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22 Abstract

23 Ecological processes occur over multiple spatial, temporal and thematic scales in three-dimensional 

24 ecosystems. Characterising and monitoring change in 3D structure at multiple scales is challenging 

25 within the practical constraints of conventional ecological tools. Remote sensing from satellites and 

26 crewed aircraft has revolutionised broad-scale spatial ecology, but fine-scale patterns and processes 

27 operating at sub-metre resolution have remained understudied over continuous extents. We introduce 

28 two high-resolution remote sensing tools for rapid and accurate 3D mapping in ecology – terrestrial 

29 laser scanning and structure-from-motion photogrammetry. These technologies are likely to become 

30 standard sampling tools for mapping and monitoring 3D ecosystem structure across currently under-

31 sampled scales. We present practical guidance in the use of the tools and address barriers to 

32 widespread adoption, including testing the accuracy of structure-from-motion models for ecologists. 

33 We aim to highlight a new era in spatial ecology that uses high-resolution remote sensing to 

34 interrogate 3D digital ecosystems.

35

36 Keywords: digital ecology, ecosystem science, remote sensing, 3D mapping, terrestrial laser 

37 scanning, structure-from-motion photogrammetry 
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3

46 Introduction

47 Understanding how ecosystems vary in space and time underpins land- and seascape management, but 

48 to be effective, accurate and comprehensive information must be captured across multiple scales. Our 

49 knowledge of ecosystems represents decades of observations by ecologists using field equipment like 

50 quadrats, to capture biological information, and theodolites or satellite positioning systems (e.g. GPS) 

51 to record habitat topography. Direct observation field techniques capture detailed habitat information 

52 but are labour and resource intensive, resulting in trade-offs between three types of scale: spatial, 

53 temporal and thematic, and their components of resolution and extent [1,2]. For example, an 

54 abundance survey of all macro-organisms to species level (high thematic resolution and extent) with 

55 sampling at 1 m intervals (high spatial resolution) cannot feasibly cover an extent of 1 km2 (limited 

56 spatial extent) or if it does, would take a very long time (limited temporal resolution). The 

57 impracticality of conventional methods for spatially or temporally continuous sampling has led to an 

58 average difference of 5.6 orders of magnitude between the extent represented and extent actually 

59 sampled in ecological studies, necessitating interpolation or extrapolation with the risk of over-

60 leveraging data [3].

61 Disruptive remote sensing technologies to rapidly record detailed, spatially-referenced biological and 

62 physical information are now accessible to the field ecologist. These techniques overcome some of the 

63 logistical challenges and trade-offs of direct observation field sampling and extend the scales of 

64 remote sensing capability. This review considers tools able to capture three-dimensional (3D) 

65 ecosystem data at finer scales than can be achieved with more familiar remote sensing from satellites 

66 or crewed aircraft. We present an introduction to two of the most powerful and accessible high-

67 resolution 3D mapping techniques, which hold enormous potential for the rapid collection of 

68 ecologically relevant, spatially continuous data at multiple scales: terrestrial laser scanning and 

69 structure-from-motion photogrammetry (figure 1). Uptake of these new technologies varies widely 

70 across disciplines and user groups, and there is a strong case for their increased adoption in ecology. 

71 Our primary audiences are ecologists, environmental managers and other interested parties who have 

72 limited or no experience with these high-resolution remote sensing tools. We direct more experienced 
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73 users to our analysis of the accuracy of structure-from-motion photogrammetry models at scales and 

74 contexts relevant to ecological studies, addressing a key barrier to uptake. Our aim is to shed light on 

75 powerful and increasingly user-friendly tools, encourage innovative and novel analytical approaches, 

76 and highlight the new era of 3D digital spatial ecology.

77

78 Remote sensing in ecology 

79 Remote sensing from satellite and crewed aircraft has revolutionised spatial ecology with diverse 

80 applications that continue to grow as technology advances in capability, accessibility and familiarity. 

81 Passive earth observation from satellites has enabled global-scale mapping and monitoring of land 

82 cover, ecosystem function and climatic variables [4], and now offers metre-resolution daily imagery 

83 of anywhere on the globe, presenting new opportunities for ecology, conservation and management 

84 [5]. Active spaceborne sensors have facilitated the study of broad-scale (km to global) ecosystem 

85 structure [6], enabling estimation of global ocean bathymetry [7] and continuous global topography 

86 [8]. The ICESat-2 laser altimetry mission will have ecosystem characterisation applications through 

87 mapping heights of ice, vegetation canopy and freshwater bodies [9], as well as unanticipated 

88 potential for nearshore bathymetric mapping [10].

89 Remote sensing from crewed aircraft provides similar data products to satellite sources at higher 

90 resolution over smaller extents. Airborne laser scanning has become a widely used tool for 

91 characterising 3D habitat structural complexity and exploring organism-habitat relationships [11,12]. 

92 Bespoke or repeat airborne laser scanning surveys are uncommon in academic research due to high 

93 operating costs of crewed aircraft, and compatibility issues pose challenges for the analysis of existing 

94 available data [13].

95 Satellite and crewed aircraft remote sensing is irreplaceable for continuous mapping at up to global 

96 extents. However, the technique becomes logistically inappropriate when detailed information is 

97 required across smaller spatial extents (metres to hectares) or shorter time periods (hours to weeks) 

98 due to limits of data resolution, accuracy or cost. For 3D mapping at these scales, recent technological 
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99 advances have led to the emergence of high-resolution (millimetre to centimetre), rapidly deployable 

100 remote sensing tools that include terrestrial laser scanning and structure-from-motion photogrammetry 

101 (figure 1) [14–16]. Advancement in sampling technology drives an ever-expanding range of questions 

102 we can ask about the natural world, and the ability to accurately map ecosystems in three or more 

103 dimensions is changing the way we study their ecology and management [11,13,17].

104

105 High-resolution remote sensing tools for spatial ecology

106 Terrestrial laser scanning and structure-from-motion photogrammetry both generate accurate, high-

107 resolution digital 3D models of the environment in the form of a point cloud (figure 1). A point cloud 

108 is simply a collection of individual points with X, Y and Z coordinates describing their 3D position. 

109 Additional attributes can be added to each point to provide information such as colour or other local 

110 statistic. From point clouds, other topographic data products like mesh models and rasters can be 

111 generated for additional analyses (figure 1). Although their outputs appear similar, terrestrial laser 

112 scanning and structure-from-motion photogrammetry generate point clouds in different ways, 

113 resulting in differences in the point cloud characteristics. For an overview of data collection steps 

114 using these two techniques see figure 2. 

115

116 Terrestrial Laser Scanning

117 Using the same principles as airborne laser scanning, terrestrial laser scanning is a high-precision 

118 ground-based survey technique used extensively in civil engineering. It is an active remote sensing 

119 approach that builds an accurate model of the surroundings by emitting millions of laser pulses in 

120 different directions and analysing the reflected signals [18]. Data collected using calibrated laser 

121 scanning equipment have intrinsic precision and real-word scale. 

122 Terrestrial laser scanning is conducted from a set of discrete stations using a tripod-mounted 

123 instrument, collecting data radially from a low elevation (generally < 2 m). This results in a reduction 
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124 in both point density and angle of incidence to the ground with increasing distance from the scanner, 

125 and sectors of missing data behind obstructions like trees. Regions with low point density are filled by 

126 merging data from multiple scanning stations (figure 2), introducing a low level of quantifiable error. 

127 Data extent, resolution and coverage must be balanced with the survey time needed, especially in 

128 complex ecosystems like forests where many stations are required for comprehensive coverage of a 

129 large extent. Terrestrial laser scanning typically penetrates through fine-scale features like vegetation 

130 to record points on internal surfaces (e.g. branches) and the ground, as the independent laser pulses 

131 can travel through small gaps. Compared to crewed airborne systems, terrestrial laser scanning offers 

132 higher resolution, more accurate data from a near-ground perspective, with lower operating costs and 

133 responsive deployment capability, but across a more limited survey extent.

134 Falling costs and improved portability have increased the accessibility of terrestrial laser scanning to a 

135 wide variety of users [15,18]. Custom built versions have lowered costs even further [19], although 

136 the equipment and software required is still expensive compared to structure-from-motion 

137 photogrammetry, and may be prohibitively so for some users. Early adoption of terrestrial laser 

138 scanning for natural sciences was concentrated in the fields of geography and geoscience [18,20]. 

139 More recently it has seen application in ecology [13], particularly in forest ecology where the below-

140 canopy perspective complements airborne data collection. Applications include quantifying biomass, 

141 growth and 3D structure of forest vegetation [15,21–24], non-destructive estimation of above ground 

142 grass and mangrove biomass [25,26], assessing vegetation water content [27], studying cave-dwelling 

143 bat and bird colonies [28,29], mapping freshwater habitats [30] and exploring the relationships 

144 between organisms and fine-scale topography [31,32]. 

145

146 Structure-from-motion photogrammetry

147 Structure-from-motion photogrammetry is a low-cost machine vision technique that enables the 

148 reconstruction of a detailed 3D model from a set of overlapping two-dimensional digital photographs 

149 [33]. The camera may be handheld or pole-mounted for small scenes, while drone-mounted cameras 
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150 are commonly used to capture larger extents [34]. Commercial adoption of structure-from-motion is 

151 increasing as a low-cost, flexible survey tool, but questions remain over best practices for producing 

152 repeatable and high quality outputs.

153 With structure-from-motion photogrammetry, the geometry of a scene is reconstructed from the 

154 relative positions of thousands of common features detected in multiple photographs taken from 

155 different vantages. Structure-from-motion is a passive remote sensing technique because photographs 

156 capture reflected light from an external source like the sun. While a basic model can be generated 

157 entirely automatically, manual input into the processing stage is required for accurate outputs. 

158 Structure-from-motion models have no inherent real-world scale, so known coordinates or distances 

159 must be incorporated to generate scale. There is greater opportunity for error introduction with 

160 structure-from-motion compared to terrestrial laser scanning, and uncertainty in data outputs varies 

161 widely and unpredictably within [35] and among studies [36]. For example, error can be introduced 

162 through camera lens distortion, poorly focused images, movement of features in the scene, and 

163 imprecision in manual processing stages. Care must be taken to minimise the propagation of error 

164 through the model construction pipeline [36]. Structure-from-motion generates more homogenous and 

165 comprehensive data coverage compared to terrestrial laser scanning in less time, because the camera 

166 is moved around the scene, often using an aerial platform. However, multiple images of a point on a 

167 feature are needed to calculate a position, so internal surfaces of complex features (e.g. branches of a 

168 dense bush or coral), shaded surfaces and moving features (e.g. blades of grass in the wind) are less 

169 likely to be captured or positioned accurately. Structure-from-motion tends to return a generalised 

170 outer surface of such features, lacking finer details.

171 The algorithms used for structure-from-motion are computationally demanding but falling costs of 

172 computer processing power and affordable, user-friendly software are making this technique 

173 increasingly accessible (see [36] for popular software options). As with terrestrial laser scanning, 

174 structure-from-motion saw early adoption in geography and geoscience [33]. Ecological applications 

175 include modelling forest and vegetation structure and biomass [25,34,37,38], and quantifying fine-

176 scale habitat topography and structure [14,39–41]. Recently there has been particular interest in 
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177 underwater structure-from-motion for measuring and mapping 3D habitat complexity in coral reef 

178 systems [42–44]. 

179

180 Georeferencing

181 Georeferencing is required to position 3D data generated using terrestrial laser scanning and structure-

182 from-motion in real-world space. Positions of equipment (e.g. laser scanner, drone) or identifiable 

183 features (e.g. targets) are typically recorded using a survey grade Global Navigation Satellite System 

184 (GNSS) with an accuracy of 1-3 cm. This stage can represent one of the largest sources of error in the 

185 3D modelling processing pipeline. The influence of georeferencing error on terrestrial laser scanning 

186 and small-extent structure-from-motion data (e.g. < 100 m2) can be minimised by incorporating it at a 

187 late stage in processing, and with low weighting. However, with large scenes modelled with structure-

188 from-motion using drones, georeferencing using well-distributed ground control points must be 

189 incorporated into the process at an earlier stage to provide scale, and prevent warping of 

190 geometry [45]. With sub-centimetre-resolution 3D data, georeferencing error can be a limiting factor 

191 for detection of fine-scale change in topography through time [32], and for estimating the accuracy of 

192 survey techniques [46], demanding positioning technology with sub-centimetre accuracy (e.g. Total 

193 Station).

194

195 Accuracy of structure-from-motion models in ecological settings

196 Structure-from-motion photogrammetry can achieve impressive accuracy, but the flexibility of the 

197 technique makes it vulnerable to the introduction of error that is method and context specific. Most 

198 assessments of accuracy in natural settings have been in the field of geoscience, with measurement 

199 error varying from < 1 mm to over 3 m and somewhat dependent on the distance between camera and 

200 surface [36]. The spatial scales of ecological patterns often include the very fine (< 10 cm), so an 

201 estimate of the realistic achievable accuracy of structure-from-motion photogrammetry is crucial to 

202 assess its usefulness to ecologists and environmental managers. 

Page 8 of 28

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



9

203 We compared structure-from-motion and terrestrial laser scanning models within three habitats (rocky 

204 shore, honeycomb worm (Sabellaria alveolata) biogenic reef and saltmarsh) and at three ecologically 

205 relevant scales (fine-scale: 25 m2 with < 1 cm resolution, medium-scale: 2500 m2 with < 2 cm 

206 resolution, and broad-scale: 2500 m2 with 5 cm resolution). Fine-scale photographs were collected 

207 using a pole mounted camera (Canon EOS M, 22mm lens), while medium- and broad-scale 

208 photographs were collected using a drone (DJI Phantom 3 Pro) flying at 25 m and 90 m altitude, 

209 respectively. Terrestrial laser scanning data were used as “truth” because it is a commercially 

210 recognised technique with known precision (6 mm at 50 m range), and the most accurate 3D mapping 

211 technique we were aware of. Structure-from-motion and terrestrial laser scanning surveys were 

212 conducted simultaneously using shared reference targets, to avoid the introduction of georeferencing 

213 error. Survey and data processing protocols were designed to achieve maximum accuracy. Models 

214 were compared as point clouds using the M3C2 algorithm implemented in the open source software 

215 CloudCompare, designed for comparison of 3D point clouds from natural scenes containing surface 

216 complexity at multiple scales [47,48]. Comparison of point cloud data avoided the introduction of 

217 error by the more common approach of interpolating and averaging data to a raster format digital 

218 elevation model (DEM) [46]. For detailed methods see electronic supplementary material, S1.

219 We found mean absolute distance (± 1 standard deviation) between structure-from-motion and 

220 terrestrial laser scanner data ranged from 4 mm ± 14 mm (fine-scale, rocky shore) to 56 mm ± 111 

221 mm (medium-scale, saltmarsh) (figure 3). In all cases, distances between the point clouds clustered 

222 close to zero, indicating good average agreement, with positive and negative errors compensating 

223 each other. The spread of measured distances varied, with fine-scale and stable substrate scenes 

224 showing the least variation, while broad-scale and vegetated scenes showed the most (figure 3). 

225 Visual inspection of model difference maps and cross-sections revealed that on average structure-

226 from-motion models were accurate, but as resolution decreased, sharp features became smoothed, 

227 with cuboid reference objects being represented as mounds (electronic supplementary material, figure 

228 S2). Similar results are reported in other studies, with high agreement between structure-from-motion 
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229 and terrestrial laser scanning at fine-scales of up to 1 m2 [25,49] and centimetre-level accuracy at 

230 broad scales (hectares) [46,50].

231

232 A case for increased adoption of 3D mapping techniques in ecology

233 Terrestrial laser scanning and structure-from-motion photogrammetry offer rapid, detailed, continuous 

234 extent 3D mapping of ecosystems. Relieving scale-dependence of sampling and easing trade-offs in 

235 scale presents opportunities to ask new questions of the natural world and revisit classical paradigms 

236 at new scales. The potential applications for high-resolution 3D mapping techniques are vast, and like 

237 satellite remote sensing and airborne laser scanning, much of their value will likely only emerge once 

238 techniques are firmly established as standard ecological tools. Unique insights are already being 

239 generated, particularly in forest and coral reef ecosystems [51], whereas adoption has been slower in 

240 other systems such as intertidal habitats. Multiscale topography plays a critical structuring role in the 

241 intertidal zone by controlling environmental conditions and field time is constrained by tidal cycles, 

242 making rapid 3D mapping tools valuable to intertidal field ecologists. In this section we identify and 

243 discuss several themes of study in which emerging techniques have either already found innovative 

244 and transformative applications or are likely to have high impact in the near future (figure 4).

245

246 Understanding relationships between organisms and habitat structure

247 Analyses of organism-habitat relationships can be hampered by our ability to quantitatively capture 

248 the environment. This has resulted in a diversity of definitions, metrics and methods employed to 

249 understand the mechanisms behind system-independent phenomena like habitat complexity-

250 biodiversity relationships [52]. The analysis of digital representations of 3D habitat structure to derive 

251 system- and scale-independent metrics, like fractal dimension [53], or novel organism-centric metrics 

252 [54], could lead to improved understanding by reducing the need to simplify 3D habitat structure (e.g. 

253 to 2D profiles) to facilitate analysis [42,43,52,55,56]. 
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254 Spatial patterning and the patchiness of species across a landscape can depend on topography at 

255 multiple scales. In tidal flats and flood plains, elevation changes in the order of centimetres can 

256 control species distributions, interactions and ecosystem services [14]. Understanding fine-scale 

257 relationships can improve species distribution and habitat suitability modelling, a valuable 

258 management tool, and lead to advances in organism-perspective landscape analysis. Terrestrial laser 

259 scanning was used to estimate topographically-controlled foraging habitat suitability for the black 

260 oystercatcher (Haematopus bachmani) and model how it may change under future sea-level rise [31]. 

261 Fine-scale topography and 3D structure can control other variables that can be modelled in finer 

262 scales than ever before, like microclimate [57], soil pH [58] and hydrodynamic forces [59]. This can 

263 enable quantification of environmental variables as continuous rather than categorical factors, which 

264 may lead to alternative or improved interpretations of organism-environment relationships [60,61]. 

265

266 Measuring and monitoring small, slow and complicated variation in 3D form

267 Improved morphological descriptions of complex natural shapes can be made with comprehensive 3D 

268 data, and variation in such shapes can be monitored through space and time at an organism-relevant 

269 resolution. Using terrestrial laser scanning, researchers found that oysters, an ecosystem engineer, can 

270 grow reef structure at a faster rate than current sea-level rise, with important management and 

271 conservation implications [62]. Coral reef structure is difficult to quantify and previous methods 

272 known to poorly capture detailed topography, like the chain-and-tape method, can now be replaced 

273 with more repeatable structure-from-motion surveys with similar in-water effort [42,43]. Through 

274 accurate feature modelling, terrestrial laser scanning can improve on traditional allometric equation 

275 methods to estimate above ground biomass in trees (9.68% overestimation compared to 36.57–

276 29.85% underestimation) [63]. The low cost of operation and rapid deployment capability of 

277 terrestrial laser scanning and structure-from-motion make them suitable for opportunistic pre- and 

278 post-event change detection [64] and environmental impact assessment monitoring.

279
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280 Virtual sampling, digital archiving and addressing problems of scale in ecology

281 With sampling now achievable at sub-centimetre resolutions, ecosystems can be digitally captured to 

282 a degree that in some instances exceeds the resolution possible using in situ human observation. There 

283 are, however, still limitations of completely removing the human observer element.  Macroalgal 

284 canopy cover estimates on rocky shores are indistinguishable between “virtual quadrats” from drone-

285 derived image mosaics and in situ human observers using field quadrats, but understory turfing algal 

286 species are under-sampled in virtual quadrats [65]. Sampling of cryptic species and multi-layered 

287 features will remain challenging to sample using remote sensing. Despite some limitations, the 

288 potential advantages of sub-centimetre digital mapping of ecosystems are hugely exciting, including 

289 automated species detection and identification using machine learning [66], entire extent sampling 

290 that removes interpolation issues when scaling up from replicate samples [3], and simultaneous 

291 biological and environmental sampling [65] (figure 4). Capturing and archiving detailed digital 

292 snapshots of ecosystems in a rapidly changing world is likely to prove invaluable for future, currently 

293 unknowable analytical approaches.

294 Organisms interact with their environment at a range of scales, but understanding scale-dependent 

295 patterns and processes is a long-standing challenge in ecology [67,68]. Observation of organisms and 

296 their environment is often conducted at spatial, temporal and thematic scales that are human-centric 

297 and chosen arbitrarily or logistically, rather than guided by the ecological processes being studied 

298 [1,67,68]. Due to the versatility of high-resolution remote sensing methods like terrestrial laser 

299 scanning and structure-from-motion, studies can now be conducted at scales that have previously been 

300 underexplored in ecology (figure 1) [3]. One of the difficulties in multiscale analysis is the time and 

301 resource constraints of sampling the same extent at different resolutions [1]. With the ability to 

302 rapidly sample large extents at high-resolution, multiscale data can be digitally generated by 

303 resampling. We have increasing flexibility to move away from arbitrarily chosen sampling scales and 

304 observe ecosystems at ecologically relevant and mechanistic scales.

305
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306 Value to managers, policy makers and the public

307 In a rapidly changing world, tools to efficiently record accurate, detailed snapshots of the environment 

308 and monitor ecosystem health are extremely valuable to environmental managers and policy makers. 

309 Policy makers require high quality environmental information to make evidence-based decisions 

310 aimed at limiting environmental impact, conserving ecosystems and maintaining ecosystem services, 

311 to the benefit of the public. Often availability of technology to environmental managers is not 

312 limiting, but without practical information on how to efficiently utilise tools, and analyse and interpret 

313 new data types with confidence, there may be a lag in adoption of emerging technologies in favour of 

314 more familiar methods, despite their known limitations [69,70]. A benefit of high-resolution 3D 

315 mapping technologies for public facing research groups and environmental bodies is the easily 

316 interpreted visual data products generated. Photo-realistic 3D models of ecosystems aid explanation of 

317 ecological processes and issues, improving public communication and education through digitally 

318 annotated still images, animations or virtual reality systems.

319

320 Barriers to wider uptake in ecology

321 While some sub-disciplines of ecology are making headway in using high-resolution remote sensing 

322 methods to answer questions and test ecological paradigms across scales, in general the methods 

323 remain underutilised across the discipline. A Web of Science search conducted in December 2019 

324 found that just 1.4% (59 out of 4348) of articles about terrestrial laser scanning or structure-from-

325 motion were categorised as “ecology” compared to 23.7% (1031) categorised as “geosciences 

326 multidisciplinary”. Further, 67.8% of these articles were published in the last three years 

327 (2017−2019), highlighting the emerging adoption of these techniques. Here we identify four 

328 perceived barriers to wider uptake in ecology.

329 Firstly, potential users may be unaware that such techniques exist, so a major aim of this article is to 

330 introduce ecologists and environmental managers to two of the most common and powerful 

331 techniques in an accessible manner. Second, potential users may be somewhat aware of the techniques 
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332 discussed, but perceive them to be specialised tools and inaccessible due to high expertise, cost or 

333 time requirements. Technological advances in hardware and user-friendly software mean non-

334 specialists can now be using these techniques in a basic form within a day with a small amount of 

335 training or self-learning. Equipment, software and training costs can still be significant, especially for 

336 terrestrial laser scanning, with further costs incurred for maintenance and insurance. However, the 

337 multidisciplinary applications of the techniques mean many institutions will already have access to 

338 suitable equipment and software, or can gain access to shared resources. Structure-from-motion costs 

339 can be comparable to many other field techniques, especially if using a handheld camera and open 

340 source software. Practical field time requirements are context dependent. In coastal habitats we found 

341 that terrestrial laser scanning took 15 – 20 min between stations for a typical medium resolution (10 

342 cm point spacing at 100 m range) survey. Structure-from-motion time requirements ranged from 

343 approximately 20 minutes for a 25 m2 area surveyed using a pole mounted camera, to 2 hr for a 10 ha 

344 area surveyed at 2-cm resolution using a multi-rotor drone (45 m altitude). As a photographic 

345 technique, structure-from-motion is slowed or halted in low-light, while terrestrial laser scanning can 

346 be conducted in darkness. Processing of terrestrial laser scanning data is rapid (1 – 2 hr) and can even 

347 be conducted on a laptop in the field directly after surveying. Processing a basic structure-from-

348 motion model can be achieved in a similar amount of time, but an accurate, detailed model typically 

349 takes a day or more to process depending on processing power and number of images. For a 

350 comparison of practical considerations for terrestrial laser scanning and structure-from-motion for 

351 geoscience see [71].

352 A third possible barrier to uptake in ecology is that potential users are aware of 3D mapping tools and 

353 understand how they are conducted but do not see value in their use, or are resistant to exploring 

354 technology-based alternatives to traditional field methods. Technology is unlikely to ever completely 

355 replace a human ecologist in the field for direct observation and interpretation, but can augment data 

356 collection and improve efficiency and quantification of specific variables if used appropriately [72]. 

357 By separating tasks that require human engagement from those that are more efficiently performed 

358 using technology, field time can be optimised [65]. These technologies allow us to test existing 

Page 14 of 28

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



15

359 ecological concepts at novel scales and inspire new questions that could result in novel paradigms and 

360 understanding. 

361 Finally, potential users may be aware of the techniques and understand how they are conducted but 

362 are sceptical about the accuracy of the outputs at their spatial scales of interest; this is especially 

363 relevant for structure-from-motion photogrammetry. To address this, in this paper we have presented 

364 results from an assessment specifically to test the realistic accuracy and characteristics of structure-

365 from-motion models in contexts and at spatial scales relevant to ecologists and environmental 

366 managers (figure 3). Our results demonstrate that millimetre to centimetre scale variation in 

367 topography can be measured in space and time using high-resolution 3D mapping techniques in the 

368 field, making them valuable for numerous ecological applications (figure 4).

369 The perceived barriers to adoption of 3D mapping techniques for ecological data collection are now 

370 low. However, system-specific challenges remain in survey design, data processing and interpretation. 

371 With terrestrial laser scanning in complex environments, line-of-sight obstructions and moving 

372 vegetation combined with the spatial characteristics of the point cloud data generates challenges for 

373 interpretation and analysis [49,73,74]. While the moving vantage aspect of structure-from-motion data 

374 capture means more homogenous data coverage, repeatability of coral reef rugosity measurements 

375 were impacted by high habitat complexity, environmental conditions and variation in methods [75]. 

376 The use of drone-mounted sensors for field ecology comes with an additional suite of considerations 

377 for training, permissions and constantly evolving regulations that govern their safe and legal usage 

378 [76]. Data processing still requires manual input at various stages, and automated workflows can be 

379 computationally demanding, especially for structure-from-motion. Various algorithms and software 

380 packages are being developed for 3D point cloud processing, including open source projects like 

381 CloudCompare [48]. After the initial processing stages required to generate a 3D model, further 

382 processing and analysis currently requires non-trivial technical skill or novel approaches specific to 

383 the task. As 3D methods become more common in ecology, an increase in demand and funding for 

384 user-friendly and powerful processing techniques, including packages for open-source platforms like 

385 Python and R, can be expected.
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386 Conclusion

387 Technology is available and accessible to non-specialist ecologists that enables the detailed mapping 

388 of habitats and organisms accurately in 3D. These techniques unlock a wealth of new spatial and 

389 temporal ecological questions that were logistically impossible to ask only a few years ago. As with 

390 any sampling method the limitations should be understood as uncertainty may not be readily detected, 

391 and there is a need for standardisation of protocols. The power of these techniques mean they are 

392 rapidly becoming standard and essential tools in various disciplines. By embracing emerging 

393 technologies, modern ecologists can overcome longstanding challenges in studying scale-dependent 

394 organism-environment relationships. Digital ecosystem analysis and multiscale 3D spatial ecology is 

395 continuing to evolve, and high-resolution remote sensing techniques are becoming instrumental as 

396 part of the modern spatial ecologist’s tool kit.

397
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432 Figure captions

433 Figure 1. 

434 An overview of high-resolution three-dimensional ecosystem mapping tools, data formats and scales. 

435 Tools include terrestrial laser scanning and structure-from-motion photogrammetry. Point cloud data 

436 can be processed into mesh formats by interpolating between points, and raster formats to produce 

437 digital elevation models (DEMs) by averaging point elevations in a regular 2D grid. 3D information 

438 can be analysed at multiple spatial scales from organism to ecosystem. These tools enable 

439 investigation at spatial scales (resolution and extent) that are understudied in ecology. Plot shading 

440 (adapted from [3]) indicates number of ecological studies at specific scales, dashed areas represent the 

441 approximate sampling scales for terrestrial laser scanning and structure-from-motion (using drone-

442 mounted and handheld cameras).

443

444 Figure 2. 

445 Major steps for capturing data with terrestrial laser scanning and structure-from-motion using 

446 handheld and drone-mounted cameras. A) Identify features of interest and estimate scanning positions 

447 or camera angles. B) Set out reference targets for terrestrial laser scanning, or ground control points, 

448 check points and scaling objects for structure-from-motion. For laser scanning, targets are used to 

449 align data from different stations, although scene geometry can sometimes be used for alignment 

450 instead of, or in addition to targets. For structure-from-motion, reference points are used for aligning 

451 images and constraining the modelling process, and for accuracy assessment and scaling. C) 

452 Terrestrial laser scanning collects data from a number of discrete stations, to be combined during 

453 processing. For structure-from-motion, many overlapping photographs are taken, from which a 3D 

454 model is generated during processing. D) Georeferencing, typically using a commercial grade Global 

455 Navigation Satellite System, is required to position the resulting 3D models in real-world space, and 

456 for scaling in large structure-from-motion models.

457
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458 Figure 3. 

459 Accuracy of a structure-from-motion point cloud quantified as the point-by-point distance to a 

460 reference terrestrial laser scanning point cloud in three habitats (rocky shore, biogenic reef and 

461 saltmarsh) and at three scales (fine: 25 m2 with < 1 cm resolution, medium: 2500 m2 with < 2 cm 

462 resolution and broad: 2500 m2 with 5 cm resolution). Distances were measured at 100,000 points and 

463 plotted as density curves, with the area under each curve being equal. Curve tails beyond 0 ± 0.1 m 

464 are not shown. Mean absolute error (MAE) ± 1 standard deviation (m) distance is reported.  

465

466 Figure 4. 

467 Examples in ecology and environmental management with existing or potential applications for 3D 

468 ecosystem mapping. 1) Multiscale experimental design with high-resolution 3D mapping across large 

469 extents. 2) Mapping fine-scale variation in topography across tidal flats and wetlands. 3) Automated 

470 species identification and biometric measurement in forests. 4) Comparing topographic variation in 

471 natural and artificial hard coastal substrates. 5) Digital archiving of 3D habitat structure in 

472 inaccessible ecosystems. 6) Monitoring variation in reef topography in space and time. 7) Modelling 

473 growth in complex 3D organisms like mangrove trees. 8) Mapping 3D structure in habitats with 

474 canopy cover and overhangs.

475

476

477

478

479

480

481
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An overview of high-resolution three-dimensional ecosystem mapping tools, data formats and scales. Tools 
include terrestrial laser scanning and structure-from-motion photogrammetry. Point cloud data can be 

processed into mesh formats by interpolating between points, and raster formats to produce digital elevation 
models (DEMs) by averaging point elevations in a regular 2D grid. 3D information can be analysed at 
multiple spatial scales from organism to ecosystem. These tools enable investigation at spatial scales 

(resolution and extent) that are understudied in ecology. Plot shading (adapted from [3]) indicates number 
of ecological studies at specific scales, dashed areas represent the approximate sampling scales for 
terrestrial laser scanning and structure-from-motion (using drone-mounted and handheld cameras). 
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Major steps for capturing data with terrestrial laser scanning and structure-from-motion using handheld and 
drone-mounted cameras. A) Identify features of interest and estimate scanning positions or camera angles. 
B) Set out reference targets for terrestrial laser scanning, or ground control points, check points and scaling 
objects for structure-from-motion. For laser scanning, targets are used to align data from different stations, 

although scene geometry can sometimes be used for alignment instead of, or in addition to targets. For 
structure-from-motion, reference points are used for aligning images and constraining the modelling 

process, and for accuracy assessment and scaling. C) Terrestrial laser scanning collects data from a number 
of discrete stations, to be combined during processing. For structure-from-motion, many overlapping 

photographs are taken, from which a 3D model is generated during processing. D) Georeferencing, typically 
using a commercial grade Global Navigation Satellite System, is required to position the resulting 3D models 

in real-world space, and for scaling in large structure-from-motion models. 
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Accuracy of a structure-from-motion point cloud quantified as the point-by-point distance to a reference 
terrestrial laser scanning point cloud in three habitats (rocky shore, biogenic reef and saltmarsh) and at 

three scales (fine: 25 m2 with < 1 cm resolution, medium: 2500 m2 with < 2 cm resolution and broad: 2500 
m2 with 5 cm resolution). Distances were measured at 100,000 points and plotted as density curves, with 
the area under each curve being equal. Curve tails beyond 0 ± 0.1 m are not shown. Mean absolute error 

(MAE) ± 1 standard deviation (m) distance is reported. 
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Examples in ecology and environmental management with existing or potential applications for 3D 
ecosystem mapping. 1) Multiscale experimental design with high-resolution 3D mapping across large 

extents. 2) Mapping fine-scale variation in topography across tidal flats and wetlands. 3) Automated species 
identification and biometric measurement in forests. 4) Comparing topographic variation in natural and 

artificial hard coastal substrates. 5) Digital archiving of 3D habitat structure in inaccessible ecosystems. 6) 
Monitoring variation in reef topography in space and time. 7) Modelling growth in complex 3D organisms like 

mangrove trees. 8) Mapping 3D structure in habitats with canopy cover and overhangs. 
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