causes various difficulties for Natural

Language Processing (NLP) [74], [161], [104], [38]. This chapter presents an overview of the

Arabic language and surveys the literature associated with this study by investigating the

application of the PPM compression system to several Arabic NLP tasks. Section 2.1 presents

an overview of the Arabic language. Section 2.2 investigates PPM compression models and

the three methods of compressing the text, character-based, word-based and tag-based.

Specifically, it describes how to use PPM to compress Arabic text in section 2.2.1 and provides

an overview of PPM in Section 2.2.2. Then, section 2.2.3 addresses the use of minimum cross-

entropy concept to classify the two types of non-colloquial written text for the Arabic language,

Modern Standard Arabic and Classical Arabic. Section 2.2.4 reviews language resources for

the Arabic language with a focus on Modern Standard Arabic annotated resources for POS

tagging. Finally, section 2.2.5 investigates the POS tagging of the Arabic language.

2.1 Arabic Language Background

2.1.1 An Overview

The Arabic language “العربية” is acknowledged to be one of the most commonly used languages,

with 330 million people using the language as their first language, as shown in Table 2.1, plus

1.4 billion more using it as a secondary language [185]. Based on the number of countries and

their writing system, the Arabic script is the second most popularly utilised writing system after

Chinese and Latin [61]. The majority of the speakers are located across twenty-two nations,

primarily in the Middle East, North Africa and Asia. The United Nations considers the Arabic

language as one of its five official languages.

The Arabic language is part of the Semitic languages that includes Tigrinya, Amharic and

Hebrew, and shares almost the same structure as those languages. It has 28 letters, two

genders – feminine and masculine, as well as singular, dual and plural forms. The Arabic

language has a right-to-left writing system with the basic grammatical structure that consists of

verb-subject-object (VSO) and other structures, such as VOS, VO and SVO [24], [100], [13].

The Arabic language has had an affect on Indo-European languages such as Spanish and

Portuguese, and vice versa; for example, some Arabic words were borrowed from Romance

languages [204].

 24

Rank Language
Users

(millions)

1 Mandarin 1051

2 English 508

3 Hindi 497

4 Spanish 392

5 Arabic 330

6 Russian 277

7 Bengali 211

8 Portuguese 191

9 Malay 159

10 French 129

Table 2.1. The Most Universally Used Languages [185], [135].

The Arabic script is cursive, as most of the Arabic letters are connected by methods of ligatures,

and the appearances of several letters within a term depend on their location [91]. The Arabic

script has 22 letters which can be connected with previous and next letters by small straight

lines while the rest of the letters can be connected only to a previous letter. All the non-

connecting letters of the Arabic language, which are " و ز ر ذ د ا “, are used in a classical Arabic

poem shown in Figure 2.1.

Figure 2.1. A classical Arabic poem which is written only with the non-connecting Arabic letters
و ز ر ذ د ا " ".

 25

2.1.2 Arabic Internet Users

Presently, the information used, collected and sent by Arabic Internet users is growing fast.

Between 2000 and 2016, the increase of Internet usage in Arab countries was 4,207.4% [115].

According to the Marketing website [116], the English language comes first as the most

commonly used language on the Internet representing 25.5% of the Internet users, then the

Chinese language followed by the Spanish language. The Arabic language comes in fourth

place with 173 million users coming from 23 countries. According to the Marketing website [116],

the largest Arabic Internet users are from Egypt which accounts for 19.4% of the total number

followed by Saudi Arabia then Morocco as shown in Figure 2.2.

Figure 2.2. The largest 10 Arabic Internet users by countries [116].

2.1.3 Formal Written Types of Arabic language

The non-colloquial written text for the Arabic language can be divided into two types: Classical

Arabic and Modern Standard Arabic [75], [156], [173], [25]. The Classical Arabic (CA) epoch is

usually measured from the sixth century which is the start of Arabic literature. It is the language

of the Holy Quran, the 1,400-year-old primary religious book of Islam with 77,430 words [86]

and other ancient Islamic books from that era, such as the Hadith books [42]. With the beginning

of journalism and the spread of literacy in the eighteenth century came Modern Standard Arabic

 26

or MSA. MSA is the language of current printed Arabic media and most Arabic publications.

(See Figure 2.3 for an example). Although MSA derives some of its attributes, such as syntax,

from CA, however, MSA has a wider modern lexicon. Bin-Muqbil [57] argues that the stylistics

of CA and MSA are different. Both CA and MSA are written and not spoken languages, whereas

dialectal Arabic is spoken and not formally written [38], [46].

Figure 2.3. A sport news from aljazeera.net [28] in MSA text.

Most Arabic natural language processing (NLP) tasks perform better for MSA [84]. One

example of those tasks is parts-of-speech tagging (POS) of the Arabic language as reported in

[37], [42], where the performance of the taggers is best when tagging MSA text. The reason for

the variation in performance between MSA and CA is that most Arabic language NLP systems

were trained using MSA text [84]. More effort is currently being made, such as the creation of

manually annotated CA corpora [85] and the evaluation of different Arabic POS taggers on CA

text by Alosaimy and Atwell [37], to fill this gap in the research.

2.1.4 Arabic Encoding methods

The most common encoding system for the Arabic language, and for different languages as

well, is UTF-8. The encoding system is able to encode all possible characters and combines

various languages. The system is usually applied in multiple language applications and

websites, such as Facebook and YouTube [29], [99]. Figure 2.4 shows that from 2001 to 2010,

the use of other encoding systems, such as ASCII, has declined. UTF-8 uses only one byte to

represent English letters, and for other languages such as the Arabic language, the system

uses one to four bytes.

Microsoft developed the Windows-1256 encoding system that utilises 8-bits to represent a

single Arabic character. The system can be used to represent other languages that utilise Arabic

characters in their written forms, such as Kurdish, Persian and Urdu [203]. ISO 8859-6 is one

of the popular character encodings systems which can be used to represent Arabic characters.

Similar to Windows-1256, ISO 8859-6 utilises 8-bits to represent a single Arabic character, but

 27

unlike Windows-1256, ISO 8859-6 is only designed for the Arabic language and cannot be used

to represent other languages that utilise Arabic characters such as Kurdish, Persian and Urdu.

Figure 2.4. The growth of UTF-8 compared to other encoding systems [99].

2.1.5 Arabic morphology

Arabic is a morphologically complex language that causes various difficulties for Natural

Language Processing (NLP) [74], [161], [104], [38]. Diacritics are used in the Arabic language

to disambiguate terms. The presence of the four diacritics, which are FatHa, Dhamma, Kasra

and Sukuun, in the text help in the lexical disambiguation of the word, as some words share

identical component letters but different diacritics. An example of the use of diacritics to

disambiguate the meaning of an Arabic term is the number of variants that the Arabic word "علم"

can have with diacritics. Figure 2.5 shows 15 variants of the Arabic word "علم" where every form

or variant of the term has a different meaning represented by a different use of the diacritics,

and as stated before, that caused the rise in the adoption of statistical approaches to

disambiguate the uncertainty of Arabic text [180].

 28

Figure 2.5. Fifteen variants of the Arabic word "Alam" [58], which according to the
diacritics used can be translated as “flag”, “scientist”, “a known place” and other

translations.

2.2 Literature Review

2.2.1 PPM Text Compression of Arabic Text

2.2.1.1 Overview

The growth of exchanged information amongst Arabic users has sparked the need to reduce

both the space required to store the information and the time needed to transmit that

information, which thereby will help to overcome the problem of bandwidth limitation that some

Arabic countries are having. This can be accomplished by compressing the stored and

transmitted text [94].

2.2.1.2 Lossless Text Compression

Text compression can be defined as the process of decreasing the size needed to store the

encoded text file by removing redundant information from the text, which will also reduce the

time required to transmit that information. The lossless process can be reversed via decoding,

to reproduce the exact original text without missing any part of the information [196]. The best

lossless text compression algorithms are those that adapt to the compressed text [53].

Commonly used adaptive techniques can be classified into two classes. The first class is one

that matches phrases in the text using a dictionary of phrases from already viewed text, then

converts that text into a list of indexes into the dictionary. This type of technique is usually

expressed as Ziv-Lempel compression [214], [215]. This way of compression does not produce

 29

the best compression results, but is still widely used for its faster execution speed and lower

resources consumption.

The best compression results are obtained using the second class that applies an adaptive

statistical modelling technique. This class goes through two main steps, as shown in figure 2.6.

First, a statistical model of the string seen so far in the compressed text is accumulated, and as

the character is encoded, a probability distribution of the upcoming character is maintained.

Then arithmetic coding is applied to encode the character which actually comes next in a near

optimum way [149], [207], [171]. During the past three decades, the lossless text compression

performance standard has been set by Prediction by Partial Matching (PPM) [196], which is a

type of adaptive statistical modelling system.

Figure 2.6. Utilising a model for text compression [53].

Text compression can be achieved in three main ways using the PPM algorithm. The first way

is the use of character-based models in which the preceding context of observed symbols or

characters is applied to foretell the next one. Another method of applying PPM is to use the

word-based modelling of the text in which the trained model utilises the previous context of

observed word or words to foretell the imminent word. The final method employs tag-based

models that utilise the previously foretold tags (that represent the parts of speech) and words to

predict the imminent terms (both tags and words) [196]. The concept of the tag-based method,

as shown in Figure 2.7, is that recognising the tag of the term aids in predicting it. The principal

advantage of employing the tag to foretell the imminent term is that the tag will in all probability

have appeared many more times previously, and consequently be a better foreteller for the

forthcoming tags plus terms [64], [119], [131].

 30

The main benefit of utilizing the tag to predict the upcoming word is that the tag will in all

likelihood have occurred many times beforehand, and therefore be a better predictor for the

upcoming tags plus words [63], [119], [131]. On the other hand, the number of times that an

individual word may have occurred is often small, and therefore is not as helpful for predicting

the upcoming terms.

Figure 2.7. Using a tagger to compress text [190].

Previous experiments were performed by Alhawiti [26] to compare the three models on Arabic

text. The experiments used various texts with different file sizes to estimate the quality of both

the character and word-based text compression, whereas the text file sizes to estimate the

quality of the tag-based compression were relatively small [26]. Alhawiti concluded that the

character-based text compression of the Arabic text outperforms both the word-based and the

tag-based compression.

The following section discusses PPM in more detail.

2.2.2 Prediction by Partial Matching

2.2.2.1 Overview

PPM is an online adaptive text compression system that foretells the upcoming character or

symbol by using the previous context with given fixed length. It uses a Markov-based n-gram

procedure which applies a back-off mechanism alike to that suggested by Katz [123].

 31

Nevertheless, PPM refers to the backing-off as “escaping” and it was developed before Katz’s

proposed mechanism. It was first proposed by Cleary and Witten [72] in 1984 when they

developed the character-based PPM variants, PPMA and PPMB. Then came Moffat and

Howard, in 1990 and 1993, and introduced two further variants of PPM, PPMC and PPMD

[208]. The main distinction among these variants of PPM, PPMA, PPMB, PPMC and PPMD, is

the estimation of the escape probability that the smoothing mechanism requires for backing off

to a reduced model’s order. Experiments for character streams have shown that PPMD usually

delivers better compression results when compared to other variants of PPM [124].

As stated, PPM has been successfully applied to many areas of NLP. It performs state-of-the-

art compression of the text written in many languages, with results reported in [196], [26].

Another NLP application of PPM involves word segmentation of Chinese text, in this case by

adding spaces to Chinese text that has no spaces [195]. Many other NLP tasks in other

languages, such as code switching [46], [195], authorship attribution [190], text correction [19],

cryptology [15] and speech recognition , were reported in various studies [26], [29].

The following equation is used to determine the probability 𝑝 of the following character 𝜑 using

PPMD [17]:

𝑝(𝜑) =
2𝑐𝑑(𝜑) − 1

2𝑇𝑑

where the coding order currently used is indicated by 𝑑 , the number of times where the current

context has happened or occurred in total is represented by 𝑇𝑑 and the number of the symbol

𝜑 occurrences in the current context is represented by 𝑐𝑑(𝜑). The estimate of the escape

probability 𝑒 by PPMD is as follows:

𝑒 =
𝑡𝑑

2𝑇𝑑

where 𝑡𝑑 represents the number of times in total where unique symbols occur following the

current context. In most experiments, the use of 5 as a maximum order has proven to be

efficient, as PPMD starts with the model’s maximum order first to encode the forthcoming

symbol [195].

If the forthcoming symbol was predicted by the current model and the model contained it, then

its probability in current maximum order, 5 in this case, will be used to transmit it. If the

(2.1)

(2.2)

 32

forthcoming symbol was not found in the model, then the encoder will escape to the next lower

order model, 4 in this case, by encoding an escape. This process of escaping will be repeated

until the model finds that symbol or prediction. If the model does not contain the symbol, then

the encoder will back off to a default order of -1 [195].

2.2.2.2 Blending Techniques of PPM

PPM applies an approximate blending procedure named full exclusion that combines the

prediction of every character and symbol of length smaller than or equivalent to 𝑚, where 𝑚 is

the model's chosen maximum order. The name of the technique comes from the application of

the escape mechanism that escapes from the highest order prediction to lower orders until the

upcoming character being predicted has been seen before. Commonly, the order 0 model is

used to predict a character on the basis of its unconditional likelihood, whilst the order -1 model

is applied to ensure that every potential symbol and character is assigned a finite probability

[196].

PPM combines context predictions by assigning a weight to every context model, then

calculating the weighted total of the probabilities. According to Bell, Cleary and Witten [53], the

blended probability of character 𝑠 is produced by

𝑝(s) = ∑ 𝑞𝑖𝑝𝑖

𝑚

𝑖=−1

(s)

where 𝑝𝑖 represents every probability given to the order 𝑖 model whereas 𝑞𝑖 describes the

weight given to model. The probabilities 𝑝𝑖(𝑠), which are rational, are estimated using the

repetition counts 𝑐𝑖(𝑠). In order to prevent a probability of zero, lower order contexts are used

to assign non-zero weights to the predictions.

From the escape probabilities, equivalent weights are estimated by

𝑤𝑜 = (1 − 𝑒𝑜) ∏ 𝑒𝑖

𝑙

𝑖=𝑜+1

 − 1 ≤ o < 𝑙

and

(2.3)

(2.4)

 33

𝑤𝑙 = (1 − 𝑒𝑙)

where 𝑒𝑜 represents an escape at level o and the highest order context is represented by 𝑙

which makes a non-zero prediction. Therefore, according to every order's escape probability,

the lower orders weight is decreased one after another. Given that the escape probabilities are

within 0 and 1 and 𝑒−1 = 0, the weights will be normalized. The weighted contribution of the

model to the probability of the character 𝑠 is

𝑤𝑜𝑝𝑜(s) = (1 − 𝑒𝑜) 𝑝𝑜(s) ∏ 𝑒𝑖 .

𝑙

𝑖=𝑜+1

The sum of all weighted probabilities over each value of 𝑜 determines the probability of the

character 𝑠.

In 1990, Bell, Cleary and Witten [53] introduced the full exclusion mechanism which is an

improvement to PPM’s blending algorithm where the mechanism excludes each character

predicted by higher-order contexts. The mechanism adds a small computational cost by

checking all symbols for exclusion. Moffat [148] introduced the update exclusion mechanism

which enhances the execution time of the program by not updating the counts if they are

predicted by a higher order context [53] and can also lead to a slight improvement in

compression by a few percent as with the full exclusion mechanism.

The next sections will discuss the three PPM methods of modelling.

2.2.2.3 Character-based Modelling

To explain character-based encoding in more detail, Table 2.2 presents the way PPM models

a given string. The example in this case is how the PPMD prediction method models the string

tobeornottobe. The model in this example uses a maximum order of 2 for illustration

purposes (although normally it would be order 5). In the table, c indicates the count, p

symbolizes the probability and |A| is the size of the alphabet that is used [195]. Let the imminent

character for this example be letter o. The letter has been seen once before (‘be’ → o) for the

order two context ‘be’ and therefore it has a probability of 1

2
 (applying equation (1) since the

(2.5)

(2.6)

 34

count is 1). Therefore, the letter o will be encoded using 1 bit. But, if the upcoming letter in the

order two context had not been seen before, (i.e. suppose the next letter was t rather o), then

the model would need to escape to a lower order, the escape probability will be 1
2
, and the model

will back off to the order 1 context.

Order 2 Order 1 Order 0 Order -1

Prediction c p Prediction c p Prediction c p Prediction c p

 ‘be’ → o 1 1/2 ‘b’ → e 2 3/4 → b 2 3/26 → A 1 1/|A|

 → esc 1 1/2 → esc 1 1/4 → e 2 3/26

 ‘eo’ → r 1 1/2 ‘e’ → o 1 1/2 → n 1 1/26

 → esc 1 1/2 → esc 1 1/2 → o 4 7/26

 ‘no’ → t 1 1/2 ‘n’ → o 1 1/2 → r 1 1/26

 → esc 1 1/2 → esc 1 1/2 → t 3 5/26

 ‘ob’ → e 2 3/4 ‘o’ → b 2 3/8 → esc 6 3/13

 → esc 1 1/4 → r 1 1/8

 ‘or’ → n 1 1/2 → t 1 1/8

 → esc 1 1/2 → esc 3 3/8

 ‘ot’ → t 1 1/2 ‘r’ → n 1 1/2

 → esc 1 1/2 → esc 1 1/2

 ‘rn’ → o 1 1/2 ‘t’ → o 2 1/2

 → esc 1 1/2 → t 1 1/6

 ‘to’ → b 2 3/4 → esc 2 1/3

 → esc 1 1/4

 ‘tt’ → o 1 1/2

 → esc 1 1/2

Table 2.2. Processing the string tobeornottobe using PPM [205].

When the model backs off, the new order will be used to estimate the probability, and in this

case, there is no letter t that comes after e. As a result, the model will encode another escape

using a probability of
1

2
, and the context will be reduced to the null (order 0) context. Letter t will

be encoded using this order, where the probability will be
5

26
. The total cost of predicting the last

letter will be
5

26
×

1

2
×

1

2
, which in this case will be over 4 bits (since -log2

5

104
 = 4.28 bits).

Moreover, if the following letter has not been seen before in the context, such as the letter x, the

escape probability will be encoded three times from the maximum order of 2 down to -1 with the

 35

following probabilities:
1

2
×

1

2
×

3

13
×

1

256
 since order -1 will be used to encode this letter as we

are encoding English characters using ASCII (with an alphabet size of 256), and this will require

over 12 bits [195].

2.2.2.4 Word-based Modelling

For word-based encoding, a similar PPM-based approach is used to make the predictions, but

one word at a time rather than a character at a time. A bigram word model is as follows:

𝑝(𝑠) = ∏ 𝑝(𝑤𝑖 ∣∣ 𝑤𝑖−1)

𝑚

𝑖=1

where 𝑠 = 𝑤1
… 𝑤𝑚 is the text of 𝑚 words being predicted. When a new bigram sequence

𝑤𝑖−1𝑤𝑖 or a new word 𝑤𝑖 is encountered, the model will escape to an order 0 model, and if

needed to a standard PPM character model (where its characters are encoded one character

at a time) in order to predict the unseen word or bigram.

2.2.2.5 Tag-based Modelling

The tag-based model can be represented as follows:

𝑝(𝑠) = ∏ 𝑝(𝑡𝑖|𝑡𝑖−1𝑡𝑖−2) × 𝑝(𝑤𝑖 ∣∣ 𝑡𝑖𝑤𝑖−1)

𝑚

𝑖=1

where again 𝑠 = 𝑤1
… 𝑤𝑚 is the text of 𝑚 words being predicted. The tag-based model uses

two streams, a tag stream and a word stream, to predict the upcoming word as shown in Figure

2.7. First, it will use an order 2 PPM model to predict the tag given the two previous tags, then

predict the upcoming word given its tag along with the previously seen word. If the model has

not seen the 𝑡𝑖𝑤𝑖−1 sequence or its prediction 𝑤𝑖, an escape probability will be encoded and

the model will try to continue predicting the following word using only the current tag. Lastly, if

the prediction fails, it will escape to a character-based model [196]. The method requires that

the text sequence of words is tagged first, and then effectively both the tag and word sequences

need to be encoded together with the extra tag information also becoming available to the

decoder as shown in Figure 2.7. If the extra tags improve the compression (compared to a

word-based or character-based compression which do not need to encode the extra tag

(2.7)

(2.8)

 36

information), then this helps support the linguistic validity of the tag information. Prior

experiments [196] show that it is possible to get better compression results using tag-based

compression compared to both word and character-based compression for tagged English text,

but previous experiments with both Chinese [208] and Arabic tagged text [26] have not been

able to reproduce the English results for these languages.

2.2.2.6 The Tawa toolkit

The Tawa toolkit [192] can be used to apply PPM modelling to many different NLP tasks.

According to Teahan [192], "The aim of the toolkit is to simplify the conceptualisation and

implementation for a broad range of text mining and NLP applications involving textual

transformations". The toolkit can be used to implement a wide spectrum of NLP applications

and it comprises eight principal applications, as shown in Figure 2.8, such as train, encode,

decode and classify. It adopts a ‘noiseless channel model approach’, as illustrated in Figure

2.9, where every application is conceived as an encoding process without loss of any

information and any procedure is reversible. The algorithms and pseudo-code of the encoding,

decoding, training and six other applications are described in detail by Teahan [192]. Other

details, such as the implementation aspects and search algorithms applied in the toolkit, are

also addressed by the developer.

Figure 2.8. A diagrammatic representation of the Tawa Toolkit design [192].

 37

Previous experiments were performed by Alhawiti [26] to compare the three models on Arabic

text. Alhawiti used various text file sizes to estimate the quality of both the character and word-

based text compression, whereas the only resource used to estimate the tag-based text

compression was only the first part of the Arabic Treebank Corpus (ATC). As stated before,

PPM is an online adaptive text compression system that needs relatively large amounts of

training data to learn from and build the tag-based models. The reason for the use of the ATC

corpus in the previous experiments is the fact that the resources for manually tagged Arabic

corpus are limited, and the existing manually tagged corpora are usually relatively small [26].

Therefore, the effect of using the tag-based models to compress larger Arabic tagged text needs

be investigated further to re-estimate the performance of the previous three PPM methods of

compressing the Arabic text and to produce more comparative results.

Figure 2.9. The encoding-based ‘Noiseless Channel Model’ used by the Tawa Toolkit [192].

2.2.3 Arabic Text Classification

2.2.3.1 Overview

Text classification is the process of automatically assigning a document to different predefined

classes or categories to reflect their contents [194]. Text classification is important in various

areas such as natural language processing (NLP), text mining, information retrieval, machine

learning, etc. [188]. It also can be applied in a large variety of applications such as spam filtering

 38

[12], author identification [121], [186], [47], gender identification [68], [44], sentiment analysis [4],

[7], [14], [44], dialects identification [212], [143], and so on.

The massive increase in the size of text accessible on the internet during the last two decades

has drawn the attention to the importance of text classification [188]. This increase of data on

the Web has produced the need for methods to extract the required information from text

documents, and therefore, generating unique difficulties for the text classification problem

especially when considering applications requiring analysis of big data [129], [188].

 Text classification can be implemented using various algorithms, for example, Naïve Bayes

and the chain augmented Naïve Bayes probabilistic classifier [95], [163]. Other algorithms such

as support vector machines, or SVM, [113], generalized instance sets [132], k-nearest

neighbors algorithm [113], neural networks [172] and Generalized Discriminant Analysis, or

GDA, [136] have been used to classify English text. Various algorithms have also been applied

to other languages such as Chinese [113], [201] although there has been noticeably less

research done with the Arabic language.

Most of these text classification algorithms handle text documents as a “bag-of-words” where a

set of words or tokens are used to interpret the text and which rely on using their frequency in

some manner [83], [179]. The traditional approach to text classification goes through four steps:

first, pre-processing of the text where the words (or tokens) and sentences in the training files

are segmented [194], [87]; second, using word/token counts to extract or select different

features; thirdly, applying one of the machine learning algorithms mentioned earlier; and finally,

performing the same feature extraction on the test data and applying the learned model to the

extracted features to predict the class for the test data [194], [87].

During the process of analyzing the text, a complication occurs when the phenomenon of code-

switching arises. This is where a text contains more than one language or variations of the same

language. This phenomenon has been the subject of extensive linguistically oriented study in

the past [98], [177], and the problem of mixed texts must be tackled by segmenting those

variations. Text segmentation is the task of automatically separating the text into identified or

coherent parts [52]. Compared to text classification, text segmentation can be used to produce

 39

a more accurate estimate of each class, category or topic located inside the text rather than

assigning a class or set of classes to the entire text as a whole.

Many segmentation algorithms, such as the TextTiling algorithm [114] and the dotplotting

algorithm [169] rely on measuring the variation in word usage to predict potential boundaries in

the text, where a vast difference in word usage is a positive sign. Kozima [130] introduced an

algorithm that traces the coherence of a document by applying a semantic grid in a “lexical

coherence profile”. A statistical approach was proposed by [52] for text segmentation, where

the algorithm builds a model from selected informative features, then the model is used to

predict where boundaries happen in the text.

Compared to the traditional way of text classification, compression-based language modelling

uses a character-based approach, whereas traditional text classification is a word-based

approach which is language-dependent that tends to overlook both the contextual information

of the text and the word order [194], [188]. The use of language modelling for text classification

takes into consideration the contextual information in the text when building the language model

and avoids the need for pre-processing of the text usually required by most classification

algorithms [194], [188]. The use of Markov-based approximations standard in character-based

language modelling avoids the issue of explicit feature selection that is applied in traditional

classification and segmentation algorithms which may discriminate some important features of

the text [194], [120]. Algorithms that adopts a Viterbi-based algorithm produces an accurate

estimate of each class, category or topic located in the text. [197].

2.2.3.2 Minimum Cross-entropy as a Text Classifier

The concept of minimum cross-entropy as a text classifier has been adopted in various NLP

tasks that utilises the PPM algorithm [35], [46], [196], [191], [71]. The basis of the classification

and segmentation schemes in the PPM algorithm uses the character-based approach for

compressing the Arabic text [194]. The essence of this approach depends on the concept of

entropy as a measurement of the message's “information content” [182], and on the notion that

the upper bound of the entropy can directly be estimated by compressing the text [64].

 40

The fundamental coding theorem in information theory [182] states that an entropy of a

sequence of text, or message, is the lower bound to the average number of bits per character

required to encode that message [197].

𝐻(𝑃) = − ∑ 𝑝

𝑘

𝑖=1

(𝑥𝑖) log 𝑝(𝑥𝑖)

where there are 𝑘 number of potential characters with the probability distribution 𝑃 =

𝑝(𝑥1), 𝑝(𝑥2),...,𝑝(𝑥𝑘) and the probabilities sum to 1 and are independent. The measurement of

the uncertainty associated with the selection of the characters is represented by the entropy,

where the higher the entropy, the higher the uncertainty. The message’s “information content”

can also be measured by the entropy, as the more probable the messages, the less information

is conveyed compared to less probable ones [197].

For simplification purposes, the sums displayed in following formulas are considered to be made

over all potential sequences. A general case for a language with probability distribution can be

extended from the previous equation for a text sequence 𝑇 = 𝑥1, 𝑥2, … , 𝑥𝑚 of length m:

𝐻(𝐿) = 𝑙𝑖𝑚
𝑚→∞

 −
1

𝑚
∑ 𝑝 (𝑥1, 𝑥2, … , 𝑥𝑚) log 𝑝(𝑥1, 𝑥2, … , 𝑥𝑚).

This describes the entropy of a language which is defined to be the limit of the entropy when

the size of the message becomes large. The probability distribution for the source language 𝐿

is usually not identified or known. Nevertheless, applying a model 𝑀 as an approximation to

the probability distribution gives the upper bound to 𝐻(𝐿) [197]:

𝐻(𝐿, 𝑀) = − ∑ 𝑃𝑀 (𝑥1, 𝑥2, … , 𝑥𝑚) 𝑙𝑜𝑔 𝑃𝑀(𝑥1, 𝑥2, … , 𝑥𝑚)

where 𝑃𝑀(𝑥1, 𝑥2, … , 𝑥𝑚) is used to estimate the probabilities. 𝐻(𝐿, 𝑀) is described as the

cross-entropy which is higher than or equivalent to the entropy 𝐻(𝐿), as this is based on the

source itself which is the best possible language model:

𝐻(𝐿) ≤ 𝐻(𝐿, 𝑀).

Compressing the text can be used to estimate an upper bound to the entropy of a message

[64]. Considering the number of bits needed to encode a sequence of text to be

𝑏𝑀(𝑥1, 𝑥2, … , 𝑥𝑚), when using some model 𝑀 to estimate the probabilities, then:

(2.9)

(2.10)

(2.11)

 41

𝐻(𝐿, 𝑀, 𝑇) = 𝑙𝑖𝑚
𝑚→∞

1

𝑚
𝑏𝑀(𝑥1, 𝑥2, … , 𝑥𝑚)

where the number of bits per character needed to encode a long text message 𝑇 formed from

𝐿 is 𝐻(𝐿, 𝑀, 𝑇).

The cross-entropy is important as it presents a measurement of how great the estimated model

is performing on the test text; the less inexact the model is, the closer the cross-entropy is to

𝐻(𝐿). Furthermore, by measuring the cross-entropy for every possible model, the cross-entropy

provides a valuable measure for analysing the correctness of the competing models. The model

that has the least cross-entropy is judged to be the “best” or most appropriate. The information

is derived from a semantic label which is associated with each model which reflects the class

or type of data that was used to train the model. Simply, the label linked with the “best” model

is selected and used to classify the text:

�̂�(𝑇) = argmin𝑖 𝐻(𝐿, 𝑀, 𝑇).

2.2.3.3 Minimum Cross-entropy as an Arabic Text Classifier

Almahdawi and Teahan [35] have successfully adopted a PPM character-based text

compression scheme for coarse-grained and fine-grained classification of emotions in the text

that includes the six Ekman’s emotions (Sadness, Disgust, Anger, Surprise, Happiness and

Fear). They reported that utilising the PPM as a classifier outperformed the conventional word-

based text classification schemes. Altamimi and Teahan [46] have successfully classified

gender and authorship of Arabic tweets using an order 11, PPMD model achieving an accuracy

of 90% and 96% respectively.

Some Arabic corpora, such as the Bangor Arabic Compression Corpus (BACC), is a mixture of

both CA and MSA text. An example is the BACC sub-corpus ‘Arabic_book1’, which contains

both recent novels with ancient Arabic poems. (See Figure 2.10 for one example). The results

of using such a corpus in order to perform various NLP tasks, such as POS tagging, as stated

before, will vary and will not be consistent and reliable. Consequently, NLP applications should

(2.12)

(2.13)

 42

treat these texts separately and use different training data for each or process them differently.

Therefore, there arises a need to accurately classify CA from MSA within the text.

Figure 2.10. A Classical Arabic eulogy poem from the BACC.

2.2.4 Arabic Annotated Corpus

2.2.4.1 Overview

The term corpus can be defined as a computerised set of genuine texts or discourses provided

by language speakers that is saved in a machine-readable form [117], [147], [209], [9]. Xiao

[210] argues that a corpus is not a randomly selected collection of texts nor an archive, but a

file that manifests four essential aspects as follows: a corpus is a set of (1) machine-readable

(2) genuine texts (that includes transcripts of spoken data) that are (3) tested to be (4)

representative of a specific or a group of languages.

Corpora play a significant factor in the development, improvement and evaluation of many NLP

applications such as machine translation [30], [211], part-of-speech tagging [180] and text-

classification [211]. The design of any corpus depends on its intended applications [48]. Some

corpora are for general use and can be utilised in many applications, and others may serve a

specific purpose, such as building dictionaries or examining the language of a specific author

or duration of time [42].

There are several kinds of annotations which could be applied to corpora, and each annotation

is usually designed to handle a certain aspect of the language [146]. One type of corpora

annotation is the structural annotation of the corpus by attaching descriptive information about

the text, like mark-ups that specify the boundaries of the sentence, section and chapter, or a

header file that names the author of the text or adds information about participants, such as the

age and gender. Another type of annotation is the morphological annotation, where information

 43

about the text, like the stems or root based in a language like Arabic, is added to the corpora.

This type of annotation is the most common type of corpora annotation, and the most common

type of morphological annotation is POS tagging of the text [146], where a tag, such as a noun,

verb or particle is combined with each term in the corpus, and the number of tags used in the

annotation varies from a few to 400 tags or more [105].

Based on the type of text and purpose(s) for being created, a corpus can be categorised into

four categories: Raw Text Corpora; Annotated Corpora; Lexicon Corpora; and Miscellaneous

Corpora. Examples of corpora for the Arabic language are provided below.

1. Raw Text Corpora can be divided into:

A. Monolingual corpora, such as the BACC [26], Ajdir Corpora [5], the King Saud

University corpus of Classical Arabic [43], Alwatan [2], Tashkeela [213] and the

Al Khaleej Corpus [3]. Monolingual corpora consist of a raw text written in a

single language.

B. Multilingual corpora, also known as comparable corpora or parallel corpora,

are corpora that are written in two or more languages. Multilingual corpora, such

as the UN corpus [202] which is the most important and widely known free

corpus [211], Corpus A [30], the Hadith Standard Corpus [34], [181] and

MEEDAN Translation Memory [96], are used in NLP fields such as machine

translation [30], [211].

C. Dialectal Corpora, where the corpus is written in a specific language dialect,

such as the Bangor Twitter Arabic Corpus for Egyptian, Gulf, Iraqi, Maghrebi

and Levantine Arabic dialects [45]. Other well-known dialectal corpus for Arabic

is the Shami corpus for Levantine Arabic dialects created by Abu Kwaik and

others [8], and the Arabic Dialects Dataset collected by El-Haj [88]. Such

corpora are used in fields such as text-classification.

D. Web-based corpora, such as the KACST Arabic Corpus [17], the Leeds Arabic

Internet Corpus [16] and the International Corpus of Arabic [20], where the

corpora are only accessible online by an inquiry interface and the corpora

cannot be downloaded.

2. The second type is Lexicon corpora, that can be divided into:

 44

A. Lexical Databases, such as the BAMA 1.0 English-Arabic Lexicon [138] and

the Arabic-English Learner's Dictionary [164].

B. Words Lists such as the Word Count of Modern Standard Arabic [43] and the

Arabic Wordlist for Spellchecking [49], [77].

These types of corpora act like a vocabulary or a list of words and can be

employed by linguists to study many aspects of a language or combined with

the lexicons of systems, like spell checking applications, to improve their

performance [211].

3. Miscellaneous Corpora, such as Speech Corpora [36], Handwriting Recognition

Corpora [139], are beneficial for a number of NLP tasks such as plagiarism

detection [56], speech recognition systems [36] and question answering [55].

4. Annotated corpora are essential for the development of many NLP systems,

such as part-of-speech tagging [180], text parsing [69]. Annotated corpora are

divided into:

A. Named Entities Corpora such as JRC-Names [187] and ANERCorp [54]. Most

corpora of this type include the names of persons with the company or

organisation name and the locations.

B. Error-Annotated Corpora, such as the KACST Error corpus [33], is a beneficial

resource for systems such as spelling correction and machine translation

corrected output [118].

C. Miscellaneous Annotated Corpora, such as the OntoNotes corpus [166] and

the Arabic Wikipedia Dependency Corpus [151] which are semantically

annotated corpora [166].

D. Part-of-Speech (POS) tagged corpora are an important resource for the

training and development of POS systems [180]. Some of these resources will

be presented in detail in the existing resources section below.

 45

2.2.4.2 POS Arabic Annotated Corpora

POS annotated corpora are essential for the development of many NLP systems, such as part-

of-speech tagging [180], statistical modelling [111]. The lack of such resources limits some

researchers from progressing further in their efforts. The limited availability of some existing

annotated corpora and the cost of acquiring others are one of the main reasons that contribute

to resource scarcity. Several efforts have been made to overcome the lack of resources [37],

[9], [85].

In 2001, the Linguistic Data Consortium (LDC) published the first versions of the Penn Arabic

Treebank (ATB) [141], as illustrated in Table 2.3. This resource is widely used in many Arabic

NLP applications such as the training of POS taggers, like the Madamira Arabic POS tagger

[161] and the Stanford Arabic POS tagger [100]. The corpus consists of three parts with a total

of 1 million annotated words. The first part v2.0 was a newswire text written in Modern Standard

Arabic and consisted of 166K terms acquired from the Agence France Presse corpus. The

second part was obtained from the Al-Hayat corpus which was distributed by Ummah Arabic

News Text and consists of 144K terms [141]. The last part of the ATB corpus, part 3 v1.0, as

shown Figure 2.11, is a newswire text obtained from the An-Nahar corpus and consists of about

350K morphologically annotated words. For non-members of the LDC, the cost of acquiring any

part of the ATB corpus exceeds several thousand US dollars which prevents access to

researchers with a limited budget [111], [141].

Figure 2.11. A sample POS tag from the ATB Part 3 v 1.0.

Khoja [127], [125], [92] has published a 50,000 terms manually annotated POS tagged corpus

written in MSA text. According to the author, the corpus is divided into two parts. The first part

 46

is a newspaper text consisting of 1,700 terms that are manually tagged using a tagset that

differentiates between the three moods of the verb and case structures of the noun [112]. The

second part of the corpus is tagged using a simple tagset that includes only the following POS

tags: noun, verb, particle, punctuation or number [125]. However, access to this resource was

not provided for this study.

Corpus Part
Text

type

Number

of terms
Source of text Notes

Treebank (ATB)

One

MSA

166K

terms

Agence France

Presse corpus
Corpus fee is $4,500

Two
144K

terms
Al-Hayat corpus Corpus fee is $4,000

Three
350K

terms

An-Nahar

corpus
Corpus fee is $3,500

Khoja POS

annotated corpus

One
1,700

terms
Newspaper text

Tagset consists of three

moods of the verb and

case structures of the

noun

Two
48,300

terms
Newspaper text

Tagset consists only of

noun, verb, particle,

punctuation or number

The AQMAR Arabic

Wikipedia

Dependency Tree

Corpus

- 36K terms

Arabic

Wikipedia

articles

The tagset used in this

corpus contains a small

number of tags

The Columbia Arabic

Treebank (CATiB)
- -

Newswire feeds

from 2004 to

2007

The tagset consists only

of six POS tags.

Table 2.3. A table summary of different Arabic annotated corpora.

Another annotated corpus was published by Mohit [151]. The AQMAR Arabic Wikipedia

Dependency Tree Corpus is a manually annotated corpus that contains 1262 sentences

collected from ten Arabic Wikipedia articles and the 36K terms of the corpus are manually

annotated using the Brat annotation tool [151]. The ten articles cover topics such as the Internet,

Islamic Civilisation and Football and were annotated for named entities beforehand [178], [152],

[153]. The tagset used in this corpus contains a small number of tags and therefore is not as

 47

useful for the research concerning tag-based text compression described in Chapter 3 which

requires much larger amounts of training data to be effective.

The Columbia Arabic Treebank (CATiB) [105] is another manually annotated Treebank corpus

that consists of newswire feeds, from the year 2004 to 2007 and written in MSA. The corpus

was initially tokenized and then POS tagged by the MADA&TOKAN toolkit [104], [105]. The

TrEd annotation interface [165] was utilised in the annotation process. The number of tags used

by CATiB is relatively small as it consists only of six POS tags, NOM, PROP, VRB, VRB-PASS

and PRT, where each tag comprises a group of subtags; for example, the tag "NOM" can be

used to tag nouns, adverbs, pronouns and adjectives.

There exist some annotated corpora for the Arabic language that cannot be utilised by many

researchers, such as the tag-based text compression research applied by Alhawiti [26] due to

availability, and cost issues, such as the Arabic Treebank corpus [141]. Other resources are

designed to be used for particular research or annotated using a distinctive tagset produced for

an explicit purpose. The Qur’anic Arabic Dependency Treebank is one example where the text

is written in CA text and the corpus uses a tagset which is designed to tag CA text using

traditional Arabic grammar [85], [30]. This need for annotated corpora, which are necessary for

the development of many NLP systems, provided the motivation to create a manually annotated

corpus for the Arabic language for this study (see Chapter 5).

2.2.5 Arabic Part-of-speech Tagging

2.2.5.1 Overview

A parts-of-speech (POS) tagger is a computer system that accepts text as input and then

assigns a grammatical tag, such as VB for a verb, JJ for an adjective and NN for a noun, as

output for every token or term according to its appearance, position or order in the text. POS

tagging is normally an initial step in any linguistic analysis and a very important early step in the

process of building several natural language processing (NLP) applications, such as information

retrieval systems, spell auto-checking and correction systems and speech recognition systems

[10]. Alabbas and Ramsay [18] argue that higher tagging accuracy improves the quality of all

 48

subsequent stages and, therefore, assessing the tagger accuracy is an important step in the

development of many NLP tasks.

Figure 2.12. Simple information retrieval system pipeline architecture [158].

The tagging process can be achieved by one of the following general methods: (1) a statistical

approach where a language model is trained using previously tagged corpora, such as the

Arabic Treebank [111], and the model is then used to tag different text; (2) a rule-based

approach where linguists define and develop rules or a knowledge base, as shown in Figure

2.13, which are used to assign POS tags; and (3) by combining the previous two approaches

in a hybrid system [125], [38], [108], [93], [180].

2.2.5.2 Statistical POS tagging

The earliest approach used for developing POS taggers is the rule-based method [126], [125],

[10], that was first developed in the 1960s. As stated before, this method utilises a collection of

linguistic rules, where the number of rules ranges from hundreds to thousands, to tag the text.

The development of a rule-based tagger is difficult, costly and the system is usually not robust

[10]. Brill [60] developed the TBL rule-base tagger that obtained a tagging accuracy similar to

that of statistical taggers. Unlike statistical taggers, the linguistic knowledge is created

automatically as Brill's tagger trains simple non-stochastic rules [60]. Other examples of rule-

base taggers are the CGC tagger developed by Klein and Simmons [128], the TAGGIT tagger

which was produced by Greene and Rubin [102]. Nguyen and others have developed a rule-

based POS tagger that utilises an SCRDR tree [170], as shown in Figure 2.13, to represent the

rules used by the RDRPOSTagger [157]. RDRPOSTagger was utilised to tag two languages,

English and Vietnamese, with a reported accuracy of 93.51% for the English language. The

 49

tagger uses an error-driven procedure to build the knowledge base automatically in the form of

a binary tree as shown in Figure 2.13.

Figure 2.13. A sample of RDRPOSTagger tagging rules [157].

In the 1990s, the statistical approach of tagging the text started to replace the earliest approach

used for developing POS taggers, and according to Martinez [144], the statistical approach also

started to be adopted more with several other NLP tasks, reporting state-of-the-art results. For

the Arabic language, the statistical method of tagging the Arabic text is largely utilised to solve

the POS ambiguity of the Arabic text [180].

2.2.5.3 POS tagset

The tagset is a list of all the potential tags which could be assigned to the terms during the

tagging process and it is regarded as a fundamental component for any POS tagger. For the

English language, there are a number of common tagsets which have been developed and

used by English POS taggers; for example, the Brown tagset used in the Brown corpus which

comprises 226 tags, the LOB tagset used in the LOB corpus, which is based on the Brown

tagset, containing 135 tags [97], and the Penn Treebank tagset which was used to tag the Penn

Treebank corpus and contained 36 tags [189].

For the Arabic language, tagsets can be divided into traditional and English derived tagsets [38].

English derived tagsets arose when Arabic resources were limited, and a tagset was urgently

 50

needed to develop new resources [111], [140], [82]. This type of tagset is usually a trivial

modification of the standard English tagset, and this modification was considered problematic

for Semitic languages as stated by Wintner [206], and illustrated by Alosaimy who showed that

in some cases differentiation among adjectives and nouns is unclear [38]. Many more language

specific tagsets for the Arabic language have been proposed; for example, the Khoja tagset

utilised by the APT tagger includes 177 tags [125], [126], as shown in Figure 2.14. The El-Kareh

and Al-Ansary [90] tagset comprises 72 tags used in their tagger. Al-Shamsi and Guessom

[180] proposed a tagset that includes 55 tags, which was employed in the HMM tagger that they

have developed. Finally, Al-Qrainy [39] proposed a tagset that was used in AMT tagger that

comprises 161 detailed tags and 28 general ones, as displayed in Table 2.4.

Tagset name Utilised by Number of tags

Khoja tagset APT tagger 177 tags

The El-Kareh and Al-Ansary

tagset

The El-Kareh and Al-Ansary

tagger
72 tags

Al-Shamsi and Guessom

tagset

Al-Shamsi and Guessom HMM

tagger
55 tags

Al-Qrainy tagset AMT tagger
161 detailed tags and 28

general tags

SALMA tagset - Five main POS categories

Table 2.4. A table summary of different Arabic tagsets.

Sawalha and Atwell [176] introduced the SALMA tagset, which according to the authors,

"captures long-established traditional morphological features of Arabic, in a compact yet

transparent notation". The tagset includes 22 characters where each position serves a feature

and the character at that position serves a morphological feature value or attribute. Figure 2.15

shows the main POS category of the SALMA tagset described at position 1. The tagset is bound

to a particular tagging algorithm and other tagsets can be mapped onto the SALMA tagset

standard according to the authors. The tagset was validated and utilised in various Arabic

language processing systems [174], [175].

 51

Figure 2.14. The main POS category of the Khoja's Tagset [27], [38].

Table 2.5 shows a sample of Arabic text tagged by three tagsets, the Madamira tagset, the

Stanford tagset and Farasa tagset. The Farasa tagset [38], [6] consists of 16 primary tags.

Pasha and others [161] introduced the Madamira tagset, which was used initially by the MADA

tagger [104]. The tagset is the subset of the English tagset which was presented with the English

Penn Treebank and consists of 32 tags and was initially proposed by Diab, Hacioglu and

Jurafsky [80]. The Stanford tagset consists of 24 tags. Those tags are derived by manually

decreasing the 135 tags obtained from the Arabic Treebank distribution [93].

Figure 2.15. The main POS category of the SALMA tagset [176].

 52

Term Madamira Tag Stanford Tag Farasa Tag

 part_verb NN PART وقد

 verb VBD V اتخذت

 noun NNS NOUN-FP خطوات

 noun NN NOUN-MS بإنشاء

 noun NN NOUN-FS لجنة

 noun DTNN NOUN-FS الحقيقة

 noun NN NOUN-FS والمصالحة

 noun NN NOUN-FS واللجنة

 adj DTNN ADJ-FS الوطنية

 adj DTJJ ADJ-FP المستقلة

 noun NN NOUN-FS لحقوق

 noun DTNN NOUN-MS الإنسان

Table 2.5. Samples of various Arabic tagsets.

2.2.5.4 Statistical Arabic POS Taggers

The Madamira tagger is a disambiguation and morphological analysis system which can

perform various natural language processing tasks for the Arabic language such as

tokenization, part-of-speech tagging, phrase chunking and other tasks [161]. According to

Pasha and others [161], Madamira blends and improves some of the best services that the

previously two used systems, MADA [103], [104], [106] and AMIRA [81], provide. The system

was trained using the first three parts of the Penn Arabic Treebank, ATC, as shown in Table

2.6. It supports both XML and plain text as input and output file type, and an online demo [161]

of Madamira is made available at [162]. The Madamira tagset consists of 32 tags. There are

several steps in Madamira's pre-processing of the text. First, it transliterates the text using the

Buckwalter transliterator [65]. Then, it utilises the SAMA and CALIMA Analysers to

morphologically analyse the text. Next, it creates SVM language models. Then, Madamira uses

the morphological features to tokenise the text. The final step performs the phrase chunking

and named entity recognition of the text by utilising SVM models [93].

 53

System name Approach

used

Trained by Accuracy

The Madamira tagger - Penn Arabic Treebank

(ATB)

95.9%

The Stanford Arabic

tagger

Statistical Penn Arabic Treebank

(ATB)

96.49%

Farasa system by

Abdelali

Statistical - 97.43% for MSA and

84.44% for CA

APT Arabic tagger Hybrid - 86%

Al Shamsi and

Guessoum

Statistical - 97%

Darwish tagger - Arabic dialects tagged

tweets

89.3%

Table 2.6. A table summary of different Arabic POS taggers.

The Stanford Arabic tagger was developed by Toutanova and Manning at Stanford University

[200]. It is an open-source, multi-language, Java-based tagger that utilises a maximum entropy

modelling technique, which according to Green, Marneffe and Manning [101] can achieve a

tagging accuracy of 95.49% [93]. The Stanford tagger was also trained to tag other languages

such as German, Spanish, French and Chinese and provides a command-line interface and an

API. The first three parts of the Arabic Penn Treebank were used to train the Stanford Arabic

tagger [199].

Abdelali and others [6] have developed the Farasa segmenter for the Arabic language. The tool

provides various tasks such as segmentation, POS tagging, Arabic text diacritisation,

tokenisation and dependency parser. The developer used an SVM-rank approach that utilises

linear kernels. For evaluation, the developer created a unique test set made of 70 WikiNews

articles which include a diversity of themes published between 2013 and 2014. According to the

developer, the tagger achieved an accuracy of 97.43% for tagging MSA text and 84.44% for

tagging CA text.

In 2002, the APT Arabic tagger was developed by Khoja [125], [127]. The tagger uses the hybrid

approach with a tagset that is based on the BNC English tagset and consists of 131 tags.

According to the author, the tagger reached an accuracy of 86%. Mohamed and Kübler [150]

have developed an Arabic POS tagger that utilises two approaches, the first requires no

 54

segmentation of the word and the second applies the basic POS word segmentation. According

to Mohamed and Kübler, the first approach achieved an accuracy of 93.93% and the second

approach achieved an accuracy of 93.41%. Al Shamsi and Guessoum [180] used a statistical

method which employs HMMs to train an Arabic POS tagger. The tagger, which utilises

Buckwalter's stemmer, as illustrated in Figure 2.16, and uses a tagset that includes 55 tags,

achieved an accuracy of 97%. Darwish and others [76] have developed a POS tagger that tags

four different Arabic dialects, which are Gulf, Maghrebi, Egyptian and Levantine. The tagger,

which was trained by a new dataset that contains Arabic tagged tweets, has achieved an

accuracy of 89.3%.

Figure 2.16. Al Shamsi and Guessoum HMM POS Tagger architecture [180].

As stated, Arabic is a morphologically complex language that causes various difficulties for

Natural Language Processing (NLP) [74], [161], [104], [38]. Diacritics are used in the Arabic

language to disambiguate terms. The presence of the four diacritics in the text help in the lexical

disambiguation of the word, as some words share identical component letters but different

diacritics. Modern Standard Arabic text, which most of Arabic NLP tasks are designed for [84],

is very commonly written without diacritics and the contextual information is used by the reader

of the text to disambiguate the meaning of the term. As a result of the ambiguity problem, the

use of the Rule-based approach to tag the text increases the number of unanalyzed and

mistagged terms [109]. The statistical method of tagging the Arabic text is broadly utilised to

solve the POS uncertainty of the Arabic text [180]. PPM is a statistical language model algorithm

that was applied in several Arabic NLP tasks and the adoption of the algorithm in the Arabic

POS tagging may increase the efficiency and reduce the ambiguity problem.

 55

2.3 Summary and Discussion

This chapter investigated the use of the PPM compression system for several Arabic NLP

tasks, such as Arabic text compression and Arabic text classification.

A survey of Arabic text compression was given with a focus on PPM text compression models.

First, an overview of compressing the Arabic text was presented. Then a survey of the three

text compression methods using the PPM algorithm was introduced, ending with a focus on

the limitations of the previous experiments conducted to estimate the performance of the tag-

based method.

Next, this chapter introduced a survey of Arabic text classification. Then, a focus on the use of

minimum cross-entropy as a text classifier was presented. Also, current applications of

classifying Arabic text using the PPM algorithms was introduced with a focus on the need for

classifying the two types of Arabic text, MSA and CA.

This chapter then presented an overview of language resources, for the Arabic language in

particular. First, we reviewed language resources in general, followed by an overview of the

annotated corpora for the Arabic language and the need to fill various gaps in annotated

corpora.

Finally, this chapter has also reviewed the field of POS tagging of Arabic text. First an overview

of the topic was provided along with the three main approaches used for tagging text. Then,

the statistical POS tagging approach was reviewed followed by a survey of some existing

statistical Arabic POS taggers and their tagsets.

The next chapter explores the approach of compressing Arabic text using parts-of-speech

(tags) along with the text to give significantly better compression results when compared to

current variations of PPM, word-based and character-based.

 56

CHAPTER 3

Tag based Models for Arabic Text

Compression

Contents:

3.1 Introduction .. 57

3.2 Tag Based Compression Experimental Setup .. 58

3.3 Compression Results ... 61

3.4 Summary and Discussion .. 72

 57

3.1 Introduction

The previous chapter presented an overview of the Arabic language and surveyed the literature

associated with this study by investigating the application of the PPM compression system to

several Arabic NLP tasks. This chapter examines the use of tag-based compression of larger

Arabic resources to re-evaluate the performance of tag-based compression which may

reveal POS linguistic aspects of the Arabic language (as per research questions 1 and

2). The best text compression algorithms can be applied to natural language

processing tasks often with state-of-the-art results [196], [193], [195], [197], [15].

Therefore, improved tag-based compression has applications beyond the specific

compression application. For example, compression of co-translated parallel text

produces compressed text of similar sizes which leads to a more effective method for sentence

alignment of parallel corpora [31].

The focus of this specific chapter is on compressing Arabic text (encoded using the UTF-8

encoding scheme). The Arabic language poses many challenges for the NLP community due

to interesting linguistic features that the language has, such as complicated morphology, dialect

varieties and frequent code-switching [80] but to date, most of these unique Arabic NLP tasks

have not been satisfactorily addressed. PPM can be successfully applied to many of these

challenges in other languages such as English, Chinese and Welsh (see [193], [195], [196],

[197], for example) but have yet to have been applied comprehensively to Arabic. One

stumbling block is the need for more effective text compression algorithms for Arabic that can

be applied to different Arabic NLP.

The rest of the chapter is formed as follows. Section 3.2 mentions details about experiments on

using PPM tag-based modelling to compress Arabic text. Section 3.3 discusses the results and

limitations of those experiments. A summary and discussion are presented in section 3.4.

A portion of this chapter has been published in a conference paper (Alkhazi, I. S., Alghamdi, M.

A., & Teahan, W. J. (2017, September). “Tag based models for Arabic text compression”. In

2017 Intelligent Systems Conference (IntelliSys) (pp. 697-705). IEEE.)

 58

3.2 Tag Based Compression Experimental Setup

The quality of the compression results depends on the quality and correctness of the tagging

process. Currently, the resources for manually tagged Arabic corpus are limited, and the

existing manually tagged corpora are small [26] as also shown in Table 3.1. Also, the size of

the text being compressed affects the effectiveness of the compression, as will be mentioned

later. So, to get a sufficient amount of tagged text to make the method effective, existing Arabic

taggers, the Madamira Arabic POS tagger [161] and the Stanford Arabic POS tagger [100] were

utilised. Since the two taggers were trained by the Arabic Treebank corpus [141], therefore, the

corpora which have been used in these experiments were mostly written in MSA, which will

reduce the amount of mistagged terms.

This chapter used five different corpora. The first corpus is Corpus A [31]. It covers several

subjects such as politics, opinions, legal issues, economics, conferences, business, cinema and

books. The text in the corpus was gathered from the Al-Hayat website, a bilingual newspaper,

and from the open-source online corpus, OPUS [30].

Data Set Corpus Size
Character

encode size

Tag encode

size
Improvement

AFP 138,223 23,512 32,844 -28.4%

UMH 426,811 64,420 70,824 -9.0%

XIN 158,997 25,974 29,189 -11.0%

ALH 600,091 108,196 120,928 -10.5%

ANN 195,043 39,196 56,765 -31.0%

XIA 431,474 71,183 77,261 -7.9%

Table 3.1. A sample of the tag-based compression results for the Prague Arabic

Dependency Treebank.

The second corpus used is the Bangor Arabic Compression Corpus (BACC) that contains 31-

millon words which was collected from several sources such as magazines, websites and

books. The BACC consists of 16 files divided based on genre and size [26]. The third source is

the King Saud University Corpus of Classical Arabic (KSUCCA) which is a relatively large

corpus containing over 50 million words, divided into six genres. The main goal for the creation

 59

of this corpus is analyzing the lexical meaning of the Holy Quran [40]. In this chapter, we used

the parts that were mostly written in Modern Standard Arabic such as the Science sub-corpus.

The fourth source is the Arabic in Business and Management Corpora (ABMC). El-Haj [89],

[122] created several Arabic corpora such as EASC, KALIMAT, Arabic Dialects Dataset and

ABMC. The corpora are articles obtained from WikiNews, newspapers and summaries of the

articles, and is mostly written in MSA text. The fifth and last source is the Arabic Learner Corpus

[21], which includes 282,732 terms, gathered from students of Arabic in Saudi Arabia. The

corpus covers spoken and written text created by 942 pupils, from 67 various nationalities

enrolled at pre-university and university levels.

There are two steps to perform the tag-based compression experiments. First, you must tag

each word in the text using, for example, the Madamira tagger or the Stanford tagger. Second,

using the tag-based model, the tags should be encoded with the text itself. Even with the extra

contextual information, a tag for each term, which has been added to the text, the hope is that

the tag-based compression outperforms both the word-based and character-based

compression of the original text. As stated, the experiments were done using Corpus A [31],

BACC corpus [26], the King Saud University Corpus of Classical Arabic (KSUCCA) [40], the

ABMC corpus [89], [122] and the Arabic Learner Corpus [21]. The text was tagged using

Madamira [161] and Stanford [101] Arabic taggers. The PPM modelling was done using the

Tawa toolkit [192].

The processing steps were as follow:

• The text being compressed is first preprocessed to produce a tagger input file in XML

for the Madamira tagger and raw text for Stanford tagger.

• The text is then segmented and tagged using the Madamira tagger and the Stanford

tagger.

• Then, the segmented and tagged text from the output of both taggers, where every

prefix/infix/suffix is tagged, is processed for the first part of the experiment.

 60

• For the second part of the experiment, the tag for only the root, as shown in Figure 3.1

for the Madamira tagger output, is selected as a tag for the entire term (not split by

prefix/infix/suffix).

Figure 3.1. The Madamira segmentation and tagging output for the term "الدولة" which
translates to "the country".

• Three compressed files are generated using tools provided by the Tawa toolkit [192].

The original text is first extracted from the tagged file, where every tag is removed and

only the original text remain, then compressed using the order 5 PPMD character-based

model but with the Arabic characters as defined by the UTF-8 encoding first converted

to equivalent symbol numbers as described in [26].

• The same text is then compressed using an order 1 word-based model.

• Finally, for the first part of the experiment, the two segmented and tagged text files, one

for Madamira and the other is for Stanford tagger, are compressed using the Tawa

toolkit [192] that uses the model described by equation (2.8). For the second part of the

experiment, the two unsegmented and tagged text files are compressed using the same

tool.

 61

3.3 Compression Results

The experimental results for Corpus A can be described into two parts (as shown in tables 3.2,

3.3, 3.4 and 3.5) based on how words in the text were segmented when it was tagged. Each

table lists the results for the three different types of text compression (character, word and tag-

based). In tables 3.2 and 3.4, the name of the text file being compressed and its size in bytes is

shown in the first two columns. The compression output size (also in bytes) is then listed in the

next four columns – for character-based compression first, then word-based compression, then

tag-based compression in two columns using the tags generated by the two taggers. In tables

3.3 and 3.5, the results are converted to a bits-per-character (“bpc”) compression ratio by

dividing the encode output size in bytes multiplied by 8 (to determine the number of bits) then

dividing by the number of Arabic characters in the text being compressed.

Corpus Size

(bytes)

Character
encode size

(bytes)

Word
encode size

(bytes)

Madamira
Tag encode
size (bytes)

Stanford
Tag encode
size (bytes)

Books 10,111,728 992,932 1,768,654 869,342 900,598

Business 23,794,220 2,954,882 4,583,372 2,809,082 2,878,069

Cinema 48,405,798 7,693,241 10,413,103 7,599,585 7,786,930

Conferences 19,683,004 2,463,988 3,810,208 2,349,752 2,406,579

Crimes 9,200,719 1,341,031 1,891,607 1,356,279 1,386,562

Decisions 15,172,319 1,465,637 2,650,080 1,261,969 1,307,147

Economy 23,617,015 2,950,719 4,563,009 2,803,885 2,872,965

Geographies 14,788,494 1,859,902 2,855,610 1,795,240 1,840,775

Issues 9,775,694 1,248,016 1,882,561 1,217,472 1,248,534

Law 14,459,749 1,816,820 2,784,756 1,756,683 1,800,847

Politics 20,398,361 2,547,920 3,950,894 2,422,574 2,482,772

Reports 14,568,403 1,853,284 2,822,415 1,795,010 1,839,161

Stories 28,362,790 4,213,806 5,930,949 4,208,840 4,314,284

Table 3.2. The compression output sizes using unsegmented text for Corpus A.

The percentage improvement of the tag-based compressors compared to the previously best

state-of-the-art PPMD character-based compressor (as shown in the tables) are shown in the

final two columns in tables 3.3 and 3.5. The character and word-based results in tables 3.2, 3.3,

 62

3.4 and 3.5 are the same since the text was processed in the same way – only the tag-based

text, as described earlier, was processed differently (split by prefix/infix/suffix, as shown in

figures 3.1 and 3.2, for tables 3.4 and 3.5, and not for tables 3.2 and 3.3). However, the

character and word-based results have been duplicated in both tables to allow for ease of

comparison. Note that the results for the word-based compression is noticeably worse than the

results for both the character and tag-based methods which may be a reflection of the

morphologically rich nature of Arabic text. This requires further investigation as results for other

languages indicate that word-based compression is usually very competitive [196]. However,

this investigation is beyond the scope of this chapter which was focused on tag-based

compression.

C
h

a
ra

c
te

r

e
n

c
o

d
e
 (b

p
c
)

W
o

rd
 e

n
c
o

d
e

(b
p

c
)

M
a
d

a
m

ira
 T

a
g

e
n

c
o

d
e
 (b

p
c
)

S
ta

n
fo

rd
 T

a
g

e
n

c
o

d
e
 (b

p
c
)

Madamira
Improve.

(%)

Stanford
Improve.

(%)

Books 0.79 1.40 0.69 0.71 14.22% 10.25%

Business 0.99 1.54 0.94 0.97 5.19% 2.67%

Cinema 1.27 1.72 1.26 1.29 1.23% -1.20%

Conferences 1.00 1.55 0.96 0.98 4.86% 2.39%

Crimes 1.17 1.64 1.18 1.21 -1.12% -3.28%

Decisions 0.77 1.40 0.67 0.69 16.14% 12.12%

Economy 1.00 1.55 0.95 0.97 5.24% 2.71%

Geographies 1.01 1.54 0.97 1.00 3.60% 1.04%

Issues 1.02 1.54 1.00 1.02 2.51% -0.04%

Law 1.01 1.54 0.97 1.00 3.42% 0.89%

Politics 1.00 1.55 0.95 0.97 5.17% 2.62%

Reports 1.02 1.55 0.99 1.01 3.25% 0.77%

Stories 1.19 1.67 1.19 1.22 0.12% -2.33%

Table 3.3. The compression ratios (in bpc) when compressing the unsegmented text for

Corpus A.

 63

Figure 3.2. Sample segmented verse of the Holy Quran which translates to "merciful
among themselves, you see them bowing and prostrating".

Corpus Size

(bytes)

Character

encode size

(bytes)

Word

encode size

(bytes)

Madamira

Tag encode

size (bytes)

Stanford

Tag encode

size (bytes)

Books 10,111,728 992,932 1,768,654 915,434 916,565

Business 23,794,220 2,954,882 4,583,372 2,721,276 2,718,995

Cinema 48,405,798 7,693,241 10,413,103 7,318,652 7,402,514

Conferences 19,683,004 2,463,988 3,810,208 2,274,826 2,273,345

Crimes 9,200,719 1,341,031 1,891,607 1,268,526 1,272,853

Decisions 15,172,319 1,465,637 2,650,080 1,348,677 1,349,478

Economy 23,617,015 2,950,719 4,563,009 2,720,672 2,719,921

Geographies 14,788,494 1,859,902 2,855,610 1,721,999 1,721,422

Issues 9,775,694 1,248,016 1,882,561 1,162,636 1,163,376

Law 14,459,749 1,816,820 2,784,756 1,686,617 1,685,836

Politics 20,398,361 2,547,920 3,950,894 2,348,775 2,348,913

Reports 14,568,403 1,853,284 2,822,415 1,720,206 1,719,935

Stories 28,362,790 4,213,806 5,930,949 3,981,845 4,004,927

Table 3.4. The compression output sizes using segmented text for Corpus A.

The words for part one of the experiment (i.e. whose results are shown in tables 3.2 and 3.3)

were not segmented (by prefix, infix and/or postfix), and the tag of the term’s root is assigned to

the entire term. For example, the term ‘وإبراهيم’ might have been assigned the tag ‘prop_noun’

for the entire term. Whereas in part two of the experiment, the term ‘وإبراهيم’ was segmented into

the prefix ‘و’, which is a conjunction, and the term ‘إبراهيم’, which is a ‘prop_noun'. Another

example of text segmentation is the term ‘لعنصرها’ which has the tag ‘noun’ assigned to it in the

first part. But in part two of the experiment, this term was segmented into three individual parts:

 64

prefix, which is ‘ل’ with the tag ‘prep’ assigned to it, the term ‘عنصر’ with the tag ‘noun’ assigned

to it and a suffix, which is ‘ها’ that has the tag ‘pron_dem’ assigned to it. Also, in both parts of the

experiment, we used the default tagset adopted by the Madamira and Stanford Arabic taggers.

C
h

a
ra

c
te

r

e
n

c
o

d
e

 (b
p

c
)

W
o

rd
 e

n
c
o

d
e

(b
p

c
)

M
a
d

a
m

ira
 T

a
g

e
n

c
o

d
e
 (b

p
c
)

S
ta

n
fo

rd
 T

a
g

e
n

c
o

d
e
 (b

p
c
)

Madamira

Improve.

(%)

Stanford

Improve.

(%)

Books 0.79 1.40 0.72 0.73 8.5% 8.3%

Business 0.99 1.54 0.91 0.91 8.6% 8.7%

Cinema 1.27 1.72 1.21 1.22 5.1% 3.9%

Conferences 1.00 1.55 0.92 0.92 8.3% 8.4%

Crimes 1.17 1.64 1.10 1.11 5.7% 5.4%

Decisions 0.77 1.40 0.71 0.71 8.7% 8.6%

Economy 1.00 1.55 0.92 0.92 8.5% 8.5%

Geographies 1.01 1.54 0.93 0.93 8.0% 8.0%

Issues 1.02 1.54 0.95 0.95 7.3% 7.3%

Law 1.01 1.54 0.93 0.93 7.7% 7.8%

Politics 1.00 1.55 0.92 0.92 8.5% 8.5%

Reports 1.02 1.55 0.94 0.94 7.7% 7.8%

Stories 1.19 1.67 1.12 1.13 5.8% 5.2%

Table 3.5. The compression ratios (in bpc) when compressing the segmented text for

Corpus A.

Tables 3.2 and 3.3 show that compressing the text which is not segmented and tagged with the

Madamira Arabic tagger improves the compression of the original text over the character-based

compressor by an average of 4.9%, whereas using the Stanford tagger improves the

compression by an average of 2.2%. As stated, the tagging in this stage represents the whole

term (with postfixes and prefixes).

The second part of the results are shown in tables 3.4 and 3.5 which represents the

improvement of the compression as a result of segmenting the words in the text, with each

postfix and prefix being tagged and compressed as a separate term. By segmenting each word

 65

into prefixes, infixes and postfixes, and then tagging each as a term, the compression results

were improved significantly. For the text that was tagged by Madamira, the compression

improved by 7.6% compared to the character-based compression. As for the text that was

tagged by the Stanford tagger, the compression improved by 7.4%.

The compression of the segmented text outperformed the same unsegmented text by 2.7%, for

the text that was tagged by Madamira and 5.2% improvment for the text that was tagged by the

Stanford tagger. This improvement of the compression reflects that the segmentation of the text

is an essential step in the tagging process as stated by AlGahtani and McNaught [23], "Finding

the correct tagging requires the correct segmentation in advance." Essentially, the correct

tagging of the text made a better prediction of the upcoming term, and this has led to better

compression as a result.

The same experiment was performed on the BACC corpus. Using PPM tag-based

compression to compress the largest sub-corpus, Book_collection, the compression was

improved by 2.5% using the Madamira tagger and 2.4% using the Stanford tagger. This corpus

mainly consists of religious books which are mostly written in classical Arabic. As stated before,

both the Madamira and Stanford Arabic taggers were trained on the first three parts of the Arabic

Treebank Corpus. This proves that different NLP applications should treat these texts

separately by accurately classifying CA from MSA within the text.

 Corpus Size
Character

encode size

Word

encode size

Madamira

Tag encode

size

Stanford Tag

encode size

Religion 140,112,368 19,057,454 28,380,731 19,189,175 19,209,861

Literature 73,892,199 12,828,194 16,462,334 12,348,603 12,406,021

Linguistics 64,085,357 10,877,334 14,138,294 10,713,179 10,768,099

Science 59,038,146 9,547,210 12,831,102 9,397,481 9,428,971

Table 3.6. The compression output sizes for the KSUCCA Corpus.

The KSUCCA corpus [40] is divided into many genres and most of those genres are written in

classical Arabic, the largest of which is the Religion sub-corpus, which contains the Holy Quran

and other ancient Islamic books. Tables 3.6 and 3.7 illustrate the results of the compression

 66

experiments using the sub-corpora Religion, Literature, Linguistics and Science. The use of

classical Arabic text in the ancient Islamic books which was included in the Religion sub-corpus

decreased the compression rate compared to the second, third and fourth sub-corpora, and this

may reflect the fact that these sub-corpora consist of relatively more recent books.

Character

encode

 bpc

Madamira Tag

encode bpc

Stanford Tag

encode bpc

Madamira

Improve.

(%)

Stanford

Improve.

(%)

Religion 1.09 1.10 1.10 -0.7% -0.79%

Literature 1.39 1.34 1.34 3.9% 3.4%

Linguistics 1.36 1.34 1.34 1.5% 1.1%

Science 1.29 1.27 1.28 1.6% 1.3%

Table 3.7. The compression ratios (in bpc) when compressing the KSUCCA Corpus.

ABMC is a relatively small corpora that consists mostly of MSA text. The Arabic Learner Corpus

is also a small corpus written mostly in CA text. Tables 3.8 and 3.9 show the tag-based

compression of ABMC, and tables 3.10 and 3.11 show the results of the tag-based compression

of the Arabic Learner Corpus.

Genre Corpus Size
Char encode

size
Madamira Tag
encode size

Stanford Tag
encode size

Economic News 2,201,462 305,360 286,718 289,712

Management 1,358,576 201,192 197,154 198,241

Stock News 1,070,320 89,391 83,173 83,640

Table 3.8. The compression output sizes for the ABMC Corpus.

The results in tables 3.8 and 3.9 indicate that the tag-based compression of ABMC outperforms

the character-based compression by an average of 4.77% using Madamira tagged text and

3.90% using Stanford tagged text. The compression results for the Arabic Learner Corpus, as

presented in tables 3.10 and 3.11, show that the character-based compression of the corpus

surpasses the tag-based compression. The fact that the Arabic Learner Corpus is written in CA

text may have caused a decrease in the quality of the tag-based compression.

 67

Genre

C
h

a
r_

e
n

c
o

d
e
 b

p
c

M
a
d

a
m

ira
 e

n
c
o

d
e

b
p

c

S
ta

n
fo

rd
 e

n
c
o

d
e

b
p

c

M
a
d

a
m

ira

Im
p

ro
v
e
m

e
n

t

S
ta

n
fo

rd

Im
p

ro
v
e
m

e
n

t

Economic News 1.11 1.04 1.05 6.50% 5.40%

Management 1.18 1.16 1.17 2.05% 1.49%

Stock News 0.67 0.62 0.63 7.48% 6.88%

Table 3.9. The compression ratios (in bpc) when compressing the ABMC corpus.

Genre Corpus Size
Char encode

size
Madamira Tag
encode size

Stanford Tag
encode size

Arabic Learner Corpus 2806467 469502 472541 477,506

Table 3.10. The compression output sizes for the Arabic Learner Corpus.

Genre

C
h

a
r_

e
n

c
o

d
e

b
p

c

M
a
d

a
m

ira

e
n

c
o

d
e
 b

p
c

S
ta

n
fo

rd

e
n

c
o

d
e
 b

p
c

M
a
d

a
m

ira

Im
p

ro
v
e
m

e
n

t

S
ta

n
fo

rd

Im
p

ro
v
e
m

e
n

t

Arabic Learner Corpus 1.34 1.35 1.36 -0.64% -1.68%

Table 3.11. The compression ratios (in bpc) when compressing the Arabic Learner

Corpus.

According to the authors of the ATC, the corpus was written using Modern Standard Arabic.

Therefore, the quality of the tagging of classical Arabic will be effected compared to when

Modern Standard Arabic is being tagged. Table 3.12 shows a sample of classical Arabic tagged

by the Madamira tagger, where many of the tags being assigned are not correct. The sample

was taken from the BACC sub-corpus, ‘Arabic history’, where the text is written in classical

Arabic. The compression results of both the BACC sub-corpora, ‘Book collection’, ‘Arabic

book1’, ‘Arabic book2’, ‘Arabic book3’, and ‘Arabic history’, are shown in tables 3.13 and 3.14.

 68

Term Tag Correct Tag

 Adj Noun الفروسية

 Verb Proper Noun ماركوز

 Verb Noun شرانقا

 Verb Noun فواصل

Table 3.12. Sample of miss-tagged words.

A random sample from a tagged classical Arabic text shows that a number of terms were miss-

tagged. An example is term "الفروسية" that translates to “the sport of horse riding”, which was

tagged as "adj" whereas the term should be a "noun". Other examples are "ماركوز" that translates

to “Marcos'”, "شرانقا" that translates to “a cover” and "فواصل" that translates to “commas”, which

were all tagged as ‘verb’ when the right tag is "noun" as shown in Table 3.12.

Genre Corpus Size

Character

encode

size

Word

encode size

Madamira

Tag encode

size

Stanford

Tag encode

size

Book collection 197,935,882 30,959,688 42,477,508 30,191,397 30,235,460

Arabic History 30,251,137 4,206,076 5,937,257 4,267,257 4,286,946

Press 536,692 100,879 117,440 102,749 104,344

Arabic book1 829,036 164,445 187,353 170,881 173,793

Arabic book2 884,273 176,896 200,961 183,935 186,466

Arabic book3 977,286 190,482 219,284 199,225 202,239

Table 3.13. The compression output sizes for the BACC corpus.

Another limitation of tag-based compression is the size of the text file being compressed. Tag-

based compression of smaller texts is less effective as shown in tables 3.13 and 3.14, where

the result on the two smaller files (Arabic History and Press) is not as good as the character-

based compression for these files. This is because PPM is an online adaptive system that needs

relatively large amounts of training data to learn and build the tag-based models.

 69

Genre

C
h

a
ra

c
te

r

e
n

c
o

d
e

 b
p

c

M
a
d

a
m

ira
 T

a
g

e
n

c
o

d
e
 b

p
c

S
ta

n
fo

rd
 T

a
g

e
n

c
o

d
e
 b

p
c

M
a
d

a
m

ira

Im
p

ro
v
e
. (%

)

S
ta

n
fo

rd
 Im

p
ro

v
e
.

(%
)

Book collection 1.25 1.22 1.22 2.5% 2.4%

Arabic History 1.11 1.13 1.13 -1.4% -1.9%

Press 1.50 1.53 1.56 -1.8% -3.3%

Arabic book1 1.59 1.65 1.68 -3.77% -5.38%

Arabic book2 1.60 1.66 1.69 -3.83% -5.13%

Arabic book3 1.56 1.63 1.66 -4.39% -5.81%

Table 3.14. The compression ratios (in bpc) when compressing the BACC corpus.

Data

Set

Original Data

Provider
Related Corpora Corpus Size

Character

encode size

Tag encode

size

AFP
Agence France

Presse
Penn ATB Part 1 138,223 23,512 32,844

UMH
Ummah Press

Service
Penn ATB Part 2 426,811 64,420 70,824

XIN
Xinhua News

Agency
Arabic Gigaword 158,997 25,974 29,189

ALH
Al Hayat News

Agency
Arabic Gigaword 600,091 108,196 120,928

ANN
An Nahar News

Agency
Arabic Gigaword 195,043 39,196 56,765

XIA
Xinhua News

Agency
Arabic Gigaword 431,474 71,183 77,261

Table 3.15. The compression output sizes the Prague Arabic Dependency Treebank.

Further results for compressing small sized texts are shown in tables 3.15 and 3.16. Currently,

the resources for manually tagged Arabic corpora are limited. The Prague Arabic dependency

treebank [110] is a collection of manually tagged Arabic text. It consists of the first part of the

Penn ATB and four other parts of Arabic Gigaword, all of which are made available at the Arabic

UD treebank website [160], [141], [1], [110]. The less effective compression results for these

texts (where the tags being used by the compressor are manually edited rather than

 70

automatically assigned by a tagger) illustrates one limitation that PPM tag-based compression

has when compressing small sized texts. The Madamira and Stanford taggers were not used

to tag this corpus for this reason.

Data Set

C
h

a
ra

c
te

r

e
n

c
o

d
e

 (b
p

c
)

T
a
g

 e
n

c
o

d
e

(b
p

c
)

Im
p

ro
v
e
m

e
n

t

AFP 1.36 1.90 -28.4%

UMH 1.21 1.33 -9.0%

XIN 1.31 1.47 -11.0%

ALH 1.44 1.61 -10.5%

ANN 1.61 2.33 -31.0%

XIA 1.32 1.43 -7.9%

Table 3.16. The compression ratios (in bpc) when compressing the Prague Arabic

Dependency Treebank.

Previous experiments [26], which were performed to compare the three models on Arabic text,

produced similar results to those shown in tables 3.15 and 3.16. According to Alhawiti [26], the

only used resource was the first part of the Arabic Treebank Corpus (ATC), and as stated

before, PPM is an online adaptive text compression system that needs relatively large amounts

of training data to learn and build the tag-based models. Therefore, using PPM tag-based model

to compress text will produce less effective results when compressing such a small corpus.

Tables 3.17, 3.18 and Figure 3.3 illustrate the relation between the size of the corpus and the

compression ratio.

 71

Figure 3.3. Relation between PPM compression and corpus size.

Characters

Number
Corpus Size

Char encode

size

Madamira Tag

encode size

Stanford Tag

encode size

50,000 92,562 13,284 13,931 14,280

250,000 469,968 67,373 67,657 68,636

450,000 829,449 115,045 113,369 114,426

650,000 1,197,432 165,646 162,437 163,721

850,000 1,566,402 212,522 207,201 208,484

1,000,000 1,842,044 248,670 241,493 242,929

Table 3.17. The compression output sizes for different PPM models and different corpus

size.

 72

C
h

a
ra

c
te

rs

N
u

m
b

e
r

C
h

a
ra

c
te

rs
-

b
a
s
e
d

 b
p

c

T
a
g

-b
a
s
e
d

 b
p

c

(M
)

T
a
g

-b
a
s
e
d

 b
p

c

(S
)

M
a
d

a
m

ira

Im
p

ro
v
e
. (%

)

S
ta

n
fo

rd

Im
p

ro
v
e
. (%

)
50,000 1.15 1.20 1.23 -4.64% -6.97%

250,000 1.15 1.15 1.17 -0.42% -1.84%

450,000 1.11 1.09 1.10 1.48% 0.54%

650,000 1.11 1.09 1.09 1.98% 1.18%

850,000 1.09 1.06 1.06 2.57% 1.94%

1,000,000 1.08 1.05 1.06 2.97% 2.36%

Table 3.18. The compression ratios (in bpc) for different PPM models and different corpus

size.

Since PPM tag-based model uses two streams, a tag stream and a word stream to build the

model, compressing the text using the character-based model will take less time compared to

the tag-based model since the latter requires the text to be tagged during preprocessing. For

example, Table 3.19 compares the average time, in seconds, required to compress five

corpora. First, the file has to be tagged using the Madamira or Stanford Arabic tagger. Second,

the tagged file is processed and the tags are extracted. Finally, the formatted file is compressed

using the Tawa toolkit [192]. In contrast, to compress an Arabic corpus using a character-based

model, first, the Arabic letters are converted to unsigned integers. Then, the resulting file is

passed to PPM for compression.

3.4 Summary and Discussion

Tag-based compression of Arabic text based on the Prediction-by-Partial Matching (PPM) text

compression scheme was investigated and compared with character-based and word-based

methods. The tag-based method requires first tagging the text being compressed, and then

transmitting both the words in the text along with their tags. The results of compressing tagged

and untagged texts show that using tag-based compression significantly outperforms both the

word-based and character-based models, and the added extra-tag information improves overall

compression compared to the untagged compressed text.

 73

Corpus name

C
h

a
ra

c
te

r-b
a
s

e
d

C
o

m
p

re
s

s
io

n

(S
e
c
o

n
d

s
)

T
a
g

-b
a
s
e
d

C
o

m
p

re
s

s
io

n
 T

im
e

(S
e
c
o

n
d

s
)

Books 7.7 49.9

Business 22.6 131.5

Conferences 18.6 107.2

Crimes 8.7 51.5

Issues 8.1 56.5

Table 3.19. Corpus A compression time when using the PPM character-based and tag-

based compression.

Two taggers for tagging the text were investigated – Madamira and the Stanford tagger. Using

segmented text which was tagged by Madamira, the compression was improved by 7.6% as

opposed to an 7.4% improvement when the Stanford tagger was used when compared to the

state-of-the-art PPM character-based model. Future improvements can be made by improving

the quality of the tagging process. The results also indicate that there is a difference in quality

between tagging Classical Arabic and Modern Standard Arabic. One way of addressing this is

to investigate whether it is possible to distinguish the two types of the Arabic language (MSA

and CA). The PPM tag-based compression technique also provides an interesting way for

evaluating the performance of different Arabic taggers and for helping to investigate the linguistic

validity of the tagsets.

The next chapter will investigate the use of minimum cross-entropy as a text classifier to classify

and segment the two types of Arabic text to overcome the problem of code-switching in Arabic

text and improve the tag-based compression of the Arabic text, and help improve for other

Arabic NLP tasks that are designed for specific types of Arabic text such as Arabic POS tagging.

 74

CHAPTER 4

Classifying and Segmenting

Classical and Modern Standard

Arabic using Minimum Cross-

Entropy

Contents

4.1 Introduction .. 75

4.2 Initial Classification Experiments .. 77

4.3 Classifying Arabic Corpora .. 79

4.3.1 Document Level Text Classification ... 79

4.3.2 Line Level Classification ... 82

4.4 Segmenting Mixed Arabic Corpora ... 84

4.4.1 Segmenting Mixed Arabic Text .. 84

4.4.1 Investigating Mixed Arabic Corpora .. 85

4.5 Tag-based Compression Experiments ... 87

4.6 Summary and Discussion .. 89

 75

4.1 Introduction

The previous chapter investigated the use of the tag-based compression of various Arabic

resources to re-evaluate the performance of tag-based compression. The results from the last

chapter indicate that some Arabic corpora, such as the Bangor Arabic Compression Corpus

(BACC), is a mixture of both CA and MSA text. An example is the BACC sub-corpus ‘Arabic

book1’, which includes both recent novels with ancient Arabic poems. (See Figure 2.9 for one

example). The results of utilising such a corpus in order to perform various NLP tasks will vary

and will not be consistent and reliable, as demonstrated in the previous chapter. Consequently,

NLP applications should treat these texts separately and use different training data for each or

process them differently, and therefore this provides the main motivation for this chapter. This

chapter investigates whether it is possible to distinguish the two types of the Arabic language

(MSA and CA) using PPM (as per research question 4).

The work in this chapter uses an approach based on the Prediction-by-Partial Matching (PPM)

compression scheme (order 5 PPMD in particular), as the basis of both text classification and

segmentation. This Markov-based approach effectively uses character-based language models

and has been employed in many NLP tasks in the past often with state-of-the-art results or

results competitive with traditional schemes [196], [193], [195], [197], [15], [194].

The chapter reports the experiments that were performed as part of the evaluation of the PPM

classifier and segmenter when applied to Arabic text. Four experiments were conducted: (A)

initial classification experiments in section 4.2; (B) classification of published Arabic MSA and

CA corpora in section 4.3; (C) segmentation of the same Arabic corpora in section 4.4; and (D)

tagged-based compression experiments of Arabic text in section 4.5. A summary and

discussion are presented in section 4.6.

The first experiment uses 200 files for the initial evaluation process. The second experiment

examines the result of classifying a number of published Arabic MSA and CA using minimum

cross-entropy as described in section 2.2.3. The third experiment conducts classification of each

separate line for the same Arabic corpora used in section 4.3.1 to find out whether different

Arabic corpora have a mixture of CA and MSA text. The fourth experiment performs text

segmentation on a text file with a mixture of CA and MSA sentences that were gathered

 76

randomly from the testing files used in section 4.2. The fifth experiment conducts text

segmentation to investigate whether different Arabic corpora have a mixture of CA and MSA

text by examining the results of segmenting the same Arabic corpora used in section 4.3.1. All

experiments in section 4.4 use a Viterbi-based algorithm that finds the most probable sequence

of segmented characters. Lastly, section 4.5 utilises the results of tag-based compression

obtained in Chapter 3 to examine the correlation between the quality of the compression with

the classification results from the previous section.

The published Arabic MSA and CA corpora which were used in this chapter are the Bangor

Arabic Compression Corpus (BACC) [26], the Universal Dependencies (UD) project corpus [1],

the Arabic in Business and Management corpus (ABMC) [88] and the Arabic Learner Corpus

[22]. The Universal Dependencies corpus (UD), which according to the authors, is an MSA

corpus containing mainly newswire. The corpus is based on other Arabic sources such as the

Prague Arabic Dependency Treebank (PADT) [78] and the Penn Arabic Treebank (PATB) [79].

The second corpus is the ABMC corpus. According to the El-Haj [88], the Arabic in Business

and Management Corpora is obtained from WikiNews, newspapers and summaries of the

articles, and is mostly written in MSA text. The Arabic Learner Corpus is a small corpus written

mostly in CA text as stated before. The final corpus utilised in this chapter is the BACC corpus.

According to Alhawiti [26], BACC corpus comprises 14 genres that contain CA text such as

Arabic book1, Arabic history and Arabic literature, and MSA text such as Education, Political

and Press.

Segmenting Arabic text increases the performance of some NLP applications such as parts-of-

speech tagging. As stated before, most Arabic NLP tasks are trained and built for MSA. The

performance of such a task drops when applied to Classical text [42], [38]. The motive of this

chapter is to classify and segment CA and MSA using the PPM character-based compression

algorithm to overcome the problem of code-switching in Arabic text and improve the

performance of NLP tasks that are designed for specific type of Arabic text. The experiments in

this chapter used two language models, one for CA and another for MSA. Published Arabic

corpora that contain mostly the required type of Arabic text were used to train the two static

models. The MSA model was trained using Corpus A [31]. The second model used in this

chapter was trained using CA text from parts of the King Saud University Corpus of Classical

Arabic (KSUCCA) [40]. As stated, the corpus is relatively large and it contains over 50 million

 77

words, split into six genres such as Literature, Linguistics and Science. To generate a relatively

similar size set of training text as the first model (as this helps improve classification accuracy),

the sub-genre Religion was not included in the training process. To obtain a more robust

evaluation and ensure the training text used for the models was separate from the testing text,

a tenfold cross-validation technique was used for the classification experiments.

Both the PPM language modelling and the segmentation were performed using the Tawa toolkit

[192]. This toolkit allows static models to be created from training text. That is, once the models

have been created, they can be used to prime the model(s) used by the application and are

subsequently not altered during the compression, classification or segmentation processes.

A portion of this chapter has been published in a journal paper (Alkhazi, I. S., & Teahan, W. J.

(2017). Classifying and Segmenting Classical and Modern Standard Arabic using Minimum

Cross-Entropy. International Journal of Advanced Computer Science and Applications, 8(4),

421-430.)

4.2 Initial Classification Experiments

This initial experiment was conducted to evaluate the PPM classifier in order to perform an initial

experiment with some sample test files to find out how well a PPM classifier would perform at

distinguishing between MSA and CA text. The testing files were divided into two groups, each

with 100 files. The first group comprised 100 files that contained CA text randomly gathered

from the Holy Quran, Islamic books such as Ibn Qayyim and Ahmad ibn Hanbal and poems

from the famous Arab poet, Al-Mutanabbi. The second group comprised 100 files containing

MSA text randomly collected from popular Arabic news websites such Aljazeera.net [28], BBC

Arabic [51] and skynewsarabia [184] and recently published novels.

Four evaluation criteria (Accuracy, Recall, Precision and F-measure) were used to evaluate the

classification results using the following equations:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4.1)

 78

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

where 𝑇𝑃 is the true positives which are the number of cases where the prediction matches

the type of Arabic text and 𝑇𝑁 is the true negatives which represent the number cases where

the prediction does not match the type of Arabic text, and 𝐹𝑃 and 𝐹𝑁 are the false positives

and false negatives respectively, as shown for the confusion matrix in Table 4.1.

 Predicted CA Predicted MSA

Actual CA TN FP

Actual MSA FN TP

Table 4.1. How true positives (TP), true negatives (TN), false positives (FP) and false

negatives (FN) are defined for a confusion matrix.

Classifying the Classical and MSA text using the PPM compression algorithm obtained an

accuracy of 95.5%, an average precision of 0.958, an average recall of 0.955 and an average

F-measure of 0.954. The results in Table 4.2 show that the PPM classifier predicted all the 100

files that contain CA text and 91 out of 100 files which have MSA text.

 Predicted CA Predicted MSA

Actual CA 100 0

Actual MSA 9 91

Table 4.2. PPM classification results.

(4.2)

(4.3)

(4.4)

 79

4.3 Classifying Arabic Corpora

The previous section showed that on the sample of 200 files, the PPM classifier performed well

at distinguishing between MSA and CA text. Section 4.3.1 performs a document level

classification of published Arabic MSA and CA corpora to find out how well a PPM classifier

would perform at differentiating between MSA and CA corpora. Section 4.3.2 performs

classification of each separate line in the corpora using PPM, to find out whether different Arabic

corpora have a mixture of CA and MSA text.

4.3.1 Document Level Text Classification

The experiment described in this section examined how well a PPM classifier would perform at

differentiating between MSA and CA corpora on a document level. Table 4.3 displays the results

of this experiment for the UD corpus, Table 4.4 for the ABMC, Table 4.5 for the Arabic Learner

Corpus and Table 4.6 for the BACC corpus. The tables list the size of the text files, the size of

the compressed output files (in bytes), the compression ratios (in bits per character or ‘bpc’) and

the type (CA or MSA) predicted from the model with the best compression (as per the

classification procedure in section 2.2.3 using equation 2.13).

The steps of the experiment are as follows:

• Using the two static models created earlier for priming, two compressed files are

generated by compressing the Arabic texts using an order 5 PPMD character-based

compression scheme.

• Then, the cross-entropy i.e. the size of the two compressed files, are compared and the

class label of the text, in this case CA or MSA, is chosen from the file with the smallest

compressed size.

 80

Genre

C
o

rp
u

s
 S

iz
e

C
la

s
s

ic
a
l m

o
d

e
l

C
o

m
p

re
s

s
io

n

(b
y
te

s
)

M
o

d
e
rn

 m
o

d
e

l

C
o

m
p

re
s

s
io

n

(b
y
te

s
)

C
la

s
s

ic
a
l b

p
c

M
o

d
e
rn

 b
p

c

P
re

d
ic

te
d

 T
y
p

e

AFP 138,223 35,788 33,149 2.07 1.92 MSA

UMH 426,811 106,478 97,517 2.00 1.83 MSA

XIN 158,997 40,660 36,709 2.05 1.85 MSA

ALH 108,599 27,419 25,536 2.02 1.88 MSA

ANN 130,068 32,847 31,227 2.02 1.92 MSA

XIA 293,104 74,650 67,550 2.04 1.84 MSA

Table 4.3. Classification results of the UD corpus.

Genre
Corpus

Size

Classical

model

Compression

(bytes)

Modern

model

Compression

(bytes)

Classical

bpc

Modern

bpc

Predicted

Type

Economic

News
2,201,462 544,181 496,183 1.98 1.80 MSA

Management 1,358,576 317,477 275,826 1.87 1.62 MSA

Stock News 890,493 224,493 199,571 2.02 1.79 MSA

Table 4.4. Classification results of the ABMC corpus.

Genre

C
o

rp
u

s
 S

iz
e

C
la

s
s

ic
a
l m

o
d

e
l

C
o

m
p

re
s

s
io

n

(b
y
te

s
)

M
o

d
e
rn

 m
o

d
e

l

C
o

m
p

re
s

s
io

n

(b
y
te

s
)

C
la

s
s

ic
a
l b

p
c

M
o

d
e
rn

 b
p

c

P
re

d
ic

te
d

 T
y
p

e

Arabic Learner Corpus 2,806,467 620,563 630,306 1.77 1.80 CA

Table 4.5. Classification results of the Arabic Learner Corpus.

 81

G
e
n

re

C
o

rp
u

s
 S

iz
e

C
la

s
s

ic
a
l m

o
d

e
l

C
o

m
p

re
s

s
io

n

(b
y
te

s
)

M
o

d
e
rn

 m
o

d
e

l

C
o

m
p

re
s

s
io

n

(b
y
te

s
)

C
la

s
s

ic
a
l b

p
c

M
o

d
e
rn

 b
p

c

P
re

d
ic

te
d

 T
y
p

e

Arabic

book1
829,036 187,362 192,804 1.81 1.86 CA

Arabic

book2
884,273 202,343 206,271 1.83 1.87 CA

Arabic

book3
977,286 223,451 229,887 1.83 1.88 CA

Arabic

history
30,251,137 5,750,445 7,838,286 1.52 2.07 CA

Arabic

literature
18,594,383 3,846,029 4,877,075 1.65 2.10 CA

Arabic

poems
46,929 11,701 12,313 1.99 2.10 CA

Art and

music
41,770 9,665 9,137 1.85 1.75 MSA

articles 101,641 22,982 21,630 1.81 1.70 MSA

Book

collection
197,935,882 40,631,602 48,551,255 1.64 1.96 CA

culture 34,188 7,867 7,363 1.84 1.72 MSA

Economic 15,352 3,583 3,066 1.87 1.60 MSA

Education 26,418 6,078 5,504 1.84 1.67 MSA

Political 46,884 10,995 9,785 1.88 1.67 MSA

Press 536,692 122,961 111,260 1.83 1.66 MSA

Sports 31,059 7,225 6,659 1.86 1.72 MSA

Stories 1,022,476 242,699 237,372 1.90 1.86 MSA

Table 4.6. Classification results of the BACC.

The classification results in tables 4.3, 4.4, 4.5 and 4.6 show that the PPM classifier predicted

the correct type of text for all corpora. The classification results in this experiment reflect the

dominant type of text in the corpus, and the small difference in compression sizes between the

CA and MSA models suggests that the corpus may contain a mixed text of both CA and MSA

text, such as the Arabic Learner Corpus in Table 4.5.

 82

4.3.2 Line Level Classification

Classifying corpora of unknown origins, or for which it may be suspected of having a mixture of

CA and MSA text, will help Arabic NLP researchers to confirm their content. The previous

section showed that PPM classifier performed well at distinguishing between MSA and CA

corpora. The results also reveal that some corpora, such as the Arabic Learner Corpus, may

contain a mixed text of both CA and MSA. This section will investigate whether performing a

classification of each separate line in the same Arabic corpora used in section 4.3.1 detects the

code-switching found in some Arabic corpora. Table 4.7 presents the results of this experiment

for the UD corpus, Table 4.8 for the ABMC corpus, Table 4.9 for the Arabic Learner Corpus and

Table 4.10 for the BACC corpus. In the first column of the tables, the total number of lines in the

corpus is listed, the total number of predicted CA and MSA lines and the percentage of each

class.

Data set
Number of

lines
Classical

lines
 Modern

lines
Classical

%
Modern

%

AFP 11,375 4,693 6,682 41.26% 58.74%

UMH 35,056 14,036 21,020 40.04% 59.96%

XIN 12,524 4,844 7,680 38.68% 61.32%

ALH 9,134 3,653 5,481 39.99% 60.01%

ANN 11,377 4,832 6,545 42.47% 57.53%

XIA 23,983 9,452 14,531 39.41% 60.59%

Table 4.7. Line level classification results of UD corpus.

Genre
Number of

lines
Classical

lines
 Modern

lines
Classical

%
Modern

%

Economic
News

176,399 60,026 116,373 34.03% 65.97%

Management 5,442 456 4,986 8.38% 91.62%

Stock News 403 24 379 5.96% 94.04%

Table 4.8. Line level classification results of the ABMC corpus.

Genre
Number
of lines

Classical
lines

Modern
lines

Classical
%

Modern
%

Arabic Learner Corpus 8,959 3,581 5,378 39.97% 60.03%

Table 4.9. Line level classification results of the Arabic Learner Corpus.

 83

Genre
Number of

lines
Classical

lines
 Modern

lines
Classical % Modern %

Arabic book1 1,859 1,342 517 72.19% 27.81%

Arabic book2 2,613 1,685 928 64.49% 35.51%

Arabic book3 997 786 211 78.84% 21.16%

Arabic history 91,719 67,251 24,468 73.32% 26.68%

Arabic literature 69,618 67,635 1,983 97.15% 2.85%

Arabic poems 1,259 934 325 74.19% 25.81%

Art and music 172 18 154 10.47% 89.53%

Articles 196 41 155 20.92% 79.08%

Book collection 540,026 484,221 55,805 89.67% 10.33%

Culture 74 23 51 31.08% 68.92%

Economic 38 1 37 2.63% 97.37%

Education 119 5 114 4.20% 95.80%

Political 130 6 124 4.62% 95.38%

Press 1,090 104 986 9.54% 90.46%

Sports 81 11 70 13.58% 86.42%

Stories 9,306 2,396 6,910 25.75% 74.25%

Table 4.10. Line level classification results of BACC.

The steps of the experiment are as follows:

• Using the two static models created earlier for priming, each line of the corpus is

compressed using an order 5 PPMD character-based compression scheme.

• Then, the cross-entropies i.e. the sizes of the compressed line are compared and the

class label of the text, in this case CA or MSA, is chosen from the result with the smallest

compressed size, then the number of lines for each class is counted.

The classification results from these tables confirm the results of the previous section which

indicate that some Arabic corpora contain different types of Arabic text, such as the Arabic

Learner Corpus in Table 4.9. Examining the Arabic Learner Corpus reveals that the number of

terms in each line is uneven which will reduce the accuracy of classification by not reflecting the

true ratio of each type of text in a document, as the classification result of a text line containing

one term is equivalent, using this method of classification, to the classification result of a text

line with many terms. This raises the need for a method to segment the types of text within the

text which will reflect an accurate picture of the textual contents.

 84

4.4 Segmenting Mixed Arabic Corpora

The experiment in this section was conducted to find out how well a PPM classifier would

perform at segmenting MSA and CA text within the text. Two experiments were performed.

Section 4.4.1 shows the results of the first experiments where PPM segmented a mixed text

file. Section 4.4.2 investigates whether PPM can be used to segment different Arabic corpora

that have a mixture of CA and MSA text. Both experiments performed a text segmentation using

a Viterbi-based algorithm that finds the most probable sequence of characters of each class,

category or topic in the text [195] where all possible segmentations (as defined by switching

between encoding models) are considered.

4.4.1 Segmenting Mixed Arabic Text

The experiment in this section was conducted to evaluate the PPM segmentation performance.

A text file with a mixture of CA and MSA text that was gathered randomly from the testing files

used in Section 4.2. The text contained 100 sentences, 50 of which are written in MSA and 50

sentences contained CA text, distributed randomly. The Tawa toolkit [192] was used to segment

the text file at the character level to insert labels (tags), either CA or MSA, inside the text. The

segmentation in this step was applied using a Viterbi-based algorithm [195]. The output file is

then processed and the segmented CA and MSA sentences are then examined.

 Predicted CA Predicted MSA

Actual CA 47 3

Actual MSA 11 39

Table 4.11. PPM segmentation results.

Segmenting the CA and MSA text using the PPM compression algorithm obtained an accuracy

of 86%, an average precision of 0.869, an average recall of 0.86 and an average F-measure of

0.859. The results in Table 4.11 reveal that the PPM segmented 47 out 50 CA sentences and

39 out of 50 MSA sentences correctly. A sample of the segmented text is shown in Figure 4.1.

The text contains three Arabic sentences in one line; the first sentence is a news feed obtained

from Aljazeera website (MSA text), and the other two are from Hadith books (CA text).

 85

Figure 4.1. Segmenting MSA, the first three lines, and CA text, the last seven lines, using
PPM.

4.4.1 Investigating Mixed Arabic Corpora

The previous section showed that PPM performed well at segmenting MSA and CA sentences

within the text. Therefore, we use this result in this section to find out whether different Arabic

corpora have a mixture of CA and MSA text by investigating the results of segmenting the same

Arabic corpora used in Section 4.3.1.

This experiment was conducted as follows:

• The Tawa toolkit [192] was used to segment the text file at the character level to insert

labels (tags), either CA or MSA, inside the text. The segmentation in this step was

applied using a Viterbi-based algorithm [195].

• Then, a post-processing of the resulting file was performed to count all the terms of each

label.

Table 4.12 displays the outcomes of this experiment for the UD corpus, Table 4.13 for the

ABMC, Table 4.14 for the Arabic Learner Corpus and Table 4.15 for the BACC corpus. The

 86

tables list the numbers of words in the segmented files for both CA and MSA texts and the

percentages of each.

Data set
Number of

words

Number of

Classical

words

Number of

Modern

words

Classical

(CA)%

Modern

(MSA) %

AFP 11,369 594 10,775 5.22% 94.78%

UMH 34,765 2,053 32,712 5.91% 94.09%

XIN 12,666 554 12,112 4.37% 95.63%

ALH 9,019 1,078 7,941 11.95% 88.05%

ANN 11,152 2,252 8,900 20.19% 79.81%

XIA 23,930 617 23,313 2.58% 97.42%

Table 4.12. Segmentation results of the UD corpus.

Genre
Number of

words

Number of

Classical

words

Number of

Modern

words

Classical

(CA) %

Modern

(MSA) %

Economic

News
169,374 12,200 157,174 7.20% 92.80%

Management 121,603 7,192 114,411 5.91% 94.09%

Stock News 87,943 53 87,890 0.06% 99.94%

Table 4.13. Segmentation results of the ABMC corpus.

Genre
Number

of words

Number of

Classical

words

Number

of

Modern

words

Classical

(CA) %

Modern

(MSA)

%

Arabic Learner Corpus 287,107 161,897 125,210 56.39% 43.61%

Table 4.14. Segmentation results of the Arabic Learner Corpus.

The results from tables 4.12, 4.13, 4.14 and 4.15 indicate that some Arabic corpora contain

mixed CA and MSA text, and the PPM compression models can be used to produce an

accurate estimate of the extent of both Arabic text types. The illustration of the segmentation

process is shown in Figure 4.2 which shows randomly selected segmented samples from two

 87

of BACC sub-genre, ‘Arabic literature’ and ‘Arabic book1’. The sample demonstrates typical

output of the segmentation process which produces an accurate picture of the textual contents.

Figure 4.2. Random segmented samples from the BACC.

4.5 Tag-based Compression Experiments

Most Arabic language NLP systems are made for processing MSA [84]. Since most popular

recognised Arabic POS taggers were trained on MSA text [141], the tagging of mixed corpora

text will vary in quality and will not be consistent and reliable. This section utilises the results of

tag-based compression obtained in Chapter 3 to examine the correlation between the quality of

the compression with the classification results from the previous section.

Table 4.16 lists some the of tag-based compression results obtained in Chapter 3 with the

classification results from previous sections. It shows in the second column the percentage

improvement in compression for the tag-based compression scheme over the character-based

compression scheme, and the type of text (CA or MSA) in the third column that was confirmed

in the earlier experiments. A positive percentage improvement indicates the tag-based

compression was better, and a negative improvement indicates the character-based

compression was better.

The results in Table 4.16 show that utilising the tags to compress the BACC sub-corpus ‘Arabic

literature’, which was found to consist of 99.74% Classical Arabic text, decreases the

compression by 4.38% (compared with the character-based compression scheme). However,

using the same compression model to compress the ABMC sub-corpus ‘Economic News’,

which was found to consist of 92.80% MSA text, increases the compression by 6.50%

(compared with the character-based compression scheme). The difference in compression

quality provides an indication that the quality of tagging for the CA text has dropped, compared

to the quality of tagging for the MSA text, because the compression size has increased.

 88

Genre
Number of

words

Number of

Classical

words

Number of

Modern

words

Classical

(CA)%

Modern

(MSA) %

Arabic book1 85,441 65,867 19,574 77.09% 22.91%

Arabic book2 89,015 61,645 27,370 69.25% 30.75%

Arabic book3 104,055 83,503 20,552 80.25% 19.75%

Arabic history 3,350,365 3,348,513 1,852 99.94% 0.06%

Arabic

literature
1,983,790 1,978,670 5,120 99.74% 0.26%

Arabic poems 4,701 4,151 550 88.30% 11.70%

Art and music 3,985 528 3,457 13.25% 86.75%

Articles 9,624 1,792 7,832 18.62% 81.38%

Book

collection
20,725,720 19,836,491 889,229 95.71% 4.29%

Culture 3,107 476 2,631 15.32% 84.68%

Economic 1,376 3 1,373 0.22% 99.78%

Education 2,437 33 2,404 1.35% 98.65%

Political 4,317 62 4,255 1.44% 98.56%

Press 50,977 4,351 46,626 8.54% 91.46%

Sports 2,875 221 2,654 7.69% 92.31%

Stories 111,809 28,664 83,145 25.64% 74.36%

Table 4.15. Segmentation results of the BACC.

Corpus

T
a
g

-b
a
s
e
d

C
o

m
p

re
s

s
io

n

Im
p

ro
v
e
m

e
n

t

T
e
x
t T

y
p

e

BACC – Arabic history -1.4% CA

BACC – Arabic literature -4.38% CA

ABMC – Economic News 6.50% MSA

ABMC – Stock News 7.48% MSA

Table 4.16. Tag-based Compression on CA and MSA Text.

 89

4.6 Summary and Discussion

Classification of Classical Arabic (CA) and Modern Standard Arabic (MSA) text was performed

on sample texts using a PPM character-based compression scheme achieving an accuracy of

95.5%, an average precision of 0.958, an average recall of 0.955 and an average F-measure

of 0.954. Further classification experiments were conducted in this study to analyse mixed

Arabic corpora. A line-level classification of Arabic corpora was performed and the results

showed that different sub-genres of some Arabic corpora contain a mixture of CA and MSA.

The fourth experiment performed text segmentation on a text file with a mixture of CA and MSA

sentences that were gathered randomly from the testing files used in section 4.2. Segmenting

the CA and MSA text using the PPM compression algorithm obtained an accuracy of 86%, an

average precision of 0.869, an average recall of 0.86 and an average F-measure of 0.859.

Further segmentation experiments were conducted to investigate whether different Arabic

corpora have a mixture of CA and MSA text by examining the results of segmenting different

Arabic corpora. The results from the last segmentation experiment confirmed the results

obtained in section 4.3.2, which showed that different Arabic corpora have a mixture of CA and

MSA text. Lastly, section 4.5 utilised the results of tag-based compression that were reported in

Chapter 3 to examine the correlation between the quality of the compression with the

classification results from the previous sections. The results in section 4.5 provides an indication

that the quality of the tagging is affected when either CA and MSA text is being tagged, as

confirmed in [42], [41], [38], therefore showing that NLP applications (such as taggers) should

treat these texts separately and use different training data for each or process them differently.

The next chapter will describe the creation of the new Bangor Arabic Annotated Corpus (BAAC)

which is a Modern Standard Arabic (MSA) corpus that comprises 50K words manually

annotated by parts-of-speech.

 90

CHAPTER 5

BAAC: Bangor Arabic Annotated

Corpus

Contents

5.1 Introduction .. 91

5.2 The Data Source .. 92

5.3 The Annotation Tagset .. 92

5.4 Automatic POS Tagging .. 95

5.5 The Annotation Tool ... 95

5.6 Data Preparation .. 97

5.7 BAAC Evaluation ... 98

5.8 Corpus Statistics .. 101

5.9 BAAC Applications ... 107

5.9 Summary and Discussion .. 108

 91

5.1 Introduction

The previous chapter explored the approach of classifying Arabic text using PPM. This chapter

describes the creation of the new Bangor Arabic Annotated Corpus (BAAC) which is a Modern

Standard Arabic (MSA) corpus that comprises 50K words manually annotated by parts-of-

speech.

POS annotated corpora are essential for the development of many NLP systems, such as part-

of-speech tagging [180], statistical modelling [111]. The lack of such resources limits some

researchers from progressing further in their efforts. The limited availability of some existing

annotated corpora and the cost of acquiring others are one of the main reasons that contribute

to resource scarcity. Several efforts have been made to overcome the lack of resources [37],

[9], [85].

There exist some Arabic language resources that cannot be utilised by many researchers.

Alhawiti [26] stated that availability, and cost issues, were significant issues such as for the

Arabic Treebank corpus [141]. Other resources are designed to be used for particular research

or annotated using a distinctive tagset produced for an explicit purpose. The Qur’anic Arabic

Dependency Treebank is one example where the text is written in CA text and the corpus uses

a tagset which is designed to tag CA text using traditional Arabic grammar [85], [30]. This need

for annotated corpora, which are necessary for the development of many NLP systems,

provided the motivation to create a manually annotated corpus for the Arabic language for this

study (as per research question 5).

Another goal is to provide a new resource required by many kinds of research, such as the

ongoing tag-based text compression research in chapter 3, where the only annotation required

at this stage is POS tags. The tagset used to annotate the new corpus is the same as used by

the Madamira Arabic tagger, for reasons that will be discussed in the annotation tagset section

(section 5.3). Since the Madamira Arabic POS tagger is trained by the Arabic Treebank corpus

[141], and that corpus is written in MSA, the newly annotated corpus must also be written in

MSA.

 92

The chapter is organised as follows. Section 5.2 presents the sources used to created the newly

created annotated corpus. The next section, section 5.3, interduces the tagset used in the

annotation process. Section 5.4 describes the automatic POS tagging of the selected text. The

newly developed annotation tool was presented in section 5.5. The following section, section

5.6, describes the data preparation stage of the annotation process. The new annotated corpus

is evaluated in section 5.7. Section 5.8 presents the new corpus statistics and section 5.9 is the

summary and discussion of this chapter.

A portion of this chapter has been published in a journal paper (Alkhazi, Ibrahim S., and William

J. Teahan. “BAAC: Bangor Arabic Annotated Corpus.” International Journal of Advanced

Computer Science and Applications.11 (2018): 131-140.)

5.2 The Data Source

The data source for the new corpus is the Press sub-corpus from the BACC corpus [26]. The

BACC corpus was created originally to test the performance of various text compression

algorithms on different text files. The results of the text classification performed in the previous

chapter reveal that the Press sub-corpus is 91% written in MSA, as shown in Figure 5.1.

According to the authors, the sub-corpus is a newswire text consisting of 51K terms, gathered

from various news websites between 2010 and 2012 and covers many topics such as political

and technology news.

Figure 5.1. A Social News, that promotes reading, from the Press sub-corpus [26] in MSA

text.

5.3 The Annotation Tagset

The tagset used in the BAAC corpus is the same as used by the Madamira tagger [161], which

was used initially by the MADA tagger [104]. The tagset is the subset of the English tagset which

 93

was presented with the English Penn Treebank and consists of 32 tags and was initially

proposed by Diab, Hacioglu and Jurafsky [80]. The experiments conducted in chapter 3 have

concluded that the quality of tag-based compression varies from one tagset to another. The

different tagsets, some of which are shown in Table 5.1, were used to compress MSA text using

POS tags, and tag-based compression using the Madamira tagset outperforms other tagsets

such as Stanford [101] and Farasa [6]. Since one of the main goals of creating a gold-standard

POS annotated text is to investigate the effect of manual annotation on the tag-based text

compression, as described below in the experiments, therefore, the Madamira tagset, which

outperformed other tagsets and consists of only 32 tags that are shown in Table 5.2, is used to

annotate the BAAC POS tag and to create the ground-truth data which will be used later for

training and evaluation purposes.

Term
Madamira

Tag
Stanford

Tag
Farasa

Tag

 noun DTNN NOUN-FS الادارة

 noun_prop VBP E/ES/SV ترحب

 verb NN NOUN-MS بالتزام

 noun DTNN NOUN-MS الامين

 noun DTJJ ADJ-MS العام

 adj NN NOUN-FS بزيادة

 noun NN NOUN-MS عنصر

 noun DTNN NOUN-FS الميزانية

 noun DTJJ ADJ-FS العادية

 noun NN NOUN-MS لمكتب

 noun DTNN NOUN-MP الامم

 noun DTJJ ADJ-MP المتحدة

Table 5.1. Different Arabic Tagsets.

 94

Tag Agreements Disagreements

Observed

Agreement

%

noun 23570 529 97.80

verb 5714 44 99.24

prep 5574 10 99.82

adj 4632 1235 78.95

noun_prop 2272 520 81.38

conj_sub 1534 17 98.90

conj 1148 79 93.56

pron_rel 992 37 96.40

pron_dem 767 11 98.59

noun_quant 574 1 99.83

part_neg 498 2 99.60

pron 367 6 98.39

adv 166 195 45.98

adj_comp 265 15 94.64

noun_num 252 7 97.30

part_verb 221 0 100.00

verb_pseudo 203 0 100.00

adj_num 156 26 85.71

adv_interrog 25 111 18.38

adv_rel 83 3 96.51

abbrev 60 2 96.77

part_restrict 59 16 78.67

part 25 27 48.08

pron_interrog 19 30 38.78

part_focus 14 9 60.87

part_interrog 22 0 100.00

part_fut 12 0 100.00

part_voc 10 0 100.00

part_det 8 2 80.00

interj 2 0 100.00

Total 49244 2934 94.38%

Table 5.2. The number of agreements and disagreements of different tags between the

two annotators in reverse frequency order.

 95

5.4 Automatic POS Tagging

Madamira [161] was utilised to automatically tag the corpus by POS. The manual annotation

process of the BAAC corpus followed annotation guidelines proposed by Maamouri [142] for

annotating POS tags. All the previous corrections that are made to a tag are shown to the

annotators during the process of annotation, as illustrated in section 5.6, and the Madamira

tagset used to annotate this corpus applies the criteria proposed by Maamouri.

5.5 The Annotation Tool

Most existing tools, such as the TrEd tool [159], [165] which was used in the annotation of The

Prague Dependency Treebank, are developed to annotate Treebank types of corpora, such as

dependency trees corpora, that contain other information about each term, such as the gloss or

a comment from an annotator, as shown in Figure 2.11. As mentioned earlier, the first stage of

the BAAC annotation process will only add the POS tags to the corpus. Other linguistic

information, such as the structural annotation, will be adapted in future work, therefore, the tool

which will be used to manually annotate this corpus will only annotate POS tags.

During the preparation for the annotation process, many constraints arose and defined four

requirements that had to be met by the annotation tool. First, as the annotators are native Arabic

speakers, a detailed Arabic translation of the tagset was provided with examples during the

annotation process. Second, the software used for the annotation had to comply with the

hardware and software requirements of the computer used to perform the annotation. Thirdly,

the annotation tool, as shown in Figure 5.2, had to be executed on different operating systems,

therefore, the tool was designed to be portable. Finally, online backing up procedures with the

ID of the annotators was done to ensure the safety of the data.

The previous requirements were met by developing a new annotation tool. First, a detailed

Arabic translation of the tagset, which was obtained from Alrabiah [42] and then examined by

Arabic specialists, was coded in the annotation tool as shown in figure 5.2. The annotation tool

also offers examples of the tag if required by the annotator as will be explained in the following

paragraph. To comply with the hardware requirements and reduce memory dependency, the

tool loads only one sentence to be modified at a time. To follow the Maamouri [142] annotation

 96

guidelines, the tool also displays the history of annotation by showing two types of modifications,

the original tag assigned by the Madamira tagger and any tag chosen by previous annotators,

if they exist. A current status of the annotation process is also displayed to the annotator, such

as the number of annotated tags in the current session and the number of modified tags in the

total document, as explained in the following paragraph. The Java programming language was

used to develop the annotation tool, and therefore, the tool can be executed on different

operating systems. The tool also provided online backing up procedures each time the

annotator modified a tag to eliminate any data loss.

The first information given to the annotator is the number of the current sentence out of the total,

as labelled in Figure 5.2 by number 1. Clicking on the button labelled as 2 in the figure opens a

file dialogue that enables the annotator to edit an external file and not the default annotated text

file saved in the home directory. Clicking on the button marked as 3 opens a file dialogue that

saves a backup file. The text area identified as 5 in the figure displays the current sentence

which the annotator is currently editing. The term, which is coloured in black, is followed by a

tag, which is between the brackets. Every tag is displayed with a distinctive colour, for example,

all the verb tags, or "فعل", in the figure are displayed in red, and all nouns, or "اسم", is coloured in

blue. The font size of the text area identified as 5 can be changed by clicking on the (+) and (-)

buttons labelled as 4. At the bottom of the text area, where label 6 is, a log of all the changes

made by the annotator is displayed. The log shows the term, the original tag and the updated

one. The annotator displays the previous sentence by click on the button labelled as 7, and the

button labelled as 8 displays the next sentence. The progress bar labelled as 9 displays the

amount of progress made by the annotator.

The text area labelled as 10 shows more statistics about the work, such as the number of terms

in the current sentence with the number of modified tags are shown in the first line, the total

number of terms in the entire annotated file with the number of sentences presented in the

second line and location of the annotated file shown in the line before the last. If the annotator

wants to modify a tag, the checkbox labelled as 14 needs to be clicked first. Then, by clicking

on the dropdown menu labelled as 11, all the terms with their current tags will be displayed to

the annotator. After selecting the term for modification, the annotator will select the new tag from

the second dropdown menu which will display a list of all the tags with their translation and an

example tag will be shown in a message if the annotator clicks on the text labelled as 15. Saving

 97

the changes made to the sentence is done by clicking on the button at the bottom left of the

figure, where the label 13 is.

Figure 5.2. The Annotation tool.

5.6 Data Preparation

After using Madamira [161] to automatically POS tag the BAAC corpus, a copy of the tagged

corpus was given to each annotator. Each copy was split into batches of documents that have

10-20 sentences and the ID of the annotator was coded with each batch to be used later in the

evaluation section. The two annotators, who are native Arabic speakers and postgraduate

students in Arabic Studies, started working to manually annotate the corpus on a full-time basis

in two stages.

In the first stage of the annotation process, the annotators were required to work on-site to

resolve any issues with the annotation tool and the annotation of the corpus was completed

using the facilities provided by Tabuk Public Library. When the annotation process was finished,

the two versions were evaluated and the Inter Annotator Agreement was calculated using two

metrics, as will be discussed below in the BAAC evaluation section (section 5.7). The

differences between the two versions were examined and adjusted off-site by a third annotator,

 98

who is a native Arabic speaker and PhD candidate student in Arabic Studies, to produce a final

version of the corpus. The total time needed to annotate the corpus was two months – three

weeks for the first stage and the rest for the final stage.

5.7 BAAC Evaluation

The quality of the annotated corpus affects the quality of the NLP application that utilises it. For

instance, Reidsma and Carletta [168] has illustrated that the errors produced by machine

learning tools are the same errors made by the annotators of the corpus that was used for

training those tools. Two metrics were used to evaluate the quality of the BAAC, the Kappa

coefficient [73] to calculate the inter-annotator agreement (IAA) among the two annotators and

a direct percent agreement for each tag [145]. Using the data in tables 5.3 and 5.4, the obtained

Kappa value is 0.956, which is recognised as perfect according to Landis and Koch [133]. The

total observed agreement from Table 5.2, which displays the number of agreements and

disagreements of different tags between the two annotators in a reverse frequency order, is

94.38%. Taking the number of tag occurrences into consideration, Table 5.2 shows that the tag

verb or 'فعل' has the highest agreement between the annotators with 99.24% agreement. It also

shows that the annotators agreed only 25 times out of 136 (18%) on the tag 'adv_interrog' or

 Also, the annotators agreed 45.98% of the time for the tag 'adv', and 38.78% of the time .'حال'

for the tag 'pron_interrog'.

The reasons for such variation between the annotators were:

• The different understanding of the tag and, in some cases, its subset of tags by the

annotators. For example, tables 5.3 and 5.4 show that the two annotators disagreed

concerning the tag 'noun' and the tag 'adj' in many instances. The different understanding

of the tag 'adv_interrog' and the tag 'adj' has also caused a noticeable number of

disagreements between the two annotators.

 99

a
b

b
re

v

a
d

j

a
d

j_
c

o
m

p

a
d

j_
n

u
m

a
d

v

a
d

v
_
in

te
rro

g

a
d

v
_
re

l

c
o

n
j

c
o

n
j_

s
u

b

in
te

rj

n
o

u
n

n
o

u
n

_
n

u
m

n
o

u
n

_
p

ro
p

n
o

u
n

_
q

u
a
n

t

p
a
rt

abbrev 59 1

adj 4363 1 1 247 22

adj_comp 7 260 1 4 2

adj_num 142 12 2

adv 92 12 108 1 6 67 63 3 1

adv_interrog 106 6 9 1 3 7

adv_rel 8 74

conj 1148

conj_sub 52 1455

interj 2

noun 1 1151 4 42 4 5 18 22762 2 98 1

noun_num 3 15 5 235 1

noun_prop 166 4 1 1 1 1 450 3 2121

noun_quant 1 2 573

part 8 2 1 1 1 23

part_det 1 1

part_focus 9

part_fut

part_interrog

part_neg 1 1

part_restrict

part_verb

part_voc 1

prep 18 1 6 1

pron 4 1 1

pron_dem 1 7 1 1

pron_interrog 16 7 1

pron_rel 1

verb 18 4 20 19

verb_pseudo

Total 60 5940 265 182 166 25 86 1227 1551 2 23570 252 2272 574 25

Table 5.3. The BACC Agreement Table Part 1.

 100

p
a
rt_

d
e
t

p
a
rt_

fo
c

u
s

p
a
rt_

fu
t

p
a
rt_

in
te

rro
g

p
a
rt_

n
e
g

p
a
rt_

re
s

tric
t

p
a
rt_

v
e
rb

p
a
rt_

v
o

c

p
re

p

p
ro

n

p
ro

n
_

d
e
m

p
ro

n
_
in

te
rro

g

p
ro

n
_
re

l

v
e
rb

v
e
rb

_
p

s
e

u
d

o

T
o

ta
l

abbrev 2 62

adj 1 4 4639

adj_comp 6 280

adj_num 156

adv 8 361

adv_interr

og 4 136

adv_rel 1 83

conj 1148

conj_sub 32 1539

interj 2

noun 1 4 41
2413

4

noun_num 259

noun_prop 11 36 2795

noun_qua

nt 576

part 16 52

part_det 8 10

part_focus 14 23

part_fut 12 12

part_interr

og 22 22

part_neg 498 500

part_restri

ct 58 1 59

part_verb 221 221

part_voc 9 10

prep 1 5556 1 2 5586

pron 366 1 373

pron_dem 767 1 778

pron_inter

rog 2 18 5 49

pron_rel 3 988 992

verb 5663 5724

verb_pseu

do 203 203

Total 8 14 12 22 498 75 221 10 5584 367 767 19 1029 5758 203

 Table 5.4. The BACC Agreement Table Part 2.

 101

• Human error in the annotation process contributed to some of the errors in the annotated

corpus. This was confirmed by random samples taken to be re-annotated by the same

annotator.

The previous reasons were taken into consideration, and all the disagreements were

highlighted, which was then given to the third annotator who went through all the disagreements

and modified them based on his judgment. Finally, a final version of the corpus, which contains

the agreements from the first two annotators and the agreements of the third one, was produced

and used for further applications, as illustrated in the experiments section.

Tag Frequency %

noun 24099 47.52

verb 5714 11.27

prep 5574 10.99

adj 4632 9.13

noun_prop 2792 5.51

conj_sub 1534 3.02

conj 1148 2.26

pron_rel 992 1.96

pron_dem 778 1.53

noun_quant 575 1.13

Table 5.5. The ten most frequent tags by the first annotator.

5.8 Corpus Statistics

As stated, the text of the BAAC corpus was obtained from the sub-corpus Press of the BACC.

The first annotator made 3150 changes to the originally tagged corpus and the second made

2959 modifications. Table 5.5 and Table 5.6 list the first ten most frequent tags for the

annotators. The most frequent tag is 'noun' representing 47.52% for the first annotator and

46.48% for the second. The least used tag is 'noun_quant' being 1.13% of the tags for both

annotators. A noticeable difference between the two annotators is the use of the tag 'adj' which

 102

occurred 4632 times (9.13%) for the first annotator and occurring 1235 more times for the

second annotator (11.57%).

Tag Frequency %

noun 23570 46.48

adj 5867 11.57

verb 5758 11.35

prep 5584 11.01

noun_prop 2272 4.48

conj_sub 1551 3.06

conj 1227 2.42

pron_rel 1029 2.03

pron_dem 767 1.51

noun_quant 574 1.13

Table 5.6. The ten most frequent tags by the second annotator.

Tables 5.7, 5.8 and 5.9 show the ten most frequently used terms in the BAAC. The first and

second most frequent words in the BAAC are 'في' which is a 'prep', which translates as 'in', and

 which is also a 'prep', which translates as 'from' representing 2.83% and 2.65% of the text ,'من'

respectively, as shown in Table 5.7. Table 5.8 shows that the most commonly used bigram is

-which translates as 'through' occurring 37 times in the corpus. Since the Press sub ,'من خلال'

corpus, which is the source of the BAAC, was gathered between 2010 and 2012 from several

Arabic news websites, the most commonly used trigrams in the BAAC, as shown in Table 5.9,

are 'في ميدان التحرير' which translates as 'In Tahrir Square', and ' لى للقوات المسلحةالأع ' which translates

as 'Higher Council of the Armed Forces', which were mentioned 12 times, and both trigrams

relate to the events that happened in Egypt during the same period.

 103

Rank Word Freq %

 2.83 1437 في 1

 2.65 1345 من 2

 1.45 735 و 3

 1.38 698 أن 4

 1.21 615 على 5

 0.79 401 إلى 6

 0.69 352 التي 7

 0.69 351 عن 8

 0.54 275 أو 9

 0.48 245 لا 10

Table 5.7. Word unigrams statistics from the BAAC.

Rank Bigram Freq %

 0.07 37 من خلال 1

 0.07 37 إلى أن 2

 0.07 34 الولايات المتحدة 3

 0.06 30 ميدان التحرير 4

 0.05 28 في مصر 5

 0.05 28 عدد من 6

 0.05 26 من قبل 7

 0.05 26 ثورة يناير 8

 0.05 26 بعد أن 9

 0.05 25 أن يكون 10

Table 5.8. Word bigrams statistics from the BAAC.

Figure 5.3 plots using log scales the ranked tag, bi-tag and tri-tag sequences versus their

frequencies in the BAAC. There are 32 unique tags used in the annotated corpus, as mentioned

earlier. The corpus also has 433 unique bi-tags where the sequence 'noun noun' dominates

most of the bi-tags sequences. Finally, there are 2,113 distinct tri-tags used in the BAAC. The

figure shows a Zipf’s Law-like behaviour which mirrors the behaviour of a similar plot for the

 104

English language [190]. More details about the BAAC n-tag sequences are found in Table 5.10,

Table 5.11 and Table 5.12, and will be discussed below.

Rank Trigram Freq %

 0.02 12 التحريرفي ميدان 1

 0.02 12 الأعلى للقوات المسلحة 2

 0.02 11 المجلس الأعلى للقوات 3

 0.02 10 القانون رقم لسنة 4

 0.02 9 غفر الله له 5

 0.02 8 قال أبو عبدالله 6

 0.02 8 عبدالله غفر الله 7

 0.02 8 اللجنة الوطنية للاستقدام 8

 0.02 8 الكسب غير المشروع 9

 0.02 8 أبو عبدالله غفر 10

Table 5.9. Word trigrams statistics from the BAAC.

Figure 5.3. Rank versus Tag, Bi-tag and Tri-tag Frequencies for the BAAC.

1

10

100

1000

10000

100000

1 10 100 1000 10000

F
re

q
u
e
n
c
y

Rank

Tag

Bi-tag

Tri-tag

 105

Rank Tag Freq

1 noun 23782

2 verb 5801

3 prep 5574

4 adj 4995

5 noun_prop 2532

6 conj_sub 1501

7 conj 1212

8 pron_rel 1025

9 pron_dem 774

10 noun_quant 573

Table 5.10. Most frequent Tags from the BAAC.

Rank Bi-tag Freq %

1 noun noun 11035 21.8

2 prep noun 4255 8.39

3 noun adj 4037 7.96

4 verb noun 3229 6.37

5 noun prep 2679 5.28

6 adj noun 1676 3.31

7 noun verb 1566 3.09

8 verb prep 1190 2.35

9 noun noun_prop 1066 2.10

10 noun_prop noun_prop 932 1.84

Table 5.11. Most frequent Bi-tag sequences from the BAAC.

Table 5.10, Table 5.11 and Table 5.12 illustrate the ten most frequently used tag, bi-tag and tri-

tag sequences in the BAAC. The tag 'noun' was utilised 23,782 times (46.9%) followed by the

tag 'verb' that appeared 5,801 times (11.44%) in the text, as shown in Table 5.10. The sequence

of two nouns, the bi-tag 'noun noun', appeared on 11,035 occasions (21.76%), followed by the

bi-tag 'prep noun' which was used 4,255 (8.39%) times in the BAAC, as shown in Table 5.11.

The sequence of three nouns came 5,133 times in the text, which represents 10.12% of the

 106

text, followed by the tri-tag 'noun prep noun' which came in 4.18% of the BAAC, as shown in

Table 5.12.

Rank Tri-tag Freq %

1 noun noun noun 5133 10.1

2 noun prep noun 2121 4.18

3 prep noun noun 1970 3.88

4 noun noun adj 1918 3.78

5 noun adj noun 1482 2.92

6 verb noun noun 1467 2.89

7 noun noun prep 1195 2.36

8 noun verb noun 909 1.79

9 verb prep noun 886 1.75

10 adj noun noun 858 1.69

Table 5.12. Most frequent Tri-tag sequences from the BAAC.

Rank Tag Freq %

1 noun 485250 50.2

2 adj 120187 12.4

3 prep 104158 10.8

4 verb 91064 9.41

5 noun_prop 51985 5.37

Table 5.13. Most frequent Tag of the Khaleej sub-corpus 'News'.

To further analyse the n-tag results of the BAAC, Table 5.13, Table 5.14 and Table 5.15, show

the tag, bi-tag and tri-tag statistics of the News sub-corpus from a different corpus, the Khaleej

corpus [2], which also was tagged using the Madamira tagger. The sub-corpus contains 967K

terms gathered from news websites. The tables shows that both corpora, News and the BAAC,

share the same most frequent tag, bi-tag and tri-tag sequence, where the tag 'noun' in the sub-

corpus News represents 50.2% of the text, as shown in Table 5.13, the bi-tag 'noun noun' was

used 243,525 times (25.2%), as presented in Table 5.14, and the tri-tag 'noun noun noun'

 107

appeared 122,386 times (0.13%) of the text, as shown in Table 5.15. These results confirm that

the tag statistics are comparable between the different corpora.

Rank Bi-tag Freq %

1 noun noun 243525 25.2

2 noun adj 91607 9.47

3 prep noun 81537 8.43

4 verb noun 52016 5.38

5 noun prep 48968 5.06

Table 5.14. Most frequent Bi-tag sequence of the Khaleej sub-corpus 'News'.

Rank Tri-tag Freq %

1 noun noun noun 122386 0.13

2 noun noun adj 49187 0.05

3 prep noun noun 43107 0.04

4 noun prep noun 39116 0.04

5 noun adj noun 35544 0.04

Table 5.15. Most frequent Tri-tag sequence of the Khaleej sub-corpus 'News'.

5.9 BAAC Applications

The BAAC corpus was utilised in two applications, to evaluate the performance of the Madamira

tagger, and to further investigate the tag-based text compression models as applied in Chapter

3. Using the BAAC corpus, the Madamira tagger achieved an accuracy of 93%. To evaluate

the effect of manual annotation on the tag-based text compression, the two versions of the

BAAC, which were obtained from the two annotators, were compressed using tag-based text

compression models. The results of the compression were then compared to the compressed

results of the original Madamira auto-tagged corpus. Table 5.16 illustrates the compression size

(in bytes) and ratio (in bits per charactar) of all three files, the two versions of the BAAC which

were obtained from the two annotators and the original Madamira auto-tagged version, and the

results confirm that (1) manual annotation of the text reduces the quality of tag-based

 108

compression, as reported in Chapter 3 and in [196], [198], [194], [66], [195], and (2) compressing

the text using word-based and character-based text compression algorithms outperforms the

tag-based text compression when compressing small text files, such as the BAAC corpus, as

mentioned by Alhawiti and others [196], [26].

Annotator File size
Compressed

size (bytes)

Compression

ratio (bpc)

1 824,151 111,009 1.0776

2 819,482 110,954 1.0832

Original File 818,508 110,874 1.0837

Table 5.16. Tag-based Compression Results.

Further investigation is required to study the effect of using POS tagging systems, such as the

OpenNLP project [154], trained using the BAAC on the tag-based text compression. Future

work will add more annotated MSA text and will expand to cover CA text. More linguistic

information, such as the structural annotation, will also be added to the BAAC to increase the

possible NLP applications of the corpus.

5.9 Summary and Discussion

A new corpus, BAAC, was presented in this chapter. It is an MSA corpus that contains 50K

words manually annotated by part-of-speech tags. The annotated corpus used the same tagset

utilised by the Madamira tagger and followed annotation guidelines proposed by Maamouri for

annotating the POS tags. Also, a new annotation tool was developed and employed for the

annotation process of BAAC which obtained a Kappa value of 0.956, and an average observed

agreement of 94.25%. The BAAC was used to evaluate the Madamira tagger and to study the

effect of the manual annotation on the performance of the tag-based Arabic text compression.

The next chapter will utilise the BAAC corpus and the results obtained in chapter 3 and 4 to

develop novel compression-based criteria for evaluating Arabic part-of-speech taggers.

 109

CHAPTER 6

Compression-based Tag Models for

Evaluating Arabic Parts-of-

Speech Taggers

Contents:

6.1 Introduction .. 110

6.2 CA and MSA Tag-based Compression Experiments .. 111

6.3 Different Texts Tagging Assessment ... 112

6.4 Comparing the Performance of Two Taggers ... 113

6.5 Summary and Discussion .. 115

 110

6.1 Introduction

The previous chapter described the creation of the new Bangor Arabic Annotated Corpus

(BAAC). This chapter will utilise the BAAC corpus and the results obtained in chapter 3 and 4

to investigate the method of employing the compression results of the Arabic text that utilises

both the POS (tags) and the text to evaluate the performance and the quality of two of the most

commonly recognised Arabic POS taggers, the Madamira [161] and Stanford Arabic taggers

[101].

The results in chapter 3 show that the precision and quality of the tagging process determines

the quality of the tag-based compression of the Arabic text. It also concluded that compressing

Arabic text using the tag-based compression models produced better results than the other two

word-based and character-based methods. Since the main objective of this research is to

develop and train a POS tagger for the Arabic language, this chapter will explore the use of

compression results as a method of assessing the performance of a POS tagger when used to

tag different types of text (as per research question 3). This is accomplished by illustrating the

correlation between the quality of the tagging and the results of tag-based compression when

used to compress the CA and MSA text that is tagged by two Arabic taggers. This chapter will

also investigate the use of the tag-based compression output as a means of comparing the

performance of two POS taggers. This is achieved by calculating the accuracy of two taggers

using a gold-standard corpus, then comparing this with the tag-based compression results.

The chapter is organised as follows. Section 6.1 interduces the chapter. Section 6.2 describes

the tag-based compression experiments on CA and MSA text. The results of the experiments

are discussed in section 6.3. The performance of two taggers, the Madamira and Stanford

Arabic taggers, are compared in section 6.4. Finally, section 6.5 presents a summary and

discussion.

A portion of this chapter has been published in a conference paper (Alkhazi, I. S., & Teahan,

W. (2019). Compression-based Tag Models for Evaluating Arabic Parts-of-speech Taggers.

2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information

Technology (JEEIT) (JEEIT 2019). Amman, Jordan.)

 111

6.2 CA and MSA Tag-based Compression Experiments

These experiments have used three corpora that have either CA or MSA text. The first corpus

is Corpus A [30] which is an MSA corpus. The second corpus is King Saud University Corpus

of Classical Arabic (KSUCCA) which is a CA corpus. The final corpus is the BACC corpus [26]

which is a mixture of CA and MSA text. As stated, this corpus was originally created to

investigate the performance of the character-based text compression on various Arabic text

files. These corpora were tagged by two of the most popular Arabic POS taggers, The

Madamira tagger [161] and Stanford tagger [101]. Finally, the Tawa toolkit [192] was used to

perform the tag-based compression.

The experiments were conducted as follows:

• First, the three corpora that have either CA or MSA text were selected.

• Then, the tool described in Chapter 4 was utilised to classify the type of Arabic text used

in each corpus.

• Thirdly, the Madamira and the Stanford taggers were used to tag all corpora.

• Lastly, tag-based compression was performed using the Tawa toolkit [192]. The

compression results are shown in three tables, Table 6.1, Table 6.2 and Table 6.3, for

each tagger.

The outcomes of tagging then compressing some of Corpus A's sub-texts are presented in

Table 6.1, and for some of the BACC's sub-corpora are presented in Table 6.2. Table 6.3 shows

the percentage of tag-based improvement using the two taggers to tag then compress some of

the KSUCCA's sub-corpora. The following two sections discuss the findings of these

experiments.

 112

Sub-texts Text Type

C
h

a
r. e

n
c
o

d
e

s
iz

e

M
a
d

a
m

ira
 T

a
g

e
n

c
o

d
e
 s

iz
e

S
ta

n
fo

rd
 T

a
g

e
n

c
o

d
e
 s

iz
e

M
a
d

a
m

ira

Im
p

ro
v
.

(%
)

S
ta

n
fo

rd

Im
p

ro
v
.

(%
)

Cinema

MSA

7,693,241 7,318,652 7,402,514 5.12 3.93

Crimes 1,341,031 1,268,526 1,272,853 5.72 5.36

Stories 4,213,806 3,981,845 4,004,927 5.83 5.22

Table 6.1. Tag-based compression improvement for various sub-texts in Corpus A.

Sub-texts Text Type

C
h

a
r. e

n
c
o

d
e

s
iz

e

M
a
d

a
m

ira
 T

a
g

e
n

c
o

d
e
 s

iz
e

S
ta

n
fo

rd
 T

a
g

e
n

c
o

d
e
 s

iz
e

M
a
d

a
m

ira

Im
p

ro
v
.

(%
)

S
ta

n
fo

rd

Im
p

ro
v
.

(%
)

Arabic

History

CA

4,206,076 4,267,257 4,286,946 -1.43 -1.89

Arabic

Literature
3,029,433 3,045,281 3,059,687 -0.52 -0.99

Arabic

Book 1
164,445 170,881 173,793 -3.77 -5.38

Table 6.2. The BACC Text Type and Tag-based compression improvement.

6.3 Different Texts Tagging Assessment

The goal of this section is to investigate the use of compression results as a means of evaluating

the performance of a POS tagger when utilised to tag various types of text. Table 6.1, Table 6.2

and Table 6.3 show different corpora, that have either CA or MSA text, which were tagged by

both the Madamira and the Stanford taggers and compressed using the Tawa toolkit.

As stated, most of the Arabic NLP systems, such as POS tagging, are developed for processing

MSA text [84], as most of the available Arabic resources used for training, such as the Arabic

Treebank (ATB) corpus [141], [211], are written in MSA. For example, both POS taggers used

in the experiments section are trained using the ATB corpus [141]. As a consequence, many

researchers, such as Alosimay and Alrabiah [42], [37], [38] have reported a drop in accuracy by

 113

10 to 15% when one of the previous taggers is used for tagging CA text. The results in all three

tables confirm that the quality of the tag-based text compression also drops when compressing

a CA text that is tagged by one of the previous taggers. Therefore, a clear correlation between

the drop in CA tagging quality reported by Alosimay and Alrabiah [42], [37], [38] and the

decrease in the tag-based compression quality has been demonstrated.

6.4 Comparing the Performance of Two Taggers

In this section, the accuracy of two of the most popular known Arabic POS taggers, the

Madamira and the Stanford taggers, were calculated using a gold-standard corpus for each

tagger. For the Madamira tagger [161], the BAAC corpus was used to calculate the accuracy.

As for the Stanford tagger [101], a version of the BAAC corpus was manually annotated as

follows:

• A version of the BAAC corpus with only 5K terms was selected, then the tags were

removed.

• The tagset used by the Stanford tagger was translated using the suggested translation

by Alrabiah [42], [40], [137], then it was coded in the annotation tool.

• The same steps described in Chapter 5 were followed to manually annotate the gold-

standard corpus for the Stanford tagger with the annotation process lasting two weeks.

Sub-texts
Text

Type

C
h

a
r. e

n
c
o

d
e

s
iz

e

M
a
d

a
m

ira
 T

a
g

e
n

c
o

d
e
 s

iz
e

S
ta

n
fo

rd
 T

a
g

e
n

c
o

d
e
 s

iz
e

M
a
d

a
m

ira

Im
p

ro
v
.

(%
)

S
ta

n
fo

rd

Im
p

ro
v
.

(%
)

Religion

CA

19,057,454 19,189,175 19,209,861 -0.69 -0.79

Biography 3,881,458 3,920,285 3,937,428 -0.99 -1.42

Sociology 3,713,723 3,739,541 3,753,521 -0.69 -1.06

Table 6.3. KSUCCA Text Type and Tag-based compression improvement.

 114

This corpus was used to evaluate the Stanford tagger. It is a 5K corpus written in MSA and

manually annotated with POS tags. The annotator has corrected 663 of the incorrectly assigned

tags, where the top 10 most frequently corrected tags are shown in Table 6.4, and a sample of

corrected tags are shown in Table 6.5. The corpus used the Stanford tagset which consists of

24 tags, which was originally obtained by a manual reduction of the 135 tags taken from the

ATB tagset.

The Tag
Modified

To
Frequency

DTJJ JJ 119

NNP NN 73

VBP VBD 48

NN RP 38

JJ NN 30

NN VBD 26

DTNN DTNNS 22

NN RB 21

NN NNP 17

NN IN 16

Table 6.4. The most frequent corrected tags.

The idea is to use the two gold-standard corpora that contain the same text but tagged

differently, to calculate the accuracy of the tagging process. The Madamira tagger achieved an

accuracy of 93%, whereas the Stanford tagger achieved an accuracy of 86.4%. More

information about the text used in this step is descibed in chapter 5. Also, all three tables show

that the improvement in the tag-based compression quality of the text which is tagged by the

Madamira tagger is slightly higher than that of the text which is tagged by the Stanford tagger.

Therefore, an association between the high accuracy of the tagging and the high quality of

compression of the two taggers can be derived, as tagging the text correctly leads to a better

forecast of the forthcoming terms and, therefore, a better compression of the text.

 115

6.5 Summary and Discussion

This chapter examined the feasibility of using the tag-based text compression results for Arabic

text as a way of assessing the performance and quality of the Arabic POS taggers. First, the

compression results were used to assess the performance of the Madamira tagger and the

Stanford tagger when used on the two types of Arabic text, CA and MSA. Second, a correlation

between the quality of the tagging process and the accuracy of the tagger illustrated by

measuring the accuracy of two taggers, the Madamira and Stanford tagger, using a gold-

standard corpus, then comparing the tag-based compression results on different corpora that

were tagged using the previous two taggers.

The corrected tags The original tags

 RP/أن RB/قبل NN/بدستور NNP/الجمل VBD/وأشاد

 WP/التي DTNNS/التعديلات IN/عليه NN/تدخل

 NN/إطلاق NN/تعديل WP/من NN/بدءا VBD/شوهته

 NNS/تعديلات CC/ثم DTNN/الجمهورية NN/رئيس NN/مدد

 JJ/دستورية NN/خطايا VBD/اعتبرها WP/التي CC/و

 NNP/مصر VBD/أهانوا VBD/صاغوها IN/من RP/وأن

 NN/أن NN/قبل NNP/بدستور DTNN/الجمل NN/وأشاد

 WP/التي DTNNS/التعديلات NNP/عليه NN/تدخل

 NN/مدد NN/إطلاق NN/تعديل IN/من NN/بدءا NN/شوهته

 CC/و NNS/تعديلات CC/ثم DTNN/الجمهورية NN/رئيس

 VBD/وأن JJ/دستورية NN/خطايا VBD/اعتبرها WP/التي

 NNP/مصر VBD/أهانوا NN/صاغوها IN/من

 NN/بلجنة JJ/الفنية DTNNP/الأمانة RP/بأن VBD/ونوه

 NNS/دعوات VBD/وجهت RP/قد JJ/القومي DTNN/الوفاق

 IN/في NN/للمشاركة DTNN/المجتمع NN/أطياف NN/لكافة

 DTNN/المؤتمر

 DTJJ/الفنية DTNNP/الأمانة NNP/بأن NNP/ونوه

 VBD/وجهت RP/قد DTJJ/القومي DTNN/الوفاق NN/بلجنة

 DTNN/المجتمع NN/أطياف NN/لكافة NNS/دعوات

 DTNN/المؤتمر IN/في NN/للمشاركة

 RB/بين JJ/كاملا NN/تعاونا RB/هناك RP/أن VBD/وأكد

 DTJJ/المسلحة NNS/للقوات DTJJ/الأعلى DTNN/المجلس

 NNS/مجلسي NNS/انتخابات RP/وأن NN/والحكومة

 JJ/الرئاسية NNS/والانتخابات NN/والشورى DTNN/الشعب

 JJ/المقرر NN/موعدها IN/فى VBN/ستجرى

 NN/بين JJ/كاملا NN/تعاونا RB/هناك VBD/أن NN/وأكد

 DTJJ/المسلحة NNS/للقوات DTJJ/الأعلى DTNN/المجلس

 NNS/مجلسي NNS/انتخابات NN/وأن NN/والحكومة

 NNS/والانتخابات NN/والشورى DTNN/الشعب

 NN/موعدها IN/فى NNP/ستجرى DTJJ/الرئاسية

 DTNN/المقرر

Table 6.5. A Sample of corrected tags.

Further study is required to examine the outcome of using the tag-based results to evaluate the

ongoing effort which is currently been made to improve the performance of many NLP Arabic

tasks which are designed for CA text, such as the making of manually annotated CA corpus by

Alosaimy and Atwell [37], [38]. Also, the effect of using different Arabic resources, such as the

BAAC corpus, to develop and train new Arabic POS taggers can be assessed by utilising tag-

based compression results. Finally, the tag-based compression results can be used to compare

 116

and confirm the tagging quality of different POS taggers, especially those which have different

tagsets.

The next chapter will utilise the BAAC corpus to develop and train a compression-based Arabic

part-of-speech tagger and will also apply the previous method to evaluate the newly developed

tagger.

 117

CHAPTER 7

Compression-based Parts-of-

Speech Tagger for the Arabic

Language

Contents:

7.1 Introduction .. 118

7.2 Tawa tag encode models .. 118

7.3 Data Source ... 120

7.4 Silver-standard Data Experiment .. 124

7.5 Gold-standard Data Experiment ... 127

7.6 Summary and Discussion .. 129

 118

7.1 Introduction

The previous chapter investigated a method of employing the compression results of the Arabic

text that utilises both the POS (tags) and the text to evaluate the performance and the quality of

two of the most commonly recognised Arabic POS taggers, the Madamira [161] and Stanford

Arabic taggers [101]. This chapter investigates the development and training of a previously

unpublished compression-based Arabic part-of-speech tagger. The new tagger utilises the

Prediction by Partial Matching text compression scheme (PPM), which uses an adaptive

statistical language model to make predictions about upcoming text and has been successfully

applied to several Arabic NLP tasks, such as authorship attribution [46], [45], cryptology [15],

text correction [19] and text compression [26], [29], but it has yet to have been applied to POS

tagging. The adoption of the algorithm for Arabic POS tagging may increase the efficiency and

reduce the Arabic language ambiguity problem (as per research questions 5 and 6).

This chapter will first discuss the sources used in the experiments in section 7.2. Then, it will

discuss the two parts of the experiment, where silver-standard data is used in the first section

to train the Tawa Arabic POS Tagger (TAPT), in section 7.3, and a gold-standard data, the

BAAC corpus, is used in the second section as training data in section 7.4. The BAAC will be

used to evaluate the tagger and limitations of those experiments are discussed in detail. In both

sections, the effectiveness of using silver and gold-standard models will be examined by utilising

the tag-based models to compress CA and MSA corpora tagged by the TAPT tagger. Finally,

the summary and discussion are presented in section 7.5.

A portion of this chapter has been published in a journal paper (Alkhazi, I. S., & Teahan, W.

(2019). Compression-based Parts-of-speech tagger for the Arabic Language. International

Journal of Computational Linguistics, 10(1).)

7.2 Tawa tag encode models

According to Teahan [196], the best two models for encoding the tags are the TTT and TTWT

models as shown in Table 7.1. First, the "TTT" model predicts the current tag using the prior

two tags, and if no prediction was made, the model then escapes and employs just the prior

tag. If using only the previous tag fails at predicting the current tag, the model escapes again

 119

and predicts without any context. Compared to HMM taggers, such as the TnT tagger [59], if

the current tag has not been recorded in this model and it's been seen for the first time, then the

model will perform the last escape where a character-based model is utilised and each tag will

have an equal probability. The second model is the "TTWT" model, which first attempts to

predict the current tag utilising the previous tag, the previous word and the tag preceding that.

If the attempt fails, the model employs an escape hierarchy similar to the "TTT" model. For

efficiency reasons, the Tawa toolkit implements the TTT model rather than the slightly more

effective TTWT model (in terms of compression).

TTT model TTWT model WTW model

𝑝(𝑡𝑖 | 𝑡𝑖−1 𝑡𝑖−2)

⤷ 𝑝(𝑡𝑖 | 𝑡𝑖−1)

⤷ 𝑝(𝑡𝑖 |)

⤷ 𝑝𝑒𝑞(𝑡𝑖 |)

𝑝(𝑡𝑖 | 𝑡𝑖−1 𝑤𝑖−1 𝑡𝑖−2)

⤷ 𝑝(𝑡𝑖 | 𝑡𝑖−1 𝑤𝑖−1)

⤷ 𝑝(𝑡𝑖 | 𝑡𝑖−1)

⤷ 𝑝(𝑡𝑖 |)

⤷ 𝑝𝑒𝑞(𝑡𝑖 |)

𝑝(𝑤𝑖 | 𝑡𝑖𝑤𝑖−1)

⤷ 𝑝(𝑤𝑖 | 𝑡𝑖)

⤷ 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 𝑚𝑜𝑑𝑒𝑙

Table 7.1. Models for tag-based compression.

The WTW model is an n-gram model that first utilises the current tag with the previous word to

predict the current word. If the word prediction fails, then the model escapes and uses only the

current tag to predict the current word. If that also fails and no prediction was made, the model

then backs-off or escapes to an order 4 character-model where every character in the term,

which includes the space character to indicate the end of the term, is encoded separately. The

models at this stage can be regarded as the "vocabulary" of the text since every word encoded

is either unique, when utilising the word-based models or has been tagged uniquely, therefore

in a sense, they can be regarded as the "vocabulary" of the text.

Tawa implements separate character models for each tag as this was found to lead to better

compression. When the tag-based model has to back-off to the character model for an unknown

word, the tag for that word will be known, therefore it can make use of a character model

specifically trained on characters from previous words tagged in the same way. In essence, the

PPM character model effectively learns the typical spelling characteristics for each tag in order

to ensure better compression performance e.g. for the tag VBG, new words will invariably end

 120

in the character sequence ‘ing’; for prepositions, new (rare) propositions will often contain texts

from the more common prepositions that were encountered at the beginning of the text; and so

on.

For predicting the word, either the TTT model or TTWT model is combined with the WTW model

to create an n-pos model. The combined TTWT model and WTW model, for instance, is

described by the next formula:

𝑝(𝑠) = ∏ 𝑝′(𝑡𝑖|𝑡𝑖−1, 𝑤𝑖−1, 𝑡𝑖−2) 𝑝′′(𝑤𝑖 ∣∣ 𝑡𝑖 , 𝑤𝑖−1)

𝑚

𝑖=1

where 𝑝' provides the probabilities passed by the TTWT model and 𝑝" provides the

probabilities passed by the WTW model.

To explain tag-based encoding in more detail, tables 7.2 and 7.3 present how the toolkit models

a given string using the WTW and TTT models. The example in this case is how the PPMD

prediction method models the string "to be or not to be to be or not to be that is the question"

that has the following tag sequence "TO VB CC RB TO VB TO VB CC RB TO VB DT VBZ DT

NN". In Table 7.3, WTW modelling is applied to the string. Table 7.2 presents how TTT models

the previous string which is essentially the same as using an order 2 PPMD model. For

simplification purposes, the tag sequence is translated into the following equivalent character

sequence "tvcrtvtvcrtvdzdn", where "t" stands for "TO", "v" for "VB" etc. For both WTW and TTT

models, calculating the probability for this example is similar to the character-based method

explained in section 2.2.2.3 with the exception that the escape count equals 1 plus the number

of symbols which have a count of 1 (these are called “singletons”). (This method for calculating

the escape count for word-based models was found by Teahan [196] to yield better results in a

range of compression experiments). The WTW model defaults to the character model as for

Table 2.2.

7.3 Data Source

In the first part of the experiments, two sub-corpora of Corpus A [32] were used to train the

TAPT tagger. As stated, Corpus A is an MSA corpus that includes various topics such as

politics, opinions, legal issues, economics, conferences, business, cinema and books. The text

(7.1)

 121

in Corpus A was gathered from the Al-Hayat website, a bilingual newspaper, and from the open-

source online corpus, OPUS [30]. The second section of the experiments has utilised the BAAC

corpus to train and evaluate the TAPT tagger. The Bangor Arabic Annotated Corpus (BAAC) is

an MSA corpus that comprises 50K words manually annotated by parts-of-speech that was

described in Chapter 5. The data source for the new corpus is the Press sub-corpus from the

BACC corpus [26], which was created originally to test the performance of various text

compression algorithms on different text files. The results of the text classification and

segmentation in Chapter 4 revealed that the Press sub-corpus is mostly written in MSA, as

shown in tables 4.7, 4.11 and 4.15. According to Alhawiti [26], the sub-corpus is a newswire text

consisting of 50K terms, gathered from various news websites between 2010 and 2012 and

covers many topics such as political and technology news.

Order 2 Order 1 Order 0 Order -1

Prediction c p Prediction c p Prediction c p Prediction c p

"tv"

"vc"

"cr"

"rt"

"vt"

"vd"

"dz"

"zd"

→ "c"

→ "t"

→ "d"

→ esc

→ "r"

→ esc

→ "t"

→ esc

→ "v"

→ esc

→ "v"

→ esc

→ "z"

→ esc

→ "d"

→ esc

→ "n"

→ esc

2

1

1

3

2

1

2

1

2

1

1

1

1

1

1

1

1

1

3/8

1/8

1/8

3/8

3/4

1/4

3/4

1/4

3/4

1/4

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

"t"

"v"

"c"

"r"

"d"

"z"

→ "v"

→ esc

→ "c"

→ "t"

→ "d"

→ esc

→ "r"

→ esc

→ "t"

→ esc

→ "z"

→ "n"

→ esc

→ "d"

→ esc

4

1

2

1

1

3

2

1

2

1

1

1

2

1

1

7/8

1/8

3/8

1/8

1/8

3/8

3/4

1/4

3/4

1/4

1/4

1/4

2/4

1/2

1/2

→ "v"

→ "c"

→ "r"

→ "t"

→ "d"

→ "z"

→ "n"

→ esc

3

2

2

4

2

1

1

7

5/22

3/22

3/22

7/22

3/22

1/22

1/22

7/22

→ A 1 1/|A|

Table 7.2. The TTT processing of the tag sequence "TO VB CC RB TO VB TO VB CC RB

TO VB DT VBZ DT NN" which is converted into "tvcrtvtvcrtvdzdn" for illustration purposes

and A is the number of tags.

 122

Table 7.3. The WTW processing of the string "to be or not to be to be or not to be that is

the question".

A new one-to-one transliteration tool was developed and then used in both experiments to

transliterate Arabic characters to Latin characters. The new tool is based on the Buckwalter

Arabic transliteration tool [65], [138] developed by Tim Buckwalter. The new mapping, as shown

in Table 7.4, adds Arabic numbers and some Quranic symbols that were found in CA corpora

used in the experiments. The tool was utilised to transliterate training and input text for the TAPT

tagger to Latin characters and the output tagged text to Arabic characters. Figure 7.1 shows a

sample Arabic transliterated text using the developed transliteration tool.

p(wi | ti wi-1) p(wi | ti) p(wi|)

Prediction c p Prediction c p Prediction c p

"VB to"

"CC be"

"RB or"

"TO not"

"TO be"

"DT be"

"VBZ that"

 "DT is"

"NN the"

→ "be"

→ esc

→ "or"

→ esc

→ "not"

→ esc

→ "to"

→ esc

→ "to"

→ esc

→ "that"

→ esc

→ "is"

→ esc

→ "the"

→ esc

→ "question"

→ esc

4

1

2

1

2

1

2

1

1

2

1

2

1

2

1

2

1

2

4/5

1/5

2/3

1/3

2/3

1/3

2/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

"TO"

"VB"

"CC"

"RB"

"DT"

"VBZ"

→ "be"

→ esc

→ "or"

→ "to"

→ "that"

→ esc

→ "not"

→ esc

→ "to"

→ esc

→ "is"

→ "question"

→ esc

→ "the"

→ esc

4

1

2

1

1

3

2

1

2

1

1

1

3

1

2

4/5

1/5

2/7

1/7

1/7

3/7

2/3

1/3

2/3

1/3

1/5

1/5

3/5

1/3

1/3

 → "be"

 → "or"

 → "to"

 → "that"

 → "not"

 → "is"

 → "question"

 → "the"

 → esc

4

2

3

1

2

1

1

1

5

4/20

2/20

3/20

1/20

2/20

1/20

1/20

1/20

5/20

 123

A
ra

b
ic

C
h

a
ra

c
te

r

L
a
tin

C
h

a
ra

c
te

r

A
ra

b
ic

C
h

a
ra

c
te

r

L
a
tin

C
h

a
ra

c
te

r

A
ra

b
ic

C
h

a
ra

c
te

r

L
a
tin

C
h

a
ra

c
te

r

\u0621 q \u0634 z \u064C D

\u0622 w \u0635 x \u064D F

\u0623 e \u0636 c \u064E R

\u0624 r \u0637 v \u064F W

\u0625 t \u0638 b \u0650 U

\u0626 y \u0639 n \u0651 S

\u0627 u \u063A m \u0652 E

Table 7.4. A sample of the new character mapping.

Figure 7.1. Sample Arabic transliterated text.

 124

7.4 Silver-standard Data Experiment

This section illustrates the use of silver-standard data, which was tagged using both the

Madamira and the Stanford taggers, to train and then evaluate the TAPT tagger. The

experiment was conducted as follows:

• Corpus A was first tagged using Madamira and the Stanford taggers.

• Then, the text was preprocessed and input into the Tawa toolkit [192] then transliterated

to Latin characters.

• Next, two PPM tagging models were created, the first model was trained using

Madamira tagged text and the second model was trained using Stanford tagged text.

• Finally, a smaller version of the BAAC corpus, that has only 5K terms, was selected

then tagged using the two models from the previous step.

Tables 7.5 and 7.6 show the top 10 most incorrectly assigned tags for the TAPT tagger trained

on silver-standard Madamira and Stanford models. To calculate the accuracy of using silver-

standard data to train the TAPT tagger, the Madamira and Stanford gold-standard data

described in Chapter 6 was used to establish the number of incorrectly assigned tags. The

tagger achieved an accuracy of 84%, with 794 incorrectly assigned tags, using the Madamira

silver-standard model, and 81% using the Stanford silver-standard model with 927 incorrectly

assigned tags. Table 7.7 demonstrates the most incorrectly assigned tags for the TAPT tagger

which was trained by silver-standard text tagged by Madamira POS tagger. Table 7.6 displays

the most incorrectly assigned tags for the TAPT tagger which was trained by silver-standard

text tagged by Stanford POS tagger.

The results in Table 7.7 show that almost 25.56% of the incorrectly assigned tags by the TAPT

tagger that used the Madamira model were in fact verbs and 8.18% were nouns, which includes

noun_prop and noun. Compared to the Stanford model, as shown in in Table 7.6, only 5.17%

of the inaccurately assigned tags by the TAPT tagger that used the Stanford model were in fact

verbs whereas 29.34% of the inaccurately assigned tags were nouns, that includes NNP, NN

and DTNN. The previous results confirm the results in Chapter 6 which suggest that there is an

issue in the process of assigning the verb tag by the Madamira tagger and the noun tag by the

Stanford tagger.

 125

Frequency

Madamira

Assigned

Tag

BAAC Tag

165 noun verb

51 noun adj

46 conj_sub verb_pseudo

34 noun abbrev

27 adj noun

21 noun_prop noun

20 prep verb_pseudo

17 verb abbrev

17 noun noun_prop

16 prep part_neg

Table 7.5. Top 10 most incorrectly assigned tags for TAPT trained on silver-standard

Madamira model.

Frequency

Stanford

Assigned

Tag

BAAC

Tag

118 JJ DTJJ

64 NN NNP

48 VBD VBP

45 VBD NN

44 RP NN

37 NNP NN

37 NN JJ

36 NNP DTNN

24 DTNNS DTNN

22 RB NN

Table 7.6. Top 10 most incorrectly assigned tags for TAPT trained on silver-standard

Stanford model.

 126

To evaluate the performance of the TAPT tagger that was trained on Madamira silver-standard

text, the BACC corpus was tagged then compressed using tag-based compression models.

The BACC corpus as stated in Chapter 3, is a mixture of MSA and CA text. Table 7.7 and Table

7.8 represent the results of compressing the BACC sub-corpora 'Arabic History', 'Arabic

Literature', 'Art and Music' and 'Sports'. The two tables show that the tag-based compression

performance on the text that was tagged by TAPT, that was trained on silver-standard text, has

decreased compared to the performance of the Madamira tag-based compression.

Sub-text Text Type
Corpus

Size

Character-

based

Compression

size

Madamira

Tag-based

Compression

size

TAPT Tag-

based

Compression

size

Arabic History

CA

30251137 4206076 4267257 4290052

Arabic

Literature
18594383 3029433 3045281 3067010

Art and Music
MSA

41770 9510 10583 10604

Sports 31059 6497 7124 7149

Table 7.7. The character-based and the tag-based compression results of the Madamira

and TAPT trained on silver-standard corpus.

S
u

b
-te

x
t

T
e
x
t T

y
p

e

C
h

a
ra

c
te

r-b
a
s

e
d

b
p

c

M
a
d

a
m

ira
 b

p
c

T
A

P
T

 b
p

c

T
A

P
T

P
e
rfo

rm
a
n

c
e

D
e
c
re

a
s

e

Arabic History

CA

1.11 1.13 1.13 -0.52%

Arabic

Literature
1.30 1.31 1.32 -0.70%

Art and Music
MSA

1.82 2.03 2.03 -0.18%

Sports 1.67 1.83 1.84 -0.32%

Table 7.8. The decrease in the tag-based compression performance of TAPT trained on

silver-standard text compared to the Madamira tagger.

 127

7.5 Gold-standard Data Experiment

This section represents the use of a gold-standard annotated text, the BAAC corpus, to train

and then evaluate TAPT. Using a tenfold cross validation method, TAPT achieved an accuracy

of 93% when trained using the BAAC corpus. Table 7.9 shows the most frequently assigned

tags by TAPT and Table 7.10 displays the most incorrectly assigned tags compared to the tag

at the BAAC corpus.

Frequency Tag

24787 noun

5693 prep

5584 verb

4431 adj

2519 noun_prop

1656 conj_sub

1148 conj

985 pron_rel

765 pron_dem

599 noun_quant

500 part_neg

355 pron

329 adv

251 noun_num

Table 7.9. The most frequently assigned tags by TAPT trained on gold-standard text.

To evaluate the performance of the TAPT tagger when trained on gold-standard text, four

BACC sub-corpora were first tagged by the TAPT tagger and then the text was compressed

using tag-based compression models. Table 7.11 compares the results of compressing the

BACC sub-corpora 'Arabic History', 'Arabic Literature', 'Art and Music' and 'Sports' using the

character-based and the tag-based model. Both 'Arabic History' and 'Arabic Literature' are 99%

written in CA text, whereas 'Art and Music' and 'Sports' are 91% and 95% consecutively, written

in MSA text. Table 7.12 shows the tag-based compression ratio (in bits per character) of the

 128

four BACC sub-corpora which were tagged by the TAPT tagger and the Madamira tagger. It is

noticeable that the quality of compression of the 'Art and Music' and 'Sports' sub-corpora has

increased by 4.98% and 4.25% respectively, whereas the compression quality of the sub-

corpora, 'Arabic History' and 'Arabic Literature', has decreased by 2.69% and 1.56%

respectively, compared to the tag-based compression results of the Madamira tagger.

F
re

q
u

e
n

c
y

P
P

M

A
s
s
ig

n
e
d

T
a
g

B
A

A
C

 T
a
g

73 noun adj

45 adj noun

41 verb noun

19 noun verb

12 noun_prop noun

12 noun conj

11 noun noun_prop

10 conj_sub verb_pseudo

5 noun_prop verb

5 adv adv_interrog

Table 7.10. Top 10 most incorrectly assigned tags for TAPT trained on gold-standard

corpus.

The results in Table 7.11 and 7.12 indicate that tagging MSA text using the TAPT tagger

increases the quality of the tag-based compression compared to the Madamira tagged text. The

results also show that the quality of the tag-based compression of CA text that was tagged by

the TAPT tagger has decreased. A possible cause of improvement in compressing the MSA

corpora is the fact that the TAPT tagger is trained using the BAAC corpus which is mostly written

in MSA as concluded in Chapter 5.

 129

S
u

b
-te

x
t

T
e
x
t T

y
p

e

C
o

rp
u

s
 S

iz
e

C
h

a
ra

c
te

r-b
a
s

e
d

C
o

m
p

re
s

s
io

n
 s

iz
e

M
a
d

a
m

ira
 T

a
g

-

b
a
s
e
d

C
o

m
p

re
s

s
io

n
 s

iz
e

T
A

P
T

 T
a
g

-b
a
s

e
d

C
o

m
p

re
s

s
io

n
 s

iz
e

Arabic

History
CA

30251137 4206076 4267257 4387191

Arabic

Literature
18594383 3029433 3045281 3093824

Art and

Music MSA
41770 9510 10583 10027

Sports 31059 6497 7124 6807

Table 7.11. The character-based and the tag-based compression results of the Madamira

and TAPT trained on gold-standard corpus.

S
u

b
-te

x
t

T
e
x
t T

y
p

e

C
h

a
ra

c
te

r-

b
a
s
e
d

 b
p

c

M
a
d

a
m

ira
 b

p
c

T
A

P
T

 b
p

c

T
A

P
T

Im
p

ro
v
e
m

e
n

t

Arabic

History
CA

1.11 1.13 1.16 -2.69%

Arabic

Literature
1.30 1.31 1.33 -1.56%

Art and Music
MSA

1.82 2.03 1.92 4.98%

Sports 1.67 1.83 1.75 4.25%

Table 7.12. The tag-based compression improvement of TAPT trained on gold-standard

corpus compared to the Madamira tagger.

7.6 Summary and Discussion

This chapter presented a newly developed compression-based POS tagger for the Arabic

language which is based on a Prediction-by-Partial Matching (PPM) compression system. The

results of the tagger were presented in two experiments. The first used models which were

trained using silver-standard data from two different POS Arabic taggers, the Stanford and the

 130

Madamira taggers [161], [74]. The results of the previous experiment show that using silver-

standard data to train the TAPT tagger decreases the quality of the tag-based compression of

both the CA and MSA text compared to the Madamira tagger. The second experiment trained

a model using the BAAC corpus, which is a 50K term manually annotated MSA corpus, where

the TAPT tagger achieved an accuracy of 93%. The tag-based compression results of the

second experiment show that the use of the gold-standard model increases the quality of the

tag-based compression when the TAPT tagger is used to tag MSA text.

Future enhancements to the tagger can be made by utilising more Arabic resources, such as

the ‘Sunnah Arabic Corpus' [38] which is a set of CA text that is popularly cited in Islamic books

and the ATB corpus [111]. Including such resources might increase the accuracy of the TAPT

tagger.

 131

CHAPTER 8

Conclusion

Contents:

8.1 Summary ... 132

8.2 Review of Aim & Objectives .. 133

8.3 Review of Research Questions .. 135

8.4 Limitations .. 137

8.4 Future Work .. 137

 132

8.1 Summary

This chapter examines the achievements of this study. First, it presents a summary in section

8.1. Then, it reviews the aim and objectives of this research in section 8.2 and examines the

research questions in section 8.3. Section 8.4 presents the limitations of this study. Lastly, a

number of suggestions are offered in section 8.5.

The Arabic language is a morphologically complex language that causes various difficulties for

various NLP systems, such as POS tagging. The statistical method of tagging the Arabic text is

broadly utilised to solve the POS uncertainty of the Arabic text [180]. Chapter 7 investigated the

development and training of a compression-based Arabic POS tagger using the PPM algorithm.

The new tagger (TAPT) was trained using silver-standard data and gold-standard. The results

show that using silver-standard data to train the TAPT tagger decreases the quality of the tag-

based compression of both the CA and MSA text compared to the Madamira tagger. The

second experiment trained a model using the BAAC corpus, which is a 50K term manually

annotated MSA corpus, where TAPT achieved an accuracy of 93%. The tag-based

compression results of the second experiment show that the use of the gold-standard model

increases the quality of the tag-based compression when TAPT is used to tag MSA text.

Previous studies were conducted to examine the performance of the tag-based compression

of the Arabic text [26], where the only resource used was the Arabic Treebank Corpus (ATC)

[26]. As the best text compression algorithms can be applied to natural language processing

tasks often with state-of-the-art results [196], [193], [195], [197], [15], and the improved tag-

based compression has applications beyond the specific compression application, Chapter 3

examined the use of tag-based compression of larger Arabic resources to re-evaluate the

performance of tag-based compression. The results of the experiments in this Chapter 6

showed that the tag-based compression of the text can effectively be used for assessing the

performance of Arabic POS taggers when used to tag different types of the Arabic text, and also

as a means of comparing the performance of two Arabic POS taggers on the same text.

Some Arabic corpora, such as the Bangor Arabic Compression Corpus (BACC), is a mixture of

both CA and MSA text. The results of using such a corpus in order to perform various NLP tasks

will vary and will not be consistent and reliable. Studies that address the problems of

 133

classification and segmentation of the Arabic language are limited compared to other

languages, most of which implement word-based and feature extraction algorithms. Chapter 4

adopted a PPM character-based compression scheme to classify and segment Classical Arabic

(CA) and Modern Standard Arabic (MSA) texts. An initial experiment using the PPM

classification method on samples of text resulted in an accuracy of 95.5%, an average precision

of 0.958, an average recall of 0.955 and an average F-measure of 0.954, using the concept of

minimum cross-entropy. Segmenting the CA and MSA text using the PPM compression

algorithm obtained an accuracy of 86%, an average precision of 0.869, an average recall of

0.86 and an average F-measure of 0.859.

POS annotated corpora are essential for the development of many NLP systems, such as part-

of-speech tagging [180]. The lack of such resources limits some researchers from progressing

further in their efforts. The limited availability of some existing annotated corpora and the cost

of acquiring others are one of the main reasons that contribute to resource scarcity. Chapter 5

described the creation of the new Bangor Arabic Annotated Corpus (BAAC) which is a Modern

Standard Arabic (MSA) corpus that comprises 50K words manually annotated by parts-of-

speech. For evaluating the quality of the corpus, the Kappa coefficient and a direct percent

agreement for each tag were calculated for the new corpus and a Kappa value of 0.956 was

obtained, with an average observed agreement of 94.25%. The corpus was used to evaluate

the widely used Madamira Arabic POS tagger and to further investigate compression models

for text compressed using POS tags. Also, a new annotation tool was developed and employed

for the annotation process of the BAAC.

8.2 Review of Aim & Objectives

The aim and objectives of this thesis which have been proposed in Section 1.2 have all been

successfully achieved. A novel compression-based Arabic part-of-speech tagger based on

PPM was developed and the new tagger was evaluated using a novel compression-based

criterion. The new tagger utilised the newly created POS annotated corpus. Also, MSA and CA

text were classified and segmented using a PPM character-based text compression scheme.

Therefore, the particular objectives as described in section 1.2 were accomplished as follows:

 134

• Investigate the most efficient PPM compression method of the Arabic text.

Chapter 3 examined the use of tag-based compression of larger Arabic resources to re-

evaluate the performance of tag-based compression. The results of compressing

tagged and untagged texts show that using tag-based compression significantly

outperforms both the word-based and character-based models, and the added extra-

tag information improves overall compression compared to the untagged compressed

text.

• Investigate the applications of PPM tag-based compression to several Arabic NLP

tasks.

The novel PPM compression-based criterion was utilised in Chapter 4 to confirm the

classification and segmentation results and as a means of comparing the performance

of two POS taggers in Chapter 6.

• Develop novel methods for classification and segmentation of Classical Arabic and

Modern Standard Arabic text using PPM.

Classification of Classical Arabic (CA) and Modern Standard Arabic (MSA) text was

performed in Chapter 4 on sample texts using a PPM character-based compression

scheme achieving an accuracy of 95.5%, an average precision of 0.958, an average

recall of 0.955 and an average F-measure of 0.954. Segmenting the CA and MSA text

using the PPM compression algorithm obtained an accuracy of 86%, an average

precision of 0.869, an average recall of 0.86 and an average F-measure of 0.859.

Further classification and segmentation experiments were conducted in Chapter 4 to

analyse mixed Arabic corpora and the results showed that different Arabic corpora have

a mixture of CA and MSA text.

• Create and evaluate a new POS manually annotated Arabic Corpus.

A new corpus, BAAC, was presented in Chapter 5. It is an MSA corpus that contains

50K words manually annotated by part-of-speech tags. The annotated corpus obtained

a Kappa value of 0.956, and an average observed agreement of 94.25%. The BAAC

was used to evaluate the Madamira tagger and to study the effect of the manual

annotation on the performance of the tag-based Arabic text compression.

 135

• Develop and train a novel compression-based Arabic part-of-speech tagger based on

PPM.

The previous chapter presented a newly developed compression-based POS tagger

for the Arabic language (TAPT) which is based on a Prediction-by-Partial Matching

(PPM) compression system. The new tagger was trained using the BAAC corpus, which

is a 50K term manually annotated MSA corpus, and achieved an accuracy of 93%. The

tag-based compression results show that the use of the gold-standard model increases

the quality of the tag-based compression when the TAPT tagger is used to tag MSA

text.

• Develop novel compression-based criteria for evaluating Arabic part-of-speech.

Chapter 6 examined the feasibility of using the tag-based text compression results for

Arabic text as a way of assessing the performance and quality of the Arabic POS

taggers. First, the compression results were used to assess the performance of two

taggers when used on the two types of Arabic text, CA and MSA. Second, a correlation

was found between the quality of the tagging process and the accuracy of the tagger

illustrated by measuring the accuracy of two taggers, the Madamira and Stanford

tagger, using a gold-standard corpus, then comparing the tag-based compression

results on different corpora that were tagged using the previous two taggers.

8.3 Review of Research Questions

This section reviews the research questions which were laid out in section 1.3. It will list the

question and the discussion of the experimental findings which relate to that question.

The research questions were as follows:

• Can the PPM compression models be used to help reveal linguistic universals across

languages?

The results in chapters 3, 4 and 6 show that there is a difference in quality between

compression for CA and MSA text, which resulted from the tagging quality. This results

 136

combined with the findings by Alkahtani in [30] indicate that PPM compression models

can be utilised to reveal linguistic universals across single and multiple languages.

• What is the best PPM compression model for compressing Arabic text?

The findings in Chapter 3 show that the tag-based compression of the MSA text

outperforms both the word-based and character-based compression.

• Can the tag-based compression of the Arabic text be utilised to measure the

performance of various Arabic POS taggers?

The experimental findings in Chapter 6 illustrated the correlation between the quality of

the tag-based compression and the accuracy of the tagger. This novel PPM

compression-based criterion was utilised in the final chapter to estimate the tagging

quality of the new tagger.

• Can two types of non-colloquial written text for the Arabic language be classified using

the PPM compression models?

PPM as a minimum cross-entropy text classifier was successfully adopted to classify

and segment Classical Arabic (CA) and Modern Standard Arabic (MSA) texts. Further

classification and segmentation experiments were conducted in Chapter 4 to analyse

mixed Arabic corpora and the results showed that different Arabic corpora have a

mixture of CA and MSA text.

• Can a new POS annotated corpus be used to develop and train a new compression-

based Arabic part-of-speech tagger that is effective at tagging Arabic text?

A new MSA corpus, that contains 50K words manually annotated by part-of-speech

tags, was presented in Chapter 5. The corpus was successfully utilised in Chapter 7 to

train the TAPT tagger. The new tagger achieved an accuracy of 93%.

• Will the adoption of the PPM compression models to tag the Arabic text increase the

performance of tagging MSA text compared to other Arabic taggers?

The tag-based compression results of the second experiment in Chapter 7 show that

the use of the BAAC corpus to train the new tagger increases the quality of the tag-

based compression when TAPT is used to tag MSA text.

 137

8.4 Limitations

The limitations are as follows:

• Since PPM tag-based model uses three streams, a tag stream, a word stream and a

character stream to build its model, compressing the text using the tag-based model will

require more time and resources compared to a character-based model by itself.

• The quality of the tag-based compression depends on the quality of the tagging process.

This means that the compression of certain text, CA text for example, may not produce

results similar to the compression of MSA text.

• Compared to other paid annotated corpora, such as the ATB corpus, the number of

terms in the BAAC is modest.

• The BAAC is only annotated by POS, which limits the use of the corpus by other NLP

applications.

• Similar to most known Arabic POS taggers, TAPT is trained on MSA text, therefore, the

quality of tagging CA text will be affected.

• A manual similarity analysis was performed on a sample of unpublished Arabic corpora,

such as Ajdir Corpora [5], which were gathered using a Web crawler, and text duplicates

were discovered. The duplicate content may bias results derived from the processing of

such corpora by artificially inflating frequencies of some words and expressions.

8.4 Future Work

The future work is as follows:

• TAPT was trained using the BAAC, which is written in MSA text. Future enhancements

to the tagger can be made by utilising more Arabic resources, such as the ‘Sunnah

Arabic Corpus' [38] which is a set of CA text that is popularly cited in Islamic books.

 138

Including such resources might increase the accuracy of TAPT when utilised to tag CA

text. The quality of tagging MSA can also be improved by utilising more MSA resources

such as the ATB corpus [111].

• Different POS taggers adopt various segmentation schemes. This scheme differs from

tagging every prefix/infix/suffix of the word, such as the three degrees of segmentation

structure described by Habash and Sadat [107], to neglecting some of the text, such as

punctuations, numbers, dates, etc. Aligning the segmentation output of different taggers

is proposed to evaluate the segmentation scheme [38], [50], however, this process is

“quite sophisticated” [50]. Other ways, such as the GRACE evaluation task [11], the

AMALGAM project [50], are proposed also for the evaluation of different segmentation

schemes. Since the quality of tag-compression improves when the text is segmented,

as shown in Chapter 3, further investigations are required to examine where the tag-

based compression can be utilised as a way for evaluating the performance of different

segmentation schemes.

• Many metrics are available for measuring the similarity of documents, such as

Levenshtein edit distance [134], [24] and Broder’s resemblance [62]. For small data sets,

the duplicate lines can be detected by comparing the similarity value between the two

lines, and near-duplicates lines can also be identified by reporting lines that have

similarity value above a certain threshold. However, the resources required to apply the

previous approaches to large data sets may be computationally expensive, therefore,

applying other approaches, such as Charikar’s algorithm [67], Pugh and Henzinger’s

algorithm [167] and Shivakumar and Garcia-Molina fingerprinting scheme [183], may

become more applicable. Future investigations are required to examine the application

of PPM for the detection of duplicates and near-duplicates found in the text by utilising

the codelength and the cross-entropy of the compressed text.

• The utilisation of PPM compression scheme by TAPT has successfully increased the

tagging quality of MSA text. Further investigations are required to utilise the scheme in

more natural language processing tasks for the Arabic language such as tokenization

and phrase chunking. This can be performed by training TAPT using, for example,

tokenized resources, such as the ATB corpus [111].

 139

• The BAAC corpus was presented in Chapter 5. Further work is needed to increase the

number of MSA terms and include CA text to increase the possible NLP applications of

the corpus. More linguistic information, such as the structural annotation, and

morphological features should also be added to the BAAC.

 140

References

[1] M. J. A. ˇZeljko Agic et al., “Universal dependencies 1.1,” LINDAT/CLARIN

Digit. Libr. Inst. Form. Appl. Linguist. Charles Univ. Prague, 2015.

[2] M. Abbas, K. Smaili, and D. Berkani, “Evaluation of Topic Identification

Methods for Arabic Texts and their Combination by using a Corpus Extracted

from the Omani Newspaper Alwatan,” Arab Gulf J. Sci. Res., vol. 29, no. 3–4,

pp. 183–191, 2011.

[3] M. Abbas, “Khaleej corpus.” [Online]. Available:

https://sourceforge.net/projects/arabiccorpus/. [Accessed: 22-Sep-2018].

[4] A. Abbasi, H. Chen, and A. Salem, “Sentiment analysis in multiple

languages: Feature selection for opinion classification in web forums,” ACM

Trans. Inf. Syst., vol. 26, no. 3, p. 12, 2008.

[5] A. Abdelali, “Ajdir Corpora | E3rab.com.” [Online]. Available:

http://aracorpus.e3rab.com/argistestsrv.nmsu.edu/AraCorpus/. [Accessed:

22-Sep-2018].

[6] A. Abdelali, K. Darwish, N. Durrani, and H. Mubarak, “Farasa: A fast and

furious segmenter for arabic,” in Proceedings of the 2016 Conference of the

North American Chapter of the Association for Computational Linguistics:

Demonstrations, 2016, pp. 11–16.

[7] N. Abdulla, N. Mahyoub, M. Shehab, and M. Al-Ayyoub, “Arabic sentiment

analysis: Corpus-based and lexicon-based,” in Proceedings of The IEEE

conference on Applied Electrical Engineering and Computing Technologies

(AEECT), 2013.

[8] K. Abu Kwaik, M. K. Saad, S. Chatzikyriakidis, and S. Dobnik, “Shami: A

Corpus of Levantine Arabic Dialects,” Shami A Corpus Levantine Arab.

Dialects, 2018.

[9] R. A. Abumalloh, H. M. Al-Sarhan, and W. Abu-Ulbeh, “Building Arabic

Corpus Applied to Part-of-Speech Tagging,” Indian J. Sci. Technol., vol. 9,

no. 46, 2016.

[10] R. A. Abumalloh, H. M. Al-Sarhan, O. Ibrahim, and W. Abu-Ulbeh, “Arabic

Part-of-Speech Tagging,” J. Soft Comput. Decis. Support Syst., vol. 3, no. 2,

pp. 45–52, 2016.

 141

[11] G. Adda, J. Mariani, J. Lecomte, P. Paroubek, and M. Rajman, “The GRACE

French part-ofspeech tagging evaluation task,” in in Proceedings of the First

International Conference on Language Resources and Evaluation, 1998, pp.

433–441.

[12] C. C. Aggarwal and C. Zhai, “A survey of text classification algorithms,” in

Mining text data, Springer, 2012, pp. 163–222.

[13] S. Al-Harbi, A. Almuhareb, A. Al-Thubaity, M. S. Khorsheed, and A. Al-Rajeh,

“Automatic Arabic text classification,” in Proceedings of The 9th International

Conference on the Statistical Analysis of Textual Data, 2008.

[14] M. N. Al-Kabi, N. A. Abdulla, and M. Al-Ayyoub, “An analytical study of arabic

sentiments: Maktoob case study,” in Internet Technology and Secured

Transactions (ICITST), 2013 8th International Conference for, 2013, pp. 89–

94.

[15] N. R. Al-Kazaz, S. A. Irvine, and W. J. Teahan, “An Automatic Cryptanalysis

of Transposition Ciphers Using Compression,” in International Conference on

Cryptology and Network Security, 2016, pp. 36–52.

[16] L. Al-Sulaiti and E. S. Atwell, “The design of a corpus of Contemporary

Arabic,” Int. J. Corpus Linguist., vol. 11, no. 2, pp. 135–171, 2006.

[17] A. O. Al-Thubaity, “A 700M+ Arabic corpus: KACST Arabic corpus design

and construction,” Lang. Resour. Eval., vol. 49, no. 3, pp. 721–751, 2015.

[18] M. Alabbas and A. Ramsay, “Improved POS-tagging for Arabic by combining

diverse taggers,” in IFIP International Conference on Artificial Intelligence

Applications and Innovations, 2012, pp. 107–116.

[19] M. M. Alamri and W. J. Teahan, “Automatic Correction of Arabic Dyslexic

Text,” Computers, vol. 8, no. 1, p. 19, 2019.

[20] S. Alansary and M. Nagi, “The international corpus of Arabic: Compilation,

analysis and evaluation,” in Proceedings of the EMNLP 2014 Workshop on

Arabic Natural Language Processing (ANLP), 2014, pp. 8–17.

[21] A. Y. G. Alfaifi, E. Atwell, and I. Hedaya, “Arabic learner corpus (ALC) v2: a

new written and spoken corpus of Arabic learners,” in Proceedings of

Learner Corpus Studies in Asia and the World 2014, 2014, vol. 2, pp. 77–89.

[22] A. Y. G. Alfaifi, “Building the Arabic Learner Corpus and a System for Arabic

Error Annotation,” University of Leeds, 2015.

 142

[23] S. AlGahtani and J. McNaught, “Joint Arabic Segmentation and Part-Of-

Speech Tagging,” in Proceedings of the Second Workshop on Arabic Natural

Language Processing, 2015, pp. 108–117.

[24] M. A. Alghamdi, I. S. Alkhazi, and W. J. Teahan, “Arabic OCR Evaluation

Tool,” in Computer Science and Information Technology (CSIT), 2016 7th

International Conference on, 2016, pp. 1–6.

[25] M. A. Alghamdi and W. J. Teahan, “A New Thinning Algorithm for Arabic

Script,” Int. J. Comput. Sci. Inf. Secur., vol. 15, no. 1, p. 204, 2017.

[26] K. M. Alhawiti, “Adaptive models of Arabic text,” Ph.D. thesis, Bangor

University, 2014.

[27] A. H. Aliwy, “Arabic morphosyntactic raw text part of speech tagging system,”

Ph.D. thesis, 2013.

[28] Aljazeera.net, “الجزيرة.نت.” [Online]. Available: http://www.aljazeera.net/portal.

[Accessed: 18-Mar-2017].

[29] N. O. M. Aljehane, “Grammar-based Preprocessing for PPM Compression

and Classification,” Ph.D. thesis, Bangor University, 2018.

[30] S. Alkahtani, “Building and verifying parallel corpora between Arabic and

English,” Ph.D. thesis, Bangor University, 2015.

[31] S. Alkahtani and W. J. Teahan, “Aligning a New Parallel Corpus of Arabic-

English,” in Proceedings of the Eighth Saudi Students Conference in the UK,

2015, p. 279.

[32] S. Alkahtani and W. J. Teahan, “A new parallel corpus of Arabic/English,” in

Proceedings of the Eighth Saudi Students Conference in the UK, 2016, pp.

279–284.

[33] M. I. Alkanhal, M. A. Al-Badrashiny, M. M. Alghamdi, and A. O. Al-Qabbany,

“Automatic stochastic arabic spelling correction with emphasis on space

insertions and deletions,” IEEE Trans. Audio. Speech. Lang. Processing, vol.

20, no. 7, pp. 2111–2122, 2012.

[34] Alkunuz.co.uk, “Islamic books | Leicester | Al Kunuz.” [Online]. Available:

https://www.alkunuz.co.uk/. [Accessed: 23-Sep-2018].

[35] A. Almahdawi and W. J. Teahan, “Automatically Recognizing Emotions in

Text Using Prediction by Partial Matching (PPM) Text Compression Method,”

in International Conference on New Trends in Information and

 143

Communications Technology Applications, 2018, pp. 269–283.

[36] K. Almeman, M. Lee, and A. A. Almiman, “Multi dialect Arabic speech parallel

corpora,” in Communications, Signal Processing, and their Applications

(ICCSPA), 2013 1st International Conference on, 2013, pp. 1–6.

[37] A. Alosaimy and E. Atwell, “Tagging Classical Arabic Text using Available

Morphological Analysers and Part of Speech Taggers,” J. Lang. Technol.

Comput. Linguist., 2017.

[38] A. M. S. Alosaimy, “Ensemble Morphosyntactic Analyser for Classical

Arabic,” Ph.D. thesis, University of Leeds, 2018.

[39] S. Alqrainy, “A morphological-syntactical analysis approach for Arabic textual

tagging,” 2008.

[40] M. Alrabiah, A. Al-Salman, and E. S. Atwell, “The design and construction of

the 50 million words KSUCCA,” in Proceedings of WACL’2 Second

Workshop on Arabic Corpus Linguistics, 2013, pp. 5–8.

[41] M. Alrabiah, A. Al-Salman, and E. S. Atwell, “The design and construction of

the 50 million words KSUCCA,” in Proceedings of WACL’2 Second

Workshop on Arabic Corpus Linguistics, 2013, pp. 5–8.

[42] M. S. Alrabiah, “Building A Distributional Semantic Model for Traditional

Arabic and Investigating its Novel Applications to The Holy Quran,” Ph.D.

thesis, King Saud University, 2014.

[43] M. S. Alrabiah, “King Saud University Corpus of Classical Arabic (KSUCCA) |

Maha Al-Rabiah – Blog.” [Online]. Available:

https://mahaalrabiah.wordpress.com/2012/07/20/king-saud-university-

corpus-of-classical-arabic-ksucca/. [Accessed: 22-Sep-2018].

[44] K. Alsmearat, M. Al-Ayyoub, and R. Al-Shalabi, “An extensive study of the

bag-of-words approach for gender identification of arabic articles,” in

Computer Systems and Applications (AICCSA), 2014 IEEE/ACS 11th

International Conference on, 2014, pp. 601–608.

[45] M. Altamimi, O. Alruwaili, and W. J. Teahan, “BTAC: A Twitter Corpus for

Arabic Dialect Identification,” in Proceedings of the 6th Conference on

Computer-Mediated Communication (CMC) and Social Media Corpora

(CMC-corpora 2018), 2018, pp. 5–10.

[46] M. Altamimi and W. J. Teahan, “Gender and authorship categorisation of

 144

Arabic text from Twitter using PPM,” Int. J. Comput. Sci. Inf. Technol, vol. 9,

pp. 131–140, 2017.

[47] A. Alwajeeh, M. Al-Ayyoub, and I. Hmeidi, “On authorship authentication of

arabic articles,” in Information and Communication Systems (ICICS), 2014

5th International Conference on, 2014, pp. 1–6.

[48] S. Atkins, J. Clear, and N. Ostler, “Corpus design criteria,” Lit. Linguist.

Comput., vol. 7, no. 1, pp. 1–16, 1992.

[49] M. Attia, P. Pecina, A. Toral, L. Tounsi, and J. van Genabith, “A lexical

database for modern standard Arabic interoperable with a finite state

morphological transducer,” in International Workshop on Systems and

Frameworks for Computational Morphology, 2011, pp. 98–118.

[50] E. S. Atwell, G. Demetriou, J. Hughes, A. Schiffrin, C. Souter, and S.

Wilcock, “A comparative evaluation of modern English corpus grammatical

annotation schemes,” ICAME J. Int. Comput. Arch. Mod. Mediev. English J.,

vol. 24, pp. 7–23, 2000.

[51] BBC, “ ر الشرق الأوسطأخبا - BBC Arabic.” [Online]. Available:

http://www.bbc.com/arabic/middleeast. [Accessed: 18-Mar-2017].

[52] D. Beeferman, A. Berger, and J. Lafferty, “Statistical models for text

segmentation,” Mach. Learn., vol. 34, no. 1–3, pp. 177–210, 1999.

[53] T. C. Bell, J. G. Cleary, and I. H. Witten, Text Compression. Upper Saddle

River, NJ, USA: Prentice-Hall, Inc., 1990.

[54] Y. Benajiba, P. Rosso, and J. M. Benedíruiz, “Anersys: An arabic named

entity recognition system based on maximum entropy,” in International

Conference on Intelligent Text Processing and Computational Linguistics,

2007, pp. 143–153.

[55] Y. Benajiba, P. Rosso, and J. M. G. Soriano, “Adapting the JIRS passage

retrieval system to the Arabic language,” in International Conference on

Intelligent Text Processing and Computational Linguistics, 2007, pp. 530–

541.

[56] I. Bensalem, P. Rosso, and S. Chikhi, “A new corpus for the evaluation of

arabic intrinsic plagiarism detection,” in International Conference of the

Cross-Language Evaluation Forum for European Languages, 2013, pp. 53–

58.

 145

[57] M. S. Bin-Muqbil, “Phonetic And Phonological Aspects Of Arabic Emphatics

And Gutturals,” Ph.D. thesis, The University Of Wisconsin-Madison, 2006.

[58] Blogs.transparent.com, “Arabic diacritics; importance | Arabic Language

Blog.” [Online]. Available: https://blogs.transparent.com/arabic/arabic-

diacritics-important-but-neglected/. [Accessed: 08-Mar-2019].

[59] T. Brants, “TnT: a statistical part-of-speech tagger,” in Proceedings of the

sixth conference on Applied natural language processing, 2000, pp. 224–

231.

[60] E. Brill, “A simple rule-based part of speech tagger,” in Proceedings of the

third conference on Applied natural language processing, 1992, pp. 152–

155.

[61] Britannica.com, “Arabic alphabet | Britannica.com.” [Online]. Available:

https://www.britannica.com/topic/Arabic-alphabet. [Accessed: 08-Mar-2019].

[62] A. Z. Broder, “Identifying and filtering near-duplicate documents,” in Annual

Symposium on Combinatorial Pattern Matching, 2000, pp. 1–10.

[63] P. F. Brown, P. V Desouza, R. L. Mercer, V. J. Della Pietra, and J. C. Lai,

“Class-based n-gram models of natural language,” Comput. Linguist., vol. 18,

no. 4, pp. 467–479, 1992.

[64] P. F. Brown, V. J. Della Pietra, R. L. Mercer, S. A. Della Pietra, and J. C. Lai,

“An estimate of an upper bound for the entropy of English,” Comput.

Linguist., vol. 18, no. 1, pp. 31–40, 1992.

[65] T. Buckwalter, “Buckwalter Arabic Transliteration.” [Online]. Available:

http://www.qamus.org/transliteration.htm. [Accessed: 29-Jan-2019].

[66] Z. Chang, “A PPM-based Evaluation Method for Chinese-English Parallel

Corpora in Machine Translation,” no. September, pp. 1–106, 2008.

[67] M. S. Charikar, “Similarity estimation techniques from rounding algorithms,”

in Proceedings of the thiry-fourth annual ACM symposium on Theory of

computing, 2002, pp. 380–388.

[68] N. Cheng, R. Chandramouli, and K. P. Subbalakshmi, “Author gender

identification from text,” Digit. Investig., vol. 8, no. 1, pp. 78–88, 2011.

[69] D. Chiang, M. Diab, N. Habash, O. Rambow, and S. Shareef, “Parsing Arabic

dialects,” in 11th Conference of the European Chapter of the Association for

Computational Linguistics, 2006.

 146

[70] G. G. Chowdhury, “Natural language processing,” Annu. Rev. Inf. Sci.

Technol., vol. 37, no. 1, pp. 51–89, 2003.

[71] J. G. Cleary, W. J. Teahan, and I. H. Witten, “Unbounded length contexts for

PPM,” in Data Compression Conference, 1995. DCC’95. Proceedings, 1995,

pp. 52–61.

[72] J. Cleary and I. Witten, “Data compression using adaptive coding and partial

string matching,” vol. C, no. 4, pp. 396–402, 1984.

[73] J. Cohen, “A coefficient of agreement for nominal scales,” Educ. Psychol.

Meas., vol. 20, no. 1, pp. 37–46, 1960.

[74] Columbia University, “Arabic Language Disambiguation for Natural

Language Processing Applications - cu14012 - Columbia Technology

Ventures.” [Online]. Available:

http://innovation.columbia.edu/technologies/cu14012_arabic-language-

disambiguation-for-natural-language-processing-applications. [Accessed: 14-

Dec-2018].

[75] P. Damien, N. Wakim, and M. Egea, “Phoneme-viseme mapping for Modern,

Classical Arabic language,” in ACTEA’09. International Conference on

Advances in Computational Tools for Engineering Applications, 2009., 2009,

pp. 547–552.

[76] K. Darwish et al., “Multi-Dialect Arabic POS Tagging: A CRF Approach,” in

Proceedings of the Eleventh International Conference on Language

Resources and Evaluation (LREC-2018), 2018.

[77] M. Dattia, “Arabic Wordlist for Spellchecking.” [Online]. Available:

https://sourceforge.net/projects/arabic-wordlist/. [Accessed: 29-Sep-2018].

[78] U. Dependencies, “UD_Arabic-PADT.” [Online]. Available:

https://universaldependencies.org/treebanks/ar_padt/index.html. [Accessed:

27-May-2019].

[79] U. Dependencies, “UD_Arabic-NYUAD.” [Online]. Available:

https://universaldependencies.org/treebanks/ar_nyuad/index.html.

[Accessed: 27-May-2019].

[80] M. Diab, K. Hacioglu, and D. Jurafsky, “Automatic Tagging of Arabic Text:

From Raw Text to Base Phrase Chunks,” in Proceedings of HLT-NAACL

2004: Short papers, 2004, pp. 149–152.

 147

[81] M. Diab, K. Hacioglu, and D. Jurafsky, “Automatic processing of modern

standard Arabic text,” in Arabic Computational Morphology, Springer, 2007,

pp. 159–179.

[82] M. T. Diab, “Improved Arabic base phrase chunking with a new enriched

POS tag set,” in Proceedings of the 2007 Workshop on Computational

Approaches to Semitic Languages: Common Issues and Resources, 2007,

pp. 89–96.

[83] J. Diederich, J. Kindermann, E. Leopold, and G. Paass, “Authorship

attribution with support vector machines,” Appl. Intell., vol. 19, no. 1–2, pp.

109–123, 2003.

[84] K. Dukes, “Statistical parsing by machine learning from a Classical Arabic

treebank,” Ph.D. thesis, University of Leeds, 2013.

[85] K. Dukes and T. Buckwalter, “A dependency treebank of the Quran using

traditional Arabic grammar,” in Informatics and Systems (INFOS), 2010 The

7th International Conference on, 2010, pp. 1–7.

[86] K. Dukes and N. Habash, “Morphological Annotation of Quranic Arabic.,” in

LREC, 2010.

[87] S. Dumais, J. Platt, D. Heckerman, and M. Sahami, “Inductive learning

algorithms and representations for text categorization,” in Proceedings of the

seventh international conference on Information and knowledge

management, 1998, pp. 148–155.

[88] M. EL-Haj, “Arabic in Business and Management Corpora (ABMC).” [Online].

Available: http://www.lancaster.ac.uk/staff/elhaj/corpora.htm. [Accessed: 27-

Mar-2017].

[89] M. El-Haj, U. Kruschwitz, and C. Fox, “Creating language resources for

under-resourced languages: methodologies, and experiments with Arabic,”

Lang. Resour. Eval., vol. 49, no. 3, pp. 549–580, 2015.

[90] S. El-Kareh and S. Al-Ansary, “An interactive multi-features POS tagger,” in

the Proceedings of the International Conference on Artificial and

Computational Intelligence for Decision Control and Automation in

Intelligence for Decision Control and Automation in Engineering and

Industrial Applications, 2000, p. 83Y88.

[91] G. Elbeheri, J. Everatt, G. Reid, and H. al Mannai, “Dyslexia assessment in

 148

Arabic,” J. Res. Spec. Educ. Needs, vol. 6, no. 3, pp. 143–152, 2006.

[92] Y. O. M. Elhadj, A. Abdelali, R. Bouziane, and A. H. Ammar, “Revisiting

Arabic Part of Speech Tagsets,” Proc. IEEE/ACS Int. Conf. Comput. Syst.

Appl. AICCSA, vol. 2014, pp. 793–802, 2015.

[93] M. Elsheikh and E. Atwell, “Timeline of the development of Arabic PoS

taggers and Morphological analysers,” vol. 9, 2018.

[94] A. F. Emdad, M. Badamas, and S. Mouakket, “Factors and impacts of low

utilization of Internet: The case of Arab countries,” J. Int. Technol. Inf.

Manag., vol. 18, no. 3, p. 2, 2009.

[95] S. Eyheramendy, D. D. Lewis, and D. Madigan, “On the naive bayes model

for text categorization,” 2003.

[96] C. France, “Meedan’s Open Source Arabic/English Translation Memory.”

[Online]. Available: https://github.com/anastaw/Meedan-Memory. [Accessed:

23-Sep-2018].

[97] W. N. Francis and H. Kučera, “The brown corpus: A standard corpus of

present-day edited american english,” Provid. RI Dep. Linguist. Brown Univ.

[producer Distrib., 1979.

[98] P. Gardner-Chloros, Code-switching. Cambridge University Press, 2009.

[99] Googleblog.blogspot.com, “Official Google Blog: Unicode nearing 50% of the

web.” [Online]. Available: https://googleblog.blogspot.com/2010/01/unicode-

nearing-50-of-web.html. [Accessed: 30-Mar-2019].

[100] S. Green and C. Manning, “Better Arabic parsing: Baselines, evaluations,

and analysis,” COLING ’10 Proc. 23rd Int. Conf. Comput. Linguist., no.

August, pp. 394–402, 2010.

[101] S. Green, M.-C. de Marneffe, and C. D. Manning, “Parsing Models for

Identifying Multiword Expressions,” Comput. Linguist., vol. 39, no. 1, pp.

195–227, Mar. 2013.

[102] B. B. Greene and G. M. Rubin, “Automated grammatical tagging of English,”

1971.

[103] N. Habash and O. Rambow, “Arabic tokenization, part-of-speech tagging and

morphological disambiguation in one fell swoop,” in Proceedings of the 43rd

Annual Meeting on Association for Computational Linguistics, 2005, pp. 573–

580.

 149

[104] N. Habash, O. Rambow, and R. Roth, “MADA+ TOKAN: A toolkit for Arabic

tokenization, diacritization, morphological disambiguation, POS tagging,

stemming and lemmatization,” in Proceedings of the 2nd international

conference on Arabic language resources and tools (MEDAR), Cairo, Egypt,

2009, pp. 102–109.

[105] N. Habash and R. M. Roth, “Catib: The columbia arabic treebank,” in

Proceedings of the ACL-IJCNLP 2009 conference short papers, 2009, pp.

221–224.

[106] N. Habash, R. Roth, O. Rambow, R. Eskander, and N. Tomeh,

“Morphological Analysis and Disambiguation for Dialectal Arabic.,” in Hlt-

Naacl, 2013, pp. 426–432.

[107] N. Habash and F. Sadat, “Arabic preprocessing schemes for statistical

machine translation,” in Proceedings of the Human Language Technology

Conference of the NAACL, Companion Volume: Short Papers, 2006, pp. 49–

52.

[108] Y. El Hadj, I. Al-Sughayeir, and A. Al-Ansari, “Arabic part-of-speech tagging

using the sentence structure,” in Proceedings of the Second International

Conference on Arabic Language Resources and Tools, Cairo, Egypt, 2009.

[109] M. Hadni, S. A. Ouatik, A. Lachkar, and M. Meknassi, “Hybrid part-of-speech

tagger for non-vocalized Arabic text,” Int. J. Nat. Lang. Comput. Vol, vol. 2,

2013.

[110] J. Hajič et al., “Prague Arabic dependency treebank 1.0,” 2009.

[111] J. Hajič, O. Smrz, P. Zemánek, J. Šnaidauf, and E. Beška, “Prague Arabic

dependency treebank: Development in data and tools,” in Proc. of the

NEMLAR Intern. Conf. on Arabic Language Resources and Tools, 2004, pp.

110–117.

[112] J. A. Haywood, H. M. Nahmad, and G. W. Thatcher, A new Arabic grammar

of the written language. Lund Humphries London, 1965.

[113] J. He, A. H. Tan, and C. L. Tan, “On machine learning methods for Chinese

document categorization,” Appl. Intell., vol. 18, no. 3, pp. 311–322, 2003.

[114] M. A. Hearst, “Multi-paragraph segmentation of expository text,” in

Proceedings of the 32nd annual meeting on Association for Computational

Linguistics, 1994, pp. 9–16.

 150

[115] Internet World Stats, “Middle East Internet Usage Stats and Facebook

Statistics,” Internet World Stats, 2014. [Online]. Available:

http://www.internetworldstats.com/middle.htm. [Accessed: 04-Oct-2016].

[116] internetworldstats.com, “Arabic Speaking Internet Users and Population

Statistics.” [Online]. Available:

https://www.internetworldstats.com/stats19.htm#arabic. [Accessed: 27-Mar-

2019].

[117] R. R. Jablonkai and N. Čebron, “Corpora as Tools for Self-Driven Learning: A

Corpus-Based ESP Course,” in Student-Driven Learning Strategies for the

21st Century Classroom, IGI Global, 2017, pp. 274–298.

[118] S. Jeblee, H. Bouamor, W. Zaghouani, and K. Oflazer, “CMUQ@QALB-

2014: An SMT-based System for Automatic Arabic Error Correction,” in

Proceedings of the EMNLP 2014 Workshop on Arabic Natural Language

Processing (ANLP), 2014, pp. 137–142.

[119] F. Jelinek, “Self-organized language modeling for speech recognition,”

Readings speech Recognit., pp. 450–506, 1990.

[120] T. Joachims, Learning to classify text using support vector machines:

Methods, theory and algorithms. Kluwer Academic Publishers, 2002.

[121] P. Juola and others, “Authorship attribution,” Found. Trends{®} Inf. Retr., vol.

1, no. 3, pp. 233–334, 2008.

[122] A. El Kah, I. Zeroual, and A. Lakhouaja, “Application of Arabic language

processing in language learning,” in Proceedings of the 2nd international

Conference on Big Data, Cloud and Applications, 2017, p. 35.

[123] S. Katz, “Estimation of probabilities from sparse data for the language model

component of a speech recognizer,” IEEE Trans. Acoust., vol. 35, no. 3, pp.

400–401, 1987.

[124] D. V Khmelev and W. J. Teahan, “A repetition based measure for verification

of text collections and for text categorization,” in Proceedings of the 26th

annual international ACM SIGIR conference on Research and development

in information retrieval, 2003, pp. 104–110.

[125] S. Khoja, “APT: An automatic arabic part-of-speech tagger,” Ph.D. thesis,

Lancaster University, 2003.

[126] S. Khoja, “APT: Arabic part-of-speech tagger,” in Proceedings of the Student

 151

Workshop at NAACL, 2001, pp. 20–25.

[127] S. Khoja, R. Garside, and G. Knowles, “A tagset for the morphosyntactic

tagging of Arabic,” Proc. Corpus Linguist. Lancaster Univ., vol. 13, 2001.

[128] S. Klein and R. F. Simmons, “A computational approach to grammatical

coding of English words,” J. ACM, vol. 10, no. 3, pp. 334–347, 1963.

[129] V. Korde and C. N. Mahender, “Text classification and classifiers: A survey,”

Int. J. Artif. Intell. Appl., vol. 3, no. 2, p. 85, 2012.

[130] H. Kozima, “Text segmentation based on similarity between words,” in

Proceedings of the 31st annual meeting on Association for Computational

Linguistics, 1993, pp. 286–288.

[131] R. Kuhn and R. De Mori, “A cache-based natural language model for speech

recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 6, pp. 570–

583, 1990.

[132] W. Lam and Y. Han, “Automatic textual document categorization based on

generalized instance sets and a metamodel,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 25, no. 5, pp. 628–633, 2003.

[133] J. R. Landis and G. G. Koch, “The measurement of observer agreement for

categorical data,” Biometrics, pp. 159–174, 1977.

[134] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions,

and reversals,” in Soviet physics doklady, 1966, vol. 10, no. 8, pp. 707–710.

[135] M. P. Lewis, G. F. Simons, and C. D. Fennig, Ethnologue: Languages of the

world, vol. 16. SIL international Dallas, TX, 2009.

[136] T. Li, S. Zhu, and M. Ogihara, “Efficient multi-way text categorization via

generalized discriminant analysis,” in Proceedings of the twelfth international

conference on Information and knowledge management, 2003, pp. 317–324.

[137] libya-unesco.org, “المدونات العربية وتعليم العربية لغة ثانية.” [Online]. Available:

http://www.libya-unesco.org/dyn/wp-content/uploads/2018/04/AlTawasol-

Allisany-N19.pdf. [Accessed: 30-May-2019].

[138] Linguistic Data Consortium., Buckwalter Arabic morphological analyzer :

Version 1.0. Linguistic Data Consortium, 2002.

[139] S. Al Maadeed, W. Ayouby, A. Hassaine, and J. M. Aljaam, “QUWI: an

Arabic and English handwriting dataset for offline writer identification,” in

Frontiers in Handwriting Recognition (ICFHR), 2012 International Conference

 152

on, 2012, pp. 746–751.

[140] M. Maamouri and A. Bies, “Developing an Arabic treebank: Methods,

guidelines, procedures, and tools,” in Proceedings of the Workshop on

Computational Approaches to Arabic Script-based languages, 2004, pp. 2–9.

[141] M. Maamouri, A. Bies, T. Buckwalter, H. Jin, and W. Mekki, “Arabic

Treebank: Part 3 (full corpus) v 2.0 (MPG + Syntactic Analysis),”

LDC2005T20, 2005. [Online]. Available:

https://catalog.ldc.upenn.edu/LDC2005T20. [Accessed: 25-Nov-2016].

[142] M. Maamouri, A. Bies, and S. Kulick, “Enhancing the Arabic Treebank: a

Collaborative Effort toward New Annotation Guidelines.,” in LREC, 2008, pp.

3–192.

[143] S. Malmasi, E. Refaee, and M. Dras, “Arabic dialect identification using a

parallel multidialectal corpus,” in International Conference of the Pacific

Association for Computational Linguistics, 2015, pp. 35–53.

[144] A. R. Martinez, “Part-of-speech tagging,” Wiley Interdiscip. Rev. Comput.

Stat., vol. 4, no. 1, pp. 107–113, 2012.

[145] M. L. McHugh, “Interrater reliability: the kappa statistic,” Biochem. medica

Biochem. medica, vol. 22, no. 3, pp. 276–282, 2012.

[146] C. F. Meyer, English corpus linguistics: An introduction. Cambridge

University Press, 2002.

[147] R. Mitkov, The Oxford handbook of computational linguistics. Oxford

University Press, 2005.

[148] A. Moffat, “Implementing the PPM data compression scheme,” IEEE Trans.

Commun., vol. 38, no. 11, pp. 1917–1921, 1990.

[149] A. Moffat, R. M. Neal, and I. H. Witten, “Arithmetic coding revisited,” ACM

Trans. Inf. Syst., vol. 16, no. 3, pp. 256–294, 1998.

[150] E. Mohamed and S. Kübler, “Arabic Part of Speech Tagging.,” in LREC,

2010.

[151] B. Mohit, “Named Entity Recognition,” in Natural Language Processing of

Semitic Languages, I. Zitouni, Ed. Springer, USA, 2014.

[152] B. Mohit, “AQMAR Arabic Dependency Corpus.” [Online]. Available:

http://www.cs.cmu.edu/~ark/ArabicDeps/. [Accessed: 18-Sep-2018].

[153] B. Mohit, “BRAT Rapid Annotation Tool.” [Online]. Available:

 153

http://brat.nlplab.org/. [Accessed: 16-Sep-2018].

[154] T. Morton, J. Kottmann, J. Baldridge, and G. Bierner, “Opennlp: A java-based

nlp toolkit,” 2005.

[155] P. M. Nadkarni, L. Ohno-Machado, and W. W. Chapman, “Natural language

processing: an introduction,” J. Am. Med. Informatics Assoc., vol. 18, no. 5,

pp. 544–551, 2011.

[156] M. M. Najeeb, A. A. Abdelkader, and M. B. Al-Zghoul, “Arabic natural

language processing laboratory serving Islamic sciences,” Int. J. Adv.

Comput. Sci. Appl., vol. 5, no. 3, 2014.

[157] D. Q. Nguyen, D. Q. Nguyen, D. D. Pham, and S. B. Pham,

“RDRPOSTagger: A ripple down rules-based part-of-speech tagger,” in

Proceedings of the Demonstrations at the 14th Conference of the European

Chapter of the Association for Computational Linguistics, 2014, pp. 17–20.

[158] nltk.org, “Simple Pipeline Architecture for an Information Extraction System.”

[Online]. Available: http://www.nltk.org/book/ch07.html. [Accessed: 08-Feb-

2019].

[159] P. Pajas and J. Štěpánek, “Recent advances in a feature-rich framework for

treebank annotation,” in Proceedings of the 22nd International Conference

on Computational Linguistics-Volume 1, 2008, pp. 673–680.

[160] R. Parker and Linguistic Data Consortium., Arabic gigaword fifth edition.

Linguistic Data Consortium, 2011.

[161] A. Pasha et al., “MADAMIRA : A Fast , Comprehensive Tool for

Morphological Analysis and Disambiguation of Arabic,” Proc. 9th Lang.

Resour. Eval. Conf., vol. 14, pp. 1094–1101, 2014.

[162] A. Pasha et al., “Madamira Arabic Analyzer - Online.” [Online]. Available:

https://camel.abudhabi.nyu.edu/madamira/. [Accessed: 17-Feb-2019].

[163] F. Peng, D. Schuurmans, and S. Wang, “Augmenting Naive Bayes classifiers

with statistical language models,” Inf. Retr. Boston., vol. 7, no. 3–4, pp. 317–

345, 2004.

[164] Perseus.tufts.edu/hopper/opensource/download, “Arabic-English Learner’s

Dictionary.” [Online]. Available:

http://www.perseus.tufts.edu/hopper/opensource/download. [Accessed: 22-

Sep-2018].

 154

[165] P. Petr and S. Jan, “TrEd User’s Manual.” [Online]. Available:

https://ufal.mff.cuni.cz/tred/documentation/tred.html. [Accessed: 20-Sep-

2018].

[166] S. Pradhan and L. Ramshaw, “OntoNotes: Large Scale Multi-Layer, Multi-

Lingual, Distributed Annotation,” in Handbook of Linguistic Annotation,

Springer, 2017, pp. 521–554.

[167] W. Pugh and M. H. Henzinger, “Detecting duplicate and near-duplicate files.”

Google Patents, 2008.

[168] D. Reidsma and J. Carletta, “Reliability measurement without limits,”

Comput. Linguist., vol. 34, no. 3, pp. 319–326, 2008.

[169] J. C. Reynar, “An automatic method of finding topic boundaries,” in

Proceedings of the 32nd annual meeting on Association for Computational

Linguistics, 1994, pp. 331–333.

[170] D. Richards, “Two decades of ripple down rules research,” Knowl. Eng. Rev.,

vol. 24, no. 2, pp. 159–184, 2009.

[171] J. Rissanen and G. G. Langdon, “Arithmetic coding,” IBM J. Res. Dev., vol.

23, no. 2, pp. 149–162, 1979.

[172] M. E. Ruiz and P. Srinivasan, “Hierarchical neural networks for text

categorization (poster abstract),” in Proceedings of the 22nd annual

international ACM SIGIR conference on Research and development in

information retrieval, 1999, pp. 281–282.

[173] K. C. Ryding, A reference grammar of modern standard Arabic. Cambridge

University Press, 2005.

[174] M. Sawalha and E. S. Atwell, “Linguistically informed and corpus informed

morphological analysis of Arabic,” in Proceedings of the 5th Corpus

Linguistics Conference, 2009.

[175] M. Sawalha and E. S. Atwell, “Fine-grain morphological analyzer and part-of-

speech tagger for Arabic text,” in proceedings of the Seventh conference on

International Language Resources and Evaluation (LREC’10), 2010, pp.

1258–1265.

[176] M. Sawalha and E. Atwell, “A standard tag set expounding traditional

morphological features for Arabic language part-of-speech tagging,” Word

Struct., vol. 6, no. 1, pp. 43–99, 2013.

 155

[177] H. Schendl and L. Wright, Code-switching in early English, vol. 76. Walter de

Gruyter, 2012.

[178] N. Schneider, B. Mohit, K. Oflazer, and N. A. Smith, “Coarse lexical semantic

annotation with supersenses: an Arabic case study,” in Proceedings of the

50th Annual Meeting of the Association for Computational Linguistics: Short

Papers-Volume 2, 2012, pp. 253–258.

[179] F. Sebastiani, “Machine learning in automated text categorization,” ACM

Comput. Surv., vol. 34, no. 1, pp. 1–47, 2002.

[180] F. Al Shamsi and A. Guessoum, “A hidden Markov model-based POS tagger

for Arabic,” in Proceeding of the 8th International Conference on the

Statistical Analysis of Textual Data, France, 2006, pp. 31–42.

[181] A. El Shamsy, “Al-Shāfi’ī’s Written Corpus: A Source-Critical Study,” J. Am.

Orient. Soc., vol. 132, no. 2, pp. 199–220, 2012.

[182] C. E. Shannon, “A Mathematical Theory of Communication,” Bell Syst. Tech.

J., vol. 27, pp. 623--656, 1948.

[183] N. Shivakumar and H. Garcia-Molina, “Finding near-replicas of documents on

the web,” in International Workshop on the World Wide Web and Databases,

1998, pp. 204–212.

[184] Skynewsarabia, “أخبار اليوم | سكاي نيوز عربية.” [Online]. Available:

http://www.skynewsarabia.com/web/home. [Accessed: 23-Mar-2017].

[185] A. Soudi, A. Farghaly, G. Neumann, and R. Zbib, Challenges for Arabic

machine translation, vol. 9. John Benjamins Publishing, 2012.

[186] E. Stamatatos, “A survey of modern authorship attribution methods,” J. Am.

Soc. Inf. Sci. Technol., vol. 60, no. 3, pp. 538–556, 2009.

[187] R. Steinberger, B. Pouliquen, M. Kabadjov, and E. der Goot, “JRC-Names: A

freely available, highly multilingual named entity resource,” CoRR, vol.

abs/1309.6, 2013.

[188] H. Ta’amneh, E. A. Keshek, M. B. Issa, M. Al-Ayyoub, and Y. Jararweh,

“Compression-based arabic text classification,” in Computer Systems and

Applications (AICCSA), 2014 IEEE/ACS 11th International Conference on,

2014, pp. 594–600.

[189] A. Taylor, M. Marcus, and B. Santorini, “The Penn treebank: an overview,” in

Treebanks, Springer, 2003, pp. 5–22.

 156

[190] W. J. Teahan and J. G. Cleary, “Tag Based Models of English Text.,” in Data

Compression Conference, 1998, pp. 43–52.

[191] W. J. Teahan and D. J. Harper, “Combining PPM models using a text mining

approach,” in Data Compression Conference, 2001. Proceedings. DCC

2001., 2001, pp. 153–162.

[192] W. Teahan, “A Compression-Based Toolkit for Modelling and Processing

Natural Language Text,” Information, vol. 9, no. 12, p. 294, 2018.

[193] W. J. Teahan and J. G. Cleary, “Applying compression to natural language

processing,” in SPAE: The Corpus of Spoken Professional American-

English., 1997.

[194] W. J. Teahan and D. J. Harper, “Using compression-based language models

for text categorization,” in Language modeling for information retrieval,

Springer, 2003, pp. 141–165.

[195] W. J. Teahan, Y. Wen, R. McNab, and I. H. Witten, “A compression-based

algorithm for Chinese word segmentation,” Comput. Linguist., vol. 26, no. 3,

pp. 375–393, 2000.

[196] W. J. Teahan, “Modelling English text,” Ph.D. thesis, Waikato University,

1998.

[197] W. J. Teahan, “Text classification and segmentation using minimum cross-

entropy,” in Content-Based Multimedia Information Access-Volume 2, 2000,

pp. 943–961.

[198] W. J. Teahan, S. Inglis, J. G. Cleary, and G. Holmes, “Correcting English text

using PPM models,” in Data Compression Conference, 1998. DCC’98.

Proceedings, 1998, pp. 289–298.

[199] K. Toutanova and C. Manning, “The Stanford Natural Language Processing

Group.” [Online]. Available: https://nlp.stanford.edu/software/tagger.shtml.

[Accessed: 17-Feb-2019].

[200] K. Toutanova and C. D. Manning, “Enriching the knowledge sources used in

a maximum entropy part-of-speech tagger,” in Proceedings of the 2000 Joint

SIGDAT conference on Empirical methods in natural language processing

and very large corpora: held in conjunction with the 38th Annual Meeting of

the Association for Computational Linguistics-Volume 13, 2000, pp. 63–70.

[201] J. J. Tsay and J. D. Wang, “Improving linear classifier for Chinese text

 157

categorization,” Inf. Process. Manag., vol. 40, no. 2, pp. 223–237, 2004.

[202] UN, “UN Corpus(Arabic portion).” [Online]. Available: http://www.sibawayh-

nlp.com/?q=node/1158. [Accessed: 23-Sep-2018].

[203] C. Unicode Staff, The Unicode standard: worldwide character encoding.

Addison-Wesley Longman Publishing Co., Inc., 1991.

[204] E. Weekley, An etymological dictionary of modern English. Courier

Corporation, 2012.

[205] Y. Wen, I. H. Witten, and D. Wang, “Token identification using HMM and

PPM models,” in Australasian Joint Conference on Artificial Intelligence,

2003, pp. 173–185.

[206] S. Wintner, “Morphological processing of Semitic languages,” in Natural

language processing of Semitic languages, Springer, 2014, pp. 43–66.

[207] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data

compression,” Commun. ACM, vol. 30, no. 6, pp. 520–540, 1987.

[208] P. Wu, “Adaptive models of Chinese text,” Ph.D. thesis, Bangor University,

2007.

[209] M. Wynne, “Archiving, distribution and preservation,” Dev. Linguist. corpora A

Guid. to good Pract., pp. 71–78, 2005.

[210] R. Z. Xiao, “Theory-driven corpus research: using corpora to inform aspect

theory,” Lüdeling, A., Kytö, M. Corpus Linguist. An Int. Handb., vol. 2, pp.

987–1008, 2008.

[211] W. Zaghouani, “Critical survey of the freely available Arabic corpora,” in In

LREC’14 Workshop on Free/Open-Source Arabic Corpora and Corpora

Processing Tools (OSACT), 2017, pp. 1–8.

[212] O. F. Zaidan and C. Callison-Burch, “The arabic online commentary dataset:

an annotated dataset of informal arabic with high dialectal content,” in

Proceedings of the 49th Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies: short papers-Volume 2, 2011,

pp. 37–41.

[213] T. Zerrouki and A. Balla, “Tashkeela: Novel corpus of Arabic vocalized texts,

data for auto-diacritization systems,” Data Br., vol. 11, pp. 147–151, Apr.

2017.

[214] J. Ziv and A. Lempel, “Compression of individual sequences via variable-rate

 158

coding,” IEEE Trans. Inf. Theory, vol. 24, no. 5, pp. 530–536, 1978.

[215] J. Ziv and A. Lempel, “A universal algorithm for sequential data

compression,” IEEE Trans. Inf. theory, vol. 23, no. 3, pp. 337–343, 1977.

	Table of Content
	Table of Content
	List of Figures
	List of Tables
	Acknowledgement
	Abstract
	Introduction
	1.1 Background & Motivation
	1.2 Aim and Objectives
	1.3 Research Questions
	1.4 Contributions
	1.5 Publications
	1.6 Organisation of this Dissertation

	Background and Related Work
	2.1 Arabic Language Background
	2.1.1 An Overview
	2.1.2 Arabic Internet Users
	2.1.3 Formal Written Types of Arabic language
	2.1.4 Arabic Encoding methods
	2.1.5 Arabic morphology

	2.2 Literature Review
	2.2.1 PPM Text Compression of Arabic Text
	2.2.1.1 Overview
	2.2.1.2 Lossless Text Compression

	2.2.2 Prediction by Partial Matching
	2.2.2.1 Overview
	2.2.2.2 Blending Techniques of PPM
	2.2.2.3 Character-based Modelling
	2.2.2.4 Word-based Modelling
	2.2.2.5 Tag-based Modelling
	2.2.2.6 The Tawa toolkit

	2.2.3 Arabic Text Classification
	2.2.3.1 Overview
	2.2.3.2 Minimum Cross-entropy as a Text Classifier
	2.2.3.3 Minimum Cross-entropy as an Arabic Text Classifier

	2.2.4 Arabic Annotated Corpus
	2.2.4.1 Overview
	2.2.4.2 POS Arabic Annotated Corpora

	2.2.5 Arabic Part-of-speech Tagging
	2.2.5.1 Overview
	2.2.5.2 Statistical POS tagging
	2.2.5.3 POS tagset
	2.2.5.4 Statistical Arabic POS Taggers

	2.3 Summary and Discussion

	Tag based Models for Arabic Text Compression
	3.1 Introduction
	3.2 Tag Based Compression Experimental Setup
	3.3 Compression Results
	3.4 Summary and Discussion

	Classifying and Segmenting Classical and Modern Standard Arabic using Minimum Cross-Entropy
	4.1 Introduction
	4.2 Initial Classification Experiments
	4.3 Classifying Arabic Corpora
	4.3.1 Document Level Text Classification
	4.3.2 Line Level Classification

	4.4 Segmenting Mixed Arabic Corpora
	4.4.1 Segmenting Mixed Arabic Text
	4.4.1 Investigating Mixed Arabic Corpora

	4.5 Tag-based Compression Experiments
	4.6 Summary and Discussion

	BAAC: Bangor Arabic Annotated Corpus
	5.1 Introduction
	5.2 The Data Source
	5.3 The Annotation Tagset
	5.4 Automatic POS Tagging
	5.5 The Annotation Tool
	5.6 Data Preparation
	5.7 BAAC Evaluation
	5.8 Corpus Statistics
	5.9 BAAC Applications
	5.9 Summary and Discussion

	Compression-based Tag Models for Evaluating Arabic Parts-of-Speech Taggers
	6.1 Introduction
	6.2 CA and MSA Tag-based Compression Experiments
	6.3 Different Texts Tagging Assessment
	6.4 Comparing the Performance of Two Taggers
	6.5 Summary and Discussion

	Compression-based Parts-of-Speech Tagger for the Arabic Language
	7.1 Introduction
	7.2 Tawa tag encode models
	7.3 Data Source
	7.4 Silver-standard Data Experiment
	7.5 Gold-standard Data Experiment
	7.6 Summary and Discussion

	Conclusion
	8.1 Summary
	8.2 Review of Aim & Objectives
	8.3 Review of Research Questions
	8.4 Limitations
	8.4 Future Work

	References

