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Abstract 

 

The Arabic language is a morphologically complex language that causes various difficulties for 

various NLP systems, such as POS tagging. The motive of this research is to investigate the 

development and training of a compression-based Arabic POS tagger using the PPM algorithm. 

The adoption of the algorithm for Arabic POS tagging may increase the efficiency and reduce 

the Arabic language ambiguity problem. 

 

The best text compression algorithms can be applied to NLP tasks often with state-of-the-art 

results. This research examines the use of tag-based compression of larger Arabic resources 

to re-evaluate the performance of tag-based compression which may reveal POS linguistic 

aspects of the Arabic language. We also found that tag-based text compression for the Arabic 

text can be utilised as a means of evaluating the performance and quality of the Arabic POS 

taggers. The results of the experiments show that the tag-based compression of the text can 

effectively be used for assessing the performance of Arabic POS taggers when used to tag 

different types of the Arabic text, and also as a means of comparing the performance of two 

Arabic POS taggers on the same text. 

 

With the rapid growth of Arabic text on the Web, studies that address the problems of 

classification and segmentation of the Arabic language are limited compared to other 

languages, most of which implement word-based and feature extraction algorithms. This 

research adopts a PPM character-based compression scheme to classify and segment 

Classical Arabic (CA) and Modern Standard Arabic (MSA) texts. An initial experiment using the 

PPM classification method on samples of text resulted in an accuracy of 95.5%, an average 

precision of 0.958, an average recall of 0.955 and an average F-measure of 0.954, using the 

concept of minimum cross-entropy. Segmenting the CA and MSA text using the PPM 

compression algorithm obtained an accuracy of 86%, an average precision of 0.869, an 

average recall of 0.86 and an average F-measure of 0.859. 

 

This research describes the creation of the new Bangor Arabic Annotated Corpus (BAAC) 

which is a Modern Standard Arabic (MSA) corpus that comprises 50K words manually 

annotated by parts-of-speech. For evaluating the quality of the corpus, the Kappa coefficient 
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and a direct percent agreement for each tag were calculated for the new corpus and a Kappa 

value of 0.956 was obtained, with an average observed agreement of 94.25%. The corpus was 

used to evaluate the widely used Madamira Arabic POS tagger and to further investigate 

compression models for text compressed using POS tags. Also, a new annotation tool was 

developed and employed for the annotation process of the BAAC. 
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1.1 Background & Motivation 

 

The Arabic language “العربية” is among the most popular languages in use today, as shown in 

Figure 1.1. In the United Nations, it is among the five official languages and it is the primary 

language of 330 million people living in 22 countries in Asia, North Africa and the Middle East 

along with it being a secondary language of 1.4 billion people [185]. Arabic is a morphologically 

rich language having a mutual structure with Semitic languages such as Tigrinya, Hebrew and 

Amharic. It is a morphologically complex language that causes various difficulties for Natural 

Language Processing (NLP) [74], [161], [104], [38]. Diacritics are used in the Arabic language 

to disambiguate terms. However, Modern Standard Arabic text is very commonly written without 

diacritics and the contextual information is used by the reader of the text to disambiguate the 

meaning of the term. As a result of this Arabic language ambiguity problem, there has been an 

increase in the adoption of statistical approaches in the Arabic NLP field to solve the uncertainty 

of Arabic text [180]. 

 

 

Figure 1.1. The most globally used languages [185], [135]. 

 

Natural language processing (NLP) is a computer science area of study which examines the 

process of understanding and manipulating human natural language speech or text to perform 

beneficial tasks, such as machine translation, part-of-speech tagging and speech recognition 

[70]. NLP started in the 1950s and involves research at the junction of linguistics and artificial 

intelligence [155]. 

 

A parts-of-speech (POS) tagger is a computer system that accepts text as input and then 

assigns a proper grammatical tag, such as VB for a verb, JJ for an adjective and NN for a noun, 
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as output for every token or term according to its appearance, position or order in the text. POS 

tagging is normally an initial step in any linguistic analysis and a very significant early step in the 

process of building several natural language processing (NLP) applications, such as information 

retrieval systems, spell auto-checking and correction systems and speech recognition systems 

[10].  

 

The motive of this research is to investigate the development and training of a compression-

based Arabic part-of-speech tagger. The new tagger utilises the Prediction by Partial Matching 

text compression scheme (PPM), which uses an adaptive statistical language model to make 

predictions about upcoming text and has been successfully applied to several Arabic NLP tasks, 

such as authorship attribution [46], [45], cryptology [15], text correction [19] and text 

compression [26], [29], but it has yet to have been applied to POS tagging. The adoption of the 

algorithm for Arabic POS tagging may increase the efficiency and reduce the Arabic language 

ambiguity problem. 

 

PPM is an online adaptive text compression system that utilises the prior context to predict the 

coming symbol or character with given fixed context length. Previous experiments were 

performed by Alhawiti [26] to compare the three PPM models, character-based, word-based 

and tag-based, when used to compress the Arabic text and the size of resources used to 

estimate the tag-based text compression were small due to resource limitation. Since PPM is 

an online adaptive system that needs relatively large amounts of training data, this research 

investigates the use of the tag-based compression of larger Arabic resources as a method to 

evaluate the performance of different Arabic POS taggers. 

 

Almost all Arabic language NLP tasks, such as part-of-speech tagging, are designed for Modern 

Standard Arabic text (MSA) [84]. Most of the popular Arabic POS taggers were trained on MSA 

text [141], [38], [37]. Contrastingly, tagging Classical Arabic text (CA) using MSA POS taggers 

will significantly reduce the quality of the tagging as reported in various studies [38], [37], [42], 

[40]. This research introduces the utilisation of compression-based techniques to classify and 

segment the two types of Arabic text to overcome the problem of code-switching in Arabic text 

and improve the performance of NLP tasks that are designed for specific type of Arabic text. 
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Corpora play a significant factor in the development, improvement and evaluation of many NLP 

applications. The limited availability of some existing resources, such as annotated corpora, and 

the cost of acquiring others are one of the main reasons that contribute to resource scarcity 

which prevents researchers from progressing further in their efforts. This need for annotated 

corpora, in particular, provided the motivation to create a manually POS annotated corpus for 

the Arabic language. 

 

1.2 Aim and Objectives 

 

The primary aim of this research is to investigate the development and training of a novel 

compression-based Arabic part-of-speech tagger using PPM. Therefore, this research's 

objectives are: 

 

• Investigate the most efficient PPM compression method of Arabic text (see chapter 3). 

 

• Investigate the applications of PPM tag-based compression to several Arabic NLP tasks 

(see chapters 3, 4, 6 and 7). 

 

• Develop novel methods for classification and segmentation of Classical Arabic and 

Modern Standard Arabic text using PPM (see chapter 4). 

 

• Create and evaluate a new POS manually annotated Arabic Corpus (see chapter 5). 

 

• Develop novel compression-based criteria for evaluating Arabic part-of-speech taggers 

and use them to evaluate the new tagger (see chapter 6). 

 

• Develop and train a novel compression-based Arabic part-of-speech tagger based on 

PPM (see chapter 7). 

 

The main objective of this research is the development and training of a novel compression-

based POS tagger for the Arabic language which is based on the PPM compression system 

(see chapter 7). The new tagger is evaluated with novel criteria based on the tag-based 
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compression results (see chapters 3 and 6). To train the new tagger, a new POS manually 

annotated Arabic Corpus must be created and evaluated (see chapter 5). Since the new tagger 

is developed to tag MSA text, the new corpus must be classified and segmented using a novel 

compression-based classification method (see chapters 3 and 4). 

 

1.3 Research Questions 

 

The specific research questions are as follows: 

• Can the PPM compression models be used to help reveal linguistic universals across 

languages? 

 

• What is the best PPM compression model for compressing Arabic text? 

 

• Can the tag-based compression of the Arabic text be utilised to measure the 

performance of various Arabic POS taggers? 

 

• Can two types of non-colloquial written text for the Arabic language be classified using 

the PPM compression models? 

 

• Can a new POS annotated corpus be used to develop and train a new compression-

based Arabic part-of-speech tagger that is effective at tagging Arabic text? 

 

• Will the adoption of the PPM compression models to tag the Arabic text increase the 

performance of tagging MSA text compared to other Arabic taggers? 

 

1.4 Contributions 

 

The contributions of this research are as follows: 

• A novel compression-based Arabic part-of-speech tagger based on PPM. 

The main contribution of this research is the development and training of a novel 

compression-based POS tagger for the Arabic language which is based on PPM 

compression system. The results of the tagger were presented in two experiments. The 
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first used models that were trained using silver-standard data from two different POS 

Arabic taggers, the Stanford [100] and the Madamira taggers [161]. The results of this 

experiment show that using silver-standard data to train the new tagger decreases the 

quality of the tag-based compression of both the CA and MSA text compared to the 

Madamira tagger. The second experiment trained a model using the corpus that was 

developed specifically for this research and forms the second contribution (see next 

point), where the new tagger achieved an accuracy of 93%. 

 

• A new POS annotated corpus for the Arabic language. 

The second contribution is the creation of a manually annotated POS Arabic corpus. It 

is an MSA corpus that contains 50K words manually annotated by part-of-speech tags. 

The annotated corpus used the same tagset utilised by the Madamira tagger and 

followed the annotation guidelines proposed by Maamouri for annotating the POS tags. 

Also, a new annotation tool was developed and employed for the annotation process of 

the new corpus which obtained a Kappa value of 0.956, and an average observed 

agreement of 94.25%. The newly created corpus was used to train the new tagger and 

to evaluate it, and also to evaluate existing Arabic taggers. 

 

• A new method of classifying CA and MSA text based on the PPM algorithm. 

The third contribution of this research is the development of a compression-based 

Arabic text classifier. This method was required to classify and segment the text of the 

newly developed corpus. The adoption of a PPM character-based compression scheme 

to classify and segment Classical Arabic (CA) and Modern Standard Arabic (MSA) texts 

resulted in an accuracy of 95.5%, an average precision of 0.958, an average recall of 

0.955 and an average F-measure of 0.954, using the concept of minimum cross-

entropy. Segmenting the CA and MSA text using the PPM compression algorithm 

resulted in an accuracy of 86%, an average precision of 0.869, an average recall of 0.86 

and an average F-measure of 0.859. 

 

• A novel compression-based method for evaluating the performance of Arabic POS 

taggers. 

The final contribution of this study is the development of a novel compression-based 

method for evaluating the performance of Arabic POS taggers. This method utilises the 
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quality of the tag-based compression of the tagged Arabic text as an indication for the 

quality of the tagger. This method was applied to evaluate the new tagger, and the 

results conclude that the use of the newly created corpus to train the new tagger 

increases the quality of the tag-based compression when the new tagger is used to tag 

MSA text. 

 

1.5 Publications 

 

Based on this research, three journal papers and two conference papers have already been 

published. All the publications are based on jointly-authored papers, where I'm the main 

contributor to all primary contributions presented in these publications and the co-author(s) 

worked in a consulting capacity, giving feedback, overall supervision and/or commentaries. 

 

Table 1.1 shows the particular journal and conference papers which have been associated with 

this research. The first, entitled "Tag-based models for Arabic Text Compression", explores the 

approach of compressing the Arabic text using parts-of-speech (tags) along with the text to give 

significantly better compression results when compared to current variations of PPM, both word-

based and the character-based. First, the paper explains the concept of Prediction by Partial 

Matching and its use for compressing natural language text. Secondly, it details the experiments 

on using PPM tag-based modelling to compress Arabic text. Finally, the paper mentions the 

results and limitations of those experiments. The paper was presented at the Intelligent Systems 

Conference 2017, held in London, UK, and published by IEEE. The conclusions of this paper 

were an essential basis for this research, as presented in chapters 3 and 7. 

 

The second publication is titled "Compression-based Tag models for Evaluating Arabic Parts-

of-speech taggers", which investigates the method of employing the compression results of the 

Arabic text that utilises both the POS (tags) and the text to evaluate the performance and the 

quality of two of the most commonly recognised Arabic POS taggers, the Madamira [161] and 

Stanford Arabic taggers [100]. First, the paper discusses details of the PPM tag-based 

compression experiments, then mentions the outcomes and limitations of these investigations. 

This conference paper was presented at the 2019 IEEE Jordan International Joint Conference 

on Electrical Engineering and Information Technology Conference, held in Amman, Jordan. 
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The research in this paper was utilised to measure the performance of the main contribution of 

this thesis, as shown in chapter 7. 

 

1 

Title Tag based models for Arabic Text Compression 

Authors Ibrahim S Alkhazi, Mansoor A Alghamdi and William J. Teahan 

Submitted to Intelligent Systems Conference 2017 

Year 2017 

Status Published 

2 

Title 
Classifying and Segmenting Classical and Modern Standard Arabic using Minimum 

Cross-entropy 

Authors Ibrahim S Alkhazi and William J. Teahan 

Submitted to International Journal of Advanced Computer Science and Applications (IJACSA) 

Year 2017 

Status Published 

3 

Title BAAC: Bangor Arabic Annotated Corpus 

Authors Ibrahim S Alkhazi and William J. Teahan 

Submitted to International Journal of Advanced Computer Science and Applications (IJACSA) 

Year 2018 

Status Published 

4 

Title Compression-based Tag models for Evaluating Arabic Parts-of-speech taggers 

Authors Ibrahim S Alkhazi and William J. Teahan 

Submitted to 
2019 IEEE Jordan International Joint Conference on Electrical Engineering and 

Information Technology Conference 

Year 2019 

Status Published 

5 

Title Compression-based Parts-of-speech tagger for the Arabic Language 

Authors Ibrahim S Alkhazi and William J. Teahan 

Submitted to International Journal of Computational Linguistics (IJCL) 

Year 2019 

Status Published 

Table 1.1. The journal and conference papers which have been associated with this 

research. 
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The third publication is titled "Classifying and Segmenting Classical and Modern Standard 

Arabic using Minimum Cross-entropy". This paper explores the approach of classifying Arabic 

text using PPM. First, the paper explains the PPM text compression scheme and its use for 

compressing, classifying and segmenting natural language text. Secondly, it details the findings 

of PPM character-based modelling experiments used to classify and segment Arabic text. 

Finally, the results and limitations of those experiments are discussed in detail. The paper was 

published in the International Journal of Advanced Computer Science and Applications 

(IJACSA) in 2017. This research was needed to find out the most effective way of classifying 

and segmenting the newly developed corpus, as presented in chapter 4. 

 

The fourth paper titled "BAAC: Bangor Arabic Annotated Corpus" describes the creation of the 

new Bangor Arabic Annotated Corpus (BAAC) which is a Modern Standard Arabic (MSA) 

corpus that comprises 50K words manually annotated by parts-of-speech. In this paper, the 

new corpus was used to evaluate the widely used Madamira Arabic part-of-speech tagger and 

to further investigate compression models for text compressed using part-of-speech tags. Also, 

this paper presented a new annotation tool which was developed and employed for the 

annotation process of the new corpus. The paper was published in the International Journal of 

Advanced Computer Science and Applications (IJACSA) in 2018. This paper was needed to 

complete the main contribution of this thesis, as presented in chapters 5 and 6.  

 

The main contribution of this thesis was published in the fifth paper, entitled "Compression-

based Parts-of-speech tagger for the Arabic Language". The paper explores the use of 

compression-based models to develop and train a part-of-speech (POS) tagger for the Arabic 

language. The paper details the use of several models to train the new tagger. The paper also 

evaluates the performance of the new tagger on the two types of the Arabic text utilising the tag-

based results and the newly annotated corpus, as presented in chapter 6. The paper was 

published in the International Journal of Computational Linguistics (IJCL) in 2019. 

 

1.6 Organisation of this Dissertation 

 

• Chapter 1 is an introduction to this research. It introduced the background and 

motivation of this study. It also introduced the aim and objectives of this research. Finally, 

the contributions and publication also have been listed. 
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• Chapter 2 surveys the literature associated with this study. First, it presents an Arabic 

language overview, followed by details on the PPM text compression of Arabic text. 

Then, the chapter reviews Arabic text classification and its applications. Next, a review 

on the status of the Arabic annotated resources is presented. Finally, the chapter 

reviews the status of the current Arabic part-of-speech taggers. 

 

• Chapter 3 explores the approach of compressing Arabic text using parts-of-speech 

(tags) along with the text to give significantly better compression results when compared 

to current variations of PPM. 

 

• Chapter 4 explores the approach of classifying and segmenting Classical and Modern 

Standard Arabic text using PPM.  

 

• Chapter 5 describes the creation of the new Bangor Arabic Annotated Corpus (BAAC) 

which is a Modern Standard Arabic (MSA) corpus that comprises 50K words manually 

annotated by parts-of-speech. 

 

• Chapter 6 investigates the method of employing the compression results of the Arabic 

text that utilises both the POS (tags) and the text to evaluate the performance and the 

quality of two of the most commonly recognised Arabic POS taggers. 

 

• Chapter 7 explores the use of compression-based models to develop and train a part-

of-speech (POS) tagger for the Arabic language. The chapter details the use of several 

models to train the new tagger and also evaluate the performance of the new tagger on 

the two types of Arabic text utilising tag-based results and the newly annotated corpus. 

 

• Chapter 8 presents a summary of the thesis with suggestions for future work. 
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Arabic is a morphologically complex language that causes various difficulties for Natural 

Language Processing (NLP) [74], [161], [104], [38]. This chapter presents an overview of the 

Arabic language and surveys the literature associated with this study by investigating the 

application of the PPM compression system to several Arabic NLP tasks. Section 2.1 presents 

an overview of the Arabic language. Section 2.2 investigates PPM compression models and 

the three methods of compressing the text, character-based, word-based and tag-based. 

Specifically, it describes how to use PPM to compress Arabic text in section 2.2.1 and provides 

an overview of PPM in Section 2.2.2. Then, section 2.2.3 addresses the use of minimum cross-

entropy concept to classify the two types of non-colloquial written text for the Arabic language, 

Modern Standard Arabic and Classical Arabic. Section 2.2.4 reviews language resources for 

the Arabic language with a focus on Modern Standard Arabic annotated resources for POS 

tagging. Finally, section 2.2.5 investigates the POS tagging of the Arabic language. 

 

2.1 Arabic Language Background 

 

2.1.1 An Overview 

 

The Arabic language “العربية” is acknowledged to be one of the most commonly used languages, 

with 330 million people using the language as their first language, as shown in Table 2.1, plus 

1.4 billion more using it as a secondary language [185]. Based on the number of countries and 

their writing system, the Arabic script is the second most popularly utilised writing system after 

Chinese and Latin [61]. The majority of the speakers are located across twenty-two nations, 

primarily in the Middle East, North Africa and Asia. The United Nations considers the Arabic 

language as one of its five official languages.  

 

The Arabic language is part of the Semitic languages that includes Tigrinya, Amharic and 

Hebrew, and shares almost the same structure as those languages. It has 28 letters, two 

genders – feminine and masculine, as well as singular, dual and plural forms. The Arabic 

language has a right-to-left writing system with the basic grammatical structure that consists of 

verb-subject-object (VSO) and other structures, such as VOS, VO and SVO [24], [100], [13]. 

The Arabic language has had an affect on Indo-European languages such as Spanish and 

Portuguese, and vice versa; for example, some Arabic words were borrowed from Romance 

languages [204]. 
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Rank Language 
Users 

(millions) 

1 Mandarin 1051 

2 English 508 

3 Hindi 497 

4 Spanish 392 

5 Arabic 330 

6 Russian 277 

7 Bengali 211 

8 Portuguese 191 

9 Malay 159 

10 French 129 

Table 2.1. The Most Universally Used Languages [185], [135]. 

 

The Arabic script is cursive, as most of the Arabic letters are connected by methods of ligatures, 

and the appearances of several letters within a term depend on their location [91]. The Arabic 

script has 22 letters which can be connected with previous and next letters by small straight 

lines while the rest of the letters can be connected only to a previous letter. All the non-

connecting letters of the Arabic language, which are " و ز ر ذ د ا  “, are used in a classical Arabic 

poem shown in Figure 2.1. 

 

Figure 2.1. A classical Arabic poem which is written only with the non-connecting Arabic letters 
و ز ر ذ د ا "  ". 
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2.1.2 Arabic Internet Users 

 

Presently, the information used, collected and sent by Arabic Internet users is growing fast. 

Between 2000 and 2016, the increase of Internet usage in Arab countries was 4,207.4% [115]. 

According to the Marketing website [116], the English language comes first as the most 

commonly used language on the Internet representing 25.5% of the Internet users, then the 

Chinese language followed by the Spanish language. The Arabic language comes in fourth 

place with 173 million users coming from 23 countries. According to the Marketing website [116], 

the largest Arabic Internet users are from Egypt which accounts for 19.4% of the total number 

followed by Saudi Arabia then Morocco as shown in Figure 2.2. 

 

 

Figure 2.2. The largest 10 Arabic Internet users by countries [116]. 

 

2.1.3 Formal Written Types of Arabic language 

 

The non-colloquial written text for the Arabic language can be divided into two types: Classical 

Arabic and Modern Standard Arabic [75], [156], [173], [25]. The Classical Arabic (CA) epoch is 

usually measured from the sixth century which is the start of Arabic literature. It is the language 

of the Holy Quran, the 1,400-year-old primary religious book of Islam with 77,430 words [86] 

and other ancient Islamic books from that era, such as the Hadith books [42]. With the beginning 

of journalism and the spread of literacy in the eighteenth century came Modern Standard Arabic 
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or MSA. MSA is the language of current printed Arabic media and most Arabic publications. 

(See Figure 2.3 for an example). Although MSA derives some of its attributes, such as syntax, 

from CA, however, MSA has a wider modern lexicon. Bin-Muqbil [57] argues that the stylistics 

of CA and MSA are different. Both CA and MSA are written and not spoken languages, whereas 

dialectal Arabic is spoken and not formally written [38], [46]. 

 

 

Figure 2.3. A sport news from aljazeera.net [28] in MSA text. 

 

Most Arabic natural language processing (NLP) tasks perform better for MSA [84]. One 

example of those tasks is parts-of-speech tagging (POS) of the Arabic language as reported in 

[37], [42], where the performance of the taggers is best when tagging MSA text. The reason for 

the variation in performance between MSA and CA is that most Arabic language NLP systems 

were trained using MSA text [84]. More effort is currently being made, such as the creation of 

manually annotated CA corpora [85] and the evaluation of different Arabic POS taggers on CA 

text by Alosaimy and Atwell [37], to fill this gap in the research. 

 

2.1.4 Arabic Encoding methods 

 

The most common encoding system for the Arabic language, and for different languages as 

well, is UTF-8. The encoding system is able to encode all possible characters and combines 

various languages. The system is usually applied in multiple language applications and 

websites, such as Facebook and YouTube [29], [99]. Figure 2.4 shows that from 2001 to 2010, 

the use of other encoding systems, such as ASCII, has declined. UTF-8 uses only one byte to 

represent English letters, and for other languages such as the Arabic language, the system 

uses one to four bytes. 

 

Microsoft developed the Windows-1256 encoding system that utilises 8-bits to represent a 

single Arabic character. The system can be used to represent other languages that utilise Arabic 

characters in their written forms, such as Kurdish, Persian and Urdu [203]. ISO 8859-6 is one 

of the popular character encodings systems which can be used to represent Arabic characters. 

Similar to Windows-1256, ISO 8859-6 utilises 8-bits to represent a single Arabic character, but 
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unlike Windows-1256, ISO 8859-6 is only designed for the Arabic language and cannot be used 

to represent other languages that utilise Arabic characters such as Kurdish, Persian and Urdu. 

 

  

Figure 2.4. The growth of UTF-8 compared to other encoding systems [99]. 

 

2.1.5 Arabic morphology 

 

Arabic is a morphologically complex language that causes various difficulties for Natural 

Language Processing (NLP) [74], [161], [104], [38]. Diacritics are used in the Arabic language 

to disambiguate terms. The presence of the four diacritics, which are FatHa, Dhamma, Kasra 

and Sukuun, in the text help in the lexical disambiguation of the word, as some words share 

identical component letters but different diacritics. An example of the use of diacritics to 

disambiguate the meaning of an Arabic term is the number of variants that the Arabic word "علم" 

can have with diacritics. Figure 2.5 shows 15 variants of the Arabic word "علم" where every form 

or variant of the term has a different meaning represented by a different use of the diacritics, 

and as stated before, that caused the rise in the adoption of statistical approaches to 

disambiguate the uncertainty of Arabic text [180]. 
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Figure 2.5. Fifteen variants of the Arabic word "Alam" [58], which according to the 
diacritics used can be translated as “flag”, “scientist”, “a known place” and other 

translations. 

 

2.2 Literature Review 

 

2.2.1 PPM Text Compression of Arabic Text 

 

2.2.1.1 Overview 

 

The growth of exchanged information amongst Arabic users has sparked the need to reduce 

both the space required to store the information and the time needed to transmit that 

information, which thereby will help to overcome the problem of bandwidth limitation that some 

Arabic countries are having. This can be accomplished by compressing the stored and 

transmitted text [94]. 

 

2.2.1.2 Lossless Text Compression 

 

Text compression can be defined as the process of decreasing the size needed to store the 

encoded text file by removing redundant information from the text, which will also reduce the 

time required to transmit that information. The lossless process can be reversed via decoding, 

to reproduce the exact original text without missing any part of the information [196]. The best 

lossless text compression algorithms are those that adapt to the compressed text [53]. 

Commonly used adaptive techniques can be classified into two classes. The first class is one 

that matches phrases in the text using a dictionary of phrases from already viewed text, then 

converts that text into a list of indexes into the dictionary. This type of technique is usually 

expressed as Ziv-Lempel compression [214], [215]. This way of compression does not produce 
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the best compression results, but is still widely used for its faster execution speed and lower 

resources consumption. 

 

The best compression results are obtained using the second class that applies an adaptive 

statistical modelling technique. This class goes through two main steps, as shown in figure 2.6. 

First, a statistical model of the string seen so far in the compressed text is accumulated, and as 

the character is encoded, a probability distribution of the upcoming character is maintained. 

Then arithmetic coding is applied to encode the character which actually comes next in a near 

optimum way [149], [207], [171]. During the past three decades, the lossless text compression 

performance standard has been set by Prediction by Partial Matching (PPM) [196], which is a 

type of adaptive statistical modelling system. 

 

Figure 2.6. Utilising a model for text compression [53]. 

 

Text compression can be achieved in three main ways using the PPM algorithm. The first way 

is the use of character-based models in which the preceding context of observed symbols or 

characters is applied to foretell the next one. Another method of applying PPM is to use the 

word-based modelling of the text in which the trained model utilises the previous context of 

observed word or words to foretell the imminent word. The final method employs tag-based 

models that utilise the previously foretold tags (that represent the parts of speech) and words to 

predict the imminent terms (both tags and words) [196]. The concept of the tag-based method, 

as shown in Figure 2.7, is that recognising the tag of the term aids in predicting it. The principal 

advantage of employing the tag to foretell the imminent term is that the tag will in all probability 

have appeared many more times previously, and consequently be a better foreteller for the 

forthcoming tags plus terms [64], [119], [131].  
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The main benefit of utilizing the tag to predict the upcoming word is that the tag will in all 

likelihood have occurred many times beforehand, and therefore be a better predictor for the 

upcoming tags plus words [63], [119], [131]. On the other hand, the number of times that an 

individual word may have occurred is often small, and therefore is not as helpful for predicting 

the upcoming terms.  

 

 

Figure 2.7. Using a tagger to compress text [190]. 

 

Previous experiments were performed by Alhawiti [26] to compare the three models on Arabic 

text. The experiments used various texts with different file sizes to estimate the quality of both 

the character and word-based text compression, whereas the text file sizes to estimate the 

quality of the tag-based compression were relatively small [26]. Alhawiti concluded that the 

character-based text compression of the Arabic text outperforms both the word-based and the 

tag-based compression. 

 

The following section discusses PPM in more detail. 

 

2.2.2 Prediction by Partial Matching 

 

2.2.2.1 Overview 

 

PPM is an online adaptive text compression system that foretells the upcoming character or 

symbol by using the previous context with given fixed length. It uses a Markov-based n-gram 

procedure which applies a back-off mechanism alike to that suggested by Katz [123]. 
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Nevertheless, PPM refers to the backing-off as “escaping” and it was developed before Katz’s 

proposed mechanism. It was first proposed by Cleary and Witten [72] in 1984 when they 

developed the character-based PPM variants, PPMA and PPMB. Then came Moffat and 

Howard, in 1990 and 1993, and introduced two further variants of PPM, PPMC and PPMD 

[208]. The main distinction among these variants of PPM, PPMA, PPMB, PPMC and PPMD, is 

the estimation of the escape probability that the smoothing mechanism requires for backing off 

to a reduced model’s order. Experiments for character streams have shown that PPMD usually 

delivers better compression results when compared to other variants of PPM [124]. 

 

As stated, PPM has been successfully applied to many areas of NLP. It performs state-of-the-

art compression of the text written in many languages, with results reported in [196], [26]. 

Another NLP application of PPM involves word segmentation of Chinese text, in this case by 

adding spaces to Chinese text that has no spaces [195]. Many other NLP tasks in other 

languages, such as code switching [46], [195], authorship attribution [190], text correction [19], 

cryptology [15] and speech recognition , were reported in various studies [26], [29].  

 

The following equation is used to determine the probability 𝑝 of the following character 𝜑 using 

PPMD [17]: 

𝑝(𝜑) =
2𝑐𝑑(𝜑) − 1

2𝑇𝑑
 

where the coding order currently used is indicated by 𝑑 , the number of times where the current 

context has happened or occurred in total is represented by 𝑇𝑑 and the number of the symbol 

𝜑 occurrences in the current context is represented by 𝑐𝑑(𝜑). The estimate of the escape 

probability 𝑒 by PPMD is as follows: 

𝑒 =
𝑡𝑑

2𝑇𝑑
 

where 𝑡𝑑  represents the number of times in total where unique symbols occur following the 

current context. In most experiments, the use of 5 as a maximum order has proven to be 

efficient, as PPMD starts with the model’s maximum order first to encode the forthcoming 

symbol [195]. 

 

If the forthcoming symbol was predicted by the current model and the model contained it, then 

its probability in current maximum order, 5 in this case, will be used to transmit it. If the 

(2.1) 

(2.2) 
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forthcoming symbol was not found in the model, then the encoder will escape to the next lower 

order model, 4 in this case, by encoding an escape. This process of escaping will be repeated 

until the model finds that symbol or prediction. If the model does not contain the symbol, then 

the encoder will back off to a default order of -1 [195]. 

 

2.2.2.2 Blending Techniques of PPM 

 

PPM applies an approximate blending procedure named full exclusion that combines the 

prediction of every character and symbol of length smaller than or equivalent to 𝑚, where 𝑚 is 

the model's chosen maximum order. The name of the technique comes from the application of 

the escape mechanism that escapes from the highest order prediction to lower orders until the 

upcoming character being predicted has been seen before. Commonly, the order 0 model is 

used to predict a character on the basis of its unconditional likelihood, whilst the order -1 model 

is applied to ensure that every potential symbol and character is assigned a finite probability 

[196]. 

 

PPM combines context predictions by assigning a weight to every context model, then 

calculating the weighted total of the probabilities. According to Bell, Cleary and Witten [53], the 

blended probability of character 𝑠 is produced by 

𝑝(s) = ∑ 𝑞𝑖𝑝𝑖

𝑚

𝑖=−1

(s) 

where 𝑝𝑖  represents every probability given to the order 𝑖 model whereas 𝑞𝑖 describes the 

weight given to model. The probabilities 𝑝𝑖(𝑠), which are rational, are estimated using the 

repetition counts 𝑐𝑖(𝑠). In order to prevent a probability of zero, lower order contexts are used 

to assign non-zero weights to the predictions.  

 

From the escape probabilities, equivalent weights are estimated by 

𝑤𝑜 =  (1 −  𝑒𝑜) ∏ 𝑒𝑖    

𝑙

𝑖=𝑜+1

            − 1 ≤ o < 𝑙 

 

and  

(2.3) 

(2.4) 
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𝑤𝑙 =  (1 −  𝑒𝑙) 

where 𝑒𝑜 represents an escape at level o and the highest order context is represented by 𝑙 

which makes a non-zero prediction. Therefore, according to every order's escape probability, 

the lower orders weight is decreased one after another. Given that the escape probabilities are 

within 0 and 1 and 𝑒−1 = 0, the weights will be normalized. The weighted contribution of the 

model to the probability of the character 𝑠 is 

𝑤𝑜𝑝𝑜(s) =  (1 −  𝑒𝑜) 𝑝𝑜(s) ∏ 𝑒𝑖 .   

𝑙

𝑖=𝑜+1

 

 

The sum of all weighted probabilities over each value of 𝑜 determines the probability of the 

character 𝑠. 

 

In 1990, Bell, Cleary and Witten [53] introduced the full exclusion mechanism which is an 

improvement to PPM’s blending algorithm where the mechanism excludes each character 

predicted by higher-order contexts. The mechanism adds a small computational cost by 

checking all symbols for exclusion. Moffat [148] introduced the update exclusion mechanism 

which enhances the execution time of the program by not updating the counts if they are 

predicted by a higher order context [53] and can also lead to a slight improvement in 

compression by a few percent as with the full exclusion mechanism. 

 

The next sections will discuss the three PPM methods of modelling. 

 

2.2.2.3 Character-based Modelling 

 

To explain character-based encoding in more detail, Table 2.2 presents the way PPM models 

a given string. The example in this case is how the PPMD prediction method models the string 

tobeornottobe. The model in this example uses a maximum order of 2 for illustration 

purposes (although normally it would be order 5). In the table, c indicates the count, p 

symbolizes the probability and |A| is the size of the alphabet that is used [195]. Let the imminent 

character for this example be letter o. The letter has been seen once before (‘be’ → o) for the 

order two context ‘be’ and therefore it has a probability of  1

2
 (applying equation (1) since the 

(2.5) 

(2.6) 
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count is 1). Therefore, the letter o will be encoded using 1 bit. But, if the upcoming letter in the 

order two context had not been seen before, (i.e. suppose the next letter was t rather o), then 

the model would need to escape to a lower order, the escape probability will be 1
2
, and the model 

will back off to the order 1 context. 

 

Order 2 Order 1 Order 0 Order -1 

Prediction c p Prediction c p Prediction c p Prediction c p 

     ‘be’   → o 1 1/2 ‘b’ → e 2 3/4 → b 2 3/26 → A 1 1/|A| 

              → esc 1 1/2          → esc 1 1/4 → e 2 3/26  

     ‘eo’   → r 1 1/2 ‘e’ → o 1 1/2 → n 1 1/26 

              → esc 1 1/2          → esc 1 1/2 → o 4 7/26 

     ‘no’   → t 1 1/2 ‘n’ → o 1 1/2 → r 1 1/26 

              → esc 1 1/2          → esc 1 1/2 → t 3 5/26 

     ‘ob’   → e 2 3/4 ‘o’ → b 2 3/8     → esc 6 3/13 

              → esc 1 1/4     → r 1 1/8    

      ‘or’   → n 1 1/2     → t 1 1/8   

              → esc 1 1/2         → esc 3 3/8     

      ‘ot’   → t 1 1/2 ‘r’ → n 1 1/2     

              → esc 1 1/2         → esc 1 1/2 

  

 

      ‘rn’   → o 1 1/2 ‘t’ → o 2 1/2  

              → esc 1 1/2    → t 1 1/6  

      ‘to’   → b 2 3/4        → esc 2 1/3  

              → esc 1 1/4 

  

 

       ‘tt’   → o 1 1/2  

              → esc 1 1/2  

Table 2.2. Processing the string tobeornottobe using PPM [205]. 

 

When the model backs off, the new order will be used to estimate the probability, and in this 

case, there is no letter t that comes after e. As a result, the model will encode another escape 

using a probability of  
1

2
, and the context will be reduced to the null (order 0) context. Letter t will 

be encoded using this order, where the probability will be 
5

26
. The total cost of predicting the last 

letter will be 
5

26
×

1

2
×

1

2
, which in this case will be over 4 bits (since -log2 

5

104
 = 4.28 bits). 

Moreover, if the following letter has not been seen before in the context, such as the letter x, the 

escape probability will be encoded three times from the maximum order of 2 down to -1 with the 
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following probabilities: 
1

2
×

1

2
×  

3

13
×

1

256
 since order -1 will be used to encode this letter as we 

are encoding English characters using ASCII (with an alphabet size of 256), and this will require 

over 12 bits [195]. 

 

2.2.2.4 Word-based Modelling 

 

For word-based encoding, a similar PPM-based approach is used to make the predictions, but 

one word at a time rather than a character at a time. A bigram word model is as follows:  

𝑝(𝑠) = ∏ 𝑝( 𝑤𝑖 ∣∣ 𝑤𝑖−1 )

𝑚

𝑖=1

 

where 𝑠 = 𝑤1 
… 𝑤𝑚 is the text of 𝑚 words being predicted. When a new bigram sequence 

𝑤𝑖−1𝑤𝑖 or a new word 𝑤𝑖 is encountered, the model will escape to an order 0 model, and if 

needed to a standard PPM character model (where its characters are encoded one character 

at a time) in order to predict the unseen word or bigram. 

 

2.2.2.5 Tag-based Modelling 

 

The tag-based model can be represented as follows: 

𝑝(𝑠) = ∏ 𝑝(𝑡𝑖|𝑡𝑖−1𝑡𝑖−2) × 𝑝( 𝑤𝑖 ∣∣ 𝑡𝑖𝑤𝑖−1 )

𝑚

𝑖=1

 

where again 𝑠 = 𝑤1 
… 𝑤𝑚 is the text of 𝑚 words being predicted. The tag-based model uses 

two streams, a tag stream and a word stream, to predict the upcoming word as shown in Figure 

2.7. First, it will use an order 2 PPM model to predict the tag given the two previous tags, then 

predict the upcoming word given its tag along with the previously seen word. If the model has 

not seen the 𝑡𝑖𝑤𝑖−1 sequence or its prediction 𝑤𝑖, an escape probability will be encoded and 

the model will try to continue predicting the following word using only the current tag. Lastly, if 

the prediction fails, it will escape to a character-based model [196]. The method requires that 

the text sequence of words is tagged first, and then effectively both the tag and word sequences 

need to be encoded together with the extra tag information also becoming available to the 

decoder as shown in Figure 2.7. If the extra tags improve the compression (compared to a 

word-based or character-based compression which do not need to encode the extra tag 

(2.7) 

(2.8) 
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information), then this helps support the linguistic validity of the tag information. Prior 

experiments [196] show that it is possible to get better compression results using tag-based 

compression compared to both word and character-based compression for tagged English text, 

but previous experiments with both Chinese [208] and Arabic tagged text [26] have not been 

able to reproduce the English results for these languages. 

 

2.2.2.6 The Tawa toolkit 

 

The Tawa toolkit [192] can be used to apply PPM modelling to many different NLP tasks. 

According to Teahan [192], "The aim of the toolkit is to simplify the conceptualisation and 

implementation for a broad range of text mining and NLP applications involving textual 

transformations". The toolkit can be used to implement a wide spectrum of NLP applications 

and it comprises eight principal applications, as shown in Figure 2.8, such as train, encode, 

decode and classify. It adopts a ‘noiseless channel model approach’, as illustrated in Figure 

2.9, where every application is conceived as an encoding process without loss of any 

information and any procedure is reversible. The algorithms and pseudo-code of the encoding, 

decoding, training and six other applications are described in detail by Teahan [192]. Other 

details, such as the implementation aspects and search algorithms applied in the toolkit, are 

also addressed by the developer. 

 

 

Figure 2.8. A diagrammatic representation of the Tawa Toolkit design [192]. 
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Previous experiments were performed by Alhawiti [26] to compare the three models on Arabic 

text. Alhawiti used various text file sizes to estimate the quality of both the character and word-

based text compression, whereas the only resource used to estimate the tag-based text 

compression was only the first part of the Arabic Treebank Corpus (ATC). As stated before, 

PPM is an online adaptive text compression system that needs relatively large amounts of 

training data to learn from and build the tag-based models. The reason for the use of the ATC 

corpus in the previous experiments is the fact that the resources for manually tagged Arabic 

corpus are limited, and the existing manually tagged corpora are usually relatively small [26]. 

Therefore, the effect of using the tag-based models to compress larger Arabic tagged text needs 

be investigated further to re-estimate the performance of the previous three PPM methods of 

compressing the Arabic text and to produce more comparative results. 

 

 

Figure 2.9. The encoding-based ‘Noiseless Channel Model’ used by the Tawa Toolkit [192]. 

 

 

2.2.3 Arabic Text Classification 

 

2.2.3.1 Overview 

 

Text classification is the process of automatically assigning a document to different predefined 

classes or categories to reflect their contents [194]. Text classification is important in various 

areas such as natural language processing (NLP), text mining, information retrieval, machine 

learning, etc. [188]. It also can be applied in a large variety of applications such as spam filtering 
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[12], author identification [121], [186], [47], gender identification [68], [44], sentiment analysis [4], 

[7], [14], [44], dialects identification [212], [143], and so on. 

 

The massive increase in the size of text accessible on the internet during the last two decades 

has drawn the attention to the importance of text classification [188]. This increase of data on 

the Web has produced the need for methods to extract the required information from text 

documents, and therefore, generating unique difficulties for the text classification problem 

especially when considering applications requiring analysis of big data [129], [188]. 

 

 Text classification can be implemented using various algorithms, for example, Naïve Bayes 

and the chain augmented Naïve Bayes probabilistic classifier [95], [163]. Other algorithms such 

as support vector machines, or SVM, [113], generalized instance sets [132], k-nearest 

neighbors algorithm [113], neural networks [172] and Generalized Discriminant Analysis, or 

GDA, [136] have been used to classify English text. Various algorithms have also been applied 

to other languages such as Chinese [113], [201] although there has been noticeably less 

research done with the Arabic language. 

 

Most of these text classification algorithms handle text documents as a “bag-of-words” where a 

set of words or tokens are used to interpret the text and which rely on using their frequency in 

some manner [83], [179].  The traditional approach to text classification goes through four steps: 

first, pre-processing of the text where the words (or tokens) and sentences in the training files 

are segmented [194], [87]; second, using word/token counts to extract or select different 

features; thirdly, applying one of the machine learning algorithms mentioned earlier; and finally, 

performing the same feature extraction on the test data and applying the learned model to the 

extracted features to predict the class for the test data [194], [87]. 

 

During the process of analyzing the text, a complication occurs when the phenomenon of code-

switching arises. This is where a text contains more than one language or variations of the same 

language. This phenomenon has been the subject of extensive linguistically oriented study in 

the past [98], [177], and the problem of mixed texts must be tackled by segmenting those 

variations. Text segmentation is the task of automatically separating the text into identified or 

coherent parts [52]. Compared to text classification, text segmentation can be used to produce 
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a more accurate estimate of each class, category or topic located inside the text rather than 

assigning a class or set of classes to the entire text as a whole. 

 

Many segmentation algorithms, such as the TextTiling algorithm [114] and the dotplotting 

algorithm [169] rely on measuring the variation in word usage to predict potential boundaries in 

the text, where a vast difference in word usage is a positive sign. Kozima [130] introduced an 

algorithm that traces the coherence of a document by applying a semantic grid in a “lexical 

coherence profile”. A statistical approach was proposed by [52] for text segmentation, where 

the algorithm builds a model from selected informative features, then the model is used to 

predict where boundaries happen in the text. 

 

Compared to the traditional way of text classification, compression-based language modelling 

uses a character-based approach, whereas traditional text classification is a word-based 

approach which is language-dependent that tends to overlook both the contextual information 

of the text and the word order [194], [188]. The use of language modelling for text classification 

takes into consideration the contextual information in the text when building the language model 

and avoids the need for pre-processing of the text usually required by most classification 

algorithms [194], [188]. The use of Markov-based approximations standard in character-based 

language modelling avoids the issue of explicit feature selection that is applied in traditional 

classification and segmentation algorithms which may discriminate some important features of 

the text [194], [120]. Algorithms that adopts a Viterbi-based algorithm produces an accurate 

estimate of each class, category or topic located in the text. [197]. 

 

2.2.3.2 Minimum Cross-entropy as a Text Classifier 

 

The concept of minimum cross-entropy as a text classifier has been adopted in various NLP 

tasks that utilises the PPM algorithm [35], [46], [196], [191], [71]. The basis of the classification 

and segmentation schemes in the PPM algorithm uses the character-based approach for 

compressing the Arabic text [194]. The essence of this approach depends on the concept of 

entropy as a measurement of the message's “information content” [182], and on the notion that 

the upper bound of the entropy can directly be estimated by compressing the text [64]. 
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The fundamental coding theorem in information theory [182] states that an entropy of a 

sequence of text, or message, is the lower bound to the average number of bits per character 

required to encode that message [197]. 

𝐻(𝑃) = − ∑ 𝑝

𝑘

𝑖=1

(𝑥𝑖) log 𝑝(𝑥𝑖) 

where there are 𝑘 number of potential characters with the probability distribution 𝑃 =

𝑝(𝑥1), 𝑝(𝑥2),...,𝑝(𝑥𝑘) and the probabilities sum to 1 and are independent. The measurement of 

the uncertainty associated with the selection of the characters is represented by the entropy, 

where the higher the entropy, the higher the uncertainty. The message’s “information content” 

can also be measured by the entropy, as the more probable the messages, the less information 

is conveyed compared to less probable ones [197]. 

 

For simplification purposes, the sums displayed in following formulas are considered to be made 

over all potential sequences. A general case for a language with probability distribution can be 

extended from the previous equation for a text sequence 𝑇 = 𝑥1, 𝑥2, … , 𝑥𝑚 of length m: 

𝐻(𝐿) = 𝑙𝑖𝑚
𝑚→∞

 −
1

𝑚
∑ 𝑝 (𝑥1, 𝑥2, … , 𝑥𝑚) log 𝑝(𝑥1, 𝑥2, … , 𝑥𝑚). 

 

This describes the entropy of a language which is defined to be the limit of the entropy when 

the size of the message becomes large. The probability distribution for the source language 𝐿 

is usually not identified or known. Nevertheless, applying a model 𝑀 as an approximation to 

the probability distribution gives the upper bound to 𝐻(𝐿) [197]:  

𝐻(𝐿, 𝑀) = − ∑ 𝑃𝑀 (𝑥1, 𝑥2, … , 𝑥𝑚) 𝑙𝑜𝑔 𝑃𝑀(𝑥1, 𝑥2, … , 𝑥𝑚) 

where  𝑃𝑀(𝑥1, 𝑥2, … , 𝑥𝑚) is used to estimate the probabilities. 𝐻(𝐿, 𝑀) is described as the 

cross-entropy which is higher than or equivalent to the entropy 𝐻(𝐿), as this is based on the 

source itself which is the best possible language model: 

𝐻(𝐿) ≤ 𝐻(𝐿, 𝑀). 

 

Compressing the text can be used to estimate an upper bound to the entropy of a message 

[64]. Considering the number of bits needed to encode a sequence of text to be 

𝑏𝑀(𝑥1, 𝑥2, … , 𝑥𝑚), when using some model 𝑀 to estimate the probabilities, then: 

(2.9) 

(2.10) 

(2.11) 
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𝐻(𝐿, 𝑀, 𝑇) = 𝑙𝑖𝑚
𝑚→∞

 
1

𝑚
𝑏𝑀(𝑥1, 𝑥2, … , 𝑥𝑚) 

where the number of bits per character needed to encode a long text message 𝑇 formed from 

𝐿 is 𝐻(𝐿, 𝑀, 𝑇). 

 

The cross-entropy is important as it presents a measurement of how great the estimated model 

is performing on the test text; the less inexact the model is, the closer the cross-entropy is to 

𝐻(𝐿). Furthermore, by measuring the cross-entropy for every possible model, the cross-entropy 

provides a valuable measure for analysing the correctness of the competing models. The model 

that has the least cross-entropy is judged to be the “best” or most appropriate. The information 

is derived from a semantic label which is associated with each model which reflects the class 

or type of data that was used to train the model. Simply, the label linked with the “best” model 

is selected and used to classify the text: 

 

�̂�(𝑇) = argmin𝑖  𝐻(𝐿, 𝑀, 𝑇). 

 

 

2.2.3.3 Minimum Cross-entropy as an Arabic Text Classifier 

 

Almahdawi and Teahan [35] have successfully adopted a PPM character-based text 

compression scheme for coarse-grained and fine-grained classification of emotions in the text 

that includes the six Ekman’s emotions (Sadness, Disgust, Anger, Surprise, Happiness and 

Fear). They reported that utilising the PPM as a classifier outperformed the conventional word-

based text classification schemes. Altamimi and Teahan [46] have successfully classified 

gender and authorship of Arabic tweets using an order 11, PPMD model achieving an accuracy 

of 90% and 96% respectively. 

 

Some Arabic corpora, such as the Bangor Arabic Compression Corpus (BACC), is a mixture of 

both CA and MSA text. An example is the BACC sub-corpus ‘Arabic_book1’, which contains 

both recent novels with ancient Arabic poems. (See Figure 2.10 for one example). The results 

of using such a corpus in order to perform various NLP tasks, such as POS tagging, as stated 

before, will vary and will not be consistent and reliable. Consequently, NLP applications should 

(2.12) 

(2.13) 



 42 

 

treat these texts separately and use different training data for each or process them differently. 

Therefore, there arises a need to accurately classify CA from MSA within the text. 

 

Figure 2.10. A Classical Arabic eulogy poem from the BACC. 

 

 

2.2.4 Arabic Annotated Corpus 

 

2.2.4.1 Overview 

 

The term corpus can be defined as a computerised set of genuine texts or discourses provided 

by language speakers that is saved in a machine-readable form [117], [147], [209], [9]. Xiao 

[210] argues that a corpus is not a randomly selected collection of texts nor an archive, but a 

file that manifests four essential aspects as follows: a corpus is a set of (1) machine-readable 

(2) genuine texts (that includes transcripts of spoken data) that are (3) tested to be (4) 

representative of a specific or a group of languages.  

 

Corpora play a significant factor in the development, improvement and evaluation of many NLP 

applications such as machine translation [30], [211], part-of-speech tagging [180] and text-

classification [211]. The design of any corpus depends on its intended applications [48]. Some 

corpora are for general use and can be utilised in many applications, and others may serve a 

specific purpose, such as building dictionaries or examining the language of a specific author 

or duration of time [42]. 

 

There are several kinds of annotations which could be applied to corpora, and each annotation 

is usually designed to handle a certain aspect of the language [146]. One type of corpora 

annotation is the structural annotation of the corpus by attaching descriptive information about 

the text, like mark-ups that specify the boundaries of the sentence, section and chapter, or a 

header file that names the author of the text or adds information about participants, such as the 

age and gender. Another type of annotation is the morphological annotation, where information 
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about the text, like the stems or root based in a language like Arabic, is added to the corpora. 

This type of annotation is the most common type of corpora annotation, and the most common 

type of morphological annotation is POS tagging of the text [146], where a tag, such as a noun, 

verb or particle is combined with each term in the corpus, and the number of tags used in the 

annotation varies from a few to 400 tags or more [105]. 

 

Based on the type of text and purpose(s) for being created, a corpus can be categorised into 

four categories: Raw Text Corpora; Annotated Corpora; Lexicon Corpora; and Miscellaneous 

Corpora. Examples of corpora for the Arabic language are provided below. 

1. Raw Text Corpora can be divided into: 

A. Monolingual corpora, such as the BACC [26], Ajdir Corpora [5], the King Saud 

University corpus of Classical Arabic [43], Alwatan [2], Tashkeela [213] and the 

Al Khaleej Corpus [3]. Monolingual corpora consist of a raw text written in a 

single language. 

B. Multilingual corpora, also known as comparable corpora or parallel corpora, 

are corpora that are written in two or more languages. Multilingual corpora, such 

as the UN corpus [202] which is the most important and widely known free 

corpus [211], Corpus A [30], the Hadith Standard Corpus [34], [181] and 

MEEDAN Translation Memory [96], are used in NLP fields such as machine 

translation [30], [211]. 

C. Dialectal Corpora, where the corpus is written in a specific language dialect, 

such as the Bangor Twitter Arabic Corpus for Egyptian, Gulf, Iraqi, Maghrebi 

and Levantine Arabic dialects [45]. Other well-known dialectal corpus for Arabic 

is the Shami corpus for Levantine Arabic dialects created by Abu Kwaik and 

others [8], and the Arabic Dialects Dataset collected by El-Haj [88]. Such 

corpora are used in fields such as text-classification. 

D. Web-based corpora, such as the KACST Arabic Corpus [17], the Leeds Arabic 

Internet Corpus [16] and the International Corpus of Arabic [20], where the 

corpora are only accessible online by an inquiry interface and the corpora 

cannot be downloaded. 

2. The second type is Lexicon corpora, that can be divided into: 
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A. Lexical Databases, such as the BAMA 1.0 English-Arabic Lexicon [138] and 

the Arabic-English Learner's Dictionary [164]. 

B. Words Lists such as the Word Count of Modern Standard Arabic [43] and the 

Arabic Wordlist for Spellchecking [49], [77]. 

These types of corpora act like a vocabulary or a list of words and can be 

employed by linguists to study many aspects of a language or combined with 

the lexicons of systems, like spell checking applications, to improve their 

performance [211]. 

3. Miscellaneous Corpora, such as Speech Corpora [36], Handwriting Recognition 

Corpora [139], are beneficial for a number of NLP tasks such as plagiarism 

detection [56], speech recognition systems [36] and question answering [55]. 

4. Annotated corpora are essential for the development of many NLP systems, 

such as part-of-speech tagging [180], text parsing [69]. Annotated corpora are 

divided into: 

A. Named Entities Corpora such as JRC-Names [187] and ANERCorp [54].  Most 

corpora of this type include the names of persons with the company or 

organisation name and the locations. 

B. Error-Annotated Corpora, such as the KACST Error corpus [33], is a beneficial 

resource for systems such as spelling correction and machine translation 

corrected output [118]. 

C. Miscellaneous Annotated Corpora, such as the OntoNotes corpus [166] and 

the Arabic Wikipedia Dependency Corpus [151] which are semantically 

annotated corpora [166]. 

D. Part-of-Speech (POS) tagged corpora are an important resource for the 

training and development of POS systems [180]. Some of these resources will 

be presented in detail in the existing resources section below. 
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2.2.4.2 POS Arabic Annotated Corpora 

 

POS annotated corpora are essential for the development of many NLP systems, such as part-

of-speech tagging [180], statistical modelling [111]. The lack of such resources limits some 

researchers from progressing further in their efforts. The limited availability of some existing 

annotated corpora and the cost of acquiring others are one of the main reasons that contribute 

to resource scarcity. Several efforts have been made to overcome the lack of resources [37], 

[9], [85].  

 

In 2001, the Linguistic Data Consortium (LDC) published the first versions of the Penn Arabic 

Treebank (ATB) [141], as illustrated in Table 2.3. This resource is widely used in many Arabic 

NLP applications such as the training of POS taggers, like the Madamira Arabic POS tagger 

[161] and the Stanford Arabic POS tagger [100]. The corpus consists of three parts with a total 

of 1 million annotated words. The first part v2.0 was a newswire text written in Modern Standard 

Arabic and consisted of 166K terms acquired from the Agence France Presse corpus. The 

second part was obtained from the Al-Hayat corpus which was distributed by Ummah Arabic 

News Text and consists of 144K terms [141]. The last part of the ATB corpus, part 3 v1.0, as 

shown Figure 2.11, is a newswire text obtained from the An-Nahar corpus and consists of about 

350K morphologically annotated words. For non-members of the LDC, the cost of acquiring any 

part of the ATB corpus exceeds several thousand US dollars which prevents access to 

researchers with a limited budget [111], [141]. 

 

Figure 2.11.  A sample POS tag from the ATB Part 3 v 1.0. 

 

Khoja [127], [125], [92] has published a 50,000 terms manually annotated POS tagged corpus 

written in MSA text. According to the author, the corpus is divided into two parts. The first part 
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is a newspaper text consisting of 1,700 terms that are manually tagged using a tagset that 

differentiates between the three moods of the verb and case structures of the noun [112]. The 

second part of the corpus is tagged using a simple tagset that includes only the following POS 

tags: noun, verb, particle, punctuation or number [125]. However, access to this resource was 

not provided for this study. 

 

Corpus Part 
Text 

type 

Number 

of terms 
Source of text Notes 

Treebank (ATB) 

One 

MSA 

166K 

terms 

Agence France 

Presse corpus 
Corpus fee is $4,500 

Two 
144K 

terms 
Al-Hayat corpus Corpus fee is $4,000 

Three 
350K 

terms 

An-Nahar 

corpus 
Corpus fee is $3,500 

Khoja POS 

annotated corpus 

One 
1,700 

terms 
Newspaper text 

Tagset consists of three 

moods of the verb and 

case structures of the 

noun 

Two 
48,300 

terms 
Newspaper text 

Tagset consists only of 

noun, verb, particle, 

punctuation or number 

The AQMAR Arabic 

Wikipedia 

Dependency Tree 

Corpus 

- 36K terms 

Arabic 

Wikipedia 

articles 

The tagset used in this 

corpus contains a small 

number of tags 

The Columbia Arabic 

Treebank (CATiB) 
- - 

Newswire feeds 

from 2004 to 

2007 

The tagset consists only 

of six POS tags. 

Table 2.3. A table summary of different Arabic annotated corpora. 

 

Another annotated corpus was published by Mohit [151]. The AQMAR Arabic Wikipedia 

Dependency Tree Corpus is a manually annotated corpus that contains 1262 sentences 

collected from ten Arabic Wikipedia articles and the 36K terms of the corpus are manually 

annotated using the Brat annotation tool [151]. The ten articles cover topics such as the Internet, 

Islamic Civilisation and Football and were annotated for named entities beforehand [178], [152], 

[153]. The tagset used in this corpus contains a small number of tags and therefore is not as 



 47 

 

useful for the research concerning tag-based text compression described in Chapter 3 which 

requires much larger amounts of training data to be effective. 

 

The Columbia Arabic Treebank (CATiB) [105] is another manually annotated Treebank corpus 

that consists of newswire feeds, from the year 2004 to 2007 and written in MSA. The corpus 

was initially tokenized and then POS tagged by the MADA&TOKAN toolkit [104], [105]. The 

TrEd annotation interface [165] was utilised in the annotation process. The number of tags used 

by CATiB is relatively small as it consists only of six POS tags, NOM, PROP, VRB, VRB-PASS 

and PRT, where each tag comprises a group of subtags; for example, the tag "NOM" can be 

used to tag nouns, adverbs, pronouns and adjectives. 

 

There exist some annotated corpora for the Arabic language that cannot be utilised by many 

researchers, such as the tag-based text compression research applied by Alhawiti [26] due to 

availability, and cost issues, such as the Arabic Treebank corpus [141]. Other resources are 

designed to be used for particular research or annotated using a distinctive tagset produced for 

an explicit purpose. The Qur’anic Arabic Dependency Treebank is one example where the text 

is written in CA text and the corpus uses a tagset which is designed to tag CA text using 

traditional Arabic grammar [85], [30]. This need for annotated corpora, which are necessary for 

the development of many NLP systems, provided the motivation to create a manually annotated 

corpus for the Arabic language for this study (see Chapter 5).  

 

2.2.5 Arabic Part-of-speech Tagging 

 

2.2.5.1 Overview 

 

A parts-of-speech (POS) tagger is a computer system that accepts text as input and then 

assigns a grammatical tag, such as VB for a verb, JJ for an adjective and NN for a noun, as 

output for every token or term according to its appearance, position or order in the text. POS 

tagging is normally an initial step in any linguistic analysis and a very important early step in the 

process of building several natural language processing (NLP) applications, such as information 

retrieval systems, spell auto-checking and correction systems and speech recognition systems 

[10]. Alabbas and Ramsay [18] argue that higher tagging accuracy improves the quality of all 
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subsequent stages and, therefore, assessing the tagger accuracy is an important step in the 

development of many NLP tasks. 

 

 

 

Figure 2.12. Simple information retrieval system pipeline architecture [158]. 

 

The tagging process can be achieved by one of the following general methods: (1) a statistical 

approach where a language model is trained using previously tagged corpora, such as the 

Arabic Treebank [111], and the model is then used to tag different text; (2) a rule-based 

approach where linguists define and develop rules or a knowledge base, as shown in Figure 

2.13, which are used to assign POS tags; and (3) by combining the previous two approaches 

in a hybrid system [125], [38], [108], [93], [180]. 

 

2.2.5.2 Statistical POS tagging 

 

The earliest approach used for developing POS taggers is the rule-based method [126], [125], 

[10], that was first developed in the 1960s. As stated before, this method utilises a collection of 

linguistic rules, where the number of rules ranges from hundreds to thousands, to tag the text. 

The development of a rule-based tagger is difficult, costly and the system is usually not robust 

[10]. Brill [60] developed the TBL rule-base tagger that obtained a tagging accuracy similar to 

that of statistical taggers. Unlike statistical taggers, the linguistic knowledge is created 

automatically as Brill's tagger trains simple non-stochastic rules [60]. Other examples of rule-

base taggers are the CGC tagger developed by Klein and Simmons [128], the TAGGIT tagger 

which was produced by Greene and Rubin [102]. Nguyen and others have developed a rule-

based POS tagger that utilises an SCRDR tree [170], as shown in Figure 2.13, to represent the 

rules used by the RDRPOSTagger [157]. RDRPOSTagger was utilised to tag two languages, 

English and Vietnamese, with a reported accuracy of 93.51% for the English language. The 
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tagger uses an error-driven procedure to build the knowledge base automatically in the form of 

a binary tree as shown in Figure 2.13. 

 

 

Figure 2.13. A sample of RDRPOSTagger tagging rules [157]. 

 

In the 1990s, the statistical approach of tagging the text started to replace the earliest approach 

used for developing POS taggers, and according to Martinez [144], the statistical approach also 

started to be adopted more with several other NLP tasks, reporting state-of-the-art results. For 

the Arabic language, the statistical method of tagging the Arabic text is largely utilised to solve 

the POS ambiguity of the Arabic text [180]. 

 

2.2.5.3 POS tagset 

 

The tagset is a list of all the potential tags which could be assigned to the terms during the 

tagging process and it is regarded as a fundamental component for any POS tagger. For the 

English language, there are a number of common tagsets which have been developed and 

used by English POS taggers; for example, the Brown tagset used in the Brown corpus which 

comprises 226 tags, the LOB tagset used in the LOB corpus, which is based on the Brown 

tagset, containing 135 tags [97], and the Penn Treebank tagset which was used to tag the Penn 

Treebank corpus and contained 36 tags [189]. 

 

For the Arabic language, tagsets can be divided into traditional and English derived tagsets [38]. 

English derived tagsets arose when Arabic resources were limited, and a tagset was urgently 
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needed to develop new resources [111], [140], [82]. This type of tagset is usually a trivial 

modification of the standard English tagset, and this modification was considered problematic 

for Semitic languages as stated by Wintner [206], and illustrated by Alosaimy who showed that 

in some cases differentiation among adjectives and nouns is unclear [38]. Many more language 

specific tagsets for the Arabic language have been proposed; for example, the Khoja tagset 

utilised by the APT tagger includes 177 tags [125], [126], as shown in Figure 2.14. The El-Kareh 

and Al-Ansary [90] tagset comprises 72 tags used in their tagger. Al-Shamsi and Guessom 

[180] proposed a tagset that includes 55 tags, which was employed in the HMM tagger that they 

have developed. Finally, Al-Qrainy [39] proposed a tagset that was used in AMT tagger that 

comprises 161 detailed tags and 28 general ones, as displayed in Table 2.4. 

 

Tagset name Utilised by Number of tags 

Khoja tagset APT tagger 177 tags 

The El-Kareh and Al-Ansary 

tagset 

The El-Kareh and Al-Ansary 

tagger 
72 tags 

Al-Shamsi and Guessom 

tagset 

Al-Shamsi and Guessom HMM 

tagger 
55 tags 

Al-Qrainy tagset AMT tagger 
161 detailed tags and 28 

general tags 

SALMA tagset - Five main POS categories 

Table 2.4. A table summary of different Arabic tagsets. 

 

Sawalha and Atwell [176] introduced the SALMA tagset, which according to the authors, 

"captures long-established traditional morphological features of Arabic, in a compact yet 

transparent notation". The tagset includes 22 characters where each position serves a feature 

and the character at that position serves a morphological feature value or attribute. Figure 2.15 

shows the main POS category of the SALMA tagset described at position 1. The tagset is bound 

to a particular tagging algorithm and other tagsets can be mapped onto the SALMA tagset 

standard according to the authors. The tagset was validated and utilised in various Arabic 

language processing systems [174], [175]. 
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Figure 2.14. The main POS category of the Khoja's Tagset [27], [38]. 

 

Table 2.5 shows a sample of Arabic text tagged by three tagsets, the Madamira tagset, the 

Stanford tagset and Farasa tagset. The Farasa tagset [38], [6] consists of 16 primary tags. 

Pasha and others [161] introduced the Madamira tagset, which was used initially by the MADA 

tagger [104]. The tagset is the subset of the English tagset which was presented with the English 

Penn Treebank and consists of 32 tags and was initially proposed by Diab, Hacioglu and 

Jurafsky [80]. The Stanford tagset consists of 24 tags. Those tags are derived by manually 

decreasing the 135 tags obtained from the Arabic Treebank distribution [93]. 

 

 

Figure 2.15. The main POS category of the SALMA tagset [176]. 
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Term Madamira Tag Stanford Tag Farasa Tag 

 part_verb NN PART وقد

 verb VBD V اتخذت

 noun NNS NOUN-FP خطوات

 noun NN NOUN-MS بإنشاء

 noun NN NOUN-FS لجنة

 noun DTNN NOUN-FS الحقيقة

 noun NN NOUN-FS والمصالحة

 noun NN NOUN-FS واللجنة

 adj DTNN ADJ-FS الوطنية

 adj DTJJ ADJ-FP المستقلة

 noun NN NOUN-FS لحقوق

 noun DTNN NOUN-MS الإنسان

Table 2.5. Samples of various Arabic tagsets. 

 

2.2.5.4 Statistical Arabic POS Taggers 

 

The Madamira tagger is a disambiguation and morphological analysis system which can 

perform various natural language processing tasks for the Arabic language such as 

tokenization, part-of-speech tagging, phrase chunking and other tasks [161]. According to 

Pasha and others [161], Madamira blends and improves some of the best services that the 

previously two used systems, MADA [103], [104], [106] and AMIRA [81], provide. The system 

was trained using the first three parts of the Penn Arabic Treebank, ATC, as shown in Table 

2.6. It supports both XML and plain text as input and output file type, and an online demo [161] 

of Madamira is made available at [162]. The Madamira tagset consists of 32 tags. There are 

several steps in Madamira's pre-processing of the text. First, it transliterates the text using the 

Buckwalter transliterator [65]. Then, it utilises the SAMA and CALIMA Analysers to 

morphologically analyse the text. Next, it creates SVM language models. Then, Madamira uses 

the morphological features to tokenise the text. The final step performs the phrase chunking 

and named entity recognition of the text by utilising SVM models [93]. 

 



 53 

 

System name Approach 

used 

Trained by Accuracy 

The Madamira tagger - Penn Arabic Treebank 

(ATB) 

95.9% 

The Stanford Arabic 

tagger 

Statistical Penn Arabic Treebank 

(ATB) 

96.49% 

Farasa system by 

Abdelali 

Statistical - 97.43% for MSA and 

84.44% for CA 

APT Arabic tagger Hybrid - 86% 

Al Shamsi and 

Guessoum 

Statistical - 97% 

Darwish tagger - Arabic dialects tagged 

tweets 

89.3% 

Table 2.6. A table summary of different Arabic POS taggers. 

 

The Stanford Arabic tagger was developed by Toutanova and Manning at Stanford University 

[200]. It is an open-source, multi-language, Java-based tagger that utilises a maximum entropy 

modelling technique, which according to Green, Marneffe and Manning [101] can achieve a 

tagging accuracy of 95.49% [93]. The Stanford tagger was also trained to tag other languages 

such as German, Spanish, French and Chinese and provides a command-line interface and an 

API. The first three parts of the Arabic Penn Treebank were used to train the Stanford Arabic 

tagger [199].  

 

Abdelali and others [6] have developed the Farasa segmenter for the Arabic language. The tool 

provides various tasks such as segmentation, POS tagging, Arabic text diacritisation, 

tokenisation and dependency parser. The developer used an SVM-rank approach that utilises 

linear kernels. For evaluation, the developer created a unique test set made of 70 WikiNews 

articles which include a diversity of themes published between 2013 and 2014. According to the 

developer, the tagger achieved an accuracy of 97.43% for tagging MSA text and 84.44% for 

tagging CA text. 

 

In 2002, the APT Arabic tagger was developed by Khoja [125], [127]. The tagger uses the hybrid 

approach with a tagset that is based on the BNC English tagset and consists of 131 tags. 

According to the author, the tagger reached an accuracy of 86%. Mohamed and Kübler [150] 

have developed an Arabic POS tagger that utilises two approaches, the first requires no 
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segmentation of the word and the second applies the basic POS word segmentation. According 

to Mohamed and Kübler, the first approach achieved an accuracy of 93.93% and the second 

approach achieved an accuracy of 93.41%. Al Shamsi and Guessoum [180] used a statistical 

method which employs HMMs to train an Arabic POS tagger. The tagger, which utilises 

Buckwalter's stemmer, as illustrated in Figure 2.16, and uses a tagset that includes 55 tags, 

achieved an accuracy of 97%. Darwish and others [76] have developed a POS tagger that tags 

four different Arabic dialects, which are Gulf, Maghrebi, Egyptian and Levantine. The tagger, 

which was trained by a new dataset that contains Arabic tagged tweets, has achieved an 

accuracy of 89.3%.  

 

 

Figure 2.16. Al Shamsi and Guessoum HMM POS Tagger architecture [180]. 

 

As stated, Arabic is a morphologically complex language that causes various difficulties for 

Natural Language Processing (NLP) [74], [161], [104], [38]. Diacritics are used in the Arabic 

language to disambiguate terms. The presence of the four diacritics in the text help in the lexical 

disambiguation of the word, as some words share identical component letters but different 

diacritics. Modern Standard Arabic text, which most of Arabic NLP tasks are designed for [84], 

is very commonly written without diacritics and the contextual information is used by the reader 

of the text to disambiguate the meaning of the term. As a result of the ambiguity problem, the 

use of the Rule-based approach to tag the text increases the number of unanalyzed and 

mistagged terms [109]. The statistical method of tagging the Arabic text is broadly utilised to 

solve the POS uncertainty of the Arabic text [180]. PPM is a statistical language model algorithm 

that was applied in several Arabic NLP tasks and the adoption of the algorithm in the Arabic 

POS tagging may increase the efficiency and reduce the ambiguity problem. 
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2.3 Summary and Discussion 

 

This chapter investigated the use of the PPM compression system for several Arabic NLP 

tasks, such as Arabic text compression and Arabic text classification. 

 

A survey of Arabic text compression was given with a focus on PPM text compression models. 

First, an overview of compressing the Arabic text was presented. Then a survey of the three 

text compression methods using the PPM algorithm was introduced, ending with a focus on 

the limitations of the previous experiments conducted to estimate the performance of the tag-

based method. 

 

Next, this chapter introduced a survey of Arabic text classification. Then, a focus on the use of 

minimum cross-entropy as a text classifier was presented. Also, current applications of 

classifying Arabic text using the PPM algorithms was introduced with a focus on the need for 

classifying the two types of Arabic text, MSA and CA. 

 

This chapter then presented an overview of language resources, for the Arabic language in 

particular. First, we reviewed language resources in general, followed by an overview of the 

annotated corpora for the Arabic language and the need to fill various gaps in annotated 

corpora. 

 

Finally, this chapter has also reviewed the field of POS tagging of Arabic text. First an overview 

of the topic was provided along with the three main approaches used for tagging text. Then, 

the statistical POS tagging approach was reviewed followed by a survey of some existing 

statistical Arabic POS taggers and their tagsets. 

 

The next chapter explores the approach of compressing Arabic text using parts-of-speech 

(tags) along with the text to give significantly better compression results when compared to 

current variations of PPM, word-based and character-based. 
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3.1 Introduction 

 

The previous chapter presented an overview of the Arabic language and surveyed the literature 

associated with this study by investigating the application of the PPM compression system to 

several Arabic NLP tasks. This chapter examines the use of tag-based compression of larger 

Arabic resources to re-evaluate the performance of tag-based compression which may 

reveal POS linguistic aspects of the Arabic language (as per research questions 1 and 

2). The best text compression algorithms can be applied to natural language 

processing tasks often with state-of-the-art results [196], [193], [195], [197], [15]. 

Therefore, improved tag-based compression has applications beyond the specific 

compression application. For example, compression of co-translated parallel text 

produces compressed text of similar sizes which leads to a more effective method for sentence 

alignment of parallel corpora [31]. 

 

The focus of this specific chapter is on compressing Arabic text (encoded using the UTF-8 

encoding scheme). The Arabic language poses many challenges for the NLP community due 

to interesting linguistic features that the language has, such as complicated morphology, dialect 

varieties and frequent code-switching [80] but to date, most of these unique Arabic NLP tasks 

have not been satisfactorily addressed. PPM can be successfully applied to many of these 

challenges in other languages such as English, Chinese and Welsh (see [193], [195], [196], 

[197], for example) but have yet to have been applied comprehensively to Arabic. One 

stumbling block is the need for more effective text compression algorithms for Arabic that can 

be applied to different Arabic NLP. 

 

The rest of the chapter is formed as follows. Section 3.2 mentions details about experiments on 

using PPM tag-based modelling to compress Arabic text. Section 3.3 discusses the results and 

limitations of those experiments. A summary and discussion are presented in section 3.4. 

 

A portion of this chapter has been published in a conference paper (Alkhazi, I. S., Alghamdi, M. 

A., & Teahan, W. J. (2017, September). “Tag based models for Arabic text compression”. In 

2017 Intelligent Systems Conference (IntelliSys) (pp. 697-705). IEEE.) 
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3.2 Tag Based Compression Experimental Setup 

 

The quality of the compression results depends on the quality and correctness of the tagging 

process. Currently, the resources for manually tagged Arabic corpus are limited, and the 

existing manually tagged corpora are small [26] as also shown in Table 3.1. Also, the size of 

the text being compressed affects the effectiveness of the compression, as will be mentioned 

later. So, to get a sufficient amount of tagged text to make the method effective, existing Arabic 

taggers, the Madamira Arabic POS tagger [161] and the Stanford Arabic POS tagger [100] were 

utilised. Since the two taggers were trained by the Arabic Treebank corpus [141], therefore, the 

corpora which have been used in these experiments were mostly written in MSA, which will 

reduce the amount of mistagged terms.  

 

This chapter used five different corpora. The first corpus is Corpus A [31]. It covers several 

subjects such as politics, opinions, legal issues, economics, conferences, business, cinema and 

books. The text in the corpus was gathered from the Al-Hayat website, a bilingual newspaper, 

and from the open-source online corpus, OPUS [30]. 

 

Data Set Corpus Size 
Character 

encode size 

Tag encode 

size 
Improvement 

AFP 138,223 23,512 32,844 -28.4% 

UMH 426,811 64,420 70,824 -9.0% 

XIN 158,997 25,974 29,189 -11.0% 

ALH 600,091 108,196 120,928 -10.5% 

ANN 195,043 39,196 56,765 -31.0% 

XIA 431,474 71,183 77,261 -7.9% 

Table 3.1. A sample of the tag-based compression results for the Prague Arabic 

Dependency Treebank. 

 

The second corpus used is the Bangor Arabic Compression Corpus (BACC) that contains 31-

millon words which was collected from several sources such as magazines, websites and 

books. The BACC consists of 16 files divided based on genre and size [26]. The third source is 

the King Saud University Corpus of Classical Arabic (KSUCCA) which is a relatively large 

corpus containing over 50 million words, divided into six genres. The main goal for the creation 
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of this corpus is analyzing the lexical meaning of the Holy Quran [40]. In this chapter, we used 

the parts that were mostly written in Modern Standard Arabic such as the Science sub-corpus.  

 

The fourth source is the Arabic in Business and Management Corpora (ABMC). El-Haj [89], 

[122] created several Arabic corpora such as EASC, KALIMAT, Arabic Dialects Dataset and 

ABMC. The corpora are articles obtained from WikiNews, newspapers and summaries of the 

articles, and is mostly written in MSA text. The fifth and last source is the Arabic Learner Corpus 

[21], which includes 282,732 terms, gathered from students of Arabic in Saudi Arabia. The 

corpus covers spoken and written text created by 942 pupils, from 67 various nationalities 

enrolled at pre-university and university levels. 

 

There are two steps to perform the tag-based compression experiments. First, you must tag 

each word in the text using, for example, the Madamira tagger or the Stanford tagger. Second, 

using the tag-based model, the tags should be encoded with the text itself. Even with the extra 

contextual information, a tag for each term, which has been added to the text, the hope is that 

the tag-based compression outperforms both the word-based and character-based 

compression of the original text. As stated, the experiments were done using Corpus A [31], 

BACC corpus [26], the King Saud University Corpus of Classical Arabic (KSUCCA) [40], the 

ABMC corpus [89], [122] and the Arabic Learner Corpus [21]. The text was tagged using 

Madamira [161] and Stanford [101] Arabic taggers. The PPM modelling was done using the 

Tawa toolkit [192]. 

 

The processing steps were as follow: 

• The text being compressed is first preprocessed to produce a tagger input file in XML 

for the Madamira tagger and raw text for Stanford tagger. 

 

• The text is then segmented and tagged using the Madamira tagger and the Stanford 

tagger. 

 

• Then, the segmented and tagged text from the output of both taggers, where every 

prefix/infix/suffix is tagged, is processed for the first part of the experiment. 
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• For the second part of the experiment, the tag for only the root, as shown in Figure 3.1 

for the Madamira tagger output, is selected as a tag for the entire term (not split by 

prefix/infix/suffix). 

 

 

Figure 3.1. The Madamira segmentation and tagging output for the term "الدولة" which 
translates to "the country". 

 

• Three compressed files are generated using tools provided by the Tawa toolkit [192]. 

The original text is first extracted from the tagged file, where every tag is removed and 

only the original text remain, then compressed using the order 5 PPMD character-based 

model but with the Arabic characters as defined by the UTF-8 encoding first converted 

to equivalent symbol numbers as described in [26]. 

 

• The same text is then compressed using an order 1 word-based model. 

 

• Finally, for the first part of the experiment, the two segmented and tagged text files, one 

for Madamira and the other is for Stanford tagger, are compressed using the Tawa 

toolkit [192] that uses the model described by equation (2.8). For the second part of the 

experiment, the two unsegmented and tagged text files are compressed using the same 

tool. 
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3.3 Compression Results 

 

The experimental results for Corpus A can be described into two parts (as shown in tables 3.2, 

3.3, 3.4 and 3.5) based on how words in the text were segmented when it was tagged. Each 

table lists the results for the three different types of text compression (character, word and tag-

based). In tables 3.2 and 3.4, the name of the text file being compressed and its size in bytes is 

shown in the first two columns. The compression output size (also in bytes) is then listed in the 

next four columns – for character-based compression first, then word-based compression, then 

tag-based compression in two columns using the tags generated by the two taggers. In tables 

3.3 and 3.5, the results are converted to a bits-per-character (“bpc”) compression ratio by 

dividing the encode output size in bytes multiplied by 8 (to determine the number of bits) then 

dividing by the number of Arabic characters in the text being compressed. 

 

 
Corpus Size 

(bytes) 

Character 
encode size 

(bytes) 

Word 
encode size 

(bytes) 

Madamira 
Tag encode 
size (bytes) 

Stanford 
Tag encode 
size (bytes) 

Books 10,111,728 992,932 1,768,654 869,342 900,598 

Business 23,794,220 2,954,882 4,583,372 2,809,082 2,878,069 

Cinema 48,405,798 7,693,241 10,413,103 7,599,585 7,786,930 

Conferences 19,683,004 2,463,988 3,810,208 2,349,752 2,406,579 

Crimes 9,200,719 1,341,031 1,891,607 1,356,279 1,386,562 

Decisions 15,172,319 1,465,637 2,650,080 1,261,969 1,307,147 

Economy 23,617,015 2,950,719 4,563,009 2,803,885 2,872,965 

Geographies 14,788,494 1,859,902 2,855,610 1,795,240 1,840,775 

Issues 9,775,694 1,248,016 1,882,561 1,217,472 1,248,534 

Law 14,459,749 1,816,820 2,784,756 1,756,683 1,800,847 

Politics 20,398,361 2,547,920 3,950,894 2,422,574 2,482,772 

Reports 14,568,403 1,853,284 2,822,415 1,795,010 1,839,161 

Stories 28,362,790 4,213,806 5,930,949 4,208,840 4,314,284 

Table 3.2. The compression output sizes using unsegmented text for Corpus A. 

 

The percentage improvement of the tag-based compressors compared to the previously best 

state-of-the-art PPMD character-based compressor (as shown in the tables) are shown in the 

final two columns in tables 3.3 and 3.5. The character and word-based results in tables 3.2, 3.3, 
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3.4 and 3.5 are the same since the text was processed in the same way – only the tag-based 

text, as described earlier, was processed differently (split by prefix/infix/suffix, as shown in 

figures 3.1 and 3.2, for tables 3.4 and 3.5, and not for tables 3.2 and 3.3). However, the 

character and word-based results have been duplicated in both tables to allow for ease of 

comparison. Note that the results for the word-based compression is noticeably worse than the 

results for both the character and tag-based methods which may be a reflection of the 

morphologically rich nature of Arabic text. This requires further investigation as results for other 

languages indicate that word-based compression is usually very competitive  [196]. However, 

this investigation is beyond the scope of this chapter which was focused on tag-based 

compression. 
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Madamira 
Improve. 

(%) 

Stanford 
Improve. 

(%) 

Books 0.79 1.40 0.69 0.71 14.22% 10.25% 

Business 0.99 1.54 0.94 0.97 5.19% 2.67% 

Cinema 1.27 1.72 1.26 1.29 1.23% -1.20% 

Conferences 1.00 1.55 0.96 0.98 4.86% 2.39% 

Crimes 1.17 1.64 1.18 1.21 -1.12% -3.28% 

Decisions 0.77 1.40 0.67 0.69 16.14% 12.12% 

Economy 1.00 1.55 0.95 0.97 5.24% 2.71% 

Geographies 1.01 1.54 0.97 1.00 3.60% 1.04% 

Issues 1.02 1.54 1.00 1.02 2.51% -0.04% 

Law 1.01 1.54 0.97 1.00 3.42% 0.89% 

Politics 1.00 1.55 0.95 0.97 5.17% 2.62% 

Reports 1.02 1.55 0.99 1.01 3.25% 0.77% 

Stories 1.19 1.67 1.19 1.22 0.12% -2.33% 

Table 3.3. The compression ratios (in bpc) when compressing the unsegmented text for 

Corpus A. 
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Figure 3.2. Sample segmented verse of the Holy Quran which translates to "merciful 
among themselves, you see them bowing and prostrating". 

 

 
Corpus Size 

(bytes) 

Character 

encode size 

(bytes) 

Word 

encode size 

(bytes) 

Madamira 

Tag encode 

size (bytes) 

Stanford 

Tag encode 

size (bytes) 

Books 10,111,728 992,932 1,768,654 915,434 916,565 

Business 23,794,220 2,954,882 4,583,372 2,721,276 2,718,995 

Cinema 48,405,798 7,693,241 10,413,103 7,318,652 7,402,514 

Conferences 19,683,004 2,463,988 3,810,208 2,274,826 2,273,345 

Crimes 9,200,719 1,341,031 1,891,607 1,268,526 1,272,853 

Decisions 15,172,319 1,465,637 2,650,080 1,348,677 1,349,478 

Economy 23,617,015 2,950,719 4,563,009 2,720,672 2,719,921 

Geographies 14,788,494 1,859,902 2,855,610 1,721,999 1,721,422 

Issues 9,775,694 1,248,016 1,882,561 1,162,636 1,163,376 

Law 14,459,749 1,816,820 2,784,756 1,686,617 1,685,836 

Politics 20,398,361 2,547,920 3,950,894 2,348,775 2,348,913 

Reports 14,568,403 1,853,284 2,822,415 1,720,206 1,719,935 

Stories 28,362,790 4,213,806 5,930,949 3,981,845 4,004,927 

Table 3.4. The compression output sizes using segmented text for Corpus A. 

 

The words for part one of the experiment (i.e. whose results are shown in tables 3.2 and 3.3) 

were not segmented (by prefix, infix and/or postfix), and the tag of the term’s root is assigned to 

the entire term. For example, the term ‘وإبراهيم’ might have been assigned the tag ‘prop_noun’ 

for the entire term. Whereas in part two of the experiment, the term ‘وإبراهيم’ was segmented into 

the prefix ‘و’, which is a conjunction, and the term ‘إبراهيم’, which is a ‘prop_noun'. Another 

example of text segmentation is the term ‘لعنصرها’ which has the tag ‘noun’ assigned to it in the 

first part. But in part two of the experiment, this term was segmented into three individual parts: 
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prefix, which is ‘ل’ with the tag ‘prep’ assigned to it, the term ‘عنصر’ with the tag ‘noun’ assigned 

to it and a suffix, which is ‘ها’ that has the tag ‘pron_dem’ assigned to it. Also, in both parts of the 

experiment, we used the default tagset adopted by the Madamira and Stanford Arabic taggers. 
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Madamira 

Improve. 

(%) 

Stanford 

Improve. 

(%) 

Books 0.79 1.40 0.72 0.73 8.5% 8.3% 

Business 0.99 1.54 0.91 0.91 8.6% 8.7% 

Cinema 1.27 1.72 1.21 1.22 5.1% 3.9% 

Conferences 1.00 1.55 0.92 0.92 8.3% 8.4% 

Crimes 1.17 1.64 1.10 1.11 5.7% 5.4% 

Decisions 0.77 1.40 0.71 0.71 8.7% 8.6% 

Economy 1.00 1.55 0.92 0.92 8.5% 8.5% 

Geographies 1.01 1.54 0.93 0.93 8.0% 8.0% 

Issues 1.02 1.54 0.95 0.95 7.3% 7.3% 

Law 1.01 1.54 0.93 0.93 7.7% 7.8% 

Politics 1.00 1.55 0.92 0.92 8.5% 8.5% 

Reports 1.02 1.55 0.94 0.94 7.7% 7.8% 

Stories 1.19 1.67 1.12 1.13 5.8% 5.2% 

Table 3.5. The compression ratios (in bpc) when compressing the segmented text for 

Corpus A. 

 

Tables 3.2 and 3.3 show that compressing the text which is not segmented and tagged with the 

Madamira Arabic tagger improves the compression of the original text over the character-based 

compressor by an average of 4.9%, whereas using the Stanford tagger improves the 

compression by an average of 2.2%. As stated, the tagging in this stage represents the whole 

term (with postfixes and prefixes). 

 

The second part of the results are shown in tables 3.4 and 3.5 which represents the 

improvement of the compression as a result of segmenting the words in the text, with each 

postfix and prefix being tagged and compressed as a separate term. By segmenting each word 
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into prefixes, infixes and postfixes, and then tagging each as a term, the compression results 

were improved significantly. For the text that was tagged by Madamira, the compression 

improved by 7.6% compared to the character-based compression. As for the text that was 

tagged by the Stanford tagger, the compression improved by 7.4%. 

 

The compression of the segmented text outperformed the same unsegmented text by 2.7%, for 

the text that was tagged by Madamira and 5.2% improvment for the text that was tagged by the 

Stanford tagger. This improvement of the compression reflects that the segmentation of the text 

is an essential step in the tagging process as stated by AlGahtani and McNaught [23], "Finding 

the correct tagging requires the correct segmentation in advance." Essentially, the correct 

tagging of the text made a better prediction of the upcoming term, and this has led to better 

compression as a result. 

 

The same experiment was performed on the BACC corpus. Using PPM tag-based 

compression to compress the largest sub-corpus, Book_collection, the compression was 

improved by 2.5% using the Madamira tagger and 2.4% using the Stanford tagger. This corpus 

mainly consists of religious books which are mostly written in classical Arabic. As stated before, 

both the Madamira and Stanford Arabic taggers were trained on the first three parts of the Arabic 

Treebank Corpus. This proves that different NLP applications should treat these texts 

separately by accurately classifying CA from MSA within the text. 

 

 Corpus Size 
Character 

encode size 

Word 

encode size 

Madamira 

Tag encode 

size 

Stanford Tag 

encode size 

Religion 140,112,368 19,057,454 28,380,731 19,189,175 19,209,861 

Literature 73,892,199 12,828,194 16,462,334 12,348,603 12,406,021 

Linguistics 64,085,357 10,877,334 14,138,294 10,713,179 10,768,099 

Science 59,038,146 9,547,210 12,831,102 9,397,481 9,428,971 

Table 3.6. The compression output sizes for the KSUCCA Corpus. 

 

The KSUCCA corpus [40] is divided into many genres and most of those genres are written in 

classical Arabic, the largest of which is the Religion sub-corpus, which contains the Holy Quran 

and other ancient Islamic books. Tables 3.6 and 3.7 illustrate the results of the compression 
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experiments using the sub-corpora Religion, Literature, Linguistics and Science. The use of 

classical Arabic text in the ancient Islamic books which was included in the Religion sub-corpus 

decreased the compression rate compared to the second, third and fourth sub-corpora, and this 

may reflect the fact that these sub-corpora consist of relatively more recent books. 

 

 

Character 

encode 

 bpc 

Madamira Tag 

encode bpc 

Stanford Tag 

encode bpc 

Madamira 

Improve. 

(%) 

Stanford 

Improve. 

(%) 

Religion 1.09 1.10 1.10 -0.7% -0.79% 

Literature 1.39 1.34 1.34 3.9% 3.4% 

Linguistics 1.36 1.34 1.34 1.5% 1.1% 

Science 1.29 1.27 1.28 1.6% 1.3% 

Table 3.7. The compression ratios (in bpc) when compressing the KSUCCA Corpus. 

 

ABMC is a relatively small corpora that consists mostly of MSA text. The Arabic Learner Corpus 

is also a small corpus written mostly in CA text. Tables 3.8 and 3.9 show the tag-based 

compression of ABMC, and tables 3.10 and 3.11 show the results of the tag-based compression 

of the Arabic Learner Corpus.  

 

Genre Corpus Size 
Char encode 

size 
Madamira Tag 
encode size 

Stanford Tag 
encode size 

Economic News 2,201,462 305,360 286,718 289,712 

Management 1,358,576 201,192 197,154 198,241 

Stock News 1,070,320 89,391 83,173 83,640 

Table 3.8. The compression output sizes for the ABMC Corpus. 

 

The results in tables 3.8 and 3.9 indicate that the tag-based compression of ABMC outperforms 

the character-based compression by an average of 4.77% using Madamira tagged text and 

3.90% using Stanford tagged text. The compression results for the Arabic Learner Corpus, as 

presented in tables 3.10 and 3.11, show that the character-based compression of the corpus 

surpasses the tag-based compression. The fact that the Arabic Learner Corpus is written in CA 

text may have caused a decrease in the quality of the tag-based compression. 
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Economic News 1.11 1.04 1.05 6.50% 5.40% 

Management 1.18 1.16 1.17 2.05% 1.49% 

Stock News 0.67 0.62 0.63 7.48% 6.88% 

Table 3.9. The compression ratios (in bpc) when compressing the ABMC corpus. 

 

Genre Corpus Size 
Char encode 

size 
Madamira Tag 
encode size 

Stanford Tag 
encode size 

Arabic Learner Corpus 2806467 469502 472541 477,506 

Table 3.10. The compression output sizes for the Arabic Learner Corpus. 
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Arabic Learner Corpus 1.34 1.35 1.36 -0.64% -1.68% 

Table 3.11. The compression ratios (in bpc) when compressing the Arabic Learner 

Corpus. 

 

According to the authors of the ATC, the corpus was written using Modern Standard Arabic. 

Therefore, the quality of the tagging of classical Arabic will be effected compared to when 

Modern Standard Arabic is being tagged. Table 3.12 shows a sample of classical Arabic tagged 

by the Madamira tagger, where many of the tags being assigned are not correct. The sample 

was taken from the BACC sub-corpus, ‘Arabic history’, where the text is written in classical 

Arabic. The compression results of both the BACC sub-corpora, ‘Book collection’, ‘Arabic 

book1’, ‘Arabic book2’, ‘Arabic book3’, and ‘Arabic history’, are shown in tables 3.13 and 3.14. 
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Term Tag Correct Tag 

 Adj Noun الفروسية

 Verb Proper Noun ماركوز

 Verb Noun شرانقا

 Verb Noun فواصل

Table 3.12. Sample of miss-tagged words. 

 

A random sample from a tagged classical Arabic text shows that a number of terms were miss-

tagged. An example is term "الفروسية" that translates to “the sport of horse riding”, which was 

tagged as "adj" whereas the term should be a "noun". Other examples are "ماركوز" that translates 

to “Marcos'”, "شرانقا" that translates to “a cover” and "فواصل" that translates to “commas”, which 

were all tagged as ‘verb’ when the right tag is "noun" as shown in Table 3.12. 

 

Genre Corpus Size 

Character 

encode 

size 

Word 

encode size 

Madamira 

Tag encode 

size 

Stanford 

Tag encode 

size 

Book collection 197,935,882 30,959,688 42,477,508 30,191,397 30,235,460 

Arabic History 30,251,137 4,206,076 5,937,257 4,267,257 4,286,946 

Press 536,692 100,879 117,440 102,749 104,344 

Arabic book1 829,036 164,445 187,353 170,881 173,793 

Arabic book2 884,273 176,896 200,961 183,935 186,466 

Arabic book3 977,286 190,482 219,284 199,225 202,239 

Table 3.13. The compression output sizes for the BACC corpus. 

 

Another limitation of tag-based compression is the size of the text file being compressed. Tag-

based compression of smaller texts is less effective as shown in tables 3.13 and 3.14, where 

the result on the two smaller files (Arabic History and Press) is not as good as the character-

based compression for these files. This is because PPM is an online adaptive system that needs 

relatively large amounts of training data to learn and build the tag-based models. 
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Book collection 1.25 1.22 1.22 2.5% 2.4% 

Arabic History 1.11 1.13 1.13 -1.4% -1.9% 

Press 1.50 1.53 1.56 -1.8% -3.3% 

Arabic book1 1.59 1.65 1.68 -3.77% -5.38% 

Arabic book2 1.60 1.66 1.69 -3.83% -5.13% 

Arabic book3 1.56 1.63 1.66 -4.39% -5.81% 

Table 3.14. The compression ratios (in bpc) when compressing the BACC corpus. 

 

Data 

Set 

Original Data 

Provider 
Related Corpora Corpus Size 

Character 

encode size 

Tag encode 

size 

AFP 
Agence France 

Presse 
Penn ATB Part 1 138,223 23,512 32,844 

UMH 
Ummah Press 

Service 
Penn ATB Part 2 426,811 64,420 70,824 

XIN 
Xinhua News 

Agency 
Arabic Gigaword 158,997 25,974 29,189 

ALH 
Al Hayat News 

Agency 
Arabic Gigaword 600,091 108,196 120,928 

ANN 
An Nahar News 

Agency 
Arabic Gigaword 195,043 39,196 56,765 

XIA 
Xinhua News 

Agency 
Arabic Gigaword 431,474 71,183 77,261 

Table 3.15. The compression output sizes the Prague Arabic Dependency Treebank. 

 

Further results for compressing small sized texts are shown in tables 3.15 and 3.16. Currently, 

the resources for manually tagged Arabic corpora are limited. The Prague Arabic dependency 

treebank [110] is a collection of manually tagged Arabic text. It consists of the first part of the 

Penn ATB and four other parts of Arabic Gigaword, all of which are made available at the Arabic 

UD treebank website [160], [141], [1], [110]. The less effective compression results for these 

texts (where the tags being used by the compressor are manually edited rather than 
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automatically assigned by a tagger) illustrates one limitation that PPM tag-based compression 

has when compressing small sized texts. The Madamira and Stanford taggers were not used 

to tag this corpus for this reason. 
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AFP 1.36 1.90 -28.4% 

UMH 1.21 1.33 -9.0% 

XIN 1.31 1.47 -11.0% 

ALH 1.44 1.61 -10.5% 

ANN 1.61 2.33 -31.0% 

XIA 1.32 1.43 -7.9% 

Table 3.16. The compression ratios (in bpc) when compressing the Prague Arabic 

Dependency Treebank. 

 

Previous experiments [26], which were performed to compare the three models on Arabic text, 

produced similar results to those shown in tables 3.15 and 3.16. According to Alhawiti [26], the 

only used resource was the first part of the Arabic Treebank Corpus (ATC), and as stated 

before, PPM is an online adaptive text compression system that needs relatively large amounts 

of training data to learn and build the tag-based models. Therefore, using PPM tag-based model 

to compress text will produce less effective results when compressing such a small corpus. 

Tables 3.17, 3.18 and Figure 3.3 illustrate the relation between the size of the corpus and the 

compression ratio. 
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Figure 3.3. Relation between PPM compression and corpus size. 

 

 

Characters 

Number 
Corpus Size 

Char encode 

size 

Madamira Tag 

encode size 

Stanford Tag 

encode size 

50,000 92,562 13,284 13,931 14,280 

250,000 469,968 67,373 67,657 68,636 

450,000 829,449 115,045 113,369 114,426 

650,000 1,197,432 165,646 162,437 163,721 

850,000 1,566,402 212,522 207,201 208,484 

1,000,000 1,842,044 248,670 241,493 242,929 

Table 3.17. The compression output sizes for different PPM models and different corpus 

size. 
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50,000 1.15 1.20 1.23 -4.64% -6.97% 

250,000 1.15 1.15 1.17 -0.42% -1.84% 

450,000 1.11 1.09 1.10 1.48% 0.54% 

650,000 1.11 1.09 1.09 1.98% 1.18% 

850,000 1.09 1.06 1.06 2.57% 1.94% 

1,000,000 1.08 1.05 1.06 2.97% 2.36% 

Table 3.18. The compression ratios (in bpc) for different PPM models and different corpus 

size. 

 

Since PPM tag-based model uses two streams, a tag stream and a word stream to build the 

model, compressing the text using the character-based model will take less time compared to 

the tag-based model since the latter requires the text to be tagged during preprocessing. For 

example, Table 3.19 compares the average time, in seconds, required to compress five 

corpora. First, the file has to be tagged using the Madamira or Stanford Arabic tagger. Second, 

the tagged file is processed and the tags are extracted. Finally, the formatted file is compressed 

using the Tawa toolkit [192]. In contrast, to compress an Arabic corpus using a character-based 

model, first, the Arabic letters are converted to unsigned integers. Then, the resulting file is 

passed to PPM for compression. 

 

3.4 Summary and Discussion 

 

Tag-based compression of Arabic text based on the Prediction-by-Partial Matching (PPM) text 

compression scheme was investigated and compared with character-based and word-based 

methods. The tag-based method requires first tagging the text being compressed, and then 

transmitting both the words in the text along with their tags. The results of compressing tagged 

and untagged texts show that using tag-based compression significantly outperforms both the 

word-based and character-based models, and the added extra-tag information improves overall 

compression compared to the untagged compressed text. 
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Books 7.7 49.9 

Business 22.6 131.5 

Conferences 18.6 107.2 

Crimes 8.7 51.5 

Issues 8.1 56.5 

Table 3.19. Corpus A compression time when using the PPM character-based and tag-

based compression. 

 

Two taggers for tagging the text were investigated – Madamira and the Stanford tagger. Using 

segmented text which was tagged by Madamira, the compression was improved by 7.6% as 

opposed to an 7.4% improvement when the Stanford tagger was used when compared to the 

state-of-the-art PPM character-based model. Future improvements can be made by improving 

the quality of the tagging process. The results also indicate that there is a difference in quality 

between tagging Classical Arabic and Modern Standard Arabic. One way of addressing this is 

to investigate whether it is possible to distinguish the two types of the Arabic language (MSA 

and CA). The PPM tag-based compression technique also provides an interesting way for 

evaluating the performance of different Arabic taggers and for helping to investigate the linguistic 

validity of the tagsets. 

 

The next chapter will investigate the use of minimum cross-entropy as a text classifier to classify 

and segment the two types of Arabic text to overcome the problem of code-switching in Arabic 

text and improve the tag-based compression of the Arabic text, and help improve for other 

Arabic NLP tasks that are designed for specific types of Arabic text such as Arabic POS tagging. 

 

 

 

 

 



 74 

 

CHAPTER    4 

 

Classifying and Segmenting 

Classical and Modern Standard 

Arabic using Minimum Cross-

Entropy 

 

 

 

 

Contents 
 

4.1 Introduction ............................................................................................................................................ 75 

4.2 Initial Classification Experiments .......................................................................................................... 77 

4.3 Classifying Arabic Corpora .................................................................................................................... 79 

4.3.1 Document Level Text Classification ............................................................................................... 79 

4.3.2 Line Level Classification ................................................................................................................. 82 

4.4 Segmenting Mixed Arabic Corpora ....................................................................................................... 84 

4.4.1 Segmenting Mixed Arabic Text ...................................................................................................... 84 

4.4.1 Investigating Mixed Arabic Corpora .............................................................................................. 85 

4.5 Tag-based Compression Experiments ................................................................................................... 87 

4.6 Summary and Discussion ...................................................................................................................... 89 

 



 75 

 

4.1 Introduction 

 

The previous chapter investigated the use of the tag-based compression of various Arabic 

resources to re-evaluate the performance of tag-based compression. The results from the last 

chapter indicate that some Arabic corpora, such as the Bangor Arabic Compression Corpus 

(BACC), is a mixture of both CA and MSA text. An example is the BACC sub-corpus ‘Arabic 

book1’, which includes both recent novels with ancient Arabic poems. (See Figure 2.9 for one 

example). The results of utilising such a corpus in order to perform various NLP tasks will vary 

and will not be consistent and reliable, as demonstrated in the previous chapter. Consequently, 

NLP applications should treat these texts separately and use different training data for each or 

process them differently, and therefore this provides the main motivation for this chapter. This 

chapter investigates whether it is possible to distinguish the two types of the Arabic language 

(MSA and CA) using PPM (as per research question 4). 

 

The work in this chapter uses an approach based on the Prediction-by-Partial Matching (PPM) 

compression scheme (order 5 PPMD in particular), as the basis of both text classification and 

segmentation. This Markov-based approach effectively uses character-based language models 

and has been employed in many NLP tasks in the past often with state-of-the-art results or 

results competitive with traditional schemes [196], [193], [195], [197], [15], [194].  

 

The chapter reports the experiments that were performed as part of the evaluation of the PPM 

classifier and segmenter when applied to Arabic text. Four experiments were conducted: (A) 

initial classification experiments in section 4.2; (B) classification of published Arabic MSA and 

CA corpora in section 4.3; (C) segmentation of the same Arabic corpora in section 4.4; and (D) 

tagged-based compression experiments of Arabic text in section 4.5. A summary and 

discussion are presented in section 4.6.  

 

The first experiment uses 200 files for the initial evaluation process. The second experiment 

examines the result of classifying a number of published Arabic MSA and CA using minimum 

cross-entropy as described in section 2.2.3. The third experiment conducts classification of each 

separate line for the same Arabic corpora used in section 4.3.1 to find out whether different 

Arabic corpora have a mixture of CA and MSA text. The fourth experiment performs text 

segmentation on a text file with a mixture of CA and MSA sentences that were gathered 



 76 

 

randomly from the testing files used in section 4.2. The fifth experiment conducts text 

segmentation to investigate whether different Arabic corpora have a mixture of CA and MSA 

text by examining the results of segmenting the same Arabic corpora used in section 4.3.1. All 

experiments in section 4.4 use a Viterbi-based algorithm that finds the most probable sequence 

of segmented characters. Lastly, section 4.5 utilises the results of tag-based compression 

obtained in Chapter 3 to examine the correlation between the quality of the compression with 

the classification results from the previous section. 

 

The published Arabic MSA and CA corpora which were used in this chapter are the Bangor 

Arabic Compression Corpus (BACC) [26], the Universal Dependencies (UD) project corpus [1], 

the Arabic in Business and Management corpus (ABMC) [88] and the Arabic Learner Corpus 

[22]. The Universal Dependencies corpus (UD), which according to the authors, is an MSA 

corpus containing mainly newswire. The corpus is based on other Arabic sources such as the 

Prague Arabic Dependency Treebank (PADT) [78] and the Penn Arabic Treebank (PATB) [79]. 

The second corpus is the ABMC corpus. According to the El-Haj [88], the Arabic in Business 

and Management Corpora is obtained from WikiNews, newspapers and summaries of the 

articles, and is mostly written in MSA text. The Arabic Learner Corpus is a small corpus written 

mostly in CA text as stated before. The final corpus utilised in this chapter is the BACC corpus. 

According to Alhawiti [26], BACC corpus comprises 14 genres that contain CA text such as 

Arabic book1, Arabic history and Arabic literature, and MSA text such as Education, Political 

and Press. 

 

Segmenting Arabic text increases the performance of some NLP applications such as parts-of-

speech tagging. As stated before, most Arabic NLP tasks are trained and built for MSA. The 

performance of such a task drops when applied to Classical text [42], [38]. The motive of this 

chapter is to classify and segment CA and MSA using the PPM character-based compression 

algorithm to overcome the problem of code-switching in Arabic text and improve the 

performance of NLP tasks that are designed for specific type of Arabic text. The experiments in 

this chapter used two language models, one for CA and another for MSA. Published Arabic 

corpora that contain mostly the required type of Arabic text were used to train the two static 

models. The MSA model was trained using Corpus A [31]. The second model used in this 

chapter was trained using CA text from parts of the King Saud University Corpus of Classical 

Arabic (KSUCCA) [40]. As stated, the corpus is relatively large and it contains over 50 million 
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words, split into six genres such as Literature, Linguistics and Science. To generate a relatively 

similar size set of training text as the first model (as this helps improve classification accuracy), 

the sub-genre Religion was not included in the training process. To obtain a more robust 

evaluation and ensure the training text used for the models was separate from the testing text, 

a tenfold cross-validation technique was used for the classification experiments. 

 

Both the PPM language modelling and the segmentation were performed using the Tawa toolkit 

[192]. This toolkit allows static models to be created from training text. That is, once the models 

have been created, they can be used to prime the model(s) used by the application and are 

subsequently not altered during the compression, classification or segmentation processes. 

 

A portion of this chapter has been published in a journal paper (Alkhazi, I. S., & Teahan, W. J. 

(2017). Classifying and Segmenting Classical and Modern Standard Arabic using Minimum 

Cross-Entropy. International Journal of Advanced Computer Science and Applications, 8(4), 

421-430.) 

 

4.2 Initial Classification Experiments 

 

This initial experiment was conducted to evaluate the PPM classifier in order to perform an initial 

experiment with some sample test files to find out how well a PPM classifier would perform at 

distinguishing between MSA and CA text. The testing files were divided into two groups, each 

with 100 files. The first group comprised 100 files that contained CA text randomly gathered 

from the Holy Quran, Islamic books such as Ibn Qayyim and Ahmad ibn Hanbal and poems 

from the famous Arab poet, Al-Mutanabbi. The second group comprised 100 files containing 

MSA text randomly collected from popular Arabic news websites such Aljazeera.net [28], BBC 

Arabic [51] and skynewsarabia [184] and recently published novels. 

 

Four evaluation criteria (Accuracy, Recall, Precision and F-measure) were used to evaluate the 

classification results using the following equations: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4.1) 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

where 𝑇𝑃 is the true positives which are the number of cases where the prediction matches 

the type of Arabic text and 𝑇𝑁 is the true negatives which represent the number cases where 

the prediction does not match the type of Arabic text, and 𝐹𝑃 and 𝐹𝑁 are the false positives 

and false negatives respectively, as shown for the confusion matrix in Table 4.1. 

 

 Predicted CA Predicted MSA 

Actual CA TN FP 

Actual MSA FN TP 

Table 4.1. How true positives (TP), true negatives (TN), false positives (FP) and false 

negatives (FN) are defined for a confusion matrix. 

 

Classifying the Classical and MSA text using the PPM compression algorithm obtained an 

accuracy of 95.5%, an average precision of 0.958, an average recall of 0.955 and an average 

F-measure of 0.954. The results in Table 4.2 show that the PPM classifier predicted all the 100 

files that contain CA text and 91 out of 100 files which have MSA text. 

 

 Predicted CA Predicted MSA 

Actual CA 100 0 

Actual MSA 9 91 

Table 4.2. PPM classification results. 

 

 

(4.2) 

(4.3) 

(4.4) 
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4.3 Classifying Arabic Corpora 

 

The previous section showed that on the sample of 200 files, the PPM classifier performed well 

at distinguishing between MSA and CA text. Section 4.3.1 performs a document level 

classification of published Arabic MSA and CA corpora to find out how well a PPM classifier 

would perform at differentiating between MSA and CA corpora. Section 4.3.2 performs 

classification of each separate line in the corpora using PPM, to find out whether different Arabic 

corpora have a mixture of CA and MSA text. 

 

4.3.1 Document Level Text Classification 

 

The experiment described in this section examined how well a PPM classifier would perform at 

differentiating between MSA and CA corpora on a document level. Table 4.3 displays the results 

of this experiment for the UD corpus, Table 4.4 for the ABMC, Table 4.5 for the Arabic Learner 

Corpus and Table 4.6 for the BACC corpus. The tables list the size of the text files, the size of 

the compressed output files (in bytes), the compression ratios (in bits per character or ‘bpc’) and 

the type (CA or MSA) predicted from the model with the best compression (as per the 

classification procedure in section 2.2.3 using equation 2.13).  

 

The steps of the experiment are as follows: 

• Using the two static models created earlier for priming, two compressed files are 

generated by compressing the Arabic texts using an order 5 PPMD character-based 

compression scheme. 

 

• Then, the cross-entropy i.e. the size of the two compressed files, are compared and the 

class label of the text, in this case CA or MSA, is chosen from the file with the smallest 

compressed size. 
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AFP 138,223 35,788 33,149 2.07 1.92 MSA 

UMH 426,811 106,478 97,517 2.00 1.83 MSA 

XIN 158,997 40,660 36,709 2.05 1.85 MSA 

ALH 108,599 27,419 25,536 2.02 1.88 MSA 

ANN 130,068 32,847 31,227 2.02 1.92 MSA 

XIA 293,104 74,650 67,550 2.04 1.84 MSA 

Table 4.3. Classification results of the UD corpus. 

 

Genre 
Corpus 

Size 

Classical 

model 

Compression 

(bytes) 

Modern 

model 

Compression 

(bytes) 

Classical 

bpc 

Modern 

bpc 

Predicted 

Type 

Economic 

News 
2,201,462 544,181 496,183 1.98 1.80 MSA 

Management 1,358,576 317,477 275,826 1.87 1.62 MSA 

Stock News 890,493 224,493 199,571 2.02 1.79 MSA 

Table 4.4. Classification results of the ABMC corpus. 

 

Genre 

C
o

rp
u

s
 S

iz
e

 

C
la

s
s

ic
a
l m

o
d

e
l 

C
o

m
p

re
s

s
io

n
 

(b
y
te

s
) 

M
o

d
e
rn

 m
o

d
e

l 

C
o

m
p

re
s

s
io

n
 

(b
y
te

s
) 

C
la

s
s

ic
a
l b

p
c

 

M
o

d
e
rn

 b
p

c
 

P
re

d
ic

te
d

 T
y
p

e
 

Arabic Learner Corpus 2,806,467 620,563 630,306 1.77 1.80 CA 

Table 4.5. Classification results of the Arabic Learner Corpus. 
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Arabic 

book1 
829,036 187,362 192,804 1.81 1.86 CA 

Arabic 

book2 
884,273 202,343 206,271 1.83 1.87 CA 

Arabic 

book3 
977,286 223,451 229,887 1.83 1.88 CA 

Arabic 

history 
30,251,137 5,750,445 7,838,286 1.52 2.07 CA 

Arabic 

literature 
18,594,383 3,846,029 4,877,075 1.65 2.10 CA 

Arabic 

poems 
46,929 11,701 12,313 1.99 2.10 CA 

Art and 

music 
41,770 9,665 9,137 1.85 1.75 MSA 

articles 101,641 22,982 21,630 1.81 1.70 MSA 

Book 

collection 
197,935,882 40,631,602 48,551,255 1.64 1.96 CA 

culture 34,188 7,867 7,363 1.84 1.72 MSA 

Economic 15,352 3,583 3,066 1.87 1.60 MSA 

Education 26,418 6,078 5,504 1.84 1.67 MSA 

Political 46,884 10,995 9,785 1.88 1.67 MSA 

Press 536,692 122,961 111,260 1.83 1.66 MSA 

Sports 31,059 7,225 6,659 1.86 1.72 MSA 

Stories 1,022,476 242,699 237,372 1.90 1.86 MSA 

Table 4.6. Classification results of the BACC. 

 

The classification results in tables 4.3, 4.4, 4.5 and 4.6 show that the PPM classifier predicted 

the correct type of text for all corpora. The classification results in this experiment reflect the 

dominant type of text in the corpus, and the small difference in compression sizes between the 

CA and MSA models suggests that the corpus may contain a mixed text of both CA and MSA 

text, such as the Arabic Learner Corpus in Table 4.5. 
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4.3.2 Line Level Classification 

 

Classifying corpora of unknown origins, or for which it may be suspected of having a mixture of 

CA and MSA text, will help Arabic NLP researchers to confirm their content. The previous 

section showed that PPM classifier performed well at distinguishing between MSA and CA 

corpora. The results also reveal that some corpora, such as the Arabic Learner Corpus, may 

contain a mixed text of both CA and MSA. This section will investigate whether performing a 

classification of each separate line in the same Arabic corpora used in section 4.3.1 detects the 

code-switching found in some Arabic corpora. Table 4.7 presents the results of this experiment 

for the UD corpus, Table 4.8 for the ABMC corpus, Table 4.9 for the Arabic Learner Corpus and 

Table 4.10 for the BACC corpus. In the first column of the tables, the total number of lines in the 

corpus is listed, the total number of predicted CA and MSA lines and the percentage of each 

class. 

 

Data set 
Number of 

lines 
Classical 

lines 
 Modern 

lines 
Classical 

% 
Modern 

% 

AFP 11,375 4,693 6,682 41.26% 58.74% 

UMH 35,056 14,036 21,020 40.04% 59.96% 

XIN 12,524 4,844 7,680 38.68% 61.32% 

ALH 9,134 3,653 5,481 39.99% 60.01% 

ANN 11,377 4,832 6,545 42.47% 57.53% 

XIA 23,983 9,452 14,531 39.41% 60.59% 

Table 4.7. Line level classification results of UD corpus. 

 

Genre 
Number of 

lines 
Classical 

lines 
 Modern 

lines 
Classical 

% 
Modern 

% 

Economic 
News 

176,399 60,026 116,373 34.03% 65.97% 

Management 5,442 456 4,986 8.38% 91.62% 

Stock News 403 24 379 5.96% 94.04% 

Table 4.8. Line level classification results of the ABMC corpus. 

 

Genre 
Number 
of lines 

Classical 
lines 

Modern 
lines 

Classical 
% 

Modern 
% 

Arabic Learner Corpus 8,959 3,581 5,378 39.97% 60.03% 

Table 4.9. Line level classification results of the Arabic Learner Corpus. 
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Genre 
Number of 

lines 
Classical 

lines 
 Modern 

lines 
Classical % Modern % 

Arabic book1 1,859 1,342 517 72.19% 27.81% 

Arabic book2 2,613 1,685 928 64.49% 35.51% 

Arabic book3 997 786 211 78.84% 21.16% 

Arabic history 91,719 67,251 24,468 73.32% 26.68% 

Arabic literature 69,618 67,635 1,983 97.15% 2.85% 

Arabic poems 1,259 934 325 74.19% 25.81% 

Art and music 172 18 154 10.47% 89.53% 

Articles 196 41 155 20.92% 79.08% 

Book collection 540,026 484,221 55,805 89.67% 10.33% 

Culture  74 23 51 31.08% 68.92% 

Economic  38 1 37 2.63% 97.37% 

Education  119 5 114 4.20% 95.80% 

Political  130 6 124 4.62% 95.38% 

Press  1,090 104 986 9.54% 90.46% 

Sports  81 11 70 13.58% 86.42% 

Stories  9,306 2,396 6,910 25.75% 74.25% 

Table 4.10. Line level classification results of BACC. 

 

The steps of the experiment are as follows: 

• Using the two static models created earlier for priming, each line of the corpus is 

compressed using an order 5 PPMD character-based compression scheme. 

 

• Then, the cross-entropies i.e. the sizes of the compressed line are compared and the 

class label of the text, in this case CA or MSA, is chosen from the result with the smallest 

compressed size, then the number of lines for each class is counted. 

 

The classification results from these tables confirm the results of the previous section which 

indicate that some Arabic corpora contain different types of Arabic text, such as the Arabic 

Learner Corpus in Table 4.9. Examining the Arabic Learner Corpus reveals that the number of 

terms in each line is uneven which will reduce the accuracy of classification by not reflecting the 

true ratio of each type of text in a document, as the classification result of a text line containing 

one term is equivalent, using this method of classification, to the classification result of a text 

line with many terms. This raises the need for a method to segment the types of text within the 

text which will reflect an accurate picture of the textual contents. 
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4.4 Segmenting Mixed Arabic Corpora 

 

The experiment in this section was conducted to find out how well a PPM classifier would 

perform at segmenting MSA and CA text within the text. Two experiments were performed. 

Section 4.4.1 shows the results of the first experiments where PPM segmented a mixed text 

file. Section 4.4.2 investigates whether PPM can be used to segment different Arabic corpora 

that have a mixture of CA and MSA text. Both experiments performed a text segmentation using 

a Viterbi-based algorithm that finds the most probable sequence of characters of each class, 

category or topic in the text [195] where all possible segmentations (as defined by switching 

between encoding models) are considered. 

 

4.4.1 Segmenting Mixed Arabic Text 

 

The experiment in this section was conducted to evaluate the PPM segmentation performance. 

A text file with a mixture of CA and MSA text that was gathered randomly from the testing files 

used in Section 4.2. The text contained 100 sentences, 50 of which are written in MSA and 50 

sentences contained CA text, distributed randomly. The Tawa toolkit [192] was used to segment 

the text file at the character level to insert labels (tags), either CA or MSA, inside the text. The 

segmentation in this step was applied using a Viterbi-based algorithm [195]. The output file is 

then processed and the segmented CA and MSA sentences are then examined. 

 

 Predicted CA Predicted MSA 

Actual CA 47 3 

Actual MSA 11 39 

Table 4.11. PPM segmentation results. 

 

Segmenting the CA and MSA text using the PPM compression algorithm obtained an accuracy 

of 86%, an average precision of 0.869, an average recall of 0.86 and an average F-measure of 

0.859. The results in Table 4.11 reveal that the PPM segmented 47 out 50 CA sentences and 

39 out of 50 MSA sentences correctly. A sample of the segmented text is shown in Figure 4.1. 

The text contains three Arabic sentences in one line; the first sentence is a news feed obtained 

from Aljazeera website (MSA text), and the other two are from Hadith books (CA text). 
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Figure 4.1. Segmenting MSA, the first three lines, and CA text, the last seven lines, using 
PPM. 

 

4.4.1 Investigating Mixed Arabic Corpora 

 

The previous section showed that PPM performed well at segmenting MSA and CA sentences 

within the text. Therefore, we use this result in this section to find out whether different Arabic 

corpora have a mixture of CA and MSA text by investigating the results of segmenting the same 

Arabic corpora used in Section 4.3.1. 

 

This experiment was conducted as follows: 

• The Tawa toolkit [192] was used to segment the text file at the character level to insert 

labels (tags), either CA or MSA, inside the text. The segmentation in this step was 

applied using a Viterbi-based algorithm [195].  

 

• Then, a post-processing of the resulting file was performed to count all the terms of each 

label. 

 

Table 4.12 displays the outcomes of this experiment for the UD corpus, Table 4.13 for the 

ABMC, Table 4.14 for the Arabic Learner Corpus and Table 4.15 for the BACC corpus. The 
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tables list the numbers of words in the segmented files for both CA and MSA texts and the 

percentages of each. 

 

Data set 
Number of 

words 

Number of 

Classical 

words 

Number of 

Modern 

words 

Classical 

(CA)% 

Modern 

(MSA) % 

AFP 11,369 594 10,775 5.22% 94.78% 

UMH 34,765 2,053 32,712 5.91% 94.09% 

XIN 12,666 554 12,112 4.37% 95.63% 

ALH 9,019 1,078 7,941 11.95% 88.05% 

ANN 11,152 2,252 8,900 20.19% 79.81% 

XIA 23,930 617 23,313 2.58% 97.42% 

Table 4.12. Segmentation results of the UD corpus. 

 

Genre 
Number of 

words 

Number of 

Classical 

words 

Number of 

Modern 

words 

Classical 

(CA) % 

Modern 

(MSA) % 

Economic 

News 
169,374 12,200 157,174 7.20% 92.80% 

Management 121,603 7,192 114,411 5.91% 94.09% 

Stock News 87,943 53 87,890 0.06% 99.94% 

Table 4.13. Segmentation results of the ABMC corpus. 

 

Genre 
Number 

of words 

Number of 

Classical 

words 

Number 

of 

Modern 

words 

Classical 

(CA) % 

Modern 

(MSA) 

% 

Arabic Learner Corpus 287,107 161,897 125,210 56.39% 43.61% 

Table 4.14. Segmentation results of the Arabic Learner Corpus. 

 

The results from tables 4.12, 4.13, 4.14 and 4.15 indicate that some Arabic corpora contain 

mixed CA and MSA text, and the PPM compression models can be used to produce an 

accurate estimate of the extent of both Arabic text types. The illustration of the segmentation 

process is shown in Figure 4.2 which shows randomly selected segmented samples from two 
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of BACC sub-genre, ‘Arabic literature’ and ‘Arabic book1’. The sample demonstrates typical 

output of the segmentation process which produces an accurate picture of the textual contents. 

 

Figure 4.2. Random segmented samples from the BACC. 

 

 

4.5 Tag-based Compression Experiments 

 

Most Arabic language NLP systems are made for processing MSA [84]. Since most popular 

recognised Arabic POS taggers were trained on MSA text [141], the tagging of mixed corpora 

text will vary in quality and will not be consistent and reliable. This section utilises the results of 

tag-based compression obtained in Chapter 3 to examine the correlation between the quality of 

the compression with the classification results from the previous section. 

 

Table 4.16 lists some the of tag-based compression results obtained in Chapter 3 with the 

classification results from previous sections. It shows in the second column the percentage 

improvement in compression for the tag-based compression scheme over the character-based 

compression scheme, and the type of text (CA or MSA) in the third column that was confirmed 

in the earlier experiments. A positive percentage improvement indicates the tag-based 

compression was better, and a negative improvement indicates the character-based 

compression was better. 

 

The results in Table 4.16 show that utilising the tags to compress the BACC sub-corpus ‘Arabic 

literature’, which was found to consist of 99.74% Classical Arabic text, decreases the 

compression by 4.38% (compared with the character-based compression scheme). However, 

using the same compression model to compress the ABMC sub-corpus ‘Economic News’, 

which was found to consist of 92.80% MSA text, increases the compression by 6.50% 

(compared with the character-based compression scheme). The difference in compression 

quality provides an indication that the quality of tagging for the CA text has dropped, compared 

to the quality of tagging for the MSA text, because the compression size has increased. 
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Genre 
Number of 

words 

Number of 

Classical 

words 

Number of 

Modern 

words 

Classical 

(CA)% 

Modern 

(MSA) % 

Arabic book1 85,441 65,867 19,574 77.09% 22.91% 

Arabic book2 89,015 61,645 27,370 69.25% 30.75% 

Arabic book3 104,055 83,503 20,552 80.25% 19.75% 

Arabic history 3,350,365 3,348,513 1,852 99.94% 0.06% 

Arabic 

literature 
1,983,790 1,978,670 5,120 99.74% 0.26% 

Arabic poems 4,701 4,151 550 88.30% 11.70% 

Art and music 3,985 528 3,457 13.25% 86.75% 

Articles 9,624 1,792 7,832 18.62% 81.38% 

Book 

collection 
20,725,720 19,836,491 889,229 95.71% 4.29% 

Culture 3,107 476 2,631 15.32% 84.68% 

Economic 1,376 3 1,373 0.22% 99.78% 

Education 2,437 33 2,404 1.35% 98.65% 

Political 4,317 62 4,255 1.44% 98.56% 

Press 50,977 4,351 46,626 8.54% 91.46% 

Sports 2,875 221 2,654 7.69% 92.31% 

Stories 111,809 28,664 83,145 25.64% 74.36% 

Table 4.15. Segmentation results of the BACC. 
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BACC – Arabic history -1.4% CA 

BACC – Arabic literature -4.38% CA 

ABMC – Economic News 6.50% MSA 

ABMC – Stock News 7.48% MSA 

Table 4.16. Tag-based Compression on CA and MSA Text. 
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4.6 Summary and Discussion 

 

Classification of Classical Arabic (CA) and Modern Standard Arabic (MSA) text was performed 

on sample texts using a PPM character-based compression scheme achieving an accuracy of 

95.5%, an average precision of 0.958, an average recall of 0.955 and an average F-measure 

of 0.954. Further classification experiments were conducted in this study to analyse mixed 

Arabic corpora. A line-level classification of Arabic corpora was performed and the results 

showed that different sub-genres of some Arabic corpora contain a mixture of CA and MSA. 

The fourth experiment performed text segmentation on a text file with a mixture of CA and MSA 

sentences that were gathered randomly from the testing files used in section 4.2. Segmenting 

the CA and MSA text using the PPM compression algorithm obtained an accuracy of 86%, an 

average precision of 0.869, an average recall of 0.86 and an average F-measure of 0.859. 

Further segmentation experiments were conducted to investigate whether different Arabic 

corpora have a mixture of CA and MSA text by examining the results of segmenting different 

Arabic corpora. The results from the last segmentation experiment confirmed the results 

obtained in section 4.3.2, which showed that different Arabic corpora have a mixture of CA and 

MSA text. Lastly, section 4.5 utilised the results of tag-based compression that were reported in 

Chapter 3 to examine the correlation between the quality of the compression with the 

classification results from the previous sections. The results in section 4.5 provides an indication 

that the quality of the tagging is affected when either CA and MSA text is being tagged, as 

confirmed in [42], [41], [38], therefore showing that NLP applications (such as taggers) should 

treat these texts separately and use different training data for each or process them differently. 

 

The next chapter will describe the creation of the new Bangor Arabic Annotated Corpus (BAAC) 

which is a Modern Standard Arabic (MSA) corpus that comprises 50K words manually 

annotated by parts-of-speech. 
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5.1 Introduction 

 

The previous chapter explored the approach of classifying Arabic text using PPM. This chapter 

describes the creation of the new Bangor Arabic Annotated Corpus (BAAC) which is a Modern 

Standard Arabic (MSA) corpus that comprises 50K words manually annotated by parts-of-

speech. 

 

POS annotated corpora are essential for the development of many NLP systems, such as part-

of-speech tagging [180], statistical modelling [111]. The lack of such resources limits some 

researchers from progressing further in their efforts. The limited availability of some existing 

annotated corpora and the cost of acquiring others are one of the main reasons that contribute 

to resource scarcity. Several efforts have been made to overcome the lack of resources [37], 

[9], [85].  

 

There exist some Arabic language resources that cannot be utilised by many researchers. 

Alhawiti [26] stated that availability, and cost issues, were significant issues such as for the 

Arabic Treebank corpus [141]. Other resources are designed to be used for particular research 

or annotated using a distinctive tagset produced for an explicit purpose. The Qur’anic Arabic 

Dependency Treebank is one example where the text is written in CA text and the corpus uses 

a tagset which is designed to tag CA text using traditional Arabic grammar [85], [30]. This need 

for annotated corpora, which are necessary for the development of many NLP systems, 

provided the motivation to create a manually annotated corpus for the Arabic language for this 

study (as per research question 5). 

 

Another goal is to provide a new resource required by many kinds of research, such as the 

ongoing tag-based text compression research in chapter 3, where the only annotation required 

at this stage is POS tags. The tagset used to annotate the new corpus is the same as used by 

the Madamira Arabic tagger, for reasons that will be discussed in the annotation tagset section 

(section 5.3). Since the Madamira Arabic POS tagger is trained by the Arabic Treebank corpus 

[141], and that corpus is written in MSA, the newly annotated corpus must also be written in 

MSA.  
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The chapter is organised as follows. Section 5.2 presents the sources used to created the newly 

created annotated corpus. The next section, section 5.3, interduces the tagset used in the 

annotation process. Section 5.4 describes the automatic POS tagging of the selected text. The 

newly developed annotation tool was presented in section 5.5. The following section, section 

5.6, describes the data preparation stage of the annotation process. The new annotated corpus 

is evaluated in section 5.7. Section 5.8 presents the new corpus statistics and section 5.9 is the 

summary and discussion of this chapter. 

 

A portion of this chapter has been published in a journal paper (Alkhazi, Ibrahim S., and William 

J. Teahan. “BAAC: Bangor Arabic Annotated Corpus.” International Journal of Advanced 

Computer Science and Applications.11 (2018): 131-140.) 

 

5.2 The Data Source 

 

The data source for the new corpus is the Press sub-corpus from the BACC corpus [26]. The 

BACC corpus was created originally to test the performance of various text compression 

algorithms on different text files. The results of the text classification performed in the previous 

chapter reveal that the Press sub-corpus is 91% written in MSA, as shown in Figure 5.1. 

According to the authors, the sub-corpus is a newswire text consisting of 51K terms, gathered 

from various news websites between 2010 and 2012 and covers many topics such as political 

and technology news. 

 

 

Figure 5.1. A Social News, that promotes reading, from the Press sub-corpus [26] in MSA 

text. 

 

5.3 The Annotation Tagset 

 

The tagset used in the BAAC corpus is the same as used by the Madamira tagger [161], which 

was used initially by the MADA tagger [104]. The tagset is the subset of the English tagset which 
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was presented with the English Penn Treebank and consists of 32 tags and was initially 

proposed by Diab, Hacioglu and Jurafsky [80]. The experiments conducted in chapter 3 have 

concluded that the quality of tag-based compression varies from one tagset to another. The 

different tagsets, some of which are shown in Table 5.1, were used to compress MSA text using 

POS tags, and tag-based compression using the Madamira tagset outperforms other tagsets 

such as Stanford [101] and Farasa [6]. Since one of the main goals of creating a gold-standard 

POS annotated text is to investigate the effect of manual annotation on the tag-based text 

compression, as described below in the experiments, therefore, the Madamira tagset, which 

outperformed other tagsets and consists of only 32 tags that are shown in Table 5.2, is used to 

annotate the BAAC POS tag and to create the ground-truth data which will be used later for 

training and evaluation purposes. 

 

Term 
Madamira 

Tag 
Stanford 

Tag 
Farasa 

Tag 

 noun DTNN NOUN-FS الادارة

 noun_prop VBP E/ES/SV ترحب

 verb NN NOUN-MS بالتزام

 noun DTNN NOUN-MS الامين

 noun DTJJ ADJ-MS العام

 adj NN NOUN-FS بزيادة

 noun NN NOUN-MS عنصر

 noun DTNN NOUN-FS الميزانية

 noun DTJJ ADJ-FS العادية

 noun NN NOUN-MS لمكتب

 noun DTNN NOUN-MP الامم

 noun DTJJ ADJ-MP المتحدة

Table 5.1. Different Arabic Tagsets. 
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Tag Agreements Disagreements 

Observed 

Agreement 

% 

noun 23570 529 97.80 

verb 5714 44 99.24 

prep 5574 10 99.82 

adj 4632 1235 78.95 

noun_prop 2272 520 81.38 

conj_sub 1534 17 98.90 

conj 1148 79 93.56 

pron_rel 992 37 96.40 

pron_dem 767 11 98.59 

noun_quant 574 1 99.83 

part_neg 498 2 99.60 

pron 367 6 98.39 

adv 166 195 45.98 

adj_comp 265 15 94.64 

noun_num 252 7 97.30 

part_verb 221 0 100.00 

verb_pseudo 203 0 100.00 

adj_num 156 26 85.71 

adv_interrog 25 111 18.38 

adv_rel 83 3 96.51 

abbrev 60 2 96.77 

part_restrict 59 16 78.67 

part 25 27 48.08 

pron_interrog 19 30 38.78 

part_focus 14 9 60.87 

part_interrog 22 0 100.00 

part_fut 12 0 100.00 

part_voc 10 0 100.00 

part_det 8 2 80.00 

interj 2 0 100.00 

Total 49244 2934 94.38% 

Table 5.2. The number of agreements and disagreements of different tags between the 

two annotators in reverse frequency order. 
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5.4 Automatic POS Tagging 

 

Madamira [161] was utilised to automatically tag the corpus by POS. The manual annotation 

process of the BAAC corpus followed annotation guidelines proposed by Maamouri [142] for 

annotating POS tags. All the previous corrections that are made to a tag are shown to the 

annotators during the process of annotation, as illustrated in section 5.6, and the Madamira 

tagset used to annotate this corpus applies the criteria proposed by Maamouri.  

 

5.5 The Annotation Tool 

 

Most existing tools, such as the TrEd tool [159], [165] which was used in the annotation of The 

Prague Dependency Treebank, are developed to annotate Treebank types of corpora, such as 

dependency trees corpora, that contain other information about each term, such as the gloss or 

a comment from an annotator, as shown in Figure 2.11. As mentioned earlier, the first stage of 

the BAAC annotation process will only add the POS tags to the corpus. Other linguistic 

information, such as the structural annotation, will be adapted in future work, therefore, the tool 

which will be used to manually annotate this corpus will only annotate POS tags.  

 

During the preparation for the annotation process, many constraints arose and defined four 

requirements that had to be met by the annotation tool. First, as the annotators are native Arabic 

speakers, a detailed Arabic translation of the tagset was provided with examples during the 

annotation process. Second, the software used for the annotation had to comply with the 

hardware and software requirements of the computer used to perform the annotation. Thirdly, 

the annotation tool, as shown in Figure 5.2, had to be executed on different operating systems, 

therefore, the tool was designed to be portable. Finally, online backing up procedures with the 

ID of the annotators was done to ensure the safety of the data. 

 

The previous requirements were met by developing a new annotation tool. First, a detailed 

Arabic translation of the tagset, which was obtained from Alrabiah [42] and then examined by 

Arabic specialists, was coded in the annotation tool as shown in figure 5.2. The annotation tool 

also offers examples of the tag if required by the annotator as will be explained in the following 

paragraph. To comply with the hardware requirements and reduce memory dependency, the 

tool loads only one sentence to be modified at a time. To follow the Maamouri [142] annotation 
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guidelines, the tool also displays the history of annotation by showing two types of modifications, 

the original tag assigned by the Madamira tagger and any tag chosen by previous annotators, 

if they exist. A current status of the annotation process is also displayed to the annotator, such 

as the number of annotated tags in the current session and the number of modified tags in the 

total document, as explained in the following paragraph. The Java programming language was 

used to develop the annotation tool, and therefore, the tool can be executed on different 

operating systems. The tool also provided online backing up procedures each time the 

annotator modified a tag to eliminate any data loss. 

 

The first information given to the annotator is the number of the current sentence out of the total, 

as labelled in Figure 5.2 by number 1. Clicking on the button labelled as 2 in the figure opens a 

file dialogue that enables the annotator to edit an external file and not the default annotated text 

file saved in the home directory. Clicking on the button marked as 3 opens a file dialogue that 

saves a backup file. The text area identified as 5 in the figure displays the current sentence 

which the annotator is currently editing. The term, which is coloured in black, is followed by a 

tag, which is between the brackets. Every tag is displayed with a distinctive colour, for example, 

all the verb tags, or "فعل", in the figure are displayed in red, and all nouns, or "اسم", is coloured in 

blue. The font size of the text area identified as 5 can be changed by clicking on the (+) and (-) 

buttons labelled as 4. At the bottom of the text area, where label 6 is, a log of all the changes 

made by the annotator is displayed. The log shows the term, the original tag and the updated 

one. The annotator displays the previous sentence by click on the button labelled as 7, and the 

button labelled as 8 displays the next sentence. The progress bar labelled as 9 displays the 

amount of progress made by the annotator.  

 

The text area labelled as 10 shows more statistics about the work, such as the number of terms 

in the current sentence with the number of modified tags are shown in the first line, the total 

number of terms in the entire annotated file with the number of sentences presented in the 

second line and location of the annotated file shown in the line before the last. If the annotator 

wants to modify a tag, the checkbox labelled as 14 needs to be clicked first. Then, by clicking 

on the dropdown menu labelled as 11, all the terms with their current tags will be displayed to 

the annotator. After selecting the term for modification, the annotator will select the new tag from 

the second dropdown menu which will display a list of all the tags with their translation and an 

example tag will be shown in a message if the annotator clicks on the text labelled as 15. Saving 



 97 

 

the changes made to the sentence is done by clicking on the button at the bottom left of the 

figure, where the label 13 is. 

 

 

Figure 5.2. The Annotation tool. 

 

5.6 Data Preparation 

 

After using Madamira [161] to automatically POS tag the BAAC corpus, a copy of the tagged 

corpus was given to each annotator. Each copy was split into batches of documents that have 

10-20 sentences and the ID of the annotator was coded with each batch to be used later in the 

evaluation section. The two annotators, who are native Arabic speakers and postgraduate 

students in Arabic Studies, started working to manually annotate the corpus on a full-time basis 

in two stages.  

 

In the first stage of the annotation process, the annotators were required to work on-site to 

resolve any issues with the annotation tool and the annotation of the corpus was completed 

using the facilities provided by Tabuk Public Library. When the annotation process was finished, 

the two versions were evaluated and the Inter Annotator Agreement was calculated using two 

metrics, as will be discussed below in the BAAC evaluation section (section 5.7). The 

differences between the two versions were examined and adjusted off-site by a third annotator, 
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who is a native Arabic speaker and PhD candidate student in Arabic Studies, to produce a final 

version of the corpus. The total time needed to annotate the corpus was two months – three 

weeks for the first stage and the rest for the final stage. 

 

5.7 BAAC Evaluation 

 

The quality of the annotated corpus affects the quality of the NLP application that utilises it. For 

instance, Reidsma and Carletta [168] has illustrated that the errors produced by machine 

learning tools are the same errors made by the annotators of the corpus that was used for 

training those tools. Two metrics were used to evaluate the quality of the BAAC, the Kappa 

coefficient [73] to calculate the inter-annotator agreement (IAA) among the two annotators and 

a direct percent agreement for each tag [145]. Using the data in tables 5.3 and 5.4, the obtained 

Kappa value is 0.956, which is recognised as perfect according to Landis and Koch [133]. The 

total observed agreement from Table 5.2, which displays the number of agreements and 

disagreements of different tags between the two annotators in a reverse frequency order, is 

94.38%. Taking the number of tag occurrences into consideration, Table 5.2 shows that the tag 

verb or 'فعل' has the highest agreement between the annotators with 99.24% agreement. It also 

shows that the annotators agreed only 25 times out of 136 (18%) on the tag 'adv_interrog' or 

 Also, the annotators agreed 45.98% of the time for the tag 'adv', and 38.78% of the time .'حال'

for the tag 'pron_interrog'.  

 

The reasons for such variation between the annotators were: 

• The different understanding of the tag and, in some cases, its subset of tags by the 

annotators. For example, tables 5.3 and 5.4 show that the two annotators disagreed 

concerning the tag 'noun' and the tag 'adj' in many instances. The different understanding 

of the tag 'adv_interrog' and the tag 'adj' has also caused a noticeable number of 

disagreements between the two annotators.  
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abbrev 59        1       

adj  4363 1 1       247  22   

adj_comp  7 260 1       4  2   

adj_num    142        12 2   

adv  92  12 108  1 6 67  63  3 1  

adv_interrog  106  6  9  1 3  7     

adv_rel  8     74         

conj        1148        

conj_sub        52 1455       

interj          2      

noun 1 1151  4 42  4 5 18  22762 2 98  1 

noun_num  3  15       5 235 1   

noun_prop  166 4 1 1   1 1  450 3 2121   

noun_quant  1         2   573  

part     8   2 1  1  1  23 

part_det  1         1     

part_focus        9        

part_fut                

part_interrog                

part_neg  1      1        

part_restrict                

part_verb                

part_voc           1     

prep  18      1   6  1   

pron  4         1    1 

pron_dem  1   7   1     1   

pron_interrog      16 7  1       

pron_rel             1   

verb  18       4  20  19   

verb_pseudo                

Total 60 5940 265 182 166 25 86 1227 1551 2 23570 252 2272 574 25 

Table 5.3. The BACC Agreement Table Part 1. 
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abbrev         2       62 

adj         1     4  4639 

adj_comp              6  280 

adj_num                156 

adv         8       361 

adv_interr

og              4  136 

adv_rel            1    83 

conj                1148 

conj_sub             32   1539 

interj                2 

noun        1     4 41  
2413

4 

noun_num                259 

noun_prop         11     36  2795 

noun_qua

nt                576 

part      16          52 

part_det 8               10 

part_focus  14              23 

part_fut   12             12 

part_interr

og    22            22 

part_neg     498           500 

part_restri

ct      58   1       59 

part_verb       221         221 

part_voc        9        10 

prep      1   5556 1    2  5586 

pron          366    1  373 

pron_dem           767   1  778 

pron_inter

rog         2   18 5   49 

pron_rel         3    988   992 

verb              5663  5724 

verb_pseu

do               203 203 

Total 8 14 12 22 498 75 221 10 5584 367 767 19 1029 5758 203  

 Table 5.4. The BACC Agreement Table Part 2. 
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• Human error in the annotation process contributed to some of the errors in the annotated 

corpus. This was confirmed by random samples taken to be re-annotated by the same 

annotator. 

 

The previous reasons were taken into consideration, and all the disagreements were 

highlighted, which was then given to the third annotator who went through all the disagreements 

and modified them based on his judgment. Finally, a final version of the corpus, which contains 

the agreements from the first two annotators and the agreements of the third one, was produced 

and used for further applications, as illustrated in the experiments section. 

 

Tag Frequency % 

noun 24099 47.52 

verb 5714 11.27 

prep 5574 10.99 

adj 4632 9.13 

noun_prop 2792 5.51 

conj_sub 1534 3.02 

conj 1148 2.26 

pron_rel 992 1.96 

pron_dem 778 1.53 

noun_quant 575 1.13 

Table 5.5. The ten most frequent tags by the first annotator. 

 

5.8 Corpus Statistics 

 

As stated, the text of the BAAC corpus was obtained from the sub-corpus Press of the BACC. 

The first annotator made 3150 changes to the originally tagged corpus and the second made 

2959 modifications. Table 5.5 and Table 5.6 list the first ten most frequent tags for the 

annotators. The most frequent tag is 'noun' representing 47.52% for the first annotator and 

46.48% for the second. The least used tag is 'noun_quant' being 1.13% of the tags for both 

annotators. A noticeable difference between the two annotators is the use of the tag 'adj' which 



 102 

 

occurred 4632 times (9.13%) for the first annotator and occurring 1235 more times for the 

second annotator (11.57%). 

 

Tag Frequency % 

noun 23570 46.48 

adj 5867 11.57 

verb 5758 11.35 

prep 5584 11.01 

noun_prop 2272 4.48 

conj_sub 1551 3.06 

conj 1227 2.42 

pron_rel 1029 2.03 

pron_dem 767 1.51 

noun_quant 574 1.13 

Table 5.6. The ten most frequent tags by the second annotator. 

 

Tables 5.7, 5.8 and 5.9 show the ten most frequently used terms in the BAAC. The first and 

second most frequent words in the BAAC are 'في' which is a 'prep', which translates as 'in', and 

 which is also a 'prep', which translates as 'from' representing 2.83% and 2.65% of the text ,'من'

respectively, as shown in Table 5.7. Table 5.8 shows that the most commonly used bigram is 

-which translates as 'through' occurring 37 times in the corpus. Since the Press sub ,'من خلال'

corpus, which is the source of the BAAC, was gathered between 2010 and 2012 from several 

Arabic news websites, the most commonly used trigrams in the BAAC, as shown in Table 5.9, 

are 'في ميدان التحرير' which translates as 'In Tahrir Square', and ' لى للقوات المسلحةالأع ' which translates 

as 'Higher Council of the Armed Forces', which were mentioned 12 times, and both trigrams 

relate to the events that happened in Egypt during the same period. 
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Rank Word Freq % 

 2.83 1437 في 1

 2.65 1345 من 2

 1.45 735 و 3

 1.38 698 أن 4

 1.21 615 على 5

 0.79 401 إلى 6

 0.69 352 التي 7

 0.69 351 عن 8

 0.54 275 أو 9

 0.48 245 لا 10

Table 5.7. Word unigrams statistics from the BAAC. 

 

Rank Bigram Freq % 

 0.07 37 من خلال 1

 0.07 37 إلى أن 2

 0.07 34 الولايات المتحدة 3

 0.06 30 ميدان التحرير 4

 0.05 28 في مصر 5

 0.05 28 عدد من 6

 0.05 26 من قبل 7

 0.05 26 ثورة يناير 8

 0.05 26 بعد أن 9

 0.05 25 أن يكون 10

Table 5.8. Word bigrams statistics from the BAAC. 

 

Figure 5.3 plots using log scales the ranked tag, bi-tag and tri-tag sequences versus their 

frequencies in the BAAC. There are 32 unique tags used in the annotated corpus, as mentioned 

earlier. The corpus also has 433 unique bi-tags where the sequence 'noun noun' dominates 

most of the bi-tags sequences. Finally, there are 2,113 distinct tri-tags used in the BAAC.  The 

figure shows a Zipf’s Law-like behaviour which mirrors the behaviour of a similar plot for the 
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English language [190]. More details about the BAAC n-tag sequences are found in Table 5.10, 

Table 5.11 and Table 5.12, and will be discussed below. 

 

Rank Trigram Freq % 

 0.02 12 التحريرفي ميدان  1

 0.02 12 الأعلى للقوات المسلحة 2

 0.02 11 المجلس الأعلى للقوات 3

 0.02 10 القانون رقم لسنة 4

 0.02 9 غفر الله له 5

 0.02 8 قال أبو عبدالله 6

 0.02 8 عبدالله غفر الله 7

 0.02 8 اللجنة الوطنية للاستقدام 8

 0.02 8 الكسب غير المشروع 9

 0.02 8 أبو عبدالله غفر 10

Table 5.9. Word trigrams statistics from the BAAC. 

 

 

Figure 5.3. Rank versus Tag, Bi-tag and Tri-tag Frequencies for the BAAC. 
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Rank Tag Freq 

1 noun 23782 

2 verb 5801 

3 prep 5574 

4 adj 4995 

5 noun_prop 2532 

6 conj_sub 1501 

7 conj 1212 

8 pron_rel 1025 

9 pron_dem 774 

10 noun_quant 573 

Table 5.10. Most frequent Tags from the BAAC. 

 

Rank Bi-tag Freq % 

1 noun noun 11035 21.8 

2 prep noun 4255 8.39 

3 noun adj 4037 7.96 

4 verb noun 3229 6.37 

5 noun prep 2679 5.28 

6 adj noun 1676 3.31 

7 noun verb 1566 3.09 

8 verb prep 1190 2.35 

9 noun noun_prop 1066 2.10 

10 noun_prop noun_prop 932 1.84 

Table 5.11. Most frequent Bi-tag sequences from the BAAC. 

 

Table 5.10, Table 5.11 and Table 5.12 illustrate the ten most frequently used tag, bi-tag and tri-

tag sequences in the BAAC. The tag 'noun' was utilised 23,782 times (46.9%) followed by the 

tag 'verb' that appeared 5,801 times (11.44%) in the text, as shown in Table 5.10. The sequence 

of two nouns, the bi-tag 'noun noun', appeared on 11,035 occasions (21.76%), followed by the 

bi-tag 'prep noun' which was used 4,255 (8.39%) times in the BAAC, as shown in Table 5.11.  

The sequence of three nouns came 5,133 times in the text, which represents 10.12% of the 
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text, followed by the tri-tag 'noun prep noun' which came in 4.18% of the BAAC, as shown in 

Table 5.12. 

 

Rank Tri-tag Freq % 

1 noun noun noun 5133 10.1 

2 noun prep noun 2121 4.18 

3 prep noun noun 1970 3.88 

4 noun noun adj 1918 3.78 

5 noun adj noun 1482 2.92 

6 verb noun noun 1467 2.89 

7 noun noun prep 1195 2.36 

8 noun verb noun 909 1.79 

9 verb prep noun 886 1.75 

10 adj noun noun 858 1.69 

Table 5.12. Most frequent Tri-tag sequences from the BAAC. 

 

Rank Tag Freq % 

1 noun 485250 50.2 

2 adj 120187 12.4 

3 prep 104158 10.8 

4 verb 91064 9.41 

5 noun_prop 51985 5.37 

Table 5.13. Most frequent Tag of the Khaleej sub-corpus 'News'. 

 

To further analyse the n-tag results of the BAAC, Table 5.13, Table 5.14 and Table 5.15, show 

the tag, bi-tag and tri-tag statistics of the News sub-corpus from a different corpus, the Khaleej 

corpus [2], which also was tagged using the Madamira tagger. The sub-corpus contains 967K 

terms gathered from news websites. The tables shows that both corpora, News and the BAAC, 

share the same most frequent tag, bi-tag and tri-tag sequence, where the tag 'noun' in the sub-

corpus News represents 50.2% of the text, as shown in Table 5.13, the bi-tag 'noun noun' was 

used 243,525 times (25.2%), as presented in Table 5.14, and the tri-tag 'noun noun noun' 



 107 

 

appeared 122,386 times (0.13%) of the text, as shown in Table 5.15. These results confirm that 

the tag statistics are comparable between the different corpora. 

 

Rank Bi-tag Freq % 

1 noun noun 243525 25.2 

2 noun adj 91607 9.47 

3 prep noun 81537 8.43 

4 verb noun 52016 5.38 

5 noun prep 48968 5.06 

Table 5.14. Most frequent Bi-tag sequence of the Khaleej sub-corpus 'News'. 

 

Rank Tri-tag Freq % 

1 noun noun noun 122386 0.13 

2 noun noun adj 49187 0.05 

3 prep noun noun 43107 0.04 

4 noun prep noun 39116 0.04 

5 noun adj noun 35544 0.04 

Table 5.15. Most frequent Tri-tag sequence of the Khaleej sub-corpus 'News'. 

 

5.9 BAAC Applications 

 

The BAAC corpus was utilised in two applications, to evaluate the performance of the Madamira 

tagger, and to further investigate the tag-based text compression models as applied in Chapter 

3. Using the BAAC corpus, the Madamira tagger achieved an accuracy of 93%. To evaluate 

the effect of manual annotation on the tag-based text compression, the two versions of the 

BAAC, which were obtained from the two annotators, were compressed using tag-based text 

compression models. The results of the compression were then compared to the compressed 

results of the original Madamira auto-tagged corpus. Table 5.16 illustrates the compression size 

(in bytes) and ratio (in bits per charactar) of all three files, the two versions of the BAAC which 

were obtained from the two annotators and the original Madamira auto-tagged version, and the 

results confirm that (1) manual annotation of the text reduces the quality of tag-based 
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compression, as reported in Chapter 3 and in [196], [198], [194], [66], [195], and (2) compressing 

the text using word-based and character-based text compression algorithms outperforms the 

tag-based text compression when compressing small text files, such as the BAAC corpus, as 

mentioned by Alhawiti and others [196], [26].  

 

Annotator File size 
Compressed 

size (bytes) 

Compression 

ratio (bpc) 

1 824,151 111,009 1.0776 

2 819,482 110,954 1.0832 

Original File 818,508 110,874 1.0837 

Table 5.16. Tag-based Compression Results. 

 

Further investigation is required to study the effect of using POS tagging systems, such as the 

OpenNLP project [154], trained using the BAAC on the tag-based text compression. Future 

work will add more annotated MSA text and will expand to cover CA text. More linguistic 

information, such as the structural annotation, will also be added to the BAAC to increase the 

possible NLP applications of the corpus. 

 

5.9 Summary and Discussion 

  

A new corpus, BAAC, was presented in this chapter. It is an MSA corpus that contains 50K 

words manually annotated by part-of-speech tags. The annotated corpus used the same tagset 

utilised by the Madamira tagger and followed annotation guidelines proposed by Maamouri for 

annotating the POS tags. Also, a new annotation tool was developed and employed for the 

annotation process of BAAC which obtained a Kappa value of 0.956, and an average observed 

agreement of 94.25%. The BAAC was used to evaluate the Madamira tagger and to study the 

effect of the manual annotation on the performance of the tag-based Arabic text compression. 

 

The next chapter will utilise the BAAC corpus and the results obtained in chapter 3 and 4 to 

develop novel compression-based criteria for evaluating Arabic part-of-speech taggers. 
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6.1 Introduction 

 

The previous chapter described the creation of the new Bangor Arabic Annotated Corpus 

(BAAC). This chapter will utilise the BAAC corpus and the results obtained in chapter 3 and 4 

to investigate the method of employing the compression results of the Arabic text that utilises 

both the POS (tags) and the text to evaluate the performance and the quality of two of the most 

commonly recognised Arabic POS taggers, the Madamira [161] and Stanford Arabic taggers 

[101].  

 

The results in chapter 3 show that the precision and quality of the tagging process determines 

the quality of the tag-based compression of the Arabic text. It also concluded that compressing 

Arabic text using the tag-based compression models produced better results than the other two 

word-based and character-based methods. Since the main objective of this research is to 

develop and train a POS tagger for the Arabic language, this chapter will explore the use of 

compression results as a method of assessing the performance of a POS tagger when used to 

tag different types of text (as per research question 3). This is accomplished by illustrating the 

correlation between the quality of the tagging and the results of tag-based compression when 

used to compress the CA and MSA text that is tagged by two Arabic taggers. This chapter will 

also investigate the use of the tag-based compression output as a means of comparing the 

performance of two POS taggers. This is achieved by calculating the accuracy of two taggers 

using a gold-standard corpus, then comparing this with the tag-based compression results. 

 

The chapter is organised as follows. Section 6.1 interduces the chapter. Section 6.2 describes 

the tag-based compression experiments on CA and MSA text. The results of the experiments 

are discussed in section 6.3. The performance of two taggers, the Madamira and Stanford 

Arabic taggers, are compared in section 6.4. Finally, section 6.5 presents a summary and 

discussion. 

 

A portion of this chapter has been published in a conference paper (Alkhazi, I. S., & Teahan, 

W. (2019). Compression-based Tag Models for Evaluating Arabic Parts-of-speech Taggers. 

2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information 

Technology (JEEIT) (JEEIT 2019). Amman, Jordan.) 
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6.2 CA and MSA Tag-based Compression Experiments 

 

These experiments have used three corpora that have either CA or MSA text. The first corpus 

is Corpus A [30] which is an MSA corpus. The second corpus is King Saud University Corpus 

of Classical Arabic (KSUCCA) which is a CA corpus. The final corpus is the BACC corpus [26] 

which is a mixture of CA and MSA text. As stated, this corpus was originally created to 

investigate the performance of the character-based text compression on various Arabic text 

files. These corpora were tagged by two of the most popular Arabic POS taggers, The 

Madamira tagger [161] and Stanford tagger [101]. Finally, the Tawa toolkit [192] was used to 

perform the tag-based compression.  

 

The experiments were conducted as follows: 

• First, the three corpora that have either CA or MSA text were selected. 

 

• Then, the tool described in Chapter 4 was utilised to classify the type of Arabic text used 

in each corpus. 

 

• Thirdly, the Madamira and the Stanford taggers were used to tag all corpora. 

 

• Lastly, tag-based compression was performed using the Tawa toolkit [192]. The 

compression results are shown in three tables, Table 6.1, Table 6.2 and Table 6.3, for 

each tagger.  

 

The outcomes of tagging then compressing some of Corpus A's sub-texts are presented in 

Table 6.1, and for some of the BACC's sub-corpora are presented in Table 6.2. Table 6.3 shows 

the percentage of tag-based improvement using the two taggers to tag then compress some of 

the KSUCCA's sub-corpora. The following two sections discuss the findings of these 

experiments. 
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Cinema 

MSA 

7,693,241 7,318,652 7,402,514 5.12 3.93 

Crimes 1,341,031 1,268,526 1,272,853 5.72 5.36 

Stories 4,213,806 3,981,845 4,004,927 5.83 5.22 

Table 6.1. Tag-based compression improvement for various sub-texts in Corpus A. 
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Arabic 

History 

CA 

4,206,076 4,267,257 4,286,946 -1.43 -1.89 

Arabic 

Literature 
3,029,433 3,045,281 3,059,687 -0.52 -0.99 

Arabic 

Book 1 
164,445 170,881 173,793 -3.77 -5.38 

Table 6.2. The BACC Text Type and Tag-based compression improvement. 

 

6.3 Different Texts Tagging Assessment 

 

The goal of this section is to investigate the use of compression results as a means of evaluating 

the performance of a POS tagger when utilised to tag various types of text. Table 6.1, Table 6.2 

and Table 6.3 show different corpora, that have either CA or MSA text, which were tagged by 

both the Madamira and the Stanford taggers and compressed using the Tawa toolkit. 

 

As stated, most of the Arabic NLP systems, such as POS tagging, are developed for processing 

MSA text [84], as most of the available Arabic resources used for training, such as the Arabic 

Treebank (ATB) corpus [141], [211], are written in MSA. For example, both POS taggers used 

in the experiments section are trained using the ATB corpus [141]. As a consequence, many 

researchers, such as Alosimay and Alrabiah [42], [37], [38] have reported a drop in accuracy by 
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10 to 15% when one of the previous taggers is used for tagging CA text. The results in all three 

tables confirm that the quality of the tag-based text compression also drops when compressing 

a CA text that is tagged by one of the previous taggers. Therefore, a clear correlation between 

the drop in CA tagging quality reported by Alosimay and Alrabiah [42], [37], [38] and the 

decrease in the tag-based compression quality has been demonstrated. 

 

6.4 Comparing the Performance of Two Taggers 

 

In this section, the accuracy of two of the most popular known Arabic POS taggers, the 

Madamira and the Stanford taggers, were calculated using a gold-standard corpus for each 

tagger. For the Madamira tagger [161], the BAAC corpus was used to calculate the accuracy. 

As for the Stanford tagger [101], a version of the BAAC corpus was manually annotated as 

follows: 

• A version of the BAAC corpus with only 5K terms was selected, then the tags were 

removed. 

 

• The tagset used by the Stanford tagger was translated using the suggested translation 

by Alrabiah [42], [40], [137], then it was coded in the annotation tool. 

 

• The same steps described in Chapter 5 were followed to manually annotate the gold-

standard corpus for the Stanford tagger with the annotation process lasting two weeks. 
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Religion 

CA 

19,057,454 19,189,175 19,209,861 -0.69 -0.79 

Biography 3,881,458 3,920,285 3,937,428 -0.99 -1.42 

Sociology 3,713,723 3,739,541 3,753,521 -0.69 -1.06 

Table 6.3. KSUCCA Text Type and Tag-based compression improvement. 
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This corpus was used to evaluate the Stanford tagger. It is a 5K corpus written in MSA and 

manually annotated with POS tags. The annotator has corrected 663 of the incorrectly assigned 

tags, where the top 10 most frequently corrected tags are shown in Table 6.4, and a sample of 

corrected tags are shown in Table 6.5. The corpus used the Stanford tagset which consists of 

24 tags, which was originally obtained by a manual reduction of the 135 tags taken from the 

ATB tagset. 

 

The Tag 
Modified 

To 
Frequency 

DTJJ JJ 119 

NNP NN 73 

VBP VBD 48 

NN RP 38 

JJ NN 30 

NN VBD 26 

DTNN DTNNS 22 

NN RB 21 

NN NNP 17 

NN IN 16 

Table 6.4. The most frequent corrected tags. 

 

The idea is to use the two gold-standard corpora that contain the same text but tagged 

differently, to calculate the accuracy of the tagging process. The Madamira tagger achieved an 

accuracy of 93%, whereas the Stanford tagger achieved an accuracy of 86.4%.  More 

information about the text used in this step is descibed in chapter 5. Also, all three tables show 

that the improvement in the tag-based compression quality of the text which is tagged by the 

Madamira tagger is slightly higher than that of the text which is tagged by the Stanford tagger. 

Therefore, an association between the high accuracy of the tagging and the high quality of 

compression of the two taggers can be derived, as tagging the text correctly leads to a better 

forecast of the forthcoming terms and, therefore, a better compression of the text. 
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6.5 Summary and Discussion 

 

This chapter examined the feasibility of using the tag-based text compression results for Arabic 

text as a way of assessing the performance and quality of the Arabic POS taggers. First, the 

compression results were used to assess the performance of the Madamira tagger and the 

Stanford tagger when used on the two types of Arabic text, CA and MSA. Second, a correlation 

between the quality of the tagging process and the accuracy of the tagger illustrated by 

measuring the accuracy of two taggers, the Madamira and Stanford tagger, using a gold-

standard corpus, then comparing the tag-based compression results on different corpora that 

were tagged using the previous two taggers. 

 

The corrected tags The original tags 

 RP/أن RB/قبل NN/بدستور NNP/الجمل VBD/وأشاد

 WP/التي DTNNS/التعديلات IN/عليه NN/تدخل

 NN/إطلاق NN/تعديل WP/من NN/بدءا VBD/شوهته

 NNS/تعديلات CC/ثم DTNN/الجمهورية NN/رئيس NN/مدد

 JJ/دستورية NN/خطايا VBD/اعتبرها WP/التي CC/و

 NNP/مصر VBD/أهانوا VBD/صاغوها IN/من RP/وأن

 NN/أن NN/قبل NNP/بدستور DTNN/الجمل NN/وأشاد

 WP/التي DTNNS/التعديلات NNP/عليه NN/تدخل

 NN/مدد NN/إطلاق NN/تعديل IN/من NN/بدءا NN/شوهته

 CC/و NNS/تعديلات CC/ثم DTNN/الجمهورية NN/رئيس

 VBD/وأن JJ/دستورية NN/خطايا VBD/اعتبرها WP/التي

 NNP/مصر VBD/أهانوا NN/صاغوها IN/من

 NN/بلجنة JJ/الفنية DTNNP/الأمانة RP/بأن VBD/ونوه

 NNS/دعوات VBD/وجهت RP/قد JJ/القومي DTNN/الوفاق

 IN/في NN/للمشاركة DTNN/المجتمع NN/أطياف NN/لكافة

 DTNN/المؤتمر

 DTJJ/الفنية DTNNP/الأمانة NNP/بأن NNP/ونوه

 VBD/وجهت RP/قد DTJJ/القومي DTNN/الوفاق NN/بلجنة

 DTNN/المجتمع NN/أطياف NN/لكافة NNS/دعوات

 DTNN/المؤتمر IN/في NN/للمشاركة

 RB/بين JJ/كاملا NN/تعاونا RB/هناك RP/أن VBD/وأكد

 DTJJ/المسلحة NNS/للقوات DTJJ/الأعلى DTNN/المجلس

 NNS/مجلسي NNS/انتخابات RP/وأن NN/والحكومة

 JJ/الرئاسية NNS/والانتخابات NN/والشورى DTNN/الشعب

 JJ/المقرر NN/موعدها IN/فى VBN/ستجرى

 NN/بين JJ/كاملا NN/تعاونا RB/هناك VBD/أن NN/وأكد

 DTJJ/المسلحة NNS/للقوات DTJJ/الأعلى DTNN/المجلس

 NNS/مجلسي NNS/انتخابات NN/وأن NN/والحكومة

 NNS/والانتخابات NN/والشورى DTNN/الشعب

 NN/موعدها IN/فى NNP/ستجرى DTJJ/الرئاسية

 DTNN/المقرر

Table 6.5. A Sample of corrected tags. 

 

Further study is required to examine the outcome of using the tag-based results to evaluate the 

ongoing effort which is currently been made to improve the performance of many NLP Arabic 

tasks which are designed for CA text, such as the making of manually annotated CA corpus by 

Alosaimy and Atwell [37], [38]. Also, the effect of using different Arabic resources, such as the 

BAAC corpus, to develop and train new Arabic POS taggers can be assessed by utilising tag-

based compression results. Finally, the tag-based compression results can be used to compare 
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and confirm the tagging quality of different POS taggers, especially those which have different 

tagsets. 

 

The next chapter will utilise the BAAC corpus to develop and train a compression-based Arabic 

part-of-speech tagger and will also apply the previous method to evaluate the newly developed 

tagger. 
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7.1 Introduction 

 

The previous chapter investigated a method of employing the compression results of the Arabic 

text that utilises both the POS (tags) and the text to evaluate the performance and the quality of 

two of the most commonly recognised Arabic POS taggers, the Madamira [161] and Stanford 

Arabic taggers [101]. This chapter investigates the development and training of a previously 

unpublished compression-based Arabic part-of-speech tagger. The new tagger utilises the 

Prediction by Partial Matching text compression scheme (PPM), which uses an adaptive 

statistical language model to make predictions about upcoming text and has been successfully 

applied to several Arabic NLP tasks, such as authorship attribution [46], [45], cryptology [15], 

text correction [19] and text compression [26], [29], but it has yet to have been applied to POS 

tagging. The adoption of the algorithm for Arabic POS tagging may increase the efficiency and 

reduce the Arabic language ambiguity problem (as per research questions 5 and 6). 

 

This chapter will first discuss the sources used in the experiments in section 7.2. Then, it will 

discuss the two parts of the experiment, where silver-standard data is used in the first section 

to train the Tawa Arabic POS Tagger (TAPT), in section 7.3, and a gold-standard data, the 

BAAC corpus, is used in the second section as training data in section 7.4. The BAAC will be 

used to evaluate the tagger and limitations of those experiments are discussed in detail. In both 

sections, the effectiveness of using silver and gold-standard models will be examined by utilising 

the tag-based models to compress CA and MSA corpora tagged by the TAPT tagger. Finally, 

the summary and discussion are presented in section 7.5. 

 

A portion of this chapter has been published in a journal paper (Alkhazi, I. S., & Teahan, W. 

(2019). Compression-based Parts-of-speech tagger for the Arabic Language. International 

Journal of Computational Linguistics, 10(1).) 

 

7.2 Tawa tag encode models 

 

According to Teahan [196], the best two models for encoding the tags are the TTT and TTWT 

models as shown in Table 7.1. First, the "TTT" model predicts the current tag using the prior 

two tags, and if no prediction was made, the model then escapes and employs just the prior 

tag. If using only the previous tag fails at predicting the current tag, the model escapes again 
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and predicts without any context. Compared to HMM taggers, such as the TnT tagger [59], if 

the current tag has not been recorded in this model and it's been seen for the first time, then the 

model will perform the last escape where a character-based model is utilised and each tag will 

have an equal probability. The second model is the "TTWT" model, which first attempts to 

predict the current tag utilising the previous tag, the previous word and the tag preceding that. 

If the attempt fails, the model employs an escape hierarchy similar to the "TTT" model. For 

efficiency reasons, the Tawa toolkit implements the TTT model rather than the slightly more 

effective TTWT model (in terms of compression). 

 

TTT model TTWT model WTW model 

𝑝(𝑡𝑖  | 𝑡𝑖−1 𝑡𝑖−2) 

⤷  𝑝(𝑡𝑖  | 𝑡𝑖−1) 

⤷  𝑝(𝑡𝑖  |) 

⤷  𝑝𝑒𝑞(𝑡𝑖  | ) 

𝑝(𝑡𝑖  | 𝑡𝑖−1 𝑤𝑖−1 𝑡𝑖−2) 

⤷  𝑝(𝑡𝑖  | 𝑡𝑖−1 𝑤𝑖−1) 

⤷  𝑝(𝑡𝑖  | 𝑡𝑖−1) 

⤷  𝑝(𝑡𝑖  |) 

⤷ 𝑝𝑒𝑞(𝑡𝑖  | ) 

𝑝(𝑤𝑖  | 𝑡𝑖𝑤𝑖−1)

⤷  𝑝(𝑤𝑖  | 𝑡𝑖  )

⤷  𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 𝑚𝑜𝑑𝑒𝑙 

Table 7.1. Models for tag-based compression. 

 

The WTW model is an n-gram model that first utilises the current tag with the previous word to 

predict the current word. If the word prediction fails, then the model escapes and uses only the 

current tag to predict the current word. If that also fails and no prediction was made, the model 

then backs-off or escapes to an order 4 character-model where every character in the term, 

which includes the space character to indicate the end of the term, is encoded separately. The 

models at this stage can be regarded as the "vocabulary" of the text since every word encoded 

is either unique, when utilising the word-based models or has been tagged uniquely, therefore 

in a sense, they can be regarded as the "vocabulary" of the text.  

 

Tawa implements separate character models for each tag as this was found to lead to better 

compression. When the tag-based model has to back-off to the character model for an unknown 

word, the tag for that word will be known, therefore it can make use of a character model 

specifically trained on characters from previous words tagged in the same way. In essence, the 

PPM character model effectively learns the typical spelling characteristics for each tag in order 

to ensure better compression performance e.g. for the tag VBG, new words will invariably end 
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in the character sequence ‘ing’; for prepositions, new (rare) propositions will often contain texts 

from the more common prepositions that were encountered at the beginning of the text; and so 

on. 

 

For predicting the word, either the TTT model or TTWT model is combined with the WTW model 

to create an n-pos model. The combined TTWT model and WTW model, for instance, is 

described by the next formula: 

𝑝(𝑠) = ∏ 𝑝′(𝑡𝑖|𝑡𝑖−1, 𝑤𝑖−1, 𝑡𝑖−2)  𝑝′′( 𝑤𝑖 ∣∣ 𝑡𝑖 , 𝑤𝑖−1 )

𝑚

𝑖=1

 

where 𝑝' provides the probabilities passed by the TTWT model and 𝑝" provides the 

probabilities passed by the WTW model. 

 

To explain tag-based encoding in more detail, tables 7.2 and 7.3 present how the toolkit models 

a given string using the WTW and TTT models. The example in this case is how the PPMD 

prediction method models the string "to be or not to be to be or not to be that is the question" 

that has the following tag sequence "TO VB CC RB TO VB TO VB CC RB TO VB DT VBZ DT 

NN". In Table 7.3, WTW modelling is applied to the string. Table 7.2 presents how TTT models 

the previous string which is essentially the same as using an order 2 PPMD model. For 

simplification purposes, the tag sequence is translated into the following equivalent character 

sequence "tvcrtvtvcrtvdzdn", where "t" stands for "TO", "v" for "VB" etc. For both WTW and TTT 

models, calculating the probability for this example is similar to the character-based method 

explained in section 2.2.2.3 with the exception that the escape count equals 1 plus the number 

of symbols which have a count of 1 (these are called “singletons”). (This method for calculating 

the escape count for word-based models was found by Teahan [196] to yield better results in a 

range of compression experiments). The WTW model defaults to the character model as for 

Table 2.2. 

 

7.3 Data Source 

 

In the first part of the experiments, two sub-corpora of Corpus A [32] were used to train the 

TAPT tagger. As stated, Corpus A is an MSA corpus that includes various topics such as 

politics, opinions, legal issues, economics, conferences, business, cinema and books. The text 

(7.1) 
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in Corpus A was gathered from the Al-Hayat website, a bilingual newspaper, and from the open-

source online corpus, OPUS [30]. The second section of the experiments has utilised the BAAC 

corpus to train and evaluate the TAPT tagger. The Bangor Arabic Annotated Corpus (BAAC) is 

an MSA corpus that comprises 50K words manually annotated by parts-of-speech that was 

described in Chapter 5.  The data source for the new corpus is the Press sub-corpus from the 

BACC corpus [26], which was created originally to test the performance of various text 

compression algorithms on different text files. The results of the text classification and 

segmentation in Chapter 4 revealed that the Press sub-corpus is mostly written in MSA, as 

shown in tables 4.7, 4.11 and 4.15. According to Alhawiti [26], the sub-corpus is a newswire text 

consisting of 50K terms, gathered from various news websites between 2010 and 2012 and 

covers many topics such as political and technology news. 

 

Order 2 Order 1 Order 0 Order -1 

Prediction c p Prediction c p Prediction c p Prediction c p 

"tv"  

 

 

 

"vc"  

 

"cr"  

 

"rt" 

 

"vt"  

 

"vd"  

 

"dz" 

 

"zd" 

 

→   "c" 

→   "t" 

→   "d" 

→   esc 

→   "r" 

→   esc 

→   "t" 

→   esc 

→   "v" 

→   esc 

→  "v" 

→   esc 

→   "z" 

→   esc 

→  "d" 

→   esc 

→  "n" 

→   esc 

2 

1 

1 

3 

2 
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3/8 

3/4 

1/4 

3/4 

1/4 
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1/2 

1/2 
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"r"  
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→   "v" 

→   esc 

→   "c" 

→   "t" 

→   "d" 

→   esc 

→   "r" 

→   esc 

→   "t" 

→   esc 

→   "z" 

→   "n" 

→   esc 

→   "d" 

→   esc 

4 

1 

2 

1 

1 

3 

2 

1 

2 

1 

1 

1 

2 

1 

1 

7/8 

1/8 

3/8 

1/8 

1/8 

3/8 

3/4 

1/4 

3/4 

1/4 

1/4 

1/4 

2/4 

1/2 

1/2 

→   "v" 

→   "c" 

→   "r" 

→   "t" 

→   "d" 

→   "z" 

→   "n" 

→   esc 

3 

2 

2 

4 

2 

1 

1 

7 

5/22 

3/22 

3/22 

7/22 

3/22 

1/22 

1/22 

7/22 

→   A 1 1/|A| 

 

    

 

    

   
 

Table 7.2. The TTT processing of the tag sequence "TO VB CC RB TO VB TO VB CC RB 

TO VB DT VBZ DT NN" which is converted into "tvcrtvtvcrtvdzdn" for illustration purposes 

and A is the number of tags. 



 122 

 

Table 7.3. The WTW processing of the string "to be or not to be to be or not to be that is 

the question". 

 

A new one-to-one transliteration tool was developed and then used in both experiments to 

transliterate Arabic characters to Latin characters. The new tool is based on the Buckwalter 

Arabic transliteration tool [65], [138] developed by Tim Buckwalter. The new mapping, as shown 

in Table 7.4, adds Arabic numbers and some Quranic symbols that were found in CA corpora 

used in the experiments. The tool was utilised to transliterate training and input text for the TAPT 

tagger to Latin characters and the output tagged text to Arabic characters. Figure 7.1 shows a 

sample Arabic transliterated text using the developed transliteration tool. 

 

 

 

p(wi | ti wi-1) p(wi | ti) p(wi|) 

Prediction c p Prediction c p Prediction c p 

"VB to" 

 

"CC be" 

      

"RB or" 

 

"TO not" 

 

"TO be" 

 

"DT be" 

 

"VBZ that" 

 

 "DT is" 

 

"NN the"     

 

→ "be" 

→ esc 

→ "or" 

→ esc 

→ "not" 

→ esc 

→ "to" 

→ esc 

→ "to" 

→ esc 

→ "that" 

→ esc 

→ "is" 

→ esc 

→ "the" 

→ esc 

→ "question" 

→ esc 
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"TO"    

 

"VB"     

 

 

 

"CC"    

 

"RB"     

 

"DT"     

 

 

"VBZ"  

 

→ "be" 

→ esc 

→ "or" 

→ "to" 

→ "that" 

→ esc 

→ "not" 

→ esc 

→ "to" 

→ esc 

→ "is" 

→ "question" 

→ esc 

→ "the" 

→ esc 

4 

1 

2 

1 

1 

3 

2 

1 

2 

1 

1 

1 

3 

1 

2 
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1/5 
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3/7 
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1/3 

2/3 

1/3 

1/5 

1/5 

3/5 

1/3 

1/3 

 → "be" 

 → "or" 

 → "to" 

 → "that" 

 → "not" 

 → "is" 

 → "question" 

 → "the" 

 → esc 

4 

2 

3 

1 

2 

1 

1 
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\u0621 q \u0634 z \u064C D 

\u0622 w \u0635 x \u064D F 

\u0623 e \u0636 c \u064E R 

\u0624 r \u0637 v \u064F W 

\u0625 t \u0638 b \u0650 U 

\u0626 y \u0639 n \u0651 S 

\u0627 u \u063A m \u0652 E 

Table 7.4. A sample of the new character mapping. 

 

 

 

Figure 7.1. Sample Arabic transliterated text. 

 

 

 

 

 

 



 124 

 

7.4 Silver-standard Data Experiment 

 

This section illustrates the use of silver-standard data, which was tagged using both the 

Madamira and the Stanford taggers, to train and then evaluate the TAPT tagger. The 

experiment was conducted as follows: 

 

• Corpus A was first tagged using Madamira and the Stanford taggers. 

• Then, the text was preprocessed and input into the Tawa toolkit [192] then transliterated 

to Latin characters. 

• Next, two PPM tagging models were created, the first model was trained using 

Madamira tagged text and the second model was trained using Stanford tagged text. 

• Finally, a smaller version of the BAAC corpus, that has only 5K terms, was selected 

then tagged using the two models from the previous step. 

 

Tables 7.5 and 7.6 show the top 10 most incorrectly assigned tags for the TAPT tagger trained 

on silver-standard Madamira and Stanford models. To calculate the accuracy of using silver-

standard data to train the TAPT tagger, the Madamira and Stanford gold-standard data 

described in Chapter 6 was used to establish the number of incorrectly assigned tags. The 

tagger achieved an accuracy of 84%, with 794 incorrectly assigned tags, using the Madamira 

silver-standard model, and 81% using the Stanford silver-standard model with 927 incorrectly 

assigned tags. Table 7.7 demonstrates the most incorrectly assigned tags for the TAPT tagger 

which was trained by silver-standard text tagged by Madamira POS tagger. Table 7.6 displays 

the most incorrectly assigned tags for the TAPT tagger which was trained by silver-standard 

text tagged by Stanford POS tagger. 

 

The results in Table 7.7 show that almost 25.56% of the incorrectly assigned tags by the TAPT 

tagger that used the Madamira model were in fact verbs and 8.18% were nouns, which includes 

noun_prop and noun. Compared to the Stanford model, as shown in in Table 7.6, only 5.17% 

of the inaccurately assigned tags by the TAPT tagger that used the Stanford model were in fact 

verbs whereas 29.34% of the inaccurately assigned tags were nouns, that includes NNP, NN 

and DTNN. The previous results confirm the results in Chapter 6 which suggest that there is an 

issue in the process of assigning the verb tag by the Madamira tagger and the noun tag by the 

Stanford tagger. 
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Frequency 

Madamira 

Assigned 

Tag 

BAAC Tag 

165 noun verb 

51 noun adj 

46 conj_sub verb_pseudo 

34 noun abbrev 

27 adj noun 

21 noun_prop noun 

20 prep verb_pseudo 

17 verb abbrev 

17 noun noun_prop 

16 prep part_neg 

Table 7.5. Top 10 most incorrectly assigned tags for TAPT trained on silver-standard 

Madamira model. 

 

Frequency 

Stanford 

Assigned 

Tag 

BAAC 

Tag 

118 JJ DTJJ 

64 NN NNP 

48 VBD VBP 

45 VBD NN 

44 RP NN 

37 NNP NN 

37 NN JJ 

36 NNP DTNN 

24 DTNNS DTNN 

22 RB NN 

Table 7.6. Top 10 most incorrectly assigned tags for TAPT trained on silver-standard 

Stanford model. 
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To evaluate the performance of the TAPT tagger that was trained on Madamira silver-standard 

text, the BACC corpus was tagged then compressed using tag-based compression models. 

The BACC corpus as stated in Chapter 3, is a mixture of MSA and CA text. Table 7.7 and Table 

7.8 represent the results of compressing the BACC sub-corpora 'Arabic History', 'Arabic 

Literature', 'Art and Music' and 'Sports'. The two tables show that the tag-based compression 

performance on the text that was tagged by TAPT, that was trained on silver-standard text, has 

decreased compared to the performance of the Madamira tag-based compression. 

 

Sub-text Text Type 
Corpus 

Size 

Character-

based 

Compression 

size 

Madamira 

Tag-based 

Compression 

size 

TAPT Tag-

based 

Compression 

size 

Arabic History 

CA 

30251137 4206076 4267257 4290052 

Arabic 

Literature 
18594383 3029433 3045281 3067010 

Art and Music 
MSA 

41770 9510 10583 10604 

Sports 31059 6497 7124 7149 

Table 7.7. The character-based and the tag-based compression results of the Madamira 

and TAPT trained on silver-standard corpus. 
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Arabic History 

CA 

1.11 1.13 1.13 -0.52% 

Arabic 

Literature 
1.30 1.31 1.32 -0.70% 

Art and Music 
MSA 

1.82 2.03 2.03 -0.18% 

Sports 1.67 1.83 1.84 -0.32% 

Table 7.8. The decrease in the tag-based compression performance of TAPT trained on 

silver-standard text compared to the Madamira tagger. 
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7.5 Gold-standard Data Experiment 

 

This section represents the use of a gold-standard annotated text, the BAAC corpus, to train 

and then evaluate TAPT. Using a tenfold cross validation method, TAPT achieved an accuracy 

of 93% when trained using the BAAC corpus. Table 7.9 shows the most frequently assigned 

tags by TAPT and Table 7.10 displays the most incorrectly assigned tags compared to the tag 

at the BAAC corpus. 

 

Frequency Tag 

24787 noun 

5693 prep 

5584 verb 

4431 adj 

2519 noun_prop 

1656 conj_sub 

1148 conj 

985 pron_rel 

765 pron_dem 

599 noun_quant 

500 part_neg 

355 pron 

329 adv 

251 noun_num 

Table 7.9. The most frequently assigned tags by TAPT trained on gold-standard text. 

 

To evaluate the performance of the TAPT tagger when trained on gold-standard text, four 

BACC sub-corpora were first tagged by the TAPT tagger and then the text was compressed 

using tag-based compression models. Table 7.11 compares the results of compressing the 

BACC sub-corpora 'Arabic History', 'Arabic Literature', 'Art and Music' and 'Sports' using the 

character-based and the tag-based model. Both 'Arabic History' and 'Arabic Literature' are 99% 

written in CA text, whereas 'Art and Music' and 'Sports' are 91% and 95% consecutively, written 

in MSA text. Table 7.12 shows the tag-based compression ratio (in bits per character) of the 
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four BACC sub-corpora which were tagged by the TAPT tagger and the Madamira tagger. It is 

noticeable that the quality of compression of the 'Art and Music' and 'Sports' sub-corpora has 

increased by 4.98% and 4.25% respectively, whereas the compression quality of the sub-

corpora, 'Arabic History' and 'Arabic Literature', has decreased by 2.69% and 1.56% 

respectively, compared to the tag-based compression results of the Madamira tagger. 
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73 noun adj 

45 adj noun 

41 verb noun 

19 noun verb 

12 noun_prop noun 

12 noun conj 

11 noun noun_prop 

10 conj_sub verb_pseudo 

5 noun_prop verb 

5 adv adv_interrog 

Table 7.10. Top 10 most incorrectly assigned tags for TAPT trained on gold-standard 

corpus. 

 

The results in Table 7.11 and 7.12 indicate that tagging MSA text using the TAPT tagger 

increases the quality of the tag-based compression compared to the Madamira tagged text. The 

results also show that the quality of the tag-based compression of CA text that was tagged by 

the TAPT tagger has decreased. A possible cause of improvement in compressing the MSA 

corpora is the fact that the TAPT tagger is trained using the BAAC corpus which is mostly written 

in MSA as concluded in Chapter 5. 
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Arabic 

History 
CA 

30251137 4206076 4267257 4387191 

Arabic 

Literature 
18594383 3029433 3045281 3093824 

Art and 

Music MSA 
41770 9510 10583 10027 

Sports 31059 6497 7124 6807 

 

Table 7.11. The character-based and the tag-based compression results of the Madamira 

and TAPT trained on gold-standard corpus. 
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Arabic 

History 
CA 

1.11 1.13 1.16 -2.69% 

Arabic 

Literature 
1.30 1.31 1.33 -1.56% 

Art and Music 
MSA 

1.82 2.03 1.92 4.98% 

Sports 1.67 1.83 1.75 4.25% 

Table 7.12. The tag-based compression improvement of TAPT trained on gold-standard 

corpus compared to the Madamira tagger. 

 

7.6 Summary and Discussion 

 

This chapter presented a newly developed compression-based POS tagger for the Arabic 

language which is based on a Prediction-by-Partial Matching (PPM) compression system. The 

results of the tagger were presented in two experiments. The first used models which were 

trained using silver-standard data from two different POS Arabic taggers, the Stanford and the 
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Madamira taggers [161], [74]. The results of the previous experiment show that using silver-

standard data to train the TAPT tagger decreases the quality of the tag-based compression of 

both the CA and MSA text compared to the Madamira tagger. The second experiment trained 

a model using the BAAC corpus, which is a 50K term manually annotated MSA corpus, where 

the TAPT tagger achieved an accuracy of 93%. The tag-based compression results of the 

second experiment show that the use of the gold-standard model increases the quality of the 

tag-based compression when the TAPT tagger is used to tag MSA text.  

 

Future enhancements to the tagger can be made by utilising more Arabic resources, such as 

the ‘Sunnah Arabic Corpus' [38] which is a set of CA text that is popularly cited in Islamic books 

and the ATB corpus [111]. Including such resources might increase the accuracy of the TAPT 

tagger. 
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8.1 Summary  

 

This chapter examines the achievements of this study. First, it presents a summary in section 

8.1. Then, it reviews the aim and objectives of this research in section 8.2 and examines the 

research questions in section 8.3. Section 8.4 presents the limitations of this study. Lastly, a 

number of suggestions are offered in section 8.5. 

 

The Arabic language is a morphologically complex language that causes various difficulties for 

various NLP systems, such as POS tagging. The statistical method of tagging the Arabic text is 

broadly utilised to solve the POS uncertainty of the Arabic text [180]. Chapter 7 investigated the 

development and training of a compression-based Arabic POS tagger using the PPM algorithm. 

The new tagger (TAPT) was trained using silver-standard data and gold-standard. The results 

show that using silver-standard data to train the TAPT tagger decreases the quality of the tag-

based compression of both the CA and MSA text compared to the Madamira tagger. The 

second experiment trained a model using the BAAC corpus, which is a 50K term manually 

annotated MSA corpus, where TAPT achieved an accuracy of 93%. The tag-based 

compression results of the second experiment show that the use of the gold-standard model 

increases the quality of the tag-based compression when TAPT is used to tag MSA text. 

 

Previous studies were conducted to examine the performance of the tag-based compression 

of the Arabic text [26], where the only resource used was the Arabic Treebank Corpus (ATC) 

[26]. As the best text compression algorithms can be applied to natural language processing 

tasks often with state-of-the-art results [196], [193], [195], [197], [15], and the improved tag-

based compression has applications beyond the specific compression application, Chapter 3 

examined the use of tag-based compression of larger Arabic resources to re-evaluate the 

performance of tag-based compression. The results of the experiments in this Chapter 6 

showed that the tag-based compression of the text can effectively be used for assessing the 

performance of Arabic POS taggers when used to tag different types of the Arabic text, and also 

as a means of comparing the performance of two Arabic POS taggers on the same text. 

  

Some Arabic corpora, such as the Bangor Arabic Compression Corpus (BACC), is a mixture of 

both CA and MSA text. The results of using such a corpus in order to perform various NLP tasks 

will vary and will not be consistent and reliable. Studies that address the problems of 
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classification and segmentation of the Arabic language are limited compared to other 

languages, most of which implement word-based and feature extraction algorithms. Chapter 4 

adopted a PPM character-based compression scheme to classify and segment Classical Arabic 

(CA) and Modern Standard Arabic (MSA) texts. An initial experiment using the PPM 

classification method on samples of text resulted in an accuracy of 95.5%, an average precision 

of 0.958, an average recall of 0.955 and an average F-measure of 0.954, using the concept of 

minimum cross-entropy. Segmenting the CA and MSA text using the PPM compression 

algorithm obtained an accuracy of 86%, an average precision of 0.869, an average recall of 

0.86 and an average F-measure of 0.859. 

 

POS annotated corpora are essential for the development of many NLP systems, such as part-

of-speech tagging [180]. The lack of such resources limits some researchers from progressing 

further in their efforts. The limited availability of some existing annotated corpora and the cost 

of acquiring others are one of the main reasons that contribute to resource scarcity. Chapter 5 

described the creation of the new Bangor Arabic Annotated Corpus (BAAC) which is a Modern 

Standard Arabic (MSA) corpus that comprises 50K words manually annotated by parts-of-

speech. For evaluating the quality of the corpus, the Kappa coefficient and a direct percent 

agreement for each tag were calculated for the new corpus and a Kappa value of 0.956 was 

obtained, with an average observed agreement of 94.25%. The corpus was used to evaluate 

the widely used Madamira Arabic POS tagger and to further investigate compression models 

for text compressed using POS tags. Also, a new annotation tool was developed and employed 

for the annotation process of the BAAC. 

 

8.2 Review of Aim & Objectives 

 

The aim and objectives of this thesis which have been proposed in Section 1.2 have all been 

successfully achieved. A novel compression-based Arabic part-of-speech tagger based on 

PPM was developed and the new tagger was evaluated using a novel compression-based 

criterion. The new tagger utilised the newly created POS annotated corpus. Also, MSA and CA 

text were classified and segmented using a PPM character-based text compression scheme. 

 

Therefore, the particular objectives as described in section 1.2 were accomplished as follows: 
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• Investigate the most efficient PPM compression method of the Arabic text. 

Chapter 3 examined the use of tag-based compression of larger Arabic resources to re-

evaluate the performance of tag-based compression. The results of compressing 

tagged and untagged texts show that using tag-based compression significantly 

outperforms both the word-based and character-based models, and the added extra-

tag information improves overall compression compared to the untagged compressed 

text. 

 

• Investigate the applications of PPM tag-based compression to several Arabic NLP 

tasks. 

The novel PPM compression-based criterion was utilised in Chapter 4 to confirm the 

classification and segmentation results and as a means of comparing the performance 

of two POS taggers in Chapter 6. 

 

• Develop novel methods for classification and segmentation of Classical Arabic and 

Modern Standard Arabic text using PPM. 

Classification of Classical Arabic (CA) and Modern Standard Arabic (MSA) text was 

performed in Chapter 4 on sample texts using a PPM character-based compression 

scheme achieving an accuracy of 95.5%, an average precision of 0.958, an average 

recall of 0.955 and an average F-measure of 0.954. Segmenting the CA and MSA text 

using the PPM compression algorithm obtained an accuracy of 86%, an average 

precision of 0.869, an average recall of 0.86 and an average F-measure of 0.859. 

Further classification and segmentation experiments were conducted in Chapter 4 to 

analyse mixed Arabic corpora and the results showed that different Arabic corpora have 

a mixture of CA and MSA text.  

 

• Create and evaluate a new POS manually annotated Arabic Corpus. 

A new corpus, BAAC, was presented in Chapter 5. It is an MSA corpus that contains 

50K words manually annotated by part-of-speech tags. The annotated corpus obtained 

a Kappa value of 0.956, and an average observed agreement of 94.25%. The BAAC 

was used to evaluate the Madamira tagger and to study the effect of the manual 

annotation on the performance of the tag-based Arabic text compression. 
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• Develop and train a novel compression-based Arabic part-of-speech tagger based on 

PPM. 

 

The previous chapter presented a newly developed compression-based POS tagger 

for the Arabic language (TAPT) which is based on a Prediction-by-Partial Matching 

(PPM) compression system. The new tagger was trained using the BAAC corpus, which 

is a 50K term manually annotated MSA corpus, and achieved an accuracy of 93%. The 

tag-based compression results show that the use of the gold-standard model increases 

the quality of the tag-based compression when the TAPT tagger is used to tag MSA 

text. 

 

• Develop novel compression-based criteria for evaluating Arabic part-of-speech. 

Chapter 6 examined the feasibility of using the tag-based text compression results for 

Arabic text as a way of assessing the performance and quality of the Arabic POS 

taggers. First, the compression results were used to assess the performance of two 

taggers when used on the two types of Arabic text, CA and MSA. Second, a correlation 

was found between the quality of the tagging process and the accuracy of the tagger 

illustrated by measuring the accuracy of two taggers, the Madamira and Stanford 

tagger, using a gold-standard corpus, then comparing the tag-based compression 

results on different corpora that were tagged using the previous two taggers. 

 

8.3 Review of Research Questions 

 

This section reviews the research questions which were laid out in section 1.3.  It will list the 

question and the discussion of the experimental findings which relate to that question. 

 

The research questions were as follows: 

 

• Can the PPM compression models be used to help reveal linguistic universals across 

languages? 

The results in chapters 3, 4 and 6 show that there is a difference in quality between 

compression for CA and MSA text, which resulted from the tagging quality. This results 
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combined with the findings by Alkahtani in [30] indicate that PPM compression models 

can be utilised to reveal linguistic universals across single and multiple languages. 

 

• What is the best PPM compression model for compressing Arabic text? 

The findings in Chapter 3 show that the tag-based compression of the MSA text 

outperforms both the word-based and character-based compression. 

 

• Can the tag-based compression of the Arabic text be utilised to measure the 

performance of various Arabic POS taggers? 

The experimental findings in Chapter 6 illustrated the correlation between the quality of 

the tag-based compression and the accuracy of the tagger. This novel PPM 

compression-based criterion was utilised in the final chapter to estimate the tagging 

quality of the new tagger. 

 

• Can two types of non-colloquial written text for the Arabic language be classified using 

the PPM compression models? 

PPM as a minimum cross-entropy text classifier was successfully adopted to classify 

and segment Classical Arabic (CA) and Modern Standard Arabic (MSA) texts.  Further 

classification and segmentation experiments were conducted in Chapter 4 to analyse 

mixed Arabic corpora and the results showed that different Arabic corpora have a 

mixture of CA and MSA text. 

 

• Can a new POS annotated corpus be used to develop and train a new compression-

based Arabic part-of-speech tagger that is effective at tagging Arabic text? 

A new MSA corpus, that contains 50K words manually annotated by part-of-speech 

tags, was presented in Chapter 5. The corpus was successfully utilised in Chapter 7 to 

train the TAPT tagger. The new tagger achieved an accuracy of 93%. 

 

• Will the adoption of the PPM compression models to tag the Arabic text increase the 

performance of tagging MSA text compared to other Arabic taggers? 

The tag-based compression results of the second experiment in Chapter 7 show that 

the use of the BAAC corpus to train the new tagger increases the quality of the tag-

based compression when TAPT is used to tag MSA text. 
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8.4 Limitations 

 

The limitations are as follows: 

 

• Since PPM tag-based model uses three streams, a tag stream, a word stream and a 

character stream to build its model, compressing the text using the tag-based model will 

require more time and resources compared to a character-based model by itself. 

 

• The quality of the tag-based compression depends on the quality of the tagging process. 

This means that the compression of certain text, CA text for example, may not produce 

results similar to the compression of MSA text. 

 

• Compared to other paid annotated corpora, such as the ATB corpus, the number of 

terms in the BAAC is modest. 

  

• The BAAC is only annotated by POS, which limits the use of the corpus by other NLP 

applications. 

 

• Similar to most known Arabic POS taggers, TAPT is trained on MSA text, therefore, the 

quality of tagging CA text will be affected. 

 

• A manual similarity analysis was performed on a sample of unpublished Arabic corpora, 

such as Ajdir Corpora [5], which were gathered using a Web crawler, and text duplicates 

were discovered. The duplicate content may bias results derived from the processing of 

such corpora by artificially inflating frequencies of some words and expressions. 

 

8.4 Future Work 

 

The future work is as follows: 

  

• TAPT was trained using the BAAC, which is written in MSA text. Future enhancements 

to the tagger can be made by utilising more Arabic resources, such as the ‘Sunnah 

Arabic Corpus' [38] which is a set of CA text that is popularly cited in Islamic books. 
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Including such resources might increase the accuracy of TAPT when utilised to tag CA 

text. The quality of tagging MSA can also be improved by utilising more MSA resources 

such as the ATB corpus [111]. 

 

• Different POS taggers adopt various segmentation schemes. This scheme differs from 

tagging every prefix/infix/suffix of the word, such as the three degrees of segmentation 

structure described by Habash and Sadat [107], to neglecting some of the text, such as 

punctuations, numbers, dates, etc. Aligning the segmentation output of different taggers 

is proposed to evaluate the segmentation scheme [38], [50], however, this process is 

“quite sophisticated” [50]. Other ways, such as the GRACE evaluation task [11], the 

AMALGAM project [50], are proposed also for the evaluation of different segmentation 

schemes. Since the quality of tag-compression improves when the text is segmented, 

as shown in Chapter 3, further investigations are required to examine where the tag-

based compression can be utilised as a way for evaluating the performance of different 

segmentation schemes. 

 

• Many metrics are available for measuring the similarity of documents, such as 

Levenshtein edit distance [134], [24] and Broder’s resemblance [62]. For small data sets, 

the duplicate lines can be detected by comparing the similarity value between the two 

lines, and near-duplicates lines can also be identified by reporting lines that have 

similarity value above a certain threshold. However, the resources required to apply the 

previous approaches to large data sets may be computationally expensive, therefore, 

applying other approaches, such as Charikar’s algorithm [67], Pugh and Henzinger’s 

algorithm [167] and Shivakumar and Garcia-Molina fingerprinting scheme [183], may 

become more applicable. Future investigations are required to examine the application 

of PPM for the detection of duplicates and near-duplicates found in the text by utilising 

the codelength and the cross-entropy of the compressed text. 

 

• The utilisation of PPM compression scheme by TAPT has successfully increased the 

tagging quality of MSA text. Further investigations are required to utilise the scheme in 

more natural language processing tasks for the Arabic language such as tokenization 

and phrase chunking. This can be performed by training TAPT using, for example, 

tokenized resources, such as the ATB corpus [111]. 



 139 

 

 

• The BAAC corpus was presented in Chapter 5. Further work is needed to increase the 

number of MSA terms and include CA text to increase the possible NLP applications of 

the corpus. More linguistic information, such as the structural annotation, and 

morphological features should also be added to the BAAC. 
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