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Title 1 

The explanatory power of metabolic, neutral and descriptive models of fish species richness in the 2 

northern Atlantic 3 

 4 

Running Title 5 

Fish species richness 6 

 7 

Abstract 8 

Aim Previous analyses of marine fish species richness based on presence-absence data have shown 9 

changes with latitude and average species size, but little is known about the underlying processes. To 10 

elucidate these processes we use metabolic, neutral and descriptive statistical models to analyse how 11 

richness responds to maximum species length, fish abundance, temperature, primary production, 12 

depth, latitude, and longitude, while accounting for differences in species catchability, sampling effort 13 

and mesh size. 14 

Data Results from 53,382 bottom trawl hauls representing 50 fish assemblages. 15 

Location The northern Atlantic from Nova Scotia to Guinea. 16 

Time period 1977-2013 17 

Methods A descriptive Generalised Additive Model was used to identify functional relationships 18 

between species richness and potential drivers, after which non-linear estimation techniques were 19 

used to parameterise 1) a ‘best’ fitting model of species richness built on the functional relationships, 20 
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2) an environmental model based on latitude, longitude and depth, and mechanistic models based on 21 

3) metabolic and 4) neutral theory.  22 

Results In the ‘best’ model the number of species observed is a lognormal function of maximum 23 

species length. It increases significantly with temperature, primary production, sampling effort and 24 

abundance, and declines with depth and, for small species, with the mesh size in the trawl. The ‘best’ 25 

model explains close to 90% of the deviance and the neutral, metabolic, and environmental models 26 

89%. In all four models, maximum species length and either temperature or latitude account for more 27 

than half of the deviance explained.  28 

Main conclusion The two mechanistic models explain the patterns in demersal fish species richness in 29 

the northern Atlantic almost equally well. A better understanding of the underlying drivers is likely to 30 

require development of dynamic mechanistic models of richness and size evolution, fit not only to 31 

extant distributions, but also to historical environmental conditions and to past speciation and 32 

extinction rates.   33 



3 
 

Introduction 34 

 35 

Although much has been learned about the richness and distribution of marine species, a mechanistic 36 

understanding of the processes responsible for generating and maintaining species richness over 37 

evolutionary timescales remains elusive. There is no generally accepted theory to explain the spatial 38 

distribution of marine species richness and no general understanding of why some species are more 39 

abundant than others (Fine, 2015). This lack of understanding is somewhat surprising. Strong 40 

latitudinal gradients in species richness are observed at global and regional scales and these often 41 

correlate significantly with environmental variables and life-history traits. Hillebrand (2004) 42 

conducted a meta-analysis of gradients in marine biodiversity and found significant relationships 43 

between marine species richness, latitude, and species size, while Tittensor et al. (2010) found water 44 

temperature to be the main environmental predictor of species richness across a number of marine 45 

taxonomic groups. Why latitude, temperature and species size are important is unclear, but size and 46 

maximum body size influence the trophic position, mortality, growth and reproduction of many 47 

marine species (Andersen et al., 2016), temperature affects their metabolism and food uptake 48 

(Gillooly, Brown, West, Savage & Charnov, 2001), and latitude determines the amplitude of the 49 

seasonal changes in solar energy input affecting primary production, average temperature and annual 50 

temperature range (Cullen, Franks, Karl & Longhurst, 2002).  51 

 52 

Bony fish and elasmobranchs are among the best taxonomically resolved groups of marine animals 53 

and are therefore well suited for studies of marine species richness. Estimates suggest that on a 54 
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global scale around 79% of the species have now been described (Mora, Tittensor & Myers, 2008) and 55 

very few species have been declared extinct due to human activities (Davies & Baum, 2012). However, 56 

most inventories of fish species richness are based on single recordings of individuals with little 57 

consideration of differences in individual density and sampling effort. Including density and sampling 58 

effort is important for at least two reasons. The number of species recorded is known to depend 59 

statistically on the number of individuals and number of samples examined (Gotelli & Colwell, 2001), 60 

and high-density areas may have higher species richness because they harbor more individuals able to 61 

maintain a higher number of viable populations (Brown, 2014). Based on species inventories, 62 

MacPherson & Duarte (1994) found fish species richness and average maximum fish species size to 63 

increase with depth and decline with latitude in the northern Atlantic and Fisher, Franks & Leggett 64 

(2010) found the geometric mean fish species size to co-vary with species richness. While Blowes, 65 

Belmaker & Chase (2017) found the latitudinal change in reef fish richness to scale with abundance, 66 

no one has so far analysed how species richness of marine fish found on soft or sandy bottoms is 67 

related to density or abundance on a basin-wide scale.  68 

 69 

To understand how fish species richness in different fish communities is related to density or 70 

abundance, species length, and environmental conditions, we analyse an extensive dataset, 71 

generated by collating results from 31 standardised bottom trawl surveys from the continental 72 

shelves of the northern Atlantic and adjacent areas (Figure 1). Our analysis is based on 123 million 73 

individual demersal or benthopelagic fish caught in 53 thousand hauls taken within a total survey area 74 

of 3.1 million km2. Bottom trawl surveys are often stratified to account for spatial or depth related 75 
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differences in fish assemblage composition and density. We retain the stratification used in the 76 

surveys, correct for differences in catchability, and further stratify species into log maximum species 77 

length intervals. Using a Generalised Additive Model (GAM) to identify significant variables and 78 

relationships we construct a ‘best’ descriptive model of the number of species caught per log 79 

maximum species length interval and survey stratum by transforming the significant relationships 80 

identified by the GAM into functional relationships. We also fit an environmental model to the data in 81 

which latitude, longitude, depth, total catch and mesh-size are used as independent variables without 82 

invoking any biological hypotheses. Using the two descriptive models as reference points we 83 

investigate how well mechanistic equilibrium models of species richness based on metabolic (Allen, 84 

Brown & Gillooly, 2002; Allen & Gillooly, 2007) and neutral theory (Hubbell, 2001) fit the survey data. 85 

Both theories explain the present difference in species richness among fish communities from 86 

individual density or abundance, and from fundamental evolutionary processes such as speciation, 87 

dispersal and extinction. Recently, they have been combined and used to simulate the latitudinal 88 

gradient in species richness in the ocean (Tittensor & Worm, 2016; Worm & Tittensor, 2018).  89 

 90 

In brief, the basic assumption of metabolic theory is that temperature enhances species richness by 91 

increasing mutation rates and reducing generation times, while extinction rates are inversely related 92 

to the average density per species. In contrast to metabolic theory, neutral theory includes a spatial 93 

component and assumes that richness is determined by local abundance and random extinctions 94 

among functionally equivalent species counterbalanced by immigration from a surrounding meta-95 

community where speciation takes place. Functionally equivalent species are defined as species that 96 
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share the same probabilities of death and reproduction (see Appendix S0 in Supporting Information 97 

for further information on the two models). Because natural mortality and reproductive output 98 

depend on body size in fish, we follow Reuman, Gislason, Barnes, Mélin & Jennings (2014) and 99 

assume that functional equivalence, primarily applies for species of similar maximum length. We 100 

therefore treat each maximum species length group separately. Comparing the results from the 101 

neutral and metabolic models with the two descriptive models, our aim is to elucidate the 102 

mechanisms behind the richness differences we observe across fish communities in the northern 103 

Atlantic.  104 

 105 

Methods 106 

 107 

Survey data 108 

Average catch in number of individuals per species and haul was provided from 31 scientific bottom 109 

trawl surveys. The time period from which data was obtained from each survey was selected to 110 

provide temporal overlap between the surveys and as long a time period from each survey as feasible 111 

to minimise the influence of random fluctuations in recruitment and population abundance. Surveys 112 

with less than eight years of data were hence excluded. Although the earliest trawl hauls were taken 113 

in 1977 and the most recent in 2013, the period from 2001 to 2006 was covered by all surveys. 114 

Slightly more than half of the surveys took place in the period from October to March, a third in the 115 

period from April to September, and the remaining surveys included hauls obtained throughout the 116 

year (See Appendix S1 Table S1.1 in Supporting Information). Different bottom trawls were used in 117 
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the surveys. Cod-end mesh sizes ranged from 13 to 40 mm, horizontal trawl openings (wing spread) 118 

from 13 to 28 m, vertical openings from 1.9 to 7 m, and towing speeds from 3 to 4.5 knots. Many of 119 

the surveys used a stratified random sampling design to account for spatial and depth related 120 

differences in species composition. We retained the major strata used in the surveys providing us with 121 

richness and density data from 50 different strata. The average depth in these strata ranged from 28 122 

to 950 m. 123 

 124 

Environmental data 125 

Sea surface temperature, average temperature in the upper 200 m of the water column, and near 126 

bottom temperatures (Kelvin) were obtained from the World Ocean Atlas 2013 (Locarnini et al., 2013) 127 

based on decadal average temperature at 0.25° resolution covering the period 1955-2012 for annual, 128 

boreal summer (Jul-Sep) and boreal winter (Jan-Mar). Bottom temperatures were defined as the 129 

temperature in the layer closest to the bottom. Spatial averages were calculated for each survey 130 

stratum, and the seasonal amplitude calculated as the difference between summer and winter values. 131 

Estimates of depth integrated pelagic net primary production (npp, gCm-2y-1) based on the satellite-132 

derived Vertically Generalised Production Model (VGPM) (Behrenfeld & Falkowski, 1977) were 133 

downloaded from www.science.oregonstate.edu/ocean.productivity at 1/12 degree monthly 134 

resolution for the period 2002-2012, from which estimates of mean annual npp were derived for each 135 

survey area. Latitude and longitude were calculated as the average of the minimum and maximum 136 

coordinates of each survey. Average depth was calculated as the midpoint of the depth range of each 137 

stratum (see Appendix S1 Table S1.1).  138 

http://www.science.oregonstate.edu/ocean.productivity


8 
 

 139 

Fish species data 140 

Among the fish taxa recorded some individuals had not been identified to species. If possible, we 141 

allocated these individuals to species, assuming that their relative species composition would be 142 

identical to that of the individuals identified within the same survey stratum, and family or genus. 143 

Where no species from the family or genus had been identified in a stratum, the family or genus 144 

name was retained. Information about the maximum length of each species was downloaded from 145 

FishBase (Froese & Pauly, 2016) and used to bin the observations into 11 log maximum length 146 

intervals of equal width (from now on denoted log maximum length groups). In 1% of the species 147 

records no maximum species length was available. These records were excluded from further 148 

calculations.  149 

 150 

To estimate absolute fish density and abundance in a given stratum or area we first calculated swept 151 

area density for each species. This was done by dividing the average number of individuals caught per 152 

haul by the average area swept per haul, estimated by multiplying the wing spread of the trawl by the 153 

average distance covered per haul. Swept area abundance was calculated by multiplying swept area 154 

density by the size of the survey area. Swept area density and abundance can be converted to 155 

absolute density and abundance if catchability is known. Catchability, the fraction of the population in 156 

the path of the trawl that is retained and caught by the gear, can be estimated by dividing the swept 157 

area estimate of abundance by the absolute abundance provided by a stock assessment. Catchability 158 

is likely to differ between areas and species and depends on a number of factors including the 159 
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properties of the trawl and species-dependent traits such as the size, behavior and distribution of the 160 

individuals (Arreguín-Sánchez, 1996; Walker, Maxwell, Le Quesne & Jennings, 2017). To account for 161 

differences in horizontal and vertical distribution we sorted the species into: 1) species whose main 162 

distribution is outside the main depth range of the surveys (species mainly occurring in the infra-163 

littoral zone and bathy-demersal or bathy-pelagic species found mainly at more than 200 m of depth), 164 

and species whose main distribution is inside the main depth range of the surveys, but either 2) 165 

mostly occur on either untrawlable grounds (species that are mainly found associated with reefs or in 166 

rocky areas), 3) are likely to have a low catchability (species that bury in the sediment, and pelagic 167 

species), or 4) are likely to be regularly retained by the survey gear when available (species resting on 168 

the seabed, species found close to but not on the seabed, and midwater species with some bottom 169 

contact).  170 

 171 

We were able to identify 56 cases where catchability could be derived for the species, time period, 172 

and area covered by the survey data (see Appendix S2 and Table S2.1 in the Supporting Information). 173 

No catchability estimates could be derived for bathy-pelagic and bathy-demersal stocks, and few 174 

estimates could be obtained for infra-littoral species, for species mainly found associated with reefs 175 

or in rocky areas, and for burying and pelagic species; species that are likely to be under-sampled by 176 

the trawl surveys. The average catchability of these species was only 0.05, while the average 177 

catchabilities of the species in group four were 0.34, 1.04 and 0.52 for species that were resting on 178 

the seabed, found close to the seabed, or found in midwater, respectively. Note that for some of the 179 

species found close to the seabed the estimated catchability exceeded 1.0, probably due to their 180 
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response to the herding effect of the bridles, sweeps and doors of the trawl. Due to the few and low 181 

catchability estimates available for groups two and three, we decided to use only species from group 182 

four in our analysis. To extrapolate the 41 catchability estimates available for the 412 species in this 183 

group we fitted a log-linear mixed model to the estimates, using the vertical position of the species 184 

(resting on seabed, found close to but above the seabed, or midwater with some bottom contact) as a 185 

fixed variable and species identity and survey area as random factors. Drawing samples at random 186 

from the resulting stochastic model we generated 1000 estimates of catchability for each 187 

combination of species and survey stratum (see Appendix S2). The catchabilities were used to 188 

calculate average absolute density and abundance in each survey stratum for each of the species 189 

found in the surveys. Average absolute density and abundance were finally cumulated across species 190 

within each log maximum length group and survey stratum and used as input to the models.  191 

 192 

To confirm that the richness of the species in group four had been reasonably well sampled by the 193 

surveys we furthermore used the vegan package (Oksanen et al., 2019) to estimate the number of 194 

unobserved species in each survey stratum and found that on average a minimum of 7-8% of the 195 

species in a particular stratum may not have been recorded. However, considering all of the species 196 

found across the surveys few species appear to have been missed (see Appendix S3, Table S3.1 in 197 

Supporting Information). 198 

 199 

Selection of independent variables 200 
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The number of species recorded in a survey stratum is likely to provide a biased estimate of species 201 

richness because it depends on the number of individuals caught and identified (the species 202 

accumulation curve); the total area swept by the trawl (a measure of sampling effort); the size of the 203 

survey stratum (because large strata may contain a larger diversity of environmental conditions and 204 

habitats than small); and the mesh-size of the trawl (influencing the proportion of small individuals 205 

and species in the catch). To account for the bias we included all four variables in the GAM model. We 206 

used the total area swept in each survey stratum rather than the total number of hauls to represent 207 

sampling effort because the average duration of the trawl hauls ranged from 15 minutes to one hour 208 

across surveys. 209 

 210 

According to the metabolic and neutral models, richness should depend on temperature, species size, 211 

and either density or absolute abundance. Temperature may influence richness by affecting fish 212 

metabolism, generation time and mutation rate, but vary seasonally depending on latitude and 213 

longitude and with depth. Identifying the biologically relevant ambient temperature for a fish species 214 

is therefore difficult. Average sea surface temperature may be relevant for the pelagic eggs and 215 

larvae, average bottom temperature describes the average ambient temperature encountered by the 216 

juveniles and adults at the depth where they are caught by the survey trawls, and average 217 

temperature in the upper 200 m of the water column may represent the average temperature 218 

encountered during the entire life cycle. We furthermore found more than a third of pairwise 219 

comparisons of the potential independent variables to be significantly correlated (See Appendix S1 220 

Figure S1.2). Sea surface temperature, bottom temperature and water column temperatures were 221 
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highly significantly correlated with each other and with both latitude and longitude, while the 222 

seasonal temperature range in the upper 200 m of the water column was significantly correlated to 223 

the seasonal temperature ranges near the bottom and at the surface. Net primary production 224 

decreased with latitude and increased with temperature, with both correlations highly significant. The 225 

vertical opening of the gear was highly significantly correlated to both latitude and to all three 226 

temperatures, but not to longitude, reflecting that surveys in high latitudes generally use larger trawls 227 

with larger vertical openings than surveys in low latitudes. Total area swept and total stratum area 228 

were also highly significantly positively correlated, reflecting that more hauls typically had been taken 229 

in large survey strata than in small. Finally, both catch in numbers, average abundance and total 230 

swept area were significantly correlated. 231 

 232 

Identifying functional relationships 233 

To find the ‘best’ descriptive model we used a Generalised Additive Model (GAM; Wood, 2006) to 234 

identify the functional form and error structure of the relationship between the number of species 235 

caught per log maximum length group and the independent variables using the R-package mgcv ver. 236 

1.8.22. In the GAM the log of the expected mean number of species caught, 𝜇𝑖,𝑗, in survey stratum 𝑖, 237 

maximum length group 𝑗, was described using:  238 

 239 

log(𝜇𝑖,𝑗) = 𝛼 + 𝑠1(𝑡𝑒𝑚𝑝_𝑟𝑎𝑛𝑔𝑒𝑖) + 𝑠2(𝑡𝑒𝑚𝑝𝑖) + 𝑠3(𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒𝑖,𝑗) + 𝑠4(𝑑𝑒𝑝𝑡ℎ𝑖) + 𝑠5(𝑛𝑝𝑝𝑖) + 240 

𝑠6(𝑎𝑠𝑢𝑟𝑣𝑖) + 𝑠7(𝑙𝑚𝑙𝑗) + 𝑠8(𝑐𝑎𝑡𝑐ℎ𝑖,𝑗) + 𝑠9(𝑎𝑠𝑤𝑒𝑝𝑡𝑖) + 𝑠10(𝑣𝑒𝑟𝑡𝑜𝑝𝑖) + 𝑠11,𝑗(𝑚𝑒𝑠ℎ𝑖 ) 241 

 242 
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where 𝛼 is a proportionality constant; suffix 𝑖 and 𝑗 signify survey stratum and maximum length 243 

group, respectively, 𝑡𝑒𝑚𝑝_𝑟𝑎𝑛𝑔𝑒𝑖 is the intra-annual temperature range in the stratum (Kelvin); 244 

𝑡𝑒𝑚𝑝𝑖 is temperature (Kelvin); 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒𝑖,𝑗 is the average absolute abundance of fish of maximum 245 

length 𝑗 in stratum 𝑖 ; 𝑑𝑒𝑝𝑡ℎ𝑖  is depth (m); 𝑛𝑝𝑝𝑖 is annual net primary production (gC m-2 y-1); 𝑎𝑠𝑢𝑟𝑣𝑖  246 

is the total stratum area (km2); 𝑙𝑚𝑙𝑗 is midpoint of log maximum length group (cm); 𝑐𝑎𝑡𝑐ℎ𝑖,𝑗 is the 247 

total number of fish caught in stratum 𝑖, maximum length group 𝑗 over the time period of the survey; 248 

𝑎𝑠𝑤𝑒𝑝𝑡𝑖 is area swept by the survey trawl (km2);  𝑚𝑒𝑠ℎ𝑖  is mesh-size (mm); and 𝑣𝑒𝑟𝑡𝑜𝑝𝑖 is the 249 

vertical opening of the trawl (m). The 𝑠1, … , 𝑠10 are general spline smoothers, while 𝑠11,𝑗 denotes that 250 

for each log maximum length group, 𝑗, a separate spline smoother was applied to describe the effect 251 

of mesh-size on the number of species caught. The 𝑡𝑒𝑚𝑝𝑖 and 𝑡𝑒𝑚𝑝_𝑟𝑎𝑛𝑔𝑒𝑖 variables were either sea 252 

surface, average upper 200 m water column or bottom temperature or were replaced by latitude, 253 

𝑙𝑎𝑡𝑖, and longitude, 𝑙𝑜𝑛𝑖, when the effect of geographic location was examined, and 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒𝑖,𝑗 254 

was changed to 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑗 to examine which of the two would provide the best fit. 255 

 256 

We used thin plate regression splines with a basis dimension of four as smoothers and a log link. 257 

Latitude, longitude, sea surface temperature, bottom temperature, and temperature in the water 258 

column were highly significantly correlated, and so were absolute abundance and density. To account 259 

for these correlations, we analysed the effect of including these parameters in separate model 260 

versions using residual plots and estimates of concurvity (a non-linear analogue of multi-collinearity) 261 

to select the best fitting parameter combinations, and AIC-values to identify the most parsimonious 262 

model. Model terms were selected by backwards removal of insignificant variables, after which co-263 
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variates generating an estimated concurvity larger than 0.80 were sequentially removed to reduce 264 

variance inflation and avoid bias. Distributions of residuals were visually inspected for normality and 265 

plotted against each co-variate to reveal heteroscedasticity. We compared models with Poisson and 266 

negative binomial error distributions, and found the two to provide an almost equally good fit to the 267 

data based on AIC-values and comparisons of the observed and theoretically expected variance, 268 

where the importance of over-dispersion was assessed by dividing the sum of squared residuals by 269 

the sample size minus the number of parameters estimated (Hilbe, 2011). For the negative binomial 270 

model this produced a variance ratio of 0.94, confirming the appropriateness of a negative binomial 271 

assumption.  272 

 273 

We simplified the GAM model and further reduced its AIC value by inserting the functional 274 

relationships indicated by the significant GAM smoothers (see Figure 3). To model the effect of 275 

temperature, we assumed that the relationship between species richness and temperature would 276 

follow the Arrhenius equation (Gillooly et al., 2001) and consequently used the inverse of 277 

temperature in the model. The functional relationships included logarithmic transformations of 278 

several of the other independent variables and the addition of a second-order polynomial to capture 279 

the change in log species richness with log maximum length. All log transformations used natural 280 

logarithms. Using log transformations meant either that zero observations had to be excluded, or that 281 

a small positive number had to be added to avoid having to calculate the log of zero. When zero 282 

individuals had been caught in a given stratum and log maximum length group, we therefore used the 283 

inverse of the total area swept in the stratum to provide a tentative estimate of its maximum density 284 
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in the stratum. As evidenced by the residuals, this introduced a small bias in the fit (see Appendix S4, 285 

Figure S4.3). Because the neutral model cannot easily be linearised, we used non-linear techniques to 286 

estimate the parameters of the four models presented below. This also allowed us to retain the zeros 287 

and removed the source of the bias in the GAM model.  288 

 289 

Best descriptive model 290 

The significant independent variables in the linearised GAM model were used to construct a ‘best‘ 291 

non-linear descriptive model of the number of species caught. The ‘best’ non-linear model followed 292 

the simplified GAM equation and contained an Arrhenius expression where 𝛽2, the ‘activation energy 293 

of metabolism’ (Gillooly et al., 2001), was divided by average water column temperature (Kelvin) 294 

multiplied by Boltzmanns constant, 𝑘 (8.62×10−5 eV K−1). It also contained the catch in numbers, the 295 

area swept by the trawl, and a mesh-size/log maximum length interaction, total abundance, depth, 296 

annual net primary production, and a quadratic log maximum length term, exp(𝑙𝑚𝑙𝑗 + 𝛽7 𝑙𝑚𝑙𝑗
2), to 297 

capture the unimodal relationship between species richness and log maximum length: 298 

 299 

𝜇𝑖,𝑗 = 𝛼 ∗ exp (
−𝛽2

𝑘 ∗ 𝑡𝑒𝑚𝑝𝑖
) ∗ 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒𝑖,𝑗

𝛽3 ∗ 𝑑𝑒𝑝𝑡ℎ𝑖
𝛽4 ∗  𝑛𝑝𝑝𝑖

𝛽5
∗ exp(𝑙𝑚𝑙𝑗 + 𝛽7 𝑙𝑚𝑙𝑗

2) ∗300 

𝑐𝑎𝑡𝑐ℎ𝑖,𝑗
𝛽8 ∗  𝑎𝑠𝑤𝑒𝑝𝑡𝑖

𝛽9 ∗ 𝑚𝑒𝑠ℎ𝑖
𝛽11,𝑗 301 

 302 

where 𝛼, the proportionality constant, subsumes the combined effects of the standardisation of the 303 

Arrhenius expression to a reference temperature, and other pre-factors related to abundance, depth, 304 

net primary production, the maximum length term, catch in numbers, area swept and mesh-size.  305 
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 306 

Environmental model  307 

The environmental model assumes that the number of species observed in survey stratum, 𝑖, log 308 

maximum length group, 𝑗, can be calculated from species richness, described by a simple function of 309 

latitude, longitude, depth and log maximum length, corrected for differences in catch in numbers, 310 

area swept and mesh-size: 311 

 312 

𝜇𝑖,𝑗 = 𝛼 ∗ 𝑙𝑎𝑡𝑖
𝛽0 ∗ 𝑙𝑜𝑛𝑖

𝛽1 ∗ 𝑑𝑒𝑝𝑡ℎ𝑖
𝛽4 ∗ exp(𝑙𝑚𝑙𝑗 + 𝛽7 𝑙𝑚𝑙𝑗

2) ∗ 𝑐𝑎𝑡𝑐ℎ𝑖,𝑗
𝛽8 ∗ 𝑎𝑠𝑤𝑒𝑝𝑡𝑖

𝛽9 ∗ 𝑚𝑒𝑠ℎ𝑖
𝛽11,𝑗  313 

 314 

Metabolic model 315 

In the Metabolic Theory of Ecology, temperature and body size influence the rate of per capita 316 

speciation in the same way as they influence metabolism (Gillooly & Allen, 2007) (see Appendix S0). 317 

Combining absolute density with a per capita rate of speciation determined by maximum length and 318 

temperature provides the speciation rate. In the equilibrium situation, speciation is counterbalanced 319 

by extinction, assumed to decline linearly with the average density per species. We added the effect 320 

of differences in number of individuals caught, area swept and trawl mesh-size to the model of Segura 321 

et al. (2015) to describe the number of species caught:  322 

 323 

𝜇𝑖,𝑗 = 𝛼 ∗ exp (
−𝛽2

𝑘 ∗ 𝑡𝑒𝑚𝑝𝑖
) ∗ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑗

𝛽3 ∗ 𝑚𝑙𝑗
𝛽6 ∗ 𝑐𝑎𝑡𝑐ℎ𝑖,𝑗

𝛽8 ∗ 𝑎𝑠𝑤𝑒𝑝𝑡𝑖

𝛽9
∗ 𝑚𝑒𝑠ℎ𝑖 

𝛽11,𝑗 324 

 325 
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where 𝛽2 is the ‘activation energy of metabolism’ (Gillooly & Allen, 2007), 𝑘 is Boltzmann's constant, 326 

𝑚𝑙𝑗 is the median maximum length of the species in log maximum length group 𝑗, and 𝛼, the 327 

proportionality constant, accounts for the combined effects of the standardisation of the Arrhenius 328 

expression to a reference temperature, as well as other pre-factors related to the density term, and to 329 

the maximum length, catch in numbers, area swept and mesh-size terms. 330 

 331 

Neutral model 332 

According to the Neutral Theory of Biodiversity and Biogeography, the number of functionally 333 

equivalent species in a local community is determined by random extinctions caused by ecological 334 

drift, counterbalanced by immigration of species from a larger surrounding meta-community where 335 

random speciation takes place (Hubbell, 2001; Rosindell, Hubbell & Etienne, 2011) (see Appendix S0).  336 

 337 

Following Reuman et al. (2014), we assume that species of similar log maximum length are 338 

functionally equivalent and model each log maximum length group separately, using the approximate 339 

formula derived by Etienne & Olff (2004) and Reuman et al. (2014) to describe the relative number of 340 

species in each survey stratum and log maximum length group. We also assume that the probability 341 

of immigration, 𝜆, is independent of stratum area, but allow it to vary with log maximum length. To 342 

account for the effect of differences in the number of individuals examined, effort and sampling gear 343 

on the number of species caught, we add number of individuals caught, total area swept and mesh-344 

size terms to the species richness model of Reuman et al. (2014) providing the following equation: 345 

 346 
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𝜇𝑖,𝑗 ≈ 𝐽𝑀𝑗
∗ (

𝜈𝑖

1 − 𝜈𝑖
) ∗ log [1 −  

𝜆𝑗 𝑙𝑜𝑔(𝜆𝑗)

1 − 𝜆𝑗
∗  (

𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒𝑖,𝑗

𝐽𝑀𝑗
∗(𝜈𝑖 (1 − 𝜈𝑖)⁄ )

 )]  ∗ 𝑐𝑎𝑡𝑐ℎ𝑖,𝑗
𝛽8 ∗  𝑎𝑠𝑤𝑒𝑝𝑡𝑗

𝛽9 ∗347 

 𝑚𝑒𝑠ℎ
𝑖

𝛽11,𝑗    348 

 349 

Where 𝐽𝑀𝑗
 is absolute abundance in log maximum length group 𝑗 in the meta-community, 350 

𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒𝑖,𝑗 is the absolute abundance of group 𝑗 in the local community, and 𝜈𝑖 is the per capita 351 

speciation rate in area 𝑖. Note also that 𝐽𝑀𝑗
 and 𝜈𝑖 are confounded in the 𝐽𝑀𝑗

(𝜈𝑖 (1 − 𝜈𝑖)⁄ ) term. 352 

However, as the speciation rate is likely to be very small, the term can be approximated by the 353 

fundamental biodiversity number, 𝜃𝑖,𝑗 = 𝐽𝑀𝑗
𝜈𝑖 (Rosindell et al., 2011). Because fish evolution is 354 

affected by temperature (Wright, Ross, Keeling, McBride & Gillman, 2011), we follow Tittensor & 355 

Worm (2016) and make 𝜈𝑖 temperature dependent by adding the Arrhenius equation. Finally, we 356 

approximate the change in 𝐽𝑀𝑗
with log maximum length by a quadratic term as found in the ‘best’ 357 

descriptive model and thus end up with: 358 

 359 

𝐽𝑀𝑗
(

𝜈𝑖,𝑗

1−𝜈𝑖,𝑗
) ≈ 𝜃𝑖,𝑗 = α ∗ exp(𝑙𝑚𝑙𝑗 + 𝛽7 𝑙𝑚𝑙𝑗

2) ∗ exp (
−𝛽2

𝑘∗𝑡𝑒𝑚𝑝𝑖
)  360 

 361 

where 𝛼 again is an overall proportionality constant. Hence 362 

 363 

𝜇𝑖,𝑗 = 𝜃𝑖𝑗 ∗ log [1 −  
𝜆𝑗 𝑙𝑜𝑔(𝜆𝑗)

1 − 𝜆𝑗
∗

𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒𝑖,𝑗

𝜃𝑖𝑗
 ] ∗ 𝑐𝑎𝑡𝑐ℎ𝑖,𝑗

𝛽8 ∗  𝑎𝑠𝑤𝑒𝑝𝑡𝑗
𝛽9 ∗  𝑚𝑒𝑠ℎ

𝑖

𝛽11,𝑗    364 

 365 
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where, 𝑗 = 1 … 11, is log maximum length group, 𝑖 is stratum and 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒𝑖,𝑗 is the total number 366 

of individuals in stratum 𝑖 group 𝑗 estimated by multiplying the size of stratum 𝑖 with the absolute 367 

density of fish in 𝑖 belonging to log maximum length group 𝑗.  368 

 369 

Estimating model parameters 370 

We use the non-linear model fitting R-package TMB (Kristensen, Nielsen, Berg, Skaug & Bell, 2015) to 371 

estimate the parameters of the four non-linear models. Fitting each model to the number of species 372 

observed we removed any insignificant variables, except if they were important for the theoretical 373 

underpinning of a model. We visually inspected the Pearson residuals of each model for normality and 374 

plotted them against each co-variate to reveal potential heteroscedasticity. To compare the models 375 

we calculated AIC-values (Burnham & Anderson, 2002), R2
 from observed and predicted number of 376 

species, and proportion of deviance explained. The latter was estimated by fixing the estimated scale 377 

parameter, 𝜅, of the negative binomial distribution used in each of the models, comparing the 378 

difference in deviance between a saturated model (with one parameter for each of the 550 379 

observations) and the actual model, to the difference in deviance between a saturated model and a 380 

model with only one parameter (Cameron & Windmeijer, 1996). To also illustrate how much of the 381 

overall deviance each model term explained, we consecutively replaced each of the independent 382 

variables by its overall average and calculated the relative increase in the proportion of deviance 383 

explained when the actual observations were used instead of the average. Having identified the four 384 

most parsimonious models we examined their sensitivity to the uncertainty in the abundance and 385 

density data by fitting them to the 1000 separate estimates of density and abundance obtained from 386 
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the mixed effects catchability model, and calculated the mean and variance of the resulting 387 

parameter estimates. We plotted the proportion of the deviance explained by each of the model 388 

parameters in the 1000 runs, and used these to illustrate the sensitivity of our results to the 389 

uncertainty in the catchability estimates. All analyses were undertaken in R version 3.4.4.  390 

 391 

 392 

Results 393 

 394 

Observed number of species and density 395 

The number of observed species, log average swept area density, and log average absolute density 396 

follow almost symmetrical distributions when plotted against log maximum length (Figure 2). As 397 

expected, the average number of species observed increases with temperature while log average 398 

swept area density and log average absolute density change little except in areas with a mean annual 399 

sea temperature below 7.5°C where the densities are significantly lower in the intermediate length 400 

range.  401 

 402 

GAM model 403 

Fitting the GAM to the survey data reveals a strong and highly significant unimodal effect of log 404 

maximum length on log number of species observed, a significant effect of absolute fish abundance, 405 

significant non-linear positive effects of average temperature in the upper 200 m of the water column 406 

and area swept, and a significant positive linear effect of net primary production. Log number of 407 
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species caught declines significantly with depth and, for the smaller length groups, with increasing 408 

mesh-size (Figure 3). Stratum area, vertical opening, temperature range and catch in numbers were 409 

all insignificant or generated a too high concurvity. The model explains 85% of the deviance, and has a 410 

lower AIC than model versions in which abundance is replaced by density and average temperature 411 

by either sea surface temperature, bottom temperature, or latitude and longitude. Although there are 412 

survey strata that produce significant negative residuals, such as the 50-200m stratum in Guinea 413 

which features the lowest number of hauls of all strata, there are no clear patterns in the residuals 414 

across survey strata. This suggests that the model provides an equally good description of fish species 415 

richness in the Atlantic, Arctic and Mediterranean Seas (Figure 4). Further model diagnostics are 416 

shown in Appendix S4, Figures S4.1 and S4.2).  417 

 418 

Some of the smooth relationships suggested that the AIC value could be further reduced by using the 419 

logarithm or the inverse of the independent variable, and for log maximum length, in particular, that 420 

the smoother could be replaced by a second-order term, corresponding to a log-normal like 421 

distribution of richness versus maximum length. Replacing the independent variables in the GAM by 422 

inverse temperature, log abundance, log depth, net primary production, log area swept, an 423 

interaction between mesh-size and log maximum length, and the exponential of a second-order 424 

polynomial in log maximum length, reduced the AIC-value from 2090 to 1860 and increased the 425 

percentage of deviance explained to 91%.  426 

 427 

Non-linear models 428 
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We use non-linear estimation techniques to compare the ‘best’ descriptive model identified by the 429 

GAM to the three other models. Fitting the four models to the average absolute densities and 430 

abundances we initially used variance ratio tests to determine whether the bias correcting terms 431 

(𝑐𝑎𝑡𝑐ℎ𝑖,𝑗
𝛽8,  𝑎𝑠𝑤𝑒𝑝𝑡𝑗

𝛽9 and 𝑚𝑒𝑠ℎ
𝑖

𝛽11,𝑗) contributed significantly to the fit. We found that 432 

𝑐𝑎𝑡𝑐ℎ𝑖,𝑗
𝛽8  did not improve the fit of the ‘best’ and neutral models significantly, improved the 433 

metabolic model marginally, but contributed highly significantly to the fit of the environmental 434 

model. The total area swept, 𝑎𝑠𝑤𝑒𝑝𝑡𝑗
𝛽9, contributed significantly to all models, except the 435 

environmental, while the term reflecting the interaction between mesh size and maximum length, 436 

𝑚𝑒𝑠ℎ
𝑖

𝛽11,𝑗 , was significant in all four models. In the neutral model the per capita immigration rates, 𝜆𝑗, 437 

were not significantly different from zero; and were therefore replaced by a single overall 𝜆 for all log 438 

maximum length groups (see Appendix S4 Table S4.1).  439 

 440 

Fitting the ‘best’ model to the average of the absolute abundances explains 90% of the deviance 441 

(Table 1). The neutral model provides the second-best fit (ΔAIC=38) followed by the metabolic model 442 

(ΔAIC=40) and the environmental model (ΔAIC=46). Note that the difference between the metabolic 443 

and neutral models can be explained by the additional parameter included in the former. Many of the 444 

parameter estimates are similar across models. The interaction between log maximum length and 445 

mesh-size, 𝛽11,𝑗, is thus negative for the smaller species in all models, implying a general decline in 446 

the number of small species caught as mesh-size increases. In all models log maximum length and 447 

either temperature or latitude account for most of the deviance explained (Figure 5). The parameter 448 

estimates of ‘best’, metabolic and neutral models are robust to the uncertainty in the modelled 449 
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catchabilities as shown by the limited distribution of deviance around the mean value of the 1000 450 

estimates. The standard deviations of the parameter estimates are also small (see Appendix S4 Table 451 

S4.1). Additional model diagnostics are presented in the Supplementary Information (Appendix S4 452 

Figures S4.4 & S4.5). 453 

 454 

 455 

Discussion 456 

 457 

Our study reveals strong consistent patterns in the number of demersal and benthopelagic fish 458 

species across the northern Atlantic. As in previous investigations, we find body size, depth and either 459 

temperature or latitude to be important, but our analysis is the first in which differences in the 460 

number of individuals caught, area swept and mesh-size are considered, and where net primary 461 

production and absolute fish abundance or density are used as covariates. We find fish species 462 

richness to increase with temperature, fish abundance, and net primary production, but to decline 463 

with depth and latitude. Adjusting for differences in area swept and mesh-size, the ‘best’ descriptive 464 

model explains 90% of the deviance in the number of species caught by log maximum length, 465 

temperature, fish abundance, depth and primary production (Table 1). The neutral model in which 466 

inverse temperature, a parabolic relationship with log maximum length, area swept and mesh-size are 467 

significant, explains 89% of the deviance, and so does the metabolic model. Our analyses furthermore 468 

show that both the neutral and metabolic models provide significantly better fits than the 469 
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environmental model in which local richness is described as a function of log maximum length, catch, 470 

latitude, longitude and depth.  471 

 472 

In all four non-linear models more than half of the deviance is explained by a combination of log 473 

maximum length and either temperature or latitude (Figure 5). In the data the distribution of the 474 

number of species observed across maximum length groups is approximately lognormal (Figure 2). 475 

Similar distributions have been obtained for marine bivalves (Roy, Jablonsky & Martien, 2000), 476 

terrestrial snakes (Boback & Guyer, 2003), and insects (Siemann, Tilman & Haarstad, 1996), while 477 

more right-skewed distributions have been found for birds and mammals (Purvis, Orme & Dolphin, 478 

2003; Smith & Lyons, 2013). A lognormal distribution also provided a highly significant fit in the best, 479 

neutral and environmental models (Table 1). Contrary to this, metabolic theory predicts that species 480 

richness should scale with body mass raised to a power of 0.75, hence maximum length to a power of 481 

2.25. This prediction was not confirmed by our analysis where the power was estimated to -1.00 482 

(±0.48 conf. lim.) and thus highly significantly different from the expected. 483 

 484 

The average water column temperature from 0-200 m is a better predictor of the observed number of 485 

fish species than bottom temperature, surface temperature and latitude. Latitude and average 486 

temperature are negatively correlated, but the correlation breaks down at intermediate latitudes, 487 

where average temperature generally is higher in the eastern part of the northern Atlantic due to the 488 

influence of the Gulf Stream. The increase in the number of fish species caught with temperature 489 

seems to be well described by the Arrhenius equation. Metabolic theory emphasizes the role of 490 
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temperature and body size on mutation rate and generation time, and it is interesting that the 491 

Arrhenius constant, 𝛽2, is 0.47 (± 0.06 conf. lim.) and 0.52 eV (±0.06 conf. lim.), respectively, in the 492 

metabolic and neutral models. This range is not far from the average activation energy of metabolism 493 

of 0.65 eV predicted by metabolic theory (Gillooly & Allen, 2007; Bailly et al., 2014), and close to 494 

empirical estimates of the activation energy of fish metabolism. Clarke & Johnston (1999) and Gillooly 495 

et al. (2001) both used the Arrhenius equation to describe the relationship between the resting 496 

metabolism of fish and temperature, and independently estimated the activation energy as 0.43 eV. 497 

Barneche et al. (2014) used a model with a temperature optimum to account for metabolic 498 

inactivation at high temperatures and found an activation energy of 0.59 eV. How temperature 499 

influences the rates of speciation and extinction is not completely known, and other co-varying 500 

factors may be involved (see e.g. Rabosky et al., 2018).  501 

 502 

The ‘best’ and neutral models contain positive relationships between abundance and the number of 503 

species observed. The ‘best’ model also includes a significant positive relationship with net primary 504 

production. Areas of high productivity have been hypothesised to have higher species richness 505 

because they harbor more individuals able to maintain a higher number of viable populations (Brown, 506 

2014), although a recent review by Storch, Bodhalkvá & Okie (2018) found the empirical evidence in 507 

favor of this hypothesis to be mixed. However, in areas where abundance has been significantly 508 

reduced by fishing, primary production may better reflect fish abundance and density in the 509 

unexploited state and hence be a better predictor of richness. Without primary production included in 510 

the model, the three largest positive differences between the observed and predicted number of 511 
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species were generated by the data from Mauretania, which features the highest primary production, 512 

but has been subject to marked overexploitation (Meissa & Gascuel, 2014). Note however, that 513 

abundance or density never accounted for more than 10% of the total deviance in the ‘best’, neutral 514 

and metabolic models, explaining the robustness of these models to the uncertainty in the 515 

catchabilities (Figure 5). 516 

 517 

Tittensor & Worm (2016) and Worm & Tittensor (2018) used a neutral model to simulate species 518 

richness in the ocean and allowed speciation rate and generation time to depend on temperature. 519 

Thermal effects on speciation rate generated a stable but weak latitudinal richness gradient in their 520 

model, while thermal effects on generation time produced a transient latitudinal richness gradient 521 

that eventually disappeared. Combining the effect of an increase in abundance caused by the increase 522 

in ocean area towards the equator and a temperature-dependent speciation rate produced the most 523 

realistic gradient in richness. Fitting a neutral model to the survey data we found a strong effect of 524 

temperature on species richness and a weaker influence of fish abundance. Furthermore, the shelf 525 

areas in the eastern Atlantic down to 200 m, the depth range where our fish species have their 526 

maximum abundance, increases with latitude from the Equator to the Arctic (Pilson & Seitzinger, 527 

1996). A consistent decline in habitat area with latitude is therefore unlikely to explain our results.   528 

 529 

The parameter describing the probability of immigration in the neutral model could not be estimated 530 

with sufficient precision. The known functional dependency between per capita immigration 531 

probability and the speciation rate in the surrounding meta-community makes it difficult to estimate 532 
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both parameters simultaneously (Jabot & Chave, 2011). The immigration probability may depend on 533 

temperature and size, as assumed by Reuman et al. (2014), but the evidence for temperature related 534 

differences in larval dispersal is lacking (Leis et al., 2013), and when immigration probability was 535 

assumed to be size dependent, none of the estimates of 𝜆𝑗 were significant. Additional analysis of 536 

species distributions and information on the genetic divergence of subpopulations is necessary to 537 

fully understand the relationship. The neutral model has been criticised for predicting unrealistically 538 

long species ages for common species and too short species ages for new species with few individuals 539 

(Chisholm & O’Dwyer, 2014). Recent work has shown that more realistic species ages are generated 540 

when protracted speciation and weak selection caused by small differences in hereditary fitness are 541 

incorporated in the model (Rosindell et al., 2015), but no approximate solution for the number of 542 

species in each community is yet available for this model. 543 

 544 

Despite the large sample sizes and good geographical coverage of the survey data, several problems 545 

may be associated with using bottom trawl survey data to study fish species richness and density 546 

patterns. The main aim of a scientific bottom trawl survey is often to provide reliable estimates of the 547 

relative abundance and year-class strength of commercially important fish species, and less attention 548 

may therefore be given to identifying species that are rare or of little or no commercial value. Trawl-549 

survey catches may furthermore provide biased estimates of the actual fish species composition and 550 

density due to species and size-specific differences in the probability of the individuals to be retained 551 

by the trawl (Arreguín-Sánchez, 1996). Some species and sizes are herded into the path of the trawl 552 

by the action of the otter doors and trawl sweeps, others avoid the trawl by escaping under the 553 
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fishing line or over the headline, others are able to outswim the trawl, and among those entering the 554 

trawl the smaller individuals and species may escape through the meshes.  Factors that have been 555 

reported to influence the catch efficiency of survey trawls include time of day, light intensity, 556 

turbidity, current strength and direction, depth, sweep length, net spread and vertical opening, trawl 557 

speed, haul duration, and the size and type of the ground gear (Arreguín-Sánchez, 1996; Fraser, 558 

Greenstreet & Piet, 2007). Although we corrected our analysis for differences in species catchability, 559 

we were unable to fully account for all of the factors that may lead to species and size specific 560 

differences in catchability. This was due to the sparsity of spatially and temporally overlapping stock 561 

assessments, the absence of individual length measurements for many of the non-commercial 562 

species, and our use of average catch rates rather than individual hauls. However, as seen in Figure 5, 563 

density or abundance only explain less than 10% of the deviance. The sensitivity of our overall 564 

conclusions to the uncertainty in the catchabilities is therefore modest, and the parameter estimates 565 

and the relative importance of the variables only change little in the different models. Finally, our use 566 

of a single estimate of maximum length for each species hides the fact that maximum body length in 567 

fish is likely to vary from area to area (Rypel, 2013). However, the maximum length of a species in a 568 

given area is difficult to estimate as it depends on local fishing mortality and sampling effort.  569 

 570 

We base our analysis on the number of fish species and individuals observed over a recent period of 571 

time in different regions of the northern Atlantic, Arctic and Mediterranean Seas. It is now well 572 

documented that changes in fish distributions have occurred over the last decade or two in many 573 

regions of the North Atlantic and that these are significantly associated with changes in temperature, 574 
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(Perry, Low, Ellis & Reynolds, 2005; Hiddink & Ter Hofstede, 2008; Batt, Morley, Selden, Tingley & 575 

Pinsky, 2017). We have fitted our models to data from a period when temperatures have been 576 

increasing, but where regulatory processes generally seem to maintain existing patterns in species 577 

richness (Gotelli et al., 2017). Future analyses should investigate whether these patterns will persist 578 

over longer time periods and how our model parameters will be modified by temperature change, for 579 

example by conducting the analyses on different time periods characterised by different mean 580 

temperatures. Such analyses could provide insight into the relative importance of temperature having 581 

a direct effect on metabolic processes vs. its effects on other ecosystem features that affect species 582 

richness. For example, Marbá, Jordà, Augustí, Girard & Duarte (2015) showed that the activation 583 

energy for many biological responses in the Mediterranean Sea is far higher than the reported 584 

activation energy for metabolism, suggesting that temperature increases are having additional 585 

ecosystem effects on biotic responses beyond their effect on metabolic processes and speciation 586 

rates. The effects of global warming on fish communities have been predicted from stacked species 587 

distribution models (SSDMs; e.g. Jones & Cheung, 2015), but these models have so far largely ignored 588 

the regularity in the distribution of fish species richness and abundance with log maximum length. 589 

This regularity accounts for a third or more of the deviance explained by our models (Figure 5) and 590 

may thus be used to improve the predictive capability of the SSDMs significantly. But while the right-591 

hand side of the richness versus log maximum length distribution, consisting of species with a 592 

maximum length larger than app. 50 cm, has been explained by size spectrum theory (Reuman et al., 593 

2014), little is known about the processes shaping the left-hand side. 594 

 595 
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Numerous hypotheses have been put forward to explain the latitudinal pattern in species richness 596 

(Brown, 2014; Fine, 2015). Finding log maximum length, temperature, absolute fish abundance, depth 597 

and net primary production to explain 90% of the deviance in the distribution of demersal fish species 598 

richness across the northern Atlantic, and both neutral and metabolic equilibrium models to explain 599 

close to 89%, conveys an important message. When 89% of the deviance in the extant species 600 

richness can be explained by two competing mechanistic hypotheses, and by a model based on 601 

latitude, longitude and depth, and when many of the independent variables are significantly 602 

correlated, it seems relevant to question how much more the present patterns in species richness and 603 

abundance can tell us about the underlying environmental, ecological and evolutionary processes 604 

(Gotelli et al., 2009). We probably need dynamic mechanistic models with more realistic descriptions 605 

of speciation, dispersal and extinction plus additional data to reveal how past changes in 606 

environmental (e.g. temperature, currents, ice cover, shelf area) and biotic (e.g. primary production) 607 

variables may have contributed to shaping the present distribution of species richness and the strong 608 

lognormal relationship between richness and maximum length (Fine, 2015; Descombes et al., 2018). 609 

Such data should include information from paleo-geographical and climatological reconstructions of 610 

past environmental conditions as well as information about body size evolution, diversification rates 611 

and species lifetimes from molecular phylogenetics and the fossil record (Romano et al., 2016; Alfaro 612 

et al., 2018). In addition to providing a baseline from which we can evaluate future change, our data 613 

and results point to new possibilities for understanding demersal fish species biogeography in the 614 

northern Atlantic. 615 
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Table 1. Parameter estimates from TMB-model fits using average absolute density and abundance. 768 

Standard error in parentheses and significance levels indicated by stars (***=<0.001, **=< 0.01, *=< 769 

0.05) (one-sided t-test, n=550). NS= Non Significant term retained in the model fit. NSR= Non 770 

Significant term removed from the model. 771 
  

Parameter 
Best descriptive 

model 
Neutral Metabolic Environmental 

Constant                 (𝑙𝑜𝑔𝛼)   16.90 (1.63)*** 22.95 (1.35)*** 24.89 (1.65)***  3.093 (0.687)*** 

Latitude                     (𝛽0)    -0.518 (0.055)*** 

Longitude                  (𝛽1)      0.426 (0.073)*** 

Temperature            (𝛽2)  0.322 (0.035)***  0.521 (0.029)***  0.466 (0.029)***  

Abundance                (𝛽3)  0.034 (0.009)***    

Density                      (𝛽3)   0.056 (0.011)***  

Depth                         (𝛽4)   -0.115 (0.029)***   -0.167 (0.034)*** 

Net prim. prod.        (𝛽5)  0.217 (0.045)***    

Max. length               (𝛽6)   -1.000 (0.246)***  

Log. max. length2     (𝛽7) -0.131 (0.028)*** -0.131 (0.031)***  -0.235 (0.029)*** 

Immigration               (𝜆)  NS   

     

Catch                          (𝛽8) NSR NSR NSR  0.067 (0.010)*** 

Area swept               (𝛽9)  0.079 (0.023)***  0.129 (0.022)***  0.176 (0.022)*** NSR 

Mesh:mlgr1.5              (𝛽11,1) -1.537 (0.181)*** -1.351 (0.184)*** -1.675 (0.242)*** -1.070 (0.187)*** 

Mesh:mlgr2.0          (𝛽11,2) -1.378 (0.162)*** -1.205 (0.164)*** -1.421 (0.202)*** -1.021 (0.168)*** 

Mesh:mlgr2.5          (𝛽11,3) -0.977 (0.120)*** -0.875 (0.124)*** -0.972 (0.143)*** -0.755 (0.125)*** 

Mesh:mlgr3.0          (𝛽11,4)   -0.598 (0.099)*** -0.509 (0.103)*** -0.552 (0.108)*** -0.458 (0.103)*** 

Mesh:mlgr3.5          (𝛽11,5) -0.401 (0.078)*** -0.335 (0.081)***   -0.347 (0.082)*** -0.340 (0.082)*** 

Mesh:mlgr4.0          (𝛽11,6) -0.222 (0.066)***   -0.165 (0.070)**   -0.167 (0.070)* -0.192 (0.070)*** 

Mesh:mlgr4.5          (𝛽11,7) NS NS NS NS 

Mesh:mlgr5.0          (𝛽11,8) NS NS NS NS 

Mesh:mlgr5.5          (𝛽11,9) NS NS NS NS 

Mesh:mlgr6.0         (𝛽11,10) NS NS NS NS 

Mesh:mlgr6.5         (𝛽11,11) NS NS NS NS 

     

Scale parameter   (𝑙𝑜𝑔𝜅)  3.752 (0.402)***  3.058 (0.239)***  3.085 (0.247)***  3.049 (0.239)*** 

     

Proportion of deviance 
explained 

 
0.900 

 
0.892 

 
0.891 

 
0.890 

Pearson’s R2  (observed vs. 
predicted) 

 
0.838 

 
0.787 

 
0.792 

 
0.789 

AIC 1891 1929 1931 1937 

ΔAIC  38 40 46 
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 773 

 774 

Figure 1. Pies showing the locations of the surveys and the relative number of species recorded in 775 

each of the maximum length groups indicated in the lower right-hand corner of the map (plotted with 776 

the R-package ‘marmap’). 777 

  778 
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 779 

Figure 2. Average number of species, log swept area density (No*km-2) and log absolute density 780 

(No*km-2) (±95% conf. limits) versus maximum length (cm) in four different sea surface temperature 781 

intervals (°C).  782 
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Figure 3. Estimated smoothing curves from GAM using average sea temperature and other covariates 783 

to model the number of species observed by log maximum length group. Estimated degrees of 784 

freedom in brackets on the y-axis labels. Shaded area: 2*SE. Mesh-size smooths in bottom row only 785 

shown for three numerically abundant maximum length groups.  786 

 787 



44 
 

 788 

 789 

Figure 4. Box and whisker plot of log survey strata residuals from GAM model (box limits show 25% 790 

and 75% quartiles; the vertical bar in the middle of the box is the median of the residuals; whiskers 791 

show max. and min. values; and black dots are outliers; color indicate geographic regions). 792 

 793 
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 794 

 795 

Figure 5.Violin plots of the relative contribution of the parameters in each of the four models to the 796 

total deviance explained by each model. Results from 1000 non-linear model runs with stochastic 797 

catchabilities. Unexplained deviance: unexp. Models: a) ‘best’ descriptive, b) neutral, c) metabolic, d) 798 

environmental.  799 


